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ABSTRACT 

I report the resnlts of Monte Carlo studies on self-avoiding tethered membranes. 

Similar to one-dimensional polymers, two-dimensional tethered membranes have the 

essential feature that at  moderate temperatures the crosslinks between the constituent 

particles remain in place. The conformation of the membranes in equilibrium is the 

focus of t tlese studies. 

Analytical calculations for the tethered membranes are first reviewed. I start 

with the generalized Edwards Hamiltoriian for a D-dimensional manifold (D = 1 for 

polymers and D = 2 for membranes) embedded in d-dimensional space and perform 

dimensional analysis. The concept of upper critical dimension (above which self- 

avoidance is irrelevant) is introduced and a generalized Flory theory is constructed. 

I describe a perturbative renorriialization-group analysis which treats the excluded- 

volume effect as a perturbation to an ideal manifold. The theory, at  the lowest order 

of expansion, predicts a crumpled phase for self-avoiding tethered membranes. 

I have performed Monte Carlo simulations cn a model tethered membrane em- 

bedded in three-dimensional space. Two studies are reported in this thesis. The role 

of self-avoidance in determining the shape of tethered membranes at infinite temper- 

ature is first studied by varying the diameter of the particles on the network. For 

the strongly self-avoiding membranes, we find a flat but rough phase: The sizes of 

the network in the ~ W O  long directions scale linearly with the maximum linear size of 

the network while the size in the short direction scales with this maximum size with 

an exponent smaller than 1. There is no evidence for the existence of a crurnpled 

phase. For the weakly self-avoiding membrane, the study suggests that, for any finite 

diameter, seif-avoiding membranes are flat in three dimensions in the thermodynamic 

limit. 

I have also studied a model tethered merntxane in which the particles interact 



through hard-core repulsion as well as a longer rangc attractii-e yotcrrtial. :IS t Iw 

temperature is decreased. the membrane u~lclcrgoes a p h s c  tratlsition I ror~l  t lit. usual 

high-temperature Bat phase to a low-temperature crumplccl phase. 'I'iic c r tm~pl rc t  

phase, which seems to exist over a range of temperatures, is isot,ropic and is tli;trac*- 

terized by a fractal dimension close to the Flory estirnate ]Ir = 2.5. A t  still lowcr 

temperatures the membrane is in a collapsed phase. 
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Chapter 1 

Introduction 

Membranes are thin and highly flexible surfaces found in various branches of science, 

such as biology, chemistry, engineering, physics, and interdisciplinary sciences [I, 

21. I;br example, bilayer membranes composed of amphiphilic lipid molecules are 

found naturally in most biological systems such as cells. Other membranes, such as 

surfactant bilayers, can be found in chemical solutions. 

Physical studies of membranes have focussed on their conformational behavior. 

These studies are necessarily done on a length scale large compared to  the size of con- 

stituent molecuies and, thus, the details of the molecules on short length scales can 

be ignored. On such a length scale, membranes can be regarded as two-dimensional 

surfaces embedded in three-dimensional space and undergoing thermally excited fluc- 

tuations in this space. 

A biological membrane such as a red blood cell membrane is very complex, having 

many different structural components. The simplest model membrane may be a lipid 

bilayer which resembles the most elementary component of a biolcgical membrane 

and can be prepared artificially in the laboratory by dispersing amphiphilic biological 

lipids in aqueous fluids. This two-dimensional system can exhibit a variety of phases, 

corresponding to different states of the int.erna1 degrees of freedom associated with 



the in-plane translational motion of the constituent mo1ecult.s. h;. csample, the 

bilayer may exhibit liquid crystalline and hesatic phases at low tcwipuratnrcs. At 

high temperatures, the membrane is in the fluid phase, in which t h e  molecules tlifFust~ 

freely within the plane with zero shear moclultis. Sucll a tne~nbranc, rcferred to as a 

fluid membrane, shows large out-of-plane shape fluctuations in tt he almmce of cstcrnal 

lateral forces. Since these membranes do not resist shear, it is generally believcd tlmt 

surface conformations are governed only by the bending rigidity. A surface which 

has only a bending rigidity is characterized by a persistence length, clcfiued to be thc 

distance over which unit vectors norlnal to the surface become u~~corrclatecl 13, 11. 

This persistence length is a rapidly varying function of temperature, 

where a and c are constants and K is the bending rigidity. This formula for the pcrsis- 

tence length was derived from a linear theory. A more detailed m.enonnalizatio~~-grol~p 

analysis [5, 61 has shown that short-wavelength transverse undulations sign i Gcmtly 

reduce the effective bending rigidity of the membrane on length scalcs largc corn- 

pared to the persistence length. Thus, when viewed on a length scale litrgcr t 11a 11 t t ~ c  

persistence length, the membranes mxj appear convoluted or crumpled.' 

Polymerized membranes are quite different from liquid men~bra,nr:s. The con- 

stituent molecules (or more generally, monomers) of polymerized mcrnbri~ncs arc 

tethered together to form a network of a certain connectivity. With this crosslinlcing, 

in-plane fluid phases are no longer possible. An example of such a uetwork car1 be 

found in red blood cells [lo]. Under the bilayers of the cells, there exists a, cytoskcle- 

ton composed of protein spectrins knotted by actins at the vertices of the network. 

This network is anchored to the lipid bilayers of the cells through ankyrins and car1 

be isolated in the laboratory. The essential point of distinction bet weer] this  letw work 
1 -Self-avoiding fluid membranes are difficult to study analytically. Early computer sirr~ulatior~ [7] 

indicated that a self-avoiding fluid vesicle was crumpled. Other recent simulations [8, t)] suggo~t that, 
for zero bending rigidity a self-avoiding fluid membrane behaves like a branched polymer. 



and a liquid membrane is that at moderate temperatures the connections between 

the spectrin chains remain in place. 

The connectivity of polymerized networks can be considered fixed on the time 

scale on which shape fluctuatiom take place, and this is an essential feature of poly- 

merized membranes. Polymerized membranes may be regarded as thin elastic sheets. 

Bending and stretching of a polymerized membrane induce a surface tension which 

strongly suppresses t.he out-of-plane fluctuations. In fact, even for a, fluid membrane, 

it can be shown that on applying a lateral tension the out-of-plane fluctuations are 

drastically reduced [2, and references therein]. The geometric constraints imposed 

by the network are responsible for the significantly different behavior of tethered 

membranes as compared with fluid memlmmes [Ill. 

While there haxe been few experiments on polymerized (or tethered) membranes, 

extensive analytical and numerical studies have been carried out during the past few 

years. In this thesis I discuss some of these studies as well as my own. 

1.1 Linear polymers and the Flory theory 

Two-dimensional polymerized membranes are natural generalizations of one-dimen- 

sional polymers. I will in this section first review some of the properties of linear 

polymers2 that are relevant to my thesis. Linear polymers are formed by intercon- 

necting a large number of monomers into a linear structure. Each monomer unit is a 

group of molecules. 

Consider a polymer cbain ernbedded in a &dimensional space. One of the simplest 

idealizations of a flexible polymer chain is a non-self-avoiding (ideal) random walk on 

a lattice (eg. see Fig. 1.1). A polymer of degree of polymerization, N, then becomes 

a random walk of AT steps. Denote by $ti the i-th step of the walk. All steps are 

'Reference: [12]. 



Figure 1.1: A random walk on a square lattice. The walk, starting from site P ,  
steps toward any of the four nearest neighbors with equal probability arid ends up 
at some random location E on the lattice after N steps. All steps, denoted by a;, 
i = 1,2, .  - - , N, are uncorrelated. 

uncorrelated and (li . S j )  = Sija2 where a is the step size. The a~lgular brackets 

denote an average over configurations. The position of the walk at tlie i-tll step is 

simply ?i = 81 + iiz + - + iii = 73=, 21. The radius of gyration of t hc wa! k, I$ ,  is 

defined as 



The end-to-end distance (between ends /3 and E in Fig. 1.1), Ro: can be similarly 

obtained, 

and we see that Ro has the same scaling behavior as the radius of gyration. In contrast 

to this behavior, a fully directed or stretched 'random7 walk has the behavior & - N, 

whereas an unconstrained random walk has Ro N N1I2, with an exponent less than 

1. We call the conformation of the random walk crumpled. 

The confor~nation of an ideal random walk is self-similar in the sense that a seg- 

ment of the chain behaves the same statistically as any other part of the chain. In 

particular, if we group g consecutive steps into subunits, as shown in Fig. 1.2, each 

subunit is then of size &u according to (1.2). The end-to-end distance of the chain 

should be inva,riant under coarse-graining, and (1.2) shows that it is, 

Clearly, such a grouping procedure can be carried out repeatedly. This is exactly 

trhe liadanoff block-spin transformation. If the coarse-grained chain is appropriately 

shrunk, tahen, at least statistica.lly, the resultant chain looks similar to  a portion of 

the original chain. This scaling transformation combined with the Kadanoff trans- 

fornlation is called the renormalization-grq (RG) transformation. In the language 

of trhe RG theory, we may say that the ideal random 

point which gives a.n exponent vo = 1/2 where Ro 

walk is cha.racterized by a fixed 

N"Q . 



Figure 1.2: Grouping random-walk steps into subunits. Every g consecutive steps ass 
grouped togeih-r to form a subunit and each subunit is of size JSCL. %he solid li~ics 
represent the steps of a random walk and the bullets mark the joints of the chain. 'I'l~c 
dashed lines represent the subunits. The end-to-end distance of the chain is irlvariant, 
under this grouping procedure. 

The entropy of such a random walk can also he calculated exactly. The elltropy 

S(F) associated with all chain conformations starting from an origin and ending at, a 

distance ?is related to  the number of routes, N(f), that the rardorrl walker car1 take 

in going from the origin to F in N steps 

where kB is the Boltzmann constant. Since all directions of the raridom walk are 

completely uncorrelated, JZt7(f) can be writ ten as the product of d one-dirnensional 

binary distribution functions which approach Gaussian distributions when N is large, 
+ 

Thus we have - exp[-dr2/(2Ri)] and S(F) = ,S(O) - kEdr2 / (2R$) .  !f !he 

internal energy E of the polymer is constant, the free energy can bc wrjttcn as 



and, forrrially: an ideal polymer behaves like a spring with a spring constant propor- 

tionaf to  ternperatare T .  

2'fit:sc properties of an ideal polymer are universal properties of a Markov chain 

and do not depend on the binding potential between the neighboring monomers of the 

chain. If we take into account only the interactions between neighboring monomers 

i n  the chain, s i ~ h  as those which restrict the angles or provide bending forces be- 

t ween successive bonds, and ignore interactions between monomers far apart in t heir 

sequence in the chain, as we have done for ideal polymers, we will always get the same 

properties, whatever the microscopic structure of the chain is. This can be clearly 

seen from the Kadanoff transformation. If we choose the subunits large enough so 

that the neighboring subunits are separated by a distance greater than the correla- 

tion length of the monomers, the chain can be treated as an ideal polymer consisting 

of independent subunits. Our previous results remain valid if we replace a by an 

effective length of the subunits and replace N by the number of the subunits. 

When such 

an ideal chain, 

subunits, 

a coarse graining is done for a chain and the chain is then treated as 

the free energy can be written as a sum of the contributions from the 

wllere KO = k B T ~ 1 / ~ 2 ,  P is the index of a subunit and c is the distance between 

neighboring units. Since we are not interested in things happening on the scale of 

monomers, for sin~plicity of analysis we adopt a continuum version of (1.5), 

The validity of the above results depends on the omission of interactions between 

monomers far apart in the chain sequence. While this is perfectly appropriate for an 

ideal polymer, it is incorrect for a real polymer in which no two monomers can overlap 

regardless of t.heir sequence in the chain. In other words, although the interactions 



between neighboring monomers are of short range in space, they arc of long r;lngc in 

terms of distarice along the chain. The idea of a RG analysis, howc\w, st ill applies i n  

this case. In Chapter 2, 1 shall discuss perturbative RG approach fos polytllcrs arid 

membranes. 

For a real polymer, one would expect its radius of gyration to bc grt.at,cr tharl 

that of an ideal polymer (R, N u  with 11 2 1/2) and its entrolly to bc srl.laller 

than the entropy for an ideal polymer, as a result of the excludcd-volr~mc c4l;~r.t~ 

due to self-avoidance. However, the hard-core repulsiou is not the only interactio~t 

presenf between monomers. The interaction between monomers is an  c fkc . t , iv t~  om: 

mediated by the solvent. Monomers interact with each other through van cler Waals 

potential and attract each other at larger distances. There may be scrcenccl Coulornb 

interactions as well. In a mean-field type theory, Flory [12, 131 calcldatccl the cffect ivct 

pair interaction between monomers. This effective interactioil is f o u ~ d  to he, i l l  

most experimental situations, an increasing function of te~nyerat~ure. The clfectiw 

interaction is repulsive in a 'good' solvent and is attractive in a 'poor' solvcr~t, at, 

experimentally relevant temperatures. At a parlicular temperature, T = 0, the short- 

range effective repulsion and van der Waals attraction betwee11 rnolmtncrs overcwlw 

each other and the effective interaction vanishes. A polymer chain is neasly iclcal 

(quasi ideal) at  this temperature 6 which is referred to as the (Flory) 0-point. For a 

polymer chain in a good solvent, Flory devised a scheme to find the scaling hchavior 

of the chain. He constructed two terms for the total free cnergy of a polylncr. Oric 

of these terms is the free energy contributed by entropic cffccts. In thc E'lory st:l.icr~lc!, 

this term is simply borrowed from (1.4) for the ideal polymer chain. T h e  othcr tcrrrt 

is the effective repulsive energy. The situation of a chain in poor solvent, is rrtorc 

complicated than this and we shall not discuss it until i n  Chapter 5. 

