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Abstract 

This thesis investigates three models that are particular examples of tethered networks. 

Start.ing from the viewpaint that a random walk is a collection of linearly connected ver- 

tices (i~~ternal dimension D = I), the tethered network model is introduced as a natural 

gcncralization of the random walk to allow vertices to have a higher degree of internal 

conr~ectivity (D > 1). 

The first model studied is a closed two dimensional random walk with a pressure dif- 

ference p between the inside and outside. Since all terms in the Hamiltonian are quadratic 

in the position-vector field r7 the partition functjon and its derivatives can be evaluated 

exactly. The most notable feature of this model is an Instability, which occurs at  Ipl = p,. 

For /pI < pc, the system has a finite algebraic area and an anisotropic shape; for Ipl >_ p,, 

the algebraic area diverges and the shape is circular. The asphericity is also calculated. A 

form of bending rigidit.y, also quadratic in r, is introduced into the model; however, the 

resillting macroscopic properties are quite different from those one would ordinarily expect. 

This difference can be traced to the absence of a fixed monomer size in the model. 

Studies of the other two models are generally focused on trying to determine how the 

size of a network embedded in d dimensions scales with the network's masimum linear size 

L. Three possibilities are described: (1) flat, for which the scaling in two directions is linear 

in L, and the scaling in the other d - 2 directions is with some smaller power of L ; (2) 

rough, which is similar to flat except that the scaling in the two large directions is not linear 

iii 



in L; (3) crumpled, for which scaling is uniform in all d directions. 

The second model studied is a self-a~oiding tethered network wi th  t in  iritcrnal ronnco- 

tivity of a two-dimensional hexagonal lattice, known as a self-avoiding t ct, t1rwc1 rucvn branc.. 

Monte Carlo simulations of these membranes embedded i n  (1 = -1,5 are cltw-sibctl. Rc~s\~ll: :  

for the d = 4 simulations suggest that the network is rough. Rcsults of the cl = 5 sirnd;\- 

tions are somewhat ambiguous, and are consistent with interpretation cit,her .IS n roilfilt or 

crumpled phase. 

The third study consists of Monte Carlo simulatio~~s of tethered nctworks posscssi~tg 1 1 1 ~  

connectivity of a b = 2 Sierpifiski gasket (D  z 1.365), both with and witllont self' avoid;~wc 

in a range of embedding dimensions 3 < d < 14. The sirriulation rcs~rlts intlicatc tlii~t (, = 2 

Sierpihski gaskets are crumpled. Measurements of the network size sca l i~~g  cslm~c!nls a ~ t l  

the upper critical dimension (above which self avoidance is irrelevant) i m  in good ;~.grcc.r~w~rL 

with theoretical predictions. 
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Chapter 1 - 

1.1 The random walk paradigm 

Within science there occasionally arises a paradigm whose applical~ility spans a11 especially 

wide range of disciplines. One such paradigm is the random walk (RW). 

A simple definition of a RW is a set of d-dimensional vectors, r(s) that arc raa~dorn 

functions of a discrete arc-length s = nl, where n ie a natural number. The vectors share 

common origin and respect a connectivity constraint, 

where C is a constant called the monomer size. The nature of the rartclom distribution 

is determined by the particular model. In this thesis, it is convenient to gc~lcralizc this 

definition somewhat and define a RW as an embedding of a discrete one-dirnensionaJ sl)ace 

S (s E S) in a d-dimensional space lRd (r E ELd), with the following two restrictions on ihc 

embedding: 1) it must be random; and 2) it must be order-preserving, i.  e., adjacent points 

in S must map to  nearby points in &. The RW described by Eq. (1.1) will subsequerrtly 

be referred to as a rigid-rod RW in order to distinguish it from the general 1I.W. 

heuristic ally^ the restriction to order-preserving mappings provides the 1LW with its 
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- linear character. Without it, the system would simply be a gas of moncmers. Eq. (1.1) is 

an example of a mechanism that ensures an order-preserving mapping, but it is not the only 

one, In fact, we will have occasions in Sec. 1.3 and Chap. 2 modify Eq. (1.1) to 

(r(s + l )  - r(s)l 5 1. (1.2) 

This cor~dition is sometimes referred to as a tethering constraint and the resulting model will 

be referred to as a tethered RW. From a physicist's viewpoint, tethered RW's do not differ 

from rigid-rod RIVs in a significant way. The reason is that physicists are usually interested 

in the continuum Emit of these models, and it turns out that they are all equivalent. 

RW's have proved to be useful in such diverse fields as probability theory, ecology, 

molecular biology, polymer chemistry, and several branches of physics, including quantum 

field theory, statistical mechanics and biophysics. One of the great strengths of the random 

walk idea is that it has given rise to an entire class of models (hence the term paradigm) 

that have often had great success in describing scientific phenomena. This is especially true 

in physics, where the models of interest include: the ordinary random walk, which has been 

used to describe diffusion processes, spin glasses, and the space-time trajectories of quantum 

fields; and the self-avoiding walk (SAW)', which has been used to describe polymers and 

the propagation of fermions [3].2 

Although much of the interest in RW's is due to their usefulness in modelling real 

systems, it is important to  realize that the RW paradigm has developed a life of its own. 

Many RW models are studied beca,use they are regarded as being intrinsically interesting, 

although these more theoretical studies sometimes turn out to  have important applications 

for real systems. The best-known example is the study of the SAW embedded in four 

dinm~sionat space, which has proved crucial to  calculating the scaling exponents of a SAW 

in two or three dimensions [8]. 

'Crudely speaking, a SAW is a RW that does not intersect itself. The notion of self-avoidance will be 
made more precise in Chap. 2. 

'This list is far from complete. For a survey of types of RW's and their uses, see Refs. [4, 5, 6, 71. 



CHAPTER 1. INTRODUCTION 

1.2 The random surface paradigm 

In the last fifteen years there has emerged witliin physics a na.t,ural gcncralizatioir of t h  TW 

paradigm, which is thought by some [9, 101 to  have the same potential range of applicability 

and importance as the RW. This new paradigm is the random surface (RS).3 To da,t,r) t,lw 

RS idea has found applicability in biophysics [Ill, the study of interhccs and cryst,al growth 

[12], polymerized membranes [ l l ,  131, and quantum field theory, wlwe it has bcc!n ~ ~ s c d  

in the context of relativistic string theory and the confining phase of nou-Abcli;t,l~ gauge 

theories such as quantum chromodynamics 1141". 

Because the RS paradigm is a generalization of the RW paradigm, niuch of 1tS st,utly 

is closely related to RW study. For example, the techniqiles of analysis and thc clwicc of 

physical observables used to  characterize RS's are identical to thosc for R,W's. Also, just i1.8 

with RW models, it is useful to study particular examples of RS models that do [lot have 

obvious experimental implications but serve, rather, to elucidate the general structure of 

the theory [12]. This last point is even more important for RS's than it is for RW's, sir~cc 

the theoretical. tools for analyzing RS's are not as well developed as they arc for R,W76. 

Consequently, researchers must oftentimes content themselves with stu dyi rlg tx~odcls wl~osc 

main distinction is tractability rather than applicability to real systems. This is also lruo for 

RS simulations, which are often more difficult to code and always require more cotr~p~~ting 

time than comparable RW simulations. 

While there are many similarities between the I1W and RS garatligms, them arc, of 

course, differences. The most important one is that the two-dimendom1 in tcrnal space of 

a RS model has a non-trivial structure of its own, and this can have a qualitative effect OIL 

the RS behavior. Thus, unlike RW's, where the order-preserving restriction on thc mapping 

3~ random surface is defined in much the same way as a RW, the difference being that S -. s2 do that a 
is now a two-dimensional vector s. The requirement that the mapping be order-preserving is the same for 
the RW, but its implementation for an RS is generally more complicated. See Sec, 1.3 bclow and Sec. 2,1 in 
Chap. 2. 

4 For an overview of the RS idea from a condensed-matter viewpoint see ftefs. [13, 151. For the qtianturn- 
field-theory view see Ref. [9]. 



feads to a unique continuum limit, there is a need to classify RS's on the basis of their S2 

structure. 

1.3 A survey of random surfaces 

Physical membranes are made up of molecules, bound together into a D = 2 structure by the 

combined effects of intermolecular and membrane-solvent forces. These effects determine 

the type of internal structure of the membrane, just as they do for flat surfaces. Before 

taking up the problem of classifying RS internal-space structure, it is helpful to  review the 

three broad classes of flat surfaces: 

fluid: In a D = 2 fluid, each molecule has on the average six nearest neighbors; however, 

sites of five-fold and seven-fold coordination, etc., can and do occur. Such cites are 

called disclinations, and, in the fluid phase, they occur in a random manner. This 

random distribution of disclinations destroys all translational and orientational order 

in the fluid phase and the individual monomers (molecules) flow freely. Thus, the 

identity of the "intrinsic" nearest neighbors (monomers adjacent to a given monomer 

in S2) varies in time and from place to place along the surface. The free flow of 

monomers &O means that fluid surfaces have zero local in-plane shear modulus. 

When a D = 2 fluid is cooled, the effect of the intermolecular forces becomes larger, 

the energy cost of these free disclinations becomes unsupportable, and the system 

undergoes a transition to one of the two more-ordered phases with one or more non- 

zero shear moduli. 

hexatic: In the so-called hesatic phase, the disclinations bind into, for example, 5-7 pairs, 

which are equivalent to dislocations. These dislocations have an energy that scales 

logarithmically with the system size. Their entropy also scales logarithmically with 

the system size, so their creation becomes favorable above some finite temperature 
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TM7 called the melting temperature. The disappearance of free disclinations leads to 

quasi-long-range (i. e., power-law) orientational order that gives rise to an ~ r i ~ n t a t i m d  

rigidity. On the other hand, the presence of free dislocations destroys traarslatiold 

order, so there is no conventional s h e a  rigidity. 

crystalline: The binding of dislocations into nearby plus-minus pairs (i. c., closcly couplcd 

5-7-5-7 complexes) induces long-range orientational order and a trnnsla,tianall order 

that is quasi-long-ranged because of the low intrinsic dinlensionality (I_) = 2). This 

phase is the D = 2 crystalline phase and it has both orientational and tra~dtitionrd 

rigidity. 

We now describe how this classification scheme is modified for rmdom surf;wx Fluitl 

and hexatic RS's have the same characteristics as their flat surface counterparts, b n l  crys.. 

talline RS's do not [16]. The presence of a dislocation in a crystalline RS will causc! tlrc 

RS to  buckle out of plane. This buckling process reduces the internal strcsscs in thc ItS to 

such a degree that the energy cost of a dislocation is now independent of the syststn size. 

On the other hand, the dislocation entropy still diverges 1ogarithmica.lly with system sizc!. 

Thus, any sufficientiy large crystalline RS will contain free dislocations, wl~icli will clcstroy 

the D = 2 crystalline quasi-long-range order, and leave the system in the kiexatic pltase. 

Strictly speaking, then, crystalline RS7s do not exist. 

The foregoing argument is certainly relevant when discussing, for cxaniplc, lipid bilayers 

below TM7 where the lipid molecules are held together by weak van der Waals forces and 

the formation of dislocations requires very little energy. In contrast, graphite: oxide shcets 

studied in recent experiments [17, 181 are sufficiently small ( N  lpn:)  and the ::ovalent bonds 

sufficiently strong that it is unlikely that any dislocations are formed. Since this systcm 

lacks both free disclinations and free dislocations, it is reasonable that Inarty of its propcrtics 

can be modelled by a random surface with a uniform fixed connectivity. The conrwctivity 

constraint may be modelled by Eqs. (1.1) or (1.2). In more physical terms, we can think 



of fixed-connectivity RS7s as having a strong attractive potential between intrinsic nearest 

neighbors. The monomers are allowed to move relative to one another a short distance in 

the embedding space, but the "bonds" between them cannot be broken. This generates a 

non-zero shear modulus. 

The RS versions of constraint Eqs. (1.1) and (1.2) give rise to  what are known as 

"~rystalline"~ and tethered RS7s, respectively. Although these have some obvious differ- 

ences, the common features of finite shear modulus and fixed intrinsic nearest neighbors 

found in both models are thought to be sufficient to ensure that they belong to the same 

universality class [19]. "Crystalline" RS's are better models of real systems (e. g. graphite 

oxide), but tethered RS's are easier to work with for various technical reasons (to be dis- 

cussed throughout the thesis). In this thesis, all of the fixed-connectivity RS's will be of the 

tethered type. 

As is usually the case, the nomenclature in the literature is not as consistent as one 

might like. The term RS is used almost exclusively in QCD and string theory discussions. 

In the condensed matter literature, the term RS is replaced by the word membrane; hence, 

tethered membrane (TM), fluid membrane, etc. The condensed-matter terminology will be 

used for the remainder of this thesis. 

1.4 Overview of the thesis 

The similarities between tethered RW's and TM's nakurally lead to a unified description 

of the two, known as the tethered network (TN) [19].~ A TN is a random mapping of sD 
(D = 1 f;m a tethered RC?I; 17 = 2 for a TM) in m.d that respects an appropriately generalized 

version of Eq. (1.2). The T N  idea can be further generalized by allowing D to take on any 

'The term "crystallinen does not have the same meaning here as it does on page 5. It is used here only 
in the sense that the spacing between monomers is fixed. It does not imply that the monomers are allowed 
to diffuse through the lattice or that the monomers create lattice vibrations as they would in a real crystal. 

60f course, a similar unified description could be made for rigid-rod RW's and crystalline membranes, 
but we will not need it here. 



real value. This ma.y not seem like a physically interesting gcrteralizatiou, h t .  it. has bccrl 

useful in the analysis of continuum T N  models 1201 and will be of great importnncc in 

this thesis. Chapter 2 contains a detailed description of the geometry, structure, statistical 

mechanics, and relevant physical observables of TN7s. Models obtai t~ed from tlw roll tinu UIII  

limit of a T N  are also discussed in Chap. 2. 

Each of Chaps. 3, 4, and 5 describes calculations and simulations done lor a particular 

example of a TN. These are: 

1. 2d closed pressurized RW. For some time now there has been consiclerablo effort in- 

vested in trying to  understand the shape conformations and fhctmtions of closer1 

pressurized fluid membranes, in general, and of human red blood cells i l l  partic~rla~r 

[21, 223. This has turned out to  be a formida.ble problem in terms of both atiillysis 

and simulation. These difficultjes have inspired some [2, 23, 24, 2.5, 26, 27, 28, 291 to 

investigate a reduced-dimension model consisting of a closed pressurjzed f111id chait~ 

embedded in d = 2. This model possesses two irnportaxlt sirnplificst,ions ovclr the f j  uitl 

membrane model. The first is that a fluid chain is itle~ztical to a tetllered 1t.W (for 

equilibrium properties) [2], so the difficult problems irr ol~tairhig thcrmal averages for 

fluid membranes disappear. The other simplification is that entbectding thc tett~r!red 

RW in d = 2 greatly simplifies the geometrical analysis ~leedetl. 111 Chap. 3 1 arialyxct 

the relationships among a set of contjnuum models of closed prosstlrizcd ftW7s, ar~d f 

calculate some shape ratios (see Sec. 2.2.4 of Chap. 2 for an cxplanatio~r of this ter~rr) 

for a particularly simple (Gaussian) model. The details of the shape calc~~latjor~s arc 

relegated to  the Appendix. 

2. Self-avoiding tethered membrane. The study of self-avoiding TMYs (SATM) ha5  been 



filled with controversy [11, 301, mostly regarding the existence of a phase transi- 

tion from a low-temperature "flatn phase, in which a SATM occupies only a two- 

dimensional slice of R< to a high-temperature "crumpled7' phase, in which its em- 

bedding in R* is more uniform (These terms will be made precise in Chap. 2). Most 

of this controversy has centered on the existence of a crumpled phase in d = 3. The 

first sirnufations [3f, 321 indicated that such a phase did exist, but later work [33, 341 

came to the opposite conclusion. Chapter 4 describes Monte Carlo (MC) simulations 

done on SATM's embedded in d = 4 and d = 5 that look for a crumpled phase. 

The increased size of the phase space should make the crumpled phase easier to  dis- 

cover, if it exists. No crumpled phase is found, but indications of a possible third 

"rough" phase that is intermediate to the other two phases are discovered. There is 

also discussion of controversies regarding recent experiments [17, 181, the existence of 

the rough phase [I], and the appropriateness of using the SATM model to describe 

experirnen tally realizable systems 1351. 

Self-avoiding Sierpihski gasket. The controversy and lack of understanding of SATM's 

is in  stark contrast to the great depth of knowledge we have about SAW'S. It is 

desirable, then, to understand how the change from D = 1 to D = 2 leads to so 

many problems. One possible way to  explore this issue is to study self-avoiding TN's 

(SATN) for which 1 < D < 2. The generalization of D to real values is more than a 

theoretical nicety- Surprisingly, SATN's with non-int,eger D can be realized (at least 

on a computer) in the form of a self-avoiding Sierpil'ski gasket (SASG). Chapter 5 

describes MC simuiations of S,4SG7s embedded in Etd  with 3 _< d < 14 and compares 

the results for the scaling behavior of the radius of gyration with those obtained from 

n~ean-field and field-theory cakulations. All three methods are found to  be reasonably 

consistent. Shape parameters are also determined from the MC data. 

Figure 1.1 illustrates the connectivity of the three models that will be investigated in 
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Figure 1.1: The T N  models studied in this thesis. The lines represent the tethers arid the 
open circles represent d-dimensional hard spheres which are used to enforce a self-avoid ar~ cc 
constraint (see Chap. 2). (a) A closed RW without self-avoidance. The ar~alyfiis i n  Chap. 3 
deals mainly with the continuum limit of this model. (b) A self-avoiding tethered ntembrarlr:. 
(c) A self-avoiding Sierpiiiski gasket. 



these chapters. 

The last chapter, Chap. 6, summarizes the conclusions obtained from this thesis. 

If the reader has become alarmed at the proliferation of abbreviations in this chapter, 

s/he may find some comfort on page xvi, which contains a list of abbreviations used in this 

thesis . 



Chapter 2 

The Tethered Network Model 

2.1 Structure of tethered networks 

2.1.1 Geometry 

A nice feature of TN's is that they can be clescribcd in purely geornctricil terms: A T N  

consists of a collection of N vertices (monomers), each connected to some set of "intrir1- 

sic nearest neighbors" by "tethers" (strings j of length 1, usvally in a regular Jnam ner. The 

tethers are a geometrical means of enforcing the constraint Eq. (1.2) (or its appropriate gm- 

eralization). In the absence of other constraints and energetic considerations, each vertcx is 

free t o  move anywhere in the embedding space provided that none of its tethers is strctcl~cd 

beyond its maximum length. The precise nature of the connections deterrniries the topology 

of the network; the measure of this topology is the network's intrinsic or topological dimen- 

sion D. For example, the tethered RW (D = 1) consists of vertices corinected in a lit~ear 

way; for a TM (D = 21, the tethers of one vertex are connected to all its intrirrsic ncarest 

neighbors so as to form a homogeneous two-dimensional lattice. The generalization to larger 

integer values of D is straightforward.' The resulting network has a characteristic 1ixlt:ar. 

size L N N ~ / ~  (measured in units of l ) .  The vertices can be labelled either by a discrctr! 

'This concept will be extended to include any real-valued D in section 2.4.2. 
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Figure 2.1: Two versions of the D = 2 TN model: (a) The PTN. The lines represent the 
tethers, which cannot be stretched beyond some maximum distance, l .  (b) The SATN. The 
open circles represent hard d-dimensional spheres. In addition to the tethering constraint, 
the hard spheres are not allowed to overlap. 

index a (I < a 5 N), or by a D-dimensional lattice vector s = (s ly . .  . ,so), 0 5 s; < Lo 

(Lo r LC). 

The network is then embedded in a d-dimensional Euclidean space lEtd. Operationally, 

this means that every vertex is assigned a d-dimensional vector r(s) or that respects 

the constraints of the particular TN model. 

As illustrated in Fig. 2.1, there are two broad classifications of TN models: 

phantom TN (PTN): For a PTN, all vertices are free to move through the embedding 

space subject only to the constraint that connected intrinsic nearest-neighbor vertices 

be within a distance C of each other, i. e., 

p a )  - P')I - < C; 

a and p label connected nearest neighbors. 

self-avoiding TN (SATN): The embedding of a TN in lEtd defines a D-dimensional vol- 

ume, which is determined by triangulating the nearest-neighbor vertices. Embeddings 
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Figure 2.2: How ro is determined for a triangularly connected T N .  Thc thrcc opcn circlcs 
each have a radius ro and are tethered to one another. The shaded circle, also of radius 
TO,  is not tethered to the others. Simple geometry shows that the circles just touch when 
ro = l / 2 &  Note that ro is a function of l .  

of SATN's in IEtd that result in self-intersection of this volume arc not allowetl. 'L'his 

constraint can be enforced by regarding every vertex as a hard d-dimensiortal spticre 

of radius ro, and requiring 

Ida) - #)I 2 2r0; (2.2) 

a and /3 label any two vertices. The size of ro is chosen sufficiently large so that a 

sphere cannot pass through the open spaces in the TN, evcri whcn the tcthcrs are 

fully stretched. Figure 2.2 illustrates this idea. Note that this constraint is iton-local 

in the sense that vertices separated by a large distance in the internal spacc will br! 

restricted by it. 

SATN's are usually far more realistic models of polymerized networks than Prl.'N's, h u t  

the non-local nature of the self-avoidance condition makes them much more difficult to 

study. 
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2.1.2 Energetics 

Although, highly non-trivial, the TN model described a.bove is not yet very realistic. A more 

realistic model would include a Hamiltonian, HY), accounting for the "deformation energy" 

of the TN, c .  g., the energy cost of bending or stretching it [36]. While it is certainly desirable 

to include these effects, they are mostly ignored in this thesis. The reason is that the study 

of 3 > 1 models containing only constraint terms has proved to be sufficiently complicated 

and controversial, so that there seems little advantage to studying more complicated models 

now. Energetics are included in the D = I model studied in Chap. 3, where the Hamiltonian 

contains a (pressure)x(area) energy term and a bending-energy term. 

For simulation purposes, Eqs. (2.1) and (2.2) are the most convenient ways of expressing 

the tethering and SA constraints, respectively, but they are not very useful for analytic 

work. Instead, the constraints are better expressed as terms in a Hamiltonian. The first 

task is to characterize mathematically the effects of the tethers. A potential that reproduces 

the effects of the constraint Eq. (2.1) exactly is2 

where 

( CXI otherwise 

and the notation C(s,st) indicates a sum over all pairs of tethered vertices. This is still not 

a very convenient analytical form. We therefore look for another, more computationally 

useful, potential that contains the same essential physics. 

