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Abstract 
An important problem in computer vision is that of generating a 3-dimensional 

description of objects from sensed data. In robotics applications such as grasping 

and planning collision-free motion, symbolic 3-dimensional descriptions of objects 

must be available. Such 3-dimensional descriptions require explicit geometric and 

topological relations between faces edges and vertices, and are very similar to bound- 

ary representation (b-rep) used in solid modeling. 

In this thesis, we present an approach to extract a complete b-rep description 

of a polyhedral object from range images taken from multiple view-points. Our 

system, starting from basic face models of visible surfaces of objects in each local 

view, extracts features, matches these features, generates rigid-body transformations 

that relate the local views, and finally merges these local views into a complete 3- 

dimensional b-rep description of the object. In our matching algorithm, a triple 

branch structure is defined as the main feature to determine correspondence. A 

coarse-to-fine searching strategy and a prioritizing procedure are designed to reduce 

the search time even further. The b-rep model is incrementally updated by merging 

each of the local views in a global description. A convenient and effective termination 

criterion is designed to monitor the integration process. 

We have implemented our system in C, running on a SUNISPARC. A synthetic 

range image generator has also been implemented. The system has been tested on 

several synthetic range images. Our system in conjunction with the synthetic range 

image generator also has applications in the area of robotics, CAD and geometric 

modeling. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

A challenging problem for computer vision is that of generating a 3-dimensional 

description of an unknown scene from sensed data. As important components in 

model-based recognition, model-based inspection, autonomous navigation, and path 

planning, scene description and reconstruction have received increasing attention. 

In robotics applications, it is interesting not only to recognize objects in the 

scene, but also to estimate as accurately as possible their position and orientation. 

In both cases symbolic descriptions of objects must be available. To interact with its 

environment, a robot has to build a description of the objects around it. For instance, 

to plan a collision-free path, one needs a geometrical description of obstacles [20]. 

To find a grasp position on a polyhedral object, one needs to reason about the 

relationship among the faces of the object, e.g., which two faces are parallel, etc. 



[lo]. Therefore, a complete 3-dimensional symbolic description of the objects is 

necessary. 

In recent years, digitized range data has become available from both active and 

passive sensors, and the quality of these data has been steadily improving. Not only 

are depth relationships between depth map regions explicit, but the 3-dimensional 

shape of depth map regions approximates the 3-dimensional shape of the corre- 

sponding object surfaces in the field of view. Therefore, the process of describing 

and reconstructing objects by their shape should be less difficult in range images 

than in intensity images. That is why we have used range images. However, it is 

impossible to view the whole object from a single viewpoint. Particularly for a range 

scanner (see Section 1.4.1 for details), the occlusion problem may be severe. In order 

to build a complete description of the whole object, multiple views are needed. 

The Problem 

Our ultimate aim is to provide a range-image-based vision system for a robotic work 

cell to build a complete 3-dimensional geometric description of the objects in the 

robot's environment. This description may then be used by robotic manipulation 

algorithms such as collision-free path planning or grasp planning. The boundary 

representation (b-rep) is chosen to describe objects, which consists of a list of prim- 

itives (vertices, edges, faces, etc.) of objects and the geometric and topological 

relationships between these primitives. In particular, the desired description in our 

applications is very similar to the winged-edge representation - a widely used b-rep 

(see Subsection 1.4.2 for details). The specific problem considered in this thesis is 



Object 

Scanner N 

Figure 1.1: A range-image-based vision system in a robotic work cell. 



how to completely describe the geometry of an object from multiple range images. 

For simplicity, the sensed object is assumed to be a single, bounded, closed, and 

regular polyhedral object [45]. The objects are assumed to be rigid and static. The 

range finder is assumed to be capable of providing a depth map of the object in 

the scene. The range finder may have up to six degrees of freedom relative to the 

objects (three translations and three rotations). The displacements of the range 

finder can be described by rigid-body transformation. No prior knowledge of these 

transformations is assumed. 

Our goal, then, is to design a system which can generate a complete 3-dimensional 

b-rep of a polyhedral object from a set of range images taken from different view- 

points ', Figure 1.2. We assume that there exist overlapping surfaces between dif- 

ferent views. The input to the system is a set of face models of visible surfaces 

extracted from the range images. A face model consists of the segmented faces and 

bounding edges traversed in a given direction (say the counter-clockwise direction). 

Face normals point outward. The methods for extracting a face model from a range 

image have been discussed intensively in the literature [27] ,  [59]. In particular, 

Gupta and Zhu [22] deal with this problem in great detail. In this work, we will 

assume that the face model of visible surfaces of objects in a local view is given. 

The output of the system is a complete 3-dimensional b-rep of the object, as shown 

in Table 1.1 and Figure 1.2.E. 

'Since no real range data are available, all the range images used in this project are synthetic. 



The input: multiple range images (A, B, C, and D) taken from different viewpoints. The output: a complete 6-P 

representation (E). The numbers in E are vertex labels. 

Figure 1.2: Input and output of the proposed system. 

5 



Table 1.1: The output of the proposed system: a complete 3-dimensional b-rep. 

vertex-T (XYZ Coordinate of vertices) 

Vertex Label X 
1 74.00 

f-v (vertices in a face) 

Face Label Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6 
1 5 13 11 6 
2 11 1 3  14 12 
3 1 3 12 14 

e-f (The two faces attached to an edge) 

Edge Label Start Point End Point LFace R-Face 
1 L 3 4 12 
2 3 1 3 12 



Outline of  Our Approach 

Our system, starting from basic face models of visible surfaces of objects in each local 

view, extracts features, matches these features, generates rigid-body transformations 

that relate the local views, and finally merges these local views into a 3-dimensional 

b-rep description of the object. The diagram for the whole system is shown in Figure 

1.3. 

Since there exists a large number of matching candidates to be verified, an effec- 

tive and efficient feature matching algorithm is designed to reduce the search time 

for finding the correspondences between views. In our matching algorithm, a triple 

branch structure is defined as a main feature to efficiently search the correspondence 

between views. This uniquely defined matching feature not only helps to reduce the 

cost of the matching process but also suffices to generate rigid-body transformation 

between views. A hierarchical searching strategy is realized by setting different con- 

straints at different search levels. A prioritizing procedure is designed to arrange 

the order (priority queue) among matching candidates. 

Based on these correspondences, the rigid-body transformations between views 

are generated and each local view is transformed into a global coordinate system, 

where the initial description is updated incrementally by integration of geometric 

information from each of the local views. A convenient and effective termination 

criterion is designed to monitor the integration process. This termination criterion 

also makes it possible to later integrate the whole system with a robust active vision 

mechanism. Finally, the complete b-rep description of the whole object is generated 

and can be easily converted into a winged-edge representation. Such a 3-dimensional 



Begin 7 
Input the face model of visible surface of 
the object in another view. 

I Find correspondences between views. 
Generate rigid-body transformation. I 
Inte rate the local view into a.globa1 frame. 
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I Output the complete 3-dimensional 
b-rep description. 

Figure 1.3: The diagram of the whole system. 



description can then be used for the collision-free motion planning system presented 

in [21]. 

We have tested our system with synthetic range images. In the ideal case, with 

no noise present, the system indeed gives us a complete b-rep model, as expected. 

However, noise will always be present in any real system. We also tested our system 

with noise added to the synthetic range images. In our examples, with noise levels 

up to 5% of the maximum range values, the system was able to  give correct output. 

The main contribution of our work is summarized below. We propose a fast 

matching algorithm for matching views so that no prior knowledge of the transfor- 

mations between views is required. In this matching algorithm, the triple branch 

structure, as a novel feature, was defined and used as the main matching feature. 

A convenient and effective termination criterion is set to automatically control the 

whole merging process. By integrating the processes of matching, transforming, and 

merging into a whole system, we have extracted the complete 3-dimensional b-rep 

description of a polyhedral object in the scene. A synthetic range image generator 

has also been implemented. Our system in conjunction with the synthetic range 

image generator also has applications in the area of robotics, CAD and geometric 

modeling. 

1.4 Background and Literature Review 

The process of 3-dimensional object description and recognit ion utilizes many tech- 

niques of image processing and computer vision, such as image acquisition, local 

feature extraction [28], correspondence finding, object pose determination [53] [54], 



geometric transformation, geometric modeling, etc. The whole field of machine vi- 

sion is concerned with these questions. In this section, we review various approaches, 

mainly in the following subareas: i) range image acquisition, ii) solid modeling, iii) 

matching, and iv) symbolic description from multiple views. In particular, we con- 

centrate on the last two subareas. For general descriptions and reviews, please refer 

to  [W, w 1 7  [ I l l ,  [571, and [361. 

1.4.1 Range Image Acquisition 

Range-image acquisition is conceptually a simpler process than intensity-image for- 

mation [7]. At each pixel in a range image the depth value encodes information 

about (1) surface geometry and viewing geometry in terms of the distance from 

the sensor to object surface, and (2) the range finder characteristics (which include 

spatial resolution, range resolution, dynamic range, noise parameters, etc.). An 

important difference between an intensity image and a range image is that scene 

illumination and surface reflectance are not directly encoded in range image. 

The range image or 3-dimensional information acquisition methods can be ba- 

sically classified into two categories: active methods and passive methods. Active 

methods project energy onto a scene to measure range, whereas passive methods do 

not. 

The most popular passive range finders utilize the stereo techniques [3], [17]. 

But one of the most difficult problems of this method is exactly matching the right- 

image and the left-image. Range from focusing [43] is another passive method which 

detects distance by measuring the degree of sharpness of the image. Many "Shape- 



from-X" methods such as shape from motion [35], shape from shading [33], etc. can 

also supply the 3-dimensional information of objects to some extent. However, these 

methods may not extract dense and accurate depth maps. 

Among active range image acquisition methods, laser energy is mostly used. 

Although some devices use ultrasound and radio wave techniques to determine range, 

their resolution is currently not as high as the laser range finder [37]. 

One of the common types of range finders is triangulation-based [46]. After a 

spot or line of light is projected onto an object, a camera or an infrared sensor is 

used to detect the light. Signal and image processing techniques are then used to 

determine the position of the spot or pieces of the line, and trigonometry is finally 

used to estimate distance. 

Structured light range finders [37] are also among the most popular 3-dimensional 

sensing techniques which utilize various forms of structured light such as a ray, a 

sheet, a grid, or even cylinders, etc. The main advantages are simplicity and low 

cost. 

