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Abstract

Interreflection (or mulual illumination) occurs when {two or more object surfaces are
illuminated both by a light source and the light reflected from other surfaces. As
the distance or angle between two interreflecting surfaces decreases, the intensity of
interreflected light increases, with a corresponding shift in colour known as colour
bleeding. For computer vision algorithms that assume spatially invariant surface re-
flectances, this plays a confounding role. As an example, in the presence of inter-
reflection, “shape-from-shading” methods will incorrectly reconstruct surfaces such
that the orientation of their surface normals will appear to be closer to the direction
of the illuminant than they actually are.

Rather than treating interreflection as noise, surface colours can be analysed to
provide additional information snuch as the illuminant spectra and surface shading.
In this thesis, a finite dimensional model is employed to recover the surface spectral
reflectances of two interreflecting Lambertian surfaces under a known iluminant. The
resulting reflectances are used to construct colour basis vectors for linear decomposi-
tion of colour channel intensities for cach surface, from which the cocflicients of the
no-bounce colour components (shading ficlds) are extracted. The robustness of this
simple, straightforward algorithm is tested on both synthetic and real interreflecting
planar surfaces, and the improvement the recovered shading field provides over image

intensity is demonstrated using a simplified shape-from-shading scheme.
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Chapter 1

Introduction

1.1 Motivation

When two or more objects are illuminated by both a light source and light reflected
from other objects, a colour bleeding cffect is observed, with an increase in colour
intensity and a shift in hue as distances or angles between surfaces decrease. This is
known as interreflection (or mutual tllumination).

There are two general problems associated with interreflection. The graphics prob-
lem is that of rendering realistic images in closed environments. First introduced by
Goral ¢t al [15], radiosily methods require knowledge of three-dimensional geometry,
surface reflectance properties, and signal spectra. The task is to project this mnfor-
mation onto a two-dimensional image. The inverse vision problem is the extraction
of thiree-dimensional nformation from a two-dimensiounal 1mage in the presence of
interreflection.

For computer vision algorithms that assume spatially invariant surface reflectanc-
es, interreflection plays a confounding role.  As an example, “shape-from-shading”
methods that use image intensity as indicators of shape incorrectly reconstruct sur-
faces such that the orientation of their surface normals appears to be closer to the
direction of the illuminant than they actually are {12, 22]. A mecasure of shading
that is independent of the effects of interreflection would thus be most useful to these

methods {or improved accuracy of reconstrction.
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For most natural surfaces, interreflection intensity is significantly attenuated cach
time a colour signal is reflected from a surface, therefore it is reasonable to use a finite-
bounce interreflection model. A one-bounce model approximates the actual signal as
a lincar combination of a no-bounce colour and a onc-bounce colour. The no-bounce
colour is that which results from the reflection of the source illuminant off a single
surface.  The one-bounce colour results from the reflection of a no-bounce colour
from a sccond surface. Decomposition of the response (eg. RGB from a camera)
to an interreflected colour into no-bounce and one-bounce components will result in
two coellicients. The no-bounce cocllicient can be desceribed as a shading ficld as it
represents the shading for cach point on a surface independent of interreflection. This
ficld can be used to provide improved shape reconstruction over image intensity for
shape-from-shading methods.

If both the no-bounce and one-bounce colour signals or their filter responses are
known, then recovery of their coeflicients from an interrellected colour can be per-
formed directly by siniple lincar decomposition, such a matrix elimination. Ilowever,
the one-hounce colour exists only in the presence of the no-bounce colour (assuming
surfaces are not shaded from the itlluminant). Furthermore, it is the product of surface
reflectance and a colonr signal over all wavelengths. There is no simple transformation
between the responses of no-bounce and one-bounce responses.

A straightforward approach to obtaining the one-bounce response is to read two
responses from the interreflecting surfaces at points where interreflection is negligi-
ble, reconstruct surface reflectances and colour signals, then calculate the one-bounce
colour and its resulting filter responses. The task then becomes one of reconstructing
reflectances and colour signals. If the illnminant and filter spectra are known, a finite
dimensional model can be used to recover surface reflectance.

Although we expect the one-bounce model to closely approximate the actnal colour
signal obtained from an interreflecting surface, as the concavity of the surfaces in-
creases or the distance between them decreases, other multibounce colours contribute
more to the linal surface colour and the model begins to break down [6, 13]. We are
thus motivated to progress to a two-bounce model. This is simply an extension of

the one-hounce model with the addition of a third colour component: that consisting
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of light reflected from one surface, then from a second surface, and again from the
first surface. For decomposition, the two-bounce response can be calculated using
the same simple technique as the one-bonnce response, with an additional reflectance
used to create the colour signal. However, if a finite dimensional model i1s used to
reconstruct reflectances, additional errors in the recovery of the two-bounce response
can be expected, and could possibly outweigh improved shading fields a two-bounce

model might provide.

1.2 Scope of Thesis

In this thesis a finite dimensional model of surface reflectance is presented as a tool
for colour signal decomposition, where the colour signals result fromi interreflection of
two planar surfaces by a single known light source. The decomposed signal 1s used
to demonstrate an improvement to surface shape recovery methods that use image
intensity as indicators of surface orientation.

The colour response bases used to decompose interreflected colours are not or-
thogonal, and are affected by many factors, such as illimminant spectra, filter sensi-
tivities, and surface reflectances. The effects of changing these properties is explored
by analysing the angles between basis vectors encompassed by interreflection between
pairs of Munsell surfaces under two different illuminants and detected through three
sets of filters.

As an integral part of the creation of these colour basis vectors, the finite dimen-
sional model must reconstruct surface reflectances and their resulting colour signals.
The error in decomposition is affected directly both by the model and by these recon-
structions. The effects of the three sets of filters and two illuminants are statistically
analysed for reconstruction of both one-bounce and two-bounce colour signals and
their filter responses for pairs of Munsell surfaces.

Using test cases sclected for their comparative performances with other pairs of
interreflecting surfaces, colour reconstruction is performed in both synthetic and real
images.  The improvement from using recovered shading fields rather than image

colour intensity is demonstrated using a simple shape reconstruction algorithm. The
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feasibility of extending the one-bounce model to two bounces is also explored.

1.3 Thesis Outline

Chapter 2 provides the reader with a description of symbols and their descriptions
used throughout this thesis. In addition, an introduction to colour signal composition,

Lambertian surfaces, and methods used for measuring errors are presented.

Chapter 3 summarizes some of the more important rescarch related to the study

of interreflection, and that which forms much of the groundwork for this thesis.

Chapter 4 introduces the reader to finite dimensional models as applied to surface
reflectances and illumination. The basis functions used to reconstruct surface spectral
reflectances within the thesis are generated from 462 Munsell colours and compared

with existing Munsell basis functions constructed by Coohen [4].

Chapter 5 describes the role of colour in interreflection. The one-bounce model is

presented and the incentive for investigating a two-bounce model is discussed.

Chapter 6 contains a statistical analysis ol multibounce colour space. Ior all pair-
wise combinations of the set of Munsell colours, the angles between the tristimulns
vectors resulting from no-bounce and one-bounce colours are examined. The angles
between the two-bounce vectors and the plane deseribed by the no-bounce and one-
bounce vectors are also investigated. Statistics of both sets of data are tabulated
and observations made with respect to the one-bounce and two-bounce interreflection

models.

Chapter 7 investigates the reconstruction of multibounce colours using a finite
dimensional model of surface reflectance. A statistical analysis of both one-bonnce

and two-bounce colowr reconstruction is performed.
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Chapter 8 presents an algorithm for the analysis of interreflecting surfaces using a
finite dimensional model of surface reflectance. From the results in previous chapters,
three sets of test cases are chosen, and detailed analysis of the colour signal and
tristimulus value reconstructions are made for each. The decomposition algorithm
is then applied to synthetic images and real images for the illuminant, filters, and
surfaces selected. The improvement the shading field can provide for surface shape

reconstruction is also demonstrated.

Chapter 9 contains a disussion of the results obtained from previous chapters.
The feasibility of both one-bounce and two-bounce models is examined, and some

conclusions drawn. Possible areas for future rescarch are suggested.



Chapter 2

Preliminaries

2.1 Symbol Definitions

The following table of symbol definitions provides a summary of notations commmonly

used throughout the thesis.

SYMBOL DEFINITION

A Wavelength (nm). In this thesis A ranges from 400 - 700 nm, in 10 nm incre-

ments.
I()\) Spectral power distribution of ambient light.
S{X) Spectral reflectance of a surface.
SA(A) Spectral reflectance of surface A.
Si(A) Spectral reflectance basis function 1.
o; Coeflicient of reflectance basis function 2.
o Vector of reflectance basts coefficients.
C(X) Colour signal, C'(A) = F(X)S(A).
C*x, \) Colour signal emanating from surface A at location .

6
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i**-bounce component of a colour signal resulting from interreflection.
CO)(X) specific to surface A.

CM(X) for cither surface A or surface I3, as it is symmetric.

C)(\) specific to surface 3.

Spectral sensitivity of &' sensor (filter) class.

Matrix of spectral sensitivities.

Response of k' sensor, pr = [ C(A)Ri(N)dX.

Vector of sensor responses.,

Vector of sensor responses to colour signal ("(0(X). Notation for no-bounce. one-
bounce, and two-bounce responses for specific surfaces is identical to CU(X).

For example, the specific response pl© for surface A is pY,
Matrix whose ki entry is [ E(A)S;(A)Ri(A)dA.

Coeflicient of the 7th-hounce colour signal component emanating from surface

A at position x.
Opening angle of the two interreflecting planar surfaces A and 5.
Angle hetween pl® and ptV in three-dimensional sensor response space.

Angle between pt® and the plane described by p@© and pth).

2.2 Colour Signal Decomposition

Light reflecting front a surface results in a colour signal C'(A) as the spectral product

((A) = E(\) S(A) (2.1)
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v o)

where E(A) is the spectral power distribution of the source illuminant, and S(A) is the
surface spectral reflectance function at wavelength A. A set of photoreceptors with

sensitivity functions Ri(X), k=l..z sensing the colour signal will produce responses
e = /E(A) S(A) Re(M) dX , k=12 (2.2)

where the integral is taken over the visible spectrum. In humans, this is approximately
400 - 700 nm. In both humans and camera systems, the number of photoreceptors,
x, is typically three. Using CIE standard observer colour-matching functions 7, ¥,
and z, the resulting tristimulus values are identified as XY Z. However, these filter
functions are not generally available to camera systems which emnploy red, green, and

blue channcel filters. These are identified as RGB.

