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ABSTRACT

I report the results of Monte Carlo studies on self-avoiding tethered membranes.
Similar to one-dimensional polymers, two-dimensional tethered membranes have the
essential feature that at moderate temperatures the crosslinks between the constituent
particles remain in place. The conformation of the membranes in equilibrium is the

focus of these studies.

Analytical calculations for the tethered membranes are first reviewed. I start
with the generalized Edwards Hamiltonian for a D-dimensional manifold (D =1 for
polymers and D = 2 for membranes) embedded in d-dimensional space and perform
dimensional analysis. The concept of upper critical dimension (above which self-
avoidance is irrelevant) is introduced and a generalized Flory theory is constructed.
I describe a perturbative renormalization-group analysis which treats the excluded-
volume effect as a perturbation to an ideal manifold. The theory, at the lowest order

of expansion, predicts a crumpled phase for self-avoiding tethered membranes.

1 have performed Monte Carlo simulations en a model tethered membrane em-
bedded in three-dimensional space. Two studies are reported in this thesis. The role
of self-avoidance in determining the shape of tethered membranes at infinite temper-
ature is first studied by varying the diameter of the particles on the network. For
the strongly self-avoiding membranes, we find a flat but rough phase: The sizes of
the network in the two long directions scale linearly with the maximum linear size of
the network while the size in the short direction scales with this maximum size with
an exponent smaller than 1. There is no evidence for the existence of a crumpled
phase. For the weakly self-avoiding membrane, the study suggests that, for any finite
diameter, self-avoiding membranes are flat in three dimensions in the thermodynamic

limit.

I have also studied a model tethered membrane in which the particles interact

111



through hard-core repulsion as well as a longer range attractive potential. As the
temperature is decreased, the membrane undergoes a phase transition from the usual
high-temperature flat phase to a low-temperature crumpled phase. The crumpled
phase, which seems to exist over a range of temperatures, is isotropic and is charac-
terized by a fractal dimension close to the Flory estimate Dy = 2.5. At still lower

temperatures the membrane is in a collapsed phase.

v
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Chapter 1

Introduction

Membranes are thin and highly flexible surfaces found in various branches of science,
such as biology, chemistry, engineering, physics, and interdisciplinary sciences |1,
2]. For example, bilayer membranes composed of amphiphilic lipid molecules are
found naturally in most biological systems such as cells. Other membranes, such as

surfactant bilayers, can be found in chemical solutions.

Physical studies of membranes have focussed on their conformational behavior.
These studies are necessarily done on a length scale large compared to the size of con-
stituent molecules and, thus, the details of the molecules on short length scales can
be ignored. On such a length scale, membranes can be regarded as two-dimensional
surfaces embedded in three-dimensional space and undergoing thermally excited fluc-

tuations in this space.

A biological membrane such as a red blood cell membrane is very complex, having
many different structural components. The simplest model membrane may be a lipid
bilayer which resembles the most elementary component of a biolegical membrane
and can be prepared artificially in the laboratory by dispersing amphiphilic biological
lipids in aqueous fluids. This two-dimensional system can exhibit a variety of phases,

corresponding to different states of the internal degrees of freedom associated with



the in-plane translational motion of the constituent molecules. For example, the
bilayer may exhibit liquid crystalline and hexatic phases al low temperatures. At
high temperatures, the membrane is in the fluid phase, in which the molecules diffuse
freely within the plane with zero shear modulus. Such a membrane, referred to as a
fluid membrane, shows large out-of-plane shape fluctuations in the absence of external
lateral forces. Since these membranes do not resist shear, it is generally believed that
surface conformations are governed only by the bending rigidity. A surface which
has only a bending rigidity is characterized by a persistence length, defined to be the
distance over which unit vectors normal to the surface become uncorrelated [3, 4].

This persistence length is a rapidly varying function of temperature,
£p ~ aexp(ek/kpT)

where a and ¢ are constants and & is the bending rigidity. This formula for the persis-
tence length was derived from a linear theory. A more detailed renormalization-group
analysis [5, 6] has shown that short-wavelength transverse undulations significantly
reduce the effective bending rigidity of the membrane on length scales large com-
pared to the persistence length. Thus, when viewed on a length scale larger than the

persistence length, the membranes may appear convoluted or crumpled.’

Polymerized membranes are quite different from liquid membranes. The con-
stituent molecules (or more generally, monomers) of polymerized membranes are
tethered together to form a network of a certain connectivity. With this crosslinking,
in-plane fluid phases are no longer possible. An example of such a network can be
found in red blood cells [10]. Under the bilayers of the cells, there exists a cytoskele-
ton composed of protein spectrins knotted by actins at the vertices of the network.
This network is anchored to the lipid bilayers of the cells through ankyrins and can

be isolated in the laboratory. The essential point of distinction between this network

!Self-avoiding fluid membranes are difficult to study analytically. Early computer simulation [7]
indicated that a self-avoiding fluid vesicle was crumpled. Other recent simulations {8, 9} suggest that
for zero bending rigidity a self-avoiding fluid membrane behaves like a branched polymer,

2



and a liquid membrane is that at moderate temperatures the connections between

the spectrin chains remain in place.

The connectivity of polymerized networks can be considered fixed on the time
scale on which shape fluctuations take place, and this is an essential feature of poly-
merized membranes. Polymerized membranes may be regarded as thin elastic sheets.
Bending and stretching of a polymerized membrane induce a surface tension which
strongly suppresses the out-of-plane fluctuations. In fact, even for a fluid membrane,
it can be shown that on applying a lateral tension the out-of-plane fluctuations are
drastically reduced [2, and references therein]. The geometric constraints imposed
by the network are responsible for the significantly different behavior of tethered

membranes as compared with fluid membranes [11].

While there have been few experiments on polymerized (or tethered) membranes,
extensive analytical and numerical studies have been carried out during the past few

years. In this thesis I discuss some of these studies as well as my own.

1.1 Linear polymers and the Flory theory

Two-dimensional polymerized membranes are natural generalizations of one-dimen-
sional polymers. I will in this section first review some of the properties of linear
polymers? that are relevant to my thesis. Linear polymers are formed by intercon-
necting a large number of monomers into a linear structure. Each monomer unit is a

group of molecules.

Consider a polymer chain embedded in a d-dimensional space. One of the simplest
idealizations of a flexible polymer chain is a non-self-avoiding (ideal) random walk on
a lattice (eg. see Fig. 1.1). A polymer of degree of polymerization, N, then becomes

a random walk of N steps. Denote by &; the i-th step of the walk. All steps are

*Reference: [12].



Figure 1.1: A random walk on a square lattice. The walk, starting from site S,
steps toward any of the four nearest neighbors with equal probability and ends up
at some random location ¢ on the lattice after N steps. All steps, denoted by &;,
t=1,2,---, N, are uncorrelated.

uncorrelated and (&; - 4;) = §;;a*> where a is the step size. The angular brackets
denote an average over configurations. The position of the walk at the i-th step is
simply ¥; = & + 8, + - + & = Yj_; &. The radius of gyration of the walk, Ry, is
defined as

il

2 1 /&L 2
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The end-to-end distance (between ends 8 and € in Fig. 1.1), Ry, can be similarly
obtained,
N N N
Rl = {(Fy —0)?) = <; a - ;am> = IZ (8- &) = Na? | (1.2)
and we see that Ry has the same scaling behavior as the radius of gyration. In contrast
to this behavior, a fully directed or stretched ‘random’ walk has the behavior Ry ~ N,
whereas an unconstrained random walk has Ry ~ N1/2 with an exponent less than

1. We call the conformation of the random walk crumpled.

The conformation of an ideal random walk is self-similar in the sense that a seg-
ment of the chain behaves the same statistically as any other part of the chain. In
particular, if we group ¢ consecutive steps into subunits, as shown in Fig. 1.2, each
subunit is then of size ,/ga according to (1.2). The end-to-end distance of the chain

should be invariant under coarse-graining, and (1.2) shows that it is,

B2 (N/g, /ia) = (i}) (Vda)? = BY(N,a) = Na? .

Clearly, such a grouping procedure can be carried out repeatedly. This is exactly
the Kadanoff block-spin transformation. If the coarse-grained chain is appropriately
shrunk, then, at least statistically, the resultant chain looks similar to a portion of
the original chain. This scaling transformation combined with the Kadanoff trans-
formation is called the renormalization-group (RG) transformation. In the language
of the RG theory, we may say that the ideal random walk is characterized by a fixed

point which gives an exponent 15 = 1/2 where Ry ~ N*0.




Figure 1.2: Grouping random-walk steps into subunits. Every g consecutive steps are
grouped together to form a subunit and each subunit is of size \/ga. The solid lines
represent the steps of a random walk and the bullets mark the joints of the chain. The
dashed lines represent the subunits. The end-to-end distance of the chain is invariant
under this grouping procedure.

The entropy of such a random walk can also be calculated exactly. The entropy
S(¥) associated with all chain conformations starting from an origin and ending at a
distance ¥ is related to the number of routes, A/(F), that the random walker can take

in going from the origin to ¥ in N steps
S(¥) = kg In N (F) (1.3)

where kg is the Boltzmann constant. Since all directions of the random walk are
completely uncorrelated, A'(F) can be written as the product of d one-dimensional
binary distribution functions which approach Gaussian distributions when N is large.
Thus we have Ny(F) ~ exp[—dr?/(2R%)] and S(F) = S(0) — kpdr®/(2R2). If the
internal energy E of the polymer is constant, the free energy can be written as

dr?

2R

F(r)=E—TS = F(0) + kgT



and, formally, an ideal polymer behaves like a spring with a spring constant propor-

tional to temperature 7.

These properties of an ideal polymer are universal properties of a Markov chain
and do not depend on the binding potential between the neighboring monomers of the
chain. If we take into account only the interactions between neighboring monomers
in the chain, such as those which restrict the angles or provide bending forces be-
tween successive bonds, and ignore interactions between monomers far apart in their
sequence in the chain, as we have done for ideal polymers, we will always get the same
properties, whatever the microscopic structure of the chain is. This can be clearly
seen from the Kadanoff transformation. If we choose the subunits large enough so
that the neighboring subunits are separated by a distance greater than the correla-
tion length of the monomers, the chain can be treated as an ideal polymer consisting
of independent subunits. Our previous results remain valid if we replace a by an

effective length of the subunits and replace N by the number of the subunits.

When such a coarse graining is done for a chain and the chain is then treated as
an ideal chain, the free energy can be written as a sum of the contributions from the
subunits,

F= %no S [z + o) — Fo)? (1.5)
where Ky = kBTcl/c2, z 1s the index of a subunit and ¢ is the distance between
nelghboring units. Since we are not interested in things happening on the scale of

monomers, for simplicity of analysis we adopt a continuum version of (1.5),

1 dr\’
F= §K/dx (é) . (1.6)

The validity of the above results depends on the omission of interactions between
monomers far apart in the chain sequence. While this is perfectly appropriate for an
1deal polymer, it 1s incorrect for a real polymer in which no two monomers can overlap

regardless of their sequence in the chain. In other words, although the interactions

7



between neighboring monomers are of short range in space, they are of long range in
terms of distance along the chain. The idea of a RG analysis, however, still applies in
this case. In Chapter 2, I shall discuss perturbative RG approach for polymers and

membranes.

For a real polymer, one would expect its radius of gyration to be greater than
that of an ideal polymer (R, ~ N” with v > 1/2) and its entropy to be smaller
than the entropy for an ideal polymer, as a result of the excluded-volume effects
due to self-avoidance. However, the hard-core repulsion is not the only interaction
present between monomers. The interaction between monomers is an effective one
mediated by the solvent. Monomers interact with each other through van der Waals
potential and attract each other at larger distances. There may be screened Coulomb
interactions as well. In a mean-field type theory, Flory [12, 13] calculated the effective
pair interaction between monomers. This effective interaction is found to be, in
most experimental situations, an increasing function of temperature. The effective
interaction is repulsive in a ‘good’ solvent and is attractive in a ‘poor’ solvent at
experimentally relevant temperatures. At a particular temperature, T' = 8, the short-
range effective repulsion and van der Waals attraction between monomers overcome
each other and the effective interaction vanishes. A polymer chain is nearly ideal
(quasi ideal) at this temperature 6 which is referred to as the (Flory) #-point. For a
polymer chain in a good solvent, Flory devised a scheme to find the scaling bebavior
of the chain. He constructed two terms for the total free energy of a polymer. Onc
of these terms is the free energy contributed by entropic effects. In the FFlory scheme,
this term is simply borrowed from (1.4) for the ideal polymer chain. The other term
is the effective repulsive energy. The situation of a chain in poor solvent is more

complicated than this and we shall not discuss it until in Chapter 5.

