
National Library
of Canada

Bibiiotheque nationale
du Canada

Acquisitions and Direction des acquisitiorls et
Bibilographic Sewices Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa. Ontario Oitawa (Ontarto)
KIA ON4 KIA ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
*&:A -:-"-s
1 1 1 1 3 ~ ~ I I L I U ~ ~ is govemed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Your 11% Vorre reference

Our hie Norre reference

AVf S

La qualit@ de cette rni~roformi?
d6pend grand
de la th&s
microfilmage.
fait pour assurer une qualite
supbriearre de reproduction.

S'il manque des pages, veuillem
comuniquer avec I3universit6
qui a csaf6rB ile grade.

La qualit6 d'impression de
certaines pages peut hisser a
dbsirer, surtout si les pages
originales ont 6tb
dactylsgraphiees I'aide d'rm
ruban use ou si 11universit6 nous
a fait parvenir m e phctocopie de
qualite inferieure.

La reproduction, m6me parfielle,
de ceiie microforme est ssumise
a fa Loi eanadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subskquents.

TO1lTARDS ADAPTIVE CONCtRRENCk7 CONTROL IN

Bir70clong C h i

B.Sc. Xic1ia.n University, China 1984

M.%. Xidian IJniversity, China. 1987

A THESIC: SIT13hIITTED IN PARTIAL FULFILLMENT

OF THE REQUIREhlENTS FOR ? H E DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Biaodong Cai 1'392

SIMON FRASER UNIVERSITY

March 1992

All rights reserved. This work may i10'i be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)
KIA ON4 KIA ON4

The author has granted an
irrevocable nsn-excfusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/&er thesis by any means and
in any form or format, making
this thesis available to interested
persons.

Your hie Volre reldrenca

Our lde Noire reference

L'auteur a accord@ une licence
irrbvocabie et non exclusive
permettani & la Bibliotheque
nationale du Canada de
reproduire, prQter, distribwer ou
vendre des copies de sa these
de quelque rnanigre et sous
quelqrre forme ejue ce soit pour
rnettre des exernplaires de cette
thbse 2 la disposition des
personnes int4ress6es.

The author retains ownership of L'auteur conserve la propri6t6 du
the copyright in kis/her thesis. droit d'auteur qui protbge sa
Neither the thesis nor substantial these. Ni la thQse ni des extraits
extracts from it may be printed or stebstantiefs de celle-ci ne
otherwise reproduced without doivent Btre imprimes ou
his/her permission. autrernent reprochits sans son

autorisatioa.

APPROVAL

Name: Biaociong Cai

Degree: hlIaster of Science

Titie of thesis: Towards Adaptive Collcurrcnc~, C'onrrol in Datal~ase S1.s-

terns

Examining Committee: Dr. Ramesh T\rislmamurti

Chair

Dr. Ti1;o Ka~xccfa. Senior Super\-isor

Dr. Jia-U7ci I-Ian, bupervisor

~ , $ ~ ~ ~ ~ b 4, / c) c j z
Date Approved:

PARTIAL COPYRIGHT L I CENSE

I hereby g ran t t o Simon Fraser Un ive rs i t y the r lghP t o tend

my thes is , p ro jec t o r exfended essay (t 5e t i t l e o f which is shown below)

To users of the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l or

single copies on ly f o r such users or i n response t o a reques? from the

I i b ra r y of any o ther un ive rs i t y , or o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users, ! f u r t he r agree that permission

f o r ~ u l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood t h a t copyins

o r pub1 f ca t i on o f t h i s work f o r f l nanc la l galn shall not be a l lowed

wi thout my w r i t t en permission.

T i t l e o f Thesis/ProjsctfExtended Essay

Towards Adapt ive Concur rmcv C o n t r o l in Database Systems.

Author:

(s ignature)

Biaodong C a i

Xarch 18, 1992

Abstract

In this thesis, we propose a new approach to adaptive concurrency control for database

systems. Unlike pretrious concurrency control schemes, ours is "data-oriented." We

partition a database into two parts, OPT and PES, depencli~g on the coiiflict rate on

each data item. -Access to data items in OPT is governed by an optimistic method

while access to items in PES is governed 13~. two-phase locking, Thercfore, our scheme

takes advantage of both optimistic and locking methods. The partition can be changed

d j ~ ~ a m i c a l l y to adapt to the changing conflict rates.

Based on a systematic study on optimistic methods. we develop several hybrid

concurrency control algoritl~ms that combine optimistic and two-phase locking meth-

ods. FITe also develop a systematic procedure t o produce such hybrid algorithms. We

desigr, a re-partition algorithm that car1 be esecutecl concurrently with transaction

processing, and a mechanism that traces conflict rate changes. In addition, we propose

an implenlentation for an adaptive concurrency control schcme. We further extend

our approach to muiti-version data base systems.

To m y purents, Huizhen, and Xin-Xin.

I wish to express my appleciation and gratitude to mj. supervisor, Dr. Tiko Iiameda,

for his advice. support. and patience. In addition to being a superb advisor aiding

me with the technical contents of this thesis, Dr. I k n e d a have given me a great help

in revisions and the test processing of this thesis. It was his insistence on precision

and perfection that ensured the quality of the thesis.

I would like to thank Dr. Jia-U'ci Han for his constant eilcouragement and help

during the years of my study a t Simon Fraser. He also spent valuahle time helping

me searching for a thesis topic. I woulcl also like to thank Dr. Peter Triantafillou for

his valuable comnents on my work. Every discussion with him was pleasent, for I

always came back \vith interesting suggestions.

I am grat,ef.;l to graduate stuclents and professors in the School of Computing

Science. They made my first years in Canada memorable.

Finally, my thanks go t o my family. I am indcbtecl to my wife Huizhen Tor her

supyort, self-restraint, and self-sacrifice. I am also indebted to my parents for their

love, education. and underst,aqding.

Contents

...
Abst rac t 111

1 Ir l troduction 1

. 1.1 Concurrency Control Schemes 2
. 1.2 OurApproach 3

. 1.3 The Organization of the Thesis 7

2 Concurrency Control Theo ry 8

. 2.1 Da.t.almse $stems S
c> 3 . s., Serial i~ahil i t~ 12

. 2.3 The Locking Scheme 15

3 Optiinist ic Scheme Revisi ted 21

. 3.1 Principles and Classification 21
. 3.1.1 Rea. dPhasn 23

. 3.1.2 VJalida.tion-a.nd-M'rit.e Phase: a Classification 24
. 3.2 Bacli\\?a. rd Checking 26

. 3.2.1 Serial Valichtion 26
. 3.2.2 Parallel Valiclation 29

. 3.2.3 Remarlis 33
. 3.3 Forward Checking 33

. 3.3.1 Serial Valiclation 34

3.3.2 Replacing Sgst.em-Wide C r i t i d Sections 36

3.3.3 Parallel Va.lida.tion . 37

. 3.4 Compaxison 35

4 Combining Optimistic and Locking Schemes 41

4.1 Introduct. ion . 42

4.1.1 Mot.iva.t.ion . 42

. 4 . 2 I-fybrid Concurrency Control met. hods. A Survey 43

4.2 011, Approach . 45

. 4.3 A Combined Algoritl~m -. An Esamplc 49

. 4 3 . 1 The Xlgorit. 11111 49

3 Correctness . 52

. 4.4 Syst. ematic Procedure 53

. 4.4.1 C:onfil.lingScct.io~ts 54

. 4.4.2 Locked Sections 55

4.4.3 1nt.cgra.tion . 56

. 4.4.4 Necessit.~ for 13-CS Overlap 59

4.4.j Re~t~rictilig Ovwlappisigs . 60

4.5 Some Coxnbined Algorith~ns . 61

4.5.1 Serial Forward Checki~ig + 2PL 61

4.5.2 Serial Forward C'he~liing + Deferscd IVrite-Locking 63

4.5.3 Relaxed Locking . 67

4.6 Going into h411ltivt:ssion World . 70

5 Dynamic Re-partitioning of the Database 76

. 5.1 Managing Interference 77

. .5 .2 The Tra. nsfer .4 lgosi t h1n 79

. 5.3 Revision of Algorithm 4.2 53

5.4 Correctriess Proof . 56

6 Keeping the Partition Up-to-Date 95

6.1 Design Issues . 96

vii

. 6.1.1 Counting Conflicts 96

. 6.1.2 Setting Parameters 98

. 6.1.3 Working Environment 100

. 6.2 Building the Controller 102'

. 6.3 Discussion 107

. 6.3.1 About . RCs and TDs 107

. 6.3.2 Status and Memberships 108

7 An Implementation Proposal 111

. 7.1 The Concurrency Control Table 112

. 7.2 Operations of the CM 115

. 7.2.1 Operations in OPT 115

. 7.2.2 Operat. ions in W o P 118

. 7.2.3 Operations in PES 118

. 7.2.4 Operations in PtoO and \;\it00 119

. 1.2.5 About Empty r-list or w-list 120

7.3 Discussion . 122

8 Conclusions and Future Work 125

Bibliography 129

C ter

nt roduct ion

In this thesis, we propose a. new approa.ch t.o acla.ptive concurrency control for database

syst.ems. Our approach comhines optimistic and two-phase locking schemes, ancl

is dyna.mica.lly aciaptahie to systcm workloads. In addition, our approach allows

the cla.t,a.l>ase system a.chinisi~rator t,o modify some pa.rarnet.ers during i t s operation.

The major contri1)ul ioli of o u r \vorl; is t11at it pl~)post.s a ilejr. \;iew point, to st,ucly

concurrency control. We claim t h a t our approach is "da,ta.-oricnt,ecl," i n contrast to

the previol~s studies, which were "transaction-oriesited."

In this introc1uctor~- cliaptcr, we first briefly review the n ~ a j o r existing concur-

rency control schemes. Then, wc i~:trocluce thc new approach by presenting our basic

assumptions, describing the way we attack the coricurrency control prohlelr~, ancl ex-

hibiting the special features of the ncw approach. Finally, we present the organizatiori

of the thesis.

1 .I Concurrency Control Schemes

Concurrency control for database transactions has been studied for more than fifteen

years [14. 18, 321. Therc arc threc major concurrency control schemes currently known:

(two-phase) locking [I &] , time-stamp ortleririg 130, 31, 331, and opti~nistic schemes [El.

In this section, cve briefly describe tlie basic concepts of the three schemes. Locking

and optimistic schemes will receive a more detailed cliscussion in Chapters 2 and 3.

respecti~.elg,. Technical tcrms used here without definition, stlc1-1 as transaction and

confiict. will be formally tlcfinecl i r i later chapters.

Lockzrzg is the most cnmrnonly used among the three schemes. In this sclmne, a

tranraction ntust acquire a lock on a data item in the database Ilefore it can access the

itcnt. Anlong locking methods, two-phrcsc Iotkzrly (2PL) [l I] ib t h e most important.

In 2PL. a transaction cannot acquire any more locks once i t releases a lock. So, a

transaction has two phase\, an esp~ncl ing phase during which it acquires all the locks

i t recluircs, followed by a shrirtking phase di~rillg w.v!l~ich i t releases the locks it has

acquired. 21'1, orders transartions accortling to the ordcrs of operations in conflict. It

is not dcacllock-free. 111 this thc-;is. "locking scheme" u-ill mean two-phasc locking,

1;tiIiEre tlie locking sthcnic. firnf-qturrtp order.~ng ('1 0) orders trarisactions by the

time points at which transactions start executiori. A transaction, when it starts

execution, is c?ssignecl a l~nique time-stamp. Attached to each da ta item are two

ti~nc-stamps. a read stamp and a write stamp. The read (write) s tamp on a da ta

item records the t imr-stamp of the last transaction that reads \writes) it. \\'hen a

transaction sec~uests to access a data item, the schecluler first compares the transac-

tion's time-stamp with tlie tilne-stamps of that itern. If it fincis that the item has

heen acccssecl bj, another transaction tvi th a newer time-st amp in a conflicting access

mode. the schecliiler will abort the requesting transact ion. Otherivise, the request is

grantcd. This scheme is deadlock-free.

Both 2PL and TO are p~ss1nzlsf7c schemes in the sense that they are always pre-

pared for conflicts. They cl~cck for conflict for every access request and grant the re-

quest only when granting it will not violate serial correctness. The optimistic scheme

is different from them, for it explicitly assumes that conflicts among transactions are

rare. An access request is grantcd immediately without any conflict checking. Con-

currency control is deferrecl until the end of a transaction. when checlii~~g for potential

conflicts takes place. T f a conflict is cletected. one or more transactions are aborted.

The optimistic sclleme is also deacllock-free.

1.2 Our Approach

Basic Assu~nptions

Our approach is based on four basic assumptions presented below. The order of

the assumptions reflects. to ~ o m e clcgrec, the relative import ancc of the assumptions

to our approach. They will be discussccl in detail in Chapter 4.

It is commonly agreed that, whcn conflict rates on data are low, optimistic met,liods

perform best. and when conflict rates are rnedium or high, locking methods perform

best. This is our first assumption and is called the perlformcince ass~smption.

It is likely that. in a database. conflicts are tlistrihutcd ;~nevenly over the d d a

j terns for a period of time. In ot l ~ e r words, the conflict rate varies from data it em to

data item. 14.c call it the non-unzforrn I I C ~ E S S d z s f r i b ~ ~ t ~ o n .

Given a specific application, the cor~flict rate, or the relative conflict rate on a data

item, may be roughlj, preclictal>Ic for a short period of time. The prediction r 2ay be

based on the experience and knowleclge of the database system adminlst~ator and the

execution histories. The prediction need not be precise, it need only give a : eneral

picture aboiii whether the confiict sate is low or not IOW, The aci.c.js focidity is the

third asstmption of our approach.

CHAPTER 1 . IXTRODC.lCTION 4

The last assumption is that, when tile number of data items in a database is

sufficiently large, it is very liliel~. that, at any time, there is a large portion of data

items in the database on which conflict rates are low enough to make optimistic

scheme the best concurrency control scheme for them. CVe call it the low conflict rate

assumption.

There will be more discussions on thcse assumptions.

Concurrency Control System

Rased on the a,l>ove fo11r a.ssumpt,iol-is, we develop an a.pproach to concurrency

contr01 that t,akes adva.nt.agc of the as~impt~ions and avoids some sfmrtcomings thak

t.he assumptions suggest.. Our approach is data-orient.ed Ixxause we take into a.ccount

the conflict rat,e on each data, it.em. Act,i.lally, t,he conflict rate on each data, item is

tlie deciding factor i l l cl-loosi~lg a a articular concurrent>. control rnet,l~od fos the data

item. More specifically. we partition t,he tla.t,aba.se into t,wo pa,rts, OPT and PES,

where OPT consists of those dat.a items with low corlflict rat,es, and I'ES consists of

those da.t,a items with mcdium or high conf ict rat,es. As suggested by their names,

access to data items in OPT is gowrneci by an optimistic method, while access to

it,ems in PI% is governed 11). a 2I'L mc~tlhocl. Therefore, we can take advantage of

both opt,imistic and locking metliocls.

Conflict ra trs on data items maj. change from time to time. Therefore, we should

p rov id~ mechanisms to lac-partition the database so that the partition reflects the up-

to-date cmflict clist ribut ion. 11:e proposc a concurrency corit sol system which contains

two mow f~~nc t io~ ia l componc~lis it1 addition to the scheduler. The system is depicted

in Fig. 1.1.

CHAPTER 1. INTRODUCTlOic'

Transactions I
Concurrency Control System

C

Hvbrid

Fig. ! .! Concurrency Contm! System

The controller is responsible for keeping the partition up-to-date. It may have

functions such as tracing conflict rate changes, making decisions about when a re-

partition should start and ~ h i c h items are to be involved in the re-partition. It can

accept commands from the database system administrator (DBA4), so, the DBA may

start a re-partition through the controller. The controller collects conflict rate infor-

mation from the schecluter and sends re-partition commands to the re-partition pro-

cessor. The re-partition processor is responsible for re-partitioning. Re-partitioning

must be executed concurrently wi th transaction execution.

Major Problems to be Solved

Clorresponcling to the three syst,em components, there are three major problems to

be solved. In our approach, a tra.nsaction may access different data, items tmclcr differ-

ent, concurrency ~ 0 1 i t r 0 1 r ~ ~ ~ i . I i o ~ I s . 011s first problem is 1101s t,o coosdina.te optimistic

a,nd pessimistic n-iethods, two seemingly conflicting methods, so that, ser ia l i~~bi l i ty is

ensured. The second problem is how to dynamically re-prt i t ion a data.ba5e while

transactions are being executed. The third problem is how to predict the conflict rate

on a. dat,a, item, and wha.t criteria. to use in putting a da.ta it.em in OPT or PES. These

problems will be a,ddressed in Chapters 4, 5, a.nd 6, respectively.

Special Features

Our system has the follon.ing special features:

e When the database is properly partitioned, it takes adsantage of both optimistic

and locking schemes.

It is adaptive, and is virtually continuously adjustable. Thc number of different

partitions is 2". where 71 js the number of clata itcms. So, when the number

of clata items is large, the concurrency contro! policy can h~ adjusted virtually

continuously.

s It provides an interface to the DBA. An important consequence of this is that the

DBA's knowledge can lse utilized to ac lkve more efficient concurrency control.

CHAPTER 1. INTROD t1CTION

o T h e hyhrid sched-ller introduces only a. little a,mount of a.ddit,ional overhea,d.

e A pure locking or optimistic scheduler can be realized as a special case.

1.3 The Organization of the Thesis

Chapt,ers 2 and 3 provide preliminaries. In Chapter 2, x e introcluce a concurrency

control t,heory which will be used as the formal framework for the subsequent chapters.

In C:haptJer 2, we also discuss t,he 10clii11g scheme using this framework. Cl~apt~er 3 is

a sjlsternatic study of the optimistic scheme.

Chapters 4 to 7 constitute the main body of this thesis. In Chapter 4: we discuss

our motivation. present sevtral hybrid schtdulers, and develop a systematic procedure

for combining optimistic and locki:~g sche~ncs. In Chapter 5, we ctevelop algorithms

for dynamic re-partitioiling of a database, and in Chapter 6, we discuss some issues

for t h ~ controller and propose au a ~ ~ t o m a t i c controller. In Chapter 7, we propose an

implen~ent at ion for adapt i1.c' c o l~c~~s rcnc i - control.

Finally, in Ct1aptc.r 8. wc concludt our discussion and point to possible future

work.

Chapter 2

Concurrency Control Theory

In this chapter ire provide a formal frarneivorli for the sulxequent chapters. We

present moclels, definitio~is. and basic theorems of concurrency control theory. The

framcworli is strongij influenced 1)y [fi, 7, 9).

Later in this chapter we formally discuss locking methods as an application of the

frarneworli. The clisc~~ssior? will also serve as a pre!iminary to Chapter 4, where we

combine locking and opiiniisti~ schcmcs.

2.1 Database Systems

In this section, we present a clatabase system model for the stucly of concurrency

cont.ro1.

A database consists of a set of nainecl data items. M'e clenote clata i t ens by lower

case letters, a , y, z , etc. Each data item has a value. The values of the data items a t

any time comprise the stntr of the database. Among the possible states of a database,

there are a set of states that reflect the '.correctn information of the application. We

call them cor~sis trn f states.

Users access a database by Ineans of transactions. A transnctio~z consists of a

Begin command, followed by a squence of Read and/or f4kite commands, which are

followed by an End. We use TI, T2, . . . , T,, T,, . . . to clcnote transactions. The Begin

and End conm~ands mark the Beginning and end of a transaction. A Read command,

Read(x), returns the value of data item n. in the current database state. A W i t e

command, TVrife(x, new-value), creates a new database state in which s has the value

new-value. Each transactiori represents a self-contained computation. It is assumed

to be "correct," i.e., a transaction. when executed alone on a consistent database

state. will take the clatabase to a new consistent state. An incomplete esecutjon of a

transaction may. however, put the database in an inconsistent state. Therefore, the

atomicit"? df trmsactions mwt be ensured, i.e., either its full effects must be reflected

in the da.talmse or nothing at a.jl

-4 transaction. however, cannot directly access the datalmse. It only submits, as

requests. its commancls to a tiatahasc management module known as the transaction

manager (TM). which is part of our database system model.

A dnfabrist- system (IIBS) contains four co~nponents (see Fig. 2.1): a tmnsac-

t1011 mnnngtr, a schedcdtr, a dutu rnnnciye~~ (DM) and a datalmse. The TM receives

commands fro111 transac%ions and passes t l~ein as requests to the schecluler. It also

manages private wosli space for tia~lsactions. A scheduler controls the concurrent exe-

cution of transac~ions. It ~x=-ceivcs Rcgin, Read, Il4-ite1 a r~d End rcyuests from the TM

and issues dm-read, dm-rr-rife, prcrrtrite, abort, and commit operations in responcli~ig

to the requests. dm-reads and dm-rvritrs are sent to the Dh4; prerwites ancl aborts

are sent to the Th4; and commits are sent to both the Th4 and t l i t DM. The DM is

responsible for accessing data items in the database. It provides two data manipula-

tion operations: dm-reacl(s), whicli reads data item ,T; ancl, dm-rvritc(s, newvalue),

which assigns the value t~ew-\alue to data item n.. Note that din-rvrite(x, new-value)

is a logical operatio~l recogni~~cl by the DM. It does not necessarily mean "write to

the database directly.'' It only makes r q s new-value generally visible, and eventually

stores new-value in n: in the database. In fact, the DM nlay first write new-value to

the cache ancl then flush it to the database. We assume once a value is written in the

CHAPTER 2. COMCURREXCY (iC)ArTR@L THEORY

cache, it is generally visible.

Transaction 1 Transaction 2 Transaction n

Fig. 2.1 Database System

CHAPTER 2. CONCl.i'RREiVCk' CONTROL THEORY 11

T h e actions taken bj. the DBS upon rcccipt of the four types of commands, Begin,

End, Read. and Wi te . from a transaction are described below:

Begin: T h e T M assigns a "tramaction id,'? ancl initializes a pr imte work space for

the transaction.

Read(x): If r is already in the transaction's private ~ o r l i space, then its value is

returned t o the transaction by thc TM. otherwise, the T M passes it as a request

t o the scheduler w11ich will decide whether to grant i t immediately or to delay it.

If it is granted. the scheduler issues a dm-read(x) operation t o the DM. The DM

returns the current \ d u e of s to the TM. which copies it i l l the tra~lsaction's

private ~ ~ o ~ l i space ancl gi~res it to the transaction. If dclayecl, the request is

placed on a queue intcmal to the scheduler. Later, the scl~eduler may decide to

grant, it.

Write(r. ncw-valuc): Tllc scheduler first decides if the request should hc granted. If

so, the Thf w ~ i t r s nmr--.r;llue i l l the transaction's privatc \~o r l i space by exec~rting

prewite(.r, new-*itlw). T l ~ i s has the effect of overwriting the previous value of

n: in the private \t~orli space, if a copy of n: exists in the private work space.

Otherwise. n. is created in tho i~or l i space wi th the \.slue new-value. Note that

it docs not alter an\. 1.a1ucs in the database.

End : The scliecluler checks w l ~ e t h ~ r allowing the transaction to commit, (by making

its changes permanent in the database) will leave thc database in a consistent

state. We call this step vcd~dc~t ion . In the event that it will not, the scheduler

issues an abort operation. The transact~on (maybe some others) will then be

aborted. T h e data structures in the sched~der, such as read-/write-locks and

reacl/write sets (t o l)e introduced in later chapter.;), for the aborted transaction

will bc discarded. The private work space for the aborted transaction is cleared.

Otherwise, the scheduler issues a dm-write operation for every da ta item in the

transaction's private wo~ l i space whose value has becn created or changed by

a prt-write opcratiori. This has thc cf f~ct of making thc last change to n: in

the pr ivak work spa.ce visible by other transactions a.nc1 causing it eventt~ally

t o become a pernmnent va.lue in t,hc database. -After all dm-writes ha.ve been

carried out3, a commit operation is issued, the private work space is discarded

a.ncl t , lx tra.nsa.ciion is coinplctecl. \Vc a.ssume that once a dm-write is issued,

its effect will be event,ila.lly seen in the dahhase and the tra.nsa.ction cannot be

aborted thereafter. Bcca.use a partial result of a, transaction is not allowed t-o

exist in the da.ta.ba.se, the DBS ensures that, once a clm-writ,e is issued for a

transaction, a.11 the dm-writks for the transa.ction will event-cia,lly be issued. In

other words, the tra.nsaction will be committed. The mechanism ensuring this

property is the recovery mechanism tlmt is beyond thc scope of this t,liesis.

To simplify the cliscussion of our algorithms, we adopt t h e follo.ivirig assumption,

Assumption 2.1 rl dnln ifel;? docs n o f erisf in n tr.nnsact?orz's yritmte work spnee

until ~ ~ n d .trnless I ! ha,.. b t ~ r l rcnd or. w r i t l ~ n espitcitiy b y thmf t ? m s n c f i o n .

2.2 Serializability

Serializability is the most,-commonly used corr~ctness criterion. define serializ-

al~ili ty in terms of coliflicts.

It is dm-reads and clm-writes that actually acceis the datctbasc. Therefore, we

mocle'i thc esecrition of transactions using din-reads ant1 dm-writcs ratEic.r than Reach

and lVi.ites. We rcfer to tlln-reads and dm-writcs as tl:rr-opti*c~flons, anti simply call

them optiwtlo~zs when it is clear froln the contest. \ire say that two dm-operations

eo~i.fiicf if they art. horn rlifft-rent transacil;ons.' they operatcJ 011 t h e same da ta item,

a.>d a t least one c?f thcm is a dm-write. We also say that trio transactions coaflict

with each other if they have operations that conflict with cach other.

'This condit ion is j u s t for t , l ~ convenience of tliscussion. \Ye do not consider t,he intra-t,ransaction
concurrency control.

CHAPTER 2. CONCtlRRENC'l'- COXTRO L THEORY f 3

A transaction can exist in one of tlie three states: clcttve, comneztted(C), and

nbortedjil). Committed ancl aborted are permanent, stable states. Active is a tem-

porary state. Eventually i t will be converted to either committed or aborted. A

tmnsnction, Ti, i; formally mocleled as a 3-tuple (0,, S,, <,), where

s 0, is the set of all clnl-operat ions issued iin behalf of 7;.

0 St is a set of synchronization events which contains a A, or a r,, and some

othcr events ~11r.h as locking and unlocliinrz;. Tlic types of el-ents depend on the

concurrency cont rol nlcthod uscd.

e <, is a partdial ortles over 0, u S, such that

1. all t h r cirn-reads prccecle all the dm-writes.

2. if A, E S,. then no clsn-write I~elongs to O,, and for any dm-read r , 7'<,.4,.

:3. i f C', E S,, thcu for any dm-operation p E 0 1 , p<,Ct.

4. i f A,, C', pl S,, there are onlj- dm-wacls in 0 , .

Thc conditions for <, refled the clisc.us~ion of End command in thc last section. As

clescribed in t lie last sc-ctiori, all t tic tlni-reads prcccde tile valiclation of a transaction

which piwedes all the clni-nrritc.s. Tile valiclation has not heesl represcntect ill the

formal modcl j7et,. It sllo~tld t dcc placc where the processillg of End co~nmand starts,

and it can be n~odclecl by putting some synshro~iization events in S,. When a trans-

actiori passrs its ~ ~ l l i d a t i o n , i t i.; cc~rtniu tliat comniitting thc transaction will take the

database to a ncw consktcnt i tatc. For an ac t iw transaction, such certainty does
r 7 not exist. This rnoclcling of tsansact ions is open-endecl. 1 he syncluoiiizatim event

set of a transaction is not con~plctcly spcdicd . \Ire have cleviwd the above model

because our discussion will rcfcr to cliffercnt concurrency control schemcs and their

conibinatio~~s. Pt'e call both an operation and a synchronization event uclions. We

will omit the subscript oi 0 , , S,, ancl <, when it will causc no confusion.