The standard approach 1191 is to  drop the "hard" constraint Eq. (2.3) and to  model each 

tether as a rigid-rod RW of steps, each of length 7. The probability distribution for the 

'In anticipation of our ultimate interest in using statistical mechanics to study TN's, the definitions for 
Hamiltonian terms will include a factor of P = l /kBT.  
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end-to-end distance, z, of a rigid-rod RW is [4] 

P,(s) N exp (if;:) - 

provided tbat n is large enough. In the language of statistical ~ n e c h a ~ k s ,  dsa/nr)a  is an 

effective potential for the model. If the end-to-end distance for the rigid-rod 1 W  i s  now 

identified with the distance between a pair of tethered vertices md t .I fi/&, then [,he 

effective potential becomes 

The end result of this procedure is to replace the tethers with springs of zero cquilibri~m 

length. Because P, represents a Gaussian distribution, the model defined by II~"'  is oflcn 

referred to as the Gaussian model. 

H,(L) and HF) define different models, not different representations of the s;mc inodcl, 

but the differences between them are not as large as one might think. Monte Citrlo sima- 

lations 137, 381 and numerical Migdal-Kadanoff renormalization group studies [32] intlicste 

that HiL)  and HiL)  belong to the same "universality class" under most circumstances.:', 

i. e., they have the same generic long-distance behavior. It turns out for technical reasorls 

( L )  that H?) is much more convenient to work with than H, . 
The SA constraint can similarly be represented as a ptential  

where 

3 ~ n  exception occurs for configurations where the typical Ir(s) - r(sl)l > t .  Such highly &retched 
configurations are forbidden by H,( L), but are albwed by  HA^), although usually they are very irnprohablc. 
Thus, under normal circumstances, this is an unimportant difference between them. However, the application 
of external forces to the system can make these configurations typical, and it is here that there will be 
important differences between the two potentials. Such a situation occurs in Chap. 3. 
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and the notation Cf,,,,) indicates a sum over all pairs of vertices. Unfortunately, an approx- 

imation procedure similar to the one used to go from Eq. (2.3) to Eq. (2.6) is not known for 

the SA constraint. The reason is that it seems to be very difficult to find such a procedure 

that maintains the non-local character of the interaction. Although no one has succeeded in 

finding a useful approximation to Eq. (2.7) [39], a truly SA potential is known for continuum 

models (see Eq. (2.45) below). 

2.2 Physical observables 

We are interested in describing the characteristic size and shape of a TN as a whole. To 

do this requires a two-step procedure: The first step, which does not involve any statistical 

mechanics, is to construct macroscopic physical observables from the microscopic degrees of 

freedom (the r7s). The second step is to perform the usual statistical mechanics average of 

the macroscopic variables over the ensemble of configarations. 

2.2.1 Invariants of the inertia tensor 

In searching for a useful measure of the macroscopic properties of an individual TN, we 

are guided by considerations of simplicity and symmetry. Simple observables are the ones 

that are easiest to interpret physically. Symmetry considerations arise from the observation 

that, provided that the ensemble is isotropic, its averages implicitly include an average over 

the angular degrees of freedom for the entire TN; only rotational invariants will survive this 

averaging process. The moment of inertia tensor? 

'This definition has been chosen for computational convenience, but it is slightly different from the one 
found in mechanics texts. Assuming that the center of mass is located at the origin, the two are related by 
Q$') = IS., - I , , ,  where Iij is the usual moment of inertia tensor [40], and I is the usual moment of inertia. 

Note that since Eq. (2.9) implies that all the vertices have unit mass, the engineering dimension of Q!:) is 
length2 instead of the usual mass x length2. 
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(i, j = 1,. . . , d), is a simple ,nacroscopic quantity that contains all the informati011 tiecdcd 

to construct a simple class rotational invariants. Q(') is real symmetric; thus a rot t* a 1011 (:MI 

( L )  ro%n - (C )  - ( 1 )  always be found to diagonalize Q ( ~ )  so that Qij Qi, - X i  ' f i i i .  Therefore, c ~ l y  d 

of the d2 elements of Q ( ~ )  are independent. 

( L )  The X i  's are referred to as the principal moments of inertia and arc just the cige~kvalucs 

of Q ( ~ ) .  Although they are i~dependent of rotations, their ordering along the cliagonnl of 

o(L) is not unique, since rotations can always be found whose only effect is to scratsl,lo tlioir 

order. This non-uniqueness in labelling can be removed by imposing thc, co11v~ntior~ 

which will be used in all future discussions. In simulation studies, where onc has amcss to 

the individual configurations, imposing this convention is a trivial nnllnmical problcrn, and, 

as a result, the calculation of the ensemble averages of the XIL)'s is straightforward. On tha 

other hand, it is impossible in practice to diagonalize Q$) analytically. Analytic studies 

( L )  therefore require rotationally invariant macroscopic quantities obtained directly from Qij , 
whose rotational invariance does not depend on convention (2.10). 

Combinations of eigenvalues that are symmetrized with respect to the i-index arc j u t ,  

such quantities. A general form for these invariants is 

where j = 1,.  . . , d. Three well-known special cases axe: 

1. the radius of gyration ( j  = 1): 
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2. the determinant ( j  = d): 

3. the sum of the minors ( j  = 2): 

where 

2.2.2 Statistical mechanics 

The preceding discussion has been entirely in terms of a single configuration; but, if we are 

to do statistical mechanics, an average over the ensemble of configurations must also be 

performed. 

The partition function, ~ ( ~ 1 ,  for a TN model is just a sum over all configurations with 

the usual e-PE thermal weight function. Constraint conditions that suppress certain "im- 

possible" configurations may be enforced directly or via terms in the Hamiltonian that assign 

infinite energy to the unwanted configurations, as was done in Sec. 2.1.2. Thus, for PTN7s, 

which are subject to  constraint Eq. (2.1), 

where 

and the Hamiltonian HY) 
write 

contains only the deformation energy. Alternatively, we could 

(2.18) 
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where the explicit constraint has been replaced by tethering Ilandtonian, fft froin Eq. (2.3). 

Similarly, for SA models, the SA constraint can be included in z ( ~ )  directly by including the 

extra factor njs,s118()r(s) - r(st)l - 2r0), or indirectly by including thr Hamilt~nia~s II&) 

from Eq. (2.7) in the exponent. In practice, including the constraints (or some spprosiniatiot~ 

to  the constraints) in the Hamiltonian is always easier than Including them in the ir~tc:gvation 

measure. Thus, we will have occasion (especially in Sec. 2.4) to refer to thc tctllcring tcrm 

or the SA term in a Hamiltonian. 

Another useful quantity is the pair correlation function, 

where (. - -) denotes an ensemble average. Note that in this equation all relcva~it constraints 

have been absorbed into Eq. (2.19) can be used to construct physical obscrv;d)lc!s. 

For example, combining Eqs. (2.9) and (2.19) gives 

1 
(&if') = 5 [G{~'(s, s) + G{f)(st, st) - 2G!f1(s, sf)] . (2.20) 

s,sl 

Such formulas are useful for the shape calculations described in Chap. 3. 

2.2.3 Scaling laws 

Scaling laws are one of the most useful ways of characterizing the long-distance behavior of 

a TN. Properly speaking, scaling exponents only exist in the thermodynamic limit ( L  - w 

with l fixed); but, L-dependent exponents can be introduced in order to make cor~tact with 

simulations, which are necessarily done on fini te-sized sys terns. 

The best-known result from the RW literature is that the average end- to-end dist;zor:c 

of a i3W is proportional to a. It is easy to show [dl] that this same scaling rdationdiip 

(L)  2 holds for ( R ,  ). By analogy with RW's, the scaling exponent, dL), for a TN is defined 

through the formula, 
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Similarly defined is ujL) through 

(h jL) )  rn L 2vi(L) 

The true scaling exponents v and u; are obtained by taking the thermodynamic limit of the 

L-dependent ones. The thermodynamic limit and Eq. (2.10) imply 

vi 5 vj when i < j. (2.23) 

Eqs. (2.12), (2.21), and (2.22) further imply that 

v = v d .  (2.24) 

The range of allowable values for v is restricted by simple geometric arguments. Eqs. (2.21) 

and (2.12) give an upper bound v 5 1, and it is obvious that v > 0. The lower bound on v 

for a SATN can be further restricted by considering that a SATN of intrinsic volume L ~ ,  

when "close packed" (i. e., isotropically embedded in in a way that minimizes its volume 

in ELd), will have a typical linear size ~ ~ 1 ~ .  These considerations combine to  give 

O < v s 1  f o r a P T N ;  

There are other scaling exponents such as y, defined, once again in analogy with RW's, 

through the equation 

z(L) ~ 7 - 1 -  

The calculation of y for tethered membranes (D = 2 TN's) has become a controversial 

subject in the literature [20j because its value for a TM appears to depend upon the shape 

of the TM bounda.ry, and is therefore not universal. This subject will not be discussed 

further here. 

A basic question in the study of TN's is how the hjL)'s scale relative to  one another as a 

function of L. There are different types of scaling behavior, which are thought t o  represent 
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different thermodynamic phases. Much of the subsequent work in this thrsis is dcvotctcl tu 

determining the phases of specific TIV models. There are t hee  known 

fiat, for which v = v d  = v d - ~ + 1  = 1 and v; < 1 for i = 1, . . . , d - D. AS L -4 ~ ) i ,  the 

TN become#; increasingly concentrated in a D-dimensional slicc of I{*. 'She t t r  [ t l  (lat, 

comes from the D = 2 case, which is the one most co~nrnonly discnssctl. 

crumpled, for which v = ui < 1 for all valutlucs of i. In this phase all the x ~ ~ ) ' s  1~;rvc 1 .11~  

same scaling behasiorz so the shape of the TN does not change as I, -- m. 

rough, for which v = v d  = v d - ~ + l  < 1 and u; < I /  for i = 1,. . . , (1 - II. 'l'lke 1, - cx, 

behavior is similar to  that for the flat phase, but, for a given I; ,  a flat T N  will ;tlw;tys 

be more concentrated in a D-dimensional slice of IRd than a rough TN. 

The above list of phases is the most general one possible that is consistent wit,h t11c 

following two assumptions about the thermodynamic limit: 

Bow valid are these assumptions? It is tempting to argue that the i~ltrinsic 11-clirrtensio~~al 

structure of a T N  will either leave the SO(d) symmetry of R~ intact and rcsult in a erurrrpled 

phase, or, a t  most, break the SO(d) symmetry into SO(d - L)) x SO(D) and rcsnlt in 

I,) either a Rat or rough phase. This is, in fact, an argument about the symmetry of t l~c  Q t j  

eigenvalues, i. e., that Ad = - - . = Ad-D+l and A; = Xj  for all 2: j < d - D. I t  is well-know11 

[43,44, 451 that the eigenvdues of TN7s do not have this syrnrrtetry (they arc all difl~rent). 

From an 'i.exp~rimentdn point of view, there is currently r:o evidence from simulations 

to indicate that the first assumption is false; however Chap. 4 dcscrikcs simrilatiorrs that 

suggest that the second assumption may be false (see Sec. 4.4.3). 
5 The foltowing descriptions of the flat and rough phases only make sense  for integer D, It iq not clear how 

to propedy generalize these descriptions when D is not an integer. The usual practice [42, 431 in to replace 
D with the next largest integer. 
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2.2.4 Shapes 

Analyses of critical phenomena are often focused on critical exponents such as v and y. Much 

of the interest in these exponents lies in their universality-several models that differ in their 

dctaiIed characterization may, nonetheless, have the same critical exponents. In addition 

to  being described by universal critical exponents, TN's also seem to possess universal 

amplitude mtius [46, 473, which characterize the equilibrium shape of the surface in terms 

(L)  of the X i  's. The two most commonly used ratios are the shape parameter, 

and the nsphericity, 

Note that AY' is composed entirely of A4,(LI7s, but sY) is not. Thus, while both AY) 
and s:') can be measured from simulation data, only AY) can be calculated analytically in 

( L )  (L) (L) practice. Like the scaling exponents vi , Ad and Sd possess well-defined thermodynamic 

limits, denoted by Ad and Sd, respectively. 

These two shape measures are sensitive to  different characteristics of a TN. To see how 

they differ, consider three different scenarios: 

I, vi < vj for i < j 5 d. From Eq. (2.27) i t  follows that Sd - LU1-"d 3 0. The 

behavior of Ad is more complicated. If v d - 1  < vd, so that there is a unique largest 

vj ( j  = d ) ,  the T N  will have a "cigar shape" and inspection of Eq. (2.28) shows that 

-Ad - 1- If j < d and vj = Vj+l  = . . . = u d ,  the TN will be effectively embedded in a 

[d  - j f 1)-dimensional space, and Ad will measure the shape in this reduced space. 
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2. All 24's equal, but the x ~ ~ ' ' s  unequal. In this case, both Ad and Sd will be IIOII-zero. 

Because Ad contains information about all the AiL)'s, it provides a more detailed 

characterization of the shape than Sd, which contains infornlation about o d y  two of 

them. 

GI 3. All X i  's equal. Inspection of Eqs. (2.27) and (2.28) shows that Sd = 1 and Ad = 0. 

Some workers prefer to use variants of these amplitude ratios, namely, 

and 

(A'"') 
= 
"p) 

These amplitude ratios also have well-defined thermodynamic limits, denoted by a d  and ,Q, 

respectively. Comparing Eqs. (2.27) and (2.28) with Eqs. (2.29) and (2.30), rcspectivcly, one 

can see that the only difference between them is that the former two are ensemble ihvcragcs 

of ratios for individual configurations, whereas the latter two are ratios of ensemble averages. 

The distinction between Sd and sd is not important here. (The results for Sd in the above- 

mentioned scenarios hold equally well for sd . )  The only point of interest is whether or not 

they are non-zero (see section 2.2.5 below). On the other hand, F.C a measure of the shape 

of a typical configuration, Ad is preferable to a d  precisely because it is an ensembie average 

of a quantity calculated for each configuration. 

2.2.5 Criteria for crurnpfing 

Two central issues in the study of TW's are the existence of a crumpled phase arid of a flat- 

crumpled phase transition. These questions have been especially important and contrwer&al 

in the study of TM's [30]. 
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/ rough / < I I 0 I 
I crumpled I < 1 ] > 0 J 

Table 2.1: Criteria for distinguishing between the three known phases of a TN. 

If there were only the flat and crumpled phases (as many workers have assumed), then 

knowing v would suffice t o  determine which one was observed. However, since v < 1 cannot 

distinguish between the rough and crumpled phases, some other additional test is needed. 

In principle, all the v;'s could be used, but the same difficulty arises here as arose for the 

analytic calculation of the eigenvalues in Sec. 2.2.1. The vi7s are also difficult to  measure 

accurately from simulation data. The shape parameter Sd (or sd), however, does provide a 

useful means of distinguishing between the flat and rough phases (Sd = 0) on the one hand, 

and the crumpled phase (Sd # 0) on the other. Thus, combined measurements of both v 

and Sd suffice to distinguish between the three known phases of a TN. These conclusions 

are summarized in Table 2.1. 

There has been a great deal of effort in the literature devoted to  resolving analytically 

the question of which phases of TN's are actually realized [Ill .  The importance of Sd 

in determining the phase and the difficulty in calculating it make it unlikely that phase 

existence questions can be resolved analytically. Note that it is sometimes possible to 

compute the asphericity; however, this is no help since it does not provide any indication of 

the phase, i. e., all values of the asphericity are possible in each of the phases. 

In subsequent chapters I will discuss three things about each TN: the scaling behavior of 

the X?)'S, various ratios of the that characterize the shape of the TN,  and the phase 

of the TN. 
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2.3 The continuum limit 

The description of TN's given so far has been for discrete ( E > 0) vctrsic ns of iiie models. 

Discrete versions are appropriate and necessary for simulations, hut statistical field theory 

usually requires continuum models for reasons of computational tractability. I n  passitkg 

to the continuum limit, one would like the continuum model to be closely rela$tnd to the 

discrete one-derived from it by a straightforward application of the l -+ 0 limit. There are, 

however, some subtleties involved in taking this limit, which I now discuss. For simplicity 

the argument is given in terms of a random walk, but it is applicable to any TN when 

suitably generalized. In addition to being more tractable than discrete models, conti~iuu~n 

models are interesting in their own right as examples of random fractals. 

Before the continuum limit is taken, there are three length scales that characterize tho  

RW: the step length l ,  the intrinsic length Lo and a macroscopic distance such as ago. It is 

important to realize that all three quantities have the same engineering dimensions. Thus, 

if Rgo depends on both L and Lo, then these quantities must be related in the following 

way [48]: 

Rgo N a w edZ.  (2.3 1) 

We can begin to understand the subtlety of the continuum limit by asking the following 

question: What happens to the RW when l decreases, say, l -, L' = C/2? The simple 

answer is that it depends on what happens to Lo and RgO, i. e., demanding l -+ 0 does not 

uniquely specify a continuum limit - we must also specify what happcns to Lo and ago in 

the process. Although it is possible to consider a wide variety of scenarios, I will diactiss 

only two: 

1. L --+ l / 2  and Lo fixed. From Eq. (2.31), 

L -+ 21, 
(2.32) 

fixed Rgo -+ n g o / f i  

This limit is illustrated in Fig. 2.3a. 
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Figure 2.3: Two possible limiting procedures for the discrete RW (a) l -, l / 2  and Lo fixed. 
This limit is not very physical because the physical observable Ago shrinks as a result of 
applying the limiting procedure. (b) E -, l / 2  and Rgo fixed. This limit has the desirable 
property that the physical observable RgO is not altered by the limiting procedure. However, 
the intrinsic length of the RW does increase. 
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2. l -t l / 2  and Rgo fised. From Eg. (2.31), 

Lo -4 2Co 

fixed L -+ 415 

This limit is illustrated in Fig. 2.3b. 

The physics, of course, should not depend on the limiting procedure, whid; is jast i~ cwtrl- 

putational convenience. Clearly, then, the physically interesting h i r ;  is the oxre tiesccibcd 

in scenario 2, since it fixes the physical observable Rgo. As the RW is dividod in to snlallcr 

and smaller steps, the number of steps ( L )  and the intrinsic length Lo must grow in order to 

keep Rgo fixed. In the limit .t? t 0, Lo + o o ( ~  l/t) and L -+ o o ( ~  1/19). This is t; lie cent r i ~ l  

point: the limiting procedure leaves neither C nor Lo finite; only the product 

,c l l l " ~  

= ec, 

remains finite. Thus, the limiting procedure replaces two finite pararncters, each I~aving cti- 

gineering dimensions of length, with a single finite parameter having engineering clirriensio~ts 

of [lengt h12. 

From a more mathematical point of view, the continuum limit generates a rarlclolr~ 

fractal6. As with all fractals, the infinite intrinsic length scale (in this case Lo) is ;L sigrial 

that the fractal covers some finite portion of a larger space. The size of this space is rrieasiircd 

by the Hausdorff or fractal dimension d f .  For a TN,  the ~lurnber of' points scales like &I" 

and the size of the TN, Rg, scales like Lou (assuming l fixed). IIence the the llunlbcr o f  

points available to cover the plane scales like R:'" and df = D / v .  For a RW, U = 1 and 

vo = i, so d f o  = 2. Thus, a RW generates z, so-called "Brownian area", which covers some 

finite fraction of the plane when the RW is projected onto an lR,%lice of Ftd. 'Phi6 T3rowniar1 

area is measured by L. 
6~ random fractal is an object whose scaling behavior is independent of the length Ktak at which it i~ 

probed (hence the term fractal). In the case of the RW, RgO - c1I2, independent of the size of L. Howevcr, 
nnlike a regular fractal, the precise shape varies randomly from one part of the object to another (hence the 
term random). 
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2.4 Continuum models of TN's 

Having discussed the meaning of the continuum limit, we now apply this knowledge to  the 

Hamiltonians described in Sec. 2.1.2. 

2.4.1 The Gaussian model 

It has already been mentioned in Sec. 2.1.2 that for practical calculations / 3 ~ t ( ~ '  (Eq. (2.3)) 

must be replaced by /3l3AL) (Eq. (2.6)). Another reason for making this replacement is that 

~ l l , ( ~ )  does not have a well-defined continuum limit, but p l3r )  does. Starting from (D = 1) 

(Continuum versions of all physical quantities will be distinguished from their discrete coun- 

terparts by dropping the (I;) superscript.) Note that l2 appears in the denominator of 

Eq. (2.351, not t. This is a direct consequence of the fractal nature of the continuum limit. 

From another point of view, the requirement that pHo be dimensionless can only be fulfilled 

if l2 -+ ds. 

The extension to an arbitrary value of D is accomplished by a natural generalization7 

of Eq. (2.36), 

The resulting partition function, 

can readily be evaluated using standard functional integration techniques [49]. 

'strictly speaking, g(D) = l d D s  f (s) is not defined for non-integer values of D. The correct approach is 
to regard D as an integer-valued parameter of g and then to attempt an analytic continuation of g(D) to 
real values of D. The notations l d D s  and ~f are merely a shorthand for this procedure. 
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A comparison of the results from analysis of the /?Elo model with tht? results of LlC 

studies of the OH?) model indicate tha>t they a.re in the samc universality class [31]. 

Taking the continuum limit also generates a scale-invariant theory. ?\'e can see this hy 

first rewriting Ho in terms of the dimensionless parameters a arlci p, defined through 

and r = pLV0, 

which gives 

The integral is now a pure number, so the only way Ho can remain dimensionless is if it is 

scale invariant (i. e., independent of L). Requiring scale invariance gives 

From this scale invariance we can also obtain the scaling behavior of (R,o). F'rotn 

Eqs. (2.9) and (2.12) we find 

where (. . .) is dimensionless. Thus, (Rgo) - LuO. 

The fractal dimension for a TN is 

For D = 1 we recover the result that a RW effectively fills the plane. On the other, a TM 

(D = 2) fills any space, regardless of its dimensionality. 

2.4.2 The Edwards model 

Having dealt with the tethering constraint, we now turn to the issue of self-avoidance. The 

continuum limit of a SATN is thought to be represented by the Edward6 model [20, 501, 
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where 

PXSA = % J  D D d  
2 

d sd s 6 [r(s) - r(sl)] 

v 2  measures the two-body interaction strength and has dimensions [v2] = . P ~ S A  
does not contribute to HE unless the configuration self-intersects, i. e., r(s) = r(sl) for at  

least one pair of distinct s-values. Therefore, it has no effect on SA configurations, but 

it does generate a finite positive value for self-intersecting configurations. The restriction 

s f s' prevents self-interaction of individual points. The full Hamiltonian is 

where 

- v 2 ~ 2 D - ( 2 - D ) d / 2  z = (2.47) 

Once again, the scaling behavior is completely determined by the exponent of L. The 

model remains scale invariant along the curve 

so that, in the thermodynamic limit, 

0 for d > duc SA irrelevant 

L + * + v 2  for d = duc SA marginal . (2.49) 

oo for d < d,, SA relevant 

Thus, when d > d,,, the SA configurations are given the same weight as the self-intersecting 

configurations, and SA is irrelevant. When d = d,,, the self-intersecting configurations are 
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suppressed, but not very strongly. In this situation BEsA givcs logarithnzic corxcctions to 

R,, but does not effect the scaling exponents 2201. When d < d,,, any positive contribution 

arising from integrating over a self-intersecting configuration is multiplied by z -+ m. Thus,  

in the thermodynamic limit, self-intersecting configurations are comylelely exchrdcti .from 

the partition function [51]. The Edwards model is, therefore, truly self-avoiding. 

