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Abstract 

In this thesis, we propose a new approach to adaptive concurrency control for database 

systems. Unlike pretrious concurrency control schemes, ours is "data-oriented." We 

partition a database into two parts, OPT and PES, depencli~g on the coiiflict rate on 

each data item. -Access to data items in OPT is governed by an optimistic method 

while access to  items in PES is governed 13~. two-phase locking, Thercfore, our scheme 

takes advantage of both optimistic and locking methods. The partition can be changed 

d j ~ ~ a m i c a l l y  to adapt to the changing conflict rates. 

Based on a systematic study on optimistic methods. we develop several hybrid 

concurrency control algoritl~ms that combine optimistic and two-phase locking meth- 

ods. FITe also develop a systematic procedure t o  produce such hybrid algorithms. We 

desigr, a re-partition algorithm that car1 be esecutecl concurrently with transaction 

processing, and a mechanism that traces conflict rate changes. In addition, we propose 

an implenlentation for an adaptive concurrency control schcme. We further extend 

our approach to  muiti-version data base systems. 
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C ter 

nt roduct ion 

In this thesis, we propose a. new approa.ch t.o acla.ptive concurrency control for database 

syst.ems. Our approach comhines optimistic and two-phase locking schemes, ancl 

is dyna.mica.lly aciaptahie to systcm workloads. In  addition, our approach allows 

the cla.t,a.l>ase system a.chinisi~rator t,o modify some pa.rarnet.ers during i t s  operation. 

The major  contri1)ul ioli of  o u r  \vorl; is t11at it  pl~)post.s a ilejr. \;iew point, to st,ucly 

concurrency control. We claim t h a t  our approach is "da,ta.-oricnt,ecl," i n  contrast to 

the previol~s studies, which were "transaction-oriesited." 

In this introc1uctor~- cliaptcr, we first briefly review the n ~ a j o r  existing concur- 

rency control schemes. Then, wc i~:trocluce thc new approach by presenting our basic 

assumptions, describing the way we attack the coricurrency control prohlelr~, ancl ex- 

hibiting the special features of the ncw approach. Finally, we present the organizatiori 

of the thesis. 



1 .I Concurrency Control Schemes 

Concurrency control for database transactions has been studied for more than fifteen 

years [14. 18, 321. Therc arc threc major concurrency control schemes currently known: 

(two-phase) locking [ I & ] ,  time-stamp ortleririg 130, 31, 331, and opti~nistic schemes [El. 

In this section, cve briefly describe tlie basic concepts of the  three schemes. Locking 

and optimistic schemes will receive a more detailed cliscussion in Chapters 2 and 3. 

respecti~.elg,. Technical tcrms used here without definition, stlc1-1 as transaction and 

confiict. will be formally tlcfinecl i r i  later chapters. 

Lockzrzg is the most cnmrnonly used among the three schemes. In this sclmne, a 

tranraction ntust acquire a lock on a data  item in the database Ilefore it can access the 

itcnt. Anlong locking methods, two-phrcsc Iotkzrly (2PL) [l I] ib t h e  most important. 

In 2PL. a transaction cannot acquire any more locks once i t  releases a lock. So, a 

transaction has two phase\, an esp~ncl ing phase during which it acquires all the locks 

i t  recluircs, followed by a shrirtking phase di~rillg w.v!l~ich i t  releases the locks it has 

acquired. 21'1, orders transartions accortling to the ordcrs of operations in conflict. It 

is not dcacllock-free. 111 this thc-;is. "locking scheme" u-ill mean two-phasc locking, 

1;tiIiEre tlie locking sthcnic. firnf-qturrtp order.~ng ('1 0) orders trarisactions by the 

time points at which transactions start executiori. A transaction, when it starts 

execution, is c?ssignecl a l~nique  time-stamp. Attached to each da ta  item are two 

ti~nc-stamps. a read stamp and a write stamp. The read (write) s tamp on a da ta  

item records the t imr-stamp of the last transaction that  reads \writes) it. \\'hen a 

transaction sec~uests to access a data  item, the schecluler first compares the transac- 

tion's time-stamp with tlie tilne-stamps of that itern. If it fincis that  the item has 

heen acccssecl bj, another transaction tvi th a newer time-st amp in a conflicting access 

mode. the schecliiler will abort the requesting transact ion. Otherivise, the request is 

grantcd. This scheme is deadlock-free. 



Both 2PL and TO are p~ss1nzlsf7c schemes in the sense that they are always pre- 

pared for conflicts. They cl~cck for conflict for every access request and grant the re- 

quest only when granting it will not violate serial correctness. The optimistic scheme 

is different from them, for it explicitly assumes that conflicts among transactions are 

rare. An access request is grantcd immediately without any conflict checking. Con- 

currency control is deferrecl until the end of a transaction. when checlii~~g for potential 

conflicts takes place. T f  a conflict is cletected. one or more transactions are aborted. 

The optimistic sclleme is also deacllock-free. 

1.2 Our Approach 

Basic Assu~nptions 

Our approach is based on four basic assumptions presented below. The order of 

the assumptions reflects. to ~ o m e  clcgrec, the relative import ancc of the assumptions 

to  our approach. They will be discussccl in detail in Chapter 4. 

It is commonly agreed that, whcn conflict rates on data are low, optimistic met,liods 

perform best. and when conflict rates are rnedium or high, locking methods perform 

best. This is our first assumption and is called the perlformcince ass~smption.  

It is likely that. in a database. conflicts are tlistrihutcd ;~nevenly over the d d a  

j terns for a period of time. In ot l ~ e r  words, the conflict rate varies from data it em to 

data item. 14.c call it the non-unzforrn I I C ~ E S S  d z s f r i b ~ ~ t ~ o n .  

Given a specific application, the cor~flict rate, or the relative conflict rate on a data 

item, may be roughlj, preclictal>Ic for a short period of time. The prediction r 2ay be 

based on the experience and knowleclge of the database system adminlst~ator  and the 

execution histories. The prediction need not be precise, it need only give a : eneral 

picture aboiii whether the confiict sate is low or not IOW, The aci.c.js focidity is the 

third asstmption of our approach. 
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The last assumption is that, when tile number of data items in a database is 

sufficiently large, it is very liliel~. that, at any time, there is a large portion of data 

items in the database on which conflict rates are low enough to make optimistic 

scheme the best concurrency control scheme for them. CVe call it the low conflict rate 

assumption. 

There will be more discussions on thcse assumptions. 

Concurrency Control System 

Rased on the a,l>ove fo11r a.ssumpt,iol-is, we develop an a.pproach to  concurrency 

contr01 that t,akes adva.nt.agc of the as~impt~ions  and avoids some sfmrtcomings thak 

t.he assumptions suggest.. Our approach is data-orient.ed Ixxause we take into a.ccount 

the conflict rat,e on each data, it.em. Act,i.lally, t,he conflict rate on each data, item is 

tlie deciding factor i l l  cl-loosi~lg a  a articular concurrent>. control rnet,l~od fos the data 

item. More specifically. we partition t,he tla.t,aba.se into t,wo pa,rts, OPT and PES, 

where OPT consists of those dat.a items with low corlflict rat,es, and I'ES consists of 

those da.t,a items with mcdium or high conf ict rat,es. As suggested by their names, 

access to data items in  OPT is gowrneci by an optimistic method, while access to 

it,ems in PI% is governed 11). a 2I'L mc~tlhocl. Therefore, we can take advantage of 

both opt,imistic and  locking metliocls. 

Conflict ra trs on data items maj. change from time to time. Therefore, we should 

p rov id~  mechanisms to  lac-partition the database so that the  partition reflects the up- 

to-date cmflict clist ribut ion. 11:e proposc a concurrency corit sol system which contains 

two mow f~~nc t io~ ia l  componc~lis it1 addition to the scheduler. The system is depicted 

in Fig. 1.1. 
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The controller is responsible for keeping the partition up-to-date. It may have 

functions such as tracing conflict rate changes, making decisions about when a re- 

partition should start and ~ h i c h  items are to be involved in the re-partition. It can 

accept commands from the database system administrator (DBA4), so, the DBA may 

start a re-partition through the controller. The controller collects conflict rate infor- 

mation from the schecluter and sends re-partition commands to the re-partition pro- 

cessor. The re-partition processor is responsible for re-partitioning. Re-partitioning 

must be executed concurrently wi th  transaction execution. 

Major Problems to  be Solved 

Clorresponcling to  the three syst,em components, there are three major problems to 

be solved. In our approach, a tra.nsaction may access different data, items tmclcr differ- 

ent, concurrency ~ 0 1 i t r 0 1  r ~ ~ ~ i . I i o ~ I s .  011s first problem is 1101s t,o coosdina.te optimistic 

a,nd pessimistic n-iethods, two seemingly conflicting methods, so that, ser ia l i~~bi l i ty  is 

ensured. The second problem is how to dynamically re-prt i t ion a data.ba5e while 

transactions are being executed. The third problem is how to predict the conflict rate 

on a. dat,a, item, and wha.t criteria. to  use in putting a da.ta it.em in OPT or PES. These 

problems will be a,ddressed in Chapters 4, 5,  a.nd 6, respectively. 

Special Features 

Our system has the follon.ing special features: 

e When the database is properly partitioned, it takes adsantage of both optimistic 

and locking schemes. 

It is adaptive, and is virtually continuously adjustable. Thc number of different 

partitions is 2". where 71 js the number of clata itcms. So, when the number 

of clata items is large, the concurrency contro! policy can h~ adjusted virtually 

continuously. 

s It provides an interface to the DBA. An important consequence of this is that the 

DBA's knowledge can lse utilized to ac lkve  more efficient concurrency control. 
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o T h e  hyhrid sched-ller introduces only a. little a,mount of a.ddit,ional overhea,d. 

e A pure locking or optimistic scheduler can be realized as a special case. 

1.3 The Organization of the Thesis 

Chapt,ers 2 and 3 provide preliminaries. In Chapter 2, x e  introcluce a concurrency 

control t,heory which will be used as the formal framework for the subsequent chapters. 

In C:haptJer 2, we also discuss t,he 10clii11g scheme using this framework. Cl~apt~er  3 is 

a sjlsternatic study of the optimistic scheme. 

Chapters 4 to  7 constitute the main body of this thesis. In Chapter 4: we discuss 

our motivation. present sevtral hybrid schtdulers, and develop a systematic procedure 

for combining optimistic and locki:~g sche~ncs. In Chapter 5, we ctevelop algorithms 

for dynamic re-partitioiling of a database, and in Chapter 6, we discuss some issues 

for t h ~  controller and propose au a ~ ~ t o m a t i c  controller. In Chapter 7, we propose an 

implen~ent at ion for adapt i1.c' c o l~c~~s rcnc i -  control. 

Finally, in Ct1aptc.r 8. wc concludt our discussion and point to  possible future 

work. 



Chapter 2 

Concurrency Control Theory 

In this chapter ire provide a formal frarneivorli for the sulxequent chapters. We 

present moclels, definitio~is. and basic theorems of concurrency control theory. The 

framcworli is strongij influenced 1)y [fi, 7, 9). 

Later in this chapter we formally discuss locking methods as an application of the 

frarneworli. The clisc~~ssior? will also serve as a pre!iminary to Chapter 4, where we 

combine locking and opiiniisti~ schcmcs. 

2.1 Database Systems 

In this section, we present a clatabase system model for the stucly of concurrency 

cont.ro1. 

A database consists of a set of nainecl data items. M'e clenote clata i t ens  by lower 

case letters, a ,  y,  z ,  etc. Each data item has a value. The values of the data items a t  

any time comprise the stntr of the database. Among the possible states of a database, 

there are a set of states that reflect the '.correctn information of the application. We 

call them cor~sis trn f  states. 



Users access a database by Ineans of transactions. A transnctio~z consists of a 

Begin command, followed by a squence of Read and/or f4kite commands, which are 

followed by an End. We use TI, T2,  . . . , T,, T,, . . . to clcnote transactions. The Begin 

and End conm~ands mark the Beginning and end of a transaction. A Read command, 

Read(x), returns the value of data item n. in the current database state. A W i t e  

command, TVrife(x, new-value), creates a new database state in which s has the value 

new-value. Each transactiori represents a self-contained computation. It is assumed 

to  be "correct," i.e., a transaction. when executed alone on a consistent database 

state. will take the clatabase to a new consistent state. An incomplete esecutjon of a 

transaction may. however, put the database in an inconsistent state. Therefore, the 

atomicit"? df trmsactions mwt  be ensured, i.e., either its full effects must be reflected 

in the da.talmse or nothing at a.jl 

-4 transaction. however, cannot directly access the datalmse. It only submits, as 

requests. its commancls to a tiatahasc management module known as the transaction 

manager (TM).  which is part of our database system model. 

A dnfabrist- system (IIBS) contains four co~nponents (see Fig. 2.1): a tmnsac- 

t1011 mnnngtr, a schedcdtr, a dutu rnnnciye~~ (DM) and a datalmse. The TM receives 

commands fro111 transac%ions and passes t l~ein as requests to the schecluler. It also 

manages private wosli space for tia~lsactions. A scheduler controls the concurrent exe- 

cution of transac~ions. It ~x=-ceivcs Rcgin, Read, Il4-ite1 a r~d  End rcyuests from the TM 

and issues dm-read, dm-rr-rife, prcrrtrite, abort, and commit operations in responcli~ig 

to  the requests. dm-reads and dm-rvritrs are sent to  the Dh4; prerwites ancl aborts 

are sent to the Th4; and commits are sent to both the Th4 and t l i t  DM. The DM is 

responsible for accessing data items in the database. It provides two data manipula- 

tion operations: dm-reacl(s), whicli reads data item ,T; ancl, dm-rvritc(s, newvalue), 

which assigns the value t~ew-\alue to data item n.. Note that din-rvrite(x, new-value) 

is a logical operatio~l recogni~~cl  by the DM. It does not necessarily mean "write to  

the database directly.'' It only makes r q s  new-value generally visible, and eventually 

stores new-value in n: in the database. In fact, the DM nlay first write new-value to 

the cache ancl then flush it to the database. We assume once a value is written in the 
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cache, it is generally visible. 

Transaction 1 Transaction 2 ...... Transaction n 

Fig. 2.1 Database System 
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T h e  actions taken bj. the DBS upon rcccipt of the four types of commands, Begin, 

End, Read. and Wi te .  from a transaction are described below: 

Begin: T h e  T M  assigns a "tramaction id,'? ancl initializes a pr imte  work space for 

the transaction. 

Read(x): If r is already in the transaction's private ~ o r l i  space, then its value is 

returned t o  the transaction by thc TM. otherwise, the T M  passes it as a request 

t o  the scheduler w11ich will decide whether to grant i t  immediately or to delay it. 

If it is granted. the scheduler issues a dm-read(x) operation t o  the DM. The  DM 

returns the  current \ d u e  of s to the TM. which copies it i l l  the tra~lsaction's 

private ~ ~ o ~ l i  space ancl gi~res it to  the transaction. If dclayecl, the request is 

placed on a queue intcmal to the scheduler. Later, the scl~eduler may decide to 

grant, it. 

Write(r. ncw-valuc): Tllc scheduler first decides if the request should hc granted. If 

so, the Thf w ~ i t r s  nmr--.r;llue i l l  the transaction's privatc \~o r l i  space by exec~rting 

prewite(.r, new-\*itlw). T l ~ i s  has the effect of overwriting the previous value of 

n: in the private \t~orli space, if a copy of n: exists in the private work space. 

Otherwise. n. is created in tho i~or l i  space wi th  the \.slue new-value. Note that 

it docs not alter an\. 1.a1ucs in the database. 

End : The  scliecluler checks w l ~ e t h ~ r  allowing the transaction to  commit, (by making 

its changes permanent in the database) will leave thc database in a consistent 

state. We call this step vcd~dc~t ion .  In the event that  it will not, the scheduler 

issues an abort operation. The  transact~on (maybe some others) will then be 

aborted. T h e  data structures in the sched~der,  such as read-/write-locks and 

reacl/write sets ( t o  l)e introduced in later chapter.;), for the aborted transaction 

will bc discarded. The  private work space for the aborted transaction is cleared. 

Otherwise, the  scheduler issues a dm-write operation for every da ta  item in the 

transaction's private wo~ l i  space whose value has becn created or changed by 

a prt-write opcratiori. This has thc cf f~ct  of making thc  last change to n: in 



the pr ivak work spa.ce visible by other transactions a.nc1 causing it eventt~ally 

t o  become a pernmnent va.lue in t,hc database. -After all dm-writes ha.ve been 

carried out3, a commit operation is issued, the private work space is discarded 

a.ncl t , lx tra.nsa.ciion is coinplctecl. \Vc a.ssume that once a dm-write is issued, 

its effect will be event,ila.lly seen in the dahhase  and the tra.nsa.ction cannot be 

aborted thereafter. Bcca.use a partial result of a, transaction is not allowed t-o 

exist in the da.ta.ba.se, the DBS ensures that,  once a clm-writ,e is issued for a 

transaction, a.11 the dm-writks for the transa.ction will event-cia,lly be issued. In 

other words, the tra.nsaction will be committed. The  mechanism ensuring this 

property is the recovery mechanism tlmt is beyond thc scope of this t,liesis. 

To simplify the cliscussion of our algorithms, we adopt t h e  follo.ivirig assumption, 

Assumption 2.1 rl dnln ifel;? docs n o f  erisf in n tr.nnsact?orz's yritmte work spnee 

until ~ ~ n d  .trnless I !  ha,.. b t ~ r l  rcnd or. w r i t l ~ n  espitcitiy b y  thmf t ? m s n c f i o n .  

2.2 Serializability 

Serializability is the most,-commonly used corr~ctness  criterion. define serializ- 

al~ili ty in terms of coliflicts. 

It is dm-reads and clm-writes that actually acceis the datctbasc. Therefore, we 

mocle'i thc esecrition of transactions using din-reads ant1 dm-writcs ratEic.r than Reach 

and lVi.ites. We rcfer to tlln-reads and dm-writcs as tl:rr-opti*c~flons, anti simply call 

them optiwtlo~zs when it is clear froln the contest. \ire say that two dm-operations 

eo~i.fiicf if they art. horn rlifft-rent transacil;ons.' they operatcJ 011 t h e  same da ta  item, 

a.>d a t  least one c?f thcm is a dm-write. We also say that trio transactions coaflict 

with each other if  they have operations that conflict with cach other. 

'This condit ion is j u s t  for t , l ~  convenience of tliscussion. \Ye do not consider t,he intra-t,ransaction 
concurrency control.  
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A transaction can exist in one of tlie three states: clcttve, comneztted(C), and 

nbortedjil). Committed ancl aborted are permanent, stable states. Active is a tem- 

porary state. Eventually i t  will be converted to either committed or aborted. A 

tmnsnction, Ti, i; formally mocleled as a 3-tuple (0,, S,, <,), where 

s 0, is the set of all clnl-operat ions issued iin behalf of 7;. 

0 St is a set of synchronization events which contains a A, or a r,, and some 

othcr events ~11r.h as locking and unlocliinrz;. Tlic types of el-ents depend on the 

concurrency cont rol nlcthod uscd. 

e <, is a partdial ortles over 0, u S, such that 

1. all t h r  cirn-reads prccecle all the dm-writes. 

2. if A, E S,. then no clsn-write I~elongs to O,,  and for any dm-read r ,  7'<,.4,. 

:3. i f  C', E S,, thcu for any dm-operation p E 0 1 ,  p<,Ct.  

4. i f  A,, C', pl S,, there are onlj- dm-wacls in 0 , .  

Thc  conditions for <, refled the clisc.us~ion of End command in thc last section. As 

clescribed in t lie last sc-ctiori, all t tic tlni-reads prcccde tile valiclation of a transaction 

which piwedes all the clni-nrritc.s. Tile valiclation has not heesl represcntect ill the 

formal modcl j7et,. It sllo~tld t dcc placc where the processillg of End co~nmand  starts, 

and it can be n~odclecl by putting some synshro~iization events in S,. When a trans- 

actiori passrs its ~ ~ l l i d a t i o n ,  i t  i.; cc~rtniu tliat comniitting thc  transaction will take the 

database to  a ncw consktcnt i tatc.  For an ac t iw  transaction, such certainty does 
r 7 not exist. This rnoclcling of tsansact ions is open-endecl. 1 he syncluoiiizatim event 

set of a transaction is not con~plctcly spcdicd .  \Ire have cleviwd the above model 

because our discussion will rcfcr to cliffercnt concurrency control schemcs and their 

conibinatio~~s. Pt'e call both an operation and a synchronization event uclions. We 

will omit the subscript oi 0 , ,  S,, ancl <, when it will causc no confusion. 

Let T= {TI = (O , ,  S1, . . . , Tn = (On,  Sn ,  <,,)I be a set of transa.ctions. A 

history H of aa  execution of T is clefirwl as a. 3-tuple (ON, SJI, < H )  s ~ c h  tha,t 
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e (Uy=l<I)  C: < H ,  and for every pair of conflicting operations p arid q in Or+ either 

p < ~ q  or 6 u P .  

As for trarisactions, the subscript 1-1 may by omitted from O H ,  and <t i .  

r , A complef& history is a history with no activc transactions. I l le  commrt projection 

of a history ti, tlenotecl C'onmit(IT), is the history ohtaincct by cielcting all the ac- 

tions of uncornmitteti (i.e.. ahortctl or active) transactions fiam I!. Clearly, a conirnit 

projection of any history is a complete history. 

Thew is no coilditio~l on sy~lclirotlizatiori etwlts for ecl~~ivalence. So histories pro- 

rtuceci I->? sclleclulers usiilg cliffercnt concz~rrcnq~ control schemes could be equivalent. 

This notion of eqtlivalencc is the so-callscl conflict rquianffnce, Two histories are 

eqrtiuale~~t uncles this not,io~i i f  t,ltilir orclcrs of the conflicting operations arc consisterit 

with each otllcr. 

4 cornplete history H is scvirrl i S  for every two trausactions T, and T, tha t  appear 

i l l  H ,  eitlicr all  operations of T, appeal. in 1 1  bcCorc-l all operatiom of 'f; or vice versa. 

A sir& tralisactioli is assutnccl correct, By itlcluction, a serial history is also 

correct, i.e., it will take the ciatalmsc from one consistent s ta te  to another consistent 

state. A c o ~ l c u r r e ~ ~ t  execution of a set of transactions wodcl also he corisiclerecl correct, 

if its effect is the same as a serial ~xecut ion  of tlie same set of transactions. Formally, 



a history I1 is sericzlizntr!~ i f  Commit ( H )  is equi\-dent to  a serial history. The  task 

of concurrency control is to  schedule concurrent trartsactions so t h a t  the resulting 

history is srrializable. 

We can de tcmi i~ le  wl~ether a history is serializalsle by analyzing a graph de- 

rived from the history callecl the serialization graph. Let I1 lse a history over T= 

( T I ,  . . . , T,,) . Tilt x r i n l i s n f  ion g i ~ ~ p l ~  for II ,  cfenoted SG(If ), is a directecl graph wl~ose 

lmcles are transactioi~s in T that a ie  committed in I3 anci i t  has a11 edge T, 4 ri; if 

and only i f  onc of T,'s operations prcceclcs and conflicts with one of T,'s opc~at ion  in 

14. An cclgc II: i T ,  i r~~p l i c s  that 7: must appear bcf'ortx Tj i l l  aaiy serial history ittat is 

cciuivaient to  Contnlit (11). If tvr. call find a scsial history 11, over t h e  conlrnitted trans- 

actions in  II consistent n i t  11 all etlgcs i l l  SG(fIj ,  tlicrt IT, is cquivalei\t to C'omniit(fIf, 

and so I-! is serializal~lr~. :Is st aft-ti i l l  t 11~. t hcol~w lwlonr, n'c can clo this as Ion8 as 

SC:(H) is acj~clic.. 

2.3 The Locking Scheme 

In this section, wc. clisrilss 2P1, 11sing the c .one~~rr (~r~cy  control t h o r y  just prescnt,ed. 

2PL syncl~ronizcs Reads a n d  'i'l+itc.s by csplicit i~,  c l c t t ~ t  ilig a n d  prwcntirig conflicts 

between concurrent opcratio~is. i t  uscs two types of iocics, read-locks and write-locks, 

to synchronize the conflicting operations. A read-locli ant1 a wl.ite-locli oli the  same 

da t a  i tem conflict with each otlicr. So do  a write-lock and ariothw write-lock on the 

same data  it en^. The owncl.ship of locks is governed hj. 4 rules: 



1. Before reading data  i tern .r from the database f more pl-ccisely, before a dm- 

scad(zj is issued), a transaction must own a read-lock on .r. Hcfore tvriting n 

13ew value of s into the database (more precisely, before a dm-write(.x] is issued), 

a transaction must own a write-lock on s. 

2. Diffrrent transactio~ls car~not sirnultaneousiy owr1 conflicting locks on t h r  same 

clat a item. 

Tlie last rule iil>o;.c caliscs ci-cry transactio~i to  oljtain loclis in  two phases. During t h t  

growing pf~ase> ht t1.altsac.t ion olitainrj 1~:tcIis without ~.clcasing any locks. By releasing 

a. lock the t'ra~lsacticxi enters the slirinking phase. Dtlririg this phase the transaction - 1 rcleascs locks, and. by rule 4. is pr01iii)ittd from obtaining acfditiona~ locks. 1 nere are 

two important poixts: tlte tirnc at whish the tra~lsact,ion !las acquired all the  locks it. 

requires and t,hc t imc at wllic.1-I i t  s tarts releasing its li>cks. Tlle former is called the 

lorXw1 pain/ jdenotccl as 1,P) and the lattcr is callrcl thc trnloc.kiug point (cfcnot.ed as 

i iPf .  U-lien the tratisac.tiorr t c ~ m i ~ l a t c s  (cornntits or aborts).  all rcrnairting locks are 

automat icallj. rekauecl. 

\ITe show that 2PL is correct i l l  our. frainework. Tliat is. c ~ c r y  l~istorj-  proclucecl 

bx a 2PL schedrtler (called a 2P1, 11istot.y) Is serializaljlc. To st2c !hi.;. let us stuciy the 

properties of' a 2PL history. 

Thc synchronization event sct . F', . of a transactio~i. 7;. s c l l t ~ l ~ l ~ c t l  1,:. a '3PL whed- 

ulcr rontains tlir follotr.ing four tj.pes of syncllronizatio~i ei-crits. whcrt  -1% is a data 

i tem 

rl,(n.)- the scheciuler sets a wad-lock on s on Lchalf of ?:; 

~ c I , ( . r ) -  the schetltilcr sets a !\-rite-lock on .r on hcl-raIf of 2:; 



ru ; (a ) -  the schedtiler relea.ses (i.e., unlocks) a read-lock on s on behalf 

of T;; 

umi(a)-  t,he scheduler releases a write-lock on s on beha.lf of Ti. 

Let o , ( a )  be a dm-operation of T, on data item a ,  where o stands for either r  or w. B y  

rule 1. T, must own a lock on 2. before it executes o,(n.), i.e., ol , jx)  < o , j z ) .  B y  rule 3, 

Ti cannot release the lock on nr before o , (a )  is processed. That  means o,(n.) < ou, (z ) .  

Formally we have 

Proposition 2.1 Let liT be n  2PL history. If o,(n.) is irz Commit (H) ,  then  o l , ( s )  and 

ou,(n.) n w  in C'nmrnitiff) a n d  c / l , i . ~ )  < o,( .r)  < ou,(n.) .  

Suppose there are two operation3. p,(s) of T, and cl,fz) of T J .  that conflict. Thus the 

locks that correspond to these operations also conflict. By rule 2; T, and T' cannot 

simultaneously own these locks. Therefow. the schecluler must release the lock corre- 

sponding to  one of the operations before it sets the locli for the other. 111 terms of the 

preccclence relation <, we Ila-1-e either p ~ , j ~ )  < q l J j x )  or rluJ(n.) < p l , ( z ) .  