Let T= {TI = (O , , S1, . . . , Tn = (On, Sn , <,,)I be a set of transa.ctions. A

history H of aa execution of T is clefirwl as a. 3-tuple (ON, SJI, < H) s ~ c h tha,t

CHAPTER 2. C'O!\rT'IIRRE:YC''l' CONTROL THFOR1'

e (Uy=l<I) C: < H , and for every pair of conflicting operations p arid q in Or+ either

p < ~ q or 6 u P .

As for trarisactions, the subscript 1-1 may by omitted from O H , and <t i .

r , A complef& history is a history with no activc transactions. I l le commrt projection

of a history ti, tlenotecl C'onmit(IT), is the history ohtaincct by cielcting all the ac-

tions of uncornmitteti (i.e.. ahortctl or active) transactions fiam I!. Clearly, a conirnit

projection of any history is a complete history.

Thew is no coilditio~l on sy~lclirotlizatiori etwlts for ecl~~ivalence. So histories pro-

rtuceci I->? sclleclulers usiilg cliffercnt concz~rrcnq~ control schemes could be equivalent.

This notion of eqtlivalencc is the so-callscl conflict rquianffnce, Two histories are

eqrtiuale~~t uncles this not,io~i i f t,ltilir orclcrs of the conflicting operations arc consisterit

with each otllcr.

4 cornplete history H is scvirrl i S for every two trausactions T, and T, tha t appear

i l l H , eitlicr all operations of T, appeal. in 1 1 bcCorc-l all operatiom of 'f; or vice versa.

A sir& tralisactioli is assutnccl correct, By itlcluction, a serial history is also

correct, i.e., it will take the ciatalmsc from one consistent s ta te to another consistent

state. A c o ~ l c u r r e ~ ~ t execution of a set of transactions wodcl also he corisiclerecl correct,

if its effect is the same as a serial ~xecut ion of tlie same set of transactions. Formally,

a history I1 is sericzlizntr!~ i f Commit (H) is equi\-dent to a serial history. The task

of concurrency control is to schedule concurrent trartsactions so t h a t the resulting

history is srrializable.

We can de tcmi i~ le wl~ether a history is serializalsle by analyzing a graph de-

rived from the history callecl the serialization graph. Let I1 lse a history over T=

(T I , . . . , T,,) . Tilt x r i n l i s n f ion g i ~ ~ p l ~ for II , cfenoted SG(If), is a directecl graph wl~ose

lmcles are transactioi~s in T that a ie committed in I3 anci i t has a11 edge T, 4 ri; if

and only i f onc of T,'s operations prcceclcs and conflicts with one of T,'s opc~at ion in

14. An cclgc II: i T , i r~~p l i c s that 7: must appear bcf'ortx Tj i l l aaiy serial history ittat is

cciuivaient to Contnlit (11). If tvr. call find a scsial history 11, over t h e conlrnitted trans-

actions in II consistent n i t 11 all etlgcs i l l SG(fIj , tlicrt IT, is cquivalei\t to C'omniit(fIf,

and so I-! is serializal~lr~. :Is st aft-ti i l l t 11~. t hcol~w lwlonr, n'c can clo this as Ion8 as

SC:(H) is acj~clic..

2.3 The Locking Scheme

In this section, wc. clisrilss 2P1, 11sing the c .one~~rr (~r~cy control t h o r y just prescnt,ed.

2PL syncl~ronizcs Reads a n d 'i'l+itc.s by csplicit i~, c l c t t ~ t ilig a n d prwcntirig conflicts

between concurrent opcratio~is. i t uscs two types of iocics, read-locks and write-locks,

to synchronize the conflicting operations. A read-locli ant1 a wl.ite-locli oli the same

da t a i tem conflict with each otlicr. So do a write-lock and ariothw write-lock on the

same data it en^. The owncl.ship of locks is governed hj. 4 rules:

1. Before reading data i tern .r from the database f more pl-ccisely, before a dm-

scad(zj is issued), a transaction must own a read-lock on .r. Hcfore tvriting n

13ew value of s into the database (more precisely, before a dm-write(.x] is issued),

a transaction must own a write-lock on s.

2. Diffrrent transactio~ls car~not sirnultaneousiy owr1 conflicting locks on t h r same

clat a item.

Tlie last rule iil>o;.c caliscs ci-cry transactio~i to oljtain loclis in two phases. During t h t

growing pf~ase> ht t1.altsac.t ion olitainrj 1~:tcIis without ~.clcasing any locks. By releasing

a. lock the t'ra~lsacticxi enters the slirinking phase. Dtlririg this phase the transaction - 1 rcleascs locks, and. by rule 4. is pr01iii)ittd from obtaining acfditiona~ locks. 1 nere are

two important poixts: tlte tirnc at whish the tra~lsact,ion !las acquired all the locks it.

requires and t,hc t imc at wllic.1-I i t s tarts releasing its li>cks. Tlle former is called the

lorXw1 pain/ jdenotccl as 1,P) and the lattcr is callrcl thc trnloc.kiug point (cfcnot.ed as

i iPf . U-lien the tratisac.tiorr t c ~ m i ~ l a t c s (cornntits or aborts). all rcrnairting locks are

automat icallj. rekauecl.

\ITe show that 2PL is correct i l l our. frainework. Tliat is. c ~ c r y l~istorj- proclucecl

bx a 2PL schedrtler (called a 2P1, 11istot.y) Is serializaljlc. To st2c !hi.;. let us stuciy the

properties of' a 2PL history.

Thc synchronization event sct . F', . of a transactio~i. 7;. s c l l t ~ l ~ l ~ c t l 1,:. a '3PL whed-

ulcr rontains tlir follotr.ing four tj.pes of syncllronizatio~i ei-crits. whcrt -1% is a data

i tem

rl,(n.)- the scheciuler sets a wad-lock on s on Lchalf of ?:;

~ c I , (. r) - the schetltilcr sets a !\-rite-lock on .r on hcl-raIf of 2:;

ru ; (a) - the schedtiler relea.ses (i.e., unlocks) a read-lock on s on behalf

of T;;

umi(a)- t,he scheduler releases a write-lock on s on beha.lf of Ti.

Let o , (a) be a dm-operation of T, on data item a , where o stands for either r or w. B y

rule 1. T, must own a lock on 2. before it executes o,(n.), i.e., ol , jx) < o , j z) . B y rule 3,

Ti cannot release the lock on nr before o , (a) is processed. That means o,(n.) < ou, (z) .

Formally we have

Proposition 2.1 Let liT be n 2PL history. If o,(n.) is irz Commit (H) , then o l , (s) and

ou,(n.) n w in C'nmrnitiff) a n d c / l , i . ~) < o,(.r) < ou,(n.) .

Suppose there are two operation3. p,(s) of T, and cl,fz) of T J . that conflict. Thus the

locks that correspond to these operations also conflict. By rule 2; T, and T' cannot

simultaneously own these locks. Therefow. the schecluler must release the lock corre-

sponding to one of the operations before it sets the locli for the other. 111 terms of the

preccclence relation <, we Ila-1-e either p ~ , j ~) < q l J j x) or rluJ(n.) < p l , (z) .

Proposition 2.2 LC! Irl br n 2PL history. If p , (. ~) and rl,(.z.) (i # j) are conflic2ing

operntions z r r Cbmrntl(H), f h f n rltlltr p , (r) < g l , (s) or CJIL~(.T) < p l , (a) .

Now let 11s look a t rule 4. It is ecjt~ivalent to saying that every locking operation

of a transaction must precede any adocking operation of that transaction. In terms

of the precedenct relation. pl , (a) < p , (y) for all operations p, and (I,.

Proposition 2.3 Lef /I b t n SPL history. f i r nny pl,(a) and (I U , (I J) of T,, pZ,(x) <
qu, (y) for ung dain ifcrrrs s and y .

Now we shoiv that a 2PL history is serializable by showing that its serialization

graph is acyclic. Recall that SG(H) has only committed transactions as its nodes.

CHAPTER 2. CONCl!RRENCY CONTROL THEORY 18

Lemma 2.1 Let H be n 2PL history, and suppose Ti -+ Ti is in SG(H). T h e n , for

s o m e dain item x and sonre co~zflicti-lrg operations p;(z) and q j (a) in H, p u i (z) <
q l j (x) *

Proof: Since Ti t Ti, there must exist conflicting operations p ; (z) and q j (x) such

that p;(x) < q j (x) . B y Proposition 2.1%

By Proposition 2.2. either pn,(.z) < ql , (x) or qu , (z) < pl,(n.). In the latter case, by

(1) and (2) and transitivity, we wouicl have FI,(.T) < p , (s) , which is ruled out. Thus,

pz~,(rt.) < ql , (r) , as desirect. C

Corollary 2.1 Lct H be a 2PL h:story, and let TI -+ T2 -.t . . . -+ T, be a path in

SG(M), where 12 > 1 . Then, jor sornr clcita lterns s aird y, and some opemt ions p l (x)

and q,(y) in II, P I I ~ (S) < ql, ,(y). o

Theorem 2.2 Euery P L /?is tory E l is serinlisctbk.

Proof: Suppose, by way of contracliction, that SG(E-I) contains a cycle TI -+ T2 -t

. . . t T, -+ T I , where n > 1. By ("orollary '3. t, for some data items r and y , and

some operations p l j r) and q , (y) in Commit(H), p u l (z) < p l l (g) . But this contradicts

Proposition 2.3. Thus SG(H) has no cj-cles ancl so, by the Serializability Theorem, H

is serializable.

2PL has a well-known drawback of causing deadlocks. 14';. consider that a deadlock -7

happens because a 2PL schc-cluler fails to schedule concurrent operations geniusly. So,

a 2PL scheduler needs strategies for detecting ancl rwolving cleadloclis. The overhead

incurrecl in these tasks should be counted as the overheacl of 4PL method. It is worth

CHAPTER 2. C'Oi'v'CLrRRENC3' COIVTROL THE0 RY 19

ment ion ing that, when deadlocks happen, some t.ra,nsactions m u x t be a.borted. Thus

rol lbacks ca,nnot b e avoided if a 2PL scheduler is used.

N o w we present a dcmonstrative implementat ion o f the 2P1, scheme, in order t o

give t he flavor o f a lgor i thm descriptions in the subsequent chapters.

Q When it receives a T(mt-IC7.) request from transaction Ti:., the scheduler does the

following:

if n. is in 71's private work space %By Assumption 2.1, x was read or

%written by T,. So .r is already

%locked on behalf o f T,.

then read .I- from there

else if s is write-locked by some other transaction

then block 7; until the read-lock can be set on r

set read-lock on a

r h - ~ w i O (. r)

When it receives a \3i.itr(.r, ~~crr--irill~lct) request from transaction 1:, the scheduler

does the following:

if a is read- or write-locked by some other transaction

then block Ti until the write-lock can be set or! n.

set write-lock on .I.

pl-ervl-it,e(rr, new-vahe)

e When it receives an End command froin transaction T,, the scheduler does the

following:

release all the read-locks

CHAPTER 2. CGNCCiRRENCI' CONTROL THEORY

use dm-writes to reflect Ti's updates to the database

release all the write-locks

commit

Chapter 3

Optimistic Scheme Revisited

Among thc t hrre schemes of concurrcmcy cont ld , it appears that the optimistic scheme

has been studied less estmsi\-ely than the ot,lm two. In this chapter we present

systcniatic disc~~.;\ions on opt irnist ic concurrency control. Mrc st art with a cliscussion

of the gcncral characteristics of optitnist ic scheme. Wc t l l c ~ ~ examine the read phase.

,411 of the optimistic rnct hods to 1~ ciiscussed in this t liesis have many features in

common in this phasc. Nest, wc cliscuss thc valiclatiori-and-irlrite phase, and classify

optimistic met hods. Finally, each class is st utlicd in detail.

3.1 Principles and Classification

I1 is clain-ictl in [22] that tlie 1ocliii;g schclnr has tllc Ihllotving i~ilierc~nt disadvantages:

e Locli maintenance and deadlo~1i detectio~i incur a subst~alitial overhead, e.g.,

10% of the total exectitioil t ime ir; System R [17].

e There are no general piirpose clcacllock-frec locking niethods tha t always psovicie

a high degrec of coIlcurrclicy.

m . 4 PTER 3. OPTIMISTIC SCHEME REVISITED

e Concurrency is significantly lowered whenever it is necessary to leave some hot-

spot data items loclicd while waiting for a secondary memory access.

Because of the possibility of failurts, a strict two-phase locking protocol [7] has

to be applied to cns1a.e recoverability [7], that is, locks have to be kept until the

transaction commits.

Locking itlay he necessary 01111. irt the word case. that is, i n most cases locking

is too strong a preventive mc.aswe.

The optimistic conci~rre~icy control scheme is designed to get rid of the locking over-

head. It is optimistic in the sensc that it explicitly assumes that conflicts among

transactions are rare. Thus it relies for efficiency on the hope that conflicts will not

occur frecluently. Since no blocking is possible, optimistic met hods are deacllock-free.

Concurrency control is clc4erred ~tritil thc end of a transaction. when some checking

for potctltial conflicts has to take place, If a conflict is detected, a ..pessirnisticn view

is takcn: t hc coliflict is resolved by ahorting the transaction. Hence, this scheme relies

on trarlsactiori roliback a.; a coutrol rt~ecl~anism.

The esecrltio~i of' a transaction consists of 2 phases: a read phase anel a wlicfatim-

anrl-write In its ~md p h n s t , a transactio~l reads data itenis, pcrforms required

computation, and writes new values of data items into the pritatc work space by

prewrite operations. tVllen i t firiishes ail its actitrities and is ready to commit, the

transactioi~ issuc%s m i End reclucst arid procceds to its ~jn l idnt ior t -nnr l -u~r i te phase.

The schctluier checks wltcther or not the transaction was in conflict w i th any of the

transactions o p e r a t i ~ ~ g coricul.rcntl~.. Sincc no locks a r t hcld. the data itcm read by a

transaction may h a w been ~nodifiecl by concurrent transactions. If so, some conflict

resolution policy has to be applied. If no conflict is clctected, the schcdulcr rcflects

the transai.tion's modification in the da,tabase by exec::!.ing dm-svrite pera at ions a,nd

then commits the transaction.

'In thc literature, valiciatio~l and t~rit,e are usually two separate phases. For the convenience of
discussing combined algorithms, we merge these two phases irito one. In Chapter 4, the validation-
and-write phase will be subdiviclecl into subphmes.

3.1.1 Read Phase

The part of an optimistic scheduler responsible for the read phase of a transaction

consists of procedures i11~01ied up011 receipt of Begin, Read, and Mi.ite requests. The

procedures for Read and Ilinife are the same for all the optimistic methods and are pre-

sented here separately froln the proccdures for the other requests. The procedure for

Begin varies frorn metliotl to nicthod ant1 is discussed together with the corresponding

valiciatioli-arici-wi t c pliav.

To cIet,ect conflicts, an opt.i~riist.ic scllecluIer ~na.inta.ins two set.s: rend-set (RS;)

and w r i t e - s e f (1,1-,S;;) for each t.ransaction Ti. 1Jpon receipt of a R e d or \(kite, the

scheduler sea& as follons

s When it receives a Rcad(a.) request f rom transaction 71, the scheduler does the

following:

if n- is in 7;'s private work space

then read .I. frorn there

else dm-rea d(. r)

R.q, := R,q, u (.r j % See Remark 1.

e When it receives a \\i.itr(n.. n ~ w - v a l u e) request f r om transaction 71, t he scheduler

does the following:

Remark 1: 13y Assurnpt.ioli 2.1, s was prr:viorlsly rcad or writtcx by 7: i f n. is in Ti's

privat,e work spa.ce. If :r wa.s read, it is a.lrea.dy in ASi. If n: wa.s writt,en, this Rea.ci

request will get the value writ,t.c~~ by 7; itself.

A property of an optimistic schecluler that is worth rnrntioning here is that for

every dm-operation there will bc an addition of the data itcrn to the corresponding

read-set 01. write-set.

CHAPTER 3. OPTIMISTIC SCHEME REVISITED 24

3 - 1 2 Validation-and-Write Phase: a Classification

The reacl phase of a transaction, as just cliscussed, is fairly unrestricted. A Read or

1471-ite request is ilnrnectiately processed without any checking for conf icts or delaying.

The burden of ensuring serializability is left t o the validation-and-wlrite phase. En-

sliriiig scrializahilitj- in\wl~.cs two distinct tasks: d ~ t e c t i n g conflicts that may possibly

violate scrializal~ility, ancl resolving them if there are any.

Now lct us exa.mine the first t,a.sli. i.e., clet,ecting conflict,^. Suppose transaction Ti,

with rea.cl-set RSi ancl writ,e-set T.i.'Si, is a t the beginning of its valicla,tion-and-write

pha,se. Let TJ be an a r l~ i t r a r>~ transaction t1la.t runs concurrently with Ti, and let

RSj , IVSj 13e its reacl- and ~rr i t r -sets , respectively. A st,ra.ightforwa.rd way to detect

conflicts involiring Ti is to exam ice RS; n IVSj and IVS; i? (RSj U IVSj) for every

such Tj. A non-empty intersection inctica.tes t h t conflicts exist between Ti and Tj .

I-lowever, not every confiict woultl result. in the violation of serializa,bility. In fact, i~

conflicts occur in a n order consistent. wit,h the scriatizattion order, then no ha.rm is

clone. In determining the serialization order, we take a.clvanta.ge of the fact that in

ever): t,ransa.ct,ion all t,he dm-rcacls happen in its reacl pha.se a , ld all dm-writes in its

va,lidation-a.11~1-write phase. Consider the following scena.rio (Fig. 3.1):

Tk t - - - - - - - - - I
BOT i EOT COT

Fig. 3.1

CHAPTER 3. OPTlAillSTIC SCIIEhlE REVISITED 25

07 In Fig. 3.1, T,, l , , and TA are transactions. and BOT, EOT COT are synchro-

nization events. R O T marks the beginning of a. transaction. It is also the beginning

of the reacl phase of the transaction. EOT marks tllc enel of the reacl phase and

the beginning of the valiclation-and-write phase. C O T narks the completion of the

transaction. T, rcpr~sents any transaction whose validation-and- writc phase overlaps

the read phase of T,, and Tk represcnts any transaction whose read phase overlaps

the valiclation-and-tvrite phase of T,. Suppose T,, T,, and Tk will all commit eventu-

ally. As the serialization order (i f any) we use the order in which they come across

their EOTs. That is, T, is orclerccl before T, whicli is ordcred before Tk. Imagine

the moment when T, comes across its EOT and el~ters its valiclation-and-~\rrite phase.

Having aclopted the a,bo\ie older, \ye must rna,lie sure that there are no confiicting

operations pi E Oi a.r?c: clj E Oj s~ich t.hat 12; < qj. For this purpose, we need only

check for RSi n 1YSj = 4 a.nd I,Fr,Si n T!+" = $. We need not clwck RSj f l lVSi = ci,

l~eca,nse all the elm-rea,ds of Tj precede all the dm-writes of T:, i.e., the orcler of any

conflicting opera.tions in RSj a.nd IYS; is consistent with the seria,liza.tion order of

Ti and Tj. Simila.rly, we need to check IVS; n R,Sk = Q and W,S, n 1VSk = 4 with

Tk , but not RS; n 1VSk = 4. Furtl~er, since every trallsaction is chcclied for conflicts

with the o t~ l~e r concurrent transact,ions, dup1ica.ted cl-iccl;ing sho~licl he elimina.ted. Ti ,

for esample. need only be checked for either RS; n IV,5j = 4 aancl IYS; f l W S j = #,
or 1VS; n ASk = 4 and W$; n 1;IT,Ek = 4. The former, i.e., cl~eckiilg RS; I? W S , = #
a.ncl l;I/'Si n WrSj = @. is callpel backward ch,eckin,g and the latter is called forward

checking. The terms forwa.rd ancl hackward a.re from [%(I]. [Z], a.s well a.s other pa.pers

[3, 23, 12, 131. cliscusses only haclward ~lieclii~lg. Checking ca.n be clone serially or in

 pa.^-allel. Therefore. thcsc are four coml)ina.tions of chccliing st.sa.tcgics: srr.in1 fortuarclj

. s e r i c ~ l b(rc,kuwrd, p (1 1 ~ 1 1 l t 1 J b ~ ~ c i w ~ ~ l . al~cl p r v l l r l buc.l;.cr!o rd. l!3ac~k\sartl cl~ccliing with sc-

rial ancl parallel valiclitt.ion will be clisc~issecl in Section 3.2. while forward checking

will be discussed in Sect.ion 3.:3.

Once a conflict that may violate serializability is cliscovcrcd, resolution is straight-

forward. Since the conflict has already liappeneci, tllcre exists no alternative hut

to rollback some i11vol\wl tral~sact~ions. 't'ltis topic will he tliscussecl in detail in the

CfM PTER 3. OPTIMISTIC SC'IlEllE RE VISITED

follo\ving sc.ctioii<.

3.2 Backward Checking

Starting from this section, we will study optimistic algorithms one by one. Serial

and parallel backward cl~ccking strategies will be examined in this section. Forward

checking will be discussecl in the nest section. Finally, we compare these algorithms

i n the last section of this chapter.

3.2. I Serial Validat ion.

As cliscussetl a b o ~ . ~ , tra~lsaction 'I) is c1iecl;cd for RS, n I f ' $ = p and IT',$, I7!Y,Sj = Q

in 1;acl;wal.d cllcckinp, \vIi011 it c.t~tt~!s i t 5 \alitlation-antl-nl*itr phasr., n.l~c-IT T, is any

t,ransaction whosc ~aliclation-arid-witc phase overlaps T,'s rcacl phase. hfeanwhile,

another transaction ma\. entcr its \,aliilation-ancl-\\.rite p l ~ a w ~vhile the \.alidation for

T, is proceeding. \I;c call sintp!ifl\. the prohlcm by thc rule that there l x a t most

onc transact ion Iwing \.alitlatcd a t any t i m ~ . A11 thc validation-ancl-tvrite phases are

t hcrcforc ewcti t td srrially. IIt>ncc t Iic nanle serial validation. As a result, there is no

nred to cllecli 14'.S, n Ii7,5'2 = Q, I ~ ~ c a u w . according to this rulc, all the ch-wr i tes are

performccl in an order consistent with the sc~kl iza t ion order.

We now formally tIescrilw conctlrrcncy control basccl on scrial validation and back-

ward checking. I n Algorithm 3.1 given hclotv, t n c is I he transaction number counter

maintained by t hc schcdulcr. comnlittcd trarlsaction It is incwnicmted just hcfore i t is

assigned as the transaction rlrirubcr to e rlcwly cornmittccl trc?nsaction. \tic use f n (T ,)

t o denote the transaction n u m t ~ r of T,. Tile sclietlult~r uses tral~saction numbers to

represenr, a. total order among t!le transactions i t has scheclulccl. This ordcr is used
r \ as the serialization order. I ran,saction ~ ~ u t n b e r s ar~cl I I L C are also u s~c l t o icle~itify the

transactio~ls that should be ~heclicd in \ralidating T,. Thc transactions that performed

CHAPTER 3. OPTIAIT,STIC'SC'lIE!IlE REVISITED 2 7

dm-writes while 71 was in its read phase are orclered before T, in the total order, and

so must be checked for codlicts with T,. These trarlsactions have the characteristic

that their transactioli numbers will be greater than or e q d to the value of tnc when

7: enters its read phase, hut less t h a ~ or equal to the value of tat when T, enters its

valiclation-alid-write phase. As wc will see later, their COT? are between T,'s BUT

and EUT.

In this thcsis, we assume that imnediately after a transaction is aborted, the locks

it holds, i f any, will he rclcased and its read-/write-sets will be deletec'. If it is in a

critical section for the transaction, the scheduler will exit from its critical section.

And any step in the scheduling algorithm after the point, where the transaction is

ahortcd will]lot be esecutecl 113. thc scbedulcr. In othcr words, an abort operation

rncans an exit from the algorithm.

Algorithm 3.1: Serial Backward-Checking Optimistic Algorithm (SBO)

When it receives a Begin request from transaction 71, the scheduler does the fol-

lowing:

stnist-fi/,:=lnc % s ta r f - t u , will be used to determine

% those transactions involved in 2:'s validation.

12s; := T.I,',j'; : = Q

e When it receives an End request from transaction 71, the scheduler does the fol-

lowing:

tnc:=hc + !
tn(T:):=tnc

end critical section

commit

Remark: T, is a transaction that performs dm-write after T, started but before CT,

entered its va.lidation-a.nd-write phase.

Notv \vc w a n t to illoiv tha t thc algotit 111rt SBO is cor1w.f. i . c - . , it proclucc~ only

serializahle histories.

The synchronization e v m t set, S,, of a transaction if, scheduled by a n optimistic

schecluler contains R071, E O r f l , anci COT, that arc shown in Fig,. 3.1. One important

feature of Sf30 is tha t , for ally two co~nmit ted transactions TT, and T', either COT, <
E O T j or r O T j < EOTt holcls. iVe associate BO7; wi th "start -h , := tnc," EOT, with

i . f i ~ ~ i ~ h - t ~ ~ , : = t ~ t c , " imcl Cv07: with '.fn(T,):=tnc." For the partial orcfcr "<," of T,, we

rccluire that

DO71 <, r , (. ~) <, EOl: <, w,(y j <$ COT, (3.1)

where x ancl y are anjr d a t a i tcnw wad and !n i t ten 1)y I:, respectively, and r , (x) and

w i (y) arc the corresponding clnl-read and dm-write, respectively.

For a pair of comnlitted transactior~s, the order of their EOTs is consistent with
i 3 tlie ordcr of thr~ir cordiicting operatio~is. 1 his is forntulatcd in the following lemma. .

Leinma 3.1 L c t W br a history produced by SBO, and 1c t pl(s) and q,(.r) (1 # j) be

cor$ictirtg operafioits ir1 Cornrnit(Il). I fp,(.r) < q,(,r.) fhrrz EOT, < EOT, .

Proof: Since p,(.r) < q , (z) , from relation (3.1), we h1.e BOT, < pL(r) < ([,(.I-) <
COT,. Now we examine ear11 type of collflict.

1 . pt=rc. c i ~ = ? s ~ .

Assume EOT, < E m . Serial \.alidation implies COT, < EO7:. Also since

DOT, < COT,. i t follows frorri Proposition 3.1 that , during Tt7s validation-and-

write phase., Ti7,% n Ji,Y, = Q \voidci haye 13er11 chcckecl; i t was not empty because

x E RS', due to p , (. ~) asid .r E ib7S, due to q, js). Therefore, T, v;oulcl have been

abortcd, a contracliction to the assulription that T, is cornm~tted. Therefore.

E071 < E07;, sirtw EO'f's a r t totally ordcrcd 1 2 ~ ~ <.

Proof: Imrncdiate from 1,cinlna . 3 . l , si l l c t x EOrI's arc. tot ally ortlcrccl by transaction

rluml>ers, and t he tot a1 orclcr can rcprescitt a serialization orcler. 17

3.2.2 Parallel Validation

Algorithm 3.2, Parallel Backward-Checking Optimistic Algorithm (PBO)

e When it receives a Begin request from transaction Ti, the scheduler does the fol-

towing:

e When it receives an End request from transaction T:, the scheduler does the fol-

lowing:

begin criticai section

fiiitlidi-tit, : = ([L C

n1y-c0111rrriifrrlg.=corr1m1ff1ny

corr~mrffrng:=coi~~rr~~ftiritlg u(-T,) % See Remark 1

end critical section

for 7; such that s /a i ' f -~II , $1 5 tn(T,) < Jinish-tn, do

if TI-S, n I?,\', # o

then comrnrt/ing:=ro~-irmifftng - (T I)

abort and exit

for T, E ~n ~/-c.orr, rniti?r?q do

if !I-.5'J fl (Jiaq1 Ll l\'.qL) + o
then c . o i ~ ~ r n ~ t t i ~ t g . = c o r ~ ? ~ r / ~ f t r i ~ g - {1 :)

abori and exit

for every .t. E \ITS, issue a d~r~- i t , r i te (.~) %Reflecting

begin critical section

if IT'S, # Q

then tnc:=t~zc + 1

til(T,):=iuc % See Remark 2

c.on~;~!t!~ng:=co!?z?r?!f!:!itli~- sf i r 1
end critical section.

commit

Remark I: c o m m ~ f f i n g is t11c set of transac~ions which have already started their

valiclat ioil-and-tsrite pliase hut ha\^ not commit tecl yct.

