
OUTPUT SENSITIVE ALGORITHMS T O  COMPUTE 
HIGHER-ORDER VORONOI DIAGRAMS IN EUCLIDEAN 

D-SPACE 

Damon M. Kaller 

B.Sc. University of British Columbia 1986 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Damon M. Kaller 1992 

SIMON FRASER UNIVERSITY 

August 1992 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: Da,mon M. Kaller 

Degree: Master of Science 

Title of thesis: Output Sensitive Algorithms to  Compute Higher-Order Voronoi 

Diagrams in Euclidean d-Space 

Examining Committee: Dr. Joseph Peters 

Associa'te Professor, Computing Science, S.F.U. 

Chair 

Date Approved: 

Dr. Bina.y   hat tacharya 

Associate Professor, Computing Science, S.F.U. 

Senior Supervisor 

Dr. Pavol Hell 

Professor, Computing Science, S.F.U. 

Supervisor 

Dr. Ramesh Krishnamurti 

Assistant Professor, Computing Science, S.F.U. 

External Examiner 



PARTIAL COPYRIGHT LICENSE 

I hereby grant t o  Slmon Fraser University the r i g h t  t o  lend 

my thesis, proJect o r  extended essay ( the  t i t l e  o f  which i s  shown below) 

t o  users o f  the Simon Fraser Univers i ty  Library, and t o  make p a r t i a l  or 

s ing le  copies only f o r  such users o r  I n  response t o  a request from the 

I ibrary  o f  any other un ivers i ty ,  o r  other educational i n s t i t u t i o n ,  on 

i t s  own behalf o r  f o r  one of i t s  users. I fu r ther  agree t h a t  permission 

f o r  mu l t i p l e  copying of  t h i s  work f o r  scholar ly  purposes may be granted 

by me o r  the Dean of  Graduate Studies. I t  i s  understood t h a t  copying 

o r  pub l i ca t ion  of t h i s  work f o r  f inanc ia l  gain shal 1 not be allowed 

without my w r i t t e n  permission. 

C, 

T i  t l e o f  Thes i s/Project/Extended Essay 

Output S e n s i t i v e  Algor i thms t o  Compute Higher-Order  Voronoi Diagrams 

i n  Euc l idean  d-Space. 

Author: - 

Damon Michael Kaller 

( name 1 

August 12, 1992 

(date) 



Abstract 

The order-k Voronoi diagram (denoted v:) of a set S of n points in Euclidean d-space sd 
is a cell complex which partitions Sd. Each cell is a convex polytope which is associated 

with a k-subset T c S, and corresponds to the region of space for which every element 

of T is at  least as close as any element of S - T. We present algorithms which compute 
\ V: in a non-incremental manner: that is, v:-~ is not needed as a prelimmary step in the 

computation of v:. 
The first algorithm enumerates all v vertices of V i  for a nondegenerate point set-along 

with the information on which polytopes each vertex lies. From this, the entire facial graph 

of the diagram may be derived. The approach is to move from vertex to vertex along edges, 

until all of the vertices have been visited. The algorithm has running time 8(d2n + d310g n) 

per vertex. 

The second algorithm enumerates all polytopes along with their facets, and does not 

require that the input point set be nondegenerate. This is motivated by the problem of 

reference set thinning in pattern recognition. It can be shown that only the facet infor- 

mation of the order-k Voronoi diagram of the reference set is necessary for thinning under 

the k-nearest neighbor decision rule. An order-k Voronoi polytope may be expressed as 

the intersection of k(n - k) constraints-the nonredundant ones determine the facets of the 

polytope. A two stage approach is used in the second algorithm to  find all of the nonredun- 

dant constraints. In stage 1, a subset of "relevant" points of S is found: each such point lies 

on some hypersphere which separates T from S - T. This spherical separability problem in 

Xd is equivalent to a linear separability problem in Xd+', and also equivalent to  an extreme 

point problem in sd+l. In stage 2, the constraints generated by the relevant points are 

tested for nonredundancy. This, too, is equivalent to an extreme point problem. Linear 

programming techniques are used to solve the extreme point problems. The running time 

of the algorithm can be bounded by 0 ( 3 ~ ~ n  + dklog n) per facet. 

The high dimension-dependent constant in the latter algorithm makes it unappealing 

from a practical point of view. The constant derives from Megiddo's (modified) linear-time 

iii 



linear programming technique. A more practical algorithm is obtained by techniques based 

on Dantzig's simplex method, which is well-known empirically to run in linear expected 

time, despite its exponential worst-case performance. This "practical" facet enumeration 

algorithm has been implemented, and some experimental results are presented. 
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Chapter 1 

Introduction 

The Voronoi diagram of a set of points-or "sites8-in Euclidean d-space partitions the 

space into disjoint cells. Each site corresponds to a single cell, consisting of that region 

of space for which the given site is the nearest, under the Euclidean distance metric. The 

Voronoi diagram has been studied under other distance metrics, and for sites which are 

geometric primitives other than points (see [AurSO] for an extensive bibliography). This 

thesis will be concerned only with the Voronoi diagram of point sets, under the Euclidean 

distance metric. 

The Voronoi diagram is mentioned in the mathematical and scientific literature as early 

as 1840. It has applications in areas as diverse as crystallography, metallurgy, meteorology, 

biology, astrophysics, computer science and mathematics. As a result of this diversity, 

the Voronoi diagram has come to  be known under different names in different disciplines: 

It has been called the Voronoi diagram or Dirichlet tesselation, after the mathematicians 

George Voronoi and Peter Lejeune-Dirichlet. The term Wirkungsbereiche-or, "domains 

of actionv-has been used in crystallography. Metallurgists speak of Wigner-Seitz zones, 

in honor of the two scientists who first used this structure to describe the equilibrium of 

a molecular system. Geographers have used Thiessan polygons to map land surfaces for 

various applications. Blum's (medial axis) transform, used to model biological shapes, can 

be interpreted as a Voronoi diagram as well. For a more extensive survey and bibliography 

of such applications, the reader is referred to [AurSO] or [Bha82, chapter 41. 

The Voronoi diagram has been generalized to the order-k Voronoi diagram. Given a set 

S of n sites in d-space, the order-k Voronoi diagram partitions the space into disjoint cells: 

each cell corresponds to the unique k-subset of S whose elements are the k nearest neighbors 
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Figure 1.1: The Order-1 Voronoi Diagram of 10 Points in the Plane, Randomly Chosen from 
the Unit Square 

(dashed lines indicate the unit square) 
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of any point in the cell. In this context the original "Voronoi diagram" is called the order-1 

Voronoi diagram. Not all k-subsets of S will, in general, correspond to  a nonempty cell in 

the order-k Voronoi diagram. Each cell is a polytope-that is, a convex region with linear 

boundaries. As an example, the order-1 Voronoi Diagram of 10 point sites in the plane is 

given in figure 1.1. Corresponding to  each point is a convex polygon, which is the part of 

the plane which has the corresponding point as its nearest neighbor. 

The order-k Voronoi Diagram has applications in pattern recognition [DH73] and density 

estimation [LD65]. For example, in pattern recognition, we are given a set of n patterns with 

which to  build a classifier; each pattern is associated with a known class. We can measure 

some d real-valued parameters and associate with each pattern the resulting d-dimensional 

"feature vector". The set of n feature vectors is called the "reference set". A "test" pattern- 

with an unknown class-can be classified according to the k-nearest neighbor rule: that is, 

it is classified according to the dominant class among the k reference patterns whose feature 

vectors are nearest to  it own feature vector. The order-k Voronoi Diagram of the reference 

set partitions d-space into regions having the same answer to the k-nearest neighbor query. 

In higher dimensional spaces, it is generally easier to  solve the k-nearest neighbor problem 

directly by computing n distance functions, than by locating a point within the cell complex 

of the order-k Voronoi Diagram. However, by computing the order-k Voronoi Diagram, it 

is possible to  thin the reference set [Bha82, chapter 71: that is, to delete some subset of the 

feature vectors without affecting the k-nearest neighbor decision rule ("exact thinning"), or 

with only a small percentage of misclassifications ("inexact thinning"). 

In the following discussion, V: will denote the order-k Voronoi Diagram of a point set 

S C Rd, where it is understood that n = IS[. A polytope (or cell) in V: will be denoted by 

v ~ ( T ) ,  where it is understood that T c S, and IT/ = k. 

The order-k Voronoi diagram was first introduced into the computer science literature 

by Shamos and Hoey [SH75]. They conjectured that the number of cells in any planar V: 

is in O(k(n - k)). This was later proven by Lee [Lee82]. 

Lee [Lee821 presented the first algorithm to construct V: in the plane. The algorithm 

requires 0(k2nlogn) time and 0(k2(n - k)) space. The approach is to incrementally con- 

struct for i = 1,2 . .  . k. So, the above complexity bounds hold for constructing all of 

the first k Voronoi diagrams. To construct K S ~  from qS, the algorithm "partitions" each 

polytope qS(T), using the order-1 Voronoi Diagram of S - T. 

Bhattacharya [Bha83] presented an algorithm to directly compute a planar V: in O(nk(n- 
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k)) time and O(k(n - k)) space. The algorithm is direct, in the sense that ys for 1 5 i < k 

are not needed as intermediate steps. The approach is to  search from vertex to  vertex dong 

edges of the polygonal cells. This algorithm is reviewed in more detail in chapter 4. 

Chazelle and Edelsbrunner [CE85] presented an algorithm to directly compute a pla- 

nar V' in 0 ( n 2  log n + k(n - k) log2 n) time and O(k(n - k)) space. An alternate version, 

trading space for speed, requires 0 ( n 2  + k(n - k)log2 n) time and 0(n2)  space. The ap- 

proach is to  transform S C R2 into an arrangement of planes in e. The kth "level" of the 

arrangement can be projected to V '  in the original space. Constructing the kth level can 

be reduced to a point set problem in R2: this facilitates the direct construction of the kth 

level. This approach generalizes to higher dimensions [EOS86] [ES86] (see below), although 

direct computation of the kth level can no longer be performed efficiently. 

Clarkson [Cla87] uses random sampling to compute a planar V '  in expected time 

O(knl+") (for any s > 0) with a constant that is dependent upon E. This algorithm, 

unlike the previous ones, requires that S be nondegenerate: hence any vertex in a planar 

V: will be the circumcenter of exactly three sites. The algorithm uses divide-and-conquer, 

and randomly samples subsets of three sites in order to  compute the vertices. 

In d dimensions, the number of cells in all yS, for 1 5 i 5 k, can be bounded by 

0 ( k [ F l  n l F ]  ) [CS89]. Edelsbrunner, O'Rourke and Seidel [EOS86] [ES86] have shown- 

by the equivalence of all V: (1 < Ic < n) in Rd, to a particular arrangement of hyperplanes 

in Rd+l--that the total size of all n - 1 Voronoi diagrams is O(nd+l). 

The approach of Edelsbrunner, O'Rourke and Seidel to compute all n- 1 order-k Voronoi 

Diagrams is similar to the approach of [CE85] (reviewed above). The point set S c Rd is 

transformed to an arrangement of hyperplanes in 9Id+', which encloses some origin. The 

kth "level" of this arrangement is, roughly-speaking, the star-shaped region separated from 

the origin by k - 1 hyperplanes; V t  can be constructed by projecting the kth level back 

down into the original space Rd. The (d + 1)-dimensional arrangement of n hyperplanes 

can be constructed in O(nd+l) time [EOS86] by incrementally adding one hyperplane at a 

time, in any arbitrary order. Hence, all of the order-k Voronoi Diagrams can be computed 

in O(nd+l) time. 

Mulmuley [Mu1891 modified the approach of Edelsbrunner, O'Rourke and Seidel, by 

randomizing the order of insertion of the hyperplanes. Additional storage space is required 

for the "conflict information": that is, the intersection of each not-yet-inserted hyperplane 

with the current arrangement. The resulting algorithm computes only the first k levels of a 
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(d + 1)-dimensional arrangement, with expected running time 0(k[%l nL%J ). 

Mulmuley [Mu1901 also presented a deterministic algorithm to  compute the first k Voronoi 

diagrams, in time O(s log n + kdn2), where s is the output size. He claims that this algo- 

rithm is output sensitive, under the conjecture that a lower bound on the size of the first 

k Voronoi diagrams is O(kdn). The approach of the algorithm is to  incrementally com- 

pute levels 1 through k of the corresponding arrangement of hyperplanes in Rd+l. This is 

done through linear programming calls; the kdn2 term of the complexity bound is derived 

using Megiddo's [Meg84] linear-time linear programming algorithm-which has 0 ( 2 ~ ~ n )  

complexity to  solve a linear program with n constraints in Rd. The algorithm was modified 

by [Dye861 and [Cla86], resulting in an improved constant of 3d2. Hence, there is a high 

dimension-dependent constant hidden in the complexity bound. 

Boissonnat, Devillers and Teillaud [BDTSO] present a semi-dynamic algorithm to  com- 

pute the first k Voronoi diagrams. Each site is added incrementally by updating the "k- 

Delaunay tree" which contains all of the information on the first k Voronoi diagrams. This 

allows on-line additions to the Voronoi diagrams. Using a randomized analysis, the expected 

complexity is 0 ( k  [Ff?]+ 'n  l y j  ) time, and ~ ( k  n l y l )  space. 

None of these algorithms compute V: directly in arbitrary dimension for arbitrary k. In 

this thesis, two algorithms are presented which do so. The first algorithm directly computes 

all vertices of V: for a nondegenerate point set S, in time 0(d2n + d3 log n) per vertex, and 

space O(d) per vertex. Given the output of this algorithm, all of the polytopes on which each 

vertex lies can be computed in a straight-forward manner. The second algorithm directly 

computes only the facets of v:. It is expected that the number of facets is considerably 

smaller than the number of vertices, and there are applications for which only the facet 

information is needed. For example, the problem of reference set thinning under the k- 

nearest neighbor decision rule (reviewed earlier) requires only the facet information of the 

order4 Voronoi Diagram of the reference set. 

The facet enumeration algorithm uses a two stage approach to  determine all of the facets 

of each polytope v:(T). Every facet is determined by the perpendicular bisector of some 

p E T and some q E S - T. The union of all such sets {p, q) which generate some facet of 

v ~ ( T )  constitutes the "relevant" points of S. In "stage I", we determine the relevant points, 

by transforming the problem into one of determining the nonredundancies among a system 

of constraints (by duality, this is equivalent to an extreme point problem). The "stage 2" 

problem is to  find, among the relevant points, those pairs which generate a facet of v:(T): 
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this, too, is a problem of determining nonredundancy among a system of constraints. 

The algorithm has a running time of O(n + kc + k log n) per facet, where c is no greater 

than the maximum number of facets of any polytope in v'. It is conjectured that the 

expected value of c is a constant, in fixed dimension: under this conjecture, the running 

time would be O(n + klog n) in fixed dimension. The space requirement is O(k) per facet. 

The bound on the running time of the facet enumeration algorithm is obtained by using 

Megiddo's (modified) 0 (3d2 n) linear programming technique [Meg84] [Dye861 [Cla86]. In 

d dimensions, the algorithm has running time 0(3@n + kdlogn) per facet. Hence, the 

algorithm is not practical. 

A practical version of the algorithm has been developed, which uses techniques based on 

the simplex method [Dan631 of linear programming. Although the complexity of the simplex 

method cannot be bounded by a linear function of n, extensive empirical experience has 

demonstrated that its expected running time is linear in n. These techniques allow us to, in 

essence, solve many linear programs simultaneously. The practical algorithm to enumerate 

the facets of V: has been implemented. Experimental evidence is presented supporting the 

claim that the expected running time is O(n) per facet in fixed dimension, for any k. 

I .  Overview of Thesis 

Chapter 2 of this thesis reviews the mathematical preliminaries needed in later chapters. 

Chapter 3 presents definitions and properties of the order-k Voronoi Diagram (v:). 

Section 3.1 defines V: in general terms, covering the case of a degenerate point set S. 

Section 3.2 describes the simplified diagram which results from assuming that S is non- 

degenerate. Section 3.3 describes how degenerate input can be handled by an algorithm 

which make the assumption of nondegeneracy. Section 3.4 contains lemmas which describe 

the properties of the V: of an unrestricted point set S. Section 3.5 contains lemmas which 

apply only when S is nondegenerate. 

Chapter 4 presents the algorithm which directly enumerates all vertices of vf, in time 

0(d2n + d310g n) per vertex. Section 4.1 reviews the algorithm of [Bha83], for the direct 

computation of V: in a two-dimensional space. Section 4.2 generalizes the algorithm to 

d-dimensional spaces. The generalized algorithm, however, requires that the input set be 

nondegenerate. 

Chapter 5 describes the two-stage algorithm for directly computing all facets of each 
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polytope of v:. Linear programming is reviewed in section 5.1: A Voronoi polytope is 

equivalent to  the feasible region of a linear programming problem, and the facets are de- 

termined by the nonredundant constraints defining the feasible region. Section 5.2 reviews 

the standard simplex method of linear programming, and section 5.3 reviews the revised 

method. Techniques for the determination of nonredundant constraints in a lin- 

ear programming problem are reviewed in section 5.4. In addition, an algorithm-which 

uses Megiddo's [Meg84] linear programming technique-is presented to determine the f 

nonredundant constraints among a total of m  constraints, in output-sensitive O( f m )  time. 

Section 5.5 mentions an approach for the determination of nonredundancy which was in- 

vestigated, but was not fruitful. A new interpretation of a simplex pivot is presented in 

section 5.6, and in section 5.7 an algorithm is presented for determining nonredundancy, us- 

ing this pivoting strategy. In section 5.8, it is shown how to transform the stage 1 problem 

into a problem of determining nonredundancy. A practical version of the facet enumeration 

algorithm is presented in section 5.9: this makes use of the pivoting algorithm of section 5.7. 

In section 5.10, the algorithm is analyzed to give time complexity of O ( n  + k log n )  per facet, 

using the output-sensitive method of section 5.4 to  determine nonredundancy. 

Chapter 6 presents computational results, obtained from implementing the practical 

version of the facet enumeration algorithm. Section 6.2 presents results on the number 

of regions and number of facets for V: of randomly generated point sets; in addition, the 

running time of the implementation is analyzed. Section 6.3 presents results on the efficiency 

of the pivoting algorithm (of section 5.7) in solving a single extreme point problem-which 

is equivalent, by duality, to  the problem of determining nonredundancy. 



Chapter 

Mat hemat ical Preliminaries 

This chapter reviews the notation, terminology and mathematical preliminaries used in this 

thesis. It is assumed that the reader is familiar with the elementary concepts of linear 

algebra and of affine geometry. A familiarity with such fundamental topological properties 

as open and closed sets is also assumed. For a more detailed introduction, the reader is 

referred to any relevant introductory textbook. 

2.1 Notation 

Throughout this thesis, the following notational conventions are adopted: 

0 Integers are denoted by lower-case English letters a ,  b, . . . , z. 

0 Real numbers are denoted by lower-case Greek letters: a, P ,  . . . , w ;  with the exception 

of the (real) coordinates of points x E Xd (see below). 

Points in Euclidean d-space (gd) are denoted by the boldface lower-case English letters 

a, b , . . . , z. The coordinates are denoted by subscripting (between 1 and d) the 

corresponding non-boldfaced letter. That is, it shall be understood that x denotes the 

point (xl, 2 2 ,  . . . , xd). 

Sets (understood to be sets of points in Rd, unless otherwise indicated) are denoted 

by capital letters: A, B, . . . ,Z .  

Matrices are denoted by capital letters: A, B, . . . , Z. 
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Given two points p ,  q E Sd and scalar e > 0, the following notation is used: 

p . q = x q;) denotes the dot product of p and q. 

llpllz = d a  denotes the Euclidean length (or 2-norm) of the vector p. 

d(p,q)  = lip - q1I2 denotes the Euclidean distance between p and q. 

B(p, q )  = {x E Rd (d(x, p )  = d(x, q)) denotes the perpendicular bisector of p and q. 

H(p ,  q )  denotes the open halfspace containing p and bounded by B(p, q). 

H(p ,  q )  denotes the closed halfspace containing p and bounded by B(p, q). 

C(c, e)  = {x E Rdld(c, x )  = e )  denotes the hypersphere centered at c with radius e. 

For a point set S: 

CH(S)  denotes the convex hull of S. 

a f f (S) denotes the affine hull of S. 

v:(T) denotes the Voronoi polytope corresponding to  T c S, IT1 = k, in the order-k 

Voronoi Diagram of S (see definition 3.1 on page 19). 

VE denotes the order-k Voronoi Diagram of S (see definition 3.3 on page 20). 

For a closed compact point set S: 

int(S) denotes the interior of S: i.e. the maximal open point set contained in S. 

bd(S) denotes the boundary of S: bd(S) = S - int(S). 

A point p E Sd is said to be an a@ne combination of the point set S = ipi E Rd)El if 

there exist real constants al, a a ,  . . . ,am such that: 

rn m 

p = xaipi and xai = 1 

Furthermore, S c Rd is said to be afinely independent whenever no p E S is an affine 

combination of the remaining points, S - {p). 
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affinely 

' of k + l  

may be 

A k-flat F C SJZd (for 0 5 k < d) is the set of all affine combinations of some k + 1 
. . k+l  

independent points, B = {pi = (pi,p$, . . . ,Pi)}i=l . These points (or any other set 

affinely independent points in F) constitute a basis for F. Hence, any point f  E F 

expressed as follows: 

Whenever k < d, this is an under-determined system and we can express d - k coordinates 

of f  in terms of the other k coordinates: 

- - 
Q1 

Q2 

Q k  

- l - c w l - f 2 2 - . . . - C Y k  - 

f =  

for an appropriate (d - k) x k matrix A, and (d - k)-dimensional vector b. The terms line 

and hyperplane will be used interchangeably with 1-flat and (d - 1)-flat, respectively. 

By substituting k = 1 in equation (2.1), we can obtain the following equation of a line: 

- - 
fl 
f 2  

_ f d  

- -v 

f 1 

f 2  

_ fd-k - 

for appropriate d-dimensional vectors p, v. 

Similarly, the equation of a hyperplane can be found by making the substitution k = d-1: 

= A  

for an appropriate d-dimensional vector a, and scalar P. Note that the perpendicular bisector 

B(p, q)  of two distinct points p and q in Rd is a hyperplane. B(p, q)  contains all x satisfying: 

- - 

A hyperplane H = (x1a.x = /?) determines two closed halfspaces which intersect in H: 

- p; . . . P:+l - 
p; p; . . . &+' 
. a .  . . .  . . 

. . . p;+l - - 
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The problem of linear separability of two sets Sl, S2 C Sd is to determine the existence of a 

hyperplane for which the points of S1 lie in one of its closed halfspaces, and the points of 

S2 lie in the other. This problem can be solved by linear programming (see section 5.1). 

The aBne hull of a point set S C Sd (denoted a f f (S)) is the set of all affine combinations 

of S. Hence a f f ( S )  is a k-flat for k the size of any maximal subset of affinely independent 

points of S. 

In developing the properties of Voronoi diagrams; it will be useful to have the following 

lemma: 

Lemma 2.1 In S d ,  the intersection of a k-fiat, F ,  with a hyperplane is either: 

r empty, or 

r equal to F ,  or 

Proof. omitted. 

2.3 Hyperspheres 

A hypersphere C(c, e) in Sd is the set of points which lie at a fixed distance (the radius) e 
from a specified point c, called the center. 

Any point x E C = C(c, e )  will be said to be on the surface of C; any point p for which 

d(p, c) < e will be said to be in the interior of C; any point p for which d(p, c) > e will be 

said to be in the exterior of C. Furthermore, a hypersphere will be said to contain those 

points which lie on its surface, to enclose those points which lie in its interior, and to exclude 

those points which lie in its exterior. 

In developing the properties of Voronoi diagrams, it will be useful to have the following 

operations: 
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proposition 2.1 [To contract a hypersphere] 

Given a hypersphere C = C(c,  e )  C Sd containing some surface point p and enclosing a 

finite point set I: then for any C, = C(cl, e - E )  such that d(c, c') = E and c' lies on the 

open line segment between c and p: 

1. C, contains p 

2. any point exterior to C is also exterior to C, 

5'. any surface point of C ,  other than p, is exterior to C, 

Furthermore, E may be chosen in such a way to ensure that all points of I are interior to 

C,. Alternatively, E may be chosen such that some e E I is on the surface of C,, and no 

point of I is in the exterior of C,. 

Proof. Let q be an exterior or surface point of C .  Then d(q, c') = Q - E ,  only if q = p. 

Otherwise, d(q, c') > e - E.  This establishes items (1) through (3 ) .  

For any e E I: d(c, e )  < d(c, p). Consider the point c' as it moves along the open line 

segment from c to p (i.e. as E increases). Since d(cl, p) decreases towards 0, there must 

be a point at which d(c1, e )  = d(cl, p). Let c' be fixed at the point where the first e E I is 

equidistant to p. So, for E = d(c, c'), e will be a surface point of C,, and all other points of 

I are either interior or surface points of C,. If we wish, alternatively, to have all I interior 

points, we need merely to fix c' earlier than the point at which the first e is equidistant; 

that is, consider any hypersphere C,,, for 0 < E' < E .  