Proposition 2.2 LC! Irl br n 2PL history. If p , ( . ~ )  and rl,(.z.) (i # j )  are conflic2ing 

operntions z r r  Cbmrntl(H), f h f n  rltlltr p , ( r )  < g l , ( s )  or CJIL~(.T) < p l , (a ) .  

Now let 11s look a t  rule 4. It is ecjt~ivalent to saying that every locking operation 

of a transaction must precede any adocking operation of that transaction. In terms 

of the precedenct relation. pl , (a)  < p , ( y )  for all operations p, and (I,. 

Proposition 2.3 Lef /I b t  n  SPL history. f i r  nny  pl,(a) and ( I U , ( I J )  of T,, pZ,(x) < 
qu, (y )  for ung dain ifcrrrs s and y .  

Now we shoiv that a 2PL history is serializable by showing that its serialization 

graph is acyclic. Recall that SG(H)  has only committed transactions as its nodes. 
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Lemma 2.1 Let H be n 2PL history,  and suppose Ti -+ Ti is in SG(H). T h e n ,  for  

s o m e  dain  item x and sonre co~zflicti-lrg operations p;(z) and q j ( a )  in H, p u i ( z )  < 
q l j ( x ) *  

Proof: Since Ti t Ti, there must exist conflicting operations p ; ( z )  and q j ( x )  such 

that p;(x) < q j ( x ) .  B y  Proposition 2.1% 

By Proposition 2.2. either pn,(.z) < ql , (x)  or qu , ( z )  < pl,(n.). In the latter case, by 

(1) and ( 2 )  and transitivity, we wouicl have FI,(.T) < p , ( s ) ,  which is ruled out. Thus, 

pz~,(rt.) < ql , ( r ) ,  as desirect. C 

Corollary 2.1 Lct H be a 2PL h:story,  and let TI -+ T2 -.t . . . -+ T, be a path in 

SG(M), where 12 > 1 .  Then, jor sornr clcita lterns s aird y, and some opemt ions  p l ( x )  

and q,(y) in II, P I I ~ ( S )  < ql, ,(y).  o 

Theorem 2.2 Euery  P L  /?is tory E l  is serinlisctbk. 

Proof: Suppose, by way of contracliction, that SG(E-I) contains a cycle TI -+ T2 -t 

. . . t T, -+ T I ,  where n > 1. By ("orollary '3. t, for some data items r and y ,  and 

some operations p l j r )  and q , ( y )  in Commit(H), p u l ( z )  < p l l ( g ) .  But this contradicts 

Proposition 2.3. Thus SG(H) has no cj-cles ancl so, by the Serializability Theorem, H 

is serializable. 

2PL has a well-known drawback of causing deadlocks. 14';. consider that a deadlock -7 

happens because a 2PL schc-cluler fails to  schedule concurrent operations geniusly. So, 

a 2PL scheduler needs strategies for detecting ancl rwolving cleadloclis. The overhead 

incurrecl in these tasks should be counted as the overheacl of 4PL method. It is worth 
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ment ion ing that,  when deadlocks happen, some t.ra,nsactions m u x t  be  a.borted. Thus 

rol lbacks ca,nnot b e  avoided if a 2PL scheduler is used. 

N o w  we present a dcmonstrative implementat ion o f  the 2P1, scheme, in order t o  

give t he  flavor o f  a lgor i thm descriptions in the subsequent chapters. 

Q When it receives a T(mt-IC7.)  request from transaction Ti:., the scheduler does the 

following: 

if n. is in 71's private work space %By Assumption 2.1, x was read or 

%written by T,. So .r is already 

%locked on behalf o f  T,. 

then read .I- from there 

else if s is write-locked by some other transaction 

then block 7; until the read-lock can be set on r 

set read-lock on a 

r h - ~ w i O ( . r )  

When it receives a \3i.itr(.r, ~~crr--irill~lct) request from transaction 1:, the scheduler 

does the following: 

if a is read- or write-locked by some other transaction 

then block Ti until the write-lock can be set or! n. 

set write-lock on .I. 

pl-ervl-it,e(rr, new-vahe)  

e When it receives an End command froin transaction T,, the scheduler does the 

following: 

release all the read-locks 
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use dm-writes to reflect Ti's updates to the database 

release all the write-locks 

commit 



Chapter 3 

Optimistic Scheme Revisited 

Among thc t hrre schemes of concurrcmcy cont ld ,  it appears that the optimistic scheme 

has been studied less estmsi\-ely than the ot,lm two. In this chapter we present 

systcniatic disc~~.;\ions on opt irnist ic concurrency control. Mrc st art with a cliscussion 

of the gcncral characteristics of optitnist ic scheme. Wc t l l c ~ ~  examine the read phase. 

,411 of the optimistic rnct hods to 1~ ciiscussed in this t liesis have many features in 

common in this phasc. Nest,  wc cliscuss thc valiclatiori-and-irlrite phase, and classify 

optimistic met hods. Finally, each class is st utlicd in detail. 

3.1 Principles and Classification 

I1 is clain-ictl in [22] that tlie 1ocliii;g schclnr has tllc Ihllotving i~ilierc~nt disadvantages: 

e Locli maintenance and deadlo~1i detectio~i incur a subst~alitial overhead, e.g., 

10% of the total exectitioil t ime ir; System R [17]. 

e There are no general piirpose clcacllock-frec locking niethods tha t  always psovicie 

a high degrec of coIlcurrclicy. 
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e Concurrency is significantly lowered whenever it is necessary to  leave some hot- 

spot data items loclicd while waiting for a secondary memory access. 

Because of the possibility of failurts, a strict two-phase locking protocol [7] has 

to be applied to  cns1a.e recoverability [7], that is, locks have to  be kept until the 

transaction commits. 

Locking itlay he necessary 01111. irt the word case. that is, i n  most cases locking 

is too strong a preventive mc.aswe. 

The optimistic conci~rre~icy control scheme is designed to get rid of the locking over- 

head. It is optimistic in the sensc that it explicitly assumes that conflicts among 

transactions are rare. Thus it relies for efficiency on the hope that conflicts will not 

occur frecluently. Since no blocking is possible, optimistic met hods are deacllock-free. 

Concurrency control is clc4erred ~tritil thc end of a transaction. when some checking 

for potctltial conflicts has to take place, If a conflict is detected, a ..pessirnisticn view 

is takcn: t hc coliflict is resolved by ahorting the transaction. Hence, this scheme relies 

on trarlsactiori roliback a.; a coutrol rt~ecl~anism. 

The esecrltio~i of' a transaction consists of 2 phases: a read phase anel a wlicfatim- 

anrl-write In its ~md p h n s t ,  a transactio~l reads data itenis, pcrforms required 

computation, and writes new values of data items into the pritatc work space by 

prewrite operations. tVllen i t  firiishes ail its actitrities and is ready to  commit, the 

transactioi~ issuc%s m i  End reclucst arid procceds to its ~jn l idnt ior t -nnr l -u~r i te phase. 

The schctluier checks wltcther or not the transaction was in conflict w i th  any of the 

transactions o p e r a t i ~ ~ g  coricul.rcntl~.. Sincc no locks a r t  hcld. the data itcm read by a 

transaction may h a w  been ~nodifiecl by concurrent transactions. If so, some conflict 

resolution policy has to be applied. If no conflict is clctected, the schcdulcr rcflects 

the transai.tion's modification in the da,tabase by exec::!.ing dm-svrite  pera at ions a,nd 

then commits the transaction. 

'In thc literature, valiciatio~l and t~rit,e are usually two separate phases. For the convenience of 
discussing combined algorithms, we merge these two phases irito one. In Chapter 4, the validation- 
and-write phase will be subdiviclecl into subphmes. 



3.1.1 Read Phase 

The part of an optimistic scheduler responsible for the read phase of a transaction 

consists of procedures i11~01ied up011 receipt of Begin, Read, and Mi.ite requests. The 

procedures for Read and Ilinife are the same for all the optimistic methods and are pre- 

sented here separately froln the proccdures for the other requests. The procedure for 

Begin varies frorn metliotl to nicthod ant1 is discussed together with the corresponding 

valiciatioli-arici-wi t c  pliav. 

To cIet,ect conflicts, an opt.i~riist.ic scllecluIer ~na.inta.ins two set.s: rend-set (RS; )  

and w r i t e - s e f  (1,1-,S;;) for each t.ransaction Ti. 1Jpon receipt of a R e d  or \(kite, the 

scheduler sea& as follons 

s When it receives a Rcad(a.) request f rom transaction 71, the  scheduler does the  

following: 

if n- is in 7;'s private work space 

then read .I. frorn there 

else dm-rea  d( . r )  

R.q, := R,q, u (.r j % See Remark 1. 

e When it receives a \\i.itr(n.. n ~ w - v a l u e )  request f r om transaction 71, t he  scheduler 

does the  following: 

Remark 1: 13y Assurnpt.ioli 2.1, s was prr:viorlsly rcad or writtcx by 7: i f  n. is in Ti's 

privat,e work spa.ce. If :r wa.s read, it is a.lrea.dy in ASi. If n: wa.s writt,en, this Rea.ci 

request will get the value writ,t.c~~ by 7; itself. 

A property of an optimistic schecluler that is worth rnrntioning here is that for 

every dm-operation there will bc an addition of the data itcrn to the corresponding 

read-set 01. write-set. 
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3 - 1 2  Validation-and-Write Phase: a Classification 

The  reacl phase of a transaction, as just cliscussed, is fairly unrestricted. A Read or 

1471-ite request is ilnrnectiately processed without any checking for conf icts or delaying. 

The  burden of ensuring serializability is left t o  the validation-and-wlrite phase. En- 

sliriiig scrializahilitj- in\wl~.cs two distinct tasks: d ~ t e c t i n g  conflicts that may possibly 

violate scrializal~ility, ancl resolving them if there are any. 

Now lct us exa.mine the first t,a.sli. i.e., clet,ecting  conflict,^. Suppose transaction Ti, 

with rea.cl-set RSi ancl writ,e-set T.i.'Si, is a t  the beginning of its valicla,tion-and-write 

pha,se. Let TJ be an a r l~ i t r a r>~  transaction t1la.t runs concurrently with Ti, and let 

RSj ,  IVSj 13e its reacl- and ~rr i t r -sets ,  respectively. A st,ra.ightforwa.rd way to  detect 

conflicts involiring Ti is to exam ice RS; n IVSj and IVS; i? (RSj U IVSj) for every 

such Tj. A non-empty intersection inctica.tes t h t  conflicts exist between Ti and Tj .  

I-lowever, not every confiict woultl result. in  the  violation of serializa,bility. In fact, i~ 

conflicts occur in a n  order consistent. wit,h the scriatizattion order, then no ha.rm is 

clone. In determining the serialization order, we take a.clvanta.ge of the  fact that  in 

ever): t,ransa.ct,ion all t,he dm-rcacls happen in its reacl pha.se a , ld  all dm-writes in its 

va,lidation-a.11~1-write phase. Consider the following scena.rio (Fig. 3.1): 

Tk t - - - - - - - - -  I 
BOT i EOT COT 

Fig. 3.1 
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07 In Fig. 3.1, T,, l , ,  and TA are transactions. and BOT, EOT COT are synchro- 

nization events. R O T  marks the beginning of a. transaction. It is also the beginning 

of the reacl phase of the transaction. EOT marks tllc enel of the reacl phase and 

the beginning of the valiclation-and-write phase. C O T   narks the completion of the 

transaction. T, rcpr~sents  any transaction whose validation-and- writc phase overlaps 

the read phase of T,, and Tk represcnts any transaction whose read phase overlaps 

the valiclation-and-tvrite phase of T,. Suppose T,, T,, and Tk will all commit eventu- 

ally. As the serialization order ( i f  any) we use the order in which they come across 

their EOTs. That  is, T, is orclerccl before T, whicli is ordcred before Tk. Imagine 

the moment when T, comes across its EOT and el~ters  its valiclation-and-~\rrite phase. 

Having aclopted the a,bo\ie older, \ye must rna,lie sure that there are  no confiicting 

operations pi E Oi a.r?c: clj E Oj s~ich  t.hat 12; < qj. For this purpose, we need only 

check for RSi n 1YSj = 4 a.nd I,Fr,Si n T!+" = $. We need not clwck RSj f l  lVSi = ci, 

l~eca,nse all the elm-rea,ds of Tj  precede all the dm-writes of T:, i.e., the  orcler of any 

conflicting opera.tions in RSj a.nd IYS; is consistent with the seria,liza.tion order of 

Ti and Tj. Simila.rly, we need to check IVS; n R,Sk = Q and W,S, n 1VSk = 4 with 

Tk ,  but not RS; n 1VSk = 4. Furtl~er,  since every trallsaction is chcclied for conflicts 

with the o t~ l~e r  concurrent transact,ions, dup1ica.ted cl-iccl;ing sho~licl he elimina.ted. Ti ,  

for esample. need only be checked for either RS; n IV,5j = 4 aancl IYS; f l  W S j  = #, 
or 1VS; n ASk = 4 and W$; n 1;IT,Ek = 4. The former, i.e., cl~eckiilg RS; I? W S ,  = # 
a.ncl l;I/'Si n WrSj = @. is callpel backward ch,eckin,g and the latter is called forward 

checking. The terms forwa.rd ancl hackward a.re from [%(I]. [Z], a.s well a.s other pa.pers 

[3, 23, 12, 131. cliscusses only haclward ~lieclii~lg. Checking ca.n be clone serially or in 

 pa.^-allel. Therefore. thcsc are four coml)ina.tions of chccliing st.sa.tcgics: srr.in1 fortuarclj 

. s e r i c ~ l  b(rc,kuwrd, p ( 1 1 ~ 1 1 l t  1  J b ~ ~ c i w ~ ~ l .  al~cl p r v l l r l  buc.l;.cr!o rd. l!3ac~k\sartl cl~ccliing with sc- 

rial ancl parallel valiclitt.ion will be clisc~issecl in Section 3.2. while forward checking 

will be  discussed in Sect.ion 3.:3. 

Once a conflict that may violate serializability is cliscovcrcd, resolution is straight- 

forward. Since the conflict has already liappeneci, tllcre exists no alternative hut 

to  rollback some i11vol\wl tral~sact~ions. 't'ltis topic will he tliscussecl in detail in the 
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follo\ving sc.ctioii<. 

3.2 Backward Checking 

Starting from this section, we will study optimistic algorithms one by one. Serial 

and parallel backward cl~ccking strategies will be examined in this section. Forward 

checking will be discussecl in the nest section. Finally, we compare these algorithms 

i n  the  last section of this chapter. 

3.2. I Serial Validat ion. 

As cliscussetl a b o ~ . ~ ,  tra~lsaction 'I) is c1iecl;cd for RS, n I f ' $  = p and IT',$, I7!Y,Sj = Q 

in 1;acl;wal.d cllcckinp, \vIi011 it c.t~tt~!s i t 5  \alitlation-antl-nl*itr phasr., n.l~c-IT T, is any 

t,ransaction whosc ~aliclation-arid-witc phase overlaps T,'s rcacl phase. hfeanwhile, 

another transaction ma\. entcr its \,aliilation-ancl-\\.rite p l ~ a w  ~vhile the \.alidation for 

T, is proceeding. \I;c call sintp!ifl\. the prohlcm by thc rule that there l x  a t  most 

onc transact ion Iwing \.alitlatcd a t  any t i m ~ .  A11 thc  validation-ancl-tvrite phases are 

t hcrcforc ewcti t td  srrially. IIt>ncc t Iic nanle serial validation. As a result, there is no 

nred to  cllecli 14'.S, n Ii7,5'2 = Q, I ~ ~ c a u w .  according to  this rulc, all the  ch-wr i tes  are 

performccl in an order consistent with the sc~kl iza t ion  order. 

We now formally tIescrilw conctlrrcncy control basccl on scrial validation and back- 

ward checking. I n  Algorithm 3.1 given hclotv, t n c  is I he transaction number counter 

maintained by t hc schcdulcr. comnlittcd trarlsaction It is incwnicmted just hcfore i t  is 

assigned as the transaction rlrirubcr to e rlcwly cornmittccl trc?nsaction. \tic use f n ( T , )  

t o  denote the transaction n u m t ~ r  of T,. Tile sclietlult~r uses tral~saction numbers to  

represenr, a. total order among t!le transactions i t  has scheclulccl. This ordcr is used 
r \  as the  serialization order. I ran,saction ~ ~ u t n b e r s  ar~cl I I L C  are also u s~c l  t o  icle~itify the 

transactio~ls that  should be ~heclicd in  \ralidating T,. Thc  transactions that  performed 
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dm-writes while 71 was in its read phase are orclered before T, in the total order, and 

so must be checked for codlicts with T,. These trarlsactions have the characteristic 

that  their transactioli numbers will be greater than or e q d  to the value of tnc when 

7: enters its read phase, hut less t h a ~  or equal to the value of tat when T, enters its 

valiclation-alid-write phase. As wc will see later, their COT? are between T,'s BUT 

and EUT. 

In this thcsis, we assume that imnediately after a transaction is aborted, the locks 

it holds, i f  any, will he rclcased and its read-/write-sets will be deletec'. If it is in a 

critical section for the transaction, the scheduler will exit from its critical section. 

And any step in the scheduling algorithm after the point, where the transaction is 

ahortcd will ]lot be esecutecl 113. thc scbedulcr. In othcr words, an abort operation 

rncans an exit from the algorithm. 

Algorithm 3.1: Serial Backward-Checking Optimistic Algorithm (SBO) 

When it receives a Begin request from transaction 71, the scheduler does the fol- 

lowing: 

stnist-fi/,:=lnc % s ta r f - t u ,  will be used to determine 

% those transactions involved in  2:'s validation. 

12s; := T.I,',j'; : = Q 

e When it receives an End request from transaction 71, the scheduler does the fol- 

lowing: 



tnc:=hc  + ! 
tn(T:):=tnc 

end critical section 

commit 

Remark: T, is a transaction that performs dm-write after T, started but before CT, 

entered its va.lidation-a.nd-write phase. 

Notv \vc w a n t  to  illoiv tha t  thc  algotit 111rt SBO is cor1w.f. i . c - . ,  it  proclucc~ only 

serializahle histories. 

The synchronization e v m t  set, S,, of a transaction if, scheduled by a n  optimistic 

schecluler contains R071, E O r f l ,  anci COT, that arc shown in Fig,. 3.1. One important 

feature of Sf30 is tha t ,  for ally two co~nmit ted  transactions TT, and T', either COT, < 
E O T j  or r O T j  < EOTt holcls. iVe associate BO7; wi th  "start -h , := tnc," EOT, with 

i . f i ~ ~ i ~ h - t ~ ~ , : = t ~ t c , "  imcl Cv07: with '.fn(T,):=tnc." For the partial orcfcr "<," of T,, we 

rccluire that 

DO71 <, r , ( . ~ )  <, EOl: <, w,(y j <$ COT,  (3.1) 

where x ancl y are anjr  d a t a  i tcnw wad and !n i t ten  1)y I:, respectively, and r , ( x )  and 

w i ( y )  arc the corresponding clnl-read and dm-write,  respectively. 

For a pair of comnlitted transactior~s, the order of their EOTs is consistent with 
i 3 tlie ordcr of thr~ir cordiicting operatio~is. 1 his is forntulatcd in the following lemma. . 

Leinma 3.1 L c t  W br a history produced by SBO, and  1c t  pl(s) and q,(.r) ( 1  # j )  be 

cor$ictirtg operafioits ir1 Cornrnit(Il). I fp,( .r)  < q,(,r.) fhrrz EOT,  < EOT, . 



Proof: Since p,(.r) < q , ( z ) ,  from relation (3.1), we h1.e BOT, < pL(r) < ([,(.I-) < 
COT,. Now we examine ear11 type of collflict. 

1 .  pt=rc. c i ~ = ? s ~ .  

Assume EOT, < E m .  Serial \.alidation implies COT, < EO7:. Also since 

DOT, < COT,. i t  follows frorri Proposition 3.1 that ,  during Tt7s  validation-and- 

write phase., Ti7,% n Ji,Y, = Q \voidci haye 13er11 chcckecl; i t  was not empty because 

x E RS', due to p , ( . ~ )  asid .r E ib7S, due to q, js). Therefore, T, v;oulcl have been 

abortcd, a contracliction to the assulription that  T, is cornm~tted.  Therefore. 

E071 < E07;, sirtw EO'f's a r t  totally ordcrcd 1 2 ~ ~  <. 

Proof: Imrncdiate from 1,cinlna . 3 . l ,  si l l c t x  EOrI's arc. tot ally ortlcrccl by transaction 

rluml>ers, and t he tot a1 orclcr can rcprescitt a serialization orcler. 17 

3.2.2 Parallel Validation 

Algorithm 3.2, Parallel Backward-Checking Optimistic Algorithm (PBO) 



e When it receives a Begin request from transaction Ti, the scheduler does the fol- 

towing: 

e When it receives an End request from transaction T:, the scheduler does the fol- 

lowing: 

begin criticai section 

fiiitlidi-tit, : = ( [ L C  

n1y-c0111rrriifrrlg.=corr1m1ff1ny 

corr~mrffrng:=coi~~rr~~ftiritlg u(-T,) % See Remark 1 

end critical section 

for 7; such that s /a i ' f -~II ,  $1 5 tn(T,) < Jinish-tn, do 

if TI-S, n I?,\', # o 

then comrnrt/ing:=ro~-irmifftng - ( T I )  

abort and exit 

for T, E ~n ~/-c.orr, rniti?r?q do 

if !I-.5'J fl (Jiaq1 Ll l\'.qL) + o 
then c . o i ~ ~ r n ~ t t i ~ t g . = c o r ~ ? ~ r / ~ f t r i ~ g  - {1 : )  

abori and exit 

for every .t. E \ITS, issue a d~r~- i t , r i te ( .~)  %Reflecting 

begin critical section 

if IT'S, # Q 

then tnc:=t~zc  + 1 

til(T,):=iuc % See Remark 2 

c.on~;~!t!~ng:=co!?z?r?!f!:!itli~- sf i r 1 
end critical section. 

commit 



Remark  I: c o m m ~ f f i n g  is t11c set of transac~ions which have already started their 

valiclat ioil-and-tsrite pliase hut   ha\^ not commit tecl yct. 

Remark 2: A transactior! gets a transaction n i~mber  only if i t  updates the database. 

-4s in SBO, .s't(il-f-fu, and Jiuisit-fn, are used to  detcrinille the transactions that 

were committed w11e1i 7: was in its read phase. That  is. those T,'s with BOT, < 
COT, < EOT,. n.ltich may conflict with 7:. Proposition 3.1 is also valid for PBO. 

This time. ~iijiike SBC, vaIitlatior~-ancl-isr1te phases are not protected by critical sec- 

tions. They Itlay iiln i n  parallel t o  c.ac11 other. IT,'s valiclation sho:~ld also check those 

transac.tions whir11 e11tc.r t 11ei1 valitlation-and-lvrite phases before Ti does and esecute 

their ~aliclation-atltl-~vrite phases concursently with x ' s .  111 other words, those T,'s 

such that  EOT, < i207' ,  < COTJ arc also checkcd in addition to  these clieclied by 

SBO. Notc that C'OT, and CVOTJ need not be orcicl.ecl re1ati1.e to each other. Those 

transactions a r t  idrntifiecl 1):. t 1 1 c k  w t  my-cornmitii~rg. Thc scheduler maintains a set, 

cornmltttlrg ivi~icli c o ~ i t a i ~ ~ s  all t h,, tran5actions that arc currently in their validation- 

and- ivri tr pl-tascs. RJ- ( q ) ~ . i r ~ g  cor~tuti f f  (rig set at the beginning of its validation-and- 
r - l .  ivrit e i ' h a ~  cindcr t l ~ e  protectio~i of critical scct,ion, I ,  s my-commitl ing set contains 

esactlj. all the transactions such that EOT, < EOT, < COT,. Furthermore, be- 

cause of co~icurre~t t  validat ion-arid-write phases, write-wrItt conflicts between T, and 

these 7;'s mnst also be chtckt.cl. Similar to Propositioii :3.1, we make the following 

ohserv a t '  lon. 

To shoir- the correctness of PBO,  we first prove a 1emr-m analogous to  Lemma 3.i. 

Lemma 3.2 Lei  H b p  a history produced b$ PBO, nun' i r i  p,(xj  crnd qJ(. t )  (i # j )  be 

con-7icting operations tn C'ontmit(1l). I J p , ( s )  < q,(n.) then  EOT, < EOT,. 



Proof: Since p,jx) < q,(n.), from relation (3.1), we have BOT; < p,( ,r)  < ~ ( x )  < 
COT,. Now we examine each type of conflict. 

1. P z = T , ,  q J = Z U J .  

Assume EOT, < EOT,. There are two cases: 1, COTr, < EOT,. and 2 ,  EOT; < 
COT,. We show that both cases lead to contradictions. In case 1, BOT, < 
COTJ < EOT,, by Proposition 3.1, in 71's validation-and-write phase, W S ,  (7 

RS, = d woulcl have been checked and i t  was not satisfied because n: E RS, clue 

to p , ( x )  and s E lV,S1 due to y,(a). Therefore. T, would have been aborted, a 

contracliction to the assumption that T,  is committed. 

In case 2, we hasp EOT' < EOT, < COT,. Proposition 3.2 applies. In TZ7s 

r.aliclation-ancl-ivrit~ phase. 1i7.5', n (RS ,  U If 'S,) = 0 would have heen checked 

and i t  was not ernpt~.. ltecau.;e r E R,C, t l t~e to p , ( ~ )  arid .T E i17,S due to 

q,(n.). Thcreforr. T, woulc~ ha1.p hem aborted, a coritractiction again. Therefore, 

EOT, < EOT,. since EOTs are totally ordered. 

2. p = L l ! i ,  qj=7j. 

Proved as i ~ t  the proof of 1,elxma 3.1 

:3. 12, = LL', , qJ = l l ']  . 
From relation (:3.1). xc  have ,507, < p,(.r) < qJ (s )  < COT,. .Assume EOT, < 
EOT,. Then. b ~ -  Proposition 3.2, in T,'s I-alidation-and-\t.~.ite phase, IffS:, fl 
( R S ,  U II'S,) = o wouIcl Iiave I x w t  checiicd arid i t  was not empty because 

.r E 11-S, due to p,(.r)  and .r E II'S, clue to q J ( . r ) .  Therefore, 7: ~vould have 

bee11 aborted, a contradiction to the assumption that T, is committed. Thus, 

EOTc < E'Ol; must tiolcl. since EOTs are totally ordrrcd. 0 

Proof: I~n~necliate from Imnnla 3.2, since EOT's are totallj- orrlerecl. 



3.2.3 Remarks 

Sl3O and PBO prc~entctl  a1,oi.e first appeard in [22] and were adopted in many 

subst.xluent papers. However. checking for Il'q n R.5': = Q in them i.; more restrictive 

ihan necessary. To il1:iitrate this, suppose that there are t ~ o  tra~isactions TI and 

T 2 .  TI writes .I- and T2 reacts n.. Fnrthcr. suppose TI enters its i.aliclation-arid-~vrite 

phase ar;d finallj~ commits when T2 is in its read phasc, i.c.. TI precedes T2 in the 

serialization order (Sct? Fig. 3.2). Consicltr the followilig t w o  rases: 

I .  TL reacts n- ( a t  pcjsitioll X in Fig. 3.2) I~ef'ore thc value of s written by TI is 

reflectttl to t hc  database. It iq a i.iolation of seria!izal,ility and T2 sshoulcf be 

ahort crl. 

ROT EOT COT 

T: 1 1 1  
w (x) 

BOT EOT COT 

T 2 1 n A I I 
V 

r(x) r(x) 
A R 

Fig. 3.2 Detecting conflicts 

Praclel, e t  al., suggestrcl a method to rclax the restrictioi-i [XI. In t h i r  suggestion, 

the read set of a transaction also contains EOrl"s of other transactions, and its elc- 

rnents are orclerccl into a tilt' sequence. \\#'hen a transadion, say Ti in Fig. 3.2, enters 
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its validation-and- rite phase. evcry other transaction currently in its read phase, say 

T2 in Fig. 3.2, rccorcts E07;  in its react set. IVl-ren T2 checks for conflicts with T I ,  

it need only checli the read operations in R.CI wllicl~ occur after E0G against 7;'s 

write set. 