Consider a polymer occupying a certain volume in a cl-climcnsional crr~l)(xlcJir~g 

space. The linear size of this volume is R, and c is the local conccrlt,rat,ion of 



rnonorness ( e  Z N/R; ) .  The repulsive energy is proportional to the probability that 

two monomers occupy the same space of unit volume, namely c2,  and to the strength 

of effective repulsion w. The total repulsive energy is the integration of ivT (c2)  over 

a volume Ri. If we ignore fluctuations in concentration c ( a  typical mean field theory 
2 

approach), (e2)  can he written as ( c ) ~  - (NIR;)  , and the total repulsive energy is 

given by ?o'TiV2I~:.  The total free energy is, therefore, 

where Ro is the end-to-end distance for the polymer chain when the interaction is 

ignored. The two terms in (1.7) compete with each other: The repulsive energy favors 

a, large R, and the entropy term favors the opposite. The competition results in an 

1% which minimizes the total free energy. We carry out the minimization and obtain 

the formula, 

where 

The Flory formula works remarkably well for polymers for all d dimensions (d 5 4) 

despite its apparent deficiencies and the fact that a mean-field theory neglects fluctu- 

ations and usually does not yield accurate values for exponents. It is exact for d = 1, 

cl = 2 [14], and is within a percent of the most accurate numerical results for d = 3. 

The Flory formula can also be used to predict correctly the upper critical dimension of 

an crnbedding space, i.e., the dimension above which a self-avoiding polymer behaves 

just like an ideal polymer. Such good agreement is considered unfortunate by some 

pe~ple ,  whc argue that it delayed the progress of polymer physics [15]. I shaii discuss 

the topic of upper criticai dimensions and revisit the Flory prediction in Chapter 2. 



1.2 The tethered membrane model 

2 The Gaussian network 

Consider first a 'phantom' membrane network of a ccrt ain c o n ~ l r ~  t ivitty i l l  wl~icf I o ~ d y  

nearest-neighbor (NN) monomers interact with C ~ C I I  othcr. T11c. Ila~liiltonian of t , l ~ c b  

network in this approximation is 

where V is some interaction potential. 

A natural generalization of a,n ideal linear polymer is a network of spriugs i l r  wl~iclr 

V(rij) = ~ ~ 2 . 1 2  13 and 

( 1 .  L O )  

It is convenient to work with the continuurn version of the above exprcssion for iL  

D-dimensional Gaussian network, 

where 

and the D-dimensional vector x = (z l ,  x2, . . . , xD) is 

the internal space of the network. In this thesis, I use 

the posi t io~~ of an cl(:lnal~t, i ~ i  

Imlclfam to dcnote a vctctor. i n  

the internal space, whereas a vector in the external (ernLcddillg) space is tlenoted hy 

the conventional notat,ion-an arrow on top of a letter. 

For the Gaussian network with the Ramiltonian (1.11), onc can easily calculate 

the end-to-end (or side-to-side, more precisely) distance and the radius of gyration of 

the network. For calculating the root-mean-square separation in the c-:mbeddi ng space 



for- two points x and x' on the network, it is convenient to introduce the generating 

function, 

- 1 
- J w exp {iC . [ ~ ( x )  - F{X')J) exp (-,Bx) , 
2 0  

(1.13) 

where ,70 is the partition function, 

2, = Vr' exp (-P'FI) , 1 (1.14) 

arid whcre the integration is over a.11 possible configurations of the membrane network. 

Henceforth, we set /3 = 1 for convenience. 

More generally, one can show [16] that 

d D x  G(x) .  4 x )  
1 I )  = J 0 7  exp {- J d ~ x  [$n(vq2 - i ~ ( x )  q x ) ] }  

where 

is a C;reel17s function satisfying 

v'GD(x) = bD(x) . (1.3 7) 

GD(x)  is exactly iike the Coulomb potential in D-dimensional space. The solution 

has spherical sy~nrnetrp and therefore GD(x)  = GD(x) where x = 1x1. 

--+ 
Using (1.151, we can write @(k, x, x') as 

-+ 
@ ( k , x , x t )  = exp (1.18) 

Integrating both sides of (1.17) over a hypersphere of linear size y and applying 

Gauss' law. we find 



Thus, 

for D # 2, where Sl, = 2 ? ; D / 2 / ~ ( ~ / ' 2 )  is ttic surface a s t a  of a [I-riitrwrisiorld r lr l i t  

hppersphere. For D = 2. the integral is vie11 defined and C:,,[.r) = & ln / . I - / .  

The average-squared distance is gii.e~i hy 

r 1 ([qx) - ~ ( x ~ ) ] ~ )  = - c k a& x, x ) [  - . 
i k=o 

By using (1.18) arid (1.19), we derive the two-poirtt distartce, 

2 (1 t 
x - x = -CiD(x - x ) 

A- 

Thus, 

For a membrane ( D  = 21, a = it and Rg - (In L)'/'. 

One naturally asks whether ctr not the  scaling law for ths:  rarlitls of gyr;tt,ior~ of 

a Gaussian network is universai, i.e., independer~t of the nature of tht: interactions, 

as in the case for polymers. In the same spirit of coarscr-grairring, a Mi~rlal-IC;lrlarts,ff 

renormalization-group a n d p i s  was carried out by Karttos fri at. 71. rl'h:~f foultcf 



numcricaity that zov~rs! central-force potentjak converge to a Gaussian spring poten- 

tial rind cr renormalization. For these potentials, at least, the aforementioned scaling 

behavior is universaf . The Gaussian network may, therefore, be considered a generic 

rnodel for nun-scff-avoiding membranes. 

1.2.2 Self-avoiding network and bounds on the exponent v 

Most studicrs of tct hered membranes haw focused on the possible phases of membranes 

and the exponent Y which governs the scaling behavior of the radius of gyration. The 

d u e  of the exponent u is hounded by physical limits. Consider a D-dimensional 

manifold. When it is frr!!_v stretched: the radius of gyration I?, scales as L which is 

the finear size of the manifatd. When the manifold has the most compact conceivable 

isotropic conformation in &dimensional space, its mass occupies a volume of ~ , d  in 

the embedding space, namely LD - R,d. Thus Rg --. LDld. The value of u is therefore 

bourzded by the esponents for these two limiting cases, Did u 5 1. Clearly, 

the Flory prediction for polymers [jI.S)f satisfies these bounds. For a membrane in 

three-ciirnensiona space? v is bounded by a lower limit of 2/3 and an upper limit of 

I .  Previous researchers haw found a Qat phase with Y = 1 and a collapsed phase 

with u = 2J3. The crumpled phase with an intermediate exponent was not observed 

numcricatly before my sin~ulations. 

Thc fact that a collapsed phase is achieved by computer simulation is highly 

nontrivial, since the numerous constraints on a tethered surface make it very difficult 

to compress such an object. Kantor et al. [1q carried out a 'table-top experiment' by 

crurnplir~g sheets of foil and nleasured the exponent Y. They found that a crumpled 

phase with tf = 0-8, cfax to the generalized Flory prediction (see Chapter 2)' is 

ecaeraii~ acilleved by ram3omi-j- cmmpiing the sheets. Only an 'intelligent' folding 
L. 

procedure wit1 yield a collapsed phase. It. should be pointed out that such a table-top 

experiment uses art irre~ersibfe process to produce the "rumpled' phase and, thus, is 



not necessarily indicat ire of %\-hat happens in an equili briurn process. 

The Hamiltonian of a self-avoiding net\\-ork is usually taken to be the. l3warcls 

model j185, 

The lower cutoff parameter a eliminates the  unphysical self-intcrscctions aid rep- 

resents the micrc>scopic scale of description of tile network. If wc cl~angc a, otlicr 
1 7  parameters in the Hamiltonian should be readjusted according1 y. t his point will 

become dear when I discuss renormalizat ion-group analysis i 11 C h a p  tcr 2. 

1.3 Some s-tudies on tethered membranes 

In early work on the tethered membrane, Kantor, Mardar, and Nelsorl [19] studied a 

"hantom' membrane model with bending rigidity in which excluded-volun~e cffi~t,s 

are neglected except for nearest neighbors. The effects of bending rigidity for a. 

phantom membrane prow to he drastically different fmn what they would he for 

polymers. Bending rigidity favors a flat phase, while the entropy cffcct favors a 

crumpled phase. Iiantor et al. found a high-temperature crumpled phasc with I i ,  r~ 

(In L ) ' / ~ :  consistent with the result for a Gaussian membrane, and a low-ten, pcraturc 

Bat or stretched phase with R, L (v = I), which is not present fos lir~car polyrncrs. 

In the case of polymers, bending rigidity modifies the persistence length I>ut docs riot, 

give rise to a stretched phase. 

The excluded-volume effect, in fact, is the most important factor in clctermini rig 

the shape of a membrane. Contrary to the earlier helief that a self-avoiding rrternbrant: 

was crumpled in the absence of bending rigidity, more extensive cornputcr sirn~llations 

rZ0, 2'1, 22, 23; 241, including my own which I shall report in this t.hcsis, showed that 

a self-avoiding membrane is always flat when in equilibrium, at least fur particles 

with sufficiently large hard cores. In fact, for such a membrane embedded in threc 



dimensional space: it is found that the membrane may be flat no matter how small 

ihe hard cores. In higher embedding dimension the situation is less clear, and there 

is some indication that self-avoiding membranes may crumple for d > 5 [25]. These 

results are in marked contrast to the predictions of the Flory theory described above. 

This will be discussed further in Chapter 2. 

The effects of the t.ethering constraints on the entropy have been studied by ran- 

domly cutting a fraction of the bonds to reduce the geometrical constraints 126, 271. 

The entropy of the membrane is increased in the process and, therefore, the possibility 

of a crumpled phase is enhanced. These studies showed that a membrane remains flat 

up to the point where it falls apart at the site or bond percolation point, indicating 

that connectjvi ty is an essential feature of tethered membranes. 

Other studies have been carried out on the effect of long-range interactions be- 

tween particles on the network [28, 291. After all, physical membranes or solid sheets 

cannot be described only in terms of connectivity and hard-core interactions. One 

expects that the particles on the network will interact through van der Waals or 

screened Coulomb in t,eractions at longer distances, and such interactions, if at trac- 

tive, will at sufficiently low temperatures overcome the effective bending rigidity due 

to the hard cores and lead to a collapsed or crumpled phase. 

Concurrently with my research 1291, Abraham and Kardar studied [28] self-avoiding 

rnenibranes with van der Waals interactions between particles using the molecular dy- 

namics technique. At high temperatures they found that the membrane is flat. At 

int ormediate temperatures the membrane folds once onto itself. On further cooling 

a doubly-folded configuration develops. The membrane undergoes successive folding 

transitions towards the full; collapsed phase at very low temperatures. 

I st.udied (see Chapter 5) a tethered membrane model in which the particles on 

the network interact through a potential which is hard-core repulsive and square-well 

at t ra~t~ive. This interaction potential differs in form and range from the interaction 



used in Ref. [%I. My Monte Carlo simulations indicatle a hnsi t ion from the flat. phase 

t s  2n isotropically crumpled phase as the temperature is lowercd. 'l'his cru~ltplcd 

phase is characterized by an exponent very close to tshe Flory prediction nucf secnls 

to persist over a range of temperatures. At very low temperatures, a collapsed phase 

is found. 

These results are consistent with recent experimental data. I-Iwa ct  nl. [ S O ]  aud 

Wen et al. [31] performed esperiment.~ on carefully prepared cxfoliaterl shecis of 

graphite oxide (GO). In these experiments, sheets of GO were suspcndcd in itqucous 

solutions at different pH and the structure factor was obtained by light scatteriog 

measurements. Remarkably, the exponent i/ remained constant at roughly the Flory 

value for a considerable range of pH, analogously to the persistence of the crum- 

pled phase observed in our simulation for a range of temperaturcs. These workers 

also found a collapsed phase with fractal dimension Df = 3 when the sheets were 

suspended in an acetone solution, in which the effective intrashcct interact,ion wax 

presumably stronger. 

Our work is complementary to that of Abraham and Iiardar [28]. Although we 

see evidence of folding in isolated configurations in our simulation, we have not, bccn 

able to identify equilibrium states characterized by a discrete number of folds, or a 

sequence of folding transitions. 

Organization of the thesis 

In this thesis, I shall report the results of the research which I have dor~e on the 

properties of self-avoiding tethered membranes. In Chapter 2, I review some of thc 

arralyiicai cahiat ions for the tethered membranes. I shall start from the gcneralizetl 

continuous Edwards Harniltonian for a 0-dimensional manifold and first of all per- 

form dimensional analysis. From this, the concept of upper critical dimensions will be 



introduced and a generalized Flory theory constructed. The excluded-volume effects 

or1 a self-avoiding membrane will be treated as a perturbation to an ideal Gaussian 

manifold and a perturbative renormalization-group analysis will be outlined. Chap- 

ter 3 contains the description of the Monte Carlo procedure and related topics which 

we will encounter in the simulations reported in Chapters 4 and 5. A few ~hysical 

quantities which characterize the shapes of membranes will be introduced as well. 

My early studies on the role of self-avoidance in the structure of tethered membranes 

are reported in Chapter 4. More recent simulational work of mine on a self-avoiding 

membrane modei with attractive interactions between particles on the network is 

presented in Chapter 5. 



