National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
QOttawa (Ontario)
K1AON4

NOTICE

The quality of this microform is
heavily cependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

1+

Canada

Your hle Votre référence

Qur file Notre référence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [université
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a
deésirer, surtout si les pages
originales ont eté
dactylographiées a ['aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
gualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

TOWARDS ADAPTIVE CONCURRENCY CONTROL IN
DATABASE SYSTEMS

by

Biaodong Cai
B.Sc. Xidian University, China 1984

M.Sc. Xidian University, China 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School

of

Computing Science

(© Biaodong Cai 1992
SIMON FRASER UNIVERSITY
March 1992

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National Library
of Canada

Ld |

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario

K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Canada

385, rue Wellington
Ottawa (Ontario)

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

Your fife Volre référence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permeftant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

APPROVAL

Name: Biaodong Cai

Degree: Master of Science

Title of thesis: Towards Adaptive Concurrency Control in Database Sys-
tems

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Dr. Tiko Kameda, Senior Supervisor

Dr. Jia-Wei Han, Sl.xpervisor

Dr. Peter Triantafillou, External Exammer

~ Gy , 4 J ~ 5
CHarebe a4, 1929

Date Approved:

1

PART 1AL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to iend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational Institution, on
its own behalf or for one of Its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studlies. It is understood that copying

or publication of this work for fipancial gain shall not be alfowed

without my written permission.

Titie of Thesis/Project/Extended Essay

Towards Adaptive Concurreacv Control in Database Systems.

Author:
(signature)

Biaodong Cai

{name)

March 18, 1992

(date)

Abstract

In this thesis, we propose a new approach to adaptive concurrency control for database
systems. Unlike previous concurrency control schemes, ours is “data-oriented.” We
partition a database into two parts, OPT and PES, depending on the conflict rate on
each data item. Access to data items in OPT is governed by an optimistic methed
while access to items in PES is governed by two-phase locking. Therefore, our scheme
takes advantage of both optimistic and locking methods. The partition can be changed

dynamically to adapt to the changing conflict rates.

Based on a systematic study on optimistic methods, we develop several hybrid
concurrency control algorithms that combine optimistic and two-phase locking meth-
ods. We also develop a systematic procedure to produce such hybrid algorithms. We
design a re-partition algorithm that can be executed concurrently with transaction
processing, and a mechanism that traces conflict rate changes. In addition, we propose
an implementation for an adaptive concurrency control scheme. We further extend

our approach to multi-version database systems.

i1l

To my parents, Huizhen, and Xin-Xin.

v

A cknowledgements

I wish to express my appreciation and gratitude to my supervisor, Dr. Tiko Kameda,
for his advice, support, and patience. In addition to being a superb advisor aiding
me with the technical contents of this thesis, Dr. Kameda have given me a great help
in revisions and the text processing of this thesis. It was his insistence on precision

and perfection that ensured the quality of the thesis.

I would like to thank Dr. Jia-Wel Han for his constant encouragement and help
during the years of my study at Simon Fraser. He also spent valuable time helping
me searching for a thesis topic. I would also like to thank Dr. Peter Triantafillou for
his valuable comments on my work. Every discussion with him was pleasent, for I

always came back with interesting suggestions.

I am grateful to graduate students and professors in the School of Computing

Science. They made my first years in Canada memorable.

Finally, my thanks go to my family. I am indebted to my wife Huizhen for her
support, self-restraint, and self-sacrifice. T am also indebted to my parents for their

love, education, and understanding.
) g

Contents

Abstract it
Acknowledgements v
1 Introduction 1
1.1 Concurrency Control Schemes 2
1.2 Our Approach 3
1.3 The Organization of the Thesis 7

2 Concurrency Control Theory 8
2.1 Database Svstems L e 8
2.2 Serializabilityo 12
2.3 The Locking Scheme Lo 15

3 Optimistic Scheme Revisited 21
3.1 Principles and Classification 21
311 Read Phase 23

3.1.2 Validation-and-Write Phase: a Classification 24

3.2 Backward Checking o oo 26
3.2.1 Serial Validation 0oL, 26

3.2.2 Parallel Validation 29

3.23 Remarks 33

3.3 Forward Checking 34
3.3.1 Serial Validation oL 34

vi

3.4

3.3.2 Replacing System-Wide Critical Sections
3.3.3 Parallel Validation
Comparison e

Combining Optimistic and Locking Schemes

4.1 Introduction L
4.1.1 Motivation L
4.1.2 Hybrid Concurrency Control methods: A Survey

2 Our Approacho

4.3 A Combined Algorithm - An Example
4.3.1 The Algocithm L
4.3.2 Correctnesso

4.4 Systematic Procedureo L oL
4.4.1 Confining Sections L.
4.4.2 Locked Sections L L
4.4.3 Integration L
4.4.4 Necessity for LS-CS Overlap
4.4.5 Restricting Overlappings

4.5 Some Combined Algorithms
4.5.1 Serial Forward Checking + 2PL
4.5.2 Serial Forward Checking + Deferred Write-Locking
4.5.3 Relaxed Locking

4.6 Going into Multiversion Worldo

Dynamic Re-partitioning of the Database

5.1
5.2
3.3
5.4

Managing Interference L.
The Transfer Algorithm,
Revision of Algorithm 4.2o L.

Correctness Proof

Keeping the Partition Up-to-Date

6.1

Design Issues

vii

36
37
38

76
77
79
83
86

95
96

6.1.1 Counting Conflicts

6.1.2 Setting Parameters L
6.1.3 Working Environment oL
6.2 Building the Controller
6.3 DISCUSSION . .« + v v v v e et e e e e e e e e e
6.3.1 About RCsand TDs
6.3.2 Status and Membershipso
7 An Implementation Proposal
7.1 The Concurrency Control Table
7.2 Operationsof the CM oo
7.2.1 Operations in OPT
7.2.2 Operations in WtoP 0oL
7.2.3 Operationsin PES o 0000000
7.2.4 Operations in PtoO and WtoO L.

7.2.5 About Empty r-list or w-list

7.3 DISCuSSION . . o v o e e e e e e

8 Conclusions and Future Work

Bibliography

viii

Chapter 1

Introduction

In this thesis, we propose a new approach to adaptive concurrency control for database
systems. Qur approach combines optimistic and two-phase locking schemes, and
is dynamically adaptable to system workloads. In addition, our approach allows
the database system adminisirator to modify some parameters during its operation.
The major contribution ol our work 1s that it proposes a new view point to study
concurrency control. We claim that our approach is “data-oriented,” in contrast to

the previous studies, which were “transaction-oriented.”

In this introductory chapter, we first briefly review the major existing concur-
rency control schemes. Then, we irtroduce the new approach by presenting our basic
assumptions, describing the way we attack the concurrency control problem, and ex-
hibiting the special features of the new approach. Finally, we present the organization

of the thesis.

| S)

CHAPTER 1. INTRODUCTION

1.1 Concurrency Control Schemes

Concurrency control for database transactions has been studied for more than fifteen
years [14, 18, 32]. There are three major concurrency control schemes currently known:
(two-phase) locking [14], time-stamp ordering [30, 31, 33}, and optimistic schemes [22].
In this section, we briefly describe the basic concepts of the three schemes. Locking
and optimistic schemes will receive a more detailed discussion in Chapters 2 and 3,
respectively. Technical terms used here without definition, such as transaction and

conflict, will be formally defined in later chapters.

Locking is the most commonly used among the three schemes. In this scheme, a
transaction must acquire a fock on a data item in the database before it can access the
item. Among locking methods, two-phase locking (2PL) [14] is the most important.
In 2PL. a transaction cannot acquire any more locks once it releases a lock. So, a
transaction has two phases, an expanding phase during which it acquires all the locks
it requires, followed by a shrinking phase during which it releases the locks it has
acquired. 2PL orders transactions according to the orders of operations in conflict. 1t

is not deadlock-free. In this thesis, “locking scheme” will mean two-phase locking.

Unlike the locking scheme. time-stamp ordering (TO) orders transactions by the
time points at which transactions start execution. A transaction, when it starts
execution, is assigned a unique time-stamp. Attached to each data item are two
time-stamps, a vead stamp and a write stamp. The read ({write) stamp on a data
item records the time-stamp of the last transaction that reads (writes) it. When a
transaction requests to access a data item, the scheduler first compares the transac-
tion’s time-stamp with the time-stamps of that item. If it finds that the item has
been accessed by another transaction with a newer time-stamp in a conflicting access

mode, the scheduler will abort the requesting transaction. Otherwise, the request is

granted. This scheme is deadlock-free.

CHAPTER 1. INTRODUCTION 3

Both 2PL and TO are pessimistic schemes in the sense that they are always pre-
pared for conflicts. They check for conflict for every access request and grant the re-
quest only when granting it will not violate serial correctness. The optimistic scheme
is different from them, for it explicitly assumes that conflicts among transactions are
rare. An access request is granted immediately without any conflict checking. Con-
currency control is deferred until the end of a transaction, when checking for potential
conflicts takes place. If a conflict is detected, one or more transactions are aborted.

The optimistic scheme is also deadlock-free.

1.2 QOur Approach

Basic Assumptions

Our approach is based on four basic assumptions presented below. The order of
the assumptions reflects, to some degree, the relative importance of the assumptions

to our approach. They will be discussed in detail in Chapter 4.

It is commonly agreed that, when conflict rates on data are low, optimistic methods
perform best, and when conflict rates are medium or high, locking methods perform

best. This is our first assumption and is called the performance assumption.

It is likely that. in a database, conflicts are distributed unevenly over the data
items for a period of time. In other words, the conflict rate varies from data item to

data item. We call it the non-uniform access distribution.

Given a specific application, the conflict rate, or the relative conflict rate on a data
item, may be roughly predictable for a short period of time. The prediction 1nay be
based on the experience and knowledge of the database system administrator aad the
execution histories. The prediction need not be precise, it need only give a yeneral
picture about whether the conflict rate is low or not low. The access locality is the

third assumption of our approach.

CHAPTER 1. INTRODUCTION 4

The last assumption is that, when the number of data items in a database is
sufficiently large, it is very likely that, at any time, there is a large portion of data
items in the database on which conflict rates are low enough to make optimistic
scheme the best concurrency control scheme for them. We call it the low conflict rate

assumption.
There will be nore discussions on these assumptions.
Concurrency Control System

Based on the above four assumptions, we develop an approach to concurrency
control that takes advantage of the assumptions and avoids some shortcomings that
the assumptions suggest. Qur approach is data-oriented because we take into account
the conflict rate on each data item. Actually, the conflict rate on each data item is
the deciding factor in choosing a particular concurrency control method for the data
item. More specifically. we partition the database into two parts, OPT and PES,
where OPT consists of those data items with low conflict rates, and PES consists of
those data items with medium or high conflict rates. As suggested by their names,
access to data items in OPT is governed by an optimistic method, while access to
items in PES is governed by a 2PL method. Therefore, we can take advantage of

both optimistic and locking methods.

Conflict rates on data items may change from time to time. Therefore, we should
provide mechanisms to re-partition the database so that the partition reflects the up-
to-date conflict distribution. We propose a concurrency control system which contains
two more functional components in addition to the scheduler. The system is depicted

in Fig. 1.1.

CHAPTER 1.

Transactions

INTRODUCTION

Concurrency Control System

DBS
Administrator

Controller

-

Hybrid
Scheduler

Re-partition '

- -

-

Legend: o

]
¥
1
X Control
:
]
1

Processor

—————e -] -
Information Normal
about conflict Database
Accesses

CHAPTER 1. INTRODUCTION 6

The controller is responsible for keeping the partition up-to-date. It may have
functions such as tracing conflict rate changes, making decisions about when a re-
partition should start and which items are to be involved in the re-partition. It can
accept cornmands from the database system administrator (DBA), so, the DBA may
start a re-partition through the controller. The controller collects conflict rate infor-
mation from the scheduler and sends re-partition commands to the re-partition pro-
cessor. The re-partition processor is responsible for re-partitioning. Re-partitioning

must be executed concurrently with transaction execution.
Major Problems to be Solved

Corresponding to the three system components, there are three major problems to
be solved. In our approach, a transaction may access different data items under differ-
ent concurrency control methods. Our first problem is how to coordinate optimistic
and pessimistic methods, two seemingly conflicting methods, so that serializability is
ensured. The second problem is how to dynamically re-partition a database while
transactions are being executed. The third problem is how to predict the conflict rate
on a data item, and what criteria to use in putting a data item in OPT or PES. These

problems will be addressed in Chapters 4, 5, and 6, respectively.
Special Features

Our system has the following special features:

e When the database is properly partitioned, it takes advantage of both optimistic

and locking schemes.

e [t is adaptive, and is virtually continuously adjustable. The number of different
partitions is 2", where n is the number of data items. So, when the number
of data items is large, the concurrency control policy can be adjusted virtually

continuously.

e [t provides an interface to the DBA. An important consequence of this is that the

DBA’s knowledge can be utilized to achieve more efficient concurrency control.

CHAPTER 1. INTRODUCTION 7

e The hybrid scheduler introduces only a little amount of additional overhead.

e A pure locking or optimistic scheduler can be realized as a special case.

1.3 The Organization of the Thesis

Chapters 2 and 3 provide preliminaries. In Chapter 2, we introduce a concurrency
control theory which will be used as the formal framework for the subsequent chapters.
In Chapter 2, we also discuss the locking scheme using this framework. Chapter 3 is

a systematic study of the optimistic scheme.

Chapters 4 to 7 constitute the main body of this thesis. In Chapter 4, we discuss
our motivation, present several hybrid schedulers, and develop a systematic procedure
for combining optimistic and locking schemes. In Chapter 5, we develop algorithms
for dynamic re-partitioning of a database, and in Chapter 6, we discuss some issues
for the controller and propose an automatic controller. In Chapter 7, we propose an

implementation for adaptive concurrency control.

Finally, in Chapter 8, we conclude our discussion and point to possible future

work.

Chapter 2

Concurrency Control Theory

In this chapter we provide a formal framework for the subsequent chapters. We
present models, definitions, and basic theorems of concurrency control theory. The

framework is strongly influenced by [6, 7, 9].

Later in this chapter we formally discuss locking methods as an application of the
framework. The discussion will also serve as a preliminary to Chapter 4, where we

combine locking and optimistic schemes.

2.1 Database Systems

In this section, we present a database system model for the study of concurrency

control.

A database consists of a set of named data items. We denote data items by lower
case letters, x, y, z, etc. Each data item has a value. The values of the data items at
any time comprise the state of the database. Among the possible states of a database,
there are a set of states that reflect the “correct” information of the application. We

call them consistent states.

(e8]

CHAPTER 2. CONCURRENCY CONTROL THEORY 9

Users access a database by imeans of transactions. A transection consists of a
Begin command, followed by a sequence of Read and/or Write commands, which are
followed by an End. We use T3, Ty, ..., T3, T}, .. . to denote transactions. The Begin
and End commands mark the beginning and end of a transaction. A Read command,
Read(z), returns the value of data item z in the current database state. A Write
command, Write(z, new-value), creates a new database state in which z has the value
new-value. Each transaction represents a self-contained computation. It is assumed
to be “correct.” i.e., a transaction, when executed alone on a consistent database
state, will take the database to a new consistent state. An incomplete execution of a
transaction may, however, put the database in an inconsistent state. Therefore, the
atomicity of transactions must be ensured, i.e., either its full effects must be reflected

in the database or nothing at all.

A transaction, however, cannot directly access the database. It only submits, as
requests, its commands to a database management module known as the transaction

manager (TM), which is part of our database system model.

A database system (DBS) contains four components (see Fig. 2.1): a transac-
tion manager, a scheduler, a data manager (DM) and a database. The TM receives
commands from transactions and passes them as requests to the scheduler. It also
manages private work space for transactions. A scheduler controls the concurrent exe-
cution of transactions. It receives Begin, Read, Write, and Ind requests from the TM
and issues dm-read, dm-write, prewrite, abort, and commit operations in responding
to the requests. dm-reads and dm-writes are sent to the DM; prewrites and aborts
are sent to the TM; and comnmits are sent to both the TM and the DM. The DM is
responsible for accessing data items in the database. It provides two data manipula-
tion operations: dm-read(z), which reads data item z; and, dm-write(z, new-value),
which assigns the value new-value to data item @. Note that dm-write(z, new-value)
is a logical operation recognized by the DM. It does not necessarily mean “write to
the database directly.” It only makes z's new-value generally visible, and eventually
stores new-value in 2 in the database. In fact, the DM may first write new-value to

the cache and then flush it to the database. We assume once a value is written in the

CHAPTER 2. CONCURRENCY CONTROL THEORY

cache, it is generally visible.

Transactioni Transactionz ... Transactionn

”

Transaction
Manager
(T™M)

Scheduler

Data
Manager
(DM)

Database

Fig. 2.1 Database System

CHAPTER 2. CONCURRENCY CONTROL THEORY 11

The actions taken by the DBS upon receipt of the four types of commands, Begin,

End, Read, and Write, from a transaction are described helow:

Begin: The TM assigns a “transaction id,” and initializes a private work space for

the transaction.

Read(z): If z is already in the transaction’s private work space, then its value is

returned to the transaction by the TM. Otherwise, the TM passes it as a request
to the scheduler which will decide whether to grant it immediately or to delay it.
If it is granted, the scheduler issues a dm-read(x) operation to the DM. The DM
returns the current value of z to the TM, which copies it in the transaction’s
private work space and gives it to the transaction. If delayed, the request is
placed on a queue internal to the scheduler. Later, the scheduler may decide to

grant it.

Write(x, new-valuc): The scheduler first decides if the request should be granted. If

End :

so, the TM writes new-value in the transaction’s private work space by executing
prewrite(x, new-value). This has the effect of overwriting the previous value of
x in the private work space, if a copy of z exists in the private work space.
Otherwise, x 1s created in the work space with the value new-value. Note that

it does not alter any values in the database.

The scheduler checks whether allowing the transaction to commit (by making
its changes permanent in the database) will leave the database in a consistent
state. We call this step validation. In the event that it will not, the scheduler
issues an abort operation. The transaction (maybe some others) will then be
aborted. The data structures in the scheduler, such as read-/write-locks and
read /write sets (to be introduced in later chapters), for the aborted transaction
will be discarded. The private work space for the aborted transaction is cleared.
Otherwise, the scheduler issues a dm-write operation for every data item in the
transaction’s private work space whose value has been created or changed by

a prewrite operation. This has the effect of making the last change to z in

CHAPTER 2. CONCURRENCY CONTROL THEORY 12

the private work space visible by other transactions and causing it eventually
to become a permanent value in the database. After all dm-writes have been
carried out, a commit operation is issued, the private work space is discarded
and the transaction is completed. We assume that once a dm-write is issued,
its effect will be eventually seen in the database and the transaction cannot be
aborted thereafter. Because a partial result of a transaction is not allowed to
exist in the database, the DBS ensures that, once a dm-write is issued for a
transaction, all the dm-writes for the transaction will eventually be issued. In
other words, the transaction will be committed. The mechanism ensuring this

property is the recovery mechanism that is beyond the scope of this thesis.

To simplify the discussion of our algorithms, we adopt the following assumption.

Assumption 2.1 A data ilem does not exist in a transaction’s private work space

until and unless it has been read or writlen explicitly by that transaction.

2.2 Serializability

Serializability is the most-commonly used correctness criterion. We define serializ-

ability in terms of conflicts.

It is dm-reads and dm-writes that actually access the database. Therefore, we
model the execution of transactions using dm-reads aud dm-writes rather than Reads
and Writes. We refer to dm-reads and dm-writes as dm-operations, and simply call
them operations when it is clear from the context. We say that two dm-operations
conflict if they are from different transactions,' they operate on the same data item,
a.d at least one of them is a dm-write. We also say that two transactions conflict

with each other if they have operations that conflict with each other.

1This condition is just for the convenience of discussion. We do not consider the intra-transaction
concurrency control.

CHAPTER 2. CONCURRENCY CONTROL THEORY 13

A transaction can exist in one of the three states: active, committed(C), and
aborted(A). Committed and aborted are permanent, stable states. Active is a tem-
porary state. Eventually it will be converted to either committed or aborted. A

transaction, Ti, is formally modeled as a 3-tuple (O;, S;, <), where

e (; is the set of all dm-operations issued on behalf of 7;.

o S;is a set of synchronization events which contains a A; or a (;, and some
other events such as locking and unlocking. The types of events depend on the

concurrency control method used.
e <, is a partial order over O; U .S; such that

1. all the dm-reads precede all the dm-writes.

[O]

. if A; € 5;. then no dim-write belongs to O;, and for any dm-read r, r<; A;.
3. i C; € S;, then for any dm-operation p € O;, p<;C;.

4. il A, C; € S;, there are only dm-reads in O;.

The conditions for <; reflect the discussion of End command in the last section. As
described in the last section, all the dm-reads precede the validation of a transaction
which precedes all the dm-writes. The validation has not been represented in the
formal model yet. It should take place where the processing of End command starts,
and it can be modeled by putting some synchronization events in S;. When a trans-
action passes its validation, it is certain that committing the transaction will take the
database to a new consistent state. For an active transaction, such certainty does
not exist. This modeling of transactions is open-ended. The synchronization event
set of a transaction is not completely specified. We have devised the above model
because our discussion will refer to different concurrency control schemes and their
combinations. We call both an operation and a synchronization event actions. We

will omit the subscript of O;, S;, and <; when it will cause no confusion.

Let T= {Ty = (01,5.,<1),---,Tn = (On,Sn, <)} be a set of transactions. A

history H of an execution of T is defined as a 3-tuple (On, Sy, <g) such that

CHAPTER 2. CONCURRENCY CONTROL THEORY 14

e Oy= UL 0;
o Sy=UL,;Si and

o (UM<} € <y, and for every pair of conflicting operations p and ¢ in Op either

P<Hq Or g<yp.

As for transactions, the subscript H may by omitted from Op, Sy, and <y.

A complete history is a history with no active transactions. The commit projection
of a history H, denoted Commit(H), is the history obtained by deleting all the ac-
tions of uncommitted {i.e.. aborted or active) transactions from H. Clearly, a commit

projection of any history is a complete history.

Two histories H and H™ are said to be equivalent if

e On= Oy, and

o p;<pq; il and only if p;<;/y;, where p; and ¢; are any conflicting operations

belonging to transaction T; and Tj, respectively, such that A;, A; & H.

There i1s no condition on synchronization events for equivalence. So histories pro-
duced by schedulers using different concurrency control schemes could be equivalent.
This notion of equivalence is the so-called conflict equivalence. Two histories are
equivalent under this notiou if their orders of the conflicting operations are consistent

with each other.

A complete history H is serial if for every two transactions T; and T that appear

in H, either all operations of T; appear in H before all operations of T or vice versa.

A single transaction is assumed correct. By induction, a serial history is also
correct, i.e., it will take the database from one consistent state to another consistent
state. A concurrent execution of a set of transactions would also be considered correct,

if its effect is the same as a serial execution of the same set of transactions. Formally,

CHAPTER 2. CONCURRENCY CONTROL THEORY 15

a history H is serializable il Commit(H) is equivalent to a serial history. The task
of concurrency control is to schedule concurrent transactions so that the resulting

history is serializable.