It is worth mentioning that the forward checking prcsented below does not have 

the above restriction. 

3.3 Forward Checking 

3.3.1 Serial Validation 

In  bacl i~~arcl  checking, a t ransi\r.t io t~  i q  ctteclwd for conflicts with other transactions 

that have entcwtl their valitla! ion-anti-write phascs bcfore it cloes. As fro111 Theorems 

3.1 and 3.2, the\? t~.ansactio~is appcar I~cfore Y l  in serialization order. 111 forward 

c1ic~-king. a t ~ ~ a u x a c t i o ~ ~  i i  checlicd fcj~ c-oniiicts with ot 1-ic.r transac t io~is  that ~ 1 1 1  appear 

a1't(:1 i t  I I I  the ~ t w ~ l l i ~ a l i o i ~  oitit>l. .Is i i ~  Lack~\.atci cl;cc!;ilig. i v t  also use the logical 

timc at which transiictioi~s cn t t r  tlicir ~ralidatiori-and-\vi.itc phases t o  order the11-r. 
r l  tVe p r c s e ~ ~ t  a scria! fonvaid c l l t ~ - k i ~ ~ g  valiclatio~~ algorithm ht4ow. I hc algorithm is 

straightfi)ru.art! conlpartd to 3130 and PI3O. Tile scht~lulcr  maintailis a set Actiz~e to  

record the tratlsactio~is that are currc~itly i l l  their read phases. Since thc transaction 

(7:) in the. valiclai ion-and-writc phase is currently writing. i t  rnay h a l ~  write-read 

conflict with any of t l ~ e  transactions in Actr tit. Cinlikc the crit icd  section^ usrd i n  

hackward checking, tlic critiral scction usc~l  i l l  the algorithin helow is a system-wide 

critical section. T h e  purpose of using sucli a strong critical section is to  prevcnt 

the read set 01' anj7 othrr transaction from bcil~g ~ p d i i t t d  while the validation and 

reflecting of a transactioll is taking place. Later, wc wili discuss some merhocis t o  

relax this restrict ion. 

Algorithm 3.3, Serial Forward-Checking Optimistic Algorithm (SFO) 



e When it receives a Rcgin request from transaction Ti,  the scheduler does the fol- 

lowing: 

A c t i a t : = i l c f i ~ e  u(T,) 

RS, := 1'1'5', := o 

a When it receives an E~rd request from transaction Ti, the scheduler does the fol- 

lowing: 

begin (system-wide) critical section 

i l c t i ~ ~ ~ : = A c t i t ~ e -  {T , }  

co~?.flict:=false 

for every T, E Ai.l?llc. do 

if 1f7S,  f7 R.7, # then cor?flict:=true 

if con.flici then resolve the conflict by aborting either 'r, (and exit) 

or all such that I+'•̃, n BAS:, # 4.  
% The decision is made upon some cost criteria. 

for every n. E TI~S, issue a clwrvrite(x) %Reflecting 

end critical section 

commit. 

We a.ssocia,t.e B0T;  with '.,ilctPve:=Actit~e u(T;} ," EOT; with "ilct ie~e:=Act iue- {T i}  ," 
u d  C02~~wi~l i  t:lie e~lcl of t,lie crit.ica,l sect.ion. Tra.nsc?.ction Tj  with .BOTj < EOll and 

EOT; < EETj.if i t  has EOTj)  will bc in Active when transaction Ti is being vali- 

da.tsed7 a,nd for e x h  Tj E i l d i v e ,  SF0 checks W S i  n RSj = gi when va,lida,ting Ti. 

The  correctness proof for SF0  is similar t o  that, for SI30. 

Lemn-ia 3.3 Let H be n histor9 produced by SFO, and let y,(n.) a n d  q,(n.) (i # j )  be 

co~tflicting operations in Commit( I I ) .  I l p , ( s )  < q , ( m )  then EOT, < EOT, . 



Proof: We only show that,, i f  r;(x) < 2oj(z), then EOT; < EOTj. T h e  rest of the 

proof is sin-1i1a.r to  Lemn-la. 3.1. 

Since r , ( x )  < w , ( m ) ,  by relation (3.1). we have BOT, < 7.,(z) < w,(r) < COT,. 

Also, we have EOT, < rc:,(n.) < COT,. Since EOI', and COT, form the boundary 

of the critical section for 7;'s validation-and-write pltase, 7 - , ( x )  can only occur before 

EOT,, i.e., r , ( r )  < EOT,. So we have BOTz < r,jr) < EOT,. Assume EOT, < 
EOT,. Since BUT, < EOT, < EOT;, in T,'s validation-arid-~wite phase, S F 0  would 

llave checked M'S, n R.S, = @ and either 7: or T, would h a w  been aborted because 

s. E (1V,S; n RS,) ,  a contraciiction. So, EOT, < EOT,. 0 

Theorem 3.3 S F 0  produces only  s r r i c t l ~ ~ a b l r  h is tones .  

Proof: Inintediatc from Jmnma 3.13, sincc EOT's are totally ordered. 

3.3.2 Replacing System- Wide Critical Sections 

Imposing a system-wide critical section for a validation-anti-ivrite phase may not be 

acccl~table.  and shoulcl hc avoitlcd. Act~lally, the purpose of using system-wide critical 

section, instcad of a siniplc critical section, is to  prevellt the  situation where, after 

I4',5', n RSJ = 0 i~ chccli~d for some T, ,VI l ;  reads s da ta  i t a n  in Ii'S, before the 

new-value of the item is rr.ftected 011 behalf of T,. So. we can replace the system-wide 

critical section 1 1 ~ 7  a11 ordiriary critical section (as used in b a c l i ~ a ~ d  clwcking) with 

some additional facility. Tlic following are some alternatiws. 

1. .4fter cnsi~ring that Tl'.C, n R.C, = h is sati\fircl, Islock all the rttad requests from 

T, urtt,il tile validation-anc!-tvritc phase of Tz e d s .  

2. Lock all the da ta  i t tnls i n  !!.'St at the heginning of tlte validatinn-and-write 

phase of T, until thc valiclation-and-write phase ends. 

'\Ye assume this checking is e ~ e c u t ~ e d  atomically. 



3. From the l q i n n i n g  of the va!iclation-and-write phase of 'r,, collect all the items 

being read into a special read set RV in addition to  adding them into the corre- 

sponding rcatl wts.  .lf'tc~r 71's moclifica~iott is reflected, c h ~ ~ l i  R\; against IT-S,. 

If T, has contributed an item in Ij'S, n HV, then abort 7;.  

Alternatives 1 and 2 use locliing to  sol\-e the problem. However, the duration of 

locking is sliort ancl it, causes 110 d e a ~ l l o ~ l i  problem. Botll methods are  pessimistic, in 

expecting that conflict may happen during validation-and-write phase. Alternative 

3 is optimistic: '-1 clicl not mrct any problenl in my read phase, why should I worry 

about validat ion-and-write phase?" 

3,3.3 Parallel Validat ion 

I'ardlelizing forward checliing is \?try difficult, t.houg11 possible. This is easy to  see 

from the follo\ving cliscussion. 

111 parall(l.1 bncl,:uwrtl c1tecI;iiig. tile set, oi bhc transactions t,liat should be clteckecl 

is fixtd. Every tra.nsaction in\?ol\.ec-l in \didat ion has a t  least finished its read pha.se. 

Thus its r e a t k t  anel write-sct a.re idso fixed. Therefore, b;tcli\~a.rd cl~ccliing esamines 

"static" data.  In contra.st, t,lle r e d  sets and write sct,s involved in parallel ~ O ~ W C L I - d  

checking may be changing, escel~t, those of t l ~ c  transaction heing validated. Suppose 

we are valida,ting 'T;. Since all the other tra.nsaciions i~lvol\wtl in the va,liclation c o ~ d d  

still he  in their rea.cl pha,ses, their read-sets n-iigl~t still bc expafnclirig during the vdi- 

dation. Beca.use other transactlions may enter tllejr own va.litla.tio11-and-write phases 

during Ti's .idicla.tion, the set of tra.nsa.ct.ions whose writesets should he checked for 

va.licla.ting Ti is a.lso expanding. To make things worse, a new tra.nsa.ction ma.y staat 

a t  a.ny time during the Ti's \~alidat.iot-I-ancl-writ,e phase. One ca,n immediately see the 

difficulty of the validatiot;. 

One possible approacli to parallcl forward \.aIicIation is as follows. The  scheduier 

performs validat ion increment ally through scvcral roi~ntls of cllccliing. In the first. 
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round which starts right aftcr EOTt,  the  scheduler checks T,'s w r i t w e t  against the 

current read-set of every transaction which is in its read phase a t  the  moment when 

EOT, happens. hlleanwhile, the scheduler collects all the information concerning the 

read operat,ions that occur in the first round and all the transactions tha t  start  their 

validation-and-write phases a t  this time. If any conflict is cletected, either T, or all 

the transactions that conflict with T, are aborted. If T, susvivcs from this rouncl, it 

proceeds to  the second round. In the second round, the scheciulcr uses thc incremental 

information t o  valiciate T, while, a t  the same time, coliecting increments during this 

rouncl which will 1jc used in the tllircl round. This time, not only read-write conflicts 

hut also write-write conflicts are checked. Again, if T, surviws, it proceeds to the 

third round, and so on. In the last round, we have t o  protect tIlc whole round in a 

global critical section to  finish the valiclation. Reflecting Ti's modification to  database 

can be clone in tllc last sound or the. s e c o ~ ~ d  last rourlcl. Rut  once it is dorle, T, can 

not be aborted. 

Concusrency gai11c4 f'rom parallclisrn is reiatccl to the niiniher of rounds. However, 

on the assi~tnption that co~~f i ic t s  arc rare. t l m e  is probably no  need to 1ia1.e more than 

two rounds. When these is only orw round, it becomes serial validation. A scheduler 

basecl. on parallel forward validation could bc complcs. TIIP overhead of sunning it 

may offset the  benefit of parallclisrn. 'IYp will not cliscuss this class any further. 

3.4 Comparison 

In this section we compare the time algorithns prcscntcd in this chapter, i.e., SRO, 

PBO, and SFO. Our comparison focuscs on the differcnccs bctiveen backward checking 

and forward checking. Differences lwtwecn serial and parallel ~ i t l id i~ t ion  arc fairly easy 

t o  see. 

Difference I Forwarcl checking resolvcs conflicts more flexibly t Iran haclcward check- 

ing does. M'hcn a transaction, say T,, discovers conflicts, forward chec lhg  can 



abort either 71 or thc transactions which conflict with [I:, wliile backward check- 

ing has no choice but to abort 1:. This is because, in backward checking, all 

the transactions that are checked for conflicts wit11 T, either have already com- 

mitted or may have started dm-writing. Besides, the transactions aborted by 

forward cl~ecking are st i l l  in their reacl phase. Some may have just started their 

esecution. On the other hand, the transactions aborted by backward checking 

haxre already saccessfally finished thcir read phases. This implies tha t  the abor- 

tions in  forward chrcking are in genrral less espensive titan those in backward 

cht~cliing. 

Becarlse of this rliffcrcnce, baclcxrard ci-reciiing suifers from starvation problem 

but forward checking clocs ~ o t .  This is important for long transactions, for, in 

I~acliwalcl cllc>cliilig, a lolig transactio~l may oftell starve. 

Difference 2 F'ortvarct cllccliing needs less checks than 1~acl;ward checking. Forward 

checlii~ig ciiec1;s a writc-wt against a n ~ ~ n i b e r ,  saj- iVf, of read-sets, while back- 

warcl checking c11c.cks a rc~acl-.;c~t against a numhcr, say Nb, of write-sets. There 

arc t l irw points to I x  r~otccl 11c~c. I )  A tlansaction's write-set is often smaller 

than its read-set. Also, i t  is oftell that a transaction has an empty write-set, 

and therefore, docs riot have valic1atio11-ancl-ttrritc: phase in forward cliecting. 

Hotvevcr, it is seldom the case that a transaction has an empty read-set. 2) The  

read-set s clleclid in forward validation are partial, because the transactions they 

belong to are still in thcir read phasc. On the other hand, all the sets chcckcd in 

backward checking are cornplcte. They belong t o  some finislietl transactions. 3) 

iVj is limited. It  is the number of "active" t ransactioris in the systern a t  the mo- 

ment when the transaction in question entered its validation-and-write phase. 

It does not depend on the lengtli of the transaction. A\,, on the o t l m  hand, 

depends on the lcngth of the reacl phase of the transac%ion being validated. To 

make it clear, suppose the system can have a t  most 772 transactions executing 

simult,aneous!y, and suppose that  a transaction's reacl phase is n times longer 

than the average l i fe t ime of transactions. In fortvard checking, a t  most 772 - 1 

read-sets are c l~e~ l i ed ,  whilc in backward clleckillg, there may be (n + l)(nz - 1) 
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write-sets t.o be checlied. 

Difference 3 linlike lorwarcl checking, bac l i~a rd  checking has to store the write- 

sets of corrirnittcrl transactions as long as there is an uncommitted transaction 

which was started before they were committed. IVhen somc transactions are 

long, this requires significant amount of storage space. Ori the other hand, 

forivar.cl chec1;ing have to deal with the problem of dycamic read sets. 

Difference 4 Backward checking allows parallel validation, which is a very impor- 

tant aclsailtage tha t  forward cliecking does not have. Dm-writing to stable 

storage is soinetimes time-consuming. Parallelization of writes is important for 

performance. 



Chapter 4 

Combining Optimistic and 

Locking Schemes 

From this chapter on, we combine t l ~ c  loclcing and optimistic- sche~nes, taking advan- 

tage of both scllcmes. \Ye start with a cliscussior~, motivating adaptive concurrency 

control aljiorithins. \I1<% tlicn hricfly survey t hc existing cornl)ined algorithms. Unfor- 

tunately, about half of tl~est. algorit llms arc not aclaptise, and the rest of them are 

only adaptive to a very limitctl extent. Next, the motivation behind our approach is 

prwmted. 11ascd 011 1111. a~ial\.iii of plc\rio~~s algoiithni5. A11 ;tlgoritl~n~ is prcserited to 

illustrate our approach, followed hy a systematic procedure for cornhining locking and 

optimistic rncthocls. Then, wc clist-uss our algorithms in detail. Finally, we extend 

our approacl~ to rnultivcrsioli databases. 



4,I Introduction 

4.1.1 Motivation 

At system design time, a ConcurreIicy control algorithtn (typically a 2PL variant) is 

adopted. This design decision may be made 1:ased on some n prioi-i knowledge of 

the espectcd use of the systei-ir or simply because the algorithm may appear to  be 

the bcst. Due to the comp~icatcct strnc.turc of a database management system, it is 

unlikely that the original algorithm incorporated into the system will ever be changed, 

despite the fact that, t h e  system may be usccl uncler changing workload conditions. 

S tudies  has been done t o  comparc several different algoritlims in an attempt to  

reach sorne conclusion concerning their operatioml merits (e.g., ['I, 8, 11, 24, 2.51). 

Naturally, if a clear-cut conclusion could be drawn about one algorithm being the 

"best" under almost all conditions, tlle11 that algorithm should be employed by all 

clatalxtsr systems. I-Ionww.. as comnwctcd hy Agrawal. et al. [4]. the studies have 

tendcd to  Le contradictory, ra t l~er  than 1)cing ctefinitivc. A common cui-iclusion sug- 

gests khat, while locking r~onnally perforrlis well (especially wl~eti  confiict rates are 

meclin~n or high), an optimistic. ~nc thod  pcrforms better whcn conflict rates are low. 

Anyway, the past stuclics are by no Inearls the last worcis. since t he simulation studies 

were not performed u n d c ~  a sufficirntly wide variety of system workloads and pa- 

rameters. Also, clue i o  the cliangi~tg application areas (e.g., artificial intelligence) the 

usefulness of sorne charactt~rizations of workloads and paramt3ters ill these studies may 

be short-lived. 

It is our opiriion that the co~lcurrellcy control ~iiodule in a database management 

system slioulcl be a vcrsatilc p i t~ -e  of software that  has the ability to adapt itself to 

the changing system workload and envir~o~,ment. 



4.1.2 Hybrid Concurrency Control methods: A Survey 

Combining different concilrrc*ricj. control schemes in one clatalsasc management system 

has been investigated i n  16, 9. 10, 15, 16, 231. The motivation behind each such 

attempt is either ac1iiev;ng more C O I I C L I ~ ~ C I ~ C ~  or making the scheme more adaptive, 

i.e.. getting better performatice in different situations, or both. Interestingly, all the 

con~hinect schemes proposed so f;:r integrat e locking with one of the two other sclienies, 

i.e., time-stamp orderi11g or optimistic scllerncs. This is prolmbly because locking is 

easy to  understand anc! easy to i~nplemcrtt. 

In [6], Bernstein 3.1-icl C:ootlma.n suggest. a systematic: iva,y to conibine different 

concurrency control rnrt.11otls. Tlrey clccornpose the concurrency control problem il1t.o 

two subprohlen-1s: sync11ronizat.iorl oi' smd-write co~lflict~s and synchronizat,ion of write- 

write collfiic,ts. I3iffi:1~r-it rrtet.Ilods arc used to syl:chronize these two types of conflicts, 

and some t,echniquc~ is i.tsecl to integrat,e the two pasts. For example, they cliscuss 

an algori t ~ I I I  t l ~ i ~  t I I S ~ Y  ',PI, for rc~a~l-\~ril .e s~.liclirorriza t.im aucl T O  for ivrite-writ,e 

synclironiza.tion, as well as an algorithm tsha,t uses TO for reacl-write sync11roniza.tion 
i 1 and 2PL for write-write synchronization. 1 hey confine t,heir discussion on this issue to 

locking a.nd time-stamp orderi~ig scl-ienics. l ' l ~ c  a.lgorit1-lms they s ~ g g c s t  c m  probably 

enhance concurl~ericy to some clcgree, but are not adaptive. 

Farra,g and Ozsu 115, 161 suggest another way to comhine locking and time-stamp 

ordering schemes. Thcy use an integer I.,, called the strict.ness level. The set of 

tmnsact,ions is rliviclecl inta groups, each c~nt~aining a.t most I, tmnsactions. For the 

intra.-group conflicts (involvir~g tra.nsactions within the sa,me group), 2PI, is uscct. For 

the inter-group confiict,s (involving t,ransa.ctions from diffc.rent groups) TO is used. 

No cha.ra.ct.eristics other than the arriving time are talien into account in deciding the 

membership of a transa.ct3ion in a, group. A transa.ct,ion is sil.rtply put into the newest 

group. When the number of the tran~act~ions in this group rea.ches L, a new group is 

created t,o a.ccommodate r,ew transa.ctions. When I, is set to infinity, the scl~eduler is 

purely 2PL. When L is set to 1, i t  tjeaornes purely TO. it, is hard to see the advantages 

of this a8pproach, except that changing the value of L can offer some flexibility. 



Combining the locking ancl optimistic schemes was proposed by 1,ausen 123~. In 

his approach. a transactioii c a ~ i  execute in one of two modes: optimistic, where the 

optimistic concurrency conrrol principle applies, and locking, where the 2PL principle 

applies. An interesting app!ication of his approach is that one can start  a transactior, 

in an optimistic \ ' i e i ~  that it won't coriflict with other concurrent transactions. Ii'hen 

co~tflicts ac tua l l~  ucctlr ail(! i11c t l  a~~sact ior i  i \  almri ed. t 1 ic  \.iew turrls to  pessimistic. 

\Ti7hen the transaction is restarteri, it opcratcs in the locking mode. 

Another approach comhining the lorliing and optimistic schemes is suggested by 

Horai and Gold [9]. The) ~ l o p t  Bernqtrin and Chodman's idea of decomposing 

concurrency c-ont sol to read-write sy~;cllronizat i o~ i  ancl wri te-write synchronization. 

Howe\-er. they uw the wrializatio~l graph to  dciect collflicts. Their approach can cnly 

he uitrl in rcntralizrht! svstcrris. and the ovcrhead for detecting conflicts is likely t o  be 

high. 

Canning, Muthuvelraj. and Sieg [ lo]  extend Lausen's approach, trying to  design 

a more adaptive concurrency corltrol algorithm. They group transactions into clus- 

ters. The  transactions I~aving data  contention with cach other arc grouped into the 

same cluster. .A c l u s t c ~  coi~ltl 11;tx.c a status of 3ptinlistic, pessimistic. or something 

intermediate. Further, therc is a thresltolcl on the riuniht~r of traasactions in a clus- 

t ~ r .  \\711tbr~ tlit. 111111111('1 of I I ~ I I I \ < ~ (  t iotls 111 ~1 t I l i~ . t< '~  C S C C C C ~ ~  f l ip t l i ~ ( ~ l l o l d ,  the cluster 

change? to an i~~ tc rmed ia t c  status tending to pessimistic. \\'e think their approach is 

a poor extension of [23]. T?le ma i~~ tcnance  and rncrging of clnsters incurs significant 

cost rrlative to  a possiblc gain in concurrcnc~-. 

The  combinccl algorithms Y rveycct .lt,ove approach concurrency control from two 

different points of x.iew. 

I .  Deco~npose concurrency control into syncl~roriization of different tj-pes of con- 

flicts. As in [6. 91: conci1rrenc:- control is decon~posed to  read-write s j~~chron iza -  

tion arid write-write synchronization. One cc ncurrency control method is applied t o  

read-write synchronization and the other method to  write-write syncltronization. In 



115, 161, conflicts within a group are processed using one 1netho.rl and conflicts be- 

tween groups are handled using the other method. So within one transaction, tu7o 

methods work together to ensure serializability. Onlj' [9] is adaptive. It is sensitive 

to the classes of transactions. but not to tile change in the conflict rate. 

2. Allow trmsactions using different concurrency cont,rol methods t.o run together. 

As in [lo. 231, a transactjon may run in either optimistic or pessimistic mode. Only 

one method applies to a given tra.nsa.c.tion. Sorne mechanism is used t,o coordinate 

the tra.nsact,ions. These algo!.it3hms are sensitive to the chaage of conflict rates in 

the whole database to some extent. However, they do not take into a.ccount the 

dist.ribution (11' cor~flict rates o\.w i l ~ e  set of' t1at.a it,c~ns. A41so it is not sensitive to the 

classes of transa.ctions. 

4.2 Our Approach 

The two points of view suminasiecl a t  tlit end of the previous section focus on tram- 

actions, and do not take differences between data items into consideration. A unique 

concurrency control poiicy applies to all the clata items. We call them trawx~ction- 

oriented. However, conflicts occur on data. It is the contention on data that generates 

conflicts. .411d i t  is the access to data that determines the classes of transactions. 

Therefore, our approach focuses on properties of clat,a. To illustrate the significance 

of shifting our focus in concurrency control onto properties of data, let us consider 

the following scenario: 

Suppose that  a database consists of two disjoint sets of data items, say 

OPT and PES. Originally, the conflict rates on the data in O P T  are low, 

while the conflict rates on the data in PES are high. We define conflict rate 

an a data item as the number of harmfuf conflicts on the item in unit time, 

where a hnrmjirl cor?fiici is a conflict which may violate serializability. The 

precise definition of harrnfd con.flicf depends on the concurrency control 



algorithm used. It will receive more discussiori in Section 6.1.1. Suppose 

further that 2PL is used for concurrency control. A transaction, say T,, 

holds some write locks on some data items in OPT and now wants some 

more locks on data items in PES. The transaction may wait for a long 

time to get all these loclis. By the 2PL rule, it ivon't release any locks on 

O P T  items until and unless It gets all the locks (if  no transaction is rolled 

back due to cieacllock). Some other transactions ~vhich want to  access 

OPT items write-locked by T, have to wait until T, releases the locks on 

them. These transactions may also hold some locks on O P T  items, which 

in turn will bloclc some more transactions. Conse~~uently, the conflict rate 

on OPT items may get higher anci higher. We name this phenomenon 

conflici escalat7on. 

Conflict escalation occurs when conflict distribution is tmeven across the set of 

clat a i terns. tTneven conflict clir\tri bution is caused 1337 non-unifor in data accesses by 

transactions, which scem to be very common in practice. This is a fact overlooked by 

many performance studies on concurrency control. Also. it is easy to see that none 

of the "pure" (i.e., not combined) concurrency control methods works well under this 

circumstance. This also argues for adaptive algorithms. Back to the ctiscussion about 

the significance of a data-oriented approach. it is hard for the transaction-oriented ap- 

proaches to deal with uneven conflict distribution, because they cannot take conflict 

distribution into account. Semantics-based locking approaches [5, 29, 3-1, 3.51 could 

not consider this fact either, since their primary emphasis is on reducing conflict be- 

tween operations by giving more semantic information about the data objects and the 

operations on them. If we want to face the problem caused by an uneven distribution 

of conflicts. we have to make more effort on data grouping than they did. For exam- 

ple, if we did not let T, lock O P T  data items but somehow still elisused serializahility, 

we c o d d  avoid escalating conflict rates in OPT. 

XTe should emphasize here that, our approach is not merely for sols-ing the uneven 

clistribubion problem. It  is also an approach towards more adaptive concurrency 



control in general. We now eiaborate on this point in some detail. First, based on the 

following arguments, expect that OPT occupies a large portion of the database. 

Assuming that the granularity of data items chosen for concurrency control is not too 

big, say. a t  the record or page level, the number of the data items ill the database 

will he sufficientlv large. In  I h i 5  case, given a pcriod of time, i t  is 1iliel.v that only 

a very small portion of the databasc is subjected t o  frequent conflicts. Meanwhile, 

most of the data items have low conflict rates and many are even not accessed at all, 

F~rrther,  it may be usr~al that all the data items in the database have low conflict rates 

for some period of time. This is particularly likely in large databases. Even though 

many studies conclude that optimistic methods perform very well when conflict rates 

are low, one possible reason that they are not used wiclely in practice is that in many 

applications, where high conflicts do occur occasionally, optimistic methods perform 

poorly. M'itli the idea of adaptive concurrency control, we can use an optimistic 

method in OPT and a locking ri-tcthod in PES. IVe can expand OPT or even let it 

take over the entire database w11cn conflict rates are low for all da ta  items; when 

conflict rates become higher, we just ~111.i111i OPT, even until it disappears. 

In a particular application of a clatabase management system, one may be able 

to  predict an approximate conflict distribution or a t  least predict an approximate 

clistributio1-1 01 u p d a t e  operatio~ls for a certain pcriod of timc. For example, in a 

banking database system, a pessollal saving account may be updated at most once 

a day on average, but some internal variables, such as the total amount of money in 

a branch, will be frequently updated. In some databases, there could be some docu- 

mentary data, such as employees' names, which remain almost unchanged once they 

are stored. It is also possible that the changes in conflict distribution is predictable. 

For example, more conflicts could occur cluring the day  than s t  night; some data in 

a commercial database could have higher conflict rates a t  the end of a month than 

a t  other times. Most importantlj., prediction could often be based on the history of a 

system. Since the conflict rate on a specific data item probably does not change very 

fast, one may obtain a good approximation to the conflict rate on that  data item for 

a corning short period of time fron1 the most recent history. In summary, prediction 



of conflict dist,rihut,ion wit,h certa.in precision might be possible, and it is better than 

nothing for an aciaptive concurrency control algorithm. 

Now assume that a database is partitioned into O P T  and PES, where the conflict 

rates on the data items in O P T  (conflicts in OPT, for short) are low and the conflicts 

in PES are meclium or high. Our approach is to choose a concurrency control method 

best suited to the conflict rates for each part of the database, say, a.11 optimistic method 

for O P T  and a locking method for PES. When a transaction accesses a data item in 

a part. i t  obeys the concurrency control rules governing that part. The transaction, 

tllcrcforc, may hc rnanagcd by marc than one st~bscliccluler enforciug cliffescnt rules. 

If the subschedulers can coorclinate with each other to  ensure serializability with small 

ovcl.head, we can take advantage of various concurrency control methods. 