Chapter 2 

Theory of Tethered Membranes 

2.1 Dimensional analysis and critical dimensions 

For the discussion of this chapter,' we adopt the Edwards Hamiltonian, (1.25) 

If we rescale the external space by a factor of K ' / ' ,  we can eliminate K from the first; 

term of the above Hamiltonian and obtain a new Hamiltonian, 

where the length unit of the external space is set by 6-lI2.  In the case of a Gaussinil 

manifold, this can be seen from (1.22). The strength of interaction is rncasurecl by 

We shall in Section 2.2 use u as an expansion parameter. 

Dimensional analysis is carried out on (2.1) by rescaiing variable x of the intcrnal 

space by a length I, 

'References: [l, 33, 341 

18 



Assuming that the membrane is isotropic we rescale S(x) in the following way: 

where u  is the exponent characterizing the scaling behavior of the manifold in the 

em bedding space. With these substitutions (2.1) becomes 

The rescaled effective interaction parameter is given by ul r ~ 1 ~ ~ - ~ "  and is usually 

written as 

Ul = Ul' l2  , 

where 

If we require that the Gaussian and the interaction terms scale in the same way 

with 2, namely, 
jD-2+2v 12D-dv 

7 

we must have 

D - 2 + 2 ~ = 2 D - d v ,  

and, thus, 

This expression is the same as what one would obtain by generalizing the Flory 

theory for polymers to a D-dimensional manifold. Hence, it is often called the general- 

ized Flory theory. It should not be surprising that we arrived at the same expression 

+--- ivl L. in both approaches, since dimensional analysis is essentially the same as the 

mean-field theory presented in Chapter I. 

The Flory prediction of the fractal dimension of the network is 



In particular, v = 4/5 and Df = 512 for a tethered membrane in three dilnensicnal 

embedding space. Note that it predicts a crumpled phase for t?vo-dirnensiorlal ~lclt , -  

works, an unavoidable consequence of our isotropic rescaling of the variabltb F. 

For a manifold of dimension D in an embedding space of dimension cf, if ~ D - ~ J I  > 

0, the rescaled effective interaction parameter rc l  approaches infinity in  the 1 --+ GQ 

limit, and self-avoidance is relevant; while, for 2D - dv < 0, 211 4 0 when I i ncrcascs, 

yielding an effective ideal Gaussian manifold at large distances. Tile diii~ension of 

the embedding space in which 2 0  - dv = 0 (or equivalently, c = 0) is cicfinecl as t,he 

(upper) critical dimension of the embedding space, d,, 

2 0  
cl, = - . 

v 

The exponent 

dimension and 

2 - 0  v should he that of a Gaussian manifold, I+ = - 2 '  a.t the cri t;ica,l 

beyond, since self-avoidance is irrelevant in these dimensions. 1-lellce, 

Note that 1D-2+2" in the first term of (2.3) becolnes constant for d > cl,. 7 ' 1 ~  

Gaussian term is invariant under the rescaling process when d 2 d,, and uo = is 

a fixed point of the rescaling transformation. Note also that the upper-crit,ical dirnen- 

sion for membranes is d, = m. Excluded-volume effects of self-avoiding rncrnbrarics, 

according to this theory, are relevant in an embedding space of any dimension, u l ~ l i  k c  

the case of polymers, whose upper-critical dimension is cl, = 4. 

The quantity 6, defined in (2.4)) can be expressed, using (2.7), as 

One can similarly define a critical f internal) dimension of a manifold in a d-di mensional 

embedding space, D,, at which 6 in (2.4) vanishes. This yields 



and e can be expressed in terms of D and D, as 

E = 4 ( D  - D,) . (2. lo )  

D, serves as the lower-critical dimension for a manifold and is usually not an integer. 

For instance, D, is equal to 6/7 in three-dimensional space according to (2.9), and, 

thus, self-avoidance is relevant for both membranes (D = 2) and polymers ( D  = 1) in 

three-dimensional space. Rewriting E in terms of D and D, is technically convenient 

for discussing membranes, since d ,  diverges for membranes while D, remains finite 

for any cl, A perturbation analysis (see Section 2.2) should be carried out about a 

finite critical dimension. While traditionally one expands about d, = 4 for polymers, 

we have to expand about D, = 617 for membranes. For D # 2, expansions can be 

carried out about either of the critical dimensions. 

Dimensional analysis predicts an infinite upper-critical dimension and a crum- 

pled phase for self-avoiding membranes, while computer simulations produced very 

different results. Our earlier studies [23] showed the existence of a flat phase for a 

tethered membrane in 3-, 4-, and 5-dimensional embedding spaces. Recently Grest 

[25] suggested that the upper-critical dimension might be d, = 5 .  It is argued that 

the effective excluded-volume effects in the computer simulations may not simply be 

represented by a two-body interaction term, and it is the higher-order interactions 

which generate an effective bending rigidity responsible for the existence of the flat 

phase [El. 

It is interesting to consider n-body interaction terms, which are generically de- 

scribed by 

Performing rescaling as before, we obtain the rescaling relations for u,, 



where 

At the Gaussian fixed point (v = u~ = y), the inlportancr of t l i ~  rl-borly 

interaction is determined by eG (n) = 2770 - ( 1 2  - I)(' - D)d,  wllcre t,lw snpcrsrript 

r \  G is used to indimthe that ~ ( n )  is evaluated at the Gaussian fiscd point,. lhc. Ilplwr- 

critical dimensions, cZp(n), for n-body interactions are derived fsonl the wndit ion t , l ~ ; ~ t .  

tG(n) = 0 at d: (n) ,  leading to 

G 217.0 d, (n) = 
(n - L)(2 - D )  ' 

One can easily see that dF(n) = a? for D = 2 meaning that all high-order interacLions 

are relevant for self-avoiding membranes. 

This does not help, of course, to explain the simulational results found by Grcst, 

[25], that self-avoiding tethered membranes may crurnple for d, 2 5. lle srrggcd,ctl 

looking a t  the scaling behavior of the high-order interaction tcrrns at the Flory point,, 

at  which the Gaussian term and the 2-body term scale similarly. This Icatls to it sct, 

of upper-critical dimensions, dT(n), for n-body interactions, 

F 2 s 2  D d, (n.) = 
2 n - 2 - D '  

where the superscript F indicates that the Flory exponent (2.5) is uscd i n  l hc  clcrivit- 

tion. 

For membranes, the above expression yields dF(n = 2) = m, dy( lb  = 3) = 6, nrld 

dF(n = 4) = 4, etc.. The 2-body interaction is relevant in ail dirnensioris, while the 3- 

and 4-body interactions cease to be relevant above 6 and 4 climcnsiorrs, respectively. 

VVher, we apply this theory to the simulational resulis, it appears that, 4- or more- 

body interactions should be responsible for the flat phase of ii self-avoiding rirernbrane. 

This theory does not explain why the upper-critical dimension is 5 in thc sirnr~lativn 

rather than 4 which is the critical dimension for the $-body interaction. 



O u r  discussion of critical dimensions is illustrated in Fig. 2.1. 

Figure 2.1: Phase cliagram for D-climensional manifolds in d dimensions. The phases 
of manifolds are divided by the critical (internal) dimensions, ~ : . ~ ( n ) ,  below which 
the n-body interactions cease to be relevant at the Gaussian fixed point and the Flory 
point, respcctively. Above the D = cl line, the manifolds are stretched. Below the two- 
body curve ~ :**(2) ,  all interactions are irrelevant and the manifolds behave ideally 
as Gaussian ~na~nifolds. In the region between the stretched and the ideal phases, 
self-avoidance is relevant. All interactions are relevant for membranes (D = 2) at 
the Gaussian fixed point in any dimensions. At the Flory point, however, all but the 
2-body interactions are irrelevant in dimensions higher than 6. 

2.2 Pert urbative renormalization-group - analysis - 

As we showed in the last section, self-avoidance is irrelevant above the upper-critical 

clinie~lsion. Thus, if we perform a RG transformation for a network in d(> d,)- 

dimensional space, the excluded-volume interaction will be renormalized to zero as the 



degrees of freedom are being thinned out. The RG transforillation has i l ~ c  Gaussiau 

fixed point (R,  Nu and 11 = 1 1 ~ ) .  In diinensions ti < d,, self-avoidanw is rt+wtl~ t and 

a new fixed point may arise as a result of the increasingly important excluded-volunw 

effects as d is lowered below d,. In this section, I shall treat tlw csc-ltidc~tl--\rolti~~~(~ 

effects as a perturbation tgo a Gaussian network aild calculat ci t,hc court~ctions to t , l i i l  

exponent vo of the unperturbed ideal nlembra~le network. Ilowcver, 1 slmll ~nostly 

outline the perturbathive renormalization-gmp approach sat, htbr than  prcstwt, tlctaitcd 

calculations [16, 3.51. 

2.2.1 Simple renorrnalizat ion-group ideas 

The Hamiltonian of a D-dimensional manifold en~becldetl in cl-clirl~c~~sion~~,I space is 

given by (1.25), 

3-t is a function of K ,  v,  and implicitly of a.  

The most intuitively appealing RG approacli is to rescale t be short-distal~cc: c;utofY 

a -a Kadanoff block-spin concept. Consider the case of polyrt~crs again for silriplic- 

ity [12]. We begin the Kadanoff procedure by grouping 1 successive monomers inio 

subunits (see Fig. 1.2). We define a new chain of N/1 units, each having 1 trlonos1lt:rs. 

We then ask how such a transformation affects the interaction I>ct wccrl su h u r l  i ts ~ l t l ,  

thus, how the Hamiltonian transforms, i.e., we hope to fir~d relations IxA,wc.cn r-(:nor- 

malized parameters k ,  6, and the original K ,  v. Fixed points car] tjc founcl fronl t l icsc 

recursion relations, and exponents characterizing the fixed poirrt,~, s11c1i as v ,  Irlay Gc 

obtained. 

Imagine computing the size of a block subunit a1 and the exc1udt:d-vol~~n~c i l l -  

teraction parameter ul for the subunits. The procedure is the same as ir i  Kadanoff 

spin-block procedures: inkgrate out degrees of freedom i nsiclc each block. I f  wc werc 



dealing with ideal pdymer chains, we would simply have a1 = ~ ' / ~ a ,  as demonstrated 

previously. However, the effects of self-avoidance swell the subunits. Let us write a1 

as 

ul = l'12a [1 + h(1, u)] , 

and the new interaction parameter as 

u1 = ~ 1 ' ~ ~  [I - k(1, u)] . 

where h(1, u) and k(1,u) are some functions. The function h(1, u) may modify the 

scaling exponent of the radius of gyration, v, from its Gaussian value of 1/2 to 

possibly some other value. The e/2 exponent in (2.17) is expected on the basis of 

the previous dimensional analysis. The variable ul should be smaller than uF"- 

the re~lormalized value of ul for a non-self-avoiding manifold, since the number of 

interacting pairs is smaller thari t2 due to self-avoidance. 

The essential idea of the renormalization-group analysis is to repeat the operation 

and generate a sequence 

Any pair (am,  u,,) in this sequence represents one possible realization of the single- 

chain problem. The sequence of interaction parameter {u,) approaches a fixed point 

u*, as m -+ a, a,t. which the relationship between a, and a,-1 (m --+ cm) becomes a 

siirzple geometric series, 

The radius of gyralion of the manifold is invariant under the rescaling operation 

and, thus, if we write it as R, = a f(N, u) ,  where f(N, u) is a function, the invariance 

is expressed as 



At t.he fixed point zt, = urn-1 = u", we have 

This relation implies that f fz )  xV and, t.hus, 

where u = ln(u,/u,-I)/ In([). 

The above illustrat-es how import~ant information, s t ~ c h  as tJ1w value of v ,  is 01,- 

tained from the renormalization-group met hods. 

2.2.2 Perturbation expansions 

Exact solutions for h(l, u )  and f( l ,  u)  for~nulated above arc t.rkry tliffiwlt t r 3  o b t a i n  

in practice. Approximations, such as expansions, have to h c *  1t~aclP i ir a r1a1yt.i (.;I 1 

calculations. In this section, I shall discuss the perl,url,aticrn-exj~ii~rsior~ t,hi.ory for 

membranes from the recent literature [16, 351. 

A Gaussian manifold is the unperturbed state of the ex-pat~sitm tllcory. As wct 

know, a self-avoiding manifold behaves like an ideal Gaussian rrr;lr~ifolrl  ahovt~ t . 1 1 ~  

upper-critical dimension. Thus, there are two perturbation csjmisicir~s wtriclt wr.  car^ 

make: one about the interaction parameter rr, = 0, and c ~ r t c  afiorlt the ~i ppc'r-criticid 

dimension d,, or, in the case of membranes, about the low:r-critir-a1 i~ttcr-tlal rlinwrtniorl 

D,. The expansion parameters are t: in ('2.4) and u. We arc: irttv~wtf-d i r ~  t f l ~  lwhitvior 

of self-avoiding membranes and: therefore, E. and u are taken to ljc pcrsitivtz. 

Let's look again, say, at  the function k ( l : u )  introduced irl t h e  last scctirirr to see 

that it is also a function of c. When c < 0, it is evident, from f2.17j that IL* = 0 m d  



the behavior of (IZ should he Gaussian-like: ix. :  a1 = I ' / ~ c ~ ~ .  Thus, when e is positive 

hut  small {cl slightly befotv cl,), we can compute k(& u') (and h(2, u") similarly) by 

expanding in t, 

u' = ~ = 1 ' / ~ [ 1  - k(l, u*)] , 

We see that k(1) = $In(/), having the same order as e. 

We now proceed with the expansions. The Edwards Hamiltonian (1.25) can be 

writter~ in the fallowing for-, 

%=Fie+%, (2.18) 

where 

is simply the  Harniltonian for a Gaussian network, and 

is the interaction term. 

