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Abstract

This thesis investigates three models that are particular examples of tethered networks.
Starting from the viewpoint that a random walk is a collection of linearly connected ver-
tices (internal dimension D = 1), the tethered network model is introduced as a natural
genceralization of the random walk to allow vertices to have a higher degree of internal
connectivity (D > 1).

The first model studied is a closed two dimensional random walk with a pressure dif-
ference p between the inside and outside. Since all terms in the Hamiltonian are quadratic
in the position-vector field r, the partition function and its derivatives can be evaluated
exactly. The most notable feature of this model is an instability, which occurs at |p| = p..
For |p| < p., the system has a finite algebraic area and an anisotropic shape; for [p| > p.,
the algebraic area diverges and the shape is circular. The asphericity is also calculated. A
form of bending rigidity, also quadratic in r, is introduced into the model; however, the
resulting macroscopic properties are quite different from those one would ordinarily expect.
This difference can be traced to the absence of a fixed monomer size in the model.

Studies of the other two models are generally focused on trying to determine how the
size of a network embedded in d dimensions scales with the network’s maximum linear size
L. Three possibilities are described: (1) flat, for which the scaling in two directions is linear
in L, and the scaling in the other d — 2 directions is with some smaller power of L ; (2)

rough, which is similar to flat except that the scaling in the two large directions is not linear



in L; (3) crumpled, for which scaling is uniform in all d directions.

The second model studied is a self-avoiding tethered network with an internal connece-
tivity of a two-dimensional hexagonal lattice, known as a self-avoiding tethered membrane.
Monte Carlo simulations of these membranes embedded in d = 4,5 are described. Resultls
for the d = 4 simulations suggest that the network is rough. Results of the d = 5 simula-
tions are somewhat ambiguous, and are consistent with interpretation either as a rough or
crumpled phase.

The third study consists of Monte Carlo simulations of tethered networks possessing the
connectivity of a & = 2 Sierpifiski gasket (D = 1.365), both with and without sell avoidance
in a range of embedding dimensions 3 < d < 14. The simulation results indicate that b = 2
Sierpiniski gaskets are crumpled. Measurements of the network size scaling exponents and
the upper critical dimension (above which self avoidance is irrelevant) are in good agreement

with theoretical predictions.
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Chapter 1

Introduction

1.1 The random walk paradigm

Within science there occasionally arises a paradigm whose applicability spans an especially
wide range of disciplines. One such paradigm is the random walk (RW).

A simple definition of a RW is a set of d-dimensional vectors, r(s) that are random
functions of a discrete arc-length s = nf, where n is a natural number. The vectors share a

common origin and respect a connectivity constraint,
Ir(s+€) —x(s)] = ¢, (1.1)

where £ is a constant called the monomer size. The nature of the random distribution
is determined by the particular model. In this thesis, it is convenient to generalize this
definition somewhat and define a RW as an embedding of a discrete one-dimensional space
S (s € 8) in a d-dimensional space R? (r € R?), with the following two restrictions on the
embedding: 1) it must be random; and 2) it must be order-preserving, i. e., adjacent points
in § must map to nearby points in R?. The RW described by Eq. (1.1) will subsequently
be referred to as a rigid-rod RW in order to disfinguish it from the general RW.

Heuristically, the restriction to order-preserving mappings provides the RW with its
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linear character. Without it, the system would simply be a gas of moncmers. Eq. (1.1) is
an example of a mechanism that ensures an order-preserving mapping, but it is not the only

one. In fact, we will have occasions in Sec. 1.3 and Chap. 2 modify Eq. (1.1) to
[r(s+£) —r(s)] < L (1.2)

This condition is sometimes referred to as a tethering constraint and the resulting model will
be referred to as a tethered RW. From a physicist’s viewpoint, tethered RW’s do not differ
from rigid-rod RW’s in a significant way. The reason is that physicists are usually interested
in the continuum limit of these models, and it turns out that they are all equivalent.

RW’s have proved to be useful in such diverse fields as probability theory, ecology,
molecular biology, polymer chemistry, and several branches of physics, including quantum
field theory, statistical mechanics and biophysics. One of the great strengths of the random
walk idea is that it has given rise to an entire class of models (hénce the term paradigm)
that have often had great success in describing scientific phenomena. This is especially true
in physics, where the models of interest include: the ordinary random walk, which has been
used to describe diffusion processes, spin glasses, and the space-time trajectories of quantuin
fields; and the self-avoiding walk (SAW)!, which has been used to describe polymers and
the propagation of fermions [3].2

Although much of the interest in RW’s is due to their usefulness in modelling real
systems, it is important to realize that the RW paradigm has developed a life of its own.
Many RW models are studied because they are regarded as being intrinsically interesting,
although these more theoretical studies sometimes turn out to have important applications
for real systems. The best-known example is the study of the SAW embedded in four
dimensional space, which has proved crucial to calculating the scaling exponents of a SAW

in two or three dimensions (8.

!Crudely speaking, a SAW is a RW that does not intersect itself. The notion of self-avoidance will be

made more precise in Chap. 2. :
*This list is far from complete. For a survey of types of RW'’s and their uses, see Refs. [4, 5, 6, 7).
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1.2 The random surface paradigm

In the last fifteen years there has emerged within physics a natural generalization of the RW
paradigm, which is thought by some [9, 10] to have the same potential range of applicability
and importance as the RW. This new paradigm is the random surface (RS).® To date the
RS idea has found applicability in biophysics [11], the study of interfaces and crystal growth
[12], polymerized membranes [11, 13], and quantum field theory, where it has been used
in the context of relativistic string theory and the confiring phase of non-Abehan gauge

theories such as quantum chromodynamics [14]4.

Because the RS paradigm is a generalization of the RW paradigm, much of RS study

is closely related to RW study. For example, the techniques of analysis and the choice of
physical observables used to characterize RS’s are identical to those for RW’s. Also, just as
with RW models, it is useful to study particular examples of RS models that do not have
obvious experimental implications but serve, rather, to elucidate the general structure of
the theory [12]. This last point is even more important for RS’s than it is for RW’s, since
the theoretical tools for analyzing RS’s are not as well developed as they are for RW’s.
Consequently, researchers must oftentimes content themselves with studying models whose
main distinction is tractability rather than applicability to real systems. This is also true for
RS simulations, which are often more difficult to code and always require more computing
time than comparable RW simulations.

While there are many similarities between the RW and RS paradigms, there are, of
course, differences. The most important one is that the two-dimensional internal space of
a RS model has a non-trivial structure of its own, and this ean have a qualitative effect on

the RS behavior. Thus, unlike RW’s, where the order-preserving restriction on the mapping

%A random surface is defined in much the same way as a RW, the difference being that & — S% go that s
is now a two-dimensional vector s. The requirement that the mapping be order-preserving is the same as for
the RW, but its implementation for an RS is generally more complicated. See Sec. 1.3 below and Sec. 2.1 in
Chap. 2. k - ,

*For an overview of the RS idea from a condensed-matter viewpoint see Refs. {13, 15]. For the quantum-
field-theory view see Ref. [9]. ' :
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leads to a unique continuum limit, there is a need to classify RS’s on the basis of their S?

structure.

1.3 A survey of random surfaces

Physical membranes are made up of molecules, bound together into a D) = 2 structure by the
combined effects of intermolecular and membrane-solvent forces. These effects determine
the type of internal structure of the membrane, just as they do for flat surfaces. Before
taking up the problem of classifying RS internal-space structure, it is helpful to review the

three broad classes of flat surfaces:

fluid: In a D=2 fluid, each molecule has on the average six nearest neighbors; however,
sites of five-fold and seven-fold coordination, etc., can and do occur. Such cites are
called disclinations, and, in the fluid phase, they occur in a random manner. This
random distribution of disclinations destroys all translational and orientational order
in the fluid phase and the individual monomers (molecules) flow freely. Thus, the
identity of the “intrinsic” nearest neighbors (monomers adjacent to a given monomer
in 8?) varies in time and from place to place along the surface. The free flow of

monomers also means that fluid surfaces have zero local in-plane shear modulus.

When a D = 2 fluid is cooled, the effect of the intermolecular forces becomes larger,
the energy cost of these free disclinations becomes unsupportable, and the system
undergoes a transition to one of the two more-ordered phases with one or more non-

zero shear moduli,

‘hexatic: In the so-called hexatic phase, the disclinations bind into, for example, 5-7 pairs,
which are equivalent to dislocations. These dislocations have an energy that scales
logarithmically with the system size. Their entropy also scales logarithmically with

the system size, so their creation becomes favorable above some finite temperature
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Tar, called the melting temperature. The disappearance of free disclinations leads to
quasi-long-range (i. e., power-law) orientational order that gives rise to an orientational
rigidity. On the other hand, the presence of free dislocations destroys translational

order, so there is no conventional shear rigidity.

crystalline: The binding of dislocations into nearby plus-minus pairs (i. e., closely coupled
5-7-5-7 complexes) induces long-range orientational order and a translational order
that is quasi-long-ranged because of the low intrinsic dimensionality (D = 2). This
phase is the D = 2 crystalline phase and it has both orientational and translational

rigidity.

We now describe how this classification scheme is modified for random surfaces. Fluid
and hexatic RS’s have the same characteristics as their flat surface counterparts, but crys-
talline RS’s do not [16]. The presence of a dislocation in a crystalline RS will cause the
RS to buckle out of plane. This buckling process reduces the internal stresses in the RS to
such a degree that the energy cost of a dislocation is now independent of the system size.
On the other hand, the dislocation entropy still diverges logarithmically with system size.
Thus, any sufficientiy large crystalline RS will contain free dislocations, which will destroy
the D = 2 crystalline quasi-long-range order, and leave the system in the hexatic phase.
Strictly speaking, then, crystalline RS’s do not exist.

The foregoing argument is certainly relevant when discussing, for example, lipid bilayers
below Ty, where the lipid molecules are held together by weak van der Waals forces and
the formation of dislocations requires very little energy. In contrast, graphite oxide sheets
studied in recent experiments [17, 18] are sufficiently small (~ 1xzm) and the covalent bonds
sufficiently strong that it is unlikely that any dislocations are formed. Since this system
lacks both free disclinations and free dislocations, it is reasonable that many of its properties
can be modelled by a random surface with a uniform fixed connectivity. The connectivity

constraint may be modelled by Egs. (1.1) or (1.2). In more physical terms, we can think
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of fixed-connectivity RS’s as having a strong attractive potential between intrinsic nearest
neighbors. The monomers are allowed to move relative to one another a short distance in
the exﬁbed,ding space, but the “bonds” between them cannot be broken. This generates a
non-zero shear modulus.

The RS versions of constraint Egs. (1.1) and (1.2) give rise to what are known as
“crystalline”® and tethered RS’s, respectively. - Although these have some obvious differ-
ences, the common features of finite shear modulus and fixed intrinsic nearest neighbors
found in both models are thought to be sufficient to ensure that they belong to the same
universality class [19]. “Crystalline” RS’s are better models of real systems (e. g. graphite
oxide), but tethered RS’s are easier to work with for various technical reasons (to be dis-
cussed throughout the thesis). In this thesis, all of the fixed-connectivity RS’s will be of the
tethered type.

As'is usually the case, the nomenclature in the literature is not as consistent as one
might like. The term RS is used almost exclusively in QCD and string theory discussions.
In the condensed matter literature, the term RS is replaced by the word membrane; hence,
tethered membrane (TM), fluid membrane, etc. The condensed-matter terminology will be

used for the remainder of this thesis.

1.4 Overview of the thesis

The similarities between tethered RW’s and TM’s naturally lead to a unified description
of the two, known as the tethered network (TN) [19].° A TN is a random mapping of SP
(D = 1for a tethered RW; D = 2fora TM)in R¢ that respects an appropriately generalized

version of Eq. (1.2). The TN idea can be further generalized by allowing D to take on any

5The term “crystalline” does not have the same meaning here as it does on page 5. It is used here only
in the sense that the spacing between monomers is fixed. It does not imply that the monomers are allowed
to diffuse through the lattice or that the monomers create lattice vibrations as they would in a real crystal.

80Of course, a similar unified descnptlon could be made for rigid-rod RW’s and crystalline membranes,
but we will not need it here.
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real value. This may not seem like a physically interesting generalization, but it has been

useful in the analysis of continuum TN models [20] and will be of great importance in

this thesis. Chapter 2 contains a detailed description of the geometry, structure, statistical

mechanics, and relevant physical observables of TN’s. Models obtained from the continuum
limit of a TN are also discussed in Chap. 2.

Each of Chaps. 3, 4, and 5 describes calculations and simulations done for a particular

example of a TN. These are:

1. 2d closed pressurized RW. For some time now there has been considerable cffort in-
vested in trying to understand the shape conformations and fluctuations of closed
pressurized fluid membrdnes, in general, and of human red blood cells i pérticula.r
[21, 22). This has turned out to be a formidable problem in terms of both analysis
and simulation. These difficulties have inspired some [2, 23, 24, 25, 26, 27, 28, 29] to
investigate a reduced-dimension model consisting of a closed pressurized fluid chain
embedded in d = 2. This model possesses two important simplifications over the fluid
membrane model. The first is that a fluid chain is identical to a tethered RW (for
equilibrium properties) [2], so the difficult problems in obtaining thermal averages for
fluid membranes disappear. The other simplification is that embedding the tethered
RW in d = 2 greatly simplifies the geometrical analysis needed. In Chap. 3 I analyze
the relationships among a set of continuum models of closed pressurized RW’s, and |
calculate some shape ratios (see Sec. 2.2.4 of Chap. 2 for an explanation of this term)
for a particularly simple (Gaussian) model. The details of the shape calculations are

relegated to the Appendix.

2. Self-avoiding tethered membrane. The study of self-avoiding TM’s (SATM) has been
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filled with controversy [11, 30], mostly regarding the existence of a phase transi-
tion from a low-temperature “flat” phase, in which a SATM occupies only a two-
dimensional slice of R?, to a high-temperature “crumpled” phase, in which its em-
bedding in R? is more uniform (These terms will be made precise in Chap. 2). Most
of this controversy has centered on the existence of a crumpled phase in d = 3. The
first simulations [31, 32] indicated that such a phase did exist, but later work [33, 34]
came to the opposite conclusion. Chapter 4 describes Monte Carlo (MC) simulations
done on SATM’s embedded in d = 4 and d = 5 that look for a crumpled phase.
The increased size of the phase space should make the crumpled phase easier to dis-
cbver, if it exists. No crumpied phase is found, but indications of a possible third
“rough” phase that is intermediate to the other two phases are discovered. There is
also discussion of controversies regarding recent experiments [17, 18], the existence of
the rough phase [1], and the appropriateness of using the SATM model to describe

experimentally realizable systems [35].

Self-avoiding Sierpiniski gasket. The controversy and lack of understanding of SATM’s
is in stark contrast to the great depth of knowledge we have about SAW’s. It is
desirable, then, to understand how the change from D = 1 to D = 2 leads to so

many problems. One possible way to explore this issue is to study self-avoiding TN’s

(SATN) for which 1 < D < 2. The generalization of D to real values is more than a

theoretical nicety. Surprisingly, SATN’s with non-integer D can be realized (at least
on a computer) in the form of a self-avoiding Sierpifiski gasket (SASG). Chapter 5

describes MC simulations of SASG’s embedded in R? with 3 < d < 14 and compares

- the results for the scaling behavior of the radius of gyration with those obtained from

mean-field and field-theory calculations. All three methods are found to be reasonably

consistent. Shape parameters are also determined from the MC data.

Figure 1.1 illustrates the connectivity of the three models that will be investigated in
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Figure 1.1: The TN models studied in this thesis. The lines represent the tethers and the
open circles represent d-dimensional hard spheres which are used to enforce a self-avoidance
constraint (see Chap. 2). (a) A closed RW without self-avoidance. The analysis in Chap. 3
deals mainly with the continuum limit of this model. (b) A self-avoiding tethered membrane.
(c) A self-avoiding Sierpiriski gasket. '
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these chapters.

The last chapter, Chap. 6, summarizes the conclusions obtained from this thesis.
If the reader has become alarmed at the proliferation of abbreviations in this chapter,

s/he may find some comfort on page xvi, which contains a list of abbreviations used in this

thesis.



Chapter 2

The Tethered Network Model

2.1 Structure of tethered networks

2.1.1 Geometry

A nice feature of TN’s is that they can be described in purely geometrical terms: A TN
consists of a collection of N vertices (monomers), each connected to some set of “intrin-
sic nearest neighbors” by “tethers” (strings) of length £, usually in a regular manner. The
tethers are a geometrical means of enforcing the constraint Eq. (1.2) (or its appropriate gen-
eralization). In the absence of other constraints and energetic considerations, each vertex is
free to move anywhere in the embedding space provided that none of its tethers is stretched
beyond its maximum length. The precise nature of the connections determines the topology
of the network; the measure of this topology is the network’s intrinsic or topological dimen-
sion D. For example, the tethered RW (D = 1) consists of vertices connected in a linear
way; for a TM (D = 2), the tethers of one 'vertex are connected to all its intrinsic nearest
neighbors so as to form'a homogeneous two-dimensional lattice. The generalization to larger
integer values of D is straightforward.! The resulting network has a characteristic linear

size L ~ N1/D (measured in units of £). The vertices can be labelled either by a discrete

!This concept will be extended to include any real-valued D in section 2.4.2.

11
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~“Figure 2.1: Two versions of the D = 2 TN model: (a) The PTN. The lines represent the
tethers, which cannot be stretched beyond some maximum distance, £. (b) The SATN. The
open circles represent hard d-dimensional spheres. In addition to the tethering constraint,
the hard spheres are not allowed to-overlap. '
index a (1 < o < N), or by a D-dimensional lattice vector s = (s1,...,8p), 0 < s; < Lo
(CQ = LE)

The network is then embedded in a d-dimensional Euclidean space R%. Operationally,

this means that every vertex is assigned a d-dimensional vector r(s) or r(®) that respects

the constraints of the particular TN model.

As illustrated in Fig. 2.1, there are two broad classifications of TN models:

phantom TN (PTN): For a PTN, all vertices are free to move through the embedding
space subject only to the constraint that connected intrinsic nearest-neighbor vertices

be within a distance £ of each other, i. e.,
'r("‘) - r(ﬂ)' <Y (2.1)

‘a and S label connected nearest neighbors.

Self-avoiding TN (SATN): The embedding of a TN in IR? defines a D-dimensional vol-

ume, which is determined by triangulating the nearést-neighbor vertices. Embeddings
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Figure 2.2: How g is determined for a triangularly connected TN. The three open circles
each have a radius 7y and are tethered to one another. The shaded circle, also of radius
T, is not tethered to the others. Simple geometry shows that the circles just touch when
o = 5/2\/3—. Note that rg is a function of £.

of SATN’s in R? that result in self-intersection of this volume are not allowed. This
constraint can be enforced by regarding every vertex as a hard d-dimensional sphere

of radius 79, and requiring

’r(“) - r(ﬁ)l 2 2r¢; (2:2)

a and f label any two vertices. The size of rq is chosen sufficiently large so that a
sphere cannot pass through the open spaces in the TN, even when the tethers are
fully stretched. Figure 2.2 illustrates this idea. Note that this constraint is non-local
in the sense that vertices separated by a large distance in the internal space will be

restricted by it.

SATN’s are usually far more realistic models of polymerized networks than PTN’s; but
the non-local nature of the self-avoidance condition makes them much more difficult to

study.
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2.1.2 Energetics

Although, highly non-trivial, the TN model described above is not yet very realistic. A more
réa]istic model would include a Hamiltonian, H G(,L) , accounting for the “deformation energy”
of the TN, e. g., the energy cost of bending or stretching it [36]. While it is certainly desirable

" to include these effects, they are mostly ignored in this thesis. The reason is that the study
~of D > 1 models containing only constraint terms has proved to be sufficiently complicated
and controversial, sorthat there seems little advantage to studying more complicated models
now. Energetics are included in the D = 1 model studied in Chap. 3, where the Hamiltonian
contains a (pressure)x(area) energy term and a bending-energy term.

For simulation purposes, Egs. (2.1) and (2.2) are the most convenient ways of expressing
the tethering and SA constraints, respectively, but they are not very useful for analytic
work. Instead, the constraints are better expressed as terms in a Hamiltonian. The first
task is to characterize méthematically the effects of the tethers. A potential that reproduces
the effects of the constraint Eq. (2.1) exactly is?

,BHt(L) = Z u(s, s'), (2.3)
(s,8")
where
w(s, &) = 0 ifr(s)—r(s)| <? , e
oo otherwise
and the notation E(S’w indicates a sum over all pairs of tethered vertices. This is still not
a very convenient analytical form. We therefore look for another, more computationally
useful, potential fhat contains the same essential physics.