It is also possible to  consider n-body interaction terms suc!~ as 

These terms also have a critical line, 

However, the n > 2 terms are never relevant in the thermodynamic limit if the n = 2 term 

is present. We can see this from the scaling coefficient, 

for each term HA?. Naive scaling analysis shows that that, near the Gaussian fixed point, 

the large-n terms can be the most important ones. This will occur whcn D > 2d/(2 f d). 

However, renormalization will drive the system away from the Gaussian fixed point ard 

towards another fixed point with a larger value of v. As u increases, the small-71 toms 

become increasingly important. For v > D / d  (the "close-packed" lower bound on u for 

a SATN; see Eq. (2.25)), the n = 2 term dominates all others. Hence, the renorrnalizerl 

interaction will always be dominated by the n = 2 term. 

This effect has been studied in some detail, for the case of polymers, ufiing so-ca,lled 

k-tolerant walks [52]. In a k-tolerant walk, the walker is allowed to visit a site as many MJ 

k times, but not more. In the Edwards-model language, a k-tolerant walk has the k-body 

term as its lowest order bare interaction term. R,enormdization group analyses [53] and 4 
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more formal treatments [54] show (although not rigorously) that the k-tolerant walk is in 

the name universality class as  the SAW. Thus, the two-body interaction in the renormalized 

Edwards model always dominates the interaction terms even when it is initially not present. 

We will return to a discussion of the higher-order interactions in Sec. 4.5.2. 

In the preceding approach, the scale invariance of Ho was enforced and IfSA was allowed 

to become relevant, marginal (scale invariant), or irrelevant as a function of d. When HsA 

is irrelevant, it is obvious that v = vo. This is also true (but not obvious) when HSA is 

marginal. The situation is more complicated when HsA is relevant, since it is not easy to 

characterize the forbidden configurations. We can get an estimate of v by replacing the 
- requirement that HE be scale invariant with the demand that both terms in Eq. (2.46) 

have the same scaling behavior. Equating the exponents of the C-factors in Eqs. (2.40) and 

(2.45) leads to [20] 
D + 2 

v~ = - 
d + 2 '  

(2.53) 

This approach has no rigorous foundation and is, in fact, equivalent to a mean-field 

analysis of the theory. This mean-field argument (originally due to Flory [4, 551 in the 

context of polymers) consists of writing the free energy as a sum of two competing terms, 

The first term is the elastic energy required to stretch a TN to a size R,, and it corresponds 

to Ho in the Edwards model. The second term is the SA-interaction energy, which scales 

like the square of the density of monomers for a two-body interaction. It is here that the 

mean-field approximation is introduced, since the free-energy density, which is expected to 

depend on the density-density correlations (e2), is replaced by ( c ) ~  N N ~ / R : ~ .  This term 

must then be multiplied by a volume factor R,d to obtain an energy. Recalling that 

N N LD w ~ f ' ~  and minimizing F with respect to R, leads to Eq. (2.53). Despite the 

approximate nature of the argument, v~ gives a surprisingly good estimate of v for polymers 

;\ad Sierpiriski gaskets (see Chap. 5). 
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flat, rough, or 
Flory crumpled (SA relevant) 

Figure 2.4: The D versus d phase diagram. Along the line labelled "strctehed" I) = d and 
the T N  fills the embedding space, so v = 1. The other curve, which separates thc SA- 
relevant and SA-irrelevant regimes is a plot of Eq. (2.48). Several points in the ( D, d)-planc 
are studied in Chaps. 4 and 5. 

It is implicit in the above discussion that D and d are integers, but the analytic contin- 

uation of the Edwards model theory to real-valued D and d is mathematically well-defined 

and potentially interesting. There are two reason for interest in this generalization. The first 

is that analysis of the Edwards model is difficult and can he done only using perturbation 

theory. In the most successful method, known as the 6-expansion, the theory ifi first f;olved 

at  a point (D*, d*) along the critical line d = d,,. Because self-avoidance is rnargioal :dong 

this line, the theory can be solved exactly. The theory is evaluated at the point of interest, 

(Dphys,dphys), by regarding DphyS and dphys as perturbations of D* and d" [20]. For thie 

procedure to work, D and d rnust be regarded as continuous parameters. 

From a second and more mathematical point of view, it is desirable to underfitand 

the structure of the theory over the entire (D,d)-plane (see Fig, 2.41, not only because 
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the structure may be intrinsically interesting, but also because it may provide insight into 

the theory defined a t  the physical points of the (D,d)-plane. This is especially true of 

membranes, for which duc = oo. If the theory were restricted to integer-valued points in the 

(D, d)-plane, the physical point ( D  = 2, d = 3) would be infinitely far away from where the 

theory could be solved. On the other hand, the physical point ( D  = 2, d = 3) is only a finite 

distance away from the point (D  = 6/7, d = 3), which lies along the critical line d = d,,. It 

is not yet clear whether duc = oo signals a regime with qualitatively new physics or, on the 

other hand, whether it simply creates computational difficulties for the perturbation theory. 

Exploring other regions of the (D, d)-plane may give some insight on this matter, and is, in 

fact, the motivation for the work in Chaps. 4 and 5. 



Chapter 3 

Two-Dimensional Closed 

Pressurized Random Walks 

3.1 Introduction 

In recent years there has been a surge of activity in the study of artificial a~ td  naturally 

occurring fluid vesicles [22]. Much of this activity has focused on understanding the various 

shape conformations of these systems. Although some vesicle shapes can be explaincxl by 

studying the T = 0 energetics (561, there remain many questions about thc role of thermal 

fluctu&iom [57]. To address these more difficult questions requires a statis tical mechanical 

treatment of a model that incorporates the most important properties of fluid vesiclcr;: 

1. A vesicle has a Euid as opposed to tethered membrane. Aliernaiively, one can think 

of a fluid membrane as a T N  whose connectivity is allowed to evolve over time. Th ie  

is, in fact, how simulations of fluid membranes are done [B]. 

2. A vesicle membrane is self avoiding. 

35 
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3, The energetics are controlled mainly by a surface bending rigidity [56],  K ,  that is 

sufficiently large so that the corre1a.tiio length induced by it, I , ,  is comparable to the 

vesicle size, R. This turns out to be a crucial distinguishing feature of a vesicle1; if 

1, < R, the vesicle is simply a pressurized self-avoiding surface (or pressurized self- 

avoiding walk (PSAW) in the two-dimensional analogue), and many of the interesting 

shapes that resemble those seen in experiments on real vesicles disappear. Mindful of 

this distinction, the term vesicle will henceforth be used to  describe only models for 

which 1, N> R. 

4. The surface area exceeds the minimum needed for the enclosed volume (the vesicle is 

defiated). There may also be, in general, a pressure difference, p, between the inside 

and the outside of the vesicle. 

The non-local nature of the self-avoiding interaction and the complications that fluid 

surfaces create for ensemble averages make this model very difficult to analyze for T > 0. 

As a result, only mean-field analyses of phenomenological models have been done so far [56]. 

These di ficulties have led some people to consider studying vesicle models via computer 

simulations, but it is only very recently [59, 601 that the computer power needed to do 

reasonable simulations of d = 3 fluid vesicles has become available. 

3.1 .I Simulation models 

fn the time between these two developments, M. E. Fisher and collaborators f2, 23, 24, 

2Fj2 26: 271 have used Monte Carlo simulations to investigate a two-dimensional model that 

contains features 2-4 listed above (The distinction between fluid and tethered membranes 

is lust for equilibrium properties of one-dimensional surfaces embedded in two dimensions). 

Specifically, the model (referred to as the LSF model) consists of hard disks of diameter 

a connected by tethers of length ga to  form a ring. The bending energy term in the 

'I thank Vdo Sdert far pointing this out. 
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Hamiltonian is (&/a )  x;Zl (1 - cosOj)? where 8, is tho angle dctennined by two adjxjnccn~ 

links. There is also a fpressure)x(area) energy term, which accounts for the work done at 

constant pressure when the enclosed area of the vesicle changes. 

In their original work [2], LSF observed scaling behavior for the encloscd area anti the 

radius gyration of a PSAW and found different shape classes as a function of pressure. They 

dso found dumbbell-like and ellipsoidal vesicles coexisting for certain cornbinations of neg- 

ative pressure and bending rigidity. Subsequent work by the same group [24] demonstrated 

that the shape parameter, sz, of a PS.4W can be varied continuously by adjusting the pres- 

sure. Other work by this group includes studies of the scaling behavior of the enclosed area 

and radius of gyration of a PSAW in the high pressure regime [25] axid studies on vesicles in 

the large bending rigidity limit [26]. Most recently [27] they have begun a detailed inves ti- 

gation of a negative pressure-rigidity phase diagram, and have found a wide and interesting 

variety of shape classes (e. g. , ellipsoidal, dumbbell-like, rod, and branched polymer). Sus- 

ceptibility measurements from these simulations suggest that some of the shapcs rnay bc 

separated by phase boundaries. Most of this work is reviewed in Refs. [23, 271. 

Bod [61] has studied a similar model, but with the bending rigidity replaced by art 

attractive potential. The resulting pressure-attraction phase diagram includes a braxd~cd- 

polymer phase and a dense phase, as well as the usual self-avoiding walk phase. 

3.1.2 Continuum models 

Computer simulations are certainly useful for studying vesicle shapes, but they can not tell 

the whole story. Questions about the existence of phase transitions, such as those discussed 

in Ref. [27], are particularly difficult to  answer from simulation data because of finite-size 

effects. Mean-field calculations are also unreliable in this respect. Thus, it is desirable to 

complement these computer studies with analytic work. Ideally, one would like to analyze a 

microscopic model with the same features as the LSF model. Such a model can be described 
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by a Mamiltonian with three parts: 

is identical to Eq. (2.45) except for the replacements u2 -, v$ (these interaction strengths 

have different engineering dimensions) and L -. Lo (The need for this distinction will be 

made clear at the end of this subsection.); 

is the nakural continuum realization of the discretized bending energy fi(k) . ii(k + 1) [48], 

where i i ( k )  is the unit normal of the kth link; and the last term, 

where 

accounts for the energy due to the pressure difference p. Eq. (3.4) employs the convention 

that the inside pressure is greater than the outside pressure when p > 0. The functional 

a[r] (referred to as the algebraic area) is different from the true area, since a[r] is sensitive 

to the direction that the loop is traversed. Hence, the absolute value must be used. 

The last ingredient needed to complete the model is the constraint, 

which fixes the distance between adjacent links. This rigid-rod constraint does not corre- 

spond exactly to the LSF-model constraint (which uses flexible tethers), but, as discussed 

in Chap. 1, the long-distance behaviors and the continuum limits for these models are the 

same. 
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Eqs. (3.2)-(3.6) implicitly assume that the arc-length, s, is a contin~~ous p,zra.tuctcr, On 

the other hand, the evaluation of the partition function, 

requires s to be discretized [48] into N links, each of length l ,  so that 

measures the perimeter of the vesicle. After the functional integral in Eq. (3.7) is pcrformcd, 

the continuum limit is obtained by the prescription 

N - 00, e 3 0, such that LO is fixed. 

Eqs. (3.1)-(3.9) describe a continuum version of the LSF model, and should contain the 

same physics as the discrete version. Unfortunately, this model has several features that 

destroy its otherwise Gaussian character, thus rendering an exact calculation hopeless. I 

will now describe a sequence of models that are obtained by removing these non-Chussian 

elements one at  a time, eventually leading to a model that can be andyzed cornp1ctt:ly in  

closed form. The price that will be paid for this increased tractability will be a significant 

change in the physics that the resulting model describes. 

The first task is to  remove the two non-Gaussian elements of fILsF. One of thesc clcrncnts 

is HsA. While BsA could be included in the analysis with the aid of the c-expansion 

described in Sec. 2.4.2, the necessary starting point is still the exact soh tiort of the Gaussian 

field theory. For the sake of simplicity, all subsequent discussion will ignore NSA. H~WOVCP,  

Sec. 3.3.1 does contain a brief disc~lssioa of Flory-theory self avoidance. 

The second non-Gaussian element of IjLSF is the absolute value in Eq. (3.4), which i~ 

required to ensure that the area is positive. This problem can be handled simply by making 

the replacement 
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but this creates two problems of its own. The first occurs because closed random walks 

that cram themselves have both positive and negative contributions to air]; this effect will 

become especially significant when 1p1 is small. Of course, if HSA were retained in the 

Bamiltonian, this problem would not arise. The second problem is that, for every vesicle 

with algebraic area A, there is an identical one with algebraic area -A .  In the presence self 

avoidance, these two regimes are separated by an infinite energy barrier, but this does not 

solve the problem as far as equilibrium properties are concerned. This is a serious defect in 

the model and there does not seem to be any way to circumvent it without destroying the 

quadratic nature of Hp. I will return to this issue in Sec. 3.4.1. 

The changes required to  make the Hamiltonian quadratic in r are summarized by the 

equation 

The model described by Eqs. (3.6)-(3.11) will be referred to  as the rigid-rod model. 

The final non-Gaussian element of the continuum LSF model is the constraint, Eq. (3.6). 

It can be removed by using the well-known procedure of replacing the constraint with an 

additional term in the Hamiltonian 

where 

is the Gaussian Harniltonian introduced in Sec. 2.4.1, with 

The new partition function obtained by making the replacement 

i s  a Gaussian functional integral. 
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Although Eq. (3.12) achieves the desired effect of replacing an unmanageable co~lstrnint 

with a Gaussian integral, it constitutes a major change to the model; rigid rods have bcen 

replaced by infinitely stretchable springs. The new model described by HpRLv will be rcferrcd 

to  as the pressurized random walk (PRW) model. Despite their differences, the PRW tlioticl 

and the continuum LSF model should contain the same physics provided that they arc 

compared in a regime where Eq. (3.6) does not strongly restrict the phase space of ZLSF. 

However, we should not expect them to agree under conditions that produce highly stretci~ed 

configurations in the rigid-rod model. 

Just as with ZLSF, ZPRW is evaluated by discretizing the arc-length, 9, into N links, 

each of length l .  However, the replacement of the constrailit in Eq. (3.9) with EIQ rcqitires 

that a different continuum limit be taken: 

N --+ oo,12 -+ 0, such that L is fixed. (3.1G) 

(cf. Eq. (3.9)). The reason why Ho requires this particular continuum limit has already 

been discussed in Sec. 2.4.1. Also, recall that l no longer represents a microscopic length 

scale for the system in the usual sense. For example, the perimeter, N l ,  is divergent in this 

limit. In fact, the presence of an external field means that, even before the continuurn limit 

is taken, specifying N and f does not fix the perimeter (see the discussion below Eq. (3.24)). 

The absence of a well-defined microscopic length scale has a profound effect on the model 

- particularly on the H, term. Consequently, all of the analyses in Sec. 3.3 deal only with 

the PRWo model, which is just the rc = 0 version of the PRW model. Sec. 3.4.2 di~cusses 

why the HK term in the PRW model does not correspond to an ordinary bending rigidity. 

This surprising effect of H ,  in the PRW model is particularly unfortunate because it is the 

existence of a large I,, more than anything else, that distinguishes the physics and especially 

the shapes of vesicles from those of random walks. 
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3.2 Asphericity calculations 

Computer simulation studies of shapes have the luxury of being able to  produce and to  study 

individual configurations, and to compare them with real photomicrographs. However, in 

the absence of a quantitative measure of the shape, all such comparisons are subjective. 

Quantitative measures of polymer shapes have been proposed and investigated for some time 

now 144,621. In particular, both Ad and ad (defined by Eqs. (2.28) and (2.30), respectively) 

have been measured from Monte Carlo simulations [63,64]. Rudnick and coworkers [65, 66, 

671 have described methods for calculating a2, and have applied them to  the PRWo model 

Although Ad is generally regarded as a better measure of the shape of a typical config- 

uration, almost all calculations to date [65, 67, 681 have been of ad, because calculation of 

as considered difficult except in the d -+ cm limit [66]. Recently, however, Diehl and 

isenriegler [69] have described a method for calculating the asphericity in any dimension, 

and have used it to  calculate the shape of ordinary open and closed random walks embedded 

in a space of arbitrary dimension. The method uses a trick, which consists cf writing the 

ensemble average of a ratio in the form 

Applying this trick to  Eq. (2.28) gives ( n  = 2) 

where (- . . ) H ( g )  denotes an ensemble average with respect to  the Hamiltonian 



and 

Z (y) = / D[r] eVBH(y) .  

Inspection of Eq. (3.19) shows that R(y) is quadratic in r ,  so the asphericity can be calcu- 

lated e x a ~ t l y . ~  

3.3 Results ( K  = 0) 

3.3,1 Mean-field results 

Although virtually all interesting physical quantities can be extracted from the partition 

function in closed form, it is nonetheless instructive to examine first a simplified version of 

the theory whose configurations are restricted to circles. As we shall see, this restrictian, 

which effectively generates a mean-field theory for the model, does not have an important 

effect on the physics discussed here. The energy of a circular configuration of radius R is 

where 

and p, = n. Inspection of Eq. (3.21) shows that there is an instability for d = 2, with 

R =  { 0 for p < p, 
7 

oo for p > pc 

which occurs because both terms in Hc scale as R2. The trivial p < p, behavior predicted 

here reflects the complete absence of fluctuations in the above treatment. They can be 

introduced in a mean-field way by allowing R to fluctuate and then averaging over dl vdties 

of R. This procedure gives 

(3.24) 

2I wish to thank H.-W. Diehl for pointing out the tractability of the A d  calculation for the PRW model, 
and for encouraging me to pursue the calculation. 
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The instability remains, but R now has the correct qualitative behavior for 0 < p < p, (cf. 

Eqs. (3.29) and (3.32) below). 

Eq. (3.24) clearly illustrates an important difference between the rigid-rod model and 

the PRWo model. In the rigid-rod model, R can never diverge, even at  infinite pressure. 

Furthermore, the result in Eq. (3.24) is independent of whether or not the continuum limit 

is taken. Thus, even for N and Lt finite, specifying C does not uniquely determine R since it 

also depends on p. Put another way, for a fixed value of N, the link length is not fixed by 

the model, but instead depends on p. 

Mean-field methods can also be applied to other values of d. For d = 1, p -t f (a force), 

and mean-field theory recovers the well-known result R N f C. Once again, we see that 

fixing ,C does not set an upper bound on the overall size of the system. For d = 3 and p = 0, 

Sc has a minimum at R = 0, but for any p > 0 there are two minima separated by a finite 

barriec3 a local one at  l2 = 0 and a global one at R = oo. Thus, a collapsed system with 

no pressure difference between the inside and outside will spontaneously inflate some time 

after a pressure difference is introduced. 

Self avoidance can be included by adding the Flory-theory term vzL2/R2 [4] to pHc. 

In two dimensions the value of p, is unchanged, but R is shifted away from zero, reflecting 

the system's reduced ability to collapse. In three dimensions the global minimum of pHc 

is still at infinity, but the metastable R is shifted away from zero to a point which, once 

again, reflects the system's reduced ability to collapse. The critical value of p, above which 

the metastable region vanishes, depends on the coefficients of the terms in pHc. 

FinaJly, we can understand why the mean-field results are so accurate by Fourier analyz- 

ing the shape, and studying the mean-field behavior of higher frequency terms. The energy 

of a.11 nth harmonic component with amplitude R, is 

3To make sense, the random walk must be generalized to a random surface, but within the context of 
mean-field theory, the R scaling behavior of f;Tc is the same for both. 
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and leads to 

which vanishes as p -+ p,, if n 2 2. Thus, the higher frequency t e r m  become less important 

as p -+ p,, and, as a result, the inflated shape is a circle. 

3.3.2 Exact results 

Most of the results in this subsection have been published elsewhere [28, 391. They are 

included here for the sake of completeness, and to allow ready comparison with thc m c m -  

field results. The first step in obtaining the exact results is the evaluation of Z(y). A 

straightforward4 but tedious calculation gives [39] 

Y 
Z(y)',=O = 2* (cosh w - cos p) ' 

where 

Eq. (3.27) can be used to calculate the expectation value of the algebraic area [28), 

(4rl)  A -  - - 6 
L 

lim Z(y) 

- 1 - - - cot p. 
P 

The exact result contains the same instability as the mean-field result and has the same 

qualitative behavior for p < p, as Eq. (3.24). Note the symmetry A(p) = -A(-p). T h i ~  ifi 

due entirely to the algebraic nature of a[r]. Since there is no additional information in the 

p < 0 sector of the theory, all subsequent discussions will implicitly assume p 2 0, unless 

stated otherwise. Also note that, despite the differences between the PRWo rnotlel studied 

here and the LSF model, they have similar scaling behavior in some regions of parameter 

'The only difliculty in evaluating Z(y) arises from the non-local nature of the y-dependent term. Thh 
term can be converted to a Gaussian integral over a local field using a trick described in k f .  1.391 and in 
Appendix A. 
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space. Eq. (3.29) is a special case of the scaling form for the area proposed in Ref. [2]. The 

only change required is v s ~  -, vo. 

The fluctuations in the algebraic area are measured by 

Note that limp,o x = 5, which shows that a significant fraction of the configurations have a 

net algebraic area* for p = 0 ,  even though the antisymmetry of A with respect to  p requires 

A = 0. At the critical point, p,, the fluctuations diverge; but 

lim X / ~ 2  = 1 
P4Pc 

(3.31) 

shows that they are the same size as the average algebraic area. 

The average radius of gyration can also be easily computed [28]. 

Once again, this result is a special case of the scaling proposed in Ref. 121. In the limit 

p -+ 0, Eq. (3.32) reduces to the well-known result R2 = 4. 

3.3.3 Shapes 

One of the simplest measures of the shape is AIR2 = p. A slightly more sophisticated 

version of this measure c m  be obtained using Eq. (3.171, 



Figure 3.1: (a) A comparison of the shape measures A/R and (o[r]/$) as a function of p. 
The difference between them is never more than 20%; (b) A comparison of the asphericities 
A2 (Eq. (3.43)) and a;! (Eq. (15) of Ref. [28]; but see the footnote on page 49). 
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This integral can be done numerically. The result is plotted in Fig. 3.la along with 

A/R2 for comparison. The two curves give a quantitative indication of the size of the 

difference between taking the ratio of the averages and the average of the ratio, which, in 

this case, is as large as 20%. Also, note that both measures of the shape have the value 

r for p = p,. This is consistent with the simple picture that the inflated regime (p < p , )  

consists of circular rings of radius 72. 