Q.E.D. 

When C, is constructed from the hypersphere C of proposition 2.1, it will be said that 

C is "contracted towards p". Similarly, C may be "expanded away from p", according to 

the following: 

Proposition 2.2 [To expand a hypersphere] 

Given a hypersphere C = C(c,  Q )  c Rd containing some surface point p and excluding a 

finite point set E: then for any C, =- C(c', Q + E )  such that d(c, c') = E and c lies on the 

open line segment between c' and p: 
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1 .  C, contains p 

2. any point interior to C is also exterior to C, 

3. any surface point of C, other than p, is interior to C, 

Furthermore, E may be chosen in such a way to ensure that all points of I are exterior to 

C,. Alternatively, E may be chosen such that some e E I is on the surface of C,, and no 

point of I is in the interior of C,. 

Proof. similar to the proof of proposition 2.1. 

Proposition 2.3 Given a hypersphere C C Rd containing an afinely independent set G, 

enclosing a finite point set I ,  and excluding a finite point set E:  for any partition of G into 

Gs U GI U GE, there exists a hypersphere C' such that: 

C' contains Gs on its surface. 

0 C' includes I U GI. 

0 C' excludes E U GE. 

Proof. Note that [GI 5 d + 1 (since G is affinely independent). Assume that Gs # G (if this 

were the case then C = C'). Let H be a hyperplane which contains Gs, such that GI lies 

in one of its open halfspaces and GE lies in the other. It is obvious that such a hyperplane 

exists when lGsl = d. This hyperplane may be perturbed so that any g E Gs lies in either 

of the open halfspaces and the other points, G - { g ) ,  are still contained by it. It follows 

inductively that H exists for any partition of G. 

Let c be the center of the hypersphere C. Let h be the surface normal of H which 

is directed towards the halfspace containing GI. Now, C' may be constructed with center 

c' = c + ~h and with Gs on its surface, for E > 0 which is small enough to ensure that all 

points of I remain interior, and all points of E remain exterior. 

Q.E.D. 
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2.4 Spherical Separability 

The problem of spherical separability of S1 C Rd from S2 C Rd is to determine the existence 

of a hypersphere which encloses (or contains) each point of S1, and excludes (or contains) 

each point of S2. Note that spherical separability of S1 from S2 is not the same as spherical 

separability of S2 from $1. 
The spherical separability problem in Rd may be transformed into a problem of linear 

separability in Rd+' by mapping each point p E S1 U S2 onto the paraboloid in Rd+l which 

is the d-dimensional surface defined by: pd+l = ~ f = ~  p:. Let us denote by p* E Rd+l the 

vertical projection of p E Rd onto this paraboloid. 

Definition 2.1 The paraboloid transformation of a point set S Rd is the set: 

The distance d(p, c) of any p E Rd from a fixed point c may be rewritten as: 

A point p lies in the interior (respectively surface, exterior) of the hypersphere C = C(c, Q) 

whenever d(c, p) is less than (respectively equal to, greater than) Q. 

Hence, the points of S1 lie in one of the closed halfspaces determined by the hyperplane 

{X E Rd+l lc' x = P), and the points of S2 lie in the other: 

p is an interior point of C(c, Q) c' . p* > p 
p is a surface point of C(c, Q) u c' - p* = ,O 

p is an exterior point of C(c, Q) u c' . p* < ,O 
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Note that c $ + ~  < 0: this forces the hypersphere corresponding to H to  enclose $1, excluding 

S2, and not the other way around. 

Lemma 2.2 There exists a solution a E Sd+l to the following system: 

a p* = p; Vp* E So* 

a p* > P; Vp* E S; 

a p* < p; Vp* E Sz 

ad+l < 0 

if and only if there exists a hypersphere enclosing S1, excluding S2, and containing So. 

d Proof. Assume there is a feasible solution a. Since pd+l = Ci,lp:, and assuming that 

ad+l # 0, this becomes: 

Now, the equation ( I )  in the above system implies that c:+& 2 0. So the hyperplane 

a .x = /3 in Rd+l corresponds to a hypersphere in Rd with center c = (cl, c2, . . . , cd), with 

radius ,/my which encloses Sl, &dudes S2 and contains So. 

If ad+l = 0, then the separating hypersphere degenerates into a separating hyperplane- 

which may be interpreted as a hypersphere centered at infinity-and the conclusion still 

holds. 

The converse has been proven in the above derivation. 

Q.E.D. 

Hence, spherical separability in Rd may be solved by linear programming in Rd+l; this 

is the approach taken in [OKM86], and will be used in chapter 5 of this thesis. 
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2.5 Polytopes 

The most prevalent work in the field of polytopes is [Grii67]. This section mentions some 

of the definitions and results of this work. 

Definition 2.2 A polytope in  Rd is the intersection of a finite number of closed haIfspces. 

Any intersection of halfspaces in Rd-whether bounded or unbounded-is admitted as a 

polytope. In order for a polytope to be bounded, it must be the intersection of at least d + 1 

nonredundant halfspaces. A simplex is the name given to any bounded polytope which is 

the intersection of exactly d+ 1 nonredundant halfspaces. Note, also, that lower dimensional 

point sets (as well as the empty set) are admissible as polytopes. 

A supporting hyperplane of a polytope P is a hyperplane H which intersects P, such that 

P lies completely within one of the closed halfspaces determined by H. The intersection 

P n H is a face of P. 

Definition 2.3 For a polytope P C gd: F C P is called a face of P if one of the following 

holds: 

F = P n H ,  where H is a supporting hyperplane of P.  

Furthermore, a face is called a k-face whenever its afine hull is a k-Bat; by convention, the 

empty set is called a (-1)-face. 

The (-1)-face and the k-face of a k-dimensional polytope P c Rd (where k I: d )  are 

called the improper faces of P. The remaining faces are the proper faces. 

Definition 2.4 A facet of a k-dimensional polytope P C Rd is any maximal proper face of 

P. 
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For an k-dimensional polytope in Rd (I < k < d) the terms vertez, edge and facet are 

used interchangeably with 0-face, 1-face and (k - 1)-face, respectively. 

A halfspace is termed strongly nonredundant in a polytope P c Rd whenever its bound- 

ing hyperplane H intersects P in a (d - 1)-face. It is called weakly redundant (or weakly 

nonredundant) if H n P is an m-face of P, for 1 5 m < d - 1. Otherwise, H n P = 0, and 

the halfspace is strongly redundant. 

If a polytope P is a d-dimensional subset of Rd, then P may be expressed as the inter- 

section of the unique set of strongly nonredundant halfspaces whose bounding hyperplanes 

are the affine hulls of the (d - 1)-faces of P. If P is an k-dimensional subset of Rd, for k < d, 

then any intersecting halfspace is weakly nonredundant, so there is not a unique minimal 

representation of P as an intersection of halfspaces. 

An m-face F (-1 < m < k - 1) of a k-dimensional polytope may be expressed as the 

intersection: 
T 

F = ~ F ~  
i=l 

where each Fi (1 5 i 5 r )  is an m'-face, m < m' 5 d- 1. Whenever such a relationship holds, 

F is said to be a subface of Fa, and Fa is said to be a superface of F. These relationships 

are equivalent to the elementary set relations: F c Fi; Fi 3 F. 

Any m-face of a k dimensional polytope (-1 5 m < k) is an m-dimensional polytope. 

2.6 Polar Transformat ion 

The polar transformation of points to halfspaces, and vice-versa, is a trivial one. There is 

no computation involved in the transformation-it is merely a question of how we interpret 

the same d-vector. 

Definition 2.5 For a point p 6 Xd, the halfspace H = {x E Xdlp x 5 1) is called the 

polar dual of p. Conversely, p is called the polar dual of H. 

We will refer to  a set of n points and the corresponding set of n halfspaces as duals of 

one another. Thus, a polytope-the intersection of halfspaces-has a dual set of points. 

The following lemma provides an useful relationship between these sets. 
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Lemma 2.3 Let S be a finite point set in Sd with 0 in the interior of C H ( S ) ,  and let D ( p )  

be the polar dual of p E S .  The intersection 

is a non-empty polytope such that: 

r O E P  

r p E S is an extreme point of S if and only if D ( p )  is a nonredundant constraint of P 

r for T C S :  the elements of T lie on a common m-face of C H ( S )  if and only if the 

bounding hyperplanes of D ( T )  intersect in a (d - m - 1)-face of P. 

Proof. [Grii67, section 3.41 

To find the polar dual of a set of points is always trivial. To find the dual of a set of 

hyperplanes may be tricky, since we must first express them in the form p x 5 1. This 

implies that we must have an feasible point of P, the intersection of the halfspaces. It 

also implies that if P is empty then the set of hyperplanes does not have a polar dual. The 

determination of a feasible point of P is equivalent to  solving a linear programming problem. 



Chapter 3 

Properties of Order-k Voronoi 

Diagrams 

3.1 Definition of the Order-k Voronoi Diagram 

Definition 3.1 For a finite point set S c Rd, and T c S, IT1 = k: the order-k Voronoi 

polytope corresponding to T (denoted v~(T)) is the region of Rd for which every element of 

T is at least as close as any element of S - T. 

The region of space for which p is at least as close as q is the closed halfspace, H(p ,  q). 

So, the order-k Voronoi polytope may be equivalently defined as the intersection of closed 

halfspaces. 

Since S is a finite set, an order-k Voronoi polytope is the intersection of a finite number 

of closed halfspaces: v~(T) = HI n Hz n . . . n where IS1 = n.  Therefore, v~(T) 

is a polytope, by definition 2.2. We will refer to  the m-faces (definition 2.3) of a Voronoi 

polytope, for -1 5 m 5 d - 1, as "Voronoi m-faces". The 0-faces and 1-faces will also 

be called "Voronoi vertices" and "Voronoi edges" (or simply "V-vertices" and "V-edges") 

respectively. 

Definition 3.2 v'(T) for T c S c Rd is called: 
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empty, whenever v$(T) = 0 

improper, whenever it is a k dimensional region for 0 5 k < d 

proper, whenever it is a d-dimensional region 

Definition 3.3 The order-k Voronoi Diagram of S (denoted V t )  is the set of all nonempty 

order-k Voronoi polytopes. 

Henceforth, v:(T) will denote the order-k Voronoi polytope corresponding to  T and it 

shall be understood that T C S, IT1 = k and that v$(T) E v$. Furthermore a "face" of 

V; will refer to a face of any v ~ ( T )  E v:. 
Given a set S c Rd: T c S (with [TI = k) is called a "k-set" of S whenever T 

is 'linearly separable from S - T. An upper bound on the number of k-sets of S (for 

IS1 = n) is 0 ( k l f l  n l f l )  [CS89]. By the equivalence of linear separability in Rd and spherical 

separability in Rd+', it follows that the maximum number of Voronoi polytopes in the order- 

k Voronoi Diagram of S can be bounded by 0 ( k  [+] n [+] ). 
For the purposes of this thesis, we will define a "Voronoi facet" (or "V-facet") slightly 

differently than a polytope facet (definition 2.4). This is to ensure that whenever B(p, q )  

determines a facet of v ~ ( T ) ,  then B(q, p) will determine a facet of V ~ ( T  - {p) U {q)). It 

turns out that these two definitions are equivalent whenever S is in general position (see 

section 3.2). Otherwise, a Voronoi polytope may have V-facets of differing dimension. 

Definition 3.4 A Voronoi facet of v ~ ( T )  is any nonempty intersection: 

Using the terminology introduced in section 2.5, any defining halfspace Hipamong the 

k(n - k) halfspaces in equation (3.1)-for which: 



CHAPTER 3. PROPERTIES OF ORDER-K VORONOI DIAGRAMS 21 

is called redundant; a redundant halfspace is called weakly redundant when it intersects 

bd(~;(T)) in an m-face for 0 5 m 5 d - 2 and strongly redundant otherwise. 

Every strongly nonredundant halfspace H(p,  q )  intersects bd(v;(T)) in a (d- 1)-dimensional 

facet F. B(p, q)  will be said to "determine" F, and {p,q) will be called the genemting 

set of F. If there are no weakly redundant halfspaces in equation (3.1), then all facets of 

v;(T) are (d - 1)-dimensional and determined by strongly nonredundant halfspaces. It 

turns out that there are no weakly redundant halfspaces whenever S is in general position 

(see section 3.2). 

All of the facets of a given Voronoi polytope v ~ ( T )  will be generated by a subset of the 

points of S: these are the relevant points of S. 

Definition 3.5 p E S is called relevant with respect to v ~ ( T )  whenever either: 

p E T, and 3q E ( S  - T )  such that B(p, q )  n v ~ ( T )  is nonempty, or 

p E ( S  - T), and 3q E T such that B(q, p)  n v ~ ( T )  is nonempty. 

So, a point p is relevant whenever it belongs to the generating set of some constraint which 

is (strongly or weakly) nonredundant. 

For example, figure 3.1 shows an order-k Voronoi polytope v~'(T) in X2; S is the set for 

which V: is shown in figure 1.1. The relevant points with respect to v ~ ( T )  are R: 

Since IS1 = 10 and k = 3, there are 3 . (10 - 3) = 21 constraints defining v~'(T). Of these, 

15 are (strongly) redundant; the 6 nonredundant constraints are shown in figure 3.1, and 

their bounding lines are labeled. The union of the generating sets of these 6 constraints 

constitutes the relevant points R. 

The interior of an order-k Voronoi polytope (int v;(T)) is the polytope without its 

bounding hyperplanes. It is the region of Xd for which every element of T is strictly closer 

than any element of S - T. Thus, the interior can be defined as the intersection of open 

halfspaces: 
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Figure 3.1: An Order-3 Voronoi Polytope v$(T) C S2 

S is the same set whose order-1 Voronoi Diagram is shown in figure 1.1. @(T) is shown (shaded region) for 

T = {t, u, v). The bounding lines of the 6 nonredundant halfplanes are labeled; the 15 redundant constraints 

are not shown. 
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Clearly, only the proper Voronoi polytopes will have a nonempty interior. 

The boundary of v ~ ( T )  consists of hyperplanes (perpendicular bisectors), which inter- 

sect in lower dimensional faces. The generating set of any face is defined as follows: 

Definition 3.6 The generating set G of a face F of V ~ ( T )  is the union of all {p,q) for 

which (p,  q )  E T x ( S  - T) and B(p, q) contains F:  

3.2 The Nondegenerate Situation 

The order-k Voronoi Diagram of S becomes much more simple if we make the assumption 

that S is nondegenerate: 

Definition 3.7 A finite point set S c Rd is said to be nondegenerate-or equivalently, S 

is said to be in general position-whenever the following two conditions are satisfied: 

Any subset of S of size d + 1 (or less) is afinely independent. 

No p E Rd is equidistant to more than d + 1 points of S. 

When the conditions are not satisfied, S is said to be degenerate. 

The vertex enumeration algorithm of chapter 4 will make the assumption that the points 

of S are in general position. This will be called the "nondegeneracy assumption". Section 3.3 

discusses how degenerate sets could be handled. The facet enumeration algorithm of chap- 

ter 5 will not make this assumption. Later in this chapter, the properties of order-k Voronoi 

Diagrams are developed for the unrestricted situation (section 3.4) and for the nondegen- 

erate situation (section 3.5). The following lemmas are immediate consequences of the 

nondegeneracy assumption, and they help to simplify the definition of the order-k Voronoi 

Diagram. 
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Lemma 3.1 If S is nondegenemte then there is no improper order-k Voronoi polytope in 

v,S . 
proof, Let x E v ~ ( T )  for any v ~ ( T )  E v:, and let: 

It follows directly from definition 3.1 that the hypersphere C = C(x, 6) separates T from 

S - T. Since S is nondegenerate, at  most d + 1 elements of S lie on the surface of C. Hence, 

we can construct a hypersphere C' which encloses T, excludes S - T, and has no points of 

S on its surface (proposition 2.3). The center of C' lies in int(V?(T)); therefore V;(T) is 

a proper Voronoi polytope. 

Q.E.D. 

Lemma 3.2 If S is nondegenemte then all V-facets of v ~ ( T )  are determined by strongly 

nonredundant halfspaces H(p,  q); where p E T, q E ( S  - T). 

Proof. Let F be a facet of any v ~ ( T )  in the order-k Voronoi Diagram of S ;  let B(p,q)  

(where p E T and q E S - T)  be a perpendicular bisector containing F ;  let x E F (note 

that x is not necessarily an interior point of F) ,  and let S = d(x, p)  = d(x, q). So, p and q 

lie on the surface of the hypersphere C = C(x, 6) . 
It follows directly from definition 3.1 that C separates T from S - T. Since S is non- 

degenerate, at most d + 1 elements of S lie on the surface of C. Hence, we can construct 

a hypersphere C' which encloses T - {p), excludes S - T - {q), and has {p,q)  on its 

surface (proposition 2.3). The center of C' lies in v ~ ( T ) ,  and in the interior of the facet F. 

Therefore, H (p, q )  is a strongly nonredundant halfspace. 

Q.E.D. 

As a consequence of lemma 3.2, all of the facets of any proper v ~ ( T )  are (d - 1)- 

dimensional, when S is nondegenerate. And since there are no improper Voronoi polytopes 

(by lemma 3.1), it follows that every facet in V? for a nonredundant S is (d- 1)-dimensional. 

Furthermore, definition 3.5 of a relevant point p with respect to v;(T) is equivalent to the 

following, in the nondegenerate case: 
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p E T, and 3q E ( S  - T)  such that B(p, q )  is strongly nonredundant in v ~ ( T ) ,  or 

p E ( S  - T),  and 3q E T such that B(q, p)  is strongly nonredundant in v k S ( ~ )  

Lemma 3.3 If S C Rd is nondegenerate, then no m-face (0 5 m 5 d - 1) of the order-k 

Voronoi Diagram of S is equidistant to more that d - m + 1 points of S. 

Proof by contradiction. Assume that F, an m-face in the order-k Voronoi Diagram of S is 

equidistant to G c S and IGI = d - m + 2. 

If F is a V-vertex (m = 0), then it is a point which is equidistant to  d + 2 points of S. 

Therefore S is degenerate (definition 3.7) 

Otherwise, the points of G lie on a common (d - m)-flat perpendicular to F. But 

any maximal set of affinely independent points in a (d - m)-flat has size d - m + 1. 

So G C S is not affinely independent, and (GI 5 d + 1. Therefore S is degenerate 

(definition 3.7). 

Q.E.D. 

3.3 Degenerate Order-k Voronoi Diagrams 

If the elements of a point set S are randomly chosen from any d-dimensional compact convex 

set, then S will be nondegenerate with probability 1. However, degeneracy may be intro- 

duced into a point set as a result of the round-off necessitated by finite-precision arithmetic, 

by deliberate construction, or may be present in the data of practical problems. Many 

geometric algorithms make the assumption that points sets are nondegenerate. Degener- 

ate cases are then handled by an appeal to a perturbation technique [EM881 [Yap881 which 

essentially "fakes" nondegeneracy. 

The techniques introduced in [EM881 [Yap881 add a small displacement dp for each point 

p E S so that the resulting set {p + dplp E S) is free of degeneracy. The displacements are 
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arbitrarily small and never actually computed but, rather, are used conceptually to "break 

ties" at a low level of the algorithm, so that a nondegenerate topology is simulated. 

After perturbation, S is nondegenerate so lemmas 3.2 and 3.1 apply. This shows that 

perturbation has the effect of removing all improper Voronoi polytopes and all lower dimen- 

sional V-facets from the Voronoi diagram. Some of the improper polytopes are "promoted" 

to proper polytopes, while others are removed entirely. Similarly, some of the lower di- 

mensional V-facets are "promoted" to (d - 1)-dimensional facets, while others are removed 

entirely. 

For example, figure 3.2 shows the order-1 Voronoi diagram of a set S = {a, b, c, d )  of 

4 degenerate points in the plane, as well as the corresponding perturbed set-obtained by 

moving a slightly to the left, leaving the other points where they were. Before perturbation 

(figure 3.2A) each of the four order-1 Voronoi polytopes has three facets: two are d - 1 = 1 

dimensional, and the other is 0 dimensional. For example, V?({a)) has the facets: 

v?({a)) n B(a, c) = {x) (d - 2)-dimensional 

After the perturbation, the (d - 2)-dimensional facets have been eliminated from vf({a)) 

and from v?({c)); on the other hand, the (d-2)-dimensional facets of v?({b)) and &'({dl) 
have been "promoted" to the (d - 1)-dimensional facet which is labeled "E". The size of 

E has been exaggerated for the purpose of illustration: in fact, edge E will be arbitrarily 

small. 

Figure 3.3 shows the order-2 Voronoi diagrams for the same point set, before and after 

perturbation. Initially (figure 3.3A) there are six order-2 Voronoi polytopes: four are proper 

polytopes, and two are improper. The proper polytopes are labeled in the figure. The 

The V-facets of these two polytopes are determined by all 2 x 2 = 4 possible perpendicular 

bisectors. After perturbation (figure 3.3B), v?({a, c)) disappears, while V?({b, d)) grows 

to an (arbitrarily) small polygon. 
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Figure 3.2: Order-1 Voronoi Diagrams of: (A) 4 Degenerate Points in the Plane, and (B) 
After Perturbation to Simulate Nondegeneracy 

Figure 3.3: Order-2 Voronoi Diagrams of: (A) 4 Degenerate Points in the Plane, and (B) 
After Perturbation to Simulate Nondegeneracy 
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3.4 General Properties 

The lemmas of this section apply to the order-k Voronoi Diagram of any point set S ,  whether 

degenerate or not. 

Lemma 3.4 The order-k Voronoi Diagram of S covers Rd. 

Proof. For any x E Rd,  we can sort the elements s; E S in increasing order of d(x,si) .  

Let this order be (s l , s2 ,  . . . ,s,). It follows from definition 3.1 that x E v ~ ( T )  where 

T = { s l ,  52, . . . , sk}. SO, v ~ ( T )  is non-empty and hence belongs to  the order-k Voronoi 

Diagram of S .  Since x was chosen arbitrarily, every x E Rd belongs to some polytope in 

the order-k Voronoi Diagram. 

Q.E.D. 

Lemma 3.5 If a point r of v , ( T )  lies on two distinct perpendicular bisectors B ( p l ,  q l )  

and B ( p 2 ,  q2) where p l ,  p2 E T and q l ,  q 2  E ( S  - T ) ,  then r is equidistant to p l ,  pa, ql 

and q2 .  

Proof. Since r E B ( p l ,  q l ) ,  then d(r ,  p i )  = d(r ,  ql); since r E B ( p 2 ,  q2), then d(r ,  p2) = 
d(r ,  92). Since r E v:(T), it follows form definition 3.1 that r is at  least as close to  every 

point in T as to any point in S - T ;  in particular: d(r ,  p l )  5 d(r ,  q2) and d(r ,  pa) 5 d(r ,  ql). 

Lemma 3.6 Any point on a face F of v,(T) is equidistant to the points of the generating 

set of F. 

Proof. F is the intersection of some number, c, of perpendicular bisectors. For each pair 

B ( p l ,  ql)  and B ( p 2 ,  q2), any r E F is equidistant to { p l ,  q l }  U { p a ,  q 2 )  (lemma 3.5). The 

union of all c such {p i ,  qi} is, by definition, the generating set G of F. Inductively, any 

r E F is equidistant to every element of G. Q.E.D. 
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Lemma 3.7 For a Voronoi polytope V:(T) and a set G c S such that: 

The part o~v;(T) which is equidistant to the elements of G is a face of vkS(T). Furthermore, 

i f  F # 0,  then G is the generating set of F .  

Proof. Let F denote the subset of v ~ ( T )  which is equidistant to  G. Assume that F is 

nonempty; otherwise F is, trivially, the (-1)-face of V ~ ( T ) .  

for some S E 8. It immediately follows that: 

That is, F is the intersection of v ~ ( T )  with some m-flat (0 5 m 5 d - I) ,  whose generating 

set is G. 

Suppose x E F is in the interior of v ~ ( T ) .  Then, 

But this contradicts the fact that x is equidistant to all points of G . Therefore, F lies on 

the boundary of v'(T). 

Q.E.D. 

Lemma 3.8 The generating set of any m-face of vkS(T), for 0 5 m 5 d - 1, has size at 

least d - m + 1. 

Proof. First note that a (d - 1)-face lies within a single hyperplane, B(p, q )  which is, by 

definition, equidistant to  the 2 points p ,  q E S. 

Now, consider an arbitrary m-face, F, in vkS(T), for 0 < m < d - 1, with generating set 

G. Let c = JGI, and let the elements of G be designated: G = {gl, g2, . . . , gc). So the 
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Lemma 3.6 implies that the other B(gi,gj), for which j # i + 1 ,  are redundant in the 

specification of F. 