The partition function of a manifold is given by 

and tile expectation value of any quantity A is 

(A) = (A), - (,!Xi>, -4- ( A ) ,  (7f1), , (2.23) 

all the terms on the right-hand side of the equation are evaluated for a Gaussian 

net work. 



As for the Gaussian manifold, we calculate the generating f i~~lct io~l @(G, X, , x2) 

and: using (2.23) and (1.40)? we obtain 

where 

is a constant, u = vadl2, and a is the lower cutoff limit, for which there is no uniqur  

choice. 

Suppose now that we started to describe the very same systeln on a somcwilat. 

larger microscopic scale, a -t a ( l  + A). The Hamiltoniao would have hczn givcn by 

The radius of gyration, or (I?(xl) - ?(x2)l2) l R , ,  should he  gives1 by ((2.24) after w e  

replace K ,  u, and a by K', u'; and a ( l  +A). However, (J?(xl) - i(xz) 1') in a rrreasurat,lc 

quantity and is invariant for Hamiltonians on different microscopic scales, i.c. 

By using this identity and (2.24): we now relate ri', u' to ti; 71. 



Clearly, (2.26) holds if n' is taken to be, to first order in u, 

and 

u' = u[1 - k(Q, u)] . 

The function k(A, u) cannot be found from this, since we are only collecting terms 

linear in u. 

We have just coarse-grained the manifold (and its Hamiltonian) and found the 

relationship between a manifold with cutoff length a and one with cutoff length a ( l  + 
A). The Hamiltonians 7f f  and 7-l are descriptions of a manifold on different scales, 

and we may rescale, say R', to match with 7-l on the same scale. Let I = 1 + A and 

x' = x / l .  Naturally, the scale of the embedding space needs to be changed as well 

under this transformation. We let $' = Vlv, where u is the exponent governing the 

scaling behavior of the embedding space and is to be determined from the fixed-point 

calculation presented later. We now can write a renormalized Harniltonian f i  in a 

form identical to that of original Hamiltonian, 

with 

and 

ii = u[l - k(l ,u)] l  2D-dv (2.29) 

The renormalization of ZL must involve at least expansion to second-order in u. 

One cannot obtain the function k(l,  u) from the calculation of the two-point distance 



at first order in u. The rect~rsion relation for a can be obtained from the partitiolt 

function 2, normalized by Zo(r 21,=0), 

The next step, as before, is to eliminate configurations that have pairs of points 

whose separation is smaller than the new cutoff parameter a ( l  + A). Carrying out, 

this task is tedious, and I will not present the calculatiom ill detail. Instead i sllall 

discuss, with the help of figures, what- we may expect from coarse-graining the 2-body, 

4-body, and higher-order terms in (2.30) [15]. 

Fig. 2.2 shows a chain (for ease of drawing, we consider a polymer chain again) irr- 

teracting with itself via 2-body interaction. A coarse-graining will change the strength 

of the interaction but not its 2-body interaction nature. On the other hand, 2-, 3- 

, and 4-body interactions may emerge from an original 4-body interaction under 

coarse-graining. This is demonst rated in Fig. 2.3. 

Figure 2.2: Coarse-graining a two-body interaction makes another effective two-body 
interaction. 



Figure 2.3: Four-body interaction under coarse-graining. Depending on the confor- 
mation of the chain a.nd the resolution of coarse-graining, a coarse-graining ca,n make 
a Cbody interaction an effective 2-, 3-, anu -' T-uo A d y interaction. The symbols "1 I", 
"A", and "0" denote 2-, 3-, and $-body interactions, respectively. 



In our case, we would like to get a contribution from ~ 2 ,  by intrgratittg over tllr 

range [a,a(l  + A)], proportional to (sd(i(x) - i(xl))) A,  t lms crtl-actiug a rrnor- 
U 

malized interaction parameter u. 

Omitting derivations, we write down the expression for the rcliorrnalizctl n~i t l  

rescaled interaction parameter, 

where the constant C is 

and 

We have obtained the renormalized Hamiltonian to the lowest order in u wit,li 

Using the following definition of ii to simplify (2.34-1) and (2.34-2), 

and applying the rescaling operator 18 to these equations, we ohtail, the renor~naliza- 

tion-flow equations, 

These equations are easily solved for the fixed point ii* at which the derivatives 

vanish. We obtain 



where e = 4R - (2 - D)d. Using this, we finally obtain from (2.36-1) the expression 

for the exponent Y at the self-avoiding fixed point u* 

where 

The correction to the Gaussian exponent, vo = y, is of first order in P and is 

valid when E is small. The coefficient of c, P, in (2.38) should, of course, be evaluated 

at 6 = 0. We recall that E = 0 corresponds to the critical-dimension line, DF(2), in 

Fig. 2.1. Any point on this line can be chosen as a point about which the expansion 

is carried out. On the critical-dimension line the function J(d, D) has a simpler form 

The correction to the Gaussian exponent, PE, can easily be calculated and is given 

in Table 2.1. 

Table 2.1: Correction to the Gaussian exponent for various combinations of d and D 
that satisfy the condition E = 0. 

When comparing against the known case of polymers and a limiting case for 

membranes (i.e., a membrane embedded in a 2-dimensional space) we immediately 



see that this theory does not produce qmntitgatively rorrcrrt results. it docs not agrw 

with the Flory prediction for membranes. either. There is no reason to bclicve titat, 

this theory should work for membranes at this order of the espat~sion. The value of e 

for the physical situations that we are interested in is too large ( E  = 8 for nl~tnbranrs) 

for the expansion theory to be valid. .And, as we discussed in the first sectiorl of  this 

chapter, a 2-body interaction description of a self-avoiding membra~lc may not, be 

adequate to begin with. 

2.3 Summary 

An exact solution of the statistical mechanics of self-avoiding ~rmnbrar~es is so far 

non-existent. I have, in this chapter, carried out dimensional analysis and o~~t~linccl 

the perturbative expansion theory of self-avoiding mernhranes. A generalizccl Flory 

theory is developed for the membranes and the expansion calculations are carried 

out to obtain the scaling exponent v analytically. Both theories prctlict n crucnpled 

phase for self-avoiding membranes. Although neither theory is know11 to be correct 

quantitatively in general, they do provide us with some insights and, t,t lereforc, with 

guidance into this not-so-well-understood problem. The reriornlalizatiorl-gro111) i tp- 

proach used in this chapter will be utilized in my numerical studies of self-avoiding 

membranes to be presented in Chapter 4. 



Chapter 3 

Numerical Simulations 

3. P Introduction 

Numerical studies of tethered membranes have produced important qualitative and 

quantitative results. Some of these results are unexpectedly different from analytical 

analyses such as those presented in Chapter 2. In this chapter, I shall present the 

Monte Carlo procedure that I have used in the thesis research. I shall report my 

coiltri bu tion to the numerical studies of self-avoiding membranes in the two following 

chapters. 

Much of the theoretical work on polymerized membranes has been based on the 

tethered membrane model introduced by Kantor, Kardar, and Nelson 1331, on which 

n1y work is also based. In this model, particles are connected to each other in a fixed 

U-dimensional network (normally D = 2 and the network is chosen to be triangular). 

A model hexagonal tethered membrane of linear size La, where L is the number of 

part,icles on the Iongest diagonal, is shown in Fig. 3.1 for the fully stretched con- 

figuration. We silail conventionally refer to L as the linear size of the membrane. 

liantor et al. [19] first studied a 'phantom' membrane with bending rigidity in 

which the excluded-volume effect is neglected except for nearest neighbors. In their 



Figure 3.1: The tethered membrane model. A model hexagonal ~ethered rncrr~l,rarw, 
when fully stretched, is shown. L is conventionally referred to as t,he (inkrnal)  linear 
size of the membrane. Tethers of length a connect particles of diameter (T to form t, tic 

network. 

simulation the bending rigidity is given by ~ ( 1  - li, . li,), wherc x i  is the riorrrd 1,o an  

elementary triangle in the network (see Fig. 3.1). i and j are indices of rscighboring 

triangles. The nearest-neighbor particles interact via an infinite potential well t, ho 

width of which corresponds to the maximum tether lcngth. They found, among other 

characteristics, that this model exhibits a sharp trarssitior~ at kBTc z ~ / 0 . 3 3  from a, 

low-temperature flat phase to a  high-temperature crurn pled phase c.:l~aractcri.ted Ijy a 

scaling law % -- m, consistent with that of the ideal Gaussian network. Ambjorn 

et al. [36] later confirmed this result. 

Such studies were quickly extended to more realistic self-avoiding tcthcred mcrn- 

branes. Plischke and Boa1 [20] first studied a truly self-avoiding tct heretl rnem branc 

network. The excluded-volume interaction is still the short-rangc, hard-corc: potential 



but any two particles interact if they come too close to each other. Moreover, the 

ratio of the diameter of the particles on the network to  the maximum length of the 

tethers was set at 1/& to ensure that no self-penetration of the membrane could 

occur in the simulation. Unlike what happens for linear polymers immersed in good 

solvents, a flat phase was always observed for the strongly self-avoiding membrane 

even in the absence of hending rigidity [20,21, 22,23,24]. It is believed that the effec- 

t ive bending rigidj ty generated by the excluded-volume interaction between particles 

is responsible for the existence of the flat phase [43]. 

Clearly, the effective bending rigidity depends on the radius of the hard-core par- 

ticles. One would naturally raise the question of whether decreasing the diameter of 

the particles sufficiently reduces the effective bending rigidity to such a point that the 

cr. urnpled phase may be recovered or, equivalently, how the effective bending rigidity 

depends on the excluded-volume interaction. My first project was to study numeri- 

cally a tethered-membrane network of particles of variable diameters. I will present 

the details of this study in Chapter 4. 

Inspired by this work, we studied the same model with an added attractive inter- 

action among particles on the network. In the presence of an attractive interaction, 

it is conceivable that the effective bending rigidity generated by self-avoidance may 

be overcome at sufficiently low temperature and that the membrane will no longer be 

flat. The results of this study will be reported in Chapter 5. They will also be com- 

pared with the simulational results of Abraham and Kardar on a similar model [28], 

and with recent light-scattering experiments on graphite-oxide membranes [30, 311. 

In the remainder of this chapter, I shall present in more detail the model and the 

Monte Carlo procedure used in our simulations. A few quantities which characterize 

the slmpe of a membrane will be introduced and discussed. This part is relevant to 

both Chapter 4 and Chapter 5. 



The model and Monte Carlo procedure 

The model which I study consists of hard spheres connected by uoi~-iltteract irlg ftcs- 

ible strings as shown in Fig. 3.1 for the fully stretched configuration. 'l'hc particlts 

are connected in a triangular network ard  a finite rnernbrane consists of a hcxagonal 

cluster of linear dimension L. In such a cluster there are N = (31," 1)/4 particles d 

diameter a and we take the maximum distance Letween nearest rlcigllbors (i~leasurtd 

from the center of the particles) to be a. Nearest neighbors on tlw latt ice interact. 

with each other through an infinite square-well potential. Basically, ttic major difFrr- 

ence between the models that I use in Chapters 4 and 5 is in t,hc ilitcract,iorl potxtltial 

between non-nearest neighbors. 

This square-well potential for nearest neighbors prevcnts two part, iclcs from o v ~ r -  

lapping and restricts the maximurn separation of nearest-neighbor 1mrticlt:s. 1'1~ 

tethers are not allowed to break and, thus, the cormectivity is preservctl at all times. 

The Monte Carlo simulation procedure which I use is tbc stanclard Metrol,olis 

method. Except for the central particle, which is held fixed to prcvc*nt, Arifti ng of 

the surface, each particle on the network is consecutively displaced by n trial move of' 

length s in a random direction, starting from some initial ~nenhrarre configuvatiorr. 

A trial move, provided that it does not violate the hard core or the maxi~n~irri tcthcr 

length, yields a new configuration of the membrane, which is to he ;~ccept,ecl or rej:~ccted 

according to the conventionaj procedure of comparing exp (-f3AE) wit11 a, midom 

number in the range [ O , l ] ,  where A E  = Eafier-Ebefore is the energy difference tjctwcen 

this new configuration and tile initial starting one. A new configuration of lower 

energy is always accepted. For a configuration with higher energy to be acccptd, t,hc 

random number selected a-ust be sma!!er thar, e~p(--~9Afi).  Y inee successive states 

differ by the displacement of only one particle, they are strongly corrclated and X 

do not collect data after every move but only after a large number of trial rnovcrj. 



A convenient time unit to use is a Monte Carlo (MC) step defined as an attempt 

to move a11 IV particles in the network once. I collect data after every TR = L2/s2  

M C  steps-the Itouse time [37]. For the largest membrane that I have been able to 

simulate, this rneans that successive samples are separated by 332/0.22 = 27225 M C  

steps, or a TR. However, there is no reason to believe tha.t the successive samples are 

uncorrelated. This issue can only he settled after one has studied the relaxation time 

of the rnernbrane into its equilibrium states. I will discuss it later in this chapter. 

The choice of the trial displacement affects the relaxation time as well as the 

acceptance rate of the simulation. If s  is too small, the membrane will take too long 

a time to relax into the equilibrium states, although the Monte Carlo acceptance rate 

will be high; whereas, if s  is too large, a particle will likely bump into others in the 

attempt to move or the tethers involved will likely go beyond the maximum length, 

so the acceptance rate will be too low. In either case, more computing time will 

be needed in order to acquire statistically independent data samples. I have varied 

the magnitude of s to suit each case which I simulated and obtained a reasonable 

acceptance rate of ahout 30-50%. For most cases, a choice of s x 0.2 is appropriate. 

