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- Abstract

Since colour characterizes local surface properties and is largely viewpoint insensitive

it is a useful cue for object recognition. Indeed, Swain and Ballard have developed

e “a simple schemne, called colour-indexing, which identifies objects by matching colour-

— space histograms. Their approach is remarkably robust in that variations such as a

shift in viewing position, a change in the scene background or even object deformation

- -degrade recognition only slightly. Colour-indexing fails, however, if the intensity or

S _,f‘; sypectra,l characteristics of the incident illuminant varies.. This thesis examines two

 different strategies for rectifying this failure.
Firstly we consider applying a colour constancy transform to each image prior
to colour-indexing (colours are mapped to their appearance under canonical lighting

- conditions). To solve for the colour constancy transform assumptions must be made

. about the world. These assumptions dictate the types of objects which can be recog-

. nized by colour-indexing + colour constancy preprocessing. We review several colour

“constancy algorithms and in almost all cases conclude that their assumptions are too
limiting. The exception, a discrete implementation of Forsyth’s CRULE, successfully
solves the colour constancy problem for sets of simple objects viewed under constant
illumination.

To circumvent the need for colour constancy preprocessing and to recognize more
complex object sets we consider indexing on illuminant invariants. Three illuminant
invariants—volumetric, opponent and ratio—are examined. Each characterizes lo-
cal surface properties, is largely viewpoint insensitive and is independent of both
the intensity and spectral characteristics of the incident illuminant. We develop an
algorithm, called Colour constant colour-indexing, which identifies objects by match-

ing colour ratio-space histograms. In general our algorithm performs comparably

1



with colour-indexing under fixed illumination, but substantially better than colour-

indexing under varying illumination.
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 Introduction

Colour frpla.y:s; an-important role in object identification. For example an apple can be
‘,‘,fdiStirlg‘uished from an orange solely on the basis of colour. In this thesis we develop
‘ machme vision system which can robustly identify: colourful objects. Identification

5 place in real time and as such would be be a useful part of an active vision

fI’achme vision systems can recognize objects only when certain assumptions are
aatlsﬁed The weakest assumption, common to all model-based vision approaches, is
thai. 6bjyect3’ can only be identified if they have been seen before. Further model-based
vxslon S\ rsteins are usually told, by a system designer, to remember particular objects.
hi ,_mlphes there are two stages to identification. In the learning stage the vision
"’”e{n} yl‘e,\als_— the objects which it must identify. The images of objects are analysed,
, fééf;ures extracted, and these features are grouped to form canonical models; the set
of all canonical models is called the mode] database. In the active stage an object
- is presented to the vision system; again its image is analysed and an image model
s built. The image model 1s then matched against the model database. The best
(“:ano‘,nica;l‘ match identifies the image model.
Ideally the success of object identification should not require strong constraints on
- the world. For example, if objects are always presented to the vision system in the
same orientation and at the same relative position then this contextual information

. can be exploited in designing a model representation. However strong constraints will
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CHAPTER 1. INTRODUCTION

limit the utility of the vision system. It is desirable that identification performance
be unaffected by the visual context in which an object is viewed. For the purposes of

this thesis changes in visual context refer to:

1. changes in the background of an object.

o

occlusion of the object.

3. changing relative position of the object.
4. the lighting conditions:

(a) changing light intensity.

(b) varying spectral characteristics of the light.

Traditional approaches to object identification are based on single-channel in-

”'te'nsitky images and rely on geometric descriptions of objects. For example, the 3.

dimensional shape of an object would obviously serve as a good key for identification.
HoWever, for unconstrained scenes, it is difficult té to extract this 3-dimensional in-
 formation. Lower level geometric cues are often used: these include looking at edge
intersections or at relative edge orientations[31]. Unfortunately there are few geomet-
ric cues which are invariant to charges in viewing context.

Swain|28] departs from the geometric approach and instead develops a simple
scheme which identifies objects entirely on the basis of colour. His method, called
Colour-indexing, is extremely successful at identifying objects and is Jargely unaf-

fected by the first three changes in viewing context.

1.1 Swain’s Coiour-indexing

Swain’s colour-indexing algorithm identifies an object by comparing its colours to the
colours of each object in the model database (a colour refers to a response 3-vector
registered by three sensor channels). The area of a particular colour is calculated and

is stored as the bin-count of a 3-Dimensional histogram (the model), appropriately
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called the colour histogram. Similar 3-vectors are mapped to the same histogram

bins. Specifically each colour channel is discretised into 16 intervals; hence, each

"~ colour histogram has 16 * 16 * 16 = 4096 bins.

Objects are presegmented from the images when calculating canonical models.

~ This prevents background colours affecting object identification. In the active stage

e objects are not segmented from their backgrounds (as such segmentation necessarily

implies knowledge of the object in the image!).

Histograms are matched by comparing the counts, or areas, in corresponding bins

e v1a. a technique called Histogram intersection. The intersection of histograms H; and

- Hyis defined as:

(O Hy = S35 min(Hy (5,75, k), Hy(i, j, k)) (1.1)
i 7 k

Since canonical histograms contain no background colours, intersection (or match)

= valucs are normalized by the number of pixels in the model histogram, thus matches

are bétweén 0 and 1. Histogram intersection is very fast requiring time proportional

t,o_the @1um'be1' of histogram bins. More sophisti‘caterd correlation measures could be

" used, but the success of colour indexing implies that they may not be necessary.

Let us examine the performance of colour-indexing with respect to the 4 changes

- in visual context:

1. Changing the background in which an object is imaged will only add to the
match value of the histogram intersection if:

(a) the pixel has the same colour as one of the colours in the model.

(b) the number of pixels of that colour in the model is less than the number

of pixels of that colour in the image.

‘Thus the correct match will always be found unless the two objects are very

similar or the background is specifically designed to confound matching.

o

Experimentally Swain demonstrates that histogram intersection continues to

work well even when an object is partially occluded. This is to be expected as
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a colour histogram is an accumulation of global evidence. The coloured areas
not occluded should still be sufficiently discriminatory to allow correct object

identification.

3. As the viewer alters position (or the object is rotated) some colours may come
into view and others disappear. In this case the colour histograms can change
quite significantly. Swain’s solution to this problem is to store histograms for

each model as seen from differing viewpoints.

Another problem can occur as the viewing position changes. In a world of
lambertian surfaces with point source illumination, the brightness of a surface
changes as the angle between the lluminant vector and the surface normal varies.

If v denotes the illuminant direction and n represents the surface normal then the

brightness of the reflected light is proportional to v.n (the vector dot-product).
This relationship accounts for the shading field in an image. By implication
the brightness, or magnitude, of colours in’ra;ﬁ,'ima'ge will change as an object is

rotated relative to the illuminant. Again storing multiple colour rhis‘togmms for

each model viewed under varying conditions may help here.

Normalizing the lengths of sensor response vectors, by dividing by a linear com-
bination of the responses (the vector components), gives intensity-independent

colours. Such a normalization results in 2-dimensional information (the nor-

malized blue response can be generated given the normalized red and green
responses). Swain[29] histograms response vectors normalized with respect to
the sum of the red, green and blue responses. Color-indexing continues to per-
form relatively well despite this shift from a 3-dimensional to a 2-dimensional
index. However a significant number of test images (= 25%) are poorly matched.
In section 3 we readdress this problem when designing an illuminant invariant

feature space for object identification.

4. Altering the intensity of the light effectively alters the length of the colour tuples.
That is every pixel in the image will be multiplied by a constant factor k. Swain
presents experimental results for such intensity changes and concludes that even

for values of k fairly close to 1 object identification is impaired. Changing the
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spectral characteristics of the illuminant hamper Swain’s algorithm to a greater

degree—both the length and direction of colour vectors will change.

1.2 Extending Colour-indexing

Swain’s Colour-indexing fails since the colours registered by a vision system are depen-
dent on the relative position of the object (the shading field) and, more importantly,

on the spectral characteristics of the illuminant. Swain proposes applying a colour

" constancy algorithm[10, 21, 12, 1] to the registered colours thereby removing the

effects of a varying illuminant. Each registered colour is mapped to its appearance

“under canonical lighting conditions.

Unfortunately, even for fairly simple worlds, the general colour-constancy prob-

lem is as yet unsolved. However the model-based identification problem imposes con-

- straints on the world. In particular, since the model-database contains a finite number
of models, this implies that the world contains a finite set of surfaces. This constraint
~can be exploited in a discrete version of Forsyth’s[10] CRULE algorithm. For simple

worlds, where objects are 2-dimensional and where illumination is everywhere uni-

form, CRULE successfully solves the colour constancy problem and facilitates object

identification.

In more complex worlds, where objects are 3-dimensional and illumination is al-

lowed to vary, CRULE cannot solve the colour constancy problem. For this rea-

- son we develop a new approach to object identification called Colour constant

colour indexing'. This scheme indexes not on colour triples but on illuminant
invariants. In particular the ratio of two neighbouring colours is, more or less, il-
lumination independent; colour ratios form the backbone of colour constant colour

indexing.

'Colour constant colour indexing was jointly developed in collaboration with Dr. Brian V. Funt.
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1.3 Thesis Overview

In chapter 2 we examine, in detail, the colour constancy problem. Many compu-
tational theories have been proposed; each of which places restrictions on the type
of object for which Swain’s colour indexing can work. In almost all cases these re-
strictions are not satisfied by any plausible object set. However we conclude chapter
2 by presenting a discrete version of Forsyth’s CRULE colour constancy algorithim;
CRULE can successfully solve the colour constancy problem for simple sets of objects.

Unfortunately for most realistic object sets the colour constancy problem cannot
(as yet) be solved. To circumvent the need for colour constancy preprocessing we
consider, in Chapter 3, identification based on illuminant invariants. Three types
of invariants are considered: volumctric, opponent and ratio. Colour ratios have
favourable error and computational properties. Consequently colour ratios form the
backbone of a new identification algorithm— colour constant colour indexing.

Various representational issues result from the switch from colours to colour ratios.
These are addressed in chapter 4. In particular we show that the distribution of colour
ratios is non-uniform; this implies the bins of the ratio histogramsshould be of different
size. Issues related to ratio error are also explored.

Chapter 5 presents experimental data contrasting the performance of colour in-
dexing and colour constant colour indexing under illumination change. For sets of
synthetic and real images, colour constant colour indexing is extremely successful
at identifying objects; this contrasts with the poor identification success ol colour

indexing.



Chapter 2

- Colour Constancy

" The perceived colour of an object is, more or less, independent of the illuminant
under which it is observed. Thus colour is a quality not of the reflected light but of

L the object’s surface. The ability to label objects with colour names, that refer only

to surface reﬂectance properties, is called colour constancy[Z]’.

" “Humans have 3 types of colour receptors: long-, medium-, and short-wave sensitive
‘cones. Hence the eye measures, at most, 3 properties of surface reflectances. Therefore

" colour constancy requires that the initial 3-vector of cone responses be transformed
into a 3-parameter surface descriptor. The colour constancy problem in machine

~ . vision is similar; though, there is no restriction on the number of receptors.

Various algorithms have been proposed for solving the colour constancy problem.

- Each algorithm places restrictions on the types of surfaces and illuminants in the
world. If the set of objects we wish to identify satisfies these restrictions then Colour
Indexing+-colour constancy preprocessing will successfully identify objects under vary-
ing lighting conditions.

In this section we review several existing colour constancy algorithms. In all cases
their world restrictions are very strong; indeed these restrictions cannot be satisfied by
any plausible object set. However consideration of the object identification problem
yields new constraints and these are elegantly incorporated into a discrete version of
Forsyth’s CRULE algorithm. CRULE effectively solves the colour constancy problem

for a set of 2-dimensional objects, where the total number of distinct colours is small,

-1
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CHAPTER 2. COLQOUR CONSTANCY
viewed under constant illumination.

2.1 Preliminaries

The light reflected from a surface depends not only on the spectral properties of illu-
mination and surface reflectance, but also on other confounding factors; these include
specularities and mutual illumination. For this reason computational theories for
colour constancy are often developed for the simplified Mondriaan world; a Mondri-
‘aan is a planar surface composed of several, overlapping, matte (lambertian) patches.
The light striking the Mondriaan is assumed locally constant, i.e the intensity and
spectral characteristics of the light varies slowly. In this world the only confounding
"‘process to retrieving surface descriptors is illumination. Almost all colour constancy
algorithms are designed for the Mondriaan world.
A priori to examining any colour constancy algorithm, the Mondriaan assumption
B has éeverely restricted the types of objects which can be recognized. In particular,
bbj'ects are constrained to be planar. There are no colour constancy algorit.luns which

work in an unconstrained 3-dimensional world.