The non-empty intersection of a j-flat with a hyperplane is either j or ( j  - 1) dimensional 

(lemma 2.1); so, inductively, the non-empty intersection of any c hyperplanes has dimension 

between d - 1 and d - c.  Since F is a non-empty m dimensional point set, the number of 

perpendicular bisectors which intersect in F is at least d - m. Therefore c - 1 2 d - m; i.e. 

I G l = c ? d - m + l .  

Q.E.D. 

Lemma 3.9 Given two faces F and F' of an order-k Voronoi polytope, whose generating 

sets are G and GI, respectively: F c F' if and only if G _> GI. 

Proof. Let F, F' be faces of v:(T). 

Assume that F E F'. Either F = F1--in which case G = GI-or F c F'-in which case 

F is the intersection of F' with some c additional perpendicular bisectors: 

It then follows from definition 3.6 that: 

Therefore, G > GI. 

Conversely, assume that G _> GI. For any x E F, x is equidistant to the elements of G 

(lemma 3.6), so a fortiori x is equidistant to the elements of G' C G. Since x E v ~ ( T )  and 

x is equidistant to the generating set of F' C v ~ ( T ) ,  it immediately follows that x E F'. 

Therefore, F c F'. 

Q.E.D. 

Lemma 3.10 The afine hull of any V-edge in V? contains at most c V-vertices, where 

c = min{lSI - d ,  2k) .  
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Proof. Let E be a V-edge with generating set G C S, [GI = d. According to lemma 3.9 

and lemma 3.6, any V-vertex v E E is equidistant to G U {p) for some p E S - G. Since 

there are only IS1 - d possible elements of S - G to choose from, there can be no more than 

(IS1 - d) V-vertices in E. 

Let the c V-vertices on E be ordered linearly as v l ,  v2, . . . , vc. For any vi (1 5 i 5 c )  

there can be at most k - 1 points of S nearer to Vi than G is. Any p E S - G is nearer to  

some x E E whenever: 

This is a linear function of x. Hence, if p E S is nearer than G to some x in the open line 

segment (vl, vc), then p must be nearer than G to either v l  or vc. A maximum of 2k - 2 

such points exist. A V-vertex lies between v l  or vc only where one of these 2k - 2 points 

becomes equidistant with G. Therefore, there can be no more than 2k V-vertices in E.  

Q.E.D. 

Lemma 3.11 In the order-k Voronoi Diagram of S, for Ti # Tj: v~(T;) n v;(Tj) is either 

empty, or an m-face of v:(T~) and of v:(T~), for 0 5 m 5 d - 1. 

Proof. Assume that F = V;(T~) n V;(T~) is non-empty, and let x E gd belong to  F. Let 

p ,  q be such that p E Ti - Tj, q E Tj - Ti. Since x E v ~ ( T ~ ) ,  then d(x,p) 5 d(x,q); 

since x E V:(Tj), then d(x, q )  5 d(x, p). So, let S = d(x, q )  = d(x, p). Since p and q were 

chosen arbitrarily from Ti - Tj and Tj - Ti, it follows that all points in (Ti - Tj) U (Tj - Ti) 

are equidistant from F. Hence, by lemma 3.7, F is a face of both v;(T;) and of v;(T~), 

with generating set (Ti - Tj) U (Tj - Ti). 

Q.E.D. 

The intersection of any two Voronoi polyhedra is a face in the Voronoi diagram. If 

Ti = Tj then v$(T~) fl v;(T~) = v;(T~) = vkS(Tj), which is a d-face. An empty intersection 
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is, by convention, a (- 1)-face. The intersection of any other pair of Voronoi polyhedra is a 

face, by lemma 3.11. 

Lemma 3.12 x is an interior point of some facet F with genemting set ip, q) in vkS, if 
and only if there exists a hypersphere centered at x, with p and q on its surface, and with 

exactly k - 1 points of S in its interior. 

Proof. Assume that x is an interior point of some facet F with generating set B(p, q); let 

T c S such that F C v:(T); and let C = C(x,6) be the hypersphere centered at x ,  with 

p and q on its surface. No point of S - {p, q)  is on the surface of C, otherwise x would 

belong to  an m-face (for m 2 d - 2) and, hence, would not be an interior point of F. 

It follows directly from definition 3.1 that C separates T and S - T. So, every point in 

T lies either on the surface or in the interior of C. We know that p is the only point of 

T which lies on the surface. Therefore, the k - 1 points of T - {p} are in the interior of 

C. Furthermore, no point of S - T is enclosed by C. Hence, exactly k - 1 points of S are 

enclosed by C.  

Conversely, assume that there is a hypersphere centered at x, with p and q on its surface, 

and enclosing exactly k - 1 points of S (let these points constitute the set R). It follows 

directly from definition 3.1 that x lies in both V ~ ( R  U {p}) and V ~ ( R  U {q)). Therefore, x 

lies on a face of V: (lemma 3.11), and this face is d - 1 dimensional (lemma 3.8) since its 

generating set has a size of 2. Furthermore, x is an interior point of this facet since it does 

not belong to any lower dimensional face. 

Q.E.D. 

The following lemma will be helpful in identifying the relevant (definition 3.5) points of 

S with respect to some v ~ ( T ) ,  by solving a spherical separability problem. 

Lemma 3.13 p E S is a relevant point in v ~ ( T )  if and only if there exists a hypersphere 

C such that p is on the surface of C,  the elements of T are on the surface or interior of C,  

and the element of S - T are on the surface or exterior of C.  

Proof. Assume that p E S is relevant with respect to v ~ ( T ) .  By definition, G = {p, q} is 

the generating set of some facet F of v ~ ( T ) ,  for some q E S. Let x E F, and let C be the 
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hypersphere centered at x with p and q on its surface. So, we have on the surface of C one 

point from T and one from S - T. Since the center of C belongs to  v ~ ( T ) ,  it follows that 

the points of T cannot be exterior, and the points of ( S  - T )  cannot be interior. 

Conversely, assume that there exists a hypersphere with p E S on its surface, with the 

points of T either on the surface or interior, and with the points of S - T either on the 

surface or exterior. 

0 If p E T, then we can expand C away from p until the first q E S - T becomes a 

surface point (proposition 2.2). Of course, if there already exists some q E ( S  - T) on 

the surface, we need not expand C. 

0 Otherwise we can contract C (proposition 2.1) towards p until some q E T is a surface 

point. 

The center of the hypersphere now lies on the perpendicular bisector B of q and p,  and lies 

in v ~ ( T ) .  Hence, B determines a facet of v ~ ( T ) ,  Hence p (as well as q )  is relevant. 

Q.E.D. 

Lemma 3.14 Exactly two Voronoi polytopes intersect in each (d - 1)-dimensional facet of 

an order-k Voronoi Diagram. 

Proof. Let F be a (d - 1)-dimensional facet in the order-k Voronoi Diagram of 5'; let the 

generating set of F be {p, q}; and let f be an interior point of F. According to lemma 3.12, 

there exists a hypersphere C centered at f, with p and q on its surface, and with exactly 

k - 1 points of S in its interior; let this set of k - 1 points be denoted R. 

Since R is the unique set of k - 1 nearest neighbors of f, any v k S ( ~ )  containing f must 

satisfy R c T. Since exactly 2 elements of S - R lie on the surface of C, we have exactly 

two choices for the kth neighbor off.  

Q.E.D. 

Facets define a binary relationship among Voronoi polytopes, motivating definition 3.8, 

which will be useful in defining the "facet graph" in chapter 5. According to lemma 3.14, 
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exactly two Voronoi polytopes are adjacent along any (d - 1)-dimensional V-facet. Lower 

dimensional faces may lie in the intersection of more than two polytopes. Such faces are 

called V-facets only if they are the nonempty intersection of some v ~ ( R u { ~ ) )  with B(p, q), 

where R is a (k-1)-subset of S, and p, q E S-R (definition 3.4). In this context, v ~ ( R u { ~ ) )  

will be said to be adjacent to V ~ ( R  U {q)). 

A similar "adjacency" relationship exists among Voronoi vertices (definition 3.9), which 

will be useful in defining the "vertex graph" in chapter 4. 

Definition 3.8 v ~ ( T )  is said to be adjacent to v ~ ( u )  in the order-k Voronoi Diagram of 

S whenever: 

v ~ ( T )  n B(p, q )  = v ~ ( u )  n B(q, p) is nonempty. 

Definition 3.9 Two Voronoi vertices v, u in the order-k Voronoi Diagram of S are called 

adjacent whenever: 

v # u, and 

v,  u E E for some edge E of the Voronoi digram. 

3.5 Properties for Nondegenerate Point Sets 

Lemma 3.15 Under the nondegeneracy assumption: the generating set of any m-face of 

V ~ ( T ) ,  for 0 5 m 5 d - 1, has size exactly d - m + 1. 

Proof. Let G be the generating set of an arbitrary m-face F of v ~ ( T ) ;  so [GI 2 d - m + 1 

(lemma 3.8). The elements of G C S are equidistant to F (lemma 3.6), and, since S is 

nondegenerate, F cannot be equidistant to more than d - m + 1 points of S (lemma 3.3). 

S o I G I L d - m t l .  Q.E.D. 
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Table 3.1: Number of Facets Intersecting in m-Faces of Order-k Voronoi Polytopes in Rd 
(under nondegeneracy assumption) 

Type of 
Face 
F 

vertex 

edge 

ridge 

facet 

Size of 
Generating 

Set 

Number of Facets Intersecting In F 
Minimum Maximum 

d 

d - 1  

d - m  

2 

1 

(if k > 1-1 ) (otherwise) 

The generating set G of an arbitrary m-face F (0 5 m 5 d - 1) is the union of the 

generating sets of the perpendicular bisectors containing F. Since the latter sets each 

contain one element from T and one from ( S  - T), it follows that at  least one of the points 

of G belongs to  T ,  and at least one belongs to ( S  - T). Under the nondegeneracy assumption, 

every distinct pair of points selected from G, such that one is from T and one the other 

from ( S  - T), will determine a (d - 1)-dimensional facet of v ~ ( T )  (this follows from the 

proof of lemma 3.2). Hence, IT n GI x I(S - T) n GI facets of an order-k Voronoi polytope 

intersect in an m-face with generating set G. Table 3.1 shows the minimum and maximum 

numbers of facets which may intersect in an m-face of V ~ ( T ) .  

Degeneracy exists in a polytope whenever more than d facets intersect in a vertex. Such 

a vertex-the intersection of the boundaries of more than d halfspaces-is degenerate in 

the sense that the polar dual (see section 2.6) of the polytope will contain a point for each 

of these halfspaces, all of which lie on a common hyperplane (lemma 2.3). Note that a 

nondegenerate point set does not imply nondegenerate order-k Voronoi polytopes, unless 

k = 1 or d = 2; this is confirmed by the information of table 3.1. Therefore, higher order 

(ie. k 2 2) Voronoi diagrams are inherently degenerate for d 2 3. 
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Lemma 3.16 Under the nondegeneracy assumption: q is an interior point of the edge with 

generating set {pl, p2, . . . , pd} C S in V: if and only if there is a hypersphere centered 

at q, passing through the d points of {pl ,  pz, . . . , pd}, and enclosing k - t points of S ,  for 

1 5 t 5 d - 1 (and, obviously t 5 k). 

Proof. Assume that q is an interior point of a Voronoi edge, E, with generating set 

{pl, p2, . . . , pd). Let C be the hypersphere centered a t  q and passing through the d 
points of the generating set. Let F be one of the Voronoi facets which intersects E, and let 

q' be a point in the interior of F. 

Since E c F, the generating set of F must be a subset of the generating set of E 

(lemma 3.9). Without loss of generality, assume that the generating set of F is {pl,P2). 

Let C' be the hypersphere centered at q' and passing through p l  and pa. According to 

lemma 3.12, C' encloses R C S (where IRI = k - 1) and excludes S - R - {pl, pa). Now, as 

q' + q so does C' -t C; as long as q and q' are distinct, the hypersphere encloses the subset 

R, and passes through only p l  and p2. Therefore, the points of R must be either enclosed 

by C or on C. We already know that p l ,  pa 6 R are on C,  and-under the nondegeneracy 

assumption-a total of d points are on C. Therefore, at most d - 2 of the points of R may 

be on C;  the rest remain enclosed by C-that is, at  least (k - 1) - ( d  - 2) = k - ( d  - 1). 

No point of S - R - {pl, pa} may be enclosed by C, since the center of C belongs to 

V ~ ( R  U {p i  }) and p l  is a surface point. Therefore, at most k - 1 points are enclosed by C. 
Conversely, assume that there is a hypersphere, C,  centered at q which passes through 

the d points of G = {ply pa, . . . , pd) c S, and encloses a subset I c S of k - t points, for 

1 5 t 5 d - 1. We may choose any G' c G of size t ,  and it follows that q E vE(G'u I). Since 

G' is not unique, q lies in the intersection of Voronoi polyhedra. Hence, by lemma 3.11, q 

belongs to  an m-face, for 0 < m < d - 1 .  Since the size of the generating set of this face is 

d ,  it must be an edge (1-face), by lemma 3.15. 

Q.E.D. 

Lemma 3.17 Under the nondegeneracy assumption: v is a Voronoi vertex with generating 

set {pl, p2, . . . , pd+1} c S in V; if and only if there is a hypersphere centered at v, 

passing through the d + 1 points p l  , pa, . . . , pd+l,  and enclosing k - t points of S, for 
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Proof. Assume that v is a Voronoi vertex with generating set {pl, pa, . . . , pd). Let C be 

the hypersphere centered at v and passing through the d + 1 points of the generating set. 

Let F be one of the Voronoi facets which intersects E, and let qt be a point in the interior 

of F. 

Since v E F ,  the generating set of F must be a subset of the generating set of v 

(lemma 3.9). Without loss of generality, assume that the generating set of F is {pl, pa). 

Let Ct  be the hypersphere centered at qt and passing through p l  and p2. According to 

lemma 3.12, C' encloses R C S (where I RI = k - 1) and excludes S - R - {pl, p2). Now, as 

q' 4 q so does C' + C; as long as v and q' are distinct, the hypersphere encloses the subset 

R, and passes through only p l  and pa. Therefore, the points of R must be either enclosed 

by C or on C. We already know that p i ,  pa 4 R are on C ,  and-under the nondegeneracy 

assumption-a total of d + 1 points are on C. Therefore, at most d - 1 of the points of R 

may be on C; the rest remain enclosed by C-that is, at least (k - 1) - (d - 1) = Ic - d. 

No point of S - R - {pl, pa) may be enclosed by C,  since the center of C belongs to 

V ~ ( R  u pl) and p l  is a surface point. Therefore, at most k - 1 points are enclosed by C. 

Conversely, assume that there is a hypersphere, C,  centered at v which passes through 

the d + 1 points of G = {pl , pa, . . . , pd+1) C S, and encloses a subset I C S of k - t points, 

for 1 < t < d. We may choose any G' c G of size t ,  and it follows that v E V ~ ( G ' U  I). Since 

G' is not unique, v lies in the intersection of Voronoi polyhedra. Hence, by lemma 3.11, q 

belongs to an m-face, for 0 < m < d - 1. Since the size of the generating set of this face is 

d + 1, it must be an vertex (0-face), by lemma 3.15. 

Q.E.D. 

The "symmetric difference" of two sets T and U is defined as (T - U )  U (U - T ) .  

Lemma 3.18 Under the nondegeneracy assumption: the symmetric d ierence between the 

generating sets of any two adjacent Voronoi vertices in V; is equal to 2 .  

Proof. Let v l  and va be two Voronoi vertices adjacent along an edge E, whose generating 

set is G C S, where (GI = d. The respective generating sets, G1 and G2, of v l  and va 

satisfy: G1 2 G and G2 3 G (lemma 3.9); IGIJ = 

Therefore, 3pl E GI, pa E G2 such that: 

IG21 = d + 1 (lemma 3.15). 

G2 = G U {pa} 
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Furthermore p l  # pa, otherwise vl  and v2 would not be distinct, violating definition 3.9. 

Therefore, GI - G2 = {pl) and G2 - GI = {p2). 

Q.E.D. 

Lemma 3.19 Under the nondegeneracy assumption: for any Voronoi vertex v in ~ 2 ,  let 

G be the generating set of v, let C be the hypersphere centered at v with G on its surface, 

and let I be the subset of S enclosed by C. Then exactly one of the following will be true: 

0 111 = k - 1 and v lies on exactly d + 1 Voronoi edges. 

0 111 = L - d and v lies on exactly d + 1 Voronoi edges. 

0 k - d < III 5 k - 2 and v lies on exactly 2d + 2 Voronoi edges. 

Proof. Note that k - d  5 111 5 k -  1 (lemma 3.17); ]GI = d+1, and the size of the generating 

set of any edge containing v is d (lemma 3.15). Let {pl , pa, . . . , pd+1) be the generating 

set G of v. 

Let G; = G - {pi), for 1 5 i 5 d + 1. The intersection of perpendicular bisectors 

of elements of any G; will be a 1-flat (line) L; that passes through v. Any V-edge which 

contains v ,  must be contained by one of these lines (lemma 3.9). 

According to proposition 2.3, we may perturb C into a hypersphere C; such that G; is 

on its surface and pi is either an interior or exterior point. The center xi of C; must lie on 

L;; assume that xi is close enough to v so that I remains enclosed, and S - G - I remains 

excluded, by C;. 

Suppose that pi is made an exterior point: then Ci has III interior points. So, by 

lemma 3.16: 

0 if 111 = k - d then xi will not lie on a Voronoi edge. 

0 if k - d < 1 I1 5 k - 1 then xi will lie on a Voronoi edge. 

Now suppose that pi is made an interior point: then C; will enclose III + 1 points. So, by 

lemma 3.16: 

0 if 111 = k - 1 then xi will not lie on a Voronoi edge. 
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e if k - d 5 III 5 k - 2 then xi will lie on a Voronoi edge. 

Therefore, if 111 = k - 1 or 111 = k - d, then v lies in exactly d + 1 V-edges. Otherwise, 

k - d  < III 5 k - 2  andvl ies  in 2d+2 V-edges. 

Q.E.D. 

Lemma 3.19 motivates the following definition: 

Definition 3.10 In the order-k Voronoi Diagram of a nondegenerate point set: a V-vertex 

is called a terminal vertex whenever it is contained in  d + 1 V-edges; it is called a cross 

vertex whenever it is contained in 2d + 2 V-edges. 

Consider a point x as it moves in a straight line along a V-edge E ,  through a V-vertex 

and beyond, in the V: for a nondegenerate set S. Let G be the generating set of E, and let 

C denote the hypersphere centered at x with G on its surface. Let I denote the maximal 

subset of S enclosed by C. When x encounters a V-vertex v ,  some p E S - G becomes the 

(d + l)St surface point of C .  

If V is a cross vertex then, as x continues moving, it lies on some V-edge E' # E 

whose generating set is G, and the corresponding hypersphere contains I - {p) (note 

that p may or may not be in I). 

If V is a terminal vertex then there are two cases to  distinguish: either III = Ic - d or 

111 = k - 1: As x continues moving, it comes to lie in the interior of V:(I u G) in the 

former case, or the interior of V:(I U {p}) in the latter case. 

Lemma 3.20 Under the nondegeneracy assumption: for any two Voronoi vertices, v l  and 

vq adjacent along some edge in the v:: let C1 and C2 be the hyperspheres passing through 

their respective generating sets, and let Il and I2 be the subsets of S enclosed by C1 and C z ,  

respectively. Exactly one of the following will be true: 

2. [Ill = IIzl, and the symmetric diflerence between Il and I2 is 2. 
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3. ( I l (  = / I 2 ( +  1 and I1 n I2 = I2. 

4. 1121 = 1111 + 1 and Il n12 = 11. 

Proof. Let E be the V-edge along which the V-vertices v l  and v2 are adjacent. Let G I ,  G2 

and G be the respective generating sets of vl, v2 and E. Let I  be the subset of S enclosed 

by any hypersphere C centered in the interior of E, and having G on its surface. According 

to  lemma 3.9: 

G = GI - {pi )  = G2 - ( ~ 2 )  

for some p l ,  pa E S. According to proposition 2.3, C can be obtained from C1 (or C2)  by 

making pl (respectively, p2)  either an interior or an exterior point, and leaving the relative 

positions of every other point the same. In either case: 

Now, the four cases in the lemma may be derived from the following four scenarios, which 

are mutually exclusive and exhaustive: 

3. p l  # I  and p2 E I .  

4. p l  E I  and p2 # I. 

Q.E.D. 

The four scenarios enumerated in lemma 3.20 are illustrated in figure 3.4, for two V- 

vertices adjacent along a V-edge in an order-3 Voronoi diagram. Note that scenarios (3) 

and (4) are equivalent, by symmetry, so there are only three distinct cases to  illustrate. 
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Figure 3.4: Illustration Of Adjacent Vertices 

These three panels illustrate all possible scenarios enumerated in lemma 3.20. A V-edge of an order-3 Voronoi 
Diagram in R2 is shown, with two adjacent V-vertices (denoted by square points). Data points are denoted 
by round points. The circles passing through the generating set of each V-vertex are shown. In any case, 
both circles must pass through two of the same data points (the generating set of the V-edge). 

Top Frame Both circles enclose the same point set. 

Middle Frame The symmetric difference of the enclosed point sets in 2. 

Bottom Frame The symmetric difference of the enclosed point sets is 1. 

Note, also, that any circle centered along the V-edge (which is also a V-facet in R2) passes through two data 

points and encloses 6 - 1 = 2 data points. 
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Lemma 3.21 Under the nondegeneracy assumption: for any V-vertex v, with generating 

set G, in v;: v belongs to Vt(T) if and only if the hypersphere centered at v with G on its 

surface has I c S in its interior and S - I - G in its exterior, such that G U I 3 T 3 I. 

Proof. Let v be a V-vertex with generating set G. [GI = d + 1 by lemma 3.15. 

Assume that v E v ~ ( T ) .  Then, by lemma 3.17, the hypersphere centered at v with 

G on its surface encloses I C S, where III = k - t, for 1 5 t < d (and the hypersphere 

excludes the remaining points S - G - I).  So the k - t < k nearest neighbors of v are I ;  

the k - t + d + 1 > k neighbors of v are G U I. Furthermore, the k nearest neighbors of v 

are T,  by virtue of v E v ~ ( T ) .  Therefore: 

Conversely, assume that the hypersphere centered at v with G on its surface has I c S 

in its interior and S - I - G in its exterior. Let t = k - 111; then 1 < t < d (lemma 3.17). 

Then we may select any t-subset G' of G and it follows that v E Vj(Gf U I). That is, 

V E  V t ( ~ ) f o r  any ( G u I )  > T  3 I. 

Q.E.D. 



Chapter 4 

Vertex Enumeration Algorithm 

In this chapter an algorithm is presented which enumerates all of the V-vertices of the order- 

k Voronoi Diagram (v:) of a set S of n points in 9Id. The algorithm computes V: directly: 

that is, v:-, is not needed as a preliminary step. This appears to be the first algorithm 

which directly computes V: for d > 2. It is assumed that the point set is nonredundant. 

The running time of the algorithm is 0(d2n + d3 log n )  per vertex, regardless of the value 

of k. The algorithm traverses theb'vertex graph" of the Voronoi diagram. 

Definition 4.1 The vertex graph G = (V, E )  of a given Voronoi Diagram V: has: 

v E V for each Voronoi vertex v of V: 

(v;, v j )  E E for all vi, vj E V such that v; and vj are adjacent along an edge in vkS 

Each V-vertex v lies on either d + 1 or 2d + 2 V-edges (lemma 3.19), dependent only 

upon the number of points of S which are enclosed by the hypersphere corresponding 

to  v. Some of these edges may extend to infinity; the others terminate in some V-vertex 

adjacent to v. Hence, the degree of any node of the vertex graph is bounded by 2d + 2. 

Furthermore, the graph is connected, as shown in [AB83, theorem 21 (although this paper 

is only concerned with the order-1 Voronoi Diagram, the proof of connectedness makes no 

assumption about k). 

'For ease of expression, the hypersphere "corresponding ton a V-vertex v will mean the hypersphere 
centered at v with the points of the generating set of v on its surface. 
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The vertex enumeration algorithm searches for all adjacent V-vertices of each V-vertex 

v-the circumcenter of some (d + 1)-subset G C S. The proof of lemma 3.19 shows that the 

adjacent V-vertices lie on one of the (d: l )  = d + 1 lines, Li, each of which is equidistant to  

some d-subset of Gi C G. Therefore, by considering each L; in turn-and considering either 

one, or the other, or both directions, depending upon the number of points of S enclosed 

by the hypersphere corresponding to  v-we can locate all of the V-vertices adjacent to v. 

That is, we find the point vi of Li which is equidistant to  G; and some (d + point of 

S - G, such that vi is as close as possible to  v. 

A planar version of this algorithm was presented in [Bha83]. This algorithm does not 

assume that the point set is nondegenerate, and the running time is bounded by O(nlc(n - 

k)). The running time may also be bounded in terms of the output size: O(vn + e log v), 

where e is the number of V-edges. 