The standard approéch [19] is to drop the “hard” constraint Eq. (2.3) and to model each

tether as a rigid-rod RW of n steps, each of length 7. The probability distribution for the

?In anticipation of our ultimate interest in using statistical mechanics to study TN’s, the definitions for
Hamiltonian terms will include a factor of 8 = 1/ksT. ‘
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end-to-end distance, z, of a rigid-rod RW is [4]

—dz?
P,(z) ~ exp (27“72 ) \ (2.5)

provided tkat n is large enough. In the language of statistical mechanics, dz?/nn? is an
effective potential for the model. If the end-to-end distance for the rigid-rod RW is now
identified with the distance between a pair of tethered vertices and ¢ = /a5/V/d, then the
effective potential becomes
(L) 1 INY) o p
BHy = 57z Ir(s) — (&)™ (26)
(s:8')

The end result of this procedure is to repléce the tethers with spﬁngs of zero eq'u'ili:brilrurnr

((,[’) is often

length. Because P, represents a Gaussian distribution, the model defined by I
referred to as the Gaussian model.

Ht(L) and H(gL) define different models, not different representations of the satne model,
but the differences between them are not as large as one might think. Monte Carlo simu-
lations [37, 38] and numerical Migdal-Kadanoff renormalization group studies [32] indicate
that Ht(L) and H(EL) belong to the same “universality class” under most circumstances.?,
i. e., they have the same generic long-distance behavior. It turns out for technical reasons

that HéL) is much more convenient to work with than H ,(L).

The SA constraint can similarly be represented as a potential

pHE) = 3 ugals, ), (2.7)
{s:8")

where

oo if |r(s) — r(s")| < 2r A
usa (s, ') = |r(s) — r(s")| o (2.8)
0 otherwise

®An exception occurs for configurations where the typical |r(s) —r(s)] > €. Such highly stretched
-~ configurations are forbiddeﬁ by Hf;’), but are allowed by Hc(,L), although usually they are very improbable.
Thus, under normal circumstances, this is an unimportant difference between them. However, the application
of external forces to the system can make these configurations typical, and it is herc that there will be
important differences between thé two potentials. Such a situation occurs in Chap. 3.
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and the notation (g ¢y indicates a sum over all pairs of vertices. Unfortunately, an approx-
imation procedure similar to the one used to go from Eq. (2.3) to Eq. (2.6) is not known for
the SA constraint. The reason is that it seems to be very difficult to find such a procedure
that maintains the non-local character of the interaction. Although no one has succeeded in

finding a useful approximation to Eq. (2.7) [39], a truly SA potential is known for continuum

models (see Eq. (2.45) below).

2.2 Physical observables

We are interested in describing the characteristic size and shape of a TN as a whole. To
do this requires a two-step procedure: The first step, which does not involve any statistical
mechanics, is to construct macroscopic physical observables from the microscopic degrees of
freedom (the r’s). The second step is to perform the usual statistical mechanics average of

the macroscopic variables over the ensemble of configurations.

2.2.1 Invariants of the inertia tensor

In searching for a useful measure of the macroscopic properties of an individual TN, we
are guided by considerations of simplicity and symmetry. Simple observables are the ones
that are easiest to interpret physically. Symmetry considerations arise from the observation
that, provided that the ensemble is isotropic, its averages implicitly include an average over
the a.ngu‘lar degrees of freedom for the entire TN; only rotational invariants will survive this
averaging process. The moment of inertia tensor,*

= = Z [(a _T(ﬁ] [(a)_r(ﬁ)]'

a,f0=1

“This definition has been chosen for computational convenience, but it is slightly different from the one
found in mechanics texts. Assuming that the center of mass is located at the origin; the two are related by
7 ,Qf;’) I18;; — Iij, where I,_, is the usual moment of inertia tensor [40], and I is the usual moment of inertia.

‘Note that since Eq. (2.9) implies that all the vertices have unit mass, the engineering dimension of Q(L)
length instead of the usual mass x length?.
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LY ) = (&), () - (&) 29)

s,s’
(i, = 1,...,d), is a simple inacroscopic quantity that contains all the information needed
to construct a simple class rotational invariants. Q(¥) is real symmetric; thus a rotation can
always be found to diagonalize Q(E) so that fo’) rotation QSJL ) = /\,([')5;_,’. Therefore, only d
of the d? elements of Q(F) are independeﬁt.
The /\,(L) ’s are referred to as the principal moments of inertia and are just the eigenvalues
of Q). Although they are irdependent of rotations, their ordering along the diagonal of

Q@) is not unique, since rotations can always be found whose only effect is to scramble their

order. This non-uniqueness in labelling can be removed by imposing the convention
(L) L o .
A< /\g ), when i < 7 (2.10)

which will be used in all future discussions. In simulation studies, where one has access to
‘the individual configurations, imposing this convention is a trivial numerical problem, and,
as a result, the calculation of the ensemble averages of the /\EL)’S is straightforward. On the
other hand, it is impossible in practice to diagonalize fo) analytically. Analytic studies
therefore require rotationally invariant macroscopic quantities obtained directly from QEIL ),
whbse rotational invariance does not depend on convention (2.10).

Combinations of eigenvalues that are symmetrized with respect to the i-index are just

such quantities. A general form for these invariants is

d J
MP = 3 [N (2.11)
ij:j a=1 .
13 i <i<ey

where j = 1,...,d. Three well-known special cases are:

1. the radius of gyration (5 = 1):

d | |
MP =3B =) = (RgL))z;r (2.12)

1=1
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2. the determinant (j = d):

d
M = T AP = det @D (2.13)

=1

3. the sum of the minors (5 = 2):

M® = > /\'(L)/\gL)

i<]
d-1 2 1 A
_ LY _ = (L)2
= (1 QW) - S (@), (2.14)
where
R 1
| Q,(,L) — ng) _ ETT Q(L)‘Sifi | (72.15)

2.2.2 Statistical mechanics

The preceding discussion has been entirely in terms of a single configuration; but, if we are
to do statistical mechanics, an average over the ensemble of configurations must also be
performed.

The partition function, Z(L), for a TN model is just a sum over all configurations with
the usual e7#¥ thermal weight function. Constraint conditions that suppress certain “im-
possible” configurations may be enforced directly or via terms in the Hamiltonian that assign
infinite energy to the unwanted configurations, as was done in Sec. 2.1.2. Thus, for PTN’s,
which are subject to constraint Eq. (2.1),

2 = [ Dle] T] 6(¢ - Je(s) - r(&))) e 4", (2.16)
(s.8")
where

p[r] = [J dr(s), 7 (2.17)

- and the Hamiltonian H lSL) contains only the deformation energy. Alternatively, we could

write

(2.18)

’

_ (L) (L)
Z(L) :/D[r]e ﬁ(Hd +H, )
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where the explicit constraint has been replaced by tethering Hamiltonian, H; from Eq. (2.3).
Similarly, for SA models, the SA constraint can be included in Z(") directly by including the
extra factor [[(ss0(|r(s) — r(s’)| — 2ro), or indirectly by including the Hamiltonian 11( )
from Eq. (2.7) in the exponent. In practice, including the constraints (or some approximation
to the cohstraints) in the Hamiltonian is always easier than including them in the integration
measure. Thus, we will have occasion (especially in Sec. 2.4) to refer to the tethering term
or the SA term in a Hamiltonian.

Another useful quantity is the pair correlation function,

,Gz(f)(S,S = (ri(s)r;(s")) = 7O /D ri(s)rj(s )e"ﬁ”(“ (219

where (- - -) denotes an ensemble average. Note that in this equation all relevant constraints
have been absorbed into H(L), Egq. (2.19) can be used to construct physical observables.
For example, combining Egs. (2.9) and (2.19) gives
(@P) = 23 [60(s,9) + 6P(s' ) - 26D(s,9). (2.20)
s s/

Such formulas are useful for the shape calculations described in Chap. 3.

2.2.3 Scaling laws

Scaling laws are one of the most useful ways of characterizing the long-distance behavior of
a TN. Properly speaking, scaling exponents only exist in the thermodynamic limit (L — oo
with £ fixed); but, L-dependent exponents can be introduced in order to make contact with
simulations, which are necessarily done on finite-sized systems.

The best-known result from the RW literature is that the average end»to«rnd distance
of a‘RW is proportional to v/L. It is easy to show [41] that this same scaling relationship
holds for‘(Rg’) 2>. By analogy with RW’s, the scaling exponent, v'X), for a TN is defined
through t’he formula,

(RP?Y L o (2.21)
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Similarly defined is u,,(L) through

(L)
(MDY ~ 12, (2.22)
The true scaling exponents v and v; are obtained by taking the thermodynamic limit of the

L-dependent ones. The thermodynamic limit and Eq. (2.10) imply
v; < v; when i < j. (2.23)
Eqgs. (2.12), (2.21), and (2.22) further imply that
v =g (2.24)

The range of allowable values for v is restricted by simple geometric arguments. Eqgs. (2.21)
and (2.12) give an upper bound v < 1, and it is obvious that v > 0. The lower bound on v
for a SATN can be further restricted by considering that a SATN of intrinsic volume L?,
when “close packed"’ (i. e., isotropically embedded in R? in a way that minimizes its volume

in RY), will have a typical linear size L?/4. These considerations combine to give

0<v <1 foraPTN;
(2.25)
D
-‘—i—_<_1/§1 for a SATN.
There are other scaling exponents such as v, defined, once again in analogy with RW’s,
through the equation
VARV e (2.26)
The calculation of ¥ for tethered membranes (D = 2 TN’s) has become a controversial
subject in the literafure {20} because its value for a TM appears to depend upon the shape
of the TM boundary, and is théféfore not universal. This subject will not be discussed

further here.

A ba,si'c‘ questioh in the study of TN’s is how the /\EL)’S scale relative to one another as a

function of L. There are different types of scaling behavior, which are thought to represent
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different thermodynamic phases. Much of the subsequent work in this thesis is devoted to

determining the phases of specific TN models. There are three known phases®:

flat, for which v = vy = yy_py1 = land v; < 1fori=1,...,d=D. As L — oo the
TN becomes increasingly concentrated in a D-dimensional slice of RY. The terin flat

comes from the D = 2 case, which is the one most commonly discussed.

crumpled, for which v = »; < 1 for all values of ¢. In this phase all the ,\gL)’s have the

same scaling behavior, so the shape of the TN does not change as L — oo.

rough, for which v = vy = vy.pyy < land vy; <wvfori=1,....,d-D. The L — oo
behavior is similar to that for the flat phase, but, for a given L, a flat TN will always

be more concentrated in a D-dimensional slice of RY than a rough TN.

The above list of phases is the most general one possible that is consistent with the

following two assumptions about the thermodynamic limit:
l.v=yforalld-D+1<k<d
2. yy=vjforalls,;<d-D

How valid are these assumptions? It is tempting to argue that the intrinsic D-dimensional
structure of a TN will either leave the SO(d) symmetry of R? intact and result in a crumpled
phase, or, at most, break the SO(d) symmetry into SO(d — D) x SO(D) and result in
either a flat or rough phase. This is, in fact, an argument about the symmetry of the Qg’)
eigenvalues, i. e, that Ay = --- = Ag_pyy and \; = Aj for all i, 5 < d — D. It is well-known
[43, 44, 45] that the eigenvalues of TN’s do not have this symmetry (they are all different).
From an “experimental” point of view, there is currently no evidence from simulations
to mdjca,te that the first assumption is false; however Chap. 4 describes simulations that

suggest that the second assumption may be false (see Sec. 4.4.3).

*The following descriptions of the flat and rough phases only make sense for integer D. It is not clear how
 to properly generalize these descriptions when D is not an integer. The usual practlcc [42, 43] is to replace
D with the next largest integer. :
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2.2.4 Shapes

Analyses of critical phenomena are often focused on critical exponents such as v and 4. Much
of the interest in these exponents lies in their universality—several models that differ in their
detailed characterization may, nonetheless, have the same critical exponents. In addition
to being described by universal critical exponents, TN’s also seem to possess universal
amplitude ratios [46, 47], which characterize the equilibrium shape of the surface in terms
of the /\EL) 's. The two most commonly used ratios are the shape parameter,
(L)
L A
S = <—g§> , (2.27)
A
d
and the asphericity,
dTr (QD)2
o ()
(Tr QW)

& 00
4=\ 3
= (2= . (2.28)

d 2
ﬂd-U(Zqu
t=1

" Note that A‘(iL) is composed entirely of MJ(L) ’s, but S(gL) is not. Thus, while both AgL)
and Sé“ can be measured from simulation data, only A‘(iL) can be calculated analytically in
practice. Like the scaling exponents ui(L), A‘SL) and S(gm possess well-defined thermodynamic
limits, denoted by A4 and Sy, respectively.

These two shape measures are sensitive to different characteristics of a TN. To see how

they differ, consider three different scenarios:

1. v; < yjfor i < j < d. From Eq. (2.27) it follows that Sy ~ L**~*¢ — 0. The
‘behavior of A4 is more complicated. If v4_; < vy, so that there is a unique largest
v; (j = d), the TN will have a “cigar shape” and inspection of Eq. (2.28) shows that
}‘ld — 1. lfj<dand vj = vj;1 = ... = vy, the TN will be effectively embedded in a

(d—37+ l)fdiménsibna.l space, and A4 will measure the shape in this reduced space.
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2. All v’s equal, but the ,\§L’ ’s unequal. In this case, both A3 and $; will be non-zero.

L . . g
f ) ’s, it provides a more detailed

Because A, contains information about all the A
characterization of the shape thanr S;, which contains information about only two of

them.
3. All /\gL)’s equal. Inspection of Eqgs. (2.27) and (2.28) shows that S; = 1 and 4, = 0.

Some workers prefer to use variants of these amplitude ratios, namely,

(L) _ <’\£L)> (2.29)

Sq = <A§L)> ’

4 (L)—, (L))? |
@ _ <Z =% )>

7,3=1
ey

)]

These amplitude ratios also have well-defined thermodynamic limits, denoted by a4 and s34,

‘and

(2.30)

respectively. Comparing Egs. (2.27) and (2.28) with Eqgs. (2.29) and (2.30), respectively, one
can see that the only difference between them is that the former two are ensemble averages
of ratios for individual configurations, whereas the latter two are ratios of ensemble averages.
The distinction between S; and sy is not important here. (The results for S, in the above-
mentioned scenarios hold equally well for s4.) The only point of interest is whether or not
they are non-zero (see section 2.2.5 below). On the other hand, 2= a measure of the shape
of a typical configuration, Ay is preferable to ay precisely because it is an ensemble average

of a quantity calculated for each configuration.

2.2.5 Criteria for crumpling

Two central issues in the study of TN’s are the existence of a crumpled phase and of a flat-
crumpled phase transition. These questions have been especially important and controversial

in the study of TM’s [30].
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phase v | S4
flat 1 0
rough <1] 0

crumpled [ < 1| >0

Table 2.1: Criteria for distinguishing between the three known phases of a TN.

If there were only the flat and crumpled phases (as many workers have assumed), then
knowing v would suffice to determine which one was observed. However, since v < 1 cannot
distinguish between the rough and crumpled phases, some other additional test is needed.
In principle, all the v;’s could be used, but the same difficulty arises here as arose for the
ahalyti'c calculation of the eigenvalues in Sec. 2.2.1. The v;’s are also difficult to measure
accurately from simulation da.té. The shape parameter Sy (or éd), however, does prévide a
useful means of distinguishing between the flat and rough phases (5S4 = 0) on the one hand,
and the crumpled phase (S; # 0) on the other. Thus, combined measurements of both v
and Sy suffice to distinguish betweeh the three known phases of a TN. These conclusions
are summarized in Table 2.1.

There has been a great deal of effort in the literature devoted to resolving analytically
the question of which phases of TN’s are actually realized [11]. The importance of Sy |
in determining thé phase and the difficulty in calculating it make it unlikely that phase
existence questions can be resolved analytically. Note that it is sometimes possible to
compute the asphericity; however, this is no help since it does not provide any indication of
the phase, i. e., all values of the asphericity are possible in each of the phases.

In subsequent chapters I will discuss three things about each TN: the scaling behavior of
the /\‘(L)”s, various ratios of the /\,(-L) ’s that characterize the shape of the TN, and the phase

of the TN.
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2.3 The continuum limit‘

The description of TN’s given so far has been for discrete ( £ > 0) versicas of the models.
Discrete versions are appropriate and necessary for simulations, but statistical field theory
usually requires continuum models for reasons of computational tractability. In passing
to the continuum limit, one would like the continuum model to be closely related to the
“discrete one—derived from it by a straightforward application of the £ — 0 limit. There are,
however, some subtleties involved in taking this limit, which I now discuss. For simplicity
the argumént is given in terms of a random walk, but it is applicable to any TN when
suitably generalized. In addition to being more tractable than discrete models, continuum
models are rinteresting in their own right aé examples of randdm fractals. |
Before the continuum limit is taken, there are three length scales that characterize the
- RW: the step length ¢, the intrinsic length Lo and a macroscopic distance such as Rgo. It is
important to realize that all three quantities have the same engineering dimensions. Thus,
if Rgo depends on both ¢ and Lo, then these quantities must be related in the following
way [48]:
Rgo ~ VLo ~ /I, (2.31)

We can begin to understand the subtlety of the continuum limit by asking the following
question: What happens to the RW when ¢ decreases, say, £ — ¢ = £/2? The simple
answer is that it depends on what happens to Ly and Ry, i. e., demanding £ — 0 does not
uniquely specify a continuum limit — we must also specify what happens to £y and Ry in
the process. Although it is possible to consider a wide variety of scenarios, I will discuss

only two:
1. £ - £/2 and Ly fixed. From Eq. (2.31),

L~ 22 L — 2L
==

: (2.32)
Lo fixed Ry — Rgpo/V2

This limit is illustrated in Fig. 2.3a.



CHAPTER 2. THE TETHERED NETWORK MODEL 26

(a)

(b)

Figure 2.3: Two possible limiting procedures for the discrete RW (a) £ — £/2 and Ly fixed.
This limit is not very physical because the physical observable Ryo shrinks as a result of
applying the limiting procedure. (b) £ — £/2 and Ry fixed. This limit has the desirable
property that the physical observable Ry is not altered by the limiting procedure. However,
the intrinsic length of the RW does increase.
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2. £ — £/2 and Ry fixed. From Egq. (2.31),

¢ - L2 Lo — 2L ‘
= . (2.33)
Rgo fixed L — 4L

This limit is illustrated in Fig. 2.3b.

The physics, of course, should not depend on the limiting procedure, which is just a com-
putational convenience. Clearly, then, the physically interesting limit is the one described
in scenario 2, since it fixes the physical observable Rgo. As the RW is divided in to smaller
and smaller steps, the number of steps (L) and the intrinsic length Lo must grow in order to
keep Ry fixed. In the limit £ — 0, Lo — oo(~ 1/€) and L — oo(~ 1/€%). This is the central

point: the limiting procedure leaves neither £ nor £g finite; only the product

L ol (2.34)

= (L

remains finite. Thus, the limiting procedure replaces two finite parameters, each having en-
gineering dimensions of length, with a single finite parameter having engineering dimensions
of [length]®.

From a more mathematical point of view, the continuum limit generates a random
fractal®. As with all fractals, the infinite intrinsic length scale (in this case Lo) is a signal
that the fractal covers some finite porticn of a larger space. The size of this space is measured
by the Hausdorff or fractal dimension dy. For a TN, the number of points scales like COD
and the size of the TN, Ry, scales like Lo” (assuming £ fixed). Hence the the number of
points available to cover the plane scales like RgD/ “and dy = D/v. For a RW, D = 1 and
Vo = -12;, so dgo = 2. Thus, a RW generates a so-called “Brownian area”, which covers some
finite fraction of the plane when the RW is projected onto an R? slice of IR%. This Brownian

area is measured by L.

8A random fractal is an object whose scaling behavior is independent of the length scale at which it i
probed (hence the term fractal). In the case of the RW, Ry ~ L /2 independent of the size of L. However,
unlike a regular fractal, the precise shape varies randomly from one part of the object to another (hence the
term random). ‘
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2.4 Continuum models of TN’s

Having discussed the meaning of the continuum limit, we now apply this knowledge to the

Hamiltonians described in Sec. 2.1.2.

