
EXTRACTING COMPLETE 3-DIMENSIONAL BOUNDARY

REPRESENTATION FROM MULTIPLE RANGE IMAGES

by

Zukang Xu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School

of

Engineering Science

@ Zukang Xu 1992

Simon Fraser University

June, 1992

All rights reserved. This work may not be reproduced

in whole or in part, b y photocopy or

other means, without permission of the author.

APPROVAL

NAME: Zukang Xu

DEGREE: Master of Applied Science (Engineering Science)

TITLE O F THESIS: Extracting Complete 3-dimensional Boundary
Representation from Multiple Range Images

EXAMINING COMMITTEE:

Chairman: Dr. John Jones

DATE APPROVED:

Dr. Kamal I<. Gupt.a
Senior Supervisor

Dr. ~ a c & e s v a i s e ~
Supervisor

Dr. Ze-Nian Li
Supervisor

Dr. Tom Calvert
Examiner

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or

extended essay (the title of which is shown below) to users of the Simon Fraser
University Library, and to make partial or single copies only for such users or
in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. I further agree
that permission for multiple copying of this work for scholarly purposes may be
granted by me or the Dean of Graduate Studies. It is understood that copying or
publication of this work for financial gain shall not be allowed without my

written permission.

Title of ThesisJProjectJExtended Essay

Extracting Complete 3-dimensional Boundary Representation from

Multiple Range Images.

Author:
(signature)

Xu, Zukang

(name)

August 10, 1992

(date)

Abstract
An important problem in computer vision is that of generating a 3-dimensional

description of objects from sensed data. In robotics applications such as grasping

and planning collision-free motion, symbolic 3-dimensional descriptions of objects

must be available. Such 3-dimensional descriptions require explicit geometric and

topological relations between faces edges and vertices, and are very similar to bound-

ary representation (b-rep) used in solid modeling.

In this thesis, we present an approach to extract a complete b-rep description

of a polyhedral object from range images taken from multiple view-points. Our

system, starting from basic face models of visible surfaces of objects in each local

view, extracts features, matches these features, generates rigid-body transformations

that relate the local views, and finally merges these local views into a complete 3-

dimensional b-rep description of the object. In our matching algorithm, a triple

branch structure is defined as the main feature to determine correspondence. A

coarse-to-fine searching strategy and a prioritizing procedure are designed to reduce

the search time even further. The b-rep model is incrementally updated by merging

each of the local views in a global description. A convenient and effective termination

criterion is designed to monitor the integration process.

We have implemented our system in C, running on a SUNISPARC. A synthetic

range image generator has also been implemented. The system has been tested on

several synthetic range images. Our system in conjunction with the synthetic range

image generator also has applications in the area of robotics, CAD and geometric

modeling.

To my mother

and

in memory of my father

Acknowledgements

My sincere thanks to my senior supervisor Dr. Kamal K. Gupta for his guidance

and encouragement in the course of this project. I am very grateful to my commit-

tee members, Dr. Tom Calvert, Dr. Ze-Nian Li and Dr. Jacques Vaisey, for their

assistance and helpful hints. In addition, I was lucky enough to obtain useful help

from other individuals. Dr. Edgar Pechlaner gave me very useful suggestions for

solving the geometry problems. Ms. Michele Vrtliquette helped me in revising the

thesis. I would also like to express my appreciation to my colleagues, Frank tong and

Louis Brassard, for their valuable discussions during this research. Many thanks to

my friends for their encouragement and assistance.

Finally, very special thanks go to my wife and my son for their support and

patience.

CONTENTS

. . Approval . 11

... Abstract . ill

Acknowledgements . v

... LIST OF TABLES . viii

LIST OF FIGURES . x

1 Introduction . 1

1.1 Motivation . 1

1.2 The Problem . 2

1.3 Outline of Our Approach . 7

1.4 Background and Literature Review 9

1.4.1 Range Image Acquisition . 10

1.4.2 Solid Modeling . 11

1.4.3 Matching Methods . 13

1.4.4 Symbolic Description from Multiple Views 17

1.4.5 Organization . 20

2 Matching Views . 22

2.1 Triple Branch Structure . 23

. 2.2 Hierarchical Search Algorithm 29

. 2.2.1 Similarity Check 30

. 2.2.2 Identity Check 34

. 2.2.3 Priority Queue 34

. 2.2.4 Feedback Verification 36

. 3 Correspondence and Transformation 38

. 3.1 Transformation and Four Corresponding Point Pairs 39

. 3.2 Minimum number of Corresponding Point Pairs 41

. 3.3 Best Estimate 43

. 4 Merging Multiple Views 45

. 4.1 Similarity Measures 47

. 4.2 Multiple View Integration 50

. 4.2.1 Termination Criterion 51

. 4.2.2 Data Structure 53

. 4.2.3 Updating Description 55

. 5 Results and Analysis 60

. 5.1 Object I and I1 61

. 5.2 Performance of Matching Algorithm 68

. 5.3 Multiple View Integration 77

. 5.4 Test with Noisy Data 77

. 6 Conclusion 92

. A A Synthetic Range Image Generator 95

. B Proof of Lemma 1 97

vii

LIST OF TABLES

The output of the proposed system: a complete 3-dimensional b.rep . 6

. Tables in the partial.view.list 54

Car-view2 (view 1 in object car) -- continued 66

Car-view2 (view1 in object car) . 67

Triple for Car.view1 . 70

Triple for Car.view2 . 71

. Number of triple pairs passed at different searching levels 72

Scored triple pairs for Car-view1 and Car.view2 74

Triple pair score versus correct match for Car-viewltrans and Car.view2 . 75

Triple pair score versus correct match for Car-view4+Car-view1 and
Car.view2 . 83

Triple pair score versus correct match for Car-view1 and Car-view2 . . 83

5.10 Score of transformations versus correct match for Car-view4 and
Car-view1 . 84

5.11 Score of transformations versus correct match for Car-view1 and
Car-view2 . 84

5.12 Score of transformations versus correct match for Car-viewltrans and
Car-view2 . 85

...
Vll l

5.13 Score of transformations versus correct match for Car_view4+Car_viewl
and Car-view2 . 86

5.14 Score of transformations versus correct match for Car-view3 and
Car-viewl+Car_view2 . 86

5.15 Score of transformations versus correct match for Car-view4 and
Car-view3+Car-viewl+Car.view2 . 87

5.16 After integration of Car-view1 and Car-view2 88

5.17 After integration of Car-view3 and Car_viewl+Car_view2 89

5.18 Complete b-rep description of object car . continued 90

5.19 Complete b-rep description of object car 91

LIST OF FIGURES

. 1.1 A range-image-based vision system in a robotic work cell 3

. 1.2 Input and output of the proposed system 5

. 1.3 The diagram of the whole system 8

. 2.1 Triple branch structure 24

. 2.2 Face shape angle 28

. 2.3 Hierarchical search algorithm - continued 31

. 2.4 Hierarchical search algorithm 32

. 4.1 Flow chart for merging multiple views 46

. 4.2 Example of checking the identical vertices 50

. 4.3 Merging - continued 56

4.4 Merging . 57

. 5.1 Multiple range images of object I 62

. 5.2 Face model of visible surface of object I 63

. 5.3 Multiple range images of object I1 64

. 5.4 Face model of visible surface of object I1 65

. 5.5 A triple pair 69

5.6 Score of vertex pairs for Car-view1 and Car-view2. 73

5.7 Noisy Data . 80

5.8 Superimposed Noisy Views . 81

5.9 2% noise-level: Different views are transformed in one frame and
superimposed. Actual transformations were used in (A) whereas es-
timated transformations were used in (B). This indicates that the
estimated transformations were quite different than the actual ones. . 82

CHAPTER 1

Introduction

1.1 Motivation

A challenging problem for computer vision is that of generating a 3-dimensional

description of an unknown scene from sensed data. As important components in

model-based recognition, model-based inspection, autonomous navigation, and path

planning, scene description and reconstruction have received increasing attention.

In robotics applications, it is interesting not only to recognize objects in the

scene, but also to estimate as accurately as possible their position and orientation.

In both cases symbolic descriptions of objects must be available. To interact with its

environment, a robot has to build a description of the objects around it. For instance,

to plan a collision-free path, one needs a geometrical description of obstacles [20].

To find a grasp position on a polyhedral object, one needs to reason about the

relationship among the faces of the object, e.g., which two faces are parallel, etc.

[lo]. Therefore, a complete 3-dimensional symbolic description of the objects is

necessary.

In recent years, digitized range data has become available from both active and

passive sensors, and the quality of these data has been steadily improving. Not only

are depth relationships between depth map regions explicit, but the 3-dimensional

shape of depth map regions approximates the 3-dimensional shape of the corre-

sponding object surfaces in the field of view. Therefore, the process of describing

and reconstructing objects by their shape should be less difficult in range images

than in intensity images. That is why we have used range images. However, it is

impossible to view the whole object from a single viewpoint. Particularly for a range

scanner (see Section 1.4.1 for details), the occlusion problem may be severe. In order

to build a complete description of the whole object, multiple views are needed.

The Problem

Our ultimate aim is to provide a range-image-based vision system for a robotic work

cell to build a complete 3-dimensional geometric description of the objects in the

robot's environment. This description may then be used by robotic manipulation

algorithms such as collision-free path planning or grasp planning. The boundary

representation (b-rep) is chosen to describe objects, which consists of a list of prim-

itives (vertices, edges, faces, etc.) of objects and the geometric and topological

relationships between these primitives. In particular, the desired description in our

applications is very similar to the winged-edge representation - a widely used b-rep

(see Subsection 1.4.2 for details). The specific problem considered in this thesis is

Object

Scanner N

Figure 1.1: A range-image-based vision system in a robotic work cell.

how to completely describe the geometry of an object from multiple range images.

For simplicity, the sensed object is assumed to be a single, bounded, closed, and

regular polyhedral object [45]. The objects are assumed to be rigid and static. The

range finder is assumed to be capable of providing a depth map of the object in

the scene. The range finder may have up to six degrees of freedom relative to the

objects (three translations and three rotations). The displacements of the range

finder can be described by rigid-body transformation. No prior knowledge of these

transformations is assumed.

Our goal, then, is to design a system which can generate a complete 3-dimensional

b-rep of a polyhedral object from a set of range images taken from different view-

points ', Figure 1.2. We assume that there exist overlapping surfaces between dif-

ferent views. The input to the system is a set of face models of visible surfaces

extracted from the range images. A face model consists of the segmented faces and

bounding edges traversed in a given direction (say the counter-clockwise direction).

Face normals point outward. The methods for extracting a face model from a range

image have been discussed intensively in the literature [27] , [59]. In particular,

Gupta and Zhu [22] deal with this problem in great detail. In this work, we will

assume that the face model of visible surfaces of objects in a local view is given.

The output of the system is a complete 3-dimensional b-rep of the object, as shown

in Table 1.1 and Figure 1.2.E.

'Since no real range data are available, all the range images used in this project are synthetic.

The input: multiple range images (A, B, C, and D) taken from different viewpoints. The output: a complete 6-P

representation (E). The numbers in E are vertex labels.

Figure 1.2: Input and output of the proposed system.

5

Table 1.1: The output of the proposed system: a complete 3-dimensional b-rep.

vertex-T (XYZ Coordinate of vertices)

Vertex Label X
1 74.00

f-v (vertices in a face)

Face Label Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6
1 5 13 11 6
2 11 1 3 14 12
3 1 3 12 14

e-f (The two faces attached to an edge)

Edge Label Start Point End Point LFace R-Face
1 L 3 4 12
2 3 1 3 12

Outline of Our Approach

Our system, starting from basic face models of visible surfaces of objects in each local

view, extracts features, matches these features, generates rigid-body transformations

that relate the local views, and finally merges these local views into a 3-dimensional

b-rep description of the object. The diagram for the whole system is shown in Figure

1.3.