1 A.2 Solid Modeling 

The object representations commonly used by computer-aided-design (CAD) and 

geometric solid-object-modeling systems can be categorized [8], [7] as follows. 

Wireframe representation: A wire frame representation of a 3-dimensional object 

consists of a 3-dimensional vertices list and edges list of vertex pairs. However, the 

wire frame representation is an ambiguous representation for determining the 3- 



dimensional geometrical shape of an object. 

Constructive Solid Geometry representation ( CSG-rep): The CSG representation 

is specified in terms of a set of 3-dimensional volumetric primitives (blocks, cylinders, 

cones, and spheres are typical examples) and a set of Boolean operators, such as 

union, intersection and difference. 

Spatial-occupancy representation: These representations use nonoverlapping sub- 

regions of the 3-dimensional space occupied by an object to define that object. 

The Voxel Representation is one of this type of methods, while the Octree Rep- 

resentation is another. Although Constructive Solid Geometry representation and 

Spatial-occupancy representation can unambiguously define an object's volume, the 

derivation of surface information from them is very computationally intensive. 

Boundary representation (b-rep): This type of representation defines a solid ob- 

ject by defining the 3-dimensional surfaces that bound the object. All boundary 

representations contain a list of object surfaces and topological information which 

defines the relationships between surface patches. The winged-edge representation 

[5], [6], [14] is one very popular b-rep for polyhedra-liked objects. Each edge in 

the winged-edge data structure is represented by pointers to its two vertices, to the 

two faces sharing the edge, and to four of the additional edges emanating from its 

vertices. Each vertex has a backward pointer to one of the edges emanating from it, 

whereas each face points to one of its edges. The queries corresponding to nine types 

of adjacency relationships, such as which faces, edges or vertices are adjacent to  each 

face, edge, or vertex, can be efficiently answered in the winged-edge representation. 

This representation makes it possible to determine in constant time which vertices 

or faces are associated with an edge. Another attractive property of the winged-edge 



representation is that the data structures for the edges, faces and vertices are each 

of a small and constant size. 

Since range images supply information about the surface of an object, it is more 

straightforward to generate a b-rep from those range images. Also, for path planning 

and the other robotic applications, we are more interested in the boundary surfaces 

of the object, and b-rep can explicitly supply the information about those. 

1.4.3 Matching Methods 

The problem of finding the correspondence in two images has been studied for a long 

time and still absorbs a great deal of interest in the computer vision community. 

The classical method is template matching by measuring correlation between 2- 

dimensional images [47]. Barnea and Silverman [4] proposed a method called SSDA. 

Instead of directly matching intensity images, features are extracted first, and 

then correspondences are found between these features. Feature matching can re- 

duce the search space and influence of noises. Among others, relaxation methods 

have been developed to solve a number of matching tasks [48], [51], [32]. Hough 

transform techniques have also been used for recognizing linear features and circu- 

lar features in 2-dimensional case [49], [34], [2]. However, if Hough techniques are 

directly applied to vote for the six parameters of 3-dimensional rigid-body trans- 

formation, the accumulator size could become intractable or the precision could be 

greatly reduced. All these methods were first introduced to match 2-dimensional 

intensity images. 

There are a few papers [42], [52], [12], [15], [19] discussing matching between 



3-dimensional descriptions. However, most of them are concerned with the area of 

object recognition, in which the models of objects are known so that they can be 

used to guide and verify the matching process. 

Oshima [42] proposes a system to recognize stacked objects using range data. 

The system describes a scene in terms of planes and smoothly curved surfaces. 

Models of objects are built in the system by showing them one at a time. Objects in 

an unknown scene are recognized by matching the description of the scene to those 

of the models. The matching program picks out regions which are most reliable 

and useful for recognition, and matches them to the regions of the models. Once 

candidate models are selected, the rest of the scene regions are searched for by 

guidance of the models. 

In [52], a transformation is hypothesized by initially matching a few scene fea- 

tures with model features. The transformation is then tested with the rest of the 

features for verification. The matching process is based on a depth-first search of 

possible corresponding pairs of boundary components. In order to reduce the search 

space for speeding up the matching process, some methods are proposed. For ex- 

ample, the parts with simple shape should be ranked low because they may match 

many parts of other objects in a scene. 

Faugeras [12] presents an efficient algorithm for 3-dimensional scene analysis. 

This algorithm uses a segmentation of the surfaces to be identified into geometrical 

primitives, the original data being obtained by a laser range finder. The algorithm 

estimates precisely the location and orientation of an identified object of the scene. 

In their matching algorithm, the primitives are planes and the consistency can be 

defined by c ( M ,  io, jo)  = Iv;. viO - vj. vjo 1, where (i, j) is the pair to be tested, (io, jo) 



is some pair in the previous matching, and the vectors v are the normals to the 

corresponding planes. 

This relation comes from the fact that there exists a rotation consistent with the 

pairing {(i, j), (io, jo)), if and only if v, . v;, = vj . vj,. In other words, the constraint 

used here is that the angles between two surface normals in one view should be 

equal to the angles between the two corresponding surface normals in the other 

view. In their algorithm, two pairs of non-parallel planes are needed for estimating 

the rotation and three for the translation. 

In references [19] ,[15], and [18], Grimson and his colleagues used local measure- 

ments of positions and surface normals to identify and locate objects in a scene. 

The objects are modeled as polyhedra having up to six degrees of positional free- 

dom relative to the sensors. The approach operates by examining all hypotheses 

about pairings between sensed data and object surfaces and efficiently discarding 

inconsistent ones by using local constraints on distances between faces and angles 

between face normals. Their goal is to determine the power of simple geometric 

constraints in reducing the amount of search required to perform this task. While 

many other types of information can be used in recognition, Grimson et a1 focus 

exclusively on the geometric information available from a model. 

They verified the possible matching between sensed data patch and model object 

face by checking the similarity of the angles between two face normals in the sensed 

data and in the model. They structured the search for consistent matches as the 

generation and exploration of an interpretation tree (IT) [25], [24], Starting at a 

root node, they constructed a tree in a depth first fashion. At the first level of the 

tree, they consider assigning the first measured patch to all possible faces; at  the 



next level, they would assign the second measured patch to all possible faces, etc. 

The number of possible interpretations in this tree, given s sensed patches and n 

surfaces, is as high as ns. Therefore, it is not feasible to explore the entire search 

space in order to apply a model test to all interpretations. 

Grimson et al's algorithm exploits local geometric constraints to remove entire 

subtrees from consideration. They use heuristic Search Ordering to find the best 

possible interpretations or paths in the IT. The combined area of data patches of 

an interpretation is chosen as the quality of measurement. The interpretation with 

the largest combined area is considered to be the best interpretation. In addition to 

the heuristic searching to prune the interpretation tree, Hough transform is used as 

a coarse filter to reduce the size of the initial interpretation tree. 

During the Model Test, the feasible interpretations are tested for consistency 

with surface equations obtained from the object models. An interpretation is legal 

if it is possible to solve for a rotation and translation that would place each sensed 

patch on a model surface. The sensed patch must lie inside the model face, not just 

on the surface defined by the model face equation. 

It is clear that the object model is used both in generating feasible interpretations 

and model testing. Our system does not presume that the object model is given and 

furthermore we will build this model. In the matching algorithm, we select different 

features and local geometrical constraints for matching views. 



1.4.4 Symbolic Description from Multiple Views 

Hong and Shneier [31] propose a method which involves using intensity images ac- 

quired from arbitrary but known locations to construct the spatial representation 

incrementally. This is accomplished by projecting the image resulting from each 

view into the 3-dimensional world, and intersecting the views in the following way. 

Each object in the image projects into the world as a "cone" with its tip at the 

center of focus of the lens, and its cross section defined by the boundary of the object. 

When two images are acquired from different viewpoints, an object appearing in both 

images is constrained to lie in the intersection of the cones from the viewpoints. If it 

has been seen many times from different viewpoints, then not only will its position 

be more tightly constrained, but so will its shape. Eventually, the whole workspace 

should be represented in a way that closely approximates its true state. However, 

Hong and Shneier do not explicitly supply a symbolic description. The related works 

can also be found in [41],[6]. 

Some researchers have implemented systems that construct 3-dimensional objects 

from multiple stereo views [29], 1561, [30], [44]. Herman, Walker and Kanade present 

a system (MOSAIC) that incrementally reconstructs a complex 3-dimensional scene 

from a sequence of intensity images obtained from multiple viewpoints. The system 

encompasses several levels of vision process, starting with images and ending with 

symbolic scene description. The system includes stereo analysis, monocular analysis, 

and constructing and updating the scene model. 

Each view of the scene, which may be either a single image or a stereo pair, 

undergoes analysis which results in a 3-dimensional wire-frame description that rep- 



resents portions of edges and vertices of objects. The model is a surface-based 

description constructed from the wire frames. With each successive view, the model 

is incrementally updated and gradually becomes more accurate and complete. In 

their paper, the authors extensively discuss the process of geometric reasoning and 

how to make hypotheses on the parts of objects which cannot be seen from the im- 

ages available so far. However, instead of implementing the registration mechanism 

which can supply the information to generate the rigid-body transformation from 

new local view to the global view or between local views, they simply assume this 

type of transformations is known. Hence, to further complete the system, a robust 

general matcher needs to be developed. Since the input data is from either a single 

intensity image or an image pair, the process of extracting the local wire-frame data 

is relatively complicated, and matching in the stereo image is very crucial. 

Some researchers have used range images directly as the input. Henderson [26] 

has developed a method for finding planar faces in range data. In his method, a list 

of 3-dimensional object points is assumed to be given by a range finder. To handle 

multiple depth maps, points are transformed into one ~roject-centered coordinate 

system using transformation data recorded during range-image formation. These 

points are stored randomly in a list with no topological connectivity information. 

The points are then organized into a 3-dimensional binary tree. Next, each point's 

neighbors are determined with the aid of the 3-dimensional tree, and the results 

are stored in a 3-dimensional spatial approximation graph. Then, a spiraling se- 

quential planar-region-growing algorithm is used to create convex planar faces using 

the spatial proximity graph as input. The union of these faces forms the polyhe- 

dral object representation as extracted from the range data. In this method, the 

transformations between views are assumed known. 



Stenstrom [50] describes a method for constructing a full and reasonably accurate 

wire-frame description of an object by directly employing range information from 

multiple views. The objects are placed on a turntable whose center is fixed in the 

camera's field of view and a set of range images is acquired by the rotation of the 

turntable. By using the known rotating angles, the transformation between views 

can be generated. Then, line features are extracted in each view and finally merged 

in one common frame. 