2.4.1 'The Gaussian model

1t has already been mentioned in Sec. 2.1.2 that for practical calculations ﬂHt(L) (Eq. (2.3))
must be replaced by ﬂHéL) (Eq. (2.6)). Another reason for making this replacement is that

ﬂH,t(L) does not have a well-defined continuum limit, but ﬂHéL) does. Starting from (D = 1)

. |e(s) = r(s")] _ Or(s) , , ,
jm PO, 259
it follows that
7 1 7 or\?
: (L) _ _ = or
lim pH{Y = §Ho = - / ds( (93) . (2.36)
1]

(Continuum versions of all physical quantities will be distinguished from their discrete coun-
Vter,parts by dropping the (L) superscript.) Note that £2 appears in the denominator of
'Eq. (2.35), not £. This is a direct consequence of the fractal nature of the continuum limit.

From another point of view, the requirement that 8Hg be dimensionless can only be fulfilled
if 02 = ds.

“"I‘he extension to an arbitrary value of D is accomplished by a natural generalization?

of Eq. (2.36), .

D 2 :
BHo = %O/st > (gé) . (2.37)
The resulting partition function,

Zo = [ Dirlexp(~6Ho), o (2.38)

can readily be eva]ﬁated using standard functional integration techniques [49].

TStrictly spea]ung, g(D)y= f dPs f(s) is not defined for non-integer values of D. The correct approach is
to regard D as an integer-valued parameter of g and then to attempt an analytic continuation of g(D) to

real va.lues of D The notatlons f dD s and Zl are merely a shorthand for this procedure
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A comparison of the results from analysis of the S8H inodel with the results of MC
studies of the ﬂHéL) model indicate that they are in the same universality (:lass [32].
“Taking the continuum limit also generates a scale-invariant theory. We can see this by

first rewriting Hp in terms of the dimensionless parameters o and p, defined through

s=ocl with0<eo<1 _
(2.39)
‘and r = pl",

which gives

_1 2uo+D—2/ D (ap) o
Ho= 3L 2o (5E (2.40)

The mtegral is now a pure number, so the only way Hy can remain dlme.n'alonlms is if ]t is
scale invariant (1 e. mdependent of £). Requiring scale invariance gives

2 - ;
vo = ——52. (2.41)

From this scale invariance we can also obtain the scaling behavior of (R,). Irom
Egs. (2.9) and (2.12) we find
(Ra) ~ 2o (l(e) = x(&)7) ~ £, (2.42)
8,8/
where (- ) is dimensionless. Thus, (R,0) ~ £*.
The fractal dimension for a TN is
D 2D :
dfg = — = ———. 2.4:
fo 140 2—-D ( ;)
For D = 1 we recover the result that a RW effectively fills the plane. On the other, a T'M

(D =2) fills any space, regardless of its dimensionality.

2.4.2 The Edwards model

Having dealt with the tethering constraint, we now turn to the issue of self-avoidance. The

continuum limit of a SATN is thought to be represented by the Edwards model [20, 50},

Hg = Hp + Hsa, | o (2.44)
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where

BHsa

L
v
~—2—2- / dPsdPs 6% [r(s) — r(s")]
0
8#s’
1
v
= Zprpmin / dPd%' 64[p(o) — p(a). (2.45)
oo
v, measures the two-body interaction strength and has dimensions [ve] = Lrod=2D g,
does not contribute to Hg, unless the configuration self-intersects, i. e., r(s) = r(s’) for at
least one pair of distinct s-values. Therefore, it-has no effect on SA configurations, but
it does generate a finite positive value for self-intersecting configurations. The restriction

s # s’ prevents self-interaction of individual points. The full Hamiltonian is

. |
BHg = % ]0 "4Ps (gg)z +2 / dPd%" 8 [p(c) — p(a”)), (2.46)
o
| -
where
7 = v L20-(3-D)é/2 (2.47)

Once again, the scaling behavior is completely determined by the exponent of £. The
mode] remains scale invariant along the curve

4D

duc; (2.48)

so that, in the thérmodynamic limit,
0 for d>d, SA irrelevant
L>o0o=z—4 v, for d=d, SA marginal - (2.49)
oo for d<d, SA relevant

‘Thus, when d > dy, the SA configurations are given the same weight as the self-intersecting

7 conﬁgurations, and SA is irrelevant. When d = d,., the self-intersecting configurations are
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suppressed, but not very strongly. In this situation BHga gives logarithmic corrections to
R, but does not effect the scaling exponents [20]. When d < dy., any positive contribution
arising from integrating over a self-intersecting configuration is multiplied by z — co. Thus,
in the thermodynamic limit, self-intersecting configurations are completely excluded from
the partition function [51]. The Edwards model is, therefore, truly self-avoiding.

It is also possible to consider n-body interaction terms such as

. |
B =2 / dPs; - . .dPs, 6%x(s1) — r(s2)] ... 64r(sn-1) — r(sn)). (250
0

These terms also have a critical line,

7 ) D
uen = (n—1>1—/3

(n -Ti 1) 2_2_.25 (2.51)

However, the n > 2 terms are never relevant in the thermodynamic limit if the n = 2 term

is present. We can see this from the scaling coefficient,
0 = v LM =D) Y (2.52)

for each term Hé ) Naive scaling analysis shows that that, near the Gaussian fixed point,
the large-n terms can be the most important ones. This will occur when D > 2d/(2 + d).
However, renormalization will drive the system away from the Gaussian fixed point and
towards another fixed point with a larger value of v. As v increases, the small-n terms
become increasingly important. For v > D/d (the “close-packed” lower bound on v for
a SATN; see Eq. (2.25)), the n = 2 term dominates all others. Hence, the renormalized
interaction will always be domma,ted by the n = 2 term.

ThJs effect has been studied in some detall for the case of polym(,rb using so-called
k-tolerant walks [52] In a k-tolerant walk, the walker is allowed to visit a site as many as |
k tlmes but not more. In the Edwards-model }angua,ge, a k-tolerant wa.lk has the kabody :

term as«lts lowest order bare interaction term. Renormalization group analyses [53} and
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more formal treatments [54] show (although not rigorously) that the k-tolerant walk is in
the same universality class as the SAW. Thus, the two-body interaction in the renormalized
Edwards model always dominates the interaction terms even when it is initially not present.
We will return to a discussion of the higher-order interactions in Sec. 4.5.2. |
In the preceding approach, the scale invariance of Hy was enforced and Hga was allowed
to become relevant, marginal (scale invariant), or irrelevant as a function of d. When Hgp
is irrelevant, it is obvious that ¥ = 1p. This is also true (but not obvious) when Hgp is
margiﬁal. The situation is more complicated when Hsp is relevant, since it is not easy to
characterize the forbidden configurations. We can get'an estimate of v by replacing the
requirement that Hg be scale invariant with the demand that both terms in Eq. (2.46)
have the same scaling behavior. Equating the exponents of the L-factors in Eqgs. (2.40) and
(2.45) leads to [20] o
‘ D+2

VrF = m (253)

This approach has no rigorous foundation and is, in fact, equivalent to a mean-field
- analysis of the theory. This mean-field argument (originally due to Flory {4, 55] in the
context of polymers) consists of writing the free energy as a sum of two competing terms,
, N?

Fr R4

Ry’

(2.54)

The first term is the elastic energy required to stretch a TN to a size Rg, and it corresponds
to Hp in the Edwards model. The second term is the SA-interaction energy, which scales
like the square of thé density of monomers for a two-body interaction. It is here that the
mean-field approximation is introduced, since the free-energy density, which is expected to
depénd onrthe“ :density—'density ’ccr)rrerlations (%), is r’ephced by (e)* ~ N2/R2¢. This term
“must then be multiplied by a volume factor ~ RY to obtain an energy. Recalling that
N~ LD ~ R_f,)/ "4and minimizing F' with respect to R, leads to-Eq. (2.53). Despite the
approﬂm#te ;iatﬁre of the argument, vg gives a surprisiﬁg]y good estimate of v for polymers

| and Siei‘piﬁski gaskets (see Chap. 5).
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flat, rough, or
Flory crumpled (SA relevant)

Gaussian

crumpled (SA irrelevant)

Figure 2.4: The D versus d phase diagram. Along the line labelled “stretched” D = d and
the TN fills the embedding space, so » = 1. The other curve, which separates the SA-
relevant and SA-irrelevant regimes is a plot of Eq. (2.48). Several points in the (D, d)-plance
are studied in Chaps. 4 and 5.

It is implicit in the above discussion that D and d are integers, but the analytic contin-
- uation of the Edwards model theory to real-valued D and d is mathematically well-defined
and potentially interésting. There are two reason for interest in this generalization. The first
is that analysis of the Edwards model is difficult and can be done only using perturbation
théory. In the most successful method, known as the e-expansion, the theory is first solved
at a point (D*,d*) along the critical line d = d,.. Because self-avoidance is marginal along
this line, the theory can be solved exactly. The theory is evaluated at the point of interest,
(Dphys> dphys), by regarding Dppys and dphy, as perturbations of D* and d* [20]. For this
procedﬁre to'work, D and d must be regarded as continuous parameters.

From a second and more mathematical point of view, it is desirable to understand

the structure of the theory over the entire (D,d)-plane (see Fig. 2.4), not only because
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the structure may be intrinsically interesting, but also because it may provide insight into
the theory defined at the physical points of the (D,d)-plane. This is especially true of
membranes, for which d,. = co. If the theory were restricted to integer-valued points in the
(D, d)-plane, the physical point (D = 2,d = 3) would be infinitely far away from where the
theory could be solved. On the other hand, the physical point (D = 2,d = 3) is only a finite
distance away from the point (D = 6/7,d = 3), which lies along the critical line d = dyc. It
is not yet clear whether d,. = oo signals a regime with qualitatively new physics or, on the
other hand, whether it simply creates computational difficulties for the perturbation theory.
‘Exploring other regions of the (D, d)-plane may give some insight on this matter, and is, in

fact, the motivation for the work in Chaps. 4 and 5.



Thou com’st in such a questionable shape,
That I will speak to thee.

William Shakespeare
Hamlel

Chapter 3

Two-Dimensional Closed

Pressurized Random Walks

3.1 Introduction

In recent years there has been a surge of activity in the study of artificial and naturally
occurring fluid vesicles [22). Much of this activity has focused on understanding the various
shape conformations of these systems. Although some vesicle shapes can be explained by
~ studying the T = 0 energetics [56], there remain many questions about the role of thermal
fluctuations [57]. To address these more difficult questions requires a statistical mechanical

treatment of a model that incorporates the most important properties of fluid vesicles:

1. A vesicle has a fluid as opposed to tethered membrane. Alternatively, one can think
‘of a fluid membrane as a TN whose connectivity is allowed to.evolve over time. This

is, in fact, how simulations of fluid membranes are done [58].

2. A vesicle membrane is self avoiding.

35
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3. The energetics are controlled mainly by a surface bending rigidity [56], k, that is
sufficiently large so that the correlation length induced by it, /., is comparable to the
vesicle size, R. This turns out to be a crucial distinguishing feature of a vesicle!; if
. < R, the vesicle is simply a pressurized self-avoiding surface (or pressurized self-
avoiding walk (PSAW) in the two-dimensional analogue), and many of the interesting
shapes that resemble those seen in éxperiments on real vesicles disappear. Mindful of

this distinction, the term vesicle will henceforth be used to describe only models for

which [, Z R.

4. The surface area exceeds the minimum needed for the enclosed volume (the vesicle is
deflated). There may also be, in general, a pressure difference, p, between the inside

and the outside of the vesicle.

The non—locaj nature of the self-avoiding interaction and the complications that fluid
surfaces create for ensemble averages make this model very difficult to analyze for T > 0.
As a result, only mean-field analyses of phenomenological models have been done so far [56].
These difficuities have led some people to consider studying vesicle models via computer
simulations, but it is only very recently [59, 60] that the computer power needed to do

reasonable simulations of d = 3 fluid vesicles has become available,

3.1.1 Simulation models

In the time between these two developments, M. E. Fisher and collaborators [2, 23, 24,
25, 26, 27] have used Monte Carlo simulations to investigate a two-dimensional model that
contains features 2-4 listed above (The distinction between fluid and tethered membranes
is lost for equilibrium properties of one-dimensional surfaces embedded in two dimensions).
Speéiﬁéa.lly, thé model (referred to as the LSF model) consists of hard disks of diameter

a connected by tethers of length‘ %a to form a ring. The bending energy term in the

M thank Udo Seifert for pointing this out.



CHAPTER 3. TWO-DIMENSIONAL CLOSED PRESSURIZED RANDOM WALKS 37

Hamiltonian is (k/a) Zjvzl (1 — cosb;), where 6; is the angle determined by two adjacent
links. There is also a (pressure)x(area) energy term, which accounts for the work done at
constant pressure when the enclosed area of the vesicle changes.

In their original work [2], LSF observed scaling behavior for the enclosed area and the
radius gyration of a PSAW and found different shape classes as a function of pressure. They
also found dumbbell-like and ellipsoidal vesicles coexisting for certain combinations of neg-
ative pressure and bending rigidity. Subsequent work by the same group [24] demonstrated
that the shape parameter, s3, of a PSAW can be varied continuously by adjusting the pres-
sure. Other work by this group includes studies of the scaling behavior of the enclosed area
~and radius of gyration of a PSAW in the high pressure regime [25] and studies on vesicles in
the large bending rigidity limit [26]. Most recently [27] they have begun a detailed investi-
gation of a negative pressure-rigidity phase diagram, and have found a wide and intcrésting
variety of shape classes (e. g. , ellipsoidal, dumbbell—like,r rod, and branched polymer). Sus-
ceptibility measurements from these simulations suggest that some of the shapes may be
separated by phase boundaries. Most of this work is reviewed in Refs. [23, 27].

Boal [61] has studied a similar model, but with the bending rigidity replaced’ by an

attractive potential. The resulting pressure-attraction phase diagram includes a branched-

polymer phase and a dense phase, as well as the usual self-avoiding walk phase.

3.1.2 Continuum models

Computer simulations are certainly useful for studying vesicle shapes, but they cannot tell
the whole story. Questions about the existence of phase transitions, such as those discussed
in Ref. [27], are particﬁ]a.rly difficult to answer from simulation data because of finite-size
effects. Mean-field calculations are also unreliable in this respect. Thus, it is desirable to
complement these computer studies with analytic work. Ideally, one would like to analyze a

" microscopic model with the same features as the LSF model. Such amodel can be described
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by a Hamiltonian with three parts:
Hysp = Hsa + Hy + H®; (3.1)

BHsa = v /OLO ds1dsp6(r(s1) — r(s2)) (3.2)

is identical to Eq. (2.45) except for the replacements v, — vj (these interaction strengths
_have different engineering dimensions) and £ — Lo (The need for this distinction will be

made clear at the end of this subsection.);

Lok [dor)’
ﬂ.H,;: A dS*é (3-5—2') (33)

is the natural continuum realization of the discretized bending energy fi(k) - fi(k + 1) [48],

where fi(k) is the unit normal of the kth link; and the last term,

BH(®) = —plalr]|, (3.4)
where
1 Lo .. dr;
_ 7., d
alr] = ; /0 dsein L, (3.5)

| accounts for the energy due to the pressure difference p. Eq. (3.4) employs the convention
that the inside pressure is greater than the outside pressure when p > 0. The functional
a[r] (referred to as the algebraic area) is different from the true area, since a[r] is sensitive
to the direction that the loop is traversed. Hence, the absolute value must be used.

The last ingredient needed to complete the model is the constraint,

(&Y i

which fixes the distance between adjacent links. This rigid-rod constraint does not corre-
spond exactly to the LSF-model constraint (which uses flexible tethers); but, as discussed
in Chap. 1, the long-distance behaviors and the continuum limits for these models are the

same.
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Eqgs. (3.2)-(3.6) implicitly assume that the arc-length, s, is a continuous parameter. On

the other hand, the evaluation of the partition function,

dr

) ,
Zusp = / Dlx] 6 [(EE) _ 1} exp (=B Husr), (3.7)

requires s to be discretized [48] into N links, each of length £, so that
Lo= N{L (3.8)

measures the perimeter of the vesicle. After the functional integral in Eq. (3.7)is performed,

" the continuum limit is obtained by the prescription
N — oo,f - 0, such that Lo is fixed. 7 7 (73.97)"7

Eqs. (3.1)-(3.9) describe a continuum version of the LSF model, and should contain the
same physics as the discrete version. Unfortunately, this model has several features that
destroy its otherwise Gaussian character, thus rendering an exact calculation hopeless. 1
will now describe a sequence of models that are obtained by removing these non-Gaussian
elements one at a time, eventually leading to a model that can be analyzed completely in
closed form. The price that will be paid for this increased tractability will be a significant
change in the physics that the resulting model describes.

The first task is to remove the two non-Gaussian elements of H LsF. One of these elements
is Hsp. While Hga could be included in the analysis with the aid of the e-expansion
described in Sec. 2.4.2, the necessary starting point is still the exact solution of the Gaussian
field theory. For the sake of simplicity, all subsequent discussion will ignore Hgs. However,
Sec. 3.3.1 does contain a brief discussion of Flory-theory self avoidance.

The second non-Gaussian element of Hisr is the absolute value in Eq. (3.4), which is
required to ensure that the area is positive. This problem can be handled simply by making

the replacement

FH™ — pH, = ~pa[r], S (310 |
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but this creates two probléms of its own. The first occurs because closed random walks
that cross themselves have both positive and negative contributions to ar]; this effect will
become especially significant when |p| is small. Of course, if Hss were retained in the
Hamiltonian, this problem would not arise. The second problem is that, for every vesicle
w‘ith’arlgebrraic area A, there is an identical one with algebraic area —A. In the presence self
avoid,ance? these two regimes are separated by an infinite energy barrier, but this does not
- solve the problem as far as equilibrium properties are concerned. This is a serious defect in
the model and there does not seem to be any way to circumvent it without destroying the

‘quadratic nature of H,. I will return to this issue in Sec. 3.4.1.

- : - The changes required to make the Hamiltonian quadratic in r are summarized by the

equation

Hysp — Hpp = H, + Hp. (3.11)
‘Tlhe model described by Egs. (3.6)-(3.11) will be referred to as the rigid-rod model.

- The final non-Gaussian element of the continuum LSF model is the constraint, Eq. (3.6).

It can be removed by using the well-known procedure of replacing the constraint with an

additional term in the Hamiltonian

Hgg + Eq. (3.6) = Hprw = Ho + H, + H,, (3.12)
where
. 1 £ dr\?
,BHQ = Z A ds (E;) (313)

is the Gaussian Hamiltopian introduced in Sec. 2.4.1, with
L=Ne, ; (3.14)
The new pa'rtit'ion' function obtajned by making the replacement
Zisy — Zonw = / DIr] exp(~fHprw) (3.15)

~ is a Gaussian functional integral.
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Although Eq. (3.12) achieves the desired effect of replacing an unmanageable constraint
- with a Gaussian integral, it constitutes a major change to the model; rigid rods have been
replaced by infinitely stretchable springs. The new model described by Hprw will be referred
to as the pressurized random walk (PRW) model. Despite their differences, the PRW model
and the continuum LSF model should contain the same physics provided that they are
- compared in a regime where Eq. (3.6) does not strongly restrict fhe phase space of Zysp.
However, we should not expect them to agree under conditions that produée highly stretched
configurations in the rigid-rod model.

Just as with Zisp, Zprw is evaluated by discretizing the arc-length, s, into N links,
each of length £. However, “he replacement of the constraint in Eq. (3.9) with Hy requires

that a different continuum limit be taken:
N — 00,£% — 0,such that  is fixed. (3.16)

(cf. Eq. (3.9)). The reason why Hp requires this particular continuum limit has already
been discussed in Sec. 2.4.1. Also, recall that £ no longer represents a microscopic length
scale for the system in the usual sense. For example, the perimeter, N, is divergent in this
limit. In fact, the presence of an external field means that, even before the continuum limit
is taken, specifying V and £ does not fix the perimeter (see the discussion below Eq. (3.24)).