Since there exists a large number of matching candidates to be verified, an effec-

tive and efficient feature matching algorithm is designed to reduce the search time

for finding the correspondences between views. In our matching algorithm, a triple

branch structure is defined as a main feature to efficiently search the correspondence

between views. This uniquely defined matching feature not only helps to reduce the

cost of the matching process but also suffices to generate rigid-body transformation

between views. A hierarchical searching strategy is realized by setting different con-

straints at different search levels. A prioritizing procedure is designed to arrange

the order (priority queue) among matching candidates.

Based on these correspondences, the rigid-body transformations between views

are generated and each local view is transformed into a global coordinate system,

where the initial description is updated incrementally by integration of geometric

information from each of the local views. A convenient and effective termination

criterion is designed to monitor the integration process. This termination criterion

also makes it possible to later integrate the whole system with a robust active vision

mechanism. Finally, the complete b-rep description of the whole object is generated

and can be easily converted into a winged-edge representation. Such a 3-dimensional

Begin 7
Input the face model of visible surface of
the object in another view.

I Find correspondences between views.
Generate rigid-body transformation. I
Inte rate the local view into a.globa1 frame.
~ & t e the b-rep descripuon in the frame. I

I Output the complete 3-dimensional
b-rep description.

Figure 1.3: The diagram of the whole system.

description can then be used for the collision-free motion planning system presented

in [21].

We have tested our system with synthetic range images. In the ideal case, with

no noise present, the system indeed gives us a complete b-rep model, as expected.

However, noise will always be present in any real system. We also tested our system

with noise added to the synthetic range images. In our examples, with noise levels

up to 5% of the maximum range values, the system was able to give correct output.

The main contribution of our work is summarized below. We propose a fast

matching algorithm for matching views so that no prior knowledge of the transfor-

mations between views is required. In this matching algorithm, the triple branch

structure, as a novel feature, was defined and used as the main matching feature.

A convenient and effective termination criterion is set to automatically control the

whole merging process. By integrating the processes of matching, transforming, and

merging into a whole system, we have extracted the complete 3-dimensional b-rep

description of a polyhedral object in the scene. A synthetic range image generator

has also been implemented. Our system in conjunction with the synthetic range

image generator also has applications in the area of robotics, CAD and geometric

modeling.

1.4 Background and Literature Review

The process of 3-dimensional object description and recognit ion utilizes many tech-

niques of image processing and computer vision, such as image acquisition, local

feature extraction [28], correspondence finding, object pose determination [53] [54],

geometric transformation, geometric modeling, etc. The whole field of machine vi-

sion is concerned with these questions. In this section, we review various approaches,

mainly in the following subareas: i) range image acquisition, ii) solid modeling, iii)

matching, and iv) symbolic description from multiple views. In particular, we con-

centrate on the last two subareas. For general descriptions and reviews, please refer

to [W, w 1 7 [I l l , [571, and [361.

1.4.1 Range Image Acquisition

Range-image acquisition is conceptually a simpler process than intensity-image for-

mation [7]. At each pixel in a range image the depth value encodes information

about (1) surface geometry and viewing geometry in terms of the distance from

the sensor to object surface, and (2) the range finder characteristics (which include

spatial resolution, range resolution, dynamic range, noise parameters, etc.). An

important difference between an intensity image and a range image is that scene

illumination and surface reflectance are not directly encoded in range image.

The range image or 3-dimensional information acquisition methods can be ba-

sically classified into two categories: active methods and passive methods. Active

methods project energy onto a scene to measure range, whereas passive methods do

not.

The most popular passive range finders utilize the stereo techniques [3], [17].

But one of the most difficult problems of this method is exactly matching the right-

image and the left-image. Range from focusing [43] is another passive method which

detects distance by measuring the degree of sharpness of the image. Many "Shape-

from-X" methods such as shape from motion [35], shape from shading [33], etc. can

also supply the 3-dimensional information of objects to some extent. However, these

methods may not extract dense and accurate depth maps.

Among active range image acquisition methods, laser energy is mostly used.

Although some devices use ultrasound and radio wave techniques to determine range,

their resolution is currently not as high as the laser range finder [37].

One of the common types of range finders is triangulation-based [46]. After a

spot or line of light is projected onto an object, a camera or an infrared sensor is

used to detect the light. Signal and image processing techniques are then used to

determine the position of the spot or pieces of the line, and trigonometry is finally

used to estimate distance.

Structured light range finders [37] are also among the most popular 3-dimensional

sensing techniques which utilize various forms of structured light such as a ray, a

sheet, a grid, or even cylinders, etc. The main advantages are simplicity and low

cost.

1 A.2 Solid Modeling

The object representations commonly used by computer-aided-design (CAD) and

geometric solid-object-modeling systems can be categorized [8], [7] as follows.

Wireframe representation: A wire frame representation of a 3-dimensional object

consists of a 3-dimensional vertices list and edges list of vertex pairs. However, the

wire frame representation is an ambiguous representation for determining the 3-

dimensional geometrical shape of an object.

Constructive Solid Geometry representation (CSG-rep): The CSG representation

is specified in terms of a set of 3-dimensional volumetric primitives (blocks, cylinders,

cones, and spheres are typical examples) and a set of Boolean operators, such as

union, intersection and difference.

Spatial-occupancy representation: These representations use nonoverlapping sub-

regions of the 3-dimensional space occupied by an object to define that object.

The Voxel Representation is one of this type of methods, while the Octree Rep-

resentation is another. Although Constructive Solid Geometry representation and

Spatial-occupancy representation can unambiguously define an object's volume, the

derivation of surface information from them is very computationally intensive.

Boundary representation (b-rep): This type of representation defines a solid ob-

ject by defining the 3-dimensional surfaces that bound the object. All boundary

representations contain a list of object surfaces and topological information which

defines the relationships between surface patches. The winged-edge representation

[5], [6], [14] is one very popular b-rep for polyhedra-liked objects. Each edge in

the winged-edge data structure is represented by pointers to its two vertices, to the

two faces sharing the edge, and to four of the additional edges emanating from its

vertices. Each vertex has a backward pointer to one of the edges emanating from it,

whereas each face points to one of its edges. The queries corresponding to nine types

of adjacency relationships, such as which faces, edges or vertices are adjacent to each

face, edge, or vertex, can be efficiently answered in the winged-edge representation.

This representation makes it possible to determine in constant time which vertices

or faces are associated with an edge. Another attractive property of the winged-edge

representation is that the data structures for the edges, faces and vertices are each

of a small and constant size.

Since range images supply information about the surface of an object, it is more

straightforward to generate a b-rep from those range images. Also, for path planning

and the other robotic applications, we are more interested in the boundary surfaces

of the object, and b-rep can explicitly supply the information about those.

1.4.3 Matching Methods

The problem of finding the correspondence in two images has been studied for a long

time and still absorbs a great deal of interest in the computer vision community.

The classical method is template matching by measuring correlation between 2-

dimensional images [47]. Barnea and Silverman [4] proposed a method called SSDA.

Instead of directly matching intensity images, features are extracted first, and

then correspondences are found between these features. Feature matching can re-

duce the search space and influence of noises. Among others, relaxation methods

have been developed to solve a number of matching tasks [48], [51], [32]. Hough

transform techniques have also been used for recognizing linear features and circu-

lar features in 2-dimensional case [49], [34], [2]. However, if Hough techniques are

directly applied to vote for the six parameters of 3-dimensional rigid-body trans-

formation, the accumulator size could become intractable or the precision could be

greatly reduced. All these methods were first introduced to match 2-dimensional

intensity images.

There are a few papers [42], [52], [12], [15], [19] discussing matching between

3-dimensional descriptions. However, most of them are concerned with the area of

object recognition, in which the models of objects are known so that they can be

used to guide and verify the matching process.

Oshima [42] proposes a system to recognize stacked objects using range data.

The system describes a scene in terms of planes and smoothly curved surfaces.

Models of objects are built in the system by showing them one at a time. Objects in

an unknown scene are recognized by matching the description of the scene to those

of the models. The matching program picks out regions which are most reliable

and useful for recognition, and matches them to the regions of the models. Once

candidate models are selected, the rest of the scene regions are searched for by

guidance of the models.

In [52], a transformation is hypothesized by initially matching a few scene fea-

tures with model features. The transformation is then tested with the rest of the

features for verification. The matching process is based on a depth-first search of

possible corresponding pairs of boundary components. In order to reduce the search

space for speeding up the matching process, some methods are proposed. For ex-

ample, the parts with simple shape should be ranked low because they may match

many parts of other objects in a scene.

Faugeras [12] presents an efficient algorithm for 3-dimensional scene analysis.

This algorithm uses a segmentation of the surfaces to be identified into geometrical

primitives, the original data being obtained by a laser range finder. The algorithm

estimates precisely the location and orientation of an identified object of the scene.

In their matching algorithm, the primitives are planes and the consistency can be

defined by c (M , io, jo) = Iv;. viO - vj. vjo 1, where (i, j) is the pair to be tested, (io, jo)

is some pair in the previous matching, and the vectors v are the normals to the

corresponding planes.

This relation comes from the fact that there exists a rotation consistent with the

pairing {(i, j), (io, jo)), if and only if v, . v;, = vj . vj,. In other words, the constraint

used here is that the angles between two surface normals in one view should be

equal to the angles between the two corresponding surface normals in the other

view. In their algorithm, two pairs of non-parallel planes are needed for estimating

the rotation and three for the translation.

In references [19] ,[15], and [18], Grimson and his colleagues used local measure-

ments of positions and surface normals to identify and locate objects in a scene.

The objects are modeled as polyhedra having up to six degrees of positional free-

dom relative to the sensors. The approach operates by examining all hypotheses

about pairings between sensed data and object surfaces and efficiently discarding

inconsistent ones by using local constraints on distances between faces and angles

between face normals. Their goal is to determine the power of simple geometric

constraints in reducing the amount of search required to perform this task. While

many other types of information can be used in recognition, Grimson et a1 focus

exclusively on the geometric information available from a model.

They verified the possible matching between sensed data patch and model object

face by checking the similarity of the angles between two face normals in the sensed

data and in the model. They structured the search for consistent matches as the

generation and exploration of an interpretation tree (IT) [25], [24], Starting at a

root node, they constructed a tree in a depth first fashion. At the first level of the

tree, they consider assigning the first measured patch to all possible faces; at the

next level, they would assign the second measured patch to all possible faces, etc.

The number of possible interpretations in this tree, given s sensed patches and n

surfaces, is as high as ns. Therefore, it is not feasible to explore the entire search

space in order to apply a model test to all interpretations.

Grimson et al's algorithm exploits local geometric constraints to remove entire

subtrees from consideration. They use heuristic Search Ordering to find the best

possible interpretations or paths in the IT. The combined area of data patches of

an interpretation is chosen as the quality of measurement. The interpretation with

the largest combined area is considered to be the best interpretation. In addition to

the heuristic searching to prune the interpretation tree, Hough transform is used as

a coarse filter to reduce the size of the initial interpretation tree.

During the Model Test, the feasible interpretations are tested for consistency

with surface equations obtained from the object models. An interpretation is legal

if it is possible to solve for a rotation and translation that would place each sensed

patch on a model surface. The sensed patch must lie inside the model face, not just

on the surface defined by the model face equation.

It is clear that the object model is used both in generating feasible interpretations

and model testing. Our system does not presume that the object model is given and

furthermore we will build this model. In the matching algorithm, we select different

features and local geometrical constraints for matching views.

1.4.4 Symbolic Description from Multiple Views

Hong and Shneier [31] propose a method which involves using intensity images ac-

quired from arbitrary but known locations to construct the spatial representation

incrementally. This is accomplished by projecting the image resulting from each

view into the 3-dimensional world, and intersecting the views in the following way.