Remark 2: A transactior! gets a transaction n i~mber only if i t updates the database.

-4s in SBO, .s't(il-f-fu, and Jiuisit-fn, are used to detcrinille the transactions that

were committed w11e1i 7: was in its read phase. That is. those T,'s with BOT, <
COT, < EOT,. n.ltich may conflict with 7:. Proposition 3.1 is also valid for PBO.

This time. ~iijiike SBC, vaIitlatior~-ancl-isr1te phases are not protected by critical sec-

tions. They Itlay iiln i n parallel t o c.ac11 other. IT,'s valiclation sho:~ld also check those

transac.tions whir11 e11tc.r t 11ei1 valitlation-and-lvrite phases before Ti does and esecute

their ~aliclation-atltl-~vrite phases concursently with x ' s . 111 other words, those T,'s

such that EOT, < i207' , < COTJ arc also checkcd in addition to these clieclied by

SBO. Notc that C'OT, and CVOTJ need not be orcicl.ecl re1ati1.e to each other. Those

transactions a r t idrntifiecl 1):. t 1 1 c k w t my-cornmitii~rg. Thc scheduler maintains a set,

cornmltttlrg ivi~icli c o ~ i t a i ~ ~ s all t h,, tran5actions that arc currently in their validation-

and- ivri tr pl-tascs. RJ- (q) ~ . i r ~ g cor~tuti f f (rig set at the beginning of its validation-and-
r - l . ivrit e i ' h a ~ cindcr t l ~ e protectio~i of critical scct,ion, I , s my-commitl ing set contains

esactlj. all the transactions such that EOT, < EOT, < COT,. Furthermore, be-

cause of co~icurre~t t validat ion-arid-write phases, write-wrItt conflicts between T, and

these 7;'s mnst also be chtckt.cl. Similar to Propositioii :3.1, we make the following

ohserv a t ' lon.

To shoir- the correctness of PBO, we first prove a 1emr-m analogous to Lemma 3.i.

Lemma 3.2 Lei H b p a history produced b$ PBO, nun' i r i p,(xj crnd qJ(. t) (i # j) be

con-7icting operations tn C'ontmit(1l). I J p , (s) < q,(n.) then EOT, < EOT,.

Proof: Since p,jx) < q,(n.), from relation (3.1), we have BOT; < p,(,r) < ~ (x) <
COT,. Now we examine each type of conflict.

1. P z = T , , q J = Z U J .

Assume EOT, < EOT,. There are two cases: 1, COTr, < EOT,. and 2 , EOT; <
COT,. We show that both cases lead to contradictions. In case 1, BOT, <
COTJ < EOT,, by Proposition 3.1, in 71's validation-and-write phase, W S , (7

RS, = d woulcl have been checked and i t was not satisfied because n: E RS, clue

to p , (x) and s E lV,S1 due to y,(a). Therefore. T, would have been aborted, a

contracliction to the assumption that T, is committed.

In case 2, we hasp EOT' < EOT, < COT,. Proposition 3.2 applies. In TZ7s

r.aliclation-ancl-ivrit~ phase. 1i7.5', n (RS , U If 'S,) = 0 would have heen checked

and i t was not ernpt~.. ltecau.;e r E R,C, t l t~e to p , (~) arid .T E i17,S due to

q,(n.). Thcreforr. T, woulc~ ha1.p hem aborted, a coritractiction again. Therefore,

EOT, < EOT,. since EOTs are totally ordered.

2. p = L l ! i , qj=7j.

Proved as i ~ t the proof of 1,elxma 3.1

:3. 12, = LL', , qJ = l l '] .
From relation (:3.1). xc have ,507, < p,(.r) < qJ (s) < COT,. .Assume EOT, <
EOT,. Then. b ~ - Proposition 3.2, in T,'s I-alidation-and-\t.~.ite phase, IffS:, fl
(R S , U II'S,) = o wouIcl Iiave I x w t checiicd arid i t was not empty because

.r E 11-S, due to p,(.r) and .r E II'S, clue to q J (. r) . Therefore, 7: ~vould have

bee11 aborted, a contradiction to the assumption that T, is committed. Thus,

EOTc < E'Ol; must tiolcl. since EOTs are totally ordrrcd. 0

Proof: I~n~necliate from Imnnla 3.2, since EOT's are totallj- orrlerecl.

3.2.3 Remarks

Sl3O and PBO prc~entctl a1,oi.e first appeard in [22] and were adopted in many

subst.xluent papers. However. checking for Il'q n R.5': = Q in them i.; more restrictive

ihan necessary. To il1:iitrate this, suppose that there are t ~ o tra~isactions TI and

T 2 . TI writes .I- and T2 reacts n.. Fnrthcr. suppose TI enters its i.aliclation-arid-~vrite

phase ar;d finallj~ commits when T2 is in its read phasc, i.c.. TI precedes T2 in the

serialization order (Sct? Fig. 3.2). Consicltr the followilig t w o rases:

I . TL reacts n- (a t pcjsitioll X in Fig. 3.2) I~ef'ore thc value of s written by TI is

reflectttl to t hc database. It iq a i.iolation of seria!izal,ility and T2 sshoulcf be

ahort crl.

ROT EOT COT

T: 1 1 1
w (x)

BOT EOT COT

T 2 1 n A I I
V

r(x) r(x)
A R

Fig. 3.2 Detecting conflicts

Praclel, e t al., suggestrcl a method to rclax the restrictioi-i [XI. In t h i r suggestion,

the read set of a transaction also contains EOrl"s of other transactions, and its elc-

rnents are orclerccl into a tilt' sequence. \\#'hen a transadion, say Ti in Fig. 3.2, enters

CHAPTER 3. OPTLVISl'IC' SC'lIEAfE REVISITED

its validation-and- rite phase. evcry other transaction currently in its read phase, say

T2 in Fig. 3.2, rccorcts E07; in its react set. IVl-ren T2 checks for conflicts with T I ,

it need only checli the read operations in R.CI wllicl~ occur after E0G against 7;'s

write set.

It is worth mentioning that the forward checking prcsented below does not have

the above restriction.

3.3 Forward Checking

3.3.1 Serial Validation

In bacl i~~arcl checking, a t ransi\r.t io t~ i q ctteclwd for conflicts with other transactions

that have entcwtl their valitla! ion-anti-write phascs bcfore it cloes. As fro111 Theorems

3.1 and 3.2, the\? t~.ansactio~is appcar I~cfore Y l in serialization order. 111 forward

c1ic~-king. a t ~ ~ a u x a c t i o ~ ~ i i checlicd fcj~ c-oniiicts with ot 1-ic.r transac t io~is that ~ 1 1 1 appear

a1't(:1 i t I I I the ~ t w ~ l l i ~ a l i o i ~ oitit>l. .Is i i ~ Lack~\.atci cl;cc!;ilig. i v t also use the logical

timc at which transiictioi~s cn t t r tlicir ~ralidatiori-and-\vi.itc phases t o order the11-r.
r l tVe p r c s e ~ ~ t a scria! fonvaid c l l t ~ - k i ~ ~ g valiclatio~~ algorithm ht4ow. I hc algorithm is

straightfi)ru.art! conlpartd to 3130 and PI3O. Tile scht~lulcr maintailis a set Actiz~e to

record the tratlsactio~is that are currc~itly i l l their read phases. Since thc transaction

(7:) in the. valiclai ion-and-writc phase is currently writing. i t rnay h a l ~ write-read

conflict with any of t l ~ e transactions in Actr tit. Cinlikc the crit icd section^ usrd i n

hackward checking, tlic critiral scction usc~l i l l the algorithin helow is a system-wide

critical section. T h e purpose of using sucli a strong critical section is to prevcnt

the read set 01' anj7 othrr transaction from bcil~g ~ p d i i t t d while the validation and

reflecting of a transactioll is taking place. Later, wc wili discuss some merhocis t o

relax this restrict ion.

Algorithm 3.3, Serial Forward-Checking Optimistic Algorithm (SFO)

e When it receives a Rcgin request from transaction Ti, the scheduler does the fol-

lowing:

A c t i a t : = i l c f i ~ e u(T,)

RS, := 1'1'5', := o

a When it receives an E~rd request from transaction Ti, the scheduler does the fol-

lowing:

begin (system-wide) critical section

i l c t i ~ ~ ~ : = A c t i t ~ e - {T , }

co~?.flict:=false

for every T, E Ai.l?llc. do

if 1f7S, f7 R.7, # then cor?flict:=true

if con.flici then resolve the conflict by aborting either 'r, (and exit)

or all such that I+'•̃, n BAS:, # 4.
% The decision is made upon some cost criteria.

for every n. E TI~S, issue a clwrvrite(x) %Reflecting

end critical section

commit.

We a.ssocia,t.e B0T; with '.,ilctPve:=Actit~e u(T;} ," EOT; with "ilct ie~e:=Act iue- {T i} ,"
u d C02~~wi~l i t:lie e~lcl of t,lie crit.ica,l sect.ion. Tra.nsc?.ction Tj with .BOTj < EOll and

EOT; < EETj.if i t has EOTj) will bc in Active when transaction Ti is being vali-

da.tsed7 a,nd for e x h Tj E i l d i v e , SF0 checks W S i n RSj = gi when va,lida,ting Ti.

The correctness proof for SF0 is similar t o that, for SI30.

Lemn-ia 3.3 Let H be n histor9 produced by SFO, and let y,(n.) a n d q,(n.) (i # j) be

co~tflicting operations in Commit(I I) . I l p , (s) < q , (m) then EOT, < EOT, .

Proof: We only show that,, i f r;(x) < 2oj(z), then EOT; < EOTj. T h e rest of the

proof is sin-1i1a.r to Lemn-la. 3.1.

Since r , (x) < w , (m) , by relation (3.1). we have BOT, < 7.,(z) < w,(r) < COT,.

Also, we have EOT, < rc:,(n.) < COT,. Since EOI', and COT, form the boundary

of the critical section for 7;'s validation-and-write pltase, 7 - , (x) can only occur before

EOT,, i.e., r , (r) < EOT,. So we have BOTz < r,jr) < EOT,. Assume EOT, <
EOT,. Since BUT, < EOT, < EOT;, in T,'s validation-arid-~wite phase, S F 0 would

llave checked M'S, n R.S, = @ and either 7: or T, would h a w been aborted because

s. E (1V,S; n RS,) , a contraciiction. So, EOT, < EOT,. 0

Theorem 3.3 S F 0 produces only s r r i c t l ~ ~ a b l r h is tones .

Proof: Inintediatc from Jmnma 3.13, sincc EOT's are totally ordered.

3.3.2 Replacing System- Wide Critical Sections

Imposing a system-wide critical section for a validation-anti-ivrite phase may not be

acccl~table. and shoulcl hc avoitlcd. Act~lally, the purpose of using system-wide critical

section, instcad of a siniplc critical section, is to prevellt the situation where, after

I4',5', n RSJ = 0 i~ chccli~d for some T, ,VI l ; reads s da ta i t a n in Ii'S, before the

new-value of the item is rr.ftected 011 behalf of T,. So. we can replace the system-wide

critical section 1 1 ~ 7 a11 ordiriary critical section (as used in b a c l i ~ a ~ d clwcking) with

some additional facility. Tlic following are some alternatiws.

1. .4fter cnsi~ring that Tl'.C, n R.C, = h is sati\fircl, Islock all the rttad requests from

T, urtt,il tile validation-anc!-tvritc phase of Tz e d s .

2. Lock all the da ta i t tnls i n !!.'St at the heginning of tlte validatinn-and-write

phase of T, until thc valiclation-and-write phase ends.

'\Ye assume this checking is e ~ e c u t ~ e d atomically.

3. From the l q i n n i n g of the va!iclation-and-write phase of 'r,, collect all the items

being read into a special read set RV in addition to adding them into the corre-

sponding rcatl wts. .lf'tc~r 71's moclifica~iott is reflected, c h ~ ~ l i R\; against IT-S,.

If T, has contributed an item in Ij'S, n HV, then abort 7;.

Alternatives 1 and 2 use locliing to sol\-e the problem. However, the duration of

locking is sliort ancl it, causes 110 d e a ~ l l o ~ l i problem. Botll methods are pessimistic, in

expecting that conflict may happen during validation-and-write phase. Alternative

3 is optimistic: '-1 clicl not mrct any problenl in my read phase, why should I worry

about validat ion-and-write phase?"

3,3.3 Parallel Validat ion

I'ardlelizing forward checliing is \?try difficult, t.houg11 possible. This is easy to see

from the follo\ving cliscussion.

111 parall(l.1 bncl,:uwrtl c1tecI;iiig. tile set, oi bhc transactions t,liat should be clteckecl

is fixtd. Every tra.nsaction in\?ol\.ec-l in \didat ion has a t least finished its read pha.se.

Thus its r e a t k t anel write-sct a.re idso fixed. Therefore, b;tcli\~a.rd cl~ccliing esamines

"static" data. In contra.st, t,lle r e d sets and write sct,s involved in parallel ~ O ~ W C L I - d

checking may be changing, escel~t, those of t l ~ c transaction heing validated. Suppose

we are valida,ting 'T;. Since all the other tra.nsaciions i~lvol\wtl in the va,liclation c o ~ d d

still he in their rea.cl pha,ses, their read-sets n-iigl~t still bc expafnclirig during the vdi-

dation. Beca.use other transactlions may enter tllejr own va.litla.tio11-and-write phases

during Ti's .idicla.tion, the set of tra.nsa.ct.ions whose writesets should he checked for

va.licla.ting Ti is a.lso expanding. To make things worse, a new tra.nsa.ction ma.y staat

a t a.ny time during the Ti's \~alidat.iot-I-ancl-writ,e phase. One ca,n immediately see the

difficulty of the validatiot;.

One possible approacli to parallcl forward \.aIicIation is as follows. The scheduier

performs validat ion increment ally through scvcral roi~ntls of cllccliing. In the first.

CHAPTER 3. OPTiMfS7'1C SGI-IEME RE \/ISITEL) 38

round which starts right aftcr EOTt, the scheduler checks T,'s w r i t w e t against the

current read-set of every transaction which is in its read phase a t the moment when

EOT, happens. hlleanwhile, the scheduler collects all the information concerning the

read operat,ions that occur in the first round and all the transactions tha t start their

validation-and-write phases a t this time. If any conflict is cletected, either T, or all

the transactions that conflict with T, are aborted. If T, susvivcs from this rouncl, it

proceeds to the second round. In the second round, the scheciulcr uses thc incremental

information t o valiciate T, while, a t the same time, coliecting increments during this

rouncl which will 1jc used in the tllircl round. This time, not only read-write conflicts

hut also write-write conflicts are checked. Again, if T, surviws, it proceeds to the

third round, and so on. In the last round, we have t o protect tIlc whole round in a

global critical section to finish the valiclation. Reflecting Ti's modification to database

can be clone in tllc last sound or the. s e c o ~ ~ d last rourlcl. Rut once it is dorle, T, can

not be aborted.

Concusrency gai11c4 f'rom parallclisrn is reiatccl to the niiniher of rounds. However,

on the assi~tnption that co~~f i ic t s arc rare. t l m e is probably no need to 1ia1.e more than

two rounds. When these is only orw round, it becomes serial validation. A scheduler

basecl. on parallel forward validation could bc complcs. TIIP overhead of sunning it

may offset the benefit of parallclisrn. 'IYp will not cliscuss this class any further.

3.4 Comparison

In this section we compare the time algorithns prcscntcd in this chapter, i.e., SRO,

PBO, and SFO. Our comparison focuscs on the differcnccs bctiveen backward checking

and forward checking. Differences lwtwecn serial and parallel ~ i t l id i~ t ion arc fairly easy

t o see.

Difference I Forwarcl checking resolvcs conflicts more flexibly t Iran haclcward check-

ing does. M'hcn a transaction, say T,, discovers conflicts, forward chec lhg can

abort either 71 or thc transactions which conflict with [I:, wliile backward check-

ing has no choice but to abort 1:. This is because, in backward checking, all

the transactions that are checked for conflicts wit11 T, either have already com-

mitted or may have started dm-writing. Besides, the transactions aborted by

forward cl~ecking are st i l l in their reacl phase. Some may have just started their

esecution. On the other hand, the transactions aborted by backward checking

haxre already saccessfally finished thcir read phases. This implies tha t the abor-

tions in forward chrcking are in genrral less espensive titan those in backward

cht~cliing.

Becarlse of this rliffcrcnce, baclcxrard ci-reciiing suifers from starvation problem

but forward checking clocs ~ o t . This is important for long transactions, for, in

I~acliwalcl cllc>cliilig, a lolig transactio~l may oftell starve.

Difference 2 F'ortvarct cllccliing needs less checks than 1~acl;ward checking. Forward

checlii~ig ciiec1;s a writc-wt against a n ~ ~ n i b e r , saj- iVf, of read-sets, while back-

warcl checking c11c.cks a rc~acl-.;c~t against a numhcr, say Nb, of write-sets. There

arc t l irw points to I x r~otccl 11c~c. I) A tlansaction's write-set is often smaller

than its read-set. Also, i t is oftell that a transaction has an empty write-set,

and therefore, docs riot have valic1atio11-ancl-ttrritc: phase in forward cliecting.

Hotvevcr, it is seldom the case that a transaction has an empty read-set. 2) The

read-set s clleclid in forward validation are partial, because the transactions they

belong to are still in thcir read phasc. On the other hand, all the sets chcckcd in

backward checking are cornplcte. They belong t o some finislietl transactions. 3)

iVj is limited. It is the number of "active" t ransactioris in the systern a t the mo-

ment when the transaction in question entered its validation-and-write phase.

It does not depend on the lengtli of the transaction. A\,, on the o t l m hand,

depends on the lcngth of the reacl phase of the transac%ion being validated. To

make it clear, suppose the system can have a t most 772 transactions executing

simult,aneous!y, and suppose that a transaction's reacl phase is n times longer

than the average l i fe t ime of transactions. In fortvard checking, a t most 772 - 1

read-sets are c l~e~ l i ed , whilc in backward clleckillg, there may be (n + l)(nz - 1)

CHAPTER 3. OPTlMlSTIC: SCHEME REVISITED

write-sets t.o be checlied.

Difference 3 linlike lorwarcl checking, bac l i~a rd checking has to store the write-

sets of corrirnittcrl transactions as long as there is an uncommitted transaction

which was started before they were committed. IVhen somc transactions are

long, this requires significant amount of storage space. Ori the other hand,

forivar.cl chec1;ing have to deal with the problem of dycamic read sets.

Difference 4 Backward checking allows parallel validation, which is a very impor-

tant aclsailtage tha t forward cliecking does not have. Dm-writing to stable

storage is soinetimes time-consuming. Parallelization of writes is important for

performance.

Chapter 4

Combining Optimistic and

Locking Schemes

From this chapter on, we combine t l ~ c loclcing and optimistic- sche~nes, taking advan-

tage of both scllcmes. \Ye start with a cliscussior~, motivating adaptive concurrency

control aljiorithins. \I1<% tlicn hricfly survey t hc existing cornl)ined algorithms. Unfor-

tunately, about half of tl~est. algorit llms arc not aclaptise, and the rest of them are

only adaptive to a very limitctl extent. Next, the motivation behind our approach is

prwmted. 11ascd 011 1111. a~ial\.iii of plc\rio~~s algoiithni5. A11 ;tlgoritl~n~ is prcserited to

illustrate our approach, followed hy a systematic procedure for cornhining locking and

optimistic rncthocls. Then, wc clist-uss our algorithms in detail. Finally, we extend

our approacl~ to rnultivcrsioli databases.

4,I Introduction

4.1.1 Motivation

At system design time, a ConcurreIicy control algorithtn (typically a 2PL variant) is

adopted. This design decision may be made 1:ased on some n prioi-i knowledge of

the espectcd use of the systei-ir or simply because the algorithm may appear to be

the bcst. Due to the comp~icatcct strnc.turc of a database management system, it is

unlikely that the original algorithm incorporated into the system will ever be changed,

despite the fact that, t h e system may be usccl uncler changing workload conditions.

S tudies has been done t o comparc several different algoritlims in an attempt to

reach sorne conclusion concerning their operatioml merits (e.g., ['I, 8, 11, 24, 2.51).

Naturally, if a clear-cut conclusion could be drawn about one algorithm being the

"best" under almost all conditions, tlle11 that algorithm should be employed by all

clatalxtsr systems. I-Ionww.. as comnwctcd hy Agrawal. et al. [4]. the studies have

tendcd to Le contradictory, ra t l~er than 1)cing ctefinitivc. A common cui-iclusion sug-

gests khat, while locking r~onnally perforrlis well (especially wl~eti confiict rates are

meclin~n or high), an optimistic. ~nc thod pcrforms better whcn conflict rates are low.

Anyway, the past stuclics are by no Inearls the last worcis. since t he simulation studies

were not performed u n d c ~ a sufficirntly wide variety of system workloads and pa-

rameters. Also, clue i o the cliangi~tg application areas (e.g., artificial intelligence) the

usefulness of sorne charactt~rizations of workloads and paramt3ters ill these studies may

be short-lived.

It is our opiriion that the co~lcurrellcy control ~iiodule in a database management

system slioulcl be a vcrsatilc p i t~ -e of software that has the ability to adapt itself to

the changing system workload and envir~o~,ment.

4.1.2 Hybrid Concurrency Control methods: A Survey

Combining different concilrrc*ricj. control schemes in one clatalsasc management system

has been investigated i n 16, 9. 10, 15, 16, 231. The motivation behind each such

attempt is either ac1iiev;ng more C O I I C L I ~ ~ C I ~ C ~ or making the scheme more adaptive,

i.e.. getting better performatice in different situations, or both. Interestingly, all the

con~hinect schemes proposed so f;:r integrat e locking with one of the two other sclienies,

i.e., time-stamp orderi11g or optimistic scllerncs. This is prolmbly because locking is

easy to understand anc! easy to i~nplemcrtt.

In [6], Bernstein 3.1-icl C:ootlma.n suggest. a systematic: iva,y to conibine different

concurrency control rnrt.11otls. Tlrey clccornpose the concurrency control problem il1t.o

two subprohlen-1s: sync11ronizat.iorl oi' smd-write co~lflict~s and synchronizat,ion of write-

write collfiic,ts. I3iffi:1~r-it rrtet.Ilods arc used to syl:chronize these two types of conflicts,

and some t,echniquc~ is i.tsecl to integrat,e the two pasts. For example, they cliscuss

an algori t ~ I I I t l ~ i ~ t I I S ~ Y ',PI, for rc~a~l-\~ril .e s~.liclirorriza t.im aucl T O for ivrite-writ,e

synclironiza.tion, as well as an algorithm tsha,t uses TO for reacl-write sync11roniza.tion
i 1 and 2PL for write-write synchronization. 1 hey confine t,heir discussion on this issue to

locking a.nd time-stamp orderi~ig scl-ienics. l ' l ~ c a.lgorit1-lms they s ~ g g c s t c m probably

enhance concurl~ericy to some clcgree, but are not adaptive.

Farra,g and Ozsu 115, 161 suggest another way to comhine locking and time-stamp

ordering schemes. Thcy use an integer I.,, called the strict.ness level. The set of

tmnsact,ions is rliviclecl inta groups, each c~nt~aining a.t most I, tmnsactions. For the

intra.-group conflicts (involvir~g tra.nsactions within the sa,me group), 2PI, is uscct. For

the inter-group confiict,s (involving t,ransa.ctions from diffc.rent groups) TO is used.

No cha.ra.ct.eristics other than the arriving time are talien into account in deciding the

membership of a transa.ct3ion in a, group. A transa.ct,ion is sil.rtply put into the newest

group. When the number of the tran~act~ions in this group rea.ches L, a new group is

created t,o a.ccommodate r,ew transa.ctions. When I, is set to infinity, the scl~eduler is

purely 2PL. When L is set to 1, i t tjeaornes purely TO. it, is hard to see the advantages

of this a8pproach, except that changing the value of L can offer some flexibility.

Combining the locking ancl optimistic schemes was proposed by 1,ausen 123~. In

his approach. a transactioii c a ~ i execute in one of two modes: optimistic, where the

optimistic concurrency conrrol principle applies, and locking, where the 2PL principle

applies. An interesting app!ication of his approach is that one can start a transactior,

in an optimistic \ ' i e i ~ that it won't coriflict with other concurrent transactions. Ii'hen

co~tflicts ac tua l l~ ucctlr ail(! i11c t l a~~sact ior i i \ almri ed. t 1 ic \.iew turrls to pessimistic.

\Ti7hen the transaction is restarteri, it opcratcs in the locking mode.

Another approach comhining the lorliing and optimistic schemes is suggested by

Horai and Gold [9]. The) ~ l o p t Bernqtrin and Chodman's idea of decomposing

concurrency c-ont sol to read-write sy~;cllronizat i o~ i ancl wri te-write synchronization.

Howe\-er. they uw the wrializatio~l graph to dciect collflicts. Their approach can cnly

he uitrl in rcntralizrht! svstcrris. and the ovcrhead for detecting conflicts is likely t o be

high.

Canning, Muthuvelraj. and Sieg [lo] extend Lausen's approach, trying to design

a more adaptive concurrency corltrol algorithm. They group transactions into clus-

ters. The transactions I~aving data contention with cach other arc grouped into the

same cluster. .A c l u s t c ~ coi~ltl 11;tx.c a status of 3ptinlistic, pessimistic. or something

intermediate. Further, therc is a thresltolcl on the riuniht~r of traasactions in a clus-

t ~ r . \\711tbr~ tlit. 111111111('1 of I I ~ I I I \ < ~ (t iotls 111 ~1 t I l i~ . t< '~ C S C C C C ~ ~ f l ip t l i ~ (~ l l o l d , the cluster

change? to an i~~ tc rmed ia t c status tending to pessimistic. \\'e think their approach is

a poor extension of [23]. T?le ma i~~ tcnance and rncrging of clnsters incurs significant

cost rrlative to a possiblc gain in concurrcnc~-.

The combinccl algorithms Y rveycct .lt,ove approach concurrency control from two

different points of x.iew.

I . Deco~npose concurrency control into syncl~roriization of different tj-pes of con-

flicts. As in [6. 91: conci1rrenc:- control is decon~posed to read-write s j~~chron iza -

tion arid write-write synchronization. One cc ncurrency control method is applied t o

read-write synchronization and the other method to write-write syncltronization. In

115, 161, conflicts within a group are processed using one 1netho.rl and conflicts be-

tween groups are handled using the other method. So within one transaction, tu7o

methods work together to ensure serializability. Onlj' [9] is adaptive. It is sensitive

to the classes of transactions. but not to tile change in the conflict rate.

2. Allow trmsactions using different concurrency cont,rol methods t.o run together.

As in [lo. 231, a transactjon may run in either optimistic or pessimistic mode. Only

one method applies to a given tra.nsa.c.tion. Sorne mechanism is used t,o coordinate

the tra.nsact,ions. These algo!.it3hms are sensitive to the chaage of conflict rates in

the whole database to some extent. However, they do not take into a.ccount the

dist.ribution (11' cor~flict rates o\.w i l ~ e set of' t1at.a it,c~ns. A41so it is not sensitive to the

classes of transa.ctions.

4.2 Our Approach

The two points of view suminasiecl a t tlit end of the previous section focus on tram-

actions, and do not take differences between data items into consideration. A unique

concurrency control poiicy applies to all the clata items. We call them trawx~ction-

oriented. However, conflicts occur on data. It is the contention on data that generates

conflicts. .411d i t is the access to data that determines the classes of transactions.