The absence of a well-defined microscopic lengthrscale has a profound effect on the model
— particularly on the H, term. Consequently, all of the analyses in Sec. 3.3 deal only with
the PRW; model, which is just the k = 0 version of the PRW model. Sec. 3.4.2 discusses
why the H, term in the PRW model does not correspond to an ordinary bending rigidity.
This Surprising effect of H, in the PRW model is particularly unfortunate because it is the
existence of a large I, more than ra,nrything else, that distinguishes the physics and especially

~ the shapes of vesicles from those of random walks.
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3.2 Asphericity calculations

Computer simulation studies of shapes have the luxury of being able to produce and to study
individual conrﬁguratioyns', and to compare them with real photomicrographs. However, in
- the absence of a quantitative measure of thé shape, all such comparisons are subjective.
Quantitative measures of polymer shapes have been proposed and investigated for some time
now [44, 62]. In particular, both Ay and ag (deﬁnéd by Egs. (2.28) and (2.30), respectively)
“hé.ve been measured from Monte Carlo simulations [63,' 64). Rudnick and coworkers [65, 66,

67] have described methods for calcula.tmg ag, and have applied them to the PRWy model

' Altrhc‘)ugrlri Ay is generaily regard'ed as a better measure of the shape of a typica.l config-

| . uration, almost all calculations to date [65, 67, 68] have been of aq, because ca.lculation of

i Aqg was considered dlfﬁClllt except in the d — oo limit [66]. Recently, however, D1ehl and

) Elsenrlegler [69] have described a method for ca.lculatmg the asphericity in any dimension,
and have used it to calculate the shape of ordinary open and closed random walks embedded
in a space of arbitrary dimension. The method uses a trick, which consists of writing the

ensemble average of a ratlo in the form
e ’: n— 1 ~yb
<b”> o 1)'/ dyy ae > (3.17)
Abpl’ying this trick to Eq. (2.28) gives (n = 2) |

Ay = Q/OOdyy<Tr )exp yTrQ)>

= 9 / dyy(Tr (@ >H(y)ZEy; (3.18)

where (- - -) HE) denotes an ensemble average with respect to the Hamlltoman

,BH(y,) = ﬂHpr+yTrQ o R
dl' d2 P 'ij d’r]
/0 o [z (a‘) i (d) TG

+55 j dsids; [r 51)—1'(32)] (3.19)

it
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and
Z(y) = / Dir]e=#H W), | (3.20)
Inspection of Eq. (3.19) shows that H(y) is quadratic in r, so the asphericity can be calcu-

lated exactly.?

3.3 Results (k =0)

3.3.1 Mean-field results

Although virtually all interesting physical quantities can be extracted from the partition
function in closed form, it is nonetheless instructive to examine first-a simplified version of
the theory whose configurations are restricted to circles. As we shall see, this restriction,
which effectively generates a mean-field theory for the model, does not have an important

effect on the physics discussed here. The energy of a circular configuration of radius R is

22R? 1ol Rd-z f

where

p =pL, ' ' , (3.22)
‘and p = . Inspection of Eq. (3.21) shows that there is an instability for d = 2, with

0 forp<
R= pebe (3.23)
oo for p > p.
which occurs because both terms in Hg scale as R2. The trivial p < p, behavior predicted

here reflects the complete absence of fluctuations in the above treatment. They can be

introduced in a mean-field way by allowing R to fluctuate and then averaging over all values

1 [ ¢ ,
<R)—-7; P | BNCE))

21 wish to thank H.-W. Diehl for pointing out the tra,ctabxhty of the Ad calculatlon for the PRW model '
and for encouraging me to pursue the calculation. ’

of R. This procedure gives -
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The instability remains, but R now has the correct qualitative behavior for 0 < p < p (cf.
Eqs. (3.29) and (3.32) below).

| Eq. (3.24) clearly illustrates an important difference between the rigid-rod model and
the PRWy model. In the rigid-rod model, R can never diverge, even at infinite pressure.
Furthermore, the result in Eq. (3.24) is independent of ‘whetrher or not the continuum limit
is taken. Thus, even for NV and / finite, specifying VE does not uniquely determine R since it

also depends on p. Put another way, for a fixed value of N, the link length is not fixed by

| - the model, but instead depends on p.

Mean-field methods can also be applied to other values of d. For d = 1, p — f (a force),
a,hd mean-field theory recovers the well-known result R ~ fL. Once again, we see that
fixing £ does not set an upper bound on the overall size of the system. For d = 3 and p = 0,
H¢ has a minimum at R ‘:-: 0, but for any p > 0 there are two minima separated by a finite

‘b‘akr'rie‘r;:ay a local one at R = 0 and a gldbal one at R = oo. Thus, a collapsed system with
no pressure difference between the inside and outside will spontaneously inflate some time
after a pressure difference is introduced.

Self avoidance can be included by adding the Flory-theory term v2£?%/R? [4] to SHg.
In two dimensions the value of p. is unchanged, but R is shifted away from zero, reflecting
the system’s reduced ability to collapse. In three dimensions the global minimum of SH¢
is still at infinity, but the metastable R is shifted away from rzero to a point which, once
again, reflects the system’s reduced ability to collapse. The critical value of p, above which
the metastable region vanishes, depends on the coefﬁcients of the terms in fHg.

Finally, we can understand why the mean-field results are so accurate by Fourier analyz-
ing the shape, and studying the mean-field behavior of higher frequency terms. The energy
of an nth h#rmonic component with-amplitude R,, is

' 2.2
prg) = =0t (1 W | (3.29)

. 3To ma.ké sense, the random walk must be gene:alized to a random surface, but within the context of
mean-field theory, the R scaling behavior of Hc is the same for both.
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and leads to
(Rn) - Pc— P
(R) n(npe — p)’

which vanishes as p — pc, if n > 2. Thus, the higher frequency terms become less important

(3.26)

as p — p¢, and, as a result, the inflated shape is a circle.

3.3.2 Exact results

Most of the results in this subsection have been published elsewhere [28, 39]. They are
included here for the sake of completeness, and to allow ready comparison with the mean-
field results. The first step in obtaining the exact results is the evaluation of Z(y). A

straightforward? but tedious calculation gives [39]

- y._-
2o = 27 (coshw — cos p)’ (3.27)

where ,
w = /4yL — p2. (3.28)

Eq. (3.27) can be used to calculate the expectation value of the algebraic area [28],

)

1
= — —cotp. (3.29
p (3.29)

A= (“ED = %mg ( lim 7(y)

The exact result contains the same instability as the mean-field result and has the same
qualitative behavior for p < p. as Eq. (3.24). Note the symmetry A(p) = —A(—p). This is
due entirely to the algebraic nature of a[r]. Since there is no additional information in the
p < 0 sector of the theory, all subsequent discussions will implicitly assume p > 0, unless:
stated otherwise. Alsb noté that, despite the differences between the PRW, model studied |

here and the LSF model, they have similar scaling behavior in some regions of parameter

,‘The only difficulty in evaluating Z (y) arises from the non-local nature of the y-dependent term. "This
term can be converted to a Gaussian integral over a local field using a trick described in Ref. [39] and in
Appendix A. ‘ : '



| r'ri‘rv',,yp':——)'O, Eq. (3.32) reduces to the well-known result R? = 3.
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space. Eq. (3.29) is a special case of the scaling form for the area proposed in Ref. [2]. The
only change required is VSA’ — V.

The fluctuations in the algebraic area are measured by

Ezl_[(m]) <a[r]>] ‘ ; o5 (im 7| _)

1 1 '
= - —. ‘ 3.30
sin®p  p? ( )

~ Note that lim,o x = %, which shows that a significant fraction of the configurations have a
net algebraic area for p = 0, even though the antisymmetry of A with respect to p requires

- limy,0.A = 0. At the critical point, p., the fluctuations diverge; but

lim x/A%=1 ‘ (3.31)

p—pc

: ‘shows that they are the same size as the average algebraic area.

The average radius of gyration can also be easily computed [28].

E ay r=y=0
1 cotp
= — - . 3.32
7, | (3.32)

E Once again, this result is a special case of the scaling proposed in Ref. [2]. In the limit

1

3.3.3 Shapes

One of the simplést measures of the shape is A/R? = p. A slightly more sophisticated

version of this measure can be obtained using Eq. (3:17),

A alr RS U L TRy, S
<%31> = m/o dyﬁ—“z(?l)

L 5 sinhw — l sin p
=" smp/ dyy (3.33)
(cosh w —cosp)?




CHAPTER 3. TWO-DIMENSIONAL CLOSED PRESSURIZED RANDOM WALKS 47
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- Figure 3.1: (a) A compa.rlson of the shape measures .A/R and <a[r]/ R2> as a function of p.

~ The difference between them is never more than 20%; (b) A comparison of the asphericities. ‘
- Ay (Eq (3. 43)) and a (Eq. (15) of Ref. [28] but see the footnote on page 49)
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This integral can be done numerically. The result is plotted in Fig. 3.1a along with
AJ/R? for comparison. The two curves give a quantitative indication of the size of the
difference between taking the ratio of the averages and the average of the ratio, which, in
this case, is as large as 20%. Also, note that both measures of the shape have the value
w for p = p.. This is consistent with the simple picture that the inflated regime (p S pe)
~ consists of circular rings of radius R.

To calculate the asphericity A, requires two basic steps (See Appendix A for details.).

The first is to compute the generating functional,®

Win,m) = [ Dlrlexp[-AH)+my x(s1) + 11 (s2) (3:34)
| - o eXp{wLA [ami‘+a2n§+(ﬂ5jk*¢€jk)ﬂfﬂ§]},
where
A = coshw - cosp ' ' (3.35)
a; = sinhw —sinhwojcosp (1l —0;)~sinhw (1 - 0;)cospo;, (3.36)
B = sinhw+ sinhw (1~ 7)cos pr + sinhwrcosp (1 — 1) (3.37)
— [sinhweq cos p (1 — a1) + cos poy sinhw (1 — 01) + (01 — 02)}],
¢ = ¢e(o2—o0y)[sinhwrsinp (1 —7)—sinhw (1 — 7)sin pr] (3.38)
+ [sinhwoy sinp (1 — 0q) — sinh w (1 = o7)sin poy + (01 — 02)],
o; = -“E (3.39)
T = |02 — 0y, (3.40)
and 7
£ (2) = 1 forz2>0 ‘ (3.41)
=1 forx <0

| ‘The second step is to use W (y; m1,m,) to calculate two-point and four-point correlation

functions such-as (r;(s1)r;(s2)), which can then be used to construct <TrQ2>H( y The
| y

>There is a typographical error in Eq. (39) of Ref. [29]. The correct expression is given in Eq. (3.34).
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result is®

. Clisinhw+ Lsinp 1 ‘
Tr(? ==X £ - 1. 3.42
< rd >H(y) y l: (coshw — cosp)  yL (342)

Inserting Eq. (3.42) into Eq. (3.18) gives

2 sin p / zdz
2
cosh V(% = p?) — cos p)

sinh \/(2:2 - p?) smp ' ; . g
l:-z- ( Y] ; ) — cosh /(22 ~ p?) — cos p} , (3.43)

which can be integrated numerically. The result is plotted in Fig. 3.1b along with a;

obtained” from Ref. [28]. Although the two parameters differ from one another by as
much as 20%, both indicate that the shapes are never very far from being isotropic, and
both parameters vanish for p = p.. Furthermore, since both parameters are intrinsically
nohnegative, all fluctuations in A2 and a; must also vanish for p = p.. The p = 0 results
for A; and ay are in very good agreement with those obtained earlier by analytic mecans
[66, 69] and MC simulations [64].

As mentioned in Sec. 3.2, a disadvantage of analytic methods is that they do not readily
yield the details of typical shapes. Nonetheless, these results do suggest a certain picture.
The sifnplest interpretation is that for small p the system has the shape and size of an
ordinary closed random walk. As p increases, the number of self intersections decreases
until finally for p = p. there are no intersections, and the shape is circular. This is signalled
by the vanishing of A; and its fluctuations. A somewhat different argument is used in Ref.
[70] to obtain the same conclusion. In addition, Egs. (3.30) and (3.31) show that, for p = p,,
the ensemble contains circles of all sizes.

Finally, it should be noted that all of the above results could equally have been studied

using the-conjugate, fixed-area ensemble. The partition functions for the two ensembles are

S Although the result in Eq. (3.42) is simple, the actual calculation involves doing approximately a thou-
sand integrals of the form f ** dz sinh az cos bz. The individual integrals werc generated and cvaluated using
the Maple symbohc mathematics program. ‘

"There is an error in Eq. (15) of Ref. [28]. It should read (using the notation of this chapter) a; =

(1~ 0*/3 = peotp) [ (~1+26°/3 + p* cot® p).
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related by
1 [ .
Zarea (V) = 5;/ dgethZpressure (y;p — —ig), (3_44)

The fixed-area ensemble is usually preferable to the fixed pressure one because experiments
on real vesicles often control the volume or surface area instead of the pressure. The decision
to use the fixed-pressure ensemble here was dictated by simplicity—the integral in Eq. (3.44)
cannot usually be done analytically. It turns out that the two ensembles are not completely

equivalent [28], but the essential physics is the same.

3.4 Problems with the PRW model

The connection between the PRW model and the more realistic LSEF model is not as close
~ as one might hope. There are two serious problems that must be overcome if the program
alluded to in Sec. 3.1 of developing a field theory that complements the LSF model is to be

realized. These are now discussed.

3.4.1 Effects of the algebraic area

Sec. 3.1.2 discussed the problems arising from replacing the true area with the algebraic area.
These problems are now illustrated by a specific example. Consider a system modelled by
Eq. (3.19) (with x = 0) but with the y-dependent term now representing a real interaction
in the system. Furthermore, assume that y < 0, so that the interaction between links is
repulsive. Such an interaction is not very realistic, since it is quadratic in the link separation,

but it is adequate for this illustration. A straightforward calculation of the average algebraic

area gives
sinp — Zsinw
y =

(3.45)

cosp—cosw

The p > 0 regime of this model is not very interesting. The repulsive interaction simply
generates an effective pressure that leads to the same instability discussed in Sec. 3.3.1 but

with a smaller Pc, determined by the transcendental equation p.(y) = cos™! (cos VeiHy) - 4yﬁ).



CHAPTER 3. TWO-DIMENSIONAL CLOSED PRESSURIZED RANDOM WALKS 51

One might imagine that the p < 0 case would be more interesting, since there is now a com-
petition between the y-dependent interaction, which wants to inflate the ring, and the pres-
sure term, which wants to inhibit such inflation, possibly leading to the branched-polymer
configurations seen in Ref. [2]. However, inspection of Eq. (3.45) shows that A, is anti-
symmetric in p as before, so this does not happen. The reason for this is that the negative
pressure causes the negative-area rings to further decrease (i. e., make more negative) their
area in precisely the same way that a positive pressure inflates positive-area rings. Since
these two situations are physically indistinguishable, A, has the resulting anti-symmetry in
p. Furthermore, this anti-symmetry will remain even in the presence of self avoidance. For

Hamiltonians using H,, p < 0 always implies A < 0.

3.4.2 “Bending rigidity”

The meaning of H, is clear for the rigid-rod model, where Eq. (3.9) is enforced [48], but
things are less clear for the PRW model. To begin with, since the parameter s is no longer the
true arc-length, d%r/ds? will have, in addition to the component parallel to r (which measures
the curvature), a tangential component, which has the effect of suppressing variations in the
length of adjacent links. Although this feature is certainly undesirable, it does not have as
large an impact on the physics contained in the model as other features.

Of much greater concern is the absence of a constraint fixing the perimeter length. This
allows the partition function to be heavily weighted by configurations that would otherwise
be absent, and it gives the distribution a qualitatively different character. To illustrate this,
it is sufficient to calculate A, and R2. These are obtained from Z(y) (Eq. (3.20) with x # 0)

using the definitions in Eqs. (3.29) and (3.32), respectively. The results are

N—1
i [W2f2 () tan? n,, ~ ui’p'g]“l (3.46)

p=1

2up,

A = e
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and N-1
, 2 Z f (K,) sec?n
) _ “ , (3.47
R0 = TT57E L NI (m) tantr, — 72 A
where
T
n = =, (3.48)
1+ SNT";E, sin®n,
_ 3.49

and u is defined through p = up, (0 < u < 1).
Explicit numerical calculation of the sums in Egs. (3.46) and (3.47) for a wide range of the
parameters NV, £, and p show that making the replacement f(x) — 1 always overestimates

the sum. Thus, for practical purposes,

A(u)
() S ——AL 50
and
R2(u)
() S —2 2 51
REW S g (3.51)

Increasing & thus causes both A, and RZ to decrease, which is opposite to the effect a “true”
bending rigidity would have [48].
We can understand the source of this difference by once again resorting to mean-field
rarguments. First consider the rigid-rod model, with p = 0 for simplicity. The minimum-
energy conﬁgufa.tion for this system is a circle with energy
Rz
H, = 8z'n—=%
£3
K
= —. 3.52
- (3.52)
The last line follows from the constraint, which requires Lo = 27R. However, if we now
consider a circular configuration for the PRW model, we find H, = 47 R?/L3. Although

superficially similar to Eq. (3.52), it is quite different because there is now no constraint

linking R to L. Circles are still minimum energy configurations, but R is free to vary, so the
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ensemble will select the smallest value consistent with the other terms in the Hamiltonian.
As & increases, this becomes an increasingly dominant effect, and A, and R? decrease, as
Egs. (3.50) and (3.51) show. We are left, then, with the disappointing conclusion that,
while H, can be included in the PRW model, its content is rather unphysical and it does

not represent a “true” bending rigidity.



After ten o’clock at night those left round the tables
are the genuine, desperate gamblers

Fyodor Dostoyevsky

The Gambler

Chapter 4

Self- Avoiding Tethered

Membranes

This chapter discusses MC simulations of SATM’s embedded in four and five dimensions
that were done mainly in 1989. This chapter is written so as to preserve the historical order
of development. Sections 4.1 and 4.2 give the historical background to these 1989 studies.
The work itself is presented in Secs. 4.3 and 4.4 and includes subsequent simulations and
analyses. Since this work was published [45] there have been several developments. Most
notably, the first experiments on crystalline membranes have been performed [17] and other
d > 3 SATM simulations have been done [1]. These developments will be covered in Sec. 4.5.

The final section on outstanding problems also takes into account recent work.

4.1 Motivation

There are several reasons for the current widespread interest in tethered membranes.From
a practical point of view, SATM’s represent a natural generalization of polymers, which are
of enormous technological value. If real membranes turn out to have a similar importance,

it will be necessary to have a detailed understanding of their thermodynamics. A good

o4
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place to start is with a toy model such as the SATM. There is also interest in SATM’s
in biophysics, because the spectrin network sometimes attached to the otherwise fluid cell
plasma membrane can be realistically modelled as a SATM. Indeed, in studying human red
blood cells, inclusion of the spectrin network in the model is probably requited for a good
understanding of membrane thermal fluctuations {11, 71].

Further motivation for studying SATM’s can be gained by comparing the state of knowl-
edge about polymers (or SAW’s) with that for SATM’s. Polymers have been studied seri-
ously for over fifty years [4, 6, 55] by a wide variety of theoretical techniques. These include
e-expansion RG analyses of the Edwards model [51], Monte Carlo simulations [72], exact
enumeration of SAW’s [73], real-space renormalization-group techniques [74], simple Flory"
theory [4], and, for d = 2, exact results [75]. The results for scaling exponents and shape
characteristics obtained from these methods are all in good agreement with one another and
with experimental values. The situation for SATM’s is quite different and is discussed in
detail in Sec. 4.2.2 below. To summarize that discussion here: Most of the techniques men-
tioned above have been applied to SATM’s. They yield results indicating that SATM’s are
crumpled for d > 2, and they usually give v(d = 3) = 0.8. (An exception is the ¢-expansion
calculation based on the Edwards model, which gives v(d = 3) ~ 0.536.) In particular, early
MC simulations found v(d = 3) = 0.8; however, more recent simulations on larger systems
and using better data-analysis techniques find v(d - 3) = 1.0, suggesting that SATM’s are
flat. Although the results of these last simulations were initially controversial [30], there is
now general agreement that they are correct [76].

Thus, theoretical approaches that work quite well for polymers fail to describe even the
qualitative features of membranes. Consequently, SATM’s present an interesting challenge
to theoretical techniques that have been successful in handling polymers. Tethered mem-
branes are also considered intrinsically interesting because they belong to new universality

classes. In fact, based on our understanding of polymers, it is reasonable to expect that the
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SATM is the “minimal model” 8] for the universality class of crystalline membranes.!

4.2 History

4.2.1 “Prehistory”

Before the introduction of the TM idea, workers in both the biophysics and particle physics
communities were interested in random surfaces.

In the biophysics community this interest arose from the study of human red-blood-
cell (RBC) shapes. Although the membrane of a real RBC is a quite complicated object,
involving structures on several different length scales, many workers believe (justified by
a certain amount of theoretical and experimental evidence) that, at least for the shape
problem, this complex membrane structure can be replaced by a uniform lipid bilayer (fluid).