\Gth  changes in conflict rates, a partition (into OPT and PES) may become out- 

of-(late. Therrfore, we should h a ~ e  a mechanism to keep the partition up-to-date. Its 

functions were briefly intsoducecl in Chapter 1 and will be discussed in more detail 

in subsequent chapters. Now consider that concwrency control is characterized by 

the proportion of optimistic accesses over pessimistic accesses. When we change the 

membership of a data item from OPT to PES, or vice versa, we adjust the control 

a little bit. When the number of data items is large. such a change is so little from 

the global point of vim. that tlic cont,rol seems to be continuously tunable. This is a 

uniciue feature of our app~wacll. \b'e can cven imagine such a scenario as the following: 

At 8:00 AM,  a transaction has S'3% of its accesses controlled optimistically 

and 11% pessimisticall;.. At 2:OOPM, the same transaction may have 73% 

of its accesses controlled optimistically and 27% pessimistically. 

Tn the remainder of this cha.pter, we int,egra.te different subschedulers. 



4.3 A Combined Algorithm - An Example 

To flesh out our ideas about data-oriented approach to conctlrrency control in concrete 

zlgorithms, we show how to integrate parailel backward checking (PBO) witjh two- 

phase locking. We first present the algorithm, and then show that straightforward 

compositiorl can produce a corrcct algorithm. The proof will also give us hints on a 

systematic way to integrate optimistic mcthods with locking. 

4.3.1 The Algorithm 

As stated i11 the last section, we partition a database illto two parts, OPT and PES. 

It is assumed that conflicts clue to data items in OPT are infrequent and those due t o  

data items il l  I'ES arc1 not ~ I I ~ I Y Y I U C I I ~ .  \\'c also aiiumc th i~ t  thcre mists an efficient 

method for t l ~ b  schecluler to tldcrlnine i f  a data item is in OPT or PES. We leave 

suggestions for specific rnct hods to  a later cliaptcr. We use I4;t, (Mite-Locked items) 

to  denote the set of data item5 in PES written by 7:. 

The following is a riescription of our algorithm: 

Algor i thm 4.1: (PBQ + 2PL) 

When it receives a Begin request f rom transaction Ti, t he  scheduler does the  fol- 

lowing: 

start-trr, := f n c  

RS', := T1,',S, := IVL, := 4; 

When it receives a Rcarl(.r) request f rom transaction T,, the  scheduler does the  

following: 

cl~eck-mernbeifs) % determine which part o f  database n. belongs t o  



case R1: n. E PES  % Using locking in this case 

if r is in T,'s private work space 

then read .r from there 

else if a. is already write-locked by some other transaction, 

block T, until read-lock can be set on n: 

set read-lock on r 

dm-read(n.) 

case R2: x E OPT % Using optimistic control in this case 

if .;' is in T,'s private work space 

then read n. from there 

else dm-reacl(.r) 

ns, := RS, u 

When it receives a \lrritc(x, new-value) request from transaction Tf ; ,  the scheduler 

does the following: 

check-men~ber(.?.) 

case W1: n. E PE5' 

if .r is read- or write-locked by some other transaction, 

block T, until write-lock can be set on z. 

set write-lock on n. 

W L ,  := IJT~L, U (n.) 

prerrrite(a. n e w - d u e )  

case W2: a- E OPT 

1.1 ' S ,  : = i 4  'S' u {s ) 
prervri te(z, new- value) 

e When it receives an End request from transaction 7:, the scheduler does the fol- 

!owing: 

begin critical section 



finish-i~z; := tnc  

my-conr~n%ttl .~~g:=corn~v~~itti~~g 

committing:= ~on?~,rnit.iing u{Ti}  

end critical section 

release read-locks 

for all '1) such that start-tn; $1 < tn(Tj) < Jinisiz-in; do 

if IW,sj. n R,Ci # 4 
then corn~nitting:=comnziftl.~zg - (T, }  

abort 1(1 

for Ij. E my-co7rrrniti.lirly do 

if TVSj n (!LCi U T,l,rSi) # 4 
then cornmitti~tg:=committi~zg -{Ti} 

abort Ti 
for every x E (T/ij7L; U I,trSi) issue a dm-rrrrite(x) 

% Reflecting. (I+.'L; U l/trSi) contains 

% all the items updated by Ti. 
begin critical section 

if IVS; # @ 

then tnc:=inc + 1 

6 tn(TE):=tnc 

co~nmittirlg:--cornn~itting--{T,) 

end critical section. 

release write-locks 

commit 

One can see that the composition is quite straightforward. In face, it is almost just 

gluing two aigorithms together. For a Read or Write request, the o d y  aclditional step 

is checking (using cl~eck-member(x)) if n. is in OPT or PES when it, arrives. Then 

it  follows optaimistic or locking steps, depending on which part x belongs to. The 

procedure for End is similar to t h t  in PBO, except that %elease read-locks" and 



"release write-locks" are inserted at appropriate places. However, it is the positions 

of these steps that play a vital role in making Algorithm 4.1 correct. Unlike 1231, 

there is no checking for conflicts between an optimistic read and a pessimistic write 

and the like. The simplicity can be attributed to  the clear separation of O P T  and 

PES. 

Actually, we need not m e  prewrites for PES part. We can directly use dm-writes 

in PES, and therefore, do not need any private work space for PES. There arc several 

impacts of this improvement. First, the huflfering problem of optimistic scheme is 

eased. Second, the write sul~phase is co~lsiclerabiy shortened. Third, the negative 

effect is that recol-ery is nmre costly. Since a transaction may be aborted due to  

conflicts in OPT,  recovery prohlem could be serious. 

4.3.2 Correctness 

We can think of a. transa.rliou scl~ecluled by Algorithm 4.1 as consisting of two phases: 

a r e d  phase a.nd a va,liclat.ion-anci-writ,e phase, sepa,rated by an End request. Let 

BOT, EOT, a.ncl COT stand for the same points jriqxxtively) a.s t,hat in PBO in 

Chapter 3. The synchroniza.tion event set. of a tra.nsa.ction cont8a.ins these events and 

the locking and unlocking events. .As in Chapter 3, our correctness proof will show 

h t  if p;(n:) < q j ( x )  for m y  pair of conflicting opera.t,ions, p; (x )  and qi (x ) ,  then 

EOTi < EOTj holcls. Tliis constitut,es a, proof since EOT's axe totally ordered and 

their order can he considcrecl as thc serialization orclcr. \Ve show this filct first for 

any a in PES, and the11 for any n. in OPT. Sincc Algorithm 1.1 is a straightforward 

combination of 2PL and PRO, Il-re related proofs we used in Chapters 2 (and 3 carry 

over. 

rl7 1 
I ne following proposition lormulates the relation of EGT to lockitlg a n d  uniociiing 

operations. 
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Proposition 4.1 Let H be a 1zistor.y prod.uced by Algorithm 4.1. Let Ti be a tmns-  

action in W and o i ( z )  be a n  operation in Ti, wlzere s E PES. If both oZi(z) and 

O I L ;  ( z )  appear in  H, then. o l ; ( z )  < EOT, < ou; j ~ ) .  13 

We first deal with the case n: E PES. 

Lemma 4.1 Let fI be a history produced by  Algorith,.m 4.1, and let pi(n:) and q j ( x )  (i # 
j ,  n: EPE,~) be co.r7..flicting opercitions in Con~rnit("1~).  fj p i ( z )  < q j ( x )  then. EOT; < 
EOTj.  

Proof: From thc proof of TJcmnta 2.1, if p , ( . ~ )  < q2(n.) thert pu, jz) < ql,(x).  Therefore, 

by Propositiou 4.1, EOX < pu,(. t .)  < ql,(.r) < EOTj.  

Next, we considcr the case n. E OPT. In this case, Lern~na 3.2 is applicable. 

Lenima 4.2 Let N be ( I  history produced by Algorithm 4.1, nizd let p ; ( z )  and q j ( z )  (i f: 

j ,  x E OPT) be cos?,flicfiug ope~n f inus  in Cornmnd (H) .  I f  ppi(n:) < q j ( z )  then E071 < 
EOTj .  

From the above two lemmas, the corrcctness of Algori t h  4 . 1  follo~vs immediately. 

Tl~eoreni 4.1 Algorithm 4.1 procluc~.~ only scre'ai'iznble histories. U 

4.4 Systematic Procedure 

In all ehr algorithms sw l~itvr-' pse~el-!ted in Chapters 3 and /I so far, the key to ensuring 

se~ialimbili ty is to arritnge conflicting operations in consistence with the total order 

defined by the EOTs. %lr 13ow consicler a more general problem. Suppose a database 

is partitioned as bpforc. 111 accessing OPT, an optitnistic metliod is used, while in 



accessing PES, 2PL is used. iVe call a scheduler with this characteristic an O + P  

scheduler. The problem is how to  combine the two methods so that serializability is 

guaranteed. To attack this problem, we consider that on each part of the database 

there is a subscheduler performing concurrency control. For example, in Algorithm 

4.1, we consider PBO as the optimistic subscheduler and Strict 2PL as the locking 

subscheduler. We first investigate the properties of each kind of subscheduler. 

4.4.1 Confining Sections 

As was discussed in Chapter 3, an optimistic scheduler uses the time order of EOTs 

as the serialization order. From now on, the term "optimistic scheduler" refers to  a 

scheduler using SBO, PBO, or SFO. In all of these algorithms, when a transactior,, say 

T,, enters its validatioti-and-write phase, i t  first enters a subphase in which the set of 

transactions involved in the valictation is determined. In SRO, this subphase involves 

only one operation "finish-tn, :=lnu," which assigns the value of tnc at EOT, to  finish- 

tn,, In PBO, tizc is recorded and committing is recorclecl and updated in the subphase. 

In SFO, the subphase consists of "~ict ie~e:=Actiz~e-{T1),"  which defines the set of 

transactions that are in their read phases a t  EO?',. We call this subphase confining 

section (CS). The beginning of the CS for transaction T, is marked by EOT,. FVe 

use E C S  to mark tlle end of CS,. Since some globaI information is updated in CS's, 

CS's sho~ilcl be executed mutually exclusively. We extend the use of partial order 

"<" to the confining sections. C'S, < C'iS', means that the entire confining section 

of T, precedes the confining section of T,, in other words ECS, < EOT,. Here we 

consider ECS, as a syi~chronizat~ion event. Let Sl and '$2 be sections (i.e., intervals) 

such as confining sections and locked sections to be introduced later. Let B1,  B2, 
and El ,  E2 be the beginnings arid ends of S1 and S2, respectively. We say S1 and S2 
overlap if B1 < E2 and B2 < El (see Fig. 4.1) .  Our optimistic schedulers ensure that 

P 

no two confining sections overlap, i.e., 



Proposition 4.2 Optimistic schedulers SBO, PBO, and S F 0  en.jorce, either CS; < 
CISj. or C,C,. < CSj, fur any tran.snckions 7: and Tj  ( I :  # j )  thnt have confining sec- 

tions. 

Fig. 4.1 Overlapping 

Since a n  EOT st nri t ls  for t h t .  bcy$r~nilig of a CS wltich is ~nutual ly esclusive with 

other CS's, one can suhstitiite C'S for EOT in Lcmrnas 3.1, 3.2 and 3.3 without 

affecting their corrcctnc~ss. We call thus rephrasr: thc  lemmas as follows. 

Lemma 4.3 Let H be n h i s f o ~ y  produced b y  an optimistic scheclwlcr, an,d let p i (x)  and 

%jz) ( i  # 3) Oe coqf l ic i i~~g opercifiorls in Commit(f1).  I f ' p ; ( z )  < cjj(n:)  then CS; < 
cyj.  0 

Therefore, the orcler of CSs is consistent with the seri;dization orcler generated by 

optimisttic scheil~iler SRO, PI30 or SFO. 

4.4.2 Locked Sections 

The  loclied point (TAP) and  unlocki~lg  poinr (UP) wrrc clcfiriecl in Section 2.3. They 

are synchronization events delimit,ing the locked secfion (dcnoied as L S ) .  Similar to 

confining sections, we extend < to the set of locked sectior~s and write L,S, < LSj to 

mean lip, < LP,. Now we examine properties 1 0 ~ l i ~ c l  sections have. 

For a transaction Ti, by clefinition, we have p l t ( r )  < LP,, for any locliil~g event 
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pl,fx). Similarly, UP, < p , ( . r )  holds, for any unlocking events pu,(x)'. We formally 

state the above ciiscussioil i l l  the following propositiorz. 

Proposition 4.3 Let H be a  history produced by  a 2PL scheduler, and let pi(x) be a n  

operation in Com.m,it('H). Then p1;fx) < LP; < UPi < pui(x).  

Lemma 2.1 says that i f  p , j s )  conflicts with and precedes q , ( . ~ ) ,  then pu,jx) s 
ql,(x). By the above proposition, this implics LTPi < LP,. In terms of ' l 0 ~ 1 i d  sections, 

we thus have LS, < LS,.  IVc fornl~llate this as follows. 

We refer to confining sections and loc1;ed sections as synclz~onizing sections. 

4.4.3 Integration 

When two subsclieclttlcrs are integrated into one, a transaction accessing both pasts 

of a databasc will experience two diRcrcnt kinds of concurrency control, and, conse- 

quently, will have both a confilling section and a l 0 ~ 1 i ~ d  section. 

For an optimistic su l~sc l~edu lc~  and a pessimistic subscheduler to cooperate, they 

should interact in some way. As we could see horn discussions giver, s~ far in tjhis 

chapter, optirriistic a~icl locking nietliocls sliarc some importa,nt properties. They both 

'Strictly speaking, onc sllo~tld use 5 instead of < in above relations. However, this implies 
inttoclucing a new partial order. Therc~fore, we iritcrprct "at wh~cli" 111 thc clefirlitioiis of LP and UP 
as "right after" and "right before," respectively, in order to use < for 1,P's and UP'S, instead of <. 



arrange transactions according to co~dlicts. (Time-stamp ordering, in contrast, ar- 

ranges transactions according to the transactions' arriving times.) They both have 

synchronizing sections whose order is consistent with a serialization order. To in- 

tegrate them, wc need anijr to cnstire that the serialization orders generated by the 

optimistic and locking subschedulers are consistent with each other. In other words, 

we should p r e ~ m t  t lie situation where one transaction. saJr T,. is ordered before an- 

other transaction, say 'r,, by one subscheduler, but they are ordered in the reverse 

order by the other subschecluler. That  is to say, we should prevent situations such 

as "CS, < CS, and I,SJ < LS," from happening. If we "stick" the confining sec- 

tion and locked section of a transaction together, then such a situation will not arise. 

Therefore, we adti a restriction on the 0 + P  class t o  form a subclass of 0+P. 

Let S Le an O+P scheduics. If S ensures hi,, for every transaction, its 

confining scction and lockecl section ( i f  both exist) overlap, then S is ca.lled 

an O+PO scheduler, wliere "o" stands for overlap. 

\Vc now esamine propertics rclatetl to t,hc confining scctions and locked scctions in a 

history p r o t i ~ m d  by an O+P0 scl~rclulcr. 

PrsoE Only if part: Beca,~ise LSi and CSi overhp, E071 < UP;. Similarly, because 

L,Sj a.nd CS.j overlap, LPj < ECySj. If LS; < LSj, then EOT; < UP; < LPj  < ECSj. 

This implies t h t  C,S; P Cf7Si. By Proposition 4.2, CSi a.nd CLSj do not overla.p, so 

c: s; < c $5, . 

i f  pa,ri: If CS;  < C'S;. then isj # L,C; f o i i o ~ ~ s  imniediately by exchanging 1he 

roles of confining sections a.ild locliecl sections in the proof of the "Only if" part. 

By Corollary 4.1, i f  7'; and IT) conflict on a. PES item, L,S; a.nd LSj do not overlap. 

Therefore, L,Sj + LSi implies LS; < LSj. n 



The property presented above shows the effect of overlapping the confining and 

locked sections of a transaction. In 2PL, the serialization order was defined based on 

the locked points of the transactions. and in an optim:stic scheme the serialization 

order is defined based on ZOT's. Here, we shall introduce a reference point in each 

transaction on which the serialization order for t h e  O+Po scheduler is based. The 

sequencing point ( S P 2 )  of the transaction T, coincjclcs with EOT, or LP,, if T, has 

either CS,  or LS, !,ut not both. If 'T, has both CS, and LS,.  then SP, is defined to 

be the later of EOT, and LP, .  (See Fig. 4.2.) In other words, in the latter case, 

,SP, is the cjtartiug point of {,he ovtrlap hetween CS, and LA$. The following lemma 

shows the irnportal~ce of secluencing points. 

LPI EOTI UP I ECS 1 + 
SPi 

CS 2 

I 
.I LS2 

T 2  
1 

EOT: EP2 ECSz UP 2 

1 
SP2 

Fig. 4.2 Sequencing Points 

Lemma 4.5 Let N be a history produced b y  n n  O+LP' scheduler2 and let  Ti and 
' ,  ,',-TI Tj have two contl'7icting opc.mf.ion.s. pi jx) n n d  cij(;r) in C'ornsnxjn;, .such that p;(rc) < 

qj (rc ) .  Then v:e h a w  5P; < SP,. 

Proof: Since Ti and T, have conflicting operations. either t h q  both have confining 



sections, or the!- bot,h have loclied sect,ioi~s, or boih. Therefore: from Lemmas 4.3 

and 4.4, CS; < C S j  or LS; < LSj holds. If CSi < CATj7 then ECSi < EOTj. 

Since CSi a.nd LSi over!iq, we hare LP; < ECS; a,nd EOT; < ECS;. Therefore 

SP; < ECS; holcts. Because SPj is t.he h t e r  of LPj and EOTj, ECS; < SPj foflows 

from ECS; < EOTj. So we lmve .SPi < ECS; < SPj. 

Simila.rly, when LS; < LSjl we can show t h a t  ,?Pi < Sf',. [7 

We can now st,a.te the following t.heorern. 

Theorem 4.2 .4 n O t P  scheduler. produces o ~ d y  scrinliznble lristo~ies,  

Proor": A history I3 is, in general, a partial order on t h e  set of operations and syn- 

cl~ronizatioi~ e\.ei~ts. Let cr(Ii) be a (totally ordered) secpence of operations and syn- 

chronization events comj->atihle with this partial orcler. Clearly, all SP7s are totally 

ordercct i n  o ( N ) .  f'onsitlei th is  total o d c r  as the serialization order. The theorem 

now follows from Lemma 4.5. 0 

4.4.4 Necessity for LS-CS Overlap 

Xow we show that if the  confining seclion ancl loclied section of a transaction are 

separated, an OSP scheclulcr may not guarantee scrializahility. 

Theorem 4.3 Giwn an O+P schtdiiftr S,  therc misf a trrinst~ction set T,  such that, 

for any trunsciction T, E T, if S d l o ~ i * ~  T, 's lockd  section and  conjning section not 

to or-erlnp. fhen if mcly produce n non-scrinll,-uble history. 

Proof: Let T = (TI, Ti) he a tra~isaction set, where 

TI: T ,  ( T ) .  (y) .  and 

T2: r z ( g ) ,  zuz(x). 

for some s E PES and y E OPT. 



Assume that S allows LSI and CS1 not to overlap. It  is possible that  LSI < CS1. 

If LSl < CSI, S may produce a history in which LSl < LS2 and CS2 < CSl. This 

history contains rl (x) < .ro2(n.) a.nd r 2 ( y  j < U ) ~ ( I J ) .  Therefore, i t  is not serializable. 

Now assume that S allows LS2 and C,S2 not to overlap. Therefore, CS2  < LSz is 

possible. Sir:lilarlj-. S ma\ producc a non-sciinlizable histoq, containing r 2 j Y )  < q ( y )  

and r I ( x )  < w2jx) .  

4.4.5 Restricting Overlappings 

EOT EOT 

a) LS is contained in CS b) CS is contained in LS 

EOT EOT 

C )  LS starts before CS d) CS starts before LS 

Fig. 4.3 Overlappings of CS and LS 

In  the ~ O Y P  dis~i:ssiom. the way in ~ h i c h  the lstked section (LS) and the confining . 
section (C'S) o ~ e r l a p  was noi restricted. So there are four possible ways they can 

overlap (Fig. 4.3): ( a )  the entire LS is contained in the CS. (b )  the  entire CS is 



CHAPTER 4. COYfiln'lArG OPTIMISTIC AND LOCKING SCHEMES 61 

co~tainecl in the LS, ( c )  t,he LS starts before the CS, a.nd (d) the CS starts before the 

LS. In a centra.lized da.tabase system, the scheduler cannot receive the End request 

of a trmsaction until and unless it has received a.11 the  read and write requests of the 

tra.nsa.ction. Tha.t is, t,he va,lida.t,ion of a transaction should be after any prewrite of 

the tra.nsaction. ,41so, a.ccording to  our model, all write requests of ? transaction are 

first execT .ed  via prewrite opera.tions t.o the transa,ction's private ~orlispa.ce, then, 

only a.fic; the sclicduler receives a.n End comrna,nd, arc thp writes reflected to the 

dartabase (I;, dm-writes). Further, since the CS of a t,ransaction should be executed 

1nutua.ily esclusl .-el17 and i s  often irnplcmented a.s crit,ical section, wa.iting for a lock 

inside t,he CS ma?- ca.silj. ~.rsult in a deadl~cli,  especiallj- in serial va.lida,tion. Therefore, 

we further restrict the way the two sections can over1a.p. Prxtically, overlappings (b) 

a.nd (c) are more meaningful. 1Vha.t clistinguishes (b )  a.nd (c) from (a) a,nd (d) is 

that. EOT takes p1a.c~ in the l o c k 4  section. So, thereafter, we will concentrate on 

the development of comhinecl sc!~edulers with this cha.ra.cteristic, and ca.11 them O+Pr 

schedulers, where "r" stancis for restricted. 

4.5 Some Combined Algorithms 

In this section, we present some combined algorithms. They are all in the class O+PT. 

4.5.1 Serial Forward Checking + 2PL 

We present a composition of SF0 and 2PL. The procedures for Read and M i t e  

requests are the same as those in Algorithm 4.1. We i,lierefore present only the 

procedures for Begin and End requcsts. 

Algorithm 4.2: (SF0 + 2PL) 
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e When it receives a Begin request from transaction Ti, the scheduler does the fol- 

lowing: 

Active :=Active u(Ti )  % should be executed atomically. 

RSi := kVS, := i l rL i  := d 

e When it receives an End request from transaction Ti, the scheduler does the fo!- 

lowing: 

C1  begin (system-wide) critical section 

Actlz*e:=Actit~e-{Ti) 

co71flict:=false 

for every T, E Acfirit. do 

if WS, n R q  # 05 then co~zflfct:=true 

if coilff7ct then resolve the conflict by aborting either 7; 

or all T,'s such that M'S, f~ RS, # q. 

The decision is made upon some cost criteria. 

for every ns E TI-S, issue a dm-write(nt) % Reflecting 

end critical section 

C2 release read-locks 

C3 for every rc E : i 7 L ,  issue a dm-write(.z.) 

C4 release write-locks 

C5 commit 

The correctness of the algoritlim follows from the correctness of SFO, Strict 2PL, 

and 0+P7 class. There are a few things worth mentioning here. First, the critical sec- 

tion used here is a tool for achie\.ing mutual esclusioii fo: S F 0  activities. Therefore, 

u7e need not stop 2PL activities in the critical section. 2PL activities can take place 

in parallel with the critical section. Specifically, we may release read-locks held by a 

transaction a t  the beginning of the critical section before the valiciation of the trans- 

action, so that the unlocked data items are available for other transactions sooner. 
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However, we should point out that,  in practice, achieving mutual exclusion on all data 

items is much easier than achieving mutual exclusion on OPT only, especially when 

the border between O P T  and PES is dynamically changeable. 

Second, a.s st,ated in Difference 1 in Sect,ion 3.4, forimrcl checking resolves conflicts 

more flesibly t h m  ba.ckwa.rc1 checking. This has a.n added significance in combined 

schedulers. Consider long transactions. The longer a t.ra*nsaction, the greater is the 

cha.nce it conflicts with other transa,ctions in OPT, and the higher is the cost t o  abort 

i t .  A long transact,ion a.ccessing both O P T  and PES may be further delayed due to  

its wa.itjng for ioclis. Therefore, the cost, of abortion in  ba.ckwa.rd checking is even 

higher, especia.lly beca,use, when a tra,nsa,c.tion is to be aborted, it has got all its locks. 

In forward checking, however, we can choose not to  abort the tra.nsa.ction undergoing 

validation, instea.cl, we can abort the t,ra.nsactions that, conflict with it. It is interesting 

t11a.t this is a.chieued in the \ra.Iictation-ancl-write phase of the  tra,nsaction. So, we need 

not even h o w  tha.t the transactioi~ is a. long one when it arrives a t  the system. 

4.5.2 Serial Forward Checking + Deferred Writ e-Locking 

As stated in Section 2.1, a write operation of a transaction only writes a new value 

in the  tra.nsa.ctionis priva.te worli space by a prewrite operation. The new value is 

not refleded to the c1a.taba.se a.nd is not visible to the other transactions until a.nc1 

unless the transactlion passes its d i d a t i o n .  Therefore, a tra.nsa.ction is two-phased no 

matter  whether it is scheduled by a. 2PL, an optimi~t~ic,  or an 03-P scheduler. To be 

consistent with the optimistic scheme, we use the terms read plzr~se a,nd vrtlidntion-and- 

write phase to  name t,he corresponding pha.ses. In Algorithms 4.1 and 4.2, write-locks 

a,re set too early. Concurrency may be increased if we postpone setting write-locks as 

much a.s possible. Actually, we need not set write-loclis in the read phase. We can do 

so in the :rallda,tion-ancl-itrrite phase. We present a cornbiiled scheduier with deferred 

write-locking below. In Chapter 8, we will combine deferred write-locking with PBO. 

Algorithm 4.3: SF0 + Deferred Write-Locking 
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a When it receives a Begin request from transaction Ti, the scheduler does the fol- 

lowing: 

e When it receives a Read(x) request from transaction Ti, the scheduler does the 

following: 

chcck-mernbcr(x) % determine which part o f  database n: belongs t o  

case R1: z E PES 

if z is in T,'s private work space 

then read .r f rom there 

else if z is already write-locked, block Ti 

unti l  read-lock can tie set on ;c 

set read-lock on n. 

dm-rea.d(n:) 

case R2: .T E OPT 

if :z. is in Ti's private work space 

then read x f rom there 

else dm-rea.cl(:~:) 

RSi := RS; U ( n : )  

e When it receives a flTrite(.r., tlew-value) request from transaction Ti, the scheduler 

does the following: 

check-member(z) 

case \N1: s E P E S  

IVLi := W L ;  U { : r )  

prewri t e(x , new- d u e )  

case W2:  n: E OPT 
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e When it receives an End request from transaction Ti, the scheduler does the fol- 

lowing: 

parallel-for .r E I(TrL, do % See Remark 

if I is locked then wait until write-lock can be set on n: 

end parallel-for 

begin (system-wide) critical section %Start validation. 

Actioc:=.4ct?'~~e-{T,) % EOT, is here. 

co~?$ict:=false 

for every T, E rlciiz7e do 

if IT'S, n H31, # q~ then colzufl~ct:=true 

if c o r ~ f i ~ c i  then resolve the conflict by aborting 

either T, or all T' such that  

TI'S, n RS, # 4. The decision is made upon 

some cost criteria. 

for every n. E ii7,5', issue a dm-wrjtej.-r) % Start reflecting 

end critical section 

release read-locks 

for every n. 2. E4-L, issue a dm-wsite(n.) 

release write-locks 

commit. 

Remark: Parallel-for can be thought of as a process for ea.ch z. These processes run 

concurrently. 

