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Abstract 

Since colour characterizes local surface properties and is largely viewpoint insensitive 

it is a useful cue for object recognition. Meed ,  Swain and Ballard have dweloped 

a simple scheme, called colour-indexing, which identifies objects by matching colour- 

space histogams. Their approach is remarkably robust in that variations such as a 

shifk in viewing position, a change in the scene background or even object deformation 

degrade recognition only slightly. Colour-indexing fails, however, if the intensity or 

spectral characteristics of the incident illuminant varies. This thesis examines two 

different strategies for rectifying this failure. 

Firstly we consider a.pplying a colour constancy transform to each image prior 

to colour-indexing (colours are mapped to their appearance under canonical lighting 

conditions). To solve for the colour constancy transform assumptions must be made 

about the world. These assu~nptions dictate the types of objects which can be recog- 

nized by colour-indexing + colour constancy preprocessing. We review several colour 

constancy algorithms and in almost a31 cases conclude that their assumptions are too 

limiting. The exception, a discrete implementation of Forsyth's CRULE, successfully 

solves the colour constancy problem for sets of simple objects viewed under constant 

iilurnination. 

To circunwent the need for colour constancy preprocessing and to recognize more 

complex object sets we consider indexing on illuminant invariants. Three illuminant 

invariants-volumetric, opponent and ratio-are examined. Each characterizes lo- 

cd surface properties, is largely viewpoint insensitive and is independent of both 

the intensity and spectral characteristics of the incident illuminant. We develop an 

algorithm, called Colour constant colour-indexing, which identifies objects by match- 

ing colour ratio-space histbograms. In general our algorithm performs comparably 



with colour-indexing under fixed illumination, but substant.ially better than colour- 

indexing under varying illumination. 
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ortant role in object identification. For example an apple can be 

orange solely on the basis of colour. In this thesis we develop 

can robustly identify colourful objects. Identification 

e and as such would be be a useful part of an active vision 

stems can recognize objects only when certain assumptions are 

ion, common to all model-based vision approaches, is 

d if they have been seen before. Further model-based 

a system designer, to remember particular objects. 

e are two stages to identification. In the learning stage the vision 

objects which it must identify. The images of objects are analysed, 

ed, and these features are grouped to form canonical models; the set 

he model database. In the active stage an object 

presented to the vision system; again its image is analysed and an image model 

is buif t. The image model is then matched against the model database. The best 

canonical matt& identifies the  image model. 

XdeaIfy the success of object identification should not require strong constraints on 

the w d d .  Fur example, if objects are a1ways presented to the vision system in the 

same orientation and at t be same relative position then this contextual information 

can be exploited in designing a model representation- However strong constraints will 

1 



CHAPTER I. I.hFTROD UCTIOX *> u 

limit the utility of t.he vision system. It is desirable that identification I.)crfimnar~cc: 

be unsffected by the visual contest in wl;.hich an object is viewccf. For tht. p.t~rpos~s of 

this thesis changes in visual context refer to: 

1. changes in the background of an object. 

3. changing rerative position of the object. 

4. the lighting conditions: 

(a) changing light intensity. 

(b) varying spectral characteristics of the light. 

aditional approaches to object identification are based on single-channel in- 

images and rely on geometric descriptions of objects. For exa~rlple, thc 3- 

dimensional shape of an object would obviously serve as a good 1;ey for icle~~tificalion. 

However, for unconstrained scenes, it is difficult to to extract this 3-dirnerlsiotlal i l l -  

formation. Lower level geometric cues are often used: thcse include looking at eclgc 

intersections or at  relative edge orientations[3iJ. Unfortunately there are few gco~nct- 

ric cues which are invariant to charges in viewing context. 

SwainpS] departs from the geometric approach and instead develops a ~irnple 

scheme which identifies objects entirely on the basis of colour, His method, callcd 

Colour-indexing, is extremely successful at identifying objects and is largely tmaf- 

fected by the first three changes in viewing context. 

1.1 Swain's Colour-indexing 

Swain's colour-indexing algorithm identifies an object by corn paring its colours $0 the 

colours of each object in the model database (a colour refers to a rcspunsc 3-vcc:tor 

registered by three sensor channels). The area of a particular colour is calculated W ~ C I  
is stored as the bin-count cjf a 3-Dimensional lzistograrn (the model), appropriately 



called the  colour. histogram. Similar 3-vectors are mapped to the same histogram 

bins. Specifically each colour channel is discretised into 16 intervals; hence, each 

coiour histogram has 16 * 16 * 16 = 4096 bins. 

Objects are presegmented from the images when calculating canonical models. 

ckground colours affecting oh ject identification. In the active stage 

are not segmented from their backgrounds (as such segmentation necessarily 

knowledge of thc object in the image!). 

tograms are matched by comparing the counts, or areas, in corresponding bins 

chnique called Histogram intersection. The intersection of histograms HI and 

&nf& = r C C l m i n ( W ~ ( i , j , h ) , H z ( i , j , k ) )  
i j k  

(1.1) 

a1 histograms contain no background colours, intersection (or match) 

are normalized by the number of pixels in the model histogram, thus matches 

tween 0 and 1. Histogram intersection is very fast requiring time proportional 

histogram bins. More sophisticated correlation measures could be 

d, but the success of colour indexing implies that they may not be necessary. 

Let us examine the performance of colour-indexing with respect to the 4 changes 

visual context: 

Changing the background in which an object is imaged will only add to the 

match value of the histogram intersection if: 

(a) the pixel has the same colour as one of the colours in the model. 

(b) the number of pixels of that colour in the model is less than the number 

of pixels of that colour in the image. 

Thus the correct match will always be found unless the two objects are very 

similar or the background i specifica.lly designed to confound matching. 

Experimentally Swain demonstrates tha#t histogram intersection continues to 

work well even when an object is partially occluded. This is to  be expected as 



a colour histograni is an accumulation of global evidence. Thc colourcci nrcw 

not occluded should still be sufficiently discriminatory to allow correct, objcct 

identification. 

3. As the viewer alters position (or the object is rotated) some colours may come 

into view and others clisappear. In this case the colour hist0gra.m~ can cha~qy~ 

quite significantly. Swain's solution to this problem is to store liistogrxns for 

each model as seen from differing viewpoints. 

Another problem can occur as the viewing position changes. I n  a worlcl of 

lambertian surfaces with point source illumination, the briglitncss of a surf;icc\ 

changes as the angle between the lluminant ve-ctor ancl the surfacc norina.1 vaxies. 

If 2 denotes the illuminant clirection ancl 14 represents the surface normal then t l i c  

brightness of the reflected light is proportional to 2.g (the vector dot-product). 

This relationship accounts for the shading field in an image. By irnplicatior~ 

the brightness, or magnitude, of colours it1 an image will change as an object is 

rotated relative to the illuminant. Again storing multiple colour I~istograrns for 

each model viewed under varying conditions may help llere. 

Normalizing the lengths of sensor response vectors, hy dividing hy a liricax cor11- 

bination of the responses (the vector components), gives intensi ty-indcpcildcl~ t 

colours. Such a normalization results in 2-dimensional information ( tlrc nor- 

malized blue response can be generated given the normalizecl rcd and grccll 

responses). Swain[29] histograms response vectors norrrdized with respect to 

the sum of the red, green and blue responses. Color-indexing cortt,ilii~cs to pcr- 

form relatively well despite this shift from a 3-dimensional to a 2-din~cn~ioilal 

index. However a significant number of test images (z 25%) are poorly rnatchcd. 

In section 3 we readdress this problem when designing art i l l t l m i r t  art 1, invariant, 

feature space for object identification. 

4. Altering the intensity of the light effectively aIters the length of the colonr tuplcs. 

That is every pixel in the image will be multiplied by a constant fixtor k, Swain 

presents experimental results for such intensity changes and conclutles thid evcn 

for values of k fairly close to 1 object identification is impaired. (%arlging the 
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spectral characteristics of the illuminant hamper Swain's algorithm to a greater 

degree-both the length and direction of colour vectors will change. 

1.2 Extending Colour-indexing 

Swain's Colour-indexing fails since the colours registered by a vision system are depen- 

dent on the relative position of the object (the shading field) and, more importantly, 

e spectral characteristics of the illurninant. Swain proposes applying a colour 

cy algorithm[lO, 21, 12, 111 to the registered colours thereby removing the 

effects of a varymg illurninant. Each registered colour is mapped to its appearance 

ncler canonical lighting conditions. 

Unfortunately, even for fairly simple wcrlds, the general colour constancy prob- 

lem is as yet unsolved. However the model-based identification problem imposes con- 

s on the world. In particular, since the model database contains a finite number 

els, this implies that the world contains a finite set of surfaces. This constraint 

exploited in a discrete version of Forsythls[lO] CRULE algorithm. For simple 

s. where objects are 2-dimensional and where illumination is everywhere uni- 

RULE successfully solves the colour constancy problem and facilitates object 

identification. 

In more complex worlds, where objects are 3-dimensional and illumination is al- 

lowed to vary, CRULE cannot solve the colour constancy problem. For this rea- 

son we develop a new approach to object identification called Colour constant 

colour indexing'. This scheme indexes not on colour triples but on illuminant 

invariants. 111 particular the ratio of t ~ o  neighbouring colours is, more or less, il- 

lumination independent; colour ratios form the backbone of colour constant colour 

indexing. 

'Colour constant colour indexing was jointly developed in collaboration with Dr. Brian V. Funt. 
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1.3 Thesis Overview 

In chapter 2 we examine. in detail, the colour constancy problem. hllr~tly co~npu- 

tational theories have been proposed; each of which places r e s t r i~ t~ io~~s  on the type 

of object for which Swain's colour indexing can work. In almost all cases t,hcsc rc- 

strictions are not satisfied by ally plausible object set. However we corrcludc? ctiapter 

2 by presenting a discrete version of Porsyth's CRULE colour constancy algorithi; 

CIiULE can successfully solve the colour constancy problem for simple sets of objects. 

Unfortunately for most realistic object sets the colour co~~stancy probltm camot 

(as yet) be solved. To circumvent the need for colour constancy prepsoccssing wc 
r ?  consider, in Chapter 3, identification based on illurninant invariants. I hroe typchs 

of invariants are considered: volun~cltric, opponent and ratio, Colour ratios have 

favourable error and computational properties. Consequently colour ratios furnl the 

backbone of a new identification algorithm- colour constant colour inclcsing. 

Various representational issues result from the switch from colours to colour ri~tios. 

These are addressed in chapter 4. In particular we show that, the distributio~r of calour 

ratios is non-uniform; this implies the bins of the ratio hisiogmrnsshoulcl be of cliIfcrclrt 

size. Issues related to  ratio error are also explored. 

Chapter 5 presents experimental data contrasting the perfoi*rna~~w of colour i n- 

dexing and colour constant colour indexing under illumination chartge. For scts of 

synthetic a.nd real images, colour constant colour indexing is extremely successful 

a t  identifying objects; this contrasts with the poor identification s u  cccss of colou r. 

indexing. 



Chapter 2 

dour Constancy 

perceived colottr of an object is, more or less, independent of the illuminant 

under whic11 it is observed. Thus colour is a quality not of the reflected light but of 

ect's surface. The ability to label objects with colour names, that refer only 

ce refiec t ance properties, is called colour constancy [2]. 

ans have 3 types of colour receptors: long-, medium-, and short-wave sensitive 

nes. Hence the eyerneasures, a t  most, 3 properties of surface reflectances. Therefore 

colour constancy requires that the initial $vector of cone responses be transformed 

into a 3-parmleter surface descriptor. The colour constancy problem in machine 

vision is similar; though, there is no restriction on the number of receptors. 

Various algorithms have been proposed for solving the colour constancy problem. 

Each algorithm places restrictions on the types of surfaces and illuminants in the 

wo1-Id. If the set of objects we wish to identify satisfies these restrictions then Colour 

Indesing+colour constancy preprocessing will successfully identify objects under vary- 

ing fighting conditions. 

In this section we review several existing colour constancy algorithms. In all cases 

Llleir world restrictions are very strong; indeed these restrictions cannot be satisfied by 

any plausible object set. However consideration of the object identification problem 

yields new constraints and these are elegantly incorporated into a discrete version of 

Ebrsyth's CRULE algorithm. CRULE effectively solves the colour constancy problem 

for a set of 2-dimensional objects, where the total n m b e r  of distinct colours is small, 
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viewed under constant illumina.tion. 

2.1 Preliminaries 

The light reflected from a surface depends not only on the spectral psopcsties of ilhl- 

mination and surface reflectance, but also on other confouilding factors; these incluclc 

specularities and mutual illumination. For this reason computational tlieuries for 

colour constancy are often developed for the simplified Mondriaan world; zt Mouciri- 

aan is a planar surface composed of several, overlapping, matte (lambertian) pakches. 

The light striking the hfondriaan is assumed locally constant, i.e tllc in tmsi ty ar ~d 

spectral characteristics of the light varies slowly. In this world the only confou~ding 

process to retrieving surface descriptors is illumination. Alrnost all cc-rlour const,it,ney 

algorithms are designed for the Mondriaan world. 