Consider a polymer occupying a certain volume in a d-dimensional embedding

space. The linear size of this volume is R, and ¢ is the local concentration of




monomers (¢ = N/Rf,}. The repulsive energy is proportional to the probability that
two monomers occupy the same space of unit volume, namely c?, and to the strength
of effective repulsion v. The total repulsive energy is the integration of ZvT (c?) over
a volume RZ. If we ignore fluctuations in concentration ¢ (a typical mean field theory
approach), (c?) can be written as {c)® ~ (N/Rgf, and the total repulsive energy is

given by %?)TN %/ Rj. The total free energy is, therefore,

dR? vIN?
FtotalszTéiTg**’Tng ) (L.7)
g

where Ky is the end-to-end distance for the polymer chain when the interaction is
ignored. The two termsin (1.7) compete with each other: The repulsive energy favors
a large R, and the entropy term favors the opposite. The competition results in an

R, which minimizes the total free energy. We carry out the minimization and obtain

the formula

R, ~ N |
where
3
V= (1.8)

The Flory formula works remarkably well for polymers for all d dimensions (d < 4)
despite its apparent deficiencies and the fact that a mean-field theory neglects fluctu-
ations and usually does not yield accurate values for exponents. It is exact for d =1,
d = 2 [14], and is within a percent of the most accurate numerical results for d = 3.
The I'lory formula can also be used to predict correctly the upper critical dimension of
an embedding space, i.e., the dimension above which a self-avoiding polymer behaves
just like an ideal polymer. Such good agreement is considered unfortunate by some
people, who argue that it delayed the progress of polymer physics [15]. I shall discuss

the topic of upper critical dimensions and revisit the Flory prediction in Chapter 2.



1.2 The tethered membrane model
1.2.1 The Gaussian network

Consider first a ‘phantom’ membrane network of a certain connectivity in which only
nearest-neighbor (NN) monomers interact with each other. The Hamiltonian of the

network in this approximation is

H= Z \Y% (‘i:z - f]]) = Z Vv (V*ij) 3 (’1.9)
1,7 (NN) 1,7 (NN)
where V is some interaction potential.

A natural generalization of an ideal linear polymer is a network of springs in which

V(ri;) = xr};/2 and 1
H = SAZ k(F—1;)° . (1.10)
= 1,7 (NN)

It is convenient to work with the continuum version of the above expression for a

D-dimensional Gaussian network,
1 [ o s |
H:?{/d x (V) (1.11)

where

D -\ 2
(VE)? =3 (g:) (1.12)

=1
and the D-dimensional vector x = (z;,z3,...,2p) is the position of an element in
the internal space of the network. In this thesis, [ use boldface to denote a vector in
the internal space, whereas a vector in: the external (emhedding) space is denoted by

the conventional notation—an arrow on top of a letter.

For the Gaussian network with the Hamiltonian (1.11), one can easily calculate
the end-to-end (or side-to-side, more precisely) distance and the radius of gyration of

the network. For calculating the root-mean-square separation in the embedding space

10



for two points x and x’ on the network, it is convenient to introduce the generating

function,
ok, x,x") = <exp {1k [F(x) — r(x')]}>
- -21-; [ DF exp {iK - [{(x) — #)]} exp(=81) ,  (1.13)
where Zj is the partition function,
Za‘—“/'Di" exp (—AH) | (1.14)

and where the integration is over all possible configurations of the membrane network.

Henceforth, we set 5 = 1 for convenience.

More generally, one can show [16 ] that

exp |i [ dPx K(x) - F(x) = Dr exp dPx | =k (VE)? — ik(x) F(x X)
Zo

_ 1 D, D " ™
= 5 [ xdyGplx-y)Kx) Ky),  (1.15)
where
‘ dD0 etfx
Gp(x) = ~/ P e (1.16)
is a Green’s function satisfying
V2iGp(x) = 6P (x) . (1.17)

Gp(x) is exactly like the Coulomb potential in D-dimensional space. The solution

has spherical symmetry and therefore Gp(x) = Gp(x) where z = |x]|.
Using (1.15), we can write CD(E, x, X'} as

&(k,x,x') = exp [——%GD(X — x')} : (1.18)

Integrating both sides of {(1.17) over a hypersphere of linear size y and applying

Gauss’ law, we find

D-1 dGp (y) ‘

— D ;2 —_ . \/ —
1 _/‘_d XV GD(x)-—/SdS VGo(x) = SpyP =0

11



Thus,

dG{y} o 1 .
Gp(z) = / dy = Tyt TR —— (1.19
p(z) | dy y= 35 ) y = s;,{h-[))M (1.19)
for D # 2, where Sp = 27P/2/T(D/2) is the surface arca of a D-dimensional unit

hypersphere. For D = 2, the integral is well defined and Gp(r) = —5-1;-)- Infe}.

The average-squared distance is given by

([E(x) — F)) = — VE ok, x,x)|._ . (1.20)

By using (1.18) and (1.19), we derive the two-point distance,

<}F(x)~?(x’)j2> = £GD(X~—X) (1.21)
K

= ___P_.._%L_{__.“_ — 1212 $y4)

= 0o D)&[x x| (1.22)

From this formula, we observe that the average distance between two points near
opposite sides on the boundary, in analogy with the end-to-end distance in a polymer,
scales like R ~ LB=P)/2, One can easily show that the radius of gyration of a manifold

of linear size L scales in the same way for large L,

R(L) = o / / Pxd”x' ([(x) — F(x)]?) (1.23)
~ L7 ~ [0
k(2 — D)
Thus,
Vo = QED. (1.24)

For a membrane (D = 2), vy = 0 and R, ~ (In L)}!/2.

One naturally asks whether or not the scaling law for the radins of gyration of
a Gaussian network is universal, i.e., independent of the nature of the interactions,
as in the case for polymers. In the same spirit of coarse-graining, a Migdal-Kadanoff

renormalization-group analysis was carried out by Kantor ¢f al. [17]. They found

12
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oral central-force potentials converge to a Gaussian spring poten-

T

numerically that sev
tial under renormalization. For these potentials, at least, the aforementioned scaling

behavior is universal. The Gaussian network may, therefore, be considered a generic

model for non-self-avoiding membranes.

1.2.2 Self-avoiding network and bounds on the exponent v

Most studies of tethered membranes have focused on the possible phases of membranes
and the exponent v which governs the scaling behavior of the radius of gyration. The
value of the exponent v is bounded by physical limits. Consider a D-dimensional
manifold. When it is fully stretched, the radius of gyration R, scales as L which is
the linear size of the manifold. When the manifold has the most compact conceivable
isotropic conformation in d-dimensional space, its mass occupies a volume of Rj in
the embedding space, namely L? ~ Rg_ Thus R, ~ LP/?. The value of v is therefore
bounded by the exponents for these two limiting cases, D/d < v < 1. Clearly,
the Flory prediction for polymers {(1.8)] satisfies these bounds. For a membrane in
three-dimensional space, v is bounded by a lower limit of 2/3 and an upper limit of
1. Previous researchers have found a ilat phase with ¥ = 1 and a collapsed phase
with v = 2/3. The crumpled phase with an intermediate exponent was not observed

numerically before my simulations.

The fact that a collapsed phase is achieved by computer simulation is highly
nontrivial, since the numerous constraints on a tethered surface make it very difficult
to compress such an object. Kantor et al. {17] carried out a ‘table-top experiment’ by
crumpling sheets of foil and measured the exponent v. They found that a crumpled
phase with » = 0.8, close to the generalized Flory prediction (see Chapter 2), is

generally achieved by randomly crumpling the sheets. Only an ‘intelligent’ folding

0‘1

procedure will vield a collapsed phase. It should be pointed out that such a table-top

experinient uses an irreversible process to produce the ‘crumpled’ phase and, thus, is

13



not necessarily indicative of what happens in an equilibrium process.

The Hamiltonian of a self-avoiding network is usually taken to be the Edwards
model [18],
1 D 2, 1 D, D cdimo y _ =
H = —f;/d x (V) +—L// dPx dPx; 81 [F(x,) — E(x2)] . (1.25)
2 2 iX]'-XQiZa ’ /
The lower cutoff parameter ¢ eliminates the unphysical self-intersections and rep-
resents the microscopic scale of description of the network. If we change a, other
parameters in the Hamiltonian should be readjusted accordingly. ‘This point will

become clear when I discuss renormalization-group analysis in Chapter 2.

1.3 Some studies on tethered membranes

In early work on the tethered membrane, Kantor, Kardar, and Nelson [19] studied a
‘phantom’ membrane model with bending rigidity in which excluded-volume effects
are neglected except for nearest neighbors. The effects of bending rigidity for a
phantom membrane prove to be drastically different from what they would be for
polymers. Bending rigidity favors a flat phase, while the entropy effect favors a
crumpled phase. Kantor et al. found a high-temperature crumpled phase with £, ~
(In L)V/2, consistent with the result for a Gaussian membrane, and a low-temperature
flat or stretched phase with B, ~ L (v = 1), which is not present for linear polymers.
In the case of polymers, bending rigidity modifies the persistence length but does not

give rise to a stretched phase.

The excluded-volume effect, in fact, is the most important factor in determining
the shape of a membrane. Contrary to the earlier belief that a self-avoiding membrane

was crumpled in the absence of bending rigidity, more extensive computer simulations

o]
o]

{20, 21, 22, 23, 24], including my own which I shall report in this thesis, showed that
a self-avoiding membrane is always flat when in equilibrium, at least for particles

with sufficiently large hard cores. In fact, for such a membrane embedded in three

14



dimensional space, it is found that the membrane may be flat no matter how small
the hard cores. In higher embedding dimension the situation is less clear, and there
is some indication that self-avoiding membranes may crumple for d > 5 [25]. These

results are in marked contrast to the predictions of the Flory theory described above.

This will be discussed further in Chapter 2.

The effects of the tethering constraints on the entropy have been studied by ran-
domly cutting a fraction of the bonds to reduce the geometrical constraints {26, 27].
The entropy of the membrane is increased in the process and, therefore, the possibility
of a crumpled phase is enhanced. These studies showed that a membrane remains flat
up to the point where it falls apart at the site or bond percolation point, indicating

that connectivity 1s an essential feature of tethered membranes.

Other studies have been carried out on the effect of long-range interactions be-
tween particles on the network [28, 29]. After all, physical membranes or solid sheets
cannot be described only in terms of connectivity and hard-core interactions. One
expects that the particles on the network will interact through van der Waals or
screened Coulomb interactions at longer distances, and such interactions, if attrac-
tive, will at sufficiently low temperatures overcome the effective bending rigidity due

to the hard cores and lead to a collapsed or crumpled phase.

Concurrently with my research [29], Abraham and Kardar studied [28] self-avoiding
mernbranes with van der Waals interactions between particles using the molecular dy-
namics technique. At high temperatures they found that the membrane is flat. At
mtermediate temperatures the membrane folds once onto itself. On further cooling
a doubly-folded configuration develops. The membrane undergoes successive folding

transitions towards the fully collapsed phase at very low temperatures.

I studied (see Chapter 5) a tethered membrane model in which the particles on
the network interact through a potential which is hard-core repulsive and square-well

attractive. This interaction potential differs in form and range from the interaction

15



used in Ref. {28]. My Monte Carlo simulations indicate a transition from the flat phase
to an isotropically crumpled phase as the temperature is lowered. This crumpled
phase is characterized by an exponent very close to the Flory prediction and seems
to persist over a range of temperatures. At very low temperatures, a collapsed phase

is found.

These results are consistent with recent experimental data. Hwa et al. [30] and
Wen et al. [31] performed experiments on carefully prepared exfoliated sheets of
graphite oxide (GO). In these experiments, sheets of GO were suspended in aqueous
solutions at different pH and the structure factor was obtained by light scattering
measurements. Remarkably, the exponent v remained constant at roughly the Flory
value for a considerable range of pH, analogously to the persistence of the crum-
pled phase observed in our simulation for a range of temperatures. These workers
also found a collapsed phase with fractal dimension Dy = 3 when the sheets were
suspended in an acetone solution, in which the effective intrasheet interaction was

presumably stronger.

Our work is complementary to that of Abraham and Kardar [28]. Although we
see evidence of folding in isolated configurations in our simulation, we have not been
able to identify equilibrium states characterized by a discrete number of folds, or a

sequence of folding transitions.