The Helfrich model [56, 77] embodies this idea by describing a RBC as a phantom
fluid membrane whose energetics are completely determined by the local principle radii of
curvature. Even with these drastic simplifications, the model can be solved exactly only
at T = 0. The effects of thermal fluctuations about the 7' = 0 equilibrium shape can
be described only at the Gaussian level. Nonetheless, many of the shapes resulting from
minimizing the Helfrich Hamiltonian [56, 77, 78] accurately describe real RBC shapes.

Peliti and Leibler [79] took the first steps towards understanding finite-temperature
effects on the Helfrich model by doing a one-loop renormalization-group analysis of thermal
fluctuations. Their results show that the bending rigidity of a large planar fluid membrane
decreases as short-wavelength degrees of freedom are integrated out. If this renormalization

drives the bending rigidity to zero at large distances, then, in the thermodynamic limit,

*This expectation is reasonable only if bending rigidity turns out to be irrelevant for SATM’s, as it is for
polymers, The term “irrelevant” is used here in a sense different from how it is used for polymers. It is well
established that the presence of bending rigidity affects the infrared fixed point of a TM (see Sec. 4.2.2). The
issue is whether or not the SA interaction induces an effective bending rigidity. If it does, then the addition
of an erplicit bending-rigidity term to the SATM Hamiltonian is not likely to have any effect on the SATM
infrared fixed point. The question is currently open (see Sec. 4.5.1).
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there is no energy cost associated with bending a fluid membrane, so entropy drives it into
a crumpled configuration, believed now to be equivalent to a branched polymer phase.?
In addition to introducing the idea of a crumpled state, Ref. [79] is important because
it discussed for the first time the possibility of a crumpling transition between a high-
temperature crumpled phase and a low-temperature flat phase® of the system.

Within the elementary particle physics community, interest in random surfaces arose
from attempts to study the long-wavelength behavior of quantum chromodynamics (QCD).
There has been speculation for many years [14] that the bound states of QCD can be repre-
sented by the excitations of a one-dimensional object. The propagation of such a “string” in
space-time generates a world-sheet (as opposed to a world-line for a particle), which can be
regarded as a random surface. QCD transition-probability amplitudes can be calculated in
numerical simulations on a four-dimensional space-time lattice [{82] by averaging over typi-
cal world-sheets weighted by an appropriate action. Initial interest in this idea soon led to
disappointment, when it was realized that the natural choice for the action, the surface area
of the world-sheet, favored surfaces with divergent fluctuations {38]. The situation changed
dramatically when Polyakov [83] discovered that adding an extrinsic curvature term to the
action tamed the fluctuation problem in a gauge invariant way, and that the resulting ac-
tion provided a unified description of a wide range of statistical mechanical and field theory
problems. For example, the Helfrich model is a special case of the Polyakov model. Shortly
after Polyakov’s discovery, several papers were published containing both theorctical and
numerical results, mostly dealing with the question of the fractal dimension of a random
surface.

Parisi [84] made the first contribution along these lines. He constructed an heuristic

argument, by analogy with random walks, which led to the result that d;, = 4 for a random

2For a discussion of the relationship between fluid membranes with no rigidity and branched polymers
see Refs. [59, 80, 81). ,

3The flat phase would be seen only if long range forces are present. The Helfrich model does not contain
such forces.
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surface. He then used an argument due to Mandelbrot [85] to deduce that the upper critical
dimension d,. should obey the formula d,. = 2d;., thus finding d,. = 8. A subsequent
paper by Gross [86] showed that a careful analysis of the embeddings of a triangulated torus
lead to the conclusion that d,. = co. Subsequent work by several authors gave conflicting
results that supported d,. = 8 [87], d,. = 00 [38, 88] as well as other values [89, 90]. This
confusion was finally sortéd out by Cates [91]. He pointed out that Parisi, on the one hand,
had studied surfaces with a fixed average number of plaquettes, but without regard for the
connectivity of the surface. In fact, these surfaces turn out to have a fractal connectivity.
Gross, on the other hand, had studied surfaces of fixed homogeneous connectivity. Hence,
there is no reason to expect that these two systems should belong to the same universality
class, and, indeed, they do not.

This is an especially importaht point here because it clearly distinguishes the universality
class of random surfaces appropriate to the study of crystalline membranes (fixed homoge-
neous connectivity and d,. = o0) from those of interest in gauge theories, luid membranes
and branched polymers? (fractal connectivity and d,. = 8). Although a great deal of work
continues to be done on models in both of these universality classes, we will henceforth
focus on the fixed-connectivity class, since it has provided the inspiration for the study of

SATM’s.

4.2.2 Recent history

The above-described studies of random surfaces led Kantor, Kardar, and Nelson [31] to
introduce the tethered membrane (see Fig. 1.1b) as a model of a crystalline random surface.
In this ground-breaking paper, the authors performed exact calculations for a Gaussian

model of a phantc... tethered membrane (PTM3) and studied other phantom membrane

‘One should be cautious about including gauge theories in the same universality class as fluid membranes
and branched polymers because of the issue of self-avoidance, which arises naturally in the study of the latter
two. Self-avoidance has been used as a technique for studying the N — 0 limit of SU(N) gauge theories, but
its usefulness for this purpose is now in doubt [89].

*A PTM is a model with the same connectivity as in Fig. 1.1b, but without self avoidance.
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models using Migdal-Kadanoff RG techniques. They also developed a Flory theory and did
the first MC simulations for SATM’s. The most important results from t.his‘work were: (1)
For the purposes of designing a Hamiltonian, the tethering constraint between two vertices
could be reliably replaced by a “Gaussian spring” potential (see Sec. 2.1.2); (2) for a PTM,
R, ~ vInL (exact), independent of d; (3) d = 3 simulations indicated that a SATM
crumples with v & 0.8, which agrees with the Flory theory prediction, vp = ;‘ Subsequent
analysis by Bouchard and Bouchard [74] using real-space RG techniques also gave the result
v =0.8.

A short time later, Kardar and Nelson [92], Aronovitz and Lubensky [93], and Duplanticr
[94] all calculated the scaling exponents v and -y as functions of D and d for the generalized
Edwards model (see Sec. 2.4.2) using a RG e-expansion. The main results fromn these
calculations were that the value of y depends on the shape of the SATM boundary when D
is not an integer and that, for D = 2 and d = 3, » = 0.536 + O(¢?). Although the calculation
itself is technically impressive, the result for v is not very encouraging since it violates the
v > % requirement set by the close-packing argument in Sec. 2.2.3. The accuracy of the
calculation for v is still unknown.

The next important development was a stability analysis by Nelson and Peliti [95] of
the flat phase of a PTM model that contains an in-plane elastic energy (which gives an
energy cost to local membrane stretching and a bending energy term similar to Eq. (3.3)).
Both of these energy terms were studied in a Gaussian approximation. They showed that
in-plane oscillations of an elastic membrane cause the bare bending rigidity to diverge at
long wavelengths under renormalization. The resulting increased energy cost in folding the
membrane leads to a stable flat phase.

The realization that crystalline membranes with a non-zero bare bending rigidity can
be flat, combined with the results on crumpled membranes [31], led Kantor, Kardar and
Nelson [32] to predict a crumpling transition much like the one discussed in Ref. [79] for fluid

membranes. This prediction was tested by performing MC simulations on a PI'M model
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that included a bending energy. This model will subsequently be referred to as the PTM,
“model. The results of these simulations indicated that there was, in fact, a second-order
phase transition between a flat state and a crumpled state. Ambjorn et al. [37] also did MC
simulations on the PTM, model and discovered a second-order crumpling transition. Self-
avoidance was not included in any of these simulations because SATM simulations are much
miore CI’U-intensive than comparably-sized PTM ones, and becﬁuse earlier simulations on
SATM’s [31] showed that they crumple in the absence of any bending rigidity. Thus, the
transition from a low-temperature flat phase to a high-temperature crumpled phase was
still expected for a SATM with bending rigidity, albeit with critical exponents different
from those of a PTM,. :

David and Guitter [36] added non-linear terms to the model studied in Ref. [95] and
performed a RG analysis using a 1/d saddle-point expansion. They found a non-trivial
UV-stable fixed point, which they were able to interpret as a signal for a second-order
crumplihg transition. Aronovitz and Lubensky [96] studied a D-dimensional generalization
of this model. They found that, for D < D, = 4, conventional (harmonic) elastic theory
[97] breaks down, and all elastic constants are renormalized either to zero or infinity in
the infrared. They also calculated the scaling exponents for the elastic constants using an
e-expansion, where € =4 — D.

Paczuski, Kardar and Nelson [98, 99] subsequently described a Landau theory for the
crumpling transition using the d-component tangent vectors of the surface Jr/0s; as a set
of order parameters. When combined with the requirement of rotational invariance, the
resulting Hamiltonian is very similar to an n-component ¢* model. At low temperatures
the Hamiltonian studied in Ref. [95] is recovered, while at high temperatures it reduces
to Hy of Eq. (2.6). The;v did a mean-field analysis of the model that included SA in the
Flory apprbximation, and found, as expected, that it does not destroy the phase transition
but does change the scaling exponents. They also included critical fluctuations in the the

context of an e-expansion and found that the transition becomes weakly first order for
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d < dy. =~ 219. Aronovitz, Golubovi¢, and Lubensky [100] further analyzed the Landau
theory, using a 1/d-expansion,® and were able to recover results of Ref. [36]. They also
calculated the lower critical dimension, below which the crumpling transition disappears,
and found D). = 2 — % + O(1/d?).

As a result of these investigations, a consistent picture of SATM’s embedded in R
began to emerge: Thermal fluctuations create an anomalous increase in the bending rigidity,
leading to a low-temperature flat phase. Increasing the temperature was expected to result
in a second-order (or very weakly first-order) phase transition to a crumpled state with
v = 0.8. It was, therefore, somewhat surprising when Boal and Plischke reported [33] that
they found no indication of either the crumpled phase or the phase transition in MC studies
on SATM’s embedded in R?. In fact, they found v =~ 1.0, iﬁdependent of temperature. This
last point was soon confirmed by Abraham, Plischke and Rudge [34], who did molecular
dynamics simulations on a similar model, but with the tethers replaced by an attractive
potential. Ho and Baumgartner [101] also did MC simulation studies on a SA triangular
plaquette model” and the SATM model, both embedded in R?, and found v =~ 1.0. This
discrepancy between the simulations of SATM’s and the previously mentioned theoretical

work has yet to be resolved satisfactorily (see Sec. 4.5).

4.3 Monte Carlo studies of TM’s in d = 4,5

4.3.1 Motivation for higher dimensional studies

Because there has been so much controversy about the persistence of the flat phase at high
temperature and because it is such a surprise, it has been considered important to obtain

a more detailed understanding of this issue. One possible area of investigation is the role

®This 1/d-expansion exploits the analogy with the n-component ¢* model and is different from the one

used in Ref. [36].
"In this model self avoidance is enforced by forbxddmg each tndngu}ar plaquette from intersecting any
other plaquette (see Sec. 4.5.1).
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of the embedding dimension d in determining the phase of a SATM. Recall that a SAW
changes from a Flory-crumpled state to a Gaussian-crumpled state when d /" d,. = 4 [4].
Indeed, the study of polymers in R* is a useful starting point for understanding the scaling
behavior of polymers in R>. It seems natural to ask whether something similar occurs for
SATM’s. Of course, this analogy cannot be taken too literally, since we know from the
discuésion in Sec. 2:4.2 that d,. = oo for SATM’s; nonetheless significant effects due to a
change in d are possible.

More generally, it is desirable to have a more complete understanding of the (D, d) phase
diagram shown in Fig. 2.4 and, particularly, to locate its phase boundaries. The non-local
- nature of the SA interaction makes analytical attempts to do this difficult and unreliable, but
many points in the phase diagram can be investigated using simulations. Although the SA
interaction makes simulations more time consuming, it creates no difficulty of principle. The
remainder of this section describes MC simulations done for two such points in the (D, d)
phase diagram -— SATM’s embedded in d = 4 and d = 5. Aside from simply measuring
the scaling exponents V{(L), I will attempt to address two more-general questions: Does the
SATM model have a rough phase?; and, what effect does increasing d have on the SATM

phase?

4.3.2 Simulation details

Although all the simulations described in this chapter were done on SATM’s, many of the
simulation details are equally applicable to PTM’s. The parts of the following discussion
that refer to a TM are meant to apply to both.

CATM if,r “constructed” cn a computer by creating a labelled list of d-dimensional vectors
(one for each veftex), which represent the locations of the vertices in RY. The initial

locations are chosen so that the vertices form a flat, nearly stretched configuration.® A

EI{ the simulation is started from a completely stretched configuration, it is almost impossible for the
vertices to move since practically every trial move will violate the tethering constraint.
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second list contains the intrinsic nearest neighbors for each vertex, and is used for cnl‘orcinﬁ
the tetheﬁng constraint Eq. (2.1). In all the TM simulations discussed in this thesis, the
tethers form a triangular lattice with an hexagonal boundary, like the one shown in Pig. 1.1.
For a TM of linear size L, there are N = (3L2 +1)/4 vértices.

The are are two problems that arise from starting the simulation in a specially chosen
flat configuration. The first is that such a configuration is far from equilibrium, so data
taken during the initial relaxation process will not give information about the equilibrium
properties of the system. Once the initial relaxation time is known, this problem can be
handled by simply ignoring the data from that part of the simulation. The second problem
is that typical equilibrium configurations might not be easily accessible to the SATM on the
time scales available in the simulation. In particular, crumpled configurations may not be
readily accessible from an initial flat phase. This problem has been addressed by studying
the effects of crumpled initial configurations on the lothime behavior of the simulation
[45]. If configurations characteristic of the true equilibrium state are not equally accessible
from both types of initial configurations, we might expect to find measurable differences
in the “equilibrium” states obtained from them. The crumpled configurations are formed
by adding an attractive central potential to the simulation. This produces very compact
configurations with a value of v near the close-packing limit. The potential is then turned off
and the SATM is allowed to relax to an “equilibriwin” state. Measurements on such systems
show that they are thermodynamically indistinguishable from configurations obtained from
the flat phase. Of course, it is still possible that the true equilibrium state is not readily
accessible from either type of initial configuration; but, the above procedure increases our
confidence that the configurations obtained in the simulation are representative of the true
equilibrium.

Temporal evolution of the simulations proceeds by a standard Metropolis algorithm
[102]). With the central vertex held fixed to prevent a global translation of the TM, one of

the remaining vertices is chosen at random and displaced by a random d-dimensional vector,
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If the trial move does not violate the tethering constraint, Eq. (2.1), or, for SATM’s, the
additional constraint Eq. (2.2), the move is accepted. N — 1 such trial moves constitute a
MC time step of the network, or, more simply, a MC step. A natural time scale (measured
in MC steps) is the Rouse time [32],

2N

TR = (4.1)

7257
where p is the maximum length of the random-move vector. The Rouse time is an estimate
of how long it takes a point in the membrane to drift a macroscopic (2L) distance. In
practice, p is chosen to have a value that causes one-half of the trial moves to be accepted.
Since there is no intrinsic energy scale in the model, acceptance of a trial move is determined
solely by the constraints, and in this sense the simulations were done at infinite temperature.
Data, consisting of the eigenvalues /\gL) of the inertia tensor Qg'), are taken every 7r/10
MC steps.

After a run of approximately 10007g, the simulation is interrupted to determine the
initial relaxation time, which is typically about 1007g. The data from this part of the
simulation are discarded. The simulation is then restarted and allowed to run until sufficient
data has been acquired so that the statistical error in R, is less than 1% at the 20 level.
This ensures that the statistical error for the V'-(L) s is about 5%°.

An important consideration in SA simulations is using an efficient method to test for
violations of the SA constraint. The naive approach of simply calculating the distance
between all pairs of vertices is undesirable, since the resulting algorithm is O(N?) in CPU
time. Breaking up the embedding space into d-dimensional cubes (typically the same size
as the hard-sphere radius of a vertex) and keeping track of which vertices are in each cell
means that the SA test need only be applied to vertices in adjacent cells. The resulting
algorithm is O(N). This increase in computational speed is achieved at the expense of

increased CPU memory requirements, which are now O(L?). In practice, d > 4 simulations

*This criterion was used for the original simulations. Other, more stringent criteria, which lead to longer
simulations, will be discussed in Sec. 4.4.2
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require so much memory that the cell algorithm is impractical. This problem is solved by
changing the cells to “hyper-tubes” that are square in two directions and infinite in the
other d — 2 directions.!® The algorithm is most efficient when the maximum number of
vertices in any hyper-tube is minimized. This is achieved by orienting the hyper-tubes so
that their infinite-length directions are parallel to the eigenvectors belonging to the d — 2
smallest /\gL)’s. Because the SATM rotates in the embedding space with time, it must be
periodically realigned with the hyper-tubes. Realigning the SATM about once per Rouse

time keeps the vertex occupancy of the hyper-tubes down to a reasonable number.

4.4 Analysis and results

4.4.1 Data analysis

The raw eigenvalue data are used to determine three things: (1) the eigenvalue autocor-
relation function, (2) the shape parameter S, and (3) the scaling exponents l/fl’). The

asphericity could also be calculated from the data; but it is of little interest, since we are

mainly concerned with whether or not SATM’s crumple.

The autocorrelation function. The eigenvalue autocorrelation function,

(90 0= (04 0), | 000 - )],

< [’\EL)(tl) _ <,\§L)(t/)>l’] 2>t,

provides a measure of the statistical independence of configurations obtained by the time

: (4.2)

GR(OF

evolution of the simulation. The angle brackets (- --),, denote an average over the MC time
t’ (measured in units of the Rouse time), i. e.,

Nt
(o' + tyP(t")), = ! ZO(t’H)P(t’). (4.3)
t'=1

N
Provided that N > T, where T is the longest correlation time for the system, Eq. (4.3)

effectively becomes an ensemble average.

1%This idea is originally due to M. Plischke.
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t(tp)

Figure 4.1: The autocorrelation function for A4 obtained from a d = 4, L = 17 simulation
of a SATM. The total length of the run is 18007r. The solid line is a plot of Eq. (4.4) with

7:5]7) ~ (.42. Note that the solid line increasingly underestimates 6'517) (1) as t increases, as

(17)

will any choice of 7, " at sufficiently long times.

The information in Eq. (4.2) is important for estimating the size of the statistical errors
in the eigenvalue data and for determining the length of the initial relaxation time. Although
CfL) (1) is characterized by several time scales, it is nonetheless useful to give a one-parameter

characterization, which is determined by assuming that, for short times,
C,-(L)(t) = exp (—t/Ti(L)) . (4.4)

The eigenvalue relaxation time (also measured in Rouse times) is, then,

LIRS PP (5)

Figure 4.1 shows a plot of a typical Ci(L)(t) obtained from one of the simulations along with

the estimated value of 7;. Although the fit is reasonably good for short times (¢ < 1), the form



CHAPTER 4. SELF-AVOIDING TETHERED MEMBRANES 67
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Figure 4.2: Evidence for the presence of long-wavelength oscillations in the simulations. The
P g
Agla)_<Agls)>
curve shows W versus ' for d = 5. Although the oscillations have an amplitude
AV '
4
CI

l-(l’) ’s that

of only a few percent, they can create systematic errors in the estimates of the v
are as large as 15% (see Sec. 4.4.2).

in Eq. (4.4) clearly underestimates the correlation at longer times. Choosing a larger value
for 7; does not really solve the problem, because dIn C;(t)/dt — 0 as t — oc, so any fit to the
data of the form in Eq. (4.4) will underestimate the correlation for sufficiently large values
of t. The reason that Ti(L) becomes an increasingly poor characterization of C’i(") (t) with
increasing ¢ is because Eq. (4.5) is only sensitive to short time-scale correlations, in contrast
to C}L)(t), which is better described by a spectrum of relaxation times. Furthermore, this
spectrum contains some very long-period relaxation times. For example, the oscillations
in Fig. 4.2 induce additional correlations that have very long relaxation times and are not,
accounted for by Eq. (4.5). The long relaxation times are also L-dependent; in gencral

(L)

Toanx — 00 as L — oc.
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The shape parameter. It is straightforward to apply the definition given in Eq. (2.27) to

calculate .S';L) from the raw eigenvalue data. If SATM’s do not crumple, then we expect
Si~ L% —0as [ —- (vs = (vg — 11)). Therefore, plotting In (SLSL)) versus ln (%)

and obtaining a straight line with positive slope is evidence for no crumpling.