Therefore, our approach focuses on properties of clat,a. To illustrate the significance

of shifting our focus in concurrency control onto properties of data, let us consider

the following scenario:

Suppose that a database consists of two disjoint sets of data items, say

OPT and PES. Originally, the conflict rates on the data in O P T are low,

while the conflict rates on the data in PES are high. We define conflict rate

an a data item as the number of harmfuf conflicts on the item in unit time,

where a hnrmjirl cor?fiici is a conflict which may violate serializability. The

precise definition of harrnfd con.flicf depends on the concurrency control

algorithm used. It will receive more discussiori in Section 6.1.1. Suppose

further that 2PL is used for concurrency control. A transaction, say T,,

holds some write locks on some data items in OPT and now wants some

more locks on data items in PES. The transaction may wait for a long

time to get all these loclis. By the 2PL rule, it ivon't release any locks on

O P T items until and unless It gets all the locks (if no transaction is rolled

back due to cieacllock). Some other transactions ~vhich want to access

OPT items write-locked by T, have to wait until T, releases the locks on

them. These transactions may also hold some locks on O P T items, which

in turn will bloclc some more transactions. Conse~~uently, the conflict rate

on OPT items may get higher anci higher. We name this phenomenon

conflici escalat7on.

Conflict escalation occurs when conflict distribution is tmeven across the set of

clat a i terns. tTneven conflict clir\tri bution is caused 1337 non-unifor in data accesses by

transactions, which scem to be very common in practice. This is a fact overlooked by

many performance studies on concurrency control. Also. it is easy to see that none

of the "pure" (i.e., not combined) concurrency control methods works well under this

circumstance. This also argues for adaptive algorithms. Back to the ctiscussion about

the significance of a data-oriented approach. it is hard for the transaction-oriented ap-

proaches to deal with uneven conflict distribution, because they cannot take conflict

distribution into account. Semantics-based locking approaches [5, 29, 3-1, 3.51 could

not consider this fact either, since their primary emphasis is on reducing conflict be-

tween operations by giving more semantic information about the data objects and the

operations on them. If we want to face the problem caused by an uneven distribution

of conflicts. we have to make more effort on data grouping than they did. For exam-

ple, if we did not let T, lock O P T data items but somehow still elisused serializahility,

we c o d d avoid escalating conflict rates in OPT.

XTe should emphasize here that, our approach is not merely for sols-ing the uneven

clistribubion problem. It is also an approach towards more adaptive concurrency

control in general. We now eiaborate on this point in some detail. First, based on the

following arguments, expect that OPT occupies a large portion of the database.

Assuming that the granularity of data items chosen for concurrency control is not too

big, say. a t the record or page level, the number of the data items ill the database

will he sufficientlv large. In I h i 5 case, given a pcriod of time, i t is 1iliel.v that only

a very small portion of the databasc is subjected t o frequent conflicts. Meanwhile,

most of the data items have low conflict rates and many are even not accessed at all,

F~rrther, it may be usr~al that all the data items in the database have low conflict rates

for some period of time. This is particularly likely in large databases. Even though

many studies conclude that optimistic methods perform very well when conflict rates

are low, one possible reason that they are not used wiclely in practice is that in many

applications, where high conflicts do occur occasionally, optimistic methods perform

poorly. M'itli the idea of adaptive concurrency control, we can use an optimistic

method in OPT and a locking ri-tcthod in PES. IVe can expand OPT or even let it

take over the entire database w11cn conflict rates are low for all da ta items; when

conflict rates become higher, we just ~111.i111i OPT, even until it disappears.

In a particular application of a clatabase management system, one may be able

to predict an approximate conflict distribution or a t least predict an approximate

clistributio1-1 01 u p d a t e operatio~ls for a certain pcriod of timc. For example, in a

banking database system, a pessollal saving account may be updated at most once

a day on average, but some internal variables, such as the total amount of money in

a branch, will be frequently updated. In some databases, there could be some docu-

mentary data, such as employees' names, which remain almost unchanged once they

are stored. It is also possible that the changes in conflict distribution is predictable.

For example, more conflicts could occur cluring the day than s t night; some data in

a commercial database could have higher conflict rates a t the end of a month than

a t other times. Most importantlj., prediction could often be based on the history of a

system. Since the conflict rate on a specific data item probably does not change very

fast, one may obtain a good approximation to the conflict rate on that data item for

a corning short period of time fron1 the most recent history. In summary, prediction

of conflict dist,rihut,ion wit,h certa.in precision might be possible, and it is better than

nothing for an aciaptive concurrency control algorithm.

Now assume that a database is partitioned into O P T and PES, where the conflict

rates on the data items in O P T (conflicts in OPT, for short) are low and the conflicts

in PES are meclium or high. Our approach is to choose a concurrency control method

best suited to the conflict rates for each part of the database, say, a.11 optimistic method

for O P T and a locking method for PES. When a transaction accesses a data item in

a part. i t obeys the concurrency control rules governing that part. The transaction,

tllcrcforc, may hc rnanagcd by marc than one st~bscliccluler enforciug cliffescnt rules.

If the subschedulers can coorclinate with each other to ensure serializability with small

ovcl.head, we can take advantage of various concurrency control methods.

\Gth changes in conflict rates, a partition (into OPT and PES) may become out-

of-(late. Therrfore, we should h a ~ e a mechanism to keep the partition up-to-date. Its

functions were briefly intsoducecl in Chapter 1 and will be discussed in more detail

in subsequent chapters. Now consider that concwrency control is characterized by

the proportion of optimistic accesses over pessimistic accesses. When we change the

membership of a data item from OPT to PES, or vice versa, we adjust the control

a little bit. When the number of data items is large. such a change is so little from

the global point of vim. that tlic cont,rol seems to be continuously tunable. This is a

uniciue feature of our app~wacll. \b'e can cven imagine such a scenario as the following:

At 8:00 AM, a transaction has S'3% of its accesses controlled optimistically

and 11% pessimisticall;.. At 2:OOPM, the same transaction may have 73%

of its accesses controlled optimistically and 27% pessimistically.

Tn the remainder of this cha.pter, we int,egra.te different subschedulers.

4.3 A Combined Algorithm - An Example

To flesh out our ideas about data-oriented approach to conctlrrency control in concrete

zlgorithms, we show how to integrate parailel backward checking (PBO) witjh two-

phase locking. We first present the algorithm, and then show that straightforward

compositiorl can produce a corrcct algorithm. The proof will also give us hints on a

systematic way to integrate optimistic mcthods with locking.

4.3.1 The Algorithm

As stated i11 the last section, we partition a database illto two parts, OPT and PES.

It is assumed that conflicts clue to data items in OPT are infrequent and those due t o

data items il l I'ES arc1 not ~ I I ~ I Y Y I U C I I ~ . \\'c also aiiumc th i~ t thcre mists an efficient

method for t l ~ b schecluler to tldcrlnine i f a data item is in OPT or PES. We leave

suggestions for specific rnct hods to a later cliaptcr. We use I4;t, (Mite-Locked items)

to denote the set of data item5 in PES written by 7:.

The following is a riescription of our algorithm:

Algor i thm 4.1: (PBQ + 2PL)

When it receives a Begin request f rom transaction Ti, t he scheduler does the fol-

lowing:

start-trr, := f n c

RS', := T1,',S, := IVL, := 4;

When it receives a Rcarl(.r) request f rom transaction T,, the scheduler does the

following:

cl~eck-mernbeifs) % determine which part o f database n. belongs t o

case R1: n. E PES % Using locking in this case

if r is in T,'s private work space

then read .r from there

else if a. is already write-locked by some other transaction,

block T, until read-lock can be set on n:

set read-lock on r

dm-read(n.)

case R2: x E OPT % Using optimistic control in this case

if .;' is in T,'s private work space

then read n. from there

else dm-reacl(.r)

ns, := RS, u

When it receives a \lrritc(x, new-value) request from transaction Tf ; , the scheduler

does the following:

check-men~ber(.?.)

case W1: n. E PE5'

if .r is read- or write-locked by some other transaction,

block T, until write-lock can be set on z.

set write-lock on n.

W L , := IJT~L, U (n.)

prerrrite(a. n e w - d u e)

case W2: a- E OPT

1.1 ' S , : = i 4 'S' u {s)
prervri te(z, new- value)

e When it receives an End request from transaction 7:, the scheduler does the fol-

!owing:

begin critical section

finish-i~z; := tnc

my-conr~n%ttl .~~g:=corn~v~~itti~~g

committing:= ~on?~,rnit.iing u{Ti}

end critical section

release read-locks

for all '1) such that start-tn; $1 < tn(Tj) < Jinisiz-in; do

if IW,sj. n R,Ci # 4
then corn~nitting:=comnziftl.~zg - (T, }

abort 1(1

for Ij. E my-co7rrrniti.lirly do

if TVSj n (!LCi U T,l,rSi) # 4
then cornmitti~tg:=committi~zg -{Ti}

abort Ti
for every x E (T/ij7L; U I,trSi) issue a dm-rrrrite(x)

% Reflecting. (I+.'L; U l/trSi) contains

% all the items updated by Ti.
begin critical section

if IVS; # @

then tnc:=inc + 1

6 tn(TE):=tnc

co~nmittirlg:--cornn~itting--{T,)

end critical section.

release write-locks

commit

One can see that the composition is quite straightforward. In face, it is almost just

gluing two aigorithms together. For a Read or Write request, the o d y aclditional step

is checking (using cl~eck-member(x)) if n. is in OPT or PES when it, arrives. Then

it follows optaimistic or locking steps, depending on which part x belongs to. The

procedure for End is similar to t h t in PBO, except that %elease read-locks" and

"release write-locks" are inserted at appropriate places. However, it is the positions

of these steps that play a vital role in making Algorithm 4.1 correct. Unlike 1231,

there is no checking for conflicts between an optimistic read and a pessimistic write

and the like. The simplicity can be attributed to the clear separation of O P T and

PES.

Actually, we need not m e prewrites for PES part. We can directly use dm-writes

in PES, and therefore, do not need any private work space for PES. There arc several

impacts of this improvement. First, the huflfering problem of optimistic scheme is

eased. Second, the write sul~phase is co~lsiclerabiy shortened. Third, the negative

effect is that recol-ery is nmre costly. Since a transaction may be aborted due to

conflicts in OPT, recovery prohlem could be serious.

4.3.2 Correctness

We can think of a. transa.rliou scl~ecluled by Algorithm 4.1 as consisting of two phases:

a r e d phase a.nd a va,liclat.ion-anci-writ,e phase, sepa,rated by an End request. Let

BOT, EOT, a.ncl COT stand for the same points jriqxxtively) a.s t,hat in PBO in

Chapter 3. The synchroniza.tion event set. of a tra.nsa.ction cont8a.ins these events and

the locking and unlocking events. .As in Chapter 3, our correctness proof will show

h t if p;(n:) < q j (x) for m y pair of conflicting opera.t,ions, p; (x) and qi (x) , then

EOTi < EOTj holcls. Tliis constitut,es a, proof since EOT's axe totally ordered and

their order can he considcrecl as thc serialization orclcr. \Ve show this filct first for

any a in PES, and the11 for any n. in OPT. Sincc Algorithm 1.1 is a straightforward

combination of 2PL and PRO, Il-re related proofs we used in Chapters 2 (and 3 carry

over.

rl7 1
I ne following proposition lormulates the relation of EGT to lockitlg a n d uniociiing

operations.

CHAPTER 4. COn/lBlAiING' OPTIMISTIC AND LOCKING SCHEkIES 53

Proposition 4.1 Let H be a 1zistor.y prod.uced by Algorithm 4.1. Let Ti be a tmns-

action in W and o i (z) be a n operation in Ti, wlzere s E PES. If both oZi(z) and

O I L ; (z) appear in H, then. o l ; (z) < EOT, < ou; j ~) . 13

We first deal with the case n: E PES.

Lemma 4.1 Let fI be a history produced by Algorith,.m 4.1, and let pi(n:) and q j (x) (i #
j , n: EPE,~) be co.r7..flicting opercitions in Con~rnit("1~). fj p i (z) < q j (x) then. EOT; <
EOTj.

Proof: From thc proof of TJcmnta 2.1, if p , (. ~) < q2(n.) thert pu, jz) < ql,(x). Therefore,

by Propositiou 4.1, EOX < pu,(. t .) < ql,(.r) < EOTj.

Next, we considcr the case n. E OPT. In this case, Lern~na 3.2 is applicable.

Lenima 4.2 Let N be (I history produced by Algorithm 4.1, nizd let p ; (z) and q j (z) (i f:

j , x E OPT) be cos?,flicfiug ope~n f inus in Cornmnd (H) . I f ppi(n:) < q j (z) then E071 <
EOTj .

From the above two lemmas, the corrcctness of Algori t h 4 . 1 follo~vs immediately.

Tl~eoreni 4.1 Algorithm 4.1 procluc~.~ only scre'ai'iznble histories. U

4.4 Systematic Procedure

In all ehr algorithms sw l~itvr-' pse~el-!ted in Chapters 3 and /I so far, the key to ensuring

se~ialimbili ty is to arritnge conflicting operations in consistence with the total order

defined by the EOTs. %lr 13ow consicler a more general problem. Suppose a database

is partitioned as bpforc. 111 accessing OPT, an optitnistic metliod is used, while in

accessing PES, 2PL is used. iVe call a scheduler with this characteristic an O + P

scheduler. The problem is how to combine the two methods so that serializability is

guaranteed. To attack this problem, we consider that on each part of the database

there is a subscheduler performing concurrency control. For example, in Algorithm

4.1, we consider PBO as the optimistic subscheduler and Strict 2PL as the locking

subscheduler. We first investigate the properties of each kind of subscheduler.

4.4.1 Confining Sections

As was discussed in Chapter 3, an optimistic scheduler uses the time order of EOTs

as the serialization order. From now on, the term "optimistic scheduler" refers to a

scheduler using SBO, PBO, or SFO. In all of these algorithms, when a transactior,, say

T,, enters its validatioti-and-write phase, i t first enters a subphase in which the set of

transactions involved in the valictation is determined. In SRO, this subphase involves

only one operation "finish-tn, :=lnu," which assigns the value of tnc at EOT, to finish-

tn,, In PBO, tizc is recorded and committing is recorclecl and updated in the subphase.

In SFO, the subphase consists of "~ict ie~e:=Actiz~e-{T1)," which defines the set of

transactions that are in their read phases a t EO?',. We call this subphase confining

section (CS). The beginning of the CS for transaction T, is marked by EOT,. FVe

use E C S to mark tlle end of CS,. Since some globaI information is updated in CS's,

CS's sho~ilcl be executed mutually exclusively. We extend the use of partial order

"<" to the confining sections. C'S, < C'iS', means that the entire confining section

of T, precedes the confining section of T,, in other words ECS, < EOT,. Here we

consider ECS, as a syi~chronizat~ion event. Let Sl and '$2 be sections (i.e., intervals)

such as confining sections and locked sections to be introduced later. Let B1, B2,
and El , E2 be the beginnings arid ends of S1 and S2, respectively. We say S1 and S2
overlap if B1 < E2 and B2 < El (see Fig. 4.1) . Our optimistic schedulers ensure that

P

no two confining sections overlap, i.e.,

Proposition 4.2 Optimistic schedulers SBO, PBO, and S F 0 en.jorce, either CS; <
CISj. or C,C,. < CSj, fur any tran.snckions 7: and Tj (I : # j) thnt have confining sec-

tions.

Fig. 4.1 Overlapping

Since a n EOT st nri t ls for t h t . bcy$r~nilig of a CS wltich is ~nutual ly esclusive with

other CS's, one can suhstitiite C'S for EOT in Lcmrnas 3.1, 3.2 and 3.3 without

affecting their corrcctnc~ss. We call thus rephrasr: thc lemmas as follows.

Lemma 4.3 Let H be n h i s f o ~ y produced b y an optimistic scheclwlcr, an,d let p i (x) and

%jz) (i # 3) Oe coqf l ic i i~~g opercifiorls in Commit(f1). I f ' p ; (z) < cjj(n:) then CS; <
cyj. 0

Therefore, the orcler of CSs is consistent with the seri;dization orcler generated by

optimisttic scheil~iler SRO, PI30 or SFO.

4.4.2 Locked Sections

The loclied point (TAP) and unlocki~lg poinr (UP) wrrc clcfiriecl in Section 2.3. They

are synchronization events delimit,ing the locked secfion (dcnoied as L S) . Similar to

confining sections, we extend < to the set of locked sectior~s and write L,S, < LSj to

mean lip, < LP,. Now we examine properties 1 0 ~ l i ~ c l sections have.

For a transaction Ti, by clefinition, we have p l t (r) < LP,, for any locliil~g event

CHA PTER 4. COMB INIATG OPTIMISTIC At'D L 0 CfiING SCHEMES

pl,fx). Similarly, UP, < p , (. r) holds, for any unlocking events pu,(x)'. We formally

state the above ciiscussioil i l l the following propositiorz.

Proposition 4.3 Let H be a history produced by a 2PL scheduler, and let pi(x) be a n

operation in Com.m,it('H). Then p1;fx) < LP; < UPi < pui(x).

Lemma 2.1 says that i f p , j s) conflicts with and precedes q , (. ~) , then pu,jx) s
ql,(x). By the above proposition, this implics LTPi < LP,. In terms of ' l 0 ~ 1 i d sections,

we thus have LS, < LS,. IVc fornl~llate this as follows.

We refer to confining sections and loc1;ed sections as synclz~onizing sections.

4.4.3 Integration

When two subsclieclttlcrs are integrated into one, a transaction accessing both pasts

of a databasc will experience two diRcrcnt kinds of concurrency control, and, conse-

quently, will have both a confilling section and a l 0 ~ 1 i ~ d section.

For an optimistic su l~sc l~edu lc~ and a pessimistic subscheduler to cooperate, they

should interact in some way. As we could see horn discussions giver, s~ far in tjhis

chapter, optirriistic a~icl locking nietliocls sliarc some importa,nt properties. They both

'Strictly speaking, onc sllo~tld use 5 instead of < in above relations. However, this implies
inttoclucing a new partial order. Therc~fore, we iritcrprct "at wh~cli" 111 thc clefirlitioiis of LP and UP
as "right after" and "right before," respectively, in order to use < for 1,P's and UP'S, instead of <.

arrange transactions according to co~dlicts. (Time-stamp ordering, in contrast, ar-

ranges transactions according to the transactions' arriving times.) They both have

synchronizing sections whose order is consistent with a serialization order. To in-

tegrate them, wc need anijr to cnstire that the serialization orders generated by the

optimistic and locking subschedulers are consistent with each other. In other words,

we should p r e ~ m t t lie situation where one transaction. saJr T,. is ordered before an-

other transaction, say 'r,, by one subscheduler, but they are ordered in the reverse

order by the other subschecluler. That is to say, we should prevent situations such

as "CS, < CS, and I,SJ < LS," from happening. If we "stick" the confining sec-

tion and locked section of a transaction together, then such a situation will not arise.

Therefore, we adti a restriction on the 0 + P class t o form a subclass of 0+P.

Let S Le an O+P scheduics. If S ensures hi,, for every transaction, its

confining scction and lockecl section (i f both exist) overlap, then S is ca.lled

an O+PO scheduler, wliere "o" stands for overlap.

\Vc now esamine propertics rclatetl to t,hc confining scctions and locked scctions in a

history p r o t i ~ m d by an O+P0 scl~rclulcr.

PrsoE Only if part: Beca,~ise LSi and CSi overhp, E071 < UP;. Similarly, because

L,Sj a.nd CS.j overlap, LPj < ECySj. If LS; < LSj, then EOT; < UP; < LPj < ECSj.

This implies t h t C,S; P Cf7Si. By Proposition 4.2, CSi a.nd CLSj do not overla.p, so

c: s; < c $5, .

i f pa,ri: If CS; < C'S;. then isj # L,C; f o i i o ~ ~ s imniediately by exchanging 1he

roles of confining sections a.ild locliecl sections in the proof of the "Only if" part.

By Corollary 4.1, i f 7'; and IT) conflict on a. PES item, L,S; a.nd LSj do not overlap.

Therefore, L,Sj + LSi implies LS; < LSj. n

The property presented above shows the effect of overlapping the confining and

locked sections of a transaction. In 2PL, the serialization order was defined based on

the locked points of the transactions. and in an optim:stic scheme the serialization

order is defined based on ZOT's. Here, we shall introduce a reference point in each

transaction on which the serialization order for t h e O+Po scheduler is based. The

sequencing point (S P 2) of the transaction T, coincjclcs with EOT, or LP,, if T, has

either CS, or LS, !,ut not both. If 'T, has both CS, and LS,. then SP, is defined to

be the later of EOT, and LP, . (See Fig. 4.2.) In other words, in the latter case,

,SP, is the cjtartiug point of {,he ovtrlap hetween CS, and LA$. The following lemma

shows the irnportal~ce of secluencing points.

LPI EOTI UP I ECS 1 +
SPi

CS 2

I
.I LS2

T 2
1

EOT: EP2 ECSz UP 2

1
SP2

Fig. 4.2 Sequencing Points

Lemma 4.5 Let N be a history produced b y n n O+LP' scheduler2 and let Ti and
' , ,',-TI Tj have two contl'7icting opc.mf.ion.s. pi jx) n n d cij(;r) in C'ornsnxjn;, .such that p;(rc) <

qj (rc) . Then v:e h a w 5P; < SP,.

Proof: Since Ti and T, have conflicting operations. either t h q both have confining

sections, or the!- bot,h have loclied sect,ioi~s, or boih. Therefore: from Lemmas 4.3

and 4.4, CS; < C S j or LS; < LSj holds. If CSi < CATj7 then ECSi < EOTj.

Since CSi a.nd LSi over!iq, we hare LP; < ECS; a,nd EOT; < ECS;. Therefore

SP; < ECS; holcts. Because SPj is t.he h t e r of LPj and EOTj, ECS; < SPj foflows

from ECS; < EOTj. So we lmve .SPi < ECS; < SPj.

Simila.rly, when LS; < LSjl we can show t h a t ,?Pi < Sf',. [7

We can now st,a.te the following t.heorern.

Theorem 4.2 .4 n O t P scheduler. produces o ~ d y scrinliznble lristo~ies,

Proor": A history I3 is, in general, a partial order on t h e set of operations and syn-

cl~ronizatioi~ e\.ei~ts. Let cr(Ii) be a (totally ordered) secpence of operations and syn-

chronization events comj->atihle with this partial orcler. Clearly, all SP7s are totally

ordercct i n o (N) . f'onsitlei th is total o d c r as the serialization order. The theorem

now follows from Lemma 4.5. 0

4.4.4 Necessity for LS-CS Overlap

Xow we show that if the confining seclion ancl loclied section of a transaction are

separated, an OSP scheclulcr may not guarantee scrializahility.

Theorem 4.3 Giwn an O+P schtdiiftr S, therc misf a trrinst~ction set T, such that,

for any trunsciction T, E T, if S d l o ~ i * ~ T, 's lockd section and conjning section not

to or-erlnp. fhen if mcly produce n non-scrinll,-uble history.

Proof: Let T = (TI, Ti) he a tra~isaction set, where

TI: T , (T) . (y) . and

T2: r z (g) , zuz(x).

for some s E PES and y E OPT.

Assume that S allows LSI and CS1 not to overlap. It is possible that LSI < CS1.

If LSl < CSI, S may produce a history in which LSl < LS2 and CS2 < CSl. This

history contains rl (x) < .ro2(n.) a.nd r 2 (y j < U) ~ (I J) . Therefore, i t is not serializable.

Now assume that S allows LS2 and C,S2 not to overlap. Therefore, CS2 < LSz is

possible. Sir:lilarlj-. S ma\ producc a non-sciinlizable histoq, containing r 2 j Y) < q (y)

and r I (x) < w2jx) .

4.4.5 Restricting Overlappings

EOT EOT

a) LS is contained in CS b) CS is contained in LS

EOT EOT

C) LS starts before CS d) CS starts before LS

Fig. 4.3 Overlappings of CS and LS

In the ~ O Y P dis~i:ssiom. the way in ~ h i c h the lstked section (LS) and the confining .
section (C'S) o ~ e r l a p was noi restricted. So there are four possible ways they can

overlap (Fig. 4.3): (a) the entire LS is contained in the CS. (b) the entire CS is

CHAPTER 4. COYfiln'lArG OPTIMISTIC AND LOCKING SCHEMES 61

co~tainecl in the LS, (c) t,he LS starts before the CS, a.nd (d) the CS starts before the

LS. In a centra.lized da.tabase system, the scheduler cannot receive the End request

of a trmsaction until and unless it has received a.11 the read and write requests of the

tra.nsa.ction. Tha.t is, t,he va,lida.t,ion of a transaction should be after any prewrite of

the tra.nsaction. ,41so, a.ccording to our model, all write requests of ? transaction are

first execT .ed via prewrite opera.tions t.o the transa,ction's private ~orlispa.ce, then,

only a.fic; the sclicduler receives a.n End comrna,nd, arc thp writes reflected to the

dartabase (I;, dm-writes). Further, since the CS of a t,ransaction should be executed

1nutua.ily esclusl .-el17 and i s often irnplcmented a.s crit,ical section, wa.iting for a lock

inside t,he CS ma?- ca.silj. ~.rsult in a deadl~cli, especiallj- in serial va.lida,tion. Therefore,

we further restrict the way the two sections can over1a.p. Prxtically, overlappings (b)

a.nd (c) are more meaningful. 1Vha.t clistinguishes (b) a.nd (c) from (a) a,nd (d) is

that. EOT takes p1a.c~ in the l o c k 4 section. So, thereafter, we will concentrate on

the development of comhinecl sc!~edulers with this cha.ra.cteristic, and ca.11 them O+Pr

schedulers, where "r" stancis for restricted.

4.5 Some Combined Algorithms

In this section, we present some combined algorithms. They are all in the class O+PT.

4.5.1 Serial Forward Checking + 2PL

We present a composition of SF0 and 2PL. The procedures for Read and M i t e

requests are the same as those in Algorithm 4.1. We i,lierefore present only the

procedures for Begin and End requcsts.

Algorithm 4.2: (SF0 + 2PL)

CHAPTER 4. UOA/fBfArlNG OPTIMISTIC AND LOCKlNG SCHEIWES 62

e When it receives a Begin request from transaction Ti, the scheduler does the fol-

lowing:

Active :=Active u(Ti) % should be executed atomically.

RSi := kVS, := i l rL i := d

e When it receives an End request from transaction Ti, the scheduler does the fo!-

lowing:

C1 begin (system-wide) critical section

Actlz*e:=Actit~e-{Ti)

co71flict:=false

for every T, E Acfirit. do

if WS, n R q # 05 then co~zflfct:=true

if coilff7ct then resolve the conflict by aborting either 7;

or all T,'s such that M'S, f~ RS, # q.

The decision is made upon some cost criteria.

for every ns E TI-S, issue a dm-write(nt) % Reflecting

end critical section

C2 release read-locks

C3 for every rc E : i 7 L , issue a dm-write(.z.)

C4 release write-locks

C5 commit

The correctness of the algoritlim follows from the correctness of SFO, Strict 2PL,

and 0+P7 class. There are a few things worth mentioning here. First, the critical sec-

tion used here is a tool for achie\.ing mutual esclusioii fo: S F 0 activities. Therefore,

u7e need not stop 2PL activities in the critical section. 2PL activities can take place

in parallel with the critical section. Specifically, we may release read-locks held by a

transaction a t the beginning of the critical section before the valiciation of the trans-

action, so that the unlocked data items are available for other transactions sooner.

CHAPTER 4. COMBINING OPTIMISTIC .AND LOCKIArG SCHEMES 63

However, we should point out that, in practice, achieving mutual exclusion on all data

items is much easier than achieving mutual exclusion on OPT only, especially when

the border between O P T and PES is dynamically changeable.