1.4 Organization of the thesis

In this thesis, I shall report the results of the research which I have done on the
properties of self-avoiding tethered membranes. In Chapter 2, I review some of the
analytical calculations for the tethered membranes. I shall start from the generalized
continuous Edwards Hamiltonian for a D-dimensional manifold and first of all per-

form dimensional analysis. From this, the concept of upper critical dimensions will be

16



introduced and a generalized Flory theory constructed. The excluded-volume effects
on a self-avoiding membrane will be treated as a perturbation to an ideal Gaussian
manifold and a perturbative renormalization-group analysis will be outlined. Chap-
ter 3 contains the description of the Monte Carlo procedure and related topics which
we will encounter in the simulations reported in Chapters 4 and 5. A few physical
quantities which characterize the shapes of membranes will be introduced as well.
My early studies on the role of self-avoidance in the structure of tethered membranes
are reported in Chapter 4. More recent simulational work of mine on a self-avoiding

membrane model with attractive interactions between particles on the network is

presented in Chapter 5.
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Chapter 2

Theory of Tethered Membranes

2.1 Dimensional analysis and critical dimensions

For the discussion of this chapter,! we adopt the Edwards Hamiltonian, (1.25)
1 D . D, D, ¢dfz S
'H:-m/d x (VF) +—v// d”x; d"x, 6 [F(x) — T(x2)] .
2 2 ]X] —Xglza ’

If we rescale the external space by a factor of /2, we can eliminate « from the first

term of the above Hamiltonian and obtain a new Hamiltonian,
1 1 - - ,
H=- / dPx (VE)? + ~vkt? / / 2%, dPx; 8UE(x,) — F(x2)], (2.1
2 2 |x1 —Xgﬂza

where the length unit of the external space is set by k~'/2. In the case of a Gaussian

manifold, this can be seen from (1.22). The strength of interaction is measured by

uw=vr¥? . (2.2)

We shall in Section 2.2 use u as an expansion parameter.
Dimensional analysis is carried out on (2.1) by rescal:ng variable x of the internal

space by a length [,

/

._X
=7

'References: [1, 33, 34]
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Assuming that the membrane is isotropic we rescale ¥(x) in the following way:

7=
v’

where v is the exponent characterizing the scaling behavior of the manifold in the

embedding space. With these substitutions (2.1) becomes

] SV B o
H = §ID“2+2”/de(Vr)2+§ul2D d //l dPx; dPx, 84F(x;)—1(x3)] . (2.3)

X1 —Xglza’
The rescaled effective interaction parameter is given by u; = ul?P~% and is usually

written as

— o, J¢/2
Uy = Ul s

where

e=4D — 2dv . (2.4)

If we require that the Gaussian and the interaction terms scale in the same way

with [, namely,

lD—2+2u ~ l2D—-du ,

we must have

D—-24+2v=2D—dv,

and, thus,

D +2
==r°, 2.5
V=03 (2.5)

This expression is the same as what one would obtain by generalizing the Flory
theory for polymers to a D-dimensional manifold. Hence, it is often called the general-
1zed Flory theory. It should not be surprising that we arrived at the same expression
for v in both approaches, since dimensional analysis is essentially the same as the

mean-field theory presented in Chapter 1.

The Flory prediction of the fractal dimension of the network is

D d+2
=—=—D. 2.
Dy v D+2 (2.6)
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In particular, v = 4/5 and D¢ = 5/2 for a tethered membrane in three dimensional
embedding space. Note that it predicts a crumpled phase for two-dimensional net-

works, an unavoidable consequence of our isotropic rescaling of the variable T.

For a manifold of dimension D in an embedding space of dimension d, if 2D —dv >
0, the rescaled effective interaction parameter u, approaches infinity in the [ — oo
limit, and self-avoidance is relevant; while, for 2D —dv < 0, u; — 0 when [ increases,
yielding an effective ideal Gaussian manifold at large distances. The dimension of
the embedding space in which 2D — dv = 0 {or equivalently, ¢ = 0) is defined as the

(upper) critical dimension of the embedding space, d,,

2D
d. = —.
v
The exponent v should be that of a Gaussian manifold, vy = 3—"5@—, at the critical

dimension and beyond, since self-avoidance is irrelevant in these dimensions. Hence,

4D

dczé—:—-b—'.

(2.7)

Note that [P=2+2 in the first term of (2.3) becomes constant for d > d.. The
Gaussian term is invariant under the rescaling process when d > d., and 1y = 2:22 1s
a fixed point of the rescaling transformation. Note also that the upper-critical dimen-
sion for membranes is d. = 00. Excluded-volume effects of self-avoiding membrancs,
according to this theory, are relevant in an embedding space of any dimension, unlike

the case of polymers, whose upper-critical dimension is d, = 4.

The quantity e, defined in (2.4), can be expressed, using (2.7), as
e=2-D)d.—-d). (2.8)

One can similarly define a critical (internal) dimension of a manifold in a d-dimensional
embedding space, D., at which € in (2.4) vanishes. This yields

2d
= — 2.
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and ¢ can be expressed in terms of D and D, as
e=4(D - D,). (2.10)

D. serves as the lower-critical dimension for a manifold and is usually not an integer.
For instance, D. is equal to 6/7 in three-dimensional space according to (2.9), and,
thus, self-avoidance is relevant for both membranes (D = 2) and polymers (D = 1) in
three-dimensional space. Rewriting € in terms of D and D, is technically convenient
for discussing membranes, since d, diverges for membranes while D, remains finite
for any d. A perturbation analysis (see Section 2.2) should be carried out about a
finite critical dimension. While traditionally one expands about d. = 4 for polymers,
we have to expand about D, = 6/7 for membranes. For D # 2, expansions can be

carried out about either of the critical dimensions.

Dimensional analysis predicts an infinite upper-critical dimension and a crum-
pled phase for self-avoiding membranes, while computer simulations produced very
different results. Qur earlier studies [23] showed the existence of a flat phase for a
tethered membrane in 3-, 4-, and 5-dimensional embedding spaces. Recently Grest
[25] suggested that the upper-critical dimension might be d. = 5. It is argued that
the effective excluded-volume effects in the computer simulations may not simply be
represented by a two-body interaction term, and it is the higher-order interactions
which generate an effective bending rigidity responsible for the existence of the flat
phase [25].

It is interesting to consider n-body interaction terms, which are generically de-

scribed by

b [[l dPx; 1:1 §UE(x:) — F(xip1)) - (2.11)

Performing rescaling as before, we obtain the rescaling relations for u,,

Un(l) = uyltP-(-Ndv
= u, M2 (2.12)

21



where

e(n) =2nD —2(n — 1)dv. (2.13)

At the Gaussian fixed point (v = vy = 3:22) the importance of the n-body

interaction is determined by €%(n) = 2nD — (n — 1)(2 — D)d, where the superscript
G is used to indicate that €(n) is evaluated at the Gaussian fixed point. The upper-
critical dimensions, dS(n), for n-body interactions are derived from the condition that
¢%(n) = 0 at d%(n), leading to

2nD

& (n) = (n-1)(2-D)

One can easily see that d7(n) = co for D = 2 meaning that all high-order interactions

are relevant for self-avoiding membranes.

This does not help, of course, to explain the simulational results found by Grest
[25], that self-avoiding tethered membranes may crumple for d. > 5. He suggested
looking at the scaling behavior of the high-order interaction terms at the Flory point,
at which the Gaussian term and the 2-body term scale similarly. This leads to a set
of upper-critical dimensions, d¥ (n), for n-body interactions,

2nD
F ___ ~ 2 15
d.(n) = T (2.15)

where the superscript F indicates that the Flory exponent (2.5) is used in the deriva-

tion.

For membranes, the above expression yields df (n = 2) = oo, d¥ (n = 3) = 6, and
d¥(n = 4) = 4, etc.. The 2-body interaction is relevant in all dimensions, while the 3-
and 4-body interactions cease to be relevant above 6 and 4 dimensions, respectively.
Whern we apply this theory to the simulational results, it appears that 4- or more-
body interactions should be responsible for the flat phase of a self-avoiding membrane.
This theory does not explain why the upper-critical dimension is 5 in the simulation

rather than 4 which is the critical dimension for the 4-body interaction.
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Our discussion of critical dimensions is illustrated in Fig. 2.1.

3.0
25
2.0
A s
1.0

0.5

Figure 2.1: Phase diagram for D-dimensional manifolds in d dimensions. The phases
of manifolds are divided by the critical (internal) dimensions, DS¥(n), below which
the n-body interactions cease to be relevant at the Gaussian fixed point and the Flory
point, respectively. Above the D = d line, the manifolds are stretched. Below the two-
body curve DSF(2), all interactions are irrelevant and the manifolds behave ideally
as Gaussian manifolds. In the region between the stretched and the ideal phases,
self-avoidance is relevant. All interactions are relevant for membranes (D = 2) at
the Gaussian fixed point in any dimensions. At the Flory point, however, all but the
2-body interactions are irrelevant in dimensions higher than 6.

2.2 Perturbative renormalization-group analysis

As we showed in the last section, self-avoidance is irrelevant above the upper-critical
dimension. Thus, if we perform a RG transformation for a network in d(> d.)-

dimensional space, the excluded-volume interaction will be renormalized to zero as the
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degrees of freedom are being thinned out. The RG transformation has the Gaussian
fixed point (R, ~ N* and v = 1). In dimensions d < d_, self-avoidance is relevant and
a new fixed point may arise as a result of the increasingly important excluded-volume
effects as d is lowered below d.. In this section, I shall treat the excluded-volume
effects as a perturbation to a Gaussian network and calculate the corrections to the
exponent vy of the unperturbed ideal membrane network. However, 1 shall mostly
outline the perturbative renormalization-group approach rather than present detailed

calculations [16, 35].

2.2.1 Simple renormalization-group ideas

The Hamiltonian of a D-dimensional manifold embedded in d-dimensional space is

given by (1.25),
1 D Sy 1 Dy D gdfz -
H = ~/c/d x (Vr)” + zv // d¥x, d"x, 6% [F(x) — F(x2)] .
2 2 X1 —-X2|>a ’

‘H is a function of &, v, and implicitly of «.

The most intuitively appealing RG approach is to rescale the short-distance cutoff
a —a Kadanoff block-spin concept. Consider the case of polymers again for simplic-
ity [12]. We begin the Kadanoff procedure by grouping ! successive monomers into
subunits (see Fig. 1.2). We define a new chain of N/l units, each having [ monomers.
We then ask how such a transformation affects the interaction hetween subunits and,
thus, how the Hamiltonian transforms, i.e., we hope to find relations between renor-
malized parameters £, ¥, and the original &, v. Fixed points can be found from these
recursion relations, and exponents characterizing the fixed points, such as v, may be

obtained.

Imagine computing the size of a block subunit a; and the excluded-volume in-
teraction parameter u; for the subunits. The procedure is the same as in Kadanoff

spin-block procedures: integrate out degrees of freedom inside each block. If we were
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dealing with ideal polymer chains, we would simply have a; = 1/2%q, as demonstrated
previously. However, the effects of self-avoidance swell the subunits. Let us write a,
as
=/ )
a;r =0"%a[l1+h(lu)], (2.16)
and the new interaction parameter as

uy = ul?[1 —k(I,u)] . (2.17)

where h(/,u) and k(/,u) are some functions. The function h(l,u) may modify the
scaling exponent of the radius of gyration, v, from its Gaussian value of 1/2 to
possibly some other value. The ¢/2 exponent in (2.17) is expected on the basis of
the previous dimensional analysis. The variable u; should be smaller than wl¢/2—
the renormalized value of u; for a non-self-avoiding manifold, since the number of

interacting pairs is smaller than /2 due to self-avoidance.
The essential idea of the renormalization-group analysis is to repeat the operation
and generate a sequence
a) @2 A
U Uz Uny
Any pair (@m,uns) in this sequence represents one possible realization of the single-
chain problem. The sequence of interaction parameter {u,,} approaches a fixed point

u”, as m — 00, at which the relationship between a,, and a,,—; (m — o) becomes a

simple geometric series,

= Amer 2 [1+ h(u", D)) = A(l) Gy

The radius of gyration of the manifold is invariant under the rescaling operation

and, thus, if we write it as B, = af(V,u), where f(N, u) is a function, the invariance

N N
Rg = amf (’l;fum) = a'm—lf (ﬁj)um—l> -
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At the fixed point u,, = u,,_1 = u~, we have

N
f (Z_"T) _ A1
}’\T
f (Im—l

This relation implies that f(z) ~ 2* and, thus,

R, = Na,

or

) = ZVCl .
where v = In(am/am-1)/In(l).

The above illustrates how important information, such as the value of v, is ob-

tained from the renormalization-group methods.

2.2.2 Perturbation expansions

Exact solutions for h(/,u) and f(l,u) formulated above are very difficult to obtain
in practice. Approximations, such as expansions, have to be made in analytical
calculations. In this section, I shall discuss the perturbation-expansion theory for

membranes from the recent literature [16, 35].

A Gaussian manifold is the unperturbed state of the expansion theory. As we
know, a self-avoiding manifold behaves like an ideal Gaussian manifold above the
upper-critical dimension. Thus, there are two perturbation expansions which we can
make: one about the interaction parameter u = 0, and one about the upper-critical
dimension d,, or, in the case of membranes, about the lower-critical internal dimension
D.. The expansion parameters are € in (2.4) and u. We are interested in the beliavior

of self-avoiding membranes and, therefore, € and u are taken to be positive.

