*l Matieral Library

of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario

K1A ON4 K1AON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rwe Wellington
Ottawa {Ontario)

Bibliothegue nationale
du Canada

Direction des acquisitions et
des services bibliographiques

Your e Valre edldrence

O sie Nowre refdrence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [luniversité
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cetie microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

SPATIAL JOIN:

A STUDY OF COMPLEX SPATIAL OPERATION AND
ITS UNDERLYING SPATIAL INDEXING METHODS

by

Hong Fan

B.Sc. University of Science and Technology of China, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

(© Hong Fan 1992
SIMON FRASER UNIVERSITY
August 1992

All rights reserved. This work may nct be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa {Ontario)

Yous ble Voire ridfdrenge

Our e Nolre réleience

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle<ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

IGBN @8-315-83635-8

Canada

APPROVAL

Name: Hong Fan
Degree: Master of Science
Title of thesis: Spatial Join: A Study of Complex Spatial Operation and

its Underlying Spatial Indexing Methods

Examining Committee: Dr. Binay Bhattacharya
Prolessor, Computing Science

Chair

Dr. Woshun Mk
Professor, Computing Science
Senior Supervisor

Dr. Jiawei Han é
Associate Professor, Computing Science
Supegrvisory Committee Member

Dr. Nick Cercone
Professor, Computing Science
External Examiner

A«iwf’ 4 1792
g

Date Approved:

i

PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies oniy for such users or in response to a request from the
library of any other university, or other educational lnsfi?ufion, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financlal galn shall not be allowed

without my written permission.

Titie of Thesls/Project/Extended Essay

Spatial Join: A Study of Complex Spatial Operation and its Underlying Spatial

Indexing Methods.

Author:
(signature)

Fan Hong

{name)

August 18, 1992

(date)

Abstract

In recent literature, there has been extensive research on simple spatial
operations such as point location and range query, as well as comparative studies
on spatial indexing methods (SIM) for simple objects based on simple spatial
operations. The thesis iackles the problem of polygon spatial join, which is one
of the most complex spatial operations on complex objects which are simple
polygons.

Polygon spatial join can be defined as finding all pairs of polygonal objects
that overlap each other over their boundaries from two given polygonal data sets.
Spatial join is used extensively in geographical information systems, where geo-
graphical data is organized by "layer”, and a join of the layers creates synthesized
information of the same geographical area. It can also be directly extended to

realize polygon overlay, which is also a very important complex operation in GIS.

We solve the problem by extensively utilizing popular SIMs: PM Quadtree
and R-tree such that complex objects and object relations can be handled efficiently
as well. This is based on the observation that spatial join relies on the object spatial
occupancy, and these SIMs decompose space from which the spatial data is drawn
in a way that spatial properties of spatial objects can be developed and stored.
We design algorithms for spatial join based on PM Quadtree and R-tree as well as
algorithms with no spatial index involved for comparisons. We also present Grid
Coordinate System (GCS) — a SIM for simple spatial objects which is a kind
of Grid File based on the object spatial occupancy instead of on the transformed
multidimensional point space. Both GCS and R-tree are shown to be empirically

superior to PM Quadtree with respect to the spatial join operation.

Comparative studies of the three SIMs under spatial join are also presented.

We make use of ObjectStore which is an object-oriented database system as

i

the storage manager for the spatial data. Empirical results are obtained through
extensive experiments on the random polygonal nets. We generate the polygonal
net for the studies in such a way that it can be adjusted through parameters
regarding size, shape and distribation of the composing polygonal data. The
polygonal net is represented by a vector data model designed as a multi-file

storage-saving structure enhanced with indexing capability.

iv

Acknowledgments

I would like to express my deepest appreciation and gratitude to Dr. Woshun
Luk, my senior supervisor, for his constant guidance, advice, and patience. He
has been available and helpful throughout the preparation of this thesis, and his
supervision and support is the key motivating force behind this thesis work.

I am very grateful to Dr. Nick Cercone for being my external examiner,
and Dr. Jiawei Han for being my supervisory committee member. They were
generous with their time, and both fair and helpful with their comments and
suggestions. Thanks are also due to Dr. Binay Bhattacharya for his scading and
valuable comments on this thesis.

My special thanks to my friend Don Smith and Graham Finlayson who spent
much of their precious time reading my thesis and correcting my grammatical
mistakes. I would like to thank Kersti Jaager and other department secretaries for
giving various kinds of help during my study at Simon Fraser University.

My thanks go also to many of the graduate students in the School of
Computing Science at Simon Fraser University, who encouraged me, and provided
me with various kinds of help when they were most needed: Xiaobing Chen,
Wenfei Fan, Daryl Harms, Tong Lu, Wei Lu, Mark Maurice, Pat T. Pattabbiraman,
Kathy Peters, Frank Tong, Yin Lam Wong, Ju Wu, Kuros Yalpani, Xiaogu Zhou,
Wei Zhou.

Finally, this work is dedicated to my parents and Benguang Yao. Their
immeasurable love and care have always been a source of confidence for me in

my life.