Each object in the image projects into the world as a "cone" with its tip at the

center of focus of the lens, and its cross section defined by the boundary of the object.

When two images are acquired from different viewpoints, an object appearing in both

images is constrained to lie in the intersection of the cones from the viewpoints. If it

has been seen many times from different viewpoints, then not only will its position

be more tightly constrained, but so will its shape. Eventually, the whole workspace

should be represented in a way that closely approximates its true state. However,

Hong and Shneier do not explicitly supply a symbolic description. The related works

can also be found in [41],[6].

Some researchers have implemented systems that construct 3-dimensional objects

from multiple stereo views [29], 1561, [30], [44]. Herman, Walker and Kanade present

a system (MOSAIC) that incrementally reconstructs a complex 3-dimensional scene

from a sequence of intensity images obtained from multiple viewpoints. The system

encompasses several levels of vision process, starting with images and ending with

symbolic scene description. The system includes stereo analysis, monocular analysis,

and constructing and updating the scene model.

Each view of the scene, which may be either a single image or a stereo pair,

undergoes analysis which results in a 3-dimensional wire-frame description that rep-

resents portions of edges and vertices of objects. The model is a surface-based

description constructed from the wire frames. With each successive view, the model

is incrementally updated and gradually becomes more accurate and complete. In

their paper, the authors extensively discuss the process of geometric reasoning and

how to make hypotheses on the parts of objects which cannot be seen from the im-

ages available so far. However, instead of implementing the registration mechanism

which can supply the information to generate the rigid-body transformation from

new local view to the global view or between local views, they simply assume this

type of transformations is known. Hence, to further complete the system, a robust

general matcher needs to be developed. Since the input data is from either a single

intensity image or an image pair, the process of extracting the local wire-frame data

is relatively complicated, and matching in the stereo image is very crucial.

Some researchers have used range images directly as the input. Henderson [26]

has developed a method for finding planar faces in range data. In his method, a list

of 3-dimensional object points is assumed to be given by a range finder. To handle

multiple depth maps, points are transformed into one ~roject-centered coordinate

system using transformation data recorded during range-image formation. These

points are stored randomly in a list with no topological connectivity information.

The points are then organized into a 3-dimensional binary tree. Next, each point's

neighbors are determined with the aid of the 3-dimensional tree, and the results

are stored in a 3-dimensional spatial approximation graph. Then, a spiraling se-

quential planar-region-growing algorithm is used to create convex planar faces using

the spatial proximity graph as input. The union of these faces forms the polyhe-

dral object representation as extracted from the range data. In this method, the

transformations between views are assumed known.

Stenstrom [50] describes a method for constructing a full and reasonably accurate

wire-frame description of an object by directly employing range information from

multiple views. The objects are placed on a turntable whose center is fixed in the

camera's field of view and a set of range images is acquired by the rotation of the

turntable. By using the known rotating angles, the transformation between views

can be generated. Then, line features are extracted in each view and finally merged

in one common frame.

Vemuri and Aggarwal [55] utilize both the range image and intensity image to

construct 3-dimensional model from multiple views. Their technique for integrating

the information from multiple views does not require the correspondence relationship

between views to be determined. The object for which the model is to be constructed

is assumed to rest on a plane (base plane). A pattern consisting of a single line is

drawn on the base plane. By observing the orientation of the base plane pattern in

the intensity images from multiple views, the interframe transformation required to

register any two views in a common reference coordinate system is derived. More

papers about utilizing various sensory devices can be found in the review of using

multisensory images to derive the structure of 3-dimensional objects [40].

Xie [58] proposed an interactive expert system for reconstructing 3-dimensional

obstacles based on rule based inference. The purpose of these rules was to eliminate

highly improbable interpretations.

Kim and Connolly [39],[38], and [9] present a method for utilizing the multiple

views efficiently. Instead of selecting viewpoints randomly, they actively determined

the next best viewpoint by setting up a set of optimization criteria so that the system

can get the maximum amount of information from the least number of viewpoints.

Active vision may provide a robust mechanism for reconstruction and recognition

of 3-dimensional objects.

Among multiple view model construction methods, quite a few assume that the

transformations between views are known a priori or can be generated with the help

of prespecified conditions. To make these methods more robust, more sophisticated

matching methods should be used. In our approach, we design an efficient matching

algorithm to find the correspondences between views, define an effective termination

criterion to dynamically control the merging process, and integrate the processes of

matching, transforming, and merging into a whole system.

1.4.5 Organization

The rest of this thesis is organized as follows.

In Chapter 2, a mechanism for hierarchical matching is presented. Triple branch

structure features are first extracted. Then a hierarchical searching algorithm is

applied to efficiently find the correspondences between views. The assumption for

this matching algorithm is that there exist two common faces between views.

Chapter 3 deals with the issue of correspondence versus rigid-body transforma-

tion. The minimum number of correspondences to generate rigid-body transforma-

tion is discussed and practical algorithms are given.

Chapter 4 proposes an algorithm for integrating multiple local views and gradu-

ally updating the global description. A convenient and effective termination criterion

is also given.

Chapter 5 presents some experimental results and analyzes the performance of

the system.

Finally, Chapter 6 summarizes our work. Appendix A describes a synthetic

range image generator which utilizes face normals to distinguish the visible faces

from non-visible ones and uses the Z-buffer technique to process partially visible

faces.

CHAPTER 2

Matching Views

In this chapter, we propose a method for determining the correspondence between

two views, assuming that the position of each viewpoint and the camera setting

parameters for each viewpoint are completely unknown. The input to the matching

algorithm is face models of visible faces in local views. A point (vertex) in one view

and a point (vertex) in another view construct a point pair. Our goal is to find

the correctly matched point pairs (corresponding point pairs) in two different views.

Our basic approach is to use geometric features that are invariant under rigid-body

transformation.

A brute force search would compare each of the distances between the vertices

in one view with each of the distances between the vertices in another view to find

the correspondence. Assuming there are M edges (M distances) in one view, and

N edges in another view, the complexity of brute force search between two views

may be as high as NM. If we treat each of these edges separately, the search

time can be reduced, but then the probability of false matching will be increased

dramatically. Instead, we chose certain type of features with particular structures

which can help the efficient matching algorithm and generate correct rigid-body

transformation between views. The complexity of our matching algorithm is 0 (N 2) .

In the feature matching process, the essential point is a hierarchical search strategy.

By introducing different constraints at different search levels, we can narrow down

the number of candidate features at each search level. The basic feature chosen to be

matched between views in our algorithm is the TRIPLE BRANCH STRUCTURE.

The geometric constraints used in the hierarchical sequence from top to bottom are:

1) the angle between two face normals, 2) the face shape angles in the triple branch

structure, and 3) the distance between vertices.

2.1 Triple Branch Structure

Definition

A triple branch structure as shown in Figure 2.1 consists of three intersecting

and noncoplanar edges. Each of the edges is called a branch. In our case, the

triple branch structure is constituted by two noncoplanar faces (the faces are not

necessarily fully visible). The branch (intersection) constructed by the two faces

is called the principal branch. The rest of the branches are called the subordinate

branches. The intersection point of the three branches is called the triple corner.

All three branches are denoted as vectors whose origins are at the triple corner.

The magnitudes of the vectors are equal to the lengths of the corresponding edges

respectively. The principal branch is denoted as the principal vector G3.

The two faces, which constitute the triple branch structure, are denoted by the

a , left-handed face shape angle

a principal angle

V right-handed face vector

V left-handed face vector

V principal vector

Il , right-handed face normal

Il , left-handed face normal

Figure 2.1: Triple branch structure.

right-handed face of the triple branch structure and the left-handed face of the triple

branch structure. The face whose normal (pointing outward) and surrounding edge

loop (following the direction pointed by the principal vector) meet the right-handed

(left-handed) system criterion is called the right-handed (left-handed) face of the

triple branch structure.

The branch which is in the right-handed face is defined as right-handed vector

G. Its origin is at the corner of the triple branch structure.

The branch which is in the left-handed face is defined as left-handed vector G.

Its origin is at the corner of the triple branch structure.

The angle between the right-handed face normal and the left-handed face normal

is called the principal angle.

The angle between the principal vector and the right-handed (left-handed) vector

is called the right-handed (left-handed) face shape angle. Note that this angle is inside

angle of the face.

Two triple branch structures are called similar when the corresponding principal

angles, the right-handed face shape angles and the left-handed face shape angles,

are the same.

Two similar triple branch structures are called identical when the magnitudes of

the corresponding vectors are the same.

A triple pair is formed by a triple branch structure in one view and a triple

branch structure in another view. If the two triple branch structure in a triple pair

are identical, this triple pair is called the corresponding (or matched) triple pair. A

matched triple pair has four matched point pairs.

There are several reasons for using the triple branch structure as our main ge-

ometric feature. First, the triple branch structure is a very natural feature in the

polyhedral scene. As long as two adjacent faces (even two adjacent partial faces

) exist, so does the triple branch structure. Note that a triple branch structure

does not require that angles among the three branches be orthogonal angles. Its

application goes beyond the trihedral world. This feature can also be generalized

for curved objects.

Second, two matched triple branch structures can sufficiently supply four non-

coplanar corresponding point pairs to generate a rigid-body transformation (see

Chapter 3 for details).

Third, the definition of the right-handed (left-handed) face of a triple branch

structure is independent of viewpoints. It is a fact that if in one view, a face of a triple

branch structure is defined as a right-handed (left-handed) face, then in other views,

the corresponding face of the corresponding triple branch structure is guaranteed

to be assigned as a right-handed (left-handed) face without any information about

correspondence between the views. Since the right-handed (left-handed) vector is

associated with the right-handed (left-handed) face, it possesses the same property.

This invariance property is very helpful, e.g. it can reduce the number of triple pairs

by a factor of two compared with the case where the two subordinate branches are

arbitrarily labeled among views.

Fourth, we could define more complex features as the basic matching features,

but the more complex the feature is, the more search time is needed. Because we are

using a hierarchical search strategy, we do not need to find an exact match at the

low search levels. Instead, our purpose is to narrow down the number of candidates

for the next search level. Hence, we chose the triple branch structure as the basic

matching feature.

Fifth, we could use three non-intersecting branches. For example, instead of only

checking the angles between two adjacent faces, we could check the angles between

any two faces [19]. However, this approach could bring in some weak points. First,

it obviously increases the number of basic matching features so that it costs more

search time. Secondly, when two faces are far away from each other, it is very

possible that one of the corresponding faces will be out of each other's view, so that

a search for such types of face pairs becomes unnecessary.

Finally, we could use one face instead of two adjacent faces as a basic matching

feature. But this also increases the search time and brings in more uncertainty or

false matching. However, in case the triple branch structure does not exist, this can

be one of the choices and the hierarchical matching strategy can still be used.

When a matching algorithm uses the triple branch structure as the basic match-

ing feature, the following assumption must be satisfied so that the possible matching

can be found:

In any two views, there exists at least one pair of adjacent faces (or

partial faces) in common, i.e. these two faces in one view correspond to

two faces in another view.

Q right-handed face shape angle

V , right-handed face vector

V principal vector

Il right-handed face normal

Figure 2.2: Face shape angle.

A note about distance and angle calculation is in order here. The Euclidean

distance is directly used to measure distances. To reduce ambiguity in derived

angles, we define a face shape angle cu inside a face, see Figure 2.2. Since subroutine

atan2(y,x) has a 180' ambiguity, we propose the following method, which utilizes

the existing information about face normals.

Let face shape angle be a, principal vector 2 , left-handed(or right-

handed)face vector v', and face normal n'

step 1 Calculate angle ti between vector 2 and vector v' and take the

angle in the first quadrant.