Vemuri and Aggarwal [55] utilize both the range image and intensity image to 

construct 3-dimensional model from multiple views. Their technique for integrating 

the information from multiple views does not require the correspondence relationship 

between views to be determined. The object for which the model is to be constructed 

is assumed to rest on a plane (base plane). A pattern consisting of a single line is 

drawn on the base plane. By observing the orientation of the base plane pattern in 

the intensity images from multiple views, the interframe transformation required to 

register any two views in a common reference coordinate system is derived. More 

papers about utilizing various sensory devices can be found in the review of using 

multisensory images to derive the structure of 3-dimensional objects [40]. 

Xie [58] proposed an interactive expert system for reconstructing 3-dimensional 

obstacles based on rule based inference. The purpose of these rules was to eliminate 

highly improbable interpretations. 

Kim and Connolly [39],[38], and [9] present a method for utilizing the multiple 

views efficiently. Instead of selecting viewpoints randomly, they actively determined 

the next best viewpoint by setting up a set of optimization criteria so that the system 

can get the maximum amount of information from the least number of viewpoints. 



Active vision may provide a robust mechanism for reconstruction and recognition 

of 3-dimensional objects. 

Among multiple view model construction methods, quite a few assume that the 

transformations between views are known a priori or can be generated with the help 

of prespecified conditions. To make these methods more robust, more sophisticated 

matching methods should be used. In our approach, we design an efficient matching 

algorithm to find the correspondences between views, define an effective termination 

criterion to dynamically control the merging process, and integrate the processes of 

matching, transforming, and merging into a whole system. 

1.4.5 Organization 

The rest of this thesis is organized as follows. 

In Chapter 2, a mechanism for hierarchical matching is presented. Triple branch 

structure features are first extracted. Then a hierarchical searching algorithm is 

applied to efficiently find the correspondences between views. The assumption for 

this matching algorithm is that there exist two common faces between views. 

Chapter 3 deals with the issue of correspondence versus rigid-body transforma- 

tion. The minimum number of correspondences to generate rigid-body transforma- 

tion is discussed and practical algorithms are given. 

Chapter 4 proposes an algorithm for integrating multiple local views and gradu- 

ally updating the global description. A convenient and effective termination criterion 

is also given. 



Chapter 5 presents some experimental results and analyzes the performance of 

the system. 

Finally, Chapter 6 summarizes our work. Appendix A describes a synthetic 

range image generator which utilizes face normals to distinguish the visible faces 

from non-visible ones and uses the Z-buffer technique to process partially visible 

faces. 



CHAPTER 2 

Matching Views 

In this chapter, we propose a method for determining the correspondence between 

two views, assuming that the position of each viewpoint and the camera setting 

parameters for each viewpoint are completely unknown. The input to  the matching 

algorithm is face models of visible faces in local views. A point (vertex) in one view 

and a point (vertex) in another view construct a point pair. Our goal is to find 

the correctly matched point pairs (corresponding point pairs) in two different views. 

Our basic approach is to use geometric features that are invariant under rigid-body 

transformation. 

A brute force search would compare each of the distances between the vertices 

in one view with each of the distances between the vertices in another view to  find 

the correspondence. Assuming there are M edges (M distances ) in one view, and 

N edges in another view, the complexity of brute force search between two views 

may be as high as NM. If we treat each of these edges separately, the search 

time can be reduced, but then the probability of false matching will be increased 



dramatically. Instead, we chose certain type of features with particular structures 

which can help the efficient matching algorithm and generate correct rigid-body 

transformation between views. The complexity of our matching algorithm is 0 ( N 2 ) .  

In the feature matching process, the essential point is a hierarchical search strategy. 

By introducing different constraints at different search levels, we can narrow down 

the number of candidate features at each search level. The basic feature chosen to be 

matched between views in our algorithm is the TRIPLE BRANCH STRUCTURE. 

The geometric constraints used in the hierarchical sequence from top to bottom are: 

1) the angle between two face normals, 2) the face shape angles in the triple branch 

structure, and 3) the distance between vertices. 

2.1 Triple Branch Structure 

Definition 

A triple branch structure as shown in Figure 2.1 consists of three intersecting 

and noncoplanar edges. Each of the edges is called a branch. In our case, the 

triple branch structure is constituted by two noncoplanar faces (the faces are not 

necessarily fully visible ). The branch (intersection) constructed by the two faces 

is called the principal branch. The rest of the branches are called the subordinate 

branches. The intersection point of the three branches is called the triple corner. 

All three branches are denoted as vectors whose origins are at the triple corner. 

The magnitudes of the vectors are equal to the lengths of the corresponding edges 

respectively. The principal branch is denoted as the principal vector G3. 

The two faces, which constitute the triple branch structure, are denoted by the 
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Figure 2.1: Triple branch structure. 



right-handed face of the triple branch structure and the left-handed face of the triple 

branch structure. The face whose normal (pointing outward) and surrounding edge 

loop (following the direction pointed by the principal vector) meet the right-handed 

(left-handed) system criterion is called the right-handed (left-handed) face of the 

triple branch structure. 

The branch which is in the right-handed face is defined as right-handed vector 

G. Its origin is at  the corner of the triple branch structure. 

The branch which is in the left-handed face is defined as left-handed vector G. 

Its origin is at the corner of the triple branch structure. 

The angle between the right-handed face normal and the left-handed face normal 

is called the principal angle. 

The angle between the principal vector and the right-handed (left-handed) vector 

is called the right-handed (left-handed) face shape angle. Note that this angle is inside 

angle of the face. 

Two triple branch structures are called similar when the corresponding principal 

angles, the right-handed face shape angles and the left-handed face shape angles, 

are the same. 

Two similar triple branch structures are called identical when the magnitudes of 

the corresponding vectors are the same. 

A triple pair is formed by a triple branch structure in one view and a triple 

branch structure in another view. If the two triple branch structure in a triple pair 

are identical, this triple pair is called the corresponding (or matched) triple pair. A 



matched triple pair has four matched point pairs. 

There are several reasons for using the triple branch structure as our main ge- 

ometric feature. First, the triple branch structure is a very natural feature in the 

polyhedral scene. As long as two adjacent faces (even two adjacent partial faces 

) exist, so does the triple branch structure. Note that a triple branch structure 

does not require that angles among the three branches be orthogonal angles. Its 

application goes beyond the trihedral world. This feature can also be generalized 

for curved objects. 

Second, two matched triple branch structures can sufficiently supply four non- 

coplanar corresponding point pairs to generate a rigid-body transformation (see 

Chapter 3 for details). 

Third, the definition of the right-handed (left-handed) face of a triple branch 

structure is independent of viewpoints. It is a fact that if in one view, a face of a triple 

branch structure is defined as a right-handed (left-handed) face, then in other views, 

the corresponding face of the corresponding triple branch structure is guaranteed 

to be assigned as a right-handed (left-handed) face without any information about 

correspondence between the views. Since the right-handed (left-handed) vector is 

associated with the right-handed (left-handed) face, it possesses the same property. 

This invariance property is very helpful, e.g. it can reduce the number of triple pairs 

by a factor of two compared with the case where the two subordinate branches are 

arbitrarily labeled among views. 

Fourth, we could define more complex features as the basic matching features, 

but the more complex the feature is, the more search time is needed. Because we are 



using a hierarchical search strategy, we do not need to find an exact match at the 

low search levels. Instead, our purpose is to narrow down the number of candidates 

for the next search level. Hence, we chose the triple branch structure as the basic 

matching feature. 

Fifth, we could use three non-intersecting branches. For example, instead of only 

checking the angles between two adjacent faces, we could check the angles between 

any two faces [19]. However, this approach could bring in some weak points. First, 

it obviously increases the number of basic matching features so that it costs more 

search time. Secondly, when two faces are far away from each other, it is very 

possible that one of the corresponding faces will be out of each other's view, so that 

a search for such types of face pairs becomes unnecessary. 

Finally, we could use one face instead of two adjacent faces as a basic matching 

feature. But this also increases the search time and brings in more uncertainty or 

false matching. However, in case the triple branch structure does not exist, this can 

be one of the choices and the hierarchical matching strategy can still be used. 

When a matching algorithm uses the triple branch structure as the basic match- 

ing feature, the following assumption must be satisfied so that the possible matching 

can be found: 

In any two views, there exists at least one pair of adjacent faces (or 

partial faces ) in common, i.e. these two faces in one view correspond to 

two faces in another view. 



Q right-handed face shape angle 

V , right-handed face vector 

V principal vector 

Il right-handed face normal 

Figure 2.2: Face shape angle. 

A note about distance and angle calculation is in order here. The Euclidean 

distance is directly used to measure distances. To reduce ambiguity in derived 

angles, we define a face shape angle cu inside a face, see Figure 2.2. Since subroutine 

atan2(y,x) has a 180' ambiguity, we propose the following method, which utilizes 

the existing information about face normals. 

Let face shape angle be a, principal vector 2 ,  left-handed(or right- 

handed)face vector v', and face normal n' 

step 1 Calculate angle ti between vector 2 and vector v' and take the 

angle in the first quadrant. 

-1 377 ti = COS 1 1 ~ 1 1 1 1 . 1 1  o s x ;  



step 2 Decide in which quadrant v' is in respect to c3 
-. + + 

Let c3 = X and ii = 2. First, determine Y 

P = Z x r 7  

Then, decide which quadrant of this XYZ frame v' is in. 
+ + 

s i g n l  = s i g n (  G X )  a n d  s i g n 2  = s i g n (  GY) where 

the function sign takes the sign of its argument. 

step 3 Determine the face shape angle 

( if s i g n l  2 0 a n d  s i g n 2  2 0 

n - B if s i g n l  5 0 a n d  s i g n 2  2 0 I n + 6 if s i g n l  < 0 a n d  s i g n 2  5 0 

( 2a - B if s i g n l  > 0 a n d  s i g n 2  < 0 

2.2 Hierarchical Search Algorithm 

The basic idea of our hierarchical search algorithm is that the search for the corre- 

sponding triple branch structures is implemented at different levels. At each finer 

search level, new and more stringent constraints are added so that the number of 

matching candidate triple branch structures becomes fewer. At the same time, the 

match probability of each of the corresponding triple branch structures gets pro- 

gressively higher. 