If S is degenerate, we can make the following claims about any V-vertex v and V-edge 

E. These claims are analogous to lemmas 3.16,3.17 and 3.19, and can be proved in the same 

way that the lemmas were, without making the nondegeneracy assumption. Let G be the 

generating set of v, and let I be the subset of S enclosed by the hypersphere corresponding 

to v. Let E be an edge with generating set GI, such that v lies on E. Let I' be the subset of 

S enclosed by any hypersphere centered in the interior of the edge E with G' on its surface. 

I' consists of the k - t elements of I and t' additional elements of G 

Furthermore, the points of G' must lie on a hyperplane, for which E is a surface normal 

directed towards the open halfspace which contains the t' points of I' - I. 
Therefore, in order to identify all of the V-edges arising from v, we must identify all 

of the maximal subsets of G which lie on a hyperplane for which some t' points of G lie 

in one of the open halfspaces. This is greatly simplified by the nondegeneracy assumption, 

which implies that [GI = d + 1, IG'I = d and t' E { O , l ) .  So, any d-subset of G will lie 
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on a hyperplane H such that the (d + point g' of G lies in one of the open halfspaces 

determined by H. Let n denote the surface normal of H directed towards the halfspace 

containing g'. Then: 

{v + rnlr  > 0) contains a V-edge u 1 S t - 1 (i.e. t 2 2) 

{v + rnlr  < 0) contains a V-edge t - d + 1 5 0 ( i e .  t 5 d - 1) 

This theory was developed more formally, under the nondegeneracy assumption, in chap- 

ter 3. 

Lemma 3.21 tells us how to determine the Voronoi polytopes which contain any V-vertex 

v with generating set G, such that the corresponding hypersphere encloses I c S. Such a 

vertex will be contained by any v k S ( ~ )  for which T properly contains I, and T is properly 

contained by G U I. 

4.1 The Planar Case 

The order-k Voronoi Diagram of S C R2 has several simplifying features. Firstly, there can 

be no cross vertex (see definition 3.10) when S is nondegenerate. This follows directly from 

lemma 3.19: any hypersphere centered at a cross vertex and passing through the points of 

its generating set must contain c points, for k - d + 1 5 c 5 k - 2; this clearly cannot occur 

when d = 2. 

Secondly, the V-edges are also V-facets, so the generating set of any V-edge has size 

2, whether S is degenerate or not. This also follows from the observation that all circles 

centered along a V-edge E must pass through the points of the generating set G. But the 

intersection of any two such circles will contain exactly two points. In higher dimensions, 

the (nonempty) intersection of two m-dimensional hyperspheres is an (m - 1)-dimensional 

hypersphere, so there is no finite limit on the number of points which may be equidistant 

to a V-edge. This demonstrates the difficulty with generalizing the algorithm to deal with 

degenerate point sets in higher dimensional spaces. 

The following are proven in [Bha83], and also follow from the comments made on the 

more general case, at  the beginning of this chapter. 

1. any hypersphere centered along a V-edge in a %-dimensional order-k Voronoi Diagram 

and passing through the (two) points of its generating set will contain exactly k - 1 

points in its interior. 
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2. the hypersphere centered at a V-vertex v with the points of the generating set G on 

IGI = S 2 3 
its surface contains I C S, such that: 

I I l = k - t  l < t < s - 1  

It follows that any edge E arising from v is associated with a hypersphere centered along 

E, with 2 points of G on its surface, and enclosing t  - 1 points of G (in addition to  enclosing 

the k - t  points of S - G). Therefore, there are exactly s  edges arising from v: for each 

such edge E, the line L which is perpendicular to E and passes through the points of its 

generating set must contain t - 1 points of I in one of its open halfplanes. 

The algorithm of [Bha83] moves to adjacent V-vertices by considering all possible s  edges 

arising from a given V-vertex whose generating set has size s. 

4.2 The Nondegenerate d-Dimensional Case 

Algorithm Vertex_Enumeration, to enumerate all V-vertices of the order-k Voronoi Di- 

agram of a nondegenerate point set S = {pl, p2, . . . , pd) is shown in figure 4.1. Each 

V-vertex v is "expanded" in turn-that is, each edge arising from v is examined for an 

adjacent V-vertex. The complexity of the algorithm is 0(d2n + d3 log n), and the space 

requirement in O(d), per V-vertex. 

Each V-vertex in the output will be represented either by its coordinates in Rd, or as a 

list of the indices of the d + 1 points of S which make up its generating set (or both). After 

the V-vertices have been enumerated, we can determine the Voronoi polytopes on which 

each V-vertex v lies in O(nd) time if the former representation is used, and 0(d3 + nd) time 

in the latter case. 

Small modifications, which do not add to the time complexity, can allow the output to 

include: 

a direct indication of the Voronoi polytopes on which each V-vertex lies. 

construction of the vertex graph. 

The former modification, however, does add to the space complexity of the algorithm. 

The algorithm makes use of two data structures (see table 4.2): a balanced search 

tree (denoted !4) [AHU83, section 5.41, and a stack (denoted 9) [AHU83, section 2.31. In a 

balanced search tree containing m records, any insertion, deletion or query operation requires 

O(1og m) probes (in the worst case and average case). If this algorithm were implemented, 
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Table 4.1: Data Structures for Algorithm Vertex_Enumeration 

(Algorithm is presented in figure 4.1) 

Q 

the "open hashing" technique [AHU83, section 4.71 would probably be preferable to the 

balanced search tree, since the expected number of probes required for any insertion, deletion 

or query is constant (although the worst case requires O(m) probes). 

The balanced search tree Q is used to  hold all of the V-vertices which have been dis- 

covered by the algorithm-i.e. those which are either on the stack, or have already been 

popped from the stack. This will be used during the expansions of a given vertex, to "query" 

whether or not some adjacent vertex has already been discovered. Since any V-vertex is 

uniquely specified by the d + 1 elements of its generating set, the tree may be keyed by 

the lexicographically-sorted indices of the generating sets. Since v-the total number of 

V-vertices-is an upper bound on the size of the tree, it follows that any insertion, deletion, 

or query operation will require O(1og v)  probes. Each probe requires O(d) comparisons of 

indices, and v is trivially bounded by (d;l) E O(nd). So the complexity of any insertion, 

deletion or query is 0(d2  log n). 

The stack cI, is used to store all of the vertices which have been discovered, but not yet 

expanded. Every vertex is pushed onto !i! as soon as it is discovered for the first time. For 

each such vertex we need to know its generating set, and the number k - t of points of S 

which are interior to  the hypersphere corresponding to  v. The size of the generating set will 

be d + 1, and the number t will be between 1 and d (lemma 3.17). The generating set will 

be represented by the ordered list of indices, in the same way as it is represented in Q. Note 

balanced search tree, containing a record for each "known" V-vertex v 
search key: G = lexicographically sorted list of indices (il, i2, . . . , id+l) 
(where the generating set of v is G = {pi, 11 5 j 5 d + 1)) 

cI, stack of records (G, t )  for V-vertices v left to be processed 
G = lexicographically sorted indices of the generating set of v 
the hypersphere corresponding to v encloses exactly k - t points of S 
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that the set G of indices for a given V-vertex need only be stored once in memory, and the 

appropriate fields of both !@ and @ could be implemented as pointers. 

The procedure vertex(v, G, t )  is called for every V-vertex v discovered adjacent to the 

V-vertex currently being expanded. This procedure will check if G is already in Q and, if 

not a new record for v is added to the stack, and to the search tree; the procedure will also 

generate output, indicating either the coordinates of v or the indices G of the generating 

set of v. The complexity of this procedure is dominated by the (at most two) operations on 

the search tree. Hence the complexity is 0(d2 log n). 

procedure vertex(v, G, t) 

a if G is not in !@ then: 

a insert G into !@ 

a push the record (G, t) onto @ 

a perform an output operation, reporting the new V-vertex v 

Finding the initial V-vertex (in step (1) of the algorithm) can be performed in 0(d2n) 

time as follows: 

a find a convex hull facet F of S, using the algorithm of Chand and Kapur [CK70]. 

(O(d2n) time) 

a let GI be the d-subset of S which lies on F 

a compute the line L = {x = p + ry l r  E 8) which is equidistant to GI, where y is the 

surface normal of F directed away from CH(S). (O(d3) time) 

compute Tj ( V j  E 3 - G') such that p + 7j.Y is equidistant to GI LJ {pj). (O(nd) time) 

a find the ith largest rj ( j  E S - GI) for k - d + 1 < i < k. (O(n) time [BFp+72]) 

a then, vo = p t r j y  will be the circumcenter of the d+  1 points Go = GIU{pj), and the 

corresponding hypersphere will enclose i - 1 points, I. c S. Hence, vo is a V-vertex 

(lemma 3.17). 
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Algorithm Vertex-Enumeration 

Input: d, k, n 
S = {pl, pa, . . . , pn): a nondegenerate point set in Sd 
(let T denote the indices of any T C S) 

Output: A list of the V-vertices of V: 

1. find an initial V-vertex vo with generating set Go S; let I. c S denote the points 
enclosed by the hypersphere corresponding to vo. 

2. insert Go into Q 

3. push the record (Go, [Io[) onto @ 

4. while @ not empty: 

(a) pop top record (G,t) from @; G = (il, iz, . . . , id+l) 

(b) compute v, the circumcenter of G 

(c) 6 +-- d(v, g), for any g E G 

(d) for j = 1,2, . . . , d + 1, compute vj such that: 

v+rvj  is the equation of the line which is the circumcenter of G j  = G- {gi.) 
J 

a hypersphere centered at v + ~ v j  with Gj  on its surface encloses gi when- 
j' 

ever T > 0. 

(e) for j = 1,2, . . . ,d + 1: 

i. for all h E S - G: 
let a .  x = ,b' be the equation of B(ph, g), for any g E Gj. 

P-a.v set = -. 
"'3 

ii. if 1 < t 5 d and 3Th > 0 (h E S - G) then: 
let r be the index for which TT > 0 and rT < T ~ , V T ~  > 0 (h E S - G). 
if d(v, p,) < 6 then: call procedure vertex(v -4- TTvj, G j  U {r), t) 
otherwise: call procedure vertex(v + TTVj, G j  U {r), t - 1) 

iii. if 1 5 t < d and ITh < 0 (h E S - G) then: 
let r be the index for which T, < 0 and T, > th,Vth < 0 (h E S - G). 
if d(v, p,) < 6 then: call procedure vertex(v + TTvj, Gj U {r), t + 1) 
otherwise: call procedure vertex(v + r,vj, G j  u {r), t) 

Figure 4.1: Algorithm to Enumerate All V-Vertices in the Order-k Voronoi Diagram of 
S c Rd 

(see also table 4.2) 
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Step (2) and step (3) are trivial O(1) operations (since the search tree is, at  this stage, 

empty ). 
Step (4) is performed once for each V-vertex: i.e. v times. The overall complexity of 

each iteration is 0 (d2n + d3 log n). Each sub-step has complexity as follows: 

4b 0(d3), by solving the following system, where G = {ql, q l ,  . . . , qd+l): 

4d 0(d3): v l . .  .vd  are the d column vectors of B-l. In order to  compute ~ d + ~ ,  we 

could construct a matrix similar to B-for example with row vectors corresponding 

to  B(qi, ql), for 2 5 i 5 d + 1-whose inverse has column vectors va . . . ~ d + ~ .  

4 e  O(d) repetitions, each of complexity O(dn + d2 log n): 

(i) O(n) computations, each of complexity O(d) 

(ii)/(iii) O(n) to determine the minimal Ith[; O(d) to compute the distance from v 

to the new generating set point; 0 (d2  log n) for procedure ver tex  (dominated by 

operations on the balanced search tree) . 

Theorem 4.1 Algorithm Vertex-Enumeration enumerates all v V-vertices of the order- 

k Voronoi Diagram of a nondegenerate set of n points in !Rd in time 0(vd2n $ vd310g n) 

Proof. Proof of correctness follows from the facts that the vertex graph is connected [AB83], 

the degree of each vertex is at  most 2d + 2 (lemma 3.19), and from the comments made in 

the proof of lemma 3.19 which tell us how to compute any adjacent V-vertices. 

The complexity was calculated above. 

Q.E.D. 
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Several issues related to algorithm Vertex-Enumeration are discussed below: 

4.2.1 C o m p u t i n g  Each V-edge O n l y  O n c e  

The 0(d2n) determination of adjacent V-vertices has a built-in inefficiency of a factor of 

2. Suppose a V-vertex v has been discovered during the expansion of another V-vertex u: 

then during the expansion of v, the algorithm still spends O(nd) time to "rediscover" u. 

To avoid this, we could associate 2d + 2 flags with the record in !P, corresponding to any 

V-vertex v with generating set indexed by (il, in, . . . , id+l). Each flag corresponds to one 

possible edge arising from v; say the flags are denoted ft, . . . , f$+, and f;, . . . , fd+l, 
such that: 

fj+ is on ++ v has already been discovered adjacent to some V-vertex u whose 

generating set includes pil, . . . , Pijwl, Pijtl, . . . , Pidtl, and Pij is interior the 

hypersphere corresponding to u 

f27 is on e v has already been discovered adjacent to some V-vertex u whose 

generating set includes Pil, . . . 7 Pij-l 7 Pijtl 7 . . . 9 Pidrl, and pi. is exterior the 
J 

hypersphere corresponding to u 

These flags can be set after any successful query, in procedure vertex, for the existence of 

the record associated with v, during the expansion of u. Selecting the correct flag can be 

done by noting the position j at which there is an element in the index list of v which is not 

in the corresponding list for u, and by noting whether or not this element came from the 

interior or the exterior of the hypersphere corresponding to u (this has already been done 

in the distance test of steps 4e(ii) or 4e(iii)). 

Immediately after step (4a) when a record has been popped from the stack, we can find 

the corresponding record in the search tree; this adds nothing to the overall complexity. If 

all 2d + 2 flags are on (in the case of a cross vertex) or if d + 1 flags are on (in the case of a 

terminal vertex), then we can skip steps (4b) through (4e). Otherwise, we need only search 

along those edges whose flags are off. 

4.2.2 Reduc ing  The Size of the  Search  Tree 

If records are never deleted from the search tree Q ,  it could become quite large when the 

input set S is large. However, after all of the adjacent V-vertices of a given V-vertex v have 
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been expanded, it is no longer necessary to keep the record for v in 9. After expanding 

v, we know exactly how many adjacent V-vertices there are; after all of them have been 

expanded, it is possible t o  delete the record from g. Suppose that there is a counter c(v) 

associated with the record for each V-vertex V, which represents the number of adjacent 

vertices discovered while expanding v ,  less the number of times v has been discovered 

adjacent to  some other vertex. 

in step (2): c(vo) + 0 

in procedure vertex,  if a new record is created for v then: c(v) c -1 

while vertex v is being expanded in step (4): increment c(v) every time an adjacent 

vertex is found. 

in procedure vertex: after any successful query of !l! for the existence of a record for 

V-vertex v: 

- if c(v) = 0 then delete the record for v from !I 

So, @ will contain only those "known" V-vertices v whose neighbors-i.e. the V-vertices 

adjacent t o  v-have not yet been expanded. The use of counters requires only one extra 

storage unit per V-vertex. There will be at most one deletion from !P for each V-vertex (an 

0(d2  log n) operation), and updating the counters requires O(d) time per vertex. Hence, the 

use of counters will not increase the time or space complexity of the algorithm. By selecting 

a good order for expanding the V-vertices in Q ,  it may be possible to  significantly reduce 

the size of the search tree: the last-in-first-out order that a stack implementation uses seems 

a particularly bad choice from this perspective. It remains an open question as to whether 

there exists an ordering such that the number of "known" V-vertices whose neighbors have 

not yet been expanded is asymptotically less than ~ ( n ' ( ~ ) ) .  If such an ordering exists, then 

the complexity of any operation on the search tree will have complexity less than 0 (d2  log n). 

4.2.3 Determining The Polytopes on Which Each V-vertex Lies 

A V-vertex v belongs to any v:(T), for which G U I > T > I (lemma 3.21), where G is the 

generating set of v and I is the subset of S enclosed by the hypersphere corresponding to 

v; 111 = k - t, 1 5 t 5 d. After the algorithm has terminated, we can determine all such 
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polytopes for any V-vertex v by computing d(v, p )  for all p E S. Assuming that we have 

the generating set G, as output of the algorithm: p E I whenever d(v, p )  < d(v, g) for any 

g E G.  Hence we require: 

0(d3) time to determine v 

O(nd) time to  compute the distances 

Alternatively, if we have v as the output of the algorithm, the 0(d3) component is not 

required. We can determine d(v, g)  in O(n) time [BFP+72] as the kth least distance. 

This O(nd + d3) complexity per V-vertex could be reduced to O(k) time per V-vertex, 

if the vertex graph is the output of the algorithm (see section 4.2.4). The set I. of points 

enclosed by the hypersphere corresponding to the initial vertex (found in step 1 of the 

algorithm) are known. The vertex graph is traversed using a depth-first search with back- 

tracking: at  most 2 updates are required to the set I, of enclosed points, between two 

adjacent vertices (lemma 3.20). Hence, we can output the indices of the set I for each 

vertex in time proportional to the size of I, which is O(k). 

The algorithm could be modified, so that the set I of enclosed points is part of the 

output for any V-vertex. This requires adding an additional field in the records of stack 

9 which contains the indices of the k - t (1 5 t 5 d) enclosed points. Since k can be 

O(n) this could create a substantial increase of O(nv) in the space requirement. No matter 

how inefficiently we represent the indices of I, we can add or delete an index in O(k) time. 

At most 2 updates to  I occur when we locate an adjacent V-vertex (lemma 3.20). Hence, 

pushing a new record on the stack has time complexity in O(n) (since k < n); this is done 

once for each V-vertex, so nothing is added to the overall complexity of the algorithm. 

The modified algorithm would output the indices of I together with the indices of the 

generating set of each V-vertex v. Lemma 3.21 then tells us exactly which Voronoi polytopes 

contain v. 

4.2.4 The Vertex Graph As Output 

In order to  obtain the vertex graph as output of the algorithm, we could associate 2d + 2 

pointers with every record in the search tree Q. These pointers are analogous to the flags 

of section 4.2.1: ft, . . . , fd++l and f;, . . . , f;+*. They point to other records of Q, and 

are updated in much the same way as were the flags of section 4.2.1; however, instead of 
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merely indicating whether or not a vertex is already known to  exist along a given edge, 

we actually store a pointer to that vertex. In addition, we store pointers to  the adjacent 

V-vertices found whenever a V-vertex is expanded. 

Whenever a V-vertex is found to be a terminal vertex ( i .e .  when [ I ]  E {k - 1, k - d)), 

then one of the "banks" of pointers f:, . . . , fd+++l or f;, . . . , fd+l can be deleted. 

The algorithm terminates with 5 2d + 2 non-null pointers from each node, representing 

the V-edges of the order-k Voronoi Diagram. A pointer will be null, when a given V-edge 

extends to  infinity. 

Any time a pointer (V-edge) is added to a record, it has immediately been preceded by 

a query with 0(d2  log n) time complexity. Hence, the cost of adding a V-edge is negligible. 

There is no additional space requirement for the vertex graph either: Each record of !& has 

size O(d) for the indices of the generating set, so the addition of O(d) pointers does not 

change the size complexity. 



Chapter 5 

Facet Enumeration Algorithm 

In this chapter an algorithm is presented which enumerates all facets of the order-k Voronoi 

Diagram of a set S of n points in Sd. This is motivated by the problem of reference set 

thinning in pattern recognition-discussed in chapter 1. 

Each Voronoi polytope v:(T) is considered in turn: the facets of v ~ ( T )  are determined 

by the nonredundant constraints of equation (3. I) ,  reprinted below: 

Since each facet belongs to exactly two Voronoi polytopes (lemma 3.14), it follows that 

each facet will be found exactly twice by the algorithm. It will be helpful to  define the 

"facet graph" of a Voronoi diagram. 

Definition 5.1 The Facet Graph G = (V, E )  of V: has: 

P E V for each Voronoi polytope P E V: 

(Pi, Pj) E E for all Pi, Pj E V such that Pi and Pj are adjacent along a V-facet in V t  

The algorithm will start from some arbitrary node of the facet graph-which may be 

discovered by determining the k nearest neighbors of any point in the space. Each node will 

be visited, enumerating all edges ( i e .  the V-facets) arising from that node, and thereby 

discovering additional nodes. Since thegraph is connected, this approach will find all edges 

in the graph-which correspond to V-facets in the Voronoi Diagram. 
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The facets of a Voronoi polyhedron V ~ ( T )  are determined by the bounding hyperplanes 

of the nonredundant constraints of equation (5.1). Therefore, determining the facets of 

v ~ ( T )  can be achieved by testing each constraint-determined by one point from T and 

one from ( S  - T)-for redundancy. This "brute force" approach must consider k(n - 

k) constraints; however, in general, many of the points of S will not contribute to any 

facet in v ~ ( T ) .  This suggests a "two stage" approach of first determining the relevant 

(definition 3.5) points St, and then determining the nonredundancy among those constraints 

generated by the relevant points. 

Stage 1 Determine a subset S' S, IS'J = n' such that: 

2. Vp E Tt : 3q E (St - TI) such that H(p,  q )  is nonredundant 

3. Vq E (St - TI) : 3p E Tt  such that H(p,  q )  is nonredundant 

Stage 2 Determine the nonredundancies among the kt(nt - kt) constraints of: 

It will be shown in section 5.8 that the determination of the relevant points in Rd 

can be transformed into a problem of determining the nonredundant constraints defining a 

polytope in 9Id+'. Thus, the stage 1 problem is equivalent to a stage 2 problem in a higher 

dimensional space. This problem of determining the nonredundant constraints is equivalent 

to  an extreme point problem (see section 2.6). 

A Voronoi polytope is equivalent to the "feasible polytope" of a linear programming 

problem. Techniques which are based on linear programming algorithms can be used to 

determine redundancy among the constraints defining the polytope. The f facets of a single 

Voronoi polytope may be found by making O(n) linear programming calls, each with < f 
constraints, plus an additional overhead having complexity O(nd + Ed log n) per facet. Using 

Megiddo's (modified) linear-time linear programming technique [Meg84] [Dye861 [Cla86], 

each of the linear programming calls has complexity 0(3~'f): hence, in fixed dimension an 

output-sensitive running time of O( f n + f k log n) is obtained. Since each facet is contained 

by exactly two Voronoi polytopes in the order-k Voronoi Diagram, this complexity bound 
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holds for the enumeration of all facet of the order-b Voronoi Diagram. The output-sensitive 

facet enumeration algorithm is presented in section 5.10. 

The high dimension-dependent constant of the above approach makes it impractical. 

Better performance is expected from the simplex method [Dan511 [Dan631 of linear pro- 

gramming, which is well known empirically to  have linear expected running time in d di- 

mensions, despite its exponential worst case performance. This approach has the added 

benefit of allowing the simultaneous consideration of all constraints for redundancy, instead 

of solving an independent linear program for each one. 

Section 5.1 will review the fundamentals of linear programming. This will be followed 

by a description of the simplex method. Section 5.4 reviews methods, which are based on 

simplex method "pivots", for the determination of the nonredundant constraints defining 

a polytope. In section 5.6, a new interpretation of the simplex pivot is presented; and 

section 5.7 presents an method for the determination of nonredundant constraints, based 

on this interpretation. This method is used in the development of the "practical" algorithm 

for facet enumeration (section 5.9). 

5.1 Linear Programming 

Linear programming is a widely studied and widely applicable mechanism for solving op- 

timization problems. It is commonly used in economics as well in computing science. The 

attraction of linear programming lies in the ease and intuitive appeal of problem formula- 

tion. The linear programming problem (LPP) is to optimize-i.e. to  maximize the value 

of-a linear function of some d variables, subject to a set of m constraints on the values 

that the variables may assume. The constraints are themselves linear functions of the d 

variables. In algebraic form, an LPP may be expressed in the following "standard form": 

maximize c . x 

subject to Ax 5 b 

where A is an m x d matrix, c a d dimensional vector, and b an m-dimensional vector. Let 

the ith row of A be denoted ai (1 5 i 5 m), and the Pi denote the ith component of b. The 

problem is to find a vector x which maximizes the value of the function c . x,  called the 

objective function, such that ai - x < pi for 1 < i < m. 

From a geometric point of view, the linear programming problem is very intuitive. Each 
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constraint, ai . x < pi defines a halfspace with bounding hyperplane ai . x = pi. The 
intersection of all m halfspaces defines the feasible region of the problem-a polytope by 

definition 2.2. That is, any x lying in this polytope is a feasible solution to  the LPP, in the 

sense that it satisfies all of the constraints. The LPP is thus to determine a feasible point 

x at which c . x attains its maximum value, or to conclude that no feasible point exists. In 

the latter case, the intersection of the constraint halfspaces is empty and the LPP is said to  

be infeasible. The feasible polytope may be unbounded: in this case, it is possible (but not 

necessary) that the value of the objective function may be increased without bound. The 

LPP is said to  be unbounded if the objective function has no finite maximum. Note that an 

unbounded LPP implies an unbounded feasible polytope, but the converse is not true. 