-1 377 ti = COS 1 1 ~ 1 1 1 1 . 1 1 o s x ;

step 2 Decide in which quadrant v' is in respect to c3
-. + +

Let c3 = X and ii = 2. First, determine Y

P = Z x r 7

Then, decide which quadrant of this XYZ frame v' is in.
+ +

s i g n l = s i g n (G X) a n d s i g n 2 = s i g n (GY) where

the function sign takes the sign of its argument.

step 3 Determine the face shape angle

(if s i g n l 2 0 a n d s i g n 2 2 0

n - B if s i g n l 5 0 a n d s i g n 2 2 0 I n + 6 if s i g n l < 0 a n d s i g n 2 5 0

(2a - B if s i g n l > 0 a n d s i g n 2 < 0

2.2 Hierarchical Search Algorithm

The basic idea of our hierarchical search algorithm is that the search for the corre-

sponding triple branch structures is implemented at different levels. At each finer

search level, new and more stringent constraints are added so that the number of

matching candidate triple branch structures becomes fewer. At the same time, the

match probability of each of the corresponding triple branch structures gets pro-

gressively higher.

Since the calculation of angles between edges does not need the complete edge

information, only partial edges will do. However, the calculation of the length of an

edge needs both end points of this edge. The distance constraint is more stringent

than the angle constraint. Because of that, we check the angle match before the

distance match so that even in the case of partially visible faces, the search for the

match can still be carried out to a certain level and supply a relatively small number

of possible matching candidates.

Our matching algorithm also features "priority queue" and "feedback verifica-

tion". In the prioritizing procedure, the potentially matched point (vertex) pairs

between views become more evident. The feedback verification procedure is used to

confirm that the finally resulting potential correspondences are the best ones among

all. Figure 2.3 shows the flowchart of this algorithm. Let us now discuss it in some

detail.

2.2.1 Similarity Check

Matching principal angles

At this search level, the principal angles of the triple branch structure in two

views are selected as a constraint. For each of the principal angles (YQJ in one view,

the algorithm tries to find all possible matching principal angles, say a 3 , ~ in another

view. If the triple branch structures are the same, the principal angles of them must

be the same. To handle the case where some distortions of the original data exist,

(it may occur when any type of noises or calculation errors are introduced in any of

the processing stages), we define two angles being the same within a small variation

56, where S 2 0.

Note that the condition that the same triple branch structure must have the

same principal angles is only a necessary condition. Although there may exist some

false matches in the resulting candidates, the number of candidates to be checked

Begin v
Input two local views and extract
triple branch structures

principal angles

-v*
Select a new triple and compare the

No *

Compare the face shape angles

No

The dotted-line frame indicates where the priority queue can be applied.

Figure 2.3: Hierarchical search algorithm - continued.

31

Compare magnitudes of corresponding
vectors I

............................
I

v
I

I Build priority queue for identical I
1 triple pairs I
I I

.
Generate a set of transformations and
verify the correct one

Output the matched point pairs

Figure 2.4: Hierarchical search algorithm.

at the next level is reduced.

Matching face shape angles

Since the right-handed face shape angle and the left-handed face shape angle of

a triple branch structure are uniquely defined, and are independent of rigid-body

transformation, we need only to check the similarity between the right-handed (left-

handed) face shape angles in one view and the right-handed (left-handed) face

shape angles in another view. At this level, the face shape angles are added as the

new constraints into the similarity measurement.

As defined in the above subsection, the face shape angles reflect the local shape

of the faces which the triple branch structure lies on. The same faces must have

the same local shapes. A small variation (k6, where6 > 0) is also introduced in the

process of checking similarity faces shape angles to increase the algorithm's tolerance

of noise and calculation error.

The condition that the same triple branch structures must have the same right-

handed face shape angles and the same left-handed face shape angles is a necessary

condition and not a sufficient condition. It only means that if any of the two

corresponding face shape angles are not the same, the triple branch structure can

not be the same. But, by using the face shape angle constraint, we can further

reduce the number of matching candidates for the next search level without losing

the correct matching candidates.

2.2.2 Identity Check

The invariance of distances between vertices is another intrinsic feature of rigid-body

transformation. At this search level, the magnitudes of vectors are used as the new

and more stringent constraint to verify the identical triple branch structures. If the

corresponding magnitudes of two similar triple branch structures are the same, then

these two triple branch structures are identical and they are the potentially matched

candidate or one of the matched candidates if there is more than one identical triple

branch structure in one view.

2.2.3 Priority Queue

Since the identical triple pairs are still the candidates for matching views, we need to

verify them. Instead of randomly selecting the candidate triple pairs for verification,

we build a priority queue to find the most likely corresponding point pairs and use

these pairs as the candidates to determine the correct match between views. We

may reduce the computational time for the verifying procedure (which is usually

time-consuming) by pruning this queue rather than exhausting all the potentially

matched triple branch structures.

The earlier set of geometric constraints considered only matches between indi-

vidual triple pairs. The constraints can be strengthened by propagating the effect of

a legal match to match the point pairs in its neighboring triple pairs. More weight

should be put on the point pairs that have been shown matched pairs by several po-

tentially matched triple pairs. It is likely that one point pair is mismatched because

of one mismatched triple pair. However, it is much less likely that a mismatched

point pair will appear simultaneously in several independently matched triple pairs

(it is less likely that all the mismatched triple pairs made the same mistake). In

general, only can the correctly matched point pair be shown in several matched

triple pairs. By using the following prioritizing procedure, we virtually group the

locally linked triple branch structures (two triple branch structures share at least

one branch) and find the potentially matched point pairs whose matches are given

by the group of matched triple pairs. Here is the prioritizing procedure:

1. Each candidate triple pair votes its four corresponding point (vertex) pairs

(the end points and starting point of the three vectors).

2. An accumulate array is used to record each vote. For each voting, the score

of the corresponding point pair is incremented by one. For example, if there

are N triple pairs containing the same point pair, then the score for this point

pair is N. In other words, there exist N potentially matched triple pairs which

indicate that the two points (vertices) match each other.

3. After the score is accumulated for each point pair, the vote for each of the

candidate triple pairs is determined by adding the scores of its four point

pairs.

4. The triple pair with the highest score is selected as the first one to be verified

in the later verifying process, the triple pair with the second highest score is

chosen as the second one to be verified, then the third, and so on, until certain

termination criteria are met.

The figures in the Chapter 5 show the voting results in experiments. The vot-

ing procedure can be applied to the verification of either the similar triple branch

structure pairs or identical triple branch structure pairs.

2.2.4 Feedback Verification

Through the previous processes, the number of the identical triple branch structures

is small. However, if there is more than one triple branch structure identical to the

one in another view, then a wrong transformation could be deduced based on the

false correspondences. To avoid this, we use the following verifying process:

1. Use one of the candidate corresponding triple branch structures to generate a

transformation matrix.

2. Transfer the points in one view (view A) into the other view (view B) by

using this transformation matrix B T ~ . Then, calculate the number of points

which are from view A and overlap with the points in view B, by the distance

l l B Q i - BTa AE.ll, where Bdi is the point in view B and "E is the point in

view A. Once one of such distances is smaller than a threshold, the score for

this transformation is increased by one.

3. Repeat steps 1 and 2, for each of the candidate corresponding triple branch

structures.

4. Select the transformation with the highest score as the most likely correct

transformation between the views, if its score is larger than the predefined

'Throughout this thesis, by the phrase "transforming a point from frame A to frame Bb' we mean

transforming the coordinate of the point observed from frame A to frame B.

threshold.

It is obvious that the method to verify the correct match at this stage is very

time-consuming and sometimes so much time is required that it is not possible to

use a brute force search method.

Fortunately, in this hierarchical matching algorithm the number of candidates

to be verified at the last stage generally becomes so small that the feedback check-

ing turns out to be affordable. Another merit of this algorithm is that even if for

some reason, the matching measurement stops at a certain intermediate search level,

we can still get a relatively good correspondence. For example, if we do not have

enough information to calculate the length of edges so that we cannot really verify

the identity of the triple branch structure, but the potentially matched similar triple

branch structures still provide very good information. In many cases, based on this

correspondence information, we can still derive the correct rigid-body transforma-

tions.

CHAPTER 3

Correspondence and

Transformat ion

This chapter discusses the theory of generating rigid-body transformations from

some known corresponding point pairs between two local frames and algorithms to

calculate the transformations in practice. A variety of literature exists on this topic

[12], [I]. Some of the results presented in this chapter may be known implicitly.

However, we believe that it is important to state them explicitly. A corresponding

point pair means a pair of 3-dimensional coordinates (AP, Bd) [lo] of the same point

in the 3-dimensional space observed from different co-ordinate frames (frame A and

frame B) related by a rigid-body transformation BTA, Bd = 'TA Ap. A homoge-

neous transformation matrix is used as a representation of rigid-body motion, since

this representation is easily manipulated by matrix operations and is often used in

the robotics world. Note that an arbitrary homogeneous transformation represents

a larger set of transformations (including perspective transformation, scaling, etc.)

than just the set of rigid-body transformations.

Assume that there exists a set of corresponding point pairs { (" R , B Q i) , i =

1 t o N}, where f A g , i = 1 to N) and l B d i , i = 1 to N) are the coordinates of a

set of rigid 3-dimensional points observed from different frames (frame A and frame

B) related by a rigid-body transformation B T ~ . The problem then is as follows:

based on a subset {(Ag, Bgi), i = 1 to M) , where M 5 N, of the corresponding

point pairs, generate the rigid-body transformation B ~ A which can satisfy the whole

set of corresponding point pairs.

The least-squares-fit (LSF) method is commonly used (131 to deal with a case

where a large number of corresponding point pairs is available. However, in some

cases, the number of available corresponding point pairs may be very small (depend-

ing on the shape of objects, objects' layout, viewing angle, etc). Hence, it becomes

more important to know explicitly what is the minimum number of corresponding

point pairs for generating such a rigid-body transformation that satisfies the whole

set of corresponding point pairs.

3.1 Transformat ion and Four Corresponding Point

Pairs

We are given a set of corresponding point pairs {(Aa, Bgi), i = 1 to N}, as defined

at the beginning of this chapter. Under what circumstances, is a transformation

which satisfies a subset of the corresponding point pairs of this set, the rigid-body

transformation BTA for the whole set of the corresponding point pairs?

Lemma 1: An arbitrary transformation is a rigid-

body transformation BTA, which transforms all the points in frame A to

their corresponding points in frame B, if and only if this transformation

satisfies a t least four non-coplanar corresponding point pairs among the

set {("a, B Q i) , i = 1 t o N) .

This lemma implies that based on four non-coplanar corresponding point pairs

in the set { ("fi, Bd;), i = 1 to N) the rigid-body transformation BTA can be

derived as below.

Given four non-planar corresponding point pairs between frame A

and frame B, { (A f i , B Q i) , i = 1 t o 4) .

where

Since M p is composed of four non-coplanar points, the rank of the

matrix M p is equal to 4. So the inverse matrix M;' always exists and

the solution BTA is unique.

'The proof is given in Appendix B.

3.2 Minimum number of Corresponding Point

Pairs

It is assumed that there exists a set of corresponding point pairs, { (" f i , Bdi), i =

1 to N}, where A$i and ' Q i are the coordinates of a set of rigid 3-dimensional

points observed from different frames related by a rigid-body transformation BTA.

The following lemma gives the minimum number of corresponding point pairs needed

to generate the rigid-body transformation BTA.

Lemma 2: At least three non-colinear corresponding point

pairs are needed to generate the rigid- body transformation BTA.

Note, however, that an arbitrary transformation which satisfies three non-colinear

corresponding point pairs is not necessarily a rigid-body transformation for all the

points between frames. The correctness of Lemma 2 is proved by the following

discussion.

Since in the 3 0 space, rigid-body transformation can be specified by six param-

eters (three rotation parameters and three translation parameters), there are only

six unknowns to be determined to solve the transformation equation.