2.3 Lambertian Surfaces

A common simplifying assumption for colour vision work is that surfaces appear
equally bright regardless of viewing position. Such surfaces are uniformly diffusing,
with the luminous intensity I, at cach wavelength varying with the cosine of the angle

¢ from the surface normal (¢ = 0) [31]:
], = I(:() COS € ., (2‘;)

Equation 2.3 is commonly referred to as Lambert’s Law, and materials that satisfy
this equation are said to be Lambertian.

An assumption used throughout this thesis is that surface reflectance functions
are independent of viewing position, that is, they are Lambertian. In reality this is
only approachable by some surfaces. A more realistic model of surface reflectance is

described in [27].

2.4 FError Measurement

There are various methods with which one can obtain quantitative measurerents of

a mathematical model’s accuracy and of experimental error. Tere we will mainty be
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concerned with the accuracy of reconstructed colour signals and tristimulus values.
Methods have been selected that produce both quantized values of human perception,

and those that are purcly mathematical.

2.4.1 Just-Noticeable Difference

In much of this work we will want to compare ideal colour signals with those recon-
structed by measurements of specific response filters. In order to obtain meaningful
results, a measurement that corresponds to our own perception of differences be-
tween colours should be used. Tlowever, most colour coordinate systems have not
been devised with this requircment in mind.  As a typical example, consider the
x,y chromaticity diagram based on the 1951 CHE Standard Observer colour-matching
functions, a(A),y(A).z(A) [1, 10, 31]. Humans pereeive differences in colours on the
r,y plane toward the blue and red corners of the diagram more casily than with greens
and yellows [31]. Conseqnently, if we were to use some measure of just-noticcable dif-
ferenee, then one unit of this measure would correspond to a much larger Euclidian
distance along the ooy plane in the green arca than the blue area of the diagram.

In an attempt to reconcile Euclidian distances with himan perceptinal differences,
a transformation from CII standard observer XY 7 tristimulus coordinates to the

more uniform CIE L*u*e™ colour coordinate system was developed as follows [31]:
oy 1/

L = 11(5(—_) - 16

Y.,

o= 3L =)

n

ot = 3L =) (2.1)
where

, 1X

T NI 37

, 9y’

CT N Y Y 437

, 1X,

TN HIBY, + 32,

, 9y,

R

" X, 4 15Y, 437,
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and X,,Y,, 7, are the tristimulus values produced by one of the CIE standard illu-
minants, with Y, scaled to 100. The standard illuminant used in this thesis is Dgs.
The perceptible difference between two colours can thus be represented by the

following colour-difference formula:

AL = \J(AL) 4 (Aw)? + (A=) | (2.5)

To evaluate differences independent of colour intensity (ie. luminous value L), the

XY 7 are scaled such that their Y components are equivalent, and thus AL = 0.

2.4.2 Angle Between Vectors

Tristimulus values can be viewed as vectors in three-dimensional colour space, with
coordinate systems corresponding to the filter system used (eg. RG B, XY 7, L*u*v®).
With two vectors rooted at the origin of their coordimate system, their difference can
be measured as the angle between them. With one vector considered the ideal and
the second as a reconstruction, the angle between them can be used as a measurement
of error.

If we consider two vectors a and by then the angle 0 they subtend is deseribed in
the equation
a-b

cosl) = —— 2.6
XY (2.6)

lere we will be representing angles in degrees.

2.4.3 Root Mean Square

Root. Mean Square (RMS) is a measure of the fit of an approximated curve to an actual

curve, and can be used as an alternative measure of error for both colour signals and

tristimulus values. Given a theoretical vector vPand its approximation v, we define

the RMS error as

vl —v) (v —v) )
wars = )" V(Z | (v" X 100% . t

8%
-1
S



Chapter 3

Previous Work

3.1 Radiosity

While we are ultimately interested in decomposing colour signals of imterreflecting
surfaces, it is helpful to gain some iusight into the forward graphies problem: model-
ing interreflection between object surfaces for image rendering. There are two basic
types of techniques used to approach this problem. Ray (racing typically simulates
interreflection between specular surfaces, tracing light ravs between light sources and
the eye, while radiosity methods simulate view-independent interreflections in diffuse
environments. ‘To provide realistic renderings, variations of techniques that model
both specular and diffuse interreflections have also been used.  Alternatively, the
results of ray-tracing and radiosity methods can be combined. Sinee the analysis de-
scribed in this thesis is restricted to interreflection between Lambertian surfaces. we
arce interested primarily in radiosity in diffuse environments,

First introduced by Goral ef al [15], radiosity methods assume the conservation of
light energy in a closed environment. All energy emanating from a surface must then
be cither reflected from or absorbed by another surface. The radiosity of a surface is
the rate at which energy leaves that surface, and is the sum of the rates at which it

emits energy and reflects it from other surfaces. For cach wavelength this is described
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by the following radiosily equalion [10]:

n-1 A
Bi=Fi+pi ) B2t (3.1)
3=0 ‘e

B; and B; are the radiosities (typically measured in W/m?) of surface patches 7 and
j having arcas A; and A;. F; is the rate at which light is emitted from pateh 7, in the
same units as 3; and ;. p; is the dimensionless reflectivity of pateh ¢, and £ is the
dimensionless configuration factor, specifying the fraction of energy leaving patch
and arriving at patch i, and is a function of image geometry. In chapter 8, a modified
form of equation 3.1 will be used to construct a synthetic, one-dimensional image of
two interreflecting surfaces.

For the graphics problem of image rendering, three-dimensional geometry, surface
reflectance properties, and signal spectra are known.  The task is to project this
information onto a two-dimensional image. Conversely, computer vision algorithms
commonly attempt to extract three-dimensional mformation from two-dimensional
images. This is a notoriously underconstrained problem, such that rescarchers must

search Tor constraints where theyv exist, and make assumptions where they do not.

3.2 Spectral Methods

3.2.1 A Qualitative Analysis

A nseful qualitative analysis of interreflection between two surfaces in the presence
of specular (or surface) reflections was presented by Novak [25]. She builds upon
Shafer’s dichromatic veflection modcl [27]. separating the colour signal (7 emanating
from a surface into factors due to incident itlumination I and reflection characteristics

Sy and S, (body and surface reflection):
C (A1, c.q) = (A1, (‘,.(/)[,\'h(/\, 1.0,9) + S(A 1, (',_(/)] (3.2)

where X is wavelength and 7, ¢ and g are geometrie factors. In the primary (no-
bounee) case, I consists only of the illumination from the light sonrce. In the see-

ondary (one-honnee) case, with both objects obeving the dichromatic reflection model,
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the secondary reflection is broken into four components: SSP, SASE SASE and
SASE. Together with the two primary components, there are a total of six reflection

2"t — 2 of these full-spectrum

components. In general, for n-ary reflection there are
reflection components.

Although this model is useful for understanding the various components of in-
terreflecting surfaces, obtaining a solution to nnknown surfaces and illuminants is
difficult, since the number of unknowns is greater than the number of equations a
three-sensor imaging system can provide. As a result, Novak concentrated on obtain-
ing histograms of synthetic and actnal images where interreflection and specnlariticos

occur, and identifying the various components according to the model.

3.2.2 Colour Constant Analysis

Rescarchers Ifunt, Drew, and o [13] presented an algorithm for obtaining colour
constancy between two semi-infinite planar Lambertian surfaces in the presence of
interreflection, solving two problems simultancously.  The first, and the object of
the paper, is to recover the spectral power distribution of the illuminant from which
sirface spectral reflectances can be recovered independently of the light source. An
integral part of this algorithm is the presence of interreflection. As a byproduct of
the process, the geometric (or shading) component of interreflection is extracted.
This work is based on previous colour constancy research by Maloney and Wandell
(19, 20, 30], using finite dimensional models of illumination and surface reflectance.,
A weakness of the algorithm presented by Maloney and Wandell is the requirement
that the number of sensor classes be greater than the number of reflectance basis
functions. However, since human and other vision systems are generally constrained
by three classes of sensors, at least three basis functions are required to adequately
model most snefaces [1]. Using iuterveflection, IFunt ¢f af were able to require that
the nnmber of sensor classes be p = (2n 4+ m)/3, where mand noare the number of
basis functions used to model Mumination and reflectance respectively. This can be

satisfied with p = n = = 3.
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The initial relationship between the illuminant, surface reflectances, and inter-
reflection is quite complex, and involves three nonlinear equations. To obtain a more
casily solved form, a one-bounce model of interreflection is used (where contributions
of colour signals reflected more than once from cach surface are assumed to be neg-
ligible). IFurthermore, by using an iterative scheme, the nonlinear equations can be
reduced to a sequential set of linear equations. Ultimately, a solution for the basis

weights of the illuminant ¢;, both surfaces 0';1) and 0](-2)

, and configuration factor a
converge. To reduce the number of variables, and to stabilize convergence, the con-
straint ¢; = | is imposed. Thus, while the illuminant spectrnm is obtained, its overall
mtensity remains nnknown.

Although it was shown that convergence occurs, when the underlying finite di-
mensional model poorly describes both surfaces the algorithi is slow to converge.
and does a poor job of recovering surface rellectances. Likewise, if the illuminant is

poorly modeled. poor results can also be expected.

3.3 Reduced Component Methods

3.3.1 Intensity and Interreflection

Interreflection of surfaces has a confounding effect on surface shape recovery nsing
shape-from-shading methods. These methods typically assume Lambertian surfaces.
so that surface orientation is directly related to relative intensity. As such. shape-from-
shading methods generally use grev-scale images, with pixel intensity representing an
object’s shading. The surface appears brighter where mterreflection occurs, incor-
rectly indicating an orientation closer to that perpendicular to the illuminant. As
a consequence, concave surfaces tend to appear shallower than they actually are. A
solution to this problem was proposed by Nayvar ef al [22]. Using grey-scale images.
initial estimates of shading and surface shape were obtained by photometric stereo.
By modeling intensity as radiosity at cach facet, as in equation 3.1, the interreflection
component was removed and new estimates of shading and resulting shape were ob-

tained. These estimates were iteratively relined to converge to the correct shape and
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shading.