A priori to examining any colour constancy algorithm, the Mondriaan ass.cmxpt,ion 

has severely restricted the types of objects which can be recognized. In partic111a.r~ 

objects are constrained to be planar. There are no colour co:-istsncy algoritlmw which 

work in an unconstrained 3-dimensional world. 

2.1 1 Sensor Responses 

Light reflected from a Mondriaan falls onto a planar array of scnsors, ztrlalogorrs lo t,lw 

retina. At each locatsion x in the sensor array there are s different classcs of scnsors. 

The value registered by the 6th sensor (a  scalar), pg, is equal to the integral of its 

response function multiplied by the incoming colour signal. Each yz corrc~sportrfs to a 

unique surface reflectance. 

where X is wavelength, Rk(X) is the response function of the k t h  sensor, C X ( h )  is thc 

colour signal at x and the integral is taken over the visible spectrum w .  The c:oioiir' 

signal is the product of a single surface refIectance S(X) znultiplicd by the arnlrienf, 

illumination E(XI, CIA) = E(XIS(A '). 



2.1.2 Surface Descriptors 

The goal of colour constancy is to transform the sensor response vector - px (hence- 

forth underscoring denotes vector quantities) to its descriptor dx, where dx encodes 3 

properties of the surface reflectance and is invariant to E(X). Of course surfaces with 

different spectral reflectance functions should have different invariant descriptions. 

k'ormatfy: 

dx = ?-(&'(A); px) - - (2.2) 

That is 8 is a illuminant dependent transform;ction of - px. In a Mondriaan world, 

under uniform illumination, a, single transformation will apply throughout the im- 

The transform 7 is often considmed to be linear. In this case I(E(X);  - px) = 

(E(X))px. - So if the number of sensor classes is 3, s = 3, then I(E(A)) is a 3 x 3 

ontinuous functions as Vectors 

imensional function F(X) which varies slowly with respect to  X can, in a closed 

interval of A, be approximated by a vector. Thus the functions of lambda introduced 

in the preceding section can be described by their values at a discrete number of 

welengths over the visible spectrum. We use spectra where X is sampled at lOnm 

from 400 thru 650 nm (vectors then have 26 components). Hence we can 

e the R(X), C(A), E(A) and S(X) in terms of there corresponding vectors: R, 
c, & and S. 

Let us group the s sensors in the 26 x s matrix R. The kth column of R is the 

kth receptor vector. We can now rewrite the integral of equation (2.1) in terms of 

summations: 

Equation (2.3) is exactly the vector dot-product of the kth sensor with the colour- 

signal, Hence we can calculate the s sensor responses via equation (2.4) (the k index 



is dropped): 

where t denotes matrix transpose. Thus we can think of a sensor respouse as the 

projection of a colour signal onto t.he sensor axis. The vector representation i s  uscful 

for analysis since i t  is impossible to measure precisely complete spectral functions, In  

addition the techniques of vector algebra are employed in many of thc comptttationil1 

strategies for colour constancy. 

2.1 -4 Finite-dimensional Models 

Colour vision can be modelled using a finitle dimensional linear nmdel for surfacc 

reflectance and illuminant spectra[27]. Let S be a matrix of tls (dimensiolt of "3') 

refelectance basis vectors; S is 26 x ds. Thus a surface reflectance vector - ,S is approx- 

S = Sg - f 2.5) 

where is a dS component column vector of weights. MaloneyP2] presenls evidcncc 

which suggests surface reflectances can be well modelled by a set of betwecn 3 and 6 

basis vectors. Similarly illurninants are often modelled by a small set of basis vcctms. 

Let I be the matrix of dE basis vectors, then: 

E NN •’g - (2.6) 

t is an dE dimensional vector of weights. JuddllS] rneasurcd 605 daylight ill urninants - 

and showed they are well modelled by a set of three basis fuactions. Howcver marly 

artificial illurninants are poorly approximated using this bas%. This is especially true 

for the spiky illurninant spectra generated by fluorescent iighting. 



2.2 General Linear Transforms 

Tn section 2.1.1. we introduced the colour constancy transform 7. Almost all authors 

consider 7 to be a linear map (i-e. a 3 x 3 matrix). If the descriptor for a surface 3 
is defined to be its response vector under a canonical illuminant &' then Forsyth[lO] 

shown that 7 must be linear. In this section we consider colour constancy 

orithms which assume a general linear map. Those algorithms which restrict 7 to 

g diagonal are discussed in section 2.3. 

.I Experimental Performance 

egin by coxlsidering the theoretical constancy of a linear transform 7. If good 

ancy is possible then this validates Swain's idea of colour constancy preprocess- 

g. Good theoretical constancy performance is also required in developing illuminant 

ts-discussed in chapter 3. 

my knowledge, the theoretical bounds on colour constancy have not been pub- 

d in the colour constancy literature. Previous studies have estimated how well 

cular algorithms solve for colour constancy. Thus the results presented here, are 

by themselves, of considerable interest. 

We consider two sets of sensor sensitivities: the cone fundamentals derived by 

Vos and bValraven[33] and a set of camera sensitivities. The camera sensitivities were 

derived by multiplying the spectral sensitivity function of our CCD camera by the 

Bodak Wratten filters #25 (red), #5S (green) and #47B (blue). The sensor sets are 

shown in Figures 2.1 and 2.2. 

We use a set of 7 illurninants: 5 Judd daylight spectra [IS], C1E standard il- 

Iurnirrant A f33] and a black-body radiator with colour temperature 3600K. These 

illunri~mnts are applied to a set of 40 surface refiectances consisting of 12 ceramic tiles 

[Jlt t l ~ e  24 Macbeth cclour checker f'25] patches and 4 of the natural sur$aces mea- 

sured hy Iirinov(l9]. Since the Krinov, ceramic and Macbeth spectra are measured 

in ditkrent units, a11 surface reflectances are normaIized-they are scaled such that 

their squared area is equal to one. This normalization has little effect on the results 

presented in this section. 
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Figure 2.2: Camera Sensitivities 
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We consider colour constancy to be achieved if response vectors are mapped to 

their appearance under a canonical illuminant. In these experiments we chose Judd's 

5 (55 stands for 5500K) as the canonical illuminant. This implies that descriptors 

sponse vectors for surfaces viewed under D.55. 

e a 3 x 40 matrix of sensor-response vectors generated for the 40 surfaces 

under D55. Similarly, let W be the matrix of response vectors of the surfaces 

r another arbitrary illuminant E. To the extent that linear transforms 

our constancy, V and W should be approximately equivalent under a 

V s T W  (2.7) 

e non-zero 7 which minimises the sum of the squared error in 

minimize ( [VJij - [7WIii )* . . 
h3 

(2.8) 

iven by the Moore-Penrose inverse 7 = 7V(W)+,  where W +  = 

xed set of sensor functions, the solution of equation (2.8) yields 

that takes observations under one illuminant into observations 

Walraven and camera sensor sensitivities, we generate experi- 

well linear-transform algorithms can possibly perform. For 

e find the optimal linear transform (by solving equation 2.8) map- 

e vectors for the surface reflectance set to their appearance 

e canonical illuminant D55. 

Since sensor responses are 3-vectors a q  metric for evaluating colour constancy 

should compare fitted vectors (the ith column of I W )  with their corresponding de- 

scriptors (the ith column vector Y). The euclidean distance between fitted vector and 

descriptor, norrrlaiized with respect to the descriptor length, is a reasonable choice of 

metric and we will denote this normdized fitted distance as NFD. 
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3: Cumr~lative NFD histogram for Vos Walraven ftindanentals 

ive NFD histograms for the Vos Wdraven and canicra scsmors art: gwer- 

solid lines in Figures 2.3 and 2.4. In all cases rcsporiscz 

vectors are mapped to within 10% of their descriptors, These experiments tlerxr on- 

strate that a linear transform is a suitable mechanism for colour constarlcy. Jn tlic 

following 3 sections we consider computational approaches to finding 7- 

2.2.2 Gershon's algorithm 

Gersh[ lS]  developed an algorithm to solve for 7 by making 3 assurnptiuns about 

the Mondriaan world: 
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Figure 2.1: Cumulative NFD histogram for Camera Sensors 

urnination and surface reflectance spectra are welI modelled by small dimen- 

cificallp if there are s sensors then dE, dS < S. We will 

assume S = 3 

2. The average of all the distinct surface reflectance in every Mondriaan is the 

same. We denote the average reflecta~lce vector as 4. 

3. Illuminatian is a-erj-where constant. 

The algorithm proceeds in two stages: firstly assumption 3 is exploited to solve 

for the ikluminant.; thereafter I can be constructed. Let A(A) be the 26 x 3 matrix 



constructed by multiplying each column of E by 4. The illt~niitiant, is clefitlcd by 82, 

Thus the average response vector recorded for a Mondriaan can be wsi ttcn as: 

Since Rtil(;l) can be precalculated, (A@) is the same for all Rlondriaans) and - p"" 

can be derived from the image, we can solve for the weight vector g: 

The illurninant vector is calculated as = Eg. Let Q denote the 26 x 3 ~ixttsis 

constructed by multiplying each column of S by &. The resparise vector corrcspcr~icling 

to  a surface reflectance defined by the weights o satisfies the following rclatioust ~i p: 

p = Rt& - (2.11) 

Both p - and RtQ in equation (2.11) are known. Hence we can solvc for g (tlic: SLII .~~LC(!  

descriptor) by calculating: 

For general Mondriaans Gershon's algorithn~ exhibits poor coloiir constar~cy siucc. 

the average reflectance spectra can vary significantly. lTurthcs coustraini trg tlrc il lu- 

minant t o  being everywhere uniform is an unrealis tic restrict ion. ftcgarding coloiir 

indexing, it is highly unlikely that every object will have the same averagc: colollr. 

2.2.3 Maloney's algorithm 

Maloney's algorithm, like Gershon's, proceeds in two stages: firstly the i l l  l m i  n alr t is 

estimated, thereafter the constancy transform 7 is const ructetl . f Jowever M ;~loncy 

makes different, weaker, assumptions about the world: 

I. ff there are s sensors then @ 5 s and 8 < s. 5% will wstmc s =r 3 ftmcc 

dS 5 2. 



2. Illumination is locally constant. 

Given the illuminant vector & then I is calculated by equation (2.12). 

because surfxe reflectances have dimension 2, 7 will be a 2 x 3 matrix 

implies the inverse of equation (2.12) is a pseudo-inverse). Thus I-' is an injective 

However, 

(this also 

pping taking 2-dimensional surface weight vectors onto 3-dimensicnal sensor re- 

nses, Alternately a response vector can be thought of as the sum of the 2 columns 

from which it follows that sensor response vectors lie on a plane. Maloney 

this plane constraint to solve for the illuminant. 

t this point it is useful to count the number of equations and unknowns. This 

d to a statement about the number of sensor responses needed to solve for &. 
a single response vector we have 3 knowns and 5 parameters to solve for: 5 

a second response vector increases the knowns to 6. However, since 

is locally constant, the unknowns increase by 2 to 7. By initializing 

ce the number of unknowns to 6 and hence have enough knowns to 

o surface reflectances and the illuminant1. Theoretically this implies 

colour descriptors at the edge of two coloured regions. 

5 we must first find the normal to the response plane. The normal 

sponds to the vector orthogonal to the 2 response vectors and is defined by their 

s p-oduct2. We denote the plane normal a: crr. The responses of any two 

S1 and S2, (which are linear combinations of the 2 basis vectors) must lie on 

se plane. This implies: 

~ ~ 7 2 %  &)g = 0 (2.13) 

ntRtA(S2)r = 0 (2.14) 

The left-hand sides of equations (2.13) and (2.14) are 3 x 1 row vectors. Since 

= I there are exactly 2 equations and 2 unknowns. Thus we can solve for the 

illtiminant; thereafter 7 is ca.lcula.ted by equation (2.12). 

'Se$ting €1 = 1 fixes the Ie~lgtli of the g vector but does not change its direction. 
'The plane normal calculated as the cross product of two vectors is susceptible to image noise. 

Mare robust e s th~a t~es  of the plane normal can be made by accumulating evidence from many 
response vedors. 



A standard co!our vision system, with three sensors, can only acliitvc colour con- 

stancy using Maloney's algorithm if  surface reflectances are 2-dirncnsinnal. Un~for- 

tunately surface reflectances are higher dimensionat (between 3 and 6 [22]). 'Vhco- 

retically Maloney's algorithm will perform better if the vision system has more tlmn 

3 distinct sensors (there is no published work evaluating this ltypottlesis). It1 the 

case however, more distinct response vectors (of different surfaces) are requirrcl to 

uniquely determine the plane normal n (n - 1 response vectors are required g iwn rl 

sensor classes). Thus assuming the illumination is only !ocslly colt:itsrlt, Mi-tlowy's 

algorithm can solve the colour constancy problem if there is sufficient, local, colorrr 

complexity; where this complexity is defined by the number of sensor classes. 

2.2.4 Forsyth's MVCTEXT 

Forsyth develops an algorithm for colour constancy called MPVEXrI' using cvcak zcs- 

s about the world. In particular surface reflectances and illurnii~anls arc: not 

trained to being finite dimensional. However the illumination is still co~~straincd 

to being everywhere uniform. 