Second, a.s st,ated in Difference 1 in Sect,ion 3.4, forimrcl checking resolves conflicts

more flesibly t h m ba.ckwa.rc1 checking. This has a.n added significance in combined

schedulers. Consider long transactions. The longer a t.ra*nsaction, the greater is the

cha.nce it conflicts with other transa,ctions in OPT, and the higher is the cost t o abort

i t . A long transact,ion a.ccessing both O P T and PES may be further delayed due to

its wa.itjng for ioclis. Therefore, the cost, of abortion in ba.ckwa.rd checking is even

higher, especia.lly beca,use, when a tra,nsa,c.tion is to be aborted, it has got all its locks.

In forward checking, however, we can choose not to abort the tra.nsa.ction undergoing

validation, instea.cl, we can abort the t,ra.nsactions that, conflict with it. It is interesting

t11a.t this is a.chieued in the \ra.Iictation-ancl-write phase of the tra,nsaction. So, we need

not even h o w tha.t the transactioi~ is a. long one when it arrives a t the system.

4.5.2 Serial Forward Checking + Deferred Writ e-Locking

As stated in Section 2.1, a write operation of a transaction only writes a new value

in the tra.nsa.ctionis priva.te worli space by a prewrite operation. The new value is

not refleded to the c1a.taba.se a.nd is not visible to the other transactions until a.nc1

unless the transactlion passes its d i d a t i o n . Therefore, a tra.nsa.ction is two-phased no

matter whether it is scheduled by a. 2PL, an optimi~t~ic, or an 03-P scheduler. To be

consistent with the optimistic scheme, we use the terms read plzr~se a,nd vrtlidntion-and-

write phase to name t,he corresponding pha.ses. In Algorithms 4.1 and 4.2, write-locks

a,re set too early. Concurrency may be increased if we postpone setting write-locks as

much a.s possible. Actually, we need not set write-loclis in the read phase. We can do

so in the :rallda,tion-ancl-itrrite phase. We present a cornbiiled scheduier with deferred

write-locking below. In Chapter 8, we will combine deferred write-locking with PBO.

Algorithm 4.3: SF0 + Deferred Write-Locking

CHAPTER 4. COA/IRli\l'lNG OPTIMISTIC A N D LOCA'ING SCHEMES 64

a When it receives a Begin request from transaction Ti, the scheduler does the fol-

lowing:

e When it receives a Read(x) request from transaction Ti, the scheduler does the

following:

chcck-mernbcr(x) % determine which part o f database n: belongs t o

case R1: z E PES

if z is in T,'s private work space

then read .r f rom there

else if z is already write-locked, block Ti

unti l read-lock can tie set on ;c

set read-lock on n.

dm-rea.d(n:)

case R2: .T E OPT

if :z. is in Ti's private work space

then read x f rom there

else dm-rea.cl(:~:)

RSi := RS; U (n :)

e When it receives a flTrite(.r., tlew-value) request from transaction Ti, the scheduler

does the following:

check-member(z)

case \N1: s E P E S

IVLi := W L ; U { : r)

prewri t e(x , new- d u e)

case W2: n: E OPT

C H A P T E R 4. COA4BINIRG OPTIMISTIC AAiD LOCKING SGHEhrIES

e When it receives an End request from transaction Ti, the scheduler does the fol-

lowing:

parallel-for .r E I(TrL, do % See Remark

if I is locked then wait until write-lock can be set on n:

end parallel-for

begin (system-wide) critical section %Start validation.

Actioc:=.4ct?'~~e-{T,) % EOT, is here.

co~?$ict:=false

for every T, E rlciiz7e do

if IT'S, n H31, # q~ then colzufl~ct:=true

if c o r ~ f i ~ c i then resolve the conflict by aborting

either T, or all T' such that

TI'S, n RS, # 4. The decision is made upon

some cost criteria.

for every n. E ii7,5', issue a dm-wrjtej.-r) % Start reflecting

end critical section

release read-locks

for every n. 2. E4-L, issue a dm-wsite(n.)

release write-locks

commit.

Remark: Parallel-for can be thought of as a process for ea.ch z. These processes run

concurrently.

First we show tha t the algorithm is correct. Tti7e need only to show that deferred

write-locking is a two-phase locking algorithm. This can be done easily by verifying

that deferred write-locking satisfies the four lock ownership rules in Section 2.3

CIiA PTER 4. COA4BINIArG OPTIA/llSTIC 4 N D L O Cfi lNG SCIIEAIES 66

Write-locks are acquired in the la.st possible moment. They could he acquired in

the critical section. But, this ma.y ca,use a, transa.ction to wait for a lock forever in the

critical section, resulting in a. deacllock, One can immeciiately see two improvements

over Algorithm -2.2:

1. The duration that a write-lorli is hcld by a transaction is liliely to be shortened.

2. By collecting all the write-lock recpwsts together and executing them in parallel,

the time a transaction spends waiting for write-loclis may also he shortened.

Since the duration that a write-lock is held is liliely to he shorter, the possibility and

time a read or write operation is blocked may also be decreased and shortened, rcspec-

tively. Conseclucntlj., tlic duration of a t ran~act~ion may be shortened and concurrency

may be increased.

We think that deferred write-locking combines nicely with optimistic methods.

Mk can see this from the view point of version control. A prewritejz) will generate

a version of s. This version is not visible to the other transactions (other 'han its

creatos) until and unle.is a cor~c~sponding dm-rrriiicjsj reflccts it to tile database. M'e

call this version an ~ ~ n c o r n m i t t ~ d wi-sion of .r when it is created. When the version

is reflected to the database, we call it tlie committfd version of x. In our model,

there is only one committed version for each data item ai any time, no matter what

concurrency control method is used. (This is not the case for a mulit-version database

discussed in Sec. 4.6.) 111 an optimistic method, there could he several uncommitted

versions of a data item, say m , at a given time. Different transactions may read

different unconlmittcd versions (created by themselves) at lie same time. 1x1 the

2PL algorithms discussecl in previous chapters and sections, there was a t most one

uncolnmitted version of n. at a t ~ y time, because a transaction must hold a write-lock

before executing a prewrite, and lieep the lock until the version it created was reflected

to the database. Bcsicles. only one version, either committed or unconlmitted, was

readable a t any time. This is a kind of mismatch. In the deferred write-locking,

however, the situation is the same as in an optirnistic method. There are multiple

uncornmitkd versions of a da.ta ittern, ea.ch visible only t*o its crea.t,or. It seems more

nat,ura.l to use such locking t-o combine with opt,imistic a,lgosithms.

One shortcoming of clefcssecl write-locking is that it may cause more deadlocks than

than the stanclard 2PL, and the clamage of a deacllocli- cat~sed by it may be more severe

than that in the standard 2PL. For example, suppose that two transactions T, and

T, both first read and then write a data item n: (n. E PES). Let r t q - p , (r) (~ q - ~ , (z))

denote the time when the sc.heduler receives the request p,(n.) (cl,(s)), and Ict Encl,

(E12~1~) dcnot(~ t l ~ e tinw tllc sc litdulw ~eceives E i ~ d f1o111 T, (T'). Collbidcl the dead-

lock caused only bjr locking a i'os rT, auci T'. The condition for such a deacllock in the

standard 2PL is wq-r , (n .) < rrq-w,(a) A ~ e q - r , (x) < req-~o,(n.) , while the deadlock

condition in cleferreel write-locking is req-r,(n.) < E n d j A rcq-r,(n.) < End,. Ap-

parently, the latter is much ntorc easily satisfied t h a n the former. Further, such a

deacllocli can be detected in stanciarcl 2PL at the last of ?.eq-iil,(n.) and r q - e o j (x) , but

in deferred write-locking, the last of End, and Endl . SO, the cost of recovering from

such a deadlock in deferred write-locliiilg is more severe than that i l l the standard

2PL. Because about 90% of' d~acllocl i~ involve only two transactions [7], and because

the deadlock discrissccl a1101.c is a common type of d e a d l ~ ~ l i , this shortcoming of cle-

fcrrecl lrsite-lock is very srrious to pcrforniance. Wc still 11c.eci a simlilat,ion study to

find out how ciefersed write-loclii~lg with the stariclasd 2f'L, especially, in the hybrid

schecluler environ~ncnt .

4.5.3 Relaxed Locking

Here we present a. concurrency control a.lgorit,hrn called "Rela.xed Loclii~lg" (R L) ,

lmsecl on the ideas we ha.ve come across so far. It utilizes tslie overla.pping of locked

section and confining section, etren though the cla.t,a.base is no longer pa.rtitioned into

OPT a.nd PES. The iclea of R.1, is a.s follows: A read opcra.t,ion, as in the optimistic

scheme, does not block a conflicting write opera.t,ion, Or! the other hand, a write

operation, as in the locliillg scheme, will I>lo~li any operation conflicting with it. Thus,

the scheduler maintains only write-loclts. No read-locks are ever set. Instead, read-

sets and write-sets are used in valiclatiolis to detect read-write conflicts. When a

read request, say Readix), comes from T,, the schedulcr checks if r is (write-)locked

by some other tran?act,ion. If' so, it blocks T, until the locli is released. When it

is not locked. n: is read for T, and put ir! the corresponding read-set. For a write

request, t he scheduler does almoqt the same thing as it does for scad request, except

it has t o set a lock for the prewrite operation. Eventually, when the End request

comes, the scheciuier uses the forward checking strategy to valiclate T,. It checks the

intersections of the write-sct of a: and the read-sets of otllcr "active" transactions,

The formal clcscript ion is prcsc~itecl 13clow.

Algorithm 4.4: Relaxed Locking (RL)

Q When i t receives a Begi17 request from transaction Ti, the

lowing:

scheduler does t h

r, When it receives a Xeadfx) request from transaction Ti, the scheduler does the

following:

if n. is in Ttls private work space

then read .t. from there

else

if s is locked by some other transaction

then block T, unti l the lock on n. is released

beg~n critical section

RS,:=RS, U {s)

dm-readin.)

end cr i t~ca l section

t~ When it receives a W!rif;e(r, new-va.lae) request from transaction Ti, the scheduler

does the following:

if :r: is locked

then wait until lock can be set on 2:

set lock on n. for Ti
T/I/rLi:=JYi; U {x)

prewri te(rc, new-~dzre)

e When it receives an End request f rom transaction T,, the scheduler does the fol-

lowing:

begin criticai section

Act ivc :=Act ive -{7:}

coi?,flict:=faIse

for every 'r, E Act i ve do

if W L , n # c', then conflict:=true

if c.ol;Pic.l then resolve the conflict by aborting either T,

or all T''s such that IVL, n R,S; # 4 .
The decision is made upon some cost criteria

end critical section

for every n. E IT'LL issue a dm-rvrite(x) % Reflecting

release locks

commit

Note that , unlike SFO, the critical section herc is an ordinary critical section such

as that in SBO and PRO. The algositl~m has some special features: (1) It uses rollback

t o resoive the read-write conflicts and blocking to resolve the write-read and write-

write conflicts. (2) It has less blocking and more rolll~acks than 2PL algorithms. On

the other hand, it has less rollbacks and more blocking than optimistic algorithms.

(3) A read-only trarisa,ction does not block any otpher tra.nsattlion, but may be blocked

by some locks.

We expect the algorithm to have a good performance in situations where conflicts

are rare, but not rare enough to justify the use of any of the optimistic algorithms,

The algorithm is correct, i.e., it generates only serializable histories. The proof of its

correctness is straightforward after the proofs in the previo~ls chapters and sections.

After RL was designed. it Ixas cliscoverecl that, Xgrawal and E! Abbadi 121 had

developecl an afgorithni similar to R L under different motivation. Their simulation

confirms our prediction about its performance [I].

4.6 Going into Multiversion World

In this section, we este~lcl our liyhrici scheme to multiversion databases. For rnultiver-

sion databases and the locking scheme for them see [T I . For optimistic multiversion

concurrency control see [3].

In a ~muliiversion chtnbnse, a chta item may ha.ve more than one version simul-

taneously st,orecl in the clat-a.ba.sc?. A rea,d operation now reach a. "version" of a data

item. .4 wrik opera.tio11 genera.t,es a, new version of a c1a.ta item, without overwriting

a,il old one. Old 1:ersions are st,ill ac.cessil>le t,o t~aiisactions. Ea.ch data item, x. now

ha.s a list of versions. it version of m is clenoted a.s xi, where the subscript i is called

t,he version number, which is the t,ransa,ction number of t8he transaction that. creates

it. For two versions of 1, n.;<,n:j if ir is less than j .

A transaction with a (potential)2 write operation is called an updator. A transac-

tion that is not an upclator is callccl a ptery . In other words. a query is a read-only

transaction. We assume that, when a transaction is submitted to the TM, the TM

"A transaction whose program ront.ains a writ.e opera.tion may act.ually not execute that write
operation.

is informed or can find out easily whether the transaction is a query or an updator.

Each transaction T, is assigned a transaction number, clenoted as tn(T,). A query's

transaction number is. however, assigned when the query starts.

A query will never be blockccl or validated. It 1s esecuted asynchronously with

respect to updators and other queries. This is achieved by letting a query read some

old versions of data itcms. i4The~1 a cluerj7, (2, starts. a transaction number t n (Q)

is assigned trt Q, such that any apdator with its transaction number less than or

equal to trz(Q) ha3 been romrrlitted or aborted when Q starts. Later, we will show a

technique to assign a mu.rimnl transaction number to a query so that it can read as

up-to-date information as possible. For a Read(.r) operation from Q , the scheduler

will find a version of n. with the largest version number less than or equal to trz(Qj. By

the above principle, the upciator. that created the version of n: had already committed

when Q started. In othcr words, Q will never '+read from''3 any upctator executing

concurrently with it. Tllercfore, there is no need to sct a lock or moclify a read-set

for an operation from a clucsy, and thcre is no rmcl to distinguish an O P T item from

a PES item.

To the updators, the database is still partitioned into OPT and PES as before. A

read operation of an upclator reads either the version it has created itself, or (if such

a version does not exist) the newest version created by a committed updator. We

call this x-ersion t h v r t i w ~ . % i ~ . o l r l ~ r) ~ i t ~ T f L ? P I . S I O I I . Thc read set of an updatos coutains

a set of data items togdhcr with their vcrsion nunllwrs, instead of just a set of

da ta items. The write-set of an t ~ p c l ~ t o r , however, contains as before a set of data

items. A n upclator gets its transaction number, which is the current value of tnc, in its

confining section. Since updators may encm their conf ning section in a different order

than they leave their valiclation-al~cl-write phase, we cannot directly use tnc to assign

transaction numbers to queries. To deal with this probicm we use anotller transaction

3\Ve say that a read operation rends from a write operation if (1) the two op-rations are from
different trar;sactions, and (2) the read operation reads the value cleat& by the write operatwn.
Note that there is no such relation if two operations operate on different versions. A transaciion
T, rends from another transaction q , i f T, 11as a read operation that reads from a write operation of

T 3 .

number counter called vtac (visible tnc). utnc indicates the latest updator of which the

result is mailable to queries. It is used to a.ssign transaction numbers to queries. An

committing queue (CQ) is maintained, which contains an entry for each upchtor in its

valicla.tion-and-write phase. Each entry E in CQ contains a type field (E.type) and a

number field (E.nvn;) st,oring the tra.nsa.ction number. CQ is ordered on the awrn field

of the entries (i.e., the order of entering the corresponding confining section). The

value of a type field is either 1/ALIDATIATG or iVRITTEi;2r. 1/14 LIDATING mea.ns that

the upda.tor it represents is being validated and WRITTEN means that the updates

of the upda.tor it represents a.re a.lrea.cly reflected to the database and are available to

queries and ot,her ~~pda,tors .

Below, we present a 11j.bricl ~~liiltiversion concurrency cont,rol algorithm using back-

ward checking. The multiversion algorithni using forward checking is straightforward

from this.

Backward checking

When checking RSi ;'ir? WSj = 4 for upda.tors U; and C!;., the versions in RSi whose

version number is great,er tha.n or equal t,o tn(U;) a.re not consicierect, for these versions

a.re rea.d from LIT,. or some 1a.ter tra.nsactions.

Given below is an algorithm description.

e When it receives a Begin request f rom ilpdator ti;, the scheduler does the following:

e When it receives a f2eadj.z:) request from updator U, , the scheduler does the fol-

lowing:

cl2eck-memher(s)

case R1: z E P E S

if z is in l/i's private work-space

then read .r from there

eise if n. is write-locked by another updator, block lJ,

unti l a read-lock can be set on z

set read-lock on 3.

d m - s e a d (s k) where xr; is the newest committed version o f s.

case R2: s E OPT

if a: is in I l ' s private work-space

then read .c from there

else dm-wc?d(.rk) where n.k is the newest committed version o f 3.

RS, := X.5, U (x k)

a When it receives a \;'rite(.:., nerr~-x,dae) request from updator i?,, the scheduler

does the following:

e When it receives an End request f rom updator lii, the scheduler does the following:

C l , parallel-for x E 1i7L, do

if s. is locked then wait unti l write-lock can be set on .-L.

sex write-lock on n.

end paratiei-for

C2, begin critical section

J iu i .h - iu , := f i i c .

tnc:=tnc+I

allocate entry E

E. type:= I':4LIf)ATING'

E.nvrn:=fnc

append E t o CQ

end critical section

C3, release read-locks

C4, for 15 such that stcr7.i-tn, $1 5 In([%) 5 &finish-in, do

RS:., := jzk 1 xi; f RS, a n d k < tn(lJ,))

% AS:, contains only those versions created by updators

% preceding liJ in equivalent serial history.

if TIr,$ ri RS:./ # d % Version numbers are ignored in set operations

then delete E from CQ

abort

C 5 , attach the version number (fi~zzsh-trz, + I) t o the copy of each item x,

x f IT-5, U TI'L,, in lT,'s privzte work-space

reflect T17S, U Tf'L, t o the database

by creating new versions in the database

C6, release write-locks

C7, begin critical section

h l { r ,) := ~ r l : ~ l l - l l ? ~ + I

E. typt:= f 171i7'7'E.Y

while head(CQ).iypt = iT'RITTEArdo

rifnc:=head(CQ).uum % Used for queries

delete head(CQ)

end (while)

end cr!tical section

Correctness

The correctness proof for t h r algosithm is based on a nlociel cliffcrent from what

we introduced in Chaptcr 2. The notion cor?.flirt cannot be used herc. Instead,

CHAPTER 4. C'Cl,ilBINISG OPTIAIISTIC AND LOCKING SCHEMES

we have to use the notion read from (see the f~otnote in this section). Therefore,

conflict eq~ ivn lenc t should be replaced by vPex piv valence in discussing equivalence

of histories. Tlic details are omitted.

In this chapter, we study how to cl~.riarnicailj~ re-partition a c!atabase, in order to keep

the up-to-date information of the conflict rate distribution reflected in the partition

of the clatalrtase. :i constitt!tes an import ant part of our adaptive concurrency control

scheme. \'\71at makes cij.l~amic rc-partitioning complex is that we should not stop

the datalzase system for re-partitiorling. One way of carrying out re-partitioning is to

use a group of transfer processes, which run concurrently with database transactions.

A transfer process transfers a data item from OPT ro PES. or vise versa. So, we

must guarantce that, &spite interference from transfers, thc execution history is still

serializable.

iVe study a specific transfer algoritli~n, i.e.. one to be used in conjunction with

Algorithm 4.2. The transfer aigorithms for the other combined scheciulers call be

designed in a similar wv. In wction 5.1, we clis,uss interference of transfers to

t r a~sac t ion esecutio~l. In Seciim 5.2 we present our transfer algorithm. In section

5.3. \ye reivrite .\lgorit llm I.';! t u lllalie i t coil!l)atihlc \I i t l i n tra11sk.r algorit hm, and

in Section .5.-I, we give a correctness proof for i t .

5.1 Managing Interference

Transferring a data item being accessed by transactions will definiiely interfere with

transaction execution. In the preseiice of transfers, data itcms are "on the run" from

the viewpoi111 of tiaiisactio~l\. For example, a transac lion nlay read a data item from

OPT. but iater when it ivants to m i t e on the same item, it may he in PES. Therefore,

the major problem in designing a transfer algorithm is to manage interference so that

serializahility is ensured and performance is not seriously clegractcd.

Performance can be affected in different ways. One can i;:?mediately work out

some "hrutc force'. transfer ruethods which giiarantee se:ia!izability of transaction

esecutioii hut haye a bad impact on perforn~ance. RJlowing are two such methods,

which resort to drastic measures. Suppose we are transferring n: from OPT to PES.

BuEIying .-lbo~i d l trrtiiscrctlons that are ciccessing n: a n d then i7nn.sfer x.

This method is not acceptable. for it causes too many abortions.

Polite Dcj'er the f r n u 3 f ~ r ut t f i l t h r w is n o fla1~snct7ori crcccssirzg x. This method is

unacceptable either. because (1) i t callnot guarantee that n. is eventually trans-

lerrccl to PES. ; i i ~ d (2) pc~rfo~lnarice \sill 1~ dcgiacltcl Lj. clelaying tllc transfa of

.T to PES, since thc reasor: to transfer 2 to PES is that the conflict rate on x is

going higher or is already high enough not to justify the use of an optimistic

rncthocf.

The t,wo methods represent. {.he two extremes of irlterference. The comments on the

Polite suggest tha.t we shoulcl "ma.nage" inte~.ferexlcc rather than merely "minimize" it.

We suggest. that both of the following goals should he taken into account in designing

a transfer algorit.hm: minimize the blocking of tra.nsac.tions due t:: data tra.nsfer, and

transfer a cia.ta item t o its destination as soon as possible.

To investigate the interference of transfers to transaction esecution, we introduce

a new term: '*contention." We saj- that there is contention on data item n., if more

CHAPTER 5. D l'ArAI\lIC RE-PA RTITIONING OF THE DATABASE 75

than one currently active transaction is either accessing it or is trying to access it, and

a t least m e of them wants to write it. Here, we say that a transaction T, is "accessing

x" if z E (RS, u I/VS,) for n. E OPT, G - T, holds a lock on x for z E PES, and T, is

"trying to access .2: if it is waiting for a lock on x (x E PES).

Transferring a data item T from O P T to PES or vice versa, when no transaction

is accessing or trying to access n. is trivial, since the transfer will not interfere with

transactions. x shouIcl be simply removed from the source part (OPT or PES) and

adclecl to the clestination part. Trar?sferring ,T when there is no contention is also

relatively straight for-ward. 111 1 h i s rase. ho iwvw, heqides changing t h e rnernhership of

2, some additional actioil.; lrl~lsi be taken, 'il'hen x was being accessed by T: in OPT

before transfer to PES, fos rsample, an appropriate lock must be set on x on behalf

of 7;.

Transferri~ig s whec there is corltention on it recpires careful consideration, for

interference of the transfer is complicated. Since the way the contention-related in-

formation is storecl for data items in PES js different from that for OPT, it is fairly

messy to convert it from one LO the other. The approach that we adopt therefore, is

to avoid such con~ersion altogetl~er. simply by disallowing a transfer of a data itern in

contention unti l the contention is resolved. To see the underlying motivation behind

this principle, suppose that, presently, there is a contention on data item x. If x is

transferred from PES to OPT at this time, then some transaction invol\,ed in the

contention will he aborted. This can be a*\widecl i f n. is not transferred immecliately.

Suppose ,T is transferred from OPT to PES at this time. \ire have to set a lock on

it for one tlansac-tion and block the other. Sincc 1r.e have no iclca whicl~ transaction

should have a lock ancl which should be bloclied, this niay cause some unnecessary

dea,cilocks. There is another problem more serious t11a.n unnecessa.ry dea,cllocks. Sup-

pose t,ha.t Ti is involved in the coilt,ention clue to opemtion o;jx). Further suppose

that after the transfer of .r to PES, some other transaction obtains a lock on z and

T, is left to wait for the lock. nmy have another operation o:(y) jy E PES) such

that o , (x) < o:(y) and T' has already obtained a lock on y . in other words, T, has

obt.a.ined t,he lock for the later operat.ion but is waiting for the lock for the earlier

CHAPTER 5. DYNAA4IC' RE-PARTITIONING OF THE E.4TXBASE 79

operation. Even though the operation o, (x) has been processed, (so that it is not, a

logical problem for Ti,) when T, gets the lock on a, it will resume its execution a t

some point other than o , (~ j , which will make the control flow more complex.

5.2 The Transfer Algorithm

Intuitively, transferring a daia item back and forth betwceil O P T and PES frequently

would be cour-iter-prod~1cti1.e. Therefore. we impose a restriction on the frequency of

transfers. Specifically, we make the following assumption.

This assumption will not affect tlre correctness for transfers and transaction exe-

cutions. However, it helps to make the correctness proof in Section 5.4 easier. This

assumption a l w suppresses unnecessary transfers, which enhance performance. For

this purpose, it is probahix i-nore clesirable to extend the time interval to two o r three

t i m e s of the r n n ~ i n ~ a l trcr~mzctiou Il.fi-t~mc. Clmosing "two or three" is based on some

"gut feeling" rather than scientific ex-idenre.

There are two kinds of transfers: from OPT to PES and from PES to OPT. Both

kinds of transfers will access some cta ta st~.uctnres used by t,he sclieduler.

When a transfer process detcces some contention on the data item being trans-

ferred, there are three a1 t ernatives:

1. ikho~t all the tra::sactlo::s that arc involved in the coiiteilki~ii.

2. abort the transfer process itself, and

3. wa.it until the scheduler resoIvcs the contention.

We discard the first choice. because it is costly and not interesting. When transferring

a data item, say T, from PES to OPT, the conflict rate on x is presumably going lower,

or is already low. It is likely that, when we transfer ,r some time later, there will be no

contention on m. Since aborting a ~ransfer process itself is cheap. it would he a good

choice to abort the transfer process in this situation. 7;l'e use this strategy in Case

T2.4 in the transfer algol-ithm given below. However, the second choice is not always

usable. When tral~sferring a. from OPT to PES, the conflict rate on it is going higher,
-"

or is already high enough not t o justify the use of optimistic method. 1 we abort

the transfer process and restart it later, it is very likely that the restarted process

again detects contention on z, and the transfer process is aborted again. Further, due

to a high conflict rate, many transactions may be ahortcci during this time. In this

situation, we should transfer .r to PES as soon as possible. iT7e therefore choose the

third choice, and make the transfer process wait. To prevent more transactions from

being involved in the contention on n. wl.en the transfer proczss is waiting, we chop

x from OPT but do not aclcl it to I'ES immediately. Combined with Cases R3 and

W.3 in the reviscd Algorithm 4.2, this achieves the effect of locking. It allows those

transactions that haye already accessed s (i.e., those involved in the contention) to

access cc while blocl.:i~ig all the other transactions that want to access r . M'hcn these

transactions tliat are i n r dird in tilr co~~te~l t ior l all finish. the contention is dlready

naturally resolved. The transfer process can resume and finish the transfer. In Cases

T1.1 and Tl.5 this strategy is used. \Ye also extend the use of this strategy to Case

72 .3 , where there is no contmtion on s and the transaction that holds the write-lock

on a has alread~. firiishd its read phase. Since dropping ,r from OPT or PES works

as a lock on x, i t contributes to forming deadlocks.

Here is a descript,ion of our transfer algorithms.

morerul:=n?oreu~:=false % See Remark 1

begin critical section

compute

R := (T , E Adroels E RS,) % Recall Active set used in Algorithm 4.2

1.T/ := (57% E Actir:ejx E W S ,)

OPT := OPT - (x)

case TI.1: R = 14' = 4 % x is not being accessed

PES := PES U {s)

case T1.2. R + 9 A 14. = 4 % a is being read but not wr i t ten

set read-lock on s for each T, E R % See Remark 2

i'E.5' := PE,q U { . I .)

case T1.3: 1'2 = o A 14' = (T,) % ,r is being written by one transaction.

set write-lock on ,T for T,
V'L , := TTFL, U {x)

P E S := PE,S U (. T } % .r remains in T/TtrS,.

case T1.4: .f2 = c', A I TVj > I
mor~u7:=t rue % See Remark 3

case T1.5: R # o A I f ' # o

end critical section

T1.4a: if rnortul then wait unti l all T' E 1/17 abort or

finish their step C1 of Algorithm 4.2

PE,S := PES U (2 .)