Unfortunately, Nayar’s original approach disregards surface spectral reflectance
[12]. For example, consider a concave edge formed by two surfaces with narrow-band
spectral reflectances at opposite ends of the visible spectrum, say red and blue. The
produet of their reflectance curves will be zero at every wavelength, thus any light
reflected from one surface is completely absorbed by the other. However, the colour
intensity of cach surface is nonzero. Unless either narrow-band sensors or illuminant
are employed, Nayar’s approach will assume interreflection occurs and incorrectly
“deepen” the actual shape. Thus we can see that colour plays an important role in
interreflection, and cannot be ignored.

In a subsequent approach to the problem of interreflecting multispectral coloured
signals, Nayar and Gong [21] presented a modified shape recovery algorithm. where
the incident light is assumed to be monochromatic. Recovery is thus performed for

three separate narrow-band channels, again using an iterative approach.

3.3.2 Intersection of Planes

More recent work by [Funt and Drew [12] uses three-component. RG B analysis of two
interreflecting surfaces. They cmploy a one-bounce model to decompose cach surface
facet into its no-bounce and one-bounce colours, as a lincar combination of the two.
For Lambertian surfaces under a spectratly invariant illuninant, these colours will lie
on a planc in three-dimensional RG colonr space (see figure 5.3).

Integral to their method is the observation that the one-bounce colour is identical
to hoth surfaces. and the two planes must interseet along the vector defined by its
RGB values. Using singular value decomposition (SVD), the planes are detected for
cach surface and their intersection determined. The no-hounce colour is assumed to
exist at some point on cach surface. With both colours known, decomposition of cach
facet of the surfaces can quickly be performed.

While this intersection of planes works well in synthetic mages, using the same
method presented some problems with real images. For instance, a SVD of the data

showed that colours did not lie as close to a plane as expected. The authors speculate
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that this may be due to specularities from the surfaces not accounted for by the
model, and by other factors such as signal noise and stray light. Since most colours
lie clustered together much closer to the no-bounce component than the one-bounce
component, extrapolation becomes prone to significant error resulting from incorrect

identification of the planes.



Chapter 4
Finite Dimensional Models

Finite-dimensional models are frequently used to deseribe illumination and surface
spectral reflectances through weighted sums of basis functions (generally represented
in the diserete domain as vectors) [6, 13, 14,20, 30]. Such a model can represent dis-
cretely sampled signals with reasonable accuracy using significantly fewer coefficients
than the munber of signal samples. TFor example, a signal consisting of 31 samples

(400 700 non in 10 2 increments) might be well modeled using three basis vectors.

4.1 Background

4.1.1 Modeling Surface and Illuminant Spectra

Most natural surface spectral reflectances can be well-modeled by a finite dimensional
lincar model of low dimension [20, 30]. Using a set of lincarly independent basis
finctions S, , i=1.an. we can model surface spectral reflectance S(A) as
m
S(A) ~ Zb’,v(/\) o (4.1)
=1
and the illuminant spectral power distribution as

E(A) ~ Y (N, (1.2)

=1

L7



CHAPTIR 4. FINITE DIMIENSIONAL MODELS 13

Substituting equation 4.1 into equation 2.2 we get
p=Ao (4.3)

where pis a column vector formed by the quantum catches of the x sensor classes, o
15 a column vector containing the m reflectance basis coeflicients. and A is an r x m
matrix whose k'™ cntry is [ E(X)SA{A) Re(MN)dX. We know Re(A) and have chosen
Si(A). Assuming we also have F(A), A will contain only known values, so it can be
precomputed. We thus need only to solve a set of m equations in m unknowns to
obtain ;. If I(X) is unknown then equation 4.3 is nuconstrained and we must search
for alternate methods for obtaining unique solutions to o,.

A technigue proposed by Maloney and Wandell [19. 20, 30] assinmes surface re-
flectance S(A) can be well-modeled with one less degree of freedom than the number
of receptor classes. That is, m = x — 1. If we also represent the illuminant by a lincar
model as in equation 4.2 where n = 2, then sampling at s unique spatial locations
provides s(m + 1) data values and smamknowns. When s > n samples are obtained.
there are more data values than unknowns, which may then be solved for.

Although this method provides solutions to both unknown illuminant and re-
flectance spectra, the restriction on surface reflectance may be unreasonable, Con-
sider the case where the number of sensor classes r s restricted to three, as in human
photopic vision and most camera systems. S(A) wonld then have to be modeled in
two dimensions, such that only surfaces with extremely siooth variations over visible

wavelengths are modeled well.

4.1.2 Basis Functions

For any finite dimensional treatment of spectra we require a set of basis functions (or
vectors in the discrete domain) from which a surface or illuminant may be modeled.
While there are various ways in which one can select this set, we would like to obtain
those that provide the best approximation to the signals they will he modeling. An
obvions choice may seem to be the first three Fourner functions (a constant function,
a sine wave, and a cosine wave). However, can find an alternative set that provides a

better representation of the data we expect to see.
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O

Dimensionality of Surfaces and Illuminants

If there are no constraints on signals we represent using finite dimensional models
then the number of basis functions could be arbitrarily large. Fortunately, most
naturally occurring colour signals and reflectances are band-limited, varying smoothly
over the visual range. The number of basis functions required to obtain reasonable
approximations of natural surfaces is thus quite small. Buchsbaum and Gottschalk (3]
suggested that as few as three functions can provide metamers to every Munsell chip
spectral reflectance, and cover a large central area of the CIE chromaticity diagram.
Cohen [1] showed that three properly selected basis reflectances encapsulated 99.2%
of the overall variance of 150 randomly selected Munsell chips. These same three
basis reflectances were shown to provide good approximations to 337 of the naturally

occnrring objects measured by Krinov [18, 20].

Singular Value Decomposition

Giiven a set of data (eg. colour signals or spectral reflectances), we would like to be
able to condense and summarize this information as a lincar combination of a set of
basis vectors. Singular Value Decomposition will provide us with such a set. It is

based on the following theory [26]:

Any Mx N matrix A, whose number of rows Al is greater than or equal
to its number of columns N, can be written as the product of an M x N
column-orthogonal matrix {7, an Nx N diagonal matrix W with positive

or zero coeflicients, and the transpose of an N x N orthogonal matrix V.
A=UWvnh, (4.1)

Although the SVD can provide solution vectors to singular sets of equations (fewer
cquations than unknowns) and linear least squares solutions to overconstrained sets
(fewer unknowns than equations), for our purposes the rows of the resulting matrix
VT contain an ordered set of basis vectors, [Furthermore, we can obtain the cumulative

variance v(k), of the fit of the first & basis vectors from the elements w;; of diagonal
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matrix W as . \
=1 Wi

k) = S (1.5)

While the SVD minimizes the total variance with respect to the entire input data
sct, there is no guarantee that the fit will be good for a particular sample. To make
this method work best for arbitrary inputs, it is important to provide it with as many

representative signals as possible so that these will more likely be similar to those

within the sample set, and consequently more likely to be well-modeled.

4.2 Basis Function Calculation

A frequently chosen set of reflectance basis functions is that provided by Cohen [1].
Of the spectral reflectance curves of 433 colour chips from the Munsell Book of Colour
made available by Nickerson [21], Cohen randomly chose 150 of these (the capacity
of his computer) to perform a lincar component analysis.

Without the capacity constraints of Cohen’s computer, it is reasonable to petform
an analysis on the entire set of data provided by Nickerson rather than restrict our-
selves to 150, This was done, and the resulting basis vectors used for multibounce
colour reconstruction in the process of decomposing the colours of interreflecting sur-

faces.

4.2.1 Implementation

The entire set of Nickerson data as provided in Brainard and Wandell’s Colour Anal-
ysis Package [.2] consists of 162 sets of spectra, sampled from 380 - 770 nm in 10
nm increments. This was truncated to the range 400 nm 700 nm (31 samples per
spectrum). Singular value decomposition was performed on the resulting 31 x 462
matrix. The first three rows of the 31 x 31 orthogonal matrix VT were then extracted

as the basis vectors.
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4.2.2 Results

The analysis performed by Cohen resulted in the first three basis vectors shown in
figure 4.1. The singular value decomposition performed here provided those shown in
figure 4.2. There is an expected similarity between the sets, with minor exceptions.
One might observe that the basis vectors of figure 4.2 approach those of a Fourier
basis set consisting of a constant signal, a sine wave, and a cosine wave.

The SVD analysis performed on the 462 samples captured a greater proportion
of the cumulative vartance than Cohen’s 150 random samples. The Cohen vectors
obtained 92.7%., 97.25%, and 99.13% for one, two, and three vectors respectively.
SVD, on the other hand, produced values of 92.52%. 97.45%, and 99.63%. We must
be careful when making comparisons between the two sets of results since Cohen
performed his analysis with different endpoints (380 770 nm). Because we will be
using a finite dimensional model with three degrees of freedom within the smaller

range of wavelengths, the latter set of vectors will he selected.
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Figure 4.1: Cohen’s first three basis vectors obtained through lincar component anal-
ysis of 150 randomly sclected Munsell colour chips.
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Figure 4.2: The first three basis vectors obtained through singular value decomposition
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Chapter 5
Models of Interreflection

IF'or simplicity, consider an edge formed by two Lambertian surfaces having distinct
spectral reflectances. Let the angle g subtended by the two surfaces be acute, so that
interreflection will occur. IYgure 5.1 depicts this situation.

Let surface A have spectral reflectance 5"‘1(/\), and surface I3 have spectral re-
flectance SP(X). If we have three classes of receptors with spectral response functions
Ri(A), k=1..3, and an iluminant with spectral power distribution I2(A), then we will
call the response of the &' receptor class pi. Restricting ourselves to a single location
x on surface A, this response is the result of direct and interreflected colour signals

reflected from that point:

—_
2l
—

~

i) = / M e, A) Ri(A) dA

where the colour signal (Y, A) is:

CAeA) = S a o) B ST sA (]

i=0
Letting af(a) = | we can observe the relative spectral distributions of the multibounce
colour signal components as 2 increases i figure 5.2, For @ = 0, the colour signal
contains no contributions from interreflection. The coeflicient ad(2) thus represents
the intensity variation (shading ficld) at position a of side A, If we maintain the
assumption that the surfaces are Lambertian then this shading field varies with the

cosine of surface orientation. The interpretation of the remaining coefficients is not as
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Figure 5.1: Interreflection between two coloured surfaces with spectral reflectances
SAA) and SP(X), showing no-bounce colour signals ('Y and C'®) and one-bounce
colour signal (C(18),

straightforward. There are a number of factors that can affect the magnitude of the
interreflected colour signals, such as the surface orientation at position = with respect
to the illuminant, the shading of both surfaces, and geometric factors such as possible
sclf-reflection from concave surfaces and occlusion of points between the surfaces.