The descriptor for a surface is defined to be its sensor response? vector generated 

under a canonical illuminant. The set of all descriptors, C, is used as a const,raint i n  

solving for 7 .  All the response vectors in an image must be rnappcd ir~to C by 7. If 

Z is the set of image descriptors then: 

V ~ E Z  - , ? - F C C  (2.15) 

There may be many linear transforms which satisfy the above constrait~l; M W EXrJ' 

(Maloney-Wandell exzension) parameterizes the set of candidate transformr;. fi'orsyth 

suggests that the set of candidates for 7 would be diminished by exarnirring othcr 

information, for example speculari ties and mutual illumination. The prolslem of en1 I-  

merating the candidate transforms is non-trivial but would certainly be corr~put,atinrt- 

ally laborious. 

Integral to the implementation of MWEXT is the assumption that all culouru j r ~  

the world have been seen. Under this assumption the canonical set is a totindcd convex 



region; or gamut, in receptor space. In this framework, canonical set membership is 

determined by examining only the boundary, or hull, of the canonical gamut; this 

significantly reduces computational costs. 

The fact that MWEXT returns a set of possible linear transforms, as opposed 

to a unique answer, has serious implications for Colour-indexing. In particular, 

EXrI"s multiple solutions suggests that colour constancy is a difficult problem. 

us h4WEXT preprocessing will rarely increase the performance of colour indexing 

with respect to illumination change. 

2.3 Diagonal Linear Transforms 

any theoriesE10, 21, 153 of colour constancy propose that the effect of the illuminant 

n be discounted by applying a diagonal matrix transform (DMT) to each sensor re- 

this case colour constancy is achieved by scaiing each sensor channel 

For example the effect of a red illuminant would be discounted by scal- 

nsor catches by a fractional coefficient; thus reducing the magnitude of 

k k d, = ckpZ (2.16) 

ly Forsyth[lO] proved that, if surface reflectances are unconstrained, perfect 

constancy can only be achieved via a diagonal matrix transform (and narrow- 

ensors. This observation underlines the importance of DMT theories of colour 

constancy. 

2.3. f Experimental Performance 

In this section we consider the theoretical performance of a diagonal transform V. 
1% follow the same experimenta.1 procedure discussed in section 2.2.1. In this case we 

wish ;;ir optimize the equality: 



We solve for each row of V independe~~t~ly, using the Moore-Pctlrosc invcrsc: 

For each illuminant we calculate the cumulative NFD histograms for the Vos Wal- 

raven and camera sensors, the dotted lines in  Figures 2.3 and 2.4. Compared with 

general linear transform behaviour (solid lines) a diagonal transform, for the Vos Wd- 

raven sensors, achieves lower constancy performance. Hotvever, a diagonal transrartn 

appears an exceptionally good model for the camera sensors, In both cases a diagord 

transform achieves good constancy performance. 

2.3.2 A Note on the Experimental results 

The constancy results for general linear and diagonal transforms, slmwrl ill Figures 2.3 

and 2.4, are of considerable interest. They bound the performance of all colorir con- 

stancy algorithms (for the sets of reflectance and illuminant spectra clescribcd in 

2.2.1). Without considering a particular algorithm we know perfect colour constarlcy 

performance is impossible. However, none of the algorithms presented in this chctptcr 

formally addresses the question of error in their models. This is a serious sfiort-corni~rg 

and serves to weaken the applicability of these algorithms. 

Also, for the camera sensors, it appears that the best diagonal transform achievcs 

comparable constancy to the best non-diagonal transform. Recoading this ot>s(:rvi~- 

tion with non-diagonal theories of colour constancy would be an irltercsting line of 

research. 

2.3.3 Sensors and the Diagonal Transform 

By examining Figure 2.4, it is clear that the narrow band csrnera sensors can achieve 

good cobur constancy. In general, narrower sensors imply irnproved ( t  hcoret ical) 

colour constancy. In the limiting case, sensors which are sensitive to single wavclength~~ 

can achieve perfect colour constancy. Consider that only the j th  component of thc 

kth sensor is non-zero. Then the summation in equation (2.3) car1 be writtcrr as: 
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pz = R j k S j  Ej (2.19) 

The effect of the illumination, in the kth channel, is a simple scalar multiplication; 

which is the same for all surfaces. If all sensors are sensitive to  single wavelengths 

then a diagonal matrix transformation will facilitate colour constancy in an otherwise 

unrestricted world. In fact since reflectance and illumination spectra tend to vary 

slowly, a diagonal matrix transformation will work even when the receptors are only 

relatively narrow band. This explains the constancy success for the camera sensors. 

2.4 Von-kries adaptation 

One of the earliest models for (human) colour constancy assumes a diagonal matrix 

transformation. Von Kries [32] hypothesised that chromatic adaptation is a central 

mechanism for colour constancy. The idea is that over time the eye would adapt to 

the ambient illumination. Any colour signals are seen relative to this adapted state. 

More specifically the Von Kries adapted responses to  a surface S(X) in sensor 

channel A- can be written as: 

Von Kries conjectures that for any given illuminant E, dz will remain constant. 

To determine E(X) some authors assume that there is a white (uniform) reflector in 

every scene. This white patch assumption is common to several algorithms fo: colour 

constancy, including Lad's retinex theory which is discussed in the next section. 

In reality surfaces under va.rying illuminants are only approximately von Kries 

invariant. West and Bri11[32] derive the conditions surfaces must satisfy for von Kries 

invariance. Of course all surface reflectances are von Kries invariant if narrow band 

sensors are employed. 

\Jon Kries invariance is simply a diagonal matrix transformation where the coeffi- 

cient i11 each channel is equal to: 



2.5 Land's Algorithm 

Land's retinex algorithm[20, 211 solves for the coefficients of the diagonal ~nntrix 

transform by assuming that every scene in the world contains a uniform reflector (with  

respect to each sensor channel). However, unlike Von Iiries invariance, chromatic 

adaptation is not assumed - that is the eye does not explicitly measure (&,pt to) 

the illuminant. Hence the retinex algorithm addresses the problem of how lo rolatc 

sensor responses to the white patch. Cornputittion is carried out. indclmicletr tly i 11 

each sensor channel. 

Consider the ratio of the sensor responses at loca,tions :GI and $2 i.c. pzl/pp. 

Clearly if XI is fixed then this ratio will be smallest when x2 corresponds to the wtlitc 

patch (reflectances are between 0 and 1). Further consider a random contil~uous path 

which visits XI, X Z , X ~ .  . . XN. The ratio p? /ptN can be calculated incrcn~cntally as 

the path is swept out by multiplying local ratios. For exarnp1c 

Land calls a ratio calculated in this incremental manner a designator.. The retinex 

algorithm assumes many random paths are generated. At  each location the srnsllest 

designator value is recorded. If sufficient random paths are generated then thc clcs- 

ignator at  all 1oca.tions will be relative to the white patch. Thus the illtlrxli~lant, is 

discounted and colour constant designators derived. 

To deal with slowly varying illumination intensity, the local ratios are f,lmsfioldad. 

Thus if pzl/pT is approximately equal to one then the sensor responses arc eonsiclcrcd 

due to the same surface reflectance. Accordingly this ratio is set (tLreslio1dr:cl) t~ onc. 

The white patch assumption is a very strong constraint on the world. r j ' h c ~ ~  

Land[21] modifies the retinex algorithm by assuming that the average of all dcsig- 

nators at each image location is constant. Brainard[5] shows that i f  many random 
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paths of r e ~ ~ o n a b l e  length are generated then the average designator at z, is equal 

to: 

where i indexes ali other pixels in the image. Note the illumination terms still can- 

cel and as such that the average designator is constant under changing illumination. 

However the clesignator at x will vary as its background changes. For example if the 

ackground is predominantly red then - px will be normalized to a red patch chang- 

ing the background to blue will yield (unsurprisingly) a radically different designator. 

Brainard[5] demonstrates that less drastic changes in context can significantly alter re- 

flectance designators. We conclude, therefore, that the average designator assumption 

at least as strong an assumption as Land's original white patch assumption. 

In terms of object identification if an object can he segmented from an image 

the average designator will be illuminant invariant and could he used in Swain's 

rithrn. There are 2 flaws in this reasoning 

1. Segmenting an object in an image often requires identifying the object. (This 

suggests more expensive computation and would not be suitable in an active 

vision system.) 

2. If the object is occluded then the colour designators will change. 

2.6 Horn's algorithm 

llorn casts I,anct7s retines in a more rigorous fra.mewox-k. In particular Land's notion 

of random path is no longer employed. Instead images are normalized to their ap- 

pearance under a single, uniform illuminant. This allows the responses at any two 

image locations to be compared directly. 

The computational process is summarized below: 

1. The logarithm of the colour image (the log-colour image) is calculated; this 

effectively separates the reflectance and illumination components. Taking the 

logxithrn of both sides of equation f 2.16) implies log(d$) = log(ck) + log(pg). 



2. Reflectance changes are distinguished from illurninant variation by esamini~ig 

the Laplacian of the log-coIour image. Small Laplacian values are due to i l l i i ~ ~ l i -  

nation gradients; whereas, large va l~~es  indicate a reflectance edge. Tl~rc~slioltiing 

the Laplacian of the log-colour image effectively removes the spatial variation 

of the illurninant. 

3. Performing the inverse Laplacian gives a new log-colour image. The antilog of 

this results in an image taken under a single (unknown) illurninant. 

Note the above is the essence of the computational process; Horn prcse~~ts, i ~ r  dctail, 

the mathematical analysis necessary for its implementation. Horn goes on to suggr%st, 

a possible biological implementation. However, there are several problems with tlort-r's 

algorithm: 

1. To solve the inverse Laplacian requires boundary constraints on tlle Mondriaa.~? 

(and its image). Namely the Mondriaan must lie completely within an area of 

constant reBectance. This implies the sensor responses on the hourlrlary of all 

images must be due to the same surface reflecta~lce. 

2. Colour constant descriptors still require a reference patch. Lands wl~it,c: pk11 

or average patch schemes could be used; however, this implies descripf,ors still 

depend on the other colours in the scene. 

Horn's boundary assumptions are not satisfied even in the simple Mondriaan world. 

Blake[41 demonstrates that the strong boundary constraints arc necessary only be- 

cause the illurninant component is removed by tbresholding the  Laplaciat~ of tile 

log-colour image. By applying the threshold on the gradient of tlic log-colour hi- 

age Blake develops a computational process which calculates surface ligti tncsscs wi tli 

weaker boundary constraints. 

Discrete CRULE 

MI of the colour constancy algorithms, discussed so far, place urircalistic corrs trairrts 

on the world; and as such cannot be used to extend cotour-indr:xing. Ifowcvtx we 
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need not employ a general algorithm for colour constancy. The problem of object 

identification places constraints on the world; specifically since our goal is to identify 

an image as being one of a finite set of objects then this implies our world contains a 

finite, or canonical, set of colours. Thus the colours generated by a colour constancy 

algorithm must belong to the canonical set. 

Solving for the colour constancy transform by enforcing canonical set member- 

ship, suggests Forsyth's MWEXT algorithm (2.2.4). However restricting constancy 

rms to diagonal matrices leads to Forsyth's second algorithm-CRULE. Like 

XT, knowledge of all colours in the world is an essential component of CRULE's 

lernentation. fn this section we consider a discrete implementation of CRULE. 

Colour constraints 

set containing descriptors for a11 surfaces (of all objects) viewed under the canon- 

inant is called the canonical set, C = (&, d2, . . - , p). An arbitrary scene 

ing ( n  _< m )  distinct surfaces under a single illuminant l generates n image 

s , I  = @, i2, - - - , - p n ] .  Colour constancy is achieved if we can match each 

corresponding canonical descriptor &. The set of all matched canonical de- 

scriptors is called a canonical labelling and is denoted L (L is a subset of C). Colour 

constancy can be considered as a mapping D of I to C, i.e. D : I -+ C. 

Since we are assuming a diagonal matrix model of colour constancy then & = Dgi. 

For each - p' there are m possible candidates for D; each image descriptor can be 

mapped to every member of the canonical set. However each candidate illuminant 

transform D must map all image descriptors onto the canonical set. 

2.72 The Algorithm 

Let the set of possible illuminants (diagonal matrices) which map the i th image re- 

sponse vector onto the canonical set be denoted Di (The sets 23; are easily constructed 

from equation (2.16)). A diagonal matrix, ZY, which maps all elements of I into C 

must be a member d every Di. We can enumerate the set of possible transforms by 
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j=l 

Given a valid 23 it is straightforwarcl to find the canonical descript,ors wllich correspord 

to each image descriptor. 

A diagonal transform is an approxin~ate model of colour constancy. 1Ienc:e the 

intersection of equation (2.24) must deal with the model enor; two transforrrls arc 

considered equivalent if their difference is within model error limits. 111 section 5, fur 

J J a set of synthetic Mondriaans and the camera sensors, we use the discrete C.lRU I I7 

a preprocessing stage for Colour-indexing. Good resclts are reported. 

2.7.3 Discussion 

There may be sufficiently restricted identification domains where CRULE can be used. 