We can determine whether a history is serializable by analyzing a graph de-
rived from the history called the serialization graph. Let H be a history over T=
{1\,...,T,,}. The serialization graph for H, denoted SG(H), is a directed graph whose
nodes are transactions in T that are committed in H and it has an edge T; — 1} if
and only if one of T}’s operations precedes and conflicts with one of 7’s operation in
H. An edge T; — T} implies that T; must appear before T} in any serial history that is
equivalent to Commit{H). If we can find a serial history H, over the committed trans-
actions in H consistent with all edges in SG(H), then H, is equivalent to Commit(H),

and so H is serializable. As stated in the theorem below, we can do this as long as

SG(H) 1s acycelic.

Theorem 2.1 [The serializability theorem] [7] A history H is serializable if and only
if SG(H) is acyclic. a

For a serializable history . the edges in SG(H) represent a partial order over transac-
tions, and any total order on the nodes of SG{If) that is compatible with the partial

order 15 called a serializalion order.

2.3 The Locking Scheme

In this section, we discuss 2PL using the concurrency control theory just presented.

2PL synchronizes Reads and Writes by explicitly detecting and preventing conflicts
between concurrent operations. It uses two types of locks, read-locks and write-locks,
to synchronize the conflicting operations. A read-lock and a write-lock on the same
data item conflict with each other. So do a write-lock and another write-lock on the

same data item. The ownership of locks is governed by 4 rules:

CHAPTER 2. CONCURRENCY CONTROL THEORY 16

1. Before reading data item x from the database (more precisely, before a dm-
read(z) is issued), a transaction must own a read-lock on z. Before writing a
new value of z into the database (more precisely, before a dm-write(z) is issued),

a transaction must own a write-lock on z.

2. Different transactions cannot simultaneously own conflicting locks on the same

data item.

3. A transaction cannot release a lock it owns uutil the corresponding operation

has been processed by the DM.

4. Once a transaction releases a lock, it may not subsequently obtain any more

locks on any data item.

The last rule above causes every transaction to obtain locks in two phases. During the
growing phase, the transaction obtains locks without releasing any locks. By releasing
a lock the transaction enters the shrinking phase. During this phase the transaction
releases locks, and, by rule 4. is prohibited from obtaining additional locks. There are
two important points: the time at which the transaction has acquired all the locks it
requires and the time at which it starts releasing its locks. The former is called the
locked point (denoted as LP) and the latter is called the unfocking point (denoted as
UP). When the transaction terminates (commits or aborts), all remaining locks are

automatically released.

We show that 2PL is correct in our framework. That is. every history produced
by a 2PL scheduler {called a 2PL history) is serializable. To see this. let us study the

properties of a 2PL history.

The svnchronization event set, S;. of a transaction. ;. scheduled by a 2PL sched-
uler contains the following four types of svnchronization events, where » is a data

1tem

rl;(a)— the scheduler sets a read-lock on x on behalf of T

wl;(2)— the scheduler sets a write-lock on @ on behalf of T};

CHAPTER 2. CONCURRENCY CONTROL THEORY 17

ru;(a)— the scheduler releases (i.e., unlocks) a read-lock on z on behalf
of T3;

wu;{z)— the scheduler releases a write-lock on @ on behalf of T;.

Let o;(x) be a dm-operation of 7; on data item z, where o stands for either r or w. By
rule 1, T; must own a lock on z, before it executes o;(2), i.e., ol;(z) < 0;(z). By rule 3,
T; cannot release the lock on @ before o;(2) is processed. That means o;(z) < ou;(x).

Formally we have

Proposition 2.1 Let H be a 2PL history. If o;(x} is in Commit(H), then ol;(xz) and

ou;(x) are in Commit(H) and ol;(2) < 0;(2x) < ou;(x).

Suppose there are two operations. p;(x) of T; and ¢;(x) of 7}, that conflict. Thus the
locks that correspond to these operations also conflict. By rule 2, T; and T} cannot
simultaneously own these locks. Therefore, the scheduler must release the lock corre-
sponding to one of the operations before it sets the lock for the other. In terms of the

precedence relation <, we have either pu,(2) < ¢l;(2) or qu;(x) < pli(z).

Proposition 2.2 Let H be a 2PL history. If pi(z) and g;(2) (i # 7) are conflicting
operations in Commit(H), then cither pu;(2) < ¢lj(x) or quj{z) < pli(z).

Now let us look at rule 4. It is equivalent to saying that every locking operation
of a transaction must precede any unlocking operation of that transaction. In terms

of the precedence relation, pl;(x) < qu;(y) for all operations p; and ¢;.

Proposition 2.3 Let H be a 2PL history. For any pl;(z) and qui(y) of T;, pli(z) <
qu;(y) for any data items = and y.

Now we show that a 2PL history is serializable by showing that its serialization

graph is acyclic. Recall that SG(H) has only committed transactions as its nodes.

CHAPTER 2. CONCURRENCY CONTROL THEORY 18

Lemma 2.1 Let H be a 2PL history, and suppose 1T; — T; ts in SG(H). Then, for

some daia item x and some conflicting operations p;(x) and ¢;j(z) in H, pui(z) <

qu(af).

Proof: Since T; — T, there must exist conflicting operations p;(x) and ¢;(z) such

that p;(z) < ¢;(z). By Proposition 2.1,

1. pli(z) < pi(x) < pui(z), and

2. qlij(z) < gj(z) < quj(a).

By Proposition 2.2, either pu;(z) < ¢lj(z) or gquj(z) < pli{z). In the latter case, by
(1) and (2) and transitivity, we would have ¢;{(z) < p;(2), which is ruled out. Thus,

pu;i(z) < glj(x), as desired. O

Corollary 2.1 Let H be a 2PL history, and let Ty — Ty — ... — T, be a path in
SG(H), where n > 1. Then, for some data ilems ¢ and y, and some operations py(x)

and ¢,(y) in H, pui(z) < ¢l (y). 0
Theorem 2.2 Fvery 2FL history H is serializable.

Proof: Suppose, by way of contradiction, that SG(H) contains a cycle 7} — T —

. — T, — T1, where n > 1. By Corollary 2.1, for some data items z and y, and
some operations py{z) and ¢;(y) in Commit(H), pui(z) < pl;(y). But this contradicts
Proposition 2.3. Thus SG(H) has no cycles and so, by the Serializability Theorem, H

is serializable. (]

2PL has a well-known drawback of causing deadlocks. We consider that a deadlock
happens because a 2PL scheduler fails to schedule concurrent operations geniusly. So,
a 2PL scheduler needs strategies for detecting and resolving deadlocks. The overhead

ineurred in these tasks should be counted as the overhead of 2PL method. It is worth

CHAPTER 2. CONCURRENCY CONTROL THEORY 19

mentioning that, when deadlocks happen, some transactions muxt be aborted. Thus

rollbacks cannot be avoided if a 2PL scheduler is used.

Now we present a demonstrative implementation of the 2PL scheme, in order to

give the flavor of algorithm descriptions in the subsequent chapters.

e When it receives a Read(x) request from transaction T;, the scheduler does the

following:

if « is in T}’s private work space %By Assumption 2.1, = was read or
%written by T;. So x is already
%locked on behalf of 1.

then read z from there
else if = is write-locked by some other transaction

then block 77 until the read-lock can be set on 2
set read-lock on

dm-read(z)

e When it receives a Write(x, new-value) request from transaction 7}, the scheduler
1

does the following:

if « is read- or write-locked by some other transaction
then block T; until the write-lock can be set on
set write-lock on =z

prewrite(x, new-value)

e When it receives an End command from transaction 7}, the scheduler does the

following:

release all the read-locks

CHAPTER 2. CONCURRENCY CONTROL THEORY

use dm-writes to reflect T;’s updates to the database
release all the write-locks

commit

Chapter 3
Optimistic Scheme Revisited

Among the three schemes of concurrency control, it appears that the optimistic scheme
has been studied less extensively than the other two. In this chapter we present
svstematic discussions on optimistic concurrency control. We start with a discussion
of the general characteristics of optimistic scheme. We then examine the read phase.
All of the optimistic methods to be discussed in this thesis have many features in
common in this phase. Next, we discuss the validation-and-write phase, and classify

optimistic methods. Finally, each class is studied in detail.

3.1 Principles and Classification
[t is claimed in [22] that the locking scheme has the {ollowing inherent disadvantages:

e Lock maintenance and deadlock detection incur a substantial overhead, e.g.,

10% of the total execution time in System R [17].

e There are no general purpose deadlock-free locking methods that always provide

a high degree of concurrency.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED

| Q]
ro

e Concurrency is significantly lowered whenever it is necessary to leave some hot-

spot data items locked while waiting for a secondary memory access.

o Because of the possibility of failures, a strict two-phase locking protocol [7] has
to be applied to ensure recoverability [7], that is, locks have to be kept until the

transaction commaits.

o Locking may be necessary only in the worst case, that is, in most cases locking

is too strong a preventive measure.

The optimistic concurrency control scheme is designed to get rid of the locking over-
head. It is optimistic in the sense that it explicitly assumes that conflicts among
transactions are rare. Thus it relies for efficiency on the hope that conflicts will not
occur frequently. Since no blocking is possible, optimistic methods are deadlock-free.
Concurrency control is deferred until the end of a transaction, when some checking
for potential conflicts has to take place. If a conflict is detected, a “pessimistic” view
is taken: the conflict is resolved by aborting the transaction. Hence, this scheme relies

on transaction rollback as a control mechanism.

The execution of a transaction consists of 2 phases: a read phase and a validation-
and-write phase'. In its read phase, a transaction reads data items, performs required
computation, and writes new values of data items into the private work space by
prewrite operations. When it finishes all its activities and is ready to commit, the
transaction issues an End request and proceeds to its validation-and-write phase.
The scheduler checks whether or not the transaction was in conflict with any of the
transactions operating concurrently. Since no locks are held. the data item read by a
transaction may have been modified by concurrent transactions. If so, some conflict

resolution policy has to be applied. If no conflict is detected, the scheduler reflects

—

c

o
-y

he transaction’s modification iu the database by executing dm-write operations and

then commits the transaction.

In the literature, validation and write are usually two separate phases. For the convenience of
discussing combined algorithms, we merge these two phases into one. In Chapter 4, the validation-
and-write phase will be subdivided into subphases.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 23

3.1.1 Read Phase

The part of an optimistic scheduler responsible for the read phase of a transaction
consists of procedures invoked upon receipt of Begin, Read, and Write requests. The
procedures for Read and Write are the same for all the optimistic methods and are pre-
sented here separately from the procedures for the other requests. The procedure for
Begin varies from method to method and is discussed together with the corresponding

validation-and-write phase.

To detect conflicts, an optimistic scheduler maintains two sets: read-set (RS;)
and write-set (W.5;) for each transaction 7;. Upon receipt of a Read or Write, the

scheduler reacts as follows:

¢ When it receives a Read(x) request from transaction 73, the scheduler does the

following:

if 2 is in T;’s private work space
then read 2 from there
else dm-read(x)

RS; = RS; U {2} % See Remark 1.
o When it receives a Write(x. new-value) request from transaction 7}, the scheduler
does the following:

W= WS u{r}

prewrite(x, new-value)

Remark 1: By Assumption 2.1, r was previously read or written by T; if z isin 73’s
3 I) I >
private work space. If @ was read, it is already in RS;. If @ was written, this Read

request will get the value written by T; itself.

A property of an optimistic scheduler that is worth mentioning here is that for
every dm-operation there will be an addition of the data item to the corresponding

read-set or write-set.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 24

3.1.2 Validation-and-Write Phase: a Classification

The read phase of a transaction, as just discussed, is fairly unrestricted. A Read or
Write request is immediately processed without any checking for conflicts or delaying.
The burden of ensuring serializability is left to the validation-and-write phase. En-
suring serializability involves two distinct tasks: detecting conflicts that may possibly

violate serializability, and resolving them if there are any.

Now let us examine the first task, i.e., detecting conflicts. Suppose transaction 7j,
with read-set RS; and write-set 15;, is at the beginning of its validation-and-write
phase. Let T be an arbitrary transaction that runs concurrently with T;, and let
RS;, WS, be its read- and write-sets, respectively. A straightforward way to detect
conflicts involving 7; is to examine RS; N W.S5; and WS; N (RS; U W.S;) for every
such T;. A non-empty intersection indicates that conflicts exist between T; and T;.
However, not every conflict would result in the violation of serializability. In fact, it
conflicts occur in an order consistent with the serialization order, then no harm is
done. In determining the serialization order, we take advantage of the fart that in
every transaction all the dm-rcads happen in its read phase aad all dm-writes in its

validation-and-write phase. Consider the following scenario (Fig. 3.1):

Ty bt SEEEEEEEE .
BOT EOT COT
T | A S — :
BOT : EOT CoT
T ; : S S |
BOT : EOT COT

Fig. 3.1

o
(&1

CHAPTER 3. OPTIMISTIC SCHEME REVISITED

In Fig. 3.1, T3, T}, and T} are transactions, and BOT, EOT COT are synchro-
nization events. BOT marks the beginning of a transaction. It is also the beginning
of the read phase of the transaction. EOT marks the end of the read phase and
the beginning of the validation-and-write phase. COT marks the completion of the
transaction. T} represents any transaction whose validation-and-write phase overlaps
the read phase of T;, and T} represents any transaction whose read phase overlaps
the validation-and-write phase of T;. Suppose T;, Tj, and T} will all commit eventu-
ally. As the serialization order (if any) we use the order in which they come across
their EOTs. That is, T} is ordered before T; which 1s ordered before Ti. Imagine
the moment when T; comes across its EOT and enters its validation-and-write phase.
Having adopted the above order, we must make sure that there are no conflicting
operations p; € O; and ¢; € O; such that p; < ¢;. For this purpose, we need only
check for RS; N WS, = ¢ and WS, N WS, = 4. We need not check RS; " W.S; = ¢
because all the dm-reads of T; precede all the dm-writes of Tj, i.e., the order of any
conflicting operations in R.S; and WS, is consistent with the serialization order of
T; and T;. Similarly, we need to check WS, N RSy = ¢ and WS, N WS, = ¢ with
Tw, but not RS; N WS, = ¢é. Further, since every transaction is checked for conflicts
with the other concurrent transactions, duplicated checking should be eliminated. T,
for example, need only be checked for either RS; N WS, = ¢ and WS, NWS; = ¢,
or WS; N RSk = ¢ and WS, NWS5;, = ¢. The former, i.e., checking RS;NWS, =¢
and WS, N WS; = ¢, is called backward checking and the latter is called forward
checking. The terms forward and backward are from [20]. [22], as well as other papers
[3, 23, 12, 13], discusses only backward checking. Checking can be done serially or in
parallel. Therefore, there are four combinations of checking strategies: serial forward,
serial backward, parallel forward. and parallel backward. Backward checking with se-
rial and parallel validation will be discussed in Section 3.2, while forward checking

will be discussed in Section 3.3.

Once a conflict that may violate serializability is discovered, resolution is straight-
forward. Since the conflict has already happened, there exists no alternative but

to rollback some involved transactions. This topic will be discussed in detail in the

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 26

following sections.

3.2 Backward Checking

Starting from this section, we will study optimistic algorithms one by one. Serial
and parallel backward checking strategies will be examined in this section. Forward
checking will be discussed in the next section. Finally, we compare these algorithms

in the last section of this chapter.

3.2.1 Serial Validation

As discussed above, transaction 7; is checked for RS, N W S; = g and WS, AW, = ¢
in backward checking when it enters its validation-and-write phase, where T} is any
transaction whose validation-and-write phase overlaps T;'s read phase. Meanwhile,
another transaction may enter its validation-and-write phase while the validation for
T; is proceeding. We can simplify the problem by the rule that there be at most
one transaction being validated at any time. All the validation-and-write phases are
therefore executed serially, Hence the name serial validation. As a result, there is no
need to check W.S5, N WS, = ¢, because, according to this rule, all the dm-writes are

performed in an order consistent with the serialization order.

We now formally describe concurrency control based on serial validation and back-
ward checking. In Algorithim 3.1 given below, fnc is the transaction number counter
maintained by the scheduler. committed transaction It is incremented just before it is
assigned as the transaction number to a newly committed transaction. We use tn(7;)
to denote the transaction number of T;. The scheduler uses transaction numbers to
represent a total order among the transactions it has scheduled. This order is used
as the serialization order. Transaction numbers and tnc arve also used o identify the

transactions that should be checked in validating T;. The transactions that performed

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 27

dm-writes while 7T; was in its read phase are ordered before T; in the total order, and
so must be checked for conflicts with 7;. These transactions have the characteristic
that their transaction numbers will be greater than or equal to the value of tnc when
T; enters its read phase, bul less than or equal to the value of tne when T; enters its
validation-and-write phase. As we will see later, their COTs are between T;’s BOT

and EOT.

In this thesis, we assume that immediately after a transaction is aborted, the locks
it holds, if any, will be released and its read-/write-sets will be deleted. If it is in a
critical section for the transaction, the scheduler will exit from its critical section.
And any step in the scheduling algorithm after the point where the transaction is
aborted will not be executed by the scheduler. In other words, an abort operation

means an exit from the algorithm.

Algorithm 3.1: Serial Backward-Checking Optimistic Algorithm (SBO)

e When it receives a Begin request from transaction 7}, the scheduler does the fol-

lowing:

start-tn;:=Inc % start-tn; will be used to determine
% those transactions involved in 1;'s validation.

Hﬁl = H"Sg =@

e When it receives an End request from transaction T}, the scheduler does the fol-

lowing:

begin critical section
finish-tn;:=tnc
for every T; such that start-in;+1 < tu(1}) < finish-tn; do % See Remark
if WS, NRS; # ¢
then abort Tiand exit

for every & € WS, issue a dm-write(x) %Reflecting

CHAPTER 3. OPTIMISTIC SCHEME REVISITED

Q]
03]

tne:=tne +1
tn(T;):=tnc
end critical section

commit

Remark: 7 is a transaction that performs dm-write after T} started but before T;

entered its validation-and-write phase.

Now we want to show that the algorithm SBO is correct, i.e., it produces only

serializable histories.

The synchronization event set, S;, of a transaction T; scheduled by an optimistic
scheduler contains BOT;, FOT;, and COT; that are shown in Fig. 3.1. One important
feature of SBO is that, for any two committed transactions 7; and T}, either COT; <
EOTjor COTj < EOT7 holds. We associate BOT; with “start-tn;:=tne,” FOT; with
“finish-tn;:=tne,” and COT; with “tn(T;):=tnc.” For the partial order “<;” of T}, we
require that

BOT; <; ri(z) <; EOT; <; wily) <; COT;, (3.1)
where x and y are any data items read and written by 7}, respectively, and r;(z) and

w;(y) are the corresponding dm-read and dm-write, respectively.

Proposition 3.1 Let H be a history produced by SBO, T; be a transaction, and T} be
a commitled transaction in H. If BOT, < COT; < EOT;, then BSO checks WS; N

RS; = ¢ when validaling T;.

For a pair of committed transactions, the order of their LOTs is consistent with

the order of their conflicting operations. This is formulated in the following lemma.

Lemma 3.1 Let H be a history produced by SBO, and let pi(x) and g;(x) (v # j) be
conflicting operations in Commit(H). If p;(x) < ¢;(x) then EOT; < EOT;.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 29

Proof: Since p;(2) < gj(2), from relation (3.1), we have BOT; < p(z) < ¢;{z) <

COT;. Now we examine each type of conflict.

L. pi=ri, q;=w;.
Assume FOT; < EQT;. Serial validation implies COT; < FOT,. Also since
BOT; < COTj, it {ollows from Proposition 3.1 that, during 7}’s validation-and-
write phase, W.S;NRS; = ¢ would have been checked; it was not empty because
x € RS; due to p;(x) and x € WS, due to ¢;{z). Therefore, T, would have been
aborted, a contradiction to the assumption that 7; is committed. Therefore,

EOT; < FOT,, since EOTs are totally ordered by <.

2. pi=wy, q=r;.

By relation (3.1), LOT, < pi{a) < ¢;{z) < FOT;.

3. pi=w;, gj=w,.
From relation (3.1), we have KOT; < pi(2) < COT; and FOT; < gj(x) < COTj.
Because p;(x) < g¢j(2), serial validation implies C'OT; < EOT;. Therefore,
EOT; < COT, < FOT;. 0

Theorem 3.1 SBO produces only scrializable hislories.

Proof: Immediate from Lemma 3.1, since EQTs are totally ordered by transaction

numbers, and the total order can represent a serialization order. 0

3.2.2 Parallel Validation

Serial validation is well-suited to the situation where the validation-and-write phase is
short compared to the read phase. If it is not, concurrent validation-and-write phases
are desired. The algoritlin presented below is devised to exploit parallel execution of

validation-and-write phases.

Algorithm 3.2, Parallel Backward-Checking Optimistic Algorithm (PBO)

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 30

e When it receives a Begin request from transaction T;, the scheduler does the fol-

fowing:

start-tn;:=tnc

RSi = H/C,l =0

e When it receives an End request from transaction 7}, the scheduler does the fol-

lowing:

begin critical section
finish-tn;:=tnc
my-committing:=commutling
committing:=committing S{T,;} % See Remark 1
end critical section
for 7 such that start-tn; +1 < tn(T}) < finish-tn; do
if WS, NRS # o
then committing:=committing —{T;}
abort and exit
for T} € my-committing do
WS, N (RS, UWS) #o
then committing:=committing — {1}
abort and exit
for every @ € 1175, issue a dm-write(x) %Reflecting
begin critical section
f WS, # 0o
then tne:i=tne + 1
tn(T;):=tnc % See Remark 2
committing:=committing—{T}}
end critical section.

commit

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 31

Remark 1: committing is the set of transactions which have already started their
validation-and-write phase but have not committed vet.

Remark 2: A transaction gets a transaction number only if it updates the database.

As in SBO., start-tn; and finish-tn; are used to determine the transactions that
were committed when 7} was in its read phase. That is, those Tj's with BOT; <
COT; < EOT;. which may conflict with T;. Proposition 3.1 is also valid for PBO.
This time, unlike SBO. validation-and-write phases are not protected by critical sec-
tions. They may run in parallel to cach other. T}’s validation should also check those
transactions which enter their validation-and-write phases before 7; does and execute
their validation-and-write phases concurrently with 73’s. In other words, those Tj’s
such that FOT; < £OT; < COT} are also checked in addition to these checked by
SBO. Note that COT; and C'OT; need not be ordered relative to each other. Those
transactions are identified by the set my-committing. The scheduler maintains a set
committing which contains all the transactions that are currently in their validation-
and-write phases. By copying committing set at the beginning of its validation-and-
write phase under the protection of critical section, T;’s my-commitiing set contains
exactly all the transactions 7} such that FOT; < EOT; < COT;. Furthermore, be-
cause of concurrent validation-and-write phases, write-write conflicts between T; and
these T;’s must also be checked. Similar to Proposition 3.1, we make the following

observation.
Proposition 3.2 Let fl be a history produced by PBO, and let T; and T} be transac-
tions in H. If FOT; < EOT; < C'OT}, then PBO checks WS, N (RS; UWS;) = ¢

when validating 1.