It is obvious that simplifying assumptions arc required to calculate the colour sig-
nal, since we cannot solve for an infinite number of coeflicients. A common assumption
is the rapid attenuation of the signal as it is reflected between surfaces. Reference to
figure 5.2 conlirms the feasibility of such an assumption. This leads to a finite-bounce

interreflection model.

5.1 One-bounce model

The one-bounce model of interreflection (for which 7 = 1 in equation 5.2) is based on
the assumption that there are no significant colour signal contributions beyond that

obtained from the weighted sums of the illuminant directly reflected from a surface
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Figure 5.2: Sample multibounce colour components of signal C4(x, A) for increasing
number of bounces 2, resulting from interreflection between Munsell colours 103(76/4
(blue-green) and 51°5/6 (purple) under standard illuminant. Dgs.

and from the resulting colour signal reflected {from a second surface [6, 8, 13, 12]. The

combined signal measured from surface A would thus be defined as
C e, A) = B (ad(x) SUA) + af(x) 840 SB(N)) (5.3)
Substitnting equation 5.3 into equation 5.1 gives us
pie) = ad(e) o+ o) ) (5.1)

where

- /IC(A) SY(A) Re(A) dA

and

PP = /I',‘(A)S‘”‘(A)S”(A) Re(\) dX .
The responses pP for side B are formed in similar manner. In the general case, p(®
and p“) will refer to the no-bounce and one-bounce receptor responses, and (7(0)(,\)

and CM(A) will refer to their respective colour signals.
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According to this model, the colour responses p(x) obtained from the two surfaces
are approximately lincar combinations of their respective p(0) and p(1). Thus, if the
p(x) are plotted in three-dimensional vector space, they should fall on a plane defined
by p©) and ptM [13, 27). Furthermore, since we are only looking at positive signals,
these responses will lie between these two vectors. An important assumption here is
that p{® and p(!) are lincarly independent. In general, this problem can be avoided by
ensuring that neither surface has a constant (ie. grey or white) spectral reflectance.

Note that p" is identical for hoth surfaces, representing the response for a colour
signal reflected once from cach side before striking the receptors. In fact, referring to

equation 5.2, we scee that for all odd i:
1+ 1 g
2 102
1 ey

SANIET Pl = sl sp o]

and thus

(5.5)
Funt and Drew [13] observed the symmetry of the one-bounce colour, noting that the
colour response plane of surfaces A and B will intersect along p(!.

A reasonable assumiption is that we know the no-bounce colours, or at least know
the intensity of response for cach class of receptor. In other words, there exists an
identifiable point. on cach surface having the same spectral reflectance and light source
where interreflection is nonexistent or negligible.

Obtaining the one-bounce colour is not as simple.  Since it only exists in the
company of the no-bounce colour it cannot be measured directly. Even colours very
close to an interreflecting edge consist mainly of the no-bounce component. One
method [12] uses the knowledge that colours of a surfaces fall close to the plane
described by pt@ and p(M). The intersection of the planes for two surfaces would thus
be the common vector p(. A weakness of this method is that colour measurements are

9 so that noise, specularitics. and other factors contributing

grouped much closer to pf
to response measurement may translate to large nimprecisions and crrors as planes
arc projected toward their intersection. Contributions of other multibounce colour
components (especially near the edge) can also result in measurements further from

the plane than those expected with a simple one-bounce model.
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If both K(X) and R()) are known, then projection of these planes is unnecessary.
Spectral reflectances of each surface can be reconstructed using equation 4.3, so that
any multibounce component can be calculated directly. Details of this method are
investigated in chapter 7.

Once pM has been estimated, we can use equation 5.4 with & = 3 to obtain
solutions for our shading and interreflection coefficients ap and a@,. Since there are
three equations with two unknowns, it can be solved using a least squares fit. We can
view this as projecting p(x) orthogonal to, and onto, the plane described by pt®) and
p and obtaining the coeflicients of this vector.

Although the use ol a one-bounce model of interreflection can provide a superior
estimate of surface shading than colour intensity, it begins to break down close to the
surface edges. As the edge between surfaces is approached, contribution from other
multibounce components increases. Since the one-bounce model attributes all image
intensity to the two colour components of the model, an increased coefficient error
results.  This may take the form of cither an increased or decreased shading field,
depending on the direction of the other multibounce components relative to the first

two.

5.2 Two-bounce model

A possible solution to the limitations of the one-bounce model is to extend it to two
bounces, including the effect of light rays that bounce off one surface, then the second
surface, and back to the original surface again before contacting the receptors. The

colour signal obtained from surface A would thus be defined as:
O N~ B (ad (1) S10) + () S N)SPO) + (@S ASE0) L (5.6)

Substituting cquation 5.6 into equation 5.1 thus gives us

/ AB ; ABA
pi(e) =~ ad ()M + @l (@)p" + @ (2) P (

where pl™ and ptP

[ |
-1
~—

are as described in equation 5.4 and

BN /1 SAARSPO)Re(A) dX .
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The colour response pP(z) would be solved similarly. As with p(® and p("), for the
general case we will refer to ptB4) and pBAB) a5 p(2) Note that, unlike ptM), p(2) is
not symmetrical and must be obtained independently for each surface.

Since equation 5.7 with three receptor classes forms a linear set of three equa-
tions in three unknowns, we may be able to find ay, aq, and a3 using Gauss-Jordan
climination or any other method for solving linear equations.

One drawback to this model is that we cannot be certain the two-bounce colour
associated with a surface is lincarly independent of its no-bounce and one-bounce
colours. That is, in three-dimensional space p(® may lic on the plane described by
P and pM. While the assumption that neither surface has a constant (ie. ideal
white) spectral reflectance is made to avoid lincar dependencies between the first two
colours, there are no apparent assumptions that will avoid it between these and p(?.

Although we caunot enforce lincar independence, we can determine whether it
holds. In addition to observing the angle 8 between pt® and pM| we must also look
at the angle ¢ between p® and the vector resulting from its projection onto the
plane described by O and pM) (sce figure 5.3). For cach test, the angle should be
greater than some threshold approaching 0°. If the former condition is violated, then
interreflection cannot be measured. 1 the latter condition is violated, then a one-
bounce model can still be used. These tests can be performed independently for cach
surface, and the appropriate model used for cach.

Since a two-bounce model expects to see colours in three-dimensional space rather
than on a plane, we can no longer use the intersection of two planes to find the one-
bounce colour. Furthermore, there seems to be no extension to this method that
would allow us to find the two-bounce colour. The known-illuminant assumption,
on the other hand, allows us to separate a colonr response into its illuminant, filter,
and reflectance constituents, so any number of multibounce colours can be obtained.
llowever, the accuracy of these colours diminishes for cach bounce, since the spectral
reflectance reconstruction of cach surface is unlikely to be precise, and multiplication

of signals will increase this error.
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Figure 5.3: Angle 0 between p® and pM)| and angle ¢ between p® and the plane

described by pt and p( (shaded area) in three-dimensional RGB space.



Chapter 6
Multibounce Colour Space

Since the pl®, pt) p(3) vectors have not been selected as orthogonal bases, but rather
are determined by the two interreflecting surfaces, it is useful to analyse the space they
describe. Statements can then be made regarding the relative performances of filters
and illuminants, and on the suitability of the one-bounce and two-bounce models of
interreflection. Here we will examine the angle 0 between p® and pt'| and the angle

¢ between pt? and the plane deseribed by p® and ptb).

6.1 Implementation

Using the spectral power distributions of a 3200 Planckian radiator (fig 6.1), all
pairwise combinations of 462 Munsell surface spectral reflectances [2], and cach of
the three sets of filters with response curves shown in figures 6.2-6.4 the theoretical p

9 and p!) were obtained as in equation 5.4,
r

vectors were caleulated. For surface A, pl
and p™ as in equation 5.7. Values for surface I3 were obtained similarly.

The angle 0 was calculated between vectors p® and p{) for cach surface. The
angle between p) and the plane was obtained by fivst projecting it onto the plane to
obtain p'. ¢ was calculated as the angle hetween these two vectors. Statistics were
then gathered for all 0 and @.

To observe the effect of I(X) on the results, the experiment was repeated using

the Dgs standard illuminant. The spectral power distribution of this light source is

30
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Response man. mazx. mean std. dev.
Filters 0 ) 0 0 1) 0 1)
Std. Observer | 0.0 ) 0.0 | 44.7 3.9136]6.2] 3.5
Sony DXC-151 | 0.0 | 0.0 | 44.5 96133 6.6 3.5
Kodak Filters | 0.0 | 0.0 | 57.8 123 4.2 | 86| 4.3

(RN
S o ille

]

o
<

Table 6.1: Colour vector angles 8 and ¢ under 3200/ illuminant.

Response min. max. mean std. dev.
Filters 0| ¢ 0 @ 0 @ 6 @
Std. Observer [ 0.0 [ 0.0 ] 52.1 [ 206 | 11.5 | 4.1 | 8.0 3.1
Sony DXC-151 | 0.0 | 0.0 | 48.7 [ 15.7[13.2 4.6 | 8.4 3.3
Kodak Filters [ 0.0 { 0.0 | 60.2 { 22.3 | 166 6.2]10.4 { 4.3

Table 6.2: Colour vector angles # and ¢ under Dgg illuminant.

much flatter, yet less smooth, than that of a 3200A" blackbody.

6.2 Results

The colour vector angles resulting from the application of a 3200/ illuminant to
all pairwise combinations of interreflected surfaces are recorded in table 6.1. Those
resulting from illumination by the Dgy standard illuminant are shown in table 6.2.

Under both illuminants, the Kodak filters result in significantly greater mean
angles than both the Standard Observer and Sony. Referring to the filter response
curves of figures 6.2, 6.3, and 6.4, we observe that the Kodak filters have less overlap
between responses than the others. 1t would be interesting to apply spectral sharpening
[9] to the filters to investigate the effect the resulting “sharpened” filters have on 0
and ¢.