First we show tha t  the algorithm is correct. Tti7e need only to show that deferred 

write-locking is a two-phase locking algorithm. This can be done easily by verifying 

that  deferred write-locking satisfies the four lock ownership rules in Section 2.3 
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Write-locks are acquired in the la.st possible moment. They could he acquired in 

the critical section. But, this ma.y ca,use a, transa.ction to  wait for a lock forever in the 

critical section, resulting in a. deacllock, One can immeciiately see two improvements 

over Algorithm -2.2: 

1. The duration that a write-lorli is hcld by a transaction is liliely to  be shortened. 

2. By collecting all the write-lock recpwsts together and executing them in parallel, 

the time a transaction spends waiting for write-loclis may also he shortened. 

Since the duration that a write-lock is held is liliely to he shorter, the possibility and 

time a read or write operation is blocked may also be decreased and shortened, rcspec- 

tively. Conseclucntlj., tlic duration of a t ran~act~ion may be shortened and concurrency 

may be increased. 

We think that deferred write-locking combines nicely with optimistic methods. 

Mk can see this from the view point of version control. A prewritejz) will generate 

a version of s. This version is not visible to the other transactions (other 'han its 

creatos) until and unle.is a cor~c~sponding dm-rrriiicjsj reflccts it to tile database. M'e 

call this version an ~ ~ n c o r n m i t t ~ d  wi-sion of .r when it is created. When the version 

is reflected to  the database, we call it tlie committfd version of x. In our model, 

there is only one committed version for each data item ai any time, no matter what 

concurrency control method is used. (This is not the case for a mulit-version database 

discussed in Sec. 4.6.) 111 an optimistic method, there could he several uncommitted 

versions of a data item, say m ,  at a given time. Different transactions may read 

different unconlmittcd versions (created by themselves) at   lie same time. 1x1 the 

2PL algorithms discussecl in previous chapters and sections, there was a t  most one 

uncolnmitted version of n. at  a t ~ y  time, because a transaction must hold a write-lock 

before executing a prewrite, and lieep the lock until the version it created was reflected 

to  the database. Bcsicles. only one version, either committed or unconlmitted, was 

readable a t  any time. This is a kind of mismatch. In the deferred write-locking, 

however, the situation is the same as in an optirnistic method. There are multiple 



uncornmitkd versions of a da.ta ittern, ea.ch visible only t*o its crea.t,or. It seems more 

nat,ura.l to use such locking t-o combine with opt,imistic a,lgosithms. 

One shortcoming of clefcssecl write-locking is that it may cause more deadlocks than 

than the  stanclard 2PL, and the clamage of a deacllocli- cat~sed by it may be more severe 

than that in the standard 2PL. For example, suppose that two transactions T, and 

T, both first read and then write a  data item n: (n. E PES). Let r t q - p , ( r )  ( ~ q - ~ , ( z ) )  

denote the time when the sc.heduler receives the request p,(n.) (cl,(s)), and Ict Encl, 

(E12~1~)  dcnot(~ t l ~ e  tinw tllc sc litdulw ~eceives E i ~ d  f1o111 T, (T'). Collbidcl the  dead- 

lock caused only bjr locking a i'os rT, auci T'. The condition for such a deacllock in the 

standard 2PL is wq-r , (n . )  < rrq-w,(a)  A ~ e q - r , ( x )  < req-~o,(n.) ,  while the deadlock 

condition in cleferreel write-locking is req-r,(n.) < E n d j  A rcq-r,(n.) < End,. Ap- 

parently, the latter is much ntorc easily satisfied t h a n  the former. Further, such a 

deacllocli can be detected in stanciarcl 2PL at the last of ?.eq-iil,(n.) and r q - e o j ( x ) ,  but 

in deferred write-locking, the last of End, and Endl .  SO, the cost of recovering from 

such a deadlock in deferred write-locliiilg is more severe than that i l l  the standard 

2PL. Because about 90% of' d~acllocl i~ involve only two transactions [7], and because 

the deadlock discrissccl a1101.c is a common type of d e a d l ~ ~ l i ,  this shortcoming of cle- 

fcrrecl lrsite-lock is very srrious to pcrforniance. Wc still 11c.eci a simlilat,ion study to 

find out how ciefersed write-loclii~lg with the stariclasd 2f'L, especially, in the hybrid 

schecluler environ~ncnt . 

4.5.3 Relaxed Locking 

Here we present a. concurrency control a.lgorit,hrn called "Rela.xed Loclii~lg" ( R L ) ,  

lmsecl on the ideas we ha.ve come across so far. It utilizes tslie overla.pping of locked 

section and confining section, etren though the cla.t,a.base is no longer pa.rtitioned into 

OPT a.nd PES. The iclea of R.1, is a.s follows: A read opcra.t,ion, as in the optimistic 

scheme, does not block a conflicting write opera.t,ion, Or! the other hand, a write 

operation, as in the  locliillg scheme, will I>lo~li any operation conflicting with it. Thus, 



the scheduler maintains only write-loclts. No read-locks are ever set. Instead, read- 

sets and write-sets are used in valiclatiolis to detect read-write conflicts. When a 

read request, say Readix), comes from T,, the schedulcr checks if r is (write-)locked 

by some other tran?act,ion. If' so, it blocks T, until the locli is released. When it 

is not locked. n: is read for T, and put ir! the corresponding read-set. For a write 

request, t he  scheduler does almoqt the same thing as it does for scad request, except 

it has t o  set a lock for the prewrite operation. Eventually, when the End request 

comes, the scheciuier uses the forward checking strategy to valiclate T,. It checks the 

intersections of the  write-sct of a: and the read-sets of otllcr "active" transactions, 

The formal clcscript ion is prcsc~itecl 13clow. 

Algorithm 4.4: Relaxed Locking (RL) 

Q When i t  receives a Begi17 request from transaction Ti, the 

lowing: 

scheduler does t h  

r, When it receives a Xeadfx)  request from transaction Ti, the scheduler does the 

following: 

if n. is in Ttls private work space 

then read .t. from there 

else 

if s is locked by some other transaction 

then block T, unti l  the lock on n. is released 

beg~n critical section 

RS,:=RS, U {s) 

dm-readin.) 

end cr i t~ca l  section 



t~ When it receives a W!rif;e(r, new-va.lae) request from transaction Ti, the scheduler 

does the following: 

if :r: is locked 

then wait until lock can be set on 2: 

set lock on n. for Ti 
T/I/rLi:=JYi; U {x) 

prewri te(rc, new-~dzre) 

e When it receives an End request f rom transaction T,, the scheduler does the fol- 

lowing: 

begin criticai section 

Act ivc  :=Act ive -{7:} 

coi?,flict:=faIse 

for every 'r, E Act i ve  do 

if W L ,  n # c', then conflict:=true 

if c.ol;Pic.l then resolve the conflict by aborting either T, 

or all T''s such that IVL, n R,S; # 4 .  
The decision is made upon some cost criteria 

end critical section 

for every n. E IT'LL issue a dm-rvrite(x) % Reflecting 

release locks 

commit 

Note that ,  unlike SFO, the critical section herc is an ordinary critical section such 

as that in SBO and PRO. The algositl~m has some special features: ( 1 ) It uses rollback 

t o  resoive the read-write conflicts and blocking to resolve the write-read and write- 

write conflicts. (2) It has less blocking and more rolll~acks than 2PL algorithms. On 

the other hand, it has less rollbacks and more blocking than optimistic algorithms. 



(3) A read-only trarisa,ction does not block any otpher tra.nsattlion, but may be blocked 

by some locks. 

We expect the algorithm to have a good performance in situations where conflicts 

are rare, but not rare enough to justify the use of any of the optimistic algorithms, 

The algorithm is correct, i.e., it generates only serializable histories. The proof of its 

correctness is straightforward after the proofs in the previo~ls chapters and sections. 

After RL was designed. it Ixas cliscoverecl that, Xgrawal and E! Abbadi 121 had 

developecl an afgorithni similar to R L  under different motivation. Their simulation 

confirms our prediction about its performance [I]. 

4.6 Going into Multiversion World 

In this section, we este~lcl our liyhrici scheme to  multiversion databases. For rnultiver- 

sion databases and the locking scheme for them see [ T I .  For optimistic multiversion 

concurrency control see [3]. 

In a ~muliiversion chtnbnse, a chta item may ha.ve more than one version simul- 

taneously st,orecl in the clat-a.ba.sc?. A rea,d operation now reach a. "version" of a data 

item. .4 wrik  opera.tio11 genera.t,es a, new version of a c1a.ta item, without overwriting 

a,il old one. Old 1:ersions are st,ill ac.cessil>le t,o t~aiisactions. Ea.ch data  item, x. now 

ha.s a list of versions. it version of m is clenoted a.s xi, where the subscript i is called 

t,he version number, which is the t,ransa,ction number of t8he transaction that. creates 

it. For two versions of 1, n.;<,n:j if ir is less than j .  

A transaction with a (potential)2 write operation is called an updator. A transac- 

tion that  is not an upclator is callccl a ptery .  In other words. a query is a read-only 

transaction. We assume that,  when a transaction is submitted to the TM, the TM 

"A transaction whose program ront.ains a writ.e opera.tion may act.ually not execute that write 
operation. 



is informed or can find out easily whether the transaction is a query or an updator. 

Each transaction T, is assigned a transaction number, clenoted as tn(T,). A query's 

transaction number is. however, assigned when the query starts. 

A query will never be blockccl or validated. It 1s esecuted asynchronously with 

respect to updators and other queries. This is achieved by letting a query read some 

old versions of data itcms. i4The~1 a cluerj7, (2, starts. a transaction number t n (Q)  

is assigned trt Q, such that any apdator with its transaction number less than or 

equal to trz(Q) ha3 been romrrlitted or aborted when Q starts. Later, we will show a 

technique to assign a mu.rimnl transaction number to a query so that  it  can read as 

up-to-date information as possible. For a Read(.r) operation from Q ,  the scheduler 

will find a version of n. with the largest version number less than or equal to trz(Qj. By 

the above principle, the upciator. that created the version of n: had already committed 

when Q started. In othcr words, Q will never '+read from''3 any upctator executing 

concurrently with it. Tllercfore, there is no need to sct a lock or moclify a read-set 

for an operation from a clucsy, and thcre is no rmcl to  distinguish an O P T  item from 

a PES item. 

To the updators, the database is still partitioned into OPT and PES as before. A 

read operation of an upclator reads either the version it has created itself, or (if such 

a version does not exist) the newest version created by a committed updator. We 

call this x-ersion t h v  r t i w ~ . % i  ~ . o l r l ~ r ) ~ i t ~ T f  L ? P I . S I O I I .  Thc read set of an updatos coutains 

a set of data items togdhcr with their vcrsion nunllwrs, instead of just a set of 

da ta  items. The write-set of an t ~ p c l ~ t o r ,  however, contains as before a set of data 

items. A n  upclator gets its transaction number, which is the current value of tnc, in its 

confining section. Since updators may encm their conf ning section in a different order 

than they leave their valiclation-al~cl-write phase, we cannot directly use tnc to  assign 

transaction numbers to  queries. To deal with this probicm we use anotller transaction 

3\Ve say that a read operation rends from a write operation if (1) the two op-rations are from 
different trar;sactions, and (2) the read operation reads the value cleat& by the write operatwn. 
Note that there is no such relation if two operations operate on different versions. A transaciion 
T, rends from another transaction q ,  i f  T, 11as a read operation that  reads from a write operation of 

T 3 .  



number counter called vtac (visible tnc).  utnc indicates the latest updator of which the 

result is mailable to  queries. It is used to a.ssign transaction numbers to  queries. An 

committing queue (CQ) is maintained, which contains an entry for each upchtor in its 

valicla.tion-and-write phase. Each entry E in CQ contains a type field (E.type) and a 

number field (E.nvn;) st,oring the tra.nsa.ction number. CQ is ordered on the awrn field 

of the entries (i.e., the order of entering the corresponding confining section). The 

value of a type field is either 1/ALIDATIATG or iVRITTEi;2r. 1/14 LIDATING mea.ns that 

the upda.tor it  represents is being validated and WRITTEN means that  the updates 

of the upda.tor it represents a.re a.lrea.cly reflected to the  database and are available to 

queries and ot,her ~~pda,tors .  

Below, we present a 11j.bricl ~~liiltiversion concurrency cont,rol algorithm using back- 

ward checking. The multiversion algorithni using forward checking is straightforward 

from this. 

Backward checking 

When checking RSi ;'ir? WSj = 4 for upda.tors U; and C!;., the versions in RSi whose 

version number is great,er tha.n or equal t,o tn(U;)  a.re not consicierect, for these versions 

a.re rea.d from LIT,. or some 1a.ter tra.nsactions. 

Given below is an algorithm description. 

e When it receives a Begin request f rom ilpdator ti;, the scheduler does the following: 

e When it receives a f2eadj.z:) request from updator U, ,  the scheduler does the fol- 

lowing: 

cl2eck-memher(s) 

case R1: z E P E S  

if z is in l/i's private work-space 



then read .r from there 

eise if n. is write-locked by another updator, block lJ, 

unti l  a read-lock can be set on z 

set read-lock on 3. 

d m - s e a d ( s k )  where xr; is the newest committed version o f  s. 

case R2: s E OPT 

if a: is in I l ' s  private work-space 

then read .c from there 

else dm-wc?d(.rk)  where n.k is the newest committed version o f  3. 

RS, := X.5, U ( x k )  

a When it receives a \;'rite(.:., nerr~-x,dae) request from updator i?,, the scheduler 

does the following: 

e When it receives an End request f rom updator lii, the scheduler does the following: 

C l ,  parallel-for x E 1i7L,  do 

if s. is locked then wait unti l  write-lock can be set on .-L. 

sex write-lock on n. 

end paratiei-for 

C2, begin critical section 

J iu i .h - iu , := f i i c .  

tnc:=tnc+I 



allocate entry E 

E. type:= I':4LIf)ATING' 

E.nvrn:=fnc 

append E t o  CQ 

end critical section 

C3, release read-locks 

C4, for 15 such that  stcr7.i-tn, $1 5 In([%)  5 &finish-in, do 

RS:., := jzk 1 xi; f RS, a n d  k < tn(lJ,)) 

% AS:, contains only those versions created by updators 

% preceding liJ in equivalent serial history. 

if TIr,$ ri RS:./ # d % Version numbers are ignored in set operations 

then delete E from CQ 

abort 

C 5 ,  attach the version number (fi~zzsh-trz, + I )  t o  the copy of each item x, 

x f IT-5, U TI'L,, in lT,'s privzte work-space 

reflect T17S, U Tf'L, t o  the database 

by creating new versions in the database 

C6,  release write-locks 

C7, begin critical section 

h l { r , )  := ~ r l : ~ l l - l l ? ~  + I  

E. typt:= f 171i7'7'E.Y 

while head(CQ).iypt = iT'RITTEArdo 

rifnc:=head(CQ).uum % Used for queries 

delete head(CQ) 

end (while) 

end cr!tical section 

Correctness 

The correctness proof for t h r  algosithm is based on a nlociel cliffcrent from what 

we introduced in Chaptcr 2. The notion cor?.flirt cannot be used herc. Instead, 
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we have to use the  notion read from (see the f~otnote  in this section). Therefore, 

conflict eq~ ivn lenc t  should be replaced by vPex  piv valence in discussing equivalence 

of histories. Tlic details are omitted. 



In this chapter, we study how to cl~.riarnicailj~ re-partition a c!atabase, in order to keep 

the up-to-date information of the conflict rate distribution reflected in the partition 

of the clatalrtase. :i constitt!tes an import ant part of our adaptive concurrency control 

scheme. \'\71at makes cij.l~amic rc-partitioning complex is that we should not stop 

the datalzase system for re-partitiorling. One way of carrying out re-partitioning is to 

use a group of transfer processes, which run concurrently with database transactions. 

A transfer process transfers a data item from OPT ro PES. or vise versa. So, we 

must guarantce that,  &spite interference from transfers, thc execution history is still 

serializable. 

iVe study a specific transfer algoritli~n, i.e.. one to  be used in conjunction with 

Algorithm 4.2. The transfer aigorithms for the other combined scheciulers call be 

designed in a similar wv. In wction 5.1, we clis,uss interference of transfers to 

t r a~sac t ion  esecutio~l. In Seciim 5.2 we present our transfer algorithm. In section 

5.3. \ye reivrite .\lgorit llm I.';! t u  lllalie i t  coil!l)atihlc \I i t l i  n tra11sk.r algorit hm, and 

in Section .5.-I, we give a correctness proof for i t .  



5.1 Managing Interference 

Transferring a data item being accessed by transactions will definiiely interfere with 

transaction execution. In the preseiice of transfers, data itcms are "on the run" from 

the viewpoi111 of tiaiisactio~l\. For example, a transac lion nlay read a data item from 

OPT. but iater when it ivants to m i t e  on the same item, it may he in PES. Therefore, 

the  major problem in designing a transfer algorithm is to manage interference so that 

serializahility is ensured and performance is not seriously clegractcd. 

Performance can be affected in different ways. One can i;:?mediately work out 

some "hrutc force'. transfer ruethods which giiarantee se:ia!izability of transaction 

esecutioii hut haye a bad impact on perforn~ance. RJlowing are two such methods, 

which resort to  drastic measures. Suppose we are transferring n: from OPT to  PES. 

BuEIying .-lbo~i d l  trrtiiscrctlons that are  ciccessing n: a n d  then  i7nn.sfer x. 

This method is not acceptable. for it causes too many abortions. 

Polite Dcj'er the f r n u 3 f ~ r  ut t f i l  t h r w  is n o  fla1~snct7ori crcccssirzg x. This method is 

unacceptable either. because (1) i t  callnot guarantee that n. is eventually trans- 

lerrccl to PES. ; i i ~ d  ( 2 )  pc~rfo~lnarice \sill 1~ dcgiacltcl Lj. clelaying tllc transfa of 

.T to PES, since thc reasor: to transfer 2 to  PES is that the conflict rate on x is 

going higher or is already high enough not to  justify the use of an optimistic 

rncthocf. 

The  t,wo methods represent. {.he two extremes of irlterference. The comments on the 

Polite suggest tha.t we shoulcl "ma.nage" inte~.ferexlcc rather than merely "minimize" it. 

We suggest. that both of the following goals should he taken into account in designing 

a transfer algorit.hm: minimize the blocking of tra.nsac.tions due t:: data tra.nsfer, and 

transfer a cia.ta item t o  its destination as soon as possible. 

To investigate the interference of transfers to  transaction esecution, we introduce 

a new term: '*contention." We saj- that there is contention on data item n., if more 
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than one currently active transaction is either accessing it or is trying to  access it, and 

a t  least m e  of them wants to write it. Here, we say that a transaction T, is "accessing 

x" if z E (RS, u I/VS,) for n. E OPT, G -  T, holds a lock on x for z E PES, and T, is 

"trying to  access .2: if it is waiting for a lock on x (x E PES). 

Transferring a data item T from O P T  to PES or vice versa, when no transaction 

is accessing or trying to access n. is trivial, since the transfer will not interfere with 

transactions. x shouIcl be simply removed from the source part (OPT or PES) and 

adclecl to  the clestination part. Trar?sferring ,T when there is no contention is also 

relatively straight for-ward. 111 1 h i s  rase. ho iwvw,  heqides changing t h e  rnernhership of 

2, some additional actioil.; lrl~lsi be taken, 'il'hen x was being accessed by T: in OPT 

before transfer to PES, fos rsample, an appropriate lock must be set on x on behalf 

of 7;. 

Transferri~ig s whec there is corltention on it recpires careful consideration, for 

interference of the transfer is complicated. Since the way the contention-related in-  

formation is storecl for data items in PES js different from that for OPT, it is fairly 

messy to  convert it from one LO the other. The approach that we adopt therefore, is 

to avoid such con~ersion altogetl~er. simply by disallowing a transfer of a data itern in 

contention unti l  the contention is resolved. To see the underlying motivation behind 

this principle, suppose that,  presently, there is a contention on data item x. If x is 

transferred from PES to OPT at this time, then some transaction invol\,ed in the 

contention will he aborted. This can be a*\widecl i f  n. is not transferred immecliately. 

Suppose ,T is transferred from OPT to PES at this time. \ire have to  set a lock on 

it for one tlansac-tion and  block the other. Sincc 1r.e have  no iclca whicl~ transaction 

should have a lock ancl which should be bloclied, this niay cause some unnecessary 

dea,cilocks. There is another problem more serious t11a.n unnecessa.ry dea,cllocks. Sup- 

pose t,ha.t Ti is involved in the coilt,ention clue to opemtion o;jx). Further suppose 

that after the transfer of .r to PES, some other transaction obtains a lock on z and 

T, is left to wait for the lock. nmy have another operation o:(y) jy E PES) such 

that  o , ( x )  < o:(y) and T' has already obtained a lock on y .  in  other words, T, has 

obt.a.ined t,he lock for the later operat.ion but is waiting for the lock for the earlier 
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operation. Even though the operation o, (x )  has been processed, (so that  it is not, a 

logical problem for Ti,) when T, gets the lock on a, it  will resume its execution a t  

some point other than o , ( ~ j ,  which will make the control flow more complex. 

5.2 The Transfer Algorithm 

Intuitively, transferring a daia item back and forth betwceil O P T  and PES frequently 

would be cour-iter-prod~1cti1.e. Therefore. we impose a restriction on the frequency of 

transfers. Specifically, we make the following assumption. 

This assumption will not affect tlre correctness for transfers and transaction exe- 

cutions. However, it helps to make the correctness proof in Section 5.4 easier. This 

assumption a l w  suppresses unnecessary transfers, which enhance performance. For 

this purpose, it is probahix i-nore clesirable to extend the time interval to  two o r  three 

t i m e s  of the r n n ~ i n ~ a l  trcr~mzctiou Il.fi-t~mc. Clmosing "two or three" is based on some 

"gut feeling" rather than scientific ex-idenre. 

There are two kinds of transfers: from OPT to PES and from PES to OPT. Both 

kinds of transfers will access some cta ta st~.uctnres used by t,he sclieduler. 

When a transfer process detcces some contention on the data item being trans- 

ferred, there are three a1 t ernatives: 

1. ikho~t all the tra::sactlo::s that arc involved in the coiiteilki~ii. 

2. abort the transfer process itself, and 

3. wa.it until the scheduler resoIvcs the contention. 



We discard the first choice. because it is costly and not interesting. When transferring 

a data item, say T, from PES to OPT, the conflict rate on x is presumably going lower, 

or is already low. It is likely that,  when we transfer ,r some time later, there will be no 

contention on m. Since aborting a ~ransfer process itself is cheap. it would he a good 

choice to  abort the transfer process in this situation. 7;l'e use this strategy in Case 

T2.4 in the transfer algol-ithm given below. However, the second choice is not always 

usable. When tral~sferring a. from OPT to PES, the conflict rate on it is going higher, 
-" 

or is already high enough not t o  justify the use of optimistic method. 1 we abort 

the transfer process and restart it later, it is very likely that the restarted process 

again detects contention on z, and the transfer process is aborted again. Further, due 

to  a high conflict rate, many transactions may be ahortcci during this time. In this 

situation, we should transfer .r to  PES as soon as possible. iT7e therefore choose the 

third choice, and make the transfer process wait. To prevent more transactions from 

being involved in the contention on n. wl.en the transfer proczss is waiting, we chop 

x from OPT but do not aclcl it to I'ES immediately. Combined with Cases R3 and 

W.3 in the reviscd Algorithm 4.2, this achieves the effect of locking. It allows those 

transactions that haye already accessed s (i.e., those involved in the contention) to  

access cc while blocl.:i~ig all the other transactions that want to  access r .  M'hcn these 

transactions tliat are i n r  dird in tilr co~~te~l t ior l  all finish. the contention is dlready 

naturally resolved. The transfer process can resume and finish the transfer. In Cases 

T1.1 and Tl.5 this strategy is used. \Ye also extend the use of this strategy to Case 

72 .3 ,  where there is no contmtion on s and the transaction that holds the  write-lock 

on a has alread~.  firiishd its read phase. Since dropping ,r from OPT or PES works 

as a lock on x, i t  contributes to forming deadlocks. 

Here is a descript,ion of our transfer algorithms. 

morerul:=n?oreu~:=false % See Remark 1 

begin critical section 



compute 

R := (T ,  E Adroels E RS,) % Recall Active set used in Algorithm 4.2 

1.T/ := (57% E Actir:ejx E W S , )  

OPT := OPT - ( x )  

case TI.1: R = 14' = 4 % x is not being accessed 

PES := PES U {s) 

case T1.2. R + 9 A 14. = 4 % a is being read but not wr i t ten 

set read-lock on s for each T, E R % See Remark 2 

i'E.5' := PE,q  U { . I . )  

case T1.3: 1'2 = o A 14' = (T,) % ,r is being written by one transaction. 

set write-lock on ,T for T, 
V'L ,  := TTFL, U {x) 

P E S  := PE,S U ( . T }  % .r remains in T/TtrS,. 

case T1.4: .f2 = c', A I TVj > I 
mor~u7:=t rue % See Remark 3 

case T1.5: R # o A I f '  # o 

end critical section 

T1.4a: if rnortul  then wait unti l  all T' E 1/17 abort or 

finish their step C1 of Algorithm 4.2 

PE,S := PES U ( 2 . )  

T1.5a: if rnor f rw  then 

wait unti l  all 7; E T.Tr abort or finish their step C 1  % See Remark 3 

set read-lock on a. for each remaining Ti E R 

PE,S := PE,? Li {n.) % .r remains in RS; 

Remark I: rrzo?.er~i~ = true indicates that n. is being read and wri t t e ~ ~  Dy mere than 

one transaction. rnorcu. = true indicates that morrru)  is not true Lut .c is being written 

by more than one transaction. 

Remark 2: Read-loclis may be set biter the actual read cperations. So, rl,(s.) < 



r,(.-c) < . I . zL , (T)  may not hold. x re~nains in RS,. 

Remark 3: Not adding n. to  PES immediately simply locks all the other transactions 

out. 

Remark 4: It may be hard t,o detect when a transa.ction finishes its step 61. So, we 

can relax the condition to  &until all Tj E TV cornpIete (either abort or commit)." 

(2)  TRANSFER z FROM PES TO OPT 

umit:=faIse 

critical section 

check the locks on a. and the waiting queue for x. set 

Rlock: the set of transactions which hold read-locks on x 

fTrlork: the set of transactions which hold write-lock on .T. 

Note that TV'lock contains at most one element. 

X w a ~ t :  the set of transactions waiting for reaa-locks on z. 

Vf'ruotf: the set of transactions waiting for write-locks on x. 

% See Remark 1 

case T2.1: Rlock = TT'lack = lizca2t = Il'wutt = d 

P E S  := PES - {x) 

OPT := OPT U (-1.) 

case T2 2: Rlock f o A IT7uwtt = p 

for every 7: E (Rlock 17 Actrt3c) do 

RS, := R'S, U ( . r )  % T, continues to hold read-lock on s 

P E S  := P E S  - {.TI 
QPl' := OPT U { . r )  

case T2.3: lTrlock = { T , )  A Rnwlf  = I,Vwu?t = Q 

if T, E +\cf?rtr then f i r S ,  := TIr,C;, U { . r )  % T, continues to  hold 

36 write-lock on x .  