TABLE OF CONTENTS

Approval i
Abstract iii
Acknowledgments v

1 Imtroduction

1.1 Problem and Definitions 2
I.ILT MOtIVAtiONS & v v v v i o v v v v e oot et v m o s e e e amans 2
112 Definitions & . v v v v v i v it ettt s e e e e e 4
1.2 Literature Reviews v . v v it i it it e et e et e e e e e 7

1.2.1 Spatial Join in PROBE: An Object-Oriented Image Database
N 251 (51 7

1.2.2 Spatial Join in PSQL: A Relational Database System

Incorporating Spatial Data Processing 9
1.2.3 Geographical Information System. Oiw en e us 10
1.2.4 Spatial Databases and Spatial Indexing Methods 12
1.3 General Ideaof Thesiso i i it i i iiven o 14
1.4 TheSiSOVEIVIEW « v v v v v v v v oo v ettt e s e st e onosas 16
2 Preliminary: Experimental Setup 18
2.1 Generating Random Polygonal Net 18
2.1.1 Randomly Generating Polygonal Net 18
2.1.2 Setting Up Testing Data Set 23
2.2 File Structures: A Vector Data Model With Topological Information 24
2.2.1 Definitions and Concepts . + . v v v v v v v v e v v v v v v u o 24
222 File SIructures « « « v v v v v e v v v v v et s tas e oo 25
3 Spatial Join Without Indexing 30
3.1 PJ: Polygon Spatial Join v« v v v e vt v i i i 30
32 BJ:Boundary Spatial Join. 0., 31
3.3 Empirical Results and Conclasion c v v v v v i v o 33
4 PM Quad-tree, R-tree and GCS 36
41 PMQuad-tree Family vveeeeenveraoeess.. 36
A = 38
4.3 GCS: Grid Coordinate System e e e e 39
5 PM Quadtree Based Spatial Join 42
5.1 PM Quadtree Based Top-Down Traversal Algorithms 42

5.1.1 PMSJ: Parallel Traversal With Splitting Join 42

vi

5.1.2 PMNSIJ: Parallel Traversal Non-Splitting Join. 44

S13PMI:PMIndexJoin.....voviioeenneenn ... 46
5.1.4 Empirical Results v oo v v v v iive v oo 48

5.2 Comparison Of the Aigorithms on Different Quadtree Variants . . 49
5.2.1 / nalysis of PM Quadtrees in Spatial Join 50
522 Empirical Resultso, 51

5.3 PM3U: A PM3 Quadtree Based Spatial Join Algorithm. 54
5.3.1 PM31J: Two-Step Processing of Spatial Join 54
5.3.2 Empirical Results and Concluding Remarks 56

6 R-tree Based Spatial Join 59
6.1 Choose Processing Unit of the R-tree Representation 59
6.2 Two-Step Processing of Spatial Join oo v vt v vt 60
6.2.1 General Outline of the Processingc. ... 61
6.2.2 RIJ: R-tree Index Spatial Join 0., 62
6.2.3 RPJ: R-iree Parallel Comparison Spatial Join 66
6.2.4 Experimental Resultso, 68

6.3 Measurement onNode Size . . . v v v vt v v i v i e i it 71
63.1 EXperiments . . . v v oo v v v o ve v oo vt ooonon oo 71
6.3.2 DiSCUSSIONS s « « ¢ o v s o ¢ 6 o o s v o n o o oo a oo s on oo 75

7 Grid Coordinate System (GCS) and Spatial Join 76
7.1 CSI:Cell Spatial Join .« v v v v v v v v it et ittt e e 76
7.1.1 General Processing Strategy of CSJ 76
7.1.2 Object Approximation and Net-Conversion 77
713 CSECell Spatial Join v v vt i it i i i i 81
7.1.4 Analysisof the CSJ oo v i vt i i v i 83

72 Empirical AnalysisS . .« o v v v v v i i i i 85
7.2.1 Statistics of Different GCSs and Testing Data. 86

7.2.2 Performance of CSJ Under Different Grid Resolution 87

7.2.3 Chain Grid Volume and Number of (cell index, chain mdex)
Pairs Under Optimal Resolutiono oo 89

8 Comparison of Spatial Joins and Their Underlying Spatial Indexing
Methods (SIMs) 93
8.1 Optimize Spatial Join by PM Quadtree, R-tree and Grid Coordinate

System (GCS) v v vt vttt et it e et it 93
8.1.1 Optimize Object Accessing Space by PM Quadtree 94
8.1.2 Optimize Object Accessing Space by R-tree. 96

8.1.3 Optimize Object Accessing Space by GCS 99

vii

8.2 Comparing PM Quadtree, R-tree, and GCS in Spatial Join 102

8.2.1 PM Quadtree vs. R-treeand GCS 103
B22 R-treevs. GCS . .. v i ittt e e 104
9 Concluding Remarks and Summary 107
0.1 ConcCluSionS . v v v v v v vt vttt e it e sttt 107
0.2 Thesis SUIMMATY . ¢ v v v e v v vt v o vt vt e o v vt e n e s 109
9.2.1 Utilizing PM Quadtree Extensively to Realize Spatial Join . 109
9.2.2 Utilizing R-tree Extensively to Realize Spatial Join 110
9.2.3 Grid Coordinate System (GCS) and its Spatial Join 112

9.2.4 Comparison of Algorithms and Their Underlying Spatial
IndexingMethods, 113
03 Future Work . . o o o vt i i et et e e e e e 115
References 117

viii

Chapter 1
Introduction

Non-standard computer applications such as robotics, computer vision, com-
puter aided design, and geographical data processing require special operations
that are defined on geometric data. These operations are substantially different
from the operations defined on non-spatial data, generally in two aspects: geo-
metric data are n-dimensional objects embedded in space, and are accessed by
their extent and positions in space as opposed to access by non-spatial attributes;
geometric operations possess complex data structures, and careful design of algo-
rithms and data structures are required in order to perform geometric operations
efficiently.