Comparison of the mean angles under the two illuminants shows much improved
results from using the Dgs standard illuminant. As Forsyth observed [11], the gamut
of photoreceptor responses is restricted under a given illuminant. For instance, a
light with its power distributed close to the red end of the visible spectrum would
not, produce a strong blue response for any surface. Such is the case with the 3200

illuminant, whercas the Dgs illmminant has a mnch flatter distribution. Since the
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angles 0 and ¢ are measured between responses in three dimensional colour space a
restricted gamut would reduce the range of possible angles under that illuminant.

Regardless of the filters and illuminants used, the minimum angles for 8 and ¢ are
0° confirming our expectations that our models of interreflection will fail for some
surface combinations. In particular, when at least one surface has a constant spectral
reflectance curve we will observe these angles. However, under all configurations the
mean and maximum angles provide motivation to investigate both the one-bounce
and two-bounce models.

As we see from these results, the vector space for decomposition is far from orthog-
onal. A surface whose 0 is close to 0° will be unable to be analysed with a one-bounce
model of interreflection. Likewise, a surface whose ¢ is close to 0° will be unable to
be analysed by a two-bounce model. As the mean for ¢ is much smaller than 0, we
can expect there to be surfaces that cannot be analysed with a two-bounce model,
yet can still be analysed with a one-bounce model. The thresholds for both 0 and ¢
must rely on the accuracy of the finite dimensional model of surface reflectance, and

(for the case of real images), experimental precision.



Chapter 7

Reconstructing Multibounce

Colours

Let us now revisit equation 4.3, As stated carlier, if we know E(X) then the matrix
A can be precomputed. With 3 sensor classes and 3 basis vectors this will be a 3 x 3
matrix. To obtain a solution to o for any set of tristimulus values p, we can simply
augment A with p and solve the resulting augmented matrix. Knowing o allows us
to reconstruct a finite-dimensional approximation to S(A). Doing so for surfaces A
and B would provide us with SA(X) and SB(X). Knowing I2()) and these two surface
reflectances allows us to construct any number of multi-bounce colour components,
limited only by the precision of our reflectance estimates.

If both FE(A) and Ri(A) contribute no errors (ie. are known precisely), then errors
in S(A) will be due to the finite dimensional model of surface reflectance through
limitations on the number of basis vectors S;(A) and through our choice of these
vectors. Of course, outside of a synthetic environment there are other contributing
factors such as noisc and measurement errors.

To measure the effect of the reconstruction of S and S on the recovery of re-
ceptor responses to cach i-bounce colour signal we construct cach i signal component

CO(X) of 5.2 separately, where CO(A) is:

COY = EQ) SAFT syl (7.1)
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The response of the & receptor class py to CO(A) is:
o) = / CON) Re(X) dX (7.2)

We construct the theoretical pl) as a three component vector for which E(X), R()A),
S4(X), and SB(A) arc known. The estimated p*) is constructed similarly, with the
exception that S4(A) and S®(A) are obtained through a finite dimensional model of
surface reflectances.

The accuracy of the estimated CH(A) from which p) is measured varies accord-
ing to that of the the two reconstructed reflectances S4(A) and SB(X). Wihile the
two reconstructed CO(X) are metamers of the actnal no-bounce colour signals, re-
constructed CO(X) for i > 1 will not, in general, be metamers of product signals. To
examine the effect of the difference between the theoretical onebounce colour and that
produced through reconstruction of surface reflectances, all possible combinations of
the set of 462 Munsell surface reflectances obtained from Brainard and Wandell [2]

were analysed.

7.1 Assumptions

While interreflection can provide additional information for approaching the problem
of colour constancy [6, 8, 13, 12], simultancous solutions invariably lead to poorer
estimates of shading and interreflection fields than could be attained by approaching
interreflection as a problem in its own right. With the moderate success and continuing
rescarch being performed on colour constancy [14, 16, 20, 29, 30], it is not unreasonable
to assume the relative spectral power distribution of the illuminant is known. However,
we need not know the actual intensity of this source. To further simplify the problem,
we also assume there is a single illuminant.

Simplifying assumptions may also be made regarding the properties of the inter-
reflecting surfaces themselves. The first is that both surfaces are Lambertian, having
spectral reflectance functions invariant of viewing position.

Secondly, since an integral part of decomposing interreflected colour signals is the

reconstruction of a unique one-bounce signal, the spectral reflectances of both surfaces
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must not be constant (ie. white or grey). The effect of relaxing this for one surface
will be investigated in chapter 8.

We must also make some assumptions regarding the imaging geometry. With
respect to reconstructing the multibounce colours, interreflection is limited to that
between two surfaces. Furthermore, there must be at least one facet on each sur-
face where interreflection is either absent or negligible, and we have obtained filter
responses for those facets. Both facets must be illuminated by the single known
illuminant.

Finally, we assume the filter sensitivity functions Rp(A), k=1..3 are known. This

s a common assumption, often not explicitly stated and rarely relaxed.

7.2 Implementation

Experiments were performed using the spectral power distribution of a 3200A" Planck-
ian radiator and the first three basis vectors obtained through singular value decom-
position of 462 Munsell surface spectral reflectances [2]. Results were obtained for
three sets of filters (CH 1931 standard observer, Kodak #25 (red), #58 (green) and
#47b (blue), and the Sony DXC-151 CCD). As in chapler 6, tests were repeated
using the Dgs standard illuminant, having a flatter, but less smooth spectral power
distribution F(X).

The matrix A was precomputed, where the A2 entry of A is 5 E(A)S;(A) Ri(N),
and for cach pa,ir of sutfaces the channel responses pft and pf were calculated according
to equation 2.2. The coefficients a; of the basis vectors S;(A) were then obtained for
cquation 4.3 by Gauss-Jordan elimination. A finite dimensional model with three
degrees of freedom was then used to reconstruct the surface reflectance according to

cqnation 4.1. The one-bounce colour
CARN) = E) SN SP(A) (7.3)

was then approximated as

3
CUABY () A) DTS (7.1)

—
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and the two-bounce colour for surface A

C(AHA)(/\) — E(/\) SA(/\) SB(/\) SA(/\) (75)
was approximated as
3
CABA(y) A) Y Si(NefaPal (7.6)
=1

The two-bounce colour for surface B was reconstructed in a similar manner. The
RMS and AFE crrors between the signal of equation 7.3 and the reconstructed met-
amer of equation 7.4 were then measured, and statistical results gathered. Statistics
were also obtained of errors for the two-bounce signals as described by equations 7.5
and 7.6, and the surface B equivalent equations.

[n addition to those of colour signals, errors between theoretical and reconstructed
tristimulus values for the three sets of filters were measured. As AE describes differ-
ences of colour signals measured through CIE Standard Observer filters this was not
used for the tristimulus values. Instead, an angular error was employed, describing
the angle (in degrees) between the theoretical and reconstructed vectors if rooted at
the origin of three dimensional colour space.

From the exhaustive set of surfaces, test cases were selected to display specific

types of errors.

7.3 Results

7.3.1 One-bounce Colour Reconstruction

Examination of the mean RM.S error in tables 7.1 and 7.2 shows similar errors be-
tween theoretical and reconstructed C(M(A) for the three sets of filters under both
tlluminants. A slightly lower error under 3200 might be attributed to its smooth
power distribution as shown in figure 6.1.

A first glance at the mean AFE cervors of the same tables seems to indicate a better
performance for the Standard Observer than the other filter systems. However, we

must realize that AE is obtained by first taking the responses of the colour signal
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CM(X) as scen through the Standard Observer and translating to L *u*v* coordinates
by the set of equations 2.4. We should thus use this measure of error for comparison
of different illuminants, and for different C)()) rather than as a comparison between
sets of filters. Tt is also useful for providing us with a perception of the error in colour
signal reconstruction, as AF = 1.0 indicates a just-noticeable difference, as defined
by the L*u*v* coordinate system.

Minimum and maximum errors show considerable spread for all filter systems
under both illuminants. While some colour signals are nearly perfectly modeled by a
finite dimenstonal model with three degrees, others are quite poorly modeled. Very
high errors can be expected with a product of two poorly modeled surfaces.

Tables 7.3 and 7.4 indicate a slightly better mean RAM S ervor for reconstruction of
p(') under Dgs than 3200K. However, since our goal is the decomposition of surface
p as lincar combinations of pD the most significant indicator of one-bounce colour
reconstruction is the angular error. Using this measure, the 3200/ illuminant gives
slightly better mean errors under all illuminants, with much smaller maximum errors.

For both mean and maximum errors, the Kodak filters provide better results.

7.3.2 Two-bounce Colour Reconstruction

For application of a two-bounce modecl of interreflection, a third colour signal CAN)
and resulting response vector [,(‘2) must be reconstructed.

Tables 7.5 and 7.6 demonstrate one problem with extending the model of inter-
reflection to two bounces: as i increases, the error in reconstructed signal C())
increases considerably. The relative performances of the three filters under the two
illuminants remains much the same.

The reconstructed pt? of tables 7.7 and 7.8 also show similar increases. Under the
3200/ illuminant, the angnlar error almost precisely doubles, while Dgs provides a

moderate increase.
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Response minimum mazrimum mean std. dev.
Filters AE | RMS| AE | RMS| AE | RMS | AE | RMS
Std. Observer | 0.0 09 1386|1246 | 46| 13.9] 6.2 10.9
Sony DXC-151 | 0.0 081185 679 82| 12.1| 94 8.2
Kodak Filters 0.0 0.8]1278 | 64.2|12.1| 124 |11.2 8.5

Table 7.1: Error statistics for reconstructed CV(A) under 3200/ illuminant.

Respouse minimum maximum mean std. dev.
Filters Al RMS| AE | RMS | AL | RMS| AE | RMS
Std. Observer | 0.0 0.7 133.1 | 145.6 | 5.0| 14.7] 6.8 10.8
Sony DXC-151 | 0.0 0.71]154.4 77.9 9.6 13.1 9.4 8.4
Kodak Filters 0.0 0.6 1190.6 7.7 1431 1341 13.2 8.8

Table 7.2: Error statistics for reconstructed CV()) under Dgs illuminant

Response minmum maximum mean std. dev.

Filters deg. | RMS | deg. | RMS | deg. | RMS | deg. | RMS
Std. Observer | 0.0 0.0 9.6 1638] 0.5 09| 0.7 1.1
Sony DXC-151 | 0.0 0.0 89| 155 0.6 1.1 | 0.7 1.2
Kodak Filters 0.0 0.0 6.0| 104 0.3 0.6 04 0.7

Table 7.3: Frror statistics for reconstructed p(') under 32004 illuminant.