To show the correctness of PBO, we first prove a lemma analogous to Lemma 3.1.

Lemma 3.2 Lei H be a history produced by PBO, aud let pi{z) and q;(x) (1 # 7) be
conflicting operations in Commil(H). If pi(z) < ¢j(z) then EOT; < FOT;.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 32

Proof: Since p;(z) < g;(x), from relation (3.1), we have BOT; < pi(z) < ¢;(z) <

COT;. Now we examine each type of conflict.

L. pi=ry, ¢j=w;.

Assume EOT; < EOT;. There are two cases: 1, COT; < EOT;, and 2, EOT; <
COT;. We show that both cases lead to contradictions. In case 1, BOT; <
COT; < EOT;, by Proposition 3.1, in T;’s validation-and-write phase, W.S; N
RS; = ¢ would have been checked and it was not satisfied because z € RS; due
to pi(z) and @ € WS, due to ¢;j(z). Therefore, T; would have been aborted, a
contradiction to the assumption that 7; is committed.

In case 2, we have FOT; < FEOT; < COT;. Proposition 3.2 applies. In T}’s
validation-and-write phase, 1V.5; N (RS; U W.S;) = ¢ would have been checked
and it was not empty, because r € RS; due to pi(r)and z € WS, due to

gj(x). Therefore, T; would have been aborted, a contradiction again. Therefore,

EOT; < EOT;. since EQTs are totally ordered.

o)

Pi=w;, 4;=7;.

Proved as in the proof of Lemma 3.1.

3. pi=w, q;=wj.
From relation (3.1). we have FOT; < pi(x) < ¢;(x) < COT,;. Assume EOT; <
EOT;. Then, by Proposition 3.2, in T;’s validation-and-write phase, W.5; N
(RS; U WS;) = ¢ would have been checked and it was not empty because
r € WS, due to pi(x) and x € WS, due to ¢;(x). Theretore, T; would have
been aborted, a contradiction to the assumption that 7; is commtted. Thus,
EOT; < EOT; must hold, since EOTs are totally ordered. 0O
‘o

Theorem 3.2 PBO produces only serializable histories.

Proof: Immediate from Lemma 3.2, since EOT’s are totally ordered. i

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 33

3.2.3 Remarks

SBO and PBO presented above first appeared in [22] and were adopted in many
subsequent papers. However, checking for WS, N RS; = ¢ in them is more restrictive
than necessary. To illustrate this, suppose that there are two transactions 7 and
T5. 17 writes ¢ and T3 reads @. Further, suppose T7 enters its validation-and-write
phase and finally commits when T3 is in its read phase, i.e., 71 precedes T3 in the

serialization order {See Fig. 3.2). Consider the following two cases:

1. T, reads o (at position A in I'ig. 3.2) before the value of x written by Tj is
reflected to the database. It is a violation of serializability and T% should be

ahorted.

[

T, reads & {at position B in Fig. 3.2) after the value of & written by 7} has been
reflected to database. This write-read conflict does not violate the serialization

order. 7% need not be aborted.

BOT EOT COT
T: | l o
A4
w(x)
BOT EOT coT
T2 [o o l]
7 7
r{x) r(x)
A B

Fig. 3.2 Detecting conflicts

Pradel, et al.. suggested a method to relax the restriction [27]. In their suggestion,
the read set of a transaction also contains EQT’s of other transactions, and its ele-

ments are ordered into a the sequence. When a transaction, say T} in I'ig. 3.2, enters

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 34

its validation-and-write phase, every other transaction currently in its read phase, say
15 in Fig. 3.2, records EOTy in its read set. When T; checks for conflicts with T,
it need only check the read operations in RS, which occur after EOT) against T)’s

write set.

It i1s worth mentioning that the forward checking presented below does not have

the above restriction.

3.3 Forward Checking

3.3.1 Serial Validation

In backward checking, a transaction is checked for conflicts with other transactions
that have entered their validation-and-write phases before it does. As from Theorems
3.1 and 3.2, these transactions appear before 7; in serialization order. In forward
checking, a transaction is checked for conflicts with other transactions that will appear
after it in the serialization order. As in backward checking, we also use the logical
time at which transactions enter their validation-and-write phases to order them.
We present a serial forward checking validation algorithm below. The algorithm is
straightforward compared to SBO and PBO. The scheduler maintains a set Active to
record the transactions that are currently in their read phases. Since the transaction
(73) in the validation-and-write phase is currently writing, it may have write-read
conflict with any of the transactions in Active. Unlike the critical sections used in
backward checking, the critical section used in the algorithm below is a system-wide
critical section. The purpose of using such a strong critical section is to prevent
the read set of any other transaction from being updated while the validation and
reflecting of a transaction is taking place. Later, we will discuss some methods to

relax this restriction.

Algorithm 3.3, Serial Forward-Checking Optimistic Algorithm (SFO)

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 35

e When it receives a Begin request from transaction T;, the scheduler does the fol-

lowing:

Active:=Active U{T;}
RS; :=WJS;:=0¢

e When it receives an End request from transaction T;, the scheduler does the fol-

lowing:

begin (system-wide) critical section
Active:=Active—{T;}
conflict:=false
for every T; € Active do
if WS, N RS; # ¢ then conflict:=true
if conflict then resolve the conflict by aborting either T; (and exit)
or all T;'s such that W.S; N RS; # ¢.
% The decision is made upon some cost criteria.
for every € WS, issue a dm-write(z) %Reflecting
end critical section

commit.

We associate BOT; with “Active:=Active U{T;},” EOT; with “Active:=Active—{T;},”
and COTswith the end of the eritical section. Transaction 7; with BOT; < EOT; and
EOT: < EOT;,if it has FOT;) will be in Active when transaction T; is being vali-
dated, and for each T; € Active, SFO checks WS; N RS; = ¢ when validating T;.

The correctness proof for SFO is similar to that for SBO.

Lemma 3.3 Let H be a history produced by SFO, and let p;(z) and q;(x) (2 # j) be
conflicting operations in Commit(H). If pi(x) < ¢;(x) then EOT; < EOT;,

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 36

Proof: We only show that, if r;(z) < w;(a), then EOT; < EOT;. The rest of the

proof is similar to Lemma 3.1.

Since ri(x) < wj(z), by relation (3.1), we have BOT; < ri(z) < wi(x) < COTj.
Also, we have FOT; < wj(x) < COTj. Since EOT; and C'OT; form the boundary
of the critical section for 7;’s validation-and-write phase, r;(x) can only occur before
EOT;, ie., ri(z) < FOT;. So we have BOT; < ri{z) < EOT;. Assume EOT; <
EOT;. Since BOT; < EOT; < EOT;, in T}’s validation-and-write phase, SFO would
have checked WS5; N RS; = ¢ and either T; or 7 would have been aborted because

x € (WS; N RS;), a contradiction. So, EOT; < FOT;. 0
Theorem 3.3 SFQ produces only serializable histories.

Proof: Immediate from Lemma 3.3, since EOT’s are totally ordered. 0

3.3.2 Replacing System-Wide Critical Sections

Imposing a system-wide critical section for a validation-and-write phase may not be
acceptable, and should be avoided. Actually, the purpose of using system-wide critical
section, instead of a simple critical section, is to prevent the situation where, after
WS N RS; = ¢ is checked for some T;,2 T} reads @ data item in W.S; before the
new-value of the item is reflected on behalf of T;. So, we can replace the system-wide
critical section by an ordinary critical section (as used in backward checking) with

some additional facility. The following are some alternatives.

1. After ensuring that WS, N RS, = ¢ is satisfied. block all the read requests from

T; until the validation-and-write phase of T; ends.

o

Lock all the data items in W.S5; at the beginning of the validation-and-write

phase of T; until the validation-and-write phase ends.

2We assume this checking is executed atomically.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 37

3. From the beginning of the validation-and-write phase of T}, collect all the items
being read into a special read set RV in addition to adding them into the corre-
sponding read sets. After T;'s modification is reflected, check RV against WS;.

If 7} has contributed an item in W.S; N RV, then abort T7.

Alternatives 1 and 2 use locking to solve the problem. However, the duration of
locking is short and it causes no deadlock problem. Both methods are pessimistic, in
expecting that conflict may happen during validation-and-write phase. Alternative
3 is optimistic: *I did not meet any problem in my read phase, why should I worry

about validation-and-write phase?”

3.3.3 Parallel Validation

Parallelizing forward checking is very difficult, though possible. This is easy to see

from the following discussion.

In parallel backward checking, the set of the transactions that should be checked
is fixed. Every transaction involved in validation has at least finished its read phase.
Thus its read-set and write-set are also fixed. Therefore, backward checking examines
“static” data. In contrast, the read sets and write sets involved in parallel forward
checking may be changing, except those of the transaction being validated. Suppose
we are validating T;. Since all the other transactions involved in the validation could
still be in their read phases, their read-sets might still be expanding during the vali-
dation. Because other transactions may enter their own validation-and-write phases
during T3’s validation, the set of transactions whose write-sets should be checked for
validating 7} is also expanding. To make things worse, a new transaction may start
at any time during the 7}’s validation-and-write phase. One can immediately see the

difficulty of the validation.

One possible approach to parallel forward validation is as follows. The scheduler

performs validation incrementally through several rounds of checking. In the first

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 38

round which starts right after EFOT;, the scheduler checks 7T}’s write-set against the
current read-set of every transaction which is in its read phase at the moment when
EOT; happens. Meanwhile, the scheduler collects all the information concerning the
read operations that occur in the first round and all the transactions that start their
validation-and-write phases at this time. If any coaflict is detected, either T; or all
the transactions that conflict with 7; are aborted. If T; survives from this round, it
proceeds to the second round. In the second round, the scheduler uses the incremental
information to validate T; while, at the same time, collecting increments during this
round which will be used in the third round. This time, not only read-write conflicts
but also write-write conflicts are checked. Again, if T; survives, it proceeds to the
third round, and so on. In the last round, we have to protect the whole round in a
global critical section to finish the validation. Reflecting T;’s modification to database
can be done in the last round or the second last round. But once it is done, T; can

not be aborted.

Concurrency gained from parallelism is related to the number of rounds. However,
on the assumption that conflicts are rare, there is probably no need to have more than
two rounds. When there is only one round, it becomes serial validation. A scheduler
based on parallel forward validation could be complex. The overhead of running it

may offset the benefit of parallelism. We will not discuss this class any further.

3.4 Comparison

In this section we compare the three algorithms presented in this chapter, i.e., SBO,
PBO, and SI'O. Our comparison focuses on the differences between backward checking
and forward checking. Differences between serial and parallel validation are fairly easy

to see.

Difference 1 Forward checking resolves conflicts more flexibly than backward check-

ing does. When a transaction, say 7}, discovers conflicts, forward checking can

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 39

abort either 7; or the transactions which conflict with 7}, while backward check-
ing has no choice but to abort 7T;. This is because, in backward checking, all
the transactions that are checked for conflicts with 7; either have already com-
mitted or may have started dm-writing. Besides, the transactions aborted by
forward checking are still in their read phase. Some may have just started their
execution. On the other hand, the transactions aborted by backward checking
have already successfully finished their read phases. This implies that the abor-
tions in forward checking are in general less expensive than those in backward
checking.

Because of this difference, backward checking suffers from starvation problem
but forward checking does not. This is important for long transactions, for, in

backward checking, a long transaction may often starve.

Difference 2 Forward checking needs less checks than backward checking. Forward
checking checks a write-set against a number, say Ny, of read-sets, while back-
ward checking checks a read-set against a number, say Ny, of write-sets. There
arc three points to be noted here. 1) A transaction’s write-set is often smaller
than its reacd-set. Also, it is often that a transaction has an empty write-set,
and therefore, does not have validation-and-write phase in forward checking.
However, it is seldom the case that a transaction has an empty read-set. 2) The
read-sets checked in forward validation are partial, because the transactions they
belong to are still in their read phase. On the other hand, all the sets checked in
backward checking are complete. They belong to some finished transactions. 3)
Ny is limited. It is the number of “active” transactions in the system at the mo-
ment when the transaction in question entered its validation-and-write phase.
It does not depend on the length of the transaction. N, on the other hand,
depends on the length of the read phase of the transaction being validated. To
make it clear, suppose the system can have at most m transactions executing
simultaneously, and suppose that a transaction’s read phase is n times longer
than the average life-time of transactions. In forward checking, at most m — 1

read-sets are checked, while in backward checking, there may be (n+1)(m —1)

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 40

write-sets to be checked.

Difference 3 Unlike forward checking, backward checking has to store the write-
sets of committed transactions as long as there i1s an uncommitted transaction
which was started before they were committed. When some transactions are
long, this requires significant amount of storage space. On the other hand,

forward checking have to deal with the problem of dynamic read sets.

Difference 4 Backward checking allows parallel validation, which is a very impor-
tant advantage that forward checking does not have. Dm-writing to stable
storage is sometimes time-consuming. Parallelization of writes is important for

performance.

Chapter 4

Combining Optimistic and

Locking Schemes

From this chapter on, we combine the locking and optimistic schemes, taking advan-
tage of both schemes. We start with a discussion, motivating adaptive concurrency
control algorithms. We then briefly survey the existing combined algorithms. Unfor-
tunately, about half of these algorithms are not adaptive, and the rest of them are
only adaptive to a very limited extent. Next, the motivation behind our approach is
presented. based on the analysis of previous algorithms. An algorithm is presented to
illustrate our approach, followed by a systematic procedure for combining locking and
optimistic methods. Then, we discuss onr algorithms in detail. Finally, we extend

our approach to multiversion databases.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 42

4.1 Introduction

4.1.1 Motivation

At system design time, a concurrency control algorithm (typically a 2PL variant) is
adopted. This design decision may be made based on some a priori knowledge of
the expected use of the system or simply because the algorithm may appear to be
the best. Due to the complicated structure of a database management system, it is
unlikely that the original algorithm incorporated into the system will ever be changed,

despite the fact that the system may be used under changing workload conditions.

Studies has been done to compare several different algorithms in an attempt to
reach some conclusion concerning their operational merits (e.g., [4, 8, 11, 24, 25]).
Naturally, if a clear-cut conclusion could be drawn about one algorithm being the
“best” under almost all conditions, then that algorithm should be employed by all
database systems. However, as commented by Agrawal. et al. [4], the studies have
tended to be contradictory, rather than being definitive. A common conclusion sug-
gests that, while locking normally performs well (especially when conflict rates are
medium or high), an optimistic method performs better when conflict rates are low.
Anyway, the past studies are by no means the last words, since the simulation studies
were not performed under a sufficiently wide variety of system workloads and pa-
rameters. Also, due to the changing application areas (e.g., artificial intelligence) the
usefulness of some characterizations of workloads and parameters in these studies may

be short-lived.

It is our opinion that the concurrency control module in a database management
system should be a versatile piece of software that has the ability to adapt itself to

the changing system workload and environment.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 43

4.1.2 Hybrid Concurrency Control methods: A Survey

Combining different concurrency control schemes in one database management system
has been investigated in [6, 9, 10, 15, 16, 23]. The motivation behind each such
attempt is either achieving more concurrency or making the scheme more adaptive,
Le., getting better performance in different situations, or both. Interestingly, all the
combined schemes proposed so far integrate locking with one of the two other schemes,
i.e., time-stamp ordering or optimistic schemes. This is probably because locking is

easy to understand and easy to implement.

In [6], Bernstein and Goodman suggest a systematic way to combine different
concurrency control methods. They decompose the concurrency control problem into
two subproblems: synchronization of read-write conflicts and synchronization of write-
write conflicts. Different methods are used to synchronize these two types of conflicts,
and some technique is used to integrate the two parts. For example, they discuss
an algorithm that uses 2PL for read-write synclironization and TO for write-write
synchronization, as well as an algorithm that uses TO for read-write synchronization
and 2PL for write-write synchronization. They confine their discussion on this issue to
locking and time-stamp ordering schemes. The algorithms they suggest can probably

enhance concurrency to some degree, but are not adaptive.

Farrag and Ozsu [15, 16] suggest another way to combine locking and time-stamp
ordering schemes. They use an integer L, called the strictness level. The set of
transactions is divided into groups, each containing at most L transactions. For the
intra-group conflicts (involving transactions within the same group), 2PL is used. For
the inter-group conflicts (involving transactions from different groups) TO is used.
No characteristics other than the arriving time are taken into account in deciding the
membership of a transaction in a group. A transaction is simply put into the newest
group. When the number of the transactions in this group reaches L, a new group is
created to accommodate new transactions. When L is set to infinity, the scheduler is
purely 2PL. When L is set to 1, it becomes purely TO. It is hard to see the advantages

of this approach, except that changing the value of L can offer some flexibility.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 44

Combining the locking and optimistic schemes was proposed by Lausen [23]. In
his approach, a transaction can execute in one of two modes: optimistic, where the
optimistic concurrency control principle applies, and locking, where the 2PL principle
applies. An interesting application of his approach is that one can start a transaction
In an optimistic view that it won’t conflict with other concurrent transactions. When
conflicts actually occur and the transaction 1s aborted, the view turns to pessimistic.

When the transaction is restarted, it operates in the locking mode.

Another approach combining the locking and optimistic schemes is suggested by
Boral and Gold [9]. They adopt Bernstein and Goodman’s idea of decomposing
concurrency control to read-write synchronization and write-write synchronization.
However, they use the serialization graph to detect conflicts. Their approach can only
be used in centralized systems. and the overhead for detecting conflicts is likely to be

high.

Canning, Muthuvelraj, and Sieg [10] extend Lausen’s approach, trying to design
a more adaptive concurrency control algorithm. They group transactions into clus-
ters. The transactions having data contention with each other are grouped into the
same cluster. A cluster could have a status of optimistic, pessimistic, or something
intermediate. Further, there is a threshold on the number of transactions in a clus-
ter. When the number of transactions in a cluster exceeds the threshold, the cluster
changes to an intermediate status tending to pessimistic. We think their approach is
a poor extension of [23]. The maintenance and merging of clusters incurs significant

cost relative to a possible gain in concurrency.

The combined algorithms s rveved ahove approach concurrency control from two

different points of view.

1. Decompose concurrency control into synchronization of different types of con-
flicts. As in [6, 9], concurrency control is decomposed to read-write synchroniza-
tion and write-write synchronization. One ccencurrency control method is applied to

read-write synchronization and the other method to write-write synchronization. In

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 45

(15, 16], conflicts within a group are processed using one method and conflicts be-
tween groups are handled using the other method. So within one transaction, two
methods work together to ensure serializability. Only [9] is adaptive. It is sensitive

to the classes of transactions, but not to the change in the conflict rate.

2. Allow transactions using different concurrency control methods to run together.
As in {10. 23], a transaction may run in either optimistic or pessimistic mode. Only
one method applies to a given transaction. Some mechanism is used to coordinate
the transactions. These algorithms are sensitive to the change of conflict rates in
the whole database to some extent. However, they do not take into account the
distribution of conflict rates over the set of data items. Also it is not sensitive to the

classes of transactions.

4.2 Owur Approach

The two points of view summaried at the end of the previous section focus on trans-
actions, and do not take differences between data items into consideration. A unique
concurrency control policy applies to all the data items. We call them transaction-
oriented. However, conflicts occur on data. It is the contention on data that generates
conflicts. And it is the access to data that determines the classes of transactions.
Therefore, our approach focuses on properties of data. To illustrate the significance
of shifting our focus in concurrency control onto properties of data, let us consider

the following scenario:

Suppose that a database consists of two disjoint sets of data items, say
OPT and PES. Originally, the conflict rates on the data in OPT are low,
while the conflict rates on the data in PES are high. We define conflict rate
on a data item as the number of harmful conflicts on the item in unit time,
where a harmful conflict is a conflict which may violate serializability. The

precise definition of harmful conflict depends on the concurrency control

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 46

algorithm used. It will receive more discussion in Section 6.1.1. Suppose
further that 2PL is used for concurrency control. A transaction, say T,
holds some write locks on some data items in OPT and now wants some
more locks on data items in PES. The transaction may wait for a long
time to get all these locks. By the 2PL rule, it won’t release any locks on
OPT items until and unless it gets all the locks (if no transaction is rolled
back due to deadlock). Some other transactions which want to access
OPT items write-locked by T; have to wait until 7} releases the locks on
them. These transactions may also hold some locks on OPT items, which
in turn will block some more transactions. Consequently, the conflict rate
on OPT items may get higher and higher. We name this phenomenon

conflict escalation.

Conflict escalation occurs when conflict distribution is uneven across the set of
data items. Uneven conflict distribution is caused by non-uniform data accesses by
transactions, which seem to be very common in practice. This is a fact overlooked by
many performance studies on concurrency control. Also, it is easy to see that none
of the “pure” (i.e., not combined) concurrency control methods works well under this
circumstance. This also argues for adaptive algorithms. Back to the discussion about
the significance of a data-oriented approach, it is hard for the transaction-oriented ap-
proaches to deal with uneven conflict distribution, because they cannot take conflict
distribution into account. Semantics-based locking approaches [5, 29, 34, 35] could
not consider this fact either, since their primary emphasis is on reducing conflict be-
tween operations by giving more semantic information about the data objects and the
operations on them. If we want to face the problem caused by an uneven distribution
of conflicts, we have to make more effort on data grouping than they did. For exam-
ple, if we did not let T; lock OPT data items but somehow still ensured serializability,

we could avoid escalating conflict rates in OPT.

We should emphasize here that our approach is not merely for solving the uneven

distribution problem. It is also an approach towards more adaptive concurrency

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 47

control in general. We now elaborate on this point in some detail. First, based on the
following arguments, we expect that OPT occupies a large portion of the database.
Assuming that the granularity of data items chosen for concurrency control is not too
big, say, at the record or page level, the number of the data items in the database
will be sufficiently large. In this case, given a period of time, it is likely that only
a very small portion of the database is subjected to frequent conflicts. Meanwhile,
most of the data items have low conflict rates and many are even not accessed at all.
Further, it may be usual that all the data items in the database have low conflict rates
for some period of time. This is particularly likely in large databases. Even though
many studies conclude that optimistic methods perform very well when conflict rates
are low, one possible reason that they are not used widely in practice is that in many
applications, where high conflicts do occur occasionally, optimistic methods perform
poorly. With the idea of adaptive concurrency control, we can use an optimistic
method in OPT and a locking method in PES. We can expand OPT or even let it
take over the entire database when conflict rates are low for all data items; when

conflict rates become higher, we just shrink OPT, even until it disappears.
) J ;

In a particular application of a database management system, one may be able
to predict an approximate conflict distribution or at least predict an approximate
distribution of update operations for a certain period of time. For example, in a
banking database system, a personal saving account may be updated at most once
a day on average, but some internal variables, such as the total amount of money in
a branch, will be frequently updated. In some databases, there could be some docu-
mentary data, such as employees’ names, which remain almost unchanged once they
are stored. It is also possible that the changes in conflict distribution is predictable.
For example, more conflicts could occur during the day than at night; some data in
a commercial database could have higher conflict rates at the end of a month than
at other times. Most importantly, prediction could often be based on the history of a
system. Since the conflict rate on a specific data item probably does not change very
fast, one may obtain a good approximation to the conflict rate on that data item for

a coming short period of time from the most recent history. In summary, prediction

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 48

of conflict distribution with certain precision might be possible, and it is better than

nothing for an adaptive concurrency control algorithm.