'2.1.1 Sensor Responses

Light reflected from a Mondriaan falls onto a planar array of sensors, analogous to the
retina. At each location z in the sensor array there are s different classes of sensors.
The value registered by the kth sensor (a scalar), pf, is equal to the integral of its
response function multiplied by the incoming colour signal. Each pj corresponds to a

unique surface reflectance.

= [ 7 B3 ) (21)

where A is wavelength, Ri()) is the response function of the kth sensor, C*(}) is the
colour signal at z and the integral is taken over the visible spectrum w. The colour
signal is the product of a single surface reflectance S(A) multiplied by the ambient

illumination E(A), C(A) = E(A)S()).
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2.1.2 Surface Descriptors

The goal of colour constancy is to transform the sensor response vector p® (hence-
forth underscoring denotes vector quantities) to its descriptor d”, where d* encodes 3

= properties of the surface reflectance and is invariant to £(}). Of course surfaces with

: : different spectral reflectance functions should have different invariant descriptions.

. ‘Formally:

& =TENPF) (2.2)

; That is d” is a illuminant dependent transformation of p®. In a Mondriaan world,
~under uniform illumination, a single transformation will apply throughout the im-
r,»iafge. ‘The transform 7 is often considered to be linear. rrIn this case 7(E());p°) =
T(E()\))BI So if the number of sensor classes is 3, s = 3, then 7 (E(A)) isa 3 x 3

matrix.

-2.1.3 Continuous functions as Vectors
A 1-dimensional function F'(A) which varies slowly with respect to A can, in a closed
‘,‘interva.l of X, be approximated by a vector. Thus the functions of lambda introduced
- in the préceding section can be described by their values at a discrete number of
W \Wavé]éngths over the visible spectrum. We use spectra where A is sampled at 10nm
o {"‘i—i‘ntiei‘v'als from 400 thru 650 nm (vectors then have 26 components). Hence we can
“U rewrite the R(X), C(X), E(X) and S()) in terms of there corresponding vectors: R,

C,Eand S.

Let us group the s sensors in the 26 x s matrix R. The kth column of R is the
kth receptor vector. We can now rewrite the integral of equation (2.1) in terms of

summadtions:

26
pi = Y RaC; (2.3)

=1
Equation (2.3) is exactly the vector dot-product of the kth sensor with the colour-

signal. Hence we can calculate the s sensor responses via equation (2.4) (the k index
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is dropped):

p" = R'C (2.4)

where ¢t denotes matrix transpose. Thus we can think of a sensor respouse as the

. projection of a colour signal onto the sensor axis. The vector representation is useful
“for analysis since it is impossible to measure precisely complete spectral functions. In

addition the techniques of vector algebra are employed in many of the computational

strategies for colour constancy.

. 2.1.4 Finite-dimensional Models

- Colour vision can be modelled using a finite dimensional linear model for surface

reflectance and illuminant spectra[27]. Let & be a matrix of d° (dimension of -S)

- refelectance basis vectors; § is 26 x d”. Thus a surface reflectance vector S is approx-

. 1mated as:

S = Sg (2.5)

where g is a d° component column vector of weights. Maloney[22] presents evidence

which suggests surface reflectances can be well modelled by a set of between 3 and 6

* basis vectors. Similarly illuminants are often modelled by a small set of basis vectors.

Let £ be the matrix of df basis vectors, then:

E =~ & (2.6)

¢ is an d® dimensional vector of weights. Judd[18] measured 605 daylight illuminants
and showed they are well modelled by a set of three basis functions. However many
artificial illuminants are poorly approximated using this basis. This i1s especially true

for the spiky illuminant spectra generated by fluorescent lighting.
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2.2 General Linear Transforms

" In section 2.1.1. we introduced the colour constancy transform 7. Almost all authors
- consider 7 to be a linear map (i.e. a 3 x 3 matrix). If the descriptor for a surface S
is defined to be its response vector under a canonical illuminant E° then Forsyth[10]
. has shown that 7 must be linear. In this section we consider colour constancy

éﬂgorithms which assume a general linear map. Those algorithms which restrict 7" to

R _ being diagonal are discussed in section 2.3.

e ' ' ” 2.2.1 Experimental Performance

 We begin by considering the theoretical constancy of a linear transform 7. If good
“constancy is possible then this validates Swain’s idea of colour constancy preprocess-

ing. Good theoretical constancy performance is also required in developing illuminant

7" invariants—discussed in chapter 3.

e To my knowledge, the theoretical bounds on colom" constancy have not been pub-

- lished in the colour constancy literature. Previous studies have estimated how well
particular algorithms solve for colour constancy. Thus the results presented here, are

by themselves, of considerable interest.

We consider two sets of sensor sensitivities: the cone fundamentals derived by

" Vos and Walraven[33] and a set of camera sensitivities. The camera sensitivities were

derived by multiplying the spectral sensitivity function of our CCD camera by the
" Kodak Wratten filters #25 (ved), #58 (green) and #47B (blue). The sensor sets are
shown in Figures 2.1 and 2.2.

We use a set of 7 illuminants: 5 Judd daylight spectra [18], CIE standard il-
luminant A [33] and a black-body radiator with colour temperature 3600K. These
illuminants are applied to a set of 40 surface reflectances consisting of 12 ceramic tiles
[3], the 24 Macbeth colour checker [25] patches and 4 of the natural surfaces mea-
sured by Krinov[19]. Since the Krinov, ceramic and Macbeth spectra are measured
in different units, all surface reflectances are normalized—they are scaled such that
their squared area is equal to one. This normalization has little effect on the results

presented in this section.
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We consider colour constancy to be achieved if response vectors are mapped to
" their appearance under a canonical illuminant. In these experiments we chose Judd’s
| D55 (55 stands for 5500K) as the canonical illuminant. This implies that descriptors
B ‘ are response vectors for surfaces viewed under D55

Let V be a3 x 40 matrix of sensor-response vectors generated for the 40 surfaces
N observed under D55. Similarly, let W be the matrlx of response vectors of the surfaces
“,lmd.gf’d under another arbitrary illuminant E. To the extent that linear transforms
suffice for colour,consta,ncy, V and W should be ‘a,pproxlmately equivalent under a

atrix transform:

VeTW (2.7)

VVe solve for the non-zero 7 which minimises the sum of the squared error in

"equatlon (2. 8)

minimize }_ ( V)i = [TW]U )25” S (2-8)
6Ly o : ’ :

‘The solutlon for T is given by the Moore-Penrose i inverse T ‘TV(W)"‘ where W+ =
VV‘t [WWt] . Given a fixed set of sensor functions, the solution of equation (2.8) yields
ithe best transformatlon that takes observations under one illuminant into observations
iunder another

For both the Vos Walraven and camera Sensor sens1t1v1t1es, we generate experi-
al data to test how well linear-transform algomthms can possibly perform. For

' V',ea,(:,h_lllﬁ‘mlnant, we find the optimal linear transform (by solving equation 2.8) map-

pmg the sensor response vectors for the surface reflectance set to their appearance

- ‘ onder the 4cyan’onica1 illuminant D55.

e —V*‘Si'noefsé‘n’sor r‘e‘sp‘onses are 3-vectors any metric for evaluating colour constancy
should” compare fitted vectors (the sth column of TW) with their corresponding de-
E 2 "scrlptors (t;he zth column vector V). The euclidean distance between fitted vector and
o ‘descmptor normahzed with respect to the descriptor length, is a reasonable choice of

metr;c;a,nd we will donoto ‘this normallzed fitted distance as NFD.
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ated for each illuminant, see solid lines in Flgdrcs 3 and 2.4. In all cases response.
- vectors are mapped‘ to within 10% of their descriptors. These experiments demon-
strate that a linear transform is a suitable mechanism for colour constancy. In the

. folli)wing 3 sections we consider computational a’pj)rc‘»aches ‘toﬁﬁndiﬁg 7.

2.’2'.2,' ‘Gershon’s algorithm

Gershon[B] developed an a.lgoni;hm to solve for T by makmg 3 assumptions about
the Mondnaa;n worlcl

Cumu]a.mve NFD histograms for the Vos Wa.lraven emd camera sensoxs are: g)m]er—{ L
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Figure 2.4: Cumulative NFD histogram for Camera Sensors

: 1. TMlumination and surface reflectance spectra are well modelled by small dimen-
sional basis sets. Specifically if there are s sensors then d?,d° < 5. We will

assume s = 3

2. The average of all the distinct surface reflectances in every Mondriaan is the

same. We denote the average reflectance vector as A.
3. Hlumination is everywhere constant.

The algorithm proceeds in two stages: firstly assumption 3 is exploited to solve

for the 'ill.u1}1ina11t; thereafter 7 can be constructed. Let A(4) be the 26 x 3 matrix
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constructed by multiplying each column of £ by A. The illuminant is defined by Ee.
Thus the average response vector recorded for a Mondriaan can be written as:

P = R'A(A)e (2.9)

Since R*A(A) can be precalculated, (A(A) is the same for all Mondriaans) and p**

can be derived from the image, we can solve for the weight vector ¢:

e = [R'A(4)]'p™ (2.10)

The illuminant vector is calculated as £ = £e. Let @ denote the 26 x 3 matrix
constructed by multiplying each column of § by E. The response vector corresponding

to a surface reflectance defined by the weights o satisfies the following relationship:

R Both p and R'Q in equation (2.11) are known. Hence we can solve for ¢ (the surface

descriptor) by calculating:

g =[RQI""p = T=[RQ]"’ (2.12)

For general Mondriaans Gershon’s algorithm exhibits poor colour constancy siuce
the average reflectance spectra can vary significantly. Further coustraining the illu-
minant to being everywhere uniform is an unrealistic restriction. Regarding colour

indexing, it is highly unlikely that every object will have the same average colour.

2.2.3 Maloney’s algorithm

Maloney’s algorithm, like Gershon’s, proceeds in two stages: firstly the illuminant is
estimated, thereafter the constancy transform 7 is constructed. However Maloney

makes different, weaker, assumptions about the world:

1. I there are s sensors then d¥ < s and d° < s. We will assume s = 3 hence
d® < 2.
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2. MMumination is locally constant.

Given the illuminant vector If then T is calculated by equation (2.12). However,

because surfzce reflectances have dimension 2, 7 will be a 2 x 3 matrix (this also

implies the inverse of equation (2.12) is a pseudo-inverse). Thus 7! is an injective

‘mapping taking 2-dimensional surface weight vectors onto 3-dimensicnal sensor re-
o S’pohses. Alternately a response vector can be thou'ght of as the sum of the 2 columns
o of T‘l from which it follows that sensor respon’sé vectors lie on a plane. Maloney
‘uses this plane constraint to solve for the illuminant.

, At this point it is useful to count the number of equations and unknowns. This
5 ~ will lead to a statement about the number of sensor responses needed to solve for E.
:;‘,,,,Gi‘?en a single response vector we have 3 knowns and 5 parameters to solve for: ¢

' é,nd' . Adding a second response vector increases the knowns to 6. However, since
the ilumination is locally constant, the unknowns increase by 2 to 7. By initializing
gl = 1 we redice the number of unknowns to 6 and hence have enough knowns to
B solve rfor;thé two surface reflectances and the illuminant!.” Theoretically this implies
we can solve for colour descriptors at the edge of two. coloured regions.

To solve for ¢ we must first find the normal to the response plane. The normal
cotresponds to the vector orthogonal to the 2 response vectors and is defined by their
... vector cross product?. We denote the plane normal as 7. The responses of any two
o éuiﬁf&rices? Sy and S3, (which are linear combinations of the 2 basis vectors) must lie on

the ‘Vrzesponse plane. This implies:

T RIA(S, e = 0 (2.13)
T RIA(S,)e = 0 (2.14)

The left-hand sides of equations (2.13) and (2.14) are 3 x 1 row vectors. Since
€y = 1 there are exactly 2 equations and 2 unknowns. Thus we can solve for the

illuminant; thereafter 7 is calculated by equation (2.12).

'Setting €; = 1 fixes the length of the ¢ vector but does not change its direction.