For example consider the object set containing only cerea-l boxes. If thesc are always 

frontally placed with respect to the camera then the discrete CRULE algori t hrn rliigltt, 

work. Unfortunately, for most real sets of objects CRULE algorithm is unlikely to 

work. A summary of the main reasons for failure (and of the problems to bc ovcrcnntc) 

are given below: 

1. Most objects are 3-dimensional and as such violate the Mordriaal~ world as- 

sumptions. 

2. Response vectors can be the result of many confounding processes: i ~ c l  t~rli~ig 

mutual illumination and specularities. Thest-: processes acting i l l  local regions 

of the image have a global effect. Information from all image I~)cittio~ls is I I S C ; ~  

as a constraint in CRULE. 

3. Background colours may not be in the canonical set. 

4. The size of the canonical set can be very large. A larger set implies t h t  t1rcr.e 

will be a greater number of possible constancy transforms. (As the nurnbcr 

of colours becomes large it is pertinent to switch from the discrctc Cll,[Jl,Il: 

described above to Forsvth" infinite colour CRULE.) 
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'The discrete C'RULE can also be used if every image contains a set of reference 

colours at a known location. In this case the cardinality of C and Z are the same (the 

number of reference colours), and hence equation (2.24) returns a unique diagonal 

transform. Unfortunatelfi placing known reference colours in every scene imposes a 

strong constraint on the world; this limits the usefulness of colour indexing. 

Swain also suggests using this reference colour constraint. In particular he proposes 

solve for the constancy transform with Novak and Shafer's [26] 'LSupervised colour 

tancy" algorithm. Unlike CRULE, this algorithm has not been shown to work on 



Chapter 3 

Robust Object Identification 

Swain's Colour-indexing algorithm is reniarkably robust to r r m y  changes i l l  v i s~~a l  

context: including object deformation and occlusion. Ifowever, if the caloi.~r or ixkea- 

sit,>- of the illuminant changes then Colour-indexing performs poorly. T11corcLic:alIy t tic 

ffect of the illuminant can be discounted by applying a colour uonst,ancy algorit,h~il 

o each image. Vnfortunatefy, the colour constancy prohlem is urrdf:rcanst~-ztiileti. 

To solve for the constancy transform assumptions are made ahout tl tc :  world. 

These assumptions dictate the types of objects which can be, identified wit11 Clolc~ur- 

indexing + colour constancy preprocessing. Af most all cofou r constancy aigcrrit h u t s  

place strong constraints on the world; these constraints artre: not satisfied hy realistic 

object sets. 'ItTeakening these assumptions, as in Forsyth's MWEXT and G,:Xt ULE, 

Ieads to  many candidate constancy transforms. There appears no way to find t h  

correct transform from this candidate set. Further t h e ,  is as yet, r r l i  coiollr con- 

stancy algorithm which can work in an unconstrained 3-dintensional world. Thus wcl: 

condude that colour-indexing cannot reasonably be extended with a colvur con startcy 

preprocessing st age. 

The failure of colour constancy algorithms leads to a new approach for robust 

object identification. We propose indexing, not on colours, hut ratttttr on illurt~inaitt- 

iavafiani;, .r>f G O ~ O ~ F  constant, image features. The new appro ad^ Is calfcil (irJluur. 

consfad cofot~r  isldesing and is the major contribution uf t l~is thesis. For the rest of 

this section we assume that a diagonal matrix transform is a reasonable rrtodcl for 
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colriur constancy. This is clearly true for the camera sensors. 

3.1 Opponent Invariants 

g(l 878) [14j proposed that "opponent" combinations of the cone responses are 

basis fur colour perception. These opponent combinations are named red-green, 

ellow and white-black (r-g:b-y,w-bl). The idea is that the two colours in each 

ncnt clmnnet compete against each other. For example if the red cone is strongly 

tilatecl a i d  the green coIle is weakly stimulated then the r-g opponent channel will 

strong response. The w-bl channel encodes brightness information. Faugeras[S] 

that, the opponent channels are implemented as linear cornhinations of the 

rn of trichromatic responses: 

r - 9 = logcr) - log(g) J r - g = log(r/g) 

y - b = log(rj - log(b) + y - b = log(r/b) 

w - bl = rx log(r) + j!3 log(g) + y log(b) (3.1) 

e of the ac1vant.ages of this formalism is that the r-g and y-b channels are 

encletlt of the intensity of the illumination. An intensity change k corresponds 

multiplication of the original trichromatic sensor channels: kr,kg and kb. 

the r-g and y-b cl~annels the I; component cancels; since multiplication is 

the logari t hm operator. Faugeras liypothesises that, in the biological 

the the w- bl channel is also illuminant invariant via lateral inhibition between 

retinal responses. This refers to the idea that the difference of the w-bl at two different 

retinal lacatio~ts is i~depenclent of the illuminant intensity. 

If  changing tzhe colour of the illuminant is modelled well by a diagonal matrix 

t.rrtnsfornt then all three opponent cha,nnels with lateral inhibition are colour const ant. 

l't, illtistrate this consider the  r -g  channei when the colour of the illuminant changes. 

The change is modeIfed by multiplying the r channel by izl and the g channei by k2. 

The difference in the r - g channel at  two retinal locations, a and b, is written as: 



Faugeras' opponent channels. with lateral inhibition, arc invariant to a changing 

illurninant. Hence this opponent model performs a partial form of colour cot~st,il.ncy; 

colour constant descriptors encode infom~ation of one colour relative to anotlm, N w -  

ertheless these illuminant invariant features provide a rich source of cotour constarti, 

information. As such they are candidate features for object recognitior~. 

Swain[2S] investigated an opponent transfcrm for Colour Indexing. However, his 

opponents are linear combinations of the sensor channels (no logarithms are taken) at 

unique image locations. In this framework the opponents are not indepcnclent of t h e  

illuminant. Unsurprisingiy Swain's opponent transform does not, sign i fi cant1 y al tcr 

the performance of colour indexing with respect to illuminant change. 

3.1.1 Double Opponent Celfs 

Faugeras proposes that lateral inhibition is implemented as a low frccj~lcncy af,t,c:t~- 

uating filter. More recently Hurlhert[lT] has investigated opponent invariants. Iler 

model is also based on a low frequency attenuating filter--the 1,aplacian o f  tl~c: (his- 

sian (LOG). She proposes that this filter is i~nplcmented, in humans, by tlre cioublc- 

oppuned cells. 

At an early stage of post-retinal contputation, area V1 in tlir: visrial cortcx, 

double-opponent ( D O )  cells have been identified[l6]. 'rfrese cells lmvct spatially- a~td 

chromatically-opponent concentric fields, the centre and s u  rrourl d , eact~ ftld hy t w o  

cone types. For example, the R+G- / G+&- cell has a centre which is exci tc:rl l,y 

long-wavelength light and is inbi hi ted by medi urn-tvavelerrgth light. Its s u r r o ~ ~ r d  Ir  xs 

an inverse excitation and inhi bition. 

Hurfbertff 'iJ malyses the operation of the R+C-/G'+R- cell as: 



CfirL4Plf'EIl3. ROB US?' OBJECT IDENTIFICATION 31 

tC; is a Gaussian (smoothing) filter; * denotes convolution; v2 is the Laplacian 

operator and 0 is its output. Equation (3.3) calculates the Laplacian of log(g), 

log($) = log(R) - Iog(G), at each point in the visual field. LOG filtering removes the 

zero frequency component, which in this case is the illuminant, and returns illuminant 

invariant descriptors. Assuming a spatially varying illuminant the LOG operator 

must have a small support. The Faugeras y-b and w-bl channels are also illumination 

invariant under LOG filtering. 

Coiour ratios are approximately illuminant invariant; this is implicit in the derivation 

of the opponent invariants but follows immediately from the diagonal transform model 

of colour constancy. Consider the ratio of responses in a single colour channel at 

positions zl and 2 2 :  

Ratios of 3-vectors are illumination invarimt and form the backbone of colour 

constant colour indexing. Ratios have a number of favourable properties: 

ratios can be calculated locally. 

illumination is only constrained to be locally constant. 

surfaces in a local neighbourhood will tend to be a t  similar orientation with 

respect to viewer and illurninant. Thus ratios will tend to be view point inde- 

pendent. 

ratios erlcode spatial and colour relationships. 

Simple colour ratios also have favourable error properties; especially when com- 

pared with the appanent invariants. The question of error is considered in the next 

kws sections, 
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I ?6 range of fitted relative error 
1 I red I green / blue 

Table 3.1: Range fitted relative error in the red, green and blue cllannels for tlzc 
camera sensors 

CIE A 
36K 
D4S 
D65 
D75 
Dl00 

3.2.1 Ratios and error 

Since a DMT is an approximate model for colour corlstancy each colaur r:~t,io wi l l  he 

[-1.2,1.2] 
[-0.6,0.6] 
[-0.3,0.2] 
[-0.2,0.3] 
[-0.4,0.4] 
[-0.5,0.6] 

consta.nt. only within certain error bounds. There is an important corincction betwcct~ 

[-7.3y13.91 
[-3.5,6.S] 
1-1.1,1.6] 
[-l.S,1.3] 
[-3.1,2.2] 
[-5.3,3.9] 

relative error of fitted responses and the error in colour ratios which will allow 11s to 

use the experiments of chapter 2 to estimate the error in colour ratios. 

First we should distinguish between the notions of absolute and relative error. Lot, 

us consider the 3-vectors - p and q where p cs q. There are two methotis to clcttmriinc - - - 
how closely - p and - q match. Absolute error is concerned with the distmacc ljctwecr~ p - 
and - q. Suitable distance measures (or metrics) include c:=~ Ip, -q i j  and c : ~ ~  (pi - q i j 2 .  

The fitting experiments of section 2.3.1 minimise the sum of absolutt: errors irl the 

best diagonal fit. 

However when we compute the ratio of two response vectors we are rnore in  tercsld 

in the relative error of the result. Relative error compares the ratios of fitted rcsponscu 

p - and - q to the unit vector (vector components are divided). S~typose scnsor rcsponsc,(i 

lie in the range [O, 1001 then the absolute error betweerr responses 0.5 ant1 0.2 is mra,ll, 

However, the relative error is very large-more than 100%. ltelativtt error. bctwcen 

fitted variables ca.n he large only if the variables have small valucs. 1r1 r ~ i ~ h l ~ : ~  3.1 

d raven and 3.2 we show the maximum fitted relative error for the camera and Vos W- l 

sensor sets, for each illurninant. 

The maximum relative error shown in Tables 3.1 and 3-2 rcfers to sirrglc wrfacc 

reflectances and corresponds to  the ratio of a fitted 3-vect,or with its corm:spo)lding 



i % range of fitted relative error 
red green blue 

CIE A [-19.3,25] [-17,19.2] [-6.5,22.6] 
36K [-10.1,12.1] [-9.1,9.•˜] [-1.5,7.9] 
4SK - 3 1 ]  [-3.1,2.61 [-1.9,3.9] 

TabIe 3.2: Range of fitted relative error in the red, green and blue channels for the 
Vos Walraven Fundamentals 

f 96 range of ratio error 
red green blue 

C I E A  1-2.3.2.41 [-1•˜.7,22.9] [-7.1,?.7] 
36Ii  1-1.2,1.2] [-9.7J0.71 [-0.9,0.9] 
D48 [-0.5,0.5] [-2.6,2.7] [-2.53,2.59] 
D65 [-0.5,0.5] [-3.0,3.1] [-2.5,2.53] 
D?5 [-0.8,O.SI [-5.2,5.5] [-4.1,4.2] 
m o o  [-i.i,l.a] [-s.9,9.7] [-6.2,6.61 

Table 3.3: Range of C i G i  s !er ratios in the red, green and blue channels for the camera 
sensors 

descriptor. Let pZf and px2 denote responses in a single sensor channel corresponding 

to two surfaces viewed under some illuminant and dxl and dx2 are their canonical 

descriptors, Let cr be the coefficient which best maps pxl , px2 to clxl , dx2 : 

apx3 M dxl , crpx2 M dx2 (3.5) 

Without, loss of generality assume apxl = ( 1 + ~ ' 1 ) d ~ l  and apx* = ( 1  - ~ ~ ~ ) d ' 2  where 

E'~ is the maximum positive fitted relative error and E " ~  is the minimum negative fitted 

relative error. We can write the ratio $ in terms of dxl and dx2 and thereby make a 
dZ1 statement about ratio constancy relative to K: 



I I 96 ranee of ratio error 
blue 

[-23.S,01.2] 
1-S.7,9.5] 
[-5.6,5.9] 
[-5.4,5.7] 
[-S.9,9.7] 

[-I 3.5,l5.5] 

CIE A 
36I< 
48K 
D65 
D75 
Dl00 

Table 3.4: Range of errors for ratios in the red, green and blue channels for tltc Vus 
Walraven Fundamentals 

red 
[-35.4,54.83 
[-19.8,24.7] 

[-6.8,7.3] 
[-7.0,7.5] 

[-11.5,13.0] 
[-18.3,22.4] 

It is cleas that this ratio has a higher relative error than cup"'. During a least- 

green 
[-30.4,43-71 
[-17.3,20.9] 

[-5.6,5.9] 
[-6.2,6.6] 

[-10.6,11.8] 
[-17.5,21.2] 

squares fit there will be at least one response fitted above (greater than) its de- 

scriptor and one response fitted below. Choosing the maxjnxum posit,ivc and  t h  

maximum negative fitted errors,&&, and E,, we can bound the errors of colour ridios: 

[-;TC;~, ':'-&;I. See Tables 3.3 and 3.4. 