One misleading argument could be that since two points in the 3 0 space have six

coordinates, it follows that two corresponding point pairs are enough to generate the

rigid-body transformation; using these six coordinates, one can write six equations

for those six unknowns. However, it can be proved as follows that those six equations

are not independent. Under the assumption that frame A and frame B are related

by a rigid-body transformation B ~ A , the distance A D;j between any two of the points

in frame A is the same as the distance BD;j between the corresponding points in

frame B, i.e., ADij = 'Djj. From this it follows, that

Similarly, we can derive the relationship between any one of the six coordinates

and the remaining five. It is clear that among six coordinate pairs from two corre-

sponding point pairs, only five coordinate pairs are independent and the other one

is dependent on the rest. Therefore, two corresponding point pairs are not enough

to generate the rigid-body transformation B T ~ .

Now, let us investigate the case when there are three corresponding point pairs

(" R , "Qi), (AFj, BQj) and (" a ,

Among three non-colinear corresponding point pairs in 3 0 space, there are nine

coordinates. However, there are three distance constraints based on the assumption

of rigid-body transformation, i.e., AD;j = BDij, ADjk = *Djk and ADik = BD;k.

After the distance constraints are applied, there are only six independent coordinate

pairs left. Since we only need to derive six unknown parameters for rigid-body

transformation, we can write down six independent equations to solve the problem.

Note that the six equations, in terms of three rotation parameters and three

translation parameters are non-linear equations. A general analytic solution for

such non-colinear equations is not known. Hence, numerical techniques are used

but they may not guarantee a solution.

We present a practical method which needs only three non-colinear corresponding

point pairs and linear mathematical calculation to generate the rigid-body transfor-

mation. In this method, a hypothetical corresponding point pair is constructed as

the fourth corresponding point pair. There are many methods to generate the fourth

point if this point is not co-planar with respect to the three points given, and has a

unique relationship with these three points. In our method, the cross product of two

vectors determined by the three points given is used to generate the fourth point.

Briefly, the method is:

Given three non-colinear corresponding point pairs between frame A

and frame B, {("e, Bgi), i = 1 t o 3)

1. Generate the fourth point pair {"p4, BG4)
4 = & + " & and d4=d1+B@3

where

A@3 = A@l X AG2, A@l = A@2 - A F l , = A p 3 - A F l

+

"G3 = "ci; x BCi;, Bwl = BQ2 - BQ1 ,B e2 = =(& - BQI

2. Derive the rigid-body transformation

BTA = M Q M ~ l

where MQ and M p are defined as in section 3.1.

3.3 Best Estimate

Since the original data may be distorted by many kinds of noise (such as sensor

noise and moving parameter measurement error), one transformation may not fit all

the corresponding point pairs. In this case, we need an estimation process to reduce

the affect of noise (assuming that noise is zero mean). A least-squares-fit method

is used to generate the estimation of transformation between views. In most cases,

the greater the number of corresponding point pairs used, the more accurate is the

derived transformation.

The estimated transformation [13] is given below

where N is the number of corresponding point pairs. From Lemma 1, it follows

that N 2 4. and B@i are the corresponding points in local frame A and local

frame B respectively. Note that when the influence of noise is reduced to zero, this

method is still valid and generates the correct transformation between views.

In some controlled situations, parameters of rotation and translation are given

(e.g., the motion parameters for the displacement of PUMA arm are known). How-

ever, even in such cases, errors often exist in the transformation matrix. These

errors in the transformation matrix can be eliminated using the LSF. To do this,

we first transfer the local views into a global frame. Then in the global frame, we

find as many "identical vertices" as possible, (see Chapter 4). Then we refine the

transformation using the LSF method.

CHAPTER 4

Merging Multiple Views

In this chapter, we present a method for merging multiple views. The main function

of the merge module is not just transferring all the features in the different views

into a common frame, but integrating selectively the features and local symbolic

descriptions coming from different views. To build a complete description of a whole

object, we assume that each face of the object appears in at least one local view.

The flow chart for merging is shown in Figure 4.1. First, all the features (ver-

tices, edges, faces, etc.) are transferred from their local frames (viewpoint centered

frames) to a universal global frame based on the estimated rigid-body transforma-

tions. Then, duplicated features are thrown away and new features are added to

the symbolic description in the global frame. A termination criterion is used to con-

trol the completion of integration processing. In the following sections, we discuss

1) similarity measures between features, 2) the termination criterion, and 3) the

integration algorithm.

f 3

Transfer features from local

frame into global frame.
L /

c I 1
Check similarities of features..

Update the description.
L J

f \

Check termination criterion.

Complete integration process.
\ J

Figure 4.1: Flow chart for merging multiple views.

4.1 Similarity Measures

The merging process needs to determine which features are the same and which are

not, so that the new features can be added into the b-rep description model in the

global frame. The similarity of two features (vertices, edges, faces, etc.) can be

verified based on the distance between their corresponding vertices. Since all the

features lie in the same global frame, if two features are the same, they must lie

close to each other, i.e., the distance between them should be close to zero.

In practice, however, a threshold should be set interactively to make the similar-

ity verification method more robust when noise and calculation errors exist. Note

that this threshold is influenced by the scale and arrangement of objects, especially

by the minimum distance between two different vertices.

Similarity of Two Vertices

Let " P be the point transferred from local frame A, bP be the point transferred

from local frame B. If the distance Dap,sp between vertices " P and b P is less than

a threshold 6,

D a p , b p 5 6, where 6 2 0, these two vertices are considered to be the same.

Since the distance between the two nearest points on an object affects the thresh-

old, we can somehow use the minimum distance of two vertices on an object to

estimate the upper-bound of 6. The threshold should be less than half of the min-

imum distance between vertices. Otherwise, a transferred point could probably be

misclassified. The knowledge of the noise process and calculation errors can also be

helpful in evaluating 6 here.

Similarity of Two Edges

Let "E be an edge transferred from local frame A, bE be an edge transferred

from local frame B. The similarity measurement between the edges " E and bE is

defined as

where a PI and a Pz are the end points of edge a E, b ~ l and p2 are the end points of

edge b ~ . Since the end points of an edge are labeled arbitrarily, we use the smaller

average distance between the two possible combinations.

The two edges are considered to be the same, if DaE,bE < be, where 6, is a

threshold and 6, 2 0.

Similarity of Two Faces

To measure the similarity of two faces, we use the averaged point distance (APD)

between the two faces.

Let the vertices of a face " F transferred from frame A be "Pi, i = 0 t o N - 1,

and the vertices of a face bF transferred from frame B be i = 0 t o N - 1.

The APD between these two faces is defined as

where i = O,1, ... N - 1 and k = i + j Mod N .

Note that in the face model, a face is specified by a sequence of consecutive

bounding vertices, while the start point is arbitrarily chosen among the vertices in

this sequence. Hence, to calculate the APD of two faces, we only need to check

those combinations generated by cyclically shifting the sequence of the bounding

vertices of one face. This measurement may still be valid in the case where one face

is partially visible. When a fairly small portion of the vertex sequence of a face is

missing, we can shift the remaining portion of this vertex sequence and compare it

with the whole vertex sequence of another face.

If the APD between two faces is less than a threshold Sf (Sf > 0), D a F , b F 5 f Sf,

these two faces are the same.

Note that the APD is based on a set of distances between points, so that even if

one of the distances is fairly large (compared with the minimum distance between

vertices on an object), the resulting the APD may still fall within the range of Sf.

Detect ion of Identical Vertices

In practice, we use the following two-step method to detect identical vertices: 1)

Find the identical faces according to APD face similarity measurement. 2) Within

each pair of identical faces, find identical vertices based on the similarity measure-

ment of two vertices.

This two-step method is helpful especially when some vertices of different faces

are close to each other. For example, in Figure 4.2, the distance between the vertex

Pa of the face Fl and the vertex Pb of the face fi is very small. F3 (dotted-line) is

a face transferred from another view. If the identity checking is directly based on

the distance between vertices, the vertex PC of face F3 could be easily mismatched

with the vertex Pa. However, when using the APD first, we find that F2 and F3 are

the same. Then, among the vertices of F2 and F3, the vertex PC can be correctly

Figure 4.2: Example of checking the identical vertices.

matched with the vertex Pb. Therefore, the above method is more robust than the

one which only checks the similarity of isolated vertices.

4.2 Multiple View Integration

Using the generated transformation matrix between views, we transfer two different

local views into a global frame so that the the combined description has more infor-

mation than either of the two local views contains. This newly generated description

is successively merged with another view so that the resulting description is closer

to a complete one. This process continues until a termination criterion is met.

4.2.1 Terminat ion Criterion

As assumeed at the beginning that the objects involved in this research are closed,

bounded, and regular polyhedra [45]. The object with a dangling face, an opening on

a surface, or self-intersecting face is invalid. However, in each local view, the object

is partially described. In a range image, a jump edge often exists to which only one

face is found and the other one is "missing". During the process of integrating such

local views, incomplete parts, such as dangling faces and openings on the surface,

do possibly exist in the intermediate result. In such a case, the integration process

has to be continued. On the other hand, as soon as all the "missing" information is

found and the complete description is acquired, the integrating process should stop

automatically. Hence, a convenient and effective termination criterion is a must.

Terminat ion Criterion: If every face has a closed cycle

of bounding edges and every edge is shared by two such faces, then the

merging process can be terminated, otherwise, one or more additional

views are required to complete the process.

When this termination criteria is met, the integration procedure should stop and

a complete description of polyhedral objects should be obtained.

If the above criterion holds, then it implies that all the faces are

connected with each other. Because the boundary of a face consists of

connected edges and each edge attaches to two faces, one can start at

any point on one face, go in any direction, cross the boundary of this

face and arrive on another face. For the same reason, it is possible to

get from every face to every other face by crossing edges formed by these

faces, as long as these faces form one polyhedron. It is also clear that

under this criterion, it is not possible for a dangling face to exist because

a dangling face must have some edges to which only one face is attached.

Furthermore, if the criterion holds, all the faces will construct a closed

surface without any openings. Assume that the criterion holds and yet

there exists an opening on the surface. From this it follows that there

exist edges to which only one face is attached (e.g. edges which constitute

the boundary of the opening). However, this conclusion conflicts with

the condition given.

The above discussion indicates that if the termination criterion holds,

then the integrated faces of the object in question are connected to each

other and the surface of this object is closed. There exist no dangling

faces and openings on the surface of the object. To put it another way,

the description finally generated under the termination criterion is the

complete description of a valid polyhedral object.

4.2.2 Data Structure

In each view, the visible parts of objects are represented in a data structure called

partial-view-list, which contains the geometry of vertices, edges and faces of the

visible part. In addition, the data structure also captures the geometrical and topo-

logical relationships among these features. The following shows the main tables in

the partial-view-list.

Each vertex, edge and face is labeled and assigned a unique serial number. All

the tables in the partial-view-list are indexed by these serial numbers.

In Table f-v, vertices are ordered in a sequence so that face normal can be

calculated according to the right-handed screwing rule.

In table e-f, the relationship between an edge and faces is stored. It tells which

two faces attach to an edge. Also, it indicates which attached face is the left-handed

face and which is the right-handed face, after the start point and end point of the

edge being specified.

In each of the tables mentioned above, there is a status flag SF which indicates

whether the geometric feature (edge, face, etc.) is complete or not. For instance,

when the status flag in table f-v is set to one, SF = 1, it means that some of the

bounding edges of the face are missing. The status flags are very useful in dealing

with the partially visible faces or edges.

Of course, there is redundant information in the above tables and we can fur-

ther compress it and represent this information in a more compact format such as

Winged-edge representation. However, we keep this explicit representation, because

Table 4.1: Tables in the partial-view-list.