Since the calculation of angles between edges does not need the complete edge 

information, only partial edges will do. However, the calculation of the length of an 

edge needs both end points of this edge. The distance constraint is more stringent 

than the angle constraint. Because of that, we check the angle match before the 



distance match so that even in the case of partially visible faces, the search for the 

match can still be carried out to a certain level and supply a relatively small number 

of possible matching candidates. 

Our matching algorithm also features "priority queue" and "feedback verifica- 

tion". In the prioritizing procedure, the potentially matched point (vertex) pairs 

between views become more evident. The feedback verification procedure is used to 

confirm that the finally resulting potential correspondences are the best ones among 

all. Figure 2.3 shows the flowchart of this algorithm. Let us now discuss it in some 

detail. 

2.2.1 Similarity Check 

Matching principal angles 

At this search level, the principal angles of the triple branch structure in two 

views are selected as a constraint. For each of the principal angles (YQJ in one view, 

the algorithm tries to find all possible matching principal angles, say a 3 , ~  in another 

view. If the triple branch structures are the same, the principal angles of them must 

be the same. To handle the case where some distortions of the original data exist, 

(it may occur when any type of noises or calculation errors are introduced in any of 

the processing stages), we define two angles being the same within a small variation 

56,  where S 2 0. 

Note that the condition that the same triple branch structure must have the 

same principal angles is only a necessary condition. Although there may exist some 

false matches in the resulting candidates, the number of candidates to  be checked 
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Figure 2.3: Hierarchical search algorithm - continued. 
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at  the next level is reduced. 

Matching face shape angles 

Since the right-handed face shape angle and the left-handed face shape angle of 

a triple branch structure are uniquely defined, and are independent of rigid-body 

transformation, we need only to check the similarity between the right-handed (left- 

handed ) face shape angles in one view and the right-handed (left-handed ) face 

shape angles in another view. At this level, the face shape angles are added as the 

new constraints into the similarity measurement. 

As defined in the above subsection, the face shape angles reflect the local shape 

of the faces which the triple branch structure lies on. The same faces must have 

the same local shapes. A small variation (k6, where6 > 0) is also introduced in the 

process of checking similarity faces shape angles to increase the algorithm's tolerance 

of noise and calculation error. 

The condition that the same triple branch structures must have the same right- 

handed face shape angles and the same left-handed face shape angles is a necessary 

condition and not a sufficient condition. It only means that if any of the two 

corresponding face shape angles are not the same, the triple branch structure can 

not be the same. But, by using the face shape angle constraint, we can further 

reduce the number of matching candidates for the next search level without losing 

the correct matching candidates. 



2.2.2 Identity Check 

The invariance of distances between vertices is another intrinsic feature of rigid-body 

transformation. At this search level, the magnitudes of vectors are used as the new 

and more stringent constraint to verify the identical triple branch structures. If the 

corresponding magnitudes of two similar triple branch structures are the same, then 

these two triple branch structures are identical and they are the potentially matched 

candidate or one of the matched candidates if there is more than one identical triple 

branch structure in one view. 

2.2.3 Priority Queue 

Since the identical triple pairs are still the candidates for matching views, we need to 

verify them. Instead of randomly selecting the candidate triple pairs for verification, 

we build a priority queue to find the most likely corresponding point pairs and use 

these pairs as the candidates to determine the correct match between views. We 

may reduce the computational time for the verifying procedure (which is usually 

time-consuming) by pruning this queue rather than exhausting all the potentially 

matched triple branch structures. 

The earlier set of geometric constraints considered only matches between indi- 

vidual triple pairs. The constraints can be strengthened by propagating the effect of 

a legal match to match the point pairs in its neighboring triple pairs. More weight 

should be put on the point pairs that have been shown matched pairs by several po- 

tentially matched triple pairs. It is likely that one point pair is mismatched because 

of one mismatched triple pair. However, it is much less likely that a mismatched 



point pair will appear simultaneously in several independently matched triple pairs 

(it is less likely that all the mismatched triple pairs made the same mistake). In 

general, only can the correctly matched point pair be shown in several matched 

triple pairs. By using the following prioritizing procedure, we virtually group the 

locally linked triple branch structures (two triple branch structures share at  least 

one branch) and find the potentially matched point pairs whose matches are given 

by the group of matched triple pairs. Here is the prioritizing procedure: 

1. Each candidate triple pair votes its four corresponding point (vertex) pairs 

(the end points and starting point of the three vectors). 

2. An accumulate array is used to record each vote. For each voting, the score 

of the corresponding point pair is incremented by one. For example, if there 

are N triple pairs containing the same point pair, then the score for this point 

pair is N. In other words, there exist N potentially matched triple pairs which 

indicate that the two points (vertices) match each other. 

3. After the score is accumulated for each point pair, the vote for each of the 

candidate triple pairs is determined by adding the scores of its four point 

pairs. 

4. The triple pair with the highest score is selected as the first one to be verified 

in the later verifying process, the triple pair with the second highest score is 

chosen as the second one to be verified, then the third, and so on, until certain 

termination criteria are met. 

The figures in the Chapter 5 show the voting results in experiments. The vot- 

ing procedure can be applied to the verification of either the similar triple branch 



structure pairs or identical triple branch structure pairs. 

2.2.4 Feedback Verification 

Through the previous processes, the number of the identical triple branch structures 

is small. However, if there is more than one triple branch structure identical to the 

one in another view, then a wrong transformation could be deduced based on the 

false correspondences. To avoid this, we use the following verifying process: 

1. Use one of the candidate corresponding triple branch structures to generate a 

transformation matrix. 

2. Transfer the points in one view (view A) into the other view (view B) by 

using this transformation matrix B T ~ .  Then, calculate the number of points 

which are from view A and overlap with the points in view B, by the distance 

l l B Q i  - BTa AE.ll, where Bdi is the point in view B and "E is the point in 

view A. Once one of such distances is smaller than a threshold, the score for 

this transformation is increased by one. 

3. Repeat steps 1 and 2, for each of the candidate corresponding triple branch 

structures. 

4. Select the transformation with the highest score as the most likely correct 

transformation between the views, if its score is larger than the predefined 

'Throughout this thesis, by the phrase "transforming a point from frame A to frame Bb' we mean 

transforming the coordinate of the point observed from frame A to frame B. 



threshold. 

It is obvious that the method to verify the correct match at  this stage is very 

time-consuming and sometimes so much time is required that it is not possible to 

use a brute force search method. 

Fortunately, in this hierarchical matching algorithm the number of candidates 

to be verified at  the last stage generally becomes so small that the feedback check- 

ing turns out to be affordable. Another merit of this algorithm is that even if for 

some reason, the matching measurement stops at a certain intermediate search level, 

we can still get a relatively good correspondence. For example, if we do not have 

enough information to calculate the length of edges so that we cannot really verify 

the identity of the triple branch structure, but the potentially matched similar triple 

branch structures still provide very good information. In many cases, based on this 

correspondence information, we can still derive the correct rigid-body transforma- 

tions. 



CHAPTER 3 

Correspondence and 

Transformat ion 

This chapter discusses the theory of generating rigid-body transformations from 

some known corresponding point pairs between two local frames and algorithms to 

calculate the transformations in practice. A variety of literature exists on this topic 

[12], [I]. Some of the results presented in this chapter may be known implicitly. 

However, we believe that it is important to state them explicitly. A corresponding 

point pair means a pair of 3-dimensional coordinates ( AP, Bd ) [lo] of the same point 

in the 3-dimensional space observed from different co-ordinate frames (frame A and 

frame B) related by a rigid-body transformation BTA, Bd = 'TA Ap. A homoge- 

neous transformation matrix is used as a representation of rigid-body motion, since 

this representation is easily manipulated by matrix operations and is often used in 

the robotics world. Note that an arbitrary homogeneous transformation represents 

a larger set of transformations (including perspective transformation, scaling, etc.) 



than just the set of rigid-body transformations. 

Assume that there exists a set of corresponding point pairs { ( " R ,  B Q i ) ,  i = 

1 t o  N}, where f A g , i  = 1 to  N) and l B d i , i  = 1 to  N )  are the coordinates of a 

set of rigid 3-dimensional points observed from different frames (frame A and frame 

B) related by a rigid-body transformation B T ~ .  The problem then is as follows: 

based on a subset {( Ag, Bgi ), i = 1 to M ) ,  where M 5 N, of the corresponding 

point pairs, generate the rigid-body transformation B ~ A  which can satisfy the whole 

set of corresponding point pairs. 

The least-squares-fit (LSF) method is commonly used (131 to deal with a case 

where a large number of corresponding point pairs is available. However, in some 

cases, the number of available corresponding point pairs may be very small (depend- 

ing on the shape of objects, objects' layout, viewing angle, etc). Hence, it becomes 

more important to know explicitly what is the minimum number of corresponding 

point pairs for generating such a rigid-body transformation that satisfies the whole 

set of corresponding point pairs. 

3.1 Transformat ion and Four Corresponding Point 

Pairs 

We are given a set of corresponding point pairs {(Aa, Bgi ), i = 1 to N}, as defined 

at  the beginning of this chapter. Under what circumstances, is a transformation 

which satisfies a subset of the corresponding point pairs of this set, the rigid-body 

transformation BTA for the whole set of the corresponding point pairs? 



Lemma 1: An arbitrary transformation is a rigid- 

body transformation BTA, which transforms all the points in frame A to 

their corresponding points in frame B, if and only if this transformation 

satisfies a t  least four non-coplanar corresponding point pairs among the 

set {("a, B Q i ) ,  i = 1 t o  N ) .  

This lemma implies that based on four non-coplanar corresponding point pairs 

in the set { (  "fi, Bd; ), i = 1 to  N )  the rigid-body transformation BTA can be 

derived as below. 

Given four non-planar corresponding point pairs between frame A 

and frame B, { ( A f i , B Q i ) ,  i = 1 t o  4 ) .  

where 

Since M p  is composed of four non-coplanar points, the rank of the 

matrix M p  is equal to 4. So the inverse matrix M;' always exists and 

the solution BTA is unique. 

'The proof is given in Appendix B. 



3.2 Minimum number of Corresponding Point 

Pairs 

It is assumed that there exists a set of corresponding point pairs, { ( " f i ,  Bdi ), i = 

1 to  N}, where A$i and ' Q i  are the coordinates of a set of rigid 3-dimensional 

points observed from different frames related by a rigid-body transformation BTA. 