To calculate the asphericity A2 requires two basic steps (See Appendix A for details.). 

The first is to compute the generating f~nc t iona l ,~  

where 

A = cosh w  - cosp (3.35) 

aj = ~ i n h w - s i n h w a ~ c o s p ( 1 - a ~ ) - s i n h w ( 1 - a ~ ) c o s p a ~ ,  (3.36) 

p = s i n h w + s i n h w ( l - ~ ) ~ 0 ~ p ~ + ~ i n h w r c o s p ( 1 - ~ )  (3.37) 

- [ s inhzoa lcosp( l -a l )+cospa l s inhw( l -a l )+(a l - t a2) ] ,  

4 = E (a2 - a l )  [sinh WT sin p (1 - r) - sinh w  (1 - r )  sin p ~ ]  (3.38) 

4 [sinh wol sin p (1 - ol) - sinh w  (1 - a,) sin pal + (ol -+ a2)] , 

and 

1 for x > 0 
E (5) = 

-1 for x < 0 

The second step is to  use W (3;  ql , q2)  to calculate two-point and four-point correlation 

functions such as (ri (sr) rj ( s ~ ) ) ~  which can then be used t o  construct TrQ ( ^2)H(v)- The 

'There is a typographical error in Eq. (39) of Ref. [29]. The correct expression is given in Eq. (3.34). 



result is6 
1 ; sinh w + sin p 

(cosh w - cosp) pC 

Inserting Eq. (3.42) into Eq. (3.18) gives 

xdx 
A2 = - 

P 2 

which can be integrated numerically. The result is plotted in  Fig. 3 .1b  aJo11g wi th  (12 

obtained7 from Ref. [28]. Although the two parameters differ from oric anoti~cr by ;ts 

much as 20%, both indicate that the shapes are never very far from bcirrg isotropic, and 

both parameters vanish for p = p,. Furthermore, since both parameters are intriasically 

nonnegative, all fluctuations in A2 and a2 must also vanish for p = p,. The p = 0 rcsttlts 

for A2 and a2 are in very good agreement with those obtained earlier by analytic rrieans 

[66, 691 and MC simulations [64]. 

As mentioned in Sec. 3.2, a disadvantage of analytic methods is that they do not readily 

yield the details of typical shapes. Nonetheless, these results do suggest a ccstain picture?. 

The simplest interpretation is that for small p the system has the shape and size of a t 1  

ordinary closed random walk. As p increases, the number of self iriterscctions decrca.ses 

until finally for p = p, there are no intersections, and the shape is circular. This js signalled 

by the vanishing of A2 and its fluctuations. A somewhat different argr~rnent is used in R,c:f. 

1701 t o  obtain the same conclusion. In addition, Eqs. (3.30) and (3.31) show that, for p = p,, 

the ensemble contains circles of all sizes. 

Finally, it should be noted that ail of the above results could equaily have bccrr studied 

using the conjugate, fixed-area ensemble. The partjtion functions for the two ensern hies are 

'~lthough the resnlt in Eq. (3.42) is simple, the actual calcuIation involves doing approximately a thou- 
sand integrals of the form EL dzsinh az cos bz. The individual integrals were generated and evaluated u h g  
the Maple symbolic mathematics program. 

'There is an error in &. (15) of Ref. [28]. It should read (using the notation of thin chapter) a2 = 
(1 - p2/3 - pcotp) / (-1 +2@*/3+ p2cot2 p). 
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related by 

Tfre fixed-area ensemble is usually preferable to the fixed pressure one because experiments 

on real vesicles often control the volume or surface area instead of the pressure. The decision 

to use the fixed-pressure ensemble here was dictated by simplicity-the integral in Eq. (3.44) 

cannot usually be done analytically. It turns out that the two ensembles are not completely 

equivalent [28], but the essential physics is the same. 

Problems with the PRW modell 

The connection between the PRW model and the more realistic LSF model is not as close 

as one might hope. There are two serious problems that must be overcome if the program 

alluded to in Sec. 3.1 of developing a field theory that complements the LSF model is to be 

realized. These are now discussed. 

3.4.1 Effects of the algebraic area 

Sec. 3.1.2 discussed the problems arising from replacing the true area with the algebraic area. 

These problems are now illustrated by a specific example. Consider a system modelled by 

Eq. (3.19) (with K = 0) but with the y-dependent term now representing a real interaction 

in the system. Furthermore, assume that y < 0, so that the interaction between links is 

repulsive. Such an interaction is not very realistic, since it is quadratic in the link separation, 

b ~ t  it is adequate for this illustration. A straightforward calcdation of the average algebraic 

area gives 
sinp - $sinw 

A, = 
cos p - cos w 

I'he p > 0 regime of this model is not very interesting. The repulsive interaction simply 

generates an effective pressure that leads to the same instability discussed in Sec. 3.3.1 but 

with a smaller p,, determined by the transcendental equation p,(y) = cos-' cos Jp&) - 4 3 1 ~ ) .  ( 



One might imagine that the p < 0 case would be more interesting, since thcre is now a coru- 

petition between the y-dependent interaction, which wants to inflate the ring, and the pres- 

sure term, which wants to inhibit such inflation, possibly leading t,o the brancfied-poly~ncr 

configurations seen in Ref. [2]. However, inspection of Eq. (3.45) shows that A ,  is itnti- 

symmetric in p as before, so this does not happen. The reason for this is that the ~lcgi~tive 

pressure causes the negative-area rings to further decrease (i. e., make more negative) their 

area in precisely the same way that a positive pressure inflates positive-area rings. Since 

these two situations are physically indistinguishable, A, has the resulting anti-symmctry i r t  

p. Furthermore, this anti-symmetry will remain even in the presence of self avoidance. Ilhr 

Hamiltonians using 4, p < 0 always implies A < 0. 

3.4.2 "Bending rigiditys' 

The meaning of H ,  is clear for the rigid-rod model, where Eq. (3.9) is enforced [48], but 

things are less clear for the PRW model. To begin with, since the parameter s is no longer the 

true arc-length, d2r/ds2 will haSe, in addition to the component parallel to r (which measures 

the curvature), a tangential component, which has the effect of suppressing variations ill tilo 

length of adjacent links. Although this feature is certainly undesirable, it does not have as 

large an impact on the physics contained in the model as other features. 

Of much greater concern is the absence of a constraint fixing the perimeter leiigth. This 

allows the partition function to be heavily weighted by configurations that would ot1ierwise 

be absent, and it gives the distribution a qualitatively different character. Ib iilustratc this, 

it is sufficient to  calculate A, and RE. These are obtained from Z(y)  (Eq. (3.20) with rc, f 3) 

using the definitions in Eqs. (3.29) and (3.321, respectively. The results are 
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and 

where 

and u is defined through p = up, (0  5 u < 1). 

Explicit numerical calculation of the sums in Eqs. (3.46) and (3.47) for a wide range of the 

parameters N, 1, and p show that maki1,g the replacement f ( 6 )  -, 1 always overestimates 

the sum. Thus, for practical purposes, 

and 

Increasing r; thus causes both A, and Rz to decrease, which is opposite to the effect a "true" 

bending rigidity would have [48]. 

We can understand the source of this difference by once again resorting to mean-field 

arguments. First consider the rigid-rod model, with p = 0 for simplicity. The minimum- 

energy configuration for this system is a circle with energy 

The last Iine fotlows from the constraint, which requires Lo = 2rR. However, if we now 

consider a circular configuration for the PRW model, we find H ,  = K ~ T R ~ / ~ ~ .  Although 

superficially similar to Eq. (3.521, it is quite different because there is now no constraint 

linking R to L. Circles are stiU minimum energy configurations, but R is free to  vary, so the 
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ensemble will select the smallest value consistent with the other t e r m  in the Hamiltonictn. 

As K increases, this becomes an increasingly dominant effect, and A, a.nd 7L: decrease, as 

Eqs. (3.50) and (3.51) show. We are left, then, with the disappointing conclusion that, 

while H, can be included in the PRW model, its content is rather unphysical and it does 

not represent a "true" bending rigidity. 



After ten o'clock at night those left round the tables 
are the genuine, desperate gamblers 

Fyodor Dostoyevsky 
The Gambler 

Chapter 4 

Self- Avoiding Tethered 

Membranes 

This chapter discusses MC simulations of SATM's embedded in four and five dimensions 

that were done mainly in 1989. This chapter is written so as to preserve the historical order 

of development. Sections 4.1 and 4.2 give the historical background to these 1989 studies. 

The work itself is presented in Secs. 4.3 and 4.4 and includes subsequent simulations and 

analyses. Since this work was published [45] there have been several developments. Most 

notably, the first experiments on crystalline membranes have been performed [17] and other 

d > 3 SATM simulations have been done [I]. These developments will be covered in Sec. 4.5. 

The final section on outstanding problems also takes into account recent work. 

4.1 Motivation 

There are several reasons for the current widespread interest in tethered membranes.From 

a practical point of view, SATWs represent a natural generalization of polymers, which are 

of enormous technological value. If real membranes turn out to have a similar importance, 

it will be necessary to have a detailed understanding of their thermodynamics. A good 
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place t o  start is with a toy model such as the SAT&%. There is idso intcwst i n  SArI'h4's 

in biophysics, because the spectrin network sometilnes attached to t hc ot hcrwisc fluid d l  

plasma membrane can be realistically modelled as a SATh4. Intlced, in studying huwan reel 

blood cells, inclusion of the spectrin network in the model is probably rcquired for ;I good 

understanding of membrane thermal fluctuations [11, 711. 

Further motivation for studying SATM's can be gained by colnparing the state of kitowl- 

edge about polymers (or SAW'S) with that for SATM's. Polymers have becu studic\tl scri- 

ously for over fifty years [4, 6, 551 by a wide variety of theoretical teclrniques. Thcsc inclrrclr 

r-expansion RG analyses of the Edwards model [51], Monte Carlo siniulations [Z ] ,  c3xac.b 

enumeration of SAW'S [73], real-space renormalization-group techniques [74], si rnplc Flory 

theory [4j, and, for d = 2, exact results [7.5]. The results for scaling cxpolm~ts and stt;tpc 

characteristics obtained from these methods are all in good agreerllrnt with one another ;i,ntI 

with experimental values. The situation for SATM's is quite difTerent and is tliscussccl i ~ r  

detail in Sec. 4.2.2 below. To summarize that discussion here: Most of the tcchniqucs rlicrl- 

tioned above have been applied to  SATM's. They yield results indicating t h a t  SnTM's arc  

crumpled for d > 2, and they usually give v(d = 3) E 0.8. (An exccptiorr is tlrc c-cxpa,t~sjot~ 

calculation based on the Edwards model, which gives v(d = 3 )  sz 0.536 .) In particul;~r, early 

MC simulations found v(d = 3) x 0.8; however, more recent siniulatio~is on largcx systcmtd 

and using better data-analysis techniques find v(d = 3) zz 1.0, suggesting that SArI'M's 

flat. Although the results of these last simulations were initially contsovcrsial [XI], t,tterc? is 

now general agreement that they are correct [76]. 

Thus, theoretical approaches that work quite well for polymers fail to rfescri htl evcr~ thc: 

quafitative features of membranes. consequently, SN~M'S  present an irtt,erestjr~g chalfcttgc 

to theoretical techniques that have heen successful in handling polymers. 'r&ierid rricrn- 

branes are also considered intrinsically interesting because they belol~g to nr:w universality 

dasses. In fact, based on our understanding of polymers, it is reasonable t o  cxpcxt that the 
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SA'rM is the "rnjnirnal model" [8] for the universality class of crystalline me1nbranes.l 

4.2 History 

4.2.1 "Prehistory" 

Before the introduction of the TM idea, workers in both the biophysics and particle physics 

communities were interested in random surfaces. 

In the biophysics community this interest arose from the study of human red-blood- 

cell (RBC) shapes. Although the membrane of a real RBC is a quite complicated object, 

involving structures on several different length scales, many workers believe (justified by 

a certain amount of theoretical and experimental evidence) that,  a t  least for the shape 

problem, this complex membrane structure can be replaced by a uniform lipid bilayer (fluid). 

The Helfrich model 156, 771 embodies this idea by describing a RBC as a phantom 

fluid membrane whose energetics are completely determined by the local principle radii of 

curvature. Even with these drastjc simplifications, the model can be solved exactly only 

a t  T = 0. The effects of thermal fluctuations about the T = 0 equilibrium shape can 

be described only at  the Gaussian level. Nonetheless, many of the shapes resulting from 

minimizing the Helfrich Hamiltonian 156, 77, 781 accurately describe real RBC shapes. 

Peliti and Leibler [79] took the first steps towards understanding finite-temperature 

effects on the Helfrich model by doing a one-loop renormalization-group analysis of thermal 

fluctuations. Their results show that the bending rigidity of a large planar fluid membrane 

decreases as short-wavelength degrees of freedom are integrated out. If this renormalization 

drives the bendhg rigidity to zero at  iarge distances, then, in the thermodynamic limit, 

'This expectation is reasonable only if bending rigidity turns out to  be irrelevant for SATM's, as it is for 
polymers. The tern1 "irrelevant" is used here in a sense different from how it is used for polymers. It  is well 
established that the presence of bending rigidity affects the infrared fixed point of a TM (see Sec. 4.2.2). The 
Lssue is whether or not the SA interaction induces an effective bending rigidity. If it does, then the addition 
of an ezplicit bending-rigidity term to the SATM Hamiltonian is not likely to have any effect on the SATM 
infrared fixed point. The question is currently open (see Sec. 4.5.1). 
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there is no energy cost associated with bending a fluld nlenibranc, so cntropy drives it into 

a crumpled configuration, believed now to be equivalent to a brnnchetl p l y  luer 

In addition to introducing the idea of a crumpled stake, Ref. [79] is inkportant, bec;utsc 

it discussed for the first time the possibility of a crumpling transition between it high- 

temperature crumpled phase and a low-temperature flat phase3 of the system. 

Within the elementary particle physics com~i~uni ty, interest in ra~idom surfaccs A ruse 

from attempts to study the long-wavelength behavior of quanturi~ cli~~onrotlytia.tl~ics (QCI)). 

There has been speculation for many years [14] that the bou~icl states of QCD can ire rcprc- 

sented by the excitations of a one-dimensional object. The propagation of such a, "st,riog" in  

space-time generates a world-sheet (as opposed to a world-line for a particle), which caa be 

regarded as a random surface. QCD transition-probability amplitdes can be calculated in 

numerical simulations on a four-dimensional space-time lattice [82] by averaging over typi- 

cal world-sheets weighted by an appropriate action. Initial interest in this idea so or^ led to 

disappointment, when it was realized that the natural choice for the actio~t, t l ~ c  surf act^ area 

of the world-sheet , favored surfaces with divergent fiuctuations [38]. The si tuatioi~ cha~~gcd 

dramatically when Polyakov [83] discovered that adding an extrinsic ci~rvat u rc tcrrn to t tie 

action tamed the fluctuation proble~n in a gauge invariant way, and that the resulting ac- 

tion provided a unified description of a wide range of statistical ~nechanical a11c1 field tt~eory 

problems. For example, the Helfrich model is a special case of tho Polyakov model. Shortly 

after Polyakov's discovery, several papers were pu blished co~~taining both t tteorctical anti 

numerical results, mostly dealing with the question of the fractal clirnensicm of a ra,ndmt 

surface. 

Parisi [84] made the first contribiztion along these lines. He constructed a n  fieiiristic 

argument, by analogy with random walks, which led to the result that dl, = 4 for ;z randorn 

2 ~ o r  a discussion of the relationship between fluid membranes with no rigidity and brartctml polyrrrcrs 
see Refs. [59, 80, 8i]. 

3 ~ h e  flat phase would be seen only if long range forces are present. The fjclfrich rnodel does not contain 
such forces. 
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surface. He the11 used an argument due to Mandelbrot [85] to deduce that the upper critical 

dimension duc should obey the formula duc = 2drc, thus finding duc = 8. A subsequent 

paper by Gross [86] showed that a careful analysis of the embeddings of a triangulated torus 

lead to the conclusion that d,, = oo. Subsequent work by several authors gave conflicting 

results that supported LC = 8 [87], duc = oo [38, 881 as well as other values [89, 901. This 

confusion was finally sorted out by Cates [91]. He pointed out that Parisi, on the one hand, 

had studied surfaces with a fixed average number of plaquettes, but without regard for the 

connectivity of the surface. In fact, these surfaces turn out to have a fractal connectivity. 

Gross, on the other hand, had studied surfaces of fixed homogeneous connectivity. Hence, 

there is no reason to expect that these two systems should belong to the same universality 

class, and, indeed, they do not. 

This is an especially important point here because it clearly distinguishes the universality 

class of random surfaces appropriate to the study of crystalline membranes (fixed homoge- 

neous connectivity and d,, = oo) from those of interest in gauge theories, fluid membranes 

and branched polymers4 (fractal connectivity and d,, = 8). Although a great deal of work 

continues to be done on models in both of these universality cla.sses; we will henceforth 

focus on the fixed-connectivity cla,ss, since it has provided the inspiration for the study of 

SAThg's. 

4.2.2 Recent history 

The above-described studies of random surfaces led Kantor, Kardar, and Nelson [31] to 

introduce the tethered membrane (see Fig. l . lb)  as a model of a crystalline random surface. 

In t8his ground-breaking paper, the authors performed exact calculations for a Gaussian 

model of a y h a n t c * ~ ~  tethered membrane (PTM5) and studied other phantom membrane 

"One si~ould be cautious about including gauge theories in the same universality class as fluid membranes 
and branched polymers because of the issue of self-avoidance, which arises naturally in the study of the latter 
two. Self-avoidance has been used as  a technique for studying the N -+ 0 limit of SU(N) gauge theories, but 
its usefulness for this purpose is now in doubt [89]. 

s A PTM is a model with the same connectivity as in Fig. l . lb,  but without self avoidance. 
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models using hfigdal-Kadanoff RG techniques. They also developed a Fiory thtwry atlcf did 

the first MC simulations for SATM's. The niost important results from this w o r k  wcrc: ( I )  

For the purposes of desigrling a Hamiltonian, the tethering constra.int between two ~crt~iccs 

could be reliably replaced by a "Gaussian spring" potential (see Sec. 2.1.2); (2) for ;\ ["I'M, 

R, N a (exact), independent of d; (3) d = 3 simulations indicated t11a.t~ a SATM 

crumples with v z 0.8, which agrees with the F'lory theory prediction, vr,. = $. Subscqi~rnt 

analysis by Bouchard and Bouchard [74] using real-space RG techniques also gave thc rrsulb 

v z 0.8. 

A short time later, Kardar and Nelson [92], Aronovitz and Lubensky [93], ant1 Uuplanticr 

[94] all calculated the scaling exponents v and y as functions of D and d for the gc'r~cralinetl 

Edwards model (see Sec. 2.4.2) using a RG r-expansion. The main results from thcsc 

calculations were that the value of y depends on the shape of the SM'M bo~mdary when 1) 

is not an integer and that, for D = 2 and d = 3, v = 0.536 t 0 ( c 2  ). Although the ca1cul;~tic~n 

itself is technically impressive, the result for u is not very encouraging silrcc it viola,tes t lw 

v > $ requirement set by the close-packing argument in Sec. 2.2.3. ' L ' h  accxratry of the 

calculation for y is still unknown. 

The next important development was a stability analysis by Nelson and Peliti [95] of 

the flat phase of a PTM model that contains an in-plane elastic energy (which givcf: a.11 

energy cost to  local membrane stretching and a bending energy term similar to E:y. (3.3)). 

Both of these energy terms were studied in a Gaussia~l approxjrnat,iosl. They sfiowcd that 

in-plane oscillations of an elastic membrane cause the bare hendirig rigidity to diverge at  

long wavelengths under renormalization. The resul tjng increased energy cost i i t  folding f, ht* 

membrane !eads to  a stable flat phase. 

The realization that crystalline membranes with a non-zero bare bending rigitljty car] 

be  flat, combined with the results on crumpled membranes [31], led Kantor, Kardar and 

Nelson [32] to predict a crumpling transition much like the one discussed irr Ref. 1791 for fluid 

membranes. This prediction was tested by performing MC simulations cin a PrJ'M srtc)(Jc?l 
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that included a bending energy. This model will subsequently be referred to as the PTM, 

model. The results of these simulations indicated that there was, in fact, a second-order 

phase transition between a flat state and a crumpled state. Ambjorn et al. [37] also did MC 

sirnulatiorls on the PTM, model and discovered a second-order crumpling transition. Self- 

avoidance was not included in any of these simulations because SATM simulations are much 

more CI'U-intensive than comparably-sized PTM ones, and because earlier simulations on 

SATM's [31] showed that they crumple in the absence of any bending rigidity. Thus, the 

transition from a low-temperature flat phase to a high-temperature crumpled phase was 

still expected for a SATM with bending rigidity, albeit with critical exponents different 

from those of a PTM,. 

David and Guitter [36] added non-linear terms to the model studied in Ref. [95] and 

performed a RG analysis using a l / d  saddle-point expansion. They found a non-trivial 

UV-stable fixed point, which they were able to interpret as a signal for a second-order 

crumpling transition. Aronovitz and Lubensky [96] studied a D-dimensional generalization 

of this model. They found that, for D < D,, = 4, conventional (harmonic) elastic theory 

[97] breaks down, and all elastic constants are renormalized either to zero or infinity in 

the infrared. They also calculated the scaling exponents for the elastic constants using an 

E-expansion, where E = 4 - D. 

Paczuski, Kardar and Nelson (98, 991 subsequently described a Landau theory for the 

crumpling transition using the d-component tangent vectors of the surface drlds; as a set 

of order parameters. When combined with the requirement of rotational invariance, the 

resulting Hamiltonian is very similar to an n-component @model. At low temperatures 

the fia~niltoriia~! studied in Ref. [95] is recovered, while a t  high temperatures it reduces 

to ,YO of Eq. (2.6). They did a mean-field analysis of the model that included SA in the 

Flory approximation, and found, as expected, that it does not destroy the phase transition 

but dues change the scaIing exponents. They also included critical fluctuations in the the 

context, of an 6-expansion and found that the transition becomes weakly first order for 
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d < d,, M 219. Aronovitz, Golubovit, and Lubensky [I001 furt,her analyztd t . 1 ~  1,antlan 

theory, using a l / d - e ~ ~ a n s i o n , ~  and were able to recover results of Rcf. [;%]. They irlso 

calculated the lower critical dimension, below which the crumpling tra.~lsition clisappcnrs, 

and found Dl, = 2 - 5 + 0(1/d2). 