An alternative geometric interpretation of a feasible solution to an LPP is as a hyperplane 

which separates two point sets S1, S2 C Xd. Each row vector of A corresponds to  one of 

these points: for all p E S1, p is the ith row vector of A (for some 1 5 i < m )  and pi c 1; 

for all p E S2, -p is the ith row vector of A (for some 1 5 i 5 m) and pi c -1. Then, for 

any feasible solution f to the LPP, the hyperplane with equation f . x = 1 separates S1 and 

s 2 .  

For a feasible solution f to linear program (5.2), let w = c-f be the value of the objective 

function at f. Since c . x  = w is the equation of a hyperplane, the objective function for any 

point x on this hyperplane has the same value w. Thus, optimizing the objective function 

may be visualized as moving the hyperplane c . x  = w in the direction of the normal c, until 

it no longer intersects the feasible polytope. It is easy to show that the optimal value of 

c . x will be attained by some x which is a vertex of the polytope. 

A co-basis for an LPP is any d-subset of the constraints such that the corresponding d 

bounding hyperplanes intersect in a vertex of the feasible polytope. Such a vertex-also 

called a basic feasible solution-may be generated by more than one distinct co-basis if 

degeneracies are present. 

For many LPPs, especially those in economics, negative valued variables are not mean- 

ingful. Often the standard LPP formulation is given as: 

maximize c . x  

subject to A'x 5 b (5.3)  

x 2 0  

Enforcing positive valued variables amounts to the introduction of d additional constraints. 
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System (5.2)-with A an m x d matrix-may be rewritten as system (5.3)-with A' an (m - 

d) x d matrix-by a straightforward affine transformation: that is, d linearly independent 

rows of A become the coordinate system in system (5.3). 

Every LPP has an associated dual problem. Given the matrix A and vectors b and c of 

system (5.2), the following is the dual problem: 

minimize b . y 

subject to < c 

where denotes the transpose of A. The "duality theorem of linear programming" states 

that system (5.2) has an finite optimal solution x if and only if system (5.4) has a finite 

optimal solution y ,  and that the objective functions of the two systems have the same value 

at  the optima: i .e.  min{b y) = max{c . x). Furthermore if either problem is unbounded, 

then the other has no feasible solution. Hence, an LPP algorithm may assume that m 5 d 

(or, conversely, that m 2 d) simply by solving the dual problem whenever this condition is 

not satisfied. 

The most common algorithm for solving LPPs is the simplex method, developed by 

Dantzig in 1947 for the solution of US Air Force planning problems [Dan511 [Dan63]. The 

simplex method starts at a basic feasible solution of system (5.3). and successively pivots 

to  an adjacent basis at  which the value of the objective function is a t  least as large. To 

find the initial vertex-or determine that no feasible point exists-is equivalent to  solving 

a separate linear program in (d + 1)-dimensions, for which there is a trivial initial feasible 

solution. This determination of an initial feasible vertex comprises "Phase I" of the simplex 

method. Optimization of the objective function starting from that vertex comprises "Phase 

11" of the simplex method. In practice, phase I1 is solved in an (m + d)-dimensional space 

(and phase I in an (m+ d + 1)-dimensional space) after introducing m "slack" variables-one 

for each constraint-as will be described in the next section. 

The simplex method has been used extensively to solve LPPs and empirical evidence 

has shown that, in almost all examples, it converges to  an optimal solution in about m or 

3m/2 pivots [Chv83]. However, theoretical result have shown that, in the worst case, the 

number of pivots can be exponential in m, and examples have actually been constructed for 

which the simplex method does perform an exponential number of pivots [KM72]. Before 

1979, all attempts to  develop linear programming algorithms which were sub-exponential 

in the worst case, were fruitless; it was often conjectured that linear programming was a 
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member of the complexity class NPI. [GJ79] 
A breakthrough result came in 1979, when Khachiyan [Kha79] showed that the ellipsoid 

algorithm-which had been developed in connection with convex programming [IN77]- 

could be used to solve LPPs (where d 2 m) in time bounded by 0(d61), where 1 is the number 

of digits in the coefficients in the input [AS80]. The ellipsoid algorithm is initialized with an 

ellipsoid E which contains a feasible point of system (5.2), if one exists. On each iteration, 

the center e of E is tested for inclusion in the feasible polytope. If the test is successful, the 

algorithm halts having found a feasible point. Otherwise, some constraint, say a . x 2 P ,  
is violated: E is replaced by a smaller ellipsoid which contains {x E Ela . x 5 a e}, and 

the iteration is repeated. So, the ellipsoid method generates a feasible point in the polytope 

Ax 5 b rather than directly solving the LPP. However, there are several ways to rephrase 

the standard LPP formulation as a feasible point query [BGT81]; for example, a formulation 

which looks for a feasible point of the primal and dual problems simultaneously. 

Karmarkar's algorithm [Kar84] is similar to the ellipsoid method, but uses a complicated 

sequence of transformations to result in a better complexity bound of 0(d3e51). This bound 

was later improved to  0(d31) [Gon89]. 

Although Khachiyan's result placed linear programming within the complexity class 

P, it has been argued [Meg84] [Dye861 [Cla86] that the (low level) computational model 

under which the ellipsoid method achieves its polynomial .upper bound is not satisfactory. 

Under the more commonly-used real-arithmetic RAM model of computation [AHU74], the 

complexity of the ellipsoid method cannot be bounded by a polynomial in the dimension 

d and number of constraints m and is, therefore, not "genuinely" polynomial--even if the 

dimension is fixed. On the other hand, since the number of bases of the feasible polytope has 

an upper bound of mlgl [McM70], and since there exist pivoting strategies which guarantee 

that the simplex method does not visit the same basis more than once [Bla77], it follows 

that the simplex met hod is "genuinely" polynomial when the dimension is fixed. 

In fact, Megiddo [Meg84] has shown that the fixed-dimensional LPP may be solved in 

linear time using a "recursive multidimensional search technique", described as follows. Let 

H denote a hyperplane with normal c-where c-x is the objective function-and let v denote 

the projection of the optimal vertex onto H.  The constraints of the LPP are paired, and the 

intersection of each pair is projected onto H .  This projection defines a dividing (d - 2)-flat, 

HI, of H.  Now, by localizing v to one side or the other of HI, we may deterministically 

'Under the assumption that P # NP: NPI(NP-Incomplete) = NP - (P U NP-complete) 
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remove one of the constraints of the pair from further consideration, since it will not be tight 

at  the optimal vertex. Localizing v on the hyperplane H is an LPP in d - 1 dimensions, so 

the search can be done recursively in decreasing dimension. It turns out t o  be necessary to 

explicitly test only a constant number-i.e. independent of m, but dependent on d--of the 

intersections of pairs of constraints, in order to  localize v with respect to  all intersections. 

The time complexity of this approach was first reported as 0 ( 2 ~ ~ m )  [Meg84]. Modifications 

by [Cla86] and [Dye861 improved the constant, resulting in an 0 ( 3 ~ ~ m )  complexity bound. 

From a practical point of view, neither Khachiyan's ellipsoid method nor Megiddo's 

recursive multidimensional search technique seriously rival the simplex method in expected- 

time performance. Despite the fact that these newer methods have better theoretical com- 

plexity bounds, the constants are prohibitively high. Karmarkar [Kar84] has claimed that 

his algorithm does have practical significance, but this claim is somewhat contentious. 

5.2 The Simplex Method 

Consider the following LP in the form of system 5.3, where AN is an m x d matrix, b is an 

m-vector and CN is a d-vector. The subscript N denotes the set {1,2, .  . . , d) and indicates 

that the columns of AN, elements of CN and XN are indexed from 1 through d. 

maximize CN . XN 

subject to ANxN < b 

XN 2 0 

For each i th row ai of AN, we may introduce a "slack variable" xd+d and rewrite the con- 

straint as an equality: 

ajxiy + xd+i = Pi 
Requiring that all slack variable be positive enforces the inequality constraints of sys- 

tem (5.3). Let A denote the matrix [ABIAN], where AB = I is the m x m identity matrix; 

let c = [cNIO, 0 . .  . ,0] and x be (d + m)-vectors. Then, system (5.3) can be rewritten as: 

maximize c . x  

subject to Ax = b (5.5) 

x 2 0  

The vector x may be partitioned as [xg IxN], where B = {d+ 1, d + 2, . . . , d + m) denotes 

the subscripts of the slack variables. The m columns of AB comprise a basis for Srn and, 
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consequently, the corresponding variables xg are called basic variables; the original variables 

(i.e. x N )  are called nonbasic variables. The constraints now have the form: 

Assuming that b 2 0, there is an obvious initial feasible solution of: 

This is an example of a basic feasible solution-i.e. one for which all nonbasic variables are 

equal to 0. If it is not the case that b 2 0 ,  then we may find an basic feasible solution by 

"phase 1" of the simplex method, as described later. 

At each iteration-called a "pivotv-of the simplex method, one nonbasic variable xp 

is chosen to enter the basis and its value is increased while all other nonbasic variables 

are held constant: this causes the basic variables to change in value. Unless the problem is 

unbounded, as xp is increased, some basic variable x, will decrease to 0 becoming a nonbasic 

variable. If degeneracies are present4.e.  if the bounding hyperplanes of more than d 

constraints intersect in a common vertex-then there may be more than one candidate 3,; 

otherwise, x, will be uniquely determined. A pivot results in the following updates to the 

set B of basic indices and the set N of nonbasic indices: 

We wish to select p such that c, is positive, thus increasing the value of the objective function 

c - x. If no c, (p E N )  is positive, then x is optimal and the algorithm terminates. Consider 

what happens to the ith constraint of system (5.6) as xp is increased with all other nonbasic 

variables held a t  0: 
~;=, (a i jx j )  + xd+i = Pi 

2.e. xd+i = Pi - ai,pxp 

Since xd+i must remain positive, it follows that x, cannot be increased by more than &, 
whenever ai,, is positive (note that pi is always positive in a basic feasible solution). There- 

fore, the variable x, (where r = d + i) to leave the basis is the one for which this ratio is 
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the least positive. The pivot is performed making the substitution: 

in system (5.6). The objective function is updated by making the same substitution, except 

ignoring the constant term cp . -&-, since it will not change the optimal solution (it will only 

change the value of the objective function at this solution). It is easy to verify that this is 

achieved by making the following "rank-1" updates to A and b: 

After each pivot, the objective function is expressed in terms of the (current) nonbasic 

variables, and the updated matrix A may be expressed as [ANII]. Hence, the updated 

system is similar to  system (5.6) and the simplex method can continue iteratively. 

There are d + m constraints in system (5.3), including the explicit nonnegativity require- 

ment on the original variables. Each constraint has an associated slack variable (or, in the 

case of the nonnegativity constraints, an original variable). After 0 or more pivots, each row 

corresponds to a basic variable, and each column corresponds to  a nonbasic variable. It is 

not necessary to explicitly store the m columns of AB = I: we need only flag each row and 

each column of AN indicating to which variable it corresponds. Using this strategy, we may 

interpret the m x d matrix A as representing the inequality constraints of system (5.3). We 

can combine A, c and b into a simplex tableau as follows: 

where j, E N (1 5 c 5 d) and i, E B (1 5 r 5 m) are the labels of the nonbasic and 

basic variables, respectively. Let v i j  denote the elements of the above tableau, with the 
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( m  + row of the tableau being the objective function, and the (d + column being 

b. Updates (5.7) may be rewritten: 

0 swap labels of row T and column p 

From a geometric perspective, it is most intuitive to think of the feasible polytope as 

a d-dimensional structure, and each slack variable as the distance from the corresponding 

constraint hyperplane to the current basic solution. Assuming that all of the original d vari- 

ables have been pivoted into the basis, there will be at least d slack variables whose value is 0 

at the current vertex: hence, the corresponding d hyperplanes intersect at  that vertex. The 

updating done to  A and b a t  each iteration may be viewed as an affine transformation: the 

current vertex becomes the origin, and the d intersecting hyperplanes define the coordinate 

system. 

Since there is a finite number of bases for vertices in the feasible polytope, the simplex 

method will converge to the optimal solution, unless cycling occurs. Fortunately, there are 

simple rules for selecting the pivot variables which guarantee that cycles will not occur. For 

example, Bland's rule [Bla77] can be simply stated as: 

0 From all possible candidate variables xi to enter the basis, choose the one with the 

least index i. 

p = min{j E Nlcj > 0) 

From all possible candidate variables xi to leave the basis, choose the one with the 

If it was not the case that b > 0 in system (5.6), then phase 1 of the simplex method 

must be used to find an initial feasible solution. An additional basic variable xd+,+l is 
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introduced into the system as follows: 

The objective function is replaced by: 

maximize ( - x ~ + ~ + ~ )  

System (5.6) has a feasible solution if and only if this maximum is 0. An initial basic feasible 

solution is easily obtained for this system by setting xd+,+l high enough. Then the usual 

simplex pivots are performed. If the required maximum is attained, the final tableau of 

stage 1 is converted to the initial tableau of stage 2 by simply deleting the (d + m + 
column of the matrix A. Then stage 2 may proceed as previously described. 

5.3 The Revised Simplex Method 

The revised simplex method [DOH541 was developed by Dantzig and co-workers shortly 

after the "standard" simplex method was discovered. The theory of both the standard and 

revised methods can be found in any linear programming textbook, such as [Chv83] [Lue84]. 

The standard simplex method must update an m x d tableau for each pivot performed. 

The updated tableau facilitates selection of pivot row and pivot column at the next iteration: 

the pivot column p is selected by a sign test on the elements of c,  and the pivot row is selected 

by computing the ratios A for every row i. Hence, the overall cost of selecting the pivot 
a i , ~  

elements is O(d + m) The disadvantages of this approach include: 

a It is often the case that d is very large and m << d; so the O(md) cost of updating 

can be large. 

a After many pivots, numerical errors in the coefficients of the simplex tableau become 

compounded. To recompute the tableau requires an affine transformation, which takes 

0(d3 + md) time, and assumes that we have the original coefficients stored (an addi- 

tional O(md) storage). 
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The revised simplex method responds to both of these concerns. The coefficients of A, 

b and c are never updated. Instead, at  each pivot, the m x m matrix A;' is updated. A i l  

is the inverse of the current basis. The current solution is then given by: 

The rank-1 update operations for A;' are analogous to  those of the standard simplex 

method, except that they are done on an m x m matrix instead of an m x d matrix, so the 

cost is 0(m2).  We can always assume that m < d since, whenever this is not the case, we 

can solve the dual problem (see equation (5.4)). This can result in significant computational 

savings when m << d. It has the additional benefit of avoiding numerical errors in the co- 

efficients after many pivots have taken place: although numerical errors may corrupt the 

matrix A;', it is usually the practice to recompute the inverse (an 0(m3) operation) after 

some number of pivots in order to increase stability. Suppose this is done after every m 

pivots: then the amortized cost of 0 (m2)  per pivot adds nothing to  the overall complexity. 

These benefits, of course, do not come without a price: the selection of pivot elements 

becomes a 0 ( m 2  + md) procedure. However, on large and sparse problems, the time require- 

ment is much less. The modified simplex method is not well suited for use in determination 

of redundancy among a system of m constraints in Rd: this is because, in general, m >> d, 

and the dual problem cannot be used to determine redundancy, except by considering each 

primal constraint separately. In section 5.6, we present a variation of the revised simplex 

method, which is better suited for this purpose. 

5.4 Redundancy In Linear Programming 

The problem of determining the redundant constraints among a system of m inequalities 

defining a polytope P c Rd arises naturally as a preprocessing step in linear programming. 

where A is an m x d  matrix, with row vectors denoted ai (1 < i < m), and b = (PI, , . . . , P,) 

is an m-vector. The determination of redundancy is equivalent to  the problem of identifying 

the extreme points in a point set (as is discussed in section 2.6). Other applications of this 

problem are discussed in [Zio80]. 

A constraint ai - x I pi is called redundant if its removal from formulation (5.10) does 

not change P. A redundant constraint is termed strongly redundant if it is never satisfied as 
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Figure 5.1: Illustration of Different Categories of Constraints 

These diagrams each show a feasible polytope (shaded region) in R2 as the intersection of halfplanes-each 
represented by a bounding line together with an arrow indicating the side on which the halfplane lies. The 
objective functions are represented by the heavy arrows, labeled c. 

Box A The objective is parallel to the surface normal of constraint Z. Hence, any feasible point on the 
bounding line of Z will be optimal. 

Box B The objective is maximal along the dashed line, which intersects the feasible region in a single vertex. 

The constraints are classified as: 

r V is strongly redundant and nonbinding 

r F is weakly redundant (or weakly nonredundant) and nonbinding 

r G, H and W are strongly nonredundant and nonbinding 

r X and Y are strongly nonredundant and weakly binding 

r D, E and Z are strongly nonredundant and strongly binding 
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an equality aj . x = P; for any feasible point x, and weakly redundant if it is satisfied as an 

equality for some feasible x. A constraint which is satisfied as an equality at  some optimal 

solution is called binding. Such a constraint is termed strongly binding if it is satisfied as an 

equality at  all optimal solutions, and weakly binding if it is satisfied as an equality at  some, 

but not all, optimal solutions. These definitions are illustrated in figure 5.1 for 2-dimensional 

examples. 

The earliest work on determining redundancy in LPP formulations was by Boot [Boo62]. 

For each ith row of system (5.10), a feasible point exists in the following system: 

if and only if ai . x 5 pi is a strongly nonredundant constraint. This approach requires the 

solution of m linear programs, each with m constraints in Sd. 

We present here an simple extension to this approach, for which each of the m linear 

programs has at most f constraints, where f is the number of nonredundant constraints 

defin P in system (5.10). The algorithm (given in figure 5.2) uses a weaker notion of 

nonredundancy, which classifies the weakly redundant constraints as nonredundant. These 

(either strongly or weakly) nonredundant constraints are responsible for determining the 

V-facets of a Voronoi diagram. 

The algorithm assumes that we have an initial feasible point y .  If no such initial point 

is available, we can easily determine one by a single linear programming call of size m. 

The set F is initialized to 0, and the algorithm successively places in F the index of each 

nonredundant constraint. The set W (initialized to (1, . . . ,m))  contains the indices of 

the currently "unknown" constraints. With every iteration of step (2), one constraint is 

removed from the set W. 

In step (2c), we have located a point z which lies in the intersection of the f constraints 

which are (so far) known to be nonredundant, and yet does satisfy some (f + l )St  constraint. 

Therefore, the ray directed from y to z must intersect the boundary of P at boundary of 

some new constraint. For each constraint aj x 5 pi, i E W, we are interested in the point 

xi for which; 

aj xi = Pi; and xi = y + ri(z - y )  

The least nonnegative T; corresponds the the intersection, along the ray, which is nearest 

to  y. Step (2c[i]) of the algorithm determines the value of each ri. Then the minimal 
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Algori thm Non-Redundant(A, b, y ,  F )  

Input :  A -an m x d matrix, with row vectors denoted ai, 1 < i < m 
b -an m-vector: b = (Pi, . . . , pm) 
y E Rd 

ai . x 5 pi defines a constraint of P, for 1 5 i < m 
such that: { Y E P  

Output :  F -set of indices (1, . . . , m) of the nonredundant constraints 

1. set F t 0; W c {1,2, . . . , m) 

2. while W # 0 do: 

(a) find a feasible point of: 

(b) if the LPP is infeasible then 

W t W-{j} 

(c) otherwise let z denote some feasible point. 

i. for all i E W do: 
if ai . (Z - y )  = 0 then: 
- if pi = ai - y  then: T; + 0 
- otherwise: T; c 00 

otherwise: r; +- a..(z-y 5 
ii. set T such that T, attains the minimum nonnegative value for T E W 

iii. F c F U { T )  

iv. W t W - {T) 

Figure 5.2: O( f m) Algorithm to Find All f Nonredundant Constraints of the m Inequalities 
Defining a Polytope P 
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nonnegative one, T T ,  is chosen: hence, the T~~ constraint is nonredundant. 

Step (1) of the algorithm is trivial, and step (2) of the algorithm is executed < m times. 

Overall, sub-step (2a) requires the solution of m LPPs, each with at  most f constraints. 

Sub-step (2b), trivially, has complexity O(m) for all m iterations. Sub-step (2c) is only 

executed when a new nonredundant facet is discovered ( i e .  < f times); it requires < m 

computations of the intersection of a hyperplane with a line, which is an O(d) operation; 

so, step (2c) has complexity O(mdf). 

Therefore, algorithm Non-Redundant requires the solution of m linear programs with 

O(f)  constraints, and an additional overhead of O(mdf). In fixed dimension, the overall 

complexity is O(m f )  [Meg84]. 

Proof of correctness follows from the observations that no constraint is called redundant 

in P unless it is found to be redundant among a subset of the constraints of P; and, for any 

nonredundant constraint H ,  we have found a ray from y E P to the boundary of H which 

lies completely within P. 

Although the O(mf) complexity is appealing from a theoretical standpoint, the high 

constant of 3d2 [Dye861 [Cla86] makes it impractical. Indeed, better empirical performance 

would be expected by using the simplex method to solve the LPPs of step (3a), rather than 

using Megiddo's search technique. If the simplex method were used, a great deal of effort 

would be wasted, in general, by repeating similar pivots time and again while considering 

each constraint independently. 

Several groups of researchers have developed algorithms which exploit features of the 

simplex method to simultaneously consider all constraints for redundancy [ZW83] [Gal831 

[Te183] [Rub83]. Essentially, these algorithms all use the same strategy: Each i th row vector 

of A is viewed as the objective function: 

maximize ai x 

The constraint is redundant if and only if the optimal value is less than Pi. The algorithms 

are initialized with a known feasible solution ( i . e .  vertex), and the d constraints of this initial 

co-basis are flagged as nonredundant; the others are flagged as unknown. Standard simplex 

pivots are performed and, after each pivot, any unknown constraint for which ai . x = Pi 
is flagged as nonredundant (note that this relationship holds for any constraint brought 

into the co-basis). Also, by simply examining the signs of the coefficients of each unknown 

constraint for which ai . x < Pi, we can determine if the ith constraint attains its optimal 
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value at the current vertex; if so, the constraint is flagged as "redundantn. These methods 

are called the "sign-test methods", for this reason. This is identical to  the manner in which 

the simplex method examines the signs of the objective function coefficients. The algorithm 

terminates when all constraints have been identified as either redundant or nonredundant. 

As long as pivots are chosen which optimize the value of at  least one of the unknown 

constraints, the algorithm will be finite; hence, any "unknown" constraint can serve as the 

objective function. An upper bound on the time complexity of determining redundancy 

in this manner will, of course, be exponential just as the simplex method is. In practice, 

however, much better performance is observed [KLTZ83], just as the observed performance 

of the simplex method itself is much better than the upper complexity bound. 

A variation on the above approach was developed by Mattheiss [Mat731 [Mat83]. The 

same pivoting strategy is employed, but it is done on a polytope in $Id+'. The original 

polytope P, defined by the equation (5.10), is embedded in $Id+' to form the polytope PI: 

where the i th component of t is Ilaillz, the 2-norm of the ith row of A. P is a facet of 

the new polytope PI ( i . e .  P is the intersection of PI with the hyperplane having equation 

x d + 1  = 0). Any facet of PI has a nonempty intersection with P [Mat73, theorem 11. Hence, 

nonredundancy among the constraints defining P is equivalent to nonredundancy among 

the constraints defining PI. The claim is made that PI - P has significantly fewer vertices 

than does P. Computational results are presented in [MS80] which support this claim, and 

show that the difference becomes much more pronounced as d is increased. This algorithm 

visits all vertices of PI - P, whereas the other sign-test algorithms, in general, do not visit 

all vertices of P. 

5.5 Finding Nonredundant Constraints By Searching Ver- 

t ices 

The boundary of any nonredundant constraint defining a polytope must intersect some 

vertex of that polytope. Hence, we could determine the nonredundant constraints by visiting 

all of the vertices of a polytope. Since the intersection of m constraints in Rd may have 

as many as m [f 1 vertices [McM70], it is tempting to speculate that we could visit only a 
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Figure 5.3: The Difficulty With Not Visiting All Vertices 

(small) subset of the vertices-without performing explicit redundancy tests as in the sign- 

test methods of section 5.4-and thereby find all of the nonredundant constraints: those 

whose boundaries intersect in one of the vertices visited. 

Recently, Avis and Fukuda [AF90] have developed an elegant algorithm which enumer- 

ates all v vertices of the intersection of m nondegenerate halfspaces in X d ,  in O(ndv) time 

and O(nd) space. The algorithm performs simplex pivots to do a depth-first search of the 

vertices. By exploiting Bland's rule (see page 64), no additional storage is required for 

intermediate vertices. 