Let’s look again, say, at the function k(/, u) introduced in the last section to see

that it is also a function of . When ¢ < 0, it is evident from (2.17) that »* = 0 and
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the behavior of «; should he Gaussian-like, 1.e., a; = /24, Thus, when € is positive

but small (d slightly below d.), we can compute k(/,v™) (and h({,u") similarly) by

expanding in ¢,
ut = w1 - k(L u)],

therefore,

1 —k(l,u) =1 =1-¢/2In(l).

We see that k(I) = £ In(l}, having the same order as .

We now proceed with the expansions. The Edwards Hamiltonian (1.25) can be

written in the following form,

H=Ho+Hi,
where

Ho = 2n [ dPx (VP

is simply the Hamiltonian for a Gaussian network, and
1 D, Dy sdizv \ __ 2
H, = —-v// d”x;y d7 x5 8 [F(x4) ~ F(x2)]
2 ix; —Xz}Zn

is the interaction term.

The partition function of a manifold is given by
2= /Di‘ exp(—H) = /’Di" exp [—(Ho + Hi)]
and the expectation value of any quantity A is
(4) = _l_/pi:‘ 4 e~ (HotHM1)
. = y .
To first order in H; {thus, in v).

(A) = (A)y — (AH1) + (A)o (Ha)g »

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

all the terms on the right-hand side of the equation are evaluated for a Gaussian

network.
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As for the Gaussian manifold, we calculate the generating function ¢(E,x1,x2)

and, using (2.23) and (1.20), we obtain

@2 (9 _ PIHd/2 e[y /2
2 = 2\ /iy S V12 VR (2-D) Sp LY —a
(ir(Xl) — F(x)| > - (}r(x,) — F(x;)] >o {1 + 9d+2,d/2 D ¢/2
2dG _ Lc/2 — q¢/?
= p(x1 — X2) (1 + uB——-—--a--—) (2.2
K €f2 ‘
where
1 (2 . D)l+d/2.5'12)+d/2
= 9442 2 df2 D

is a constant, u = v&?/2 and a is the lower cutoff limit, for which there is no unique
choice.

Suppose now that we started to describe the very same system on a somewhat

larger microscopic scale, @ — a(1 + A). The Hamiltonian would have been given by

4 _ 1 ’ D 2 1 ’ D D di= =
" lyass) = 5% / dPx(VE) + 5o / /m_ngza(lm) P %, dP x5 6UF(x1) — F(x2)] -
(2.25)
The radius of gyration, or ([F(x;) — ¥(x2)[*) |, should be given by (2.24) after we

replace £,u, and a by £, 4/, and a{1+A). However, {|F(x;) — F(x2)|?) is a measurable

quantity and is invariant for Hamiltonians on different microscopic scales, i.c.
(EGa) = F)) b = (IF001) = ¥(x2) ) |y - (2.26)

By using this identity and (2.24), we now relate x’, u’ to &, u.

~ . 2dGp(x1 — X3) L% — a/*(1 4+ A)/?
2 . /
(F(x1) = F2)]*) by = — 1+u'B 73
20 _ ef2 _ _ef2 .
~ 24CD0G —Xs) (1 1Bt ; — - u'a‘“BA)
K €
f _ 3 ef2 /2D )
~ 2dGD(X1 x2) (1 +uIB§____/_§fL___\ (1 '-'-'U,ICL(/Z.B}A)
K’ €

2dGp(x; — %2)
&'(1 + wa/2BA)

R

Lc/? . ar,/Z)

(l+u]3 2
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Clearly, (2.26) holds if £’ is taken to be, to first order in u,
K =k (1 — uaclzBA) ,

and

u' = ufl —k(A,u)].
The function k(A,u) cannot be found from this, since we are only collecting terms
linear in u.

We have just coarse-grained the manifold (and its Hamiltonian) and found the
relationship between a manifold with cutoff length o and one with cutoff length a(1+
A). The Hamiltonians H’ and H are descriptions of a manifold on different scales,
and we may rescale, say H’, to match with H on the same scale. Let [ =1+ A and
x’ = x/l. Naturally, the scale of the embedding space needs to be changed as well
under this transformation. We let I’ = F/[¥, where v is the exponent governing the
scaling behavior of the embedding space and is to be determined from the fixed-point
calculation presented later. We now can write a renormalized Hamiltonian H in a

form identical to that of original Hamiltonian,

H = -12-,; / dPx (Vi)® + %5 / /1x1-x2,za dPx, dPx, 6%[F(x1) — F(x2)] (2.27)
with
io= k(1—ua/?BA) P2
— gIP-2Hw-wa’B (2.28)
and
@ = ul — k(l,u)]*P~% . (2.29)

The renormalization of ¥ must involve at least expansion to second-order in w.

One cannot obtain the function k(I, u) from the calculation of the two-point distance
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at first order in u. The recursion relation for u can be obtained from the partition

function Z, normalized by Zo(= Z|,=0),

_5;0 = 1-2 [dPxaPx (54((x) - ¥(x))

0

+z~)8i/de del dDy dDy/ <5d(1-:(x) _ l—:(xl)) . 6d(F(y) . F(y'))>

0

+...

= 1421 4+z294+--. (2.30)

The next step, as before, is to eliminate configurations that have pairs of points
whose separation is smaller than the new cutoff parameter a(l + A). Carrying out
this task is tedious, and I will not present the calculations in detail. Instead I shall
discuss, with the help of figures, what we may expect from coarse-graining the 2-body,

4-body, and higher-order terms in (2.30) [15].

Fig. 2.2 shows a chain (for ease of drawing, we consider a polymer chain again) in-
teracting with itself via 2-body interaction. A coarse-graining will change the strength
of the interaction but not its 2-body interaction nature. On the other hand, 2-, 3-
, and 4-body interactions may emerge from an original 4-body interaction under

coarse-graining. This is demonstrated in Fig. 2.3.

Figure 2.2: Coarse-graining a two-body interaction makes another effective two-body
interaction.
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Figure 2.3: Four-body interaction under coarse-graining. Depending on the confor-
mation of the chain and the resolution of coarse-graining, a coarse-graining can make
a 4-body interaction an effective 2-, 3-, and 4-body interaction. The symbols “||”,
“A”, and “O” denote 2-, 3-, and 4-body interactions, respectively.
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In our case, we would like to get a contribution from z;, by integrating over the
range [a,a(l + A)], proportional to <6d(i"(x) - i"(x’))>0 A, thus extracting a renor-
malized interaction parameter u.

Omitting derivations, we write down the expression for the renormalized and

rescaled interaction parameter,

U = u (1 — UGE/QCA) [2D—dv

= yltP-dv-uwlo (2.31)
where the constant C is
B (2_ D)2/d52+d/2 o
C= (47)(”20 J(d, D), (2.32)
and
00 .'1,‘D—1 ‘
34, D)= [ da e (2.33)

We have obtained the renormalized Hamiltonian to the lowest order in u with
- nlD—2+2u-—ua‘/2B o
(2.34-1,2)
i = ul?D-—du—ua‘/zC .

Using the following definition of @ to simplify (2.34-1) and (2.34-2),

o d
i = 5p |Sp(2 = D) "
D 4T

€f2

u, (2.35)

a

and applying the rescaling operator [ % to these equations, we obtain the renormaliza-

tion-flow equations,
1% = k(w+D-2-2Lg
o ( ) (2.36-1,2)
128 = 42D —dv — DuJ(d,D)] .

These equations are easily solved for the fixed point 4* at which the derivatives

vanish. We obtain
€

R YR (2.37)
4
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where € = 4D — (2 — D)d. Using this, we finally obtain from (2.36-1) the expression

for the exponent v at the self-avoiding fixed point @*

v= _:2__ + Pe, (2.38)
where
P 2—-D
" 2d(2-D)+16D1J '_
The correction to the Gaussian exponent, vy = 2_712, is of first order in € and is

valid when ¢ is small. The coefficient of ¢, P, in (2.38) should, of course, be evaluated
at ¢ = 0. We recall that e = 0 corresponds to the critical-dimension line, DZ(2), in
Fig. 2.1. Any point on this line can be chosen as a point about which the expansion
is carried out. On the critical-dimension line the function J(d, D) has a simpler form
21'd'/27r1/2F(2 + ci_‘)
dT(;+ %)

The correction to the Gaussian exponent, Pe, can easily be calculated and is given

J(d*,D*) = (2.39)

in Table 2.1.

polymer | membrane
d| D*= ﬁ% P el Pe |e¢ Pe
1 2/5 0.089 [ 3]0.267 | 8| 0.712
2 2/3 0.075 | 2] 0.150 | 8 | 0.600
3 6/7 0.067 [ 1]0.067 | 8| 0.536
4 1 0.063 [ 0 | 0.000 | 8 | 0.504
) 10/9 81 0472

: 8

‘able 2.1: Correction to the Gaussian exponent for various combinations of d and D
that satisfy the condition € = 0.

When comparing against the known case of polymers and a limiting case for

membranes (i.e., a membrane embedded in a 2-dimensional space) we immediately
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see that this theory does not produce quantitatively correct results. It does not agree
with the Flory prediction for membranes, either. There is no reason to believe that
this theory should work for membranes at this order of the expansion. The value of ¢
for the physical situations that we are interested in is too large (¢ = 8 for membranes)
for the expansion theory to be valid. And, as we discussed in the first section of this
chapter, a 2-body interaction description of a self-avoiding membrane may not be

adequate to begin with.

2.3 Summary

An exact solution of the statistical mechanics of self-avoiding membranes is so far
non-existent. I have, in this chapter, carried out dimensional analysis and outlined
the perturbative expansion theory of self-avoiding membranes. A generalized Flory
theory is developed for the membranes and the expansion calculations are carried
out to obtain the scaling exponent v analytically. Both thecries predict a crumpled
phase for self-avoiding membranes. Although neither theory is known to be correct,
quantitatively in general, they do provide us with some insights and, therefore, with
guidance into this not-so-well-understood problem. The renormalization-group ap-
proach used in this chapter will be utilized in my numerical studies of self-avoiding

membranes to be presented in Chapter 4.
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Chapter 3

Numerical Simulations

3.1 Introduction

Numerical studies of tethered membranes have produced important qualitative and
quantitative results. Some of these results are unexpectedly different from analytical
analyses such as those presented in Chapter 2. In this chapter, I shall present the
Monte Carlo procedure that I have used in the thesis research. I shall report my

contribution to the numerical studies of self-avoiding membranes in the two following

chapters.

Much of the theoretical work on polymerized membranes has been based on the
tethered membrane model introduced by Kantor, Kardar, and Nelson [33], on which
my work is also based. In this model, particles are connected to each other in a fixed
D-dimensional network (normally D = 2 and the network is chosen to be triangular).
A model hexagonal tethered membrane of linear size La, where L is the number of
particles on the longest diagonal, is shown in Fig. 3.1 for the fully stretched con-

figuration. We shall conventionally refer to L as the linear size of the membrane.

Kantor et al. [19] first studied a ‘phantom’ membrane with bending rigidity in

which the excluded-volume effect is neglected except for nearest neighbors. In their
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La

Figure 3.1: The tethered membrane model. A model hexagonal tethered membrane,
when fully stretched, is shown. L is conventionally referred to as the (internal) linear
size of the membrane. Tethers of length a connect particles of diameter o to form the
network.

simulation the bending rigidity is given by (1 — fi; - ii;), where 11 is the normal to an
elementary triangle in the network (see Fig. 3.1). 2 and j are indices of neighboring
triangles. The nearest-neighbor particles interact via an infinite potential well the
width of which corresponds to the maximum tether length. They found, among other
characteristics, that this model exhibits a sharp transition at kg7, =~ £/0.33 from a
low-temperature flat phase to a high-temperature crumpled phase characterized by a
scaling law R, ~ +/In L, consistent with that of the ideal Gaussian network. Ambjorn

et al. [36] later confirmed this result.

Such studies were quickly extended to more realistic self-avoiding tethered mem-
branes. Plischke and Boal [20] first studied a truly self-avoiding tethered membrane

network. The excluded-volume interaction is still the short-range hard-core potential
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but any two particles interact if they come too close to each other. Moreover, the
ratio of the diameter of the particles on the network to the maximum length of the
tethers was set at 1/4/3 to ensure that no self-penetration of the membrane could
occur in the simulation. Unlike what happens for linear polymers immersed in good
solvents, a flat phase was always observed for the strongly self-avoiding membrane
even in the absence of bending rigidity [20, 21, 22, 23, 24]. It is believed that the effec-
tive bending rigidity generated by the excluded-volume interaction between particles

is responsible for the existence of the flat phase [43].