2’[‘he plane normal calculated as the cross product of two vectors is susceptible to image noise.
More robust estiniates of the plane normal can be made by accumulating evidence from many
response vectors.
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A standard colour vision system, with three sensors, can only achieve colour con-
stancy using Maloney’s algorithm if surface reflectances are 2-dimensional. Unfor-
tunately surface reflectances are higher dimensional (between 3 and 6 [22]). Theo-
retically Maloney’s algorithm will perform better if the vision system has more than
3 distinct sensors (there is no published work evaluating this hypothesis). In the
case however, more distinct response vectors (of different surfaces) are required to
uniquely determine the plane normal = (n — 1 response vectors are required given n
- sensor classes). Thus assuming the illumination is only locally constant, Maloney’s
algorithm can solve the colour constancy problem if there is sufficient, local, colour

complexity; where this complexity is defined by the number of sensor classes.

- 2.2.4 Forsyth’s MWEXT

Forsyth develops an algorithm for colour constancy called MWEXT using weak as-

~sumptions about the world. In particular surface reflectances and illuminants are not

“constrained to being finite dimensional. However thg,illuniinati‘(—)rn is still constrained
to being everywhere uniform.
The descriptor for a surface is defined to be its sensor response vector generated
under a canonical illuminant. The set of all descriptors, C, is used as a constraint in
solving for 7. All the response vectors in an image must be mapped into C by 7. If

T is the set of image descriptors then:

Vpel ,TpeC (2.15)

There may be many linear transforms which satisfy the above constraint; MWEXT
(Maloney-Wandell extension) parameterizes the set of candidate transforms. Forsyth
suggests that the set of candidates for 7 would be diminished by examining other
information, for example specularities and mutual illumination. The problem of enu-
merating the candidate transforms is non-trivial but would certainly be computation-
ally laborious.

Integral to the implementation of MWEXT is the assumption that all colours in

the world have been seen. Under this assumption the canonical set is a bounded convex
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region, or gamut, in receptor space. In this framework, canonical set membership is

determined by examining only the boundary, or hull, of the canonical gamut; this
significantly reduces computational costs.

The fact that MWEXT returns a set of possible linear transforms, as opposed

. to a unique answer, has serious implications for Colour-indexing. In particular,

; - MWEXT’s multiple solutions suggests that colour constancy is a difficult problem.

Thus MWEXT preprocessing will rarely increase the performance of colour indexing

with respect to illumination change.

2.3 Diagonal Linear Transforms

Many theories[10, 21, 15] of colour constancy propose that the effect of the illuminant
. can be discounted by applying a diagonal matrix transform (DMT) to each sensor re-
. sponse vector. In this case colour constancy is achieved by scaling each sensor channel
' ihdepénd;ently. For examrple the effect of a red illuminant would be discounted by scal-
| mg the red sensor catches by a fractional coefficient; thus redurcing the magnitude of
: t;lhr'e red responses.

dt = cpf (2.16)

x

""" Recently Forsyth[10] proved that, if surface reflectances are unconstrained, perfect
o colour constancy can only be achieved via a diagonal matrix transform (and narrow-
S band sensors. This observation underlines the importance of DMT theories of colour

constancy.

- 2.3.1 Experimental Performance

In this section we consider the theoretical performance of a diagonal transform D.
We follow the same experimental procedure discussed in section 2.2.1. In this case we

wish to optimize the equality:

V ~ DW (2.17)
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We solve for each row of V independently, using the Moore-Penrose inverse:

Dii = V;WHWWH™ (2.18)

For each illuminant we calculate the cumulative NFD histograms for the Vos Wal-
raven and camera sensors, the dotted lines in Figures 2.3 and 2.4. Compared with
_general linear transform behaviour (solid lines) a diagonal transform, for the Vos Wal-
‘raven sensors, achieves lower constancy performance. However, a diagonal transform
appears an exceptionally good model for the camera sensors. In both cases a diagonal

transform achieves good constancy performance.

2.3.2 A Note on the Experimental results

£
<

| ~Th¢ constancy results for general linear and diagonal trénsfofms, shown in Figures 2.3
and 2.4, are of considerable interest. They bound the performance of all colour con-
stancy algorithms (for the sets of reflectance andriyllmjﬁirila.nt sﬁéctra described in
- 2.2:1). Without considering a particular algorithm we know perfect colour constancy
‘performance is impossible. However, none of the algorithms presented in this chapter
forrnally addresses the question of error in their models. This is a serious short-coming
- and serves to weaken the applicability of these algorithms.

Also, for the camera sensors, it appears that the best diagonal transform achieves
‘comparable constancy to the best non-diagonal transform. Reconciling this observa-
tion with non-diagonal theories of colour constancy would be an interesting line of

research.

2.3.3 Sensors and the Diagonal Transform

By examining Figure 2.4, it is clear that the narrow band camera sensors can achieve
good colour constancy. In general, narrower sensors imply improved (theoretical)
colour constancy. In the limiting case, sensors which are sensitive to single wavelengths
can achieve perfect colour constancy. Consider that only the jth component of the

kth sensor is non-zero. Then the summation in equation (2.3) can be written as:
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Pk = RjrSiE; (2.19)

The effect of the illumination, in the kth channel, is a simple scalar multiplication;
which is the same for all surfaces. If all sensors are sensitive to single wavelengths
then a diagonal matrix transformation will facilitate colour constancy in an otherwise
unrestricted world. In fact since reflectance and illumination spectra tend to vary
slowly, a diagonal matrix transformation will work even when the receptors arc only

~ relatively narrow band. This explains the constancy success for the camera sensors.

2.4 Von-kries adaptation

"One of the earliest models for (human) colour constancy assumes a diagonal matrix
~ transformation. Von Kiies [32] hypothesised that chromatic adaptation is a central

“mechanism for colour constancy. The idea is that over time the eye would adapt to
S t'hé ambient illumination. Any colour signals are séen relative to this adapted state.
- More specifically the Von Kries adapted responses to a surface S (A) in sensor

~channel k can be written as:

= LSF VBN Re(V)dA
FT JER(V)dA

Von Kries conjectures that for any given illuminant E, df will remain constant.

(2.20)

To determine E()) some authors assume that there is a white (uniform) reflector in
every scene. This white patch assumption is common to several algorithms fo: colour
constancy, including Land’s retinex theory which is discussed in the next section.

In reality surfaces under varying illuminants are only approximately von Kries
~ invariant. West and Brill[32] derive the conditions surfaces must satisfy for von Kries
invariance. Of course all surface reflectances are von Kries invariant if narrow band
sensors are employed.

Von Kries invariance is simply a diagonal matrix transformation where the coefhi-

cient in each channel is equal to:
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3]
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]
TE(M)Re(N)dA

—
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t
S

Ck = ‘)‘:)1‘

2.5 Land’s Algorithm

Land’s retinex algorithm[20, 21] solves for the coeflicients of the diagonal matrix
transform by assuming that every scene in the world contains a uniform reflector (with
respect to each sensor channel). However, unlike Von Kries invariance, chromatic
_adaptation is not assumed - that is the eye does not e‘xpliéitly measure {adapt 10)
the illuminant. Hence the retinex algorithm addresses the problem of how to relate
sensor responses to the white patch. Computation is carried out independently in
each sensor channel. ‘

Consider the ratio of the sensor responses at locations xy and xy ie. pit /Pt
~ Clearly if z; is fixed then this ratio will be smallest when x3 corresponds to the white
p:a'tch (reflectances are between 0 and 1). Further consider a random continuous path
which visits z;,zq;23---zn. The ratio pf' /pi¥ can be calculated incrementally as

the path is swept out by multiplying local ratios. For example

e el (2:22)
Dy Dy Pi” Pk

Land calls a ratio calculated in this incremental manner a designator. The retinex
algorithm assumes many random paths are generated. At each location the smallest
designator value is recorded. If sufficient random paths are generated then the des-
ignator at all locations will be relative to the white patch. Thus the illuminant is
discounted and colour constant designators derived.

To deal with slowly varying illumination intensity, the local ratios are thresholded.
Thus if p7* /p}? is approximately equal to one then the sensor responses are considered
due to the same surface reflectance. Accordingly this ratio is set (thresholded) to one.

The white patch assumption is a very strong constraint on the world. Thus
Land[21] modifies the retinex algorithm by assuming that the average of all desig-

nators at each image location is constant. Brainard[5] shows that if many random
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paths of reasonable length are generated then the average designator at z, is equal

to:

(n— Lpi” (2.23)
2i=1 Pk
where 7 indexes all other pixels in the image. Note the illumination terms still can-
~cel and as such that the average designator is constant under changing illumination.
~ However tlie designator at = will vary as its background changes. For example if the
~background is predominantly red then p® will be normalized to a red patch chang-
ing the background to blue will yield (unsurprisingly) a radically different designator.
‘Brainard[5] demonstrates that less drastic changes in context can significantly alter re-
flectance designators. We conclude, therefore, that the average designator assumption
“is at least as strong an assumption as Land’s original white patch assumption.

In terms of object identification if an object can be segmented from an image

. then the average designator will be illuminant invariant and could be used in Swain’s

o algorithm.' There are 2 flaws in this reasoning
1. Segmenting an object in an image often requires identifying the object. (This
suggests more expensive computation and would not be suitable in an active

vision system:.)

2. If the object is occluded then the colour designators will change.

2.6 Horn’s algorithm

Horn casts Land’s retinex in a more rigorous framework. In particular Land’s notion
of random path is no longer employed. Instead images are normalized to their ap-
pearance under a single, uniform illuminant. This allows the responses at any two
image locations to be compared directly.

The computational process is surnmarized below:
1. The logarithm of the colour image (the log-colour image) is calculated; this
effectively separates the reflectance and illumination components. Taking the

logarithm of both sides of equation (2.16) implies log(df) = log(ck) + log(p%).
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2. Reflectance changes are distinguished from illuminant variation by examining
the Laplacian of the log-colour image. Small Laplacian values are due to illumi-
nation gradients; whereas, large values indicate a reflectance edge. Thresholding
the Laplacian of the log-colour image effectively removes the spatial variation

of the illuminant.

3. Performing the inverse Laplacian gives a new log-colour image. The antilog of

this results in an image taken under a single (unknown) illuminant.

Note the above is the essence of the computational process; Horn presents, in detail,
the mathematical analysis necessary for its implementation. Horn goes on to suggest
a possible biological implementation. However, there are several problems with Horn’s

algorithm:

1. To solve the inverse Laplacian requires boundary constraints on the Mondriaan
(and its image). Namely the Mondriaan must lie completely within an area of
constant reflectance. This implies the serisor responses on the boundary of all

images must be due to the same surface reflectance.

o

Colour constant descriptors still require a reference patch. Lands white patch
or average patch schemes could be used; however, this implies descriptors still

depend on the other colours in the scene.

Horn’s boundary assumptions are not satisfied even in the simple Mondriaan world.
Blake[4] demonstrates that the strong boundary constraints are necessary only be-
cause the illuminant component is removed by thresholding the Laplacian of the
log-colour image. By applying the threshold on the gradient of the log-colour im-
age Blake develops a computational process which calculates surface lightnesses with

weaker boundary constraints.

2.7 Discrete CRULE

All of the colour constancy algorithms, discussed so far, place unrealistic constraints

on the world; and as such cannot be used to extend colour-indexing. However we
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need not employ a general algorithm for colour constancy. The problem of object
identification places constraints on the world; specifically since our goal is to identify
an image as being one of a finite set of objects then this implies our world contains a
finite, or canonical, set of colours. Thus the colours generated by a colour constancy
algorithm must belong to the canonical set.

Solving for the colour constancy transform by enforcing canonical set member-
ship, suggests Forsyth’s MWEXT algorithm (2.2.4). However restricting constancy
transforms to diagonal matrices leads to Forsyth’s second algorithm-—CRULE. Like
MW EXT, knowledge of all colours in the world is an essential component of CRULE’s

< ‘implementation. In this section we consider a discrete implementation of CRULE.

~-2.7.1 - Colour constraints

" The set containing descriptors for all surfaces (of all objects) viewed under the canon-
1ca11]lum1nant is called the canonical set, C' = '{il,d?,r- .- ,_dm }. An arbitrary scene
: “,'(::'ornfafim;'ng‘ (n < m) distinct surfaces under a single illuminant ! generates n image
: 73'-7\}e¢to.rs ,IV = {p',p* ---,p"}. Colour constancy is achiéved if we can match each
o Ei' to its corresponding canonical descriptor ij . The set of all matched canonical de-
scriptors is called a canonical labelling and is denoted L (L is a subset of C'). Colour

| - constancy can be considered as a mapping D of I to C,i.e. D: I — C.

~ Since we are assuming a diagonal matrix model of colour constancy then ¢’ = Dp'.
For each p_i there are m possible candidates for D; each image descriptor can be

‘mapped to every member of the canonical set. However each candidate illuminant

transform D must map all image descriptors onto the canonical set.