T1.5a: if rnor f rw then

wait unti l all 7; E T.Tr abort or finish their step C 1 % See Remark 3

set read-lock on a. for each remaining Ti E R

PE,S := PE,? Li {n.) % .r remains in RS;

Remark I: rrzo?.er~i~ = true indicates that n. is being read and wri t t e ~ ~ Dy mere than

one transaction. rnorcu. = true indicates that morrru) is not true Lut .c is being written

by more than one transaction.

Remark 2: Read-loclis may be set biter the actual read cperations. So, rl,(s.) <

r,(.-c) < . I . zL , (T) may not hold. x re~nains in RS,.

Remark 3: Not adding n. to PES immediately simply locks all the other transactions

out.

Remark 4: It may be hard t,o detect when a transa.ction finishes its step 61. So, we

can relax the condition to &until all Tj E TV cornpIete (either abort or commit)."

(2) TRANSFER z FROM PES TO OPT

umit:=faIse

critical section

check the locks on a. and the waiting queue for x. set

Rlock: the set of transactions which hold read-locks on x

fTrlork: the set of transactions which hold write-lock on .T.

Note that TV'lock contains at most one element.

X w a ~ t : the set of transactions waiting for reaa-locks on z.

Vf'ruotf: the set of transactions waiting for write-locks on x.

% See Remark 1

case T2.1: Rlock = TT'lack = lizca2t = Il'wutt = d

P E S := PES - {x)

OPT := OPT U (-1.)

case T2 2: Rlock f o A IT7uwtt = p

for every 7: E (Rlock 17 Actrt3c) do

RS, := R'S, U (. r) % T, continues to hold read-lock on s

P E S := P E S - {.TI
QPl' := OPT U { . r)

case T2.3: lTrlock = { T ,) A Rnwlf = I,Vwu?t = Q

if T, E +\cf?rtr then f i r S , := TIr,C;, U { . r) % T, continues to hold

36 write-lock on x .

P E S := P E S - (2 .)

OPT := OPT c (1.)

else trait:=true

PES := PES - (z} % See Remark 2

case T2.4: (R lock # 6 A ib'wait f 4) V (TT710ck f 4 A (R w a i t U TVtoait) # 4)
abort the transfer % Since the conflict on s is known t o be going low,

% Restarting transfer later would be a wise choice.

end critical section

T2.3a: if wai f then wait unti l T: finishes

OPT := OPT U {x)

Remark 1: ij-hen Rlock # d, iTrlock must be empty, and vise versa. We assume

that when Hock # Q A Il 'uvit = 6, Rzccrit =. d

Remark 2: T, is in its write phase. The transfer process must be executing during

the reflecting of T,'s modification in PES. s cannot be transferred to OPT at this

moment, because validation has finished alld if a transaction reads -7: from OPT,

serializability may be violated it.llcn the rcad tal;es place before the reflecting of the

item. So, we let T, 1101~1 csclusi.i,c the lock on J until i t completes,

5.3 Revision of Algorithm 4.2

To ensure that thi. concurrericy control algoril hm can run concurrerlt;y with a transfer

algorithm, we ha\-e to protect the operations on the data structure shared with the

transfer algorithm by p~it t ing t h e m in n critical sectio~l and revise the algorithm

slightly. The main change is in dealing with the case where the data item beinq

accessed is '.in transit," i.e., it belongs to neither PES nor OPT; it is in the process

of being transferred from onp to the other. (See cases R3 and W3 beion?). ?Ye assume

that each single statement is atomic. The procedures for Begin and End remain the

s a n e as before. The procedures for Read and Il'l.ite are described below. Alost steps

are straightforwarci. except for cases R3 and CV3. When data item z is in transit,

we let transactions that 'naive accessed s proceed and acccss z in their private work

CHAPTER 5. DYNAMIC' RE-PA RTITlOi\'IA'Ci O F THE DATABASE 84

space again, while prevent,ing other transactions from accessiilg rc. This is achieved

through the transfer process by dropping z from OPT or PES, wherever it was (see

the transfer algosithm in Sectiou 5.2). This is equivalent to setting a lock on z.

e When it receives a Read(z) request from transaction z, the scheduler does the

following:

block: =false % See Remark 1

wnrffif=false if n. is in 7 ; ' s private work space

then recirl~cr.X:.spc:=true

else rectrtu~i*kspc:=false

begin critical section

cftec_h--member(,?.!

case R 1 : 2% E OPT
R.5, := RS, u (.r>

case R2: n. E P E S

if not rrn&u*rk.spc then

if ,r is write-locked

then block:=true

else set read-lock on s

case R3: 2% $ (O P T u PE,q) % z is in transit.

if x E (R,'.', U TJI'S,)

then k\', := NS, U (J) % See Remark 2

else u1nitt1j~=true

end critical section

if block then wait until the read-lock can be set on n:

set read-lock on rr.

if n:aiftrfthen wait until .2: E (OPT U P E S)

if z E OFT then RS, := RS, U (2)

e k e if n: is write-locked then

wait until the read-!ock can be set

set read-lock on x

if renrlvu-Xapc % rendwkspc=true implies block=false

then read x from Ti's private work space

else dm-reau'(n:).

e 1Vhen it receives a Tl'ritefx, nerr-value) request f rom transaction Ti, the scheduler

does the following:

black:=false

u:nittr:f:=false

begin critical section

c h f r k - f n ~ ~ n b ~ ~ . j . ~

case W1: .r E OPT

TI'S, := IT'S, U (. T)

case W2: ;c E PES

if n is read- or write-locked

then block:=true

else set write-lock on na

IT'L, := II'L, u (n j

case W3: .r 4 (OPT U PE.5')

if n. E (RS, U IT'S,)

then TIr,S, := IYS, U (. r) % See Remark 3

else rt.nrttrJ=true

end critical section

if bfock then wait unti l the write-lock can be set on .r

set write-lock on n:

I f ' L , := 1171!, u (. r)
n m n if t r i l , i f i . f then wait i iniii n. E (OPT U Z-K,J)

if .T E OPT then lIrS, := 1I7S, C! (n.)

else if .r is locked, wait unti l the

write-lock can be set on x

set write-lock on J:

W L i := tVLi U (.x)

Remark 1: These flags are used for pulling the read, write, arid waiting operations

out of the critical section. BlocX-=true means that T, is h l~c l ied by a lock set on x,

~un?ffrf=trui. means tha t n. is in t ra~is i t .

Remark 2: Allow iP, t o read n. i l l transit. At this moment. T, does not own any Sock

on x. If T, owns a read lock on .r, .T 6 (OPT U P E S) callnot be t rue by T2,% and

T2.4 (see wction 5.2). If T, owns ~1 write-lock on m , by T2.3 T, rlctnve, i.e,, T, is in

i ts validation-a~ict-tvl-itc phase, It cannot send a read ~eciuest now. lit is crucial t o let

T, proceed f see TI. I, T1.5).

Remark 3: Allov; T, to write on the item being transferred if T, accessed it before.

See T1.4 and 3'1.5 in Section 5:2*

5.4 Correctness Proof

A transfer algorithm is said to bc correct, if (1) it transfers a data i tem from one part

to the othcr, and more importantly, (2) it does not interfere with t h ~ scheduler in such

a Kay that it causes the scheduler to gencrate nonserializahle histories. Proving the

first for o m trr.,nsfer aigosithm is straightforward. T h e second is what we are going

to prove in this section.

First, to see intuitively that our transfer algorithm i5 cosrect, we neecl only to see

tha t serializability is ensi~sed Lci'ore, cluriiig, and after a iransfw. C'onsiclcr transfer-

ring ,r from OPT to PES. Before tllc i s a lde r , asslime that srrializabiiity is cnsured.

During the transfer. on!y an optimistic method applies to ;i., S o ~ n p transactions' re-

claests for accessing .r are delayed. But delays will not affect serializahility. So, it is

again ensuscd. A f t w t l i ~ t r a n ~ f w . any transaction t h a t a c c c s d .r hcfore t h e transfer

and is still active at tbis time will ow11 a lock 011 r. Since a. is transferred to PES only

if there is no contention on it, no co~lflicting ioclcs are set as a result of the transfer.

To 3ny other transaction rcq~lestiilg to access n: after the transfer started, it looks like

that r is originally in PES. Scrializability is then ensureci by 2PL method. Note that,

x may still resides in the rcaci-sets or write-set of so111e active transacthns after the

transfer, Howewr, this will never cause any transaction abortion, 'because (1) when

x was transferred t o PES, there was rio contention on it , and (2) after the transfer,

no transaction wiil put s ill its read- or write-set.

Now we prove that our algorithm is correct more for~nally. As in Chapter 3, we

want to show that if p l (n ') , an operation of T,, conflicts with and prccedcs q, (x) , an

operation of 7';- then EOT, precccles R O T . Sinct EOT's arc totally ordered, the

correctnws follows inlnlcctiatelj.. Because of the cornplicatict~is due to da ta transfers,

we break the proof' into three lernn~as, each dealing wi th a spccific 1;ind of conflict.

As seen in the description of thc t r ans f~r algorithm, when n' is transferred from

OPT to PES, s is 1iot dclctecl honl each RS or IYS which contains it. Similarly, w h m

a n item x is transferred from PES to OPT. the transfer algorithm c1oi.s not release the

loclis on x irn~necliatclj.. 'I'sansactions continue to hold thcsc locks until they complete.

A transfer of a data itc.111 from OPT to PES does not set any conflicting loclts, nor

does a t ransf?~ from P I 3 to OPT introclt~ce any conflictillg operations. JVe formulate

thcse in the following fi1.t. psoposi tions.

. - - . -
During a transfer, we are oniy interested i n the contents of RS arid \.I'S of a transaction

in Actine, i.e., a transaction before its ROT. The RSs and II'Ss after EOTs are

irrelevant to a transfer. So in thc Sollowing clisctlssio11, when wc say x f RS,(IVS,),

Ti f A c f i w is implied.

In t h e fol lowi~~g p r o ~ o s i t i o ~ ~ s and lemmas, 1-1 st.ands for a history.

Not,r t h a t t t i c . abow proposi t,ion is not trivial when t,hcre are concurrcmt data trarisfcrs.

Proposition 5.5 Lct 7: br a t i~~nsoc i ior t i n Cbrnmit(11).

2. If pl ,(n.) E S, (sync.hl-o?ti:(~/io~l C U C I ~ ~ S E ~ o j T,) thcu p1,(2) < EQ11, < p , (5)

holds.

(1) is trivial. We have restated it for convenience. (2) follow from our deliberately

not releasing locks during the transfer.

We define reg-o,(n.) as the time when T, enters its critical section for the re-

quest otjn.). Let S t c l r t T ~ ~ n ~ s f (n.) denote the tilme when a t r a n s f ~ r of n: starts. Let

OtoP(a.) denote the action of transferring n: frorn OPT t o PES. IVe also use it t o

denote the completion time of the transfer. The meaning and usage of PtoO(s) are

similariy defined. req-o,(x), 5' tartTrc~ns f (z), OtoP(lz.), and PtoO(.r) are all consid-

ered as synchronization events. Therefore, our history, consists not only of actions of

transactions and the scheduler. but also of actions of transfer procPc;ses.

Proof: 'T', E Actiuc at ,Yfr~r*tTr.c172sJ'(.r), and 1: does not complete during Ot oP(x) .

Only cases 71.2 and T1..5 applj. to t l ~ i s situation. and in cither casib a read-lock is set

on r for 7; . 0

Proof: Bj. Propositions 5.2 and 5.3. at ieast olie of ;I and f3, and one of C and D

hold.

If we can show that under cach minimal combination of tile co~!ciitions, nanleij- A and

C, .A 2nd D, E and C, and 13 and D, r,(.r) < ro,(n.) implies EOX < EO?', t,hen the

lemma follows irnnlecliatelj..

From Proposition 5.4, either ru,(n.) < 2111,(.r) or W U , (J) < r l , (x) holds. Together

with the condition of the lemma. 7 - , (T) < ul,(r) . We have

Bj- Proposition 5.5 (2) . EOT, < rrt,(n.) and zt:l,(s) < EOT,. It follows that EOT, <
EOT'.

If A is also true, the11 5 0 is 'A and C,' which has lxxn dealt ~ i t h . So, assume

A is r?ot true. Then .I. E OPT at rcq-r,fn.). Since ull,(n.) E ,S, b y C, n: must be

tsansferred during the life-tintc. of T, or TJ. 11% consider thc transfers OtoP(.r) and

F f oO(n.) separat eIy.

Case 1: OtoP(n.).

Consider the two suhcascs.

(1) a. E TTr,S;, at .S'tcrrtl'f.n?>.sd'(.r). Since zol,(n.) E S J , this implies T, E Active at

S tar tTra?~s f(n.), i.e. Stni.iTrtr??.sf(.r.j < EOT,. Note that EOT, < StartTruns f(x)

must holcl. Otlicrwisc, 'r, E Acfiuc a t ,Stn1.1Trnns f (~) , which implies that only Case

T1.5 is possible. 111 ('asp 1'1.5, .r will not 11o ~ r i t f ~ - l ~ c l i ~ ~ I , a contsacliction to C. So

E071 < ?t'f~rr.tT'r.nrl.t]'(.I.) < f : ' 0 7 ' , .

(2) , n. # IT',!, at ,S'fnr.tTrrr~ls f (. r) . Tltis implics O i o P (x) < I-cq-zc,(x). The only

nontrivial casc is tha t OIoP(.r) < 1'1'07;. Ry Prapositiorr .5 6 , rE,(n.) is in S,, which

must he set during the t r a ~ ~ s f ~ . By Pr013osition 5.4 and 5..5(2), we get

Case 2: PtoO(:r) .

At req-zit,(n.), n. f PE,C, and S t (~ tTrarr s f (n .) < EOT, 11olcls. Otherwise, in ei-

ther Case T2.3 or T'S.4, TJ wo111d complete cluring or bcfore the transfer, which means

t~l~, j(x) < T ; (, T) , a. contradiciioi~ t,o t.he condition of the lemma. Under StcutTrans f (z) <
EOTj7 t,here are two possibilities: Tj conlpletes during the tra.nsfer or not. The first

possibility will 1ea.d to a, cont,ra.diciion as just discussed. Under t,he second possibility,

only Ca.se T2.3 is possible ancl .r E WSj. If EOTj < EOT;, W S j n ASi = q5 would he

checked in validating Tj , and one of Ti a.nd T' woufd he a.borted, a c~nt~ractiction. So,

we ha,ve EOT; < EOTj.

If C: is also true, so is -A and C',' which has been dealt with. So. assume C is not

trtie. Then n. f OPT a t rtq-w,(.r). Since r l , (x) f St , n. is trarlsferred. As with the

case. 'I3 ancl C'.' consider the possiklc tranc:fers scparatc4y.

Rivial when EOT, < PtoO(n.). A4ssu~ne. therefore. PtoO(m) < EOT,. Then

s f RS,. If EOT, < EOT,, ifj'SJ n IRS, = Q would he checliecl in validating T,, and

either T, or 7, woulcl be ahortccl, a contradiction. So, EOT, < EOT,.

Case 2: O f o P (s)

We show tha.t t.his case is impossible by considering the following two cases.

(1) ' I Y ~ - ? ' , (. T) < Si(tt'tTrci~~s f i,2'). Then x E RS, and s E 11*S,. Case T1.5 will

prcr-ail. Either, T, aborts qr fiuisl~cs its step C1 during the traiisfcr, wllich means no

rl,(.r) is set. a contracliction to A; or. ir, does not finish its step C'1 during the transfer,

which Inearis EOT, < EOT, ancl IIVSJ n RS, = @ is c l ~ ~ c l i e d so that one of T, and

T7 is ahortetl, a contracliction to the Iemma's condition.

(2). StctrtTiwns f (. r) < 1.q-r,(.r). If T, is not in Actitye at StnrtTrnns f (x) , then

zo,(r) already happened I~efore StnrtTrons f (r) , So, zo , (s) < r,(n.). a contradiction.

If T, is in Arl?rt at .I;rtm.tTra~-ts f (r) , then either T, f i n i s h its step C1 during the

transfer (Case T1.4 or T1.5) which means I U , (. T) < I- , (. r) , or T, gets a write lock on

r (Case T1.3), which implies C is true, a contraclictiol~ to the above assumption.

If either A or C is true, it is already proved. Assume both A and C are false.

So, n: E OPT both at req-r.,(.-r) and at req-u)s(.r). If n. is not transf~rred from OPT

to PES or is transferred after hot11 E071 and Z07;, the lemma is already proved in

the last chapter. T h e caw EOlfl < Sttrr2Tra7?sf(a) < EO?', is straightforward. The

case EOT, < ,";ta?dTrai?s f (n .) < E 0 7 , is not possible; otherwise, I;f7,Sj n RS, = #

~vould be rhcckecf and one of tilern avould Ilc aborted. The only thing left is the case

where S tar fTra~ t .%. f (.~ .) pre~ccles i10t11 EO;rL and IiO7''. This is Case Tl.5. EOT' still

cannot preccclc LOT, sintc. ot l~crwise, I f * & n R,S, = d ~voulcl he checked. u

Similar to A and (1 of 1,rmr;ia 5.1.

Case 1: O!oP(n.).

Wow assume that D is false. Tlicn OtoP(n.) < zi~l,(.z.) . Since A is false by assump-

tion, only Case T1.4 or 7'1.5 is possible. lr, will finish its step CI during O i o P (x) in

both cases. I t follows that EOT, < ~ o l , (s) < EOT,.

Case 2: PtoO(n.1.

PtoO(n.) < 1-cq - r t . , (. r) . LOT7 < .qtni-tTr.i~r~sf(r.) ivi l l ltbnd to ci tontracliction since

in both Cases T2.3 and T2.4, T, would firlish hcfore the end of the successful transfer.

That is, 111 , j n .) < rq-tu,(.r) < 70,(,r), which c~n t~rad ic t s the conctition of the lemma.

Therefore, S t c c ~ f T r ~ ~ n . ~ f'(.r) < EOirJ. Only in Case T2.3 will n transfer be successful

in such a sitilation. n. is i n l ~ o t h T17S, and TI'S, after the tranifer. A n d both 702(x) and

u;jx) ill be esccutecl i l l the correspo~zciing C1 steps. Thus EOT, < w , (~) < L L * ~ (z) <
EOTJ.

Assume C: is false. .c E OPT liolcls at rcq-ui,(s).

Case 1: PtoO(n.).

C'onsitlcr the following two cases:

(2) StcirtTrntls f (, r) < ,507:. l;',itlier 7: completes bcfore t h r end of transfer,

which is trivial; or PioO(.r) < EOl l , wliich is si~ililar to tllp discussion ~ I I Case 2 of

B and C, i.c., E07: = ro,(.t.) < ~ r) , (; l .) = EOT,.

Case 2, O t o P (s)

This case is irnpcssible. show that no matter wiwthcr Ilr, E Active or not at

S'tnrtTrtr11,s f (n.), it lcads to a co~ltraclictiori.

(I) T, 6 rlciit.e. EOT, < w,(.r) < StartTi-a77.s; f (n .) < L P , (x) , a contradiction.

CHAPTER 5. DYNA MiC RE-PA RTITIONING OF THE DATA BASE 94

(2) T, E -4ctie)e. Since C is false by a~sumpt~ion, onlj. Case Tl.4 or T1.5 is

possible. In either case, TJ will finish its step C1 before the end of transfer. Again,

w,(n.) < ? L * , (T) , a contradiction.

Simila.rly, a.ssume bot,h .A a,nd C are false. z E OPT both at req-toi(x) and at

reg-wj(z). If no transfer ever happens, EOTi = w ; (z) < w j (z) = EOTj. Otherwise,

since no lock on z is set. for Ti or Tj7 both 7'; and Tj must h u e finiskecl their step C1

before the end of t,ra.nsfer. So? EOTi < eu;(a.) < 7 u j (z) < EOTj. KI

Lemma 5.3 LEI T, and TJ be in C'ornmifjll). If w;(n.) < 7 ; (x) , then EOT, < EOTJ.

Proof: BJ. Proposition 5.3(1), EOT, < ut,(n.) < r,(n.) < EOT,. 13

Theoreill 5.1 7'hc i r cms f~r algorithm is correct. Undcr f h c iszfesferencc ofrlnia trans-

fer processes, fh(3 conc7~rrt conlrol ril.r/orithm s f ill en..;ures .serinlixdility.

Proof: Immecliate from Lcmmas .5. l to 5.3, since EOT's are totally orclered. 0

Keeping the Partition U

The problenis of how to prcdict conflict clistribution and how to decide the membership

of a data item are open and application dependent. There are many factors, such as

the type of transactions, that can aRect them. The database system administrator

can also play an important role here. There are two principles that s h o d d govern the

hanclling of these problems. The first is that the cost of running the control!er should

be low. The seconci is that the controller should invoke transfers as infrequently as

possible. Otherwise, thc ovcrheacls may well offset the benefit gained from our hybrid

scheduler.

In this cl~aptcr , wr present a sol~t,tion based on history recording. It automatically

traces changes in conflict rate and irivokes transfers when the conflict rate reaches

some thresholds. Practicall~., it is clesirable to incorporate the metltod as a part of the

scheduler. However, for the sake of sinlplicity, we consicler it as a separate module.

We cc,ll the module re-parfition coniroller or just con trofler.

We first give a general picture of the controller and ctiscuss some issues that should

be of concern in the design. Thcn we I ~ ~ i l c l a specific controllcr. Finally, we discuss

some correctness issues related to t, he controller.

CHAPTER 6. J{EEPINC: THE P.4RTITION UP-TO-DATE

6.1 Design Issues

The automatic re-parti t ion controller maintaixls a table to record potentially harmful

conflicf,~ and nlake decisions as to wlien transfers are needed. We call this table

co~\flict fab l t (CT). Each data item llas an entry in it. The elltry for n., clenoted E(x),

contains, among other irrforination, (1) status, indicating if n: is in OPT or PES from

the stand-point of the controller, (2) counter, recording the number of potentially

harmful co~lflicts on n. in the current time interval, and (3) to, the last time the

counter is reset. We refer to a ficlcl of E(X) by "E(n.).", e.g., E(x).coanter. To reduce

the storage space needed, a data item with no cr tention on it for some time interval,

say 0, will be purged. Such a data item must be in OPT.

The contxoller prosicles tlnrc tunablc parameters, 0, el, and cz, to the database

administrator. O controls the f'rcqucncy of resetting counter., The controller resets a

counter every B time units. cl and c2 are tliresllolcls measured by number of poten-

tially harmfill conflicts. I70r any data itcrn a , orrcc E(a).co~rnter > cl within 0 (may

be less than 01, n. should be transferred to PES if it is not there. Symmetrically, if

E(a).counter < cz during a period of O time units, n. cvill be t ransf(md to OPT if it

is not there, \Ire ~-eqnisc that cl 2 cz

6.1 .I Counting Conflicts

Detecting conflicts is an intrinsic f:mctiol~ of the schccluler. So. the controller need

not detect conflicts on its own. R a i h ~ r , it is illformed by the scheduler whenever a

conflict is detected.

As stated in Section 4.2, tlie speiific c!cfinit,ion of harmful c~nflicts depends on

the concurrency control algorithm uscd. In a 2P1, neth hod, every pair of collflicting

operations from two concurrent transactions is considered as a harmful conflict, while

in SFO, only a pair of conflicting operations whose order is different from the order

of EOT's of their transactions is considered as a harmfrrl conflict. Of course, the two

CWW4 PTER 6. JI'EEPIATG THE PA RTITICLY UP-TO-DATE

transactions involved in a harniful conflict in SF0 must be executing concurrently. In

the remainder of this chapter and the nexb, \ive refer to a potentially harmful conflict

simply as a conflict.

EOTi

The conflici is not harmful in optimistic scheme,
but is harmful in 2PL scheme.

Fig. 6.1 Difference in deciding harmful conflicts

It is interesting that there is a tliffi.rence in counting conflicts between locliing and

optimistic rnethods. As illustrated in Fig 6.1, in SFO, the conflicts between T,'s reads

axicl T,'s writes are not cletectecl when EOT, < EOT,. However, in a 2PL method,

these conflicts are detectecl. This difference should be coilsidered in setting cl and c2.

Counting conflicts in PES is easy. Whenever a lock cannot be set, the controller

counts the number of the locks and ungrantecl lock recluests conflicting with it. A11

the inforxnation is available from the locking table.

There is, however, some problem in counting conflicts in OPT. For SFO, there is

no problem, since the scheduler does not make decision until it has checked all the

conflicts. For haclward checking algorithms such as SBO and PBO, because a sched-

uler aborts the transactio~: and stops the validation once a tion-empty intersection is

found, some conflicts are not counted in. One way to solve the problem is to let the

scheduler check all the intersections. It will, however, incur some cost for information

useful only to the controller. Another way is to let the inaccuracy exist and lower the

CHAPTER 6. KEEPING THE P.4RTITION UP- TO-DATE

parameter cl to compensate for tlie missed conflicts. \Ye can even let cl < CZ. The

problem of this approach is that it is hard to know the percentage of missed conflicts.

So the parameter el may very easily become meaningless.

6.1.2 Setting Parameters

The parameter 0 should he largc enough, By Assumptioii 5 . 1 . 0 should be greater than

twice the maximum transactiori l ifetime. The longer O is, the less frequent transfers

will be and the less overlleacls t b c controller will incur. A couutcr is a monotonically

increasing frmction of time within a period of 0 . So, it is easy t o cleterniine that a

counter has reacllrc! the tlircsllold cl and to initiate a transfer from OPT to PES. On

the other hand, 1i7e can not saj7 a counfer reaches (less than) the tlireshold c p until

t h e whole period of tl has elapsed. Therefore, a longer 0 does not mean our system is

less sensitive to conflict increaw, but it does riichail less sensiti~.e LO conflict decrease.

111 other words, a longer 0 means more pessimistic view. However, if O is too long, tlie

conflict rate may vaqr a lot tluriiig 0 . So, we simply lost sensitivity.

Let's consider cl and cp. Not only are the absolute \ . a l~~cs of cl and c p ilnpoitant,

bu t also is the difference 1)ct ween cl and CZ. If el = c p , sornp data items with conflict

rates around cl will 11c subjcct to a lot of transfers b e t ~ v c ~ n the two parts of the

database. The larger (cl - cp) is, the snlallcr the nuniber of transfers will be. Fig. 6.2

illustrates this. In the figurc, the unfilled circles represent the transfers when cl = cz.

T h e filled circles represent the trausfers when cl > c2. \;Z7e can see that the number

of transfers when cl = cp is inucli grcatcr than tliat when cl > cz. Tha t is the main

reason for using two tlirc~sholcls instcad of one. The curve in the figure is conjltct-

rn fe fi~nct7on which is considered, for simplicity, to be a continuous frmc tion of time.

However, we should point out tliat this figure is for illustrative purpose only . In

fact. i t is thc intqyal of the conflict-rate f~~nc t ion . i.e., t h c rlamhcr of corlflicts, rather

than the conflict-rate function itself that should be compared with tlie thresholds.

Generally speaking, the greater (cl - c2) is, the more stable the partition is, and

so the less cost transfers incur. Howevcr, a larger (cl - cp) means more optimistic

accesses to data items with higher conflict rates and more pessirxistic accesses to data

items with lower conflict rates. It will have negative impact on the performance when

(cl - c2) is t,oo large.

I corgflict rate

con,6'icf-rafe function

cl

cl = c2 - . . - - - - - - - - - - - - -

Conflict rate change on a data item and the transfers by difrerent thresholds settings.