Table vertex- T (coordinates of visible vertices)

Vertex Label / X Coordinate Y Coordinate Z Coordinate

Table e-f (two faces attached to an edge)

Edge Label I Start Point End Point L-Face R-Face

Table f-v (vertices in a face)

Face Label 1 Vertex 1 Vertex 2 Vertex 3 Vertex N

Table o-f (faces in an object)

Object Label I Face 1 Face 2 Face 3 Face N

it directly supplies required relationships among vertices, edges and faces, rather

than requiring us to derive this information. Since during the merge and match-

ing procedures, the relationships among vertices, edges and faces are frequently

requested, using this type of explicit representation saves computation time.

For each view, a set of look up tables is used to remember the corresponding in-

formation between views. These look-up tables significantly reduce the computation

cost in the merging process.

The data structure used for the final global description is called the complete-

view-list. It has the same structure as the partial-view-list, except that is contains

a complete description of the whole object.

4.2.3 Updating Description

As indicated at the beginning of this chapter, the purpose of the merging procedure

is to use the correspondence between views to link all the information which is

described in different views into a global description. Since each local view contains

different information, by merging the partial descriptions of local views, we can

incrementally add new information to the description in a global frame and finally

get the complete description of objects.

Figure 4.3 shows a flow chart of our merge algorithm. The input to this module

is the partial descriptions of a 3-dimensional object (the partial-view-list for each

of the local views). The output of this algorithm is the completed-view-list which

contains the complete information about the object.

transfer another local view to global frame

I

chose one face pair between the transfered
local view and the global view

No
4

Are all the face

Figure 4.3: Merging - continued

add all new vertice, edges and faces I into the global descnpuon

update the tables for new relations h
No

output the global symbolic description

Figure 4.4: Merging

To update the previous global description, first check whether a feature (vertex,

edge, face, etc.) transferred from a new local view is present in the global descrip-

tion. If so, simply get rid of the transferred feature, because this feature is already

considered in the previous global description. If there is no corresponding feature,

then this feature is a new feature which should be added into the global description.

Besides adding the geometry of a new feature into the global description, we also

update the previous description by adding all the relationships associated with the

new feature, e.g., merging the relationships stored in the e-f tables.

The whole algorithm is summarized in the following steps:

1. Select a global frame which could be the same as one of the local view frames.

The transformation between the selected global frame and one of the local

frames is known.

2. Transfer the partial description in another local frame into the global frame.

3. In the global frame, check which faces transferred from different views are

identical or overlap each other. Based on the result of this checking, find the

same vertices and edges transferred from different views and update look-up

tables with the information about correspondence.

4. Update the symbolic global description (complete-view-list) by adding the new

faces, edges and vertices.

5 . Update all the relationships. When two local descriptions are merged, new

relationships among face, edge, and vertex, which are not given in either local

description, may occur.

6. Check whether or not the termination criterion is met. If this criterion is

satisfied, then stop and output the final global description. Otherwise repeat

step 2, 3, 4, 5 and 6, until the termination criterion is met, or all the local

views are integrated.

CHAPTER 5

Results and Analysis

This chapter reports the experimental results on synthetic range images and provides

an analysis of system performance. First, we present results for the noiseless case.

Two objects, object I and object I1 were used in the experiment. Object I was a car

and object I1 was a seven-faced polyhedron. A set of synthetic range images were

derived at different viewpoints for each object. The size of the range images is 150 x

150, the depth data were represented in 8 bits. The distance between the camera and

the object is around 100 units. Both sets of range images satisfied the assumptions

that there exist at least two adjacent faces common in two views and that each face of

the object exists in at least one view. Note that there were many symmetric features

in each of the test objects that challenged our matching algorithm. Since we assumed

that face models of visible surfaces of objects from low level image processing were

available, in our experiments these face models were manually entered. The XYZ

coordinates of vertices were represented as real numbers. The hierarchical matching

algorithm was first applied to obtain the corresponding point pairs between views.

Then, based on this, the solid-body transformations between views were generated

and refined if necessary. Finally, all the local views were transferred into a global

frame and all the local descriptions were consolidated and a complete 3-dimensional

b-rep description was created as the output. Both the objects were successfully

handled by our system. Next, we tested our system on synthetic ranges with noise

added. The results are discussed in Section 5.4

Object I and I1

The object car (see Figure 1.2), had seventeen vertices, twenty-seven edges and

thirteen faces. It had many symmetric local parts which challenged our system.

Five range images, shown in Figure 5.1, were taken from different viewpoints to

cover the whole object. The face model of the visible surface of the object car in

each view ' is shown in Figure 5.2. The partial-view-list for the object car in each

local view is shown in Table 5.1 and Table 5.2.

As described in Section 4.2.2, each vertex, edge, or face was assigned a serial

number respectively. The physical positions and relationships are given in the form

of a set of tables. Vertices of a face are listed cyclically in the counter-clockwise

direction. For instance, the XYZ coordinate of vertex 11 (in Table vertex-c_T) in

this local view is (84.26, 70.98, 92.54) 2. Face 1 (in Table f-v) is specified by the

'This is given, by assumption, from low level image processing.

2The numbers are rounded for display.

Figure 5.1: Multiple range images of object I.

62

rtex 11

Figure 5.2: Face model of visible surface of object I.

63

Figure 5.3: Multiple range images of object 11.

64

Figure 5.4: Face model of visible surface of object 11.

65

Table 5.1: Car-view2 (view 1 in object car) - continued.

vertex-?: (XYZ Coordinates of vertices)

Vertex Label X Y Z
1 42.99 30.00 129.05
2 32.30 70.98 122.54
3 30.00 44.99 106.57
4 49.80 131.60 152.85
5 114.75 116.60 145.35
6 101.76 131.60 122.85
7 80.40 115.62 97.86
8 38.83 115.62 121.86
9 72.40 87.90 84.01
10 30.83 87.90 108.01
11 84.26 70.98 92.54
12 71.56 44.99 82.55
13 97.25 55.98 115.04
14 84.55 30.00 105.05

Num-VEFOS (The number of geometric features in the view)

Vertex Edge Face Object

Table 5.2: Car-view2 (view1 in object car).

e-f (The two faces attached to an edge)

Edge Label Start Point End Point L-Face R-Face
1 2 3 4 0
2 3 1 3 0
3 5 6 1 0
4 6 4 5 0
5 6 7 6 5
6 7 8 8 5
7 8 4 0 5
8 8 10 8 0
9 10 2 7 0
10 7 9 6 8
11 6 11 1 6
12 9 11 6 7
13 9 10 7 8
14 2 11 7 4
15 11 12 2 4
16 12 3 3 4
17 12 14 2 3
18 1 14 3 0
19 13 11 2 1
20 14 13 2 0
21 5 13 0 1

f-v (vertices in a face)

Face Label Vertex 1 Vertex 2 Vertex 3 Vertex 4
1 5 13 11 6
2 11 13 14 12
3 1 3 12 14
4 3 2 11 12
5 4 6 7 8
6 6 11 9 7
7 2 10 9 11
8 8 7 9 10

cyclical vertex sequence: vertex 5, vertex 13, vertex 11, vertex 6 and vertex 5 (see

Figure 5.2). The right-handed face and the left-handed face of edge 11 (in Table

e-fl are face 1 and face 6 respectively. Face 0 in the table that means the face has

not been detected.

Test object 11, which had 10 vertices, 15 edges, and 7 faces, was a more complex

polyhedron which contrasted with the highly symmetric object car. Five views

and the corresponding face models of visible surfaces are shown in Figure 5.3 and

Figure 5.4.

The number of local views needed is influenced by different selection of view-

points. For example, the complete b-rep description for the object car can be ob-

tained by integrating either view 1, view2, view 3, and view4 or view3, view4 and

view5. This fact reveals the necessity of optimally chosing viewpoints with an active

vision mechanism - a widely open issue (see Chapter 6).

5.2 Performance of Matching Algorithm

This section presents the performance of the hierarchical matching algorithm. A set

of triple branch structures is first extracted from the face models of visible surfaces

of the object in each local view. Then, the hierarchical search strategy is applied

and different constraints are applied to reduce the computation time for matching

these features between views.

Triple Structures

Examples of the triple branch structures in the local views, Car-view1 and

View 1 View 2

Figure 5.5: A triple pair.

Car-view2, are shown in Tables 5.3 and 5.4 respectively. There are 22 triple branch

structures in local view Car-view1 and 12 in Car-view2. The number of triple fea-

tures could be doubled, if the feature is defined improperly (see the discussion in

Chapter 3). The invariance property of the triple branch structure reduces the num-

ber of possible triple pairs by a factor of two (compared with the case where the two

subordinate branches are arbitrarily labeled).

Geometrical Constraints

Instead of spending equal computation costs (checking six constraints, three

angles and three lengths) on every triple pair, we distribute these six constraints at

different search levels and let those triple pairs which are more likely to be correct

matching pairs receive more attention.

An example is shown in Table 5.2. The number in each column indicates how

many triple pairs have satisfied the constraint shown at the top of the column. It

is clear that only a small number of triple pairs need to be checked by all the six

Table 5.3: Triple for Car-viewl.

VlS, V2S, and V3S are the start ~ o i n t of the vectors.
VIE, V2E, and V3E are the end point of the vectors.

Table 5.4: Triple for Car-view2.

VlS, V2S, and V3S are the start point of the vectors.

VIE, V2E, and V3E are the end point of the vectors.

Triple
Label

1
2
3
4
5

vector 1

1 1 2 1 1 1 1 1 2 1 1 1 1 9 1 1 1 1 5 1 2

V lS
3
5
6
11
12

5

VIE
4
3
7
5
1

vector 2
V2S
3
5
6
11
12

V2E
2
11
5
12
10

vector 3 Left-handed
face Label

5
2
2
3
3

V3S
3
5
6
11
12

right-handed
face Label

1
1
4
2
5

V3E
5
6
9
9
11

Table 5.5: Number of triple pairs passed at different searching levels.

constraints. The threshold for comparing if two angles are equal was set at 5'. The

threshold for checking if two vectors have equal magnitudes was 4 units.

View

A

View0

View2

View3

View4

View3

View1

View2

Priority Queue

Instead of verifying all the candidate triple pairs, our algorithm sorts all the

candidates into a priority queue to find those triple pairs which are most likely to

represent the correct match between the views. First, each triple pair votes for its

View

B

View1

View1

View1

+View2

Viewl

+View2

+View3

View4

View4

View1

+View4

Average

Triple

Pairs

484

264

612

880

396

484

432

507

Same

Principle

76

40

68

140

68

76

64

76

Same

Face Shape

30

7

14

3 1

14

20

12

Same

Magnitude

22

4

12

2 1

12

12

7

18 13

Vertex

V i e w 1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Figure 5.6: Score of vertex pairs for Car-view1 and Car-view2.

vertex pairs. Figure 5.6 shows the voting result between local views Car-view1 and

Car-view2. The potentially matched vertex pairs have received more votes, e.g. the

score of vertex pair (1 1,9) equals 4.

Table 5.6: Scored triple pairs for Car-view1 and Car-view2.

Then, each of the triple pairs is graded with the score of its vertex pairs. Table 5.6

shows the triple pairs and their scores. The highest score is achieved only when all

the triples in this group find the correct matches. With such a prioritizing process,

we implicitly group several locally connected triples together and check the correct

match based on such groups instead of individual triples.

The experimental results indicate, as shown in table 5.7, table 5.8 and table 5.9,

that the triple pairs with the highest score almost always appear to be the correct

match. When the scores of triple pairs decrease, the chances of mismatching increase.

The third column of the tables indicates whether a triple pair stands for the correct

match between views. According to this fact, the triple pairs should be chosen for

verification in order from the highest score of these triple pairs to the lowest one. It

is also possible to test only a few candidate triple pairs with the highest scores.

Table 5.7: Triple pair score versus correct match for Car-viewltrans and Car-view2.

I lriple Pair Score I lriple Pair Label Correct Match '! 1
Yes I

Verification

34
3 3
33
33
32
32

The next step is to verify whether the triple pairs chosen can generate the correct

transformation between views. This is the most time-consuming procedure of all.