P E S  := P E S  - ( 2 . )  

OPT := OPT c (1.) 



else trait:=true 

PES := PES - (z} % See Remark 2 

case T2.4: (R lock # 6 A ib'wait f 4) V (TT710ck f 4 A ( R w a i t  U TVtoait) # 4 )  
abort the transfer % Since the conflict on s is known t o  be going low, 

% Restarting transfer later would be a wise choice. 

end critical section 

T2.3a: if wai f  then wait unti l  T: finishes 

OPT := OPT U {x) 

Remark 1: ij-hen Rlock # d, iTrlock must be empty, and vise versa. We assume 

that  when Hock # Q A Il 'uvit  = 6, Rzccrit =. d 

Remark 2: T, is in its write phase. The transfer process must be executing during 

the reflecting of T,'s modification in PES. s cannot be transferred to OPT at  this 

moment, because validation has finished alld if a transaction reads -7: from OPT, 

serializability may be violated it.llcn the rcad tal;es place before the reflecting of the 

item. So, we let T, 1101~1 csclusi.i,c the lock on J until i t  completes, 

5.3 Revision of Algorithm 4.2 

To ensure that thi. concurrericy control algoril hm can run concurrerlt;y with a transfer 

algorithm, we ha\-e to protect the operations on the data structure shared with the 

transfer algorithm by p~it t ing t h e m  in n critical sectio~l and revise the algorithm 

slightly. The main change is in dealing with the case where the data item beinq 

accessed is '.in transit," i.e., it belongs to  neither PES nor OPT; it is in the process 

of being transferred from onp to the other. (See cases R3 and W3 beion?). ?Ye assume 

that  each single statement is atomic. The procedures for Begin and End remain the 

s a n e  as before. The procedures for Read and Il'l.ite are described below. Alost steps 

are straightforwarci. except for cases R3 and CV3. When data item z is in transit, 

we let transactions that 'naive accessed s proceed and acccss z in their private work 
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space again, while prevent,ing other transactions from accessiilg rc.  This is achieved 

through the transfer process by dropping z from OPT or PES, wherever it was (see 

the transfer algosithm in Sectiou 5.2). This is equivalent to setting a lock on z. 

e When it receives a Read(z) request from transaction z, the scheduler does the 

following: 

block: =false % See Remark 1 

wnrffif=false if n. is in 7 ; ' s  private work space 

then recirl~cr.X:.spc:=true 

else rectrtu~i*kspc:=false 

begin critical section 

cftec_h--member(,?.! 

case R 1 :  2% E OPT 
R.5, := RS, u (.r> 

case R2: n. E P E S  

if not rrn&u*rk.spc then 

if ,r is write-locked 

then block:=true 

else set read-lock on s 

case R3: 2% $ ( O P T  u PE,q) % z is in transit. 

if x E (R,'.', U TJI'S,) 

then k\', := NS, U ( J  ) % See Remark 2 

else u1nitt1j~=true 

end critical section 

if block then wait until the read-lock can be set on n: 

set read-lock on rr. 

if n:aiftrfthen wait until .2: E (OPT U P E S )  

if z E OFT then RS, := RS, U (2) 

e k e  if n: is write-locked then 

wait until the read-!ock can be set 



set read-lock on x 

if renrlvu-Xapc % rendwkspc=true implies block=false 

then read x from Ti's private work space 

else dm-reau'(n:). 

e 1Vhen it receives a Tl'ritefx, nerr-value) request f rom transaction Ti, the scheduler 

does the following: 

black:=false 

u:nittr:f:=false 

begin critical section 

c h f r k - f n ~ ~ n b ~ ~ . j . ~  

case W1: .r E OPT 

TI'S, := IT'S, U ( . T )  

case W2: ;c E PES 

if n is read- or write-locked 

then block:=true 

else set write-lock on na 

IT'L, := II'L, u ( n j  

case W3: .r 4 (OPT U PE.5') 

if n. E (RS,  U IT'S,) 

then TIr,S, := IYS, U ( . r )  % See Remark 3 

else rt.nrttrJ=true 

end critical section 

if bfock then wait unti l  the write-lock can be set on .r 

set write-lock on n: 

I f ' L ,  := 1171!, u ( . r )  
n m n  if t r i l , i f i . f then wait i iniii  n. E (OPT U Z-K,J )  

if .T E OPT then lIrS, := 1I7S, C! (n.) 

else if .r is locked, wait unti l  the 

write-lock can be set on x 



set write-lock on J: 

W L i  := tVLi U (.x) 

Remark 1: These flags are used for pulling the read, write, arid waiting operations 

out of the critical section. BlocX-=true means that  T, is h l~c l ied  by a lock set on x, 

~un?ffrf=trui. means tha t  n. is in t ra~is i t .  

Remark 2: Allow iP, t o  read n. i l l  transit. At  this moment. T, does not own any Sock 

on x. If T, owns a read lock on .r, .T 6 (OPT U P E S )  callnot be t rue by T2,% and 

T2.4 (see wction 5.2). If T, owns ~1 write-lock on m ,  by T2.3 T, rlctnve, i.e,, T, is in 

i ts validation-a~ict-tvl-itc phase, It cannot send a read ~eciuest now. lit is crucial t o  let 

T, proceed f see TI. I, T1.5). 

Remark 3: Allov; T, to  write on the item being transferred if T, accessed it before. 

See T1.4 and 3'1.5 in Section 5:2* 

5.4 Correctness Proof 

A transfer algorithm is said to  bc correct, if (1) it transfers a data i tem from one part 

to  the othcr, and more importantly, ( 2 )  it does not interfere with t h ~  scheduler in such 

a Kay that it causes the scheduler to gencrate nonserializahle histories. Proving the 

first for o m  trr.,nsfer aigosithm is straightforward. T h e  second is what we are going 

to  prove in this section. 

First, to see intuitively that  our transfer algorithm i5 cosrect, we neecl only to  see 

tha t  serializability is ensi~sed Lci'ore, cluriiig, and after a iransfw. C'onsiclcr transfer- 

ring ,r from OPT to PES. Before tllc i s a lde r ,  asslime that srrializabiiity is cnsured. 

During the  transfer. on!y an optimistic method applies to ;i., S o ~ n p  transactions' re- 

claests for accessing .r are delayed. But delays will not affect serializahility. So, it is 

again ensuscd. A f t w  t l i ~  t r a n ~ f w .  any transaction t h a t  a c c c s d  .r hcfore t h e  transfer 



and is still active at tbis time will ow11 a lock 011 r.  Since a. is transferred to  PES only 

if there is no contention on it, no co~lflicting ioclcs are set as a result of the transfer. 

To 3ny other transaction rcq~lestiilg to access n: after the transfer started, it looks like 

that  r is originally in PES. Scrializability is then ensureci by 2PL method. Note that,  

x may still resides in the rcaci-sets or write-set of so111e active transacthns after the 

transfer, Howewr, this will never cause any transaction abortion, 'because (1) when 

x was transferred t o  PES, there was rio contention on it ,  and (2)  after the transfer, 

no transaction wiil put s ill  its read- or write-set. 

Now we prove that our algorithm is correct more for~nally. As in Chapter 3, we 

want to show that if  p l ( n ' ) ,  an operation of T,, conflicts with and prccedcs q, (x) ,  an 

operation of 7';- then EOT, precccles R O T .  Sinct EOT's arc totally ordered, the 

correctnws follows inlnlcctiatelj.. Because of the cornplicatict~is due to  da ta  transfers, 

we break the proof' into three lernn~as, each dealing wi th  a spccific 1;ind of conflict. 

As seen in the description of thc t r ans f~r  algorithm, when n' is transferred from 

OPT to  PES, s is 1iot dclctecl honl each RS or IYS which contains it. Similarly, w h m  

a n  item x is transferred from PES to OPT. the transfer algorithm c1oi.s not release the 

loclis on x irn~necliatclj.. 'I'sansactions continue to  hold thcsc locks until they complete. 

A transfer of a data itc.111 from OPT to PES does not set any  conflicting loclts, nor 

does a t ransf?~ from P I 3  to OPT introclt~ce any conflictillg operations. JVe formulate 

thcse in the following fi1.t. psoposi tions. 

. - - . -  
During a transfer, we are oniy interested i n  the contents of RS arid \.I'S of a transaction 

in Actine, i.e., a transaction before its ROT. The RSs and  II'Ss after EOTs are 

irrelevant to  a transfer. So in  thc Sollowing clisctlssio11, when wc say x f RS,(IVS,), 



Ti f A c f i w  is implied. 

In t h e  fol lowi~~g p r o ~ o s i t i o ~ ~ s  and lemmas, 1-1 st.ands for a history. 

Not,r t h a t  t t i c .  abow proposi t,ion is not trivial when t,hcre are concurrcmt data trarisfcrs. 

Proposition 5.5 Lct 7: br a t i~~nsoc i ior t  i n  Cbrnmit(11). 

2. If pl ,(n.)  E S, (sync.hl-o?ti:(~/io~l C U C I ~ ~  S E ~  o j  T, )  thcu p1,(2) < EQ11, < p , ( 5 )  

holds. 



(1) is trivial. We have restated it for convenience. (2 )  follow from our deliberately 

not releasing locks during the transfer. 

We define reg-o,(n.) as the time when T, enters its critical section for the re- 

quest otjn.). Let S t c l r t T ~ ~ n ~ s  f (n.) denote the tilme when a t r a n s f ~ r  of n: starts. Let 

OtoP(a.) denote the action of transferring n: frorn OPT t o  PES. IVe also use it t o  

denote the  completion time of the transfer. The meaning and usage of PtoO(s)  are 

similariy defined. req-o,(x), 5' tartTrc~ns f (z), OtoP(lz.), and PtoO(.r) are all consid- 

ered as synchronization events. Therefore, our history, consists not only of actions of 

transactions and the  scheduler. but also of actions of transfer procPc;ses. 

Proof: 'T', E Actiuc at ,Yfr~r*tTr.c172sJ'(.r), and 1: does not complete during Ot oP(x ) .  

Only cases 71.2 and T1..5 applj. to t l ~ i s  situation. and in cither casib a read-lock is set 

on r for 7; . 0 

Proof: Bj. Propositions 5.2 and 5.3. at ieast olie of ;I and f3, and one of C and D 

hold. 

If we can show that  under cach minimal combination of tile co~!ciitions, nanleij- A and 

C, .A 2nd D, E and C, and 13 and D, r,(.r) < ro,(n.) implies EOX < EO?', t,hen the 

lemma follows irnnlecliatelj.. 



From Proposition 5.4, either ru,(n.)  < 2111,(.r) or W U , ( J )  < r l , ( x )  holds. Together 

with the condition of the lemma. 7 - , ( T )  < ul,(r) .  We have 

Bj- Proposition 5.5 (2) .  EOT, < rrt,(n.) and zt:l,(s) < EOT,. It follows that  EOT, < 
EOT'. 

If A is also true, the11 5 0  is 'A and C,' which has lxxn dealt ~ i t h .  So, assume 

A is r?ot true. Then .I. E OPT at rcq-r,fn.). Since ull,(n.) E ,S, b y  C, n: must be 

tsansferred during the life-tintc. of T, or TJ. 11% consider thc transfers OtoP(.r) and 

F f  oO(n.) separat eIy. 

Case 1: OtoP(n.).  

Consider the two suhcascs. 

(1) a. E TTr,S;, at  .S'tcrrtl'f.n?>.sd'(.r). Since zol,(n.) E S J ,  this implies T, E Active at  

S tar tTra?~s  f(n.), i.e. Stni.iTrtr??.sf(.r.j < EOT,. Note that EOT, < StartTruns f(x) 

must holcl. Otlicrwisc, 'r, E Acfiuc a t  ,Stn1.1Trnns f ( ~ ) ,  which implies that only Case 

T1.5 is possible. 111 ('asp 1'1.5, .r will not 11o ~ r i t f ~ - l ~ c l i ~ ~ I ,  a contsacliction to C. So 

E071 < ?t'f~rr.tT'r.nrl.t ]'(.I.) < f : ' 0 7 ' , .  

(2) ,  n. # IT',!, at ,S'fnr.tTrrr~ls f ( . r ) .  Tltis implics O i o P ( x )  < I-cq-zc,(x). The only 

nontrivial casc is tha t  OIoP(.r) < 1'1'07;. Ry Prapositiorr .5 6 ,  rE,(n.) is in S,, which 

must he set during the  t r a ~ ~ s f ~ .  By Pr013osition 5.4 and 5..5(2), we get 

Case 2: PtoO(:r) .  

At req-zit,(n.), n. f PE,C, and S t (~ tTrarr s  f ( n . )  < EOT, 11olcls. Otherwise, in ei- 

ther Case T2.3 or T'S.4, TJ wo111d complete cluring or bcfore the transfer, which means 



t~l~, j(x)  < T ; ( , T ) ,  a. contradiciioi~ t,o t.he condition of the  lemma. Under StcutTrans f (z) < 
EOTj7 t,here are two possibilities: Tj  conlpletes during the tra.nsfer or not. The  first 

possibility will 1ea.d to a, cont,ra.diciion as just discussed. Under t,he second possibility, 

only Ca.se T2.3 is possible ancl .r E WSj. If EOTj < EOT;, W S j  n ASi = q5 would he 

checked in validating Tj ,  and one of Ti a.nd T' woufd he a.borted, a c~nt~ractiction. So, 

we ha,ve EOT; < EOTj. 

If C: is also true, so is -A  and C',' which has been dealt with. So. assume C is not 

trtie. Then n. f OPT a t  rtq-w,(.r). Since r l , (x)  f St ,  n. is trarlsferred. As with the 

case. 'I3 ancl C'.' consider the possiklc tranc:fers scparatc4y. 

Rivial when EOT, < PtoO(n.). A4ssu~ne. therefore. PtoO(m) < EOT,. Then 

s f RS,. If EOT, < EOT,, ifj'SJ n IRS, = Q would he checliecl in validating T,, and 

either T, or 7, woulcl be ahortccl, a contradiction. So, EOT, < EOT,. 

Case 2: O f o P ( s )  

We show tha.t t.his case is impossible by considering the following two cases. 

(1) '  I Y ~ - ? ' , ( . T )  < Si(tt'tTrci~~s f i,2'). Then x E RS, and s E 11*S,. Case T1.5 will 

prcr-ail. Either, T, aborts qr fiuisl~cs its step C1 during the traiisfcr, wllich means no 

rl,(.r) is set. a contracliction to A; or. ir, does not finish its step C'1 during the transfer, 

which Inearis EOT, < EOT, ancl IIVSJ n RS, = @ is c l ~ ~ c l i e d  so that one of T, and 

T7 is ahortetl, a contracliction to the Iemma's condition. 

(2).  StctrtTiwns f ( . r )  < 1.q-r,( .r).  If T,  is not in Actitye at StnrtTrnns f (x) ,  then 

zo,(r)  already happened I~efore StnrtTrons f ( r ) ,  So, zo , ( s )  < r,(n.). a contradiction. 

If T, is in Arl?rt  at .I;rtm.tTra~-ts f ( r ) ,  then either T, f i n i s h  its step C1 during the 

transfer (Case T1.4 or T1.5) which means I U , ( . T )  < I- , ( . r ) ,  or T, gets a write lock on 

r (Case T1.3), which implies C is true, a contraclictiol~ to the above assumption. 



If either A or C is true, it is already proved. Assume both A and C are false. 

So, n: E OPT both at  req-r.,(.-r) and at req-u)s(.r). If n. is not transf~rred from OPT 

to PES or is transferred after hot11 E071 and Z07;, the lemma is already proved in 

the last chapter. T h e  caw EOlfl < Sttrr2Tra7?sf(a) < EO?', is straightforward. The 

case EOT, < ,";ta?dTrai?s f ( n . )  < E 0 7 ,  is not possible; otherwise, I;f7,Sj n RS, = # 

~vould be rhcckecf and one of tilern avould Ilc aborted. The only thing left is the case 

where S tar fTra~ t .%. f ( .~ . )  pre~ccles i10t11 EO;rL and IiO7''. This is Case Tl.5. EOT' still 

cannot preccclc LOT, sintc. ot l~crwise, I f * &  n R,S, = d ~voulcl he checked. u 

Similar to A and (1 of 1,rmr;ia 5.1. 

Case 1: O!oP(n.). 



Wow assume that D is false. Tlicn OtoP(n.) < zi~l,( .z.) .  Since A is false by assump- 

tion, only Case T1.4 or 7'1.5 is possible. lr, will finish its step CI during O i o P ( x )  in 

both cases. I t  follows that EOT, < ~ o l , ( s )  < EOT,. 

Case 2: PtoO(n.1. 

PtoO(n.) < 1-cq - r t . , ( . r ) .  LOT7 < .qtni-tTr.i~r~sf(r.) ivi l l  ltbnd to ci tontracliction since 

in both Cases T2.3 and T2.4, T, would firlish hcfore the end of the successful transfer. 

That  is, 111 , j n . )  < rq-tu,( .r)  < 70,(,r), which c~n t~rad ic t s  the conctition of the lemma. 

Therefore, S t c c ~ f T r ~ ~ n . ~  f'(.r) < EOirJ. Only in Case T2.3 will n transfer be successful 

in such a sitilation. n. is i n  l ~ o t h  T17S, and TI'S, after the tranifer. A n d  both 702(x) and 

u;jx)  ill be esccutecl i l l  the correspo~zciing C1 steps. Thus EOT, < w , ( ~ )  < L L * ~ ( z )  < 
EOTJ. 

Assume C: is false. .c E OPT liolcls at rcq-ui,(s). 

Case 1: PtoO(n.). 

C'onsitlcr the following two cases: 

( 2 )  StcirtTrntls f ( , r )  < ,507:. l;',itlier 7: completes bcfore t h r  end of transfer, 

which is trivial; or PioO(.r) < EOl l ,  wliich is si~ililar to tllp discussion ~ I I  Case 2 of 

B and C, i.c., E07: = ro,(.t.) < ~ r ) , ( ; l . )  = EOT,. 

Case 2, O t o P ( s )  

This case is irnpcssible. show that no matter  wiwthcr Ilr, E Active or not at 

S'tnrtTrtr11,s f (n.), it lcads to a co~ltraclictiori. 

( I )  T, 6 rlciit.e. EOT, < w,(.r) < StartTi-a77.s; f (n . )  < L P , ( x ) ,  a contradiction. 
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( 2 )  T, E -4ctie)e. Since C is false by a~sumpt~ion, onlj. Case Tl.4 or T1.5 is 

possible. In either case, TJ will finish its step C1 before the end of transfer. Again, 

w,(n.) < ? L * , ( T ) ,  a contradiction. 

Simila.rly, a.ssume bot,h .A a,nd C are false. z E OPT both at  req-toi(x) and at 

reg-wj(z). If no  transfer ever happens, EOTi = w ; ( z )  < w j ( z )  = EOTj. Otherwise, 

since no lock on z is set. for Ti or Tj7 both 7'; and Tj must h u e  finiskecl their step C1 

before the end of t,ra.nsfer. So? EOTi < eu;(a.) < 7 u j ( z )  < EOTj. KI 

Lemma 5.3 LEI T, and  TJ be in  C'ornmifjll). If w;(n.) < 7 ; ( x ) ,  then EOT, < EOTJ. 

Proof: BJ. Proposition 5.3(1), EOT, < ut,(n.) < r,(n.) < EOT,. 13 

Theoreill 5.1 7'hc i r cms f~r  algorithm is correct. Undcr f h c  iszfesferencc ofrlnia trans- 

fer processes, fh(3 conc7~rrt conlrol ril.r/orithm s f  ill en..;ures .serinlixdility. 

Proof: Immecliate from Lcmmas .5. l to 5.3, since EOT's are totally orclered. 0 



Keeping the Partition U 

The problenis of how to  prcdict conflict clistribution and how to  decide the membership 

of a data item are open and application dependent. There are many factors, such as 

the  type of transactions, that can aRect them. The database system administrator 

can also play an important role here. There are two principles that s h o d d  govern the 

hanclling of these problems. The first is that the cost of running the control!er should 

be low. The seconci is that  the controller should invoke transfers as infrequently as 

possible. Otherwise, thc ovcrheacls may well offset the benefit gained from our hybrid 

scheduler. 

In this cl~aptcr ,  wr present a sol~t,tion based on history recording. It  automatically 

traces changes in conflict rate and irivokes transfers when the conflict rate reaches 

some thresholds. Practicall~., it is clesirable to  incorporate the metltod as a part of the 

scheduler. However, for the sake of sinlplicity, we consicler it as a separate module. 

We cc,ll the module re-parfition coniroller or just con trofler. 

We first give a general picture of the controller and ctiscuss some issues that  should 

be of concern in the design. Thcn we I ~ ~ i l c l  a specific controllcr. Finally, we discuss 

some correctness issues related to  t, he controller. 



CHAPTER 6. J{EEPINC: THE P.4RTITION UP-TO-DATE 

6.1 Design Issues 

The automatic re-parti t ion controller maintaixls a table to record potentially harmful 

conflicf,~ and nlake decisions as to wlien transfers are needed. We call this table 

co~\flict fab l t  (CT).  Each data item llas an  entry in it. The elltry for n., clenoted E(x), 

contains, among other irrforination, (1) status, indicating if n: is in OPT or PES from 

the stand-point of the controller, (2) counter, recording the number of potentially 

harmful co~lflicts on n. in the current time interval, and (3) to, the last time the 

counter is reset. We refer to a ficlcl of E(X)  by "E(n.).", e.g., E(x).coanter. To reduce 

the storage space needed, a data item with no cr tention on it for some time interval, 

say 0, will be purged. Such a data item must be in OPT. 

The contxoller prosicles tlnrc tunablc parameters, 0, el, and cz, to the database 

administrator. O controls the f'rcqucncy of resetting counter., The controller resets a 

counter every B time units. cl and c2 are tliresllolcls measured by number of poten- 

tially harmfill conflicts. I70r any data itcrn a ,  orrcc E(a).co~rnter > cl within 0 (may 

be less than 01, n. should be transferred to PES if it is not there. Symmetrically, if 

E(a).counter < cz during a period of O time units, n. cvill be t ransf(md to OPT if it 

is not there, \Ire ~-eqnisc that cl 2 cz 

6.1 .I Counting Conflicts 

Detecting conflicts is an intrinsic f:mctiol~ of the schccluler. So. the controller need 

not detect conflicts on its own. R a i h ~ r ,  it is illformed by the scheduler whenever a 

conflict is detected. 

As stated in Section 4.2, tlie speiific c!cfinit,ion of harmful c~nflicts depends on 

the concurrency control algorithm uscd. In a 2P1,  neth hod, every pair of collflicting 

operations from two concurrent transactions is considered as a harmful conflict, while 

in SFO, only a pair of conflicting operations whose order is different from the order 

of EOT's of their transactions is considered as a harmfrrl conflict. Of course, the two 
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transactions involved in a harniful conflict in SF0 must be executing concurrently. In 

the remainder of this chapter and the nexb, \ive refer to a potentially harmful conflict 

simply as a conflict. 

EOTi 

The conflici is not harmful in optimistic scheme, 
but is harmful in 2PL scheme. 

Fig. 6.1 Difference in deciding harmful conflicts 

It is interesting that there is a tliffi.rence in counting conflicts between locliing and 

optimistic rnethods. As illustrated in Fig 6.1, in SFO, the conflicts between T,'s reads 

axicl T,'s writes are not cletectecl when EOT, < EOT,. However, in a 2PL method, 

these conflicts are detectecl. This difference should be coilsidered in setting cl and c2. 

Counting conflicts in PES is easy. Whenever a lock cannot be set, the controller 

counts the number of the locks and ungrantecl lock recluests conflicting with it. A11 

the inforxnation is available from the locking table. 

There is, however, some problem in counting conflicts in OPT. For SFO, there is 

no problem, since the scheduler does not make decision until it has checked all the 

conflicts. For haclward checking algorithms such as SBO and PBO, because a sched- 

uler aborts the transactio~: and stops the validation once a tion-empty intersection is 

found, some conflicts are not counted in. One way to solve the problem is to  let the 

scheduler check all the intersections. It will, however, incur some cost for information 

useful only to  the controller. Another way is to let the inaccuracy exist and lower the 
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parameter cl to  compensate for tlie missed conflicts. \Ye can even let cl < CZ. The  

problem of this approach is that  it is hard to know the percentage of missed conflicts. 

So the  parameter el may very easily become meaningless. 

6.1.2 Setting Parameters 

The  parameter 0 should he largc enough, By Assumptioii 5 . 1 . 0  should be greater than 

twice the maximum transactiori l ifetime. The longer O is, the  less frequent transfers 

will be  and the less overlleacls t b c  controller will incur. A couutcr is a monotonically 

increasing frmction of time within a period of 0 .  So, it is easy t o  cleterniine that  a 

counter has reacllrc! the  tlircsllold cl and to  initiate a transfer from OPT to PES. On 

the  other hand, 1i7e can not saj7 a counfer reaches (less than)  the tlireshold c p  until 

t h e  whole period of tl has elapsed. Therefore, a longer 0 does not mean our system is 

less sensitive to conflict increaw, but  it does riichail less sensiti~.e LO conflict decrease. 

111 other words, a longer 0 means more pessimistic view. However, if O is too long, tlie 

conflict rate may vaqr a lot tluriiig 0 .  So, we simply lost sensitivity. 

Let's consider cl and cp. Not only are the absolute \ . a l~~cs  of cl and c p  ilnpoitant, 

bu t  also is the difference 1)ct ween cl and CZ. If el = c p ,  sornp data items with conflict 

rates around cl will 11c subjcct to a lot of transfers b e t ~ v c ~ n  the  two parts of the 

database. The larger (cl - cp) is, the snlallcr the nuniber of transfers will be. Fig. 6.2 

illustrates this. In the figurc, the unfilled circles represent the transfers when cl = cz. 

T h e  filled circles represent the trausfers when cl > c2. \;Z7e can see that  the number 

of transfers when cl = cp is inucli grcatcr than tliat when cl > cz. Tha t  is the main 

reason for using two tlirc~sholcls instcad of one. The  curve in the figure is conjltct- 

rn fe  fi~nct7on which is considered, for simplicity, to be a continuous frmc tion of time. 

However, we should point out tliat this figure is for illustrative purpose only . In 

fact. i t  is thc intqyal  of the conflict-rate f~~nc t ion .  i.e., t h c  rlamhcr of corlflicts, rather 

than the  conflict-rate function itself that  should be compared with tlie thresholds. 

Generally speaking, the greater (cl - c2 )  is, the more stable the  partition is, and 

so the  less cost transfers incur. Howevcr, a larger (cl  - cp) means more optimistic 



accesses to  data items with higher conflict rates and more pessirxistic accesses to  data 

items with lower conflict rates. It will have negative impact on the  performance when 

(cl - c2) is t,oo large. 

I corgflict rate 

con,6'icf-rafe function 

cl 

cl = c2 - . . - - - - - - - - - - - - -  

Conflict rate change on a data item and the transfers by difrerent thresholds settings. 

Fig. 6.2 Thresholds 

The  values of 0, cl, aiicl cz a r t  rrlated to each other. They are also application 

dependent. Some factors, such as resources available (number of CPlJ's and disks, 

etc .) ,  arc very important in cletermining them. 11-e havcn't clone a q  study on estsb- 

llshing niatl-iematical ~nortel for determining the value of the paramctess. Here we just 

present a superficial uiiclerstaliciing. Given a specific ent-irouluellt, \tippose we know 

that  an vpl i i l~i\t  ic ctlgctiitIi~~l 1 ~ 1  form. vc%r.!. wcl! .I\ h c ~ t  (onflic t rate is lrss iiian r . 1 ,  and 

it perfor~ns to l~ rab ly  ~ h c n  conflict rqte is betwecrl 7.1 and rz < r z ) .  Then for a 

hybrid scheduler using this optimistic algorithm, el and c2 sho~ild he rclatecf to  8,  r l ,  

and r2.  For example, suppose conflict rate will increase from rl t o  r2 in 0 linearly 

with time. Then cl coulcl be set as (1/2)0(rl + r2) ,  i.e.. the integral of conflict rate 

function over 6. Also we should consider the difference in counting conflicts between 

locking and optinlistic schemes. 
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6.1.3 Working Environment 

Our controller is based on the assrlniption that the conflict rate on any data item 

does not change sharply. AT in Fig. 6.2, we consicler the conflict rate on an item as a 

function of time. The contsolies will perform acceptably when the function changes 

slowly, as shown in Fig. 5.3.a. In Fig. 6.3, the curve still represents the conflict- 

rate function. The horizontal line above the figure represents the concurrency control 

mode on the data item. A dashed line indicates the optimistic mode, while the solid 

line indicates the locking mode, and  a vertical bas represents a transfer. Fig. 6.3.a 

also shows that the controller is not sensitive to the small fluctuations in the conflict 

rate since it employs two th~esholcls. 

For large ..pulses", however, tjlc controller behaves di ffe~entlj-. It is insensitive to 

negztive pulses, since we co~int the numljer of conflicts in 0 time interval (see Fig. 