Fig. 6.2 Thresholds

The values of 0, cl, aiicl cz a r t rrlated to each other. They are also application

dependent. Some factors, such as resources available (number of CPlJ's and disks,

etc .) , arc very important in cletermining them. 11-e havcn't clone a q study on estsb-

llshing niatl-iematical ~nortel for determining the value of the paramctess. Here we just

present a superficial uiiclerstaliciing. Given a specific ent-irouluellt, \tippose we know

that an vpl i i l~i\t ic ctlgctiitIi~~l 1 ~ 1 form. vc%r.!. wcl! .I\ h c ~ t (onflic t rate is lrss iiian r . 1 , and

it perfor~ns to l~ rab ly ~ h c n conflict rqte is betwecrl 7.1 and rz < r z) . Then for a

hybrid scheduler using this optimistic algorithm, el and c2 sho~ild he rclatecf to 8, r l ,

and r2. For example, suppose conflict rate will increase from rl t o r2 in 0 linearly

with time. Then cl coulcl be set as (1/2)0(rl + r2) , i.e.. the integral of conflict rate

function over 6. Also we should consider the difference in counting conflicts between

locking and optinlistic schemes.

CHAPTER 6. I<EEPlNC: THE PARTITION UP-TO-DATE

6.1.3 Working Environment

Our controller is based on the assrlniption that the conflict rate on any data item

does not change sharply. AT in Fig. 6.2, we consicler the conflict rate on an item as a

function of time. The contsolies will perform acceptably when the function changes

slowly, as shown in Fig. 5.3.a. In Fig. 6.3, the curve still represents the conflict-

rate function. The horizontal line above the figure represents the concurrency control

mode on the data item. A dashed line indicates the optimistic mode, while the solid

line indicates the locking mode, and a vertical bas represents a transfer. Fig. 6.3.a

also shows that the controller is not sensitive to the small fluctuations in the conflict

rate since it employs two th~esholcls.

For large ..pulses", however, tjlc controller behaves di ffe~entlj-. It is insensitive to

negztive pulses, since we co~int the numljer of conflicts in 0 time interval (see Fig.

6.3.c). On thc other hanet, it is sensitive to positive pulses and works poorly in this

situation (see Fig. 6.3.h). Hew, we say that the controller does not worli well not only

because it will start many t sc.nsfers. but also l~ecause the concurrency control mode

does not matcli the conflict rate. And the latter is more serious. When a positive

pulse occl~rs, we are still in optinlistic mode. Since conflicts are detected only during

validation, detection tends to be late. When the controller clisco\rers that counter > cl
and starts transferring the item to PES, the transfer process has to wait at step T1.4a

or TI..% (see Chapter 5) . Since. at this time, all the accesses causing the pulse are in

optimistic mode, many of the transactions involved will be aborted. Only when all the

transactions that are involved in the conflict have finished, can the transfer process

finish. However, at this moment, the pulse has already peaked and the conflict rate

is low again. Then we have to access the low conflict item under locking mode for a

certain period of time until it is transferred back to OPT. However, such pulses are

probably rare in practice. We even doubt they codd a c i d l y happen. Flirthermore,

since we use the number of conflicts which is the integral of the conflict rate function,

the harmful effect of positil-e pulse is not likely to be significar~t.

CHAPTER 6. KEEPIh'G THE PARTITION UP- TO-DATE

optimistic
y d e optimistic mode locking mode i

concurrency control mode

(a) Conflict-rate function and access mode (transfers), when conflict rate changes slowly. Performs well.

trumJer concurrency control mode concurrency control mode

conflict rate

(b) Sensitive to positive pulses. Performs poorly.

corflicb rate

I I I time

8 20 30 40 33

(c) Insensitive to negative pluses. Performs well.

Fig. 6.3 Sensitivity of the method to contlict-rate functions

From the above discussion, we believe tha,t our controller can perform well in

CHAPTER 6. I iEEPlNG T H E PA RTITTON UP- TO-D.4TE

6.2 Building the Controller

The controller emploj-s a process called Record Conflict (RC). Whenever the scheduler

detects a conflict on an item. say x, it asks the controller to start a RC process to

record the conflict by increasing E(rr).countet.. If a is in OPT and E(x) .counter > cl,
RC starts a t sa~~sfer process to transfer x to PES and reset to and counter to the

current tinic and 0, respecti~cly.

If the current timc t is greater than or eqiml to to + 0, then the RC resets t o and

counter to t and 0, rcspectlvely, a11d determines if a t~*ansfer of s to the other part of

the database is needed.

Maintaining the CT only when a conflict is detected is not sufficient. There are

still some problems left: (1) the timc to start transferrilig s from PES to OPT, and (2)

promptly finding those d a t a items on which there has been no contention for a period

of timc. T , d 11s at-ialjm thcst. prol~lcrns i n rlrtail. For. a PES i t c~n .r, wlim a conflict

on it is cletectcd, the RC' process may f i ~ d tha t t - E(.r).to 2 O and E(z) .counter < ca.

This is the condition to transfer rr lo OPT. IIowevcr, this may not be the right time

to do so. A transfer process may have to wait or ahort itself dtlc to the contention,

or a transaction may he rollrd b a ~ l i if we transfer z to OPT. 'rllis problem itself

is not difFicult to solve. Sincc a conflict, always ir~volves a write operation, in this

case. when the write-locli involved in the conflict is released, we can start the transfer

if it is still appropriate. The second problem is more difficult, For an item x in

OPT, the condition for dropping E (x) is (t - E(z) . t o > 0) and (E(z) .co imter = 0).

However, a RC process is startccl only whcn a confiict is detected. Tile condition

(E(n.).counler = 0) is not detectable by RC only. IV11en rr E OPT: we expect that

the conflict on it will be rare. It is very likely that the accesses to z encounter no

contenti011 for a sufficient long period of time. It is even fairly likely that z is not

accessed for a long time. Dropping E(x) in a timely manner has a favorable impact on

pcrforrnance of the controller. A si~nilar situation occurs when a: E PES. The conflict

rate on a PES item may drop to 0 within 0. So, we need some type of process that is

started even when there is no contention on x at all. We use a process called Transfer

<0 Dcletc (TD). It is dcsigncd to solw both prohlcms (1) and (2) .

Now let us consider the appropriate time to start a TD process. .As we discussed,

the transfer of a data item from PES to OPT can be started when a write-lock on

it is released. So, we can associate a TD with every write op~ration. It is, however,

not sufficient to solve problem (2) . Associating TDs with all read operations is, on

the one hand, too freclucnt, and 011 the other hand, not snfEcjent when a data item is

not accessed. Starting a TD pa-ioclitally can guarantee suEcient checks regardless of

wlietller a data item is accessed or not, But t5is method may become time-consuming

if not properly designed. Here, we suggest a method h a s d on perioclical checking.

Fig. 6.4 Time for TD

CJonsider problem (2) only. An entry in the CT needs to be checlied by a TD only

if it is not checlied by a RC for at Icast 19 time units. So the problem is converted to

selecting those entries that haw not been checked by RCs for 8, Let t be be the time

a TD checks an entry E(n.) . If t - to > 20 then E (r) must have not been checked hy a

RC for at least 0 time units. Otherwise, to would have bcen rcset by the last RC (see

Fig. 6.4). We "sort" all the entries in the CT according to field to , in ascending order.

So, when we scan frosn the 'beginning, we reset the entries (and pcriorn~s necessary

transfers) as long as t - lo 2 20 holds for the entries. ivIlcre t is the current time.

Now let us see how to "sort" the CT. We link all the to fields togcther to form a

queue, denoted Q, with its elements arranged in the asccncling order. Because the

CT entries are created and the to ficlds arc resct all in a linear order, the queue can

CHAPTER 6. KEEPING THE PARTITION UP-TO-DATE 104

be created and maintained incrementally. When a RC creates or resets an entry, it

links the entry to the end of the queue, because its to field now has the largest value.

This can be done very quickly. Every 219 time units, we start a T D to scan the queue

from the beginning. The entry scanned, say E(x)? is either dropped if x is in OPT,

or transferred t.o OPT if i t is in PES.

To solve the problem (1). nle use a small trick. When a RC finds that x should

be transferred to OPT, it only clcai-s cownter without setting to. So, when a T D finds

x E PES, either there is no new conflict on it for 0 , or it was alieady checked by a

PC and dcciclr that it shot~lcl hc transfcrsed.

111 what follows, we describe RC and TD. For each coml>inecl concurrency control

algorithm, RC and TD may be customized, just like transfer algorithms.

The following is a (Jescription of RC. Rlock, Rzcait, T4'20ck7 and I.Vwuit are the

same as those in thc transfer algorithm given in the last cllapter.

When the scheduler cannot set a lock on n. because of contention, a RC does the

following:

begin critical section

% All the fields that appear in this critical section are fields of E(X)

If E(n.1 is not in the CT % See Remark 1

then allocate an entry for it

sfrtius:=OPT

i0:=gct t i r t l c ()

courrtc r:= 0

link it t o the end of Q

If the schedtiler wants t o set a read-lock

then counter. := counter.+ 1 + ICV~ai t l

If the scheduler wants t o set a write-lock

then counter := counter + lRlockl + llVlockl + II4fwc1.itl + lRwultl

t :=get t ime()

CHAPTER 6. IYEEPING THE PARTITION UP-TO-D44TE

i f t - t & B

then if cow ate^ 2 ca
then counter:= 0 % n: remains in PES

to := t

link E (x) t o the end o f Q
else counter := 0 % See Remark 2

end critical section

e When the scheduler validates a transaction Ti and finds conflicts, a RC does the

following:

begin critical section

For every a tha t appears in an intersection

If n. appears in n intersections

then i f a has an entry in the CT

then E(a).counter := E(z).couizter + 7%

else allocate an entry in the CT for x

E(.r).stcltus:= OPT

E(x).tO:= gettime()

E(.r).counter:= n

link E (s) t o the end o f Q
If E(a).covnter > el

then E (a) . ~ o u n f r r := 0

E(x) . to := gettime()

E(,-t.)..stntus := P E S

start transferring x t o P E S

link E (x) t o the end o f Q
eise $:=get time()

i f t - t o > @

then E(.r).counter:= 0

E(x).to:= t

CHAPTER 6. KEEPING ?'HE PL4RTl?'10A' UP- TO- DATE

link E(X) t o the end o f Q

end critical section

Remark 1: This "if" statement is very strange, especially because it sets the status

to OPT. See the discussion in "Status and Memberships" later.

Remark 2: catutter < c2. a. should be transferred to OPT. Only setting counter to

zero will make t - to > 20 eventually become true. A TD will start a transfer at that

time.

The f'ollo~ring is a ctescriptiorl of' a TI1

r When a TD is started

E(z):=head o f Q

begin critical section

t :=gcf t ime()

while t - E(n-).fo > 20 do

if E(n.).staf us= OPT

then delete E(z) from Q % See Remark 1

else E(n.).to:=i

if E(~r) .counter < c2 % See Remark 2

then E(s).courztcr:=O

E(x).sfntus:=BPT

start transferring n. t o OPT

else E(r).comter:=O % See Remark 3

link E(J) t o the end o f Q

E(a.):=heac! of Q

t :=get time()

end critical section

store t. the next TD will be started a t 1 + 20

CHAPTER 6. IiEEPINC THE PARTl'rfON UP- TO-DATE

Remark 1: Let t' be the last conflict on x. Then t' < to + 0 . Otherwise to would

have been reset by the RC. So, from t' to t (t - t' > 8), there was no new conflict on

x. E(a) should be cleletecl from the CT.

Remark 2: Either there has been no ncw conflict on .T for period of time longer

than 0 as is the case when z E O P T , or counter was reset by RC(s) for as least once

between to to t under the condition that (t l - t o > 0) A (counter < cz), where t' is the

time whe~l the IIC cl~ccl~;t.cl E(n.). 111 both cases, n. shoulcl be tsansfersecl to OPT.

Remark 3: Here the condition means that,, having been cleared by RC, counter has

quickly accumulated more than cz counts within a time period l e s ~ than 0. So,

x should not be transfcrrccl. See tliscussion later.

6.3 Discussion

In this sect,ion, we discuss the aut ornatic controller presented above.

6.3.1 About RCs and TDs

Since a T D takes time, the frequency of T D creaiions is lrss than 1/(20) ancl varies

horn time to time.

RCs and TDs execute concurrently. They share some variables such as entries in

the C T and links that form tllc queue. Thcy also executt conct~rreutly with transac-

tions and transfers, and share the variables such as read-sets ancl IVzoait7s. Actually,

we neccl not protect the whole TD process by a global critical section. We need only

t o guarantee that a process (such as a RC) !las tlic exclusive right t o access the shared

variable when it is active. For example, a RC started due to lock contention on need

only hold the right t o access to the da ta structures for x in the locking table, the entry

for R: in the CT, and the relat~ecl links. Another RC can run concurrently with it on

another data item. Of course the queue manipulation should be synchronized. It is

more efficient to manage those shared variables using monitors 1211. The reason for

using critical sections is only t,o simplify tlle description.

One problem is that for an OPT item z, when a RC finds that counter > cl, it

will start the transfer of n. to YES. Ho-rsever, at this moment, t - to may be greater

than 8 , which suggests that the conflict rate on a is actually not so high as to justify

a transfer. As seen from the dcscription of TDs (see Fig. 6.4), when t - to > 20, it is

highly likely that E(T) is resct 1))- a TD. Also, the last time E(.r) is checked by a RC,

t' - to < 0 musf, have been thc case, where t' is the time at that moment. So, t - to

is not likely to be n-!ucIi greater than 0. Of course, we can use more sophisticated

testing. For csample, i f counter / (t - l o) > cl then transfer; otherwise set to to t and

counfcr to t r . .4 siniili~l l) l~ l~l t ' l l l l asiws i1.11m 1- E PliS.

For rc f OPT, we i~i~n~ccl ia te l~~resct E(:c) and t ra ider n. to PES once E(x).counter >
cl. For T EPES, we do not reset E(.r) when counter > c2. Instead, we wait until

t - to > 0 holds. We can reset E(z) irnniediately; but it will cause more resets than

our present method, especially whcn conflict rates are high. For each reset, we have

to manipulate the cjtleue hy rvli~lliing the entry to the end of the clucue. This task,

even though can be execateti fast. still incurs some overl~ead. Tllat is why we choose

not to do so.

6.3.2 Status and Memberships

In the CT, each entry has one of the two statuses, OPT or PES. In a database, each

data item belongs to OPT, PES, or neither OPT nor PES. l'lic last case occurs only

when the data item is Sci~lg tra~lsfcrrc.d. Clearly. w c . icalli iiic ~iicmbersllip of a data

item to match its status in tho CT. Howcver, temporary incorisist,encic.s may arise

due to transfers. The change in status occurs before thc change in membership. The

relation between the two changes should satisfy t11c follotving properties:

CHAPTER 6. 1iEEPING THE PARTITION UP-TO-DATE: 109

(6.1) once the x's status is changed, its membership will el-entually he changed.

(6.2) x's membership will not be changed unless its statns is changed.

To preserve above properties, the cont,roller must behave "correctly" even when there

is inc~nsist~ency.

Now let us examine these temporary inconsistencies. An inconsistency happens

when a transfer process is waiting or aborted for restart. Specifically, in the transfer

algctrithrn for Algoritlim 4.2, it happens i n the case T1.4, 7'1.5, T2.3, or 72.12. Notice

that , whcn an RC records conflicts, it docs not check the status. So, even with the

presence of inconsistcncies, RCs still work normally. A TD clocs check status. So, let

us consicler each case where T D is checking an entry, say E(a) , while thcre exists a

inconsistency 011 x. First, i f E(a).sfrrt us= OPT, tlic inconsistency must be caused by

T2.3 or T2.4. In Case 72.3, there won't be ally contention on ,r d~i r ing the course of

inconsistency. So, E(s) can bc clclctcd. For T2.4, there is still contention on x due

to conflicting locks during the inconsistency. RCs will rccorcl the conflicts and reset

E(z).counter according to the threshold cz. (This tilne the ~nernbership of x is PES.)

Note that a RC', when s t a ~ t c d c l u c to confticting locks, never sc ts a status to PES. AIso

notice that when a TD clleclis E(.T), there has not been any new coiiflict on .c b r a t

least 0 . So, we can safely clclete E(n.). \Vhcn conflict occ~irs again while inconsistency

is still tllere, that strangt "if" statelnent will allocatc an entry wit11 status OPT. So,

the Property (6.1) is s::tisficcl. lIowever, we should point out that this strange "if"

statenient need not c v m exist, b c c a ~ ~ s e , if F is long enougli, a rrstarted transfer will

have already transferred n. to O P T before a TD can check E(x).

Second, let us consicler the situation where E (n ') . ~ f d u ~ = = PES. It1 this case the

inconsistency must have heen caused by T1.4 or T1.5. 111 both cascs, the problems

here are the same. This t imr, s $! (O P T U P E S) . Tlwrc may be still solnr. transactions

that can access it in optimistic t ~ ~ o t i e . So, thcre COUM be contention on it. EtCs

will record the conflicts, reset E(x) according to the tlireshold cl, and even fire new

transfers of n: t o PES. These t~ransfcrs arc cluplicates of the waiting transfer. We will

CHAPTER 6. I<EEPIlVG T H E PA RTITIQN IJP- TO-D44TE 110

discuss how to suppress those duplicate transfers in the nest paragraph. When a TD

checks Efz) , it tries t o transfer J back to OPT. This transfer will, however, violate

Assumption 5.1, and is suppressed too. So, E(.x) will lieep the status PES and the

Property (6.1) is again satisfied.

Now nrc cliscuss how to supprcss transfers. Situations where suppressing transfers

is necessary were already disc~wsecl in the above paragraph. Here is another situation

where a transfer should Le snppresseci. Suppose a data item r has just been trans-

ferrrd t,o OPT. But \TI.,,- soon, E(.T). counf t r esceeds el u c l a RC wants to transfer it

back t o PES. This traasfer will violate Assumption 5.1. Although we argue that this

kind of situation is very rare and can be prevented almost always by carefully choosing

the three parametcbrs. we slxoulcl still take it into account. To suppress transfers, we

add another field in E(.r). 'l3is field, say lost-l, records the time when the last transfer

of x has co~nplc~tccl. If tllcrr is all on-going transfer, the value of Inst- i is infinite. So,

when a t ransfcr is ahout to Iw initiatccl, tllc contsoller first d~ecl is if I. - l a d - t is greater

than twicc thc niasitnal transaction life-time. 1%'~ want t o point out that setting the

field when a t rar i4w complctcs i q not tlifficrllt to implernent. This can he clone when

thc controller receives an ac.kno\vlcrlgc~nt.nt from the transfer process, or even can Ex

done by trausfchr process itself i l l somc specific implcmelitations.

Since tmnsfers are onljr started Ily R(:s and TIh, tlic P r o p c ~ t y (5.2) is always

sat,isfied.

From the alm\.c disc~i~ssious t t l ~ t l f i w l l the algorith~izs for tralisfer, it is easy to see

that our systern (for Algositllm 4.2) satisfies thcse properties. T11c above discussion

can be thought of as a "corrcctncss proof" of the re-partition colltroller.

Chapter 7

An Implementation Proposal

In this chapter, we propose an i~riplcwxwtation for an adaptive concurrency control

sgstcm hasect on Algo~~itlirn 4.2. The system illtegrates the three functions: concur-

rency control, transfer, and conflict recorcli~ig and transfer initiation. The system is

imp!crrlentecl by a conit)i~iatiorl of a concurrency manager. JC'M) ancl a TM. The Ch4

provides funrtions such as check-~ncn~herj), lock ancl unlock, rcad-setjwrite-set ma-

i~ipulation. conftict recording. transfer initiation, and transfer. IVhen t he T M receives

a Read or Il5-ite request from a transaction, it asks the C'lI to c11ccli the rnemhership

and t o set an appropriate lock or manipulate read-/write-set c!cpmding on svliere the

item is (OPT or PES). When the CM informs the TAI that the required work is done,

the TR4 operates 011 the trari~action'~: private work space anti contacts the Dhl i f nec-

essary. IW1en it reccives an Erlcl reclucst from the transaction, t h t ThI asks the CM

t,o check set intersections and release locks. TJpon clisco~wing conflicts in OPT, the

Th4 is responsible for aborting transactions. The Tnil is also responsible for telling

thc. D-II to rcflcrt t!!c t-ra!rsac!io?!'s n?oc!ificztic?n to data!mw if t!?c transaction is

validated.

111 this chapter, we focus our discussion on the CM. First, we give a.n overview

of the Ch3 and cliscuss the ma.jor c1a.t.a ~ t~ ruc tu res it nla.inta.ins. Then we discuss the

operational details of the CRI. The discrvsion is organized according to the status.

Finally, we comnient on the proposal.

7.1 The Concurrency Control Table

In the Chi, there are no separate processes for RCs, TDs, and transfers. They become

a few more steps in the orclinasy concurrency control activities of the CM. This re-

duction on the number and type of proccsst-s is macle possihlc by a carefully designed

tablc nlaintainecl hy t he CYI. The table combines the functions of thc locking table

(for locking scheme) and the conflict table. It also facilitates the set manipulations

for optirnistic accmses. For such a multi-purpose ol)ject, it is hard t o find a pertinent

name. So, we simply call it roncuwency rorztrol table ((JCT). The C C T is organized

as a hash table with the clat a item id as a key. Each entry in the CCT represents a

da ta item. \;t% use Eja) to drnote the cntry for r. As in the PI', for every PES item,

there is a corrcsponcling entsjl in tile CC'?', but for an OPT itcm wliich has not been

arwssccl for a 1 ~ 1 ' i c ~ d of t ~ I I I (~ , f I I P ('111r~~ c ~ r i ~ ~ s j m ~ d i l ~ g to if is clropp~~cl.

An entry, say E(.r). in the CC"T c ~ n s i s t ~ s of two parts: the header and the lists (see

Fig. 7.1). The heacler contains, alnorlg otlier information, 1) id, 2) status, 3) counter,

4) to , and 5) three pointem, wp, rp, wnp. r d is the iclent ifier of n.. ccanter and to are

the s a n e as those in C'T, rxccpt that to's arc not linliecl to form a qucue for TDs.

status now represerlts botll thc status and mrrnbership of x . This time, however,

stntvs has five possible vaiws: OPT, PES, WtoP, WtoO, A I ~ C I PtoO. The meaning of

these status is as follo~vs:

OPT: m is being acc-esseci in optimistic mode.

e PES: rc is being accessed in iociiing mode.

WtoP: A temporary status where a transfer of x to PI%' is waiting a t step T1.4a

or Tl.5a. 2; is xiow accessed i n optinlistic mock (see R 3 and W3).

CHAPTER 7. A N IMPL E~\.IELVTATIO~Y PROPOSAL

wait-list a Linked io/from an element in another w-list. T h a ~ element contains the same Tid.

@ Linked ro/from the element in other r-list. That elcmcnt coniains the same Tid.

@ Poinis back io the header.

Fig. 7.1 An enrry in CCT

e Tl'toO: A temporary status whcre a transfer of .r to O P T is waiting a t step

T2.3a. n. cannot be accessed in this status (see R 3 and IV:3).

e Pt.oO: The Ch.! has fo:ir,:I that 2 should be trar;sfe;.red to OPT. But cirrrently

there is contention on x. So, the transfer is de fe r r~d unti l there is no contention

on m. s is a.ccessed in locking mode (see 7 2 . 4) . .
The transitions among different statuses are shown in Fig. 7.2. The point,ers wp,

CHAPTER 7. A;Y lAfPLE;\IEAY T.4 TIOAT P R OPOSd-\L

rp. and wnp point to lo-fist (write list). r-list (read list). and waif-list (waiting list),

respectively. Hon-ei=er, we do not call them read list or write list because the term

"read list" is used to denote another data structure. Thc three lists form the list part

of E(xj, and are Clis~iisst~l Ixlo\v.

Fig. ?.2 Transitions among statuses

An element in w-llsf of E(n,) . wile11 the sfcctus is; I'ES, rc~p~escnts a write-lock on

.z. So, in this case, ril-lzsf has at most one element. The element, therefore, contains,

among other information. the id of thc transaction that owns thc lock. All the write-

locks owned by the salne tramaction are linked togethcs. so tha t locks can be released

fast (see type 1 links in Fig. 7.1). f'e cal! this list x::.~ie-lncX. list. So t e that a u*-list is

for a data item, but a write-lock list is for a transaction. IVhen the status is OPT,

an element in w-list indicates that s is in the write-set of the transaction whose id

is stored in this element. In this case. there could he more t h a n OIIC element in the

w-list. The type 1 links link all such elements with the same transaction id to form

a list that represents the write-set of the transaction. At the end of w-list, there is

a link (of type 3) pointing back to the header of E(a). The function of these links

will be discussed later. When s tn fus is WtoP, the meaning of w l i s f is the same zs the

case where status is OPT, and when status is PtoO or WtoO, the meaning of ur-list is

the same as the case where sfntus is PES.

The usage of r-list of E(x) is similar to tha.t of .ru-li.~t, except that a.11 the elements

for the read opemtions of the sa.me transact,ion arc Ii~ikecl together by the type 2

links, whet.her a.n element represents a rmd-locli or an element in the read-set. In

this way, there is no clistinction between the read-lock list and the rea.d-set. We call

this unique list read-list1. A s we will see below, t,his uniq~le list will not cause any

problem in va.lidatio~i or lock opera.tions, rather, it will simply make trmsfers easier,

To manipulate the write-lock list., write-set.: and read-list for a transaction, the Ckf

uses pointers pointing t,o t.hc heads of the corresponding lists.

The wn~t- lwt recorcls all the 10clii11g requests on n.. Each element in i t contains the

id of the transaction that suhrnits the request and the mode of the request (read or

write). To make the locliirlg scheclulel fair, we organize it as a FIFO queue. kb'hen

sfatrrs is OPT, u:alt-list must hc t.niptx. Thc CbI takes care of the integrity constraint.

of the C'C'T. When E(s) .s tnt t ls is PES, fgr example, w-lid and r-list cannot both have

elements sirnult aneously.

7.2 Operations of the CM

7.2.1 Operations in OPT

Read and Write Requests

' T h e motivation for separating write-set (list) from write-lock list is t o perform vaiiclation quickly.
T h e validation of a transaction involves t.he t,ransaction's writ.e-set (list), bu t not a write-lock.

When a read rccpcst, say, Xead(.r), arrives from transaction T,, the CM first checks

x's membership by finding the entry E (r) in CCT and chccking its strctus fielcl. If there

is no entry in CCT for r , .T must be in OPT. So, the CM allocates and initializes an

entry for it. Now assume that stal t ts is OPT. The CPI simply acids an elemcnt in

E(x)'s 7.-list, puts Ttls id in it, linlis it to the head of the reacl-list for T,, and modifies

the pointer to the head of the read-list.

For a write request wlien s fn tus is OPT, tlie process is sill-iilar

Validation

IVhcn an End arrives request on behalf of Ti, the C:M first, starting from the head

of the reacl-list for 7:, deletes al! the elements in the read-list from the corrcsponcling

1.-ti.i/'s. This 11<\\ t I I P c f f (~ t of' ~c ' l(>~t\ i~lg i l l 1 t 1 1 ~ rt>atl-locks a n d discartling the read-sct

for T,. Note that, since 7: is no lorlgcr in Aciivc, its rcacl-set is useless now. Then

the C'M does the \:aliclation along t lie list for tlie write-set. When the CM reaches an

element in the write-sct, i t tmccs the typc 3 pointer to the header of the data item

being cllecked, saj., ,r. It il~spccts t 1 1 ~ rp field. The null pointer means IIO contention on

n.. Otherwise, it searchcs tllc 1 4 r . i t to find d l the actise tmnsactior~s that conflict with

T' for s and wcords the n 1 1 1 m l ~ ~ of conflicts in the counter fielcl. It also records the

ids of thc conflicting transactions I'or tlie consideration of the Thl. If counter. > cl, the

Chl puts :L* with the pointer to E(x) into the list Tr(~n.qf which contains all the items

that shoulcl be tra~lsf'ersecl. Tlicn i i rcscts the to and counter fields. If counter < cl

but t - t o > 0, the C'hl rcscts to and counter too. T l ~ c rcaclcr may r~a l ize that Ch4 is

doing the tasks that a RC' proccss was supposed to do. Btit unlike RC, tlic status field

is not set to PES right now. It is set w h c ~ the Ch.1 transfers t l ~ itcm. When it finishes

the operatiorls on E(n.1, the C:hl drops the element from the lu-1/32 ancl procceds to

the nest element in the write-vt. \I'fie:t t trr T'M finishes scanni~ig t l r t a wsite-set of T,,

it reports the result of valiclation to the l'hl. If a transaction is abort,ed, the CM will

discard the read-list, write-set, ancl write-lock list for tile transaction. The transfers

will be started at the end of the critical section for the validation. At the crid of the

critical section, all the data items that should be t,ransfcwecl are in Transf.