2.7.2 The Algorithm

Let the set of possible illuminants (diagonal matrices) which map the ith image re-
sponse vector onto the canonical set be denoted D; (The sets D; are easily constructed
from equation (2.16)). A diagonal matrix, 7, which maps all elements of I into C
must be a member of every D;. We can enumerate the set of possible transforms by

evaluating:
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j=1
Given a valid D it is straightforward to find the canonical descriptors which correspond
to each image descriptor.

A diagonal transform is an approximate model of colour constancy. Hence the
intersection of equation (2.24) must deal with the model error; two transforms are
considered equivalent if their difference is within model error limits. In section 5, for
‘a set of synthetic Mondriaans and the camera sensors, we use the discrete CRULE as

a preprocessing stage for Colour-indexing. Good results are reported.

2.7.3 Discussion

There may be sufficiently restricted identification domains where CRULE can be used.
For example consider the object set containing only cereal boxes. If these are always
~frontally placed with respect to the camera then the discrete CRULL algorithm might

Qork. Unfortunately, for most real sets of objecfs CRULE algox'itl]m is unlikely to
“work. A summary of the main reasons for failure (and of the problems to be overconie)

are given below:

1. Most objects are 3-dimensional and as such violate the Mondriaan world as-

sumptions.

2. Response vectors can be the result of many confounding processes: including
mutual illumination and specularities. These processes acting in local regions
of the image have a global effect. Information from all image locations is used

as a constraint in CRULE.
3. Background colours may not be in the canonical set.

4. The size of the canonical set can be very large. A larger set implies that there
will be a greater number of possible constancy transforms. (As the number
of colours becomes large it is pertinent to switch from the discrete CRULL

described above to Forsyth’s infinite colour CRULE.)
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The discrete CRULE can also be used if every image contains a set of reference
colours at a known location. In this case the cardinality of C and Z are the same (the
number of reference colours), and hence equation (2.24) returns a unique diagonal
transform. Unfortunately, placing known reference colours in every scene imposes a
strong constraint on the world; this imits the usefulness of colour indexing.
 Swain also suggests using this reference colour constraint. In particular he proposes
to solve for the constancy transform with Novak and Shafer’s [26] “Supervised colour

constancy” algorithm. Unlike CRULE, this algorithm has not been shown to work on

" real images.



Chapter 3
Robust Object Identification

‘Swain’s Colour-indexing algorithm is remarkably robust to many changes in v;’isnal ,
context: including object deformation and occlusion. However, if the colour or inten-
sity of the illuminant changes then Colour-indexing performs poorly. Theoretically the
effect of the illuminant can be discounted by applymg a colour cc}nsta,ncy a]gorithnﬁ
to each image. Unfortunately, the colour cons,té,ncy— pl‘lee'xll is underconstrained,

To solve for the constancy transform assumptions are made about the world.
These assumptions dictate the types of objects which can be identified with Colour-
indexing -+ colour constancy preprocessing. Almost all colour constancy algorithmns
place strong constraints on the world; these constraints are not satisfied by realistic
object sets. Weakening these assumptions, as in Forsyth’s MWEXT and CRULL,
leads to many candidate constancy transforms. There appears no way to find the
correct transform from this candidate set. Further there, is as yet, no colour con-
stancy algorithm which can work in an unconstrained 3-dimensional world. Thus we
conclude that colour-indexing cannot reasonably be extended with a colour constancy
preprocessing stage.

The failure of colour constancy algorithms leads to a new approach for robust
object identification. We propose indexing, not on colours, but rather on iluminant-
invariant, or colour constant, image features. The new approach is called Colour
constant colour indezing and is the major contribution of this thesis. For the rest of

this section we assume that a diagonal matrix transform is a reasonable model for

b
(@]
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colour constancy. This is clearly true for the camera sensors.

3.1 Opponent Invariants

. " ‘Hering(1878)[14] proposed that “opponent” combinations of the cone responses are
" the basis for colour perception. These opponent combinations are named red-green,
L blue-yellow and white-black (r-g,b-y,w-bl). The idea is that the two colours in each

opponent channel compete against each other. For example if the red cone is strongly

i stimulated and the green cone is weakly stimulated then the r-g opponent channel will

,gixfe a strong response. The w-bl channel encodes brightness information. Faugeras[9]
proposes that the opponent channels are implemented as linear combinations of the

* logarithm of trichromatic responses:

r—g = log(r) —log(g) = r—g=1log(r/g)
y — b=log(r) — log(b) = y — b= log(r/b)
w — bl = alog(r) + Blog(g) 4 ~log(b) (3.1)

" One of the advantages of this formalism is that the r-g and y-b channels are
‘~,y“i"1'1;rc'lependent of the intensity of the illumination. An intensity change k corresponds
to-a scalar multiplication of the original trichromatic sensor channels: kr,kg and kb.
Hence in the r{g and y-b channels the k& component cancels; since multiplication is
| aﬁiﬂitioxi under the logarithm operator. Faugeras hypothesises that, in the biological
"sé'tti’ilg, the the w— =&l channel is also illuminant invariant via lateral inhibition between
retinal responses. This refers to the idea that the difference of the w—bl at two different
retinal locations is independent of the illuminant intensity.

If changing the colour of the illuminant is modelled well by a diagonal matrix
transform then all three opponent channels with lateral inhibition are colour constant.
To illustrate this consider the r — g channel when the colour of the illuminant changes.
The change is modelled by multiplying the r channel by k; and the ¢ channel by k,.

The difference in the r — g channel at two retinal locations, ¢ and b, is written as:
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log(rak1) — log(gak2) — (log(rukr) — log(guk2))
= log(ra) ~ loglgu) — log(rs) + log(gs) = log(-* %)

Faugeras’ opponent channels, with lateral inhibition, are invariant to a changing
& ' ging

(3.2)

illuminant. Hence this opponent model performs a partial form of colour constancy;
colour constant descriptors encode information of one colour relative to another. Nev-
ertheless these illuminant invariant features provide a rich source of colour constant
information. As such they are candidate features for object recognition.

Swain|[28] investigated an opponent transform for Colour Indexing. However, his
opponents are linear combinations of the sensor channels (no logarithms are taken) at
~ unique image locations. In this framework the opponents are not independent of the
illuminant. Unsurprisingly Swain’s opponent transform does not significantly alter

the performance of colour indexing with respect to illuminant change.

. 3.1.1 Double Opponent Cells

Faugeras proposes that lateral inhibition i1s implemented as a low frequency atten-
uating filter. More recently Hurlbert[17] has investigated opponent invariants. Ier
model is also based on a low frequency attenuating filter-—the Laplacian of the Gaus-
sian. (LOG). She proposes that this filter is implemented, in humans, by the double-
opponent cells.

At an early stage of post-retinal computation, area V1 in the visual cortex,
double-opponent (DO) cells have been identified[16]. These cells have spatially- and
chromatically-opponent concentric fields, the centre and surround, each fed by two
cone types. For example, the R+G—/G+R— cell has a centre which is excited by
long-wavelength light and is inhibited by medium-wavelength light. Its surround has
an inverse excitation and inhibition.

Hurlbert[17] analyses the operation of the R+G—/G+R— cell as:

O = G*‘V?log(g) = G+ log(R) — G+ log(C) (3.3)
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G is a Gaussian (smoothing) filter; + denotes convolution; 572 is the Laplacian
operator and O is its output. Equation (3.3) calculates the Laplacian of log(g),
log(%) = log(R) —log(G), at each point in the visual field. LOG filtering removes the
zero frequency component, which in this case is the illuminant, and returns illuminant
invariant descriptors. Assuming a spatially varying illuminant the LOG operator

must have a small support. The Faugeras y-b and w-bl channels are also illumination

invariant under LOG filtering.

3.2 Ratio Invariants

- Colour ratios are approximately illuminant invariant; this is implicit in the derivation
- of the opponent invariants but follows immediately from the diagonal transform model
of colour constancy. Consider the ratio of responses in a single colour channel at

_positions z; and z,:
di' = apy' A = apy’
d;? e
== (3.4)
k P
Ratios of 3-vectors are illumination invariant and form the backbone of colour

constant colour indexing. Ratios have a number of favourable properties:

1. ratios can be calculated locally.
2. illumination is only constrained to be locally constant.

3. surfaces in a local neighbourhood will tend to be at similar orientation with

respect to viewer and illuminant. Thus ratios will tend to be view point inde-

pendent.

4. ratios encode spatial and colour relationships.

Simple colour ratios also have favourable error properties; especially when com-
pared with the opponent invariants. The question of error is considered in the next

two sections.
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% range of fitted relative error

red green blue

CIE A | [[1.2,1.2] | [-7.3,13.9] | [-3.1,4.4]
36K [-0.6,0.6) | [-3.5,6.8] | [-0.2,0.7]
D48 [-0.3,0.2) | [-1.1,1.6] | [-1.3,1.3]
D65 [-0.2,0.3] | [-1.8,1.3] | [-1.2,1.3]
D75 [-0.4,0.4] | [-3.1,2.2] | [-2.0,2.1]
D1oo | [-0.5,0.6) | [-5.3,3.9] | [-3.1,3.3]

Table 3.1: Range fitted relative error in the red, green and blue channels for the
camera sensors

3.2.1 Ratios and error

Since a DMT is an approximate model for colour constancy each colour ratio will be
constant only within certain error bounds. There is an 1mportant connection between
relative error of fitted responses and the error in colour ratios which will allow us to
use the experiments of chapter 2 to estimate the error in colour ratios.

- First we should distinguish between the notions of absolute and relative error. Let
us consider the 3-vectors p and ¢ where p = ¢. There are two methods to determine
how closely p and ¢ match. Absolute error is concerned with the distance between p
and g. Suitable distance measures (or metrics) include 30 |pi—¢i| and 0., (9 —qi)*.
The fitting experiments of section 2.3.1 minimise the sum of absolute errors in the
best diagonal fit.

However when we compute the ratio of two response vectors we are more interested
in the relative error of the result. Relative error compares the ratios of fitted responses
p and ¢ to the unit vector (vector components are divided). Suppose sensor responscs
lie in the range {0, 100] then the absolute error between responses 0.5 and 0.2 is small.
However, the relative error is very large—more than 100%. Relative error between
fitted variables can be large only if the variables have small values. In Tables 3.1
and 3.2 we show the maximum fitted relative error for the camera and Vos Walraven
sensor sets, for each illuminant.

The maximum relative error shown in Tables 3.1 and 3.2 refers to single surface

reflectances and corresponds to the ratio of a fitted 3-vector with its corresponding
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% range of fitted relative error

red green blue
CIE A | [-19.3,25] | [-17,19.2] | [-6.5,22.6]
36K [-10.1,12.1] | [-9.1,9.8] | [-1.5,7.9]
48K [-3.1,4] | [-3.1,2.6] | [-1.9,3.9]
D65 [-3.9,3.3] | [-2.8,3.6] | [-3.7,1.§]
D75 [6.4,58] | [-4.8,6.4] | [-6,3.1]
D100 [-10.2,9.9] | [-8.1,11.3] | [-9.2,4.9]

o VQS‘ Walraven Fundamentals

% range of ratio error

red green blue
CIE A [[2324] | [187,220] | [7.1,7.7]
36K | [1.2,1.2] | [9.7,00.7] | [-0.9,0.9]
D48 | [0.5,0.5] | [2.6,2.7] | [-2.53,2.59]
D65 | [0.505]| [3.0,3.1]] [-2.5.2.53]
D75 | [0.8,08] | [5255 | [4.1,4.2]
D100 |[-1.1,1.2] | [8.9,9.7 | [-6.2,6.6]

~. . sensors

“.descriptor. Let p*' and p™ denote responses in a single sensor channel corresponding

Without loss of generality assume ap™ = (1+€%1)d® and ap® = (1—&%2)d** where
¢™ is the maximum positive fitted relative error and £*2 is the minimum negative fitted

relative error. We can write the ratio Z in terms of d** and d*2 and thereby make a

ap.’II] o~ d.’ltl

xr
pl‘

o fd:e:sfcri'pt;ors. Let a be the coefficient which best maps p®, p* to d=t, d®2:

, ap:l:z I~ d:l:g

az

statement about ratio constancy relative to o

d*
——— [ad

dz2

(1 +7)d=

(1 —eg=2)d>2

33

Table 3.2: Range of fitted relative error in the red, green and blue channels for the

“ Table 3.3: Range of errors for ratios in the red, green and blue channels for the camera

to two surfaces viewed under some illuminant and d** and d*2 are their canonical

(3.5)