The following lemma gives the minimum number of corresponding point pairs needed 

to generate the rigid-body transformation BTA. 

Lemma 2: At least three non-colinear corresponding point 

pairs are needed to generate the rigid- body transformation BTA. 

Note, however, that an arbitrary transformation which satisfies three non-colinear 

corresponding point pairs is not necessarily a rigid-body transformation for all the 

points between frames. The correctness of Lemma 2 is proved by the following 

discussion. 

Since in the 3 0  space, rigid-body transformation can be specified by six param- 

eters (three rotation parameters and three translation parameters), there are only 

six unknowns to be determined to solve the transformation equation. 

One misleading argument could be that since two points in the 3 0  space have six 

coordinates, it follows that two corresponding point pairs are enough to generate the 

rigid-body transformation; using these six coordinates, one can write six equations 

for those six unknowns. However, it can be proved as follows that those six equations 

are not independent. Under the assumption that frame A and frame B are related 



by a rigid-body transformation B ~ A ,  the distance A D;j between any two of the points 

in frame A is the same as the distance BD;j between the corresponding points in 

frame B, i.e., ADij = 'Djj. From this it follows, that 

Similarly, we can derive the relationship between any one of the six coordinates 

and the remaining five. It is clear that among six coordinate pairs from two corre- 

sponding point pairs, only five coordinate pairs are independent and the other one 

is dependent on the rest. Therefore, two corresponding point pairs are not enough 

to  generate the rigid-body transformation B T ~ .  

Now, let us investigate the case when there are three corresponding point pairs 

( " R ,  "Qi ), (AFj, BQj )  and ( " a ,  

Among three non-colinear corresponding point pairs in 3 0  space, there are nine 

coordinates. However, there are three distance constraints based on the assumption 

of rigid-body transformation, i.e., AD;j = BDij, ADjk = *Djk and ADik = BD;k. 

After the distance constraints are applied, there are only six independent coordinate 

pairs left. Since we only need to derive six unknown parameters for rigid-body 

transformation, we can write down six independent equations to solve the problem. 

Note that the six equations, in terms of three rotation parameters and three 

translation parameters are non-linear equations. A general analytic solution for 

such non-colinear equations is not known. Hence, numerical techniques are used 

but they may not guarantee a solution. 

We present a practical method which needs only three non-colinear corresponding 

point pairs and linear mathematical calculation to generate the rigid-body transfor- 



mation. In this method, a hypothetical corresponding point pair is constructed as 

the fourth corresponding point pair. There are many methods to generate the fourth 

point if this point is not co-planar with respect to the three points given, and has a 

unique relationship with these three points. In our method, the cross product of two 

vectors determined by the three points given is used to generate the fourth point. 

Briefly, the method is: 

Given three non-colinear corresponding point pairs between frame A 

and frame B, {("e, Bgi ), i = 1 t o  3) 

1. Generate the fourth point pair {"p4, BG4 ) 
4 = & + " &  and d4=d1+B@3 

where 

A@3 = A@l X AG2, A@l = A@2 - A F l ,  = A p 3  - A F l  

+ 

"G3 = "ci; x BCi;, Bwl = BQ2 - BQ1 ,B e2 = =(& - BQI 

2. Derive the rigid-body transformation 

BTA = M Q M ~ l  

where MQ and M p  are defined as in section 3.1. 

3.3 Best Estimate 

Since the original data may be distorted by many kinds of noise (such as sensor 

noise and moving parameter measurement error), one transformation may not fit all 

the corresponding point pairs. In this case, we need an estimation process to reduce 

the affect of noise (assuming that noise is zero mean). A least-squares-fit method 



is used to generate the estimation of transformation between views. In most cases, 

the greater the number of corresponding point pairs used, the more accurate is the 

derived transformation. 

The estimated transformation [13] is given below 

where N is the number of corresponding point pairs. From Lemma 1, it follows 

that N 2 4. and B@i are the corresponding points in local frame A and local 

frame B respectively. Note that when the influence of noise is reduced to zero, this 

method is still valid and generates the correct transformation between views. 

In some controlled situations, parameters of rotation and translation are given 

(e.g., the motion parameters for the displacement of PUMA arm are known). How- 

ever, even in such cases, errors often exist in the transformation matrix. These 

errors in the transformation matrix can be eliminated using the LSF. To do this, 

we first transfer the local views into a global frame. Then in the global frame, we 

find as many "identical vertices" as possible, (see Chapter 4). Then we refine the 

transformation using the LSF method. 



CHAPTER 4 

Merging Multiple Views 

In this chapter, we present a method for merging multiple views. The main function 

of the merge module is not just transferring all the features in the different views 

into a common frame, but integrating selectively the features and local symbolic 

descriptions coming from different views. To build a complete description of a whole 

object, we assume that each face of the object appears in at least one local view. 

The flow chart for merging is shown in Figure 4.1. First, all the features (ver- 

tices, edges, faces, etc.) are transferred from their local frames (viewpoint centered 

frames) to a universal global frame based on the estimated rigid-body transforma- 

tions. Then, duplicated features are thrown away and new features are added to 

the symbolic description in the global frame. A termination criterion is used to  con- 

trol the completion of integration processing. In the following sections, we discuss 

1) similarity measures between features, 2) the termination criterion, and 3) the 

integration algorithm. 



f 3 

Transfer features from local 

frame into global frame. 
L / 

c I 1 
Check similarities of features.. 

Update the description. 
L J 

f \ 

Check termination criterion. 

Complete integration process. 
\ J 

Figure 4.1: Flow chart for merging multiple views. 



4.1 Similarity Measures 

The merging process needs to determine which features are the same and which are 

not, so that the new features can be added into the b-rep description model in the 

global frame. The similarity of two features (vertices, edges, faces, etc.) can be 

verified based on the distance between their corresponding vertices. Since all the 

features lie in the same global frame, if two features are the same, they must lie 

close to each other, i.e., the distance between them should be close to zero. 

In practice, however, a threshold should be set interactively to make the similar- 

ity verification method more robust when noise and calculation errors exist. Note 

that this threshold is influenced by the scale and arrangement of objects, especially 

by the minimum distance between two different vertices. 

Similarity of Two Vertices 

Let " P  be the point transferred from local frame A,  bP be the point transferred 

from local frame B. If the distance Dap,sp between vertices " P  and b P  is less than 

a threshold 6, 

D a p , b p  5 6, where 6 2 0, these two vertices are considered to be the same. 

Since the distance between the two nearest points on an object affects the thresh- 

old, we can somehow use the minimum distance of two vertices on an object to 

estimate the upper-bound of 6. The threshold should be less than half of the min- 

imum distance between vertices. Otherwise, a transferred point could probably be 

misclassified. The knowledge of the noise process and calculation errors can also be 

helpful in evaluating 6 here. 



Similarity of Two Edges 

Let "E be an edge transferred from local frame A, bE be an edge transferred 

from local frame B. The similarity measurement between the edges " E  and bE is 

defined as 

where a PI and a Pz are the end points of edge a E, b ~ l  and p2 are the end points of 

edge b ~ .  Since the end points of an edge are labeled arbitrarily, we use the smaller 

average distance between the two possible combinations. 

The two edges are considered to be the same, if DaE,bE < be, where 6, is a 

threshold and 6, 2 0. 

Similarity of Two Faces 

To measure the similarity of two faces, we use the averaged point distance (APD) 

between the two faces. 

Let the vertices of a face " F  transferred from frame A be "Pi, i = 0 t o  N - 1,  

and the vertices of a face bF transferred from frame B be i = 0 t o  N - 1. 

The APD between these two faces is defined as 

where i = O,1, ... N - 1 and k = i + j Mod N .  

Note that in the face model, a face is specified by a sequence of consecutive 

bounding vertices, while the start point is arbitrarily chosen among the vertices in 



this sequence. Hence, to calculate the APD of two faces, we only need to check 

those combinations generated by cyclically shifting the sequence of the bounding 

vertices of one face. This measurement may still be valid in the case where one face 

is partially visible. When a fairly small portion of the vertex sequence of a face is 

missing, we can shift the remaining portion of this vertex sequence and compare it 

with the whole vertex sequence of another face. 

If the APD between two faces is less than a threshold Sf (Sf > 0), D a F , b F  5 f Sf, 

these two faces are the same. 

Note that the APD is based on a set of distances between points, so that even if 

one of the distances is fairly large (compared with the minimum distance between 

vertices on an object), the resulting the APD may still fall within the range of Sf. 

Detect ion of Identical  Vertices 

In practice, we use the following two-step method to detect identical vertices: 1) 

Find the identical faces according to APD face similarity measurement. 2) Within 

each pair of identical faces, find identical vertices based on the similarity measure- 

ment of two vertices. 

This two-step method is helpful especially when some vertices of different faces 

are close to each other. For example, in Figure 4.2, the distance between the vertex 

Pa of the face Fl and the vertex Pb of the face fi is very small. F3 (dotted-line) is 

a face transferred from another view. If the identity checking is directly based on 

the distance between vertices, the vertex PC of face F3 could be easily mismatched 

with the vertex Pa. However, when using the APD first, we find that F2 and F3 are 

the same. Then, among the vertices of F2 and F3, the vertex PC can be correctly 



Figure 4.2: Example of checking the identical vertices. 

matched with the vertex Pb. Therefore, the above method is more robust than the 

one which only checks the similarity of isolated vertices. 

4.2 Multiple View Integration 

Using the generated transformation matrix between views, we transfer two different 

local views into a global frame so that the the combined description has more infor- 

mation than either of the two local views contains. This newly generated description 

is successively merged with another view so that the resulting description is closer 

to a complete one. This process continues until a termination criterion is met. 



4.2.1 Terminat ion Criterion 

As assumeed at the beginning that the objects involved in this research are closed, 

bounded, and regular polyhedra [45]. The object with a dangling face, an opening on 

a surface, or self-intersecting face is invalid. However, in each local view, the object 

is partially described. In a range image, a jump edge often exists to which only one 

face is found and the other one is "missing". During the process of integrating such 

local views, incomplete parts, such as dangling faces and openings on the surface, 

do possibly exist in the intermediate result. In such a case, the integration process 

has to be continued. On the other hand, as soon as all the "missing" information is 

found and the complete description is acquired, the integrating process should stop 

automatically. Hence, a convenient and effective termination criterion is a must. 

Terminat ion Criterion:  If every face has a closed cycle 

of bounding edges and every edge is shared by two such faces, then the 

merging process can be terminated, otherwise, one or more additional 

views are required to complete the process. 