There has been extensive research on the point location and range query in
the database literature since they are typical database queries. These queries
are basically search-based; disk access times affect their performance. A large
number of multidimensional point access methods (PAM) and spatial indexing
methods (SIM) have been proposed, both hash-encoded and tree-structured, to
manage the retrieval of simple spatial objects and multidimensional point data in
order to process the queries efficiently. These include R-trees [GUTT84], K-D-
B-trees [ROB81], R* trees [SELL87], Cell trees [GUN89], Grid File [NHS84],
2D-Isam [NIEV84] (a two-level tree structure similar to grid files) and so on.
Since different types of queries pose distinct requirements, it is very important to
study the performance of the spatial access methods under various types of spatial
queries. Studies in [Gre89] have shown that among the most popular spatial access
methods, R-tree is a good choice for the general query processing such as point
and range queries. Studies in [KSSS90] further establish the BUDDY hash tree as

the choice for both point access methods and spatial access methods for rectangles.

However, little 1s known about the set operations such as computing set
intersection, set inclusion, set difference or any other possible operations that
can be performed on sets of geometric objects, especially when set objects
are extended spatial objects such as polygons. Even less is known about the
performance of spatial indexing methods under set-oriented spatial queries, and
the performance of these set operations under various data circumstances. This
is largely due to the complex nature of the operations, hence the complicated
behavior of spatial indexing methods involved as welil as the variety of the
representations of the problem itself.

In this thesis, we will study one of the most important set operations: spatial
join in spatial information systems, such as geographical information systems
and spatial databases. Since this operation is heavily dependent on the spatial
indexing method, comparative studies of popular spatial indexing methods will
also be presented. In fact, a new indexing method is presented in this thesis,
which is shown to be empirically superior to other weli-known spatial indexing

methods, such as Quadtree and R-tree with respect to the spatial join operation.

Section 1.1 Problem and Definitions

In this section, we intreduce the set spatial join by first discussing the

motivation for the problem. Thereafter the problem is formally defined.

1.1.1 Motivations

The most significant application of spatial join can be found in GIS, where
geographical data is stored as a series of x,y coordinate pairs representing points,
lines and polygons. Map information is organized into sets of layers or themes
of information. A base map can be organized into /ayers such as streams, soils,
world cities, crop productivity, and administrative boundaries such as land uses,

time zones, trading areas, and political areas. Figure 1 below depicts an example

of a map sheet together with its composing layers. The base map is composed by

the join of four layers which are land use, soil types, crop productivity, and roads.

LAND USE (POLYGON)

SOIL TYPES (POLYGON)

CROP PRODUCTIVITY (POLYGON)

ROADS (LINE SEGMENT)

Figure 1 Layers in Geographical Information System

Spatial join is a very powerful operator in the sense that it synthesizes
information found in multiple representations of the same geographical area, i.e.,
multiple layers, and can therefore answer complex queries. For example, the
spatial join of the two layers will be able to answer queries about the area of the
land having various combinations of characteristics, such as finding the soil types
of certain land area, or determining the most productive soil for a particular crop.

Joining the layer of world cities with the layer of time-zones will give cities in

the world together with their time zones. Therefore, spatial join can add value to

the database by combining information on different /ayers.

Spatial join can be further developed to realize map overlay which is a very
important operation in geographical information systems. It is different in the
sense that overlay creates all of the new regions resulted from the overlay out of the
result of a spatial join. For example, the spatial join of two overlapping polygons
returns both polygons together with a flag indicating they overlap. The result of
overlay would be three new polygons — the common intersection, and the two
polygons cut by the common intersecting area. But spatial join can not be replaced
by overlay. When the user is concerned with only the synthesized information of
multiple layers, calculating their overlay to answer the query would be redundant
and extremely inefficient since overlay invoives extcnsive computation of join
results. It is necessary to separate the two operations in order to enhance the
system’s overall performance. In VLSI applications, some minimum separation
between objects of certain layers is checked. If one data set contains 2-D objects
of one layer, and the other data set contains objects of another layer, spatial join

will report violations of constraints required for this minimum separation.

Spatial join could also be used in the query processing of spatial databases.
The result of a spatial join can be saved as a join index, and used by the query
optimizer to speed up the general query processing. Therefore, spatial join plays

an essential role in spatial data management systems.

1.1.2 Definitions

Set spatial join is a set operation that operates on two or more sets of spatial
objects. The resulting set is obtained according to spatial property of geometric
data, namely intersection of spatial objects. Concepts involved and formal

definitions of two-way spatial joins are defined below.

A spatial object is defined with respect to two-dimensional data. Points, lines
and polygons are examples of spatial objects. A simple polygon is a polygon with
non-intersecting edges and without holes. Simple polygons are spatial objects.

Since a simple polygon is the most complicated of these spatial objects defined,
and the way to detect overlapping involving points and lines is different from
involving only polygons, we will mainly study polygon spatial join. Our study
can be easily modified to include /ines because they are closely related to polygons.
All indexing methods we study can accommodate /ines as spatial objects, however
spatial indexing methods well suited for large numbers of simple polygons may
not be a good choice for lines and points.

For polygon spatial join, it is necessary to distinguish the polygon containment
or enclosure from polygon overlapping on the boundary. Geometrically, contain-
ment or enclosure is detected by applying a point-in-polygon algorithm, while
overlapping on the boundary is determined by checking boundary intersections.
Henceforth in this thesis, we study two-way polygon spatial join emphasizing
on the polygon boundary overlapping named partial spatial join as opposed to
total spatial join. Our approach determines polygon overlap by examining bound-
ary intersections; containment or enclosure detection is realized by performing a
point-in-polygon algorithm on the result of boundary overlapping join.

Now we are ready to formally define the term spatial join as it is applicable
to this thesis:

Definition: Given two sets of spatial objects M and N, the Spatial Join
returns all pairs of objects (m, u) such that, m belongs to M, n belongs to N,
and m and n overlap spatially on their boundaries.