Response minimum marmnum mean std. dev.
Filters deg. | RMS | deg. | RMS | deg. | RMS | deg. | RMS
Std. Observer 0.0 0.01208] 11.9( 1.0 061 1.2 0.7
Sony DXC-151 0.0 0.0 149 741 0.8 0.6 1.1 0.7
Kodak Filters 0.0 0.0 1120 77.0{ 0.7 041 0.8 0.6

Table 7.4: Error statistics for reconstructed pt*) under Dgs illuminant.
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Response minimum marimum mean std. dev.
Filters AE | RMS| AE | RMS | AE | RMS| AF | RMS
Std. Observer | 0.0 0.71393.0 | 1439 | 11.4 | 182 14.3] 13.9
Sony DXC-151 | 0.0 0.8]286.8| 984|153 | 16.7]18.6 | 120
Kodak Filters | 0.0 0.9|548.8 1 101.8 | 18.7 | 17.2 | 187 | 12.7

Table 7.5: Error statistics for reconstructed C)(X) under 3200A" illuminant.

Response mainimum mazrimum mean std. dev.
Fillers Al RMS | AF | RMS | AF | RMS| AE | RMS
Std. Observer | 0.0 0.9 304.7 | 178.9 | 12.6 | 189 [ 16.1 | 13.6
Sony DXC-151 | 0.0 0.91281.5121.0 163} 17.5 1183 11.7
Kodak Filters | 0.0 0.9 5124 | 149.6 | 19.7 ] 17.9]19.0 | 12.3

Table 7.6: Error statistics for reconstructed C3Y(A) under Dgs illuminant.

Response minimum marimum mean std. dev.

Filters deg. | RMS | deg. | RMS | deg. | RMS| deg. | RMS
Std. Obscrver 0.0 0.0 206 358 1.0 1.8 1.2 2.1
Sony DXC-151 [ 0.0 0.0y 162} 281} 1.2 2210 1.3 2.3
Kodak [Filters 0.0 0.0 | 178.8]200.0 | 0.7 I.1] L.8 24

Table 7.7: Error statistics for reconstructed p) under 3200/ illuminant.

Response mintmum mazximum mean std. dev.
Fulters deg. | RMS| deg. | RMS | deg. | RMS | deg. | RMS
Std. Observer 0.0 0.0 31.9| 54.9] 1.2 20 14 2.4
Sony DXC-151 1 0.0 0.0] 16.8] 293 1.1 20 1.2 2.2
Kodak Filters 0.0 0.0 177311999 | 0.8 1.4 2.0 2.6

Table 7.8: Error statistics for reconstructed pt® under Dgs illuminant.



Chapter 8
Surface Colour Decomposition

With statistical information gathered for selection of test cases and the underlying
method now in place for reconstruction of multibounce colours, we proceed with de-
composition of colours from interreflecting surfaces into shading and interreflection
ficlds. Synthetic images will first be used to test the algorithm with controlled as-
sumptions, and in the absence of experimental noise. Real image counterparts of the
synthetic images are then decomposed. For all decompositions the recovered shading
field is examined, and the improvement this field provides over “shape-from-shading”

(ic. shape reconstruction using image intensity) demonstrated.

8.1 Assumptions

The majority of assumptions necessary for surface colour decomposition are necessary
for reconstruction of multibounce colour responses p, for ¢ > 0, are discussed in
section 7.1, Here we will itemize these assumptions, including others more specific to

the task of decomposition.

1. We assume this problem is part of a larger one in which patches of interreflecting

surfaces are segniented and identified.

2. Surfaces are Lambertian, such that surface appears to be equally bright, with an

equal colour spectrum from all viewing positions. The Lambertian assumption

42
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is stronger than simply requiring the relative reflectance spectrum S(A) to be
invariant. The latter assumption can be used if the recovered shading fields are

not to be used for surface shape reconstruction.
The sensitivity functions Ri(A), k=1..3 are known.

The relative spectral power distribution F(A) is known. We need not know the

absolute intensity.
[lluminant intensity remains constant over cach surface patch.

Only two surfaces are interreflecting. This assumption can be relaxed to three

surfaces nsing a one-bounce model, but this will not be investigated here.

Surfaces do not have a flat spectral reflectance curve (ie. are not white or grey).

The aflect of relaxing this assumption for one surface will be demonstrated.

There exists a point on cach surface where interreflection is insignificant or
nonexistent. In real images this will be taken as a point furthest from the
adjacent surface, and the results will be affected to the extent the assumption

holds.

8.2 Algorithm

o

. Reconstruct p(AP) | pl

Precompute the 3 x 3 matrix A, where the kit* entey is [ E(X)S;(A) Re(A)dA. If

(X)) is unknown, it will first need to be reconstructed.

Obtain p) and p® from points on the two surfaces A and B where interreflec-

tion is nonexistent or negligible.

Using equation 1.3, obtain a* and ¢®. Reconstruct S4(A) and SB()) using

cquation 4.1.

ABA) and ptP4P) as described in equations 5.4 and 5.7.
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Colour Case 1 Case 2 Case 3
Signal AFE | RMS| AE | RMS| AE | RMS
CABY(\) | 23] 481165 21.8[19.8] 11.0
CABANY | 77| 76| 548 961]16.0| 11.7
CBABN) | 28| 59|264.7| 6341533 7.9

Table 8.1: Colour signal reconstruction errors for selected cases.

5. For both surfaces, calculate the vector angles 0 and ¢ using the method de-
scribed in chapter 6 and compare with predetermined thresholds. If 8 is below
its threshold, then a shape-from-shading model will be used for that surface.
Otherwise, if ¢ is below its threshold, then a one-bounce model will be used.

Otherwise, a two-bounce model will be used.

6. For cach pixel at location o on cach surface, calculate the field coefhicients de-
pending on the selected model for that surface. For a two-bounce model use
three equations in three unknowns of the form described in equation 5.7, and
solve for the shading field and one-bounce and two-bounce interreflection fields
using using any lincar method. For a one-bounce model use three equations in
two unknowns of the form described in equation 5.4, and solve for the shad-
ing field and one-bounce interreflection field using a lincar least-squares fit. A

no-bounce model simply uses colour intensity as the shading field.

8.3 Selected Cases

Of the three filters and two light sources under which the coloured surfaces were
statistically evalnated, the Sony DXC-151 filters and 1000W tungsten-halogen (3200 A
blackbody) illuminant were selected for case studies, simply because this equipment
was available in the lab. Surfaces for the three test cases were chosen, however, for
their results relative to the overall performances of the entire set, and their Munsell

colour coordinates ideutified {23, 17]. Tables 8.1-8.3 describe the selection criteria.
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Colour Casc [ Case 2 Case 3
Response | deg. | RMS | deg. | RMS | deg. | RMS
pPABIN) | 04] 45] 451 79] 06] 1.0
pABM) | 07 17| 29| 1.2] 21 1.1
pBABYX)Y L 06| 1.1]100| 175] 08| 14

Table 8.2: Colour response reconstruction errors for selected cases.
Case 1 Case 2 Case 3
Angle | model | recon. | err. | model | recon. | err. | model | recon. | err.
04 9.5 971 02 100| 121] 21| 243] 237(-06
0B 12.8 13.0 ] 0.2] 44.4 12.8 | -1.6 0.1 051 04
" 13.0 13.5 1 0.5 1.4 1.6 | 0.2 0.0 0.0 | 0.0
&P 6.5 6.6 0.1 6.2 14.0 | 7.8 0.2 0.2] 0.0

Table 8.3: Comparison of angles (degrees) for p of actual model and for reconstruction
of test cases.

8.3.1 Test Case 1

Munsell surfaces 10BG 6/4 (blue-green) and 5 5/6 were chosen as representative of
those surfaces considered “well-behaved™ with respect to the selection criteria.

As observed in table 8.1, the errors in reconstruction of the colour signals compare
favourably with the mean errors for the Sony DXC-151 found in tables 7.1 and 7.5.
This can be attributed to their smoothly varying spectral reflectances, as shown in
figure 8.1. These results directly affect the colour responses in table 8.2, which also
comparc favourably to mean errors found in 7.3 and 7.7.

In table 8.3, the error hetween 0 for an ideal model (where p are known precisely),
and those of reconstructed p are relatively small. Furthermore, if we refer back to
table 6.1, we find mean values of 9.6° and 3.3° for § and ¢ respectively. 6 and ¢
for both surfaces are thus large enough to evaluate the performance of a both the

one-bounce and two-bounce models.

8.3.2 Test Case 2

The surfaces of the second test case, Munsell colours SR //14 (red), and 5PB 3/12

(blue), were selected for their poor colour signal reconstruction.
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Figure 8.1: Actual and modeled spectral reflectances S(A) for case 1 surfaces A (blue-
green) and I3 (purple).

In contrast to the surfaces of Case 1, the spectral reflectances for Case 2 are poorly
modeled by a finite dimensional model of degree three (see figure 8.2). As a result,
the one-bounce and two-bounce colour signal errors in table 8.1, and the tristimulus
values in table 8.2 are large.

Interestingly, both @ of the reconstructed p in table 8.3 are quite close to those of
the model, providing the possibility of obtaining reasonable results from a one-bounce
model in spite of the poor colour signal reconstruction. Values of ¢4 and 8, on the
other hand, indicate that a two-hounce model should not be attempted with these
surfaces. The former angle is much too small, while the latter has an unacceptable

Crror.

8.3.3 Test Case 3

The third test case was selected to observe thie interreflection between a surface having
constant spectral reflectance (ie. white or grey) and another non-white surface. To

provide such a case, Munsell colours N6/ (grey) and SR {/14 (red) were used. As in
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Figure 8.2: Actual and modeled spectral reflectances S(A) for case 2 surfaces A (red)

and B (blue).

the previous case, the red surface also provides the additional property of having a
poorly reconstructed colour signal.

As figure 8.3 shows, the grey surface is modeled very well by the finite dimensional
model, but red is poorly modeled. This results in relatively large signal reconstruction
errors in table 8.1. This is not reflected in the one-bounce colour response in table
8.2 because the product of the two signals is close to being a scaled response of that
for the original red surface, which we reconstructed from tristimulus values obtained
directly from the image.