Long-range self-avoidance is computat~ionally demanding compared with a 'phan- 

tom' case. The most obvious and least efficient way to implement self-avoidance is 

to check for overlap of hard cores among all N particles on the network for every at- 

tempted movement of a particle. This would require evaluation of distances between 

M(N-1)/2 M2 pairs of particles. A MC step would then involve N x N 2  - N3 L6 

such calculations. This is, of course, prohibitively high for large systems. One must 

devise a more efficient method to do the task in order to be able to simulate tethered 

melnbrane of any rea4 -&ly large size at all. 

We use the following schen,e in our sirn~la~tion: Note that ail particles are confined 

to a cubc of linear size of &k, the maximum linear length of the network when it is 

fully st.retched, centered at trhe central particle of the membrane. We then divide this 



large cube into cells of size of a + s (diameter + trial ciisplacenwt\t,) and t h e  cclltc~ 

of each particle belongs uniqueiy to a d I .  For this choice of s in* of t . 1 ) ~  cx4ls, ortly 

r \ particles in neighboring cells can possibly overlap as tlw r c d t  of a trial I I ~ O V ~ .  1 his 

drastically cuts down the number of particles that have to he ~t~orlitorcd (iltritig t , l t ( k  

calculation. The price to pay is that a dictionary of t l~c  oct-tilmiqv of t lw d l s  ~llrtst, 

r~ be kept and updated after every successful rnove. I his, l~o~vcsc~r., is ~nrlch less work 

since the number of evaluations involved is now proportional to 12' - 1," 111 ilrly c.asc3, 

maintaining self-avoidance is time consuming, and we always first check, aftt>r rl trial 

move, whether the tethering constraints arid nearest-ncight~or Il~r-ct-cwr~~ clscf~lsior~ 

haxe be5n violated. If a trial move is rejected by these ~o~isf.railit,s, wliicl~ arc qu ick  

to  check, further checking of long distance self-avoidance hecoriics t ~ u r ~ c ~ ~ s s a r y .  

3.3 Relaxat ion st d i e s  

We begin the simulation from some initial configuration (t~sually a r.ornplet,cdy Il i l l ,  

configuration). The membrane fluctuates freely in three-clin~citsioi~al space it~t<l ~vi -11-  

tually settles into equilibrium, where our study is carried out. 

We are concerned with a few important aspects of the Montc Carlo sitrlula,t,iorr 

related to the relaxation characteristics of the membrane: 

a the samples that we collect should he ey uilibrium stattss; 

e the samples should be uncorrelated with each other, j.c., t l ~ c y  sho~lld IN: sctpa- 

rated in Lime by a characteristic relaxation tirne TO: 

is a large region of the phase space should he sarnplccI. 

It is possible tc; derive analytically t h e  normal modes for idea1 polynrers [I21 arid 

phantom membranes [IT]. These normal modes have a correlation fimction that 



dry-ays cxporrential~y irraction of time. The relaxation time of the slowest mode is 

characterizer_t by the Roue t irne TR: which I have mentioned before. A self-avoiding 

tethered ~nernl~rane. fiotset.er: relaxes much more slowly towards equilibrium than 

a pharltorn n~errtbrane~ as demonstrated by previous studies [17, 231. Nelson et a1. 

[IT] suggested that for self-avoiding membranes the relevant time unit scales like 

12J.E/s2 rather than  PJs? To stttdy and confirm the relaxation behavior of a tethered 

rnemtmme q~tantitaiivety~ we cakulate the autocorrelation function of a measurable 

qt:af:tity O such ;ts the radius of gyration. The autocorrelation function, C(T) ,  is 

cicfirted as 

whcrc tfic angular brackets denote an axrage os7er samples labeled by the time vari- 

able 1 ,  We hegirl averaging only after equilibrium has been reached. This starting 

time can he determined from the behavior of {OIt)).  The relaxation time which comes 

out of the study of the relaxation function will confirm whether or not this judgement 

is correct. 

1x1 Fig. 3.2. the square of the  radius of gyration of a membrane, $, is displayed 

as a function of the time t measured in units of the Rouse times TR. It is clear that 

the initial transient region is rather small in this case, and it  is reasonable to assume 

that eqnilihrium has been achieved after. say, the first 300 Rouse times. Ri fluctuates 

itbatit i t s  average value according to a Gaussian dist-ribution. 

Eke fmve calculated autocorrelation functions of the quantities of ph~rsical interest, 

fitted them to exponential functions far short times, and, thus, determined r e l a~a~ lon  

times for each size of the membranes at d i c h  simulations were carried out, In 

part ictilar. we are interested in the three e;gensalues of the inertia tensor XI: X2 and 

A3 [scv the nest sect ion for definitions) and the radius of gyration, whose square is 

the stin1 of these three eigemdues. These eigent alues have different relaxat ,on times, 

;and that of the radius ~f gnation is dominated by the largest cf the three relaxation 



Time (Z, ) 

Figure 3.2: The square of the radius of gyration, Rz, for a rnernbranc of size L = 25 
as function of simulation time whose unit is the Rouse time TR. In this case, the 
diameter of the particles is taken to be 1 and the maximum tether le~igth i s  8. Ii. 
appears that the initial transient region is rather small. The solid line reprcst:nt,s t,hc 
average value of R: calculated beginning at t = 5 0 0 ~ ~ .  

times. We found that the relaxation time is usually longer when excluclcd-vc-~lurne 

effects are stronger. For strongly self-avoiding membranes, the re1 axat ion ti rne TO 

scales with the membrane size L according to L", where 3 < z < 4 ccor~sistcrit wit ti 

[IT]. Despite the fact that this exponent is much larger than the exponent z = 2 

of the Rouse time, we have found that the longest relaxation time for our samples 

( L  5 25) is of the order of a few dozen Rouse times, Fig, 3-3 shows typical resrdts 

for the autocorrelatim function of the eigenvalues of the inertia tensor. 

To check whether the fact that we usualiy start simulation from a flat nicrnhrane 

configuration confines the rnemhrane to a region in phase space silch that other parts 



Figure 3.3: The autocorrelation function C(T) for XI,  Xg, and X3, for the same sim- 
ulation described in Fig. 3.2. The symbols "o", "A'?, and "a" correspond to X I ,  A2,  
and X3, respectively. 

of the phase space can not be sampled, we have also started simulations from pur- 

posely generated crumpled, collapsed, and folded initial configurations. We found 

that the system always eventually reaches the same equilibrium state for the simula- 

tions reported in both Chapter 4 and Chapter 5. 

3.4 Characterization of membrane shapes 

The focus of our study is on thermodynamic properties, such as the phases and phase 

transitions of a self-avoiding tethered membrane network. We have found that the 



functions which characterize the shape of  he membrane are the best indicators of 

a phase transition. We primarily use the eigcnvalues, XI, A2, and X3, of ihe illcrt,ia 

tensor, which is defined as 

where ria is the cr-component of the position of particle i in the embedding space. 'She 

sum is taken for a given configuration over all particles, and F ,  is the average over i of 

r;, in that configuration. The three eigenvalues are ordered accorcling lo magni t nde 

XI _< X2 < As. The directions of the principal axes are given by the eigenvectors G I ,  i2 

and Li3 corresponding to XI, A2 and AS, respectively. The geometrical mcanilrg o f  I l ~ c  

eigenvectors and the eigenvalues is schematically shown in Fig. 3.4. For the fiat initial 

Figure 3.4: Illustration of the geometrical meaning of the eigenvec tors and the eigen - 
values of the inertia tensor. The eigenvalues Xi correspond to the principal directions, 
e j ,  j=1,2,3, respectively. 

configuration that we use in the simulations, GI is perpendicular to the plane of tllc 

membrane, while i2 and C3 lie in the plane. Therm-al ffuctuati~ns deform T; perfectly 

Bat plane. But, if a configuration of the membrane maintains the overall shape of a 

smooth plane, this picture is still a,pplicable. For a more isotropic conformation of 

the membrane, the distinction between the principal directions becomes less clear. 
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In any case, 6, 6, and are the length scales that characterize the extent 

of the membrane in the three directions. In the flat phase these eigenvalues should 

scale with the linear dimension L of the membrane according to X1 -- L2"1, and 

X2 N h3 N L2"3, where v3 = 1 and where the 'thickness9 exponent vl is smaller than 

v3. In the crumpled phase, however, we expect that the three eigenvalues scale with 

the membrane size with the same exponent, vl = 212 = ~3 = V ,  which, according to 

the generalized Flory theory, takes on the value of 4/5. In a collapsed phase, the 

membrane is still expected to be isotropic but the exponents should be given by the 

'close packing' value v = 2/3 .  

In addition to studying the scaling properties of the three eigenvalues of the inertia 

tensor, we use the shape factor as an indicator of a phase transition. The shape factor, 

A, is defined to be 

A = (Al/A3) , (3.3) 

namely, the smallest eigenvalue divided by the largest. As L becomes large, A ap- 

proaches zero in the thermodynamic limit for the flat phase due to strong anisotropy, 

whereas it becomes a non-zero constant for the crumpled phase and the collapsed 

phase. 

We also study the structure factor of a membrane, ~(g) ,  defined by 

where 1, m are the indices of the particles on the network of the membrane and Sl 

is the position of particle 1 in the embedding space. The angular brackets indicate 

averaging over equilibrated samples. The quantity s (1;)' is experimentally accessible 

tltrough light-scattering experiments [30, 311 and is, therefore, of practical interest. 
-+ 

If one fixes k in a certain direction in space, the structure factor will be spherically 

symmetric regardless of the true shape of the membrane due to its overall rotation 

'More precisely, its spherically averaged version ~(lcl). 
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in the embedding space. In order to remove the effect of this rotation, we rktct to 
+ -+ * 

evaluate S(k) for k = IklBj = &I,, j = 1 ,2 ,3 ,  where 6, are the dirrrlions of t,lw 

principal axes, calculated for each sample configuration. The average ( ) is tbrrcfow 

taken with respect to a reference frame rotating with the me~nhrane rather t hm with 

respect to the laboratory frame. 

-+ 
Let's examine the structure factor S(k) more closely. We use a continuum mcrtl- 

brane for convenience and assume that the membrane has the shape of a D-dimensional 

disc of diameter L when fully stretched. For the radius of gyration of such a, rrrernbm~~r! 

to scale as R, Lu, the two-point averaged distance should scale as 

In turn, we must have for the generating function b(c, x, x') defined by (1.13), 

where F(x) is a dimensionless generating function. 

The structure factor ~(1;) can be easily shown to have the form of a scaling func- 

tion: 

where Df = D/v  is the conventional fractal dimension, and G and 9 are lrnknowr~ 

functions. 



The structure factor, therefore, is expected to have a scaling form as shown above. 

As w d ,  the function G ( x )  must reflect the properties of the structure f2ctor due to the 

finite-size cutoff and a small-length-scale limit due to the diameter a of the particles 

on the network. The wavelength of the incident beam ( N  Ic-l) must be within the 

regime a < k-l < Rg - L" in order that the structural information be obtained from 

the scattering experiments. In the region k-' >> Rg, the membrane appears as a 

point compared to the wavelength of the incident beam and the structure factor has 
4 

a common parabolic behavior S(k) = 1 - 5 ' ( k ~ , ) ~  + = 1 - const. x + - .. 
For k-l - a ,  we should see the atomic oscillations typical of 'a hard-sphere gas. 

On the scale much smaller t h ? ~  a, the cross terms in (xi,, exp {ic. [?(.(x) - i?(x')])) 

vanish and the oscillations disappear. The structure factor then becomes a const ant: 

s(G) = 1/N. 

Having broken down s(G) for various regions in k,  we put them back together 

to make a sketch of s(G) as function of kLU in Fig. 3.5. This sketch is valid for 

isotropic phase(s) as well as for the anisotropic flat phase, as long as it is understood 

that all scaling exponents uj, j = 1,2,3, are not equal, and one should treat v as 

i / j  and substitute A - for R, in the above arguments. The structure factor can be J; 
used to study the scaling behavior of the eigenvalues and, hence, that of the radius 

of gyration. As well, it can be used to distinguish between isotropic and anisotropic 

phases. One expects, in the flat phase, that S(k6j) = Sj(kLuj) in the scaling regime, 

where the vj's determine the scaling behavior of the moments of inertia. Conversely, 

in an isotropically crumpled or collapsed phase one expects that S jkGj) = Sj(kLU) 

with a single exponent u for all j .  

It should be mentioned t.hat although s(G) is easily obtained from numerical calcu- 

lations, it may be difficult to measure experimentally because the sample membranes 

are usually suspended in solutions witah no preferred orientation. One must, in this 



Figure 3.5: Schematic sketch of the structure factor s(L, L )  as function of ihe s c a h l  
variable kLu.  

situation, study the spherically-averaged version of s (c) [38], 

While the behavior of S(k) is expected to be the same as that of s(K) for thc 

isotropic phase(s), the previous sketch must be modified for the flat, phase to accom- 

modate the fact that there are different scaling regimes. In the region IIJ < Pi < Rg 

where w is the thickness of the membrane, one sees a fiat, srrlooth rnemhrane and 

S(k) - k-2 .  In the region a < b-l < w - Lux, the structure of the mernbrarle in the 

out-of-plane direction can be probed and the exponent vl extracted from the ~cal -  



ing behavior of S ( k )  at this length scale. As pointed out recently by Abraham and 

GouIian [49], the structure factor S ( k )  may yield the same scaling behavior for a flat 

membrane as for a crumpled membrane, unless the membrane under consideration is 

very large, so S(k) should be used with caution. I shall not report on S ( k )  in this 

thesis. 