“Join” here is used in a manner very similar to the natural join operator of
the relational model [CODD70], except that the selection of the tuples is based on

geometrical properties. The overlapping of spatial objects corresponds to shared

attributes in a corresponding relational join. It can be considered a kind of cross
referencing of two data sets, but the result can not be obtained directly from the
search of the data.

Figure 2 below pictures an example of the spatial join. Bold polygons
represent one data set, and plain polygons represent another data set. The spatial

join of the two data sets returns the set of one pair (2, 5).

M={123)

N={(4,5)

Spatial- Join (M, N) = ((2, 5) };

Figure 2 An example of lwo-way polygon spatial join

Spatial join can also be considered as a generalization of well studied queries
such as range Queries. Spatial join is reduced to a range query when M has only
one object, (i.e., a rectangular box representing a search area or a window), and
N has a set of objects. In this case, spatial join finds all objects from N that
intersect with the box or the window.

However, for this thesis, both M and N have more than one spatial object,
i.e., IMI>1 and INI >1. Typically, M and N are both map layers composed of a
number of simple polygons. Therefore, the spatial join we are dealing with in

this thesis is a many-to-many kind of query or a set operator. A set operator can

be realized by iteratively applying the corresponding non-set operator on a single
object or each pair of objects. The problem with implementations of this kind is
one of performance. Algorithms which directly solve set operation will generally
yield better performance.

Generally speaking, cbjects from the same data set can intersect each other
not just over their common boundaries. But certain algorithms, including one of
them developed in this thesis, require that objects in each set are strictly non-
overlapping. The restriction is necessary in order to maintain segment order or to
build the specific spatial indexing method as it requires. Besides, the concept of
layer implies non-overlapping of objects in the layer. Therefore we assume that

polygons from one data set do not overlap each other except on their common

boundaries.

Section 1.2 Literature Reviews

There have not been many studies of spatial join appearing in the literature.
Two of the representative articles among those papers that do appear are the
paper on PROBE by Jack A. Orenstein and Frank A. Manola [OM88], and
that on PSQL by Nick Roussopoulos and Christos Faloutsos [RF88]. While
practical solutions have been developed and implemented in GIS, researchers in
computational geometry have been working on finding optimal solutions for basic
geometry problems which can be used to solve complex problems like spatial
join and overlay. They often require complex data structures and extensive
processing of raw data. Popular spatial indexing methods in spatial databases
operate efficiently on simple spatial objects. They can be extended to handle

more coniplex objects.

1.2.1 Spatial Join in PROBE: An Object-Oriented Image Database System

PROBE [OMS8] is an object-oriented image database system which deals with
spatial data and data with complex data structures. In PROBE spatial objects are
represented by collections of raster regions, i.e., each object is approximated by the
union of cells overlapping the object. The representation is therefore conservative,
and the precision is limited by the resolution of the grid. The raster approach
contrasts with the vector approach where objects are precisely specified by line

equations. However, both are fundamental spatial data modelling strategies.

Set operations for raster representations can be implemented simply— the
same action repeats for each cell unit. For example, the spatial join can be
implemented by applying the logical AND for each cell, and AND is a built-
in function available in standard programming languages. Unfortunately this
approach incurs large space requirements. This is especially true when grid

resolution is high.

PROBE overcomes this drawback by encoding the grid. The encoding is
obtained by recursively partitioning the space containing the object until the
boundary of the object is obtained or the maximum resolution is reached. Each
partition is just a vertical or horizontal split of the space. A vertical split is
characterized by one bit from x, and a horizontal split characterized by one bit
from y. The sequence of splits creates a sequence of these characteristic bits. Each
cell region has a unique sequence of splitting, and interleaving of the characteristic
bits will generate a bit string that uniquely identifies this region. The unique bit

string is called the z value of the region.

Under this encoding scheme, 2—d objects are transformed into sets of 1-d bit
strings. Instead of explicitly listing all the occupying cells, PROBE provides a
more compact representation by associating the z values with the object. Spatial
join can be performed by searching for any z value in one input that contains a

z value from the other input. This is easily done by checking if one z value is

a prefix of the other.

The Problem with this approach is that a non-point object has more than one
z value associated with it; redundancy is therefore inherent. This is the problem
with all of the encoding schemes trying to optimize the handling of raster data.
Redundancy promotes computation overhead, yet the result is only an approximate
answer due to the conservative representation. Secondly, the algorithm relies on an
encoding of the objects, specifically objects have to be decomposed to obtain their
z values. Spatial join is a set-to-set operation, and thus the cost of decomposition
could be prohibitive. One solution is to maintain both the encoded and non-
encoded representations. This however is expensive in terms of space consumed

because for each of the objects, two representations are maintained.

1.2.2 Spatial Join in PSQL: A Relational Database System Incorporating
Spatial Data Processing

PSQL is a relational database system which allows spatial data processing. 2-d
objects can be directly manipulated by users through an SQL-like query language.
This is realized by specialized spatial operators and functions. Good query
performance is achieved by employing a specialized processor and spatial indices
such as R-tree and R*tree. Representation of the spatial object in PSQL is vector-
based for the computation of spatial operations, though a bit-map is used for
display purposes.

The vector representation strategy models a map by explicitly defining its
component geometric entities, and sometimes relationships among these entities.
Point, line or line segment, and region or area, are the basic elements comprising
the vector data model. Although operations based on the vector form can be
carried out with exact precision, a great deal of coordinate calculations are
required. Especially when dealing with set operations, its raster equivalent is

not only computationally simpler, but also offers a variety of analytical options

by associating with each cell the attributes of interest. Generally, the computation
under the vector representation is characterized by complex data structure, and
complicated algorithms. Optimization strategies such as using indices to speed

up object retrieval are also employed in an effort to achieve good performance.