When this termination criteria is met, the integration procedure should stop and 

a complete description of polyhedral objects should be obtained. 

If the above criterion holds, then it implies that all the faces are 

connected with each other. Because the boundary of a face consists of 

connected edges and each edge attaches to two faces, one can start at 

any point on one face, go in any direction, cross the boundary of this 

face and arrive on another face. For the same reason, it is possible to 



get from every face to every other face by crossing edges formed by these 

faces, as long as these faces form one polyhedron. It is also clear that 

under this criterion, it is not possible for a dangling face to exist because 

a dangling face must have some edges to which only one face is attached. 

Furthermore, if the criterion holds, all the faces will construct a closed 

surface without any openings. Assume that the criterion holds and yet 

there exists an opening on the surface. From this it follows that there 

exist edges to which only one face is attached (e.g. edges which constitute 

the boundary of the opening). However, this conclusion conflicts with 

the condition given. 

The above discussion indicates that if the termination criterion holds, 

then the integrated faces of the object in question are connected to each 

other and the surface of this object is closed. There exist no dangling 

faces and openings on the surface of the object. To put it another way, 

the description finally generated under the termination criterion is the 

complete description of a valid polyhedral object. 



4.2.2 Data Structure 

In each view, the visible parts of objects are represented in a data structure called 

partial-view-list, which contains the geometry of vertices, edges and faces of the 

visible part. In addition, the data structure also captures the geometrical and topo- 

logical relationships among these features. The following shows the main tables in 

the partial-view-list. 

Each vertex, edge and face is labeled and assigned a unique serial number. All 

the tables in the partial-view-list are indexed by these serial numbers. 

In Table f-v, vertices are ordered in a sequence so that face normal can be 

calculated according to the right-handed screwing rule. 

In table e-f, the relationship between an edge and faces is stored. It tells which 

two faces attach to an edge. Also, it indicates which attached face is the left-handed 

face and which is the right-handed face, after the start point and end point of the 

edge being specified. 

In each of the tables mentioned above, there is a status flag SF which indicates 

whether the geometric feature (edge, face, etc.) is complete or not. For instance, 

when the status flag in table f-v is set to one, SF = 1, it means that some of the 

bounding edges of the face are missing. The status flags are very useful in dealing 

with the partially visible faces or edges. 

Of course, there is redundant information in the above tables and we can fur- 

ther compress it and represent this information in a more compact format such as 

Winged-edge representation. However, we keep this explicit representation, because 



Table 4.1: Tables in the partial-view-list. 

Table vertex- T (coordinates of visible vertices) 

Vertex Label / X Coordinate Y Coordinate Z Coordinate 

Table e-f (two faces attached to an edge) 

Edge Label I Start Point End Point L-Face R-Face 

Table f-v (vertices in a face) 

Face Label 1 Vertex 1 Vertex 2 Vertex 3 ...... Vertex N 

Table o-f (faces in an object) 

Object Label I Face 1 Face 2 Face 3 .... . . Face N 



it directly supplies required relationships among vertices, edges and faces, rather 

than requiring us to derive this information. Since during the merge and match- 

ing procedures, the relationships among vertices, edges and faces are frequently 

requested, using this type of explicit representation saves computation time. 

For each view, a set of look up tables is used to remember the corresponding in- 

formation between views. These look-up tables significantly reduce the computation 

cost in the merging process. 

The data structure used for the final global description is called the complete- 

view-list. It has the same structure as the partial-view-list, except that is contains 

a complete description of the whole object. 

4.2.3 Updating Description 

As indicated at the beginning of this chapter, the purpose of the merging procedure 

is to use the correspondence between views to link all the information which is 

described in different views into a global description. Since each local view contains 

different information, by merging the partial descriptions of local views, we can 

incrementally add new information to the description in a global frame and finally 

get the complete description of objects. 

Figure 4.3 shows a flow chart of our merge algorithm. The input to this module 

is the partial descriptions of a 3-dimensional object (the partial-view-list for each 

of the local views). The output of this algorithm is the completed-view-list which 

contains the complete information about the object. 
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To update the previous global description, first check whether a feature (vertex, 

edge, face, etc.) transferred from a new local view is present in the global descrip- 

tion. If so, simply get rid of the transferred feature, because this feature is already 

considered in the previous global description. If there is no corresponding feature, 

then this feature is a new feature which should be added into the global description. 

Besides adding the geometry of a new feature into the global description, we also 

update the previous description by adding all the relationships associated with the 

new feature, e.g., merging the relationships stored in the e-f tables. 

The whole algorithm is summarized in the following steps: 

1. Select a global frame which could be the same as one of the local view frames. 

The transformation between the selected global frame and one of the local 

frames is known. 

2. Transfer the partial description in another local frame into the global frame. 

3. In the global frame, check which faces transferred from different views are 

identical or overlap each other. Based on the result of this checking, find the 

same vertices and edges transferred from different views and update look-up 

tables with the information about correspondence. 

4. Update the symbolic global description (complete-view-list) by adding the new 

faces, edges and vertices. 

5 .  Update all the relationships. When two local descriptions are merged, new 

relationships among face, edge, and vertex, which are not given in either local 

description, may occur. 



6. Check whether or not the termination criterion is met. If this criterion is 

satisfied, then stop and output the final global description. Otherwise repeat 

step 2, 3, 4, 5 and 6, until the termination criterion is met, or all the local 

views are integrated. 



CHAPTER 5 

Results and Analysis 

This chapter reports the experimental results on synthetic range images and provides 

an analysis of system performance. First, we present results for the noiseless case. 

Two objects, object I and object I1 were used in the experiment. Object I was a car 

and object I1 was a seven-faced polyhedron. A set of synthetic range images were 

derived at  different viewpoints for each object. The size of the range images is 150 x 

150, the depth data were represented in 8 bits. The distance between the camera and 

the object is around 100 units. Both sets of range images satisfied the assumptions 

that there exist at least two adjacent faces common in two views and that each face of 

the object exists in at least one view. Note that there were many symmetric features 

in each of the test objects that challenged our matching algorithm. Since we assumed 

that face models of visible surfaces of objects from low level image processing were 

available, in our experiments these face models were manually entered. The XYZ 

coordinates of vertices were represented as real numbers. The hierarchical matching 

algorithm was first applied to obtain the corresponding point pairs between views. 



Then, based on this, the solid-body transformations between views were generated 

and refined if necessary. Finally, all the local views were transferred into a global 

frame and all the local descriptions were consolidated and a complete 3-dimensional 

b-rep description was created as the output. Both the objects were successfully 

handled by our system. Next, we tested our system on synthetic ranges with noise 

added. The results are discussed in Section 5.4 

Object I and I1 

The object car (see Figure 1.2), had seventeen vertices, twenty-seven edges and 

thirteen faces. It had many symmetric local parts which challenged our system. 

Five range images, shown in Figure 5.1, were taken from different viewpoints to 

cover the whole object. The face model of the visible surface of the object car in 

each view ' is shown in Figure 5.2. The partial-view-list for the object car in each 

local view is shown in Table 5.1 and Table 5.2. 

As described in Section 4.2.2, each vertex, edge, or face was assigned a serial 

number respectively. The physical positions and relationships are given in the form 

of a set of tables. Vertices of a face are listed cyclically in the counter-clockwise 

direction. For instance, the XYZ coordinate of vertex 11 (in Table vertex-c_T) in 

this local view is (84.26, 70.98, 92.54) 2.  Face 1 (in Table f-v) is specified by the 

'This is given, by assumption, from low level image processing. 

2The numbers are rounded for display. 



Figure 5.1: Multiple range images of object I. 
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rtex 11 

Figure 5.2:  Face model of visible surface of object I. 
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Figure 5.3: Multiple range images of object 11. 
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Figure 5.4: Face model of visible surface of object 11. 
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Table 5.1: Car-view2 (view 1 in object car) - continued. 

vertex-?: (XYZ Coordinates of vertices) 

Vertex Label X Y Z 
1 42.99 30.00 129.05 
2 32.30 70.98 122.54 
3 30.00 44.99 106.57 
4 49.80 131.60 152.85 
5 114.75 116.60 145.35 
6 101.76 131.60 122.85 
7 80.40 115.62 97.86 
8 38.83 115.62 121.86 
9 72.40 87.90 84.01 
10 30.83 87.90 108.01 
11 84.26 70.98 92.54 
12 71.56 44.99 82.55 
13 97.25 55.98 115.04 
14 84.55 30.00 105.05 

Num-VEFOS (The number of geometric features in the view) 

Vertex Edge Face Object 



Table 5.2: Car-view2 (view1 in object car). 

e-f (The two faces attached to an edge) 

Edge Label Start Point End Point L-Face R-Face 
1 2 3 4 0 
2 3 1 3 0 
3 5 6 1 0 
4 6 4 5 0 
5 6 7 6 5 
6 7 8 8 5 
7 8 4 0 5 
8 8 10 8 0 
9 10 2 7 0 
10 7 9 6 8 
11 6 11 1 6 
12 9 11 6 7 
13 9 10 7 8 
14 2 11 7 4 
15 11 12 2 4 
16 12 3 3 4 
17 12 14 2 3 
18 1 14 3 0 
19 13 11 2 1 
20 14 13 2 0 
21 5 13 0 1 

f-v (vertices in a face) 

Face Label Vertex 1 Vertex 2 Vertex 3 Vertex 4 
1 5 13 11 6 
2 11 13 14 12 
3 1 3 12 14 
4 3 2 11 12 
5 4 6 7 8 
6 6 11 9 7 
7 2 10 9 11 
8 8 7 9 10 



cyclical vertex sequence: vertex 5, vertex 13, vertex 11, vertex 6 and vertex 5 (see 

Figure 5.2). The right-handed face and the left-handed face of edge 11 (in Table 

e-fl are face 1 and face 6 respectively. Face 0 in the table that means the face has 

not been detected. 

Test object 11, which had 10 vertices, 15 edges, and 7 faces, was a more complex 

polyhedron which contrasted with the highly symmetric object car. Five views 

and the corresponding face models of visible surfaces are shown in Figure 5.3 and 

Figure 5.4. 

The number of local views needed is influenced by different selection of view- 

points. For example, the complete b-rep description for the object car can be ob- 

tained by integrating either view 1, view2, view 3, and view4 or view3, view4 and 

view5. This fact reveals the necessity of optimally chosing viewpoints with an active 

vision mechanism - a widely open issue (see Chapter 6). 