As a result of these investigations, a cullsistent picture of SKYIvf's cuhedded it1 ~ t "  

began to  emerge: Thermal fluctuations creake an a,nomalous increase i l l  the beurling rigicli ty, 

leading to  a low-temperature flat phase. Increasing the temperature was cxpectccl to rcsdt, 

in a second-order (or very weakly first-order) phase transition to  a crumpled state with 

u = 0.8. I t  was, therefore, somewhat surprising whcn Boa1 and Plischke rcported [33] ttla,tp 

they found no indication of either the crumpled phase or the phase tsansitiou in MQ: stutlies 

on SATM's embedded in x3. In fact, they found u = 1.0, indcpendcnt of te~uperat~urc. This 

last point was soon confirmed by Abraham, Plischke and ltudge [34], who did molcculnr 

dynamics simulations on a similar model, but with the tethers replaced by a n  at,t,ri~~t~iv{l 

potential. Ho and Baumgartner [ lol l  also did MC simulation studies on a, SA triangula,r 

plaqrrette model7 and the SATM model, both embedded in It3, and fourrd v = 1.0, This 

discrepancy between the simulations of SATM's and the previously rrierr tior rcd tlworr: t,ic:a.l 

work has yet to  be resolved satisfactorily (see Sec. 4.5). 

4.3 Monte Carlo studies of TM's in d = 4,5 

4.3.1 Motivation for higher dimensional studies 

Because there has been so much controversy about the persistence of the flat ylrasc at  high 

temperature and because it is such a surprise, it has been cor~sidered jtnporta~~t, to ohtain 

a more detailed understanding of this issue. One possible area of invcstigathu is the rolc 

 his l/d-expansion exploits the analogy with the n-component 44 model a d  is cliffcrerrt from the orw 
used in Ref. [36]. 

7 In this model self avoidance is enforced by forbidding each triangular plaql~ette from irrtcrs<:cting any 
other plaquette (see Sec. 4.5.1). 
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of the embedding dimension d in determining the phase of a SATM. Recall that a SAW 

changes from a Flory-crumpled state to a Gaussian-crumpled state when d /d,, = 4 [4]. 

Indeed, the study of polymers in If14 is a useful starting point for understanding the scaling 

behavior of polymers in R ~ .  Tt seems natural to ask whether something similar occurs for 

SATM's. Of course, this analogy cannot be taken too literally, since we know from the 

discussion in Sec. 2.4.2 that d,, = m for SATM7s; nonetheless significant effects due to  a 

change in d are possible. 

More generally, it is desirable to have a more complete understanding of the (D, d) phase 

diagram shown in Fig. 2.4 and, particularly, to locate its phase boundaries. The non-local 

nature of the SA interaction makes analytical attempts to do this difficult and unreliable, but 

many points in the phase diagram can be investigated using simulations. Although the SA 

interaction makes simulations more time consuming, it creates no difficulty of principle. The 

rernai~rder of this section describes MC simulations done for two such points in the (D, d) 

phase diagram - SATM's embedded in d = 4 and d = 5. Aside from simply measuring 

t.he scaling exponents vjL), I will attempt to address two more-general questions: Does the 

SATM model have a rough phase?; and, what effect does increasing d have on the SATM 

phase? 

4.3.2 Simulation details 

Although all the simulatiorls described in this chapter were done on SATM's, many of the 

simulat.ion details are equally applicable t o  PTM7s. The parts of the following discussion 

that refer t o  a T M  are meant to apply to both. 

A TM i:, "cor,st.ructed" en a computer by creating a labelled list of d-dimensional vectors 

[one for each vertex), which represent the locations of the vertices in Etd.  The initial 

locations are chosen so that the vertices form a flat, nearly stretched configurati~n.~ A 

'If the ~imulation is started from a completely stretched configuration, it is ahnost impossible for the 
vertices to move since practically every trial move will violate the tethering constraint. 
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second list contains the intrinsic nearest neighbors for each vcr~cs. ancl is usod for criforciug 

the tethering constraint Eq. (2.1). In all the Tkf sini~~lations discussed in this t l ~ & ,  the 

tethers form a triangular lattice with an hexagonal boundary, like the onc sllowli i l l  Fig. 1.1. 

For a TM of linear size L,  there are N = (3L2 + 1)/4 vertices. 

The are are two problems that arise from starting the simrila,tion in a sprcially cl~ascri 

flat configuration. The first is that such a configuration is Car fror~r wluilil~riu~~l, so tl;t.t;t 

taken during the initial relaxation process will not give i~lformation a h r  t t lic cq~r ilihritlrii 

properties of the system. Once the initial relaxation time is known, this problcrll can IN: 

handled by simply ignoring the data from that part of tile sirnulatioll. 'i'hc seco~icl problcrri 

is that typical equilibrium configurations might not be easily accessible to tlic SATM on t,lio 

time scales available in the simulation. In particular, crunlplcd con figu ra tioris lr i  a,y 11o1 1~ 

readily accessible from an initial fiat phase. This problem has bee11 acltiressetl I)y stutlyir~g 

the effects of crumpled initial configurations on the long-t.ime behavior of t l ~ c  siutu intion 

[45]. If configurations characteristic of the true equilibrium state arc rrcrt, cqlrally accessil)lc 

from both types of initial configurations, we might expect to find nlca,s~rral)lc clifliwnws 

in the "equilibrium" states obtained from them. The crumpled con figrr ratio~ls axe fbr~ncd 

by adding an attractive central potential to the simulation. This prod uccs vcry rorrl j~;ect 

configurations with a value of v near the close-packing limit. The potont,ial i s  tlitrrt t r t  rrlcd off' 

and the SATM is allowed to relax to an "equilibrium" state. hi1easurc:ltrcnts orr sudr systc:rrls 

show that they are thermodynamically indistinguishal>le from configuratioi~s obt;tirrwl frr~~rr 

the flat phase. Of course, it is still possible that the true equilihriusrl state* is trot, scarlily 

accessible from either type of initial configuration; but, the above procedure iricrmscs our 

confidence that the configurations obtained in the simulation are represerr tativrr of the tr uc 

equilibrium. 

Temporal evolution of the simulatiol~s proceeds by a standard Mtlctropolis algoritiirrr 

[102]. With the central vertex held fixed to prevent a global tralrslatiau of the 'I'M, 0 1 i ~  of 

the remaining vertices is chosen a t  random and displaced hy a randorn (2-t1irrrertsiorra.l vct:tm 
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If the trial move does not violate the tethering constraint, Eq. (2.11, or, for SATM's, the 

acfditiorial constraint Eq. (2.2): the move is accepted. ,il' - 1 such trial moves constitute a 

MC t i ~nc  step of the network, or, more simply, a MC step. A natural time scale (measured 

i n  M C  steps) is the Rouse time [32], 

where p is the maximum length of the random-move vector. The Rouse time is an estimate 

of how long it takes a point in the membrane to drift a macroscopic ( 2 L) distance. In 

practice, p is chosen to have a vahe that causes one-half of the trial moves to be accepted. 

Since there is no intrinsic energy scale in the model, acceptance of a trial move is determined 

solely by the constrair~ts, and in this sense the simulations were done a t  infinite temperature. 

Data, consisting of the eigenvalues x ! ~ )  of the inertia tensor Q!;), are taken every rR/10 

MC steps. 

After a run of apprmimately 1000rR, the simulat.ion is interrupted to  determine the 

initial relaxation time, which is typically about 100rR. The da.ta fr,,m this part of the 

simulat'ion are discarded. The simulation is then restarted and allowed to  run until sufficient 

data lias been acquired so that the statistical error in Rg is less than 1% at  the 2cr level. 

This ensures that the statistical error for the v!~)'s is about 5%'. 

An important consideration in SA simu1at.ions is using an efficient method t o  test for 

violatiom of the SA constraint. The naive approach of simply calculating the distance 

between all pairs of vertices is undesirable, since the resulting algorithm is 0 ( M 2 )  in CPU 

time. Breaking up the embedding space into &dimensional cubes (typically the same size 

as the hard-sphere radius of a vertex) and keeping track of which vertices are in each cell 

rneans that the S-4 test need ouly be applied to vertices in adjacent cells. The resulting 

algorittrxn is O ( N ) .  This increase in computational speed is achieved at the expense of 

increased CPU memory requirements, which are now o ( L ~ ) .  In practice, d 2 4 simulations 

'This criterion ssas used for the original simulations. Other, more stringent criteria, which lead to longer 
simulations, will be discussed in ,k. 4.4.3 
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require so much memory that the cell algorithm is irnpractic.al. This problc~r~ is solvttl l)y 

changing the cells to  "hyper-tubes'' that are square in two directions n1lc1 infinite i l l  the 

other d - 2 directions.l0 The algorithm is most efficient when the ~imxjmunl number of 

vertices in any hyper-tube is minimized. This is a.chieved by orie~it~ing t4hc 1y.pi.r-tubes so 

that their infinite-length directions are parallel to the eigenvectors belonging to  tlw tl - 2 

smallest XIL)'s. Because the SATM rotates ie the embedding space with time, i t  must bv 

periodically realigned with the hyper-tubes. Realigning the Stt'l'M a bout mice !)car Rotrst* 

time keeps the vertex occupancy of the hyper-tubes down to a reasonable ~ l u l i h c s  

4.4 Analysis and results 

4.4.1 Data analysis 

The raw eigenvalue data are used to  determine three things: ( I )  the eigenvduc aut.oc.os+ 

relation function, (2) the shape parameter S.r, and (3) the scaling exponents I)!").  T l i r  

asphericity could also be calculated from the data; but it is of little intesesl,, silicc, wc as<* 

mainly concerned with whether or not SAThIfs crumple. 

The autocorreiation function. The eigenvalue autocorrelation furrction, 

( L )  
( [ ~ y ' ( t  + t') - ( ~ ! ~ ) ( t  + t ' ) )  ] [ ~ : ~ ~ ( t ' )  - (Xif')(tf))]) 

i' 1' Ci ( t )  = 1 (1.2) 

1' 

provides a measure of the statistical independence of configurations obtained by the tirrict 

evolution of the sirnutation. The angle brackets (. . .It, denote a n  average over tlrc MC time 

tf fmezsured in units of the Rouse time), i. e., 

Provided that 8 >> T, u-here T is the longest correlatioi~ tirnrj for the syst.errr, Eq. (4 .3)  =- - 
effectively becomes an ensemble average. 

"This idea is origilaUy due to 3%. Plischke. 



Figure 4.1: The autocorrelation function for Xq obtained from a d = 4 ,  L = 17 simulation 
of a SA'rM. The total length of the run is 1 8 0 0 ~ ~ .  The solid line is a plot of Eq. ( 4 . 4 )  with 
T:'" z 0.42. Note that the solid line increasingly underestimates G'il7)(t) as t increases, as 

will any choice of r,(17' at sufficiently long times. 

The information in Eq. (4.2) is important for estimating the size of the statistical erro1.s 

in tfie eigenvalue data and for determining the length of the initial relaxation time. Although 

rLi (51; ( 1 )  is characterized by sek-era1 time scales, it is nonetheless useful to give a one-parameter 

characterization, which is determined by assuming that, for short times, 

The eigetrvalue refasation time (also measured in Rouse times) is, then, 

Figure 1.1 shows a plot of a typical ~ y ) ( t )  obtained from one of the simulations along with 

the  estimated value of ri. Although the fit is reasonably good for short times ( t  <, I), the form 



Figure 4.2: Evidence for the presence of long-wavelength oscillations i n  t11c sii~~ulit.tions. 'I'lw 

curve shows versus t' for d = 5 .  Although the oscillations 11;tvc. am a,~~rplil,~rclc 

of only a few percent, they can create systematic errors in the estimates of tltc v!''''s that 
are as large as 15% (see Sec. 4.4.2). 

in Eq. (4.4) clearly underestimates the ~orrelat~ion at longer times. Choosing a, I argcs valuc 

for T; does not really solve the problem, because dInC,(t)/dt - O as t - rxi, so arly fit, t o  thcl 

data of the form in Ep. (4.4) will underestimate the correlation for sl~fricier~tly largc: valiics 

of t .  The reason that T!~) becomes an increasingly poor cl~arac~eriaa~ion of el.)([) with 

increasing 1 is because Eq. (4.5) is only sensitive to short tilne-scale t:orrelatiorls, i r ~  ccti~trast, 

(Ll t o  ( i f ,  which is better described by a spectrum of relaxation tirr~cs. i~~lrtltesrnortt, lhjs 

spectrum contains some very long-period relaxation times. For exam pip, the oscifl a,tiorts 

in Fig. 4.2 induce additional correlations that fiave very long relaxation t,irnr:s and arc  rot, 

accounted for by Ey. (4.5). The long relaxatjori times are also L-cfepentler~t; i n  gcncral 

(L )  Tm,- 00 as L -  K. 



CIlAVTER 4. SELF- AVOIDIArG TETHERED MEMBRANES 6 8 

The s i m p  parameter. It is straightforward to apply the definition given in Eq. (2.27) to 

calculate s,!jL) from the raw eigenvalue data. If SATM's do not crumple, then we expect 

Sd - i,-2us - 0 as L - m ( v , ~  ( u  - u ) ) .  Therefore, plotting l n ( ~ r ) )  versus in(%) 

and obtaining a straight line with positive slope is evidence for no crumpling. 

The  scaling exponent. There are several ways to determine vj. One method, inspired by 

similar techniques used in polymer studies [103], is to calculate the structure function [33], 

wit ere 

kj = kG{r}j, (4.7) 

and O(r)j is the Bt" eigenvector corresponding to the eigenvalue A?'. The i5j7s, therefore, 

define a coordinate system attached to membrane. Note that, in addition to the time 

average denoted by (- - - ) t , l  Eq. (45) also contains an average over the membra.ne coordinates, 

which is taken with respect to a frame of reference fixed to  the membrane rather than the 

"ia.boratoryn frame. Rescaling the coordinates, as in Eq. (2.39), naturally leads to a scaling 

form, 

( L )  Sj (k) dj{xj), (4.8) 

For the proper choice of u j ,  plots of s ( ~ )  versus xj  for different values of L will collapse 

to a single curve. Determining vj in this way has the advantage that it allows one to test 

whether or not s(~) (&)  - $" when zl is sufficiently large. Abraham and Nelson [76] 

have argued that simulated SATM? that pass t.his test are large enough for scaling laws to 

be valid. A disadvantage of this method is that it entails a. certain amount of subjectivity 

in decidirlg what value of ~5 gives the best fit to the data. This subjectisity also makes it 

difficult to assign meaningful confidence levels to the exponent error estimates. 
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Another method for determining u., is to plot AiL' versus I,, and t l i ~ t r  to d 0  il lcwt 

squares fit to the data assuming the scaling form X i L )  - I,'"] [3-11. 'This nwthod clom not 

rely on any subjective judgments to determine u1, SO a iueaningftll error a~ralysis ran I)c 

done, but it suffers from the disadvantage that it treats all data points, rcgardlcss of their 

L value, as equally important. This is clearly undesjrable, since we cspc3cf t 11c largc-L data 

t o  reflect the Long-distance scaling behavior better than the srrtall-L data. Of cotrrsc, i t  

is possible to  weight the data points as a function of I;; but, since tlrcrc is c~irrt~nbly l ~ o  

theoretical understanding of finite-size corrections to scalilig for Si2'SM's, t h m  is t r o  way Lo 

choose between various weighting schemes. 

The last method for calculating uj is to use the eigenvalue data. fro111 two different-sizctl 

simulations to calculate a series of L-dependent scaling exponents, 

where L' refers to  the SATM next smaller in size than the I,-sired one. Tltc r,jL)'s are t11e11 

plotted versus 1/L, and vj estimated by extrapolati~rg the data, to I//, = 0. C:alc~~l;t.t,itrg I / )  

in this way makes the importance of any finite-size effects more evidertt, thau in  t,hc prcvio~~s 

methods; however, i t  does produce a larger error estimate for vj . Anothcr ad van tagr of tihis 

method is that it provides an internal consistency check for the statistical error t:stirtlatc~; 

on the vjL). For those SATM's with L values large enough to he in  the scaliug rcgitnn, w~ 

expect the derived vjL"s to be ordered properly, i. e., < X f i  ujL' < ur' (w i th in  

experimental error). Thus, for sufficientJy large L, 

where 6vjL) is an estimate of the statistical error of vjLJ. As we s l d  sca in Sec. 4.4.2, 

Eq. (4.11) turns out to  be the most stringent test of the data. 
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4.4.2 Error analysis 

r ' 1 here are two important sources of error in the determination of the x!~)'s: statistical er- 

rors a d  systematic errors. In addition, the determination of the vi7s and Sd from the x!~)'s 

generate finite-size effects. 

S'tafistical errors. Determining the size of the statistical errors for an uncorrelated data set 

is straightforward [103]. However, as Fig. 4.1 illustrates, the data obtained from successive 

configurations are highly correlated, and these correlations are not well-described by a char- 

acteristic relaxation time. Several methods are used for handling this problem. They are 

(it! order of increasing sophistication): 

1. The data obtained irom each configuration is regarded as independent, and a straight- 

forward [I041 error analysis done. This treatment provides a lower bound on the error 

estimate. 

2. The data are binned, with the bin size given by %in = - l n ( . ~ l ) r , ( ~ ) ,  where T : ~ )  is 

defined by Eq. (4.5) .  Assuming that c!~) has the form given in Eq. (4.41, this gives 

(L) Ci = 0.01. Numerical experiments [I051 suggest that, if the correlation between 

successive bins is less than 0.01, then the correlations can be safely ignored for the 

purposes of error estimates. 

3. This method is the same as the one above, except that rbi, is determined by measuring 

the c ! ~ )  directly from the simulation (i. e., without assuming that the correlations are 

( L )  . of the for111 in Eq. ( 4 4 j )  and requiring that Ci (a:,) _< 0-01. 

-4. A direct calculation of the error for a series of correlated measurements is done [105]. 

This method also ignores correlations less thall 0.01 . 

The data are analyzed using all four methods. In practice, methods 2-4 give similar 

results, but i n  all cases the largest value obtained is used as the error estimate. All statistical 

errors are calculated at the Za level. 
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Figure 4.3: An example of how systematic errors caused by long-wavcle~rgtt~ oscilli~.t,iorrs irr 
( L )  the X i  's affect the ordering of the vjL)'s. For sl~ort siniulation times, tlrc systcl~la.tic arrors 

are relatively important and the u/~')'s do not satisfy Eq. (4.11). As tbr: simu!at.ion tim 

increases, the systematic errors become relatively unimportant and tlw u!")'s do satisfy 
Eq. (4.11). The error bars represent la statistical errors. The data poi11 t s  t~ i~vc  beorr sprc:ir,tl 
out slightly along the t-axis for visual clarity. 

Systematic errors. In addition to the statistical errors, there are systcr~ratic orors t h  aft 

arise from the long-wavelength oscillations in ~ ! ~ ) ' s .  If the simulation tirne is only a iractim 

of the longest oscillation period ~ ( ~ 1 ,  then the average will be biased by this cff(?ct. 'J'tre 

existence of such long-wavelength osciiiatjorls js widen t from Fig. 4.2, w hcre ~ ( ' ' 1  z 1 f f l ) O ~ ~ ~ .  

Although the eigenvahe osdllation amplitudes are typically ouly a few ycrccr~t, they cam 

lead to  systematic errors in the estimates of the ~ ! ~ ) ' s  (calci~lated i~si~ig liq. (4.10)) that, are 

as large as 1.5%. For t < ~ ( ~ 1 ,  the systematic error typically dominates the: statiiitic;tl error. 

This can be seen in Fig. 4.3, where the tirne evolution of vj2" is plotted. Thc late-time 
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v/")'s are frequently outside the range predicted by the statistical error estimates of the 

early-time values, thus i~ldicating the presence of significant systematic errors. The t 5 T(=) 

region also does not satisfy Eq. (4.11). 

Fortunately, the systematic error is proportional to 1 / ~ ( ~ )  (as opposed to the statistical 

error, which is proportional to 1 / m ) ,  so at sufficiently large times it becomes small 

relative to the statistical error. There is no way to know a priori how large T ( ~ )  must be 

i n  order to insure that the systematic errors are negligible. However, it seems reasonable 

to assume that the systematic errors are responsible for the failure of the u!~)'s to satisfy 

Eq. (4.11). This certainly appears to be true for the data in Fig. 4.3, where v!21) does satisfy 

Eq. (4.11) at sufficiently large times. In all subsequent discussions the systematic error will 

be assumed to be unimportant whsnever the u!~)'s satisfy Eq. (4.11). 

(L) Finite-size effects. Once the errors for the X i  's have been determined, it is straight- 

forward to calculate the errors for vjL). However, the determination of the vi7s from the 

v!~)'s introduces another source of error. Because the simulations were done for finite (and 

rather small) L-values, the u!~)'s must be extrapolated to the L + m limit to obtain the 

thertnodynamically meaningful v;'s. The errors generated by this extrapolation are difficult 

to estitnate without a finite-size scaling theory. For the vi's they are estimated by sim- 

ply extrapolating the statistical errors from the two largest L-value measurements to the 

L - m limit. This method probably overestimates the finite-size errors, but it will not 

underestimate them provided that the statistical and systematic errors are not so large as 

to mask the L 7 w trend in the data. 

4.4.3 Results 

The results of the sirndations are summarized in Tables 4.1 and 4.2 and Figs. 4.4 - 4.9. 

d = 4 results. From Fig. 4.4 it appears that: (1) the two smaller eigenvalues have similar 

scaling exponents; (2) the two larger eigenvalues have similar scaling exponents; (3) the 

scaling exponent for x !~ '  and ~ f '  is different from the scaling exponent for A?) and hf). 
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Table 4.1: Scaling-exponent results for sin~ulations of SKI'M7s crubcddcd i l l  cl = 4,s. 'l'lrc 
exponents were determined in two different ways: Method (a) calcola.tes the vj L)'s  usitlg 
Eq. (4.10) and then extrapolates this information to the L -- oo limit. The nr~certainties 
include b0t.h statistical errors and finite-size effects. Method (b)  dctermincs the 1);'s fror~l a 
least-squares fit to the points plotted in Figs. 4.4 and 4.7. For the table entries markcci wit11 
an asterisk the L = 5 data has been omitted from the least-squares fit. Tlic uncerl,aiuties 
contain only the statistical errors. The us's are obtained from the slopes of the curves in 
Fig. 4.6. 