Now assume that a database 1s partitioned into OPT and PES, where the conflict
rates on the data items in OPT (conflicts in OPT, for short) are low and the conflicts
in PES are medium or high. Our approach is to choose a concurrency control method
best suited to the conflict rates for each part of the database, say, an optimistic method
for OPT and a locking method for PES. When a transaction accesses a data item in
a part, it obeys the concurrency control rules governing that part. The transaction,
therefore, may be managed by more than one subscheduler enforcing different rules.
If the subschedulers can coordinate with each other to ensure serializability with small

overhead, we can take advantage of various concurrency control methods.

With changes in conflict rates, a partition (into OPT and PES) may become out-
of-date. Therefore, we should have a mechanism to keep the partition up-to-date. Its
functions were briefly introduced in Chapter 1 and will be discussed in more detail
in subsequent chapters. Now consider that concurrency control is characterized by
the proportion of optimistic accesses over pessimistic accesses. When we change the
membership of a data item from OPT to PES, or vice versa, we adjust the control
a little bit. When the number of data items is large, such a change is so little from
the global point of view that the coutrol seems to be continuously tunable. This is a

unique feature of our approach. We can even imagine such a scenario as the following:

At 8:00 AM, a transaction has 89% of its accesses controlled optimistically
and 11% pessimistically. At 2:00PM, the same transaction may have 73%

of its accesses controlled optimistically and 27% pessiinistically.

In the remainder of this chapter, we integrate different subschedulers.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 49

4.3 A Combined Algorithm — An Example

To flesh out our ideas about data-oriented approach to concurrency control in concrete
algorithms, we show how to integrate parallel backward checking (PBO) with two-
phase locking. We first present the algorithm, and then show that straightforward
composition can produce a correct algorithm. The proof will also give us hints on a

systematic way to integrate optimistic methods with locking.

4.3.1 The Algorithm

As stated in the last section, we partition a database into two parts, OPT and PES.
It is assumed that conflicts due to data items in OPT are infrequent and those due to
data items in PES are not infrequent. We also assume that there exists an efficient
method for the scheduler to determine if a data item is in OPT or PES. We leave
suggestions for specific methods to alater chapter. We use W L; (Write-Locked items)

to denote the set of data items in PES written by 7;.
The following is a description of our algorithm:
Algorithm 4.1: (PBO + 2PL)
o When it receives a Begin request from transaction 7;, the scheduler does the fol-
lowing:

start-tn;.=tnc

RS, =W, :=WL, := ¢

o When it receives a Read(x) request from transaction 7}, the scheduler does the

following:

check-member(z) % determine which part of database a belongs to

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 50

case R1: @ € PES % Using locking in this case
if z 1s in T;'s private work space
then read = from there
else if x is already write-locked by some other transaction,
block T} until read-lock can be set on =
set read-lock on x
dm-read(z)
case R2: =z € OPT % Using optimistic control in this case
if z is in T;'s private work space
then read = from there

else dm-read(z)

RS; := RS; U {z}

o When it receives a Write(x, new-value) request from transaction T3, the scheduler

does the following:

check-member(x)
case W1: 2 € PES
if & is read- or write-locked by some other transaction,
block T, until write-lock can be set on z.
set write-lock on 2
WL :=WL; U {z}
prewrite(x, new-value)
case W2: = € OPT
WS;:= WS, U {z}

prewrite(z, new-value)

e When it receives an End request from transaction 7, the scheduler does the fol-

lowing:

begin critical section

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES

finish-tn;:=tnc
my-committing:=committing
committing:=committing U{T;}
end critical section
release read-locks
for all 7); such that start-tn; +1 < tn(7};) < finish-tn; do
if WS;NRS; # ¢
then committing:=committing —{T;}
abort 7;
for T; € my-committing do
if WS, N (RS, UWS;)# ¢
then committing:=committing —{T;}
abort T;
for every @ € (WL, UWY,) issue a dm-write(x)
% Reflecting. (W L; UWLS;) contains
% all the items updated by 7.
begin critical section
it W.S; 5 ¢
then tnei=tne 4+ 1
tn(T;):=tnc
committing:=commutting—{T;}
end critical section.
release write-locks

commit

51

One can see that the composition is quite straightforward. In face, it is almost just

gluing two algorithms together. For a Read or Write request, the only additional step

is checking (using check-member(z)) if x is in OPT or PES when it arrives. Then

it follows optimistic or locking steps, depending on which part z belongs to. The

procedure for End is similar to that in PBO, except that “release read-locks” and

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES

[} 1
b

“release write-locks” are inserted at appropriate places. However, it is the positions
of these steps that play a vital role in making Algorithm 4.1 correct. Unlike [23],
there is no checking for conflicts between an optimistic read and a pessimistic write
and the like. The simplicity can be attributed to the clear separation of OPT and
PES.

Actually, we need not use prewrites for PES part. We can directly use dm-writes
in PES, and therefore, do not need any private work space for PES. There are several
impacts of this improvement. First, the buffering problem of optimistic scheme is
eased. Second, the write subphase is considerably shortened. Third, the negative
effect is that recovery is more costly. Since a tramsaction may be aborted due to

conflicts in OPT, recovery problem could be serious.

4.3.2 Correctness

We can think of a transaction scheduled by Algorithm 4.1 as consisting of two phases:
a read phase and a validation-and-write phase, separated by an End request. Let
BOT, EOT, and COT stand for the same points (respectively) as that in PBO in
Chapter 3. The synchronization event set of a transaction contains these events and
the locking and unlocking events. As in Chapter 3, our correctness proof will show
that if p;(2z) < ¢;(z) for any pair of conflicting operations, p;(«) and ¢;{z), then
EOT; < EOT; holds. This constitutes a proof since EOT’s are totally ordered and
their order can be considered as the serialization order. We show this fact first for
any @ in PES, and then for any 2 in OPT. Since Algorithm 4.1 is a straightforward
combination of 2PL and PBO, the related proofs we used in Chapters 2 and 3 carry

over.

The following proposition [ormulates the relation of EOT to locking and unlocking

operations.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 53

Proposition 4.1 Let H be a history produced by Algorithm {.1. Let T; be a trans-
action in H and o) be an operation in T;, where x € PES. If both ol;(x) and

ou;(z) appear in H, then ol;(z) < EOT; < ou;(z). O
We first deal with the case € PES.

Lemma 4.1 Let H be a history produced by Algorithm 4.1, and let p;(z) and ¢;(z) (I #
Isx €PES) be conflicting operations in Commit(H). If pi(x) < q;(z) then EOT; <
EOT];.

Proof: From the proof of Lemma 2.1, if pi() < ¢;(z) ther pu;(2) < ¢l;j(z). Therefore,

by Proposition 4.1, FOT; < pu(x) < ¢lj(z) < EOT7. a
Next, we consider the case x € OPT. In this case, Lemma 3.2 is applicable.

Lemma 4.2 Let H be a history produced by Algorithm 4.1, and let p;(x) and ¢;(z) (@ #

J,x €0PT) be conflicting operations in Commit(H). If pi(x) < q;(z) then EOT; <
EOT]j. O

From the above two lemmas, the correctness of Algorithm 4.1 follows immediately.

Theorem 4.1 Algorithm 4.1 produces only serializable histories. a

4.4 Systematic Procedure

In all the algorithms we have presented in Chapters 3 and 4 so far, the key to ensuring
serializability is to arrange conflicting operations in consistence with the total order
defined by the EOTs. We now consider a more general problem. Suppose a database

is partitioned as before. In accessing OPT, an optimistic method is used, while in

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 54

accessing PES, 2PL is used. We call a scheduler with this characteristic an O+P
scheduler. The problem is how to combine the two methods so that serializability is
guaranteed. To attack this problem, we consider that on each part of the database
there is a subscheduler performing concurrency control. For example, in Algorithm
4.1, we consider PBO as the optimistic subscheduler and Strict 2PL as the locking

subscheduler. We first investigate the properties of each kind of subscheduler.

4.4.1 Confining Sections

As was discussed in Chapter 3, an optimistic scheduler uses the time order of EQTs
as the serialization order. From now on, the term “optimistic scheduler” refers to a
scheduler using SBO, PBO, or SFO. In all of these algorithms, when a transaction, say
T;, enters its validation-and-write phase, it first enters a subphase in which the set of
transactions involved in the validation is determined. In SBO, this subphase involves
only one operation “finish-tn; :=tnc,” which assigns the value of tne at £OT; to finish-
tn;. In PBO, tnc is recorded and committing is recorded and updated in the subphase.
In SFO, the subphase consists of “Active:=Active—{T;},” which defines the set of
transactions that are in their read phases at £OT;. We call this subphase confining
section (CS). The beginning of the CS for transaction T} is marked by EOT;. We
use £C'S; to mark the end of C'S;. Since some global information is updated in CS’s,
CS’s should be executed mutually exclusively. We extend the use of partial order
“<” to the confining sections. C'S; < C'S; means that the entire confining section
of T; precedes the confining section of T}, in other words ECS; < EOT;. Here we
consider E'C'S; as a synchronization event. Let S; and S, be sections (i.e., intervals)
such as confining sections and locked sections to be introduced later. Let By, Bs,
and Ey, F; be the beginnings and ends of S; and S, respectively. We say S; and S,
overlap if By < E; and B, < Fy (see Fig. 4.1). Our optimistic schedulers ensure that

no two confining sections overlap, i.e.,

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 35

Proposition 4.2 Optimistic schedulers SBO, PBO, and SFO enforce, either CS; <
CS; or CS; < C8;, for any transactions T; and T; (¢ # j) that have confining sec-

tions.

S2

Fig. 4.1 Overlapping

Since an EOT stauds for the beginning of a CS which 1s mutually exclusive with
other CS’s, one can substitute CS for EOT in Lemmas 3.1, 3.2 and 3.3 without

affecting their correctness. We can thus rephrase the lemmas as follows.

Lemma 4.3 Let H be a history produced by an optimistic scheduler, and let p;(z) and
q;(z) (i # 7) be conflicting operations in Commit(H). If pi(z) < g¢;(x) then C'S; <
CSJ'. O

Therefore, the order of CSs is consistent with the serialization order generated by

optimistic scheduler SBO, PBO or SFO.

4.4.2 TLocked Sections

The locked point (LP) and unlocking point (UP) were defined in Section 2.3. They
are synchronization events delimiting the locked section (denoted as LS). Similar to
confining sections, we extend < to the set of locked sections and write LS; < LS; to

mean UP; < LP;. Now we examine properties locked sections have.

For a transaction T;, by definition, we have pl;(z) < LPF;, for any locking event

CHAPTER 4. COMBINING OPTIMISTIC AXD LOCKING SCHEMES 56

pli{z). Similarly, UP; < pu;(x) holds, for any unlocking events pu;(z)'. We formally

state the above discussion in the following proposition.

Proposition 4.3 Let H be a history produced by a 2PL scheduler, and let p;(x) be an
operation in Commit(H). Then pli(z) < LP;, < UF; < pu;(z).

Lemma 2.1 says that if p;{x) conflicts with and precedes ¢;(x), then pu;(z) <
qlj(z). By the above proposition, this implies UP; < LP;. In terms of locked sections,

we thus have LS; < LS;. We formulate this as follows.

Lemma 4.4 Let H be a history produced by « 2PL scheduler, and let p;(x) and
gj(x) be conflicting operations in Commit(H). If pi(x) < ¢j(z), then LS; < LS;.

Corollary 4.1 The locked sections of conflicting transactions do not overlap. That

is, if transaction T; conflicts with transaction Tj, then either LS; < LS; or LS; < LS.

We refer to confining sections and locked sections as synchronizing sections.

4.4.3 Integration

When two subschedulers are integrated into one, a transaction accessing bhoth parts
of a database will experience two different kinds of concurrency control, and, conse-

quently, will have both a confining section and a locked section.

For an optimistic subscheduler and a pessimistic subscheduler to cooperate, they
should interact in some way. As we could see from discussions given so far in this

chapter, optimistic and locking methods share some important properties. They both

IStrictly speaking, one should use < instead of < in above relations. However, this implies
introducing a new partial order. Therefore, we interpret “at which™ in the definitions of LP and UP
as “right after” and “right before,” respectively, in order to use < for LP’s and UP’s, instead of <.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 57

arrange transactions according to conflicts. (Time-stamp ordering, in contrast, ar-
ranges transactions according to the transactions’ arriving times.) They both have
synchronizing sections whose order is consistent with a serialization order. To in-
tegrate them, we need only to ensure that the serialization orders generated by the
optimistic and locking subschedulers are consistent with each other. In other words,
we should prevent the situation where one transaction, say T;. is ordered before an-
other transaction, say 7;, by one subscheduler, but they are ordered in the reverse
order by the other subscheduler. That is to say, we should prevent situations such
as “CS; < CS; and LS; < L5;” from happening. If we “stick” the confining sec-
tion and locked section of a transaction together, then such a situation will not arise.

Therefore. we add a restriction on the O+P class to form a subclass of O+P.

Let S be an O+P scheduler. If S ensures that, for every transaction, its
confining section and locked section (if both exist) overlap, then S is called

11

an O+P? scheduler, where “o” stands for overlap.

We now examine properties related to the confining sections and locked sections in a

history produced by an O+P° scheduler.

Property 4.1 Let H be a history produced by an O+ scheduler, and let T; and
T be two transactions that both have confining and locked sections such thal T; and

Ty conflict on a data item in PES. Then LS; < LS; if and only if CS; < C'S;.

Proof: Only if part: Because LS; and CS; overlap, FOT; < UP;. Similarly, because
LS; and C'S; overlap, LP; < ECS;. If LS; < LS;, then EOT; < UP; < LP; < ECS;.
This implies that C'5; £ C'S;. By Proposition 4.2, C'S; and CS; do not overlap, so
CS; < CSj.

If part: If C'S; < C'S; then LS; £ LS; follows immediately by exchanging the
roles of confining sections and locked sections in the proof of the “Only if” part.
By Corollary 4.1, if T; and T} conflict on a PES item, LS; and LS; do not overlap.
Therefore, LS; £ LS; implies LS; < LS;. 0

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES

(W14
@ 4]

The property presented above shows the effect of overlapping the confining and
locked sections of a transaction. In 2PL, the serialization order was defined based on
the locked points of the transactions, and in an optimistic scheme the serialization
order is defined based on IEOT’s. Here, we shall introduce a reference point in each
transaction on which the serialization order for the O+P? scheduler is based. The
sequencing point (SF;) of the transaction T; coincides with EOT; or LP;, if T; has
either C'S; or LS; but not both. If T; has both CS; and L.S;, then SP; is defined to
be the later of FOT; and LP,. (See Fig. 4.2.) In other words, in the latter case,
S P; is the starting point of the overlap between C'S; and LS;. The following lemma

shows the importance of sequencing points.

CS:
LS:
T |
ik EOTy UP: ECS:
Sk
CS:2
LS2
T, i L
EOT: LP: ECS2 UP:2
i
i
SP2

Fig. 4.2 Sequencing Points

Lemma 4.5 Let H be a history produced by an O+F° scheduler, and let T; and

T; have two conflicting operations p;(z) and g;j(x) in Commit(H), such that p;(z) <

gj(x). Then we have SP; < SP;.

Proof: Since T; and T} have conflicting operations, either they both have confining

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 59

sections, or they both have locked sections, or both. Therefore, from Lemmas 4.3
and 4.4, C5; < CS5; or LS; < LS; holds. If CS; < CS;, then ECS; < EOT;.
Since CS; and LS; overiap, we have LP;, < ECS; and FOT; < ECS,;. Therefore
SP; < ECS; holds. Because SP; is the later of LP; and EOT;, ECS; < SP; follows
from ECS; < FOT;. So we have SP; < ECS; < SP;.

Similarly, when LS; < LS, we can show that SP, < SP;. O

We can now state the following theorem.
Theorem 4.2 An O+F° scheduler produces only serializable histories.

Proof: A history H is, in general, a partial order on the set of operations and syn-
chronization events. Let o(H) be a (totally ordered) sequence of operations and syn-
chronization events compatible with this partial order. Clearly, all SP’s are totally
ordered in o(H). Consider this total order as the serialization order. The theorem

now follows from Lemma 4.5. O

4.4.4 Necessity for LS-CS Overlap

Now we show that if the confining section and locked section of a transaction are

separated, an O+P scheduler may not guarantee serializability.

Theorem 4.3 Given an O+P scheduler S, there exist a transaction set T, such that,
Jor any transaction T; € T, if S allows T;’s locked section and confining section not

to overlap, then it may produce a non-serializable history.
Proof: Let T = {73.7,} be a transaction set, where
Ty: ri(r), wily). and

150 ra(y), wela),
for some @ € PES and y € OPT.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 60

Assume that S allows LS; and €S} not to overlap. It is possible that LS; < C5;.
If LS, < €51, S may produce a history in which LS; < LS, and CS, < CSy. This

history contains ri(z) < wa(2) and r2(y) < wi(y). Therefore, it is not serializable.

Now assume that S allows LS; and C'S3 not to overlap. Therefore, CS; < LS is

possible. Similarly, S may produce a non-serializable history containing r2(y) < w:(y)

and ri(z) < wq(a). il
4.4.5 Restricting Overlappings
CS CS
LS LS
| % I |
EOT EOT
a) LS is contained in CS b) CSiscontained in LS
CS CS
LS LS
T
1 | 5 i
EOT EOT
¢) LS starts before CS d) CS starts before LS

Fig.4.3 Overlappings of CS and LS

In the above discussions, the way in which the locked section (LS) and the confining
section (CS) overlap was not restricted. So there are four possible ways they can

overlap (Fig. 4.3): (a) the entire LS is contained in the CS, (b) the entire CS is

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 61

contained in the LS, (¢) the LS starts before the CS, and (d) the CS starts before the
LS. In a centralized database system, the scheduler cannot receive the End request
of a transaction until and unless it has received all the read and write requests of the
transaction. That is, the validation of a transaction stiould be after any prewrite of
the transaction. Also, according to our model, all write requests of » transaction are
first exec'’ed via prewrite operations to the transaction’s private workspace, then,
only aftei the scheduler receives an End command, are the writes reflected to the
database (by dm-writes). Further, since the CS of a transaction should be executed
mutually exclusivelv and is often implemented as critical section, waiting for a lock
inside the CS may easily result in a deadlock, especially in serial validation. Therefore,
we further restrict the way the two sections can overlap. Practically, overlappings (b)
and (c) are more meaningful. What distinguishes (b) and (c¢) from (a) and (d) is
that EOT takes place in the locked section. So, thereafter, we will concentrate on
the development of combined schedulers with this characteristic, and call them O+P"

schedulers, where “r” stands for restricted.

4.5 Some Combined Algorithms

In this section, we present some combined algorithms. They are all in the class O+P”.

4.5.1 Serial Forward Checking 4+ 2PL

We present a composition of SFO and 2PL. The procedures for Read and Write
requests are the same as those in Algorithm 4.1. We therefore present only the

procedures for Begin and End requests.

Algorithm 4.2: (SFO + 2PL)

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 62

o When it receives a Begin request from transaction T3, the scheduler does the fol-

lowing:

Active :=Active U{T;} % should be executed atomically.
RS:’ = I’/VS,‘ = I’VL{ i (J’)

e When it receives an End request from transaction T;, the scheduler does the fol-

lowing:

C1 begin (system-wide) critical section
Active:=Active—{T;}
conflict:=false
for every T; € Active do
if WS, N RS; # ¢ then conflict:=true
if conflict then resolve the conflict by aborting either T;
or all T}’s such that WS, N RS; # ¢.
The decision is made upon some cost criteria.
for every @ € WS, issue a dm-write(z) % Reflecting
end critical section
C2 release read-locks
C3 for every @ € WL, issue a dm-write(x)
C4 release write-locks

C5 commit

The correctness of the algorithm follows from the correctness of SFO, Strict 2PL,
and O+P" class. There are a few things worth mentioning here. First, the critical sec-
tion used here is a tool for achieving mutual exclusion for SFO activities. Therefore,
we need not stop 2PL activities in the critical section. 2PL activities can take place
in parallel with the critical section. Specifically, we may release read-locks held by a
transaction at the beginning of the critical section before the validation of the trans-

action, so that the unlocked data items are available for other transactions sooner.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 63

However, we should point out that, in practice, achieving mutual exclusion on all data
items is much easier than achieving mutual exclusion on OPT only, especially when

the border between OPT and PES is dynamically changeable.

Second, as stated in Difference 1 in Section 3.4, forward checking resolves conflicts
more flexibly than backward checking. This has an added significance in combined
schedulers. Consider long transactions. The longer a transaction, the greater is the
chance it conflicts with other transactions in OPT, and the higher is the cost to abort
it. A long transaction accessing both OPT and PES may be further delayed due to
its waiting for locks. Therefore, the cost of abortion in backward checking is even
higher, especially because, when a transaction is to be aborted, it has got all its locks.
In forward checking, however, we can choose not to abort the transaction undergoing
validation, instead, we can abort the transactions that conflict with it. It is interesting
that this is achieved in the validation-and-write phase of the transaction. So, we need

not even know that the transaction is a long one when it arrives at the system.

4.5.2 Serial Forward Checking + Deferred Write-Locking

As stated in Section 2.1, a write operation of a transaction only writes a new value
in the transaction’s private work space by a prewrite operation. The new value is
not reflected to the database and is not visible to the other transactions until and
unless the transaction passes its validation. Therefore, a transaction is two-phased no
matter whether it is scheduled by a 2PL, an optimistic, or an O+P scheduler. To be
consistent with the optimistic scheme, we use the terms read phase and validation-and-
write phase to name the corresponding phases. In Algorithms 4.1 and 4.2, write-locks
are set too early. Concurrency may be increased if we postpone setting write-locks as
much as possible. Actually, we need not set write-locks in the read phase. We can do
so in the validation-and-write phase. We present a combined scheduler with deferred

write-locking below. In Chapter 8, we will combine deferred write-locking with PBO.

Algorithm 4.3: SFO + Deferred Write-Locking

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 64

o When it receives a Begin request from transaction 7T, the scheduler does the fol-

lowing:

Active :=Active U{T;}
RS,‘ = I'VSL = ‘VLZ = (D

o When it receives a Read(z) request from transaction T;, the scheduler does the

following:

check-member(x) % determine which part of database 2 belongs to
case R1: 2z € PES
if z isin T;'s private work space
then read = from there
else if = is already write-locked, block 77
until read-lock can be set on x.
set read-lock on
dm-read(x)
case R2: x € OPT
if 2 is in T;'s private work space
then read « from there
else dm-read(z)

RSL' = RSL' U {:l)}

o When it receives a Write(r, new-value) request from transaction T, the scheduler

does the following:

check-member(x)

case Wl: = € PES
WL;:=WL;U{x}
prewrite(x, new-value)

case W2: © € OPT

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 65

WS = WS; U {z}

prewrite(x, new-value)

e When it receives an End request from transaction T}, the scheduler does the fol-

lowing:

parallel-for z € W L; do % See Remark
if = is locked then wait until write-lock can be set on =
end parallel-for
begin (system-wide) critical section %Start validation.
Active:=Active—{T;} % EOT; is here.
conflict:=false
for every T; € Active do
if WS N RS, # ¢ then conflict:=true
if conflict then resolve the conflict by aborting
either 7; or all T such that
W.S; N RS; # ¢. The decision is made upon
some cost criteria.
for every x € W.S; issue a dm-write(z) % Start reflecting
end critical section
release read-locks
for every 2 € WL, issue a dm-write(z)
release write-locks

commit.