In table 8.3, we find 0P to be close to 0°. This is expected, since the no-bounce
red signal reflecting from the grey surface is just an attenuated red signal with the
same spectra. We thus only hope to use a no-bounce model for surface B. We can,
however, still use a one-bounce model for Surface A. Obviously a two-bounce model

is niot possible given the values of ¢.
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Figure 8.3: Actual and modeled spectral reflectances S(A) for case 2 surfaces A (grey)

and B (red).
8.4 Reconstructing Surface Shape

To illustrate the improvement the recovered shading field can provide over image
intensity for “shape-from-shading” methods in the presence of interreflection, a sim-
ple surface shape recovery algorithm can be implemented along the one-dimensional
surfaces. That is, given known x and constant y, the third dimenston z can be found.

For Lambertian surfaces illuminated by a parallel beam of luminous flux F, with
angle an ¢ between 2 and the surface normal n (see figure 8.4), the resulting luminous

intensity 1 of that surface is given by [31]:

I
I'=—cosc. (8.1)

e

Normally, equation 8.1 would not be valid for a one-dimensional synthetic edge
generated by the radiosity method, since an isotropic rather than parallel beam il-
luminant is used. In this case, however, both generated surfaces are flat, and the
effects associated with isotropic and parallel beam illumination are identical. For the

purposes of illustration the assumption can be made that they were illuminated by a
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Figure 8.4: Ray geometry for luminous intensity I of a Lambertian surface resulting
from illumination by luminous flux F. ¢ is the angle between surface normal n and
the direction of K.

parallel light source placed directly overhead. This assumption would not have been
possible had the individual surface shapes been curved.

Since the illnminant for real images was positioned directly above the interreflect-
ing edge and is assunied to be directly above the edge for synthetic images, the
orientation ¢y of facets xg furthest from the edges on each surface is known to be
45°. We assume that shape has been reconstructed correctly up to these points since
interreflection is negligible.

FEquation 8.1 can be reformulated as

Io

COS (g

b= (8.2)

where ¢ = 45° and k = E/x. If reconstruction is to be performed using the recovered
shading ficld, then [y is the shading field at xg, otherwise it 1s the colour intensity.

The orientation ¢; of cach suceessive facet @;, for 7 > 0 toward the edge can then

be calculated as .
(; = arccos (f) (8.3)
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where [; is cither the shading field or colour intensity of facet z;.

To complete the reconstruction, surfaces must also be assumed to vary smoothly
(which is consistent with the assumption that image segmentation has already been
performed). Each successive facet is thus connected to the previous facet, with recon-

struction beginning furthest from the edge.

8.5 Synthetic Images

8.5.1 Constructing the Images

To evaluate the algorithm in the absence of experimental noise and measurement
errors, synthetic images of the sclected test cases were generated. These are mul-
tispectral images of theoretical edges composed of two semi-infinite planar surfaces
illuminated by diffuse light. The radiosity method described in [6] is used to provide
a good simulation of interreflection between two surfaces. This is an iterative method
in which each surface is divided into a number of facets and the colour spectra of
cach facet results from that emitted from the surface and those reflected from colour
signals being emitted from all others (as described in the general radiosity equation
3.1). Using the image gcometry of figure 8.5, the number of interreflecting surfaces is
reduced to two, and a one-dimensional interreflecting edge (ie. a single slice through
the two planes) was constructed. Colour signal C4(w4, ) emanating from surface A

is iteratively generated using isotropic illuminant E(A) as

Qp -1

CM(waA) = SYNEN) 4 SN CP 7 (wB, A) Y(wa,wp) dwp , for £ >0
0

CA%wa, \) = STN) B (8.4)

where (w4, wp) is the wavelength-independent configuration factor representing

the contribution from infinitesimal arca wg to infinitesimal area wy4. This is given by

[6, 13, 28]:

( ) 1 []+ Qpcosf—wy (8.5)
w 3w = - 1 . (.v‘)
Tieawr : (Wi + Q% — 2waQpcos §)2

4

N\

C'P(wp, \) is constructed simultancously in the same manner.
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Figure 8.5: Geometry of a semi-infinite edge used to simulate interreflection between
two planar surfaces A and B with opening angle 3.

8.5.2 Implementation

For each sclected test case a synthetic tmage was generated with surfaces having
spectral reflectances SA(A) and SB(X). The spectral power distribution of the Des
standard illuminant was used as isotropic light source F(\). Edges were generated for
the three sets of filters (CHY 1931 standard observer, Kodak #25 (red), #58 (green)
and #47b (blue), and the Sony DXC-151 CCD). An opening angle 3 of 90° was used
in all simulations. This angle was chosen as being representative of a large percentage
of man-made objects. For example, the walls of a room typically meet at 90°. The
eflect of varying this angle has been investigated [6, 21], with interreflection increasing
as f1 decreases.

The decomposition algorithim described in section 8.2 was applied to the synthetic
images. The resulting shading ficlds were then plotted against those obtained through

calculations using the known values of S4(A) and SP(X) and the same model of

interreflection.
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8.5.3 Results

Test Case 1

Applying a one-bounce interreflection model to the synthetic image of test case 1
(blue-green and purple surfaces) resulted in shading fields very close to the actual
constant value of 1.0, as shown in figure 8.6. The theoretical model (with known
SA(A) and SP(X)), represents the best we can hope for usiug the model. As we sce,
the recovered fields of both surfaces follow this very closely. While surface A has a
smaller error with respect to the model, both the model and recovered shading fields
of surface B are closer to the actual model.

Application of a two-bounce model to the test image is shown in figure 8.7. While
the recovered fields are both slightly improved over those of a one-bounce model, the
theoretical model results are mixed. We see that toward the edge, surface A shows
an improvement in absolute distance from the actual shading field, yet surface B is
poorer. Furthermore, the error between actual and theoretical models has approxi-
mately doubled. This is likely a more significant factor in a real image environment
which is prone to additional sources of crror.

To put the shading field results into perspective, observe figure 8.8. Reconstruction
of surface shape using colour intensity results in the surface being “shallower™ than
it actually is. The one-bounce reconstruction is shown for comparison. Figure 8.9
is a magnification of the surfaces close to the edge, displaying reconstructed surface
shape from the recovered one-bounce and two-bounce shading fields. Although the
two-bounce reconstruction is slightly better than the one-bounce, one should note the
lack of significance of such an improvement, since both models reconstruct the surface

very close to the actual shape.

Test Case 2

The second test case (red and blue surfaces) was chosen because of poor colour signal
reconstruction for botl surfaces, as shown in figure 8.2, However, table 8.3 describes
large # with small errors for both surfaces, leading us to expect good results. Referring

to figure 8.10 we see this is so: the absolute shading field errors are close to those of
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case 1 in figure 8.6.

In figure 8.11 we observe a smaller shape from intensity error than the previous
case, indicating a lesser amount of interreflection between the red and blue surfaces.
This is expected since the product of two spectra with distributions close to oppos-
ing ends is one with a small magnitude throughout the spectrum and reduced filter
responses. The effect is most apparent on the red surface, as it has a greater basic
colour intensity with respect to its one-bounce component. Even with a lesser amount
of interreflection, the shading field of the one-bounce model is significantly better as

an estimator of actual shape than simple colour intensity.

Test Case 3

Test case 3 is the degenerate case where surface A has a flat spectral reflectance curve
(sce figure 8.3). Since C)()) has the same spectral distribution as E(N), C®)
and C*P)()) are indistinguishable except for their intensities. We see this in table
8.3, with small 07 for both the model and reconstruction. This small angle indicates
that p®) and pt*P) are close to being linearly dependent, so p? cannot be decomposed
into its no-bouuce and one-bounce components.

Although surface B cannot be analyzed with a one-bounce model, surface A can.
Table 8.3 shows a reconstructed 64 of 23.7° with a very small error with respect to the
model. We cannot use a two-bounce model however, since ¢4 is 0.0. The resulting
shading fields are displayed in figure 8.12.

Figure 8.13 demonstrates the higher degree of error in shape from intensity due
to greater intensities of common wavelengths with respect the surfaces in case 2, in
particular between 600 and 700 nm. Reconstruction of surface A using the shading
ficld of the one-bounce model provides a much closer estimate than that of colour

intensity.  Unfortunately, we cannot use the one-bounce model to improve shape

reconstruction for surface 3.
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Figure 8.10: Test case 2 shading ficlds using one-bounce model. Vertical line repre-

sents edge between surface A (red) on left and surface B (blue) on right.
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Figure 8.12: Test case 3 shading ficlds using the one-hounce model. Vertical line
represents edge between surface A (grey) on left and surface B (red) on right. De-
composition is not possible for surface B using this model.
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8.6 Real Images

Surface colour decomposition has proved to be fairly robust within a synthetic envi-
ronment, where control is maintained over the environment and assumptions can be
certain to hold. Real images, on the other hand, provide us with conditions that are
somewhat less than ideal. Random noise, imperfect LLambertian surfaces, varying il-
lumination, and imprecise knowledge of camera sensitivity functions all contribute to
crrors in the decomposition process. Although we can only hope to approach the re-
sults obtained with synthetic images, we still expect the one-bounce model of mutual
illumination to be approximated.

Wherever possible, the equipment properties and imaging geometry of the syn-
thetic environment were duplicated for obtaining real images. Five 3 x 5 inch matte
Munsell papers corresponding to the chosen surface reflectance curves were obtained,
and a 1000W 3200K° tungsten-halogen lamp and Sony DXC-151 CCD camera were
used. To reduce the possibility of vesponses to signals beyond 700 nm, a Nodak
301-A infrared filter was placed in front of the camera lens. Its transmittance curve

is shown in figure 8.14. In addition, the camera required calibration to produce linear

responscs.

8.6.1 Obtaining Linear Responses

There are two properties of a camera that must be considered when collecting images.
The first, and most obvious, is the three spectral sensitivity curves. These were
M M . v M M

provided by the Sony Corporation upon request, and will be assumed to be reasonably
accurate. The second property is the linearity of the three channel responses. The
response of a channel is lincar if its response under lighting condition A is p4, under
lighting condition B3 is pg, under combined lighting conditions A + B is pc, and the
following equation holds:

pc = pa+pB (8.6)

When tests of this nature were performed on the DXC-151, it was found to have
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Figure 8.14: Transmittance curve of Kodak 301-A infrared filter.

nonlinear responses, with each channel exhibiting its own nonlinearity. Since consis-
tent colour responses under varying illuminant intensity are integral to the success of
this algorithm, correction functions are required.