3.2.2 Relative error of the Faugeras invariant 

From the discussion in the last section it follows that the Faugcras opponeid, invitriant, 

introduced in equations (3.1), can have higher relative error than single cl~anncl ratios. 

Let us consider the r - g channel response at adjacent retinal locations x and  3 2 .  Wc 

denote the error in the red and green channels at 21 as and E:' . Si militrly at, ~2 

the error is E? and &z2. Rewriting the Faugeras r - g invariant making c r m  term 

explicit (where r and g denote descriptors in the red and green channr:Is): 

7'"'gX2 (1 + E ; 1 ) ( 1  + E ~ T Z )  
(3.7) 

rx2yxl (1 + ~ ; 2 ) ( 1  + EF ) 

Clearly if and €7 are both positive and, €7 and E;] arc bot,h mgative the 

Faugeras invariant has a positive error larger than either or €7. A sirnilnr argiin~cr~t 

holds for an increasing negative error. Clearly the error perfol-rnartcc of $,he bhi~gt:ra,r 

imariaxlts is linked to the correlation of errors in different sensor r:lasses. 

Table 3.5' shows the minimum and maximum errors for the r -- g a:d y - 6 

'the error data in Tables 3.5 and 3.6 refe: to tbc exponent of the Faugeras chartnels. Thia crrsurcu 



/ % range of opponent error 1 

Table 3.5: Range of error in the r - g and y - b channels for the camera sensors 

CIE A 

Table 3.6: Range of errors for the Faugeras opponent invariants for the Vos Walraven 

'-9 
[-1S.6,22.9] 

CIE A 
36K 
46K 
D65 
D75 
DlOO 

invariants for the camera sensors. The y - b invariant performs significantly worse 

Y - b  
[-S,S.7] 

than both the red and blue ratios; the r - g invariant performs worse than all three 

76 range of opponent error 

colaur ratios. Thus, for the camera sensors, we conclude colour ratios are a more 

stable index than opponent invariants. 

In Table 3.6 the errors in each of the Vos Walraven opponent chan~els are shown2. 

Y - b  
[-37,58.7} 

[-20.2,25.2] 
[-7.7,8.3] 

[-7.S6,S.53] 
[-13,14.9] 

[-20.3,25.5] 

zu - bl 
[-32.4,47.S] 
[-27.7,21.6] 

[-6.0,6.4] 
[-6.3,-6-37] 
[-10.6,11.S] 

[-17.0,-20.51 

Clearly bath the y - 6 and to - bl invariants exhibit poorer performance compared to 

r - Q  
[-15.1,17.9] 

[-8.2,9] 
[-3.1,3.2] 
[-3.3,3.1?-] 
[-5.5,5.8] 
[-S.9,9.6] 

colour ratios. In contrast the r - g channel is less affected by error than all  the colour 

ratios and can be considered as a possible index. However taken together the set of 

Paugeras oppo11enf.s are not a suitable basis for colour constant colour indexing with 

the Vos Walraven sensors. 

a fair cotrkparison to the errors present in simple ratios 
7 1 -'I he coefficients of a, p and 7 defining the w - 61 channel of equation (3.1) are set to 0.612, 

0 369 and 0.019. This linear combination best matches the performance of the relative luminance 
efficiency fmct.ion--V* (A). 
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3.3 Volumetric Invariants 

Brill[G] develops a theory of colour constancy based on volumetric invariaiits. Let 

pl, p2,  p3, p4 denote the response vectors of 4 distinct surfaces viewed uudcr tile SRIIIC 

illuminant; MiJk denotes the matrix whose columns are pi,p2 and p k .  Tht: volume of 

the parallelepiped bounded by the columns of Milk is equal to: 

where 

of two 

Vijk = Det (iW ;jk) (3.8) 

Det denotes the determinant function. The volumetric invariant is the ratio 

such volumes: w. To illustrate llunlinant indepeuclence corisidcr applying a 

linear transform 

written as: 

7 to  the original sensor responses. Under 7 the 

Clearly Det(T) cancels from top and bottom implying illuminant 

A general linear transform always performs a t  least as well as a cliagorral ttrarrsfcwrn 

in solving for colour constancy. This is especially true for the extrcrnes in illu~ninitnt, 

colour-CIE A and D100. Tl-ius while colour ratios calculated undcr D55 clilrer froru 

those calculated under D100, volumetric --atios remain unchanged. 

Unfortunately to  calculate volumetric ratios there must be a t  lcast 4 distinct 

colours falling in a small neighborhood of the image. Such colour complexity is urr- 

likely; as such we predict that volumetric ratios, used by thcn~selvcs, would yield poor 

identification success. However they do provide useful extra, informat ion; in particular 

volumetric ratios encode the interrelationships of 4 surfitce colours. 

3.4 Colour Const ant Colour Indexing 

All three invariants: ratio, opponent and volumetric arc candidate indices for otjjcct 

identification. However, because opponent invariants have poor error prupcrties and 

volumetric invariants require high colour complexity, we propose indexing or~ly with 

colour ratios. 



11,atios are eficiently calculated 

tion operator. This differencing is, 

in log space via a simple differencing convolu- 

in effect, the derivative of the log-colour image. 

Unfortu~~ately the first directional derivative is non-isotropic and this could lead to 

orientation affecting object recognition. Natural choices of isotropic operators include 

the magnitude of the gradient or the Laplacian. We choose the Laplacian, or more 

precisely the Laplacian of the gaussian (LOG) so as to include smoothing, because 

it is si~npler to compute and it has a theoretical relationship to the centre surround 

cells of thc human visual system[24]. 

The LOG operator calculates a weighted average of log differences occurring in a 

circular field about each image point. Since addition and subtraction in log space cor- 

responds to multiplication and division in non-log space the LOG operator effectively 

calculates a product of ratios, where each ratio is raised to the power of its weighting 

coefficient. Each ratio in this product factors out illumination and hence we are as- 

sured of the illurninant invariance of the LOG index. Moreover close to  the boundary 

between two coloured regions the LOG operator calculates the weighted product of a 

single ratio. As such we consider the LOG operator to calculate information similar 

to explicit satios. 

The simplest Laplacian filter can be written as (-40,0, L l ,~ ,  lo,-1, lo,l, 11,0), where 

-4U,o denotes a weight of -4 at mask location (0,O). If iz denotes the logarithm of pz 
.x-l,y + ix,y-l then the  Laplacian a t  image location (z, y) is calculated as -4iiYY + z k  k + 

;x,u+l + i;+1.y 
A. . In non-log space this is equal to: 

Colour-constant Colour indexing proceeds in three stages: 

I. Logarithm step 

iz -+ log(pz)) 11. = 1...3 

11. Lap1acia.n convolution step 
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111. Histogram step 

Steps I and 11 represent the only additional conlputation required to &tail1 il- 

lumination independence. The logarithm in Step I can be do11e by table lookt~p ilk 

hardware and the Laplacian in step I1 is a separa.ble convolutioxi. As for Hurl bert's 

opponent invariant, the LOG operator must have a small support so as not to viol at,^ 

the assumption of constant illumination. 

?Ve call the histograms of LOG triples ratio-histogr~ms. The cou~it in a ratio- 

histogram bin conveys information, not about colour areas, but about colour bound- 

aries. There are various representational issues resulting from thc switch from colours 

to ratios. These are discussed in Chapter 4. 111 a numl~er of clifFerent expt:rimcr~- 

tal conditions colour constant colour i~ldexing performs well. Thc experiments and 

results are presented in Chapter 5. 

3.5 Colour Constancy by Object Identification 

Algorithms which solve the colour constancy problem all make assumptions ahout the 

world: retinex assumes that each scene contains a uniform reflector and CRULk: h a s  

previously seen all surfaces ~vliich make up the world. If every world scenc contairls n, 

model object, at  a known location, then colour constant colour-indexiug can I N  used 

as a preprocessing step for colour constancy. Consider the following aIgorit,hrn: 

1. Focus attention at  a known location. 

2. Identify object a t  this location using colour constant colour-inclexing. 

3. Solve for the constancy transform. 

4. Apply this transform to the image thereby generating colour co~~s t~an t  descrip- 

tors. 

Although we do not propose the above as a model for eolour ccmtancy, it is 

interesting to  note that Swain requires colour constancy to achieve objr;~!. idcntifi- 

cation whereas we can obtain colour constancy as a result of object identification. 
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The psychophysical experiments of Arend and Reeves and of Craven and Foster, both 

irnpiicitly address these computational issues in the framework of human vision. We 

provide a summary of their results in the n ~ x t  section. 

3.5.1 Psychophysical Experiments 

Machine and human vision share many common goals. As such, studies of the human 

visual system are often of consequence to machine vision. This is true in the field of 

ve vision-where the goal is to solve specific problems quickly. Colour indexing 

d colour constant colour indexing both solve the active vision task of identifying 

known object (the object is assumed to belong to the set of model objects) at  

nown location.. Both algorithms address the colour constancy problem. Here 

port on psychopl~ysical experiments which partially address identification and 

stancy in the framework of human vision. 

and Reeves[l] conclucted experiments investigating simultaneous colour con- 

They wished to determine if the human visual system solved the colour con- 

problem via simultaneous mechanisms-that is primarily in terms of the spatial 

tions among corle responses at different retinal locations, where the eye does not 

temporally adapt3. In their experiments an observer is shown two Mondriaans. The 

st Mondriaan, the s tandad,  contains n surface reflectances, Sl (A), &(A) ,  . - . , S,(X), 

anted under E6"(X (correlated colour temperature of 6500ICI). The second 

ndriaan, the test, is identical to the first except that the incident illuminant is 

Ela0(A) (correlated colour temperature of 10000K) and the ith patch, the match, is 
" AX) . initialized to S ' ; (A) j$&j ,  the it11 patch in both Mondriaans reflect the same colour 

signal. (Changing the match reflectance to Si ( A )  should render both Mondriaans 

identical). 

Two matching experiments are carried out: chromaticity matching and paper 

matching. During ~hrornat~icity matching the observer is instructed to adjust the 

chromaticity of the match colour signal such that the it11 patch in the test Mondriaan 

3Land's retines algorithm is an esarnple of a simultaneous colour constancy algorithm 
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appears the same as the it.11 patch in the standard. Colour constancy in  this es~wri-  

ment is poor: the observers do not, ~ignificant~ly, alter the chromaticity of tho ~~ ia t c l i  

colour signals. This suggests observers see colour signals not surfactr reflet-tanccs. 

In the paper-matching experiment the observer is instructed to altcr the chro- 

maticity of the match colour signal such t8hat the ith patch in the test Mondriaan 

looks as if it were cut from the same piece of paper as the correspot~dirig patch i r k  t,hc 

standard Mondriaan. To aid this matching the observer is encouraged ti> examine the 

relationship between colours. Here colour constancy is good. 

These matching experiments have two implications: 

1. 

2. 

Both 

The human vision system does not exhibit sixnult.aneous colour comia~lcy 

Surface reflectances (or materials) can be correctly identified by examining their 

relationship with other surfaces. 

these observations favour Colour constant colour indexing. We ahandonccl co lo~~r  

consta.ncy preprocessing as we judged it to be unattainaldc. Furt11r:r coloar ratios 

encode colour relationships between surface reflectances. 

Craven and Foster[7] have investigated the problern of operational colous con- 

stancy; they pose the question "Can a human observer distinguish betwceir illurnir~ar~t, 

and reflectance changes?" Their experimental setup is similar to Arcnd and llc~cvcs. 

A standard Mondriaan, under a fixed illuminant, is a constant in all experirncrlt,~. lbr  

brief time periods the observer is shown a test which is either: 

1. the same Mondriaan under a second illurninant. 

2. a Mondriaan with the same spatial pattern but where reflectances are altered, 

The observer is asked whether the test and standard Mondriaans differ I-~ecause of 

a2 illuminant or surface change. TI? all cases observers correctly distinguish hctwcen 

illuminant and surface changes. 

This experiment serves to strengthen the work of Arend and IZceves- --a changing 

illurninant is identified, and hence colour constancy is not an instantaneous c;.ffi:cl,. 
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Moreover the whole test h4ondriaan is rapidly matched to the standard suggesting an 

internal colour constant representation. The LOG of the log colour image, or raugeras 

opponent channels, are suitable vehicles for explaining this experiment. 



Chapter 4 

The Ratio Represent at ion 

Switching from cofour triples to coiour ratios raises several rcprcse~~tatior~al issncs. 

Firstly if all colours appear in the world with equal likelihood tlicrl this i~nplics the: 

distribut.ion of colour ratios is non-uniform. This is clear from the following sirnplrz 

ample. Imagine that colours, in a single sensor class, are integers in the int,ervd 

,3j- Since all colours are ecpally likely the following ratios wilt occ.ur with trql~al 
1 1 1 2 2 2 3 3 3  probability: i, ,,z,T, . T. 2.5-  It ioltows that ratios close to 1 arc more likely tflari 

ratios close to 3, This simple illustration implies that the ratio his1~ogs;~m sliot~ltl 

sample ratio space non-uniformly. 