Given some objective function, Bland's rule selects a unique simplex pivot from any 

nonoptimal vertex. Hence, if the optimal vertex is unique, then Bland's rule defines a tree 

on the vertices of the feasible polytope. If we have some feasible vertex v of the polytope- 

i.e. the intersection of the boundaries of d constraints-then we can easily select an objective 

function for which v is optimal. The algorithm of Avis and Fukuda reverses Bland's rule to 

traverse the tree defined on the feasible vertices. 

Any attempt to use this strategy to determine the nonredundant constraints in an 

output-sensitive manner is doomed from the start. That is, we would like to find the f 

nonredundant constraints in time which not dependent upon v. However, if there is some 
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vertex p which has not been visited (see figure 5.3A) and we have not performed any redun- 

dancy test on a constraint H, then the situation depicted in figure 5.3B is indistinguishable 

from that of figure 5.3A. 

5.6 Modified Simplex Pivots 

In this section, we present a pivoting strategy which resembles the revised simplex method. 

This strategy will be used for detection of redundancy among a system of m linear constraints 

in Rd. It differs from the revised simplex method in that it updates a d x d matrix which is 

the inverse of the current co-basis, whereas the revised simplex method updates an m x m 

matrix which is the inverse of the current basis. The new method is called the "modified 

simplex method", and it is superior to  the revised method whenever d < m. 

In matrix form, we have an m x d matrix A and m-vector b such that: 

Let P denote the polytope defined by the above system, and assume that we have a feasible 

vertex v of P. It follows that v lies on the bounding hyperplanes ai .x = Pi of (at least) d of 

the constraints defining P. Without loss of generality, assume that v lies on the bounding 

hyperplanes of the first d constraints in system (5.11), and that their surface normals are 

linearly independent. Let ABx 5 bg denote these first d constraints, and ANx 5 bN 

denote the other n - d: 
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Since AB is invertible, we can rewrite x  E Rd as follows: 

A B ~  5 b ~  

A ~ x + y  = bg for some y E Rd 
x = ~ j j l b ~  

Using the above equation, we may express the constraints ANX 5 bN in terms of the 

variables y: this constitutes an affine transformation. 

If we were to add a slack variable (in the style of the simplex method) to each of the m - d 

rows of A', we would obtain a system in the form of equation (5.6). At the feasible solution 

v, we have y = 0. This implies that b' > 0 and, in the terminology of the simplex method, 

y constitutes the nonbasic variables. The basic variables are the slack variables. 

This shows that whenever we have a feasible vertex v of P and know d linearly indepen- 

dent constraints whose boundaries intersect in v ,  then we have all the information needed 

to exploit the pivoting strategies of the simplex method. For consistency with the simplex 

method, matrix AB will be called the co-basis. Let the objective function in the initial space 

be c x. In the transformed space, this corresponds to 

Ignoring the constant term, we have the objective function: 

maximize c' . y ;  I T -1 c = -C AB 

Let us denote the column vectors of ~ j j '  as d (1 5 j 5 d). Similarly, let a i j  and /3: denote 

the elements of the transformed A' and b'. The simplex method then selects pivots as 

follows: 

the pth column enters the basis (ie. leaves the co-basis) based on the test: 

Which is equivalent to: 
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the rth row enters the co-basis, for which a : ,  > 0 and the ratio: 

Pi - 
a:,p 

is minimized. This is equivalent to: 

a, . zP < 0; and 

- is minimized 

where v = A;'bg is the current solution. 

Bland's rule (see page 64) can be used to select among all possible candidates for pivot row 

and pivot column, to  ensure cycling does not occur. 

Note that the column vectors of -A;' are the rays directed along the edges of P, from 

v (see figure 5.4). Hence the selection of which column to  leave the co-basis simply tests 

which of these rays (#) has a positive projection onto the direction of optimization; such 

a ray lies on all but one of the facets intersecting in v. The row (r)  to enter the co-basis 

is selected as the first constraint which is intersected by the ray. Since any row selected 

satisfies: 

a , .zP # 0 

it follows that the a, . x = b, does not contain the intersection of the d - 1 rows B; (i # p). 

Hence, the new basis is also linearly independent. This conclusion also follows directly from 

lemma 5.1, which says that the new basis is invertible. 

After each pivot, the matrix B-' could be recomputed from scratch-an 0(d3) operation- 

or it can be computed by updating the previous B-' in 0(d2)  time, using the following 



C H A P T E R  5. FACET ENUMERATION ALGORITHM 

Figure 5.4: Illustration of Modified Simplex Pivot 

For a feasible region P C 8' (shaded region), a vertex v is determined by the intersection of the bounding 
lines A and B of 2 halfplanes, where: 

A =  {xla.x=pl) 
B = {xlb. x = pz) 

and P lies in the intersection: 
P c {xla-x 5 pl) n (x1b.x = p2} 

Let M be the matrix whose row vectors are the normals of these halfplanes: 

Then the opposites of the column vectors of M-' will be directed along the edges of P from v. 
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Lemma 5.1 Update system (5.12) applied to: 

will result in: 

Proof. The initial system implies that: 

The updates result in: 

So it can easily be confirmed that 

Q.E.D. 
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5.7 Determination of Redundancy Using Modified Simplex 

Pivots 

This section presents an algorithm to find the nonredundant constraints among the m 

constraints defining a polytope in Z d .  It is similar to the sign-test methods [ZW83] [Gal831 

[Te183] [Rub831 reviewed in section 5.4. The main difference between these methods and the 

present one is that the present algorithm makes use of "modified simplex pivots" (presented 

in section 5.6), while the others use standard simplex pivots. Since the algorithm performs 

pivots from vertex to  vertex of the polytope, it will not work in the degenerate situation of 

a polytope that does not contain any vertices. 

Algorithm Pivot is shown in figure 5.5. Its input and output parameters are identical 

to those of algorithm Non-Redundant in figure 5.2, except that the initial feasible point 

y is required to be a vertex for the present algorithm, whereas y could be any feasible point 

for algorithm Non-Redundant. If no such point is available, we can find one by a linear 

programming call. Also, if only a non-vertex feasible point is available, it is easy "move" to 

a vertex by < d iterations of intersecting a vector with the m constraints. 

Algorithm Pivot determines the set F {1,2, . . . , m)  of indices of nonredundant 

constraints. F is initialized (in step 1) to include any index i for which the boundary of the 

ith constraint contains y; the indices of the remaining constraints are put into the set W 

of "unknown" constraints (step 2). Each unknown constraint ai . x 5 Pi is treated as the 

objective function ai . x: the constraint is nonredundant whenever the maximal value is Pi. 
In step (4), we store the value that the objective function corresponding to each unknown 

constraint attains at the initial vertex y; we also store the indices of d linearly independent 

constraints which intersect at  y. This data is stored in the data structures p and I' (see 

table 5.1). 

Modified simplex pivots are performed and, at each vertex v visited, we recompute the 

value ai v of each objective function. If the new value is greater than the current "maxi- 

mum", then we update the corresponding fields of p and I'. SO, whenever the ith objective 

function is selected for optimization, we can "jump" to the vertex-the intersection of the 

boundaries of the constraints indexed by I'(i)-at which its value is known to be greatest. 

Hence, we will never pivot to the same vertex more than once. 

2We will refer the operation of step (5b) iis a "jump", and the operation of step (5c[i]) as a bona-fide 
pivot. 
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Algorithm Pivot(A, b,  y ,  F )  

1. F t the set of indices of the 2 d constraints intersecting in y 

2. W t {l,2,  ... , m ) - F  

3. let B F contain the indices of d linearly independent row vectors of A: i.e. the 
constraints with indices in B intersect in (and uniquely determine) y 

4. for all i E W 

5. while W # 0 do: 

(a) pick aj as the objective function, for j E W 

(b) Z t AB'; v t Zbg; where B denotes the set of d indices I'(i) 

(c) while ajTZ 3 0 and aj . v < b j  do 

i. perform a modified simplex pivot, optimizing aj . x, such that constraint p 
leaves the co-basis, and constraint r enters the co-basis; p E B, r E W U F - B 

perform rank-1 update on Z 
v t ZbB 

ii. if r E W then: 
F t F U {r} 
W t W - {r) 

iii. B c B U {r) - { p }  
iv. for all i E W do: 

if ai v = bi then: 
F + F u {i) 
W t W - {i) 

p(i) + ai - v . otherwise if ai . v > ~ ( i )  then: 
I'(i) t B 

(d) if ajTZ > 0 and aj v < bj then: 

W t W - { j )  

Figure 5.5: Algorithm to Find All f Nonredundant Constraints of the m Inequalities Defin- 
ing a Polytope P, Using Modified Simplex Pivots 

(see also table 5.1) 
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Input 

Output 

Data 
Structures 

Table 5.1: Parameters of Algorithm Pivot 

(Algorithm is presented in figure 5.5) 
I 

a; x < pi defines a constraint of P, for 1 < i < m 
such that: 

y is a vertex of P 

A 
b 
Y  

F I F {I, . . . , m)  is the set of indices of nonredundant constraints 

an m x d matrix, with row vectors denoted ai ,  1 < i < m 
an m-vector: b = (Pi, . . . , Pm) 
Y E W d  

The main part of the algorithm is step (5), which is repeated as long as there is some 

p(i) 
r ( i )  

unknown constraint. We select one such constraint aj -x < pj, and jump to  the vertex v at 

which aj . v  is known to be greatest, so far. Pivots are performed until either this constraint 

is found to intersect some vertex, or its objective value can no longer be increased. In the 

former case, the constraint is nonredundant; otherwise, it is redundant. At each vertex, we 

do not perform explicit redundancy tests for each constraint (since this would require 0(d2)  

time per constraint). We do, however, test each ith constraint for nonredundancy in step 

(5c[iv]): i.e. the test of whether the current objective value attains Pi. This test takes only 

O(d) time per constraint and, once this computation has been done, updating of the data 

structures p and I' is, essentially, "free". 

Table 5.2 compares algorithm Pivot to the sign-test methods, in terms of the time 

required for each component of pivoting and redundancy testing. In general, it will be 

the case that the number m of constraints is much greater than the dimension d. The 

comparison assumes that both methods are given the m constraints in ?JZd in the form: 

maximum attained by ai . v ,  at  any vertex v 
set of d indices of the constraints intersecting in that vertex v 

together with some initial vertex y, and the identities of d constraints whose boundaries 
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Table 5.2: Comparison of Standard Versus Modified Simplex Pivots In Redundancy Testing 
(Note: m : 

One 
Time 
Costs 

Cost 
Per 

Pivot 

Initialization 

Redundancy Tests 

Redundancy Tests 

Selection of Pivot Column 

Selection of Pivot Row 

Rank-1 Updates 

Recomputation of Matrix 
(for " ium~s" or numerical stability 

> d, in general) 
Standard Pivots 
(sign-test methods) 

O(md) per pivot 

Modified Pivots 
(algorithm Pivot) 

0(d3) 

0(md2) total 

intersect in y. The sign-test methods must perform an affine transformation (O(d3 + md2) 

time complexity), so that the constraints are in the the standard simplex form. Algorithm 

Pivot requires only 0(d3) time to compute the inverse of the initial co-basis. 

Performing each pivot requires O(md) time for the sign-test methods; testing each un- 

known constraint for redundancy has the same complexity. So it is reasonable for these 

methods to perform the tests after each pivot. 

The pivots performed by algorithm Pivot have the same complexity: O(md) (assuming 

that d 5 m). Although the rank-1 updates require only 0(d2)  time, the selection of pivot 

row and pivot column has O(md + d2) complexity. We do not perform redundancy tests 

for all unknown constraints at  each vertex: this would add 0(md2) complexity to each 

pivot. Instead, we identify a single constraint as redundant if its objective value cannot be 

increased when it has been selected as the optimizing objective function (step (5a) of the 

algorithm): that is, the jth constraint is redundant whenever ajT2 > 0:  i .e.  when no pivot 

column can be selected. If such is the case, we choose another constraint to optimize, so the 
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0(d2)  cost of unsuccessfully choosing a pivot column is the only redundancy test done for 

any constraint; whenever the test is successful, this 0(d2)  operation is a part of the pivot 

cost. 

The above analysis hides the fact that a jump, with 0(d3) complexity is done after an 

unsuccessful selection of a pivot column. However, this jump need not be performed if the 

next constraint selected has its maximum known objective value at  the current vertex (and 

can be done by 0(d2)  rank-1 updating if its maximum is at  an adjacent vertex). Otherwise, 

the jump brings us to  a vertex at which the objective value is optimized, relative to the 

current vertex. The sign test methods would have required some number of pivots to achieve 

the same effect as the jump. Essentially, these jumps allow us to backtrack directly to the 

vertex at which any constraint has achieved its maximum known value, whereas the sign-test 

methods must backtrack one pivot at a time. In any case, at  most m jumps are performed 

by the algorithm, adding a complexity of 0(md3) overall. Provided at least d2 pivots are 

performed by the algorithm, this cost is subsumed by the O(md) complexity of each pivot. 

Another advantage of the present method over the sign-test methods is that we can easily 

recompute the d x d matrix ~ g '  periodically to increase numerical stability: this requires 

0(d3) time, and no additional space. If the sign test methods were to  recompute the simplex 

tableau, it would require 0(md2 + d3) time, and assumes that the original coefficients are 

stored, requiring an additional 0 (md) space. 

The disadvantage of the current approach is: it may be the case that the newly selected 

constraint is redundant and has its optimal objective value at  the vertex which is currently 

known to  be maximal. In this case, the sign-test methods would have already discarded it, 

but our approach must execute an 0(d3) jump in order to perform the redundancy test. This 

event, however, is unlikely when the problem size is large: that is, a constraint is found to be 

redundant only at  the vertex where its objective is optimal-this vertex is unique provided 

no two constraints have parallel boundaries. Section 6.3 presents computational results 

which show that the number of vertices visited by algorithm Pivot becomes very small, 

relative to  the total number of vertices, as the dimension is increased. Hence, "stumbling 

across" the optimal vertex of some constraint, while optimizing the objective value of a 

different constraint, should not be a frequent event. 
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5.8 Transformation of Stage 1 Problem 

The stage 1 problem is to  identify the relevant points of S c Rd with respect to  some 

nonempty Voronoi polyhedron v ~ ( T ) .  Assume that we are given the subset T c S, together 

with some boundary point f of v ~ ( T ) :  

f E v:(T) n B(a, b); a E T ;  ~ E S - T  

It follows directly from the definitions that both a and b are relevant, and that the hyper- 

sphere centered at f with a and b on its surface separates T from S - T. 

By lemma 3.13, for any relevant q E S, there exists a hypersphere with q on its surface, 

separating T from S-T. This is a problem of spherical separability. We will be transforming 

this into a problem of determining nonredundancy among a system of constraints in sd+l 
by the following sequence of operations on p = (pl, p2, . . . , pd) E S. 

1. The paraboloid transformation (definition 2.1) of each p E S into gd+l: 

Let S* c Rd+' denote the set obtained by paraboloid transformation of any S c Rd. 

This transforms the spherical separability problem into a linear separability prob- 

lem (see figure 5.6): for any relevant q ,  there will be a hyperplane a e x = ,L3 (with 

ad+l 5 0) through q which separates T* from S* - T*. 

2. Vertically projecting S* onto the hyperplane {x E 8?d+212d+2 = I), followed by rotat- 

ing T* about the origin 0. 

Let S** c Rd+2 denote the set so obtained from S* C gd+'. 

This transforms the problem into one of finding those (relevant) points q for 

which there exists a supporting hyperplane of S** U {v) (where v = (0, . . . ,0,1, O), 

the (d + l)St standard unit vector) which passes through q and 0. The transformation 

is illustrated from the top frame to the middle frame of figure 5.7. Although the 

example shown does does not correspond to a meaningful stage 1 problem-since it is 
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Figure 5.6: The Paraboloid Transformation 

The points of T (denoted by circles) and the points of S - T (denoted by squares) are spherically separable 

in W1 (bottom line). After vertical projection onto the paraboloid, the points are linearly separable: the 

dashed line indicates one possible linear separator. Note that a point is relevant iff there exists such a linear 

separator which passes through it. 
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Figure 5.7: Transformation of Linear Separability Problem Into Problem of Determining 
Nonredundant Constraints 

T o p  Frame The sets S* - T* = (a, b, c ,  d, e) (denoted by squares) and T* = {x, y, z) (denoted by circles) 
are linearly separable in W1, by separators passing through the relevant points e or x. 

Middle Frame There exist supporting lines (dashed lines) of S** which pass through the relevant points. 
The additional point v is shown. An interior point u of CH(S** U {Ov)) is shown. 

Bot tom Frame The boundary of each halfspace is labeled with the name of the point from which i t  derives 
(note that D(-u) derives from the origin 0 of the middle frame). The unlabeled constraint corresponds 
to the point v; in this case, the constraint is strongly redundant. 

The boundaries of the halfspaces which are dual to the relevant points intersect the boundary of 
D(-u). The boundary of each constraint corresponding to S* - T* passes through (0, I), and those 
corresponding to T* pass through (0, -I), in the translated space. 
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an 8' -+ R2 transformation, implying that the original problem was 0-dimensional-it 

does illustrate the technique used. 

3. Translation of the coordinate system so that the new origin lies at some point u which 

is interior to CH(S** U (0, v)): A suitable point u is indicated in the middle frame of 

figure 5.7. 
p** -+ = p** - u 

Let S' denote the set of these IS1 + 2 translated points. 

4. Taking the polar dual D(t) of each t E S' (see definition 2.5). This transforms the 

problem into one of determining those (relevant) points q for which D(ql) and D(-u) 

intersect in a face of Pi: 

PI = n ~ ( t ) ;  ~ ( t )  = {X E ~ ~ + ~ 1 t  . x 5 1) (5.13) 
t€Si  

The transformation is shown from the middle frame to the bottom frame of figure 5.7. 

5. Intersection of each D(t) with D(-u), for t E S' - {-u). Let I ( t )  denote the inter- 

section D(t) n D(-u) for t E S' - {-u). Now the relevant points q E S are those 

points for which I(ql) is a nonredundant constraint of the polytope: 

P is the facet of P' contained by the boundary of D(-u). This can be seen in the 

bottom frame of figure 5.7 

The transformation is explained in algebraic terms below: 

Our initial spherical separability problem (lemma 3.13) states that q is relevant with 

respect to V ~ ( T )  if and only if there is a hypersphere C(c, e )  with q on its surface, separating 

T from S - T. Hence, according to lemma 2.2, q is relevant if and only if the following 

system has a feasible solution x E ?Rd+l: 
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This is equivalent to the existence of a feasible solution x E %d+2 of the following system: 

where p** is as earlier defined. 

Let v = (0,0, , . . . ,0,1,O) E Bd+2 be the (d + l)5t standard unit vector. Then we may 

simplify linear program (5.16) as: 

Let C denote the convex hull of S** U {v,O). It is clear that 0 is an extreme point of C. 

Equation 5.16 implies that q** lies on a common face with 0 in C for every relevant q. 

Let us select some interior point u of C, and without loss of generality, assume that 

ud+l # 0 and ud+2 = 0. By translating the coordinate system so that u is the origin, we 

obtain: 
1 s = iP** - U I  p** E S**) U {-u, v - u) 

Let p' E S' denote the translation of any p** E S**, and let v' denote the translation of v. 

The polar dual D(t) of any t E Sf may be expressed in terms of the coordinates of u and 

of the points of S as follows: 

By lemma 2.3: q E S is relevant with respect to v ~ ( T )  if and only if D(-u) and D(ql) 

intersect in a face of the polytope P' (see equation 5.13) which is the intersection of the 

constraints of system (5.17) with the constraint D(-u) : u - x 2 1. Since D(-u) is strongly 

nonredundant in PI, it follows that bd(D(-u)) n P is a (d + 1)-dimensional facet of PI; 

hence, it is a (d - 1)-dimensional polytope whose faces are precisely those faces of P' which 

are lie in bd(D(-u)). Hence the intersection of bd(D(-u)) with D(pl), for all p' E Sf is a 

polytope P (see equation'5.14) such that q is relevant if and only if I (q)  is nonredundant 

in P. 
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Since we have assumed that Ud+2 = 0 and U d + l  # 0, the equation of bd(D(-u)) may be 
written as: 

u - X  = -1 

So, we can derive the equation for each I(pf) ,  by making the above substitution in sys- 

tem (5.17), resulting in: 

These are the n + 1 halfspaces which intersect in P: each point of S corresponds to  one of 

the halfspaces, and the (n + l)St is present to ensure that the corresponding hypersphere 

(in the original space) contains T ,  excluding S - T,  and not the other way around. This 

(n + constraint will be nonredundant only when T is spherically separable from S - T ,  

and S - T is spherically separable from T.  In other words, it will be nonredundant only 

for those unbounded v ~ ( T )  for which T and S - T are linearly separable (in the original 

space). 

Note that P lies in a (d - 1)-dimensional space whose coordinates are, as an artifact of 

our derivation: 1,2, . . . , d, d + 2. If we are given some point: 

f E v ~ ( T )  n B(a, b); a E T ;  ~ E S - T  

for some nonredundant B(a, b) ,  then we can easily calculate an initial boundary point g of 

P, lying in the intersection of I ( a )  and I(b):  

where: 

L e m m a  5.2 g is a boundary point of P, lying in the intersection of the boundaries of I(at)  

and I(bt). 
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Proof. In the (d + 2)-dimensional space, g corresponds to the point: 

Taking the polar dual, and translating the resulting halfspace we derive: 

We have already seen that this corresponds directly to a supporting hyperplane of S**, 

passing through a**, b** and 0. By duality, therefore, g is a boundary point of P lying in 

the intersection of the boundaries of I(al)  and I(bl). 

Q.E.D. 

5.9 A Practical Simplex-Based Algorithm 

Algorithm Facet-Enumeration for the enumeration of all f facets of the order-k Voronoi 

Diagram of a set S of n points in Sd is shown in figure 5.8. The algorithm considers each 

Voronoi polytope, in turn, and enumerates all of its V-facets by detecting the nonredundant 

constraints among the k(n - k) constraints which define it, by equation (3.1). Algorithm 

Pivot  (presented in section 5.7) is used for the determination of nonredundancy. The trans- 

formation (presented in section 5.8) of the stage 1 problem into a problem of determining 

nonredundancy among a system of linear constraints is used. The running time of algo- 

rithm Facet-Enumeration cannot be bounded in an output sensitive manner, since the 

determination of redundancy is performed by techniques based on the simplex method. 

The algorithm makes use of two data structures (see table 5.3): a balanced search tree 

(denoted !&) [AHU83, section 5.41, and a stack (denoted a) [AHU83, section 2.31. These 

were discussed in conjunction with algorithm Vertex-Enumeration on page 47. 

The balanced search tree !& is used to hold a record for each Voronoi polytope v~(T) 
discovered by the algorithm, and is keyed by the lexicographically sorted list of indices of 
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Inpu t  

O u t p u t  

D a t a  
S t ruc tures  

Table 5.3: Parameters of Algorithm Facet-Enumeration 

(Algorithm is presented in figure 5.8) 

dimension 

size of input point set, S 
S =  { P I ~ P ~ ,  - . -  , ~ n )  

A list of the nonempty Voronoi polytopes in v:, together with the facets of each. 

balanced search tree containing T C S, for each "known" v:(T) 
(keyed by the lexicographically sorted list of k indices i, for pi E T.) 

stack of records (T, x )  for v ~ ( T )  left to  be processed 
x is a vertex of v ~ ( T )  

P rocedure  new-facet(T, t ,  s, y )  
output: facet generated by B(pt ,  p,) 
if T - {pt) U {p,) not in Q then: 

insert T - {pt) U {p,) into Q 
push record ( T  - {pt) U {p,), y) onto Q. 

the elements of T.  Q is queried every time a facet is found, to see if the polytope which is 

adjacent along that facet has already been discovered by the algorithm. 

The stack Q holds a record for each Voronoi polytope, discovered during the redundancy 

testing of some adjacent polytope, but which has not yet had its facets enumerated. A record 

for each polytope is pushed onto the stack as soon as it is discovered for the first time. For 

each v ~ ( T )  on the stack, we need to store the indices of T ,  and some V-vertex y. Note that 

any new polytope is discovered at some vertex y of an adjacent polytope, and y is also a 

vertex of the new polytope. If S is nondegenerate, the generating set of each V-vertex has 

size exactly d + 1 (lemma 3.15); in this case, it will also be helpful to store the indices of 

the generating set on the stack. 
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Algori thm Facet-Enumeration 

1. find an initial V-vertex y E 9Id, and a set T such that y E v~(T) 

2. push record (T, y )  onto 

3. insert T into \Ir 

4. while not empty 

(a) pop top record (T, y )  

(b) output: indices of T 

(c) call Algorithm Pivot(A, b,  g ,  F) where: 

A is the (n + 1) x (d + 1) matrix, and b the (n + 1)-vector containing the 
coefficients of system 5.18 
g is calculated by equation 5.19 

(d) S' + {pj 1 j E F )  ; n' = IS'I 

(e) T' c S' n T;  IT'I = k' 

(f) call Algorithm Pivot(A, b , y ,  f )  where: 

A is a k1(n'- k') x d matrix with row vectors denoted ah  (1 5 h 5 n'(nl- k')) 

b = (P17P2, ... ,Pnl(nl-kt)) 
such that: for each h (1 < h < n1(n' - k')), there is a unique pair, pi E T' 
and p j  E S' - TI, for which: 

for each nonredundant constraint H(pt ,  p,) identified in step (I) ,  procedure 
new-facet(T, t, s, y ) is called. 
whenever a nonredundant constraint H(pt ,  p,) is found in step (5c[ii]) or 
(5c[iv]), at  some vertex v, then procedure new-facet(T, t, s, v )  is called. 