(3.6)
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% range of ratio error

red green blue
CIE A [ [35.4,54.8] | [30.4,43.7] | [23.8,31.9]
36K [-19.8,24.7] | [-17.3,20.9] [-8.7,9.5]
48K [-6.8,7.3] [-5.6,5.9] [-5.6,5.9]
D65 [-7.0,7.5] [-6.2,6.6] [-5.4,5.7]
D75 | [11.5,13.0] | [10.6,11.8] | [-8.9,9.7]
D100 | [-18.3,22.4] | [-17.5,21.2] | [-13.5,15.5]

Table 3.4: Range of errors for ratios in the red, green and blue channels for the Vos
Walraven Fundamentals

It is clear that this ratio has a higher relative error than ap®. During a least-
squares fit there will be at least one response fitted above (greater than) its de-
scriptor and one response fitted below. Choosing the maximum positive and the
maximum negative fitted errors,ear and e, we can bound the errors of colour ratios:
[Ztuztm emtem) Gee Tables 3.3 and 3.4.

d4epr ? 1—em

- 3.2.2 Relative error of the Faugeras invariant

From the discussion in the last section it follows that the Faugeras opponent invariant,
introduced in equations (3.1), can have higher relative error than single channel ratios.
Let us consider the r — g channel response at adjacent retinal locations = and z;. We
denote the error in the red and green channels at z, as €7* and ¢}'. Similarly at z;
the error is €72 and €7?. Rewriting the Faugeras r — g invariant making error terms

" explicit (where r and ¢ denote descriptors in the red and green channels):

roge (14 e8)(1+e37)
rerge (14 ez)(1+ e21)

Clearly if €f* and €22 are both positive and, e7? and €7' are both negative the

(3.7)

Faugeras invariant has a positive error larger than either e or €5?. A similar argument,
holds for an increasing negative error. Clearly the error performance of the Faugeras
invariants is linked to the correlation of errors in different sensor classes.

Table 3.5 shows the minimum and maximum errors for the r — ¢ and y — b
g

Lthe error data in Tables 3.5 and 3.6 refe: to the exponent of the Faugeras channels. This ensures
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% range of opponent error

r—g y—2b

CIE A | [-18.6,22.9] [-8,8.7]
36K [-9.7,10.7] [-1.5,1.6]
48K (2.7,2.7] [-2.6,2.7]
D65 -3,3.1] [-2.5,2.6]
D75 [5.2,5.5] [4.1,4.3]
D100 [-8.9,9.8] [-6.3,6.7]

Table 3.5: Range of error in the r — g and y — b channels for the camera sensors

% range of opponent error

w — bl r—g y—2b
CIE A | [-32.4,47.8] | [-15.1,17.9] [-37,58.7]
36K [-17.7,21.6] [-8.2,9] | [-20.2,25.2]
48K [-6.0,6.4] [-3.1,3.2] [-7.7,8.3]
D65 [-6.3,-6.37] [-3.3,3.4] | [-7.86,8.53]
D75 [-10.6,11.8] [-5.5,5.8] [-13,14.9]
D100 | [-17.0,-20.5] [-8:9,9.8] | [-20.3,25.5]

able 3.6: Range of errors for the Faugeras opponent invariants for the Vos Walraven

" Fundamentals

iﬁvariants for the camera sensors. The y — b invariant performs significantly worse
than both the red and blue ratios; the 7 — g invariant performs worse than all three
colour ratios. Thus, for the camera sensors, we conclude colour ratios are a more
~stable index than opponent invariants.

In Table 3.6 the errors in each of the Vos Walraven opponent channels are shown?.
Clearly both the y — b and w — bl invariants exhibit poorer performance compared to
colour ratios. In contrast the r — g channel is less affected by error than all the colour
ratios and can be considered as a possible index. However taken together the set of
Faugeras opponents are not a suitable basis for colour constant colour indexing with

the Vos Walraven sensors.

a fair comparison to the errors present in simple ratios
*The coefficients of a, 3 and 7 defining the w — bl channel of equation (3.1) are set to 0.612,
0.369 and 0.019. This linear combination best matches the performance of the relative luminance

efficiency function—V*(A).
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3.3 Volumetric Invariants

Brill{6] develops a theory of colour constancy based on volumetric invariants. Let

P1, P2, P3, P4 denote the response vectors of 4 distinct surfaces viewed under the same

illuminant; M;;r denotes the matri~: whose columns are p;.p; and pr. The volume of
1 J P: 7p_7

the parallelepiped bounded by the columns of M;;; is equal to:

Vijk = Det(./\/i,-jk) (38)
where Det denotes the determinant function. The volumetric invariant is the rvatio
of two such volumes: %‘f}f To illustrate lluminant independence consider applying a
linear transform 7 to the original sensor responses: Under 7 the volumetric ratio is

written as:

Vijk Det(’TM,-jk) _ Det(T)Det(M;jk)
viii  Det(TMi) — Det(7 )Det( M)

Clearly Det(7') cancels from top and bottom implying illuminant invariance.

(3.9)

A general linear transform always performs at least as well as a diagonal transform
in solving for colour constancy. This is especially true for the extremes in illuminant
colour—CIE A and D100. Thus while colour ratios calculated under D55 differ {rom
those calculated under D100, volumetric ~atios remain unchanged.

Unfortunately to calculate volumetric ratios there must be at least 4 distinct
colours falling in a small neighborhood of the image. Such colour complexity is un-
likely; as such we predict that volumetric ratios, used by themselves, would yield poor
identification success. However they do provide useful extra information; in particular

volumetric ratios encode the interrelationships of 4 surface colours.

3.4 Colour Constant Colour Indexing

All three invariants: ratio, opponent and volumetric are candidate indices for object
identification. However, because opponent invariants have poor error properties and
volumetric invariants require high colour complexity, we propose indexing only with

colour ratios.
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Ratios are efficiently calculated in log space via a simple differencing convolu-
tion operator. This differencing is, in effect, the derivative of the log-colour image.
Unfortunately the first directional derivative is non-isotropic and this could lead to
orientation affecting object recognition. Natural choices of isotropic operators include
the magnitude of the gradient or the Laplacian. We choose the Laplacian, or more
precisely the Laplacian of the gaussian (LOG) so as to include smoothing, because
it 1s simpler to compute and it has a theoretical relationship to the centre surround
cells of the human visual system[24].
~ The LOG operator calculates a weighted average of log differences occurring in a
circular field about each image point. Since addition and subtraction in log space cor-
responds to multiplication and division in non-log space the LOG operator effectively
calculates a product of ratios, where each ratio is raised to the power of its weighting
coefficient. Each ratio in this product factors out illumination and hence we are as-
sured of the illuminant invariance of the LOG index. Moreover close to the boundary

“between two coloured regions the LOG operator calculates the weighted product of a
single ratio. As such we consider the LOG operator to calculate information similar
to explicit ratios.

The simplest Laplacian filter can be written as (—40,0,1-10, lo,—1, 101, 11,0), where
—~dp o denotes a weight of —4 at mask location (0,0). If ¢f denotes the logarithm of pf
then the Laplacian at image location (z,¥) is calculated as —4i7"¥ + ¢f ¥ 4+ 157! +

41 241, ..
VT 4+ 47T In non-log space this is equal to:

-1y z,y—1 zy+l z+l,y
Dy Py Dy P
T,y T,y LY LY
Dy Dy P P

Colour-constant Colour indexing proceeds in three stages:

I. Logarithm step

1 <= log(py)) k=1..3

[1. Laplacian convolution step

i« VG« k=1..3
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L
o

ITI. Histogram step

Steps I and II represent the only additional computation required to obtain il-
lumination independence. The logarithm in Step I can be done by table lookup in
hardware and the Laplacian in step Il is a separable convolution. As for Hurlbert’s
opponent invariant, the LOG operator must have a small support so as not to violate
the assumption of constant illumination.

We call the histograms of LOG triples ratio-histograms. The count in a ratio-
histogram bin conveys information, not about colour areas, but about colour bound-
aries. There are various representational issues resulting from the switch from colours
to ratios. These are discussed in Chapter 4. In a number of different experimen-
‘tal conditions colour constant colour indexing performs well. The experiments and

results are presented in Chapter 5.

3.5 Colour Constancy by Object Identification

Algorithms which solve the colour constancy problem all make assumptions about, the
world: retinex assumes that each scene contains a uniform reflector and CRULE has
previously seen all surfaces which make up the world. If every world scene contains a
model object, at a known location, then colour constant colour-indexing can be used

as a preprocessing step for colour constancy. Consider the following algorithm:

1. Focus attention at a known location.

[Su]

. Identify object at this location using colour constant colour-indexing.

3. Solve for the constancy transform.

.

. Apply this transform to the image thereby generating colour constant descrip-

tors.

Although we do not propose the above as a model for colour constancy, it is
interesting to note that Swain requires colour constancy to achieve object identifi-

cation whereas we can obtain colour constancy as a result of object identification.
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The psychophysical experiments of Arend and Reeves and of Craven and Foster, both
implicitly address these computational issues in the framework of human vision. We

provide a summary of their results in the next section.

3.5.1 Psychophysical Experiments

~Machine and human vision share many common goals. As such, studies of the human
visual system are often of consequence to machine vision. This is true in the field of
_active vision—where the goal is to solve specific problems quickly. Colour indexing
~ and colour constant colour indexing both solve the active vision task of identifying

a known object (the object is assumed to belong to the set of model objects) at

. .a known location.. Both algorithms address the colour constancy problem. Here

" we report on psychophysical experiments which partially address identification and

colour constancy in the framework of human vision.

-+t Arend and Reeves[l] conducted experiments investigating simultaneous colour con-

~* stancy. They wished to determine if the human visual system solved the colour con-

“stancy problem via simultaneous mechanisms—that is primarily in terms of the spatial
“interactions among cone responses at different retinal locations, where the eye does not
temporally adapt®. In their experiments an observer is shown two Mondriaans. The

first Mondriaan, the standard, contains n surface reflectances, Sy (1), S2(A), -+, Sn(A),

- “illaminanted under E®()) (correlated colour temperature of 6500K). The second

,Mbndriaan, the test, is identical to the first except that the incident illuminant is
e E'0()) {correlated colour temperature of 10000K) and the ith patch, the match, is
initialized to Sg(x\)%%%; the zth patch in both Mondriaans reflect the same colour
signal. (Changing the match reflectance to S;(\) should render both Mondriaans
identical).

Two matching experiments are carried out: chromaticity matching and paper
matching. During chromaticity matching the observer is instructed to adjust the

chromaticity of the match colour signal such that the ith patch in the test Mondriaan

SLand’s retinex algorithm is an example of a simultaneous colour constancy algorithm
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appears the same as the ith patch in the standard. Colour constancy in this experi-
ment is poor: the observers do not, significantly, alter the chromaticity of the match
colour signals. This suggests observers see colour signals not surface reflectances.

In the paper-matching experiment the observer is instructed to alter the chro-
maticity of the match colour signal such that the ith patch in the test Mondriaan
looks as if it were cut from the same piece of paper as the corresponding patch in the
standard Mondriaan. To aid this matching the observer is encouraged to examine the
relationship between colours. Here colour constancy is good.

These matching experiments have two implications:

1. The human vision system does not exhibit simultaneous colour constancy

2. Surface reflectances (or materials) can be correctly identified by examining their

relationship with other surfaces.

Both these observations favour Colour constant colour indexing. We abandoned colour
constancy preprocessing as we judged it to be unattainable. Further colour ratios
- encode colour relationships between surface reflectances.

Craven and Foster[7] have investigated the problem of operational colour con-
stancy; they pose the question “Can a human observer distinguish between illuminant
and reflectance changes?” Their experimental setup is similar to Arend and Reeves.
A standard Mondriaan, under a fixed illuminant, is a constant in all experiments. For

brief time periods the observer is shown a test which is either:

1. the same Mondriaan under a second illuminant.

2. a Mondriaan with the same spatial pattern but where reflectances are altered.

The observer is asked whether the test and standard Mondriaans differ because of
an illuminant or surface change. In all cases observers correctly distinguish between
illuminant and surface changes.

This experiment serves to strengthen the work of Arend and Reeves-—a changing

illuminant is identified, and hence colour constancy is not an instantaneous effect.
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Moreover the whole test Mondriaan is rapidly matched to the standard suggesting an
internal colour constant representation. The LOG of the log colour image, or IFaugeras

opponent channels, are suitable vehicles for explaining this experiment.