Table 4.2: Data for MC simulations of SAT'M;ll's embedded in d = 4,s. 717 is measured in 
(L)  ( L )  units of MC steps. rmaX and %in are in units of TR. Tmax is the largest eigrmvdue relaxation 

time obtained from the size-Z, simulation using Eq. (4.5). ~ , j , ,  is dctcrrriir~cd frosr~ error 
analysis method 3 in Sec. 4.4.2. Q,;, is scaled by the factor l/ln(lOf)j i r l  order to provide 

(L)  a comparison with TR and T ~ .  FLOP is the total nurn t~r  of flo;l,irtg-pint opwations 
carried out for each simulation. 

d 

4 

5 

-- - 
L MC steps ( X  10') TR TA\~ nin/ 111(100) FLOP ( x 10") 
5 1.39 1262 0.13 0.26 4 .fi2 
9 5.39 4896 0.27 0.75 66.0 
13 108 10788 0.53 1.38 3116 
17 83.8 19313 0.85 3.04 5464 
21 104 30603 1.13 4.28 19091 
5 2.80 1332 0.12 0.29 18.9 
9 10.6 5043 0.18 0.4 1 239 
13 23.8 11349 0.33 0.82 13/18 
17 62.2 20063 0.50 1.23 1879 
21 97.7 31531 0.71 1.81 15fi4.3 
3 1 107 71384 1.21 2 -78 54 369 



CfIA f "L'E12. 4. S E L F -  V TETHERED MEMBRANES 

Figure 4.4: The ct = 4 eige~ivalues versus L. The straight lines are obtained from a least- 
squares fit to the data points. Not all of the fits include the L = 5 data (see Table 4.1). The 
error bars ( 2 4  have been omitted for clarity. In all cases they are sma.Uer than the size of 
the symbol. 
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Figure 4.5: The d = 4 scaling exponents versus 1/L. The clashed lines ill~strittc tkrc pro- 
cedure for extrapolating the data to the L -+ m limit. The large separatiot~ bctwccn 111 

and u4 and the separation between u4 and unity suggest t h a t  SA'I'M7s c~r~l~ctldeti i r ~  IR%,r.t 
rough. 

Figure 4.4 thus suggests that the SATM is in the rough phase. 011 the other 11;1.11d, ]pig. 4.5 

gives a somewhat different picture. The most obvious feature of this graph is tlrc stroag 

L-dependence of u p ) .  If the trend established at small L-values were to co~lti~nln, it iniglti. 

suggest that the SATM has a phase with u4 = v3 = u2 # u,. Although the evidcrlcc- is 11ot 

conclusive that us = u4, this statement is certainly consiste~~t with the data .  

In order to appreciate better the meani~ig of Fig. 4.5, i t  is worthwhile to cunsidcr w h a t  a. 

graph of the uiL!'s should look like for each of the phases. If the SASM were flat, i n  t lw sena: 

of Sec. 2.2.3, then the graph would show, for sufficiently large L, Lhr ~ ( ~ " s  i r l  t,wn cl ustcrs. 

(Lt The first cluster, consisting of u e ,  uy ' ,  and udVl ,  would llaw a value of unity. Thc second 

cluster, consisting of the remaining v;~"s, would have a smaller value. Fu r t  Lrmriora, wa 

would expect that within each claster the vjL"s would be properly ordered as in Eq. (4.1 1). 

If the SATM were rough, the viL)'s would he ordered and  clustered in the sarnc way as the 
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Figure 4.6: The shape parameters Sq and Ss versus 11 L. 

flat phase, except that ug) ,  v y ) ,  and UF), would have a value less than unity, If the SATM 

were crumpled, all the U:~)'S and v g )  would form a single cluster with v < 1. 

Figure 4.5 thus indicates that SATM7s embedded in R4 are in some kind of rough phase, 

i. e., they are not flat or crumpled. The possibility that the SATM is crumpled is ruled out 

by the separation between Q and v ~ ,  which is at the 5a level. Further evidence of at least 

two distinct scaliq exponents is given in Fig. 4.6, where apparently SY) --+ 0 as L + co. 

The data in this figure also give a value for us consistent with 2 (ud - ul ). 

Figure 4.5 also shows an example of the extrapolation procedure used to  obtain the vi's 

and 6~ ; ' s  shown in Table 4.1. il'ote that the estimates for the ui7s have been chosen to be 

midway between t.heir upper and lower error estimates, as can be seen in the example. This 

procedure has i;at been used on uz because it exhibits such strong finite-size effects. All 

that can be said is that vi 5 vz <_ ud. The extrapolations for vl and v3 has been done 

using the two intermediate-L data points, instead of the two large-l data points, because 

the cornbillation of a large statistical errors and significant sytematic errors make vl2') and 

v?') too unreliable for the extrapolatjon procedure. 



Figure 4.7: The d = 5 eigenvalues versus L. The straight liues are oI>ti*.ind from a, 1cit.sL- 
squares fit to the data points. Not all of the fits includc the I, = 5 data (SCC l1aI>lc 4 . 1 ) .  

d = 5 results. Figure 4.7 appears to suggest that SKrM's embedded in Ill," arc izlso 

rough, but less so than those embedded in lR4. However, Fig. 4.8 shows that, thc d = 5 

results are even more ambiguous than the d = 4 results. At intermediate valiros of 1/1, tfrc 

exponents are apparently separated into two distinct clusters, snggt!sting the 1) zst:nce of 

the rough phase. However, the data for srrialler values of 1/L indicate that t,he clust,crir~g 

is greatly reduced there. It is impossible to say, OIL the basis of this data, wf~ethcr t,his 

trend continues for even smaller values of 1 / L  and ever~tually leads to thc cru~nplurf phase, 

or if the trend simply leads to two [ or perhaps three) clusters that arc sotnewhat closor 

together but still separate. In either event, it is clear that the data are ttoi, yet i n  t t~c  

scaling regime. Figure 4.6 is also inconclusive, since it indjcates that ,i':; is decreasing with 

decreasing 1/L, but the L = 31 data point, sugsests that '9.5 may be approaching a constant, 

value of approximately 0.08, which would be a signal for crumpling. 



Figure 4.8: The d = 5 scaling exponents versus l/L. The data points axe plot t ,or l  at, I /  /, = 
2 / (L1  + L z )  (Ll and L2 are the L-values of two adjacent-sized si~nnla(.ior~s). 'I'hc? c l ~ ~ s t ( ~ i ~ ~ g  
of the exponents a t  each value of L and the fact that they are correctly ordtlretl ( t o  wit, hi11 
experimental value) is taken as further evidence that the statistical errors haw hccn reliably 
estimated and that there are no significant systematic errors. Note tllri good s c p a r a t h  of' 
the exponent clusters at small L and the tendency of this gap to dccscmc~ as I, inrrcasrs. 
Because of this trend, it  is impossible to tell from the data whri,her tfic t.~~~l'rrlotfylldllli(' 
phase of this system is rough or crumpled. 



1;igurt. 4.9: The largest (vd) and smallest (vl) scaling exponents as a fux t ion  of embedding 
clitncrrsiou. The d = 3 data is taken from Ref. [45]. The large uncertainty for the d = 5 y 
value is caused by finite size effects. The error bars for the d = 4 and d = 5 data points 
a.re calculated usi~rg hllettiod (a)  in Table 4.1. The d = 3 error bars reflect only statistical 
errors. Tlle data points have been slightly offset for clarity. The Flory value (vF)  and the 
close-packing value (v,,) for v are also shown for comparison. 

This co~zclusior~ is sornewhat different from the one published earlier in Ref. [45] (1989), 

wlriclz concluded that S,4Ti\if7s embedded in were rough. The results discussed here are 

based or1 snl)st,a.ntially lollger si~nula~tion runs (typically two to  three times longer than those 

in Ref. [.Is]) as well as larger L values. Ta.ken together, Ref. [45] and the work described here 

offer a ca.ut,io~~a.ry tale on the wisdom of doing si~nulations in the absence of experimental 

or theoreticai gt~ides. The prohibitive CPU requirenlents needed for reliably simulating 

sigitifitantly larger L-values make it unlikely that the identity of the d = 5 SATM phase will 

be resolved in the near future. 

The esponent results for both si~nulatiolls are summarized in Fig. 4.9. 



4.5 Recent work 

There have been a series of recent developments i n  the field that  a w  tlirc\ct ly rclcva~lt to t I I P  

issues and results discussed in Sec. 4.4.3: (1) recent esperirncnts [ I T ,  IS] and h l ( '  sinrtllat iotis 

[35, 1061 have found v(rl = 3 )  0.8; (2)  recent ~ ~ ~ o l e c t ~ l i ~ r  dyna~uics simulalio~is ou SA'I'hl's 

embedded in d > 3 j l j  find no rough phase for (1 = 4 and a crunlplcd pllascl (i>r il > 5. Ilol,ll 

of these developments are discussed below. 

4.5.1. Recent results for cl = 3 

Although the following discussion concerns d = 3 SKI'RII's, it is rclcva~~t t o  tlltt w o r k  in 

this chapter because it  calls into question the appropriateness of rnoclclli~rg real c.r;ys~ a Ilirw 

membranes usins the SATM model studied here. 

Because the esistence of the high temperature flat pllasc is such a suipristl, ~,h(>r(i  Itas 

been a certain amount of speculation as to its cause. Most of t l m c  cosijccturcs Soc.tls OII  t h  

idea that  the SA interaction somehow induces an effective bending rigidity, ewin if' t , l ~ c s r c ~  

is none explicitly present in the model. Abraham and Nelson [76] have r c c c ~ t l y  offiwtl 

a simple picture of how this might occur: The hard spherc%s that arc ostd t o  c1iforc.c t, i rcl  

SA constraint have the additional effect of restricting the range of ;tllow;t lh: a rtglch tlcfi ~ c v l  

by the normals of two adjacent triangles. As a result of this restriction, t, his angle ha:, i1 

non-zero expectationt which depends only 011 the ratio of the hall size anti t11~  tctllcr lc~t~gi,lr. 

A similar effect can he achieved by adding a beriding energy term sinril;tr to l:q. (:],:I) ~ I I  a 

Hamiltonian without self avoidance. The conclusio~l drawn fron: this argument, is l,ha,t, self' 

at-oidance induces an effective "entropic bending rigidity". 

Abraham and Kelson also support this idea with a simulatiori s tudy of a 'I'M with  first- 

and second-nearest-neighbor SA i2teractio~s csaly. The absejice of I O I I ~ - I . ; L I ~ ~ Q  SA ( :~ISSCS t h  

T M  t o  crumple; but, as the tether lengths are shortened, the Th4 is ohsrrvetl to urrdwgo 

an apparent "phase transition" to  a flat state. If the elltropic be~rdi~rg rigidity itlea is 



correct, tlieli shortenirrg the tethers has the effect of increasing the bending rigidity. Thus, 

this simulation is supposed to  demonstrate that TM's without long-range SA can still be 

made flat by increasing the errtropic bending rigidity arising from second-nearest-neighbor 

intcractions between hard spheres. 

The calculation and simulation data given do not provide a very convincing argument 

for the finite ball size as the source of the bending rigidity. For example, this explanation 

docs not seem to acco~mt for the flat phase observed in simulations [34, 451 employing very 

srriall hard sphe~es (as srnall as one-tenth the size used in the simulations here). Another 

objection is 1 hat iderltical simulat.ions could be used to "prove" that second-nearest-neighbor 

hard core interactions are sufficient t o  produce "flat" polymers, which is clearly wrong. It 

serms quite likely that all that is accomplished by reducing the tether length is to  increase 

tire effective plaquette sizc (much as reducing the tether length in a polymer increases the 

effective segment size), and that the crumpled behavior would be recovered on a much larger 

length scale. 

A1tJlrough the evidence provided in support of this idea is not convincing, the idea itself 

has attracted some interest. Baumgartner [35] has suggested a model of SATM's that does 

not induce an effective entropic bending rigidity. This model, known as the self-avoiding 

plaquctte model (SAPM), consists of a network of tethered vertices similar to  the PTM 

described i n  Sec 4.2.2. The model differs from the SATM in the method used t o  impose the 

SA constraint. Rather than using hard spheres, the triangular plaquettes (defined by the 

triplets of mutual nearest neighbors) are forbidden from intersecting each other. Since the 

plaquettes in the SAPM have zero thickness, the range of angles for the plaquette normals 

is not restricted. If t.he Abraham aiid Nelson idea Is correct, then the SAPM will have zero 

effective bending rigidity and will crumple. 

Bau~ugartner and collaborators have done three studies of the SAPM embedded in R3. 

The first study [TOl] (published before Ref. [76]) concluded that SAPM's are flat. More 

recent studies [35. 1061 (published after Ref. [T6])  have found that SAPM's crumple with 



v z 0.8. Although there are some minor differences in t l t c  nic.tllods of ti;tt;i ;~rl;tlysis ; \ ~ r t l  

the system sizes studied. these differences do not provide a sat ishctot y cksplanat iotr for t lw 

discrepancies observed [107']. Clearly more work is needed to obtain tlcfinit ivc ans\?.crs ;tl)out 

the properties of the S-%PAL. 

The issue of whether or not SAPM's crumple has implications beyolid tc\s(irlg t IW cntropic- 

bending-rigidity llypothesis. If the later SAPXI simulations turn out to  Iw c.osrct,t, t lltw t hu 

SATM belongs in different universality class than the SAPhI. Th i s  naturally Ic.arls to a 

question about which model provides a better description of real crystalli~rc s i~rk~ccs.  'I'llis 

is not an easy question to answer a primi. However, if cspcriinents turn out. to favor. t , l ~ c .  

SAPM, then much of the rnotivatiou for studying SAThI's (especially for r i  > 3)  wiII hc lost. 

The first laboratory esperiments ou crystalline mc~nbsa,lles 117, I X ]  h a w  i)clcri pcrfortrlcd 

recently. as well. The membranes are made of graphitc oxide (layers of gra p 1 1 i t ~ t ~  lm~ t l c d  

together by osygen atoms) with a typical size of a few ( 3  - 8) snicrosnr*tcrs m c l  a tlric8k- 

ness 50*& < d 5 100A. The interatomic spacing of the carbon atoms is (10 z 2.:iK; thus 

1.2 x lo4 < L 5 3.2 x lo4. After the membranes are synt1iesizc:cl tlwy are suspc~rrdcvl i r ~  

a solvent. The resulting solution contains approximately lO-~nle~i~I)rar~c~s / ( / i~r~)" .  Jnfor- 

mation about the membrane structure factor is obtained by pcrfosrni~~g light, sc.;tf,t,cri~rg 

experiments on the solution. 

If these membranes are crumpled, then their structure f;ict,or will I J ~  govc!rnc:c-l by 1 , l r c b  

theory of scattering for fractal objects, which predicts [l T] 

S(k, R,) = k - " ~ ( k ~ , ) ,  

where dl = 2/v is the HausdorE or fractal dimension of the mernhritri~. In t h e  lo~ig- 

wavelength Emit (kR ,  << 1) the membranes act like p i j i  t scatlmers, m d  we shuirlri ex pi:t:t, 

S t o  be k-independent. Thus, Jimk,, F(kR,j = ( k ~ , ) "  /. In t,hc short,-wavc>lr:ngt,h firrtit,, 

only the  internal structure of the membrane is probed, so t11ftr.e slrould bc n o  dependcrrcc of 

S on R,. Thus, limk,o F(KRgJ = constant and S .v k - d ~ .  



Abraham and Nelson [lOSj have calculated the directionally averaged structure factor 

for a flat membrane, which is necessary for comparing the theory for flat membranes with 

scattering experiments, They find1' 

for 

2xR 5 ,  L k 2  for aoo$l 
2j7R, < k R , <  . 

clctol,u~ is the rnerrrbrane size in the direction perpendicular to the plane defined by the 

rrlembrane itself. Note that the structure-factor scaling exponents 2 and 2 / y  are the Haus- 

dorff dimensions for a flat membrane. After inserting the experimenta.1 parapmeters and the 

values vl = 0.6.5 and cl = 0.25 obtained from simulations, Eq. (4.13) becomes 

S(kl  L )  N k-2 for 6.28 < kRg < 648 

and 

s j - 1  for 648 < k~~  < 2990. 

The quantity of interest in these experiments is df ,  because it can distinguish between 

the f l ~ t  state and the crumpled state. Thus, using wavelengths small enough t o  probe 

only the int.crna1 structure of a membrane will lead to S N kvdf. df can then be readily 

extracted from a log-log plot of S versus kRg. For membranes with a minimum size of 3pm, 

the internal struct.i~re will be probed for k >> 2 ( j ~ r n ) - ~ .  In the actual experiments 

The upper bound on 2; is fixed by the wa.velength (514 nm) of the light source (an argon cw 

laser)- Comparison of Eqs, (4-14) 2nd (4.15) shows that, if the membranes are flat, then the 

esperiments are well within the S - k-2 regime. Thus df = 2 is evidence for a flat phase, 

and elf > 2 is evidence for a crumpled phase. 

 he d u e  given in Ref. [log] for the crossoyer from S N k-2 behavior to S ( k ,  L )  k-*/"l behavior is 
incorrect. Equation (4.1 3) contains the corrected value. 
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Two experiments have beell done so far: the first one [I?] fintic; d j  = 2.-1 f 0.1; t l i t \  

second one [18] finds cif = 2.51 f 0.0.5. In addition, a conlpact pllasc. with (if = 3 (crcntc\rl 

by reducing the sotvent quality) was observed. The authors arguc that thc ol~sc\rtr;~tion of 

a compact phase rules out the possibility that the elf = 2.5 phase is ac.trl;dly a ~nr~t;tstnhlc 

state on the way t o  forming a compact phase. Thc esperin~clits th!ls sccru tn intiicatc\ tha t  

membranes are crumpled with v very close to the Flory value of 0.8. 

As the authors point out, these experiments cannot yet, be regarded as tlefi~~ i tivc.. Ot her 

explanations of the results, such as crumpling induced by internal nicmbranc defects, ncctl 

t o  be explored. A more convincing demonstration that graphite oxide cruruples would I)c 

t o  observe the flat-to-crumpled transition. This should bc relatively easy to do, since i t ,  

requires only that the effective rigidity be increased, which call bc accomplishccl c~it~l~cr. by 

cooling the system or by increasing the membrane thickx~ess. 

4.5-2 Recent results for d > 3 

In a recent article [I] Grest has studied relatively laxge SAlI'M7s f 13 5 I, 5 57) err~1)ecldcxt i n  

d = 4,5,6,8 using molecular dynamics simulations. His results are rat her cliffmcr~l, from t,hc 

ones described in Sec. 4.4.3: Grest finds that Si-TN's embecfdetl in d = 4 arc! flat and tlra(, 

SATM's embedded in d 2 5 are crumpled with v somewhat larger than thc corrc?spoodi~~g 

UF predicted by Eq. (2.53). The numerical results of Ref. [I] are stirrrrrlarixed irk 'Ibble 4 .3  

and should be compared with the results in Table 4.1. 

Grest provides the following argument t o  explain these resalts: Abraham arid Ncl- 

. (:orrect,. son's [T6] explanation for the entropic origiu of the bending rigidity is assumnd tlo bi, 

Grest, then argues that because this explanation invokes the intcractior~s between ncxt- 

nearest neighbors, it is natural to  assume that the hending rigidity is caused by thrcc-Idy 

interactions. Eq. (2.51) shows that if D = 2, then all n-body interactiom arc rc1ftv;ti-r t, ams 

the Gaussian fixed point. However, SATM phases are clearly controlled by a non-Gauseia.tl 

fixed point, and we expect that  near this other fixed point v > vo(= 0 when 0 3 2). A 



'hbte 4.3: The scali~lg exponent results for the SATM simulations done in Ref. [I]. [ is 
defined to be the scaling exponent for the d - 2 smallest eigenvalues. ull is defined to  be the 
st:alin g expollen t for the two largest eigenvdues. 

naive sca1in.g analysis shows that (cf. Eq. (2..51)) 

d 
3 
4 
5 
6 

- 8 

Hence duc3 < duc2 whenever u is positive. Thus, when dUcz > d > dues, the irrelevancy of 

the three-body interaction will, in turn, make the bending rigidity irrelevant, and the SATM 

qi 
1 .O 
1 .O 

0.82% 0.05 
O.69f 0.05 
0.60% 0.03 

C 
0.64i.0.04 
0.77f 0.04 
O.77f 0.03 
O.69f 0.03 
O.6Of 0.03 

will crumple. 

state 
flat 
flat 

crumpled 
crumpled 
crumpled 

This argument has a certain appeal, especially since the results in Table 4.3 support it, 

but it is open to criticism: 

1. As has alrea,dy been discussed in Sec. 4.5.1 the explanation for the origin of the bending 

rigidity given in Ref. [76] is not very convincing. 

2. Even if one accepts the idea that bending rigidity is induced by next-nearest neighbor 

interactions, these interactions still involve repulsion between only two (albeit distant) 

vertices. The n-body interact.ion in Eq. (2.50) contributes only when n vertices have 

the same position vector. Next-nearest neighbors apparently interact via two-body 

interactions - not three-body interactions. 

3. Even if one accepts that three-body interactions are somehow responsible for inducing 

a bending rigidity, they are still unin~porta~nt in any model that contains two-body 

interactions. Recall from the discussion in Sec. 2.4.2 that the effect of the interaction 

terms is to enforce the self-a.voida.nce constraint, and that in the thermodynamic limit 



('4) H&' reproduces this constraint exactly. Clcarly, any configuration bsb idd r~ l  by ti,, 

will be forbidden by H,$! as well. The converse statennit is. of roursr. not truc. 

Aside from the issue of whether or 11ot Grest's esplmation of his rcstllts is rorrcct, 

there remains the more basic question of why his results disagree wi th  the ones clcscl.ibctl 

in Sec. 4.4.3. It is easy to dismiss two explanations: the differei:ce in si~nulat,io~r t.rchiiiclt~t~s 

and differences due to  simulation size. 

Although the two sets of simulations used different simulation techniqrrcs (MC' versus 

molecular dynamics), it is not likely that this is the source of the tliffcrencc. On gcrlcral 

grounds, we expect the SATM model to belong to a particular universality class, wit,li critical 

exponents that are independent of the details of the model. This has certainly IMXW thc 

case for simulations of SATM's embedded in IRT3, where the results for the cri!.ical espicbrtl.s 

appear to  be independent of the simulation technique. It  seems unlikely that a clialrgr~ of t l  

would affect this result. Of course, universality will be applicable only for silnula,tions t,Itat, 

are large enough to be in the scaling regime, and it is possible that one sinrulat.ion tc~cli~riquc 

reaches the scaling regime much more readily (i. e.; for smaller L values) tlra~r t,hc of,hcr 

[109]. Once again, there is no indication that this is true for d = 3 sinrulatio~~s, so it is h;trti 

to  understand why the situation should be different for d > 3. 