Further information about isotropic and anisotropic phases and transition points 

can be obtained by studying the behavior of the normal vectors of elementary triangles 

formed by nearest neighbors on the network. We define Mj(cu) to be the projection 

of the normal of triangle cu along the eigenvector G j  and calculate 

hJj = Mi(a)/N~ , (j = 1,2,3) 
CY 

(3.8) 

where NA is the number of elementary triangles. All normal vectors in the formula 

are consistently taken from one side of the membrane surface. In the flat phase, we 

expect the expectation value of &I1, or equivalently M:, to be non-zero whereas { M i )  

and (Mi) will be zero in the thermodynamic limit. In a crumpled or collapsed phase, 

we expect (M:) = 0 for all j .  The quantity (M:) can be used as an order parameter 

for the fiat phase of a membrane. 

We may calculate yet another set of quantities (P:) where 

In the flat pha-se (P;) should be greater 

aligned along the short direction, and all 

than (P;) and (P:) since &Ij(*) are mostly 

three of them should approach 1/3 in the 

isotropic phases. While it is obvious that they can not be used to distinguish the 

crumpled phase and the colla.psed phase, these quantities may be useful in providing 

inforrna.tion about whether folding transitions occur. For instance, one would expect 

a membrane with a single fold to have a vanishing (M:), whereas (P:) should be 

appreciably greater than 1/3. 



Thermodynamic functions can also be calculated in the simulat.iou. In part~icltlar., 

the specific heat is used to investigate yliase transit i m s  and t 1 ~ .  wdcr of t ra nsii i ons .  

The specific heat, C ,  is given by 

In the studies of a phantom membrane with bending rigidity, the specific heat providecl 

the best evidence for the presence of the second-order phase Iransi t ion fro111 t , l ~  

crumpled phase to the flat phase [19]. This phase transition is cllaractcrized I,y a, 

strong peak in the specific heat. At low temperature the specific heat of thc plrantorn 

membrane with bending rigidity approaches $kB per particle, indicating t.hat, tlw 

transverse oscillations are essentially uncoupled in the flat phase. 



Chapter 4 

Tethered embranes of 
Variable-size Hard-core Part ides 

4.1 The Hamiltonian 

When a memlr>rane is immersed in a solvent, as it usually is in the laboratory, the ef- 

fective interaction between monomers at the scale of inter-molecular spacing depends 

on the properties of the solvent and the membrane monomers. In a 'good' solvent, 

in the terminology of polymer physics, the effective interaction is repulsive. In this 

chapter, we will consider the model tethered membrane described in the previous 

chapter with particles on the network interacting through hard-core interactions. 

The interaction potential between nearest-neighbor particles is taken to be an 

infirlite square-well potential, 

where we set the maximum distance between nearest neighbors (measured from the 

center of the particles, see Fig. 3.1) to be a. Among non-nearest-neighbor particles, 



the interaction potential is given by 

The potentials above simply prevent two particles from overlapping wi th  each ot ,hr  

and control the maximum length of the tethers. 

It is evident that the potential energy of our model me~tibsa~ne is a consta~lt (c-011- 

veniently chosen to be zero here). Temperature is tllercfore an irreleva~lt, pa,ramctcr 

and the thermodynamics of the me~nbrane is purely entropy-clrivcn. 

All conformations of the membrane have the same energy and, thus, have equal 

statistical weight in the Monte Cash simulation. The sjnwlational proceclure in this 

case is particularly simple, since neither the energy difference nor. thc Doltz~llarlil 

factor need be computed in the simulation. For all of our simulations, wc have at 

least 100 and in most cases 300 or more samples separated in time by rt:la,xa,t,ion tinkcas 

described in Chapter 3. 

4.2 Strong self-avoidance and the flat phase 

I first studied the case of a strongly self-avoiding membrane in which l /a  is taker1 to 

be a. Although this case had been studied previously by Plisclikc and Boa1 [20], 1 

nevertheless carried this study to a larger membrane size (1; = 25 as o1rposcd to t11c 

r l  largest size L = 19 previously) to confirm their findings. I he  res~dts are presrmtc:d 

here to demonstrate the behavior of the quantities that I have discussed in Chaptcr. 3.  

First of all, we display in Fig. 4,1 the shape factor, A, thc cxpectatior~ vdut :  of the 

srndlest eigenvalue of the inertia tensor divided by the largest, as a fiirlrt,ion of t h e  

size of the system. Note that the shape factor i3 srnall and decreases as /I bccornc:a 

large. This indicates an anisotropic shape of the membrane in the t,herrnodynarnic 



limit. 

Figure 4.1: The shape factor, A r (X1/X3), as function of the inverse linear size of 
the tethered membranes, 

We first deterrriine the exponent v3 by fitting the eigenvalue X3 to  a functional 

form A3 = u L 2 ~  for L=7-25 using the least-squares fit. A log-log plot of A3 as a 

function of L,  along with the fitting curve, is presented in Fig. 4.2. The exponent v3 

is found to be 0.95f 0.05, with the error bar estimated using standard error analysis. 

Tile exponent 1 f 2  is similarly determined to be 0.95. The error bar for X2 is greater 

t.ha11 that of' X3, since, according to the relaxation study we performed, we have fewer 

independent samples for X2 than for Xg due to a longer relaxation time for X2. Even 

with such error bars, the exponents ~2 and v3 are unambiguously larger than the Flory 

prediction of 4/5. The statistics for XI are poorer than for the other two eigenvalues, 

because this quantity has the longest relaxation time. The 'thickness' exponent vl is 

clearly less t ha11 P3, but, its value is not known accurately. Early estimates [20, 21, 231 



Figure 4.2: Scaling behavior of the largest eigenvalue, A::, of the  irtt:rtiit tcnsor.. rl'I~c 
data points, represented by ' 'o?'~ have an error bar of f 10%. Thc  solid line is the 
fitting power-law curve which gives v3 = 0.95. 



iacludir~q ours yielded vl z 2 / 3  but Lipowsky and Girardet [39] have later suggested 

that, vl = 11'2. Af~raharn - 1401, - ming periodic boundary conditions in order to suppress 

the r-ff~cts of bou~ldarj- fluctuations, has obtained vl ==: 0.53. Joining the continuing 

debate, Gornpper and Kroil [dl) found vl * 0.70 on the basis of both Monte Carlo 

sirni~latians and scaling arguments. Schmidt et al. recently [42] performed small angle 

X-ray arid light-scattering experiments on closed red blood cell membrane skeletons 

and fcitlrrd that vl sz 0.65.' The question of the value of y is far from settled at this 

We also study the structure factor in order to determine the scaling exponents. 

In Figs. 11.3, 4.4, and 4.5 the structure factors ,??(kgj), j = 1,2,3, are  lotted as a 

furrction of the variable kL"1. The data collapse onto a single curve rather well in 

each of the three cases: judged by visual inspection, for a single choice of v l ,  vz, 

m r f  u3. The plots shown are for z q  = 0.70, v2 = 1.00, and L+ = 1.00, respectively. 

They ccmfirnl the scaling behavior of the eigenvalues of the inertia tensor and provide 

tis w i t h  scaling esj~onents consistent with those obtained from fitting the principal 

rno:nents by a power law. 

In summary. we conclude that a strongly self-avoiding tethered membrane is highly 

anisotropic, ever1 in the absence of an explicit bending rigidity. The widths of the 

two irrdependent in-plane directions are proportional to the linear size, L, of the 

rr-tembrarte, while the fluctuating thickness perpendicular to the plane scales as a 

p o w r  law oaf L with a power of roughlj- 0.70. The overall shape of the membrane is, 

h i * ~ ~ i - *  comidered fiat and rough. since A l  diverges as L 4 sc. A picture of a flat 

nrc-~nkrant generated in my si~nuiation is shown in Fig. 1.6. 

' i t  is t:st <!ear a: :!;is pain: d i a t  the effrcrs of the c'loseb geometry of the skdeictns are on this 
csponcnt, and dtethcr  a direct camparisan may be made. 



Figure 4.3: Structure factor Sf& j phtterf as a filrlction of  kl,'-'" for I,=1 I ,  13, 17, 
a - 
La. 



Figure .!.-I: Stntcturc factor S(&) plotted as a function of kL for L=9, 11, 13, 17, 
2.5. 



Figure 4.5: Structure factor S[kG3) plotted as a functiorr of k L  for I,=!), 11, 13, 17, 
25. 



Figure 4.6: A configuration of a flat membrane of size L = 25. The unshaded particles 
are on the perimeter of the membrane. Top: viewed from the short direction, &, of 
the principal axes; Bottom !eft: viewed from one of the two long directions; Bottom 
right: viewed from the other long direction. 



4.3 Weak selEavoidance and numerical RG study 

We have demonstrated that a strongly self-avoiding tethered menib~anc is always flat,. 

It seems that the effective bending rigidity generated by the excluded-volume cffect 

is sufficiently strong to make the membrane flat. This can he cj~alit~atively explai id 

[43] by the following simple argument. Consider the four particles of dia111etr.s cr 

connected by tethers of length 1 in Fig. 4.7. 

Figure 4.7: A four-particle tethered network with iL1 and iL2 as the normals of t.hc 
two triangles spanned by the particles. 

The average value of iil . ii2 is, assuming equal weight for all 0, 

sin Qo 
cos cPd@ = ---- , 

@o 

where Qo is the maximum angle dlowed by the constraints between iiI and iip, given 

For 0/1 = I/&, (GI - fi2) = 0.25. Imagine now that this four-partkle network is n 

phantom network with bending energy ~ ( 1 -  iil . fi2). A simple calculation shows that 

in order that (iil - ii2) for this phantom membrane match 0.25, t h e  temperature 7' 

must be we!! below the critical temperature T, at which the pharitom ;;;emFirant: un- 

dergoes a transition to the low-temperature flat phase (see page 36). it appears, there- 

fore, that self-avoidance produces an effective bending rigidity that is large erlough 



to keep a membrane flat. Simple as it is, the qualitative picture presented above 

provides us with some idea about excluded-volume effects in a membrane network, 

and is basically correct. It has also been shown numerically that the introduction 

of seif-avoidance among merely first- and second-nearest neighbors in an otherwise 

phantom membrane makes the membrane flat if the ratio of particle diameter to the 

tether length is sufficiently large [43]. 

The above argument also predicts a crumpled phase. If we follow the same match- 

ing scheme used above, we find that the transition happens when all is decreased 

below 0.39, or a below 0.68 for a fixed I = a. Intuitively this is reasonable, since, 

the smaller the diameter is, the :veaker the excluded-volume effects are. There may 

exist a non-zero size of particles at which the excluded-volume effects are sufficiently 

weak so that the tethered membrane becomes crumpled. It is worth pointing out 

that if such a crumpled phase does exist, the exponent governing this phase will be 

bounded by the physical limits (see Section 1.2.2). This phase will be different from 

that of a phantom membrane ( a  = 0) for any self-avoiding membrane. 

I have studied the thermodynamic behavior of weakly self-avoiding tethered mem- 

brane at infinite temperature by varying the size of the hard-core particles, namely 

a in (4A) and (4.2), in the range 0 < a < 1. The computational procedure is the 

same as for the strong-self-avoidance case, except that the time required to check for 

overlap of spheres increases dramatically as the diameter is decreased. We simulated 

membranes ranging in size from L = 5 to only L = 13, limited by the computing 

power that we had. For all sizes, we have at least 1500 configurations separated by 

one Rouse time and in some cases, many more. 

T'Z - - rlir &ape factor A for I-ariuus sizes of the model membrane is shown in Fig. 4.8 

as a function of the had-sphere diameter cr. We note that A increases as a fsncticn 

uE L for small a and decreases for large a, consistently with the picture which we have 

aIrcad_v formed: In the  thermodynamic limit? a phantom membrane is isotropic while 



a strongly self-avoiding one is highly anisotropic. If there exists a critical c t in i i~~ter .  

a,', one would expect that for sufficieotly large L the curves ,4(cr, L )  would ii~tcrscct~ 

close to a,'. The intersection points of the curves d r a w  through the data points i l l  

Fig. 4.8 thus provide a sequence of estimates of this critical diameter. Denotc t hc 

intersection point of the curves for L1 and LZ by ac(L1, L z ) .  The critical diauletcr 

in the thermodynamic limit is given by a,* = a,(L1 -+ m, I,:! -+ m). By exa t~ l i~~ i l~g  

Fig. 4.8 we find 0 , ( 5 , 7 )  % 0.36, ac(7,9) E 0.20, cr,(9,11) FY 0.18, a,($), 13) E 0.14, 

and a,(11,13) s 0.09. We conjecture that the rapid decrease of cr,(Ll, L 2 )  as LI and 

L2 become large means that any a > 0 is sufficient to make a tethered nienhranc 

flat in the thermodynamic limit. The ideal Gaussian fixed point (for a = 0 plia8ntom 

membrane) is unstable against any increase in diameter or, in other words, self- 

avoidance is relevant for tethered membranes in three dimensions, however weak i t  

may be. 

We next examine the shape factor from a different point of vicw. In Fig. 4.9 

we plot A for various a as a function of L. The large L limit is, of coursc:, the 

most interesting. For a 2 0.15, the shape factor decreases, presumably to zero, as I, 

becomes large. For a = 0.10, membranes larger than L = 1 1, as seen from t l ~ c  figt~w, 

begin to demonstrate this behavior. The shape factor for cr = 0.05 is indistingtlisha,l)lc 

from that of a phantom membrane, and for the largest model system which we wcrc 

able to simulate it shows no sign of decreasing. However, this is a very small diarricter 

compared with the strong self-avoidance case. This plot indicates t,hat self-avoiding 

tethered membranes are asymptotically flat at least for cr 2 0.1, consistcrtt with t h  

analysis presented above. 