In PSQL, spatial join was implemented by a simultaneous search on the two
sets of spatial organizations corresponding to the same area. It is based on an
iterative search and segment intersection checking. Secondary indices were only
used to speed up the object retrieval in order to reduce the disk page accesses,

but they do not contribute to the actual computation.

Savings in disk page accesses often result in performance improvement with
regard to simple spatial operations which do not require significant computation.
However, with complex operations like spatial join and overlay, the inside memory
computation cost must be considered. It is worth the effort making an optimal
or suboptimal algorithm, or accommodating an optimization strategy in order to
cut down the total cost.

A problem with PSQL’s implementation is that little effort has been made
towards an efficient computation. However, [RF88] is currently improving the

segment intersection algorithm using the existing indexing capability.

1.2.3 Geographical Information System

Geographical information systems (GIS) allow the manipulation, storage, retrieval,
and analysis of geographical data and the display of data in the form of maps
[NW79] [SE90]. Different from the conventional database systems [SM89],
GIS exhibits a range of requirements and techniques known collectively as

geographical data processing [ARON89] [BW90] [OOST90].

As one of the important application requirements, modern GIS has adapted

practical implementation solutions of spatial join and overlay according to differ-

10

ent data representation forms.

There are two broad approaches used by raster-based software. One is to store
the raster representations in a matrix, and then examine the related matrices using
the boolean operator AND. Output is produced for each cell when both values are
true. Optimization strategies include reorganization of the cells so that cells with
common values are grouped together to be manipulated efficiently, and encoding
of the grid cells so that, as in PROBE, the representation is more compact and
efficient. It should be pointed out that recently, Quadtree encoding [Same84]
[Same88] [Same89] has attracted more and more attention. For example, with
region quadtree, a 2—d raster array can be represented by its region quadtree. As
a hierarchical representation, it saves space, and it is possible for set operations
performed on region quadtrees to visit less nodes than the sum of total nodes of
the input data.

The other approach is to use the computer’s graphics system directly by
converting the raster image to a screen image, then applying the same logical test
AND to two screen images. The pixel will be “on” in the resulting screen if the

two corresponding pixels are both “on”.

Generally, software based on the vector representation requires 2 test to find
out if any segment from polygon in one data set intersects with any segment from
any polygon in the other data set. The situation can be seen in Figure 3 below,
where all the edges in polygon A have to be checked for intersection against each
of the edges in polygon B.

One widely-used optimization technique is “buffering”. Here complex objects
are bounded by simple geometric representation, usually rectangles, and spatial
Join is performed on these approximations to generate a conservative answer.
Only then is segment-by-segment checking carried out. This approach appears to

be an efficient strategy. We develop it in this thesis by using more complicated

11

processing techniques on the object rectangle approximations.

Polygon B

Figure 3 Testing polygon intersection by checking cdge-by-edge

1.2.4 Spatial Databases and Spatial Indexing Methods
Many access methods have been designed for typical spatial database querics
involving point data. The typical queries request all objects that contain a
given point (point query) or that overlap a given search space (range query).
Solutiens to the efficient processing of these queries can be found in [BEN75],
[SAMERSB4], [ORENS84], [NHS84], [SW88], [Krie90], etc. Since these structures
were originally designed to manage point data, i.e., to provide an efficient search
among large sets of points, non-point data has to be parameterized and mapped
into a high-dimensional point. Segments, for example, can be represented by a
point in four dimensional space, while more complex objects like polygons have
to be approximated first by simple spatial objects like “box™ in order to reduce
the dimensionality of its representative point in the mapping space. Queries based
on the approximation therefore cannot preserve the proximity.

Orenstein in [OREN90] compares the performance of the object search in

the native space and the transformed space based on simple queries involving

12

different numbers of rectangles. It is shown that the cost of maintaining two
representations with many-to-many queries is high even when only searching
objects. With complex operations that involve the space occupied by the spatial
data, for example spatial join, the solutions are not straightforward. Retrieval
is based on spatial properties not explicitly stored in the database. It is thereby
inherently not appropriate to use point-based multidimensional access methods

directly to solve complex spatial operations requiring space occupancy of complex

cbjects.

To accommodate this situation, many multidimensional point access methods
were extended to a spatial access method using the techniques of clipping, over-
lapping regions, and transforming. Performance comparisons of promising ones
can be found in the paper [KSSB89]. However, the results are based on rectan-
gles and intervals which are simple spatial objects, and range and point queries.
No further research has been carried out on extending the multidimensional point
access method to access complex objects like polygons, and to experiment with

complex spatial operations.

Recently, spatial indexing methods based on spatial occupancy have demon-
strated their efficiency with regard to optimizing range and point queries with
various underlying spatial data. Spatial occupancy implies objects’ locations in
space and spatial relations among them. These popular spatial indexing methods,
including R-tree and PM Quadtree, provide efficient retrieval of simple spatial ob-
jects like segments and rectangles. Diane Greene has provided the implementation
and performance analysis of four popular spatial access methods in [Gre89]. How-
ever, the result was also based on rectangles. Access methods for more complex
objects, such as the polygon, is more suitable for operations dealing with complex
objects, such as polygon spatial join. However, only very few are known. The

cell-tree [Gun89] is the most promising candidate, but it is still far from practical

13

due to the high cost of building and maintaining the tree.

A very recent paper [HS92] talks about a qualitative comparison of some
of the popular access methods for a large line database. The performance
was again measured mainly by point and window queries, and the result only
demonstrates their comparability as to when and why their performance differ.
This is largely due to the high variation of both object parameters (size, shape,
degree of overlapping, distribution), and the index parameters unique (o each of
the access methods.