Remark: Parallel-for can be thought of as a process for each z. These processes run

concurrently.

First we show that the algorithm is correct. We need only to show that deferred
write-locking is a two-phase locking algorithm. This can be done easily by verifying

that deferred write-locking satisfies the four lock ownership rules in Section 2.3

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 66

Write-locks are acquired in the last possible moment. They could be acquired in
the critical section. But, this may cause a transaction to wait for a lock forever in the
critical section, resulting in a deadlock. One can immediately see two improvements

over Algorithm 4.2:

1. The duration that a write-lock is held by a transaction is likely to be shortened.

2. By collecting all the write-lock requests together and executing them in parallel,

the time a transaction spends waiting for write-locks may also be shortened.

Since the duration that a write-lock is held is likely to be shorter, the possibility and
time a read or write operation is blocked may also be decreased and shortened, respec-
tively. Consequently, the duration of a transaction may be shortened and concurrency

may be increased.

We think that deferred write-locking combines nicely with optimistic methods.
We can see this from the view point of version control. A prewrite(z) will generate
a version of x. This version is not visible to the other transactions (other *han its
creator) until and unless a corresponding dm-write(a) reflects it to the database. We
call this version an uncommitted version of v when it is created. When the version
is reflected to the database, we call it the committed version of z. In our model,
there is only one committed version for each data item at any time, no matter what
concurrency control method is used. (This is not the case for a mulit-version database
discussed in Sec. 4.6.) In an optimistic method, there could be several uncommitted
versions of a data item, say x, at a given time. Different transactions may read
different uncommitted versions (created by themselves) at the same time. In the
2PL algorithms discussed in previous chapters and sections, there was at most one
uncommitted version of & at any time, because a transaction must hold a write-lock
before executing a prewrite, and keep the lock until the version it created was reflected
to the database. Besides, only one version, either committed or uncommitted, was
readable at any time. This is a kind of mismatch. In the deferred write-locking,

however, the situation is the same as in an optimistic method. There are multiple

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 67

uncommitted versions of a data item, each visible only to its creator. It seems more

natural to use such locking to combine with optimistic algorithms.

One shortcoming of deferred write-locking is that it may cause more deadlocks than
than the standard 2PL, and the damage of a deadlock caused by it may be more severe
than that in the standard 2PL. For example, suppose that two transactions 7T; and
T; both first read and then write a data item = (¢ &€ PES). Let reg-p;(2) (reg-q;(z))
denote the time when the scheduler receives the request p;(x) (¢;(x)), and let End;
(End;) denote the time the scheduler receives End from T; (T}). Consider the dead-
lock caused only by locking a for 7; and 7. The condition for such a deadlock in the
standard 2PL is reg-ri(x) < reg-w;(x) A reg-r;(z) < reg-w;(z), while the deadlock
condition in deferred write-locking is reg-ri(2) < End; A reg-rj(z) < End;. Ap-
parently, the latter is much more easily satisfied than the former. Further, such a
deadlock can be detected in standard 2PL at the last of reg-w;(z) and reg-w;(x), but
in deferred write-locking, the last of End; and End;. So, the cost of recovering from
such a deadlock in deferred write-locking is more severe than that in the standard
2PL. Because about 90% of deadlocks involve only two transactions [7], and because
the deadlock discussed above is a common type of deadlock, this shortcoming of de-
ferred write-lock is very serious to performance. We still need a simulation study to
find out how deferred write-locking with the standard 2PL, especially, in the hybrid

scheduler environment.

4.5.3 Relaxed Locking

Here we present a concurrency control algorithm called “Relaxed Locking” (RL),
based on the ideas we have come across so far. It utilizes the overlapping of locked
section and confining section, even though the database is no longer partitioned into
OPT and PES. The idea of RL is as follows: A read operation, as in the optimistic
scheme, does not block a conflicting write operation. On the other hand, a write

operation, as in the locking scheme, will block any operation conflicting with it. Thus,

CHAPTER 4. COMBINING OPTIMISTIC' AND LOCKING SCHEMES 63

the scheduler maintains only write-locks. No read-locks are ever set. Instead, read-
sets and write-sets are used in validations to detect read-write conflicts. When a
read request, say Read(z), comes from T;, the scheduler checks if 2 is (write-)locked
by some other transaction. If so, it blocks T; until the lock is released. When it
is not locked, z is read for 7; and put in the corresponding read-set. For a write
request, the scheduler does almost the same thing as it does for read request, except
it has to set a lock for the prewrite operation. Eventually, when the End request
comes, the scheduler uses the forward checking strategy to validate T;. It checks the
intersections of the write-set of 7; and the read-sets of other “active” transactions.

The formal description is presented below.

Algorithm 4.4: Relaxed Locking (RL)

o When it receives a Begin request from transaction 7T}, the scheduler does the fol-

fowing:

Active :=Active U{T}}
RS;:=WL;:=¢

o When it receives a Read{x) request from transaction T}, the scheduler does the

following:

it 2 isin T;'s private work space
then read x from there
else
if 2 1s locked by some other transaction
then block T; until the lock on x is released
begin critical section
RS;:=RS5; U {x}
dm-read(x)

end critical section

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 69

e When it receives a Write(x, new-value) request from transaction T, the scheduler

does the following:

if x is locked

then wait until lock can be set on «
set lock on x for 7;
WL:=WL;U{x}

prewrite(z, new-value)

e When it receives an End request from transaction T}, the scheduler does the fol-

lowing:

begin critical section
Active :=Active —{T}}
conflict:=false
for every T; € Active do
it WL, N RS; # & then conflict:=true
if conflict then resolve the conflict by aborting either T;
or all T}'s such that WL, N RS; # ¢.
The decision is made upon some cost criteria.
end critical section
for every 2 € WL, issue a dm-write(x) % Reflecting
release locks

commit

Note that, unlike SFO, the critical section here is an ordinary critical section such
as that in SBO and PBO. The algorithm has some special features: (1) [t uses rollback
to resolve the read-write conflicts and blocking to resolve the write-read and write-
write conflicts. (2) It has less blocking and more rollbacks than 2PL algorithms. On

the other hand, it has less rollbacks and more blocking than optimistic algorithms.

CHAPTER 4. COMBINING CPTIMISTIC AND LOCKING SCHEMES 70

(3) A read-only transaction does not block any other transaction, but may be blocked

by some locks.

We expect the algorithm to have a good performance in situations where conflicts
are rare, but not rare enough to justify the use of any of the optimistic algorithms.
The algorithm is correct, i.e., it generates only serializable histories. The proof of its

correctness is straightforward after the proofs in the previous chapters and sections.

After RL was designed, it was discovered that Agrawal and El Abbadi [2] had
developed an algorithm similar to RL under different motivation. Their simulation

confirms our prediction about its performance [1].

4.6 Going into Multiversion World

In this section, we extend our hybrid scheme to multiversion databases. For multiver-
sion databases and the locking scheme for them see [7]. For optimistic multiversion

concurrency control see [3].

In a multiversion database, a data item may have more than one version simul-
taneously stored in the database. A read operation now reads a “version” of a data
item. A write operation generates a new version of a data item, without overwriting
an old one. Old versions are still accessible to transactions. Each data item, z, now
has a list of versions. A version of 2 is denoted as x;, where the subscript z is called
the version number, which is the trausaction number of the transaction that creates

it. For two versions of a, ;<,x; if ¢ is less than j.

A transaction with a (potential)? write operation is called an updator. A transac-
tion that is not an updator is called a query. In other words, a query is a read-only

transaction. We assume that, when a transaction is submitted to the TM, the TM

5 :
“A transaction whose program contains a write operation may actually not execute that write
operation.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 71

is informed or can find out easily whether the transaction is a query or an updator.
Each transaction T; is assigned a transaction number, denoted as tn(T;). A query’s

transaction number is, however, assigned when the query starts.

A query will never be blocked or validated. It is executed asynchronously with
respect to updators and other queries. This is achieved by letting a query read some
old versions of data items. When a query, (), starts. a transaction number tn(Q)
is assigned to 2, such that any updator with its transaction number less than or
equal to tn(()) has been committed or aborted when () starts. Later, we will show a
technique to assign a mazimal transaction number to a query so that it can read as
up-to-date information as possible. For a Read(x) operation from @, the scheduler
will find a version of @ with the largest version number less than or equal to tn(Q). By
the above principle, the updator that created the version of z had already committed
when (@ started. In other words, @ will never “read from”® any updator executing
concurrently with it. Therefore, there is no need to set a lock or modify a read-set
for an operation from a query, and there is no need to distinguish an OPT item from

a PES item.

To the updators, the database is still partitioned into OPT and PES as before. A
read operation of an updator reads either the version it has created itself, or (if such
a version does not exist) the newest version created by a committed updator. We
call this version the newest commiltted version. The read set of an updator contains
a set of data items together with their version numbers, instead of just a set of
data items. The write-set of an updetor, however, contains as before a set of data
items. An updator gets its transaction numbper, which is the current value of tne, in its
confining section. Since updators may enier their confining section in a different order
than they leave their validation-and-write phase, we cannot directly use inc to assign

transaction numbers to queries. To deal with this problem we use another transaction

3We say that a read operation reads from a write operation if (1) the two op-rations are from
different transactions, and (2) the read operation reads the value created by the write operation.
Note that there is no such relation if two operations operate on different versions. A transaction
T; reads from another transaction Tj, if T; has a read operation that reads from a write operation of

T;.

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 72

number counter called vtnc (visible tne). vinc indicates the latest updator of which the
result is available to queries. It is used to assign transaction numbers to queries. An
committing queue (CQ) is maintained, which contains an entry for each updator in its
validation-and-write phase. Each entry E in CQ contains a type field (E.type) and a
number field (E.num) storing the transaction number. CQ is ordered on the num field
of the entries (i.e., the order of entering the corresponding confining section). The
value of a type field is either VALIDATING or WRITTEN. VALIDATING means that
the updator it represents is being validated and WRITTEN means that the updates
of the updator it represents are already reflected to the database and are available to

queries and other updators.

Below, we present a hybrid multiversion concurrency control algorithm using back-
ward checking. The multiversion algorithm using forward checking is straightforward

from this.

Backward checking
When checking RS; N WS; = ¢ for updators U; and Uj, the versions in RS; whose
version number is greater than or equal to tn(U;) are not considered, for these versions

are read from U; or some later transactions.

Given below is an algorithm description.

¢ When it receives a Begin request from updator U;, the scheduler does the following:

start-tn;:=tnc

WL :=RS =W5,:=0¢

e When it receives a Read(x) request from updator U;, the scheduler does the fol-

lowing:

check-member(x)
case R1: z € PES

if 15 in U;'s private work-space

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 73

then read x from there
else if & is write-locked by ancother updator, block U;
until a read-lock can be set on
set read-lock on
dm-read(z;) where x; is the newest committed version of z
case R2: = € OPT
if 2 is in [/;'s private work-space
then read x from there
else dm-read(x;) where z is the newest committed version of x

RS,‘ = RS'I U {il';\‘}

e When it receives a WWrite(x, new-value) request from updator U;, the scheduler

does the following:

check-member(z)
case Wl: » € PES
WL :=WL,Uu{xr}
prewrite(z. new-value)
case W2: 2 € OPT
WS = Ws;u{z}

prewrite(x, new-value)

e When it receives an Fnd request from updator U;, the scheduler does the following:

C1, parallel-for z € WL, do
if = 1s locked then wait until write-lock can be set on z
set write-lock on z
end parallel-for
C2, begin critical section
fonish-tn;:=tnc

tne:=tnc+1

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 74

allocate entry E
Etype:=VALIDATING
E.num:=tnc
append E to CQ
end critical section
C3, release read-locks
C4, for U; such that start-tn; +1 < tn(U;) < finish-tn; do
RS{; = {a | 2 € RS; and k < in(U;)}
% RS!, contains only those versions created by updators
% preceding U; in equivalent serial history.
if W.S; RS, # ¢ % Version numbers are ignored in set operations
then delete E from CQ
abort
C5, attach the version number (finish-tn; +1) to the copy of each item z,
x € WS, UWL;, in U;'s private work-space
reflect 1175, U W L, to the database
by creating new versions in the database
Co, release write-locks
(7, begin critical section
() == finish-tn; +1
Etype=WRITTEN
while head(CQ).type = WRITTEN do
vinc:=head{CQ).num % Used for queries
delete head(CQ)
end (while)

end critical section

Correctness
The correctness proof for the algorithm is based on a model different from what

we introduced in Chapter 2. The notion conflict cannot be used here. Instead,

CHAPTER 4. COMBINING OPTIMISTIC AND LOCKING SCHEMES 75

we have to use the notion 7ead from (see the footnote in this section). Therefore,
conflict equivalence should be replaced by view equivalence in discussing equivalence

of histories. The details are omitted.

Chapter 5

Dynamic Re-partitioning of the

Database

In this chapter, we study how to dynamically re-partition a database, in order to keep
the up-to-date information of the conflict rate distribution reflected in the partition
of the database. It constitutes an important part of our adaptive concurrency control
scheme. What makes dynamic re-partitioning complex is that we should not stop
the database system for re-partitioning. One way of carrving out re-partitioning is to
use a group of transfer processes, which run concurrently with database transactions.
A transfer process transfers a data item from OPT to PES, or vise versa. So, we
must guarantee that, despite interference from transfers, the execution history is still

serializable.

We study a specific transfer algorithm, i.e.. one to be used in conjunction with
Algorithm 4.2. The transfer algorithms for the other combined schedulers can be
le) o
desiened in a similar way. In section 5.1, we discuss interference of transfers to
o N

ransaction execution. In Section 5.2 we present our transfer algorithm. In section

o

5.3. we rewrite Algorithm 1.2 to make it compatible with a transfer algorithm, and

in Section 5.4, we give a correctness proof for it.

76

CEAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 7

5.1 Managing Interference

Transferring a data item being accessed by transactions will definitely interfere with
transaction execution. In the presence of transfers, data items are “on the run” from
the viewpoint of transactions. For example, a transaction may read a data item from
OPT, but later when it wants to write on the same item, it may be in PES. Therefore,
the major problem in designing a transfer algorithm is to manage interference so that

serializability is ensured and performance is not seriously degraded.

Performance can be affected in different ways. One can iinmediately work out
some “brute force” transfer methods which guarantee serializability of transaction
execution but have a bad impact on performance. Following are two such methods,

which resort to drastic measures. Suppose we are transferring 2 from OPT to PES.

Bullying Abort all transactions that are accessing x and then transfer x.

This method is not acceptable, for it causes too many abortions.

Polite Defer the transfer until there is no transaction accessing . This method is
unacceptable either, because (1) it cannot guarantee that 2 is eventually trans-
ferred to PES. and (2) performance will be degraded by delaying the transfer of
x to PES, since the reason to transfer x to PIS is that the conflict rate on z is
going higher or is already high enough not to justify the use of an optimistic

method.

The two methods represent the two extremes of interference. The comments on the
Polite suggest that we should “manage” interference rather than merely “minimize” it.
We suggest that both of the following goals should be taken into account in designing

a transfer algorithm: minimize the blocking of transactions due to data transfer, and

transfer a data item to its destination as soon as possible.

To investigate the interference of transfers to transaction execution, we introduce

a new term: “contention.” We say that there is contention on data item a, if more

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 78

than one currently active transaction is either accessing it or is trying to access it, and
at least one of them wants to write it. Here, we say that a transaction T} is “accessing
7 if ¢ € (RS;UWS;) for v € OPT, ¢ T; holds a lock on z for z € PES, and T is

“trying to access x if it 1s waiting for a lock on = (z € PES).

Transferring a data item z from OPT to PES or vice versa, when no transaction
is accessing or trying to access x is trivial, since the transfer will not interfere with
transactions. x should be simply removed from the source part (OPT or PES) and
added to the destination part. Transferring @ when there is no contention is also
relatively straightforward. In this case. however, besides changing the membership of
x, some additional actions must be taken. When = was being accessed by T; in OPT
before transfer to PES, for example, an appropriate lock must be set on z on behalf

of 7.

Transferring @ when there is contention on it requires careful consideration, for
interference of the transfer is complicated. Since the way the contention-related in-
formation is stored for data items in PES is different from that for OPT, it is fairly
messy to convert it from one to the other. The approach that we adopt therefore, is
to avoid such conversion altogetlier, simply by disallowing a transfer of a data item in
contention until the contention is resolved. To see the underlying motivation behind
this principle, suppose that, presently, there is a contention on data item z. If z is
transferred from PES to OPT at this time, then some transaction involved in the
contention will be aborted. This can be avoided if z is not transferred immediately.
Suppose x is transferred from OPT to PLS at this time. We have to set a lock on
it for one transaction and block the other. Since we have no idea which transaction
should have a lock and which should be blocked, this may cause some unnecessary
deadlocks. There is another problem more serious than unnecessary deadlocks. Sup-
pose that T; is involved in the contention due to operation o;{(x). Further suppose
that after the transfer of r to PES, some other transaction obtains a lock on z and
T; is left to wait for the lock. 7; may have another operation o}(y) (y € PES) such
that o;(z) < of{y) and T; has already obtained a lock on y. In other words, 7} has

obtained the lock for the later operation but is waiting for the lock for the earlier

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 79

operation. Even though the operation o;(z) has been processed, (so that it is not a
logical problem for T;,) when T} gets the lock on z, it will resume its execution at

some point other than o;(x), which will make the control flow more complex.

5.2 The Transfer Algorithm

Intuitively, transferring a data item back and forth between OPT and PES frequently
would be counter-productive. Therefore, we impose a restriction on the frequency of

transfers. Specifically, we make the following assumption.

Assumption 5.1 The time interval between two consecutive transfers of an ttem is

greater than the maxrimal transaction life-time.

This assumption will not affect the correctness for transfers and transaction exe-
cutions. However, it helps to make the correctness proof in Section 5.4 easier. This
assumption also suppresses unnecessary transfers, which enhance performance. For
this purpose, it is probably more desirable to extend the time interval to two or three
times of the maximal transaction life-ttme. Choosing “two or three” is based on some

“gut feeling” rather than scientific evidence.

There are two kinds of transfers: from OPT to PES and from PES to OPT. Both

kinds of transfers will access some data structures used by the schieduler.

When a transfer process detects some contention on the data item being trans-

ferred, there are three alternatives:

. abort all the transactions that are involved in the contention.

[y

W]

abort the transfer process itself, and

3. wait until the scheduler resolves the contention.

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 30

We discard the first choice, because it is costly and not interesting. When transferring
a data item, say z, from PES to OPT, the conflict rate on « is presumably going lower,
or is already low. It is likely that, when we transfer # some time later, there will be no
contention on . Since aborting a ransfer process itself is cheap, it would be a good
choice to abort the transfer process in this situation. We use this strategy in Case
T2.4 in the transfer algorithm given below. However, the second choice is not always
usable. When transferring 2 from OPT to PES, the conflict rate on it is going higher,
or is already high enough not to justify the use of optimistic method. If we abort
the transfer process and restart it later, it is very likely that the restarted process
again detects contention on , and the transfer process is aborted again. Further, due
to a high conflict rate, many transactions may be aborted during this time. In this
situation, we should transfer « to PES as soon as possible. We therefore choose the
third choice, and make the transfer process wait. To prevent more transactions from
being involved in the contention on @ when the transfer process is waiting, we drop
z from OPT but do not add it to PES immediately. Combined with Cases R3 and
W3 in the revised Algorithm 4.2, this achieves the effect of locking. It allows those
transactions that have already accessed z (i.e., those invoived in the contention) to
access z while blocking all the other transactions that want to access z. When these
transactions that are involved in the contention all finish, the contention is already
naturally resolved. The transfer process can resume and finish the transfer. In Cases
T1.4 and T1.5 this strategy 1s used. We also extend the use of this strategy to Case
T2.3, where there is no contention on 2 and the transaction that holds the write-lock
on z has already finished its read phase. Since dropping @ from OPT or PES works

as a lock on z, it contributes to forming deadlocks.

Here is a description of our transfer algorithms.

(1) TRANSFER x FROM OPT 1o PES

morerw:=morew.=false % See Remark 1

begin critical section

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 81

compute
R :={T; € Activelr € RS;} % Recall Active set used in Algorithm 4.2
W = {T; € Activelz € WS}
OPT := OPT — {2}
case T1.1: R =W = ¢ % z is not being accessed
PES = PESU {z}
case TL.2: R#£ o AW = ¢ % z is being read but not written
set read-lock on z for each 7, € R % See Remark 2
PES := PESU{z}
case T1.3: R =0 AW = {T;} % z is being written by one transaction.
set write-lock on x for T}
WL, =WL;u{x}
PES := PESU{a} % x remains in WS;.
case T14: R=¢ AN |W]| > 1
morew:=true % See Remark 3
case T1.5: RL o AW #£ 0o
morerut=true
end critical section
T1.4a: if morew then wait until all 7; € W abort or
finish their step C1 of Algorithm 4.2
PES :=PESU {z}
T1.5a: if morerw then
wait until all 7, € 17 abort or finish their step C1 % See Remark 3
set read-lock on 2 for each remaining T; € R

PES = PESU{z} % x remains in RS;

Remark 1: morerw = true indicates that z is being read and written by more than
one {ransaction. morew = true indicates that morerwis not true but x is being written

by more than one transaction.

Remark 2: Read-locks may be set after the actual read cperations. So, ri;(z) <

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 82

ri(x) < ru;(2) may not hold. z remains in RS;.

Remark 3: Not adding z to PES immediately simply locks all the other transactions
out.

Remark 4: It may be hard to detect when a transaction finishes its step C1. So, we

can relax the condition to “until all 7; € W complete (either abort or commit).”

(2) TRANSFER z FROM PES 10 OPT

wait:=false
critical section
check the locks on 2 and the waiting queue for z. set
Rlock: the set of transactions which hold read-locks on x
Wlock: the set of transactions which hold write-lock on z.
Note that W lock contains at most one element.
Rwait: the set of transactions waiting for read-locks on z.
Wawait: the set of transactions waiting for write-locks on z.
% See Remark 1
case 12.1: Rlock = Wlock = Rwait = Wwait = ¢
PES := PES — {2}
OFPT := OPT U{z}
case T2.2: Rlock # o A Wuwall = ¢
for every T; € (Rlock N Active) do
RS; := RS; U {z} % T; continues to hold read-lock on 2
PES := PES — {2}
OPT :=0OPT U {z}
case 12.3: Wlock = {T,;} AN Rwait = Wwait = ¢
if 7; € Active then 'S, := WS, U {z} % T continues to hold
% write-lock on z.
PES :=PES — {x}
OPT := OPT U {z}

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 83

else wait:=true
PES := PES ~ {z} % See Remark 2
case T2.4: (Rlock # ¢ N Wwait # ¢) V (Wlock # ¢ A (Rwait U Wwait) # ¢)
abort the transfer % Since the conflict on z is known to be going low,
% Restarting transfer later would be a wise choize.
end critical section

T2.3a: if wait then wait until 7} finishes
OPT := OPT U {x}

Remark 1. When Rlock # ¢, Wlock must be empty, and vise versa. We assume
that when Rlock # ¢ A Wwait = ¢, Rwait = ¢

Remark 2: 7} is in its write phase. The transfer process must be executing during
the reflecting of 7}’s modification in PES. 2 cannot be transferred to OPT at this
moment, because validation has finished and if a transaction reads z from OPT,
serializability may be violated when the read takes place before the reflecting of the

item. So, we let 7} hold exclusive the lock on @ until it completes.