The scaling exponent. There are several ways to determine »;. One method, inspired by

similar techniques used in polymer studies [103], is to calculate the structure function [33],
L 1 _ o)
S]( k) = vz <Z,; exp [zkj . (r( () — r(ﬁ)(t'))]> , (4.6)
[s 2% 4

where

k]' = ké{r}j, (4.7)

and é{r}; is the R? eigenvector corresponding to the eigenvalue A;-L). The é&;’s, therefore,
define a coordinate system attached to membrane. Note that, in addition to the time
average denoted by (- - -),,, Eq. (4.6) also contains an average over the membrane coordinates,
which is taken with respect to a frame of reference fixed to the membrane rather than the
“laboratory” frame. Rescaling the coordinates, as in Eq. (2.39), naturally leads to a scaling

form,

SPk) ~ (z;), (4.8)

where

T; = kELYs . (4.9)

For the proper choice of v;, plots of S(I) versus x; for different values of L will collapse
to a single curve. Determining v; in this way has the advantage that it allows one to test
whether or not SUU(ké;) ~ :cf/ " when z; is sufficiently large. Abraham and Nelson [76]
have argued f}xat simulated SATM’s that pass this test are large enough for scaling laws to
be valid. A disadvantage of this method is that it entails a certain amount of subjectivity
in deciding what value of v; gives the best fit to the data. This subjectivity also makes it

difficult to assign meaningful confidence levels to the exponent error estimates.
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Another method for determining »; is to plot /\E-L) versus L, and then to do a least
squares fit to the data assuming the scaling form /\gL) ~ [* [34]. This method does not
rely on any subjective judgments to determine v;, so a meaningful error analysis can be
done, but it suffers from the disadvantage that it treats all data points, regardless of their
L value, as equally important. This is clearly undesirable, since we expect the large-L data
to reflect the long-distance scaling behavior better than the small-L data. Of course, it
is possible to weight the data points as a function of L; but, since there is currently no
theoretical understanding of finite-size corrections to scaling for SATM’s, there is no way to
choose between various weighting schemes.

The last method for calculating v; is to use the eigenvalue data from two different-sized
simulations to calculate a series of L-dependent scaling exponents,

L (AgL)/AgL'))

v = 2W’ (4.10)

where L' refers to the SATM next smaller in size than the L-sized one. The I/J( Eyg are then

plotted versus 1/L, and v; estimated by extrapolating the data to 1/L = 0. Calculating v;

in this way makes the importance of any finite-size effects more evident than in the previous

methods; however, it does produce a larger error estimate for v;. Another advantage of this

method is that it provides an internal consistency check for the statistical error estimates

on the VJ(:L). For those SATM’s with L values large enough to be in the scaling regime, we
(L),

expect the derived v;™"’s to be ordered properly, i. e., /\g-l’) < /\ff') = uj([') < 1/£l’) (within

experimental error). Thus, for sufficiently large L,

s s l - 4 %
V](r)——lSU}L)SUi”-{-lSV;‘L),Vj < k, (4.11)
where 6VJ(L) is an estimate of the statistical error of V](-L) . As we shall see in Sec. 4.4.2,

Eq. (4.11) turns out to be the most stringent test of the data.
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4.4.2 Error analysis

)

There are two important sources of error in the determination of the /\1(-L ’s: statistical er-
rors and systematic errors. In addition, the determination of the v;’s and S from the /\gL)’s

generate finite-size effects.

Statistical errors. Determining the size of the statistical errors for an uncorrelated data set

is straightforward [104]. However, as Fig. 4.1 illustrates, the data obtained from successive
configurations are highly correlated, and these correlations are not well-described by a char-
acteristic relaxation time. Several methods are used for handling this problem. They are

(in order of increasing sophistication):

1. The data obtained from each configuration is regarded as independent, and a straight-

forward [104] error analysis done. This treatment provides a lower bound on the error

estimate.

2. The data are binned, with the bin size given by m;, = —-ln(.Ol)Ti(L), where Ti(L) is
defined by Eq. (4.5). Assuming that Ci(L) has the form given in Eq. (4.4), this gives
C',-(L)(*r},;,,) = 0.01. Numerical experiments [105] suggest that, if the correlation between
successive bins is less than 0.01, then the correlations can be safely ignored for the

purposes of error estimates.

3. This method is the same as the one above, except that 7y, is determined by measuring
the C»'l-(L) directly from the simulation (i. e., without assuming that the correlations are

of the form in Eq. (4.4)) and requiring that C,-(L)(Tbin) < 0.01.

4. A direct calculation of the error for a series of correlated measurements is done [105].

This method also ignores correlations less than 0.01 .

The data are analyzed using all four methods. In practice, methods 2-4 give similar
results, but in all cases the largest value obtained is used as the error estimate. All statistical

errors are calculated at the 20 level.
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Figure 4.3: An example of how systematic errors caused by long-wavelength oscillations in
the /\gL)’s affect the ordering of the u}L) ’s. For short simulation times, the systematic errors

are relatively important and the V}zl)’s do not satisfy Eq. (4.11). As the simulation time

increases, the systematic errors become relatively unimportant and the 1/1-(2') s do satisly
Eq. (4.11). The error bars represent 1o statistical errors. The data points have been spread

out slightly along the ?-axis for visual clarity.

Systematic errors. In addition to the statistical errors, there are systematic errors that

arise from the long-wavelength oscillations in ,\EL) ’s. If the simulation time is only a fraction
of the longest oscillation period T(F), then the average will be biased by this effect. The
existence of such long-wavelength oscillations is evident from Fig. 4.2, where T(%) x 10007y,.
Although the eigenvalue oscillation amplitudes are typically only a few percent, they can
lead to systematic errors in the estimates of the V}L) ’s (calculated using Eq. (4.10)) that are

as large as 15%. For t < T{L), the systematic error typically dominates the statistical error.

This can be seen in Fig. 4.3, where the time evolution of v

:“ is plotted. The late-time
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l/i(zl) ’s are frequently outside the range predicted by the statistical error estimates of the
early-time values, thus indicating the presence of significant systematic errors. The t S T(L)
region also does not satisfy Eq. (4.11).

Fortunately, the systematic error is proportional to 1/7(%) (as opposed to the statistical
error, which is proportional to 1 /\/fm), so at sufficiently large times it becomes small
relative to the statistical error. There is no way to know a priori how large TX) must be
in order to insure that the systematic errors are negligible. However, it seems reasonable
to assume that the systematic errors are responsible for the failure of the Vi(L)’S to satisfy
Eq. (4.11). This certainly appears to be true for the data in Fig. 4.3, where l/z-(m) does satisfy
Eq. (4.11) at sufficiently large times. In all subsequent discussions the systematic error will
be assumed to be unimportant whenever the V,-(L) s satisfy Eq. (4.11).

Finite-size effects. Once the errors for the /\gL)’s have been determined, it is straight-

~ forward to calculate the errors for VfL) . However, the determination of the v;’s from the
ui(L)’s introduces another source of error. Because the simulations were done for finite (and
rather small) L-values, the V'(L) ’s must be extrapolated to the L — oo limit to obtain the
thermodynamically meaningful v;’s. The errors generated by this extrapolation are difficult
to estimate without a finite-size scaling theory. For the v;’s they are estimated by sim-
ply extrapolating the statistical errors from the two largest L-value measurements to the
L — oo limit. This method probably overestimates the finite-size errors, but it will not

underestimate thein provided that the statistical and systematic errors are not so large as

to mask the L — oo trend in the data.

4.4.3 Results

The results of the simulations are summarized in Tables 4.1 and 4.2 and Figs. 4.4 — 4.9.
d = 4 results. From Fig. 4.4 it appears that: (1) the two smaller eigenvalues have similar
scaling exponents; (2) the two larger eigenvalues have similar scaling exponents; (3) the

scaling exponent for Agl’) and /\gL) is different from the scaling exponent for /\:(31”) and /\SIL).
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d=4 d=5

o) O ERE 0
vs - 0.20+ 0.02 - 0.18-40.02
v, 0.85%+0.04 0.80% 0.01 | 0.76+ 0.06 *0.71+0.01
¥ 0.661 0.06 0.62% 0.01 | 0.66+0.09 0.5840.02
Vg 0.77+ 0.08 *0.69+0.01 | 0.70+0.09 *0.63+ 0.03
V3 0.92+ 0.08 0.84%+ 0.01 | 0.754+0.11 *0.674 0.04
V4 0.884+ 0.05 0.82+ 0.01 | 0.71+0.09 0.724+ 0.01
Vs - -1 0.7940.08 *0.73+ 0.01

73

Table 4.1: Scaling-exponent results for simulations of SATM’s embedded in d = 4,5. The
exponents were determined in two different ways: Method (a) calculates the 1/,(1”)’5 using
Eq. (4.10) and then extrapolates this information to the L — oo limit. The uncertainties
include both statistical errors and finite-size effects. Method (b) determines the v;’s from a
least-squares fit to the points plotted in Figs. 4.4 and 4.7. For the table entries marked with
an asterisk the . = 5 data has been omitted from the least-squares fit. The uncertainties
contain only the statistical errors. The vg’s are obtained from the slopes of the curves in

Fig. 4.6.

d| L MCsteps (x10%) g e Tin/ In(100) FLOP (x10%)
) 1.39 1262 0.13 0.26 4.62
9 5.39 4896  0.27 0.75 66.0

4113 108 10788  0.53 1.38 3116
17 83.8 19313 0.85 3.04 5464
21 104 30603 1.13 - 4.28 19091
) 2.80 1332  0.12 0.29 18.9
9 10.6 5043 0.18 0.41 239

5113 23.8 11349 0.33 0.82 1348
17 62.2 20063 0.50 1.23 1879
21 97.7 31531 0.71 1.81 15643
31 107 71384 1.21 2.78 54369

Table 4.2: Data for MC simulations of SATM’s embedded in d = 4,5. Tp is measured in
units of MC steps. T,(,,I;)x and m,;, are in units of 7x. T,(,,[;)x is the largest eigenvalue relaxation
time obtained from the size-L simulation using Eq. (4.5). n,;, is determined from error
analysis method 3 in Sec. 4.4.2. m,;, is scaled by the factor 1/1n(100) in order to provide
a comparison with 7p and Tg;)x. FLOP is the total number of floating-point operations

carried out for each simulation.
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Figure 4.4: The d = 4 eigenvalues versus L. The straight lines are obtained from a least-
squares fit to the data points. Not all of the fits include the L = 5 data (see Table 4.1). The
error bars (20) have been omitted for clarity. In all cases they are smaller than the size of
the symbol.
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Figure 4.5: The d = 4 scaling exponents versus 1/L. The dashed lines illustrate the pro-
cedure for extrapolating the data to the L — oo limit. The large separation between vy
and v4 and the separation between v, and unity suggest that SATM’s embedded in R? are
rough.

Figure 4.4 thus suggests that the SATM is in the rough phase. On the other hand, I'ig. 4.5

gives a somewhat different picture. The most obvious feature of this graph is the strong

(

L-dependence of 1/2L) . If the trend established at small L-values were to continue, it might
suggest that the SATM has a phase with vy = v3 = vy # 14. Although the evidence is not
conclusive that v3 = vy, this statement is certainly consistent with the data.

In order to appreciate better the meaning of Fig. 4.5, it is worthwhile to consider what a

graph of the l/i(L)’S should look like for each of the phases. If the SATM were flat in the sense

Ly,

of Sec. 2.2.3, then the graph would show, for sufficiently large L, the ui( s in two clusters.

. e L) L) L) . r
The first cluster, consisting of Vj(qg) , VL(i ), and V,g_)l , would have a value of unity. The second

. . .. L) o ‘
cluster, consisting of the remaining el ’s, would have a smaller value. Furthermore, we

t
would expect that within each cluster the V!L) ’s would be properly ordered as in Fq. (4.11).

If the SATM were rough, the Vt(L) ’s would be ordered and clustered in the same way as the



CHAPTER 4. SELF-AVOIDING TETHERED MEMBRANES 76

T
° S,
® 5
=
3
=
=
“ m
=
0.1 2
9 ]
o &
L} T L | ¥ L 3 ! L
3 4 s Y 2
1/L
Figure 4.6: The shape parameters S4 and S5 versus 1/L.
flat phase, except that 1/}({;) , ut(iL), and l/t(if)l would have a vaiue less than unity. If the SATM

were crumpled, all the u,(L)’s and ug;) would form a single cluster with v < 1.

Figure 4.5 thus indicates that SATM’s embedded in IR? are in some kind of rough phase,
i. e., they are not flat or crumpled. The possibility that the SATM is crumpled is ruled out
by the separation between v; and vy, which is at the 50 level. Further evidence of at least

e

two distinct scaling exponents is given in Fig. 4.6, where apparently S; " — 0 as L — oo.
The data in this figure also give a value for vs consistent with 2 (vg — 11).

Figure 4.5 also shows an example of the extrapolation procedure used to obtain the v;’s
and dv;’s shown in Table 4.1. Note that the estimates for the v;’s have been chosen to be
midway between their upper and lower error estimates, as can be seen in the example. This
procedure has not been used on vy because it exhibits such strong finite-size effects. All
that can be said is that v, < 1, < v4. The extrapolations for v; and v3 has been done
using the two intermediate-L data points, instead of the two large-I data points, because

| (21)

the combination of a large statistical errors and significant sytematic errors make »;""’ and

ngzl) too unreliable for the extrapolation procedure.



CHAPTER 4. SELF-AVOIDING TETHERED MEMBRANES

-1
-3

X\ b

A w]
(=}
~
o
o
(o)
i~

Figure 4.7: The d = 5 eigenvalues versus [. The straight lines are obtained from a least-
squares fit to the data points. Not all of the fits include the L = 5 data (see Table 4.1).

d = 5 results. Figure 4.7 appears to suggest that SATM’s embedded in R® are also
rough, but less so than those embedded in R*. However, Fig. 4.8 shows that the d = 5
results are even more ambiguous than the d = 4 results. At intermediate values of 1/ the
exponents are apparently separated into two distinct clusters, suggesting tlie p-2sence of
the rough phase. However, the data for smaller values of 1/L indicate that the clustering
is greatly reduced there. It is impossible to say, on the basis of this data, whether this
trend continues for even smaller values of 1/L and eventually leads to the crumpled phase,
or if the trend simply leads to two ( or perhaps three) clusters that are somewhat closer
together but still separate. In either event, it is clear that the data are not yet in the
scaling regime. Figure 4.6 is also inconclusive, since it indicates that S5 is decreasing with
decreasing 1/L, but the L = 31 data point suggests that S5 may be approaching a constant

value of approximately 0.08, which would be a signal for crumpling.
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Figure 4.8: The d = 5 scaling exponents versus 1/L. The data points are plotted at 1/1 =
2/(L1+ L2) (L1 and L2 are the L-values of two adjacent-sized simulations). The clustering
of the exponents at each value of L and the fact that they are correctly ordered (to within
experimental value) is taken as further evidence that the statistical errors have heen reliably

estimated and that there are no significant systematic errors. Note the good separation of

the exponent clusters at small L and the tendency of this gap to decrease as I increases.
Because of this trend, it is impossible to tell from the data whether the thermodynamic
phase of this system is rough or crumpled.
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Figure 4.9: The largest (v4) and smallest (1) scaling exponents as a function of embedding
dimension. The d = 3 data is taken from Ref. [45]. The large uncertainty for the d = 5 14
value is caused by finite size effects. The error bars for the d = 4 and d = 5 data points
are calculated using Method (a) in Table 4.1. The d = 3 error bars reflect only statistical
errors. The data points have been slightly offset for clarity. The Flory value (vr) and the
close-packing value (v.,) for v are also shown for comparison.

This conclusion is somewhat different from the one published earlier in Ref. [45] (1989),
which concluded that SATM’s embedded in IR were rough. The results discussed here are
based on substantially longer simulation runs (typically two to three times longer than those
in Ref. [45]) as well as larger L values. Taken together, Ref. [45] and the work described here
offer a cautionary tale on the wisdom of doing simulations in the absence of experimental
or theoretical guides. The prohibitive CPU requirements needed for reliably simulating
significantly larger L-values make it unlikely that the identity of the d = 5 SATM phase will
be resolved in the near future.

The exponent results for both simnulations are summarized in Fig. 4.9.
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4.5 Recent work

There have been a series of recent developments in the field that are directly relevant to the
issues and results discussed in Sec. 4.4.3: (1) recent experiments [17, 18] and M simulations
[35, 106] have found v(d = 3) = 0.8; (2) recent molecular dynamics simulations on SATM’s
embedded in d > 3 1} find no rough phase for d = 4 and a crumpled phase for d > 5. Both

of these developments are discussed below.

4.5.1 Recent results for d =3

Although the following discussion concerns d = 3 SATM’s, it is relevant to the work in
this chapter because it calls into question the appropriateness of modelling real crystalline
membranes using the SATM model studied here.

Because the existence of the high temperature flat phase is such a surprise, there has
been a certain amount of speculation as to its cause. Most of these conjectures focus on the
idea that the SA interaction somehow induces an effective bending rigidity, even if there
is none explicitly present in the model. Abraham and Nelson [76] have recently offered
a simple picture of how this might occur: The hard spheres that are used to enforce the
SA constraint have the additional effect of restricting the range of allowable angles defined
by the normals of two adjacent triangles. As a result of this restriction, this angle has a
non-zero expectation, which depends only on the ratio of the ball size and the tether length.
A similar effect can be achieved by adding a bending energy term similar to Eq. (3.3) in a
Hamiltonian without self avoidance. The conclusion drawn from this argument is that self
avoidance induces an effective “entropic bending rigidity”.

Abraham and Nelson also support this idea with a simulation study of a T'M with first-
and second-nearest-neighbor SA interactions only. The absence of long-range SA causes the
TM to crumple; but, as the tether lengths are shortened, the TM is observed to undergo

an apparent “phase transition” to a flat state. If the entropic bending rigidity idea is
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correct, then shoriening the tethers has the effect of increasing the bending rigidity. Thus,
this simulation is supposed to demonstrate that TM’s without long-range SA can still be
made flat by increasing the entropic bending rigidity arising from second-nearest-neighbor
interactions between hard spheres.

The calculation and simulation data given do not provide a very convincing argument
for the finite ball size as the source of the bending rigidity. For example, this explanation
does not seem to account for the flat phase observed in simulations [34, 45] emploving very
small hard spheres {as small as one-tenth the size used in the simulations here). Another
objection is that identical simulations could be used to “prove” that second-nearest-neighbor
hard core interactions are sufficient to produce “flat” polymers, which is clearly wrong. It
seems quite likely that all that is accomplished by reducing the tether length is to increase
the effective plaquette size (mucli as reducing the tether length in a polymer increases the
effective segment size), and that the crumpled behavior would be recovered on a much larger
length scale.

Although the evidence provided in support of this idea is not convincing, the idea itself
has attracted some interest. Baumgartner [35] has suggested a model of SATM’s that does
not induce an effective entropic bending rigidity. This model, known as the self-avoiding
plaquette model (SAPM), consists of a network of tethered vertices similar to the PTM
described in Sec 4.2.2. The model differs from the SATM in the method used to impose the
SA constraint. Rather than using hard spheres, the triangular plaquettes (defined by the
triplets of mutual nearest neighbors) are forbidden from intersecting each other. Since the
plaquettes in the SAPM have zero thickness, the range of angles for the plaquette normals
is not restricted. If the Abraham and Nelson idea is correct, then the SAPM will have zero
effective bending rigidity and will crumple.

Baumgartner and collaborators have done three studies of the SAPM embedded in R>.
The first study [101] (published before Ref. [76]) concluded that SAPM’s are flat. More
recent studies [35, 106] (published after Ref. [76]) have found that SAPM’s crumple with
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v = 0.8. Although there are some minor differences in the methods of data analysis and
the system sizes studied, these differences do not provide a satisfactory explanation for the
discrepancies observed [107]. Clearly more work is needed to obtain definitive answers about
the properties of the SAPM.

The issue of whether or not SAPM’s crumple has implications bevond testing the entropic
bending-rigidity hypothesis. If the later SAPM simulations turn out to be correct, then the
SATM belongs in different universality class than the SAPM. This naturally leads to a
question about which model provides a better description of real crystalline surfaces. This
is not an easy question to answer a priori. However, if experiments turn out to favor the
SAPM, then much of the motivation for studying SATM’s (especially for d > 3) will be lost.

The first laboratory experiments on crystalline membranes [17, 18] have been performed
tecently, as well. The membranes are made of graphite oxide (layers of graphite bonded
together by oxygen atoms) with a typical size of a few (3 — 8) micrometers and a thick-
ness 50A < d < 100A. The interatomic spacing of the carbon atoms is ag = 2.5A; thus
1.2x 104 < L < 3.2x10% After the membranes are synthesized they are suspended in
a solvent. The resulting solution contains approximately 10=2 membranes/(pm)?. Infor-
mation about the membrane structure factor is obtained by performing light scattering
experiments on the solution.