5.2 Performance of Matching Algorithm 

This section presents the performance of the hierarchical matching algorithm. A set 

of triple branch structures is first extracted from the face models of visible surfaces 

of the object in each local view. Then, the hierarchical search strategy is applied 

and different constraints are applied to reduce the computation time for matching 

these features between views. 

Triple Structures 

Examples of the triple branch structures in the local views, Car-view1 and 



View 1 View 2 

Figure 5.5: A triple pair. 

Car-view2, are shown in Tables 5.3 and 5.4 respectively. There are 22 triple branch 

structures in local view Car-view1 and 12 in Car-view2. The number of triple fea- 

tures could be doubled, if the feature is defined improperly (see the discussion in 

Chapter 3). The invariance property of the triple branch structure reduces the num- 

ber of possible triple pairs by a factor of two (compared with the case where the two 

subordinate branches are arbitrarily labeled). 

Geometrical Constraints 

Instead of spending equal computation costs (checking six constraints, three 

angles and three lengths) on every triple pair, we distribute these six constraints at 

different search levels and let those triple pairs which are more likely to be correct 

matching pairs receive more attention. 

An example is shown in Table 5.2. The number in each column indicates how 

many triple pairs have satisfied the constraint shown at the top of the column. It 

is clear that only a small number of triple pairs need to be checked by all the six 



Table 5.3: Triple for Car-viewl. 

VlS, V2S, and V3S are the start ~ o i n t  of the vectors. 
VIE, V2E, and V3E are the end point of the vectors. 



Table 5.4: Triple for Car-view2. 

VlS, V2S, and V3S are the start point of the vectors. 

VIE, V2E, and V3E are the end point of the vectors. 

Triple 
Label 

1 
2 
3 
4 
5 

vector 1 

1 1 2  1 1 1 1 1 2 1 1 1 1  9 1 1 1 1  5 1 2 

V lS  
3 
5 
6 
11 
12 

5 

VIE 
4 
3 
7 
5 
1 

vector 2 
V2S 
3 
5 
6 
11 
12 

V2E 
2 
11 
5 
12 
10 

vector 3 Left-handed 
face Label 

5 
2 
2 
3 
3 

V3S 
3 
5 
6 
11 
12 

right-handed 
face Label 

1 
1 
4 
2 
5 

V3E 
5 
6 
9 
9 
11 



Table 5.5: Number of triple pairs passed at different searching levels. 

constraints. The threshold for comparing if two angles are equal was set at 5'. The 

threshold for checking if two vectors have equal magnitudes was 4 units. 

View 

A 

View0 

View2 

View3 

View4 

View3 

View1 

View2 

Priority Queue 

Instead of verifying all the candidate triple pairs, our algorithm sorts all the 

candidates into a priority queue to find those triple pairs which are most likely to 

represent the correct match between the views. First, each triple pair votes for its 

View 

B 

View1 

View1 

View1 

+View2 

Viewl 

+View2 

+View3 

View4 

View4 

View1 

+View4 

Average 

Triple 

Pairs 

484 

264 

612 

880 

396 

484 

432 

507 

Same 

Principle 

76 

40 

68 

140 

68 

76 

64 

76 

Same 

Face Shape 

30 

7 

14 

3 1 

14 

20 

12 

Same 

Magnitude 

22 

4 

12 

2 1 

12 

12 

7 

18 13 



Vertex 

V i e w  1 

1 2 3 4 5 6  7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Figure 5.6: Score of vertex pairs for Car-view1 and Car-view2. 



vertex pairs. Figure 5.6 shows the voting result between local views Car-view1 and 

Car-view2. The potentially matched vertex pairs have received more votes, e.g. the 

score of vertex pair (1 1,9) equals 4. 

Table 5.6: Scored triple pairs for Car-view1 and Car-view2. 

Then, each of the triple pairs is graded with the score of its vertex pairs. Table 5.6 

shows the triple pairs and their scores. The highest score is achieved only when all 

the triples in this group find the correct matches. With such a prioritizing process, 

we implicitly group several locally connected triples together and check the correct 

match based on such groups instead of individual triples. 

The experimental results indicate, as shown in table 5.7, table 5.8 and table 5.9, 

that the triple pairs with the highest score almost always appear to be the correct 

match. When the scores of triple pairs decrease, the chances of mismatching increase. 

The third column of the tables indicates whether a triple pair stands for the correct 

match between views. According to this fact, the triple pairs should be chosen for 



verification in order from the highest score of these triple pairs to  the lowest one. It 

is also possible to test only a few candidate triple pairs with the highest scores. 

Table 5.7: Triple pair score versus correct match for Car-viewltrans and Car-view2. 

I lriple Pair Score I lriple Pair Label Correct Match '! 1 
Yes I 

Verification 

34 
3 3 
33 
33 
32 
32 

The next step is to verify whether the triple pairs chosen can generate the correct 

transformation between views. This is the most time-consuming procedure of all. 

Y 
10 
11 
23 
2 
3 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 



However, after the previous search, the number of candidate triple pairs left for this 

test is already much smaller compared with the number of original triple pairs. 

Each candidate triple pair is used to generate a transformation. Then, the points 

in one view are transferred to another view with this transformation. The verification 

is based on the number of points which are transferred from the first view and overlap 

with the points in the second view. It is usual that the correct transformation can 

be satisfied by more points between views than the incorrect one can. All the correct 

corresponding point pairs should satisfy the correct transformation and the different 

incorrect corresponding point pairs are less likely to satisfy one transformation. 

Table 5.12, Table 5.10, Table 5.11, Table 5.13, Table 5.14, and Table 5.15 show 

the scores of the possible transformations generated by candidate triple pairs. The 

correctness of the transformations is also indicated. From these tables, it is obvious 

that the correct transformation has always received the largest score. 



5.3 Multiple View Integration 

After finding the transformations between views, we can integrate the local views 

one by one. The threshold used to check two identical vertices was 4. Table 5.16 

and Table 5.17 give the intermediate results of the integration process. During the 

integration, the number of vertices, edges and faces increases, as the number of 

local views integrated into the global view increases. The bold letters in the tables 

indicate the recent change. It is shown that in e-f, the 0's in the columns named 

right-handed face and left-handed face are gradually reduced. In the end, each edge 

has two supporting faces, i.e., the criteria of termination of integration are met so 

that the description of the object in question is completed. Table 5.18 and Table 5.19 

show the final complete b-rep description. 

Test with Noisy Data 

To simulate more realistic situations, we also tested our system with noise added to 

synthetic range images. Noise may arise due to a variety of sources, e.g. calibration 

and low level image segmentation errors. We added different levels of noise (2%, 

5%, 8% and lo%, respectively of the maximum range values) to the coordinates of 

vertices in the face models as shown in Figure 5.7. To show the noisy data clearly, we 

have superimposed all the views in one frame, Figure 5.8. Since the local views were 

generated by a synthetic range image generator, we knew the actual transformations 

between views, so that we can transform all the local views into one frame with these 

transformations. It is clear that as the noise level increases, the distortion of the 

geometrical features is more severe. 



We tested our system with different levels of noise. The whole system worked 

well with the data of 2% and 5% noise. The thresholds used in both cases were 

within a reasonable range. We found a set of thresholds which could be applied 

to both cases (the thresholds for checking the angles and magnitudes of vectors 

were 19' and 11 units respectively). Basically, the minimum distance between two 

vertices and the presence of similar local geometrical structures are two important 

factors that affect the thresholds and hence the system performance. Note that 

there are many symmetric features in the test data. For instance, the left-side and 

right-side of the car are symmetric. As expected, when the noise became large, 

the thresholds needed to be increased. With the noise level at 8%, some errors 

began to occur. To further analyze the performance of our system in some detail, 

we tested the matching module, the process of transformation estimation, and the 

merging module separately. From the test results, we found that the most sensitive 

part of the system is the process of transformation estimation. With the noise level 

less than or equal to 8%, the matching module and merging module still generated 

correct results, but the estimated transformations were quite different from the 

actual transformations. However, with the noise level larger than 8%, the matching 

module and merging module also started to give wrong results. For instance, some 

points should have been considered to be identical, but were not. 

The estimated transformation is quite sensitive to noise in the coordinates of 

corresponding vertex pairs. A small error in the position of vertices may affect the 

estimated transformation significantly. This is true especially when the number of 

corresponding point pairs is small. This error is then propagated to the merging 

module and causes errors in the process of intergration. We illustrate this in Fig- 

ure 5.9. Note the difference in superimposed views in Figure 5.9.A (obtained by 



using actual transformations) and Figure 5.9.B (obtained by using estimated trans- 

formations). Clearly, the estimated transformations are much different from the 

actual ones. 

Hence, we can say that relatively larger errors are generated in the process of 

estimating a rigid-body transformation. However, when more corresponding point 

pairs were used to estimate transformations, errors in generated transformations 

were reduced. From our results on noisy synthetic range images, we can see that it 

is important to take more corresponding point pairs or get relatively noise-free face 

models in local views. 

Although we don't have a range scanner in our lab to perform real experiments, 

most range scanners can easily provide an accuracy of 1 part in 1000 [7] .  This 

corresponds to a 0.1% error, which is much less than the noise limits within which 

our system performs successfully. However, we are cautious since there are other 

sources of errors as well, e.g. low-level segmentation. Note also that we are interested 

in building models for planning collision-free paths and therefore don't require very 

strict accuracy as in the case of some inspection tasks. 



View 1 View 2 

2% noise da.t.a 

View 1 View 2 

5% noise da t a  

View 1 View 2 

8% noise data 

Figure 5.7: Noisy Data 



2% noise da ta  

8% noise da t a  

5% noise data  

10% noise da.ta 

Figure 5.8: Superimposed Noisy Views 
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(A)  Actual Transformation (B) Estimated Transformation 

Figure 5.9: 2% noise-level: Different views are transformed in one frame and super- 

imposed. Actual transformations were used in (A) whereas estimated transforma- 

tions were used in (B). This indicates that the estimated transformations were quite 

different than the actual ones. 



Table 5.8: Triple pair score versus correct match for Car_view4+Car_viewl and 
Car-view2. 

I ' l ' r i~le Pair Score I ' l ' r i~le Pair Label I Correct Match ? I 
11 
11 
10 

Table 5.9: Triple pair score versus correct match for Car-view1 and Car-view2. 