5.3 Revision of Algorithm 4.2

To ensure that the concurrency control algorithm can run concurrently with a transfer
algorithm, we have to protect the operations on the data structure shared with the
transfer algorithm by putting them in a critical section and revise the algorithm
slightly. The main change is in dealing with the case where the data item being
accessed is “in transit,” i.e., it belongs to neither PES nor OPT; it is in the process
of being transferred from one to the other. (See cases R3 and W3 below). We assume
that each single statement is atomic. The procedures for Begin and End remain the
same as before. The procedures for Read and Write are described below. Most steps
are straightforward, except for cases R3 and W3. When data item z is in transit,

we let transactions that have accessed 2 proceed and access x in their private work

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 84

space again, while preventing other transactions from accessing z. This is achieved
through the transfer process by dropping z from OPT or PES, wherever it was (see

the transfer algorithm in Section 3.2). This is equivalent to setting a lock on z.

e When it receives a Read(z) request from transaction 7T;, the scheduler does the

following:

block:=false % See Remark 1
wailttrf:=false if @ is in T}'s private work space
then readwrkspe:=true
else readwrkspc:=false
begin critical section
check-member(x)
case Rl: 2z € OPT
RS, := RS, U {z}
case R2: v € PES
if not readwrkspc then
if 2 is write-locked
then block:=true
else set read-lock on x
case R3: 2 ¢ (OPT UPES) % x is in transit,
if € (RS, UWS)
then RS, := RS; U {a} % See Remark 2
else waitirf.=true
end critical section
if block then wait until the read-lock can be set on 2
set read-lock on z
if waitirf then wait until z € (OPT U PES)
if @ € OPT then RS; := RS; U {z}
eise if x i1s write-locked then

wait until the read-lock can be set

CHAPTER 5. DYNAM.C' RE-PARTITIONING OF THE DATABASE

set read-fock on

if readwrkspc % readwrkspc=true implies block=false

then read « from T}'s private work space

else dm-read(z).

S5

e When it receives a Write(x, new-value) request from transaction 7;, the scheduler

does the following:

block:=false
waittrf:=false
begin critical section
check-member(x)
case W1: o € OPT
WS = WS, U {x}
case W2: z € PLI/S
if x is read- or write-locked
then block:=true
else set write-lock on o
WL :=WL,U{x}
case W3: o ¢ (OPT U PLS)
if 2 € (RS; UWS)
then WS, := WS; U {2} % See Remark 3
else waittr/i=true
end critical section
if block then wait until the write-lock can be set on z
set write-lock on z
WLi:=WL, U{x}
if waittrfthen wait until 2 € (OPT U PES)
if € OPT then WS, := WS, U {z}
else if 2 is locked, wait until the

write-lock can be set on 2

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 36

set write-lock on z
WL, :=WL, U {z}

prewrite(r, new-value).

Remark 1: These flags are used for pulling the read, write, and waiting operations
out of the critical section. block=true means that 7} is blocked by a lock set on =z.
waitirf=true means that a is in transit.

Remark 2: Allow T; to read z in transit. At this moment, T; does not own any lock
on . If T; owns a read lock on @, @ € (OPT U PES) cannot be true by T2.2 and
T2.4 (see section 5.2). If T; owns a write-lock on z, by T2.3 T} € Active, i.e., T; is in
its validation-and-write phase. It cannot send a read request now. It is crucial to let
T; proceed (see T1.4, T1.5).

Remark 3: Allow 7; to write on the item being transferved if T; accessed it before.

See T1.4 and T1.5 in Section 5.2.

5.4 Correctness Proof

A transfer algorithm is said to be correct, if (1) it transfers a data item from one part
to the other, and more importantly, (2) it does not interfere with the scheduler in such
a way that it causes the scheduler to generate nonserializable histories. Proving the
first for our transfer algorithm is straightforward. The second is what we are going

to prove in this section.

First, to see intuitively that our transfer algorithm is correct, we need only to see
that serializability is ensured before, during, and after a transfer. Consider transfer-
ring « from OPT to PES. Before the transfer, assume that serializability is ensured.
During the transfer, only an optimistic method applies to x. Some transactions’ re-
quests for accessing x are delayed. But delays will not affect serializability. So, it is

again ensured. After the transfer. any transaction that accessed @ before the transfer

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 87

and is still active at this time will own a lock on x. Since « is transferred to PES only
if there is no contention on it, no conflicting locks are set as a result of the transfer.
To any other transaction requesting to access x after the transfer started, it looks like
that = is originally in PES. Serializability is then ensured by 2PL method. Note that,
x may still resides in the read-sets or write-set of some active transactions after the
transfer. However, this will never ecause any transaction abortion, because (1) when
x was transferred to PES, there was no contention on it, and (2) after the transfer,

no transaction will put x in its read- or write-set.

Now we prove that our algorithm is correct more formally. As in Chapter 3, we
want to show that if p;(x), an operation of T;, conflicts with and precedes ¢;(z), an
operation of Tj, then EFOT; precedes FOT;. Since EOT’s are totally ordered, the
correctness follows immediately. Because of the complications due to data transfers,

we break the proof into three lemmas, each dealing with a specific kind of conflict.

As seen in the description of the transfer algorithm, when z is transferred from
OPT to PES, x is not deleted from each RS or WS which contains it. Similarly, when
an item z is transferred from PES to OPT, the transfer algorithm does not release the
locks on & immediately. Transactions continue to hold these locks until they complete.
A transfer of a data item from OPT to PES does not set any conflicting locks, nor
does a transfer from PIIS to OPT introduce any conflicting operations. We formulate

these in the following five propositions.

Let RS, « +a (WS; « +a) stand for RS; := RS, U {a} (WS, := WS U{x}). We

consider them as synchronization events,

Proposition 5.1 After RS; — +x, x € RS; continues to hold unti FOT;, and after
WS — 4a, z € WS, continues to hold until EOT;.

During a transfer, we are only interested in the contents of RS and W5 of a transaction
in Active, i.e., a transaction before its KOT. The RSs and WSs after EOTs are

irrelevant to a transfer. So in the following discussion, when we say @ € RS;(WS;),

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 88

T; € Active 1s implied.

In the following propositions and lemmas, H stands {or a history.
Proposition 5.2 Let T; be a transaciion in Commit(H) with ri(x) € T;. Then at
least one of the following holds in Commit(H).

1. rl(x) < ri(z) < ruya)

2. RS; «— +x < ri(a)
Proposition 5.3 Let T, be a transaction in Commit(H) «with wi(a) € T;. Then at
least one of the following holds in Commit(H).

1. wli(z) < wi(x) < wuy(e)

2. WS — 42 <wi(z)
Proposition 5.4 Let p(2) and g;(x) be conflicting operations. If pli(2), pu(z),

qli(@), and qu;(x) are all in history H, then either pu;(a) < glj(x) or qui(x) < pli(z)
holds.

Note that the above proposition is not trivial when there are concurrent data transfers.
Proposition 5.5 Let T; be a transaction in Commit(H).

1. If ri{x) € T; then BOT; < ri(x) < FOT;, and if wi(y) € 1; then EOT; <
wi(y) < COT;.

2. If pli(x) € S; (synchronization cvent set of T;) then pli(z) < EOT; < puix)
holds.

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 89

(1) is trivial. We have restated it for convenience. (2) follows from our deliberately

not releasing locks during the transfer.

We define reg-o;(x) as the time when 7; enters its critical section for the re-
quest o;(z). Let StartTransf(x) denote the time when a transfer of = starts. Let
OtoP(x) denote the action of transferring z from OPT to PES. We also use it to
denote the completion timie of the transter. The meaning and usage of PtoO(x) are
similarly defined. reg-o;(x), StartTransf(z), OtoP(x), and PtoO(z) are all consid-
ered as svnchronization events. Therefore, our history, consists not only of actions of

transactions and the scheduler, but aiso of actions of transfer processes.

Proposition 5.6 Let r;(x) € T;. and assume that BOT; < StartTransf(z) and
OtoP(z) < EOT;. Then rii(a) € S;.

Proof: T: € Active at StartTransf(x), and T; does not complete during OtoP(z).
Only cases T1.2 and T1.5 apply to this situation, and in either case a read-lock is set

on x for 7. O

Lemma 5.1 Let T; and T be in Commit(H). If ri{z) < w;(z), then EOT; < EOT;.

Proof: By Propositions 5.2 and 5.3, at least one of A and B, and one of C and D

hold.

A) rli(2) < ri(a) < ru(a) B) RS; «— +a < r;(2)
C) wlj(x) < wj(a) < wuj(x) D) WS, « 4o < wj(r)

If we can show that under each minimal combination of the conditions, nameiy A and
C, A and D, B and C, and B and D, r;(2) < w;(a) implies FOT; < EOT;, then the

lemma follows immediately.

A AND C

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 90

From Proposition 5.4, either ru;(x) < wi;(z) or wu;(a) < rl;i(x) holds. Together

with the condition of the lemma, r;(z) < wj(z). We have
rli{z) < ri(z) < rue) <wli(a) <wj(a) < wuj(a).

By Proposition 5.5 (2), £OT; < rui(2) and wl;(x) < EFOT;. Tt follows that FOT; <
EOT;.

B anp C

If A is also true. then so is ‘A and C,’ which has been dealt with. So, assume
A is not true. Then x € OPT at reg-r;{z). Since wlj(z) € S; by C, x must be
transferred during the life-time of T; or T;. We consider the transfers OtoP(z) and

FPtoO(z) separately.
Case 1: OtoP(z).
Consider the two subcases.

(1) 2 € WS, at StartTrans f(x). Since wlj(z) € 5, this implies T; € Active at
StartTransf(z), 1.e. StartTransf(a) < EOT;. Note that FOT; < StartTransf(z)
must hold. Otherwise, T; € Active at StartTransf(z), which implies that only Case
T1.5 is possible. In Case T1.5, « will not be write-locked, a contradiction to C. So

EOT; < StartTrans f(x) < 20T,

(2), 2 & WS, at StartTransf(z). This implies OtoP(z) < req-w;(zx). The only
nontrivial case is that QloP(z) < EOT;. By Proposition 5.6, rl;(x) is in S;, which

must be set during the transfer. By Proposition 5.4 and 5.5(2), we get

rli(z) < EOT; < ruy(2) < wlj(x) < FOT;.

Case 2: PtoO(x).

At reg-wj(z), * € PES, and StartTransf(a) < EOT; holds. Otherwise, in ei-

ther Case T2.3 or T2.4, T; would complete during or before the transfer, which means

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 91

w;(x) < ri(x), a contradiction to the condition of the lemma. Under StartTransf(z) <
EQOTj, there are two possibilities: T; completes during the transfer or not. The first
possibility will lead to a contradiction as just discussed. Under the second possibility,
only Case T2.3 is possible and z € W S;. If EUT; < EOT;, WS, N RS; = ¢ would be
checked in validating T}, and one of T; and T} would be aborted, a contradiction. So,
we have EOT; < EOT;.

A AND D

If C is also true, so is ‘A and C.” which has been dealt with. So, assume C is not
true. Then @ € OPT at reg-w;(a). Since rli(z) € 5, v is transferred. As with the

case ‘B and C.” consider the possible transfers separately.
Case 1: PtoO(x)

Trivial when EOT; < PtoO(z). Assume, therefore, PtoO(2) < EOT;. Then
r e RS, If EOT; < EOT;, WS5; N RS; = ¢ would be checked in validating 7;, and
either T; or T; would be aborted, a contradiction. So, EOT; < EOT;.

Case 2: OtoP(x)
We show that this case is impossible by considering the following two cases.

(1), reg-ri(x) < StartTransf(z). Then z € RS; and z € WS;. Case T1.5 will
prevail. Either, T; aborts or finishes its step C1 during the transfer, which means no
rl;(x) is set, a contradiction to A; or, T} does not finish its step C1 during the transfer,
which means EOT; < EOT; and WS; N RS; = ¢ is checked so that one of T; and

T; is aborted, a contradiction to the lemma’s condition.

(2), StartTransf(x) < reg-ri(x). I T; is not in Active at StartTransf(z), then
w;(x) already happened before StartTransf(x). So, w;(z) < ri(2), a contradiction.
If T} is in Active at StartTransf(x), then either T; finishes its step Cl during the
transfer (Case T1.4 or T1.5) which means w;(2) < ri(z), or T} gets a write lock on

a (Case T1.3), which implies C is true, a contradiction to the above assumption.

CHAPTER 5. DYNAMIC RIE-PARTITIONING OF THE DATABASE 92

B anp D

If either A or C is true, it is already proved. Assume both A and C are false.
So, @ € OPT both at reg-ri(2) and at reg-w;(x). If x is not transferred from OPT
to PES or is transferred after both £OT; and £OT;, the lemma is already proved in
the last chapter. The case FOT; < StartTransf(x) < EOT; is straightforward. The
case FOT; < StartTransf(z) < EOT; is not possible; otherwise, WS; N RS; = ¢
would be checked and one of thiem would be aborted. The only thing left is the case
where StartTrans f(x) precedes both EFOT; and EOT;. This is Case T1.5. EOT; still

cannot precede £OT; since, otherwise, W5; N RS, = ¢ would be checked. 0O

Lemma 5.2 Lct T, and T be in Commit(H). If wi(z) < wj(z), then EOT; < EOT;.

Proof: Asin the proof of Lemma 5.1, we prove that, under ea_h minimal combination

of (AV B)A(C v D), the lemma is true, where

A) wli(r) < wila) < wu(a) B) WS « 4+ < wi(z)
C) wlj(x) < wj(r) < wyj(a) L) WS — +a < w;(x)
A anp C

Similar to A and C of Lemma 5.1.
B anp C

Assume A is false. Then @ € OPT holds at reg-w;(x).
Case 1: OtoP(x).

Assume D is also true. Ouly in Case T1.3 can both CC and D hold. In Case T1.3,
i.e., when W = {7}, conjunctively with C and D, implies T}, = T}. So, T; € Active

at StartTransf(x). and therefore, FOT; < StariTrans f(x) < LOT).

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 93

Now assume that D is false. Then OtoP(z) < wi;(x). Since A is false by assump-
tion, only Case T1.4 or T1.5 is possible. T; will finish its step Cl during OtoP() in
both cases. It follows that EOT; < wlj(x) < EOT;.

Case 2: PtoO(x).

PtoO(2) < reg-wi(x). FOT; < StartTransf(x) will lead to a contradiction since
in both Cases T2.3 and T2.4, T; would finish before the end of the successful transfer.
That is, w;(2) < reg-w;(x) < wi(z), which contradicts the condition of the lemma.
Therefore, StartTransf(x) < EOTj. Only in Case T2.3 will a transfer be successful
in such a situation. @ is in both W'.S; and WS, after the transfer. And both w;(z) and
w;(z) will be executed in the corresponding C1 steps. Thus LOT; < wi(z) < wj(z) <
EOT;.

A aAND D

Assume C 1s false. @ € OPT holds at reg-w;(x).
Case 1: PtoO(x).

Consider the following two cases:

(1) FOT; < StartTransf(x). Trivial. since T; must complete before the end of

the successful transfer.

(2) StartTransf(z) < EOT,. Tither T completes before the end of transfer,
which is trivial; or PtoO({x) < EOT;, which is similar to the discussion in Case 2 of

B and C, i.e., FOT; = wi(v) < wj(x) = £OT;.
e 2, OtoP(x).

This case is impossible. We show that no matter whether 7T; € Active or not at

StartTransf(z), it leads to a contradiction.

(1) T; ¢ Active. EOT; < w;(2) < StartTrans f(z) < wi(a), a contradiction.

CHAPTER 5. DYNAMIC RE-PARTITIONING OF THE DATABASE 94

(2) T; € Active. Since C is false by assumption, only Case T1.4 or T1.5 is
possible. In either case, T; will finish its step C1 before the end of transfer. Again,

w;(x) < w;(z), a contradiction.
B anD D

Similarly, assume both A and C are false. z € OPT both at reg-w;(z) and at
re¢-w;(x). If no transfer ever happens, EOT; = w;(z) < w;(x) = EOT;. Otherwise,
since no lock on z is set for 7; or T}, both T; and 7; must have finished their step C1

before the end of transfer. So, FOT; < w;(z) < wj(z) < EOT;. 0
Lemma 5.3 Let T; and T; be in Commit(H). If wi(a) < r;(x), then EOT; < EOT,;.
Proof: By Proposition 5.5(1), EOT; < wi(x) < r;(z) < EOT;. O

Theorem 5.1 The transfer algorithm is correct. Under the interference of data trans-

fer processes, the concurrency control algorithm still ensures serializability.

Proof: Immediate from Lemmas 5.1 to 5.3, since EOT’s are totally ordered. a

Chapter 6
Keeping the Partition Up-to-Date

The problems of how to predict conflict distribution and how to decide the membership
of a data item are open and application dependent. There are many factors, such as
the type of transactions, that can affect them. The database system administrator
can also play an important role here. There are two principles that should govern the
handling of these problems. The first is that the cost of running the controller should
be low. The second is that the controller should invoke transfers as infrequently as
possible. Otherwise, the overheads may well offset the benefit gained from our hybrid

scheduler.

In this chapter, we present a solution based on history recording. It automatically
traces changes in conflict rate and invokes transfers when the conflict rate reaches
some thresholds. Practically, it is desirable to incorporate the method as a part of the
scheduler. However, for the sake of simplicity, we consider it as a separate module.

We call the module re-partition controller or just controller.

We first give a general picture of the controller and discuss some issues that should
be of concern in the design. Then we build a specific controller. Finally, we discuss

some correctness issues related to the controller.

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 96

6.1 Design Issues

The automatic re-partition controller maintains a table to record potentially harmful
conflicts and make decisions as to when transfers are needed. We call this table
conflict table {(CT). Each data item has an entry in it. The entry for 2, denoted E(z),
contains, among other information, (1) status, indicating if is in OFT or PES from
the stand-point of the controller, (2) counter, recording the number of potentially
harmful conflicts on x in the current time interval, and (3) to, the last time the
counter is reset. We refer to a field of E(x) by “E(2).”, e.g., E(z).counter. To reduce
the storage space needed, a data item with no ce' tention on it for some time interval,

say 4, will be purged. Such a data item must be in OPT.

The controller provides three tunable parameters, 0, ¢, and ¢y, to the database
administrator. # controls the frequency of resetting counter. The controller resets a
counter every f time units. ¢; and ¢, are thresholds measured by number of poten-
tially harmful conflicts. For any data item x, once E(x).counter > ¢y within 6 (may
be less than @), a should be transferred to PES if it is not there. Symmetrically, if
E(x).counter < ¢, during a period of 0 time units, x will be transferred to OPT if it

is not there. We require that ¢; > ¢

6.1.1 Counting Conflicts

Detecting conflicts is an intrinsic function of the scheduler. So, the controller need
not detect conflicts on its own. Rather, it is informed by the scheduler whenever a

conflict is detected.

As stated in Section 4.2, the specific definition of harmful conflicts depends on
the concurrency control algorithm used. In a 2PL method, every pair of conflicting
operations from two concurrent transactions is considered as a harmful conflict, while
in SFO, only a pair of conflicting operations whose order is different from the order

of EOT’s of their transactions is considered as a harmful conflict. Of course, the two

CHAPTER 6. KEEPING THE PARTITICN UP-TO-DATE 97

transactions involved in a harmful conflict in SFO must be executing concurrently. In
the remainder of this chapter and the nexi. we refer to a potentially harmful conflict

simply as a conflict.

EOTi
T: l S | i
r(x)
EOT;
| o | |
wi(x)

The conflict is not harmful in optimistic scheme,
but is harmful in 2PL scheme.

Fig. 6.1 Difference in deciding harmful conflicts

It is interesting that there is a difference in counting conflicts between locking and
optimistic methods. As illustrated in Fig 6.1, in SFO, the conflicts between T;’s reads
and T}’s writes are not detected when FOT; < EOT;. However, in a 2PL method,

these conflicts are detected. This difference should be considered in setting ¢; and c,.

Counting conflicts in PES is easy. Whenever a lock cannot be set, the controller
counts the number of the locks and ungranted lock requests conflicting with it. All

the information is available from the locking table.

There is, however, some problem in counting conflicts in OPT. For SFO, there is
no problem, since the scheduler does not make decision until it has checked all the
conflicts. For backward checking algorithms such as SBO and PBO, because a sched-
uler aborts the transaction and stops the validation once a non-empty intersection is
found, some conflicts are not counted in. One way to solve the problem is to let the
scheduler check all the intersections. It will, however, incur some cost for information

useful only to the controller. Another way is to let the inaccuracy exist and lower the

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 938

parameter ¢; to compensate for the missed conflicts. We can even let ¢; < ¢5. The
problem of this approach is that it is hard to know the percentage of missed conflicts.

So the parameter ¢; may very easily become meaningless.

6.1.2 Setting Parameters

The parameter # should be large enough. By Assumption 5.1, # should be greater than
twice the maximum transaction life-time. The longer 0 is, the less frequent transfers
will be and the less overheads the controller will incur. A counter is a monotonically
increasing function of time within a period of #. So, it is easy to determine that a
counter has reached the threshold ¢; and to initiate a transfer from OPT to PES. On
the other hand, we can not say a counter reaches (less than) the threshold c¢; until
the whole period of 8 has elapsed. Therefore, a longer § does not mean our system is
less sensitive to conflict increase, but it does mean less sensitive to conflict decrease.
In other words, a longer § means more pessimistic view. However, if # is too long, the

conflict rate may vary a lot during §. So, we simply lost sensitivity.

Let’s consider ¢; and ¢y. Not only are the absolute values of ¢; and ¢; important,
but also is the difference between ¢; and ¢y. If ¢ = ¢y, some data items with conflict
rates around c¢; will be subject to a lot of transfers between the two parts of the
database. The larger (¢; — ¢3) 1s, the smaller the number of transfers will be. Fig. 6.2
illustrates this. In the figure, the unfilled circles represent the transfers when ¢; = cs.
The filled circles represent the transfers when ¢; > ¢;. We can see that the number
of transfers when ¢; = ¢, is much greater than that when ¢; > ¢;. That is the main
reason for using two thresholds instead of one. The curve in the figure is conflict-
rate function which is considered, for simplicity, to be a continuous function of time.
However, we should point out that this figure is for illustrative purpose only . In
fact, it is the integral of the conflict-rate function, i.e., the number of conflicts, rather
than the conflict-rate function itself that should be compared with the thresholds.
Generally speaking, the greater {¢; — c2) is, the more stable the partition is, and

so the less cost transfers incur. However, a larger (¢; — ¢2) means more optimistic

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 99

accesses to data items with higher conflict rates and more pessimistic accesses to data
items with lower conflict rates. It will have negative impact on the performance when

(c1 — c2) is too large.