Clearly, the effective bending rigidity depends on the radius of the hard-core par-
ticles. One would naturally raise the question of whether decreasing the diameter of
the particles sufficiently reduces the effective bending rigidity to such a point that the
crumpled phase may be recovered or, equivalently, how the effective bending rigidity
depends on the excluded-volume interaction. My first project was to study numeri-
cally a tethered-membrane network of particles of variable diameters. I will present

the details of this study in Chapter 4.

Inspired by this work, we studied the same model with an added attractive inter-
action among particles on the network. In the presence of an attractive interaction,
it is conceivable that the effective bending rigidity generated by self-avoidance may
be overcome at sufficiently low temperature and that the membrane will no longer be
flat. The results of this study will be reported in Chapter 5. They will also be com-
pared with the simulational results of Abraham and Kardar on a similar model [28],

and with recent light-scattering experiments on graphite-oxide membranes [30, 31].

In the remainder of this chapter, I shall present in more detail the model and the
Monte Carlo procedure used in our simulations. A few quantities which characterize
the shape of a membrane will be introduced and discussed. This part is relevant to

both Chapter 4 and Chapter 5.
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3.2 The model and Monte Carlo procedure

The model which 1 study consists of hard spheres connected by non-interacting flex-
ible strings as shown in Fig. 3.1 for the fully stretched configuration. The particles
are connected in a triangular network and a finite membrane consists of a hexagonal
cluster of linear dimension L. In such a cluster there are N = (3L* +1)/4 particles of
diameter o and we take the maximum distance between nearest neighbors (measured
from the center of the particles) to be /3. Nearest neighbors on the lattice interact
with each other through an infinite square-well potential. Basically, the major differ-
ence between the models that I use in Chapters 4 and 5 is in the interaction potential

between non-nearest neighbors.

This square-well potential for nearest neighbors prevents two particles from over-
lapping and restricts the maximum separation of nearest-neighbor particles. The

tethers are not allowed to break and, thus, the connectivity is preserved at all times.

The Monte Carlo simulation procedure which I use is the standard Metropolis
method. Except for the central particle, which is held fixed to prevent drifting of
the surface, each particle on the network is consecutively displaced by a trial move of
length s in a random direction, starting from some initial membrane configuration.
A trial move, provided that it does not violate the hard core or the maximum tether
length, yields a new configuration of the membrane, which is to be accepted or rejected
according to the conventional procedure of comparing exp (—AAFE) with a random
number in the range [0, 1], where AFE = Eger— Ehefore is the energy difference between
this new configuration and the initial starting one. A new configuration of lower
energy is always accepted. For a configuration with higher energy to be accepted, the
random number selected must be smaller than exp(—fAL). Since successive states
differ by the displacement of only one particle, they are strongly correlated and I

do not collect data after every move but only after a large number of trial moves.
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A convenient time unit to use is a Monte Carlo (MC) step defined as an attempt
to move all N particles in the network once. I collect data after every 7 = L%/s?
MC steps—the Rouse time [37]. For the largest membrane that I have been able to
simulate, this means that successive samples are separated by 33%2/0.2% = 27225 MC
steps, or a 7. However, there is no reason to believe that the successive samples are
uncorrelated. This issue can only be settled after one has studied the relaxation time

of the membrane into its equilibrium states. I will discuss it later in this chapter.

The choice of the trial displacement affects the relaxation time as well as the
acceptance rate of the simulation. If s is too small, the membrane will take too long
a time to relax into the equilibrium states, although the Monte Carlo acceptance rate
will be high; whereas, if s is too large, a particle will likely bump into others in the
attempt to move or the tethers involved will likely go beyond the maximum length,
so the acceptance rate will be too low. In either case, more computing time will
be needed in order to acquire statistically independent data samples. I have varied
the magnitude of s to suit each case which I simulated and obtained a reasonable

acceptance rate of about 30-50%. For most cases, a choice of s & 0.2 is appropriate.

Long-range self-avoidance is computationally demanding compared with a ‘phan-
tom’ case. The most obvious and least efficient way to implement self-avoidance is
to chieck for overlap of hard cores among all N particles on the network for every at-
tempted movement of a particle. This would require evaluation of distances between
N(N~1)/2 ~ N? pairs of particles. A MC step would then involve N x N2 ~ N3 ~ L8
such calculations. This is, of course, prohibitively high for large systems. One must
devise a more efficient method to do the task in order to be able to simulate tethered

membrane of any rea: _ubly large size at all.

We use the following schen.e in our simulation: Note that ali particles are confined
to a cube of linear size of v/3L, the maximum linear length of the network when it is

fully stretched, centered at the central particle of the membrane. We then divide this
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large cube into cells of size of ¢ + s (diameter + trial displacement) and the center
of each particle belongs uniquely to a cell. For this choice of size of the cells, only
particles in neighboring cells can possibly overlap as the result of a trial move. This
drastically cuts down the number of particles that have to be monitored during the
calculation. The price to pay is that a dictionary of the occupancy of the cells must
be kept and updated after every successful move. This, however, is much less work
since the number of evaluations involved is now proportional to N ~ L?% In any case,
maintaining self-avoidance is time consuming, and we always first check, after a trial
move, whether the tethering constraints and nearest-neighbor herd-core exclusion
have been violated. If a trial move is rejected by these constraints, which are quick

to check, further checking of long distance self-avoidance becomes unnecessary.

3.3 Relaxation studies

We begin the simulation from some initial configuration (usually a completely flat
configuration). The membrane fluctuates freely in three-dimensional space and even-

tually settles into equilibrium, where our study is carried out.

We are concerned with a few important aspects of the Monte Carlo simulation

related to the relaxation characteristics of the membrane:

e the samples that we collect should be equilibrium states;

e the samples should be uncorrelated with each other, i.c., they should be sepa-

rated in time by a characteristic relaxation time 7y;

e a large region of the phase space should be sampled.
P I

It is possible tc derive analytically the normal modes for ideal polymers [12] and

phantom membranes [17]. These normal modes have a correlation function that
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decays exponentially as function of time. The relaxation time of the slowest mode is
characterized by the Rouse time 75, which I have mentioned before. A self-avoiding
tethered membrane, however, relaxes much more slowly towards equilibrium than
a phantom membrane, as demonstrated by previous studies [17, 23]. Nelson et al.
[17] suggested that for self-avoiding membranes the relevant time unit scales like
1% /s? rather than L?/s*. To study and confirm the relaxation behavior of a tethered
membrane quantitatively, we calculate the autocorrelation function of a measurable
quantity O such as the radius of gyration. The autocorrelation function, C(7), is

defined as

{[O(t+ 1) - (0)][O(t) ~ (O)]) (3.1)
(low - (O)F)

where the angular brackets denote an average over samples labeled by the time vari-

C(r) =

Ay

able t. We begin averaging only after equilibrium has been reached. This starting
time can be determined from the behavior of (O(t)). The relaxation time which comes
out of the study of the relaxation function will confirm whether or not this judgement

1s correct.

In Fig. 3.2, the square of the radius of gyration of a membrane, R?, is displayed
as a function of the time t measured in units of the Rouse times 75. It is clear that
the initial transient region is rather small in this case, and it is reasonable to assume
that equilibrium has been achieved after, say, the first 500 Rouse times. R fluctuates

about its average value according to a Gaussian distribution.

We have calculated autocorrelation functions of the quantities of phvsical interest,
fitted them to exponential functions for short times, and, thus, determined relaxa.ion
times for each size of the membranes at which simulations were carried out. In
particular, we are interested in the three eigenva.ues of the inertia tensor A;, A; and
Az (see the next section for definitions) and the radius of gyration, whose square is
the sum of these three eigenvalues. These eigenvalues have different relaxat:on times,

and that of the radius of gyration is dominated by the largest cf the three relaxation
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Figure 3.2: The square of the radius of gyration, Rg, for a membrane of size L = 25

as function of simulation time whose unit is the Rouse time 7. In this case, the
diameter of the particles is taken to be 1 and the maximum tether length is v/3. It
appears that the initial transient region is rather small. The solid line represents the
average value of R2 calculated beginning at ¢ = 50075.

times. We found that the relaxation time is usually longer when excluded-volume
effects are stronger. For strongly self-avoiding membranes, the relaxation time 74
scales with the memnbrane size L according to L*, where 3 < z < 4, consistent with
[17]. Despite the fact that this exponent is much larger than the exponent ¢ = 2
of the Rouse time, we have found that the longest relaxation time for our samples
(L < 25) is of the order of a few dozen Rouse times. Fig. 3.3 shows typical results

for the autocorrelation function of the eigenvalues of the inertia tensor.

To check whether the fact that we usually start simulation from a flat membrane

configuration confines the membrane to a region in phase space such that other parts
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Figure 3.3: The autocorrelation function C(7) for Ay, Az, and Az, for the same sim-
ulation described in Fig. 3.2. The symbols “0”, “A”, and “0” correspond to Ay, A,
and As, respectively.

of the phase space can not be sampled, we have also started simulations from pur-
posely generated crumpled, collapsed, and folded initial configurations. We found
that the system always eventually reaches the same equilibrium state for the simula-

tions reported in both Chapter 4 and Chapter 5.

3.4 Characterization of membrane shapes

The focus of our study is on thermodynamic properties, such as the phases and phase

transitions of a self-avoiding tethered membrane network. We have found that the
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functions which characterize the shape of the membrane are the best indicators of
a phase transition. We primarily use the eigenvalues, A{, Ay, and A3, of the inertia

tensor, WhiCh iS deﬁned as
l —— = ¥ &
af 2 A2 2X:(] ial'jp ! 01’/3) 3 ((,l‘ =&,Y, “) ('3-“))

where ri, is the a-component of the position of particle ¢ in the embedding space. The
sum is taken for a given configuration over all particles, and 7, is the average over 7 of
Tio in that configuration. The three eigenvalues are ordered according to magnitude
A1 < A3 < A3. The directions of the principal axes are given by the eigenvectors &;, &,
and &3 corresponding to A;, A, and Az, respectively. The geometrical meaning of the

eigenvectors and the eigenvalues is schematically shown in Fig. 3.4. For the flat initial

1/2

172

A3

Figure 3.4: Illustration of the geometrical meaning of the eigenvectors and the eigen-
values of the inertia tensor. The eigenvalues A; correspond to the principal directions,
é;, j=1,2,3, respectively.

configuration that we use in the simulations, &; is perpendicular to the plane of the
membrane, while &; and &; lie in the plane. Thermal fluctuations deform a perfectly
flat plane. But, if a configuration of the membrane maintains the overall shape of a
smooth plane, this picture is still applicable. For a more isotropic conformation of

the membrane, the distinction between the principal directions becomes less clear.
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In any case, /A1, VA2, and /A5 are the length scales that characterize the extent
of the membrane in the three directions. In the flat phase these eigenvalues should
scale with the linear dimension L of the membrane according to A; ~ L%, and
Ay ~ A3 ~ L*: where v3 = 1 and where the ‘thickness’ exponent v; is smaller than
v3. In the crumpled phase, however, we expect that the three eigenvalues scale with
the membrane size with the same exponent, v; = v, = v3 = v, which, according to
the generalized Flory theory, takes on the value of 4/5. In a collapsed phase, the

membrane is still expected to be isotropic but the exponents should be given by the
‘close packing’ value v = 2/3.

In addition to studying the scaling properties of the three eigenvalues of the inertia
tensor, we use the shape factor as an indicator of a phase transition. The shape factor,
A, 1s defined to be

A= {A/As), (3.3)

namely, the smailest eigenvalue divided by the largest. As L becomes large, A ap-
proaches zero in the thermodynamic limit for the flat phase due to strong anisotropy,
whereas it becomes a non-zero constant for the crumpled phase and the collapsed

phase.

We also study the structure factor of a membrane, S(E), defined by

<§ exp [ik - (7 — i-’m)]> , (3.4)

S(k) =

1
N2

where [, m are the indices of the particles on the network of the membrane and F
is the position of particle [ in the embedding space. The angular brackets indicate
averaging over equilibrated samples. The quantity S(l_c')1 is experimentally accessible
through light-scattering experiments [30, 31] and is, therefore, of practical interest.
If one fixes k in a certain direction in space, the structure factor will be spherically

symmetric regardless of the true shape of the membrane due to its overall rotation

More precisely, its spherically averaged version S(]E])
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in the embedding space. In order to remove the effect of this rotation, we elect to
evaluate S(k) for Kk = |k|&; = k&, j = 1,2,3, where &; are the directions of the
principal axes, calculated for each sample configuration. The average () is therefore
taken with respect to a reference frame rotating with the membrane rather than with

respect to the laboratory frame.