Figure 5.8: Algorithm to Enumerate All Facets in the Order-k Voronoi Diagram of S C Rd 

(see also table 5.3) 
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Step (1) of the algorithm-the determination of an initial V-vertex-can be done as 

described on page 48. Steps (2) and (3) are trivial. 

In step (4), we transform the stage 1 problem into a problem of determining nonre- 

dundancy (see section 5.8), which is solved using algorithm Pivot (see section 5.7). This 

provides the set S' (IS'I = n') of relevant points: k' of which constitute the T' E T. Then, 

in stage 2, we determine the nonredundant constraints among the intersection: 

Whenever some constraint H(p ,  q) is found to be nonredundant, procedure new-facet is 

called (see table 5.3) which, in addition to generating output, checks to  see if the adjacent 

polytope v ~ ( T  - {p) U {q)) is in the search tree. If not, a record for the new polytope is 

added to both the search tree and to the stack. 

The first step of algorithm Pivot  detects which of the constraints contain the initial 

vertex y in their boundaries. In the case of a nondegenerate point set S ,  this step can 

be avoided by including, with the record for v ~ ( T )  on the stack, the indices of the d + 1 

elements of the generating set G of y. 

For the stage 1 call to algorithm Pivot-i.e. from Facet-Enumeration step (4c)- 

the initial vertex g, calculated by equation 5.19, is contained by the boundaries of the 

constraints corresponding all p E G. This follows from lemma 5.2. Furthermore, g 

will not be contained by the constraint corresponding to  any point of S - G; otherwise, 

by duality, this would imply that more than d + 1 points are in the generating set of 

Y. 

For the stage 2 call to algorithm Pivot-i.e. from Facet-Enumeration step (4f)- 

the initial vertex y is contained by the boundary of H (p, q )  iff p ,  q E G. 

5.10 An O ( n  f )  Output-Sensitive Algorithm 

By using algorithm Non-Redundant (figure 5.2) instead of algorithm Pivot ,  for the deter- 

mination of redundancy, we can obtain an output sensitive bound of O(n) per facet, in fixed 

dimension, on the running time of algorithm Facet-Enumeration (figure 5.8). For every 
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new v ~ ( T )  pushed onto the stack-discovered in step (2c[iii]) of algorithm Non-Redundant- 

we know some x E Vt(T),  which lies on the boundary B ( p ,  q)  of some nonredundant con- 

straint. Hence we can include, with the record for v:(T) in the stack, the indices of p and 

q ,  thereby avoiding one iteration of the nonredundancy algorithm. 

Any call to procedure new-facet has complexity O(kd1og n), dominated by the query 

(and insertion, in the case of an negative response to  the query) into the search tree !P. 

As discussed on page 20, the maximum number of Voronoi polytopes can be bounded by 

( 1  ) [CS89]. It follows that any addition or query to !P requires O(d1ogn) 

probes. Each probe requires O(k) comparisons of indices: hence the complexity of any 

insertion or query is 0 (kd log n). 

It has been shown in section 5.4, that the complexity of algorithm Non-Redudnant 

in determining the f nonredundant constraints among a set of m constraints is 0(3~'rnf) 

using the technique of [Meg84], as modified by [Dye861 [Cla86]. In fixed dimension, this 

bound can be expressed as O(m f) .  

For a given Voronoi polytope v:(T), let f' denote the number of its V-facets; let n' be 

the total number of relevant points, and let k' be the number of relevant points in the set 

T. The stage 1 call to algorithm Non-Redundant has m = n + 1 constraints of which 

n' are nonredundant: so the complexity will be 0(3~'nn'). Clearly, the coefficients of the 

constraints-given by system (5.18)-and of the initial vertex-given by equation (5.19)- 

can be calculated in O(nd) time. Hence, the overall complexity of stage 1 is 0(3~'nn'). 

Every relevant point is in the generating set of some facet, so there are at least $ facets. 

Therefore, this complexity may be expressed as 0(3~'n) per facet. 

The stage 2 call to  algorithm Non-Redundant has k'(nl - k') constraints of which 

f' are nonredundant, so the complexity will be 0(3~'k'n'f'). Again, the coefficients of 

the constraints can easily be calculated in O(nd) time. For every facet, a call is made to 

procedure new-facet: this adds an additional O(kd log n) to the complexity. Therefore, 

the overall complexity of stage 2 is 0(3~'k'(n' - k') + kdlogn) per facet. Let c = n' - I' 

be the number of relevant points in S - T: then this complexity can be expressed as 

0(3~'kc + kd log n) per facet. 

So, the overall complexity of enumerating the facets of a single Voronoi polytope is 

0(3~ '  (n + kc) + kd log n) per facet. 

Each facet of the order-k Voronoi Diagram is found exactly twice by the algorithm, 

since it lies on precisely two Voronoi polytopes. So, if f is the total number of facets in 
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v:, then the complexity of enumerating all f facets is 0 ( 3 ~ ' ( n  + kc) f + kdf logn), where 

c is the maximum number of relevant points from S - T of any V~(T). The value of c is 

bounded from above by the maximum number of facets in any given Voronoi polytope. This 

number is widely conjectured to be a constant and, in section 6.2, computational results are 

presented which support this claim. 



Chapter 6 

Implement at ion and Experimental 

Results 

6.1 Computational Experience 

6.1.1 IMSL/NAG Linear Programming Routines 

The first version of the facet enumeration algorithm to be implemented made use of linear 

programming routines from the NAG [Num91] and IMSL [IMS87] libraries. The implemen- 

tation was virtually identical to the "output-sensitive" algorithm of section 5.10. Although 

the linear programming routines did not make use of Megiddo's [Meg84] [Dye861 [Cla86] 

linear time algorithm, they were in effect a "black box" for solving LPPs. That is, the 

strategy of algorithm Non-Redundant (figure 5.2) was used. The complexity bound of 

O(n)  per facet in fixed dimension does not hold, since the LPPs were solved by methods 

which, although efficient in practice, can not be bounded by a linear function in the number 

of constraints. 

the IMSL routine "DLPRS" [IMS87, pp. 888-8911 uses the revised simplex method. 

It always terminated successfully-with an optimal point or a message that no feasible 

point existed-even in the case of degenerate input. 

0 the NAG routine "E04MBFV [NumSl, chapter E04] does not employ the simplex 

method; it is possible to request that the subroutine returns after finding a feasible 

point (omiting the optimization phase). In the case of degenerate input, it sometimes 
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performed excessive iterations and terminated unsuccessfully. However, E04MBF did 

return successfully in most cases, and its execution time was considerably faster than 

that of DLPRS. 

In both cases, the double-precision versions of the routines were used. The fact that the 
NAG routine performed more quickly than the IMSL routine should not have been greatly 

influenced by the additional optimization phase (which could be omitted by NAG, but not 

by IMSL). This is because all coefficients of the objective function were set to  0: hence, any 

feasible solution would be optimal. 

In the implementation, EO4MBF was always called first, with a low limit set on the 

number of allowable iterations. Any time that it terminated unsuccessfully, DLPRS was 

called. In all of the executions that were performed, there was never a time in which 

DLPRS was able to find a feasible point after E04MBF had terminated unsuccessfully. 

Hence, an unsuccessful termination could have been interpreted as a "no feasible point" 

response, without affecting any of the results. 

6.1.2 Simplex Pivots 

The execution time of the NAGIIMSL implementation was quite slow, especially for large 

problem sizes. This fueled the search for ways to exploit the inner workings of the simplex 

method in order to simultaneously consider each constraint for redundancy. As a result, 

algorithm Pivot (figure 5.5) was developed. 

At first, a "sign-test method" implementation was used, in the style of [ZW83] [Gal831 

[Te183] [Rub831 (see section 5.4), in order to determine redundancy. This proved to be 

numerically unstable: after a sequence of pivots, updating the coefficients of the simplex 

tableau, errors become magnified. We could have recomputed the coefficients-an 0(d3 + 
md2) affine transformation-at regular intervals in order to  restore stability. If this were 

done after every constant number (ie. independent of m and of d) of pivots, it would add 

considerably to  the complexity of each pivot. 

Algorithm Pivot (figure 5.5) makes use of modified simplex pivots (introduced in sec- 

tion 5.6). The recomputation needed to increase stability is simply an inversion of a d x d 

matrix B: i .e.  an 0(d3) operation. To avoid all numerical problems, the matrix B-' was 

recomputed after every pivot. Section 5.6 presents an 0(d2)  method to  update B-' after 

a pivot to an adjacent vertex, but this was not implemented. In any case, the reinversion 



CHAPTER 6. IMPLEMENTATION AND EXPERIMENTAL RESULTS 9 7 

is necessary after any "jump" (pivot to a nonadjacent vertex) which occurs in step (5c) of 

algorithm Pivot. 

6.2 Results on the Complexity of Voronoi Diagrams 

The implementation of algorithm Facet-Enumeration has been used to  compute the d- 

dimensional order-k Voronoi Diagram of randomly chosen point sets of varying sizes, and for 

varying values of k and d. For the case of k = 1, a two stage algorithm would be superfluous; 

so the V,' were computed by using "stage 2" on all possible n - 1 constraints defining each 

polytope. The V: for 2 5 k 5 5 were computed with the two stage approach. 

Tables 6.1, 6.2, 6.3, 6.4 and 6.5 show the results for points sets of size 50, 100, 200, 500 

and 1000, respectively, randomly chosen from a uniform distribution in the unit hypercube. 

The value of k was varied from 1 to 5, and the value of d was varied from 2 to 6. Tables 

6.6, 6.7, 6.8, 6.9 and 6.10 show the results for points chosen from a uniform distribution 

in the interior of a unit hypersphere. Each box of these tables represents a single run of 

the program, for given values of n, k and d. In the case of the smaller problems, the runs 

were repeated with several different sets of data: the results were virtually identical. The 

results for both distributions-inside the hypersphere and inside the hypercube-also are 

virtually identical: this is not surprising, since only the peripheral polytopes in V: would 

be expected to be different between the two distributions. 

The tables show the number r of regions, the number f of facets and the cpu time 

required on a Silicon Graphics 4D/320S. Also shown are the average number f of facets per 

region-note that each facet lies in two different regions, so the number reported is actually 

%-and the cpu time per facet expressed in milliseconds (ms). The tables are arranged 

to  allow comparison of data for increasing d (down the columns) and for increasing k (along 

the rows). 

One additional run of the program was performed on a set of "real-world" data from 

2998 cervical cell images. Each image has a Cdimensional feature vector representing the 

following parameters of a biological cell: 

1. log of (cytoplasm diameter/nucleus diameter) 

'These data were graciously provided by Dr. Binay Bhattacharya, and had been used in computations 
presented in [Bha82]. They were originally obtained from the Biomedical Image Processing Laboratory at 
McGill University 
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2. log of nucleus area 

3. average cytoplasm density 

4. average nucleus density 

The cells had also been classified into normal versus abnormal classes, so pattern recogni- 

tion techniques could be applied [Bha82]. The order-3 Voronoi diagram of these data was 

computed, with the following results: 

r = 216,416 

f = 2,251,712 
f =  20.8 

cpu time M 75hours 
t 7 M 120ms 

The cpu time given is only approximate, since the computer "crashed" several times during 

the run and some overhead was required to restart the program. 

The following observations can be made on the size of V t :  

0 f is approximately constant, in fixed dimension, regardless of n and k. Some vari- 

ability of this ratio is noted when k = 1 (and, to a lesser degree, when k = 2) but 

as k increases, the ratio tends to stabilize. For example, when d = 4, the ratio is 

approximately 20-for the random data as well as the cervical cell data. 

0 f increases approximately quadratically with d 

0 the average number f of facets per data point grows slowly with n. This increase 

is more pronounced at lower values of n, suggesting an effect a t  the periphery of 

the diagram. For example, when k = 3 and d = 4, using the random data from 

the hypercube distribution as well as the cervical cell data, we obtain the following. 

Note that the last line of the following table represents a different distribution than is 
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represented in the remaining lines. 

Figure 6.1 shows the growth of the ratio j with increasing n,  for d  = 2, . . . , 6 .  The 

ratios j for all values of k > 1 in tables 6.1 through 6.10 are plotted against n ,  for each 

value of d.  These plots demonstrate the running time of the program to be O ( n )  per facet. 

The ratios fi can be observed from the plots as: 

The ratio & for the cervical cell data (d = 4) is approximately 40 ps. This agrees well with 

the above results--especially in light of the fact that some additional cpu time was required 

after the computer had "crashed". 

Note that the ratio $ is approximately the same in 2 or 3 dimensions. For d  2 3, this 

ratio grows approximately quadratically with d .  Hence, the running time of the implemen- 

tation appears to be 0 ( d 2 n )  per facet. 
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Table 6.1: V: of 50 Random Points From A Uniform Distribution In The Hypercube 

I 
T = number of regions 
f = number of facets 
(cpu time in brackets) 
t l f  = cpu time per facet (in milliseconds) 1 

I 

T = 50 
2 f =  139 

f / T  = 5.6 
(0.21 sec.) 

t l f  = 1.5 ms 

T = 50 
3 f =  293 

f / T  = 11.7 
(0.44 sec.) 

t l f  = 1.5 ms 

(0.98 sec.) 
t l f  = 2.0 ms 

T = 50 
5 f =  705 

f / T  = 28.2 
(2.2 sec.) 

t / f =  3.1ms 

T = 50 
6 f =  902 

f / r  = 36.1 
(4.1 sec.) 

t l f  = 4.5 ms 

T = 139 
f = 397 

f l r  = 5.7 
(0.81 sec.) 

t l f  = 2.0 ms 

T = 293 
f = 1653 

f / T  = 11.3 
(3.6 sec.) 

t l f  = 2.2 ms 

T = 487 
f = 4557 

f / T  = 18.7 
(14 sec.) 

t l f  = 3.1 ms 

T = 705 
f = 10095 

f l ~  = 28.6 
(43 sec.) 

t l f  = 4.3 ms 

T = 902 
f = 18126 

f l ~  = 40.2 
(1.7 rnin.) 

t l f  = 5.6 ms 

T = 217 
f = 622 

f / ~  = 5.7 
(1.2 sec.) 

t / f =  1.9ms 

T = 715 
f = 4032 

f l r  = 11.3 
(8.4 sec.) 

t l f  = 2.1 ms 

T = 1739 
f = 16283 

f / T  = 18.7 
(48 sec.) 

t l f  = 2.9 ms 

T = 3617 
f = 50902 

f / T  = 28.1 
(3.5 rnin.) 

t l f  = 4.1 ms 

T = 6264 
f = 123674 

f l r  = 39.5 
(11 rnin.) 

t l f  = 5.3 ms 

T = 284 
f = 822 

f l ~  = 5.8 
(1.7 sec.) 

t l f =  2.1ms 

T = 1237 
f = 7093 

f / T  = 11.5 
(15 sec.) 

t l f  = 2.1 ms 

T = 4002 
f = 37635 

f l r  = 18.8 
(1.9 rnin.) 

t l f  = 3.0 ms 

T = 10843 
f = 152851 

f / r  = 28.2 
(11 rnin.) 

t l f  = 4.3 ms 

T = 24006 
f = 471828 

f / T  = 39.3 
(45 rnin.) 

t l f  = 5.7 ms 

5 

T = 348 
f = 1004 

f l r  = 5.8 
(2.3 sec.) 

t l f  = 2.3 ms 

T = 1881 
f = 10744 

f l r  = 11.4 
(23 sec.) 

t l f  = 2.1 ms 

T = 7346 
f = 69506 

f / T  = 18.9 
(3.6 rnin.) 

t l f  = 3.1 ms 

T = 24313 
f = 344054 

f b  = 28.3 
(26 rnin.) 

t l f  = 4.5 ms 

T = 64983 
f = 1279164 

f l r  = 39.4 
(138 min.) 

t l f  = 6.5 ms 
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Table 6.2: V: of 100 Random Points From A Uniform Distribution In The Hypercube 

T = number of regions 
f = number of facets 
(cpu time in brackets) 
t /  f = cpu time per facet (in milliseconds) 1 

T  = 100 
f = 285 

fir = 5.7 
(0.64 sec.) 

t / f  = 2.2 ms 

T  = 100 
f = 646 

f / T  = 12.9 
(1.6 sec.) 

t / f  = 2.5 ms 

T  = 100 
f = 1237 

f / T  = 24.7 
(4.5 sec.) 

t / f  = 3.6 ms 

T  = 100 
f = 1913 

f / T  = 38.3 
(12 sec.) 

t / f  = 6.3 ms 

T  = 100 
f = 2700 

f / T  = 54.0 
(24 sec.) 

t / f  = 8.9 ms 

T = 285 
f = 837 

f l ~  = 5.9 
(2.7 sec.) 

t / f  = 3.2 ms 

T = 646 
f = 3776 

f / T  = 11.7 
(12 sec.) 

t l f  = 3.2 ms 

T = 1237 
f = 12437 

f / r  = 20.1 
(60 sec.) 

t / f  = 4.8 ms 

T = 1913 
f = 30501 

f b  = 31.9 
(3.7 rnin.) 

t / f  = 7.3 ms 

T = 2700 
f = 63659 

f / T  = 47.2 
(10 rnin.) 

t / f  = 9.4 ms 

T = 465 
f = 1366 

f / l .  = 5.9 
(4.4 sec.) 

t / f  = 3.2 ms 

T = 1642 
f = 9644 

f / ~  = 11.7 
(30 sec.) 

t1.f = 3.1 ms 

T = 4731 
f = 46363 

f / r  = 19.6 
(3.4 min.) 

t / f  = 4.4 ms 

T = 10961 
f = 164103 

f / r  = 29.9 
(18 rnin.) 

t / f  = 6.6 ms 

T = 22143 
f = 476320 

f / T  = 43.0 
(71 rnin.) 

t / f  = 8.9 ms 

-- 

T = 632 
f = 1858 

f l ~  = 5.9 
(6.0 sec.) 

t / f  = 3.2 ms 

T = 3074 
f = 17931 

f / T  = 11.7 
(56 sec.) 

t j f  = 3.1 ms 

T = 11505 
f = 112058 

f / T  = 19.5 
(8.4 rnin.) 

t / f  = 4.5 ms 

T = 35501 
f = 523022 

f / T  = 29.5 
(57 min.) 

t / f  = 6.5 ms 

T = 93750 
f = 1956375 

f / T  = 41.7 
(308 rnin.) 

t / f  = 9.4 ms 

T = 788 
f = 2320 

f l ~  = 5.9 
(7.7 sec.) 

t / f  = 3.3 ms 

T = 4766 
f = 27988 

f / T  = 11.7 
(90 sec.) 

t / f  = 3.2 ms 

T = 22094 
f = 215332 

f / T  = 19.5 
(17 rnin.) 

t / f  = 4.7 ms 

T = 85120 
f = 1248171 

f h  = 29.3 
(143 min.) 

t / f  = 6.9 ms 
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Table 6.3: V: of 200 Random Points From A Uniform Distribution In The Hypercube 

T = number of regions 
f = number of facets 
(cpu time in brackets) 
tl f = cpu time per facet (in milliseconds) 

t 

I 
T = 200 
f = 582 

f l ~  = 5.8 
(2.2 sec.) 

t l f  = 3.8 ms 

T = 200 
f = 1402 

f l ~  = 14.0 
(6.3 sec.) 

t l f  = 4.5 ms 

T = 200 
f = 2785 

f l r  = 27.9 
(19 sec.) 

tlf = 6.8 ms 

T = 200 
f = 4865 

f b  = 48.6 
(60 sec.) 

tlf = 12.3 ms 

T = 200 
f = 7252 

f / T  = 72.5 
(2.4 rnin.) 

t l f  = 19.9 ms 

T = 1661 
f = 4929 

f l ~  = 5.9 
(29 sec.) 

t l f  = 5.9 ms 

2 

T = 582 
f = 1721 

f l r  = 5.9 
(9.5 sec.) 

t l f  = 5.5 ms 

T = 1402 
f = 8330 

f l r  = 11.9 
(44 sec.) 

tlf = 5.3 ms 

T = 2785 
f = 29222 

f / T  = 21.0 
(3.9 min.) 

tlf = 8.0 ms 

T = 4865 
f = 82837 

f / T  = 34.1 
(17 min.) 

tlf = 12.3 ms 

T = 7252 
f = 186689 

f l r  = 51.5 
(59 min.) 

tlf = 19.0 ms 

T = 10812 
f = 63865 

f l r  = 11.8 
(5.7 rnin.) 

t / f  = 5.4 ms 

T = 56383 
f = 557253 

f / T  = 19.8 
(72 rnin.) 

tlf = 7.8 ms 

T = 250216 
f = 3735625 

f / T  = 29.9 
(776 rnin.) 

t l f  = 12.5 ms 

3 

T = 955 
f = 2826 

f / T  = 5.9 
(16 sec.) 

t l f  = 5.7 ms 

T = 3594 
f = 21290 

f / ~  = 11.8 
(1.9 min.) 

tlf = 5.4 ms 

T = 11254 
f = 112765 

f / T  = 20.0 
(14 min.) 

tlf = 7.4 ms 

T = 29913 
f = 463646 

f / T  = 31.0 
(83 min.) 

tlf = 10.7 ms 

T = 65201 
f = 1468604 

f / T  = 45.0 
(382 min.) 

tl f = 15.6 ms 

4 

T = 1312 
f = 3891 

f / T  = 5.9 
(23 sec.) 

tlf = 5.9 ms 

T = 6745 
f = 39926 

f / T  = 11.8 
(3.5 min.) 

tlf = 5.3 ms 

T = 28406 
f = 281470 

f / T  = 19.8 
(35 min.) 

t l f  = 7.5 ms 

T = 101141 
f = 1524971 

f / 7  = 30.2 
(287 min.) 

t l f  = 11.3 ms 



CHAPTER 6. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Table 6.4: V: of 500 Random Points From A Uniform Distribution In The Hypercube 

T = number of regions 
f  = number of facets 
(cpu time in brackets) 
t /  f  = cpu time per facet (in milliseconds) 1 

(14 sec.) 
t / f  = 9.5 ms 

f l ~  = 
(39 sec.) 

t / f  = 10.8 ms 

f / T  = 
(2.2 min.) 

t / f  = 17.1 ms 

f / T  = 
(8.6 rnin.) 

t / f  = 35.6 ms 

6 1 ; :  2:; 
f / T  = 

(26 rnin.) 
t / f  = 63.9 ms 

T = 1480 
f = 4405 

f / r  = 6.0 
(59 sec.) 

t / f  = 13.4 ms 

T = 3611 
f  = 21993 

f / r  = 12.2 
(4.2 min.) 

t / f  = 11.5 ms 

r  = 2443 
f = 7285 

f / T  = 6.0 
(96 sec.) 

t / f  = 13.2 ms 

r = 9651 
f = 57792 

f / r  = 12.0 
(11 min.) 

t / f =  11.4ms 

32600 

f / T  = 
(25 min.) (87 min.) 