The most obvious difference between the two sets of simulations is in  the I,-values uscil, 

A potentially simple explanation is that my simulatiotls suffer from significa~~t, finitc-size 

effects, and that, if they were extended to  much larger L-values, the results for the scalirrg 

- exponents would agree with thoseobtained in Ref. [I], There are two arguments against this 

idea. The first argument is that although the viL)'s lor the smaller ~ 1 ~ ) ' s  gelrerally cxliibit, 

strong finite-size effects in my simulations, vr' and $), exhibit a rather weak dependence 

W )  on L, suggesting that the scaling regime for Ad-, and xY) begins at L r: 13. The secosd 

argument against the finite-size-effect explanation is that there is some overlap in L-va111cs 

for the two sets of simulations, and even here the two simulation sets give very diffment 

scaling exponents. 



Finally, I discuss a pote~ltial source of the discrepancy. Figure 4.10 shows the V!~)'S 

obtairled from Ref. [1]12. It is apparent tha,t the Ref. [I] exponents are not well-ordered, 

and this silggests the presence of significant systematic errors in the data (see Sec. 4.4.2). 

There is no way to  know a priori whether such systematic errors (if they are present) are 

rosj)o~isible for the difference in the conclusions reached in the two studies, but reducing 

t l u n  by increasi~~g the run-time of the Ref. [l] simulations would seem to  be a reasonable 

first step towards resolving the discrepancy. 

121 wish to thank G. Crest for graciously providing me with a copy of his raw dat,a for analysis. 



Figure 4.10: The scaling exponents obtained from the S.l\?'iZil sin1111atio11~ d(~scriGcd in 
Ref. [I]. The upper figure is the d = 4 data; the lower figure is thc: d = 5 d;rt ,a .  ru7olv 
that the scaling exponents are not well-ordered and t h a t  some of thc u, 's are 1wgor t,ha,rr 
1, which violates Eq. (2.25). Together, these two observa,tio~is suggest t, h c r  p r t ? s e ~ ~ ( :  of ~ i g -  
nificant systematic errors. Such errors may explain the discrcpalicy bctwcc~~ t,hc st:a,lirig 
exponents obtained from the two sets of simulations. 



He got out two thin butter-spades from the shelf and put them down 
into the little chest and pulled out something that seemed to me re- 
markably like another chest. I went over to it and gave it a close 
ezamination with my hand, feeling the same identical wrinkles, the 
same proportions and the same completely perfect brasswork on a 
smaller scale. It was so faultless and delightful that it reminded me 
forcibly, strange and foolish as it may seem, of something 1 did not 
understand and had never heard of. 

Flann O'Brien 
The Third Policeman 

Chapter 5 

Sierpiriski Gaskets 

5.1 Introduction 

In Chap. 4 it was pointed out tha,t many theoretical approaches that are useful for studying 

polymers, such as Flory theory and an eexpansion analysis of the Edwards model, do 

not correctly describe even the qualitative features of SATM7s. In the context of field 

theory, both polymers and membranes are seen as specia.1 cases of a more general (but still 

horriogeneous) ma11ifoM characterized by its intrinsic connectivity or topological dimension 

D. It is then apparent that, as D increases, somewhere in the regime 1 < D 5 2, three 

things must occur: 

1. Renormalization group arguments based on the €-expansion about the Gaussian fixed 

point break down. Alternatively, the Edwards model may cease to  be a good descrip- 

tion of SATN's; 

2. The Flory theory must cease to contain a?l of the essential physics needed to dzscribe 

the thermodynamics properly; 



3. The thermodynamic behavior of tile n:arlifolcl must change from crunlpictl to flat. 

It  seems worthwhile t o  study the connections between these three points ancl the r~asous  

why the theory breaks down in the first place. Ideally, one would like to conipasc t 11c rttsrt Its 

of simulations with theoretical calculations for arbitrary U and to look for discrrp;t~rcics. 

Unfortunately, i t  is not clear how to  simulate such inanifolds. To overcome this tliflic-rtlty, ;I 

model is needed that is amenab!e t o  simulation and theoretical calcula.tiorts and ir:t.espola,tes 

between polymers and membranes. In this chapter I propose regularly connccttd fsactd 

networks for this purpose. -4lthough not homogeneous, these networks am dtaractcrixctl 1)y 

a spectral dimension1 D,, which is completely determilml by the intrinsic cor~ ~rcctivi by of 

the network, and, in many ways, plays the role of D (see Sec. 5.2). As ii result,, they iirc 

amenable to  both Flory theory calculations and 6-expansions. They axe also ~ t r i t i g h t f ~ ~ ~ i ~ i ' d  

t o  simulate. The remainder of this chapter is concerned with the comparison Iwtwccn Vlory 

theory calculations, E-espansions and si~nulations for a particular rnodel: a network with the 

connectivity of a b = 2 Sierpikki gasket [ll.5]. As we shall see, t he SA version does, ill fact, 

crumple; the Flory theory is reasonably accurate (within a few p~rcerrt of the rneasu rctl 

value); and t.he 6-expamion gives modest results (within 20% of the nleasnrctl valuc) Sor 

d = 3, but improves as d approa.ches its upper critical dimension. 

5.2 Theory 

Figure 5.1 shows the intrinsic connectivity of the modcl, which is that or a b = 2 Sicrj,ifiski 

gasket. For the n th  iteration of the network, the number of vertices is 

L 

*The notion of the spectral dimension (sometimes referred to as the frxtosr dimension) of a network 
origmally arose from the study of the density of states for a generalized Lap1;ician opetator ori a frxtal. Sec 
Refs. [I101 and [Ill] for this point of view. More recerrtly, D1 has been used to characterize rar~dotn walks on 
fractal lattices, ([rjs) - rf0)12) - sD*ldft-  This is the definition of D,  used here. d f f  is the fractal dirnerrwiori 

of the lattice; i. e., N - ~ ~ f ' ,  where N is the number of vertices on the lattice. See R.&. 1112, 113, 114, 1151 
for this latter point of view. 



Figure 5.1: Iteration process for a b = 2 Sierpiriski gasket. The value of b gives the mul- 
tiplicat.ion factor for the increase in the number of connections along an edge after each 
i teratiori. 

The lattice fractal and spectral dimensions, defined in the n -- cx limit, are, respectively, 

and 

Both phantom Sierpihski gaskets (PSG) and self-avoiding Sierpiriski gaskets (SASG) are 

discussed in this chapter. 

5.2. f Theoretical predictions 

There exists for the PSG a rigorous prediction for the scaling exponent vo based on a 

mapping between the partition functions for tethered networks and resistor networks with 

the same connectivity [19]. This mapping predicts (subscript zero denotes phantom-network 

quantities) 



d f o  is the fractal dimension, which relates the radius of gyration to the nlr~itber of vt~rt~ices, 

For SA-networks, a Flory theory can be constructed using a line of argulncrit identicid to 

the one in Sec 2.4.2 for homogeneous TN's with the result 

The upper critical dimension, d,, (above which self-avoidance is irrelevant) call idso bc 

determined using the methods of Sec 2.4.2. Recall that d f o  measures how rrir~ch of the 

embedding space is filled by the fractal object. For embedding spaces with d > 2dJo,  ir~tcr- 

sections between two or more portions of the network scpara.ted by large ir~trinsic tlista.occs 

will be unlikely; hence, d,, = 2d fo .  An alternative, but related, argument is t h a t  including 

self-avoidance always increases Rg, so vo is a lower bound on ur;.. licnce, I / ~ ( ~ , ~ , , ~  = 14,. 

Either way, one finds 

Substitution of Eq. (5.3) into Eq. (5.8) gives d,, % 8.6 for the b = 2 SASG. l ' lh i  is in 

marked contrast to  the case of homogeneous membranes [20](i, e., D = 2 networks) for which 

d,, = co. Also, notice that Eqs. (5.4), (5.5), (5.7) and (5.8) reduce to the corresponding 

homogeneous manifold results by simply substituting D, = d j r  = 13. in this sense! I), plays 

the role of an effective topological dimension. 

5.2.2 The Edwards model 

As mentioned in Sec. 4.2.2 there have been several studies of homogeneoizs manifolds that 

have applied c-expansion techniques (see Ref. 1201 for a rccent review) to the generalized 



version of the Edwards model 1501 already introduced in Eqs. (2.441, (2.37), and (2.45), 

= D L 

fl" E 2 J P ~ C  (E)l+ ?/ w d"~ '6~ [ r ( s )  - r(st)]. 
i=l ds; 

0 0 

The above discussion suggests that ir night be possible to  generalize Eq. (5.9) to  include 

fractal networks by simply making the replacemeat D -+ D,. However, this does not work, as 

can be easily verified. For example, reqiliring the Gaussian part of PHE(D -+ D,) t o  be scale 

invariant does not give the same result for v as Eq. (5.4) gives. The reason for this failure is 

that, whereas J dDs implies an integration over a homogeneous and compact space, J dDss 

implies neither. Rather than attempt to discuss a measure theory for fractal sets, which 

would be needed to understand fully the meaning of J dDss, I will simply propose an ansatz 

for establishing a correspondence between a fractal manifold and an homogeneous one that 

has the same physics. The resulting Hamiltonian can then be analyzed in a straightforward 

manner. 

The only other parameter besides D, that characterizes the internal space is L. It is not 

surprising that an intrinsic length scale might be modified for the case of a fractal network, 

since, unlike homogeneous networks, which are characterized by a single intrinsic large length 

scale L, fractals have many such scales, and it is not clear which scale is appropriate for 

integration. Assuming an integration scale of the form, L = 12/(2-Ds)~x,  we can fix x by 

requiring (s  = p/(2-Wa) 

from which we obtain x = dfl/D,. The replacements, 

lead to  the Hamiltonian, 



(L' = !v(2z-Ds)~df'/Ds), which has the same upper-critical dimension and Gnussim scaling 

exponent as the original Sierpihski gasket model. It also leads to the same Flory theory 

prediction. 

For example, applying the usual Gaussian integration techniques[41] to tllc C ~ C U ~ ~ I ~ ~ O I I  

of the mean-squared distance between two points of the phantom network gives 

The rms end-to-end distance, which scales like Rg,  is obtained by setting lal -021 = L " J ~ / ~ . ,  

from which we obtain a result identical to Eq. (5.4). Application of the usual power counting 

arguments to Eq. (5.12) gives results identical to Eqs. (5.7) and (5.8). I11 a.ddit,iotl, c- 

expansion results for v can be obtained directly from the homoge~ieous-manifold rcsults (cf 

Refs. [93, 94, 116]), 

where 

and 

The €-expansion is performed about any point (D:, d*)  that lies on the critical line that 

separates SA-relevant behavior from SA-irrelevant behavior. If Eq. (5.1 4) turris out to bc 

consincent with numerical results for the Sierpihski gasket (which, as we shall see, it does), 

then they provide evidence for the correctness of the ansatz, Eq. (5.12). 

In order to  perform Monte Carlo simulations, tethered network versions of a Sierp iket 

were developed. The simulation model, simulation method, data analysis techniques, and 
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error analysis techniques are identical to those used in Chap. 4, with the following minor 

modifications: 

1 .  The ratio L/ro has been changed from the T M  value of 2& to 4 for reasons of com- 

putational c~nvenience.~ 

2. The scaling exponents for the eigenvalues are now defined in terms of the generation 

number n of the Sierpiliski gasket instead of the length scale L. Thus, in an obvious 

notation, 

and 

(4 v; = lim vi . 
n+m 

3. The definition of the shape parameter (Eq. (2.27)) has been changed to  

(n) Sd = lim Sd , 
n+oa 

(5.20) 

where 

Notice that the definition of sY) uses Ad-2 instead of A1 (cf. Eq. (2.27)). The 

motivation for this change is merely that in the simulations the statistical fluctuations 

in A?) are usually somewhat larger than those in XP2. Thus, Eq. (5.20) provides a 

more stable measure of Sierpiliski gasket shapes than Eq. (2.27). As long as A?) and 

~2~ have the same scaling behavior, both definitions will provide the same information 

about the existence of a crumpled state. Of course, we have already observed in 

f L) Sec. 4.4.3 that A? and Ad-2 may have different scaling behaviors, so this assumption 

may be wrong. However, as we shall see in Sec. 5.4, SG's already crumple in x3, SO 

the assumption is correct. 

2 ~ i t h  the exception of Ref. [76], numerical studies done so far on TM models show no dependence of v 
on the ratio of the ball size to the tether length. See Refs. [34, 451. See Sec. 4.5.1 for a criticism of Ref. [76]. 



4. Because SG7s crumple, the sphericity Ad (as defined in Eq. (2.25), hut  wit11 A)") 4 

A?)) provides a meaningful measure of their shape. The simulation results include 

measurement of Ad. 

5. Ancther consequence of SG's crumpling is that all the r:(")'s are very simi1;rr b r  a, 

given value of n. Consequently, Eq. (4.11) is easily satisfied and, tllercfore, does not 

give much insight into the size of the systematic errors. For this rcason, systcrnntic 

errors have been ignored in the error analysis. 

5.4 Results 

5.4.1 Phantom networks 

Figure 5.2 shows the results of simulations of PSG's done for d = 3 and d = 9. To fxilitste 

extrapolation of the data to the n - m limit, d"), sP), and AY) have been plotted vcrsw 

l /n. Also, the d n ) s  are plotted horizontally midway between the two relevant values of n. 

With the exception of the n = 5, d = 3 data point, the v(")s are all consistent with the 

theoretical prediction for uo discussed in Sec. 5.2, and they appear to be independent of (1. 

The failure of this one point to fit the theory probably reflects the presence of systematic 

( errors. From the shape data, one can see that ST) approaches a finite value in the n - m 

limit, indicating, as one would expect, that phantom networks crumple. Of course, since SC1 

compares the scaling of A Y )  and AF~, it is possible that the smaller X ~ " ) ' S  scale differently 

and that the PSG does not crumple. However, direct measurements of the v!"j7s show that 

the AIn)'s are all the same (to within experimental error). Comparison of the Ad results with 

the corresponding polymer values 1441 (A3 = 0.526 and As x 0.431) shows that crurnplcd 

phantom Sierpiriski gaskets are much more spherical than their polymer counterparts. 
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Figure 5.2: Results for the phantom-network simulations: (a) dn) vs. l / n ;  the curves for 
extrapolating v(") have been omitted for clarity; (b) s?) vs. l /n; (c) A?) vs. l /n.  Error 
bars on aii points reflect statistical errors only. Also note that the points in (a) have been 
positioned at 1/21, 1/34, etc. to  reflect the fact that they have been determined using the 
two simulations whose n d u e s  they lie between. 



Table 5.1: Summary of simulation parameters and results. The run lengths do [tot itlcludc 
the initial discarded data. q,;, is determined from error analysis nwthoci 3 in Ser. 4.4.2, 
The quoted errors include both statistical and fi nite-size errors, but no systcrmtic errors. 

Type 
Phantom 

SA 

5.4.2 SA networks 

- 
Length of run (in q,;,) 

7 

d n = 2  n = 3  n = 4  n = 5  v S d  24 d 
3 1452 1884 1808 1411 O.372f 0.008 O.3O2f 0.010 0.195f 0.01(b 
9 8 7 79 232 67 0.379&0.016 0.292f 0.020 0. I tiYrt0,02*I - 
3 693 482 204 47 0.790f 0.028 0.176i-0.012 0.210f 0.025 
7 523 709 163 18 0.451f 0.019 0.2955 0.018 0.1 77zk0.022 
8 260 320 70 26 0.412f 0.023 0.298f 0.028 0.167~kO.024 
9 442 557 280 17 0.395f 0.018 0.291f 0.01 L 0.172f 0.032 

10 358 459 32 0.382f 0.016 0.28343.013 (I.IKkk0.0 17 
11 203 225 67 0.361f 0.007 0.289f 0.006 0.1 33f  0.010 
14 731 639 611 0.380f 0.016 0.272f 0.013 0.1 31$0.007 

Figure 5.3 shows the results for the d = 3 SA network. Thc Flory prediction for u is 

remarkably good - differing from the data by at most a few percent. This is cousist,cnt wit, h 

the d = 2 simulation of this model [42]. As with the phantom case, SF) approacl~es a linit,e 

value for n -+ m, indicating that the network is crumpled. Once again, since Sd cornpares 

the scaling of XY) and XF~, it is possible that the smaller ~!")'s scale differently and i l d  

the PSG does not crumple. However, as with the phantom case, direct measurements of the 

v?)'s show that the X?"S are all the same (to within experimental error). The SASG Sd7s 

are much smaller value than the corresponding phantom ones, which suggests that SASCi's 

is much flatter in shape than PSG7s. This conclusion is also borne out, to  some extertt, by 

the AP) data. This is different from polymers, where self-avoidance h a s  almost no effect on 

A3 [68]. However, as d increases, the distinction between the phantom and SA vafucr; for 

Ad disappears. 

Results for all the simulations are summarized in Table 5.1 and Fig. 5.4. The figure shows 

that the data are consistent with the Flory theory for d 5 8. The first-order cl-expamion 

results are not as  good for d = 3, but improve, as one would expect, as d -+ d,,. Thc 



Figure 5.3: Results for the d = 3 SA-network simulations: (a) dn) vs. l /n ;  the Flory theory 
( prediction is shown for comparison; (b) sdn), A ~ I  vs. l /n .  Error bars on all points reflect 

statistical errors only. The meaning of the dashed lines is explained Sec. 4.4.2. Also note 
that the points in (a) have been positioned at  1/21, 1/31, etc. to  reflect the fact that they 
have been determined using the two simulations whose n values they lie between. 



Figure 5.4: Summary of all simulations done: (ajv vs. d. The Flory prediction (uf?), 
obtained from Eq. (5.71, and the r-expansion prediction (v,), obtained from Eq. (5.141, are 
shown for comparison; (b)Sd,Advs.d. The error bars in both figures include finite-size e f k c t ~  
as well as statistical errors. 



Figure 5.5: Phase diagram for SA regularly connected fractal networks. The crosses (x )  
represent the data from this simulation. The dashed curve is hypothetical; although the 
point o (discussed in Ref. [42]) is taken to be evidence for its existence. 

data also show a clear crossover to Gaussian behavior in the 8 5 d 5 10 region. The exact 

location of the c,rossover is not very well determined, but it is certainly consistent with the 

prediction d,, % 8.6. 

There are several obvious extensions one could ma4ke to  the present work, of which I 

mention only two. The first is to include bending energy in the simulation models and look 

for a crumpling transition. Currently, there are no known SATN models which exhibit a 

crumpling transition (they are always flat, always rough, or always crumpled3, so it would, 

of course, be interesting to find a counter-example. The second extension is explore more 

fully the phase diagram in Fig.5.5. 

Although not as interesting from a physical point of view as the corresponding diagram 

fur homogeneous systems [El ,  Fig. 5.5 does have the advantage that the 1 < D, < 2 region of - 
3However, if it does turn out that SATM's embedded in d >_ 5 are crumpled, it is very likely (based on 

the PTM simulati~ns of Ref. f373) that a flat phase could also be found. 

- 



the diagram is accessible to simulations, whereas the I < D < 2 region of the ho~no_t; 3 ~ t k c ~ u ~  

diagram is not. Furthermore, the results of this chapter suggest that at correspondcncr 

between regular fractal manifolds and homogeneous ones may exist, i t l th~agh work rclnaios 

to be done to justify the treatment of the Edwards model givcn hcre. This is in.lporta.ut sincc 

theoretical analyses [i9, 74, 20, 93, 94, 1161 of membranes havc so far bceir unsuc.ccssfi11 

in discovering the flat phase (but see Ref. [117]). It may be possible, then, to set up a 

systematic program of simulations of regular fractal systems on the one hand, and  tlrc~orctic.;d 

calculations of the corresponding homogeneous manifold on the other. One coold then 

explore in detail their relationship to questions concerning the existelsce of plrase I)or~ntlarics. 

For example, if a first-order phase boundary exists between the D = 2 and  SA-irrclcvant, 

lines, €-expansions will not detect it; but, a, correspol~ding boundary in tIic D, - (1 platkc! 

could be found through simulation. Indeed, one such phase boundary may tiavc alrca'dy 

been discovered [42]. 



Many possibilities are open to you - work a little harder. 
Chinese fortune cookie 

Chapter 6 

Conclusions 

The following is a brief summary of the conclusions obtained from the work in Chaps. 3, 

4,  and 5 along with some thoughts about extensions to this thesis that are worth pursuing. 

6.1 Two-dimensional closed pressurized random walks 

The main motivation for constructing the model described in Chap. 3 was to study the 

shapes of a simplified version of a three-dimensional pressurized fluid vesicle. In particular, 

the hope was to create an analytic version of a computer model of the two-dimensional 

SA vesicle ilitroduced by Leibler, Singh, and Fisher (the LSF model [2]), and to calculate 

the asphericity for this analytic model. Unfortunately, even the LSF model is sufficiently 

comp1ica.ted so that simplifications have to be made in order to make analytic calculations 

possible. These simplifications consist of: f 1) dropping the SA constraint; (2) replacing 

the true area that a dosed SAW would enclose with the algebraic area; (3) replacing the 

fiscd-length bonds between monomers with Gaussian springs. The resulting model is called 

the PRW model. With these simplifications it is possible to  calculate exactly the asphericity 

-&I2, as defined in Eq. (2.28). The results are given in Eq. (3.43) and Fig. 3.1. 

Rernox-ing the SA constraint creates a model that is very different from the LSF model, 



but it is, nonetheless, a reasonable first step towards an analytic description of a S r l  r~lotlcl. 

On the other hand, simplifications (2) and (3) turn out to be so drastic that the rcsultittg 

model seems no longer to  be related to the LSF model in any t m f d  way. In piutirular, I l ~ c  

PRST model does aot distinguish between negative and positive pressure difiwwccs ( a s  ;I 

result of simplification (2)); and, it does not seem possible to introduce a rmlistlic bcntlitlg 

rigidity (as a result of simplification (3)). It therefore seems unlikely that the\ PltW ~ l t o c i c l ,  

or some variation on it, will lead to  a useful analytic description of thc IISF ~tlodcl. 

6.2 Self-avoiding tethered membranes 

In Chap. 4 MC simulations on SATM7s embedded in nt" and R5 were carried out in a.1) 

attempt to find a SA crumpled state. No conclusive evjdcnce for a crunlpled stat(! w;is 

found, but this possibility cannot be ruled out for the d = 5 si~zukitiort. 