Y
10
11
23
2
3

Yes
Yes
Yes
Yes
Yes
Yes

However, after the previous search, the number of candidate triple pairs left for this

test is already much smaller compared with the number of original triple pairs.

Each candidate triple pair is used to generate a transformation. Then, the points

in one view are transferred to another view with this transformation. The verification

is based on the number of points which are transferred from the first view and overlap

with the points in the second view. It is usual that the correct transformation can

be satisfied by more points between views than the incorrect one can. All the correct

corresponding point pairs should satisfy the correct transformation and the different

incorrect corresponding point pairs are less likely to satisfy one transformation.

Table 5.12, Table 5.10, Table 5.11, Table 5.13, Table 5.14, and Table 5.15 show

the scores of the possible transformations generated by candidate triple pairs. The

correctness of the transformations is also indicated. From these tables, it is obvious

that the correct transformation has always received the largest score.

5.3 Multiple View Integration

After finding the transformations between views, we can integrate the local views

one by one. The threshold used to check two identical vertices was 4. Table 5.16

and Table 5.17 give the intermediate results of the integration process. During the

integration, the number of vertices, edges and faces increases, as the number of

local views integrated into the global view increases. The bold letters in the tables

indicate the recent change. It is shown that in e-f, the 0's in the columns named

right-handed face and left-handed face are gradually reduced. In the end, each edge

has two supporting faces, i.e., the criteria of termination of integration are met so

that the description of the object in question is completed. Table 5.18 and Table 5.19

show the final complete b-rep description.

Test with Noisy Data

To simulate more realistic situations, we also tested our system with noise added to

synthetic range images. Noise may arise due to a variety of sources, e.g. calibration

and low level image segmentation errors. We added different levels of noise (2%,

5%, 8% and lo%, respectively of the maximum range values) to the coordinates of

vertices in the face models as shown in Figure 5.7. To show the noisy data clearly, we

have superimposed all the views in one frame, Figure 5.8. Since the local views were

generated by a synthetic range image generator, we knew the actual transformations

between views, so that we can transform all the local views into one frame with these

transformations. It is clear that as the noise level increases, the distortion of the

geometrical features is more severe.

We tested our system with different levels of noise. The whole system worked

well with the data of 2% and 5% noise. The thresholds used in both cases were

within a reasonable range. We found a set of thresholds which could be applied

to both cases (the thresholds for checking the angles and magnitudes of vectors

were 19' and 11 units respectively). Basically, the minimum distance between two

vertices and the presence of similar local geometrical structures are two important

factors that affect the thresholds and hence the system performance. Note that

there are many symmetric features in the test data. For instance, the left-side and

right-side of the car are symmetric. As expected, when the noise became large,

the thresholds needed to be increased. With the noise level at 8%, some errors

began to occur. To further analyze the performance of our system in some detail,

we tested the matching module, the process of transformation estimation, and the

merging module separately. From the test results, we found that the most sensitive

part of the system is the process of transformation estimation. With the noise level

less than or equal to 8%, the matching module and merging module still generated

correct results, but the estimated transformations were quite different from the

actual transformations. However, with the noise level larger than 8%, the matching

module and merging module also started to give wrong results. For instance, some

points should have been considered to be identical, but were not.

The estimated transformation is quite sensitive to noise in the coordinates of

corresponding vertex pairs. A small error in the position of vertices may affect the

estimated transformation significantly. This is true especially when the number of

corresponding point pairs is small. This error is then propagated to the merging

module and causes errors in the process of intergration. We illustrate this in Fig-

ure 5.9. Note the difference in superimposed views in Figure 5.9.A (obtained by

using actual transformations) and Figure 5.9.B (obtained by using estimated trans-

formations). Clearly, the estimated transformations are much different from the

actual ones.

Hence, we can say that relatively larger errors are generated in the process of

estimating a rigid-body transformation. However, when more corresponding point

pairs were used to estimate transformations, errors in generated transformations

were reduced. From our results on noisy synthetic range images, we can see that it

is important to take more corresponding point pairs or get relatively noise-free face

models in local views.

Although we don't have a range scanner in our lab to perform real experiments,

most range scanners can easily provide an accuracy of 1 part in 1000 [7] . This

corresponds to a 0.1% error, which is much less than the noise limits within which

our system performs successfully. However, we are cautious since there are other

sources of errors as well, e.g. low-level segmentation. Note also that we are interested

in building models for planning collision-free paths and therefore don't require very

strict accuracy as in the case of some inspection tasks.

View 1 View 2

2% noise da.t.a

View 1 View 2

5% noise da t a

View 1 View 2

8% noise data

Figure 5.7: Noisy Data

2% noise da ta

8% noise da t a

5% noise data

10% noise da.ta

Figure 5.8: Superimposed Noisy Views

8 1

(A) Actual Transformation (B) Estimated Transformation

Figure 5.9: 2% noise-level: Different views are transformed in one frame and super-

imposed. Actual transformations were used in (A) whereas estimated transforma-

tions were used in (B). This indicates that the estimated transformations were quite

different than the actual ones.

Table 5.8: Triple pair score versus correct match for Car_view4+Car_viewl and
Car-view2.

I ' l ' r i~le Pair Score I ' l ' r i~le Pair Label I Correct Match ? I
11
11
10

Table 5.9: Triple pair score versus correct match for Car-view1 and Car-view2.

10

8
11
1

Yes
Yes
Yes

8 I 5 No
2

'l'riple Pair Score I 'l'riple Pair Label I Correct Match :'

Yes

11 5
11
10
10
6
6

Yes
I
1
2
3
6

Yes
Yes
Yes
No
No

Table 5.10: Score of transformations versus correct match for Car-view4 and
Car-view1 .

Table 5.11: Score of transformations versus correct match for Car-view1 and
Car-view2.

I Score of transformation I 'li-iple Pair Label I Correct Match '! I
10
10
10

1
2
5

Yes
Yes
Yes

Table 5.12: Score of transformations versus correct match for Car-viewltrans and
Car-view2.

14
14
14
14
14
14
14
14

1 Y
15
16

Yes
Yes
Yes

17
18
19
2 0
22

Yes
Yes
Yes
Yes
Yes

Table 5.13: Score of transformations versus correct match for Car_view4+Car_viewl
and Car-view2.

I Score of transformation I 'l'riple Pair Label I Correct Match 1 I

Table 5.14: Score of transformations versus correct match for Car-view3 and
Car-view1 SCar-view2.

12
12
12
10
10

I I

10 2 Yes

I I IJ I 11 I res I

2
8
11
5
7

Yes -
Yes
Yes
No
No

- -
10
10
6

12
14
7

Yes
Yes
No

Table 5.15: Score of transformations versus correct match for Car-view4 and
Car-view3+Car_viewl +Car_view2.

- - I I - --

14 6 Yes

Score of transformation I 'l'riple Pair Label I Correct Match :'

I I

14 8 Yes

14 5 I Yes

14
14
14
14
14
14
14

9
10
12
22

14

Yes
Yes
Yes
Yes

23
24
25

Yes

14
10
10
10
10
10

Yes
Yes
Yes

14
3 0
2
4
13
15
19

Yes
Yes
No
No
No
No
No

Table 5.16: After integration of Car-view1 and Car-view2.

e-f (The two faces attached to an edge)

Edge Label Start Point End Point L-Face R-Face
1 2 3 0

Num-VEFOS (The number of geometric features in the view)

Vertex Edge Face Object
1 6 25 10 1

Table 5.17: After integration of Car-view3 and Car-viewltcar-view2.

e-f (The two faces attached to an edge)

Edge Label Start Point End Point L-Face R-Face
1 2 3 4 0

Num-VEFOS (The number of geometric features in the view)

Vertex Edge Face Object
16 26 11 1

Table 5.18: Complete b-rep description of object car - continued.

e-f (The two faces attached to an edge)

Edge Label Start Point End Point L-Face R-Face
1 2 3 12

Num-VEFOS (The number of geometric features in the view)

Vertex Edge Face Object
16 27 13 1

Table 5.19: Complete b-rep description of object car.

vertex-T (XYZ Coordinate of vertices)

Vertex Label X Y Z
1 74.00 10.00 50.00
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

f-v (vertices in a face)

Face Label Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6

CHAPTER 6

Conclusion

This thesis has presented an approach for extracting a complete 3-dimensional b-rep

description of a polyhedral object from multiple range images taken from different

viewpoints. No prior knowledge of the transformations relating different viewpoints

is assumed. This b-rep description is useful for robotic manipulation tasks such as

path planning and grasp planning.

Starting from basic face models of visible surfaces of objects ' in each local

view, our system extracts features, matches these features, generates rigid-body

transformations that relate the local views, and finally merges these local views into

a 3-dimensional b-rep description of the object. The main features and points raised

in this thesis are summaried below.

1. The triple branch structure is selected as a main matching feature, which

w e assume that the basic face models of visible surfaces of objects in each local view are available.

9 2

not only helps the efficient matching algorithm, but also suffices to generate

rigid-body transformation between views.

2. A hierarchical matching algorithm is designed which sequentially uses intrinsic

features at different search stages. A prioritizing procedure is proposed to

arrange the order (priority queue) among matching candidates. This matching

algorithm is much faster when compared to the brute force search method.

3. A method of integrating multiple views is proposed and demonstrated. It

will merge different local views together and then output the complete 3-

dimensional b-rep description of the polyhedral object in the scene. A conve-

nient and effective termination criterion is set to monitor the whole merging

process. This termination criterion also makes it possible to utilize the active

vision mechanism later.

4. The minimum number of corresponding point pairs to generate rigid-body

transformation between two views is discussed explicitly. It is indicated that

at least three non-colinear corresponding point pairs are needed to generate

a rigid-body transformation. Also, a condition is defined to confirm that an

arbitrary transformation is a rigid-body transformation between two given sets

of points.

5. A synthetic range image generator has been designed and implemented. Our

system, in conjunction with this synthetic range image generator, forms a

useful developing tool in the area of robotics, CAD, and geometric modeling.

All the algorithms and methods are implemented mainly in C and MATLAB. The

front-end graphics have been implemented with HOOPS.

Our research is only an initial step in this promising direction of building CAD

models from range images. Since no real range data was available, all the range

images used in this project were synthetic range images. Although the system

performed well with up to 5% noise added to synthetic data, the performance of the

system needs to be investigated with real range data to demonstrate the robustness

of the system. We anxiously await a laser range scanner to be installed in our lab

in September, 1992 to run real experiments.

Although some simple mechanisms are already used in our method to handle

the case of partial occlusion, more sophisticated algorithms need to be designed to

deal with the case in which a more complicated scene is considered and occlusion

becomes the main problem.

Another important point is incorporating certain aspects of active vision within

our framework. For instance, how could the next view be selected automatically?

Clearly, the requirement that at least two faces be common in two views gives some

constraints on the next view. In addition, other geometrical constraints may be

useful, e.g. the object surfaces should not be too oblique to the scanner, since range

data accuracy suffers. Such criteria need to be investigated.

Another major research direction could be to include curved surfaces, such as

ellipsoidal and paraboloidal surfaces, in this multiview integration framework.

Appendix A

A Synthetic Range Image

Generator

The synthetic range image generator consists of the following modules: inputting

3-dimensional data, selecting view point, determining face normal, orthogonally

projecting visible faces, 2- buffering, and finally generating the range image and the

flag image.

(1) Input Data: the input to the synthetic range image generator is a in the form

of the complete-view-list, in which the faces, edges, and vertices of the object are

specified. The view point and the object is located in a global (reference) coordinate

system.

(2) Transformation between the object-centered system to view-point centered

system: this transformation is used to describe the object in view-point centered

system. The view-point centered system is defined with its origin overlapping the

view point and the positive direction of Z-axis aligning with the view vector.