—

Let’s examine the structure factor S(k) more closely. We use a continuum mem-
brane for convenience and assume that the membrane has the shape of a D-dimensional
disc of diameter L when fully stretched. For the radius of gyration of such a membrane

to scale as R, ~ L, the two-point averaged distance should scale as
([F0) = FOx)) ~ b= X

In turn, we must have for the generating function @(E,x,x’) defined by (1.13),

—

(k,x,x') = (exp {ik - [F(x) — ¥(x')]}) = F(k|x — x'|"),
where F(z) is a dimensionless generating function.

The structure factor S(E) can be easily shown to have the form of a scaling func-
tion:

. 1 e '
Sk) = ﬁ//dxdx ok, x,x’)

Z%B//dxdx'F(klx-—x']”)

- —Ll—D/dxF(klxl”)
= (kL") G(kL") (3.5)
= $(kL") (3.6)

where Dy = D/v is the conventional fractal dimension, and G and ¥ are unknown

functions.
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The structure factor, therefore, 1s expected to have a scaling form as shown above.
As well, the function G(z) must reflect the properties of the structure factor due to the
finite-size cutoff and a small-length-scale limit due to the diameter o of the particles
on the network. The wavelength of the incident beam (~ k~!) must be within the
regime o < k™' < R, ~ L” in order that the structural information be obtained from
the scattering experiments. In the region k! > R,, the membrane appears as a
point compared to the wavelength of the incident beam and the structure factor has
a common parabolic behavior (k) = 1 — %(kRg)z 4 ..o =1~—const. x (kL) +---.
For k! ~ ¢, we should see the atomic oscillations typical of ‘a hard-sphere gas.
On the scale much smaller than o, the cross terms in <El,m exp {112 - [F(x) — f’(x')]}>
vanish and the oscillations disappear. The structure factor then becomes a constant:
S(K) = 1/N.

Having broken down S(lz) for various regions in k, we put them back together
to make a sketch of S(lz) as function of kL” in Fig. 3.5. This sketch is valid for
isotropic phase(s) as well as for the anisotropic flat phase, as long as it is understood
that all scaling exponents v;, j = 1,2,3, are not equal, and one should treat v as
v; and substitute \/E for R, in the above arguments. The structure factor can be
used to study the scaling behavior of the eigenvalues and, hence, that of the radius
of gyration. As well, it can be used to distinguish between isotropic and anisotropic
phases. One expects, in the flat phase, that S(k&;) = ¥;(kL") in the scaling regime,
where the v;’s determine the scaling behavior of the moments of inertia. Conversely,
in an isotropically crumpled or collapsed phase one expects that S(k&;) = W;(kL")

with a single exponent v for all j.

It should be mentioned that although S(K) is easily obtained from numerical calcu-
lations, 1t may be difficult to measure experimentally because the sample membranes

are usually suspended in solutions with no preferred orientation. One must, in this
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Figure 3.5: Schematic sketch of the structure factor S(E, L) as function of the scaled
variable kL".

—

situation, study the spherically-averaged version of S(k) [38],

S(k) = 21-775(12)
. }_ i sin(k If‘; - FJI)
- N+N2;< A > : (3.7)

While the behavior of S(k) is expected to be the same as that of S(k) for the
isotropic phase(s), the previous sketch must be modified for the flat phase to accom-
modate the fact that there are different scaling regimes. In the region w < k™' < R,
where w is the thickness of the membrane, one sees a flat, smooth membrane and
S(k) ~ k2. In the region o < k™! < w ~ L", the structure of the membrane in the

out-of-plane direction can be probed and the exponent v; extracted from the scal-
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ing behavior of S(k) at this length scale. As pointed out recently by Abraham and
Goulian [49], the structure factor S(k) may yield the same scaling behavior for a flat
membrane as for a crumpled membrane, unless the membrane under consideration is

very large, so S(k) should be used with caution. I shall not report on S(k) in this

thesis.

Further information about isotropic and anisotropic phases and transition points
can be obtained by studying the behavior of the normal vectors of elementary triangles
formed by nearest neighbors on the network. We define M;(«) to be the projection

of the normal of triangle o along the eigenvector &; and calculate
M;=3_ M;(a)/Na, (41 =1,2,3) (3:8)

where Np is the number of elementary triangles. All normal vectors in the formula
are consistently taken from one side of the membrane surface. In the flat phase, we
expect the expectation value of M, or equivalently M2, to be non-zero whereas { M3)
and (M3) will be zero in the thermodynamic limit. In a crumpled or collapsed phase,
we expect <MJ2> = 0 for all j. The quantity {M}) can be used as an order parameter

for the flat phase of a membrane.

We may calculate yet another set of quantities <PJ-2> where

P} =3 M(a)/Na (1=1,23). (3.9)

In the flat phase (P?) should be greater than (P}) and {P?) since M;(e) are mostly
aligned along the short direction, and all three of them should approach 1/3 in the
isotropic phases. While it is obvious that they can not be used to distinguish the
crumpled phase and the collapsed phase, these quantities may be useful in providing
information about whether folding transitions occur. For instance, one would expect
a membrane with a single fold to have a vanishing (M7), whereas (P?) should be

appreciably greater than 1/3.
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Thermodynamic functions can also be calculated in the simulation. In particular,
the specific heat is used to investigate phase transitions and the order of transitions.

The specific heat, C| is given by
9(E)

C__.

or

- kBlT2 ((E*) — (B)?). (3.10)

In the studies of a phantom membrane with bending rigidity, the specific heat provided
the best evidence for the presence of the second-order phase transition from the
crumpled phase to the flat phase [19]. This phase transition is characterized by a
strong peak in the specific heat. At low temperature the specific heat of the phantom
membrane with bending rigidity approaches %kB per particle, indicating that the

transverse oscillations are essentially uncoupled in the flat phase.



Chapter 4

Tethered Membranes of
Variable-size Hard-core Particles

4.1 The Hamiltonian

When a membrane is immersed in a solvent, as it usually is in the laboratory, the ef-
fective interaction between monomers at the scale of inter-molecular spacing depends
on the properties of the solvent and the membrane monomers. In a ‘good’ solvent,
in the terminology of polymer physics, the effective interaction is repulsive. In this
chapter, we will consider the model tethered membrane described in the previous

chapter with particles on the network interacting through hard-core interactions.
The interaction potential between nearest-neighbor particles is taken to be an

infinite square-well potential,

(o @] rag
Unn(r) =< 0 c<r<v3 , (4.1)
00 V3<r

\
where we set the maximum distance between nearest neighbors (measured from the

center of the particles, see Fig. 3.1) to be v/3. Among non-nearest-neighbor particles,



the interaction potential is given by

oo ro
U(l‘) e . (‘l.:.)a)
0 o<r
The potentials above simply prevent two particles from overlapping with each other

and control the maximum length of the tethers.

It is evident that the potential energy of our model membrane is a constant (con-
veniently chosen to be zero here). Temperature is thercfore an irrelevant parameter

and the thermodynamics of the membrane is purely entropy-driven.

All conformations of the membrane have the same energy and, thus, have equal
statistical weight in the Monte Carlo simulation. The simulational procedure in this
case is particularly simple, since neither the energy difference nor the Boltzmann
factor need be computed in the simulation. For all of our simulations, we have at
least 100 and in most cases 300 or more samples separated in time by relaxation times

described in Chapter 3.

4.2 Strong self-avoidance and the flat phase

I first studied the case of a strongly self-avoiding membrane in which /o is taken to
be /3. Although this case had been studied previously by Plischke and Boal [20], 1
nevertheless carried this study to a larger membrane size (L = 25 as opposed to the
largest size L = 19 previously) to confirm their findings. The results are presented

here to demonstrate the behavior of the quantities that I have discussed in Chapter 3.

First of all, we display in Fig. 4.1 the shape factor, A, the expectation value of the
smallest eigenvalue of the inertia tensor divided by the largest, as a function of the
size of the system. Note that the shape factor is small and decreases as L becomes

large. This indicates an anisotropic shape of the membrane in the thermodynamic



limit.
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Figure 4.1: The shape factor, A = (A;/)3), as function of the inverse linear size of
the tethered membranes.

We first determine the exponent v by fitting the eigenvalue A3 to a functional
form A3 = aL®?® for L=7-25 using the least-squares fit. A log—log plot of A3 as a
function of L, along with the fitting curve, is presented in Fig. 4.2. The exponent vs
is found to be 0.9540.05, with the error bar estimated using standard error analysis.
The exponent v, is similarly determined to be 0.95. The error bar for )\, is greater
than that of A3, since, according to the relaxation study we performed, we have fewer
independent samples for A, than for A3 due to a longer relaxation time for A,. Even
with such error bars, the exponents v, and v3 are unambiguously larger than the Flory
prediction of 4/5. The statistics for A; are poorer than for the other two eigenvalues,
because this quantity has the longest relaxation time. The ‘thickness’ exponent vy is

clearly less than 3, but, its value is not known accurately. Early estimates [20, 21, 23]
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Figure 4.2: Scaling behavior of the largest eigenvalue, Ay, of the inertia tensor. The
data points, represented by “e”, have an error bar of £10%. The solid line is the
fitting power-law curve which gives v3 = 0.95.



including ours yielded vy =~ 2/3 but Lipowsky and Girardet [39] have later suggested
that v, = 1/2. Abraham [40}, using periodic boundary conditions in order to suppress
the effects of boundary fluctuations, has obtained v, = 0.53. Joining the continuing
debate, Gompper and Kroll [41] found »; = 0.70 on the basis of both Monte Carlo
simulations and scaling argnments. Schmidt et al. recently [42] performed small angle

X-ray and light-scattering experiments on closed red blood cell membrane skeletons

and found that 1, = 0.65.! The question of the value of v; is far from settled at this
time.

We also study the structure factor in order to determine the scaling exponents.
In Figs. 4.3, 4.4, and 4.5 the structure factors S(k€;), 7 = 1,2,3, are plotted as a
function of the variable kL"2. The data collapse onto a single curve rather well in
each of the three cases, judged by visual inspection, for a single choice of vy, vy,
and vz. The plots shown are for 11 = 0.70, v, = 1.00, and 1; = 1.00, respectively.
They confirm the scaling behavior of the eigenvalues of the inertia tensor and provide
us with scaling exponents consistent with those obtained from fitting the principal

mo:nents by a power law.

In summary, we conclude that a strongly self-avoiding tethered membrane is highly
anisotropic, even in the absence of an explicit bending rigidity. The widths of the
two independent in-plane directions are proportional to the linear size, L, of the
membrane, while the fluctuating thickness perpendicular to the plane scales as a
power law of L with a power of roughly 0.70. The overall shape of the membrane is,
hence, considered flat and rough. since \; diverges as L — oc. A picture of a flat

membrane generated in my simulation is shown in Fig. 4.6.
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Figure 4.6: A configuration of a flat membrane of size L = 25. The unshaded particles
are on the perimeter of the membrane. Top: viewed from the short direction, &, of
the principal axes; Bottom left: viewed from one of the two long directions; Bottom
right: viewed from the other long direction.



4.3 Weak self-avoidance and numerical RG study

We have demonstrated that a strongly self-avoiding tethered membrane is always flat.
It seems that the effective bending rigidity generated by the excluded-volume effect
is sufficiently strong to make the membrane flat. This can be qualitatively explained
[43] by the following simple argument. Consider the four particles of diameter o

connected by tethers of length [ in Fig. 4.7.

ﬁl\/ﬂz

Figure 4.7: A four-particle tethered network with fi, and fi; as the normals of the
two triangles spanned by the particles.

The average value of fi; - fiz is, assuming equal weight for all @,

sin (I)o

dy

®o
(Ay - fip) = -—/ cos Bd® = (4.3)
0

0

where ® is the maximum angie allowed by the constraints between n, and fy, given

by
0] 7 — 2arcsi ( g )
= — Zarcsin § —= .
0 V3i

For o/l = 1/4/3, (fi; - fi) = 0.25. Imagine now that this four-pasrticle network is a
phantom network with bending energy x(1 —1fi; -fiz). A simple calculation shows that
in order that (fi; - Ay} for this phantom membrane match 0.25, the temperature T
must be well below the critical temperature 7, at which the phantom membrane un-
dergoes a transition to the low-temperature flat phase (see page 36). It appears, there-

fore, that self-avoidance produces an effective bending rigidity that is large enough
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to keep a membrane flat. Simple as it is, the qualitative picture presented above
provides us with some idea about excluded-volume effects in a membrane network,
and is basically correct. It has also been shown numerically that the introduction
of self-avoidance among merely first- and second-nearest neighbors in an otherwise

phantom membrane makes the membrane flat if the ratio of particle diameter to the

tether length is sufficiently large [43].