As these spatial access methods for simple objects hierarchically represent
the space, or partition the space from which the spatial data is drawn into regions
according to their spatial occupancy, they not only overcome the drawbacks
of those based on the multidimensional point access method, but also present
potential for complex objects and complex operations. However, there has been
little research on utilizing these spatial indexing methods for complex operations,
especially polygon spatial join, and even less is known regarding the performance

of these spatial access methods in complex spatial operations.

Section 1.3 General Idea of Thesis

We were motivated by the potential of popular spatial access methods for sim-
ple objects to deal with complex objects, as well as the demonstrated performance

of the “buffering” or “filtering” technique.

On one hand, the “buffering” technique provides basically a two-step process-
ing of the data, and the answer from the first step of processing is an approximate
one. This conservative result should be optimized based on the observation that
candidates are selected out of the simple “boxes” — an extracted locational in-
formation from the local data structure of the complex objects. The surrogates

specify object extent as well as their general locations in the global space without

14

detail. But, since they exist independently, and representing a flat, disorganized
2-d space, the search of spatial relationships has to be performed on all the sur-
rogates of objects in the space.

Therefore, surrogates should be organized to create more topology such as
the relative position of the objects and the distribution of the objects. This global
information is essential for the efficient processing of set operations. Lack of this
giobal information results in exhaustive implementation. A good organization of
the objects means a good representation of the space as a whole. The *“buffering”
technique itself basically sets no limit on the way these object approximations
should be organized, and the geometric simplicity of these approximations also

makes the intended optimization feasible.

On the other hand, popular spatial access methods like PM Quadtree and
R-tree, can be extensively utilized to handle complex operations such as spatial
join. This is based on the observation that these access methods decompose the
space from which the data is drawn, in a way that develops and stores spatial
properties, such as intersection of data or components of data. In PM quadtree,
space is recursively decomposed, accommodating line segments according to their
relationship to the sub-space; while in R-tree, the decomposition is dynamic,
driven by the rectangle objects and relative positions of rectangle objects. Since
spatial join relies on the object spatial occupancy, we believe that they are better
data structures for spatial join than any point-based spatial access method or

extended multidimensional point access methods.

The way we deal with complex objects utilizing simple-object-based spa-
tial access methods is to approximate complex objects by simple objects such
as rectangles which preserve both the spatial extent and the spatial relations of
the complex objects. Join results of complex objects are derived from that of

object components according to the topology implied, or from applying further

15

intersection checks on the approximate results. The latter optimizes the “huffer-
ing” technique by organizing the surrogates in a more compact way towards the

=

efficient processing of spatial join.

PM Quadtree and R-tree present hierarchical space. We present the Grid
Coordinate System (GCS) which exhibits a uniformly divided non-hierarchical
space composed of disjoint cell units. Unlike the Grid File, which is apptied to
the multidimensional data transformed from the complex objects as conunonly
known, GCS is applied on the original complex objects, and divides complex
objects into disjoint cells according to their approximations’ spatiul occupancy.

GCS is a spatial index method for simple spatial objects.

Section 1.4 Thesis Overview

In this thesis, we utilize and extend the spatial access methods for simple
objects such as PM Quadtree and R-tree to realize the complex spatial operation ~
polygon spatial join. We also develop the GCS as the version of Grid File working
on original spatial data for the efficient implementation of spatial join. Not only
do we show that spatial access methods for simple spatial data can be extensively
utilized to handle complex spatial objects, we also provide extensive comparative
studies of these spatial access methods in the context of this particular complex
spatial operation. We generate random polygonal nets for the comparative studies.
The polygonal net can be adjusted through parameters which modify the size,
shape, and distribution of the polygonal data, and is represented by a vector data
model which we design as a multi-file storage-saving structure with indexing
capability. The empirical result is obtained by using ObjectStore which is an
object-oriented database management system as the storage manager.

The thesis is organized as follows: Chapter 2 includes preliminaries including

the file structures and experimental setup. Chapter 3 presenis two pragmalic

16

solutions of spatial join based on the file structures established in Chapter 2, and
without utilizing any spatial access methods. Boundary Join is used as a baseline
to compare the index solutions in later chapters. Chapter 4 introduces the basic
concepts and structure of PM quadtrees, R-trees, and Grid Coordinate System
(GCS). Chapter 5, 6 and 7 present the design and implementation of spatial join
based on the three spatial access methods introduced in Chapter 4. In Chapter 8,
the performances of the three spatial access methods for spatial join are compared,
and empirical results are analyzed. Finally, we conclude in Chapter 9 that PM
Quadtree, R-tree and GCS can be extensively utilized to realize spatial join, and
that they improve over the Boundary Join which has no indexing involved. Both
R-tree and GCS are feasible SIMs for the efficient implementation of spatial join,

while for PM Quadtree, spatial join does not bring out the best of it.

17

Chapter 2
Preliminary: Experimental Setup

In this chapter, we will briefly explain the experimental setups, including the
implementation environment in which the main empirical results were obtained,
as well as how to generate a random net with different data distributions on this
platform, and the data model we used as the internal representation of polygonal

net.

Section 2.1 Generating Random Polygonal Net

We ran the performance and comparisons on SPARC stations under UNIX
using ObjectStore C++ implementations of all the algorithms. Performance were
measured by the total execution time. All of the algorithms use ObjectStore as
the storage manager which provides virtual memory management and scalability
with large data size. We will first describe how random polygonal nets under

different distributions are generated.

2.1.1 Randomly Generating Polygonal Net

The spatial extent of the polygonal-net is restricted to a box of size [0, 0] to the
bottom left to [1,1] top right, and the origin located at the bottom left corner. A
set of straight lines in the box is defined by treating their orientations and the
positions of ending points on the four edges as random variables. As depicted in
Figure 1 below, there are six total possible orientations of straight lines, which

are SE, SN, SW, EN, EW, WS and ending points on the edges are characterized

by (x, 0), (x, 1), (0, y) and (1, y).