For very small cr, it is difficult to determine whether a membrane is crimpled or 

flat due to the limited size of the membrane. In general, such cross-aver efTect,s can 

be studied by finite-size analysis and by renormalizati~n-group methods. These again 

require simulation of model systems of reasonably large sizes. 



Figure 4.8: The shape factor, A s (X1/X3), as a function of diameter o for various 
whes  of L. 



Figure 4.9: The shape factor, A =- (A1/&), as a function of ~ricrnhranc: sim I, litr 
various a. This figure suggests that for any finite a, self-avoiding mernhranes arc flat 
in the thermodynamic limit. 



I have at tempted a numerical renorrnalizat ion-group (RG) study of the present 

The basic idea of thc RG artalysis has been introduced In Chapter 2. Fig. 4.20 

displays the RG transformation used in this calculation. According to the scheme, a 

rnerrlbrane of size L1 may be mapped onto a membrane of size L2 by a 'decimation' 

transformation. Some possible sequences are: - .  . + L = 25 -+ L = 13 -+ L = 7 ;  

- - .  -t L - 17 + L = 9 -+ L = 5 4 L = 3. Physical quantities, such as the radius of 

the: gyration and the shape factor, should be invariant under the transformation. For 

where a is the average tether length. Recall that L is taken to be an integer and is 

dimensionless. 'l'he quantity a2 can be calculated from the original network as the 

average distance between nezrest shaded monomers in diagram (a) in Fig. 4.10 and 

02 is to be calculated. When this transformation is repeated, one obtains the flow of 

the ,dimensionless quantity a/u which measures the strength of the excluded-volume 

effects , 

We h a w  applied this method to various membranes. Since the results are generally 

consistent with the analysis presented above, we merely illustrate the procedure for a 

single set of prameters. For example, beginning with a membrane of size L1 = 17 and 

a, = 0.1 we found a,  = 1.101 and a 2  = 1.303 for this membrane. The newly formed 

rne~nbrane is of size L2 = 9 with a2 as the inter-monomer distance. We now rescale 

this xnembrane to match one of the mealxanes of size L2 which we have simulated 

for various a,  according to the following rescaling property 

Rg(L2r 02, a2) - & ( L a ?  0 , ~ )  - = dimensionless . 

Once a and a are found, we take 

'Reference: c.f. [44] for polymer chains. 
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grouping 
scheme 

rescaling / 

Figure 4.10: Renormalization-group transformation schcrnc. ?'hi: shaded partjclcs i t ]  

the membrane of size L1 are the anahg of block spins in a rertorrrla1iza.ticm transfor- 
mation for a spin system. 



For the RC; procedrtre performed on the membrane described above, we found 
a 0.12 ---- nl 0.10 - -0.11. Comparing with - =  -- - 0.09, u7e see that the RG flow 
(1 1.110 a1 1.101 
goes in the opposite direction of the ideal Gaussian fixed point ( a / a  = 0) indicating 

that for small diameter (as small as 0.10 at least) the membrane approaches the 

self-avoidance limit under the RG procedure. 

Because of the limited size of our systems, we could carry out the RG procedure 

only once or at most twice. The change in a / a  in the flow is small, so that the direction 

of the flow is not i~nambiguousiy determined. Nevertheless, the flow direction obtained 

from tllc radius of the gyration is the same as that obtained from the shape factor, and 

is corlsistent with the conclusions that we drew about the properties of the membranes 

with a > 0.10. The RG approach could be very useful if it were possible to simulate 

1 arger systems. 

As 1 have dernonstrated previously, excluded-volume effects generate effective 

bending rigidity on intermediate length scales, although no explicit bending rigid- 

ity is present in our model. A RG analysis should include the bending rigidity as 

a parameter as well. I have attempted to calculate the renormalization flow in the 

two-parameter ( K ,  a)-plane where K is the spring constant of a repulsive spring po- 

tential which we implemented between second-nearest-neighbor particles in place of 

the bending rigidity in Ref. 1191. Due to lack of extensive data, the results will not 

be reported in this thesis. 

4.4 Conclusions 

\Ire have studied the behavior of strongly self-avoiding tethered membranes as well as 

weakly self-avoiding membranes at infinite temperature. For the strongly self-avoiding 

mcmhranes, we find a flat bnt rough phase: fi - - L, and 6 - L0e70. 

There is no evidence for the existence of a crumpled phase. For the weakly self- 



avoiding membrane, we find that, when the diameter of t 11s rnono~ncru is c ! r m w w i d ,  

the membrane remains in t3he Rat phase in t hc thermodynai;~ir. limit. '1'11~ si tuat ioll is 

not unambiguously clear for the case of very snlall dia~ncter. Ilowc~vcr., wca snggrst, tha t ,  

for any finite a,  self-avoiding membranes are flat in a t l~r~c-di r~lc~~sior~:~I  cw~bedtli~rg 

space in the thermodynamic limit. 



Chapter 5 

Self-avoiding Membranes With 

5.1 Introduction 

We concluded at the end of Chapter 4 that a self-avdiding tethered membrane is flat 

when the only interaction between the particles is the hard-core potential. However, 

physical membranes or solid sheets cannot be described only in terms of connectivity 

and hard-core interactions. For instance, particles in a membrane in a poor sol- 

vent tend to attract each other due to effective van der Waals and screened Coulomb 

intcractions between solvent particles and membrane particles. These attractive inter- 

actions, at sufkiently low temperatures, may overcome the effective bending rigidity 

due to the hard cores and lead to a collapsed or crumpled phase. 

In Chapter 1 we introduced, io the light of mexi-field theory [13], the concept of 

the 6-temperature, at ;\-hi& the effective pair interaction between particles of a self- 

avoitling polymer vanishes. One can see easily that the Flory scheme for a polymer 

chain in a good solvent discussed in Chapter 1 will not work wit.hout modification 

below t f i c  li-point . In fact, since the pair interaction at the 8-point, higher- 

order interactions, such as the thxe-body interaction, come into play. While a three- 

bsdx interaction does not change the beha~ior of a chain at the 6-point (quasi-ideal) 



very much from that of an ideal chain, it gives rise to n morc cornpact st.rwturt* 

than the spatial structure of an ideal chain lvhen the tcmpera!t!rc is bc!otv !,he !I- 

point. The size of this collapsed structure is found f-15. 46, 471 to scalc with t . 1 1 ~  

number of particles of the chain with an esponent of 1 /3-- t hc close-packirtg c ~ p o ~ l v t l t ,  

for polymers. Depending on its properties and that of t h t  solvc~it, at a ctxt.airl 

temperature a single polymer may find itself in a swollen (but, c~ .ur~tp l t i t )  phasc~, i l t  

an ideal (crumpled) phase ; or in a collapsed phase [12]. 

A natural question for one to ask is how tet.hered n~embranes b e l m \ ~  at low txhnl -  

peratures when the effective interaction between membrane partic1t.s vat~islws or hc- 

comes attractive. The flat phase for tethered membranes in a good solvent,, whicli is 

non-existent for polymers, has been found both by theory and cxperimerlt [4211. 'l'hc 

behavior of tethered membranes in a poor solvent has been the subject of intercst of 

a few research groups 128, 29, 30, 31: 32: 481. 

For tethered membranes: there have been a few recent experi ~ncwts, which clis- 

covered a crumpled phase f30. 31, 32, 481 and a collapsed phase 1311, alt,llnug!~ t t w  

interpretation of these experiments has recently been qucstionc:d [-19). f+orri 1, tic tllc- 

ory side, Abraham and Kardar have studied tethered menhrancs wit tl att racti vc 

interactions 1281. T shall describe the results of some of these studies in t l ~ e  followi~~g, 

since they are closely related to my work which is to be reported i n  this chapter 

'RecentIy Schmidt et 01. reported light-scattering studies of the spectrin network of rcd hloocl 
cells. Although this network is in the shape of a vesicle, these authors c ~ n c l u d d  that, t h e  structuri: 
factor indicated a :flatbhhase rather than a crumpled one. 



Molecular Dynamics Simulation 

Abraham arid Kardax f283 studied self-avoiding tethered membranes with an attrac- 

tive potential, 

for nearest-neigh bor particles and a truncated Lennard-Jones potential for non-nearest- 

neighlmr particles, 

otherwise 

where r' = 2 (2 ' / 9  + 1 - r and I is taken to be 0.5. A plot of U ( r )  can be found in 

Fig. 5.1. 

The geometry of -Abraham and Iiardar's model membrane is identical t c  the one 

shown in Fig. 3.1, and these authors were able to simulate membranes as large as 

L = 75 by molecular dynamics simulations. 

At high temperatures the attractive potential is not important and the membrane 

is found to be flat, reaffirming the previous findings. As the temperature is decreased 

c he  at tractive potential begins to dominate and a collapsed phase is achieved at suf- 

iicirrttly lorn temperature. IYfiat is most interesting is the behavior of the membrane 

at intermediate temperatures. These authors found that a single-fold configuration 

is first formed ;ti a certain temperature (kBTC1 = 3 . 1 5 ~  for L = 75) with the crease 

neat f_v dividing the membrane in half. A t  a lower temperature (k.BTC2 = 2 . 7 5 ~  for 
-y t ' i = fa) the mentbrarre is folded one more time, to make four roughly equal parts 

folded together. At. still lower temperatures: more distinct foldings are hard to iden- 

tify but eventually a rolIapsed phase is clearly identified. They concluded that the 



collapsed and the Bat phases are separated by a folcied phase. 111 this ivosk only on(. 

size of membrane was studied, and it is unclear whet her or not the scqut:::.~ of ti;ldii;lti; 

transitions becomes a single crumpling or collapse transition in t l ~ c  i lterl~~ody~la~liic- 

limit. 

Light-Scat t wing Experiments 

There have been few experimental studies of tethered mernhrancs. One n~ajor 11 i f  fi- 

culty is the preparation of thin membrane samples which will equilil~rate i n  c\spcr- 

mentally feasible times. Recently: Nwa cl ul. [30] and lVcn et (11. 1311 s~~crccclcd i n  

synthesizing thin membranes of graphite oxide (GO) by exfoljating slwets of graphitc 

oxide. These solid thin membranes have a thickness of less than l00.h and posscss a 

six-fold symmetry to some extent. A large film has a linear size of a h w  microns a ~ t l  

the interatomic spacing is estimated to be roughly 2.5A. Thrse workers performd 

light-scattering experiments on the films in solution. In these ex pesi rner~ts, shcots of 

GO were suspended in aqueous solutions at different pH and the structrlre factor wiis 

obtained by light-scattering measurements. Remarkably, a crurriplccl pllasc was ob- 

served and the exponent v remained constant at roughly the Flory va111r ( u  = 415) for 

a considerable range of pH. A collzipsed phase with fractal dimension ljf = 'Llv = :) 

was also found by these workers when the sheets were srispended in a n  acctonc solu- 

tion, in which the effective intrasheet interaction was stronger. 

In the next two sections, I present our extensive Monte Carlo sjmdaticm study of 

a model in which the particles on the network interact through a prtf.t:rit,ial wliicll is 

hard-core repulsive and square-well attractive. Althorlgh sirnil ar to the rnodel s tudid  
1 -1 - in Ref. p8], this mock1 exnrmts different, he'navior at intermeciiate tt:mpi:ritturr~s ard 

seems to be cansistent with the experiments. 



The model which we use is identical to the one studied in Chapter 4 except that 

an additional attractive two-body interaction is introduced between particles on the 

tethered membrane network. The diameter of the particles is fixed at a = 1 in the 

sirr~ulation, so this is a strong-self-avoidance model. The two-body nearest-neighbor 

interaction potential is given by 

Non-nearest-neighbor particles interact through the attractive interaction potential, 

It is, therefore, energetically favorable for non-nearest-neighbor particles to come close 

to each other to take advantage of the attractive potential. The attractive potential 

creates the possibility of new phases for the membranes. Our binding potential be- 

tween nearest-neighbor particles, IJExfr). is essentially identical to the potential used 

in r he simulation in Ref. [25]. The interaction potential U ( r )  between non-nearest- 

neighbor particles is displayed in Fig. 5.1, along with the potential used in Ref. [28] 

for the  purpose of comparison. 

T- 1 
1 ne range of the attractive potential is chosen purely for computational eEciency: 

Kearest, nei;?.-hhors b on the nefw~rl; are coastraiaed by the tethers to he dways inside 

t he well and, therefor. cont"ribute only a constant to the internal energy. This constant 

car1 be ignored in the calculation of the energy difference generated by a trial step 

irt the hfonte Carlo simulation. The equilibrium stsate of the system is controlled by 



r l  Figure 5.1: Interaction potentials between non-nearest-slcighhor particles. 1 l i e  po- 
tential drawn in dashed lines is used in our simulations. The solid curve is IISCXI i r t  
Ref. [28] and has a minimum at r = 2*/'. The parameter e in both models is inkc:~, 
to be the same in this figure. 

the product of E and j3, where @ = (I;BT)-' and I' is the temperature. Mic: sftidl IISP 

- - 
p = ~ j 3  to denote this control parameter. At  /? = 0 this system is equivalent to t h c x  

strongly self-avoiding membrane studied in Chapter 4. 

lye used the standard Metropolis Monte Carlo procedurc to sirn~llatt: merrll)r.ar~r:~l 

ranging in size from L = '7 to 25 at all temperatures investigated. For a few tcrnjwr- 

atures, we have also simulated clusters of size L = 33 ( N  = 817). Wc haw; strartJcd 

simulations from flat, purposely generated crumpled, colkqmxl, and folifed initial con- 

figurations, and we found that the system eventually reaches the same equili briurr~ 

state. According to the relaxation studies which we performed on aii the sirn~~latims~ 
r ' L  we have in most cases 305 samples separated by a relaxation time. I hese calcula- 

tions were carried out on Silicon Graphics 240D workstations and curts~lrned ~c:veraf 



processor-years. 