More generally, these simulations indicate that the two largest eigenvalucs pro bahl y havct 

the same scaling exponent, with v,,,(d = 4) sz 0.88 and v,,,,(d = 5 )  FS 0.73. 'I'he d = 4 sirn- 

ulation results also indicate that the scaling exponents for the two smallest ejgenval~tcs ~ u a y  

be distinct from each other with ul(d  = 4) x 0.65 and v2(d  = 4) sz 0.72. The d = 5 rcsctlt,~ 

are somewhat more ambiguom. One possibility is that SATM's embedded i n  R\crurrlplt: 

with u = 0.73. Another possibility is that d = 5 SATM's are rough with the three srn;~Ilt?st 

exponents sz 0.70. Finally, it is also possible that v2 = v3 = 0.70 arid vl FZ 0.65. Unfr>rt,u- 

nately, u2(d = 41, ul(d = 51, v2(d  = 5), and u3(d = 5 )  all have a strong L-clepc~ldencc for 

the lattice sizes we have been able to simulate, so the determination of the thcrmodynainic 

phase for SA4TM7s embedded in lR4 and R" will likely require sirr~dations with much largcr 

L-values. The large L-values required, combined with the need to rim cach sim ul;ttion rn rj cfi 

longer (typically by a factor of 10) than other workers have assumed necessary (in order 

t o  adequately reduce the systematic error), make it nearly in~possiblc to resolve the SM'M 

phases by simulation, given the currently available computers. 



These results shcruId be contrasted with those in Ref. 111, which are that d = 4 SAT143 

are fiat arid d = .5 SATM's are crumpled with v "N 0.82. Although there is no definitive 

explanation for the difference between the Ref. [ l ]  results and the Chap. 4 results: the 

error anaiysis techniques described in Sec. 4.4.2 suggest that the Ref. [I] data might have 

significant systematic errors: and that this might be the source of the discrepancy. 

6.3 Sierpiriski gaskets 

i n  Chap. 5 the results of M C  simulations on pha,ntom and SA Sierpiriski gaskets were 

compared with appropriately generalized Flory theory and Edwards-model calculations. The 

motivation for doing this was to  study a TN with an intrinsic connectivity between that of 

a polymer ( D  = 1) and that of a membrane (D = 2 ) .  The two main results of that chapter 

arc: ( 1 )  replacing a TN's topological dimension wj th its spectral dimension and a careful 

generalization of the TK's intrinsic length scale (Eq. (5.11)) leads to  an analytic theory that 

agrees quite well with the results of simulations; (2) simulated SA Sierpiriski gaskets have 

an upper critical dimension "N 8.6. in agreement with theoretical predictions. For d > d,,: 

S A  is irrelevant and the simulated SASG's crumple with u = uo = 0.368. For d < d,,, SA 

is relevant. but the simulated M S G ' s  are. nevertheless, crumpled with v rz UF LZ v,. These 

results are qualitatively similar to  

6.4 The SATN phase 

the case of polymers. 

diagram 

In Sec. 2.4 it wzs stated that much of the motivation for studying SATM's embedded in 

R" and R h n d  SASG's was to  explore the ( D ,  d)  phase diagram shown in Fig. 2.4 and 

srlbsequenti_v updated in Fig. 5.5. Figure 6.i summarizes all the known data  for SATPi's. 

Unfortunately, the dat.a are, in some cases: inadequate or controversial, so not all the phase 

houndarks can be drawn with confidence. In particular, the boundary between the flat and 

rough phases may cross the 21, = 2 line at a different value of d, or may not exist a t  all 



Figure 6.1: The D, versus d phase diagram. The data poin:s are taken from Chaj,. 4(o), 

Chap. 5(x), Ref. [42](o), Ref. [34](n}, and Ref. [I](.). This diagram assi~n~es that SA'l'M's 
embedded in XI4 and R5 are rough and that those embedded in R6 arc crurnplctl. 



[I]. Similarly, the boundary between the Flory crumpled phase and the rough phase (or 

flat phase, if the rough phase does not exist) may or may not intersect the D, = 2 line 

(although the results from Ref. [I] suggest that it does). Finally the two points in the flat 

phase (o, a) are simulations whose results are consistent with v = 1, but much longer runs 

(like the ones described in Chap. 4) may indicate that these points are, in fact, in a rough 

phase with v 5 1. 

Clearly, many more simulations will be needed before the SATN phase diagram is ade- 

quately understood. 
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Appendix A 

This appendix contains some of the calculational details needed to dcrivo 1Zqs. ( 3 . 3 4 )  

and (3.42). 

A.1 Derivation of Eq. (3.34) 

where 

The last term in the Hamiltonian can be rewritten as 

L L 2 
Y ' I  2 

2L2 
d [r ) - r (")j2 = - J ds r (s) - [ i L d s  r(s)] . 

L2 
(A -3 )  .c 0 

The last term is difficult t o  handle in its present form, hut we cat) rewrite it in ;z rnorc: 

convenient form using a trick described in Ref. [39], 



APPENDIX A. 

where 

Now make the change of variables 

so that for the endpoints 

and 

It follows that 

where 



APPENDIX A. 

Using standard path-integral techniques [I181 gives 

where 

(A .  16) 

is the classical action (q solves the classical equations of motion and q1 = qF = XU arc tho 

fixed endpoints of the motion), and 

is the quadratic variation in s!;)[q]. Straightforward evaduation of the integrals is Eqs. (A. 16) 

and (A. 15) gives 

and 

where 
1 /2 

W = [dyL - p2] , 

and 

(A. 18) 

(A.19) 

Hence, 

w -w 
G(a29 01)  = 4nL sinh w (a2 - al) {4C sinh w ( a 2  - ol) 



APPENDIX A. 

Now evaluate Eq. (A.13). First note that 

@+I; a ,  a )  ' = I d 2 <  ( o l ) e ~ l ' ~ b l ) ~ ( o ' ,  ol)G(al, a )  

is a Gaussian integral. Direct evaluation gives 

1 
; = exP sinh wT (4 [<: cosh pt sinh wt' f (r cosh pt' sinh wt 

+ q k  ((: sinh pt sinh wt' - (IF sinh pt' sinh wt)] 

sinh wt sinh wt' 
+77$ 

W 

where T = a' - a, t = 01 - a ,  and t' = a'- u1. 

Inspection of Eq. (A.23) shows that G(al, a )  is only well-defined when a' 2 a ,  so we 

must be careful to write 

Eqs. (A.27) and (A.28) are Gaussian integrals. After a lot of arithmetic, I find 

w x2u2 
r+("; ,917 772) ' 4n2 sinh ( C O S ~  w - cash p) 

2 2 c27722 
sinh wal sinh w (1 - ol)  + - sinh wo2 sinh w (1 - 02) + - 

w2 202 

z L  + -ql u (sinh wal cosh p (1 - 01) + cosh pol sinh w (1 - all - sinh w) 
W 

sc + -q2 . u (sinh wa2 cosh p (1 - a2)  + cosh pa2 sinh w (1 - a2) - sinh w) 
W 

[sin pa1 sinh w (1 - ol) - sinh wal sin p (1 - ol)] 

sc 
+-t)2pk [sin pa2 sinh w (1 - a2)  - sinh wo2 sin p (1 - a2)] 

w 

- 2e2r11jmk sinh wol sinh w (1 - a2)  sin p (a2 - ol) 
w* 



and a similar expression for I'-(u; ql ,  q2) .  Finally, I cadculate 

where 

Inserting Eq. (A.29) and the corresponding expression for I?- (u; ql ,  q2)  illto Eq. ( A  .3 1) give*, 

after another set of tedious Gaussian integrations, the result on the second line of Eq. (3.3.1). 

A 2  Derivation of Eq. (3.42) 

Start with 

where, 

and the definitions, 

and 

have been introduced. The first term in Eq. (A.33) is 



where 

The last line in Eq. (A.38) follows from Wick's theorem. Using the result in Eq. (3.34) gives 

(recall that o; = s;/L), 

where, A, a;, p, 4, are defined in Eqs. (3.36)-(3.38). Inserting Eq. (A.41) into Eq. (A.38) 

gives 

The second term in Eq. (A.33) is 

Hence, 

This integral can be done using elementary techniques, but the number of terms in the 

integrand make a computation by hand prohibitive. The integral was actually done using 

the MAPLE symbolic mathematics program. Maple finds 

sinh2 w 3w sinh p - p sinh w 2 
Tl = 4L2 + L - -  

w2A2 ~ w a y  y2' 



A similar treatment of Eqs. (A.34) and (A.35) give 

sinh2 w w sinh p - 3p sin11 w 
T2 = 4L + C  - 

w2A2 pwA y 

and 
sinh2 w sinhw 1 

T3 = 4C - 4L ------- 
w2A2 

+ -. 
" A  y y L  

Inserting Eqs. (A.45), (A.46) and (A.47) into Eq. (A.32) gives Eq. (3.42). 



Bibliography 

[l] G. S. Grest, Journal de Physique I (France) 1, 1695 (1991). 

121 S. Leibler, It. R. P. Singh, and M. E. Fisher, Physical Review Letters 57, 1989 (1987). 

[3] A. E. Kholodenko, Annals of Physics 202, 186 (1990). 

[4] P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 

Ithaca, 1979). 

[5] Fluctuation Phenomena, edited by E. W. Montroll and J. L. Lebowitz (North Holland 

Physics Publishing, Amsterdam, 1987), especially Chaps. 1 and 2. 

161 M. Barber and B. W. Ninham, Random and Restricted Walks; Theory and Applica- 

tions (Gordon and Breach, New York, 1970). 

171 M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (J. Wiley and Sons, New York, 

[8] Y. Oono, Advances in Chemical Physics 61, 301 (1985). 

[9] J. FrGlich, in Applications of Field Theory to Statistical Mechanics, Vol. 216 of Lecture 

Notes in Physics, edited by L. Garrido (Springer-Verlag, Berlin, 1985), p. 32. 

1101 A. Polyakov, Physics Letters 103B, 207 (1981). 

[Ill R. Lipowsky, Nature 349, 475 (1991). 



BIBLIOGRAPHY 1.tri 

[12] D. Nelson, in Statistical Mechanics of Membranes and S~~rfaccs. b l .  5 of ,Ict+tr,c.c&-~ta, 

Winter School for Theoretical Physics, edited by D. Nelson, 'L'. Piriw, and S .  Wcinbcrg 

(World Scientific, Singapore, 1989), p. 1. 

[13] F. David, to appear in Two Dimensional Gmvity a ~ l d  Rnr~ti'nm Surfaces, Vol. 8 of 

Jerusalem Winter School for Theoretical Physics (unpublisltctl). 

[14] C. Itzykson and J.-M. Drouffe, Statistical Field Theory (Cambridge 'CJniversity Press, 

Cambridge, 1989), Vol. 1. 

[15] Statistical Mechanics of Mernbrnnes and Surfaces, Vol. 5 of Jerusalenz FVinter, School 

for Theoretical Physics, edited by D. Nelson, T. Pirm, and S. Wciubcrg (World Sci- 

entific, Singapore, 1989). 

[16] D. Nelson, in Statistical Mechanics of Membranes and Surfaces, Vol. 5 of Jerusatcrrr. 

Winter Schoolfor Theoretical Physics, edited by D. Nelson, T. Pirau, and S. WcinI>crg 

(World Scientific, Singa.pore, 1989), p. 137. 

[17] T. Hwa, E. Kokufuta, and T. Tanaka, Physical Review A 44, R.2235 (1'3'31). 

[18] X. Wen et al. (unpublished). 

[19] Y. Kantor, in Statistical Mechanics of Membranes nnd Surfmes, Vol. 5 of ,Jcrunulern 

Winter School for Theoretical Physics, edited by D. Nelson, T. Piran, and S. Weintxrg 

(World Scientific, Singar:ore, 1989), p. 115. 

[20] B. Duplantier, in Statistical Mechanics of Membranes and Surfaces, Vol. 5 of Jcrusalcnz 

Winter School for Theoretical Physics, edited by D. Nelson, T. Pistin, arid S. Wt:in?>urg 

(World Scientific, Singapore, 1989), p. 226. 

[21] hl. Bloom, E. Evans, and 0. Mouritsen, Quarterly Reviews of Biophysics 24, 293 

(1991). 



(221 S. Leibler, in ,5'tutisticul Mechanics of Membranes and Surfaces, Vol. 5 of Jerusalem 

Winter School for Theoretical Physics, edited by D. Nelson, T. Piran, and S. Weinberg 

(World Scientific, Singapore, 1989 j, p. 46. 

[23] M. E. Fisher, Physica D 38, 112 (1989). 

[24] C. 3. Camacho and M. E. Fisher, Physical Review Letters 65, 9 (1990). 

[25] A. C. Maggs, S. Leibler, M. E. Fisher, and C. J. Camacho, Physical Review A 42, 

691 (1990). 

[26] C. J. Camacho, M. E. Fisher, and R. R. P. Singh, Journal of Chemical Physics 94, 

5693 (1991). 

[27] C. J. Camacho and M. E. Fisher, in Computer Simulation Studies in Condensed Matter 

Physics IV, edited by D. P. Landau, K. K. Mon, and H. B. Schuttler (Springer-Verlag, 

Berlin, 1991). 

1281 J. Rudnick and G. Gaspari, Science 252, 422 (1991). 

[29] E. Levinson, Physical Review A 45, 3629 (1992). 

[30] A. Khurana, Physics Today 42, 17 (August 1989). 

[31] Y. Kantor, M. Kardar, and D. R. Nelson, Physical Review Letters 57, 791 (1986). 

[32] Y. Kantor, M. Kardar, and D. R. Nelson, Physical Review A 35, 3056 (1987). 

[33] M. Plisclike and D. H. Boal, Physical Review A 38, 4943 (1988). 

[34] F. F. Abraham, W. E. Rudge, and M. Plischke, Physical Review Letters 62, 1757 

(1989). 

[35] A. Baumgartner, Journal de Physique I (France) 1, 1549 (1991). 



[36] F. David and E. Guitter, Europhysics Letters 5, 709 (19SS). 

[37] J. Ambjorn, B. Du~huus, and T. Jonsson, Nuclear Physics B316, 526 (1951)). 

[38] A. Billoire, D. J. Gross, and E. Marinari, Physics Letters 139B, 75 (1984). 

[39] D. C. Khandekar and F. Nr. Wiegel, Journal cle Pliysique (Paris) 50, 263 (1'389). 

[40] H. Goldstein, Classical i'viechanics (Addison Wesley, Reading, 1980). 

[41] J .  des Cloizeaux, Journal de Physique (Paris) 42, 635 (1981). 

[42] E. Duering and Y. Kantor, Physical Review B 40, 7443 (1989). 

[43] E. Levinson, Physical Review ,4 43, 5233 (1991). 

[44] J. Rudnick and G. Gaspari, Science 237, 384 (1987). 

[45] D. H. Boal, E. Levinson, D. Liu, and Ril. Plischke, Physical Review A 40, 32'32 (1989). 

[46] D. Stauffer, &I. Ferer, and M. Wortis, Physical Review Letters 29, 3.15 (1972). 

1471 F. Family, T. Vicsek, and P. Meakin, Physical Review Letters 55, 641 (1985). 

[48] H.  Kleinert, Path Integrals in Qvanturn Mechanics, Statistics, and Polyrtzcr Physics 

(World Scientific, Singapore, 1990). 

[49] F. W. Wiegel, In tduc t ion  to Path Integrcl1.s Methods in Pliyvics and Polyrr~c~ S C ~ ~ I K L '  

(World Scientific, Singapore, 1986). 

1501 S. F. Edwards, Proceedings of the Physical Society 85, 613 (1965), a rrlorc rnodcrri 

view of this model can he found in Eefk [I201 and [51]. 

[51] B. Duplantier, t o  appear in FundarnentaE P roblerns in Stutisticfd Meclicrnie.~ VII, 11. 

van Beijeren, ed. (unpublished). 

[52] A. Malakis, Journal of Physics A 9, 1283 (1976). 



I531 Y. Oono and K. F. Freed, Journal of Chemical Physics 75, 993 (1981). 

[54] Y. Shapir and Y. Oono, Journal of Physics A 17, L39 (1984). 

f55] P. J. Flory, Statistics of Chain Molecules (Interscience Publishers, New York, 1969). 

[56] W. Helirich, Z. Naturforsch. 28c, 693 (1973), see also Ref. 1781. 

I571 M. A. Peterson, 3401. Cryst. Liq. Cryst. 127, 159 (1985), see also Ref. [119]. 

[58] J .3 .  Ho and '4. Baumgartner, I\/lolecular Simulations 6, 163 (1991). 

[59] D. H. Boa1 and M. Rao, Physical Review A 45, R6947 (1992). 

[fjO] A. Baumgartner and J.-S. Ho, Physical Review A 41, 5747 (1990). 

[61] ff. H. Boal, Physical Review A 43, 6771 (1991). 

[62] K. Solc and W. 1%. Stockmayer, Journal of Chemical Physics 54, 2756 (1971), see also 

Ref. [l20]. 

f63] M. Bishop and J. P. J. h'iichels, Journal of Chemical Physics Letters 82, 1059 (1985), 

and references cited therein. 

[64] M. Bishop and C. J .  Saltiel, Journal of Chemical Physics 85, 6728 (1986), also see 

Ref. [121]. 

[65] 5.  Rudnick and G. Gaspari, Journal of Physics -4 19, L191 (1986). 

1661 J. Rudnick, A. Beldjenna, and G .  Gaspari, Journal of Physics A 20, 971 (1987). 

[ST] G. Gaspari, J. Rudnick, and A. Beldjenna, Journal of Physics A 20, 3393 (1987). 

[68] 5.  A. Aronovitz and D. R. Nelson, Journal de Physique (Paris) 47, 1445 (1986). 

[69] H.-W. D i d  and E. Eisenrjegler, Journal of Physics A 22, L87 (1989). 



[70] A. D. Verga, Journal of Physics A 24, 1,561 (1991). 

1711 D. Boal, U. Seifert, and A. Zilker (unpublished). 

[72] A. Baumgartner, lectures at  the workshop on '25 Years of the Edwards Model7, t'uri, 

India, 1991 (unpublished). 

[73] H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, in  Reid Spnce I~c.i~onizi~li~rriioi~, 

edited by T .  W. Burkhardt and J. M. J .  van Leeuwen (Springer-Verlag, New York, 

1982), p. 169. 

[74] E. Bouchard and J. P. Bouchard, Journal cle Physique (Paris) 50, 829 (1989). 

[75] B. Nienhuis, Physical Review Letters 49, 1062 (1982). 

[76] F. F. Abraham and D. R. Nelson, Journal de Physique (Paris) 51, 2653 (1090 

[77] P. B. Canham, Journal of Theoretical Biology 26, 61 (1970). 

[78] H. J .  Dueling and W. Elelfrich, Journal de Physique (Paris) 37, 1335 (1976). 

[79] L. Peliti and S. Leibler, Physical Review Letters 54, 1690 (1985). 

[80] H. Tasaki and T. Hara, Physics Letters 121B, 115 (1985). 

1811 U. Glaus, Journal of St~~tistical Physics 50, 1141 (1988). 

[82] J. B. Kogut, Reviews of Modern Physics 51, 659 (1979). 

1831 A. Polyalrov, Nuclear Physics B268, 406 (1986). 

[84] G .  Parisi, Physics Letters 81B, 357 (1919). 

[85] B. Mandelbrot,, The Fmctar! Geometry of Kature (Mr. H .  Frcernan, San F'rarrcisco, 

[86] D. J. Gross, Physics Letters 138B, 185 (1984). 



[87] A. Maritan and A. Stella, Physical Review Letters 53, 123 (1984). 

[88] B. Duplantier, Physics Letters 141B, 239 (1987). 

[89] J .  F. B. Durhuus and T. Jonsson, Nuclear Physics B225, 185 (1983). 

1901 J. F. B. Dtlrhuus and T. Jonsson, Nuclear Physics B240,  453 (1984). 

[91] M. E. Cates, Physics Letters 161B, 363 (1985). 

[92] M. Kardar and D. R. Nelson, Physical Review Letters 58, 12 (1987). 

[93] J. A. Aronovitz and T. C. Lubensky, Europhysics Letters 4, 395 (1987). 

[94] B. Duplantier, Physical R.eview Letters 58, 2733 (1987). 

[95] D. R. Nelson and L. Peliti, Journal de Physique (Paris) 48, 1085 (1987). 

[96] J. A. Aronovitz and T. C. Lubensky, Physical Review Letters 60, 2634 (1988). 

[97] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical 

Physics (Pergarnon Press, Oxford, 1986). 

[98] M. Paczuski, M. Kardar, and D. R. Nelson, Physical Review Letters 60, 2638 (1988). 

1991 M. Paczuski and M. Kardar, Physical R.eview -4 39, 6086 (1989). 

[loo] J. Aronovitz, L. GoluboviC, and T. C. Lubensky, Journal de Physique (Paris) 50, 609 

[loll J.-S. Ho and A. Baumgartner, Physical Review Letters 63, 1324 (1989). 

[I021 N. Metropolis et al., Journal of Chemical Physics 2 1, 1057 (I%%), see Ref. 11221 for a 

more recent discussion of the Metropolis algorithm. 



BfBLIO GRA PHY 122 

A. Baumgartner, in Applicnthns of the Afonte Carlo Method in Statisticia1 Physics, 

Vol. 216 of Topics in Current Physics, edited by K. Binder (Syringcr-Verlag, 13erlin, 

1987), p. 145. 

L. Lyons, Statistics for Nuclear and Particle Physicists (Cambridge University l'rcss, 

Cambridge, 1986). 

P. A. P. Moran, Biometrika 62, 1 (1975). 

A. Baumgartner and W. Renz, Europhysics Letters 17, 381 (1992). 

A. Baumgartner, private communication (unpublished). 

F. F. Abraham and D. R. Nelson, Science 249, 393 (1990). 

G. Grest, private communication (unpublished). 

S. Alexander and R. Orbach, Journal cle Physique (Paris) Letters 43, TA25 (1982). 

R. Rammal and G. Toulouse, Journal de Physique (Paris) Letters 44, L13 (1983). 

M. E. Cates, Journal de Physique (Paris) 46, 1059 (1985). 

B. O'Shaunessy and I. Procaccia, Physical Review A 32, 3073 (198.5). 

R. A. Guyer, Physical Review A 29, 2751 (1984). 

J. A. Given and B. Mandelbrot, Journal of Physics B 16, L565 ('1983) 

M. Kardar and D. R. Nelson, Physical Review A 38, 966 (1988). 

T. Hwa, Physical Review A 41, 1751 (1990). 

L. S. Schulman, Techniques and Applications of Path Inteljmtion (Wiiey, Ncw York, 

S. T. Milner and A. Safran, Physical Review A 36, 4371 (1987). 



[I201 K. Solc, Journal of Chemical Physics 55, 335 (1971). 

[l21] M. Bishop and C. J.  Saltiel, Journal of Chemical Physics 88, 3976 (1988). 

11221 K. Binder, in Applications of the Monte C a r l ~  Method in Statistical Physics, Vol. 216 

of Topics in Current Physics, edited by K .  Binder (Springer-Verlag, Berlin, 1987), p. 

1. 