A conflict rate

conflict-rate function

transfers

. lime

Conlflict rate change on a data item and the transfers by different thresholds settings.

Fig. 6.2 Thresholds

The values of 8, ¢;, and ¢, are related to each other. They are also application
dependent. Some factors, such as resources available (number of CPU’s and disks,
etc.), are very important in determining them. We haven’t done any study on estab-
lishing mathematical model for determining the value of the parameters. Here we just
present a superficial understanding. Given a specific environment, suppose we know
that an optimistic algorithm performs very well when conflict rate is less than ry, and
it performs tolerably when conflict rate is between 7y and v (r; < 7). Then for a
hybrid scheduler using this optimistic algorithm, ¢; and ¢; should be related to 8, rq,
and r,. For example, suppose conflict rate will increase from r; to ry in 8 linearly
with time. Then ¢; could be set as (1/2)0(r; 4+ r2), 1.e., the integral of conflict rate
function over 8. Also we should consider the difference in counting conflicts between

locking and optimistic schemes.

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 100

6.1.3 Working Environment

Our controller is based on the assumption that the conflict rate on any data item
does not change sharply. As in Fig. 6.2, we consider the conflict rate on an item as a
function of time. The controller will perform acceptably when the function changes
slowly, as shown in Fig. 6.3.a. In Fig. 6.3, the curve still represents the conflict-
rate function. The horizontal line above the figure represents the concurrency control
mode on the data item. A dashed line indicates the optimistic mode, while the solid
line indicates the locking mode, and a vertical bar represents a transfer. Fig. 6.3.a
also shows that the controller is not sensitive to the small fluctuations in the conflict

rate since it employs two thresholds.

For large “pulses”, however, the controller behaves differently. It is insensitive to
negative pulses, since we count the number of conflicts in @ time interval (see Fig.
6.3.c). On the other hand. it is sensitive to positive pulses and works poorly in this
situation (see Fig. 6.3.b). Here, we say that the controller does not work well not only
because it will start many transfers, but also because the concurrency control mode
does not match the conflict rate. And the latter is more serious. When a positive
pulse occurs, we are still in optimistic mode. Since conflicts are detected only during
validation, detection tends to be late. When the controller discovers that counter > ¢
and starts transferring the item to PES, the transfer process has to wait at step T1.4a
or Tl.5a (see Chapter 5). Since, at this time, all the accesses causing the pulse are in
optimistic mode, many of the transactions involved will be aborted. Only when all the
transactions that are involved in the conflict have finished, can the transfer process
finish. However, at this moment, the pulse has already peaked and the conflict rate
1s low again. Then we have to access the low conflict item under locking mode for a
certain period of time until it is transferred back to OPT. However, such pulses are
probably rare in practice. We even doubt they could actually happen. Furthermore,
since we use the number of conflicts which is the integral of the conflict rate function,

the harmful effect of positive pulse is not likely to be significant.

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 101

optimisticqode
optimistic mode 1 locking mode 1
i T -
\ conflict rate *
transfer concurrency control mode transfer

conflict-rate function

(a) Conflict-rate function and access mode (transfers), when conflict rate changes slowly. Performs well.

transfer concurrency control mode concurrency control mode
b /
2 conflict rate A conflict rate

conflict-rate
Junction

conflict-rate
Sfunction

fof BN NURUE . SRS RS- SIRIRINE S (o [FORUNUU P SESIURURIURIRN BUNON ORI
[oF 2 VY KUY U NUN SO - €2 e e e
1 n ! L 1 L lime
0 26 30 46 56 60 0 20 36 46
(b) Sensitive to positive pulses. Performs poorly, (c) Insensitive to negative pluses. Performs well.

Fig. 6.3 Sensitivity of the method to conflict-rate functions

From the above discussion, we believe that our controller can perform well in

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 102

practical applications.

6.2 Building the Controller

The controller employs a process called Record Conflict (RC). Whenever the scheduler
detects a conflict on an item, say , it asks the controller to start a RC process to
record the conflict by increasing E(x).counter. If x is in OPT and E(z).counter > ¢;,
RC starts a transfer process to transfer x to PES and reset ¢y and counter to the

current time and 0, respectively.

If the current time ¢ is greater than or equal to ¢y + @, then the RC resets g and
counter to t and 0, respectively, and determines if a transfer of # to the other part of

the database is needed.

Maintaining the CT only when a conflict is detected is not sufficient. There are
still some problemsleft: (1) the time to start transferring z from PES to OPT, and (2)
promptly finding those data items on which there has been no contention for a period
of time. Let us analyze these problems in detail. For a PES item 2., when a conflict
on it is detected, the RC process may find that ¢t — E(x).tg > 0 and E(a).counter < ¢;.
This is the condition to transfer to OPT. However, this may not be the right time
to do so. A transfer process may have to wait or abort itself due to the contention,
or a transaction may be rolled back if we transfer to OPT. This problem itself
is not difficult to solve. Since a conflict always involves a write operalion, in this
case, when the write-lock involved in the conflict is released, we can start the transfer
if it is still appropriate. The second problem is more difficult. For an item z in
OPT, the condition for dropping E(x) is (f — E(z).to > 0) and (E(z).counter = 0).
However, a RC process is started only when a conflict is detected. The condition
(E(x).counter = 0) is not detectable by RC only. When € OPT, we expect that
the conflict on it will be rare. It is very likely that the accesses to x encounter no

contention for a sufficient long period of time. It is even fairly likely that 2 is not

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 103

accessed for a long time. Dropping E(z) in a timely manner has a favorable impact on
performance of the controller. A similar situation occurs when z € PES. The conflict
rate on a PES item may drop to 0 within §. So, we need some type of process that is
started even when there is no contention on z at all. We use a process called Transfer

& Delete (TD). It is designed to solve both problems (1) and (2).

Now let us consider the appropriate time to start a TD process. As we discussed,
the transfer of a data item from PES to OPT can be started when a write-lock on
it is released. So, we can associate a TD with every write operation. It is, however,
not sufficient to solve problem (2). Associating TDs with all read operations is, on
the one hand, too frequent, and on the other hand, not sufficient when a data item is
not accessed. Starting a TD periodically can guarantee sufficient checks regardless of
whether a data item is accessed or not. But this method may become time-consuming

if not properly designed. Here, we suggest a method basad on periodical checking.

RC TD
! *—1 | ®
10 £ tw+86 0+ 20 t

Fig. 64 Time for TD

Consider problem (2) only. An entry in the CT needs to be checked by a TD only
if it is not checked by a RC for at least § time units. So the problem is converted to
selecting those entries that have not been checked by RCs for §. Let ¢ be be the time
a TD checks an entry Ii(z). If t — 5 > 20 then E(z) must have not been checked by a
RC for at least § time units. Otherwise, to would have been reset by the last RC (see
Fig. 6.4). We “sort” all the entries in the CT according to field ¢y, in ascending order.
So, when we scan from the beginning, we reset the entries (and performs necessary
transfers) as long as t — 1o > 20 holds for the entries, where t is the current time,
Now let us see how to “sort” the CT. We link all the i, fields together to form a

queue, denoted @, with its elements arranged in the ascending order. Because the

CT entries are created and the #y fields are reset all in a linear order, the queue can

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 104

be created and maintained incrementally. When a RC creates or resets an entry, it
links the entry to the end of the queue, because its ¢y field now has the largest value.
This can be done very quickly. Every 20 time units, we start a TD to scan the queue
from the beginning. The entry scanned, say E(z), is either dropped if z is in OPT,
or transferred to OPT if it is in PES.

To solve the problem (1), we use a small trick. When a RC finds that z should
be transferred to OPT, it only clears counter without setting ¢o. So, when a TD finds
x € PES, either there is no new conflict on it for 8, or it was already checked by a

RC and decide that it should be transferred.

In what follows, we describe RC and TD. For each combined concurrency control

algorithm, RC and TD may be customized, just like transfer algorithms.

The following is a description of RC. Rlock, Rwait, Wlock, and Wwait are the

same as those in the transfer algorithm given in the last chapter.

o When the scheduler cannot set a lock on 2 because of contention, a RC does the

following:

begin critical section
% All the fields that appear in this critical section are fields of E(z)
If E(2) is not in the CT % See Remark 1
then allocate an entry for it
status:=0PT
lo:=gettime()
counter:= 0
link it to the end of G
If the scheduler wants to set a read-lock
then counter := counter + 1 + |Wwait|
If the scheduler wants to set a write-lock
Wliock| + |Wwait| + | Rwait]

then counter := counter + |Rlock| +

t:=gettime()

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 105

ft—to >0
then if counter > c,
then counter := 0 % x remains in PES
tg =1
link E(z) to the end of Q
else counter := 0 % See Remark 2

end critical section

e When the scheduler validates a transaction 7; and finds conflicts, a RC does the

following:

begin critical section
For every x that appears in an intersection
If = appears in n intersections
then if @ has an entry in the CT
then E(z).counter := E(z).counter + n
else allocate an entry in the CT for z
E(z).status:= OPT
E(2).lo:= gettime()
E(2).counter:=n
link E(z)to the end of Q
If E(2).counter > ¢
then E(a).counter :=0
E(z).to := gettime()
E(x).status := PES
start transferring = to PES
link E(2') to the end of Q
else 1:=gettime()
ft—t 240
then E(a).counter:= 0
E(a).to:=t

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 106

link E(z) to the end of Q

end critical section

Remark 1: This “if” statement is very strange, especially because it sets the status
to OPT. See the discussion in “Status and Memberships” later.
Remark 2: counter < c¢;. 2 should be transferred to OPT. Only setting counter to

zero will make ¢ — tg > 260 eventually become true. A TD will start a transfer at that

time.

The following is a description of a TD

o When a TD is started

E(x):=head of Q
begin critical section
t:=gettime()
while ¢ — E(a).ty > 20 do
if E(z).status= OPT
then delete E(x) from Q % See Remark 1
else E(x).lg:=t
if E(2).counter < ¢; % See Remark 2
then E(x).counter:=0
E(z).status:=0PT
start transferring to OPT
else E(2).counter:=0 % See Remark 3
link E(x) to the end of Q
E(x):=head of Q
t:=gettime()
end critical section

store ¢t. the next TD will be started at ¢ + 20

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 107

Remark 1: Let ¢’ be the last conflict on z. Then ¢’ < ty5 + . Otherwise {5 would
have been reset by the RC. So, from ¢’ to t (t — ¢’ >), there was no new conflict on
z. E(z) should be deleted from the CT.

Remark 2: Either there has been no new conflict on z for period of time longer
than @ as is the case when & € OPT, or counter was reset by RC(s) for as least once
between to to t under the condition that (¢’ —to > 8) A (counter < cz), where t' is the
time when the RC checked LE(a). In both cases, @ should be transferred to OPT.
Remark 3: Heve the condition means that, having been cleared by RC, counter has
quickly accumulated more than c¢; counts within a time period less than 8. So,

z should not be transferred. See discussion later.

6.3 Discussion

In this section, we discuss the automatic controller presented above.

6.3.1 About RCs and TDs

Since a TD takes time, the frequency of TD creations is less than 1/(28) and varies

[rom time to time.

RCs and TDs execute concurrently. They share some variables such as entries in
the CT and links that form the queue. They also execute concurrently with transac-
tions and transfers, and share the variables such as read-sets and Wwazt’s. Actually,
we need not protect the whole TD process by a global critical section. We need only
to guarantee that a process (such as a RC) has the exclusive right to access the shared
variable when it is active. For example, a RC started due to lock contention on « need

only hold the right to access to the data structures for = in the locking table, the entry

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 108

for z in the CT, and the related links. Another RC can run concurrently with it on
another data item. Of course the queue manipulation should be synchronized. It is
more efficient to manage those shared variables using monitors [21]. The reason for

using critical sections is only to simplify the description.

One problem is that for an OPT item z, when a RC finds that counter > ¢, it
will start the transfer of z to PES. However, at this moment, t — ¢y may be greater
than #, which suggests that the conflict rate on z is actually not so high as to justify
a transfer. As seen from the description of TDs (see Fig. 6.4), when t — ¢y > 20, it is
highly likely that E(x) is reset by a TD. Also, the last time E(x) is checked by a RC,
t' — to < 0 must have been the case, where t' is the time at that moment. So, t — {
is not likely to be much greater than . Of course, we can use more sophisticated
testing. For example, if counter/(t — ty) > c; then transfer; otherwise set tg to ¢ and

counter to n. A similar problem arises when @ € PLS.

For z € OPT, we immediately reset E(2) and transfer z to PES once E(z).counter >
¢i. For x €PES, we do not reset E(z) when counter > ¢;. Instead, we wait until
t —to > 0 holds. We can reset E{z) immediately; but it will cause more resets than
our present method, especially when conflict rates are high. For each reset, we have
to manipulate the queue by relinking the entry to the end of the queue. This task,
even though can be executed fast, still incurs some overhead. That is why we choose

not to do so.

6.3.2 Status and Memberships

In the CT, each entry has one of the two statuses, OPT or PES. In a database, each
data item belongs to OPT, PES, or neither OPT nor PIIS. The last case occurs only
when the data item is being trausferved. Clearly, we want the membership ol a data
item to match its status in the CT. However, temporary inconsistencies may arise
due to transfers. The change in status occurs before the change in membership. The

relation between the two changes should satisfy the following properties:

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 109

(6.1) once the z’s status is changed, its membership will eventually be changed.

(6.2) z’s membership will not be changed unless its status is changed.

To preserve above properties, the controller must behave “correctly” even when there
P I

1s inconsistency.

Now let us examine these temporary inconsistencies. An inconsistency happens
when a transfer process is waiting or aborted for restart. Specifically, in the transfer
algorithm for Algorithm 4.2, it happens in the case T1.4, T1.5, T2.3, or T2.4. Notice
that, when an RC records conflicts, it does not check the status. So, even with the
presence of inconsistencies, RCs still work normally. A TD does check status. So, let
us consider each case where TD is checking an entry, say E(z), while there exists a
inconsistency on z. First, if E(x).stalus= OPT, the inconsistency must be caused by
T2.3 or T2.4. In Case T2.3, there won’t be any contention on & during the course of
inconsistency. So, [E(x) can be deleted. For T2.4, there is still contention on z due
to conflicting locks during the inconsistency. RCs will record the conflicts and reset
E(a).counter according to the threshold c;. (This time the membership of z is PES.)
Note that a RC, when started due to conflicting locks, never sets a status to PES. Also
notice that when a TD checks I{x), there has not been any new conflict on z for at
least 8. So, we can safely delete E(2). When conflict occurs again while inconsistency
is still there, that strange “if” statement will allocate an entry with status OPT. So,
the Property (6.1) is satisfied. However, we should point cut that this strange “if”
statement need not even exist, because, if 8 is long enough, a restarted transfer will

have already transferred @ to OPT before a TD can check E(x).

Second, let us consider the situation where E(x).status= PES. In this case the
inconsistency must have been caused by T1.4 or T1.5. In both cases, the problems
here are the same. This time,x € (OPTUPFES). There may be still some transactions
that can access it in optimistic mode. So, there could be contention on it. RCs
will record the conflicts, reset I(x) according to the threshold ¢, and even fire new

transfers of @ to PES. These transfers are duplicates of the waiting transfer. We will

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 110

discuss how to suppress those duplicate transfers in the next paragraph. When a TD
checks E(z), it tries to transfer @ back to OPT. This transfer will, however, violate
Assumption 5.1, and is suppressed too. So, E(x) will keep the status PES and the
Property (6.1) is again satisfied.

Now we discuss how to suppress transfers. Situations where suppressing transfers
is necessary were already discussed in the above paragraph. Here is another situation
where a transfer should be suppressed. Suppose a data item x has just been trans-
ferred to OPT. But very sooun, E(x).counter exceeds ¢, and a RC wants to transfer it
back to PES. This transfer will violate Assumption 5.1. Although we argue that this
kind of situation is very rare and can be prevented almost always by carefully choosing
the three parameters, we should still take it into account. To suppress transfers, we
add another field in E(z). This field, say lasi-t, records the time when the last transfer
of has completed. If there is an on-going transfer, the value of last-t is infinite. So,
when a transfer is about to be initiated, the controller first checks if ¢t — last-t is greater
than twice the maximal transaction life-time. We want to point out that setting the
field when a transfer completes is not difficult to implement. This can be done when
the controller receives an acknowledgement from the transfer process, or even can be

done by transfer process itself in some specific implementations.

Since transfers are only started by RCs and TDs, the Property (6.2) is always

satisfied.

From the above discussions and from the algorithms for transfer, it is easy to see
that our system (for Algorithm 4.2) satisfies these properties. The above discussion

can be thought of as a “correctness proof” of the re-partition controller.

Chapter 7

An Implementation Proposal

In this chapter, we propose an immplementation for an adaptive concurrency control
system based on Algorithm 4.2. The system integrates the three functions: concur-
rency control, transfer, and conflict recording and transfer initiation. The system is
implemented by a combination of a concurrency manager (CM) and a TM. The CM
provides functions such as check-member(), lock and unlock, read-set/write-set ma-
nipulation, conflict recording, transfer initiation, and transfer. When the TM receives
a Read or Write request from a transaction, it asks the CM to check the membership
and to set an appropriate lock or manipulate read-/write-set depending on where the
item is (OPT or PES). When the CM informs the TM that the required work is done,
the TM operates on the transaction’s private work space and contacts the DM if nec-
essary. When it receives an End request from the transaction, the TM asks the CM
to check set intersections and release locks. Upon discovering conflicts in OPT, the
TM is responsible for aborting transactions. The TM is also responsible for telling
the DM to reflect the transaction’s modification to the database if the transaction is

validated.

In this chapter, we focus our discussion on the CM. First, we give an overview

of the CM and discuss the major data structures it maintains. Then we discuss the

111

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 112

operational details of the CM. The discussion is organized according to the status.

Finally, we comment on the proposal.

7.1 The Concurrency Control Table

In the CM, there are no separate processes for RCs, TDs, and transfers. They become
a few more steps in the ordinary concurrency control activities of the CM. This re-
duction on the number and type of processes is made possible by a carefully designed
table maintained by the CM. The table combines the functions of the locking table
(for locking scheme) and the conflict table. It also facilitates the set manipulations
for optimistic accesses. For such a multi-purpose object, it is hard to find a pertinent
name. So, we simply call it concurrency control table (CCT). The CCT is organized
as a hash table with the data item id as a key. Each entry in the CCT represents a
data item. We use [5(z) to denote the entry for . As in the CT, for every PES item,
there is a corresponding entry in the CCT, but for an OPT item which has not been

accessed for a period of time, the entry corresponding to it is dropped.

An entry, say E(x), in the CCT consists of two parts: the header and the lists (see
Fig. 7.1). The header contains, among other information, 1) id, 2) status, 3) counter,
4) tg, and b) three pointers, wp, rp, wap. id is the identifier of z. counter and ¢y are
the same as those in CT, except that #y’s are not linked to form a queue for TDs.
status now represents both the status and membership of 2. This time, however,
status has five possible values: OPT, PES, WtoP, WtoQ, and PtoO. The meaning of

these status is as follows:

OPT: 2 is being accessed in optimistic mode.

o PES: z is being accessed in locking mode.

o WtoP: A temporary status where a transfer of @ to PES is waiting at step T1.4a

or T1.5a. x is now accessed in optimistic mode (see R3 and W3).

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 113

id | status| counter | to{

——| Tid —

w-list @ E @

Tid -

r~list I‘/W. Tid

wait-list
@ Linked to/from an element in another w-list. That clement contains the same Tid.

@ Linked to/from the clement in other r-list. That element contains the same Tid.
@ Points back to the header.

Fig. 7.1 Anentry in CCT

e WtoO: A temporary status where a transfer of to OPT is waiting at step

T2.3a. z cannot be accessed in this status (see R3 and W3).

e PtoO: The CM has found that z should be transferred to OPT. But currently
there 1s contention on x. So, the transfer is deferred until there is no contention
on x. z is accessed in locking mode (see T2.4).

~

The transitions among different statuses are shown in Fig. 7.2. The pointers wp,

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 114

rp, and wap point to w-list (write list), r-list (read list). and wait-list (waiting list),
respectively. However, we do not call them read list or write list because the term

“read list” is used to denote another data structure. The three lists form the list part

of E(x), and are discussed below.

WtoP

OPT PES

WtoO PtoO

Fig. 7.2 Transitions among statuses

-t

An element in w-list of E(x), when the status is PES, represents a write-lock on
z. So, in this case, w-list has at most one clement. The element, therefore, contains,
among other information, the id of the transaction that owns the lock. All the write-
locks owned by the same transaction are linked together, so that locks can be released

fast (see type 1 links in Fig. 7.1). We call this list write-lock list. Note that a v-list is
for a data item, but a write-lock list is for a transaction. When the statusis OPT,
an element in w-fist indicates that z is in the write-set of the transaction whose id

is stored in this element. In this case, there could be more than one element in the

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 115

w-list. The type 1 links link all such elements with the same transaction id to form
a list that represents the write-set of the transaction. At the end of w-list, there is
a link (of type 3) pointing back to the header of E(z). The function of these links
will be discussed later. When status is WtoP, the meaning of w-list is the same as the
case where status is OPT, and when status is PtoO or WtoO, the meaning of w-list is

the same as the case where status is PES.

The usage of r-list of E(a) 1s similar to that of w-list, except that all the elements
for the read operations of the same transaction are linked together by the type 2
links, whether an element represents a read-lock or an element in the read-set. In
this way, there is no distinction between the read-lock list and the read-set. We call
this unique list read-list'. As we will see below, this unique list will not cause any
problem in validation or lock operations, rather, it will simply make transfers easier.
To manipulate the write-lock list, write-set, and vread-list for a transaction, the CM

uses pointers pointing to the heads of the corresponding lists.

The wart-list records all the locking requests on x. Each element in it contains the
id of the transaction that submits the request and the mode of the request (read or
write). To make the locking scheduler fair, we organize it as a FIFO queue. When
status is OPT, wait-list must be empty. The CM takes care of the integrity constrainte
of the CCT. When E{xz).status is PES, for example, w-list and r-list cannot both have

elements simultaneously.

7.2 Operations of the CM

7.2.1 Operations in OPT

Read and Write Requests

'The motivation for separating write-set (list) from write-lock list is to perform validation quickly.
The validation of a transaction involves the transaction’s write-set (list), but not a write-lock.