5.3 Thermodynamic behavior and phase transi- 
t ions 

The Principal Moments 

We first study the properties of the principal moments, as they are good indicators 

of the membrane shape. Fig. 5.2 shows the eigenvalms X j  as function of p for a 

membrane of size L = 25. 

r;sure - =b 5.2: Eigen:-dues A,. ,A2, and ,A3 for L=25 displayed as function of the control 
parameter. 

Both ,I2 and X3 decrease sharply for j > 0.2 and saturate at a low-temperature 



value for 8 > 0.5. The behavior of these eigenvalues is the same for all idt l rs  of I, 

but the decrease becomes sharper and shifts to lower values of ,d as L is illcrcwcct. 

We determine the exponent 14 by fit,ting the eigenvalue Xg to the furictiorlal form 

A3 = aLZV3 for 7 5 L 5 33. The results of that fit are shown in Table 5.1. iYt- 

have also studied X3 by neglecting the smaller system sizes one by one in  the fitting 

process, and obtained a sequence of best-fit exponents. These exponeuts arc fou~lcl to 

scatter about the values quoted in Table 5.1 and show no systenmtic trcrld of eitllrr 

increase or decrease. The average value of X3 at p = 0.25 is plotted as a function of 

L in Fig. 5.3. 

S Q ) ~ a t a  for 7 5 L 5 25. 

(b)Obtained by fitting the radius of gyration. 

Table 5.1: The exponent v3 obtained from fitting X3 to the formula X3 = a I,2Kj for 
7 5 L 5 33. 

- 
It is clear that, in the range 0.2 < P < 0.25, this exponent crosses over from t h e  

flat-phase value of 1.0 to 2 value close to 0.80. Clearly, the exponent uz must, be less 

than sr equal to v3 and the corresponding analysis for Aft indicates that v2 = uc3 to 
-. - . 

within numerical uncertainty. 'lable 5.1 also shows that vr3 is essentialiy constant for 

0.2 5 5 < 0.3. This e::ponent reaches a value of 0.67 at 3 = 1.0 indicating that the 

membrane is in the collapsed phase at this low temperature. 



Figure 5.3: The arerage wlue of X3 at j = 0.25 as function of L. The data points 
are marked by '*.''. The fitting ifi?nct.ion has the form Xg = uLZY3 and is plotted as 
the solid line with v3 = 0.81. 



The behavior of the principal moments shown in Fig. 5.2 is similar to t h a t  S ~ Y Y I  h y  

Abraham and Icardar 1281. These authors observed a sharp decrease ia X a  Sollowcct 1,). 

a sharp drop in X3 at a lower temperature and interpreted this as succcssivc transit ions 

from a flat phase to a phase with a single fold followed by n transi ti011 t o  a p1l;isc wi ill 

a double fold. We have checked in our si~nulation the density of statos as a furlctiu~l 

of the principal moments and analyzed the sliapc of the rne~ubrar~c i r t  various rangcs 

of ,Ili X2, and X3. Although we have seen isolated configurations with folds prcwnt,, 

iT.ie do not believe that in our case the equilibrium statcs arc. charac.trc~rii.,cd by 1,111. 

number of folds. Instead we believe that for a range of tmlpcrat.ures (0.2 < ,G' < 0.5) 

the equilibrium state is isotropically crumpled with I/ x 0.80 f 0.05. Our datil i r ~  t I iv  

- 
range 0.3 < ,8 < 1.0 are not extensive enough to permit a reliablr. d(*t2crr~iirintiori of 

the exponent, u and, therefore, we do not know the extent of the c ru~np l (~ l  phase. 

The Shape Factors 

In addition to the shape factor A [ (3 .3 ) ] ,  one may study other quatlt,itics that, cl~ar- 

acterize the shape of a membrane. For example, (X2/A2-,) and (X3/A3") ciw I ~ S P ~  

where the subscript 0 indicates that the eigenvalues are calcidated whe~i t11cb Illi!Jll- 

brane is in its initial flat conformation and, thus, Xzo - - L. The q11~~111~itics 

(X,/X2,) and (X3/X30) are not essent~ially different from the prirlcil~al rnon~erlts (Az) 

and (A3) but are more informative: since they approach zero in the isotrc~pic phascs 

and become constant in the flat phase, rather than divergitlg as X2 arid do i 11 a.11 

phases, in the large-L limit. We plot (h2/X20) and (A3/&) as functiorl of P in Fig. 5.4 

for L = 1T,25, and 33. The transition from the flat phase to the crilrnple~l phase for 

both sets of curves becomes sharper as L increases. 

Further information about the high- and low-temperature phascs and the t r a r ~ i -  

tion point can be obtained by studying the behavior of the namai  vectors cjf e1crnc.n- 



Figure 5.4: A20 ZE (X2/X20) (open symbols) and AS0 f (A3/&))  (full symbols) as 
function of ,B. 

tar.. triar~gles formed by nearest, neighbors on the network. In Fig. 5.5 we display 

the quantities ( b c )  [(3.8)] and (P:) [(3.9)] as function of ,8 for a membrane of size 

L = 25. For all temperatures, ( M z )  and (ALL:) are zero to within numerical acm- 

racy whereas (M:) drops sharply to zero in the same temperature range in which the 

exponent E+ crosses over to the value 0.80. The behavior of (P:) is consistent with 
* . 

that of (M?\ in that the quantltles I P?\ reach their klimit in the same temperature 
3 f \- J / - "- ---d- 3 --- --- 

range in which t.he ( M ? )  drop to zero, as expected for isotropic phases. The behavior 
% - /  

of (e) produced no evidence of a folding transition. 

It; is also interesting to study (ii(0) - ii(x)) where ii(0) is the average normal of 



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p" 

F i w u r e  - -b 5.5: /M:\ m d  (P\ z s  function of p for a memhralic of size L = 25. 
\ =  J /  3 / 



the innermost ring composed of elementary triangles at the center of the membrane, 

and n(x) is the average normal of the ring indexed by the distance x from the center. 

The quantity (ii(0) ii(x)) is essentially the normal-normal correlation. For the flat 

phase, (ii(0) - ii(xj) decreases slowly from the center to the perimeter and remains 

finite for all rings, while fi r B 2 0.2 it drops quickly to approach zero beyond roughly 

3--5rri1lgs towards the edge of the membrane. 

The Structure Factor 

In Figs. 5.6, 5.7, and 5.8 we show the structure factors S(k61j, S(k&) and S(k&) as 

function of the variable kL0-80 at p = 025 for the larger membranes that we have 

simidatcd. The excellent collapse of the data to a single curve in each of the three 

cases indicates that the membranes are isotropic and that Y FZ 0.80, consistently with 

the  scaIing beha<vior of the principal moments. An equally good collapse of the data 
- * 

is found for p = 0.2 and ,8 = 0.3 with the same exponent, v = 0.80. 

Wr the low temperature, p = 1.0, we plot S ( E j ) ,  j = l ,  2, 3, as functions of the 

scaled variable kL0.67 in Figs. 5.9, 5.10, and 5.11. The data collapse to single curves 

rerx~arkably well even for rather snlall membranes, indicating that this temperature 

lies well below the transition t.o the collapsed phase. 

Other Thermodynamic Quantities 

In our si~rlulations we have also obtained other thermodynamic functions, such as the 

irttcr~tal energy and specific heat. We have calculatd the internal energy ( E )  for each 

rtlcrttl>rarrr size at  all the temperatures investigated ajid have performed extrapolation 

r 0 obtain (E j  in the t hermodynamic limit. The behavior of ( E )  is essentially the same 

as ( E ) f - , 5  ,- and. since we have more data for L = 25 at  low temperatures, we show 

(E)L=.25 in Fig. 5.12. 



Figure 5.6: Structure factor S'(li&) plotted as functitjn of kL'-'8" for- L= 13, 17, 25, 
33 at = 0.25. 



Figure 9.7: Structure factor .5'(b02) plotted as function of kLO-*' for I, = 25, 33 i1.1. - ,=,- U . L 3 .  



Figure 5.8: Structure factor S(kP3) plott.ed as function of kL0-80 for L = 17, 25, 33 - , - 
at $ = 0.25. 



Figure 5.9: Structure factor S(k&) plotted as function of LLO-" for /, = 13 ,  I 7,25 i ~ t .  - 
p = !.OO. 



r e  0 Structure factor S ( E 2 )  plotted as function of k ~ ~ . ~ ~  for L = 13,17,25 
at 9 = 1.00. 



Figure 5.11: Structure factor S(ki3)  plotted as function of kLO." for I, = 13, 17,25 
at  B = 1.00. 



Figure 5.12: Energy ( E )  as function of ,8 for a membrane of size L = 25. 

The specific heat, C ,  is given by (3.10). In contrast to the situation of a phantom 

ri~cmhrane with curvature energy [19j, where the transition from the flat phase to 

the crumpled phase is characterized by a strong peak in the specific heat, we find no 

indication whatsoever of a singularity in either the internal energy or the specific heat. 

This is sirnilax to the behavior for the specific heat obser~ied fsr po!y,~,er chains with 

a t  tractive interactions in Monte Carlo simulations [50]: The specific-heat peak for a 

polymer chain of length, N ,  occurs at temperatures distinctly below the 0-point for the 

chain lengths simulated, and C is monotonously decreasing at temperatures near 0. 



The position of the peak; B , ( S ) ,  approacl-ies the O-point accorifi~~g to f fi- O,.) ilr .Y-I)'. 

I belie%-e that this is also the case for tetl~ered rnernbrants. T h t ~  r-\~etnbra~-tc~ sizw whic-11 

we have been able to simulate are small and the peak of the spt'cif" l l t - ~ t ~  is far ; l \V i ty  

- 
from the transition point. x 0-2? such that no peak was obserwci i n  tlw l~ tup iv*af  1 1 s ~  

range in which sirnulatiom were carried out. 

We have also visually examined a large number of configurations, so as to t l c w l t r p  

some intuition about the behavior of this system. In Fig. 5.13 we display a t,ypicaI 

configuration for a ~llembrane at temperature ,d = 0.25. The quit11 ti ta t ivc rc.st:l t,s 

which we have obtained are calculated by averaging over a large nrtrnbcr of smilpl(. 

configurations like this. 

5.4 Discussion and summary 

Lately, Baumgartner and W. Renz j51: 521 studied a nloclcl rnenihranc corrlposctl of 

impenetrable flexible playuettes. They claimed that the intrinsic Ixwrli rlg' rigidity is 

absent since the hard cores have a zero size in their model, and tticir Wio~lt~c: (I;~rlo 

studies revealed a crumpled phase, characterized by the scaling exponent I /  = 0.Q. 

It seems to us that the effective bending rigidity is present, due to t l~c  gcorrdrical 

constraints and impenetrability of the surface explicitly imyJernclltetJ in the ~ r ~ c ~ r l v l .  

Therefore, their conjecture 1.51, 521 that this model belongs to a cliffercnt, un ivcrs i~ l i t~y  

class than that of a strongly self-avoiding membrane is urlclear artrJ puzdir~g.  111 any  

case, the mechanisms which lead to a crumpled phase for this rr~odel ancl for orlrs arc 

different. 

The nature, of the phases of equilibrium tethered memttranes is determined l y  tire 

free energy. For membranes with attractive interaction, it, i s  energctidly favor.al,lc to 

have folded and accordion-like conformations, whereas at the same ti me thc incrcasr: 

in free energy due to creation of edges 125, 411, the loss of miropy at thc wJges and 



- 
Figure 5.13: A co~figuration of a rne.=brane of size L = 25 at /? = 0.25, viewed 

m from tire three directions of the principal axes. lfie unshaded particks are on the 
perimeter of the membrane. 



the repulsive entropic interactions between ~llerltbranes [S],  or parts of n rwrubri~rlc., 

tends to keep a certain distance between parts of the melnbrant~. C'ort~tywntl~., ttw 

particles can not fully take advantage of t.he attractive potential. J t  is this c..onlps*t,iI ion 

that creates the crumpled phase in our model. 

Although the model f have studied is similar to that  used in Hcf. [2GJ, tlw ; ) t i i ~ ~ < '  

diagram seems to be different. The authors of Ref. [28] carried out molecu1a.r dyr1an1ic.s 

calculations for a different model and concluded that the collapsed and flat pft ascs ;I sil 

separated by one or more folded phases. However, they conjeetitred that a. ;lifrPr:*1l 1, 

sequence of transitions namely flat ~crumplecl-tcolIapsetl might also esis t iiltd, as 

stated above, we believe that this is the sequence in our model, A direct coniparisoll 

of our results to those of Ref. [28] is difficult, as the scaling behavior of t,hc princ'ipal 

moments and structure factor in the folded phase were not reported. I t  is, of c.o~~rsr*, 

conceivable that in a folded phase the radius of gyration, the principal rriorr~onts a ~ ~ t l  

the structure factor are all characterized by an exponent v 0.8. If  this wcrc thc. 

case, a distinction between crumpled and folded phases would become cxpcritntwtally 

difficult and theoretically moot. 

In summary, we have observed a transition from the flat phasc o f  self-avoidi~~g 

tethered membranes to an isotropically crumpled phase as function of tc~~lycrat,tlw. 

We have also found that at still lower temperatures the equilibrium statc is cr~llaprixl 

rather than crumpled. Our results are consistent with recent light-scattering expr:ri- 

rnents on suspended graphite-oxide sheets, in which a crurnplcd phase was observcd 

over a range of the control paxameter and a collapsed phase was also found [30, 311. 
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