The above argument also predicts a crumpled phase. If we follow the same match-
ing scheme used above, we find that the transition happens when o/l is decreased
below 0.39, or o below 0.68 for a fixed I = /3. Intuitively this is reasonable, since,
the smaller the diameter is, the weaker the excluded-volume effects are. There may
exist a non-zero size of particles at which the excluded-volume effects are sufficiently
weak so that the tethered membrane becomes crumpled. It is worth pointing out
that if such a crumpled phase does exist, the exponent governing this phase will be
bounded by the physical limits (see Section 1.2.2). This phase will be different from

that of a phantom niembrane (o = 0) for any self-avoiding membrane.

I have studied the thermodynamic behavior of weakly self-avoiding tethered mem-
brane at infinite temperature by varying the size of the hard-core particles, namely
o in (4.1) and (4.2), in the range 0 < o < 1. The computational procedure is the
same as for the strong-self-avoidance case, except that the time required to check for
overlap of spheres increases dramatically as the diameter is decreased. We simulated
membranes ranging in size from L = 5 to only L = 13, limited by the computing
power that we had. For all sizes, we have at least 1500 configurations separated by

one Rouse time and in some cases, many more.

The shape

ey

actor A for various sizes of the model membrane is shown in Fig. 4.8
as a function of the hard-sphere diameter 0. We note that A increases as a function

of L for small o and decreases for large o, consistently with the picture which we have

already formed: In the thermodynamic limit, a phantom membrane is isotropic while
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a strongly self-avoiding one is highly anisotropic. If there exists a critical diameter
o}, one would expect that for sufficiently large L the curves A(co, L) would intersect
close to 0. The intersection points of the curves drawn through the data points in
Fig. 4.8 thus provide a sequence of estimates of this critical diameter. Denote the
intersection point of the curves for L, and L; by o.(L;, L,). The critical diameter
in the thermodynamic limit is given by ¢} = o.(L; — 00, L2 — 00). By examining
Fig. 4.8 we find 0.(5,7) =~ 0.36, 0.(7,9) ~ 0.20, 0.(9,11) =~ 0.18, 0.(9,13) =~ 0.14,
and o(11,13) ~ 0.09. We conjecture that the rapid decrease of o.(L,, ;) as L, and
Ly become large means that any ¢ > 0 is sufficient to make a tethered membrane
flat in the thermodynamic limit. The ideal Gaussian fixed point (for ¢ = 0 phantom
membrane) is unstable against any increase in diameter or, in other words, sell-
avoidance is relevant for tethered membranes in three dimensions, however weak it

may be.

We next examine the shape factor from a different point of view. In Fig. 4.9
we plot A for various o as a function of L. The large L limit is, of course, the
most interesting. For o > 0.15, the shape factor decreases, presumably to zero, as L
becomes large. For ¢ = 0.10, membranes larger than L = 11, as seen from the figure,
begin to demonstrate this behavior. The shape factor for o = 0.05 is indistinguishable
from that of a phantom membrane, and for the largest model system which we were
able to simulate it shows no sign of decreasing. However, this is a very small diameter
compared with the strong self-avoidance case. This plot indicates that self-avoiding
tethered membranes are asymptotically flat at least for o > 0.1, consistent with the

analysis presented above.

For very small o, it is difficult to determine whether a membrane is crumpled or
flat due to the limited size of the membrane. In general, such cross-over effects can
be studied by finite-size analysis and by renormalization-group methods. These again

require simulation of model systems of reasonably large sizes.
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Figure 4.8: The shape factor, A = (A,/)A3), as a function of diameter o for various
values of L.
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Figure 4.9: The shape factor, A = (A;/)A3), as a function of membrane size [ for
various o. This figure suggests that for any finite o, self-avoiding membranes arc fat
in the thermodynamic limit.
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[ have attempted a numerical renormalization-group (RG) study of the present
model.? The basic idea of the RG analysis has been introduced in Chapter 2. Fig. 4.10
displays the RG transformation used in this calculation. According to the scheme, a
membrane of size L; may be mapped onto a membrane of size L, by a ‘decimation’
transformation. Some possible sequences are: -+ — L =25 - L =13 — L =T,

= L =17T—- L=9— L =5— L =3. Physical quantities, such as the radius of
the gyration and the shape factor, should be invariant under the transformation. For
instance,

Ry(Ly,01,a1) = Ry(La, 02,a2) ,
where a is the average tether length. Recall that L is taken to be an integer and is
dimensionless. T'he quantity ay can be calculated from the original network as the
average distance between nearest shaded monomers in diagram (a) in Fig. 4.10 and
o, 15 to be calculated. When this transformation is repeated, one obtains the flow of
the dimensionless quantity ¢/a which measures the strength of the excluded-volume
effects,
01 g2

__.___)___)..-
ay aa

We have applied this method to various membranes. Since the results are generally
consistent with the analysis presented above, we merely illustrate the procedure for a
single set of parameters. For example, beginning with a membrane of size L, = 17 and
o1 = 0.1 we found «; = 1.101 and a, = 1.303 for this membrane. The newly formed
meinbrane is of size L, = 9 with @, as the inter-monomer distance. We now rescale
this membrane to match one of the membranes of size L, which we have simulated

for various o, according to the following rescaling property

R 9. N ‘ 3 Y . 3
g(Lz_,.C’la?) — RQ(L2 g a) = dimensionless .
a9 a

Once o and a are found, we take

?Reference: c.f. [44] for polymer chains.
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Figure 4.10: Renormalization-group transformation scheme. The shaded particles in
the membrane of size L; are the analog of block spins in a renormalization transfor-
mation for a spin system.
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For the RG procedure performed on the membrane described above, we found

.1 A 0.10
i 0.12 = 0.11. Comparing with KA 0.09, we see that the RG flow

¢ 1110 a, 1101
goes in the opposite direction of the ideal Gaussian fixed point (¢/a = 0) indicating

that for small diameter (as small as 0.10 at least) the membrane approaches the

self-avoidance limit under the RG procedure.

Because of the limited size of our systems, we could carry out the RG procedure
only once or at most twice. The change in o/a in the flow is small, so that the direction
of the flow is not unambiguously determined. Nevertheless, the flow direction obtained
from the radius of the gyration is the same as that obtained from the shape factor, and
is consistent with the conclusions that we drew about the properties of the membranes
with ¢ > 0.10. The RG approach could be very useful if it were possible to simulate
larger systems.

As 1 have demonstrated previously, excluded-volume effects generate effective
bending rigidity on intermediate length scales, although no explicit bending rigid-
ity is present in our model. A RG analysis should include the bending rigidity as
a parameter as well. 1 have attempted to calculate the renormalization flow in the
two-parameter (k, o)-plane where & is the spring constant of a repulsive spring po-
tential which we implemented between second-nearest-neighbor particles in place of
the bending rigidity in Ref. [19]. Due to lack of extensive data, the results will not

be reported in this thesis.

4.4 Conclusions

We have studied the behavior of strongly self-avoiding tethered membranes as well as
weakly self-avoiding membranes at infinite temperature. For the strongly self-avoiding
membranes, we find a flat but rough phase: vA; ~ /A3 ~ L, and /A, ~ L%,

There 1s no evidence for the existence of a crumpled phase. For the weakly self-
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avoiding membrane, we find that, when the diameter of the monomers is decreased,
the membrane remains in the flat phase in the thermodynamic limit. The situation is
not unambiguously clear for the case of very small diameter. However, we suggest that

for any finite o, self-avoiding membranes are flat in a three-dimensional embedding

space in the thermodynamic limit.



Chapter 5

Self-avoiding Membranes With
Attractive Potentials

5.1 Introduction

We concluded at the end of Chapter 4 that a self-avoiding tethered membrane is flat
when the only interaction between the particles is the hard-core potential. However,
physical membranes or solid sheets cannot be described only in terms of connectivity
and hard-core interactions. For instance, particles in a membrane in a poor sol-
vent tend to attract each other due to effective van der Waals and screened Coulomb
interactions between solvent particles and membrane particles. These attractive inter-
actions, at sufficiently low temperatures, may overcome the effective bending rigidity

due to the hard cores and lead to a collapsed or crumpled phase.

In Chapter 1 we introduced, in the light of mean-field theory [13], the concept of
the f-temperature, at which the effective pair interaction between particles of a self-
avoiding polymer vanishes. One can see easily that the Flory scheme for a polymer
chain in a good solvent discussed in Chapter 1 will not work without modification
below the 8-point. In fact, since the pair interaction vanishes at the #-point, higher-
order interactions, such as the three-body interaction, come into play. While a three-

body interaction does not change the behavior of a chain at the #-point (quasi-ideal)
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very much from that of an ideal chain, it gives rise to a more compact structure
than the spatial structure of an ideal chain when the temperature is below the 0-
point. The size of this collapsed structure is found [43, 46, 47] to scale with the
number of particles of the chain with an exponent of 1/3—the close-packing exponent
for polymers. Depending on its properties and that of the solvent, at a certain
temperature a single polymer may find itself in a swollen {(but crumpled) phase, in

an ideal (crumpled) phase , or in a collapsed phase [12],‘

A natural question for one to ask is how tethered membranes behave at low tem-
peratures when the effective interaction between membrane particles vanishes or be-
comes attractive. The flat phase for tethered membranes in a good solvent, which is
non-existent for polymers, has been found both by theory and experiment [42]'. The
behavior of tethered membranes in a poor solvent has been the subject of interest of

a few research groups {28, 29, 30, 31, 32, 48].

For tethered membranes, there have been a few recent experiments, which dis-
covered a crumpled phase [30, 31, 32, 48] and a collapsed phase [31], although the
interpretation of these experiments has recently been questioned [49]. From the the-
ory side, Abraham and Kardar have studied tethered membranes with attractive
interactions {28]. I shall describe the results of some of these studies in the following,

since they are closely related to my work which is to be reported in this chapter.

!Recently Schmidt et al. reported light-scattering studies of the spectrin network of red blood
cells. Although this network is in the shape of a vesicle, these authors concluded that the structure
factor indicated a ‘flat’ phase rather than a crumpled one.



Molecular Dynamics Simulation

Abraham and Kardar {28] studied self-avoiding tethered membranes with an attrac-

tive potential,

( se {(})12 _ (})6 4 %} r< 21/6
Unn(r)=14 0 U6 < p <UL, (5.1)
e[ @)+ ] T

[}

for nearest-neighbor particles and a truncated Lennard-Jones potential for non-nearest
neighbor particles,
12 6
A -3 ] r<2.5
U(r) = , (5.2)
0 otherwise
where ' = 2(21/6) + 1 —r and I is taken to be 0.5. A plot of U(r) can be found in
Fig. 5.1.
The geometry of Abraham and Kardar’s model membrane is identical te the one
shown in Fig. 3.1, and these authors were able to simulate membranes as large as

L = 75 by molecular dynamics simulations.

At high temperatures the attractive potential is not important and the membrane
is found to be flat, reaffirming the previous findings. As the temperature is decreased
the attractive potential begins to dominate and a collapsed phase is achieved at suf-
ficiently low temperature. What is most interesting is the behavior of the membrane
at intermediate temperatures. These authors found that a single-fold configuration
is first formed at a certain temperature (kgT. = 3.15¢ for L = 75) with the crease
neatly dividing the membrane in half. At a lower temperature (kgT., = 2.75¢ for
L = 75) the membrane is folded one more time, to make four roughly equal parts

folded together. At still lower temperatures, more distinct foldings are hard to iden-

tify but eventually a collapsed phase is clearly identified. They concluded that the
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collapsed and the flat phases are separated by a folded phase. In this work only one
size of membrane was studied, and it is unclear whether or not the sequence of folding

transitions becomes a single crumpling or collapse transition in the thermodynamic

limit.

Light-Scattering Experiments

There have been few experimental studies of tethered membranes. One major diffi-
culty is the preparation of thin membrane samples which will equilibrate in experi-
mentally feasible times. Recently, Hwa et al. [30] and Wen ef al. [31] succeeded in
synthesizing thin membranes of graphite oxide (GO) by exfoliating sheets of graphite
oxide. These solid thin membranes have a thickness of less than 100A and possess a
six-fold symmetry to some extent. A large film has a linear size of a few microns and
the interatomic spacing is estimated to be roughly 2.5A. These workers performed
light-scattering experiments on the films in solution. In these experiments, sheets of
GO were suspended in aqueous solutions at different pH and the structure factor was
obtained by light-scattering measurements. Remarkably, a crumpled phase was ob-
served and the exponent v remained constant at roughly the Flory value (v = 4/5) for
a considerable range of pH. A collapsed phase with fractal dimension Dy = 2/v =3
was also found by these workers when the sheets were suspended in an acetone solu-

tion, in which the effective intrasheet interaction was presumably stronger.

In the next two sections, I present our extensive Monte Carlo simulation study of
a model in which the particles on the network interact through a potential which is
hard-core repulsive and square-well attractive. Although similar to the model studied
in Ref. [28], this model exhibits different behavior at intermediate temperatures and

seems to be consistent with the experiments.