We begin this chapter by formalizing the intuition given above. A simple proba- 

bility model is developed which allows us to solve analytically for the distribution of 

colour ratios. Thereafter me design a ratio histogram which is optimally se~lsitivc to 

ratio space: that is, under the assumptions of the model, a randomly gcneratctl ratio 

will fall in each bin with equal probabiiity. 

The experiments of section 3.2.1 indicate that cofour ratios are only cc~list~arit 

(illumination invariant) within certain error bounds. ?%s implies that, nrlder two 

illurninants the same colour ratio may fall in different histogram bins; wr: call this 

shifting ratio migrafion- fnduding ratio error bounds into our probabi f ity model allows 

us to exzmi~e ratio migration in detail. In particdar, we estimate the probat4 ty of 

ratio migration for different bin distributions. 

The chapter concludes by discussing the  implications that the nonuniform ratio 



rJistriGutirirt and ratio migration have for Colour constant colour indexing. 

Kott: Colotir Constant colour indexing indexes not on colour ratios but rather on 

the LOG of the log-cdour image. Clearly these two indices are related. The LOG 

operator calculates a weighted average of log differences (or ratios). Thus although 

this chapter deals explicitly with ratios, we expect our results to apply to the LOG 

index. 

4.1 The Probability Model: for Colours 

Let; us asstlrne that all colours (sensor catches) appear with equal likelihood; that is 

colotlrs belorig to a u:!ifctrm probability distribution. Formally we write: 

which reads, the  sensor catdl pk is a random variable belonging to the uniform distri- 

b u t i o ~  defined over the interval [l, I f ] .  In simpler language an arbitrary sensor catch 

will have each value between 1 and IT with equal probability. The probability that a 

colour less than X is recorded is equal to: 

Since all colours are equally likely each sensor channel must be independent. 

Therefore the probability of the response vector p - being less than (X, Y, Z) t  (where 

rorresponcling vector coltlponents are compared) is calculated as: 

A cautionary remark should, at the outset, be added to the above model: the 

;~sumptioa of a uniform distribution of colour-vectors is strong and is, in reality, 

uniikdj-. Consider the domain of consumer products-cereal boxes etc.-then bright 

high contrast, colotrrs, reds and yellows, are more likely t.o occurs than browns and 

mattvcs. Further the  responses in different sensor channels are likely to be correlated. 

khwewr. S~vain's colour histogram uniformlv sam~les  colour mace: this counled with 



the success of colour indesing malies a uniform colour siliLcc it reasotlnblt* assuniptior~ 

for andysis. 

4.2 The Ratio Distribution 

The ratios 5 and contain the same information; hence we drfinc t . 1 ~  I -a 1' to int lcs  
4 B to be rnax(,> l). Under this dehition ratios of sensor catches will also fall  iu t h r*  

interval f 1, I f ]  but the corresponding probabiii ty distribution is nun-uniform. \Vha t is 
4 R the probability that mas(B, f is less than R? 

A 
Pr(- < R' /\ A < B )  = Pr(A < lrf?) 

B 
(4.6) 

Assuming that A and B belong to the uniform clistriblition U ( m ,  M ) :  

1 PR' u' 
Pr(,4 < R'B) = (A1 - -)cia 

(A4 - nz)2 IZ' 

Substituting A4 = If. nz = 1 and R' = I R into equation f4.S) and s~lIlstit,uf,i~lg (4.8) 

into equation (4.5): 

W e  cas solve for the density function, d(!l)> of rztios by difi'trentiating t * q ~ i l -  

tion (4.9) with respect to R. 



4.3 Optimal Bin Distribution 

Equipped with the cumulative ratio distribution, equation (4.9), we can calculate the 

optimal distribution of histogram bins: ratios should fall in each histogram bin with 

equal probability. Intuitively this definition of optimality appears reasonable since if 

most ratios were mapped to a small subset of the histogram bins then this implies 

different objects would yield similar ratio histograms. However we strengthen tb.is 

n by appealing to the information theoretic notion of entropy. 

t the histogram H contain n bins in each dimension (or sensor channel) giving a 

f n3 bins. The event tiiJk, that a ratio is mapped to the histogram bin H(i, j, k) 

ccurs witA probability Pijk, where CTj,k Pijk = 1. Since we know the distribution 

f ratios, we can calculate the probability of a ratio sequence and thus a particular 

I-Iere we are assuming that we know the number of distinct edges which 

ular bin1 The information contained in a histogram representing 

is equal to rn *entropy(h), where h is a random variable defined over 

n 

entropy(h) = x -Pijblog2(Pijk) (4.11) 
63,k 

Entropy is a measure of the average cost of (optimally) encoding each event. Thus 

least number of bits required to encode a histogram with m 

f V( i ,  j, k) Pijr = -$ then entropy(h) is maximum[23], and hence the ratio 

m conveys the most information. Thus an equi-probability partitioning of 

Let, there be n bins per sensor channel, where the ith bin is sensitive to ratios in 

the interval [ x ~ - ~ ?  x;] (zo = 1 and s, = V ) .  For each x; we must satisfy 

A B i 
Pr(max(-- -)) E [l, x;] = - 

B ' A  12 

'In realit5 we cannot distlnguisti between coloured edges with the same ra io triple. However, 
during histogram mat.ching, t-his i~formation is partially known. If a histogram bin in one histogram 
represents 3 edges and has a count of 100 then the corresponding canonical histogram will have a 
similar bin count in the same bin!. 
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which implies 

Equation (4.13) can be written as a quadratic in xi, Thus by fi~lding the roots of 

equation (4.13) we solve for the bin boundaries x i .  

The above analysis is sufficient for images with only two colours ant1 11cncc 

single edge. If however we introduce a third colom C then the ratios 8 am1 $ ca~nnot 

strictly be considered independent. Incorporating this dependency into the rnoclcl is 

non-trivial and will not be considered further here. This dependency clisappcarx i f  

we restrict our attention to the subset of image ratios where all denominators and 

numerators are unique sensor catches. 

4.3.1 Optimal Bin Distribution for Camera Sensors 

In real images under different illurninants the largest ratio is around 4.5. Assurning 

that sensor catches fall in the range [I, 4.51 (which could be forceci via appropriate scal- 

ing) we can solve for the ratio distribution by substituting 4.5 for V in ecji~atioxl (4.9). 

This distribution is graphed in Figure 4.1. Using equation (4.13) we now solve for the 

optimal distribution of histogram bins, where like Swain, we divide each ratio chanrzcl 

into 16 bins. The character "0" demarcates bin boundaries in Figure 4.1; t,hc bin 

distribution is clearly non-uniform. 

4.4 Ratio Migration 

Sensor ratios are illuminant invariant within certain error bounds. IIence ratios can 

migrate across bin boundaries as the illumination changes. We wish to incorporate 

this ratio migration into our probability model. This will allow us to exarriinc thtr 

probability of ratio migration for different bin boundaries. 
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0 Optimal Dietribution 
U Uniform Distribution 
E Experimental Distribution 

ratio E R 

Figure 4.1: Cumulative Probability distribution for colour ratios. Bin boundaries for 
the optimal, uniform and experimental distributions are denoted by ('O","U" and 

4.4.1 The Distribution of the Migration Term 

In section 3.1.2 we examined the connection between the relative error of fitted re- 

sponses and the error in colour ratios (fitting refers to the optimal constancy transform 

which maps sensor val~lues under one illuminant to their appearance under canonical 

lighting conditions). The relationship between fitted response and standard descriptor 

is captured below: 

The constancy of equation (4.14) (the variance of the right hand side) is governed 

by the nligl-ation t e m  1 + E. Henceforth we assume the migration term of a sensor 

catch, nt3 is a random variable belonging to the unifom distribution U(rn, M )  (rn < 
I,Af > I and m, Af > 0. (In reality the migration term will be peaked around one: 

small errors are more likely than large errors. -4s such, assuming the migration term 

belongs to a uniform distribution implies an overestin~ate of the error. This implies 
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the following is a worst case analysis). 
A 3 Given a ratio index R = 7 )  we assume the migration term of r l  j r r r A )  is 

independent of the migration term of B (ma). Be~lce the combined migratiou tcrm 

for R (mR) falls in the interval [z, 21. We would like to know the probability tlmt nrR 

is less than equal to some R', Pr(mR < 8'). Assuming 7 n H  < 1 t,hen this distribulim 

is given in equation (4.8). 

4.4.2 The Probability of Ratio Migration 

Give11 the density function, cl(R), of the ratio index, ecpation (4, I 0) ,  couplcd w i t h  Lltc 

distribution of the ratio migration term allows us to estimate the probability tlml a. 

ratio will migrate between histogram bins. We split this analysis into two parts: first 

we determine the probability that a ratio shifts to a higher bin (posit ive miyt.nlio?l); 

thereafter we estimate the probability of a downward shift (negative nziyr.ation). 

Let us consider the positive migrakion of the i th  bin (receptive to thc irtterval 

[X~-~,X;]). The minimum ratio, lying in this interval which can migrate upwmxls is 

denoted & and is defined as follows: 

if xi$ > ~;-.1 
xi-~ otherwise 

.4 ratio R drawn falling in the interval [Roy z;] can migrate upwards i f  and only i f  

5 i 
m R ~  2 a; =+ rnR 2 - 

R 
Since Pr(mR > W) = Pr(mR < 2)  the probability of positive migration in tllc i t h  

bin is defined by the integral: 

Let us now calculate the probability of negative migration for the same ir~tcrval 

xi]. Firstly we calculate the maximum ratio in this interval which can rnigratx 

downwards. This is defined as: 



A ratio falling in the interval R1] will migrate downward if and only if: 

Thus the probability of negative migration in the i th  bin is defined by: 

Assuming that there is no positive migration from the nth bin and no negative 

migration from the 1st bin, the total migration probability is calculated as: 

n- l n 

Pr(migrati0n) = C Pr(R E [xi-l, xi] /I, ~ r n ~  > xi) + C Pr(R E [xi-l, xi] A ~ r n ~  < xi-1) 
r = l  i=2 

(4.19) 

Thc probability that a sensor catch does not migrate is Pr(no migration) = 1 - 

Pr(migrati0n). Since the three sensor channels are assumed independent, the probabil- 

ity that a colour ratio vector will not migrate, Pr(& unchanged), is (1-Pr(migrati~n))~. 

4.5 Experimental Results 

Intuitively the a.na1ysis of 4.4 implies that the smaller the bin size the greater the effect 

of rat,io migration. Thus a ratio histogram robust to ratio migration should have a 

small number of large bins. However the optimal bin distribution (4.3) is uneven and 

ixlcludes many small bins- see Figure 4.1. Thus in designing a ratio histogram we 

necd to find a compromise between two confiicting goals: 

1. partitioning ratio space into equi-probability regions. 

2. minimising the problem of rakio migration. 
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0.43 
uniform 9.34 0.6SS 

0.483 

Table 4.1 : Entropy versus Ratio h4igra.t ion 

For the camera sensors we calculated 3 different bin distributions: optirual, tmi- 

form and experimental. Each is graphed in Figure 4.1. (Note the same cumulativ~~ 

probability distribution is graphed 3 times. For disp1a.y purposes the uniform a n d  es- 

perimental distributions are vertica.lly displaced. This prevents bin bourldar-ies from 

occluding each other). Like Swain's colour histogram each ratio histogra,rzi is par- 

titioned into 16 bins in each sensor channel yielding a total bincount of 4006. 'S'hc* 

optimal bin distribution refers to the equi-probability partitioning of ratio spacc clc- 

fined in equation (4.13). By contrast, the uniform distribution is an cqui-volr~rrlc 

partitioning of ratio space, where each bin is a cube. The last tlistributiort, the cx- 

perimental, is implemented in Colour constant colour indexing. (The experimc~ttal 

distribution achieved good match success for all our test images). 

Table 4.1 tabulates Pr(R unchanged) for each distribution, wherc n~igt-aticm terms 

are drawn from [g, 51 (this corresponds to a colour constancy fitting error of 2.5%) 

and correlates well with the experiments of 3.2.1). The second column of 4.1 clis~~la~ys 

the entropy of each bin distribution. This table clearly illustrates the trade-off bc- 

tween discriminatory power (maximising entropy) and robustness to mtio ~nigralion. 

The uniform distribution is the most robust to ratio migration but conveys Icast irr- 

formation. In contrast the optimal distribution, wllile n~aximising entropy, is lcast 

resilient to ratio migration. The experimental distribution, irnplerncnt,cd in  colo~lr 
r 1  constant colour indexing, compromises between entropy and robtustncss. 1 IJ is corn- 

promise is clearly illustrated in Figure 4.1. Where the optimal bin distributiorr has 

many small bins-and is especially susceptible to ratio migration- thc i:xperirncntal 

distribution has fewer bins. In contrast, where the optirnai distribution has few large 

bins the experimental distribution samples ratio space more finely. 