If these membranes are crumpled, then their structure factor will be governed by the

theory of scattering for fractal objects, which predicts [17]
S(k,R,) = k™™ F(kR,), (4.12)

where df = 2/v is the Hausdorff or fractal dimension of the membrane. In the long-
wavelength limit (kR, < 1) the membranes act like point scatterers, and we should expect
S to be k-independent. Thus, Yimy_., F(kR,) = (kR,)%. In the short-wavelength limit,
only the internal structure of the membrane is probed, so there should be no dependence of

S on R,. Thus, limy_q F(kR,) = constant and S ~ k™.
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Abraham and Nelson [108] have calculated the directionally averaged structure factor
for a flat membrane, which is necessary for comparing the theory for flat membranes with

scattering experiments, They find!!

~ - ‘ 27R
S(k,L) ~ k2 for 2T < k‘Rg < m‘qq

(4.13)

and
S(k, L)~ k2 for e < kR, < Zfe,
c1apl*! is the membrane size in the direction perpendicular to the plane defined by the
membrane itself. Note that the structure-factor scaling exponents 2 and 2/v; are the Haus-
dorff dimensions for a flat membrane. After inserting the experimental parameters and the
values 1 = 0.65 and ¢, = 0.25 obtained from simulations, Eq. (4.13) becomes
S(k, L)~ k™2 for 6.28 < kR, < 648

and (4.14)

S(k,L)~ k=21 for 648 < kR, < 2990.

The quantity of interest in these experiments is ds, because it can distinguish between
the flat state and the crumpled state. Thus, using wavelengths small enough to probe
only the internal structure of a membrane will lead to S ~ k=%/. d; can then be readily
extracted [rom a log-log plot of § versus kR;. For membranes with a minimum size of 3um,
the internal structure will be probed for k£ > 2(um)~!. In the actual experiments

2.1(pm)™ ' < k < 31.42(um)?
or (4.15)
6.3 < kR, < 94.
The upper bound on k is fixed by the wavelength (514 nm) of the light source (an argon cw
laser). Comparison of Egs. (4.14) and (4.15) shows that, if the membranes are flat, then the
experiments are well within the § ~ k=2 regime. Thus d; = 2 is evidence for a flat phase,

and d; > 2 is evidence for a crumpled phase.

"I"The value given in Ref. [108] for the crossover from S ~ k=2 behavior to S(k, L) ~ k~2/*1 behavior is
incorrect. Equation (4.13) contains the corrected value.
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Two experiments have been done so far: the first one [17] finds d;y = 2.0 4 0.1; the
second one [18] finds dy = 2.54 £ 0.05. In addition, a compact phase with d; = 3 (created
by reducing the solvent quality) was observed. The authors argue that the observation of
a compact phase rules out the possibility that the d; = 2.5 phase is actually a metastable
state on the way to forming a compact phase. The experiments thus seem to indicate that
membranes are crumpled with v very close to the Flory value of 0.8.

As the authors point out, these experiments cannot yet be regarded as definitive. Other
explanations of the results, such as crumpling induced by internal membrane defects, need
to be explored. A more convincing demonstration that graphite oxide crumples would be
to observe the flat-to-crumpled transition. This should be relatively easy to do, since it
requires only that the effective rigidity be increased, which can be accomptished cither by

cooling the system or by increasing the membrane thickness.

4.5.2 Recent results for d > 3

In a recent article [1] Grest has studied relatively large SATM’s (13 < L < 57) embedded in
d = 4,5,6,8 using molecular dynamics simulations. His results are rather different from the
ones described in Sec. 4.4.3: Grest finds that SATM’s embedded in d = 4 are flat and that
SATM’s embedded in d > 5 are crumpled with v somewhat larger than the corresponding
vy predicted by Eq. (2.53). The numerical results of Ref. [1] are summarized in Table 4.3
and should be compared with the results in Table 4.1.
Grest provides the following argument to explain these results: Abraham and Nel-
son’s [76] explanation for the entropic origin of the bending rigidity is assumed to be correct.
srest, then argues that because this explanation invokes the interactions between next-
nearest neighbors, it is natural to assume that the bending rigidity is caused by three-body
interactions. Eq. (2.51) shows that if D = 2, then all n-body interactions are relevant near
the Gaussian fixed point. However, SATM phases are clearly controlled by a non-Gaussian

fixed point, and we expect that near this other fixed point v > yy(= 0 when D = 2). A
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d ¢ vy state

3 0.64+0.04 1.0 flat

4 | 0.77£0.04 1.0 flat

51 0.77+0.03 | 0.821+0.05 | crumpled
6 | 0.69+0.03 | 0.691+0.05 | crumpled
8 | 0.60+0.03 | 0.60£0.03 | crumpled

Table 4.3: The scaling exponent results for the SATM simulations done in Ref. [1]. ( is
defined to be the scaling exponent for the d — 2 smallest eigenvalues. v} is defined to be the
scaling exponent for the two largest eigenvalues.

naive scaling analysis shows that (cf. Eq. (2.51))

ducn = ( ‘ )P—. (4.16)

n—1/ v

Hence d,.3 < dy.; whenever v is positive. Thus, when dy.y > d > dy3, the irrelevancy of
the three-body interaction will, in turn, make the bending rigidity irrelevant, and the SATM
will crumple,

This argument has a certain appeal, especially since the results in Table 4.3 support it,

but it is open to criticism:

1. As has already been discussed in Sec. 4.5.1 the explanation for the origin of the bending

rigidity given in Ref. [76] is not very convincing.

2. Even if one accepts the idea that bending rigidity is induced by next-nearest neighbor
interactions, these interactions still involve repulsion between only two (albeit distant)
vertices. The n-body interaction in Eq. (2.50) contributes only when n vertices have
the same position vector. Next-nearest neighbors apparently interact via two-body

interactions — not three-body interactions.

3. Even if one accepts that three-body interactions are somehow responsible for inducing
a bending rigidity, they are still unimportant in any model that contains two-body
interactions. Recall from the discussion in Sec. 2.4.2 that the effect of the interaction

terms is to enforce the self-avoidance constraint, and that in the thermodynamic limit
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H &(}X) reproduces this constraint exactly. Clearly, any configuration forbidden by ,H;(;:f\)

. . 2 C
will be forbidden by HS(A) as well. The converse statement is, of course, not true.

Aside from the issue of whether or not Grest’s explanation of his results is correct,
there remains the more basic question of why his results disagree with the ones described
in Sec. 4.4.3. It is easy to dismiss two explanations: the differex:ce in simulation techniques
and differences due to simulation size.

Although the two sets of simulations used different simulation techniques (MC versus
molecular dynamics), it is not likely that this is the source of the difference. On general
grounds, we expect the SATM model to belong to a particular universality class, with critical
exponents that are independent of the details of the model. This has certainly been the
case for simulations of SATM’s embedded in R?, where the results for the critical exponents
appear to be independent of the simulation technique. It seems unlikely that a change of d
would affect this result. Of course, universality will be applicable only for simulations that
are large enough to be in the scaling regime, and it is possible that one simulation technigue
reaches the scaling regime much more readily (i. e., for smaller L values) than the other
[109]. Once again, there is no indication that this is true for d = 3 simulations, so it is hard
to understand why the situation should be different for d > 3.

The most obvious difference between the two sets of simulations is in the [-values used.
A potentially simple explanation is that my simulations suffer from significant finite-size
effects, and that, if they were extended to much larger L-values, the results for the scaling

exponents would agree with those obtained in Ref. [1]. There are two arguments against this
(L),

idea. The first argument is that although the l/i(L)’S for the smaller A:""’s generally exhibit

strong finite-size effects in my simulations, y(g ? and Véﬁ)l

exhibit a rather weak dependence
on L, suggesting that the scaling regime for ’\SJI:)I and /\SIL) begins at L = 13. The second
argument against the finite-size-effect explanation is that there is some overlap in L-values

for the two sets of simulations, and even here the two simulation sets give very different

scaling exponents.
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Finally, 1 discuss a potential source of the discrepancy. Figure 4.10 shows the ui(L)’s
obtained from Ref. [1]'2. It is apparent that the Ref. [1] exponents are not well-ordered,
and this suggests the presence of significant systematic errors in the data (see Sec. 4.4.2).
There is no way to know a priori whether such systematic errors (if they are present) are
responsible for the difference in the conclusions reached in the two studies, but reducing
them by increasing the run-time of the Ref. [1] simulations would seem to be a reasonable

first step towards resolving the discrepancy.

Y1 wish to thank G. Grest for graciously providing me with a copy of his raw data for analysis.
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Figure 4.10: The scaling exponents obtained from the SATM simulations described in
Ref. [1]. The upper figure is the d = 4 data; the lower figure is the d = 5 data. Note
that the scaling exponents are not well-ordered and that some of the v;’s are larger than
1, which violates Eq. (2.25). Together, these two observations suggest the presence of sig-
nificant systematic errors. Such errors may explain the discrepancy between the scaling
exponents obtained from the two sets of simulations.



He got out two thin butter-spades from the shelf and put them down
into the little chest and pulled out something that seemed to me re-
markably like another chest. I went over to it and gave it a close
ezamination with my hand, feeling the same identical wrinkles, the
same proportions and the same completely perfect brasswork on a
smaller scale. It was so faultless and delightful that it reminded me
forcibly, strange and foolish as it may seem, of something I did not

understand and had never heard of.
Flann O’Brien

The Third Policeman

Chapter 5

Sierpinski Gaskets

5.1 Introduction

In Chap. 4 it was pointed out that many theoretical approaches that are useful for studying
polymers, such as Flory theory and an e-expansion analysis of the Edwards model, do
not correctly describe even the qualitative features of SATM’s. In the context of field
theory, both polymers and membranes are seen as special cases of a more general (but still
homogeneous) manifold characterized by its intrinsic connectivity or topological dimension
D. Tt is then apparent that, as D increases, somewhere in the regime 1 < D < 2, three

things must occur:

1. Renormalization group arguments based on the e-expansion about the Gaussian fixed
point break down. Alternatively, the Edwards model may cease to be a good descrip-

tion of SATN’s;

2. The Flory theory must cease to contain all of the essential physics needed to describe

the thermodynamics properly;

89
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3. The thermodynamic behavior of the manifold must change from crumpled to flat.

It seems worthwhile to study the connections between these three points and the reasons
why the theory breaks down in the first place. Ideally, one would like to compare the results
of simulations with theoretical calculations for arbitrary D and to look for discrepancies.
Unfortunately, it is not clear how to simulate such manifolds. To overcome this difficulty, a
model is needed that is amenable to simulation and theoretical calculations and interpolates
between polymers and membranes. In this chapter I propose regularly connected fractal
networks for this purpose. Although not homogeneous, these networks are characterized by
a spectral dimension! D,, which is completely determined by the intrinsic connectivity of
the network, and, in many ways, plays the role of D (see Sec. 5.2). As a result, they are
amenable to both Flory theory calculations and e-expansions. They are also straightforward
to simulate. The remainder of this chapter is concerned with the comparison between Flory
theory calculations, e-expansions and simulations for a particular model: a network with the
connectivity of a b = 2 Sierpiiiski gasket [115]. As we shall see, the SA version does, in fact,
crumple; the Flory theory is reasonably accurate (within a few percent of the measured
value); and the e-expansion gives modest results (within 20% of the measured value) for

d = 3, but improves as d approaches its upper critical dimension.

5.2 Theory

Figure 5.1 shows the intrinsic connectivity of the model, which is that of a b = 2 Sierpifiski

gasket. For the nth iteration of the network, the number of vertices is

n+1
N — L_tﬁ (5.1)

The notion of the spectral dimension (sometimes referred to as the fracton dimension} of a network
originally arose from the study of the density of states for a generalized Laplacian operator on a fractal. See
Refs. [110] and [111] for this point of view. More recently, D, has been used to characterize random walks on
fractal lattices, <[r(s) - r(O)]z) ~ gP+/411 This is the definition of D, used here. dj; is the fractal dimension
of the lattice; 1. e., N ~ L% where N is the number of vertices on the lattice. See Refs. [112, 113, 114, 115]
for this latter point of view.
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n=1 n=2

Figure 5.1: Iteration process for a b = 2 Sierpiiski gasket. The value of b gives the mul-
tiplication factor for the increase in the mumber of connections along an edge after each
iteration.

The lattice fractal and spectral dimensions, defined in the n — oo limit, are, respectively,

In3

= — 1. -2
dyy n2 585 (5.2)
and
In3
Dy =2— ~1.365. .
2In5 365 (5.3)

Both phantom Sierpiniski gaskets (PSG) and self-avoiding Sierpifski gaskets (SASG) are

discussed in this chapter.

5.2.1 Theoretical predictions

There exists for the PSG a rigorous prediction for the scaling exponent vy based on a
mapping between the partition functions for tethered networks and resistor networks with
the same connectivity [19]. This mapping predicts (subscript zero denotes phantom-network

quantities)

2-D,\ d
VOZ( 5 )Df’ (5.4)



CHAPTER 5. SIERPINSKI GASKETS 92

SO

dyi 2D, ,
djo = — = ——. 5.
fo e 3-D. (5.5)

dyo is the fractal dimension, which relates the radius of gyration to the number of vertices,
Rgo ~ Ndso (5.6)

For SA-networks, a Flory theory can be constructed using a line of argument identical to

the one in Sec 2.4.2 for homogeneous TN’s with the result

_ Do+ 2 dﬂ .
VF—-(d—}-Q)-E: (,).7)

The upper critical dimension, d,. (above which self-avoidance is irrelevant) can also be
determined using the methods of Sec 2.4.2. Recall that djo measures how much of the
embedding space is filled by the fractal object. For embedding spaces with d > 2dy, inter-
sections between two or more portions of the network separated by large intrinsic distances
will be unlikely; hence, d,. = 2dso. An alternative, but related, argument is that including
self-avoidance always increases R, so vp is a lower bound on vp. Hence, vp|y=q,. = 0.

Either way, one finds
4D,
S 2-D,

Substitution of Eq. (5.3) into Eq. (5.8) gives d,. = 8.6 for the b = 2 SASG. This is in
marked contrast to the case of homogeneous membranes [20](i. e., D = 2 networks) for which
dy,. = co. Also, notice that Eqgs. (5.4), (5.5), (5.7) and (5.8) reduce to the corresponding
homogeneous manifold results by simply substituting D, = d;; = D. In this sense D, plays

the role of an effective topological dimension.

5.2.2 The Edwards model

As mentioned in Sec. 4.2.2 there have been several studies of homogeneous manifolds that

have applied e-expansion techniques (see Ref. [20] for a recent review) to the generalized
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version of the Edwards model [50] already introduced in Egs. (2.44), (2.37), and (2.45),

BHg = = / dD (;):) % f dPs dPs' §%[x(s) - r(s")). (5.9)

The above discussion suggests that i" might be possible to generalize Eq. (5.9) to include
fractal networks by simply making the replacement D — D;. However, this does not work, as
can be easily verified. For example, requiring the Gaussian part of Hg(D — D;) to be scale
invariant does not give the same result for v as Eq. (5.4) gives. The reason for this failure is
that, whereas [ dPs implies an integration over a homogeneous and compact space, dDss
implies neither. Rather than attempt to discuss a measure theory for fractal sets, which
would be needed to understand fully the meaning of | dP:s, 1 will simply propose an ansatz
for establishing a correspondence between a fractal manifold and an homogeneous one that
has the same physics. The resulting Hamiltonian can then be analyzed in a straightforward
manner.

The only other parameter besides I; that characterizes the internal space is £. It is not
surprising that an intrinsic length scale might be modified for the case of a fractal network,
since, unlike homogeneous networks, which are characterized by a single intrinsic large length
scale L, fractals have many such scales, and it is not clear which scale is appropriate for
integration. Assuming an integration scale of the form, £ = £2/2=DPs) [ we can fix z by

requiring (s = £2/(2-D<)g)
L.T
/ dPs =N (5.10)
0

from which we obtain z = dj;/D,. The replacements,
L — r4bs

D — D, (5.11)

lead to the Hamiltonian,
LI

BHE = 5 / dD’sZ( ) / dPss dPss’ 6%[r(s) — r(s")] (5.12)

0
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(L' = ¢3/(2=Ds) [d51/Ds) which has the same upper-critical dimension and Gaussian scaling
exponent as the original Sierpinski gasket model. It also leads to the same Flory theory
prediction.

For example, applying the usual Gaussian integration techniques[41] to the calculation

of the mean-squared distance between two points of the phantom network gives

oL 2
<[r(51) - r(sz)]2> = W,;i,[;gz(fi)i) ) loy — oo)* P> (5.13)

The rms end-to-end distance, which scales like R, is obtained by setting |oy —oy| = Ln/Ds,
from which we obtain a result identical to Eq. (5.4). Application of the usual power counting
arguments to Eq. (5.12) gives results identical to Eqgs. (5.7) and (5.8). In addition, e
expansion results for v can be obtained directly from the homogeneous-manifold results (cf.
Refs. [93, 94, 116]),

dy (2-D3)e¢

— ot i) s 2 5.
Ve - V0+ DSS[D; +2C(D;)] +O(C )! (‘) 14)

where
¢=4D, — (2 - D,)d, (5.15)
2
(DY) = Vi () — (5.16)
22D:/(2—D:)r(ﬂ22_+_%1,7)
and
2d*
* = A7
D; yppr (5.17)

The e-expansion is performed about any point (DI, d*) that lies on the critical line that
separates SA-relevant behavior from SA-irrelevant behavior. If Eq. (5.14) turns out to be
consistent with numerical results for the Sierpifiski gasket (which, as we shall see, it does),

then they provide evidence for the correctness of the ansatz, Eq. (5.12).

53 Simulations

In order to perform Monte Carlo simulations, tethered network versions of a Sierpinski gasket

were developed. The simulation model, simulation method, data analysis techniques, and
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error analysis techniques are identical to those used in Chap. 4, with the following minor

modifications:

1. The ratio £/7¢ has been changed from the TM value of 2/3 to 4 for reasons of com-

putational convenience.?

2. The scaling exponents for the eigenvalues are now defined in terms of the generation

number n of the Sierpiniski gasket instead of the length scale L. Thus, in an obvious

notation,
(n) 3 (n—IN
o ol L) (5.18)
: 2 In (N(/N(-1))’
and
vi= lim »". (5.19)
3. The definition of the shape parameter (Eq. (2.27)) has been changed to
S4= lim 5%, (5.20)
where )
A n
s = <—d:l> (5.21)
Al

Notice that the definition of Sl(in) uses Mg instead of Ay (cf. Eq. (2.27)). The
motivation for this change is merely that in the simulations the statistical fluctuations
in ,\§") are usually somewhat larger than those in /\t([i)z. Thus, Eq. (5.20) provides a
more stable measure of Sierpiniski gasket shapes than Eq. (2.27). As long as /\§") and
’\.(111)2 have the same scaling behavior, both definitions will provide the same information
about the existence of a crumpled state. Of course, we have already observed in
Sec. 4.4.3 that /\g,L) and /\t(ﬁ)z may have different scaling behaviors, so this assumption

may be wrong. However, as we shall see in Sec. 5.4, SG’s already crumple in R3, so

the assumption is correct.

2With the exception of Ref. [76], numerical studies done so far on. TM models show no dependence of »
on the ratio of the ball size to the tether length. See Refs. [34, 45]. See Sec. 4.5.1 for a criticism of Ref. [76].
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4. Because SG’s crumple, the asphericity 4,4 (as defined in Eq. (2.28), but with /\gL) -
/\z(n)) provides a meaningful measure of their shape. The simulation results include

measurement of Ay.

5. Ancther consequence of SG’s crumpling is that all the utf")’s are very similar for a
given value of n. Consequently, Eq. (4.11) is easily satisfied and, therefore, does not
give much insight into the size of the systematic errors. For this reason, systematic

errors have been ignored in the error analysis.