5.2 Th
The model which we use is identical to the one studied in Chapter 4 except that
an additional attractive two-body interaction is introduced between particles on the
tethered membrane network. The diameter of the particles is fixed at & = 1 in the

simulation, so this is a strong-self-avoidance model. The two-body nearest-neighbor

interaction potential is given by

P

00 r<l
Unn(r) =4 —¢ 1<r<+3 - (5.3)
o0 3<r

Non-nearest-neighbor particles interact through the attractive interaction potential,

g

00 r<l
Ulr) =1 —¢ 1<r<Vv3 - (5.4)
0 3<r

It is, therefore, energetically favorable for non-nearest-neighbor particles to come close
to each other to take advantage of the attractive potential. The attractive potential
creates the possibility of new phases for the membranes. Our binding potential be-
tween nearest-neighbor particles, Uxn(r), is essentially identical to the potential used
in the simulation in Ref. [28]. The interaction potential U(r) between non-nearest-
neighbor particles is displayed in Fig. 5.1, along with the potential used in Ref. [28]
for the purpose of comparison.

The range of the attractive potential is chosen purely for computational efficiency:
Nearest neighbors on the network are constrained by the tethers to be always inside
the well and, therefor, contribute only a constant to the internal energy. This constant
can be ignored in the calculation of the energy difference generated by a trial step

in the Monte Carlo simulation. The equilibrium state of the system is controlled by
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Figure 5.1: Interaction potentials between non-nearest-neighbor particles. The po-
tential drawn in dashed lines is used in our simulations. The solid curve is used in
Ref. [28] and has a minimum at r = 2/5. The parameter ¢ in both models is taken
to be the same in this figure.

the product of £ and 3, where 8 = (kgT')~! and T is the temperature. We shall use
B = £8 to denote this control parameter. At B = 0 this system is equivalent to the

strongly self-avoiding membrane studied in Chapter 4.

We used the standard Metropolis Monte Carlo procedure to simulate membranes
ranging in size from L = 7 to 25 at all temperatures investigated. For a few temper-
atures, we have also simulated clusters of size L = 33 (N = 817). We have started
simulations from flat, purposely generated crumpled, collapsed, and folded initial con-
figurations, and we found that the system eventually reaches the same equilibrium
state. According to the relaxation studies which we performed on all the simulations,
we have in most cases 300 samples separated by a relaxation time. These calcula-

tions were carried out on Silicon Graphics 240D workstations and consumed several



Processor-years.

5.3 Thermodynamic behavior and phase transi-
tions

The Principal Moments

We first study the properties of the principal moments, as they are good indicators

of the membrane shape. Fig. 5.2 shows the eigenvalues A; as function of B for a

membrane of size [ = 25.

Figure 5.2: Eigenvalues A, A;, and A3 for L=25 displayed as function of the control

\"2 s

parameter.

Both )\, and A3 decrease sharply for 3 > 0.2 and saturate at a low-temperature
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value for 3 > 0.5. The behavior of these eigenvalues is the same for all values of [,
but the decrease becomes sharper and shifts to lower values of A as I is increased.
We determine the exponent v3 by fitting the eigenvalue Az to the functional form
Az = al? for 7 < L < 33. The results of that fit are shown in Table 5.1. We
have also studied A3 by neglecting the smaller system sizes one by one in the fitting
process, and obtained a sequence of best-fit exponents. These exponents are found to
scatter about the values quoted in Table 5.1 and show no systematic trend of either
increase or decrease. The average value of A3 at § = 0.25 is plotted as a function of

L in Fig. 5.3.

B V3
0.00 (2)0.95 4 0.05
0.10 (2)0.93 + 0.05
0.15 0.91 + 0.04
0.20 0.83 4+ 0.04
0.25 0.81 + 0.04
0.30 0.80 + 0.04
1.00 (@)®)0.63 + 0.05

(a)Data for 7 < L < 25.
(t)Obtained by fitting the radius of gyration.

Table 5.1: The exponent v; obtained from fitting As to the formula A3 = aL?** for
7T< L <33

It is clear that, in the range 0.2 < 3 < 0.25, this exponent crosses over from the
flat-phase value of 1.0 to a value close to 0.80. Clearly, the exponent v, must be less
than or equal to v3 and the corresponding analysis for A, indicates that v, = v3 to
within numerical uncertainty. Table 5.1 also shows that v4 is essentially constant for
0.2 < 3 < 0.3. This exponent reaches a value of 0.67 at ,ff = 1.0 indicating that the

membrane is in the coliapsed phase at this low temperature.
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34

L

Figure 5.3: The average value of A3 at 4 = 0.25 as function of L. The data points
are marked by “e”. The fitting function has the form A3 = «L?*? and is plotted as
the solid line with vy = 0.81.
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The behavior of the principal moments shown in Fig. 5.2 is similar to that seen by
Abraham and Kardar [28]. These authors observed a sharp decrease in A, followed by
a sharp drop in A; at a lower temperature and interpreted this as successive transitions
from a flat phase to a phase with a single fold followed by a transition to a phase with
a double fold. We have checked in our simulation the density of states as a function
of the principal moments and analyzed the shape of the membrane in various ranges
of A1, A2, and Az. Although we have seen isolated configurations with folds present,
we do not believe that in our case the equilibrium states are characterized by the
number of folds. Instead we believe that for a range of temperatures (0.2 < /§ < 0.5)
the equilibrium state is isotropically crumpled with v =~ 0.80 £ 0.05. Our data in the
range 0.3 < B < 1.0 are not extensive enough to permit a reliable determination of

the exponent v and, therefore, we do not know the extent of the crumpled phase.

The Shape Factors

In addition to the shape factor A [(3.3)], one may study other quantitics that char-
acterize the shape of a membrane. For example, (A;/ ) and (A3/A30) can be used
where the subscript 0 indicates that the eigenvalues are calculated when the mem-
brane is in its initial flat conformation and, thus, Ayg ~ Azg ~ L. The quantitics
{A2/A20) and (A3/Az0) are not essentially different from the principal moments (A;)
and ()A3) but are more informative, since they approach zero in the isotropic phases
and become constant in the flat phase, rather than diverging as A, and A5 do in all
phases, in the large-L limit. We plot {A2/A20) and {A3/A35) as function of fAin Fig. 5.4
for L = 17,25, and 33. The transition from the flat phase to the crumpled phase for

both sets of curves becomes sharper as L increases.

Further information about the high- and low-temperature phases and the transi-

tion point can be obtained by studying the behavior of the normal vectors of elemen-
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Figure 5.4: Ay = (Az/)20) (open symbols) and Asg = {A3/Asp) (full symbols) as
function of 3.

tary triangles formed by nearest neighbors on the network. In Fig. 5.5 we display
the quantities <ﬂfI]?> [(3.8)] and <Pj2> [(3.9)] as function of 3 for a membrane of size
L = 25. For all temperatures, (M?) and (M2) are zero to within numerical accu-
racy whereas (M}) drops sharply to zero in the same temperature range in which the
exponent v; crosses over to the value 0.80. The behavior of <PJ-2> is consistent with
that of <,M jz> in that the quantities <PJ-2> reach their 1-limit in the same temperature

range in which the ( AfIJ-2> drop to zero, as expected for isotropic phases. The behavior

of (P}?) produced no evidence of a folding transition.

It is also interesting to study (n(0) - n(x)) where n(0) is the average normal of
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Figure 5.5: <."¢ff> and <P]-2> as function of B for a membrane of size L = 25.
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the innermost ring composed of elementary triangles at the center of the membrane,
and n(x) is the average normal of the ring indexed by the distance x from the center.
The quantity (f(0) - A(x)) is essentially the normal-normal correlation. For the flat
phase, (n(0) - n{x)) decreases slowly from the center to the perimeter and remains
finite for all rings, while fcr B > 0.2 it drops quickly to approach zero beyond roughly

3-5 rings towards the edge of the membrane.

The Structure Factor

In Figs. 5.6, 5.7, and 5.8 we show the structure factors S(k€;), S(k€;) and S(k&3) as
function of the variable kL%% at 3 = 0.25 for the larger membranes that we have
simulated. The excellent collapse of the data to a single curve in each of the three
cases indicates that the membranes are isotropic and that v = 0.80, consistently with
the scaling behavior of the principal moments. An equally good collapse of the data

is found for 8 = 0.2 and B = 0.3 with the same exponent, v = 0.80.

For the low temperature, 8 = 1.0, we plot S(ke;), 7=1, 2, 3, as functions of the
scaled variable KL%®7 in Figs. 5.9, 5.10, and 5.11. The data collapse to single curves
remarkably well even for rather small membranes, indicating that this temperature

lies well below the transition to the collapsed phase.

Other Thermodynamic Quantities

In our simulations we have also obtained other thermodynamic functions, such as the
internal energy and specific heat. We have calculated the internal energy (E) for each
membrane size at all the temperatures investigated ai.d have performed extrapolation
to obtain (£} in the thermodynamic limit. The behavior of { F) is essentially the same
as (E); _,. and, since we have more data for L = 25 at low temperatures, we show

(E),_,s in Fig. 5.12.
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at 3 =0.25.
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Figure 5.12: Energy (E) as function of 3 for a membrane of size L = 25.

The specific heat, C, is given by (3.10). In contrast to the situation of a phantom
membrane with curvature energy [19], where the transition from the flat phase to
the crumpled phase is characterized by a strong peak in the specific heat, we find no
indication whatsoever of a singularity in either the internal energy or the specific heat,
This is similar to the behavior for the specific heat observed for polymer chains with
attractive interactions in Monte Carlo simulations [50]: The specific-heat peak for a
polymer chain of length, N, occurs at temperatures distinctly below the #-point for the

chain lengths simulated, and C is monotonously decreasing at temperatures near 6.
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The position of the peak, 8.(:V'). approaches the 8-point according to (6—8.) & N~V
I believe that this is also the case for tethered membranes. The membrane sizes which
we have been able to simulate are small and the peak of the specific heat. is far away
from the transition point, 8 ~ 0.2, such that no peak was observed in the temperature

range in which simulations were carried out.

We have also visually examined a large number of configurations, so as to develop
some intuition about the behavior of this system. In Fig. 5.13 we display a typical
configuration for a membrane at temperature B = 0.25. The quantitative results
which we have obtained are calculated by averaging over a large number of sample

configurations like this.

5.4 Discussion and summary

Lately, Baumgartner and W. Renz [51, 52] studied a model membrane composed of
impenetrable flexible plaquettes. They claimed that the intrinsic bending rigidity is
absent since the hard cores have a zero size in their model, and their Monte Carlo
studies revealed a crumpled phase, characterized by the scaling exponent v = 0.\& .
It seems to us that the effective bending rigidity is present, due to the geometrical
constraints and impenetrability of the surface explicitly implemented in the model.
Therefore, their conjecture [51, 52] that this model belongs to a different universality
class than that of a strongly self-avoiding membrane is unclear and puzzling. In any
case, the mechanisms which lead to a crumpled phase for this model and for ours are

different.

The nature of the phases of equilibrium tethered membranes is determined by the

2]

free energy. For membranes with attractive interaction, it is energetically favorable to
gy ) g
have folded and accordion-like conformations, whereas at the same time the increase

in free energy due to creation of edges [28, 41], the loss of entropy at the edges and
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Figure 5.13: A corfiguration of a membrane of size L = 25 at § = 0.25, viewed
from the three directions of the principal axes. The unshaded particles are on the

perimeter of the membrane.

30



the repulsive entropic interactions between membranes [53], or parts of a membrane,
tends to keep a certain distance between parts of the membrane. Consequently, the
particles can not fully take advantage of the attractive potential. Jt is this competition

that creates the crumpled phase in our model.

Although the model I have studied is similar to that used in Ref. [28], the phase
diagram seems to be different. The authors of Ref. [28] carried out molecular dynamics
calculations for a different model and concluded that the collapsed and flat phases are
separated by one or more folded phases. However, they conjectured that a different
sequence of transitions namely flat—crumpled—collapsed might also exist and, as
stated above, we believe that this is the sequence in cur model. A direct comparison
of our results to those of Ref. [28] is difficult, as the scaling behavior of the principal
moments and structure factor in the folded phase were not reported. It is, of course,
conceivable that in a folded phase the radius of gyration, the principal moments and
the structure factor are all characterized by an exponent v = 0.8. If this were the
case, a distinction between crumpled and folded phases would become experimentally

difficult and theoretically moot.

In summary, we have observed a transition from the flat phase of sell-avoiding
tethered membranes to an isotropically crumpled phase as function of temperature.
We have also found that at still lower temperatures the equilibrium state is collapsed
rather than crumpled. Our results are consistent with recent light-scattering experi-
ments on suspended graphite-oxide sheets, in which a crumpled phase was observed

over a range of the control parameter and a collapsed phase was also found [30, 31].
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