C'tfAY .r17EPZ 4. THE RATIO REPRESENTATION 5 1 

The colour constancy fitting error for the Vos Walraven fundamentals is higher 

than those for the camera sensors. Given fitting errors of 2.5%, 5% and lo%, Pr(R unchanged) 

for t tx experimental distribution is 0.483,0.213 and 0.056. Given the decrease in ratio 

stability with larger fitting errors, we predict that the Vos Walraven fundamentals 

will perform poorly for extremes in illuminant colour (CIE A and D100). 

4.6 Advantages of the Ratio Representation 

Ilistograming colour ratios has several other advantages: 

1. In a world of 1aml)ertian surfaces with point source illumination, the ratio of 

response vectors, corresponding to two surfaces at the same orientation, is view- 

point independent. This is easily demonstrated. Let 2 denote the illuminant 

direction and 3 the surface normal. The the magnitude of the denominator and 

IS term numerator responses is proportional to g.n (the vector dot-product). Th' 

clearly cancels under the ratio operation. 

2. Ratios provide more information than colours because a single surface can con- 

tribute to many ratios. Consider a n x n grid of coloured patches. If each colour 

is unique then the grid contains n2 distinct colours. However, counting only 

horizontal and vertical edges, there are 2(n2 - n) colour ratio vectors; all of 

which can be distinct. 

3. R.cztio histograms, compased tso colour histograms, are less affected by changes 

in view depth (the distance between object and camera). Since the count in 

a ratio-histogram bin is a measure of edge length and it is linearly dependent 

on view depth. This compares favourably with a colour histogram bin which 

measures area and is therefore proportional to the view depth squared. 

4.7 Ratios and Histogram Intersect ion 

Each bin in the ratio histogram is a measure of the length of a particular colour 

boundary. However the first histogram bin, H(1,1, I), is sensitive to trivial colour 
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ratios-those close to (l? I l l ) ' .  Trivial colour ratios correspond to regions whcrt: t,hc 

colour stays the same and are therefore a measure of area, This itnplies that two snraI1 

objects, seen on a large uniform ba.ckground, will have a lasge intersection ( in  both 

cases there are many trivial ratio vectors). This problem is prevcutcd by renmviag 

the first bin from the ratio histogra,m. 

Ignoring trivial ratios implies different ratio histograms will have diffcrcnt. total 

bin counts. Thus care must be taken when norrnalizi tlg histogram nlatcll valum. 

Swain normalizes to  the total count in the model histogram. This nornializa,tion, for 

ratio histograms, can result in highly colourful images being falsely matched to a less 

colourful model. A similar problem occurs if we normalize to the total cotmt i l l  the 

image histogram. Hence we choose to normalize on the maxitnuin of the i~nage a n d  

model bin counts. This ensures a good match occurs only when the intcrsectiort is 

large and both histograms are of similar size. Of course if we presegmentecl the moclel 

images and removed information contributed at an objects boundary we could resort, 

to  Swain's model normahation. 

4.8 Ratios and 3D geometry 

So far we have assumed that the numerator and denominator responses of each colour 

ratio are drawn from surfaces with the same orientation i.e. we have ignored ratios 

which occur in tandem with a changing surface normal. Consider two surfaces with 

normals and %, where the light is in direction 2, The corresponcling sensor wsponsc 

vectors are written as (2, .g)c1 and (7z2.z)p Their ratio vector is cqud to: 
-2' 

n v Since A is a scalar, the ratio vector normalized to unit length is invariant, to 
I%-2 

the underlying 3D geometry. Under this normalization the ratio histogram encodes 

%dimensional information. 

In real objects sharp changes in surface normal oftcn do not coincide wi th  sf~a.rp 

changes in surface colour. For example, close to an orientation boundary, t h e  fror~t 
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and side of a cereai packet may be the same colour. In this case only trivial ratios 

( 1 , 1, lIt will be scaled. If the objects in our database have many orientation edges 

then the trivial axis, N ( i , i , i ) ,  can dominate histogram intersection. In this case the 

trivial axis should be removed. 



Chapter 5 

Test Results 

The colour constant colour indexing algorithm performs well on a varicly of real a . ~ l  

synthetic images. Objects are correctly identified despite subs tan tial changw iri t,he 

spectral power distribution of the illurninant. Unsurprisingiy, Swain's colous-indexing 

performs poorly when the lliumination changes. It should be noted tha,t, in tllc tcsh 

of colour-indexing we use RGB histograms, not opponent-colour histogran~s (he t,est~ 

both) and prior background segmentation is not performed on the moclcl ir~~agcs. 

To evaluate colour constant colour indexing we first consicler wl-ietller or nol, ratios 

suffice for Swain's original problem under controlled illumination. Second, on syn- 

thetic images for which the surface reflectances, illumina~~ts and camera p;~.ran~eters 

can be completely controlled, we test how the two methods compare. Using t lmc 

images we go on to evaluate the performance of colour-indcxing + colaur C : O I I ~ ~ ~ I I C ~  

preprocessing. Finally, we test both methods on real images. 

5.1 Tests of the Ratio Representation 

'a 10s its Even if colour ratios are independent of illumination, this says little about r t* 

a representation for colour indexing. Are ratio histograms st] fficien t to discsi rnirtatc: 

between a large number of objects? 

To answer this question, we ran the colour constant colous irtdcxing a.Igorit,hrr~ on 
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the database of images Swain1 used in his experiments. First, however, we eliminated 

11 of Swain's 66 model images having saturated responses, because ratios relative to 

saturated pixels cannot be expected to be constant. For our test, then, the model 

database contains 55 histograms and a second set of 24 different images of the same 

objects is matched against this database. 

Each algorithm's match performance is assessed with reference to three indicators: 

match rankings, percentile match and match tolerance. The position of the correct 

match in the sorted list of match values is called its rank, so an image is correctly 

identified if it has rank 1. The match percentile for each image is defined as 2, 
where r is a rank and N is the number of models. Each image is also matched with 

olerance relative to the next best matching model. If the correct match 

nk i then the match tolerance is rn, - where rn denotes match value. An 

that correctly identifies images most of the time, but with high average 

may be preferable to one that correctly identifies images more often, but 

average tolerance. For each experiment we also calculated the variance of 

ances. In all cases the vxiance is small with respect to the average value. 

e 5.1 illustrates the match performance for four algorithms. Swain's, ours 

some Gaussian smoothing (LOG indexing), ours with no smoothing (simple 

Laplacian indexing) and ours where we histogram explicit ratios. Firstly, as Swain 

s, colour-indexing works well. The second algorithm, colour constant indexing 

smoothing, shows reasonable performance-19 of the 24 images have 1st place 

nkings. However, match tolerance is much reduced and, more importantly, two of 

the images are very poorly matched-ranks of 18 and 27. 

The poorer perforrnance can in large part be attributed to the effects of too much 

~moot~hing. Swain used reduced images of resolution 128 x 90, which is quite small 

relative to the 9 x 9 Laplacian of Gaussian mask. Under these circumstances, colour 

boundaries will not necessarily be examined in isolation, since the Laplacian operator 

may straddle more titan one edge at a t  time. To circumvent this problem, we evaluated 

two further index sets: simple Laplacian filtering (no Gaussian smoothing) and vectors 

sf esylici t ratios, 

'The author is gratefa1 to Xfichaef Swain for providing his images. 
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Table 5.1: Algorithm Performancc : Swain's Images 

Histograms of the simple Laplacian of the log-colour image yield the results shown 

in the third row of Table 5.1. We conclude that the simple Laplaciatl provitics a 

rich representation for colour constant colour indexing since performance is similar to 

Algorithm 
Colour Indexing 
LOG Indexing 
Simple La-placian 
Explicit Ratios 

Swain's colour-indexing. 

Av, Pew. 
0.999 
0.961 
0.997 
0.998 

For the ratio test adjacent pixels in 8 directions are ratioed. Of course, this ratioing 

can be implemented by a series of directional first-derivative convolutions on the log- 

1st Rank 
2 :3 
19 
21 
22 

colour images. The performance for explicit ratios is similar to that achieved with thc 

simple Laplacian index-see the last ratv of Table 5.1. 

Other rmbs 
2 

3,5,15,27 
2,3 

9 a 

4 1 .  
0.1212 
0.0613 
0.0986 
0.1023 

To the extent that changes in the spectral power distribution of the illumiillation 

are modelled by a single scalar multiplication in each sensor charmel, tllc ratio his- 

tograms should be relatively illumination independent. To test whcther the coefIic;icrlt, 

rule approximation holds sufficiently for colour ratio indexing, we constrticted syw 

thetic images using the measured spectra described ia 2.2.1. These images arc free 

I'nr. ?bi. 
11.005 
0 .Oil4 
0,004 
0.005 

from noise, speculari ties and other confounding processes that could conf'usc object 

identification. As such, they represent a minimal world for objcct identification. 

Thirty synthetic &tondriaan objects were generated. Each Mondriaan lias the sarrw 

overall size but contains between 4 and 10 (randomly selected) surface reflectances. 

I•’ a Mondriaan has m patches, then these are distributed according to the forrnrtla: 

patches in I direction = [J;;I] and patches in y direction = [%I. Patches arc, as 

far as possible, of uniform size. For example if rn = 7 then the Mondriaan has 3 
patches in the first row, 3 in the second, and 1 in the third. 

For each illurninant, images of the 30 Mondriaans were generated. To separate: the 
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I 
t Muorithm I ATo. 1 s t  Rank 1 Failures I Av. Perc. 1 Av. Tol. 1 Var. Tol. f " / Swain Colour Indexing 

t I I I I 

20 / 155 1 N/A 1 N/A I N ~ I  
f Colour Constant indexinn 1 180 I 0 1 1.000 1 568997 1 0.039 1 

Table 5.2: Algorithm performance : Synthetic images 

issue of brightness change from that of hue change in the illumination, the illuminant 

spectra tvcre normalized such that their squared area is one. Without loss of generality, 

the Mondriaans imaged under D55 are used as the model set. Match results for Swain's 

algc>rithm and for colour constant colour indexing are given in Table 5.2. Note the 

second calumn displays the number of match failures. An algorithm fails to identify 

an  image i f  the intersection wit11 the correct model is zero. If this is the case the 

rwtch rank is unclefined. 

As expected, Swain's algorithm performs badly-155 of the 180 hgondriaans have 

a zero intersection with the correct model. Indeed, colour indexing performs so badly 

that it is not meaningfui to discuss average percentile match or average tolerance. 

The need for some from of colour constancy is readily apparent. 

Colour constant colour indexing performs extremely well. All 180 Mondriaans are 

correctly identified and wit.11 high tolerances. 

5.2.1 Biological Plausibility 

Using the Vos and tVairavenf33] estimate of human cone sensitivities as sensors, we can 

generate synthetic images and examine to what extent colour constant colour indexing 

is afrected by the choice of cones as sensors. In Table 5.3 we present the theoretical 

performance results using the cones. The first row contains the match statistics for 

all G test illuminztrrts-i.e. 180 blonciriaans (setl). The second row contains statistics 

for the test itlunrinants esclrtding CIE A and Dl00 (set2)-120 Mondriaans- CIE A 

and Ill00 represent the extremes in the spectral variation of the illurninants. 

.4 comparison of I'ables 5.2 and 5.3 reveals that the broad-band nature of the cones 

d-ms impair "Iie algorithm" performance, but not by too much. Match performance 

is i~l;crcased \sfren CfE X and D100-the two extremes of the spectral variation in the 

iIIumina2ion-are factored out. 1,crwer rankings result and both the average match 
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I Imaaes / Xo.  1st Bonk f Other Ranks 1 FaiE.tlres I Au. Pert. 1 :tv. ?bl. f \kv 7'06. 1 

Table 5.3: Human Cone Performance 

I 1 I 

camera IS0 1 

Table 5.4: Performance for colour-indexing + colour co~~stancy preprocc*ssirtg, 

tolerance and average percentile match i ncreae. 

5.2.2 Colour Constancy Preprocessing 

The total number of colours appearing in all the Mondriaans is s~zlall---exactly 40, 

Further each Mondriaan has a simple geometric shape. Thus, from our discussion 

of 2.7. the image of a Mondriaan taken under an arbitrary (but spatially constmt,) 

illuminant can be transformed to its appearance relative to a canonical light. l 'tial, 

is, we can solve the colour constancy problem for the Monclriaarl ol~ject; set. 

We experimentally examine the match performance of colour-indexirig + colot~r. 

constaacy (CRULE) preprocessing. The images are created as before: ttmc ;arc 30 

canonical models and 180 test images. The match statistics for ithe carncra and Vos 

?%'alraven sefisors are shown in Table 5.4. 

With respect to the camera sensors, colour constancy prt:procttssing Itas ii drarnaf,i(; 

impact on the performance of colour-indexing. Like colour constant colour-itidcxirlg, 

all images are now correctly identified (this is in stark contrast to thc figures ol' 

Table 5.2). However on closer inspection of the data we scc that colour corlstm~t, 

colour-indexing matches objects with higher average tolera.nce--0.569 as opposed to 

0.416. This disparity suggests that ratio histograms convey more informa.~,ion t,llarr 

colour histograms, fncfeed this was predicted in 4.6. 