Chapter 4
The Ratio Representation

Switching from colour triples to colour ratios raises several representational issues.
Firstly if all colours appear in the world with equal likelihood then this implies the
distribution of colour ratios is non-uniform. This is clear from the following simple
| example. Imagine that colours, in a single sensor class, dre integcfs in the interval
. [1,3]. Since all colours are equally likely the following ratios will occur with equal
probability: 2,122 2 23 3 3 T4 follows that ratios close to I are more likely than
ratios close to 3. This simple illustration implies that the ratio histogram should
sample ratio space non-uniformly. ,

We begin this chapter by formalizing the intuition given above. A simple proba-
~ bility model is developed which allows us to solve analytically for the distribution of
colour ratios. Thereafter we design a ratio histogram which is optimally sensitive to
ratio space: that is, under the assumptions of the model, a randomly generated ratio
will fall in each bin with equal probability.

The experiments of section 3.2.1 indicate that colour ratios are only constant
(illumination invariant) within certain error bounds. This implies that under two
illuminants the same colour ratio may fall in different histogram bins; we call this
shifting ratio migration. Including ratio error bounds into our probability model allows
us to examine ratic migration in detail. In particular, we estimate the probahility of
ratio migration for different bin distributions.

The chapter concludes by discussing the implications that the nonuniform ratio

42
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distribution and ratio migration have for Colour constant colour indexing.

Note Colour Constant colour indexing indexes not on colour ratios but rather on
the LOG of the log-colour image. Clearly these two indices are related. The LOG
operator calculates a weighted average of log differences (or ratios). Thus although

this chapter deals explicitly with ratios, we expect our results to apply to the LOG

index.

4.1 The Probability Model: for Colours

Let us assume that all colours (sensor catches) appear with equal likelihood; that is

~ colours belong to a uniform probability distribution. Formally we write:

pe € U(L,V) (4.1)

fi “hlch reads, the sensor catch py is a random variable belonging to the uniform distri-
~ buition defined over the interval [1,V]. In simpler language an arbitrary sensor catch
o - - will have each value between 1 and V' with equal probability. The probability that a

" colour less than X is recorded is equal to:

X-—-1
V-1

Since all colours are equally likely each sensor channel must be independent.

Pr(pi < X) = (4.2)

T ,T}lerefore the probability of the response vector p being less than (X,Y, Z)* (where

corresponding vector components are compared) is calculated as:

(X -)E¥-1EZ-1)
- (V=1

A cautionary remark should, at the outset, be added to the above model: the

(4.3)

Pr(p < (X.Y, Z)"))

assumption of a uniform distribution of colour-vectors is strong and is, in reality,

cereal boxes etc.—then bright

unlikely. Consider the domain of consumer products
high contrast colours, reds and yellows, are more likely to occurs than browns and
mauves. Further the responses in different sensor channels are likely to be correlated.

However, Swain’s colour histogram uniformly samples colour space; this coupled with
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the success of colour indexing makes a uniform colour space a reasonable assumption

for analysis.

4.2 The Ratio Distribution

The ratios % and § contain the same information; hence we define the ratio index
to be max(4, A) bnder this definition ratios of sensor catches will also fall in the
interval [1, V] but the corresponding probability distribution is non-uniform. What is

the probability that max(4, £) is less than R?

A B 5«
B’ A
Let R =+ (R € € [+, 1]) then we calculate the probability of 4.4 as:

Pr{max(— R) (1.4)

/ 1 « o
Q*Pr(% SRNA<B) = 24(5 - Pr(~ <R NA<B) (4.5

Pr(-<R’ N\ A<B) = Pr(A< R'B) (4.6)

Assuming that A and B belong to the uniform distribution U{m, M ):

' ! Mo ! 47
PI‘(;‘l(RB) = m/;n (1‘ ——}—E;)(a ( . )
Pr(A < R'B’ L (M?R’ M +m2) (4.8)
W = = FivEii o 4,
' )= i 3 Sy

Substituting M = V., m =1 and R’ = 4 into equation (4.8) and substituting {4.8)
into equation (4.5):

A B 1 v .
P —,— <R‘:—--—-V 1 - R-— 4.9)
We can solve for the density fur ctlon d(R), of ratios by differentiating equa-
tion (4.9) with respect to R.
1 VE
dR) = ——[—= —1] (4.10)



CHAPTER 4. THE RATIO REPRESENTATION 45

4.3 Optimal Bin Distribution

. Equipped with the cumulative ratio distribution, equation (4.9), we can calculate the
optimal distribution of histogram bins: ratios should fall in each histogram bin with
jequa,l probability. Intuitively this definition of optimality appears reasonable since if
most ratios were mapped to a small subset of the histogram bins then this implies

- different objects would yield similar ratio histograms.. However we strengthen this

 intuition by appealing to the information theoretic notion of entropy.

- Let the histogram H contain n bins in each dimension (or sensor channel) giving a

" total of n° bins. The event hijk, that a ratio is mapped to the histogram bin H(z, 7, k)

':,:-ou,ulﬂ; with probability P, where 3°7; , Pijx = 1. Since we know the distribution

"‘of 'ratlos, we can calculate the probability of a ratio sequence and thus a particular
Wy‘rrjrhriis'togra,m. Here we are assuming that we know the number of distinct edges which
~_contribute to a particular bin! The information contained in a histogram representing
' mdlstmct ratios is equal to m *entropy(h), where h is a random variable defined over

he set of events h,‘jk.

entropy(h) Z —Pijx log,( Pijx) (4.11)

;.71

Entropy is a measure of the average cost of (optimally) encoding each event. Thus

,f\n’z,"*fént‘ropy(h) is the least number of bits required to encode a histogram with m

| ,‘ raf}os;rrl'f V(,4,k) Pjx = ;113 then entropy(h) is maximum[23], and hence the ratio

,.'~'Hi5togran1 conveys the most information. Thus an equi-probability partitioning of

ratio space is optimal.
Let there be n bins per sensor channel, where the 7th bin is sensitive to ratios in

the interval [z;_y,2;] (¢ = 1 and z,, = V). For each z; we must satisfy

Pr(max(%,—ii)) €[l,z] = —:; (4.12)

'In reality we cannot distinguish between coloured edges with the same raio triple. However,
during histogram matching, this information is partially known. If a histogram bin in one histogram
represents 3 edges-and has a count of 100 then the corresponding canonical histrgram will have a
similar bin count in the same bin!.




CHAPTER 4. THE RATIO REPRESENTATION 46

which implies

9 .
W_l_—l)?(vﬁ—m-m,-—:—i) - ‘Ei (4.13)

Equation (4.13) can be written as a quadratic in z;. Thus by finding the roots of
equation (4.13) we solve for the bin boundaries ;.

The above analysis is sufficient for images with only two colours and hence a
single edge. If however we introduce a third colour C then the ratios % and % cannot
strictly be considered independent. Incorporating this dependency into the model is
non-trivial and will not be considered further here. This dependency disappears if

we restrict our attention to the subset of image ratios where all denominators and

numerators are unique sensor catches.

4.3.1 Optimal Bin Distribution for Camera Sensors

In real images under different illuminants the largest ratio is around 4.5. As,smning
* that sensor catches fall in the range [1,4.5] (which could be forced via appropriate scal-
: ihg) we can solve for the ratio distribution by substituting 4.5 for V in equation (4.9).
| This distribution is graphed in Figure 4.1. Using equation (4.13) we now solve for the
optimal distribution of histogram bins, where like Swain, we divide each ratio channel
into 16 bins. The character “O” demarcates bin boundaries in Figure 4.1; the bin

distribution is clearly non-uniform.

4.4 Ratio Migration

Sensor ratios are illuminant invariant within certain error bounds. Hence ratios can
migrate across bin boundaries as the illumination changes. We wish to incorporate
this ratio migration into our probability model. This will allow us to examine the

probability of ratio migration for different bin boundaries.
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Figure 4.1: Cumulative Probability distribution for colour ratios. Bin boundaries for
the optimal, uniform and experimental distributions are denoted by “O”,“U” and

D
4.4.1 The Distribution of the Migration Term

In section 3.1.2 we examined the connection between the relative error of fitted re-
sponses and the error in colour ratios (fitting refers to the optimal constancy transform
~ which maps sensor values under one illuminant to their appearance under canonical
lighting conditions). The relationship between fitted response and standard descriptor

is captured below:

dy ~ (1 +€)d; (4.14)

The constancy of equation (4.14) (the variance of the right hand side) is governed
by the migration term 1 + . Henceforth we assume the migration term of a sensor
catch, m* is a random variable belonging to the unifom distribution U(m, M) (m <
1,M > 1 and m, M > 0. (In reality the migration term will be peaked around one:
small errors are more likely than large errors. As such, assuming the migration term

belongs to a uniform distribution implies an overestimate of the error. This mmplies
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oL

the following is a worst case analysis).
B

YA
independent of the migration term of B (m?®). Hence the combined migration term

for R (mP®) falls in the interval [Z, ], We would like to know the probability that m”

is less than equal to some R, Pr(m® < R'). Assuming m® < 1 then this distribution

»

Given a ratio index R = max(4,£) we assume the migration term of A (m™1) is

is given in equation (4.8).

4.4.2 The Probability of Ratio Migration

Given the density function, d(R), of the ratio index, equation (4.10), coupled with the
distribution of the ratio migration term allows us to estimate the probability that a
ratio will migrate between histogram bins. We split this analysis into two parts: first
we determine the probability that a ratio shifts to a higher bin (positive migration);
thereafter we estimate the probability of a downward shift (negative migration).

Let us consider the positive migration of the :th bin (receptive to the interval
[zi—1,2:]). The minimum ratio, lying in this interval which can migrate upwards is

denoted Ry and is defined as follows:

;2 f ;% > 1w
Ry = M M (4.15)
z;—; otherwise

A ratio R drawn falling in the interval [ Ry, z;] can migrate upwards if and only if:

x;
mPR >z, = mft> —R’-

Since Pr(m® > &) = Pr(m” < f) the probability of positive migration in the ith

bin is defined by the integral:

T

i , R ,
Pr(r € [zioy, &) \rm” > z;) = / d(R)Pr(m" < ‘%)dll (4.16)

Ry
Let us now calculate the probability of negative migration for the same interval
[z;_1,7:]. Firstly we calculate the maximum ratio in this interval which can migrate

downwards. This is defined as:
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Ry = (4.17)

zi—l% if Ii% < z;
T; otherwise

A ratio R falling in the interval [z;_;, R;] will migrate downward if and only if:

Ti_y
R
Thus the probability of negative migration in the ¢th bin is defined by:

mPR <z, = mt<

T R R Ti~1
Pr(r € [zici, 2] Arm” < ziq) = / d(R)Pr(m™ < ——E-)dR (4.18)
Tiy

Assuming that there is no positive migration from the nth bin and no negative

migration from the Ist bin, the total migration probability is calculated as:

n

' n—1
Pr(migration) = > Pr(R € [vi1,i] A Bm™ > 2;) + 3 Pr(R € [zi1, 2] \ Rm® < 2,.1)
' 1=1
(4.19)

The probability that a sensor catch does not migrate is Pr(no migration) = 1 —

t=2

Pr(migration). Since the three sensor channels are assumed independent, the probabil-

ity that a colour ratio vector will not migrate, Pr(R unchanged), is (1—Pr(migration))?.

4.5 Experimental Results

Intuitively the analysis of 4.4 implies that the smaller the bin size the greater the effect
of ratio migration. Thus a ratio histogram robust to ratio migration should have a
small number of large bins. However the optimal bin distribution (4.3) is uneven and
includes many small bins— see Figure 4.1. Thus in designing a ratio histogram we

need to find a compromise between two conflicting goals:
1. partitioning ratio space into equi-probability regions.

2. minimising the problem of ratio migration.
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distribution | entropy | Pr(R unchanged)
optimal 12 0.43
uniform 9.34 0.689
experimental | 11.742 0.483

Table 4.1: Entropy versus Ratio Migration

For the camera sensors we calculated 3 different bin distributions: optimal, uni-
form and experimental. Each is graphed in Figure 4.1. (Note the same cumnulative
probability distribution is graphed 3 times. For display purposes the uniform and ex-
perimental distributions are vertically displaced. This prevents bin boundaries from
occluding each other). Like Swain’s colour histogram each ratio histogram is par-
titioned into 16 bins in each sensor channel yielding a total bincount of 4096. The
optimal bin distribution refers to the equi-probability partitioning of ratio space de-
fined in equation (4.13). By contrast, the uniform distribution is an equi-volume

partitioning of ratio space, where each bin is a cube. The last distribution, the ex-
| perimental, is implemented in Colour constant colour indexing. (The experimental
distribution achieved good match success for all our test imnages).