6.3.c). On thc other hanet, it is sensitive to positive pulses and works poorly in this 

situation (see Fig. 6.3.h). Hew, we say that the controller does not worli well not only 

because it will start many t sc.nsfers. but also l~ecause the concurrency control mode 

does not matcli the conflict rate. And the latter is more serious. When a positive 

pulse occl~rs, we are still in optinlistic mode. Since conflicts are detected only during 

validation, detection tends to be late. When the controller clisco\rers that counter > cl 
and starts transferring the item to  PES, the transfer process has to wait at step T1.4a 

or TI..% (see Chapter 5 ) .  Since. at this time, all the accesses causing the pulse are in 

optimistic mode, many of the transactions involved will be aborted. Only when all the 

transactions that are involved in the conflict have finished, can the transfer process 

finish. However, at  this moment, the pulse has already peaked and the conflict rate 

is low again. Then we have to access the low conflict item under locking mode for a 

certain period of time until it is transferred back to OPT. However, such pulses are 

probably rare in  practice. We even doubt they codd a c i d l y  happen. Flirthermore, 

since we use the number of conflicts which is the integral of the conflict rate function, 

the harmful effect of positil-e pulse is not likely to be significar~t. 
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optimistic 
y d e  optimistic mode locking mode i 

concurrency control mode 

(a) Conflict-rate function and access mode (transfers), when conflict rate changes slowly. Performs well. 

trumJer concurrency control mode concurrency control mode 

conflict rate 

(b) Sensitive to positive pulses. Performs poorly. 

corflicb rate 

I I I time 

8 20 30 40 33 

(c) Insensitive to negative pluses. Performs well. 

Fig. 6.3 Sensitivity of the method to contlict-rate functions 

From the above discussion, we believe tha,t our controller can perform well in 
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6.2 Building the Controller 

The controller emploj-s a process called Record Conflict (RC). Whenever the scheduler 

detects a conflict on an item. say x, it asks the controller to start a RC process to 

record the conflict by increasing E(rr).countet.. If a is in OPT and E(x) .counter  > cl, 
RC starts a t sa~~sfer  process to transfer x to PES and reset to and counter to the 

current tinic and 0, respecti~cly. 

If the current timc t is greater than or eqiml to to + 0, then the RC resets t o  and 

counter to t and 0, rcspectlvely, a11d determines if a t~*ansfer of s to the other part of 

the database is needed. 

Maintaining the CT only when a conflict is detected is not sufficient. There are 

still some problems left: (1) the timc to start transferrilig s from PES to OPT, and (2)  

promptly finding those d a t a  items on which there has been no contention for a period 

of timc. T , d  11s at-ialjm thcst. prol~lcrns i n  rlrtail. For. a PES i t c~n  .r, wlim a conflict 

on it is cletectcd, the RC' process may f i ~ d  tha t  t  - E(.r).to 2 O and E(z) .counter  < ca. 

This is the condition to transfer rr lo OPT. IIowevcr, this may not be the right time 

to do so. A transfer process may have to wait or ahort itself dtlc to the contention, 

or a transaction may he rollrd b a ~ l i  if we transfer z to OPT. 'rllis problem itself 

is not difFicult to solve. Sincc a conflict, always ir~volves a write operation, in this 

case. when the write-locli involved in the conflict is released, we can start the transfer 

if it is still appropriate. The second problem is more difficult, For an item x in 

OPT, the condition for dropping E ( x )  is ( t  - E(z ) . t o  > 0 )  and (E(z ) .co imter  = 0). 

However, a RC process is startccl only whcn a confiict is detected. Tile condition 

(E(n.).counler = 0)  is not detectable by RC only. IV11en rr E OPT: we expect that 

the conflict on it will be rare. It is very likely that the accesses to z encounter no 

contenti011 for a sufficient long period of time. It is even fairly likely that z  is not 



accessed for a long time. Dropping E(x) in a timely manner has a favorable impact on 

pcrforrnance of the controller. A si~nilar situation occurs when a: E PES. The conflict 

rate on a PES item may drop to 0 within 0. So, we need some type of process that is 

started even when there is no contention on x at all. We use a process called Transfer 

<0 Dcletc (TD).  It is dcsigncd to solw both prohlcms (1) and (2) .  

Now let us consider the appropriate time to start a TD process. .As we discussed, 

the transfer of a data item from PES to OPT can be started when a write-lock on 

it is released. So, we can associate a TD with every write op~ration.  It is, however, 

not sufficient to solve problem (2) .  Associating TDs with all read operations is, on 

the one hand, too freclucnt, and 011 the other hand, not snfEcjent when a data item is 

not accessed. Starting a TD pa-ioclitally can guarantee suEcient checks regardless of 

wlietller a data item is accessed or not, But t5is method may become time-consuming 

if not properly designed. Here, we suggest a method h a s d  on perioclical checking. 

Fig. 6.4 Time for TD 

CJonsider problem (2)  only. An entry in the CT needs to be checlied by a TD only 

if it is not checlied by a RC for at  Icast 19 time units. So the problem is converted to 

selecting those entries that haw not been checked by RCs for 8, Let t be be the time 

a TD checks an entry E(n.) .  If  t - to > 20 then E ( r )  must have not been checked hy a 

RC for at least 0 time units. Otherwise, to would have bcen rcset by the last RC (see 

Fig. 6.4). We "sort" all the entries in the CT according to field to ,  in ascending order. 

So, when we scan frosn the 'beginning, we reset the entries (and pcriorn~s necessary 

transfers) as long as t - lo 2 20 holds for the entries. ivIlcre t is the current time. 

Now let us see how to "sort" the CT. We link all the to fields togcther to form a 

queue, denoted Q, with its elements arranged in the asccncling order. Because the 

CT entries are created and the to ficlds arc resct all in a linear order, the queue can 



CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 104 

be created and maintained incrementally. When a RC creates or resets an entry, it 

links the entry to the end of the queue, because its to field now has the largest value. 

This can be done very quickly. Every 219 time units, we start a T D  to scan the queue 

from the beginning. The entry scanned, say E(x)?  is either dropped if x is in OPT,  

or transferred t.o OPT if i t  is in PES. 

To solve the problem (1). nle use a small trick. When a RC finds that x should 

be transferred to OPT,  it only clcai-s cownter without setting to. So, when a T D  finds 

x E PES, either there is no new conflict on it for 0 ,  or it was alieady checked by a 

PC and dcciclr that it shot~lcl hc transfcrsed. 

111 what follows, we describe RC and TD. For each coml>inecl concurrency control 

algorithm, RC and TD may be customized, just like transfer algorithms. 

The following is a (Jescription of RC. Rlock, Rzcait, T4'20ck7 and I.Vwuit are the 

same as those in thc transfer algorithm given in the last cllapter. 

When the scheduler cannot set a lock on n. because of contention, a RC does the 

following: 

begin critical section 

% All the fields that  appear in this critical section are fields of E(X) 

If E(n.1 is not in the CT % See Remark 1 

then allocate an entry for it 

sfrtius:=OPT 

i0:=gct t i r t l c ( )  

courrtc r:= 0 

link it t o  the end of Q 

If the schedtiler wants t o  set a read-lock 

then counter. := counter.+ 1 + ICV~ai t l  

If the scheduler wants t o  set a write-lock 

then counter := counter + lRlockl + llVlockl + II4fwc1.itl + lRwultl 

t :=get t ime()  
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i f t - t & B  

then if cow ate^ 2 ca 
then counter:= 0 % n: remains in PES 

to := t 

link E ( x )  t o  the  end o f  Q 
else counter := 0 % See Remark 2 

end critical section 

e When the scheduler validates a transaction Ti and finds conflicts, a RC does the 

following: 

begin critical section 

For every a tha t  appears in an intersection 

If n. appears in n intersections 

then i f  a has an entry in the CT 

then E(a).counter := E(z).couizter + 7% 

else allocate an entry in the  CT for x 

E(.r).stcltus:= OPT 

E(x).tO:= gettime() 

E(.r).counter:= n 

link E ( s ) t o  the end o f  Q 
If E(a).covnter > el 

then E ( a ) . ~ o u n f r r  := 0 

E(x) . to  := gettime() 

E(,-t.)..stntus := P E S  

start transferring x t o  P E S  

link E ( x )  t o  the end o f  Q 
eise $:=get time() 

i f t - t o > @  

then E(.r).counter:= 0 

E(x).to:= t 
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link E(X) t o  the end o f  Q 

end critical section 

Remark 1: This "if" statement is very strange, especially because it sets the status 

to OPT. See the discussion in "Status and Memberships" later. 

Remark 2: catutter < c2. a. should be transferred to OPT. Only setting counter to 

zero will make t - to > 20 eventually become true. A TD will start a transfer at that 

time. 

The f'ollo~ring is a ctescriptiorl of' a TI1 

r When a TD is started 

E(z):=head o f  Q 

begin critical section 

t :=gcf t ime()  

while t - E(n-).fo > 20 do 

if E(n.).staf us= OPT 

then delete E(z)  from Q % See Remark 1 

else E(n.).to:=i 

if E(~r) .counter < c2 % See Remark 2 

then E(s).courztcr:=O 

E(x).sfntus:=BPT 

start transferring n. t o  OPT 

else E(r).comter:=O % See Remark 3 

link E(J) t o  the end o f  Q 

E(a.):=heac! of Q 

t :=get time() 

end critical section 

store t. the next TD will be started a t  1 + 20 
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Remark 1: Let t' be the last conflict on x. Then t' < to + 0 .  Otherwise to would 

have been reset by the RC. So, from t' to  t ( t  - t' > 8), there was no new conflict on 

x. E(a) should be cleletecl from the CT. 

Remark 2: Either there has been no ncw conflict on .T for period of time longer 

than 0 as is the case when z E O P T ,  or counter was reset by RC(s) for as  least once 

between to to  t under the condition that  ( t l -  t o  > 0 )  A (counter < cz), where t' is the 

time whe~l the IIC cl~ccl~;t.cl E(n.). 111 both cases, n. shoulcl be tsansfersecl to OPT. 

Remark 3: Here the condition means that,, having been cleared by RC, counter has 

quickly accumulated more than cz counts within a time period l e s ~  than 0. So, 

x should not be transfcrrccl. See tliscussion later. 

6.3 Discussion 

In this sect,ion, we discuss the aut ornatic controller presented above. 

6.3.1 About RCs and TDs 

Since a T D  takes time, the frequency of T D  creaiions is lrss than 1/(20) ancl varies 

horn time to  time. 

RCs and TDs execute concurrently. They share some variables such as entries in 

the C T  and links that  form tllc queue. Thcy also executt conct~rreutly with transac- 

tions and transfers, and share the variables such as read-sets ancl IVzoait7s. Actually, 

we neccl not protect the whole TD process by a global critical section. We need only 

t o  guarantee that  a process (such as a RC) !las tlic exclusive right t o  access the  shared 

variable when it is active. For example, a RC started due to  lock contention on need 

only hold the right t o  access to  the da ta  structures for x in the locking table, the entry 



for R: in the CT, and the relat~ecl links. Another RC can run concurrently with it on 

another data item. Of course the queue manipulation should be synchronized. It is 

more efficient to manage those shared variables using monitors 1211. The reason for 

using critical sections is only t,o simplify tlle description. 

One problem is that for an OPT item z, when a RC finds that counter > cl, it 

will start the transfer of n. to YES. Ho-rsever, at this moment, t - to may be greater 

than 8 ,  which suggests that the conflict rate on a is actually not so high as to  justify 

a transfer. As seen from the dcscription of TDs (see Fig. 6.4),  when t - to > 20, it is 

highly likely that E(T)  is resct 1))- a TD. Also, the last time E(.r) is checked by a RC, 

t' - to < 0 musf, have been thc case, where t' is the time at that moment. So, t - to 

is not likely to be n-!ucIi greater than 0.  Of course, we can use more sophisticated 

testing. For csample, i f  counter / ( t  - l o )  > cl then transfer; otherwise set to  to t and 

counfcr  to t r .  .4 siniili~l l ) l~ l~l t ' l l l l  asiws i1.11m 1- E PliS. 

For rc f OPT, we i~i~n~ccl ia te l~~resct  E(:c) and t ra ider  n. to PES once E(x).counter > 
cl. For T EPES, we do not reset E(.r) when counter > c2.  Instead, we wait until 

t - to > 0 holds. We can reset E(z)  irnniediately; but it will cause more resets than 

our present method, especially whcn conflict rates are high. For each reset, we have 

to manipulate the cjtleue hy rvli~lliing the entry to the end of the clucue. This task, 

even though can be execateti fast. still incurs some overl~ead. Tllat is why we choose 

not to do so. 

6.3.2 Status and Memberships 

In the CT, each entry has one of the two statuses, OPT or PES. In a database, each 

data item belongs to OPT, PES, or neither OPT nor PES. l'lic last case occurs only 

when the data item is Sci~lg tra~lsfcrrc.d. Clearly. w c .  icalli iiic ~iicmbersllip of a data 

item to match its status in tho CT. Howcver, temporary incorisist,encic.s may arise 

due to transfers. The change in status occurs before thc change in membership. The 

relation between the two changes should satisfy t11c follotving properties: 



CHAPTER 6. 1iEEPING THE PARTITION UP-TO-DATE: 109 

(6.1) once the x's status is changed, its membership will el-entually he changed. 

(6.2) x's membership will not be changed unless its statns is changed. 

To preserve above properties, the cont,roller must behave "correctly" even when there 

is inc~nsist~ency. 

Now let us examine these temporary inconsistencies. An inconsistency happens 

when a transfer process is waiting or aborted for restart. Specifically, in the transfer 

algctrithrn for Algoritlim 4.2, it happens i n  the case T1.4, 7'1.5, T2.3, or 72.12. Notice 

that ,  whcn an RC records conflicts, it docs not check the  status. So, even with the 

presence of inconsistcncies, RCs still work normally. A TD clocs check status. So, let 

us consicler each case where T D  is checking an entry, say E(a) ,  while thcre exists a 

inconsistency 011 x. First, i f  E(a).sfrrt us= OPT,  tlic inconsistency must be caused by 

T2.3 or T2.4. In Case 72.3, there won't be ally contention on ,r d~i r ing  the course of 

inconsistency. So, E(s) can bc clclctcd. For T2.4, there is still contention on x due 

to conflicting locks during the inconsistency. RCs will rccorcl the conflicts and reset 

E(z).counter according to the threshold cz. (This tilne the ~nernbership of x is PES.) 

Note that  a RC', when s t a ~  t c d  c l u c  to confticting locks, never sc ts  a status to PES. AIso 

notice that  when a TD clleclis E(.T), there has not been any new coiiflict on .c b r  a t  

least 0 .  So, we can safely clclete E(n.). \Vhcn conflict occ~irs again while inconsistency 

is still tllere, that  strangt "if" statelnent will allocatc an entry wit11 status OPT. So, 

the Property (6.1) is s::tisficcl. lIowever, we should point out that this strange "if" 

statenient need not c v m  exist, b c c a ~ ~ s e ,  if F is long enougli, a rrstarted transfer will 

have already transferred n. to  O P T  before a TD can check E(x).  

Second, let us consicler the situation where E ( n ' ) . ~ f d u ~ = =  PES. It1 this case the  

inconsistency must have heen caused by T1.4 or T1.5. 111 both cascs, the  problems 

here are the same. This t imr,  s $! ( O P T U P E S ) .  Tlwrc may be still solnr. transactions 

that  can access it in optimistic t ~ ~ o t i e .  So, thcre COUM be contention on it. EtCs 

will record the conflicts, reset E(x) according to the tlireshold cl, and even fire new 

transfers of n: t o  PES. These t~ransfcrs arc cluplicates of the waiting transfer. We will 
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discuss how to  suppress those duplicate transfers in the nest paragraph. When a TD 

checks Efz ) ,  it tries t o  transfer J back to OPT. This transfer will, however, violate 

Assumption 5.1, and is suppressed too. So, E(.x) will lieep the status PES and the 

Property (6.1) is again satisfied. 

Now nrc cliscuss how to  supprcss transfers. Situations where suppressing transfers 

is necessary were already disc~wsecl in the above paragraph. Here is another situation 

where a transfer should Le snppresseci. Suppose a data  item r has just been trans- 

ferrrd t,o OPT. But \TI.,,- soon, E(.T). counf t r  esceeds el u c l  a RC wants to transfer it 

back t o  PES. This traasfer will violate Assumption 5.1. Although we argue that  this 

kind of situation is very rare and can be prevented almost always by carefully choosing 

the  three parametcbrs. we slxoulcl still take it into account. To suppress transfers, we 

add another field in  E(.r). 'l3is field, say lost-l, records the time when the last transfer 

of x has co~nplc~tccl. If tllcrr is all on-going transfer, the value of Inst- i  is infinite. So, 

when a t ransfcr is ahout to Iw initiatccl, tllc contsoller first d~ecl is  if I. - l a d - t  is greater 

than twicc thc  niasitnal transaction life-time. 1%'~ want t o  point out that  setting the 

field when a t rar i4w complctcs i q  not tlifficrllt to implernent. This can he clone when 

thc  controller receives an ac.kno\vlcrlgc~nt.nt from the transfer process, or even can Ex 

done by trausfchr process itself i l l  somc specific implcmelitations. 

Since tmnsfers are onljr started Ily R(:s and TIh, tlic P r o p c ~ t y  (5.2) is always 

sat,isfied. 

From the alm\.c disc~i~ssious t t l ~ t l  f i w l l  the algorith~izs for tralisfer, it is easy to see 

that our systern (for Algositllm 4.2) satisfies thcse properties. T11c above discussion 

can be thought of as a "corrcctncss proof" of the re-partition colltroller. 



Chapter 7 

An Implementation Proposal 

In this chapter, we propose an i~riplcwxwtation for an adaptive concurrency control 

sgstcm hasect on Algo~~itlirn 4.2. The system illtegrates the three functions: concur- 

rency control, transfer, and conflict recorcli~ig and transfer initiation. The system is 

imp!crrlentecl by a conit)i~iatiorl of a concurrency manager. JC'M) ancl a TM. The Ch4 

provides funrtions such as check-~ncn~herj),  lock ancl unlock, rcad-setjwrite-set ma- 

i~ipulation. conftict recording. transfer initiation, and transfer. IVhen t he T M  receives 

a Read or Il5-ite request from a transaction, it asks the C'lI to c11ccli the rnemhership 

and t o  set an appropriate lock or manipulate read-/write-set c!cpmding on svliere the  

item is (OPT or PES). When the CM informs the TAI that the required work is done, 

the  TR4 operates 011 the  trari~action'~: private work space anti contacts the Dhl  i f  nec- 

essary. IW1en it reccives an Erlcl reclucst from the transaction, t h t  ThI asks the CM 

t,o check set intersections and release locks. TJpon clisco~wing conflicts in OPT,  the  

Th4 is responsible for aborting transactions. The Tnil is also responsible for telling 

thc. D-II to rcflcrt t!!c t-ra!rsac!io?!'s n?oc!ificztic?n to data!mw if  t!?c transaction is 

validated. 

111 this chapter, we focus our discussion on the CM. First, we give a.n overview 

of the Ch3 and cliscuss the ma.jor c1a.t.a ~ t~ ruc tu res  it nla.inta.ins. Then we discuss the  



operational details of the CRI. The  discrvsion is organized according to  the status. 

Finally, we comnient on the proposal. 

7.1 The Concurrency Control Table 

In the  Chi, there are no separate processes for RCs, TDs, and transfers. They become 

a few more steps in the  orclinasy concurrency control activities of the  CM. This re- 

duction on the number and type of proccsst-s is macle possihlc by a carefully designed 

tablc nlaintainecl hy t he CYI. The table combines the functions of thc  locking table 

(for locking scheme) and the conflict table. It  also facilitates the set manipulations 

for optirnistic accmses. For such a multi-purpose ol)ject, it is hard t o  find a pertinent 

name. So, we simply call it roncuwency  rorztrol table ((JCT). The C C T  is organized 

as a hash table with the clat a item id as a key. Each entry in the CCT represents a 

da ta  item. \;t% use Eja) to drnote the cntry for r.  As in the  PI', for every PES item, 

there is a corrcsponcling entsjl in tile CC'?', but for an OPT itcm wliich has not been 

arwssccl for a 1 ~ 1 ' i c ~ d  of t ~ I I I ( ~ ,  f I I P  ('111r~~ c ~ r i ~ ~ s j m ~ d i l ~ g  to if is clropp~~cl. 

An entry, say E(.r). in the CC"T c ~ n s i s t ~ s  of two parts: the header and the lists (see 

Fig. 7.1). The  heacler contains, alnorlg otlier information, 1 )  id, 2) status, 3) counter, 

4 )  to ,  and 5 )  three pointem, wp, rp, wnp. r d  is the iclent ifier of n.. ccanter and to are 

the  s a n e  as those in C'T, rxccpt that to's arc not linliecl to  form a qucue for TDs. 

status now represerlts botll thc status and mrrnbership of x .  This time, however, 

stntvs has five possible vaiws: OPT, PES, WtoP, WtoO, A I ~ C I  PtoO. The meaning of 

these status is as follo~vs: 

OPT: m is being acc-esseci in optimistic mode. 

e PES: rc is being accessed in iociiing mode. 

WtoP: A temporary status where a transfer of x to PI%' is waiting a t  step T1.4a 

or Tl.5a. 2; is xiow accessed i n  optinlistic mock (see R 3  and W3). 
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wait-list a Linked io/from an element in another w-list. T h a ~  element contains the same Tid. 

@ Linked ro/from the element in other r-list. That elcmcnt coniains the same Tid. 

@ Poinis back io the header. 

Fig. 7.1 An enrry in CCT 

e Tl'toO: A temporary status whcre a transfer of .r to O P T  is waiting a t  step 

T2.3a. n. cannot be accessed in this status (see R 3  and IV:3). 

e Pt.oO: The Ch.! has fo:ir,:I that  2 should be trar;sfe;.red to  OPT. But cirrrently 

there is contention on x. So, the transfer is de fe r r~d  unti l  there is no contention 

on m.  s is a.ccessed in locking mode (see 7 2 . 4 ) .  . 
The transitions among different statuses are shown in Fig. 7.2. The point,ers wp, 
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rp. and wnp point to  lo-fist (write list). r-list (read list). and waif-list (waiting list), 

respectively. Hon-ei=er, we do not call them read list or write list because the term 

"read list" is used to  denote another data structure. Thc three lists form the list part 

of E(xj,  and are Clis~iisst~l Ixlo\v. 

Fig. ?.2 Transitions among statuses 

An element in w-llsf of E(n, ) .  wile11 the sfcctus is; I'ES, rc~p~escnts a write-lock on 

.z. So, in  this case, ril-lzsf has at most one element. The element, therefore, contains, 

among other information. the id of thc transaction that  owns thc lock. All  the write- 

locks owned by the salne tramaction are linked togethcs. so tha t  locks can be released 

fast (see type 1 links in Fig. 7.1). f'e cal! this list x::.~ie-lncX. list. So t e  that a u*-list is 

for a data item, but a write-lock list is for a transaction. IVhen the status is OPT, 

an element in w-list indicates that s is in the write-set of the transaction whose id 

is stored in this element. In  this case. there could he more t h a n  OIIC element in the 



w-list. The  type 1 links link all such elements with the same transaction id to  form 

a list that  represents the  write-set of the transaction. At the  end of w-list, there is 

a link (of type 3)  pointing back to  the header of E(a).  The function of these links 

will be discussed later. When s tn fus  is WtoP, the meaning of w l i s f  is the same zs the  

case where status is OPT, and when status is PtoO or WtoO, the meaning of ur-list is 

the same as the  case where sfntus is PES. 

The  usage of r-list of E(x) is similar to tha.t of .ru-li.~t, except that  a.11 the elements 

for the read opemtions of the sa.me transact,ion arc Ii~ikecl together by the type 2 

links, whet.her a.n element represents a rmd-locli or an element in the  read-set. In 

this way, there is no clistinction between the read-lock list and the rea.d-set. We call 

this unique list read-list1. A s  we will see below, t,his uniq~le list will not cause any 

problem in va.lidatio~i or lock opera.tions, rather, it will simply make trmsfers easier, 

To manipulate the  write-lock list., write-set.: and read-list for a transaction, the Ckf 

uses pointers pointing t,o t.hc heads of the corresponding lists. 

The  wn~t- lwt  recorcls all the 10clii11g requests on n.. Each element in i t  contains the  

id of the  transaction that suhrnits the request and the mode of the request (read or 

write). To make the locliirlg scheclulel fair, we organize it as a FIFO queue. kb'hen 

sfatrrs is OPT,  u:alt-list must hc t.niptx. Thc CbI takes care of the integrity constraint. 

of the C'C'T. When E(s) .s tnt t ls  is PES, fgr example, w-lid and r-list cannot both have 

elements sirnult aneously. 

7.2 Operations of the CM 

7.2.1 Operations in OPT 

Read and Write Requests 

' T h e  motivation for separating write-set (list) from write-lock list is t o  perform vaiiclation quickly. 
T h e  validation of a transaction involves t.he t,ransaction's writ.e-set (list), bu t  not a write-lock. 



When a read rccpcst, say, Xead(.r), arrives from transaction T,, the CM first checks 

x's membership by finding the entry E ( r )  in CCT and chccking its strctus fielcl. If there 

is no entry in CCT for r ,  .T must be in OPT. So, the CM allocates and initializes an 

entry for it. Now assume that stal t ts  is OPT. The CPI simply acids an elemcnt in 

E(x)'s 7.-list, puts Ttls id in it, linlis it to the head of the reacl-list for T,, and modifies 

the pointer to the head of the read-list. 

For a write request wlien s fn tus  is OPT, tlie process is sill-iilar 

Validation 

IVhcn an End arrives request on behalf of Ti, the C:M first, starting from the head 

of the reacl-list for 7:, deletes al! the elements in the read-list from the corrcsponcling 

1.-ti.i/'s. This 11<\\ t I I P  c f f ( ~ t  of' ~c ' l(>~t\ i~lg i l l 1  t 1 1 ~  rt>atl-locks a n d  discartling the read-sct 

for T,. Note that, since 7: is no lorlgcr in Aciivc, its rcacl-set is useless now. Then 

the C'M does the \:aliclation along t lie list for tlie write-set. When the CM reaches an 

element in the write-sct, i t  tmccs the typc 3 pointer to the header of the data item 

being cllecked, saj., ,r. It il~spccts t 1 1 ~  rp field. The null pointer means IIO contention on 

n.. Otherwise, it searchcs tllc 1 4 r . i t  to find d l  the actise tmnsactior~s that conflict with 

T' for s and wcords the n 1 1 1 m l ~ ~  of conflicts in the counter fielcl. It also records the 

ids of thc conflicting transactions I'or tlie consideration of the Thl. If counter. > cl, the 

Chl puts :L* with the pointer to E(x)  into the list Tr(~n.qf which contains all the items 

that shoulcl be tra~lsf'ersecl. Tlicn i i  rcscts the to and counter fields. If counter < cl 

but t - t o  > 0, the C'hl rcscts to  and counter too. T l ~ c  rcaclcr may r~a l ize  that Ch4 is 

doing the tasks that a RC' proccss was supposed to do. Btit unlike RC, tlic status field 

is not set to PES right now. It is set w h c ~  the Ch.1 transfers t l ~  itcm. When it finishes 

the operatiorls on E(n.1, the C:hl drops the element from the lu-1/32 ancl procceds to 

the nest element in the write-vt. \I'fie:t t trr T'M finishes scanni~ig t l r t a  wsite-set of T,, 

it reports the result of valiclation to the l'hl. If a transaction is abort,ed, the CM will 

discard the read-list, write-set, ancl write-lock list for tile transaction. The transfers 

will be started at the end of the critical section for the validation. At the crid of the 

critical section, all the data items that should be t,ransfcwecl are in Transf. 
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The Drop Queue 

It may happen that, when deleting an elernent standing for optimistic access from 

the r-list or ui-hsf, the Ch4 finds that all the three lists of Efa) are empty. In other 

words, there is no access to n. at this moment. (The CM can detect this because, once 

the r-list or w-list is empty, it will trace back to the header via the type 3 link). In 

this case, the CM checks if countcr(O/{t - t o ) )  > cl. If so. the C M  puts the header 

of E(r)  in a qucue cailcd Drop. Otherwise, it drops E(z) fmm the CCT immediately. 