Match performznce with respect to the Vos Walraven sensors corn parrjs favnurahl y 

with that obtained by colour constant colour-indexing [see ?'atAc 5.3). More Morr d ri- 

aans are matched at 1st rank, there are less failures and both the percentile: match 
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Table 5.5: Real Images with Varying Illumination: Colour Constant Indexing 

and average tolerance have increased. This success relative to colour constant colour 

indexing is probably due to the small number of total colours. Consider that the 

total number of colours were much larger. This implies there will be many candi- 

date transforms which can map image colours onto the canonical set. Since there is 

no effective means for choosing the correct transform, many false transforms will be 

chose11 adversely affecting match performance. This contrasts with colour constant 

colour-indexing whose performance is independent of the total number of colours. 

Var. Tol. 
0.008 
0.005 
0.008 

5.3 Tests on Real Images 

Av. Tol. 
0.165 
0.145 
0.137 

Under three different. colour temperatures ('36001<,42001< and 5400K) pictures were 

taken of 11 objects comprised of 3 T-shirts, 3 cereal/detergent boxes, 3 sweaters, a 

Sun User's manual and a child's toy, for a total of 33 images. When the illumination 

was changed, so were other viewing conditions; shirts and sweaters were deformed, 

Av. Perc. 
0.995 
1.000 
1.000 

/ Dolabose I No. 1st Iionk Other Ranks 

objects were rotated and occluded. The camera responds linearly with intensity and 

its spectral response functions are as plotted in Figure 2.2. 

Table 5.5 summarizes the match statistics for colour constant colour indexing. 

A model database was constructed using the 11 images taken under one illuminant 

and tlwn the other 22 images were matched against it. This was repeated for each 

illurninant. In t.he table, each row corresponds to a different choice of model database. 

Performance is good and is independent of the illuminant. 

Table 5.6 tabulates tire results for Swain's algorithm. While its performance is 

paor under sasying illumixlation, it is better than it might have been. This is partly 

due to the experimental conditions under which the pictures were taken. The colour 

3600K 
42001C 
5400K 

temperat-ure of the illurninant was changed by placing filters in front of the light 

2 1 
22 
22 

2 
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Table 5.6: Real Images with Varying Illumination: Swain's itlgorit.Ilm 

source. Unfortunately, these filters also diminished the intcrlsity of thc light. 't'o 

compensate for this, camera gain and aperture were adjusted. A11 pictures wcrc: ~nadc  

to  have pixels which lie close to the maximum camera rcsponse (i.c. 255). 130th 

aperture and gain adjustments are linear so should not affect ratio constancy. 

Normalizing images in this way encourages Swain's algorithm to work, since thew 

camera adjustments create an approximate forrn of colour constancy. Nonct,ticlcss, 

even under these favourable experiment a1 collditions Swain's algori t11w performs baclly. 

The optimal choice of model set appears to correspond to the 3 f i O O K  illurnination. 

However, even here 36% of images are wrongly identified; this is extrclnely poor pw- 

formance given t-he small database size. Furthermore, a rarliiirtg of 5 or 7 ant, oS 1 1 is 

clearly unacceptable. 

Database 1 No. 1st Rank 

Histogram Intersection as a Metric 

Other R a n k  
2,5,T 

%,3,6,7,8,11 
2,3,4,5,11 

3fiOOIi 
4200Ii 
5400K 

Swain demonstrates that if two histograms are of the same size tl~ers their ir~terscct~jorl 

is a distance metric. In particular, histogram intersection is ccluivalc~tt to t l x  scaled 

sum of absolute differences, commonly referred to its the city-block rnc:t,ric. Cor~siclcr 

the intersection of two histograms 174 and I each with n bins. 

14 
10 
10 

Sirrce ratios close to  one are ignored ratio histograms must tie rrr~mialized to have 

.4v. Pew. 
0.90 

0.76s 
0.80 

quai total bin counts. Results for colour constant colour indexing rviicrr this rnctric 

condition is enforced are given in Eb le  5.7 

.-lo. 221. 
0.08 

0.066 
0.071 

1.b. 7bl, ' 
0.OOS 
0.007 
0.008 

2 
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Table 5.7: Matching when Histogram Intersection is a Metric 

It appears that colour constant colour indexing continues to work well. There is 

a slight performance fall; however, this may not be surprising considering the type of 

normalization. The results in  Table 5.7 illustrate the stability of ratio histograms as a 

context-invariant object descriptor. Since normalized histograms have constant size, 

this stability suggests match performance could be increased by using a I<-nearest 

neiglzbour classifier. For a discussion of these classifiers see Duda and Hart[8]. 

The model database for a I<-nearest neighbour classifier contains the ratio his- 

tograms of objects imaged in many different visual contexts. An image is identified 

by examining the I< best matches in this duplicate database. Of course, if all K 

matches are of the same object then this is a strong match. In general, however, it 

is sufficient to select the most numerous matched object as the identity of an image. 

A K-nearest neighbour classifier requires that ratio histograms be a stable represen- 

tation and that their intersection he a metric. We predict, bxt have yet to test, that 

the  perforr~~ance of colour constant colour indexing will be improved if a I< nearest 

neighbour classifier is used. Swa4in's method cannot be extended in this way, since 

cobur histograms are not stable under illumination change. 

Av. Tol. 
0.098 
0.558 
0.11 

Database No. 1st Rank Other Ranks 

578 

2 

Thr. Tol. 
0.005 
0.034 
0.004 

Swain's Images 
Synthetic Images 
Real Images 

Av. Perc. 
0.992 
1.00 

0.986 

22 
180 
19 



Chapter 6 

Concluding Remarks 

The work presented in this thesis can be extended in various ways. +4 niorc infornicxl 

data analysis would lead to an improved bin distribution for ratio Iiistograrns; this iu 

turn would lead to improved object identification. Identification success would ;\lw 

be increased if colour areas and colour boundaries contributed to match success. We 

discuss both of these topics in forthcoming sections. Thereafter we corisid~r wing 

ratio histograms for the object location problem. The chapter concluclcs with ra brief 

summary of the possible applications for colour constant colour-indexing. 

6.1 Data Analysis 

The probability model introduced in chapter 4 assumes that both culotirs nr~rl con- 

stancy fitting error a.re uniformly distributed. In reality these distrj butior~s ;trt? not 

uniform. The probability model can be strengthened by ~nalcirig more inforrnctl csti- 

mates about the ratio distribution and the variance of ratios over i l l  ixnir~an t changers, 

This can be determined experimentally. 

A more accurate probability model would better guide the choice of bin cfistri b u -  

tion for ratio histogram. This in turn should lead to irnpmved match s~tcc;r.ss. 



6.1 .I Cluster Analysis 

Whcn histogram intersection is a metric it is reasonable to consider a I<-nearest neigh- 

buur approach to object identification (see 5.7). In this case the database contains 

many histograms for each model (corresponding to a single object imaged in dif- 

fcrent contexts). There are a set of n histograms corresponding to the ith model: 

Mi = ,Mil, A&, . , Mi,, In this framework identification is a majority decision-the 

most numerous neighhour of the image histogram identifies the object. 

A priori to matching, the space of model histograms can be analysed to deter- 

mine the likelihood of match success. If each model set occupies a distinct region of 

histogram space then this favours successful identification. In contrast overlapping 

model regions is indicative of match failures. This type of cluster analysis is useful in 

evaluating different bin distributions. Further it can provide an upper bound on the 

number of models which can be successfully identified (as the number of models in 

the database increase, a false match becomes more likely). 

6.2 Lexicographic ordering of colours 

Ratio histograms and colour histograms encode related but different information 

(tllerc is no way to transform one into the other) Thus, an identification system 

which makes use of both representations would yield improved match success. Unfor- 

tunately such a system would necessarily be impaired by a changing illuminant-since 

rcrlour histograms are not illuminant invariant. 

However by alt'ering the implementation of histogram intersection colour his- 

tograms can be matched independent of the illuminant. The invariance of colour 

ratios follows from the  diagonal matrix model of colour constancy: 

AmtIitx  ii-i,p!iea'tion of equation (6.2) is that the lexicographic ordering of colours 

urtdcr different i tlurni~lants is the same. For example: 



Let us consider two histograms Hl and Hz corresponding to the same scene irnagcti 

under two illuminants. Subject to the ordering of equation (6.3) let the stxillg of non- 

empty bin counts of HI be denoted S1; where S1 = (cl, czr - .  , e,),  e; is a bincouirt, 

and m is the total number of distinct image colours. Hence because colons osileri~~g 

is maintained during an illurninant change S2 = S1. 

In general the h.istogrcirn st ring of an object viewed in different visual co~itex ts is trot 

invariant. This is especially true when the ohject is occludcd or whcn the ba.cligsou~tcl 

varies, in these cases the set of image colours will change. Howevcr thc prol,lc~ll of 

approximate string matching occurs often in computing science. For esnn~plc  t h  

UNIX "diff" command finds the minimal difference between two text files, 1 [istogram 

intersection implemented as string matching will allow colour meas atid colour ratios 

to contribute to object identification. 

6.3 Object Location: Histogram Back-projection 

The object identification task implicitly assumes that thcre is a single ot)jct:t in  

the field of vicw-histogram intersection compares single rnodel histogritrns wit11 t11c 

colours in an image. Thus histogram intersection is a method for icferttifyirig a.rl 1111- 

known object at  a known location. Swain[2S] develops a rnetlmcl, called histogram 

back-projection for solving the inverse task: identifying a knowri object at i t r f  I I J ~ ~ ~ I C ) W I I  

location. 

The location problem is solved in two dages. Firstly the colours which arc l t c : i ~ ~ g  
r \ searched for are highlighted--a highlight image, h,  is constructctl. I tmcafter. we 

locate the object by finding the densest concentration of hightights in h, 

Consider we are searching for the ohject whose nlodel histogra~n is IZd in  an i tn i~gc  

whose histogram is I. We wish to highlight those culours in I that arc irt  corrcspon- 

dence with M. The vehicle for this highlighting operation is the ratio histogrwn, I<, 
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defined below: 

If the image vector px - maps to Iabc then hx = Rabc. That is the highlight image is 

brightest where image colours correspond to model colours. Further the largest bright 

region in IL should correspond to the location of the model (all colours in this region 

wiIl be highlighted). The brightest region is found via mean-filter convolution. 

Histogram hack-projection should work equally well for ratio histograms. The 

only difference is in the highlight image where coloured edges as opposed to coloured 

areas are enhanced. Thus, although the focus of this thesis is object identification, 

we predict that illurninant invariants provide a useful basis for the object location 

pror~.ern. 

In the context of the human visual system could histogram back-projection serve 

ns a mechanism for ccmtrolling eye movements? One prohlem here is that unlike 

GCD cameras, the human eye sa.mp1e each scene non-uniformly; the sampling rate is 

istversely proportional to the distance from the fovea. However Swain has shown[28] 

that colour histograms are a salient description for objects despite resolution and 

hence are suitable location cues[30]. A similar study of the effect of resolution on 

ratios would give insight on the suitability of ratio histograms for guiding visual 

attention. 

6.4 Applications 

Swain proposes two application for colour-indexing; we review each in relation to the 

results presented in this thesis. Firstly Swain proposes that colour-indexing can be 

used in automated check-out devices in grocery stores. Clearly from the results in sec- 

tion 5 ,  cuiuar constant. colour indexing should generally perform as well with respect 

to t-his t-ask-sad in unconstrained illumination. However for objects with few colours, 

for example fruit, colour constant colour-indexing will fail (since boundaries between 



different colours are required). For this restricted domain colour constaricy priyro- 

cessing may be possible and hence colour indexing employed. If the fruit is placed 

on an unchanging multi-coloured background there is sufficient colour complexity to 

solve for colour constancy via the discrete CRULE. 

Secondly Swain suggests using colour labels in a robotic manufacturing, cnviran- 

ment. Colour labels would assist a robot in solving both the identificatioli aiicl locatioli 

problems. ?Ve see no reason why colourful labels and colour constant colour-icdt!sir~g 

should not perform equally well in this task. Indeed because manufacturing eiiviron- 

ments are often illuminated both with natural and artificial light, we predict colour 

constant colour-indexing will out perform colour-indexing. 

6.5 Conclusion 

Swain's colour-indexing, whilst remarkably robust to many changes in visual context, 

is extremely sensitive to  varying illumination. Theoretically jmsgcs can bc rcnc1l:rcd 

illumination independent by transforming them via a colour constancy algori t h  1.1 t , 

Unfortunately colour constancy algorithms place strong restrictions on the types of 

objects and illurninants which inhabit the world. Even for the least rest,ridivc slgo- 

rithm, the discrete implementation of Forsyth's CRULE, objects must have si rnplc 

geometries and the incident illumination is constrained to be spatially canstani,. 

Colour constant colour-indexing indexes not on colour triples but on illulnirrant 

invariants, circumventing the need for colour constancy preprocessing. Tlicre ase tl~rcc 

types of invariants-ratio, opponent and volumetric-each of which captures loe;t,l 

image properties. All three invariants are useful given complex object scf,s viewed 

under spatially varying illumination. 

CoIour constant colour-indexing, using colour ratios, successful Iy iden ti fies colour- 

M objects independent of the context in which they are viewed. Further objccts are 

identified with high leveis of confidence. We conclude therefore that colaur images 

provide a rich source of information for object recognition. 
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