10 

8 
11 
1 

Yes 
Yes 
Yes 

8 I 5 No 
2 

'l'riple Pair Score I 'l'riple Pair Label I Correct Match :' 

Yes 

11 5 
11 
10 
10 
6 
6 

Yes 
I 
1 
2 
3 
6 

Yes 
Yes 
Yes 
No 
No 



Table 5.10: Score of transformations versus correct match for Car-view4 and 
Car-view1 . 

Table 5.11: Score of transformations versus correct match for Car-view1 and 
Car-view2. 

I Score of transformation I 'li-iple Pair Label I Correct Match '! I 
10 
10 
10 

1 
2 
5 

Yes 
Yes 
Yes 



Table 5.12: Score of transformations versus correct match for Car-viewltrans and 
Car-view2. 

14 
14 
14 
14 
14 
14 
14 
14 

1 Y 
15 
16 

Yes 
Yes 
Yes 

17 
18 
19 
2 0 
22 

Yes 
Yes 
Yes 
Yes 
Yes 



Table 5.13: Score of transformations versus correct match for Car_view4+Car_viewl 
and Car-view2. 

I Score of transformation I 'l'riple Pair Label I Correct Match 1 I 

Table 5.14: Score of transformations versus correct match for Car-view3 and 
Car-view1 SCar-view2. 

12 
12 
12 
10 
10 

I I 

10 2 Yes 

I I IJ I 11 I res I 

2 
8 
11 
5 
7 

Yes - 
Yes 
Yes 
No 
No 

- - 
10 
10 
6 

12 
14 
7 

Yes 
Yes 
No 



Table 5.15: Score of transformations versus correct match for Car-view4 and 
Car-view3+Car_viewl +Car_view2. 

- - I I - -- 

14 6 Yes 

Score of transformation I 'l'riple Pair Label I Correct Match :' 

I I 

14 8 Yes 

14 5 I Yes 

14 
14 
14 
14 
14 
14 
14 

9 
10 
12 
22 

14 

Yes 
Yes 
Yes 
Yes 

23 
24 
25 

Yes 

14 
10 
10 
10 
10 
10 

Yes 
Yes 
Yes 

14 
3 0 
2 
4 
13 
15 
19 

Yes 
Yes 
No 
No 
No 
No 
No 



Table 5.16: After integration of Car-view1 and Car-view2. 

e-f (The two faces attached to an edge) 

Edge Label Start Point End Point L-Face R-Face 
1 2 3 0 

Num-VEFOS (The number of geometric features in the view) 

Vertex Edge Face Object 
1 6  25 10 1 



Table 5.17: After integration of Car-view3 and Car-viewltcar-view2. 

e-f (The two faces attached to an edge) 

Edge Label Start Point End Point L-Face R-Face 
1 2 3 4 0 

Num-VEFOS (The number of geometric features in the view) 

Vertex Edge Face Object 
16 26 11 1 



Table 5.18: Complete b-rep description of object car - continued. 

e-f (The two faces attached to an edge) 

Edge Label Start Point End Point L-Face R-Face 
1 2 3 12 

Num-VEFOS (The number of geometric features in the view) 

Vertex Edge Face Object 
16 27 13 1 



Table 5.19: Complete b-rep description of object car. 

vertex-T (XYZ Coordinate of vertices) 

Vertex Label X Y Z 
1 74.00 10.00 50.00 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

f-v (vertices in a face) 

Face Label Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6 



CHAPTER 6 

Conclusion 

This thesis has presented an approach for extracting a complete 3-dimensional b-rep 

description of a polyhedral object from multiple range images taken from different 

viewpoints. No prior knowledge of the transformations relating different viewpoints 

is assumed. This b-rep description is useful for robotic manipulation tasks such as 

path planning and grasp planning. 

Starting from basic face models of visible surfaces of objects ' in each local 

view, our system extracts features, matches these features, generates rigid-body 

transformations that relate the local views, and finally merges these local views into 

a 3-dimensional b-rep description of the object. The main features and points raised 

in this thesis are summaried below. 

1. The triple branch structure is selected as a main matching feature, which 

w e  assume that  the basic face models of visible surfaces of objects in each local view are available. 
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not only helps the efficient matching algorithm, but also suffices to  generate 

rigid-body transformation between views. 

2. A hierarchical matching algorithm is designed which sequentially uses intrinsic 

features at  different search stages. A prioritizing procedure is proposed to 

arrange the order (priority queue) among matching candidates. This matching 

algorithm is much faster when compared to the brute force search method. 

3. A method of integrating multiple views is proposed and demonstrated. It 

will merge different local views together and then output the complete 3- 

dimensional b-rep description of the polyhedral object in the scene. A conve- 

nient and effective termination criterion is set to monitor the whole merging 

process. This termination criterion also makes it possible to utilize the active 

vision mechanism later. 

4. The minimum number of corresponding point pairs to generate rigid-body 

transformation between two views is discussed explicitly. It is indicated that 

at least three non-colinear corresponding point pairs are needed to generate 

a rigid-body transformation. Also, a condition is defined to confirm that an 

arbitrary transformation is a rigid-body transformation between two given sets 

of points. 

5. A synthetic range image generator has been designed and implemented. Our 

system, in conjunction with this synthetic range image generator, forms a 

useful developing tool in the area of robotics, CAD, and geometric modeling. 

All the algorithms and methods are implemented mainly in C and MATLAB. The 

front-end graphics have been implemented with HOOPS. 



Our research is only an initial step in this promising direction of building CAD 

models from range images. Since no real range data was available, all the range 

images used in this project were synthetic range images. Although the system 

performed well with up to 5% noise added to synthetic data, the performance of the 

system needs to be investigated with real range data to demonstrate the robustness 

of the system. We anxiously await a laser range scanner to be installed in our lab 

in September, 1992 to run real experiments. 

Although some simple mechanisms are already used in our method to handle 

the case of partial occlusion, more sophisticated algorithms need to be designed to 

deal with the case in which a more complicated scene is considered and occlusion 

becomes the main problem. 

Another important point is incorporating certain aspects of active vision within 

our framework. For instance, how could the next view be selected automatically? 

Clearly, the requirement that at least two faces be common in two views gives some 

constraints on the next view. In addition, other geometrical constraints may be 

useful, e.g. the object surfaces should not be too oblique to the scanner, since range 

data accuracy suffers. Such criteria need to be investigated. 

Another major research direction could be to include curved surfaces, such as 

ellipsoidal and paraboloidal surfaces, in this multiview integration framework. 



Appendix A 

A Synthetic Range Image 

Generator 

The synthetic range image generator consists of the following modules: inputting 

3-dimensional data, selecting view point, determining face normal, orthogonally 

projecting visible faces, 2- buffering, and finally generating the range image and the 

flag image. 

(1) Input Data: the input to the synthetic range image generator is a in the form 

of the complete-view-list, in which the faces, edges, and vertices of the object are 

specified. The view point and the object is located in a global (reference) coordinate 

system. 

(2) Transformation between the object-centered system to view-point centered 

system: this transformation is used to describe the object in view-point centered 

system. The view-point centered system is defined with its origin overlapping the 



view point and the positive direction of Z-axis aligning with the view vector. 

(3) Determination of possible visible faces: in the viewpoint-centered frame, the 

face normal (pointing outward) of each face of the object is determined and used to 

detect the possible visible faces. A face is a possible visible face in this frame, if its 

normal and the Z-axis vector constitute the angle larger than 90 degree. 

(4) Orthogonal projection: the 2-dimensional projection of each of the possible 

visible faces is formed by orthogonally projecting the face to the xy-plane. 

(5) Calculation of range: the xy-plane is scanned. If a scan point is inside of 

the 2-dimensional projection of one face, it is necessary to calculate the distance 

between this point (which on the xy-plane ) and the corresponding surface point 

(which is on the face of the object and has the same x and y coordinates) based 

on the face equation. Then, this distance is saved into the element with the same 

x,y coordinates of a 2-dimensional array. If in this element, a distance is already 

stored, the system compares the newly generated distance with the old one. Only the 

smaller one can be kept in this element (the Z-buffering principle). If the scan point 

is outside of all the 2-dimensional projections, the element is set to a prespecified 

background value. Finally, the range image is generated after each face of the object 

is scanned. 



Appendix B 

Proof of Lemma 1 

The proof of Lemma 1 is given below. 

The proof of the necessity of Lemma 1: 

If the given transformation T is a rigid-body transformation BTA 

for the whole set of corresponding point pairs, it will hold for any four 

corresponding point pairs among this set, and of course, for any four 

non-planar corresponding point pair (if they exist ). 

The proof of the sufficiency of Lemma 1: 

Given a transformation T which can hold for four non-planar corre- 

sponding point pairs of the whole set {(  "a, BGi ), i = 1 t o  N } .  



Let {Ac1,Ac2,Ac3} and { " R ,  "G2,"?3) be two sets of base vectors 

respectively in frame A and frame B, 

A d l  = AijZ - "ci, = A &  - A &  qj 3 - - AP4 - A P l )  

-4 "4 = "Q2  - " Q l )  "v2 = " Q 3  - "Q1,  "F3 = " Q 4  - "g l .  
From B.l,  it follows 

Note that vectors "el, and 'd3 ("fi, "Q2,  and " q 3 )  are non- 

coplanar. 

What needs to be proved is that the transformation T holds for all 

the corresponding point pairs in the set, 

+ 
Any point "Pi, j = 1 t o  N in frame A ("Oj)  j = 1 t o  N in frame B )  

can be uniquely denoted by the linear combination of AGl, " g 2 ,  and "c3 
("fi, " c 2 ,  and "&), 

and 

" Q j  = blj  "4 + b2j "P2 + b3j "fi + "01 (B-5) 

where alj,  a2j and a3j ( b l j ,  b z j ,  b3j )  are the projections of A4 ( BQi ) 

to the base vectors ' G l ,  ' G 2 ,  and AG3 ("G , "G2, and "?3) respectively. 

Based on the initial definition that all the corresponding point pairs, 

{ ( A  " 6  ) j = 1 to  N ) ,  are related by a rigid-body transformation 

"TA, i.e. magnitudes of corresponding vectors are the same and angles 



between two pairs of corresponding vectors are the same. Also, if Apk 
corresponds B B ~  and " f i  corresponds Bgr, the projection of A f i  to  

is equal to the projection of BQk to B Q l .  

Then it follows 

Hence, for any j = 1 to N, it follows 

Therefor, the sufficiency of Lemma 1 has been proved. 
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