18

Figure I Oricntations of Straight Lines And Equations of Ending Points

The orientations are chosen independently, having a common uniform prob-
ability distribution. For each orientation, the positions of two ending points on
the two square edges follow a uniform or Gaussian distribution in (0, 1]. The

number of straight lines thus generated can be decided in advance.

Figure 2 A Polygonal Net With Uniform Distribution Of Ending Points

19

Figure 2 above samples a polygonal net with number of segments chosen as §,
and the positions of ending points follow a uniform distribution. As a comparison,
Figure 3 below shows a polygonal set with positions of ending points following a

Gaussian distribution N(0.5, 0.303), but with the same number of segment lines.

\\ ‘\ ///i“/ ‘=
—
Y
\ /
AN \\
AN \;
\\ /
/\ L\

Figure 3 A Polygonal Net With Gussian Distribution N(0.5, 0.303) of Ending Points

Polygons, composed of intersecting points of the generated straight lines, were
traced out after the polygonal net. To enhance the line segments to simulate natural
boundaries, a third random variation was introduced on each line segment, where
m number of points are added to each segment, but connected with a uniform bias
towards the original straight line segment. This uniform bias can be controlled
within a certain limit called sinoothness factor, so that it curves to different extent.
The smoothness factor ranges from 0 to 100 with increasing extent of curveness.
For example, a smoothness factor of 0 represents straight lines with added points
all on the original line segment, while a smoothness factor of 100 shows most
curved edges composed by the additional points.

Therefore the number of points added, together with the smoothness factor,

can be adjusted to simulate a very curved boundary or a smooth one, while the

20

number of straight lines will directly affect the total number of polygons in the
polygonal-net. Besides, to eliminate those overly small polygons thus generated,
a ratio can be set as to what is the preferred relative size of the smallest polygon
generated compared to that of the largest polygon generated. It was set to 0.01

for our testing data, i.e., we keep only those polygons having its area size at least

1% of that of the largest polygon generated.

Figure 4 and Figure 5 below present polygonal nets after the boundary
modification of Figure 2 and Figure 3 respectively. The number of added points
was chosen to be 7, and the smoothness factor as 80. The ratio of area of the

smallest polygon to that of the largest polygon is 0.01.

N
}@\\’Tﬁ/
\

Figure 4 A Modification on Figure 2 with smoothness factor=80

and (area-of-smallest-polygon/area-of-largest-polygon)=0.01

21

/

,; / \
5|

Figure 5 A Modification on Figure 3 with smoothness facrtor=80

X

,,4—,_—,‘._

and (area-of-smallest-polygon/area-of-largest-polygon)=0.01

With Figure 5, the smoothness factor was also lowered down to 20 to make

a comparison, and the result is shown in Figure 6 below.

Figure 6 A Modification on Figure 3 with smoothness

Sfactor=20 (area-of-smallest-polygon/area-of-largest-polygon)=0.01

22

2.1.2 Setting Up Testing Data Set

There are six sets of test data used for the purposes of the experiments in this
thesis. All of them were generated under the same control variables as well as
uniform ending point distribution, i.e., a smoothness factor 80, 7 additional points
for each line segments, and a polygon size ratio 0.01. They vary only by the
size of the polygonal net, i.e., the total number of polygons generated. When the
ending points distribution was chosen differently, i.e., Gaussian N(0.5, 0.303), we
have another 6 sets of data generated under the above circumstances. Both were
used for the experirnents in this thesis.

To give an idea of the testing data, statistics of six sets of data under normal
distribution is listed below. Testing data under Gaussian distribution are slightly
different, but not by much.

Data Set 1) 38 x100 polygons from the two maps making 234 pairs of partial
intérsections. There are 105x241 chains having totally 945 x2169 segments;

Data Set 2) 100x 165 polygons from the two maps making 871 pairs of partial
intersections. There are 241x414 chains having totally 2169x3726 segments;

Data Set 3) 165x269 polygons from the two maps making 1011 pairs of partial
intersections. There are 414x 636 chains having totally 3726x 5724 segments;

Data Set 4) 382x538 polygons from the two maps making 2156 pairs of
partial intersections. There are 932x 1307 chains having totally 8388 x11763
segments;

Data Set 5) 538x761 polygons from the two maps making 3438 pairs of
partial intersections; There are 1307x 1858 chains having totally 11763x16722
segments;

Data Set 6) 916x1144 polygons from the two maps making 6872 pairs of
partial intersections. There are 2009x2366 chains having totally 18081x21294

segments;

23

Section 2.2 File Structures: A Vector Data Model
With Topological Information

The way we organize the polygonal data is a multi-file structure with indexing
capability. The main entity comprising this vector data model is the chain. Other
entities include vertex, node, segment and polygon. Definitions of these entities
will be given initially, and then based on these definitions, we will explain the

file structures.

2.2.1 Definitions and Concepts

A vertex is described by a (X, y) co-ordinate pair. Asegment is defined as the
straight line connecting two vertices. A vertex degree is defined as number of
segments passing through the vertex. A verrex having a degree of at least 3 is
called a node, or a node is a vertex that connects more than 2 segments.

A chain is defined as a sequence of line segments or vertices with no vertex in
the sequence connecting more than two line segments except for the two ending
vertices of the chain. In other words, a sequence of segments between two nodes
is a chain.

These concepts can be pictured in the Figure 7 below, in which a vertex, a
line segment, three nodes A, B, C, and two complete polygon chains AB and AC

are displayed, and A is the starting node, B and C are the ending node.