(3) Determination of possible visible faces: in the viewpoint-centered frame, the

face normal (pointing outward) of each face of the object is determined and used to

detect the possible visible faces. A face is a possible visible face in this frame, if its

normal and the Z-axis vector constitute the angle larger than 90 degree.

(4) Orthogonal projection: the 2-dimensional projection of each of the possible

visible faces is formed by orthogonally projecting the face to the xy-plane.

(5) Calculation of range: the xy-plane is scanned. If a scan point is inside of

the 2-dimensional projection of one face, it is necessary to calculate the distance

between this point (which on the xy-plane) and the corresponding surface point

(which is on the face of the object and has the same x and y coordinates) based

on the face equation. Then, this distance is saved into the element with the same

x,y coordinates of a 2-dimensional array. If in this element, a distance is already

stored, the system compares the newly generated distance with the old one. Only the

smaller one can be kept in this element (the Z-buffering principle). If the scan point

is outside of all the 2-dimensional projections, the element is set to a prespecified

background value. Finally, the range image is generated after each face of the object

is scanned.

Appendix B

Proof of Lemma 1

The proof of Lemma 1 is given below.

The proof of the necessity of Lemma 1:

If the given transformation T is a rigid-body transformation BTA

for the whole set of corresponding point pairs, it will hold for any four

corresponding point pairs among this set, and of course, for any four

non-planar corresponding point pair (if they exist).

The proof of the sufficiency of Lemma 1:

Given a transformation T which can hold for four non-planar corre-

sponding point pairs of the whole set {("a, BGi), i = 1 t o N } .

Let {Ac1,Ac2,Ac3} and { " R , "G2,"?3) be two sets of base vectors

respectively in frame A and frame B,

A d l = AijZ - "ci, = A & - A & qj 3 - - AP4 - A P l)

-4 "4 = "Q2 - " Q l) "v2 = " Q 3 - "Q1, "F3 = " Q 4 - "g l .
From B.l, it follows

Note that vectors "el, and 'd3 ("fi, "Q2, and " q 3) are non-

coplanar.

What needs to be proved is that the transformation T holds for all

the corresponding point pairs in the set,

+
Any point "Pi, j = 1 t o N in frame A ("Oj) j = 1 t o N in frame B)

can be uniquely denoted by the linear combination of AGl, " g 2 , and "c3
("fi, " c 2 , and "&),

and

" Q j = blj "4 + b2j "P2 + b3j "fi + "01 (B-5)

where alj, a2j and a3j (b l j , b z j , b3j) are the projections of A4 (BQi)

to the base vectors ' G l , ' G 2 , and AG3 ("G , "G2, and "?3) respectively.

Based on the initial definition that all the corresponding point pairs,

{ (A " 6) j = 1 to N) , are related by a rigid-body transformation

"TA, i.e. magnitudes of corresponding vectors are the same and angles

between two pairs of corresponding vectors are the same. Also, if Apk
corresponds B B ~ and " f i corresponds Bgr, the projection of A f i to

is equal to the projection of BQk to B Q l .

Then it follows

Hence, for any j = 1 to N, it follows

Therefor, the sufficiency of Lemma 1 has been proved.

REFERENCES

[I] J . Angeles. Automatic computation of the screw parameters of rigid-body
motions. Journal of Dynamic Systems, Measurement, and Control, 108(3):32-
38, March 1986.

[2] D.H. Ballard. Generalizing the Hough transform to detect arbitrary shapes.
Pattern Recognition, 13(2):714-725, 1981.

[3] S.T. Barnard and M.A. Fischler. Computational stereo. ACM Comput. Surv.,
14:553-572, 1982.

[4] D.I. Barnea and H.E. Silverman. A class of algorithms for fast digital image
registration. IEEE Trans. on Computers, 21:179-186, 1972.

[5] H.G. Baumgart . Winged-edge polyhedron representation. Technical Report
320, Computer Science Department, Stanford University, Palo Alto, CA, 1972.

[6] H.G. Baumgart. Geometric Modeling for Computer Vision. PhD thesis, Com-
puter Science Dept., Stanford Univ., Stanford, Calif., 1974.

[7] P.J. Besl and R.C. Jain. Three dimensional object recognition. ACM Comput.
Surv., 17:75-145, 1985.

[8] H . Chiyokura. Solid Modeling with Designbase. Addison-Wesley, 1988.

[9] C.I. Connoly. The determination of next best views. In IEEE International
Conference on Robotics and Automation, pages 432-435, 1985.

[lo] J . J . Craig. Introduction to Robotics. Addison Wesley, 1989.

[l l] R.O. Duda. Pattern Classification and Scene Analysis. Wiley-Interscience,
1973.

[12] O.D. Faugeras and M. Hebert. A 3-D recognition and positioning algorithm
using geometrical matching between primitive surfaces. In The International
Joint Conference on Artificial Intelligence, pages 996-1002, 1983.

[13] F.P. Ferrie. Reconstructing and Interpreting the 3 0 Shape of Moving Objects.
PhD thesis, McGill University, Montreal, Quebec, Canada, 1986.

[14] J.D. Foley, A.V. Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics, pages
533-546. Addison- Wesley, second edition, 1991.

[15] P.C. Gaston and T . Lozano-Perez. Tactile recognition and localization using
object models: The case of polyhedra on a plane. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 6(3):257-266, 1984.

[16] R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley, 1977.

[17] W .E.L. Grimson. Computational experiments with a feature based stereo al-
gorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
7(1):17-34, 1985.

[18] W.E.L. Grimson and T. Lozano-Perez. Model-based recognition and localiza-
tion from sparse range or tactile data. The International Journal of Robotics
Research, 3(3):3-35, 1984.

[19] W.E.L. Grimson and T . Lozano-Perez. Localizing overlapping parts by search-
ing the interpretation tree. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 9(4):469-482, 1987.

[20] K.K. Gupta. Fast collision avoidance for manipulator arms: A sequential search
strategy. IEEE Transactions on Robotics and Automation, 6(5), June, 1990.

[21] K.K. Gupta and Z. Guo. Toward practical motion planners: Experiments
with a sequential search strategy. In '91 ICAR Fifth Inter. Conf. on Advanced
Robotics. Pisa, Italy, pages 1006-101 1, 1991.

[22] K.K. Gupta and X.M. Zhu. Extracting polyhedral models from a range image.
In Vision Interface '92, Vancouver, BC, Canada, pages 37-42, 1992.

[23] E.L. Hall. Computer Image Processing and Recognition. Academic Press, 1979.

[24] R.M. Haralick. Solving camera parameters from the perspective projection of
a parameterized cureve. Pattern Recognition, 17(6):637-645, 1984.

[25] R.M. Haralick and L.G. Shapiro. The consistent labeling problem: Part I.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1:173-184,
1979.

[26] T.C. Henderson. Efficient 3d object representations for industrial vision sys-
tems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:609-
617, 1983.

[27] M. Herman. Matching three-dimensional symbolic descriptions obtained from
multiple views of a scene. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 585-590, 1984.

[28] M. Herman. Generating detailed scene descriptions. In IEEE International
Conference on Robotics and Automation, pages 426-431, 1985.

[29] M. Herman. Incremental reconstruction of 3D scenes from multiple, complex
images. Artificial Intelligence, 30:289-341, 1986.

[30] M. Herman, T. Kanade, and S. Kuroe. Incremental acquisition of a three-
dimensional scene model from images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6(3):331-340, 1984.

[31] T.-H. Hong and M.O. Shneier. Describing a robot's workspace using a sequence
of views from a moving camera. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 7(6):721-726, 1985.

[32] R.A. Hummel and S.W. Zucker. On the foundations of relaxation labeling
processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(3):267-287, 1983.

[33] K. Ikeuchi and B.K.P. Horn. Numerical shape from shading and occluding
boundaries. Artificial Intelligence, 17:141-184, 1981.

[34] J. Illingworth and J. Kittler. A survey of the Hough Transform. Computer
Vision, Graphics and Image Processing, 44247-116, 1988.

[35] R. Jain. Dynamic scene analysis. in progress in pattern recognition. In
A. Rosenfeld and L. Kanal, editors, Progress in Pattern Recognition. North-
Holland, Amsterdm, 1983.

[36] R.C. Jain and A.K. Jain. Analysis and Interpretation of Range Images.
Springer-Verlag, 1990.

[37] R. A. Jarvis. A perspective on range finding techniques for computer vision.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2):122-
139, 1983.

1381 H.-S. Kim. Active Multiple View Object Recognition. PhD thesis, College of
Engineering, The Univ. of Michigan, Ann Arbor, Michigan, 1988.

[39] H.-S. Kim, R.C. Jain, and R.A. Volz. Object recognition using multiple views.
In IEEE International Conference on Robotics and Automation, pages 28-33,
1985.

[40] M.J. Magee and J.K. Aggarwal. Using multisensory images to derive the struc-
ture of three-dimensional objects - a review. Computer Vision, Graphics and
Image Processing, 32:145-157, 1985.

[41] W.N. Martin and J.K. Aggarwal. Volumetric descriptions of objects from mul-
tiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):150-173, 1983.

[42] M. Oshima and Y. Shirai. Object recognition using three-dimensional infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(4):353-361, 1983.

[43] A. Pentland, T. Darrell, M. Turk, and W. Huang. A simple, real-time range
camera. In IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 256-261, 1989.

1441 S.B. Pollard, T.P. Pridmore, J.Porril1, and J.E. W. Mayhew J.P.Frisby. Geo-
metrical modeling from multiple stereo views. The International Journal of
Robotics Research, 8(4):3-32, 1989.

[45] A.A.G. Requicha. Representations for rigid solids: Theory, methods and sys-
tems. Computing Surveys, 12(4):437-464, 1980.

1461 M. Rioux, F. Blais, J.A. Beraldin, and P. Boulanger. Range imaging sensors
development at NRC laboratories. In Workshop on Interpretation of 3 0 Scenes,
pages 154-160, 1989.

[47] A. Rosenfeld. Digital Picture Processing. Academic Press, 1981.

[48] A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene labeling by relaxation
operations. IEEE Transactions on Systems, Man, and Cybernetics, 6(6):420-
433, 1976.

[49] J. Sklansky. On the Hough technique for curve detection. IEEE Trans. on
Computers, 27:923-926, 1978.

[50] J.R. Stenstrom and C.I.Connolly. Building wire frames from multiple range
views. In IEEE International Conference on Robotics and Automation, pages
615-620, 1986.

[51] S. Tanade and A. Rosenfeld. Point pattern matching by relaxation. Pattern
Recognition, 12:269-275, 1980.

[52] F. Tomita and T . Kanade. A 3D vision system: Generating and matching shape
descriptions in range images. In The International Conference on Artificial
Intelligence Application, pages 186-191, 1984.

[53] R.Y. Tsai. An efficient and accurate camera calibration technique for 3D ma-
chine vision. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 364-371, 1986.

[54] R.Y. Tsai. A versatile camera calibration technique for high-accuracy using off-
the-shelf T V cameras and lenses. The IEEE Journal of Robotics and Research,
3(4):323-344, August 1987.

[55] B.C. Vemuri and J.K. Aggarwal. 3-D model construction from multiple views
using tangential and intensity data. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 435-437, 1986.

[56] E.L. Walker and M. Herman. Geometric reasoning for constructing 3D scene
descriptions from images. Artificial Intelligence, 37:275-290, 1988.

[57] H. Wechsler. Computational Vision. Academic Press, 1990.

[58] S. Xie. Incremental Construction of 3 -0 Models of a Scene from Sequentially
Planned Views. PhD thesis, School of Computing Scinece, Simon Fraser Uni-
versity, Burnaby, B.C. V5A 1S6, 1987.

[59] X.M. Zhu. Extracting polyhedral models from a range image - a hybrid ap-
proach. Master's thesis, School of Engineering Science, Simon Fraser University,
Burnaby, B.C. Canada, 1991.