A straightforward approach to linear correction is the construction of three lookup
tables with entries between 0 and 255, corresponding to the camera’s initial responses.
Given the example in the previous paragraph, an equation of the following form can

be constructed:
Tpy T Tpp — Ty = 0 (87)

where z,, is the linearly corrected value for response p;.

Correction functions were obtained by taking images under all 16 combinations of
four separate illuminants. The object taken in this case was Munsell paper N6/ on
a black cloth background. Random samples were obtained for various linear combi-
nations of illuminants, and a & x 256 homogeneous matrix obtained for each channel,
where & > 256. Since all 256 intensities were not represented, the empty columns
corresponding to missing ones were removed, and the remaining matrix solved by

least-squares approximation. Missing values were then interpolated or extrapolated,
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and the resulting monotonically increasing function smoothed and scaled such that
T255 = 255.
References to linearized responses in subsequent sections refers to those obtained

through the three correction tables calculated by this process.

8.6.2 Implementation

Before obtaining images of interreflecting surfaces, an image of the illuminant was
taken. A scalar was obtained for each lincarly corrected response such that the prod-
uct of the response and this scalar produced the theoretical response for a 32008
illuminant using normalized spectral sensitivity functions. Thus, a perfect white light
would produce equivalent responses for cach channel.

For cach test case, the two corresponding Munsell papers were mounted in a
supporting stand, such that the surfaces were flat, with an opening angle 3 of 90°,
cach at 45° to the image plane. The camera was mounted directly above, with the
illuminant beside it about one metre from the surfaces.

Images were taken of each test case, and cross-sections perpendicular to the edge
were obtained. The two segments corresponding to the surfaces were extracted and
smoothed. Finally, cach pixel was lincarized then corrected with the corresponding
channel scalar. The tristimulus values furthest from the edge taken as the no-bounce
colours. The shading ficlds along cach surface were then extracted using the one-

bounce decomposition algorithm of section 8.2.

8.6.3 Results

Test Case 1

The first test case was selected because of favourable synthetic properties. SA(/\)
(blue-green) and SB(A) (purple) were both reconstructed well using a finite dimen-
sional model, with colour vectors pt) p®and p(4B) oriented in RGB space such

that decomposition of p and p? was feasible.

Results for the real image are somewhat poorer. Figure 8.15 indicates a maximum
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absolute crror for shading coefficients a and af of 0.1 and 0.2 respectively, with ag
hovering close to the ideal value of 1.0, while a? consistently increases. The effect of
applying these coeflicients to the recovery of surface shape is shown in figure 8.16. We
sce that ag still shows a significant improvement over intensity for surface A, whereas

aP shows only minimal improvement for surface B.

Test Case 2

As in the synthetic environment, this case demonstrates the limited interreflection
between red and blue surfaces. Figure 8.17 indicates maximum absolute errors of 0.07
B e . . .
and 0.02 for ay and ag. Furthermore, as observed in figure 8.18, with the limited
interreflection we cannot hope to make significant improvements using shading fields

over intensity for shape recovery.

Test Case 3

The third test case demonstrates the interreflection between white and red surfaces.
While recovery of af is not possible, af of the white surface was obtained with a
maximum absolute error of 0.03 (figure 8.19). Improvements in shape recovery are
shown for surface A, but since we have not been able to recover af, we must be

content with using intensity for shape recovery of surface 3.

Sources of Error

The preceding results were affected by errors resulting from various factors violating
the stated assumptions in a real image environment. Unlike synthetic images, the

sources of these errors cannot always be stated definitively, and invariably have a

collective eflect..

Random Noise: For some machine vision techniques such as edge detection, exces-
sive smoothing can reduce sharp gradients necessary for proper detection of features.
Since we assume here that previous segmentation has been performed, we are left with

surfaces containing gradients we expect to result only from interreflection or gradual
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Figure 8.19: Shading fields of test case 3 using the one-bounce model on a real image.

Decomposition is not possible for surface B.
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changes in surface orientation. Random noise is thus not expected to contribute

significantly to erroneous results, as minor perturbations are easily removed.

Surface Properties: The Munsell papers used for this experiment are described as
maltte. This type of surface texture approaches Lambertian qualities by minimizing
specular reflections. However, a perfect Lambertian surface appears equally bright
from all directions, according to Lambert’s Law (equation 2.3). The extent to which
the Munsell papers follow this law is unknown, and may vary from paper to paper.
Imperfections and marks from handling will also affect their reflective properties.
The one-bounce model also assumes the two interreflecting surfaces are semi-infinite.
That is, the distances 24 and Qg in figure 8.5 are finite, but the distance along the
common edge is infinite. The Munsell papers are five inches long. We can expect the

interreflection toward the two supposedly-infinite ends to be reduced.

INluminant Properties: During construction of the synthetic edge by the radiosity
method, an isotropic illuminant was used. Consequently, every facet of the edge was
illuminated with equal intensity. The one-bounce reconstruction algorithm does not
require this property to hold over all surfaces. However, if we wish to use the shading
ficld as an indicator of surface orientation, we must assume colour intensity gradients
arc the result of changes in surface orientation with respect to the illuminant or from
interreflection.  The proximity of the light source used in this experiment violates
this assumption, producing a gradient in the direction of the source. Ambient light
was eliminated as a possible source of error by obtaining images with the 3200A
illuminant turned off. The resulting pixel intensities were insignificant. However,
contributions of light reflecting from nearby immovable objects with the illuminant
turned on are unknown. Finally, the spectral power distribution of a 1000W tungsten
filament project lamp is listed as having a correlated colour temperature in the range
3100 — 3300 [31]. The spectral power distribution of colour temperatures is defined
by Planck’s Formula [31]. This was used to produce E(X) for the 3200K" illuminant.
As no calibration of the illuminant has been performed, the conformity of the actual

distribution to this theoretical value 1s unknown.
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Spectral Sensitivities and Transmittances: The camera’s channel responses
are affected not only by the photoreceptor sensitivity functions, but by all materials
through which light rays must pass before being detected. The former were provided
by the Sony Corporation, and taken to be correct. The transmittance of the Kodak
301-A infrared filter may be considered accurate but not precise, as it was manually
extracted from a small-scale logarithmic graph [5], and for which the original data are
no longer published. The camera lens is expected to have 100% transmittance, yet
this is undoubtedly a false assumption. The divergence of the combined sensitivities

and transmittances likely contributes enormously to incorrect results.

Selection of No-Bounce Colours: In the synthetic environment, the assumption
that a point exists where no interreflection occurs was not violated. With real images
the no-bounce colours are extracted from points furthest from the edge. If inter-
reflection still occurs, this will affect reconstruction of the one-bounce colour, and

subsequent extraction of the shading field.



Chapter 9
Discussion and Conclusions

This thesis has investigated interreflection between coloured surfaces through the use
of a finite dimensional model of surface spectral reflectance. The use of this model
to recover reflectances permits decomposition of interreflected colour signals that is
simple, straightforward, and robust.

An analysis of the multibounce colour space resulting {rom interreflection between
pairs of Munsell spectral reflectances under both Dgs and 3200/ illuminants illus-
trated the limitations of colour signal decomposition. As expected, one-bounce signals
exist that cannot be decomposed as linear combinations of their no-bounce compo-
nents. Such a condition results when one or both of the no-bounce colours has a
flat (ie. grey or white) spectral reflectance curve. Comparison of the angles § and
¢ subtended by colour responses as vectors in RGB space suggest a greater colour
space is spanned using a “whiter” illuminant (Dgs) and filters having less “overlap”
(Kodak).

The problem of attaining multibounce colour responses p(*) for i > 0 is integral
to the linear decomposition of interreflected colours, yet they cannot be attained
simply through algebraic manipulation of the three components of p(®). Using finite
dimensional models of S4(X) and SP(X), and with a known illuminant and filters,
multibounce signals C9(X) and resulting pl?) were obtained, with errors compounding
as 7 increases. A quantitative analysis of the recovered response vectors indicates a

mean error less than 1.0° for pt" and 1.2° for p(® over all illuminants and filters. As

67
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with the colour space spanned by multibounce colours, Kodak filters generally provide
superior results. However, a “smoother” (3200/") rather than “whiter” illuminant is
more important for recovery of reflectances.

Based on the analysis of multibounce colour space and colour reconstruction, three
test cases were chosen to demonstrate the decomposition algorithm, with each having
scparate characteristics and sources of error. A “best” case, a case where the finite
dimensional model does a poor job of reconstructing S4(A) and SB()), and a case
where p(® and p(") are lincarly dependent (ie. one surface is white) were all presented.
In the synthetic environment, shading ficlds were recovered with good precision except
where recovery was not possible. Real images resulted in poorer recovery, yet for all
cases, the shading ficld was shown to provide a superior measure of surface shading
than colour intensity as demonstrated by a simplified shape-from-shading method.
[Future work in shape recovery might incorporate the use of shading fields to enhance
reconstruction in scenes where interreflection between two or three surfaces is known
to exist.

It is questionable whether a two-bounce model can provide better shading field re-
covery than a one-bounce model since p!?) is more sensitive to errors in reconstruction
of p and p™. Furthermore, even for perfect values of p2) the angle ¢ is typically
quite small, discouraging the use of a third component vector for linear decompo-
sition. The synthetic test case for which both models were compared showed little
benefit to advancing beyond one-bounce, with an improved shading field only slightly
overcoming the error in reconstruction of pl?).

Investigation of a two-bounce model was made possible by the availability of three
components of p for every pixel. The one-bounce model applied to interreflection
between two surfaces needs to recover only two coeflicients: ag and ay corresponding
to the shading and interreflection fields. Future research in this area could involve
interreflection between three surfaces (such as found in the corner of a room), where
recovery of a shading ficld and two interreflection ficlds may be possible.

Although the decomposition algorithm is simple, direct, and robust as claimed,
there are two major weaknesses that must be acknowledged. The first concerns the

known illuminant assumption. While 1t is true that research in colour constancy
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continually provides promising illuminant recovery methods, one might claim that
the simplicity of decomposition presented here is realized by knowing the illuminant.
However, the flexibility exists to integrate independent illuminant recovery methods, a
topic of possible future resecarch. The second weakness is the assumption that surfaces
are Lambertian. In reality, surfaces have varying degrees of specularities, and the
extent to which they stray from a simple Lambertian model will affect decomposition,
likely resulting in shading coeflicients of disproportionately high magnitude. This
is perhaps the most critical weakness, precluding the analysis of arbitrary surfaces

having unknown reflectance characteristics.
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