Table 4.1 tabulates Pr(R unchanged) for each distribution, where migration terms

39 41
41? 39

and correlates well with the experiments of 3.2.1). The second column of 4.1 displays

are drawn from | ] (this corresponds to a colour constancy fitting error of 2.5%
the entropy of each bin distribution. This table clearly illustrates the trade-off be-
tween discriminatory power (maximising entropy) and robustness to ratio migration.
The uniform distribution is the most robust to ratio migration but conveys least in-
formation. In contrast the optimal distribution, while maximising entropy, is least
resilient to ratio migration. The experimental distribution, implemented in colour
constant colour indexing, compromises between entropy and robustness. This com-
promise is clearly illustrated in Figure 4.1. Where the optimal bin distribution has
many small bins—and is especially susceptible to ratio migration—the experimental
distribution has fewer bins. In contrast, where the optimal distribution has few large

bins the experimental distribution samples ratio space more finely.
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The colour constancy fitting error for the Vos Walraven fundamentals is higher
than those for the camera sensors. Given fitting errors of 2.5%, 5% and 10%, Pr(R unchanged)
for the experimental distribution is 0.483,0.213 and 0.056. Given the decrease in ratio
stability with larger fitting errors, we predict that the Vos Walraven fundamentals

will perform poorly for extremes in illuminant colour (CIE A and D100).

4.6 Advantages of the Ratio Representation

Histograming colour ratios has several other advantages:

1. In a world of lambertian surfaces with point source illumination, the ratio of
response vectors, corresponding to two surfaces at the same orientation, is view-
point independent. This is easily demonstrated. Let v denote the illuminant
direction and n the surface normal. The the magnitude of the denominator and
numerator responses is proportional to v.n (the vector dot-product). This term

clearly cancels under the ratio operation.

[Nl
h

Ratios provide more information than colours because a single surface can con-
tribute to many ratios. Consider a n x n grid of coloured patches. If each colour
is unique then the grid contains n? distinct colours. However, counting only
horizontal and vertical edges, there are 2(n? — n) colour ratio vectors; all of

which can be distinct.

3. Ratio histograms, compared to colour histograms, are less affected by changes
in view depth (the distance between object and camera). Since the count in
a ratio-histogram bin is a measure of edge length and it is linearly dependent
on view depth. This compares favourably with a colour histogram bin which

measures area and is therefore proportional to the view depth squared.

4.7 Ratios and Histogram Intersection

Each bin in the ratio histogram is a measure of the length of a particular colour

boundary. However the first histogram bin, H(1,1,1), is sensitive to trivial colour
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ratios—those close to (1,1,1)% Trivial colour ratios correspond to regious where the
colour stays the same and are therefore a measure of area. This implies that two small
objects, seen on a large uniform background, will have a large intersection (in both
cases there are many trivial ratio vectors). This problem is prevented by removing
the first bin from the ratio histogram.

Ignoring trivial ratios implies different ratio histograms will have different total
bin counts. Thus care must be taken when normalizing histogram match values.
Swain normalizes to the total count in the model histogram. This normalization, for
ratio histograms, can result in highly colourful images being falsely matched to a less
colourful model. A similar problem occurs if we normalize to the total count in the
image histogram. Hence we choose to normalize on the maximum of the image and
model bin counts. This ensures a good match occurs only when the intersection is
large and both histograms are of similar size. Of course if we presegmented the model

images and removed information contributed at an objects boundary we could resort

- to Swain’s model normalization.

4.8 Ratios and 3D geometry

So far we have assumed that the numerator and denominator responses of each colour
ratio are drawn from surfaces with the same orientation i.e. we have ignored ratios
which occur in tandem with a changing surface normal. Consider two surfaces with

normals n; and n,y, where the light is in direction v. The corresponding sensor response

vectors are written as (r;.v)p, and (n;.v)p,. Their ratio vector is equal to:

(n10)p, 490
(ns-0)p, (4:20)

Since 323 is a scalar, the ratio vector normalized to unit length is invariant to
—2

the underlying 3D geometry. Under this normalization the ratio histogram encodes
2-dimensional information.
In real objects sharp changes in surface normal often do not coincide with sharp

changes in surface colour. For example, close to an orientation boundary, the front
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and side of a cereal packet may be the same colour. In this case only trivial ratios
(1,1,1)" will be scaled. If the objects in our database have many orientation edges

then the trivial axis, H(z,t,7), can dominate histogram intersection. In this case the

trivial axis should be removed.



Chapter 5

Test Results

The colour constant colour indexing algorithm performs well on a variety of real and
synthetic images. Objects are correctly identified despite substantial changes in the
spectral power distribution of the illuminant. Unsurprisingly, Swain’s colour-indexing
performs poorly when the illumination changes. It should be noted that in the tests
- of colour-indexing we use RGB histograms, not opponent-colour histograms (he tests
both) and prior background segmentation is not performed on the model images.

To evaluate colour constant colour indexing we first consider whether or not ratios
suffice for Swain’s original problem under controlled illumination. Second, on syn-
thetic images for which the surface reflectances, illuminants and camera parameters
can be completely controlled, we test how the two methiods compare. Using these
images we go on to evaluate the performance of colour-indexing + colour constancy

preprocessing. Finally, we test both methods on real images.

5.1 Tests of the Ratio Representation

Even if colour ratios are independent of illumination, this says little about ratios as
a representation for colour indexing. Are ratio histograms sufficient to discriminate
between a large number of objects?

To answer this question, we ran the colour constant colour indexing algorithm on

54
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the database of images Swain' used in his experiments. First, however, we eliminated
11 of Swain’s 66 model images having saturated responses, because ratios relative to

saturated pixels cannot be expected to be constant. For our test, then, the model

database contains 55 histograms and a second set of 24 different images of the same
objects is matched against this database.

Each algorithm’s match performance is assessed with reference to three indicators:
match rankings, percentile match and match tolerance. The position of the correct
match in the sorted list of match values is called its rank, so an image is correctly

identified if it has rank 1. The match percentile for each image is defined as ]NV:;,

where r is a rank and NV is the number of models. Each image is also matched with
a certain tolerance relative to the next best matching model. If the correct match
B has rapk 7 then the match tolerance is m; — m;_;, where m denotes match value. An
algorithm thé.t correctly identifies images most of the time, but with high a,veré,ge
~ tolerance, may be preferable to one that correctly identifies images more often, but
e wlth lower average tolerance. IFor each experiment we also calculated the variance of
- the tole'rance"s. In all cases the variance is small with respect to the average value.
Table 5.1 illustrates the match performance for four algorithms. Swain’s, ours
- with some Gaussian smoothing (LOG indexing), ours with no smoothing (simple
‘Laplacian indexing) and ours where we histogram explicit ratios. Firstly, as Swain
~ reports, colour-indexing works well. The second algorithm, colour constant indexing
. >VWith, sm‘oothing, shows reasonable performance—19 of the 24 images have 1st place
' ii’ﬁﬂkings. However, match tolerance is much reduced and, more importantly, two of

the images are very poorly matched—ranks of 18 and 27.

The poorer performance can in large part be attributed to the effects of too much
smoothing. Swain used reduced images of resolution 128 x 90, which is quite small
relative to the 9 x 9 Laplacian of Gaussian mask. Under these circumstances, colour
boundaries will not necessarily be examined in isolation, since the Laplacian operator
may straddle more than one edge at at time. To circumvent this problem, we evaluated
two further index sets: simple Laplacian filtering (no Gaussian smoothing) and vectors

of explicit ratios.

“The author is grateful to Michael Swain for providing his images.
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Algorithm Ist Rank | Other ranks | Av. Perc. | Av. Tol. | Var. Tol.
Colour Indexing 23 2 0.999 0.1212 0.005
LOG Indexing 19 3,5,18,27 0.961 0.0613 0.004
Simple Laplacian 21 2,3 0.997 | 0.0986 0.004
Explicit Ratios 22 2 0.998 | 0.1023 0.005

Table 5.1: Algorithm Performance : Swain’s Images

Histograms of the simple Laplacian of the log-colour image yield the results shown
in the third row of Table 5.1. We conclude that the simple Laplacian provides a
rich representation for colour constant colour indexing since performance is similar to
Swain’s colour-indexing.

For the ratio test adjacent pixels in 8 directions are ratioed. Of course, this ratioing
can be implemented by a series of directional ﬁrst-derivative convolutions on the Iog~
colour images. The performance for explicit ratios is similar to that achieved with the

simple Laplacian index—see the last row of Table 5.1.

5.2 Tests on Synthetic Images

" To the extent that changes in the spectral power distribution of the illumination
are modelled by a single scalar multiplication in each sensor channel, the ratio his-
tograms should be relatively illumination independent. To test whether the coefficient
rule approximation holds sufficiently for colour ratio indexing, we constructed syn-
thetic images using the measured spectra described in 2.2.1. These images are free
from noise, specularities and other confounding processes that could confuse object
identification. As such, they represent a minimal world for object identification.

Thirty synthetic Mondriaan objects were generated. Each Mondriaan has the same
overall size but contains between 4 and 10 {randomly selected) surface reflectances.
If a Mondriaan has m patches, then these are distributed according to the formula:
patches in z direction = [/m] and patches in y direction = f%ﬂ’] Patches are, as
far as possible, of uniform size. For example if mm = 7 then the Mondriaan has 3
patches in the first row, 3 in the second, and 1 in the third.

For each illuminant, images of the 30 Mondriaans were generated. To separate the
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Algorithm No. 1st Rank | Failures | Av. Perc. | Av. Tol. | Var. Tol.
Swain Colour Indexing 20 155 N/A N/A N/A
Colour Constant Indexing 180 0 1.000 | .568997 0.039

Table 5.2: Algorithm performance : Synthetic images

issue of brightness change from that of hue change in the illumination, the illuminant
spectra were normalized such that their squared area is one. Without loss of generality,
the Mondriaans imaged under D55 are used as the model set. Match results for Swain’s
algorithm and for colour constant colour indexing are given in Table 5.2. Note the
second column displays the number of match failures. An algorithm fails to identify
an 1mage if the intersection with the correct model is zero. If this is the case the
match rank is undefined.

As expected, Swain’s algorithm performs badly—155 of the 180 Mondriaans have

a zero intersection with the correct model. Indeed, colour indexing performs so badly

- that it 1s not meaningful to discuss average percentile match or average tolerance.

The need for some from of colour constancy is readily apparent.
- Colour constant colour indexing performs extremely well. All 180 Mondriaans are

c’orrecﬂy identified and with high tolerances.

5.2.1 Biological Plausibility

~ Using the Vos and Walraven[33] estimate of human cone sensitivities as sensors, we can
generate synthetic images and examine to what extent colour constant colour indexing
is affected by the choice of cones as sensors. In Table 5.3 we present the theoretical
performance results using the cones. The first row contains the match statistics for
all 6 test illuminants—i.e. 180 Mondriaans (setl). The second row contains statistics
for the test illuminants excluding CIE A and D100 (set2)—120 Mondriaans. CIE A
and D100 represent the extremes in the spectral variation of the illuminants.

A comparison of Tables 5.2 and 5.3 reveals that the broad-band nature of the cones
does impair the algorithm’s performance, but not by too much. Match performance
is increased when CIE A and D100—the two extremes of the spectral variation in the

illumination—are factored out. Lower rankings result and both the average match



CHAPTER 5. TEST RESULTS 58
Images | No. 1st Rank| Other Ranks | Feilures | Av. Perc. | Av. Tol. | Var Tol.
Setl 135 | 2-5,7,9,10,14,21 10 0.97 0.194 0.033
Set2 108 2,3,4,5,9,10 3 0.99 0.256 0.034
Table 5.3: Human Cone Performance

Sensors No. 1st Rank | Other Ranks | Failures | Av. Perc. | Av. Tol. | Var. Tol,
camera 180 0 1.00 | 0.416275 0.019
Vos Walraven 158 | 2,3,4,6,11,12,14 3 0.998 0.317 0.025

Table 5.4: Performance for colour-indexing + colour constancy preprocessing.

tolerance and average percentile match increase.

5.2.2 Colour Constancy Preprocessing

The total number of colours appearing in all the Mondriaans 1s small—exactly 40.
Further each Mondriaan has a simple geometric shape. Thus, from our discussion
of 2.7. the image of a Mondriaan taken under an arbitrary (but spatially constant)
illuminant can be transformed to its appearance relative to a canonical light. That
is, we can solve the colour constancy problem for the Mondriaan object set.