The Drop queue has a limit. say t 2 .  W h e n  t,he nurnber of the elelnents in Drop reaches 

n ,  for every element in the first half of Drop, the ChI compares it with the entry in 

the CCT. If they are the sanlc, it means that tile item has not hcen accessed for a 

while, So. if the entry has status OPT, the Chf dt-ops the entry from the CCT, and 

if the entry has status PES, the t ' l I  transfers it to OPT. The elci-ncnt in Drop is also 

dcleted. If they are not the s a m e  or there is no such entry in  the VC'T, the Chl just 

drops the element. 

This mechanism is used to replace the periodically started TDs for fincli~ig those 

itcms t h a t  still oc r~ ipy  cntrics in tht .  C'C'T bu t  h a w  not l > w n  accc.sit-tl for w m c  time. 

There will be inore tlisc~ission on this later. 

Transfers 

Transferring an item, say .r, to PES can be executed very fast. Since the transfer 

process has a pointer to E(x), locating E(x) is trivial. The R and I t '  sets are just the 

r-list and d i d ,  respectively. The C'M checks the R and 1C' stts.  In Case T1.1, Ti.2, 

or T1.3 (see Section 5.21, the CiN can tra~isfer a immediately. So, i t  sets status to 

PES m c l  sets locks on :I:  if a.ppropriat,e. For the read operat,ions on x, there is no 

need to set locl;s, since the read-locli list and the read-set are organized as a unique 

read-list. To set a writc lock, we have to delete n. from the write-set and then link 
it to the write-lock list. Because tlre write-set is linked in one direction, we have to  

start from the head of the write-set to find the element right before .r. Later, we will 

discuss some design consicleratio~ls related to this issue. In Case T1.4 or T1.5, the 



CiCl has t o  wait until the contention on s is resol\wl. So, i t  sets the strztvs t o  WtoP 

and proceeds to transfer thc ricst item in Tratzsj 

7.2.2 Operations in WtoP 

When an item, say x, is in status WtoP, only those transactions tha t  have previously 
7 7 

accessed i t  ccut acccss i t .  I ht r ec lw~ts  l ~ o m  other transactio~is are blocked. Because 

a transactio~l that has previously accesstcl .T has a copy of n. in its private work spa-e, 

for a read rc.cpest from lba t  tran4action. the TRI ntecl noi ask the  CM, but  for a 

write request, the TXI should ha\-c the ChI put tlic transaction in the  write-set if it is 

not there yet. So, when the ('hf recciws a read request, i t  simply puts the request a t  

the end of wait- i tst.  \\'iwi) i f  receive.; a write rccluest, tlw Chi1 may put it in w-hst or 

cumt-1i.d depending on wlic~thcl* or !lot the transaction acctssed i t  M o r e .  

In status ViTt,oP, ltnlilie the clescription in Chapter 5, the CM neccl not know 

whether the tralisactions in~oli-ed in the contentiol~ have fi~~isliccl or not; it need only 

to  wait until one of w-lisf  and r-lisf lwcorn~s empty. When d 1 . d  or w-1i.d. hecomes 

empty, the CAI tracts the tjrpc~ 3 l i ~ t k  1)acl.c to tlw 11eader of thc I:(n.) and chcc1;s the 

sfofus.  If sfniu.5 i.; \.trtoP, tliti C'hl scts ii, to  PES a n d  sclts locks as appropriate. Tracing 

back to  the Ileaclcr xlollg t llc. t y p e  3 link whcncver a 7 . - l i s f  or w-11d hecomes cmpty 

will incur ax] additional cost only when tile CA4 cliscastls a read-set. But this cost 

is somehow cotnp~tlsalecl for 1)y that c1e1.e~ way to finish a tra~isfer's waiting period. 

Later, we will see this is ftirthes cxmipcrisatect for hy not ilavilig TDs and the queue of 

to's. Tracing back to  t lw heaclcr when rc>lcasing locks and doing valiclation is rtquired 

any way. 

7.2.3 Operations in PES 

Tbe  operations in PES are more straightforward. \Yhen a read rtq~aest arrives, the 

CM checks if the  corresponding read-lock can bc granted. If so, it  adds an element 
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in the r-list and linlts i t  to  the  rtad-list of the  trmsaction. Otlm-wise, it adds an 

element in the wait-iist and rccorcls the conflicts by increasing the  counter. For a 

write request, the process is siinilar. 

W'lten there is contention, after increasing the coul>fer, the Ch4 checks for the 

condition t - to >_ 0 .  If the condition is satisfied. the  CRiI further checks if r o ~ n t e r  < c2. 

If not, the CM resets the to  anti counfer to  f and 0, respecti\dy. If yes, the CM resets 

to  and roc~~lfcr ,  and then sets the statvs to  PtoO. A transfer will be started when 

there is no contention on n. (set. thc next srctlon for m o r ~  detail). 

Releasing rcacl-locks was cicscrit)cd i n  section 7.2.1. Rclcasillg write-locks is similar. 

One problem is that n.1ir.n wc release a lock. we 111ay need to  check i f  the locking 

s t ~ l 1 1 ~ s t  at t I!(, li/.ail of' t11v r~c~tl-!t.il ca l l  l t c a  g ~ a ~ ~ t c d  no\\.; if 'io, we 5t.t tlie lock. This is 

implemmtrd by utilizing type 3 li~tks. If ,  when deleting all clement, the w-list (r-list) 

it bclongs to becomes crnpty, the C ' l I  gors back to the hcadcr of Ejx)  via the type 3 

link. 

I t  ma? happrn that \vhcn reitwing a lock. the C'hI finrls tha t  all the three lists 

of E(T)  arc empty. In this case, the C'hl chccks if rnzinter~(O/(t - t o ) )  < cl.  If so, it 

s ~ t s  the stritus to  OPT a n d  rcscts to  and cmi?tfer accordingly. Otherwise, i t  puts the 

heacler of tlir mtsy i l l  Drop. 

7.2.4 Operations in PtoO and WtaO 

PtoO 

For the rrad and writc r c t l t ~ r s t ~ ,  the ('51 worlis i l l  almost tht. salne wajT aq that 

for PES. There is a minor cliff(wncr: when conte~ttion is dctcctccl. After i n c ~  easing 

the  coirr~ter, thc C'hl chccks if counter 2 c'z. If so, it sets the strrtlis back to  PES and 

resets to and courtttr. Otherwise, if ( t  - t o )  2 19, it resets the to  and counter. 

When a lock is relcasecl so that  there is no contention on z, i.e., the ulait-list becomes 



empty, the CIA4 tra.nsfers a t,o OPT.  This transfer is fast. Rlock a,nd Li~EocX: sets are 

just the  UI-fist a,ncl r-list. The Rwait and I+'ecci.it must be empty at this moment. Only 

Case 72.2 or T2.3 is possible. In Case T2.2, all the  t,ransa.ctions that  have locks on 

z are active. The  transfer is st,sa.ightforwa.rd. In Case T2.3, the condition 75 E Active 

ca.n b e  implelnented by a, risky trick. If the read-list of Tj is empty, then we bet that 

Tj is not in Active. Since a, transa.ction usua.lly rea,ds sonlcthing before it ever writes, 

when the rea.cl-Iist is empty, it suggcsts that, i?hc read-list has been deleted a t  the 

beginning of the va.licla.tion-anci-~vrite pha.se of 5. Because cleleting the read-list is 

proi;ectecl in a critical stxtion, there is no risk tha.t, when the  read-list is being deleted, 

a tmnsfer process checks its einptiness. If we cannot a.ccept t,his assumption, the CM 

ha's t o  a,sk the  TM for the infor~nation. Dut i t  is not slow though. If Tj # Active, set 

status to \Vt,oO. l o  and cownicr nccd not lx reset in this case. 

7.2.5 About Erlipty ?.-&st or w-list 

TIE discussion ahout the opcsatior~s that tlic CR'I performs whcu a 1,-listl~o-list hecomes 

empty is scattered all ovcr previous scctiom. Somc corlfl~sion may arise and some in- 

complete ciescsiption may exist. l'liis sect ion serves t hc purpose of clarifying and 

completing tllc issucs relatctl to it .  

When one of r-list and w-lisi of E(x) becomes empty, the  CM trzces back to the  header 

via the type 3 link, and 

Case 1: s t n f u s  = OPT 



if all the three lists (r-list, w-list, wait-list) are empty then 

t := gett ime()  

if counter(@/(t  - t o ) )  > cl 

then pu t  the header t o  Drop 

else delete E(a) f rom the CCT 

Case 2: statas = W t o P  

stnfus := PES 

to := gett ime()  

countrr := 0 

if all the three lists are empty then put the header in Drop 

Case 3: stnfus = PES 

if wait-list is not empty 

then set locks for elements in wait- l i s t ,  unti l  no lock can be set 

else % A t  this moment, all the three lists must be empty. 

t := get tirncj) 

if ~ o u i z f c ~ ~ ( O / ( t  - t o ) )  < ~2 

then s t i ~ f n s  := O P T  

t o  := f 

collrlf~r' := 0 

else put the header in Drop 

Case 4: stn/u.z = PtoO 

% A t  this t ime wail-list must be non-empty 

set locks for elements in waif-list unti l  no lock can be set 

if wail-list becomes empty after setting locks 

then start transfer o f  ns t o  O P T  

Case 5: status = WtoC) 

% this time it must be w-list i h a i  becomes empty 

if wait-list is empty 

then delete E(.r) f rom the CCT 

else stafzis = O P T  

to := gel t ime()  
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cownter := 0 

put t h e  requests in  3t~:c~l.t-list to r-list and  11:-list accordingly 

Now, a da ta  itcm may have one of the five statuses, ant1 transfers n ~ a y  take place 

among all the statuses ratl1c.r than just hetwcen OPT and PES. A transfer, however, 

can be i~nplenlcnted as a change of statns plus some relinliing between the writ,e-set 

arid write-luck l i h t  of a t ~ a u \ a c t i o i ~  (if ~ ~ t l c ~ s s a l y ) .  Arllong the f i \ ~  slatuscs, o d y  PtoO 

is new. \Yflrn the status of' an  item bc~ornes PtoO, t h e  conflict rate on it is going 

down. So, we do not crpect that the itcm will stay in tllc PtoO status for a long time 

bcfore it changcs to  OPT.  Even i f  t 116. conflict rate goes u p  again, the item cannot 

s t q  in PtoO for a. long ti111e. b ~ c a u s e  t h ~ a  status will change bi~ck t o  PES. This further 

rcd~ices the duratiorl that  a n  i t m ~  is in PtoO. The statuses \VtoO and WtoP are just 

separated from n. g' (OPT U PI;:,$). Sincc our automatic re-partition controller is 

l~ased on the  assumption that the c-onflict rate on an i t a n  c11arlgt.s slowly, transfers 

will be rathcr i~lfrccluer~t. T'hc~rc~forc. we espcct that  a da ta  item almost always has 

s tatus O P T  or P13S. 

A nice feat~lrc of our inlplemcntation is tllat the amoullt of work for va l ida t io~~ 

is only rtllated to  thc sizc of' a (slnall) tt-rite-sc.t. 11 is itidrpmcltnt of the sizes of a 

n u m l x ~  of (largc) read-scts. 

TDs' tasks HI.(' riow pcrSot.i~~t~d 11). 1 1 1 ~  CIUCIIC D1vp arid c . l~~cl<i r~g w l ~ t ~ i  onc of 

r-list and ul-list of an entry bwomes empty. So, the size of Drop lwconles important 

t o  performance. It should l x  somehow relat8cd to  the atVcragc nurnhrr of entries in che 

CCT, and s h o ~ l d  he tunable. Since checking when a r-lisiludisi fxconlcs empty is 

needed for other jobs. only the check for a r-list in O P T  s t a t ~ i s  coulcl be considered 

as the aclclitiorlal cost to  implement TDs' tasks. 111 this case, since wait-list inust be 



empty, it is very likely that  all the three lists are empty. When all the three lists are 

also empty, it is more likely that the errtry is deleted than its header is put in Drop. 

Since we get rid of tasks of rillinking to's to maintain the queue, and the processes 

for purging Drop can be macle less frequently than the  TDs, we can achieve better 

performance in this way than u::il~g TDs, 

Each one of tile write-locli list and the write-set (list) is implemented as a single 

chain. This single chain malies dcleting an element from the middle of the chain 

slow. Actually, we can use a clouhly linked chain to  solve this problem. However, 

suc11 clelctioxi is only neecteci in  a transfer. As we commented before, transfers are 

infrequent. Besides, when a data item is write-lockccl or is a member of a write-set, 

it is very likely that  the  transfer is i ~ l ~ c l i e d  due i o  conflict. So, setting a lock for an 

item in a write-set or putting a ~~itr-1ocli i .d  item originally in a write-set occurs less 

frcquciztly than transfers. That is rvhy we halve cl~osen to use a sing'lc chain. 

Now we discuss issues almrt  thck critical section that protects validation in Al- 

gositl~m 4.2. Sills(. c o ~ i c u s s c ~ ~ ~ c ~ .  cont ld  is achieved jointly by the T3I an; CM, a 

cluestion arises as to  how to implrn~errt a critical section. IIere we suggest two possi- 

ble approaclzes. Wc can use the 7'31 t o  achieve the effect of a critical section. When 

valiclating a transaction, tlic Thi clocs not accept any recl~~est from other transactiorns, 

nor does it process reacl/wri tc opcrat ions of other t ransactions. This approach can 

ljc easilv inlplement ctl. and it actually stops the dat abase accesses I->?. ot hcr transac- 

tions. Another aj->prnach is to  use th r  C ' l I  to  acliie\-e a similar efft-lct. Since there 

are olily two purposes of this csit ical sect ion, i.c., (1) psc~vcntirig atlotlier transaction 

from being ~d ic la ted  concuiwnt l ~ . ,  arid (2 )  protecting the elcrnents in the write-set of 

the tralisaction fro111 being B C C C S S ~  113' other transactiolls, tlie C'hI need only do the  

following: ( I )  do not accept mother  End recluest, (2)  prevent access to  such entries 

in the  C!C!T that tlie da ta  items they reprcserit are in  the write-set of the transaction 

undergoing valiclation. The accesses to  t,he other da ta  items (and the  eritries repre- 

senting them in the SCT) are allowccl. To i n i p e h m t  this approach, first, the Ch/I 

niust selnc~nhcs t11~1t it is ~ ~ ~ ~ l i c l a t i ~ i g  sol i~c t ~ ~ i ~ ~ s a c t i o r ~ .  Sp( o11(1. t h ~  Cti\I has to  cllcck 

along the  T L ~  clown to the u 4 . d  to sce if thc item is iri  the write-sct before it grants 



the access, since the Civi cloes not know wlietlier an element is in the write-set before 

it has actually scanned the element through the (type 1) chain for the write-set, and 

also since the access reclucsts of other transactions come from different direction (from 

the header) from the scanning, for an access request to a data item. This approach 

is more complex, but it permits more concurrency. Adding one more status to the 

entries in thc C ' C T  is helpfi-1 in implcmcnting this approach. 

In our implementation proposal, there are no separate processes for RCs, TDs, 

and transfers. This elinlinates the cost for starting processes. These functiom are 

itltegrated into tlic normal concurrency control activities and are just a few more steps 

beyond concurrency control. Thus, we can construct, with qttite a s~nall  additional 

cost. an adaptive concurrency control system that takes advantage of both optimistic 

and locking mct llods. 



Chapter 8 

Conclusions and Future Work 

The major contributions of this tllesis are: 

1. We have developecl a clata-oriented concurrency control scheme that  is adaptive 

and tliat takes adv*lnt,age of both optitnistic and locking schemes. 

2. Based on a systematic study ol' the optimistic scheme, we have designed several 

hybrid concurrrncy control algoritlims and developed a sjlstcmatic procedure t o  

combine optimist,ic and locking mctliods. 

3. To make our system adaptive, we have rlcsigned atgorith~ns for re-partitioning 

a database and for rccorcling conflicts and starting re-partitioning. 

4.  W P  have also given an implcmmtation proposal for an adaptive concurrency 

control sj7s k r n .  

5. In addition, we have estcnclecl our sclmne to mtiltisersion databases, 

We expect that ,  when the database is properly partitioned, our hybrid schedulcrs 

will achieve higher performance than pure locking or pure optimistic schedulers. Our 

expectation is hasecl not only on thc fact that  optimistic schcme performs better than 



the locking schcwic~ ivllen coilflict ta t t s  asr'  lo^. It is also basccl on t h t  fact that our 

hybrid schedulers cnn. (1 )  avoid conflict escalation to a large estent in the part of 

the  database with low conflicts, and (2) confine deacflocks to  the high conflict part. 

The  only additional cost a t  t h e  algoritl~mic level is the invocation of check-member 

for every read and write opcwtian. It leaves plentSy of room ( i n  the  sense of operating 

cost) t o  adopt the  other two components to  co~istitute an adapt ix-e concurrency control 

system. Actually, a non-adapiix~ h~~l>ricl schediilers with a fixed partition can be a 

promising approach. Such a fixed partition can be drawn according to  the types of 

da ta  items. For example, in a bankirlg tlatabase system, cci-tain types of accounts, 

such as personal saving. constitute the OPT part of the database, while some other 

types of accounts constitutt~ tltc P I 3  part. lYhen a clatahase is part i t  ioned according 

t o  the  types of data items, the clterli-rncnlbcr function can hc irnplernentecl very 

efficiently. 

Our transfcr algorithn~ is efficic*r~t. Carrying out one tsansfer is cheap. The cost of 

initiating a trat~sf'er p r o c t ~ s  is I > ~ L I I ~ I ~ > S  greater t l la~i  tltc cost to1 executing thc body 

of the process. \\'e call also gso~ip t ransfers to rtducr the* cost for starting transfer 

processes. 

It is aiways desisecl illat thc  k~~oivlcdgc and esperit~nce of the  datrahasc system 

administrator could have a positivcx impact 011 pcrformancc, and we expect that  this 

positive impact can bc acltiewd 113. carefully designing and managing the way the 

controller allcl t h r  DRX illtcbract. If succcssf'ul, this woulcl provide a n  opportunity 

for incorporating higher intclligcnce into concurscncy control, By letting only the 

cont,roller, rathcs than t he schcd~~l t :  or re-partition plocessor, interact with the DBA, 

we restrict thc influence. of the D B X  to  only the pcrformance and not t he  correctness 

of concusrency control. The automatic rr-partition controller prtwntccl in this thesis 

is relativelj- closed and at a low-lntc~lligcnce Icvcl. It is l>asccl on thc assllrnption that 

conflict raic changes are slow. Definitely, finding a b e t t c ~  controller to  incorporate the 

DRA's i~itelligcwcc is a proniising rcwarrh tlirct.1 io11. I l o ~ v i ~ c s .  a co~nplicatc~cl systcm 

is not desired because t he cost for run~ling a cor~tsoller must be small enough, so that 

i t  will not offset the  lwncfit gained from the hybrici schcdulrs. 



From the  implenxntation proposal given in Chapter 7. we can see how cleanly the 

functions of the re-partition processor and the automatic controller can be integrated 

into the activities of the scheduler. iIowever, there is one prob!em that we should 

point out. There are two reasons why the optimistic scheme could out-perform the 

locking scheme. First. the optimistic scheme detects less corlflicts than t h e  locliing 

scheme (see Section 6.1.1) ancl i t  does not block a transaction. Second, an optimistic 

scheduler can be cheaper to run than a locking scheduler. Read-/write-set manipula- 

tions can be decentralized. They are cheaper than locking a ~ i d  uclocking operations 

(see Section ' i . : 3 ) .  In our i~nplementat ion proposal, tlie second reason is simply lost. It, 

is left as f t l t~irc researcli to implcrur-nt an atlapti\.c ccncusrency control system, taking 

aclsaniage of' clecentralized ri.dc1-lwri t e-set rnai~agemcnt . 

Our appi.oach is general. since t hc four basic assi~mptions in C'hapter 1 are general. 

In particular, our approach can be applied to relational databases. It may also find 

its use in nrnrer types of clata'hascs. snch as clcductive and object-oriented databases, 

because tlie opti~nist ic  scheme is si~perior to  the oihcr two ~ c h c m e s  xhen there esists 

long ixternal thinking time in transactions [A],  n-hich is oftcn the caye in cl~clilctive 

and object-oricntecl clata1)ascs. In object-oricntcd databases, transactions are often 

naturally ncstccl [19. ;)Sf. Extcr~ding OUI. approach to riestetl transactions 1261 does 

uat appc-a1 to l i t '  bt 1aIght T u ~ \ ; . ~ i i d .  I I o w c ~ \ ( ~ 1 .  tile i<l(>rt of part i t  iolling the :Int;~ltasc may 

prove valuable. 

In general. wc car1 partition a database into an arhi t rar~ .  numher, say 77, of parts. 

As long as it ensures t h a t  any two sj-ncllsoi~izi ng sect ions in exvery transaction overlap. 

sesializabilitj~ can he guaranteccl. 

Our work g i ~ w  rise to  all interesting research topic. Pre\.ious studies only vaguely 

talk about "high" or ',low" data contention (or conflict ratcs). Nobody ( to our knowl- 

edge) ever tried to  definc '.co~lflict rate '  rigorously and to define "high" and '.low" 

quantitively. With  our a t  tempt to  partition a datai-iase according to  contention fre- 

quency, and with our attempt t o  mectlanicallg dctermine fbjr the repartition con- 

troller) the conflict rate of every data  item and thereby determine its membership, 



there is an important question of defining conflict rate in a sensible way and find- 

ing exact thresholds on conflict ratcs to achieve a good performance in optixnistic and 

locking methods. I t  is also debatable what items, highly accessed or highly contended, 

should be put into PES. For example, should a highly accessed item with 95% of its 

accesses being Reads he put in PES or OPT even thotlgh currently there are only 

read accesses? 

Important work that has not been dune is the pe~formance analyses of our ap- 

proach. We plan to  do a simulation study l o  test ottr s c h n e  against the locking and 

optimistic- wheme.; i n  the near f ~ i t i l r e .  

It is also promisi~:g to  extend our approach to distributed clit'lal)ases and rcplicatcd 

databases. 



Bibliography 

[I] D. Agrawal and A.  El Acldatli. Pcrformancr characteristics of protocols with 

orctercd shared locks. Technical Report TRCS 90-13, University of California at 

Santa Barbara. 1990. 

[2] I>. Xgrawal and A. El Atlclacli. Constrained shared 1ocl;s for increasing concur- 

rcncJ7 in datalmsw. Trcl~nical Rcport TRC'S Q - 2 0 .  TTnix~crsit~- of California at 

Santa Barbara. 1991. 

133 D. Agrawal et a]. Cistrihutect multi-version optimistic concurrency control for re- 

lational databases. In PIGT. IEEE C'OAIPCO!Y'cs76, pages 416-421. San Francisco, 

California. 3lar 1986. 

1.17 R.  ?Lg~.a\val, \ I .  J .  C'asej-. and hI. Livny. hlodels for st uclying concurre:lcy control 

performance: Alternatives and implications. In Proc. of .-1C.11-SIG,IIOD 1985 

Irzf'I COJLJ: on .1lrzi1ctgrrnrnt of llcttcz. pages 105-121, 1985. 

[5] B.R. Badrinatli and I i .  Ramamritharn. S~vchronizing transactions on obje~t:.  

6EEE Trans. on C'omputcrs. C-:3'i(5):5-ll-S-17. 1988. 

[6] P. A. B e r n s t ~ i n  and 3.  C:ootlman. Concurrency control in d is t r i l~~i ted  database 

sj.stems. .-lCf.\I f 'ornpufi~tg S n r c ~ y s .  13(2):155-221, 1SSi. 

[ r ]  P. A .  Bcm~stein. 1.. Ilatlzilacos, and N. (;ooclrrlan. C'o~rcurrf~tcy C'ontrol c ~ l i d  

Recovery in  Dntrrbnst Sysfeins. Adclison-tl'esley, 198'7. 





[IS] J.N. Gray, R.A. Lorie, G.R. Putzulo, and l.L Traiger. Granularity of locks and 

degrees of c ~ n s i s t ~ e ~ l c y  in a shared database. Research Report RJ1654, IBM, 1975. 

[19] T. FIadzilacos and 1'. Hatlzilacos. Transaction synchronisation~ in object bases. 

In Proc. of ihc '7th SICI'.ILC'T-~-S/GA~~OD-SIC:.~R~' Symposrum on Principles of 

Dnlnbnsc Systems, page5 193-200, 1988. 

[20] Tlleo Haeriler. Observations on optimistic concurrency control schemes. Infor- 

nzatiotz Sy.sten:s. 9(2):111-120, 1984. 

[2%] H.T. I<mg and .I. T. Robinson. On optimistic rncthorls for concurrency control. 

.-1C:\f 7i~1tr.s. on I l n f n h t ~ q f  S!/,~tttns. fi(2):213-226, 1981. 

12-11 D. A. hlIenascc ancl T. Nalianishi. Optirtlistie versus pessimistic concurrency 

control rnechaltis~ris in d a t a l x w  rna r~agemc~t  s!*stcms. Inforinntion Systems, 

7 (  1):13- 27. 1982. 

[25] R..J.?'. hlorris and  \I..S. fJteong. Ptrformance analysis of locking and optimistic 

concurrertc c o ~ t  rol algoritl~ms. Prrforrnctncc E t d u r ~ t i o r ~ ,  3j'S): 105-1 la, 1985. 

[%I J.E.B. Moss. ,IJtatfd Tt.cri,scrcf iot:,;: i t  n Appronch to  Rt licl blr lli,s~rib~rted Com- 

puting. hlfIFr Press, ("aml~riclgc. hl A ,  1985. 

[Ti] U,  Praclel. G.  Schlageter., and R. Urilmd. Rcclesign of optimistic methocis: Im- 

proving performance and applicabiiitp. iu Proc. 01 fire ? l i d  i t t i (  '1 CorzJ'. on Daia 

Engin ~ering,  pages 466-413, Ik13. 19%. 

[2S] T. C. Rakow, J .  Gli, ant1 E. J .  Nculiolcl. Scrializahility in object-orientccl database 

systems. I11 Proc. of G l h  D(lta Etqinrcring, pages 112-120, Fbhruary 1990. 



[29] P. hit. Scllw-trz and A.  2. Spector. Synchronizing shared abstract data types. 

ACM Trnns. on C'ornpuicr Syst tms,  2:'T2'23- 250, 1984. 

[30] R.M. Shapiro and R.E. Millstein. NSW reliability plan. Technical Report 7701- 

141 1, Computer Associates, J u n e  1977. 

(311 R.M. Shapiro and R.E. Millstcin. Reliability allc-I fault rccoi7cry in clistril2uted 

processing. In Oceans '77' C'ori.ference Record: volume 2, 19?7. 

[ E ]  R.E. Steams. P.M. Lewis, and D.J. Roscnkrantz. Concurrency controls for 

database systems. 111  PI^. qf 17th Symp. or2 Foundations of Computer Science, 

pages 19-32, 1976. 

[33] R.H. T1:omas. A majority consensus approach to  concnrrency control for multiple 

co11y ctatabascs. r-ICl.\il T I U I ~ ~ .  ou D ( ~ f ~ b u . w  Systcrrts, 4(2):1SO-209, 1979. 

(3-11 W, E. W c ~ i l l l .  C'ommu t ativi ty-bascd concurrency col~t  rol for abstract data types. 

IEEE T T C L ~ S .  on l i o r n p u t r r s ,  :37(12):24SS-1505, dec 1988. 

[35]  W. E. 1i'~ilil. Local atamicity properties: h/Iociular concurrency conttrol for 

abstract data 15-pes. iiC.tf 7ia(l7?.s., on Progi*crmmiuy Lnngungcs n~zd  Systems, 

11(2):249-283, 19N.  