5.4 Results

5.4.1 Phantom networks

Figure 5.2 shows the results of simulations of PSG’s done for d = 3 and d = 9. To facilitate
extrapolation of the data to the n — oo limit, »("), § (Sn), and A‘(i") have been plotted versus
1/n. Also, the v(™s are plotted horizontally midway between the two relevant values of n.
With the exception of the n = 5, d = 3 data point, the ¥(™s are all consistent with the
theoretical prediction for vy discussed in Sec. 5.2, and they appear to be independent of d.
The failure of this one point to fit the theory probably reflects the presence of systematic
errors. From the shape data, one can see that S‘(in) approaches a finite value in the n — 0o
limit, indicating, as one would expect, that phantom networks crumple. Of course, since Sy

(n)

compares the scaling of )‘&n) and A;_,, it is possible that the smaller AS") s

scale differently
and that the PSG does not crumple. However, direct measurements of the V,-(n) ’s show that
the Ag")’s are all the same (to within experimental error). Comparison of the Ay results with

the corresponding polymer values [44] (A3 = 0.526 and Ag =~ 0.431) shows that crumpled

phantom Sierpinski gaskets are much more spherical than their polymer counterparts.
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Figure 5.2: Results for the phantom-network simulations: (a) v(™ vs. 1/n; the curves for
extrapolating v(™) have been omitted for clarity; (b) Sﬁn) vs. 1/n; (c) Ag") vs. 1/n. Error
bars on all points reflect statistical errors only. Also note that the points in (a) have been
positioned at 1/ 2%, 1/ 3%, etc. to reflect the fact that they have been determined using the

two simulations whose n values they lie between.
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Length of run (in myy)

Type d n=2 n=3 n=4 n=5 v Sd Aq
Phantom | 3 1452 1884 1808 1411 0.372+0.008 0.302+0.010 0.19540.010
9 87 7 232 67 0.379+£0.016 0.29240.010 0.15940.024
SA 3 693 482 204 47 0.790£0.028 0.1764:0.012 0.21040.025
7 523 709 163 18 0.451£0.019 0.2953+0.018 0.17740.022
8 260 320 70 26 0.41240.023 0.29810.028 0.16740.024
9 442 557 280 17 0.395+0.018 0.291+0.011 0.17240.032
10 358 459 32 0.382+0.016 0.283£0.013 0.143+0.017
11 203 225 67 0.361+0.007 0.2894£0.006 0.1331+0.010
14 731 639 611 0.380+0.016 0.27240.013 0.1314:0.007

Table 5.1: Summary of simulation parameters and results. The run lengths do not include
the initial discarded data. m,;, is determined from error analysis method 3 in Sec. 4.4.2.
The quoted errors include both statistical and finite-size errors, but no systematic errors.

5.4.2 SA networks

Figure 5.3 shows the results for the d = 3 SA network. The Flory prediction for v is
remarkably good — differing from the data by at most a few percent. This is consistent with
the d = 2 simulation of this model [42]). As with the phantom case, § 15") approaches a finite
value for n — oo, indicating that the network is crumpled. Once again, since Sy compares
the scaling of )\l(i") and )\((171)2, it is possible that the smaller Agn) ’s scale differently and that
the PSG does not crumple. However, as with the Vphantom’ case, direct measurements of the
u,gn)’s show that the )\En) ’s are all the same (to within experimental error). The SASG Sy’s
are much smaller value than the corresponding phantom ones, which suggests that SASG’s
is much flatter in shape than PSG’s. This conclusion is also borne out, to some extent, by
the Agn) data. This is different from polymers, where self-avoidance has almost no effect on
Az [68]. However, as d increases, the distinction between the phantom and SA valu.és for
Ay disappears.

Results for all the simulations are summarized in Table 5.1 and Fig. 5.4. The figure shows
that the data are consistent with the Flory theory for d < 8. The first-order e-expansion

results are not as good for d = 3, but improve, as one would expect, as d — d,,. The
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Figure 5.3: Results for the d = 3 SA-network simulations: (a) #(") vs. 1/n; the Flory theory
prediction is shown for comparison; (b) .S't(in) , At(in) vs. 1/n. Error bars on all points reflect
statistical errors only. The meaning of the dashed lines is explained Sec. 4.4.2. Also note
that the points in (a) have been positioned at 1/ 2%, 1/ 3-12;, etc. to reflect the fact that they
have been determined using the two simulations whose n values they lie between.
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Figure 5.4: Summary of all simulations done: (a)v vs. d. The Flory prediction (vg),
obtained from Eq. (5.7), and the e-expansion prediction (v,), obtained from Eq. (5.14), are
shown for comparison; (b)Sy,A4vs.d. The error bars in both figures include finite-size effects

as well as statistical errors.
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Figure 5.5: Phase diagram for SA regularly connected fractal networks. The crosses (x)
represent the data from this simulation. The dashed curve is hypothetical; although the
point o (discussed in Ref. [42]) is taken to be evidence for its existence.

data also show a clear crossover to Gaussian behavior in the 8 < d < 10 region. The exact
location of the crossover is not very well determined, but it is certainly consistent with the
prediction dy NV 8.6.

There are several obvious extensions one could make to the present work, of which I
mention only two. The first is to include bending energy in the simulation models and look
for a crumpling transition. Currently, there are no known SATN models which exhibit a
crumpling transition (they are always flat, always rough, or always crumpled?3, so it would,
of course, be interesting to find a counter-example. The second extension is explore more
‘fully the phase diagram in Fig.5.5.

Although not as interesting from a physical point of view as the corresponding diagram

for homogeneous systems [12], Fig. 5.5 does have the advantage that the 1 < D, < 2 region of

SHowever, if it does turn out that SATM’s embedded in d > 5 are crumpled, it is very likely (based on
the PTM simulations of Ref. [37]) that a flat phase could also be found. '
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the diagram is accessible to simulations, whereas the 1 < D < 2 region of the homogeneous
diagram is not. Furthermore, the results of this chapter suggest that a correspondence
between regular fractal manifolds and homogeneous ones may exist, although work remains
to be done to justify the treatment of the Edwards model given here. This is important since
theoretical analyses [19, 74, 20, 93, 94, 116] of membranes have so far been unsuccessful
in discovering the flat phase (but see Ref. [117]). It may be possible, then, to sct up a
systematic program of simulations of regular fractal systems on the one hand, and theoretical
calculations of the corresponding homogeneous manifold on the other. One could then
explore in detail their relationship to questions concerning the existence of phase boundarics.
For example, if a first-order phase boundary exists between the D = 2 and SA-irrelevant
lines, e—expa,hsions will not detect it; but, a corresponding boundary in the D, — d plane
could be found through simulation. Indeed, one such phase boundary may have iLlrea,dy

been discovered [42].



Many possibilities are open to you — work a little harder.
Chinese fortune cookie

Chapter 6

Conclusions

The following is a brief summary of the conclusions obtained from the work in Chaps. 3,

4, and 5 along with some thoughts about extensions to this thesis that are worth pursuing.

6.1 Two-dimensional closed pressurized random walks

The main motivation for constructing the model described in Chap. 3 was to study the
shapes of a simplified version of a three-dimensional pressurized fluid vesicle. In particular,
‘the hope was to create an analytic version of a computer model of the two-dimensional
SA vesicle introduced by Leibler, Singh, and Fisher {the LSF model [2]), and to calculate
the asphericity for this analytic model. Unfortunately, even the LSF model is sufficiently
complicated so that simplifications have to be made in order to make analytic calculations
possible. These simplifications consist of: (1) dropping the SA constraint; (2) replacing
the true area that a closed SAW would enclose with the algebraic area; (3) replacing the
fixed-length bonds between monomers with Gaussian springs. The resulting model is called
the PRW model. With these simplifications it is poésible to ca,icula,te exactly the asphericity
Ag, as defined in Eq. (2.28). The results are given in Eq. (3.43) and Fig. 3.1.

Removing the SA constraint creates a model that is very different from the LSF model,

103
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but it is, nonetheless, a reasonable first step towards an analytic description of a SA model.
On the other hand, simplifications (2) and (3) turn out to be so drastic that the resulting
model seems no longer to be related to the LSF model in any useful way. In particular, the
PRW model does not distinguish between negative and positive pressure diflerences (as a
result of simplification (2)); and, it does not seem possible to introduce a realistic bending
rigidity (as a result of simplification (3)). It therefore seems unlikely that the PRW model,

or some variation on it, will lead to a useful analytic description of the LSF model.

6.2 Self-avoiding tethered membranes

In Chap. 4 MC simulations on SATM’s embedded in R? and R® were carried out in an
attempt to find a SA crumpled state. No conclusive evidence for a crumpled state was
found, but this possibility cannot be ruled out for the d = 5 simulation.

More generally, these simulations indicate that the two largest eigenvalues probably have
the same scaling exponent, with vyay(d = 4) = 0.88 and vyax(d = 5) = 0.73. The d = 4 sim-
ulation results also indicate that the scaling exponents for the two smallest eigenvalues may
be distinct from each other with v;(d = 4) = 0.65 and v2(d = 4) = 0.72. The d = 5 results
are somewhat more ambiguous. One possibility is that SATM’s embedded in R® crumple
with v & 0.73. Another possibility is that d = 5 SATM’s are rough with the three smallest
exponents ~ 0.70. Finally, it is also possible that v; = v3 = 0.70 and v; = 0.65. Unfortu-
nately, vo(d = 4), v1(d = 5), va(d = 5), and v3(d = 5) all have a strong L-dependence for
the lattice sizes we have been able to simulate, so the determination of the thermodynamic
phase for SATM’s embedded in R* and R® will likely require simulations with much larger
L-values. The large L-values required, combined with the need to run each simulation rh uch
longer (typically by a factor of 10) than other workers have assumed necessary (in order
to adequately reduce the s’ystema,tic error ), make it nearly impossible to resolve the SATM

phases by simulation, given the currently available computers.
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These results should be contrasted with those in Ref. [1], which are that d = 4 SATM’s
are flat and d = 5 SATM’s are crumpled with v = 0.82. Although there is no definitive
explanation for the difference between the Ref. [1] results and the Chap. 4 results, the
error analysis techniques described in Sec. 4.4.2 suggest that the Ref. [1] data might have

significant systematic errors, and that this might be the source of the discrepancy.

6.3 Sierpinski gaskets

In Chap. 5 the results of MC simulations on phantom and SA Sierpinski gaskets were
compared with appropriately generalized Flory theory and Edwards-model calculations. The
motivation for doing this was to study a TN with an intrinsic connectivity between that of
‘a polymer (D = 1) and that of a membrane (D = 2). The two main results of that chapter
are: (1) replacing a TN’s topological dimension with its spectral dimension and a careful
generalization of the TN’s intrinsic length scale (Eq. (5.11)) leads to an analytic theory that
agrees quite well with the results of simulations; (2) simulated SA Sierpinski gaskets have
an upper critical dimension = 8.6, in agreement with theoretical predictions. For d > d,.,
- S5A is irrelevant and the simulated SASG’s crumple with v = vy = 0.368. For d < d,., SA
is relevant, but the simulated SASG’s are, nevertheless, crumpled with v ~ vg &~ v,. These

results are qualitatively similar to the case of polymers.

6.4 The SATN phase diagram

In Sec. 2.4 it was stated that much of the motivation for studying SATM’s embedded in
R* and R® and SASG’s was to explore the (D, d) phase diagram shown in Fig. 2.4 and
subsequently updated in Fig. 5.5. Figure 6.1 summarizes all the known data for SATN’s.
Unfortunately, the data are, in some cases, inadequate or controversial, so not all the phase
boundaries can be drawn with confidence. In particular, the boundary between the flat and

rough phases may cross the IJ; = 2 line at a different value of d, or may not exist at all
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Figure 6.1: The D, versus d phase diagram. The data points are taken from Chap. 4(0),
Chap. 5(x), Ref. [42](c), Ref. [34](a), and Ref. [1](s). This diagram assumes that SATM’s
embedded in R? and R® are rough and that those embedded in R® are crumpled.
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[1]. Similarly, the boundary between the Flory crumpled phase and the rough phase (or
flat phase, if the rough phase dnes not exist) may or may not intersect the D, = 2 line
(although the results from Ref. [1] suggest that it does). Finally the two points in the flat
phase (o, &) are simulations whose results are consistent with v = 1, but much longer runs
(like the ones described in Chap. 4) may indicate that these points are, in fact, in a rough

phase with v S 1.

Clearly, many more simulations will be needed before the SATN phase diagram is ade-

quately understood.



In the thirties, under the demoralizing influence of
quantum-theoretic perturbation theory, the mathematics
required of a theoretical physicist was reduced to a rudi-
mentary knowledge of the Latin and Greek alphabets.

R. Jost

Appendix A

This appendix contains some of the calculational details needed to derive Eqs. (3.34)

and (3.42).

A.1 Derivation of Eq. (3.34)

Starting from the first line of Eq. (3.34),
W (y;m,mp) = /D[r] exp [=BH(y) + my - r(s1) +my - v(s2)], (A.1)

where

£ 1 /dr\? p i dry

pHw) = [ ds [z (&) e
+._y__/Ldsld32 [r(31)~—r(32)]2. (A.2)
2L2 0 )

The last term in the Hamiltonian can be rewritten as

c e 1 £ . :
%/0 dsydsy [r(s1) — 1 (s2)]* = —Z-/O dsr(s) — ZJ—,_; [/0 ds r(s)} : (A.3)

‘The last term is difficult to handle in its present form, but we can rewrite it in a more

convenient form using a trick described in Ref. [39],
Y L 2 L Lu?-2 Lds ‘
exp { =5 / dsr(s) = ——/d2u e~ Cu?=2/E [y der (A4)
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Thus,

1 L
W(y,m1,m7) = -ﬁ/d"’u o= L /D[r]enl'r(sl)+"72‘r(52)—fo dsT

where
1/dr\? y 2 Y P i dr;
I‘Z(ds) VAR W S e

Now make the change of variables

so that for the endpoints
and

It follows that

L
p .
/0 T = —£w - Bactu; (6 - €])
L 62 36
k k
+0d5[( )_*—.’1)2_*-2]6] ]
Thus,
W (y;m1,m3) = /dzu eP‘“’k“J(ff"fi)I‘(u;nl,nz),
where
I‘(u- MsMe) =
__e (771+n2) uz fdzgld2£2 enl £1+n2 C2G(£ 52)G(52, SI)G(sla O),
E ~.E(s,) and

Gls2,81) = /D[E]eXP{— [Fas [;} (gj) 22 1 Laitg, 35’“]}.
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Using standard path-integral techniques [118] gives
cl) i
Gsg,81) = e=S% / Dlz)e=Sol (A.15)

where

s2
siPlal= [ds

51

1 /dq\? % 0
[Z (53) +a:2q2+]—2)61kq1'5qf} (A.16)

is the classical action (g solves the classical equations of motion and q! = qF = zu are the
fixed endpoints of the motion), and

o 11/0z\* ,, P g Ok
So[Z]—/O ds [Z (5-;) +x°z +§€ %79? (Al7)

is the quadratic variation in § f;l)[q]. Straightforward evaluation of the integrals in qu (A.16)

and (A.15) gives

(ch) . w F?2 I2 , )
S52'[al = 4L sinh w (07 — 01) [(q +q ) coshw (oy — 0y)
-2q! - qFf coshp(og —01) + 253"‘}_]]141,{'w sinp (o9 — 0y )] (A.18)
and
~Sole] w A19
/D[z]e 47 L sinh w(oy — 0y)’ (A.19)
where
1/
w=[ye -, (A.20)
p = pL, (A.21)
and
i (A.22)
o; = —. A.
L
Hence,
w —w
Glog, o) = 4 Lsinh w (o7 — 01) exp {4£ sinhw (03 — 0y)

[(qF2 + q”) coshw (03 — 01) — QQI : qFCOShP(U:Z - 01)

+2ejkq}qf sin p (o ~ 01)] } . , , (A.23)
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Now evaluate Eq. (A.13). First note that
¥(01;0,0') = [ (01)e M EIG(o",01)G (o, 0) (a20)

is a Gaussian integral. Direct evaluation gives

1
sinh wT

+€5k ({,{ sinh pt sinh wt’ — £ sinh pt’ sinh wt)]
sinh wt sinh wt’ }

®(0y;0,0') = exp {n{ [EJI cosh pt sinh wt’ + EJF cosh pt’ sinh wt

+TI%E G(O’I,O'), (A25)

where T =o' —0,t =0, —0,and t' = ¢’ — 0;.
Inspection of Eq. (A.23) shows that G(¢’,0) is only well-defined when o' > o, so we

must be careful to write

T(u;ny,m3) = 8(02 — 91)T4 (W71, m2) + 8(01 = 02)T - (w;my,7,). (A.26)
Explicitly,
Ly, ms) = 2o (WP (o) 803 L,0)8(en50,0) (A7)
and
T_(u;my,7,) = Ty (u;my = ng,01 © 02). (A.28)

Eqs. (A.27) and (A.28) are Gaussian integrals. After a lot of arithmetic, [ find

Ly w w z2y?
T : == v — — h
+(U573,72) inlsinhw T { Lsinh w [ 2 (coshw — cosh )

2,2 2,2

+ Ewgl sinh woy sinh wy(l -o01)+ ,w1272 sinh wog sinh w (1 — o07)
+ %"71 - u(sinh woy cosh p (1 — 01) + cosh poy sinh w (1 — 01) — sinh w)
+ %‘7’2 - u (sinh woy cosh p (1 — a3) + cosh pog sinh w (1 — o2) — sinh w)
+ €k (%nlj“k [sin pai sinh w (1 — 01) — sinh woy sin p (1 — 01)]

L
+%‘7]2ij [sin pog sinh w (1 — 02) — sinh wos sin p (1 — 02)]

k 2[:2 .
_ 2% ik G woy sinh w (1 — o3)sin p (g2 — 01 ))] } (A.29)

w?
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and a similar expression for I'_(u;7,,7,). Finally, I calculate
W(y;iny,m2) = (02 — 01)Wi(ny,m,) + 6(01 — 02)W_ (1, 7,), (A.30)

where

Wi(m,mo) = fd2u Ty (u;ny,7,)- (A.31)

Inserting Eq. (A.29) and the corresponding expression for I'_(u; 7, n;) into Eq. (A.31) give,

after another set of tedious Gaussian integrations, the result on the second line of Eq. (3.34).

A.2 Derivation of Eq. (3.42)

Start with
)2 - 2 _ l 2
<TrQ >H(y) = <TrQ >H(y) d<(Tr Q) >H(y)
= T -13 15, (A.32)
where,
_— !/ ! 1/ ’ 2 Ao
I = <ijij> 7 \(ij) ; (A.33)
/ 1 ,
T, = <Rijkj>‘";l'<Q;'ijk>v (A.34)
1 A .
3 = (Rijkj)";l‘<(Rjj)2>a (A.35)
and the definitions,
c
Q' = l/ dsri(s)ri(s) (A.36)
3 ZJo
and
1 [£ , A , .
R = 2_2_./0 ds ds' 7j(s)ri(s") 7 (A.37)

have been introduced. The first term in Eq. (A.33) is

‘ 1 L . ) ‘ . ,
<Q3’kQ;cj> = <23/0 d31d32Tj(ﬁl)"‘k(Sl)Tk(Szj"‘j(32)> (A-'58)‘
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1 L
= Z—E/O‘ ds1dsz Ggi)kj(31731732732)

1 L
= F/O ds1ds; [Gk(s1,51)Gk;j(52, 52)
+ij(317 32)ij(31, s2) + ij(SI ) Sz)Gkk(Sl , 32)} ,
where
1 92
W anjong
The last line in Eq. (A.38) follows from Wick’s theorem. Using the result in Eq. (3.34) gives

Gik(s1,82) = W(y;n1,m,)- (A.39)

(recall that o; = s;/L),
Gjr(i,0i) = —=0; (A.40)

and

1
ij(Ul,Uz) = E_A- [,55]'1: - ¢€jk], (A-41)

where, A, a;, B, ¢, are defined in Eqs. (3.36)—(3.38). Inserting Eq. (A.41) into Eq. (A.38)

gives
2
<Q9inj> 22£A2 [4ala2 +38% + ¢] (A.42)

The second term in Eq. (A.33) is

(ri(s)ri(si)re(s2)ri(s2)) = Gjj(s1,51)Gri(s2, 52)

+2Gjk(s1, 52)Gjk(51, $2)
2

A7 [16010; + 457 — 447 . (A.43)

Hence,

T = 4C da do ﬂ2+</)‘] (A.44)
- szz 1 2 .

This integral can be done using elementary techniques, but the number of terms in the
integrand make a computation by hand prohibitive. The integral was actually done using

the MAPLE symbolic mathematics program. Maple finds

,sinh? w dwsinh p — psinhw 2
L + L - =

. o ; (A.45)

Ty =4
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A similar treatment of Egs. (A.34) and (A.35) give

wsinh p — 3psinh w

. 12
T2:4£251nh w+£

w2A? pwAY
and
sinh? w sinh w 1
T5 = 4L% — 4L —.
3 w2A2 wAYy + y?

Inserting Eqs. (A.45), (A.46) and (A.47) into Eq. (A.32) gives Eq. (3.42).
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