CHAPTER 7. AN IM PLErl.IEATTT4TIOi1J PROPOSAL 117

The Drop Queue

It may happen that, when deleting an elernent standing for optimistic access from

the r-list or ui-hsf, the Ch4 finds that all the three lists of Efa) are empty. In other

words, there is no access to n. at this moment. (The CM can detect this because, once

the r-list or w-list is empty, it will trace back to the header via the type 3 link). In

this case, the CM checks if countcr(O/{t - t o)) > cl. If so. the C M puts the header

of E(r) in a qucue cailcd Drop. Otherwise, it drops E(z) fmm the CCT immediately.

The Drop queue has a limit. say t 2 . W h e n t,he nurnber of the elelnents in Drop reaches

n , for every element in the first half of Drop, the ChI compares it with the entry in

the CCT. If they are the sanlc, it means that tile item has not hcen accessed for a

while, So. if the entry has status OPT, the Chf dt-ops the entry from the CCT, and

if the entry has status PES, the t ' l I transfers it to OPT. The elci-ncnt in Drop is also

dcleted. If they are not the s a m e or there is no such entry in the VC'T, the Chl just

drops the element.

This mechanism is used to replace the periodically started TDs for fincli~ig those

itcms t h a t still oc r~ ipy cntrics in tht . C'C'T bu t h a w not l > w n accc.sit-tl for w m c time.

There will be inore tlisc~ission on this later.

Transfers

Transferring an item, say .r, to PES can be executed very fast. Since the transfer

process has a pointer to E(x), locating E(x) is trivial. The R and I t ' sets are just the

r-list and d i d , respectively. The C'M checks the R and 1C' stts. In Case T1.1, Ti.2,

or T1.3 (see Section 5.21, the CiN can tra~isfer a immediately. So, i t sets status to

PES m c l sets locks on :I: if a.ppropriat,e. For the read operat,ions on x, there is no

need to set locl;s, since the read-locli list and the read-set are organized as a unique

read-list. To set a writc lock, we have to delete n. from the write-set and then link
it to the write-lock list. Because tlre write-set is linked in one direction, we have to

start from the head of the write-set to find the element right before .r. Later, we will

discuss some design consicleratio~ls related to this issue. In Case T1.4 or T1.5, the

CiCl has t o wait until the contention on s is resol\wl. So, i t sets the strztvs t o WtoP

and proceeds to transfer thc ricst item in Tratzsj

7.2.2 Operations in WtoP

When an item, say x, is in status WtoP, only those transactions tha t have previously
7 7

accessed i t ccut acccss i t . I ht r ec lw~ts l ~ o m other transactio~is are blocked. Because

a transactio~l that has previously accesstcl .T has a copy of n. in its private work spa-e,

for a read rc.cpest from lba t tran4action. the TRI ntecl noi ask the CM, but for a

write request, the TXI should ha\-c the ChI put tlic transaction in the write-set if it is

not there yet. So, when the ('hf recciws a read request, i t simply puts the request a t

the end of wait- i tst. \\'iwi) i f receive.; a write rccluest, tlw Chi1 may put it in w-hst or

cumt-1i.d depending on wlic~thcl* or !lot the transaction acctssed i t M o r e .

In status ViTt,oP, ltnlilie the clescription in Chapter 5, the CM neccl not know

whether the tralisactions in~oli-ed in the contentiol~ have fi~~isliccl or not; it need only

to wait until one of w-lisf and r-lisf lwcorn~s empty. When d 1 . d or w-1i.d. hecomes

empty, the CAI tracts the tjrpc~ 3 l i ~ t k 1)acl.c to tlw 11eader of thc I:(n.) and chcc1;s the

sfofus. If sfniu.5 i.; \.trtoP, tliti C'hl scts ii, to PES a n d sclts locks as appropriate. Tracing

back to the Ileaclcr xlollg t llc. t y p e 3 link whcncver a 7 . - l i s f or w-11d hecomes cmpty

will incur ax] additional cost only when tile CA4 cliscastls a read-set. But this cost

is somehow cotnp~tlsalecl for 1)y that c1e1.e~ way to finish a tra~isfer's waiting period.

Later, we will see this is ftirthes cxmipcrisatect for hy not ilavilig TDs and the queue of

to's. Tracing back to t lw heaclcr when rc>lcasing locks and doing valiclation is rtquired

any way.

7.2.3 Operations in PES

Tbe operations in PES are more straightforward. \Yhen a read rtq~aest arrives, the

CM checks if the corresponding read-lock can bc granted. If so, it adds an element

CHAPTER 7. A lLT 1AlPLE;I IEn'T.4 TTON PROPOSAL 119

in the r-list and linlts i t to the rtad-list of the trmsaction. Otlm-wise, it adds an

element in the wait-iist and rccorcls the conflicts by increasing the counter. For a

write request, the process is siinilar.

W'lten there is contention, after increasing the coul>fer, the Ch4 checks for the

condition t - to >_ 0 . If the condition is satisfied. the CRiI further checks if r o ~ n t e r < c2.

If not, the CM resets the to anti counfer to f and 0, respecti\dy. If yes, the CM resets

to and roc~~lfcr , and then sets the statvs to PtoO. A transfer will be started when

there is no contention on n. (set. thc next srctlon for m o r ~ detail).

Releasing rcacl-locks was cicscrit)cd i n section 7.2.1. Rclcasillg write-locks is similar.

One problem is that n.1ir.n wc release a lock. we 111ay need to check i f the locking

s t ~ l 1 1 ~ s t at t I!(, li/.ail of' t11v r~c~tl-!t.il ca l l l t c a g ~ a ~ ~ t c d no\\.; if 'io, we 5t.t tlie lock. This is

implemmtrd by utilizing type 3 li~tks. If , when deleting all clement, the w-list (r-list)

it bclongs to becomes crnpty, the C ' l I gors back to the hcadcr of Ejx) via the type 3

link.

I t ma? happrn that \vhcn reitwing a lock. the C'hI finrls tha t all the three lists

of E(T) arc empty. In this case, the C'hl chccks if rnzinter~(O/(t - t o)) < cl. If so, it

s ~ t s the stritus to OPT a n d rcscts to and cmi?tfer accordingly. Otherwise, i t puts the

heacler of tlir mtsy i l l Drop.

7.2.4 Operations in PtoO and WtaO

PtoO

For the rrad and writc r c t l t ~ r s t ~ , the ('51 worlis i l l almost tht. salne wajT aq that

for PES. There is a minor cliff(wncr: when conte~ttion is dctcctccl. After i n c ~ easing

the coirr~ter, thc C'hl chccks if counter 2 c'z. If so, it sets the strrtlis back to PES and

resets to and courtttr. Otherwise, if (t - t o) 2 19, it resets the to and counter.

When a lock is relcasecl so that there is no contention on z, i.e., the ulait-list becomes

empty, the CIA4 tra.nsfers a t,o OPT. This transfer is fast. Rlock a,nd Li~EocX: sets are

just the UI-fist a,ncl r-list. The Rwait and I+'ecci.it must be empty at this moment. Only

Case 72.2 or T2.3 is possible. In Case T2.2, all the t,ransa.ctions that have locks on

z are active. The transfer is st,sa.ightforwa.rd. In Case T2.3, the condition 75 E Active

ca.n b e implelnented by a, risky trick. If the read-list of Tj is empty, then we bet that

Tj is not in Active. Since a, transa.ction usua.lly rea,ds sonlcthing before it ever writes,

when the rea.cl-Iist is empty, it suggcsts that, i?hc read-list has been deleted a t the

beginning of the va.licla.tion-anci-~vrite pha.se of 5. Because cleleting the read-list is

proi;ectecl in a critical stxtion, there is no risk tha.t, when the read-list is being deleted,

a tmnsfer process checks its einptiness. If we cannot a.ccept t,his assumption, the CM

ha's t o a,sk the TM for the infor~nation. Dut i t is not slow though. If Tj # Active, set

status to \Vt,oO. l o and cownicr nccd not lx reset in this case.

7.2.5 About Erlipty ?.-&st or w-list

TIE discussion ahout the opcsatior~s that tlic CR'I performs whcu a 1,-listl~o-list hecomes

empty is scattered all ovcr previous scctiom. Somc corlfl~sion may arise and some in-

complete ciescsiption may exist. l'liis sect ion serves t hc purpose of clarifying and

completing tllc issucs relatctl to it .

When one of r-list and w-lisi of E(x) becomes empty, the CM trzces back to the header

via the type 3 link, and

Case 1: s t n f u s = OPT

if all the three lists (r-list, w-list, wait-list) are empty then

t := gett ime()

if counter(@/(t - t o)) > cl

then pu t the header t o Drop

else delete E(a) f rom the CCT

Case 2: statas = W t o P

stnfus := PES

to := gett ime()

countrr := 0

if all the three lists are empty then put the header in Drop

Case 3: stnfus = PES

if wait-list is not empty

then set locks for elements in wait- l i s t , unti l no lock can be set

else % A t this moment, all the three lists must be empty.

t := get tirncj)

if ~ o u i z f c ~ ~ (O / (t - t o)) < ~2

then s t i ~ f n s := O P T

t o := f

collrlf~r' := 0

else put the header in Drop

Case 4: stn/u.z = PtoO

% A t this t ime wail-list must be non-empty

set locks for elements in waif-list unti l no lock can be set

if wail-list becomes empty after setting locks

then start transfer o f ns t o O P T

Case 5: status = WtoC)

% this time it must be w-list i h a i becomes empty

if wait-list is empty

then delete E(.r) f rom the CCT

else stafzis = O P T

to := gel t ime()

CHAPTER 7. AN IAlPLEfllE.YT.-\TlOA PROPOSAL

cownter := 0

put t h e requests in 3t~:c~l.t-list to r-list and 11:-list accordingly

Now, a da ta itcm may have one of the five statuses, ant1 transfers n ~ a y take place

among all the statuses ratl1c.r than just hetwcen OPT and PES. A transfer, however,

can be i~nplenlcnted as a change of statns plus some relinliing between the writ,e-set

arid write-luck l i h t of a t ~ a u \ a c t i o i ~ (if ~ ~ t l c ~ s s a l y) . Arllong the f i \ ~ slatuscs, o d y PtoO

is new. \Yflrn the status of' an item bc~ornes PtoO, t h e conflict rate on it is going

down. So, we do not crpect that the itcm will stay in tllc PtoO status for a long time

bcfore it changcs to OPT. Even i f t 116. conflict rate goes u p again, the item cannot

s t q in PtoO for a. long ti111e. b ~ c a u s e t h ~ a status will change bi~ck t o PES. This further

rcd~ices the duratiorl that a n i t m ~ is in PtoO. The statuses \VtoO and WtoP are just

separated from n. g' (OPT U PI;:,$). Sincc our automatic re-partition controller is

l~ased on the assumption that the c-onflict rate on an i t a n c11arlgt.s slowly, transfers

will be rathcr i~lfrccluer~t. T'hc~rc~forc. we espcct that a da ta item almost always has

s tatus O P T or P13S.

A nice feat~lrc of our inlplemcntation is tllat the amoullt of work for va l ida t io~~

is only rtllated to thc sizc of' a (slnall) tt-rite-sc.t. 11 is itidrpmcltnt of the sizes of a

n u m l x ~ of (largc) read-scts.

TDs' tasks HI.(' riow pcrSot.i~~t~d 11). 1 1 1 ~ CIUCIIC D1vp arid c . l~~cl<i r~g w l ~ t ~ i onc of

r-list and ul-list of an entry bwomes empty. So, the size of Drop lwconles important

t o performance. It should l x somehow relat8cd to the atVcragc nurnhrr of entries in che

CCT, and s h o ~ l d he tunable. Since checking when a r-lisiludisi fxconlcs empty is

needed for other jobs. only the check for a r-list in O P T s t a t ~ i s coulcl be considered

as the aclclitiorlal cost to implement TDs' tasks. 111 this case, since wait-list inust be

empty, it is very likely that all the three lists are empty. When all the three lists are

also empty, it is more likely that the errtry is deleted than its header is put in Drop.

Since we get rid of tasks of rillinking to's to maintain the queue, and the processes

for purging Drop can be macle less frequently than the TDs, we can achieve better

performance in this way than u::il~g TDs,

Each one of tile write-locli list and the write-set (list) is implemented as a single

chain. This single chain malies dcleting an element from the middle of the chain

slow. Actually, we can use a clouhly linked chain to solve this problem. However,

suc11 clelctioxi is only neecteci in a transfer. As we commented before, transfers are

infrequent. Besides, when a data item is write-lockccl or is a member of a write-set,

it is very likely that the transfer is i ~ l ~ c l i e d due i o conflict. So, setting a lock for an

item in a write-set or putting a ~~itr-1ocli i .d item originally in a write-set occurs less

frcquciztly than transfers. That is rvhy we halve cl~osen to use a sing'lc chain.

Now we discuss issues almrt thck critical section that protects validation in Al-

gositl~m 4.2. Sills(. c o ~ i c u s s c ~ ~ ~ c ~ . cont ld is achieved jointly by the T3I an; CM, a

cluestion arises as to how to implrn~errt a critical section. IIere we suggest two possi-

ble approaclzes. Wc can use the 7'31 t o achieve the effect of a critical section. When

valiclating a transaction, tlic Thi clocs not accept any recl~~est from other transactiorns,

nor does it process reacl/wri tc opcrat ions of other t ransactions. This approach can

ljc easilv inlplement ctl. and it actually stops the dat abase accesses I->?. ot hcr transac-

tions. Another aj->prnach is to use th r C ' l I to acliie\-e a similar efft-lct. Since there

are olily two purposes of this csit ical sect ion, i.c., (1) psc~vcntirig atlotlier transaction

from being ~d ic la ted concuiwnt l ~ . , arid (2) protecting the elcrnents in the write-set of

the tralisaction fro111 being B C C C S S ~ 113' other transactiolls, tlie C'hI need only do the

following: (I) do not accept mother End recluest, (2) prevent access to such entries

in the C!C!T that tlie da ta items they reprcserit are in the write-set of the transaction

undergoing valiclation. The accesses to t,he other da ta items (and the eritries repre-

senting them in the SCT) are allowccl. To i n i p e h m t this approach, first, the Ch/I

niust selnc~nhcs t11~1t it is ~ ~ ~ ~ l i c l a t i ~ i g sol i~c t ~ ~ i ~ ~ s a c t i o r ~ . Sp(o11(1. t h ~ Cti\I has to cllcck

along the T L ~ clown to the u 4 . d to sce if thc item is iri the write-sct before it grants

the access, since the Civi cloes not know wlietlier an element is in the write-set before

it has actually scanned the element through the (type 1) chain for the write-set, and

also since the access reclucsts of other transactions come from different direction (from

the header) from the scanning, for an access request to a data item. This approach

is more complex, but it permits more concurrency. Adding one more status to the

entries in thc C ' C T is helpfi-1 in implcmcnting this approach.

In our implementation proposal, there are no separate processes for RCs, TDs,

and transfers. This elinlinates the cost for starting processes. These functiom are

itltegrated into tlic normal concurrency control activities and are just a few more steps

beyond concurrency control. Thus, we can construct, with qttite a s~nall additional

cost. an adaptive concurrency control system that takes advantage of both optimistic

and locking mct llods.

Chapter 8

Conclusions and Future Work

The major contributions of this tllesis are:

1. We have developecl a clata-oriented concurrency control scheme that is adaptive

and tliat takes adv*lnt,age of both optitnistic and locking schemes.

2. Based on a systematic study ol' the optimistic scheme, we have designed several

hybrid concurrrncy control algoritlims and developed a sjlstcmatic procedure t o

combine optimist,ic and locking mctliods.

3. To make our system adaptive, we have rlcsigned atgorith~ns for re-partitioning

a database and for rccorcling conflicts and starting re-partitioning.

4. W P have also given an implcmmtation proposal for an adaptive concurrency

control sj7s k r n .

5. In addition, we have estcnclecl our sclmne to mtiltisersion databases,

We expect that , when the database is properly partitioned, our hybrid schedulcrs

will achieve higher performance than pure locking or pure optimistic schedulers. Our

expectation is hasecl not only on thc fact that optimistic schcme performs better than

the locking schcwic~ ivllen coilflict ta t t s asr' lo^. It is also basccl on t h t fact that our

hybrid schedulers cnn. (1) avoid conflict escalation to a large estent in the part of

the database with low conflicts, and (2) confine deacflocks to the high conflict part.

The only additional cost a t t h e algoritl~mic level is the invocation of check-member

for every read and write opcwtian. It leaves plentSy of room (i n the sense of operating

cost) t o adopt the other two components to co~istitute an adapt ix-e concurrency control

system. Actually, a non-adapiix~ h~~l>ricl schediilers with a fixed partition can be a

promising approach. Such a fixed partition can be drawn according to the types of

da ta items. For example, in a bankirlg tlatabase system, cci-tain types of accounts,

such as personal saving. constitute the OPT part of the database, while some other

types of accounts constitutt~ tltc P I 3 part. lYhen a clatahase is part i t ioned according

t o the types of data items, the clterli-rncnlbcr function can hc irnplernentecl very

efficiently.

Our transfcr algorithn~ is efficic*r~t. Carrying out one tsansfer is cheap. The cost of

initiating a trat~sf'er p r o c t ~ s is I > ~ L I I ~ I ~ > S greater t l la~i tltc cost to1 executing thc body

of the process. \\'e call also gso~ip t ransfers to rtducr the* cost for starting transfer

processes.

It is aiways desisecl illat thc k~~oivlcdgc and esperit~nce of the datrahasc system

administrator could have a positivcx impact 011 pcrformancc, and we expect that this

positive impact can bc acltiewd 113. carefully designing and managing the way the

controller allcl t h r DRX illtcbract. If succcssf'ul, this woulcl provide a n opportunity

for incorporating higher intclligcnce into concurscncy control, By letting only the

cont,roller, rathcs than t he schcd~~l t : or re-partition plocessor, interact with the DBA,

we restrict thc influence. of the D B X to only the pcrformance and not t he correctness

of concusrency control. The automatic rr-partition controller prtwntccl in this thesis

is relativelj- closed and at a low-lntc~lligcnce Icvcl. It is l>asccl on thc assllrnption that

conflict raic changes are slow. Definitely, finding a b e t t c ~ controller to incorporate the

DRA's i~itelligcwcc is a proniising rcwarrh tlirct.1 io11. I l o ~ v i ~ c s . a co~nplicatc~cl systcm

is not desired because t he cost for run~ling a cor~tsoller must be small enough, so that

i t will not offset the lwncfit gained from the hybrici schcdulrs.

From the implenxntation proposal given in Chapter 7. we can see how cleanly the

functions of the re-partition processor and the automatic controller can be integrated

into the activities of the scheduler. iIowever, there is one prob!em that we should

point out. There are two reasons why the optimistic scheme could out-perform the

locking scheme. First. the optimistic scheme detects less corlflicts than t h e locliing

scheme (see Section 6.1.1) ancl i t does not block a transaction. Second, an optimistic

scheduler can be cheaper to run than a locking scheduler. Read-/write-set manipula-

tions can be decentralized. They are cheaper than locking a ~ i d uclocking operations

(see Section ' i . : 3) . In our i~nplementat ion proposal, tlie second reason is simply lost. It,

is left as f t l t~irc researcli to implcrur-nt an atlapti\.c ccncusrency control system, taking

aclsaniage of' clecentralized ri.dc1-lwri t e-set rnai~agemcnt .

Our appi.oach is general. since t hc four basic assi~mptions in C'hapter 1 are general.

In particular, our approach can be applied to relational databases. It may also find

its use in nrnrer types of clata'hascs. snch as clcductive and object-oriented databases,

because tlie opti~nist ic scheme is si~perior to the oihcr two ~ c h c m e s xhen there esists

long ixternal thinking time in transactions [A], n-hich is oftcn the caye in cl~clilctive

and object-oricntecl clata1)ascs. In object-oricntcd databases, transactions are often

naturally ncstccl [19. ;)Sf. Extcr~ding OUI. approach to riestetl transactions 1261 does

uat appc-a1 to l i t ' bt 1aIght T u ~ \ ; . ~ i i d . I I o w c ~ \ (~ 1 . tile i<l(>rt of part i t iolling the :Int;~ltasc may

prove valuable.

In general. wc car1 partition a database into an arhi t rar~ . numher, say 77, of parts.

As long as it ensures t h a t any two sj-ncllsoi~izi ng sect ions in exvery transaction overlap.

sesializabilitj~ can he guaranteccl.

Our work g i ~ w rise to all interesting research topic. Pre\.ious studies only vaguely

talk about "high" or ',low" data contention (or conflict ratcs). Nobody (to our knowl-

edge) ever tried to definc '.co~lflict rate ' rigorously and to define "high" and '.low"

quantitively. With our a t tempt to partition a datai-iase according to contention fre-

quency, and with our attempt t o mectlanicallg dctermine fbjr the repartition con-

troller) the conflict rate of every data item and thereby determine its membership,

there is an important question of defining conflict rate in a sensible way and find-

ing exact thresholds on conflict ratcs to achieve a good performance in optixnistic and

locking methods. I t is also debatable what items, highly accessed or highly contended,

should be put into PES. For example, should a highly accessed item with 95% of its

accesses being Reads he put in PES or OPT even thotlgh currently there are only

read accesses?

Important work that has not been dune is the pe~formance analyses of our ap-

proach. We plan to do a simulation study l o test ottr s c h n e against the locking and

optimistic- wheme.; i n the near f ~ i t i l r e .

It is also promisi~:g to extend our approach to distributed clit'lal)ases and rcplicatcd

databases.

Bibliography

[I] D. Agrawal and A. El Acldatli. Pcrformancr characteristics of protocols with

orctercd shared locks. Technical Report TRCS 90-13, University of California at

Santa Barbara. 1990.

[2] I>. Xgrawal and A. El Atlclacli. Constrained shared 1ocl;s for increasing concur-

rcncJ7 in datalmsw. Trcl~nical Rcport TRC'S Q - 2 0 . TTnix~crsit~- of California at

Santa Barbara. 1991.

133 D. Agrawal et a]. Cistrihutect multi-version optimistic concurrency control for re-

lational databases. In PIGT. IEEE C'OAIPCO!Y'cs76, pages 416-421. San Francisco,

California. 3lar 1986.

1.17 R. ?Lg~.a\val, \ I . J . C'asej-. and hI. Livny. hlodels for st uclying concurre:lcy control

performance: Alternatives and implications. In Proc. of .-1C.11-SIG,IIOD 1985

Irzf'I COJLJ: on .1lrzi1ctgrrnrnt of llcttcz. pages 105-121, 1985.

[5] B.R. Badrinatli and I i . Ramamritharn. S~vchronizing transactions on obje~t:.

6EEE Trans. on C'omputcrs. C-:3'i(5):5-ll-S-17. 1988.

[6] P. A. B e r n s t ~ i n and 3. C:ootlman. Concurrency control in d is t r i l~~i ted database

sj.stems. .-lCf.\I f 'ornpufi~tg S n r c ~ y s . 13(2):155-221, 1SSi.

[r] P. A . Bcm~stein. 1.. Ilatlzilacos, and N. (;ooclrrlan. C'o~rcurrf~tcy C'ontrol c ~ l i d

Recovery in Dntrrbnst Sysfeins. Adclison-tl'esley, 198'7.

[IS] J.N. Gray, R.A. Lorie, G.R. Putzulo, and l.L Traiger. Granularity of locks and

degrees of c ~ n s i s t ~ e ~ l c y in a shared database. Research Report RJ1654, IBM, 1975.

[19] T. FIadzilacos and 1'. Hatlzilacos. Transaction synchronisation~ in object bases.

In Proc. of ihc '7th SICI'.ILC'T-~-S/GA~~OD-SIC:.~R~' Symposrum on Principles of

Dnlnbnsc Systems, page5 193-200, 1988.

[20] Tlleo Haeriler. Observations on optimistic concurrency control schemes. Infor-

nzatiotz Sy.sten:s. 9(2):111-120, 1984.

[2%] H.T. I<mg and .I. T. Robinson. On optimistic rncthorls for concurrency control.

.-1C:\f 7i~1tr.s. on I l n f n h t ~ q f S!/,~tttns. fi(2):213-226, 1981.

12-11 D. A. hlIenascc ancl T. Nalianishi. Optirtlistie versus pessimistic concurrency

control rnechaltis~ris in d a t a l x w rna r~agemc~t s!*stcms. Inforinntion Systems,

7 (1):13- 27. 1982.

[25] R..J.?'. hlorris and \I..S. fJteong. Ptrformance analysis of locking and optimistic

concurrertc c o ~ t rol algoritl~ms. Prrforrnctncc E t d u r ~ t i o r ~ , 3j'S): 105-1 la, 1985.

[%I J.E.B. Moss. ,IJtatfd Tt.cri,scrcf iot:,;: i t n Appronch to Rt licl blr lli,s~rib~rted Com-

puting. hlfIFr Press, ("aml~riclgc. hl A , 1985.

[Ti] U, Praclel. G. Schlageter., and R. Urilmd. Rcclesign of optimistic methocis: Im-

proving performance and applicabiiitp. iu Proc. 01 fire ? l i d i t t i ('1 CorzJ'. on Daia

Engin ~ering, pages 466-413, Ik13. 19%.

[2S] T. C. Rakow, J . Gli, ant1 E. J . Nculiolcl. Scrializahility in object-orientccl database

systems. I11 Proc. of G l h D(lta Etqinrcring, pages 112-120, Fbhruary 1990.

[29] P. hit. Scllw-trz and A. 2. Spector. Synchronizing shared abstract data types.

ACM Trnns. on C'ornpuicr Syst tms, 2:'T2'23- 250, 1984.

[30] R.M. Shapiro and R.E. Millstein. NSW reliability plan. Technical Report 7701-

141 1, Computer Associates, J u n e 1977.

(311 R.M. Shapiro and R.E. Millstcin. Reliability allc-I fault rccoi7cry in clistril2uted

processing. In Oceans '77' C'ori.ference Record: volume 2, 19?7.

[E] R.E. Steams. P.M. Lewis, and D.J. Roscnkrantz. Concurrency controls for

database systems. 111 PI^. qf 17th Symp. or2 Foundations of Computer Science,

pages 19-32, 1976.

[33] R.H. T1:omas. A majority consensus approach to concnrrency control for multiple

co11y ctatabascs. r-ICl.\il T I U I ~ ~ . ou D (~ f ~ b u . w Systcrrts, 4(2):1SO-209, 1979.

(3-11 W, E. W c ~ i l l l . C'ommu t ativi ty-bascd concurrency col~t rol for abstract data types.

IEEE T T C L ~ S . on l i o r n p u t r r s , :37(12):24SS-1505, dec 1988.

[35] W. E. 1i'~ilil. Local atamicity properties: h/Iociular concurrency conttrol for

abstract data 15-pes. iiC.tf 7ia(l7?.s., on Progi*crmmiuy Lnngungcs n~zd Systems,

11(2):249-283, 19N.