We experimentally examine the match performance of colour-indexing + colour
constancy (CRULE) preprocessing. The images are created as before: there are 30
canonical models and 180 test images. The match statistics for the camera and Vos
Walraven sensors are shown in Table 5.4.

With respect to the camera sensors, colour constancy preprocessing has a dramatic
impact on the performance of colour-indexing. Like colour constant colour-indexing,
all images are now correctly identified (this is in stark contrast to the figures of
Table 5.2). However on closer inspection of the data we sec that colour constant
colour-indexing matches objects with higher average tolerance—0.569 as opposed to
0.416. This disparity suggests that ratio histograms convey more information than
colour histograms. Indeed this was predicted in 4.6.

Match performance with respect to the Vos Walraven sensors compares favourably
with that obtained by colour constant colour-indexing (see Table 5.3). More Mondri-

aans are matched at 1st rank, there are less failures and both the percentile match
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Database | No. Ist Rank | Other Ranks | Av. Perc. | Av. Tol. | Var. Tol.
3600K 21 2 0.995 0.165 0.008
4200K 22 1.000 0.145 0.005
5400K 22 1.000 0.137 0.008
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Table 5.5: Real Images with Varying Illumination: Colour Constant Indexing

and average tolerance have increased. This success relative to colour constant colour
indexing is probably due to the small number of total colours. Consider that the
total number of colours were much larger. This implies there will be many candi-
date transforms which can map image colours onto the canonical set. Since there is
no effective means for choosing the correct transform, many false transforms will be
chosen adversely affecting match performance. This contrasts with colour constant

colour-indexing whose performance is independent of the total number of colours.

“,5.3 Tests on Real Images

Under three different colour temperatures (3600K,4200K and 5400K) pictures were
taken of 11 objects comprised of 3 T-shirts, 3 cereal/detergent boxes, 3 sweaters, a
Sun User’s manual and a child’s toy, for a total of 33 images. When the illumination
was changed, so were other viewing conditions; shirts and sweaters were deformed,
objects were rotated and occluded. The camera responds linearly with intensity and
its spectral response functions are as plotted in Figure 2.2.

Table 5.5 summarizes the match statistics for colour constant colour indexing.
A model database was constructed using the 11 images taken under one illuminant
and then the other 22 images were matched against it. This was repeated for each
illuminant. In the table, each row corresponds to a different choice of model database.
Performance is good and is independent of the illuminant.

Table 5.6 tabulates the results for Swain’s algorithm. While its performance is
poor under varying illumination, it 1s better than it might have been. This is partly
due to the experimental conditions under which the pictures were taken. The colour

temperature of the illuminant was changed by placing filters in front of the light
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Database | No. 1st Rank | Other Ranks | Av. Perc. | Av. Tol. | Var. Tol
3600k 14 25,7 0.90 0.08 0.008
4200K 10 2,3,6,7,8,11 0.768 0.066 0.007
5400K 10 2,3,4,8,11 0.80 0.071 0.008

Table 5.6: Real Images with Varying Illumination: Swain’s Algorithm

source. Unfortunately, these filters also diminished the intensity of the light. To
compensate for this, camera gain and aperture were adjusted. All pictures were made
to have pixels which lie close to the maximum camera response (i.e. 255). Both
aperture and gain adjustments are linear so should not affect ratio constancy.
Normalizing images in this way encourages Swain’s algorithm to work, since these
camera adjustments create an approximate form of colour constancy. Nonetheless,
even under these favourable experimental conditions Swain’s algorithm performs badly.
The optimal choice of model set appears to correspond to the 3600K illumination.
However, even here 36% of images are wrongly identified; this is extremely poor per-
formance given the small database size. Furthermore, a ranking of 5 or 7 out of 11 is

clearly unacceptable.

5.4 Histogram Intersection as a Metric

Swain demonstrates that if two histograms are of the same size then their intersection
is a distance metric. In particular, histogram intersection is equivalent to the scaled
sum of absolute differences, commonly referred to as the city-block metric. Consider

the intersection of two histograms M and I each with n bins.
n n
zf Z!’W,‘ ZZL' =T
i=1 =1

| QL
= 1=(IO\M) = 3= > |li— M

i=1
Since ratios close to one are ignored ratio histograms must be normalized to have
equal total bin counts. Results for colour constant colour indexing when this metric

condition is enforced are given in Table 5.7.
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Database No. 1st Rank | Other Ranks | Av. Perc. | Av. Tol. | Var. Tol.
Swain’s Images 22 5,8 0.992 0.098 0.005
Synthetic Images 180 1.00 0.558 0.034
Real Images 19 2 0.986 0.11 0.004

Table 5.7: Matching when Histogram Intersection is a Metric

It appears that colour constant colour indexing continues to work well. There is
a slight performance fall; however, this may not be surprising considering the type of
normalization. The results in Table 5.7 illustrate the stability of ratio histograms as a
context-invariant object descriptor. Since normalized histograms have constant size,
this stability suggests match performance could be increased by using a K-nearest
neighbour classifier. For a discussion of these classifiers see Duda and Hart[8§].

The model database for a K-nearest neighbour classifier contains the ratio his-
tograms of objects imaged in many different visual contexts. An image is identified
by examining the K best matches in this duplicate database. Of course, if all K
matches are of the same object then this is a strong match. In general, however, it
is sufficient to select the most numerous matched object as the identity of an image.
A K-nearest neighbour classifier requires that ratio histograms be a stable represen-
tation and that their intersection be a metric. We predict, but have yet to test, that
the performance of colour constant colour indexing will be improved if a K nearest
neighbour classifier is used. Swain’s method cannot be extended in this way, since

colour histograms are not stable under illumination change.



Chapter 6
Concluding Remarks

The work presented in this thesis can be extended in various ways. A more informed
data analysis would lead to an improved bin distribution for ratio histograms; this in
turn would lead to improved object identification. Identification success would also
be increased if colour areas and colour boundaries contributed to match success. We
discuss both of these topics in forthcoming sections. Thereafter we consider using
ratio histograms for the object location problem. The chapter concludes with a brief

summary of the possible applications for colour constant colour-indexing.

6.1 Data Analysis

The probability model introduced in chapter 4 assumes that both colours and con-
stancy fitting error are uniformly distributed. In reality these distributions are not
uniform. The probability model can be strengthened by making more informed esti-
mates about the ratio distribution and the variance of ratios over illuminant changes.
This can be determined experimentally.

A more accurate probability model would better guide the choice of bin distribu-

tion for ratio histogram. This in turn should lead to improved match success.
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6.1.1 Cluster Analysis

When histogram intersection is a metric it is reasonable to consider a K-nearest neigh-
bour approach to object identification (see 5.7). In this case the database contains
many histograms for each model (corresponding to a single object imaged in dif-
ferent contexts). There are a set of n histograms corresponding to the ith model:
M; = My, My, -+, My,. In this framework identification is a majority decision—the
most numerous neighbour of the image histogram identifies the object.

A priori to matching, the space of model histograms can be analysed to deter-
mine the likelihood of match success. If each model set occupies a distinct region of
histogram space then this favours successful identification. In contrast overlapping
model regions is indicative of match failures. This type of cluster analysis is useful in
evaluating different bin distributions. Further it can provide an upper bound on the
number of models which can be successfully identified (as the number of models in

the database increase, a false match becomes more likely).

6.2 Lexicographic ordering of colours

Ratio histograms and colour histograms encode related but different information
(there is no way to transform one into the other). Thus, an identification system
which makes use of both representations would yield improved match success. Unfor-
~ tunately such a system would necessarily be impaired by a changing illuminant—since
colour histograms are not illuminant invariant.

However by altering the implementation of histogram intersection colour his-
tograms can be matched independent of the illuminant. The invariance of colour
ratios follows from the diagonal matrix model of colour constancy:

&= = Dp® (6.2)

Another implication of equation (6.2) is that the lexicographic ordering of colours

under different illuminants is the same. For example:
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P<gEPnSanSpSa
= Dp <Dq (6.3)

Let us consider two histograms H; and H; corresponding to the same scene imaged
under two illuminants. Subject to the ordering of equation (6.3) let the string of non-
empty bin counts of H; be denoted 57; where S; = (¢1,¢2,-++,¢m), ¢ 1s a bincount
and m is the total number of distinct image colours. Hence because colour ordering
is maintained during an illuminant change S; = 5y.

In general the histogram string of an object viewed in different visual contexts is not
invariant. This is especially true when the object is occluded or when the background
varies, in these cases the set of image colours will change. However the problem of
approximate string matching occurs often in computing science. For example the
UNIX “diff” command finds the minimal difference between two text files. Histogram
intersection implemented as string matching will allow colour areas and colour ratios

to contribute to object identification.

6.3 Object Location: Histogram Back-projection

The object identification task implicitly assumes that there is a single object in
the field of view—histogram intersection compares single model histograms with the
colours in an image. Thus histogram intersection is a method for identifying an un-
known object at a known location. Swain[28] develops a method, called histogram
back-projection for solving the inverse task: identifying a known object at an unknown
location.

The location problem is solved in two stages. Firstly the colours which are being
searched for are highlighted—a highlight image, h, 1s constructed. Thercafter we
locate the object by finding the densest concentration of highlights in A.

Consider we are searching for the object whose model histograin 1s M in an image
whose histogram is I. We wish to highlight those colours in [ that are in correspon-

dence with M. The vehicle for this highlighting operation is the ratio histogram, R,
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defined below:

Lk
M’
If the image vector p® maps to Jop. then A* = Rg.. That is the highlight image is

&jk = min( 1) (6.1)

brightest where image colours correspond to model colours. Further the largest bright
region in h should correspond to the location of the model (all colours in this region
will be highlighted). The brightest region is found via mean-filter convolution.

Histogram back-projection should work equally well for ratio histograms. The
only difference is in the highlight image where coloured edges as opposed to coloured
areas are enhanced. Thus, although the focus of this thesis is object identification,
we predict that illuminant invariants provide a useful basis for the object location
prob.em.

In the context of the human visual system could histogram back-projection serve
as a mechanism for controlling eye movements? One problem here is that unlike
CCD cameras, the human eye samples each scene non-uniformly; the sampling rate is
inversely proportional to the distance from the fovea. However Swain has shown{28]
that colour histograms are a salient description for objects despite resolution and
hence are suitable location cues[30]. A similar study of the effect of resolution on
ratios would give insight on the suitability of ratio histograms for guiding visual

attention.

6.4 Applications

Swain proposes two applications for colour-indexing; we review each in relation to the
results presented in this thesis. Firstly Swain proposes that colour-indexing can be
used in automated check-out devices in grocery stores. Clearly from the results in sec-
tion 3, colour constant colour indexing should generally perform as well with respect
to this task—and in unconstrained illumination. However for objects with few colours,

for example fruit, colour constant colour-indexing will fail (since boundaries between
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different colours are required). For this restricted domain colour constancy prepro-
cessing may be possible and hence colour indexing employed. If the fruit is placed
on an unchanging multi-coloured background there is sufficient colour complexity to
solve for colour constancy via the discrete CRULE.

Secondly Swain suggests using colour labels in a robotic manufacturing environ-
ment. Colour labels would assist a robot in solving both the identification and location
problems. We see no reason why colourful labels and colour constant colour-indexing
should not perform equally well in this task. Indeed because manufacturing environ-
ments are often illuminated both with natural and artificial light, we predict colour

constant colour-indexing will out perform colour-indexing.

6.5 Conclusion

Swain’s colour-indexing, whilst remarkably robust to many changes in visual context,
is extremely sensitive to varying illumination. Theoretically images can be rendered
illumination independent by transforming them via a colour constancy algorithm.
Unfortunately colour constancy algorithms place strong restrictions on the types of
objects and illuminants which inhabit the world. Even for the least restrictive algo-
rithm, the discrete implementation of Forsyth’s CRULE, objects must have simple
geometries and the incident illumination is constrained to be spatially constant.

Colour constant colour-indexing indexes not on colour triples but on illuminant
invariants, circumventing the need for colour constancy preprocessing. There are three
types of invariants—ratio, opponent and volumetric—each of which captures local
image properties. All three invariants are useful given complex object sets viewed
under spatially varying illumination.

Colour constant colour-indexing, using colour ratios, successfully identifies colour-
ful objects independent of the context in which they are viewed. Further objects are
identified with high levels of confidence. We conclude therefore that colour images

provide a rich source of information for object recognition.
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