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 116

When a read request, say, Read(x), arrives from transaction 7;, the CM first checks
z’s membership by finding the entry E(z) in CCT and checking its status field. If there
1s no entry in CCT for z, x must be in OPT. So, the CM allocates and initializes an
entry for it. Now assume that statusis OPT. The CM simply adds an element in
E(z)’s r-list, puts T;’s id in it, links it to the head of the read-list for 7;, and modifies

the pointer to the head of the read-list.
For a write request when status is OPT, the process is similar.
Validation

When an End arrives request on behalf of T}, the CM first, starting from the head
of the read-list for T}, deletes all the elements in the read-list from the corresponding
r-lisl’s. This has the effect of releasing all the read-locks and discarding the read-set
for T;. Note that, since 7T; is no longer in Active, its read-set is useless now. Then
the CM does the validation along the list for the write-set. When the CM reaches an
element in the write-set, it traces the type 3 pointer to the header of the data item
being checked, say, x. It inspects the rp field. The null pointer means no contention on
2. Otherwise, it searches the r-list to find all the active transactions that conflict with
T; for z and records the number of conflicts in the counter field. It also records the
ids of the conflicting transactions for the consideration of the TM. If counter > ¢, the
CM puts with the pointer to E(z) into the list Transf which contains all the items
that should be transferred. Then it resets the ty and counler fields. If counter < ¢
but t —ty > 8, the CM resets iy and counter too. The reader may realize that CM is
doing the tasks that a RC process was supposed to do. But unlike RC, the status field
is not set to PES right now. It is set when the CM transfers the item. When it finishes
the operations on E(z), the CM drops the element from the w-list and proceeds to
the next element in the write-set. When the CM finishes scanning the write-set of T;,
it reports the result of validation to the TM. If a transaction is aborted, the CM will
discard the read-list, write-set, and write-lock list for the transaction. The transfers
will be started at the end of the critical section for the validation. At the end of the

critical section, all the data items that should be transferred are in Transf.

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 117

The Drop Queue

It may happen that, when deleting an element standing for optimistic access from
the r-list or w-list, the CM finds that all the three lists of E(2) are empty. In other
words, there is no access to = at this moment. (The CM can detect this because, once
the r-list or w-list is empty, it will trace\back to the header via the tvpe 3 link). In
this case, the CM checks if counter (6/(t — tg)) > ¢;. If so, the CM puts the header
of E(z) in a queue called Drop. Otherwise, it drops E(z) from the CCT immediately.
The Drop queue has a limit, say n. When the number of the elements in Drop reaches
n, for every element in the first half of Drop, the CM compares it with the entry in
the CCT. If they are the same, it means that the item has not been accessed for a
while. So, if the entry has status OPT, the CM drops the entry from the CCT, and
if the entry has status PES, the CM transfers it to OPT. The element in Drop is also
deleted. If they are not the same or there is no such entry in the CCT, the CM just

drops the element.

This mechanism is used to replace the periodically started TDs for finding those
items that still occupy entries in the CC'T but have not been accessed for some time.

There will be more discussion on this later.
Transfers

Transferring an item, say x, to PES can be executed very fast. Since the transfer
process has a pointer to E(z), locating E(x) is trivial. The R and W sets are just the
r-list and w-list, respectively. The CM checks the R and W sets. In Case T1.1, T1.2,
or T1.3 (see Section 5.2), the CM can transfer @ immediately. So, it sets status to
PES and sets locks on x if appropriate. For the read operations on x, there is no
need to set locks, since the read-lock list and the read-set are organized as a unique
read-list. To set a write lock, we have to delete from the write-set and then link
it to the write-lock list. Because the write-set is linked in one direction, we have to
start from the head of the write-set to find the element right before z. Later, we will

discuss some design considerations related to this issue. In Case T1.4 or T1.5, the

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 118

CM has to wait until the contention on z is resolved. So, it sets the status to WtoP

and proceeds to transfer the next item in Transf.

7.2.2 Operations in WtoP

When an item, say z, is in status WtoP, only those transactions that have previously
accessed it can access it. The requests [rom other transactions are blocked. Because
a transaction that has previously accessed x has a copy of z in its private work spa-e,
for a read request from that transaction, the TM need not ask the CM, but for a
write request, the TM should have the CM put the transaction in the write-set if it is
not there yet. So, when the CM receives a read request, it simply puts the request at
the end of wait-iist. When it receives a write request, the CM may put it in w-list or

wait-list depending on whether or not the transaction accessed it before.

In status WtoP, unlike the description in Chapter 5, the CM need not know
whether the transactions involved in the contention have finished or not; it need only
to wait until one of w-list and r-list becomes empty. When r-list or w-list becomes
empty, the CM traces the type 3 link back to the header of the I3(z) and checks the
status. 1f status is WtoP, the CM sets it to PES and sets locks as appropriate. Tracing
back to the header along the type 3 link whenever a r-list or w-list becomes empty
will incur an additional cost only when the CM discards a read-set. But this cost
is somehow compensated for by that clever way to finish a transfer’s waiting period.
Later, we will see this is further compensated for by not having TDs and the queue of
to’s. Tracing back to the header when releasing locks and doing validation is required

anyway.

7.2.3 Operations in PES

The operations in PES are more straightforward. When a read request arrives, the

CM checks if the corresponding read-lock can be granted. If so, it adds an element

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 119

in the r-list and links it to the read-list of the transaction. Otherwise, it adds an
element in the wait-list and records the conflicts by increasing the counter. For a

write request, the process is similar.

When there is contention, after increasing the counter, the CM checks for the
condition t —ty > 8. If the condition is satisfied, the CM further checks if counter < ¢,.
If not, the CM resets the tg and counter to ¢ and 0, respectively. If yes, the CM resets
to and counter, and then sets the stalus to PtoO. A transfer will be started when

there 1s no contention on z (see the next section for more detail).

Releasing read-locks was described in section 7.2.1. Releasing write-locks is similar.
One problem is that when we release a lock, we may need to check if the locking
request at the head of the wail-list can be granted now; if so. we set the lock. This is
implemented by utilizing type 3 links. If, when deleting an element, the w-list (r-list)
it belongs to becomes empty, the UM goes back to the header of E(z) via the type 3

link.

It may happen that when releasing a lock, the CM finds that all the three lists
of E(x) are empty. In this case, the CM checks if counter(0/(t — tp)) < ¢z. If so, it
sets the status to OPT and resets ty and counter accordingly. Otherwise, it puts the

header of the entry in Drop.

7.2.4 Operations in PtoO and WtoO

PtoO

For the read and write requests, the ('M works in almost the same way as that
for PES. There is a minor difference when contention is detected. After increasing
the counter, the CM checks if counter > c¢5. If so, it sets the status back to PES and

resets tg and counter. Otherwise, if (t —to) > 0, it resets the {g and counter.

When a lock is released so that there is no contention on x, i.e., the wait-list becomes

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 120

empty, the CM transfers 2 to OPT. This transfer is fast. Rlock and Wlock sets are
just the w-list and r-list. The Rwait and Wwait must be empty at this moment. Only
Case T2.2 or T2.3 is possible. In Case T2.2, all the transactions that have locks on
x are active. The transfer is straightforward. In Case T2.3, the condition 7; € Active
can be implemented by a risky trick. If the read-list of 7} is empty, then we bet that
T; is not in Active. Since a transaction usually reads something before it ever writes,
when the read-list 1s empty, it suggests that the read-list has been deleted at the
beginning of the validation-and-write phase of T;. Because deleting the read-list is
protected in a critical section, there is no risk that, when the read-list is being deleted,
a transfer process checks its emptiness. If we cannot accept this assumption, the CM
has to ask the TM for the information. But it is not slow though. If 7} ¢ Active, set

status to WtoO. 1y and counter need not be reset in this case.

WtoO

Access to x is not allowed in this status. So, the CM puts all the read/write
requests in wait-fist. When the write-lock is released, the CM sets status to OPT and
resets to and counter accordingly. M wait-list is not empty, the CM puts the requests

in w-list and r-list accordingly.

7.2.5 About Empty r-list or w-list

The discussion about the operations that the CM performs when a »-list/ w-list becomes
empty is scattered all over previous sections. Some confusion may arise and some in-
complete description may exist. This section serves the purpose of clarifying and

completing the issues related to it.

When one of r-list and w-list of E(x) becomes empty, the CM traces back to the header

via the type 3 link, and

Case 1: status = OPT

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 121

if all the three lists (r-list, w-list, wait-list) are empty then
t := gettime()
if counter(8/(t — to)) > ¢
then put the header to Drop
else delete E(z) from the CCT
Case 2: status = WtoP
status .= PES
to 1= gettime()
counter := 0
if all the three lists are empty then put the header in Drop
Case 3: status = PES
if wait-list is not empty
then set locks for elements in wait-list, until no lock can be set
else % At this moment, all the three lists must be empty.
t := gettime()
if counter(0/(t — t)) < c2
then status ;= OPT
tg =1
counter := 0
else put the header in Drop
Case 4: status = PtoO
% At this time wait-list must be non-empty
set locks for elements in wait-list until no lock can be set
if wail-list becomes empty after setting locks
then start transfer of « to OPT
Case b: status = WtoO
% this time it must be w-{ist that becomes empty
if wait-list is empty
then delete E(x) from the CCT
else status = OPT

to 1= gettime()

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 122

counter ;= 0

put the requests in wait-list to r-list and w-list accordingly

7.3 Discussion

Now, a data item may have one of the five statuses, and transfers may take place
among all the statuses rather than just between OPT and PES. A transfer, however,
can be implemented as a change of status plus some relinking between the write-set
and write-lock list of a transaction (i necessary). Among the five statuses, only PtoO
1s new. When the status of an item becomes PtoO, the conflict rate on it is going
down. So, we do not expectl that the item will stay in the PtoO status for a long time
before it changes to OPT. Even if the conflict rate goes up again, the item cannot
stay 1n PtoQ for a long time, because the status will change back to PES. This further
reduces the duration that an item is in PtoO. The statuses WtoO and WtoP are just
separated from x € (OPT U PI'S). Since our automatic re-partition controller is
based on the assumption that the conflict rate on an item changes slowly, transfers
will be rather infrequent. Therefore, we expect that a data item almost always has

status OPT or PES.

A nice feature of our implementation is that the amount of work for validation
is only related to the size of a (small) write-set. [l is independent of the sizes of a

number of (large) read-sets.

TDs™ tasks are now performed by the queue Drop and checking when one of
r-list and w-list of an entry becomes empty. So, the size of Drop becomes important
to performance. It should be somehow related to the average number of entries in the
CCT, and should be tunable. Since checking when a r-list/w-list becomes empty is
needed for other jobs, only the check for a r-list in OPT status could be considered

as the additional cost to implement TDs' tasks. In this case, since wait-list must be

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 123

empty, it is very likely that all the three lists are empty. When all the three lists are
also empty, it is more likely that the entry is deleted than its header is put in Drop.
Since we get rid of tasks of relinking tp’s to maintain the queue, and the processes
for purging Drop can be made less frequently than the TDs, we can achieve better

performance in this way than using TDs.

Each one of the write-lock list and the write-set (list) is implemented as a single
chain. This single chain makes deleting an element from the middle of the chain
slow. Actually, we can use a doubly linked chain to solve this problem. However,
such deletion is only needed in a transfer. As we commented before, transfers are
infrequent. Besides, when a data item is write-locked or is a member of a write-set,
it is very likely that the transfer is blocked due to conflict. So, setting a lock for an
item in a write-set or putting a write-locked item originally in a write-set occurs less

frequently than transfers. That is why we have chosen to use a singie chain.

Now we discuss issues about the critical section that protects validation in Al-
gorithm 4.2. Since concurrency control is achieved jointly by the TM anu CM, a
question arises as to how to implement a critical section. Here we suggest two possi-
ble approaches. We can use the TM to achieve the effect of a critical section. When
validating a transaction, the TM does not accept any request from other transactions,
nor does it process read/write operations of other transactions. This approach can
be easily implemented, and it actually stops the database accesses by other transac-
tions. Another approach is to use the CM to achieve a similar effect. Since there
are only two purposes of this critical section, i.e., (1) preventing another transaction
from being validated concurrently, and (2) protecting the elements in the write-set of
the transaction from bheing accessed by other transactions, the CM need only do the
following: (1) do not accept another End request, (2) prevent access to such entries
in the CCT that the data items they represent are in the write-set of the transaction
undergoing validation. The accesses to the other data items (and the entries repre-
senting them in the CCT) are allowed. To impelnient this approach, first, the CM
must remember that it is validating some transaction. Second, the CM has to check

along the wp down to the w-list to see if the item is in the write-set before it grants

CHAPTER 7. AN IMPLEMENTATION PROPOSAL 124

the access, since the CM does not know whether an element is in the write-set before
it has actually scanned the element through the (type 1) chain for the write-set, and
also since the access requests of other transactions come from different direction (from
the header) from the scanning, for an access request to a data item. This approach
is more complex, but it permits more concurrency. Adding one more status to the

entries in the CCT is helpful in implementing this approach.

In our implementation proposal, there are no separate processes for RCs, TDs,
and transfers. This eliminates the cost for starting processes. These functions are
integrated into the normal concurrency control activities and are just a few more steps
beyond concurrency control. Thus, we can construct, with quite a small additional
cost, an adaptive concurrency control system that takes advantage of hoth optimistic

and locking methods.

Chapter 8

Conclusions and Future Work

The major contributions of this thesis are:
1. We have developed a data-oriented concurrency control scheme that is adaptive
and that takes advantage of both optimistic and locking schemes.

2. Based on a systematic study of the optimistic scheme, we have designed several
hybrid concurrency control algorithms and developed a systematic procedure to

combine optimistic and locking methods.

3. To make our system adaptive, we have designed algorithms for re-partitioning

a database and for recording conflicts and starting re-partitioning.

4. We have also given an implementation proposal for an adaptive concurrency

control system.

In addition, we have extended our scheme to multiversion databases.

ot

We expect that, when the database is properly partitioned, our hybrid schedulers
will achieve higher performance than pure locking or pure optimistic schedulers. Our

expectation is based not only on the fact that optimistic scheme perlorms better than

125

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 126

the locking scheme when conflict rates are low. It is also based on the fact that our
hybrid schedulers can, (1) avoid conflict escalation to a large extent in the part of
the database with low conflicts, and (2} confine deadlocks to the high conflict part.
The only additional cost at the algorithmic level is the invocation of check-member
for every read and write operation. 1t leaves plenty of room (in the sense of operating
cost) to adopt the other two components to constitute an adaptive concurrency control
system. Actually, a non-adaptive hybrid schedulers with a fixed partition can be a
promising approach. Such a fixed partition can be drawn according to the types of
data items. For example, in a banking database system, certain types of accounts,
such as personal saving, constitute the OPT part of the database, while some other
types of accounts constitute the PES part. When a database is partitioned according
to the types of data items, the check-member function can be implemented very

efficiently.

Our transfer algorithm is efficient. Carrying out one transfer is cheap. The cost of
initiating a tvansfer process is perhaps greater than the cost for executing the body
of the process. We can also group transfers to reduce the cost for starting transfer

processes.

It is always desired that the knowledge and experience of the database system
administrator could have a positive impact on performance, and we expect that this
positive impact can be achieved by carefully designing and managing the way the
controller and the DBA interact. If successful, this would provide an opportunity
for incorporating higher intelligence into concurrency control. By letting only the
controller, rather than the scheduler or re-partition processor, interact with the DBA,
we restrict the influence of the DBA to only the performance and not the correctness
of concurrency control. The automatic re-partition controller presented in this thesis
is relatively closed and at a low-intelligence level. It is based on the assnmption that
conflict rate changes are slow. Definitely, finding a better controller to incorporate the
DBA’s intelligence is a promising research direction. However, a complicated system
is not desired because the cost for running a controller must be small enough, so that

it will not offset the benefit gained from the hybrid scheduler.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 127

From the implementation proposal given in Chapter 7, we can see how cleanly the
functions of the re-partition processor and the automatic controller can be integrated
into the activities of the scheduler. However, there is one problem that we should
point out. There are two reasons why the optimistic scheme could out-perform the
locking scherme. First. the optimistic scheme detects less conflicts than the locking
scheme (see Section 6.1.1) and it does not block a transaction. Second, an optimistic
scheduler can be cheaper to run than a locking scheduler. Read-/write-set manipula-
tions can be decentralized. They are cheaper than locking and unlocking operations
(see Section 7.3). In our implementation proposal, the second reason 1s simply lost. It
is left as future research to implement an adaptive concurrency control system, taking

advantage of decentralized read-/write-set management.

Our approach is general, since the four basic assumptions in Chapter 1 are general.
In particular, our approach can be applied to relational databases. [t may also find
its use in newer types of databases, such as deductive and object-oriented databases,
because the optimistic scheme is superior to the other two schemes when there exists
long internal thinking time in transactions [4], which is often the case in deductive
and object-oriented databases. In object-oriented databases, transactions are often
naturally nested [19. 28}. Extending our approach to nested transactions [26] does
not appcar to be straightforward. However, the idea of partitioning the database may

prove valuable.

In general, we can partition a database into an arbitrary number, say n, of parts.
As long as it ensures that any two synchronizing sections in every transaction overlap,

serializability can be guaranteed.

Our work gives rise to an interesting research topic. Previous studies only vaguely
talk about “high” or “low” data contention (or conflict rates). Nobody (to our knowl-
edge) ever tried to define “conflict rate” rigorously and to define “high” and “low”
quantitively. With our attempt to partition a database according to contention fre-
quency, and with our attempt to mechanically determine (by the repartition con-

troller) the conflict rate of every data item and thereby determine its membership,

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 128

there is an important question of defining conflict rate in a sensible way and find-
ing exact thresholds on conflict rates to achieve a good performance in optimistic and
locking methods. It is also debatable what items, highly accessed or highly contended,
should be put into PES. For example, should a highly accessed item with 95% of its
accesses being Reads be put in PES or OPT even though currently there are only

read accesses?

Important work that has not been done is the performance analyses of our ap-
proach. We plan to do a simulation study to test our scheme against the locking and

optimistic schemes in the near future.

It is also promising to extend our approach to distributed databases and replicated

databases.

Bibliography

[1]

3]

D. Agrawal and A. El Addadi. Performance characteristics of protocols with
ordered shared locks. Technical Report TRCS 90-13, University of California at
Santa Barbara, 1990.

D. Agrawal and A. El Addadi. Constrained shared locks for increasing concur-
rency in databases. Technical Report TRCOS 91-20. University of California at

Santa Barbara. 1991.

D. Agrawal et al. Distributed multi-version optimistic concurrency control for re-
lational databases. In Proc. IEEE COMPCON 86, pages 416-421, San Francisco,
California, Mar 1986.

R. Agrawal, M. J. Carey, and M. Livny. Models for studying concurrency control
performance: Alternatives and implications. In Proc. of ACM-SIGMOD 1985
Int’l Conf. on Management of Data, pages 108-121, 1985.

B.R. Badrinath and K. Ramamritham. Synchronizing transactions on objecte.

[EEFE Trans. on Computers. C-37(5):541-547, 1988,

P. A. Bernstein and N. Goodman. Concurrency control in distributed database

systems. ACM Computing Surveys, 13(2):185-221, 1981.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

BIBLIOGRAPHY 130

[8] B. Bhargava. Performance evaluation of the optimistic approach to distributed

database systems and its comparison to locking. In Prco. 3rd Int'l Conf. on

Distributed Computing Systems, pages 466-473, 1982.

H. Boral and I. Gold. Towards a self-adapting centralized concurrency control

algorithm. In Proc. of SIGMOD 198/ Annual Meeting, pages 18-22, 1984.

J. T. Canning, P. Muthuvelraj, and J. Sieg. An adaptive concurrency control
algorithm: Merging optimistic and pessimistic techniques. In Advanced Database

System Symposium '89. pages 187-191, Kyoto. Japan, 1989.

M. J. Carey and M. R. Stonebraker. The performance of concurrency control
algorithms for database management systems. In Proc. 10th Int’l Conf. on Very

Large Dala Bases, pages 107118, 1984.

S. Ceri and S. Owicki. On the use of optimistic methods for concurrency control
in distributed database. In Proc. 6th Berkeley Workshop on Distributed Data
Management and Compuler Networks, pages 117-129, 1982.

S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.

McMraw-Hill Book Company. 1984,

K.P. Eswaran, J.N. Gray, R.A. Lorie, and LL. Traiger. The notions of consistency

and predicate locks in a database system. Comm. ACM, 19(11):624-633, 1976.

A. A. Farrag and M. Tamer Ozsu. A general concurrency control for database
systems. In AFIPS Proc. of the National Computer Conf., pages 567-573, July
1985.

A. A. Farrag and M. Tamer Ozsu. Towards a general concurrency control
algorithm for database systems. [EEE Trans. on Software Engincering, SE-

13(10):1073-1078, 1987.

J.N. Gray. Notes on database operating systems. In Lecture Notes in Computer

Science, volume 60, pages 393-481. Springer-Verlag, 1978.

BIBLIOGRAPHY 131

(18]

[19]

J.N. Gray, R.A. Lorie, G.R. Putzulo, and [.L. Traiger. Granularity of locks and
degrees of consistency in a shared database. Research Report RJ1654, IBM, 1975.

T. Hadzilacos and V. Hadzilacos. Transaction synchronisation in object bases.
In Proc. of the 7th SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 193-200, 1988.

Theo Haerder. Observations on optimistic concurrency control schemes. Infor-

mation Systems, 9(2):111-120, 1984.

C.A.R. Hoare. Monitors: an operating system structuring concept. Comm. ACM,

17(10):549-557, 1974.

H.T. Kung and J. T. Robinson. On optimistic methods for concurrency control.

ACM Trans. on Database Systems, 6(2):213-226, 1981,

G. Lausen. Concurrency control in database systems: A step towards the in-
tegration of optimistic methods and locking. In Proec. ACM Computer Science

Conference 82, pages 64-68, 1982.

D. A. Menasce and T. Nakanishi. Optimistic versus pessimistic concurrency
control mechanisms in database management systems. [nformation Systems,

7(1):13-27. 1982.

R.JT. Morris and W.5. Wong. Performance analysis of locking and optimistic

concurrency control algorithms. Performance Evaluation, 5(2):105-118, 1985.

J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-
puting. MIT Press, Cambridge, MA, 1985.

U. Pradel, G. Schlageter, and R. Unland. Redesign of optimistic methods: Im-
proving performance and applicability. In Proc. of the 2nd Inte’l Conf. on Data

Engineering, pages 466-473, Feb. 1986.

T. C. Rakow, J. Gu, and E. J. Neuhold. Serializability in object-oriented database

systems. In Proc. of 6th Data Engineering, pages 112-120, February 1990.

BIBLIOGRAPHY

[29]

[30]

[31]

[
Cav
o

P. M. Schwarz and A. Z. Spector. Synchronizing shared abstract data types.
ACM Trans. on Computer Systems, 2:223-250, 1984.

R.M. Shapiro and R.E. Millstein. NSW reliability plan. Technical Report 7701-

1411, Computer Associates, June 1977.

R.M. Shapiro and R.E. Millstein. Reliability and fault recovery in distributed

srocessing. In Oceans 77 Conference Record, volume 2, 1977.
I g , ;

R.E. Stearns, P.M. Lewis, and D.J. Rosenkrantz. Concurrency controls for
database systems. In Proc. of 17th Symp. on Foundations of Computer Science,

pages 19-32, 1976.

R.H. Thomas. A majority consensus approach to concurrency control for multiple

copy databases. ACM Trans. on Database Systems, 4(2):180-209, 1979.
P

W. E. Weill. Commutativity-based concurrency control for abstract data types.

IEEFE Trans. on Computers, 37(12):1488-1505, dec 1988.

W. E. Weihl. Local atomicity properties: Modular concurrency control for
abstract data types. ACM Trans. on Programming Languages and Systems,

11(2):249-283, 1989.