94347 ;: 2::::; 1 i: 1 5 0 ~ ~ ~  
f f T  = 35.7 f / T  = 

(128 min.) (604 min.) 
t / f  = 29.6 ms t / f  = 24.1 ms 

r = 24407 
f  = 677467 

f / r  = 55.5 
(550 min.) 

t l f  = 48.7 ms 

4 5 

r = 3395 T = 4334 
f  = 10130 f  = 12934 

f / T  = 6.0 f / r  = 6.0 
(2.3 min.) (2.9 min.) 

t /  f  = 13.6 ms t / f  = 13.5 ms 

r  = 18403 T = 29919 
f  = 110041 f  = 178265 

fir = 12.0 f / r  = 11.9 
(21 min.) (35 min.) 

t / f  = 11.5 ms t / f  = 11.8 ms 

T = 85058 r  = 174335 
f  = 856888 f  = 1743419 

f l y  = 20.1 f / r =  20.0 
(211 min.) 1 (471 rnin.) 
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Table 6.5: V; of 1000 Random Points From A Uniform Distribution In The Hypercube 

T = number of regions 
f  = number of facets 
(cpu time in brackets) 
tl f  = cpu time per facet (in milliseconds) 1 

I 

(59 sec.) 
t / f  = 19.8 ms 

(3.0 rnin.) 
t l f  = 24.4 ms 

(11 min.) 
t l f  = 40.5 ms 

T = 2979 
f = 8900 

f l ~  = 6.0 
(3.9 min.) 

t l f  = 26.3 ms 

T = 7381 
f = 45301 

fir = 12.3 
(18 rnin.) 

t / f  = 23.8 ms 

T = 16286 
f  = 179512 

f l r  = 22.0 
(106 rnin.) 

t l f  = 35.4 ms 

T = 32187 
f  = 588957 

f l y  = 36.6 
(636 rnin.) 

t / f  = 64.8 ms 

5 

6 

;I 4940 ;; 6f 
14771 20593 

fir = 6.0 f / r  = 
(6.6 min.) (9.3 min.) 

t / f  = 26.8 ms t l f  = 27.1 ms 

7 = 1000 
f =  32187 

f / T  = 64.4 
(46 rnin.) 

t l f  = 85.7 ms 

T = 1000 
f =  56682 

f l r  = 113.4 
(156 rnin.) 

t l f  = 165.1 ms 

69960 

f l r  = 
(374 min.) 

t l f  = 31.1 ms 

r  = 19919 
f  = 120033 

f lr  = 12.1 
(46 min.) 

t l f  = 23.0 ms 

T = 214803 
f  = 3469222 

f l ~  = 32.3 
(2906 rnin.) 

t l f  = 50.3 ms 

T = 38428 
f  = 230415 

f / T  = 12.0 
(92 min.) 

tl f  = 24.0 ms 

T = 8813 
f  = 26357 

f / r  = 6.0 
(12 rnin.) 

t / f  = 27.3 ms 

T = 62642 
f  = 375061 

f l r  = 12.0 
(148 rnin.) 

t l f  = 23.7 ms 
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Table 6.6: V: of 50 Random Points From A Uniform Distribution In The Hypersphere 

T = number of regions 
f = number of facets 
(cpu time in brackets) 
t /  f = cpu time per facet (in milliseconds) 1 

1 

T = 50 
f = 137 

f l ~  = 5.5 
(0.20 sec.) 

t/f = 1.5 ms 

T = 50 
f = 303 

f / T  = 12.1 
(0.47 sec.) 

t / f =  1.6ms 

T = 50 

f = 502 
f / T  = 20.1 

(1.1 sec.) 
t l f  = 2.2 ms 

T = 50 
f = 706 

f / T  = 28.2 
(2.4 sec.) 

t/f = 3.4 ms 

T = 50 
f = 895 

f / T  = 35.8 
(3.9 sec.) 

t/f = 4.4 ms 

2 

T = 137 
f = 392 

f l ~  = 5.7 
(0.81 sec.) 

t/f = 2.1 ms 

T = 303 
f = 1701 

f / T  = 11.2 
(3.6 sec.) 

t / f =  2.1ms 

T = 502 
f = 4758 

f / T  = 19.0 
(14 sec.) 

t l f  = 2.9 ms 

T = 706 
f = 10081 

f / T  = 28.6 
(43 sec.) 

t/f = .43 ms 

T = 895 
f = 18052 

f / T  = 40.3 
(1.7 rnin.) 

t l f  = 5.7 ms 

k 
3 

T = 216 
f = 629 

f / T  = 5.8 
(1.3 sec.) 

t/f = 2.1 ms 

T = 715 
f = 4088 

f / T  = 11.4 
(8.5 sec.) 

t / f =  2.1ms 

T = 1808 
f = 17125 

f / r  = 18.9 
(50 sec.) 

t/f = 2.9 ms 

T = 3623 
f = 51276 

f / r  = 28.3 
(3.5 rnin.) 

t/f = 4.1 ms 

T = 6258 
f = 123742 

f / T  = 39.5 
(11 rnin.) 

t/f = 5.3 ms 

4 

T = 293 
f = 852 

f / T  = 5.8 
(1.7 sec.) 

t/f = 2.0 ms 

T = 1263 
f = 7302 

f / T  = 11.6 
(15 sec.) 

t/f = 2.1 ms 

T = 4220 
f = 40072 

f / T  = 19.0 
(2.0 rnin.) 

t/f = 3.0 ms 

T = 10967 
f = 154590 

f / T  = 28.2 
(11 rnin.) 

t/f = 4.3 ms 

T = 24000 
f = 473067 

f / r  = 39.4 
(46 rnin.) 

t/f = 5.8 ms 

T = 360 
f = 1051 

f l T  = 5.8 
(2.2 sec.) 

t l f  = 2.1 ms 

T = 1950 
f = 11197 

f / T  = 11.5 
(24 sec.) 

t / f =  2.1ms 

T = 7770 
f = 73858 

f / T  = 19.0 
(3.8 rnin.) 

t/f = 3.1 ms 

T = 24429 
f = 345542 

f / T  = 28.3 
(25 rnin.) 

t/f = 4.3 ms 

T = 65147 
f = 1286224 

f l T  = 39.5 
(134 rnin.) 

t/f = 6.3 ms 
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Table 6.7: vkS of 100 Random Points From A Uniform Distribution In The Hypersphere 

T = number of regions 
f = number of facets 
(cpu time in brackets) 
tl f = cpu time per facet (in milliseconds) 1 

1 

T  = 100 
f = 285 

f l r  = 5.7 
(0.62 sec.) 

t l f  = 2.2 ms 

T  = 100 
f = 651 

f / T  = 13.0 
(1.7 sec.) 

t / f  = 2.6 ms 

T  = 100 
f = 1233 

f / T  = 24.7 
(4.5 sec.) 

tlf = 3.6 ms 

T  = 100 
f = 1922 

f l s  = 38.4 
(12 sec.) 

t l f  = 6.2 ms 

T = 100 
f = 2635 

f l r  = 52.7 
(24.3 sec.) 

t l f  = 9.2 ms 

2 

T = 285 
f = 835 

f l y  = 5.9 
(2.6 sec.) 

t l f  = 3.1 ms 

T = 651 
f = 3834 

f l r  = 11.8 
(12 sec.) 

tlf = 3.1 ms 

T = 1233 
f = 12532 

f b  = 20.3 
(60 sec.) 

tlf = 4.8 ms 

T = 1922 
f = 30567 

f / T  = 31.8 
(3.6 rnin.) 

tlf = 7.1 ms 

T = 2635 
f = 61386 

f / T  = 46.6 
(10.5 rnin.) 

t l f  = 10.3 ms 

3 

T = 463 
f = 1364 

f / T  = 5.9 
(4.2 sec.) 

tlf = 3.1 ms 

T = 1674 
f = 9771 

f / T  = 11.7 
(30 sec.) 

tlf = 3.1 ms 

T = 4804 
f = 47229 

f / T  = 19.7 
(3.6 rnin.) 

tlf = 4.6 ms 

T = 10943 
f = 163942 

f / T  = 30.0 
(18.1 rnin.) 

t l f  = 6.6 ms 

T = 21336 
f = 460272 

f / T  = 43.1 
(70.4 rnin.) 

t l f  = 9.1 ms 

4 

T = 634 
f = 1871 

f l ~  = 5.9 
(6.0 sec.) 

t l f  = 3.2 ms 

T = 3055 
f = 17958 

f / T  = 11.8 
(59 sec.) 

t l f  = 3.3 ms 

T = 11700 
f = 114323 

f l ~  = 19.5 
(8.5 rnin.) 

t l f  = 4.5 ms 

T = 35315 
f = 520185 

f l y  = 29.5 
(56 rnin.) 

t l f  = 6.5 ms 

T = 91079 
f = 1902804 

f l r  = 41.8 
(305 rnin.) 

tlf = 9.6 ms 

T  = 797 
f = 2357 

f l T  = 5.9 
(7.6 sec.) 

t l f  = 3.2 ms 

T = 4820 
f = 28207 

f / T  = 11.7 
(90 sec.) 

tlf = 3.2 ms 

T = 22570 
f = 220631 

f / T  = 19.6 
(17.4 rnin.) 

tlf = 4.7 ms 

T = 84420 
f = 1237614 

f / T  = 29.3 
(143 rnin.) 

tlf = 6.9 ms 

T = 268968 
f = 5553097 

f l ~  = 41.3 
(1019 min.) 

t l f  = 11.0 ms 
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Table 6.8: Vt of 200 Random Points From A Uniform Distribution In The Hypersphere 

T = number of regions 
f = number of facets 
(cpu time in brackets) 
t l  f = cpu time per facet (in milliseconds) 1 

f l T  = 
(2.4 sec.) 

t l f  = 4.1 ms 

T = 200 
f = 1375 

f / T  = 13.8 
(6.3 sec.) 

t l f  = 4.6 ms 

f l ~  = 
(19 sec.) 

t l f  = 6.9 ms 

f l ~  = 
(60 sec.) 

t l f  = 12.6 ms 

6 1  

f / r  = 
(2.4 rnin.) 

t l f  = 20.1 ms 

2 

T = 583 
f = 1720 

f l ~  = 5.9 
(9.3 sec.) 

t l f  = 5.4 ms 

T = 1375 
f = 8219 

f l ~  = 12.0 
(45 sec.) 

t l f  = 5.5 ms 

T = 2746 
f = 28971 

f l T  = 21.1 
(3.9 min.) 

t l f  = 8.1 ms 

T = 4766 
f = 81179 

f l ~  = 34.1 
(17 rnin.) 

t l f  = 12.6 ms 

T = 7148 
f = 183563 

f b  = 51.4 
(57 rnin.) 

t l f  = 18.6 ms 

T = 952 
f = 2826 

f l ~  = 5.9 
(15 sec.) 

t l f  = 5.3 ms 

T = 3585 
f = 21425 

f l ~  = 12.0 
(1.8 rnin.) 

t l f  = 5.0 ms 

T = 11275 
f = 113368 

f l r  = 20.1 
(13.6 rnin.) 

t l f  = 7.2 ms 

T = 29327 
f = 456324 

f l r  = 31.1 
(81 rnin.) 

t l f  = 10.7 ms 

T = 64089 
f = 1445720 

f l ~  = 45.1 
(389 rnin.) 

t l f  = 16.1 ms 

4 

T = 1318 
f = 3919 

f l ~  = 5.9 
(22 sec.) 

t l f  = 5.6 ms 

T = 6892 
f = 40723 

f / T  = 11.8 
(3.4 rnin.) 

t l f  = 5.0 ms 

T = 28632 
f = 284668 

f / T  = 19.9 
(34 rnin.) 

t/f = 7.2 ms 

T = 99699 
f = 1509028 

f / T  = 30.3 
(267 rnin.) 

t l f  = 10.6 ms 

T = 288106 
f = 6209881 

f / T  = 43.1 
(1702 rnin.) 

t l f  = 16.4 ms 

T = 1677 
f = 4983 

f l ~  = 5.9 
(29 sec.) 

t l f  = 5.8 ms 

T = 10912 
f = 64867 

f / T  = 11.9 
(5.6 min.) 

t l f  = 5.2 ms 

T = 57198 
f = 566682 

f / T  = 19.8 
(70 rnin.) 

t/f = 7.4 ms 

T = 248588 
f = 3722081 

f l r  = 29.9 
(744 min.) 

t l f  = 12.0 ms 



CHAPTER 6. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Table 6.9: VE of 500 Random Points From A Uniform Distribution In The Hypersphere 

T = number of regions 
f = number of facets 
(cpu time in brackets) 
t l  f = cpu time per facet (in milliseconds) 

k 

I 
T = 500 
f = 1482 

f l r  = 5.9 
(15 sec.) 

t l f  = 10.1 ms 

T = 500 
f = 3654 

f l y  = 14.6 
(42 sec.) 

t l f  = 11.5 ms 

T = 500 
f = 7810 

f / T  = 31.2 
(2.3 rnin.) 

tlf = 17.7 ms 

T = 500 
f = 14365 

f l ~  = 57.5 
(9.2 rnin.) 

t l f  = 38.4 ms 

T = 500 
f = 23752 

f l ~  = 95.0 
(26 rnin.) 

t / f  = 65.7 ms 

T = 3418 
f = 10213 

f / T  = 6.0 
(2.3 rnin.) 

tlf = 13.5 ms 

T = 18597 
f = 111343 

f l r  = 12.0 
(22 min.) 

tlf = 11.9 ms 

T = 85846 
f = 865789 

f l r  = 20.2 
(217 rnin.) 

t l f  = 15.0 ms 

2 

T = 1482 
f = 4420 

f l ~  = 6.0 
(59 sec.) 

t l f  = 13.3 ms 

T = 3654 
f = 22284 

f lT  = 12.2 
(4.4 min.) 

tlf = 11.8 ms 

T = 7810 
f = 84940 

f / T =  21.8 
(25 min.) 

tlf = 17.7 ms 

T = 14365 
f = 255919 

f l r  = 35.6 
(138 min.) 

tlf = 32.4 ms 

T = 23752 
f = 653831 

f / T  = 55.1 
(551 min.) 

tlf = 50.6 ms 

T = 4371 
f = 13060 

f h  = 6.0 
(3.1 rnin.) 

t l f  = 14.2 ms 

T = 30211 
f = 180532 

f l ~  = 12.0 
(36 rnin.) 

t l f  = 12.0 ms 

3 

T = 2454 
f = 7330 

f / r  = 6.0 
(98 sec.) 

t l f  = 13.4 ms 

T = 9746 
f = 58475 

f / T  = 12.0 
(12 min.) 

t l f  = 12.3 ms 

T = 32890 
f = 337286 

f / T =  20.5 
(92 min.) 

t l f  = 16.4 ms 

T = 93249 
f = 1489394 

f / T  = 31.9 
(612 min.) 

t l f  = 24.7 ms 

T = 229257 
f = 5364437 

f / r  = 46.8 
(3459 min.) 

t l f  = 38.7 ms 
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Table 6.10: V t  of 1000 Random Points From A Uniform Distribution In The Hypersphere 

T = number of regions 
f  = number of facets 
(cpu time in brackets) 
t /  f  = cpu time per facet (in milliseconds) 1 

(3.9 rnin.) 

;: 1000 ;; 7480 ;I 20100 12.1 
7480 45926 121412 

f lT  = 15.0 f / T  = 12.3 f / T  = 
(3.3 min.) (19 min.) (47 min.) 

t / f  = 26.5 ms t / f  = 24.8 ms t / f  = 23.2 ms 

70712 ;: 1000 ;; 16371 ;I 20.7 
16371 181108 730914 

f lT = 32.7 f / T  = 22.1 f / T  = 
(11 min.) (113 min.) (408 min.) 

t / f  = 40.3 ms t / f  = 37.4 ms t / f  = 33.5 ms 

31932 
5 1 ;I 3:::; 1 ; 1 587'2; 

f / ~  = 63.9 f / T  = 
(52 min.) (690 min.) 

t / f  = 97.7 ms t / f  = 70.9 ms 

T = 213105 
f  = 3448392 

f / T  = 32.4 
(3017 rnin.) 

t / f  = 52.5 ms 

55493 
111.0 

(164 rnin.) 

4 

T = 6907 
f = 20677 

f / T  = 6.0 
(9.4 rnin.) 

t / f  = 27.3 ms 

T = 38854 
f  = 233208 

f l T  = 12.0 
(98 min.) 

t / f  = 25.2 ms 

T = 8857 
f  = 26521 

f / T  = 6.0 
(12 rnin.) 

t / f  = 27.1 ms 

T = 63331 
f  = 379890 

f / T  = 12.0 
(151 rnin.) 

t l f  = 23.8 ms 
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6.3 Analysis of the Efficiency of Algorithm Pivot 

To analyze the efficiency of algorithm Pivot ,  a series of extreme point problems in Rd 
were solved. By duality (see lemma 2.3) this is equivalent to the problem of determining 

nonredundancy among a system of constraints. The extreme points problems were solved 

on sets of n points randomly chosen from uniform distributions in the interior of the unit 

hypercube (tables 6.11 and 6.12), and in the interior of the unit hypersphere (tables 6.13 

and 6.14). The value of n ranged from 100 to 1000, and the dimension d ranged from 3 to 

10. 

A counter was kept, during execution of algorithm Pivot ,  to  count the number of pivots 

performed on the dual polytope (the intersection of n constraints). After the algorithm had 

terminated, the total number of polytope vertices was determined, using an implementation 

of Avis and Fukuda's technique [AF90], discussed in section 5.5. 

The data in tables 6.11, 6.12, 6.13 and 6.13 indicates the number e of extreme points 

(or nonredundant constraints in the dual picture), the total number t of convex hull facets 

(or polytope vertices in the dual picture), and the number v of convex hull facets visited by 

the algorithm-also expressed as a percentage of the total. The data shown in each square 

of the tables (for some given values of n and d) represent the results of a single execution of 

the algorithm. The smaller problems were performed several times on different sets of data, 

and the results always agreed within about 10%. 

The data for the hypersphere distribution are very similar to  those for the hypercube 

distribution. However, the following observations can be made: 

0 In lower dimensional spaces, the number e of extreme points, and the number t of 

convex hull facets, in C are greater than the corresponding numbers in S. However, 

as d increases, the growth of both t and e is more rapid in S than it is in C. So, in 

higher dimensional spaces, the numbers of extreme points and of convex hull facets 

are greater in S that in C. 

0 The ratio is greater for S in lower dimensions, but is greater for C in higher dimen- 

sions. This follows the general pattern of f decreasing as t increases. 

The expected values E(t)  and E(e )  for convex hull facets and extreme points of random 

distributions, have been reported in the literature, for fixed d. Both E(t)  and E(e) are 

'For ease of expression, "C" will refer to the uniform distribution in the interior of the hypercube, and 
"S" will refer to the uniform distribution in the hypersphere. 
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@(logd-' n) for a uniform distribution in any polytope (such as distribution C) [Dwy90]. 

For a uniform distribution in the interior of a hypersphere ( i .e .  distribution S), the expected 

number has been reported as @ ( n g )  [Ray701 The ratio between the upper and lower 

bounds, however, is exponential in d. 

Note that the number t of convex hull facets grows very quickly with d; a cursory 

examination of the data reveals that t grow by about 500% with each increase of 1 dimension. 

The number v of convex hull facets visited by the algorithm grows much more slowly with 

d. The key observation here is that the ratio f of convex hull facets (dually, vertices) visited 

drops by an order of magnitude, with each increase of 1 dimension. In lower dimensional 

spaces, the ratio increases slowly with n. As the dimension of the problem grows, this 

increase with n becomes less significant; f appears to stabilize for any value of n-in fact, 

a drop in the ratio is observed from the smallest problem (n = 100) to  the second smallest 

problem (n = 200) for d 2 8. 

The number of facets in the convex hull of n points may be as high as o(n161) [McM70]. 

If algorithm Pivot were to visit a large percentage of these facets, its time complexity could 

become very large, as d increases. Fortunately, as shown by the results of this section, the 

percentage of facets visited decreases markedly with increasing d-for point sets chosen from 

uniform distributions in the interior of a hypersphere or a hypercube. As a result, the actual 

number of facets visited grows only moderately with d. This makes the algorithm practical 

for problems in higher dimensional spaces, unlike Megiddo7s modified 0 ( 3 ~ ~ n )  approach 

[Meg84] [Dye861 [Cla86]. 
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Table 6.11: Performance of Algorithm Pivot in Determining Extreme Points For Uniform 
Distribution in Hypercube 

e =number of extreme points 
t =total number of convex hull facets 
v =number of facets visited 
(bracketted number indicates percentage of facets visitted) I 

I Number of constraints (ot) 
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Table 6.12: Performance of Algorithm Pivot in Determining Extreme Points For Uniform 
Distribution in Hypercube 

e =number of extreme points 
t =total number of convex hull facets 
v =number of facets visited 
(bracketted number indicates percentage of facets visitted) 

Number of constraints (n) 
I I 

I 
1 
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Table 6.13: Performance of Algorithm Pivot in Determining Extreme Points For Uniform - 
Distribution in Hypersphere 

e =number of extreme points 
t =total number of convex hull facets 
v =number of facets visited 
(bracketted number indicates percentage of facets visitted) 

d 

3 

4 

5 

6 

7 

8 

9 

10 

100 

e = 22 
t =  40 
v = 36 

(90%) 

e = 43 
t =  191 
v = 91 

(48%) 

e = 64 
t =  924 
v = 161 

(17%) 

e = 82 
t =  3970 
v = 200 

(5.0%) 

e = 93 
t =  16456 
v = 231 

(1.4%) 

e = 99 
t =  62942 
v = 211 

(0.34%) 

e = 99 
t = 229618 
v = 302 

(0.13%) 

e = 100 
2 = 855599 
v = 289 

(0.034%) 

Number 
200 

e = 35 
t = 66 
v = 60 

(91%) 

e = 62 
t  = 291 
v = 174 

(60%) 

e = 104 
t = 1560 
v = 357 

(23%) 

e = 143 
t  = 8530 
v = 535 

(6.3%) 

e = 174 
t  = 43726 
v = 561 

(1.3%) 

e = 192 
t = 211619 
v = 579 

(0.27%) 

e = 199 
t  = 929170 
v = 656 

(0.07%) 

e = 200 
t  = 4216847 
v = 687 

(0.016%) 

of constraints 
300 

e = 38 
t  = 72 
v = 67 

(93%) 

e = 77 
t = 387 
v =  232 

(60%) 

e =  146 
t = 2332 
v = 525 

(23%) 

e = 199 
t  = 12669 
v = 820 

(6.5%) 

e =  247 
t  = 70090 
v = 936 

(1.3%) 

e = 280 
t = 371841 
v = 951 

(0.26%) 

e = 294 
t  = 1863012 
v = 1063 

(0.06%) 

e = 300 
t = 9613703 
v = 1226 

(0.013%) 
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Table 6.14: Performance of Algorithm Pivot in Determining Extreme Points For Uniform 
Distribution in Hypersphere 

e =number of extreme points 
t =total number of convex hull facets 
v =number of facets visited 
(bracketted number indicates percentage of facets visitted) 1 

Number of constraints ( n )  



Chapter 7 

Conclusion 

7.1 Results 

The main results of this thesis are as follows: 

1. The first known algorithm to directly compute all vertices of an order-k Voronoi Di- 

agram in Rd is presented. This algorithm has time complexity 0(d2n + d3 log n) per 

vertex, and space complexity O ( d )  per vertex. 

2. A second algorithm is presented which directly computes only the facets of an order-k 

Voronoi Diagram in Rd. In fixed dimension, the time complexity of the algorithm can 

be bounded from above by O(nd + kd log n) per facet. However, the complexity bound 

has a high dimension-dependent constant and, hence, is not practical. 

3. A new technique is developed for determining the nonredundant constraints among a 

system of constraints in Sd. This approach is based on the revised simplex method of 

linear programming. 

4. A practical version of the facet enumeration algorithm-item (2) above-is developed 

using the technique of item (3) to determine nonredundancy among a system of con- 

straints. A time complexity which is output-sensitive in the worst case cannot be 

derived for this algorithm. However, experimental results are shown which show that 

the time complexity per facet grows with d2n, approximately. 

5. An analysis of the complexity of order-k Voronoi Diagrams of randomly generated 

point sets-supported by computational evidenceis  given for small values of k (1 5 
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k 1 5), in 2 through 6 dimensional spaces. 

7.2 Open Problems 

Several open problems related to  this work are: 

1. To find a tighter bound on the number of Voronoi polytopes in v:. 
The bound of ~ ( k  l f l  n 12) ) is tight for the number of k-sets of S c Sd, as k + m 

and -t 00; the bound is achieved by the vertices of cyclic polytopes [CS89]. Since 

spherical separability of T C Sd and S C Sd is equivalent to  linear separability of the 

paraboloid transformations of these point sets, the upper bound of ~ ( k l y l  n L y I )  

certainly holds for the number of polytopes in v:. However, this bound is probably 

not tight. Certainly for low values o f t  ( t  < I?]), the trivial upper bound of (;) is 

better than the ~ ( k l y l  n l y l )  bound. 

2. To find a tight bound on the number of V-vertices in ~ 2 .  
3. Is it possible to enumerate the V-vertices without using additional storage space? 

The algorithm of Avis and F'ukuda [AF90] searches through all of the vertices 

in the intersection of m halfspaces in Sd, in O(dm) time per vertex. No additional 

storage is needed for intermediate vertices in the search, since a fixed search order is 

followed from one vertex to the next. Can this approach be extended to provide a 

fixed search order among all of the V-vertices in v:? 

4. Can the V-vertices (or the V-facets) of V: be enumerated at a logarithmic cost per 

vertex? 

The v facets of the convex hull of m points in Sd (or, dually, the v vertices of 

the intersection of m halfspaces in Sd )  can be enumerated by a shelling technique 

[Sei86] in worst-case 0 ( m 2  + v log m) time. Using this technique, the V-vertices of a 

single Voronoi polytope V:(T) can be enumerated in 0 (n2 k2 + v log n) time. However, 

each V-vertex can lie in many Voronoi polytopes. In the nondegenerate situation, a 

V-vertex can lie in as many as (d:l) polytopes, where t = mini?, k). 
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