(x2, y2)
‘U c

-, '_\ - 3§ "r’”ﬂ@
o x,y) &1, y1) T ‘E

A Vertex A Line Seginent Three Nodes A, B, C and "z:

Two Chains AB, AC |

Figure‘7 Entities of Vector Data Model

24

Notice from the Figure 7 above that, vertex A connects 4 segments, so it has
degree of 4, while B and C both have a degree of 3.

A polygon is a closed sequence of nodes or chains. In addition, each
node is given a unique identification, and so is each polygon given an unique
polygon identification. Each chain can therefore be uniquely described by a node
identification pair (N, V;), and each polygon be described by a sequence of node

identifications {Ni, Nz, N3,, Ny}

2.2.2 File Structures

The vector data model has two types of data files: the chain file and the polygon
file. Both are composed of index file and data file, so polygon file is composed
of a polygon index file and a polygon data file; while a chain file is composed

of a chain index file and a chain data file. The organization is shown in Figure

8 below.

VECTOR DATA MODEL

CHAIN FILE POLYGON FILE

INDEX FILE DATA FILE : INDEX FILE DATA FILE

Figure 8 File Organization

Chain files contain all the polygon chains generated without duplication. In

order to avoid duplication, each chain is assigned a direction from the smaller node

25

identification to the larger node identification and is stored once and only once by
preserving the direction. Since a chain is characterized by a node identification
pair (Nj, N;j), all the chains of (N;, Nj), where j < i, and i ,j < (total number
of chains), are stored together in sequence under starting node N;, and each of
them can be identified by its ending node identification followes by its segment
coordinate sequence. The number of such (Nj, N;) pairs with i < j, is therefore
defined as the node degree., it specifies the number of chains clustered under a

specific node which is different for each node.

Chain Index File is a fixed-length file recording all the nodes with a node
degree at least 1. It has three fields specifying respectively the starting node
identification, node degree, and first chain address in the relative Chain Data File.
In Chain Data File, each chain is specified by its ending node id and its segment
coordinate sequence, together with its right and left polygon identifications. This
is used to derive information on polygon relationships from the processing of
the chains. Segment sequence is a fixed-length field decided by the number
of additional points added during the modification of the originally generated
polygonal net. The field compositions of the chain files are depicted in Figure

9 below.

An arbitrary chain can therefore be retrieved by looking for the index record
first in the chain index file according to its starting node id, and then sequentially
search for the ending node id to find its segment coordinate sequence. Since node
degree is a small number, normally 3 or 4, the search in the data file is very
efficient, compared to the situation without an index file, where sequential search

is done on the whole chain data file.

26

CHAIN INDEX FILE

First Chain Address
add

CHAIN DATA FILE

i
i

Ending Node ID| Left Polygon | Right Polygon, Chain Segment Coordinate

Ip ‘ p Sequence {x1, y1,x2,y2,.

Figure 9 Chain File Data Structure

Polygon file structure is relatively simple. The index file is also a fixed-length
file with three fields specifying respectively polygon identification, the number of
nodes the polygon has, and the address of the node sequence in the related data
file. While in the data file, each polygon is represented by its node sequence {Nj,
Na, ..., Ni} as well as other information associated with polygons if necessary,
like the minimum bounding rectangle, or area. Again without an index file, the
search of an arbitrary polygon by its polygon identification can only be done
sequentially on the whole polygon data file, since each polygon has a variable
number of composing nodes. The data structures of both polygon files are shown

in Figure 10 below.

27

POLYGON INDEX FILE

R

Polygon ID
pi

Number of Polygon Nodes
pn

Address in the Data File
pa

i
{
|
}
{
H

i
!
H
i
§

POLYGON DATA FILE

Polygon Node Sequerices (N!, N2, N3,, NK]

Figure 10 Polygon File Data Structure

Figure 11 below demonstrates the complete structure of this vector data

model.

To get a complete polygon coordinate representation, further search on the
chain file has to be done after obtaining the polygon composing node sequence.
But the duplicate storage of coordinates is therefore avoided — vertex coordinates
are stored only once in the whole file organization. Polygons, chains, and segments
are closely linked together by nodes to form a complete and non-redundant

organization, and searching is improved by the index files.

28

Chain Index File Chain Data File

Polygon Index File Polygon Data File
T C Starting Node 1d /“ C1
Polygon Id ‘
! . / c2
T i Node Degree 1 /
Number of Nodes : //
i ; /
- - Starting Add, Ci
Address o .
ddress Swarting Node Id I
/ i Cl
ygc y
bolygon 1d , Node Degree j
s //
Number of Nodes P/ Stanting Add, ———
Address PR3 I
i T s o :
) L e e |
- I R
Variable Record
PRi i Polygon Node Sequence { N1, N2, N3, ..., NK} !
i » B

Chain Segment Coordinate

Ending Node] lLeft | Right
Sequence {x1,y1,x2,y2, ...}

1d & Polygon ’ Polygon

i i

Figure 11 The complete structure of the vectore data model

Chapter 3
Spatial Join Without Indexing

Based on the vector data model described in Chapter 2, two solutions without
using any indexing technique will be presented in this chapter: Polygon Spatial
Join (PJ) and Boundary Spatial Join (BJ). Both algorithms are examples of
realizing the spatial join of complex objects with only the knowledge provided
by the vector data model, and without explicitly using any spatial indexing
techniques. But they will provide the base line performance for other more

sophisticated algorithms developed in the later chapters.

Section 3.1 PJ: Polygon Spatial Join

Polygon Spatial Join uses a brute force approach. The algorithm iterates
through all the polygons in one polygonal net or map I, doing a pair-wise
intersection checking with each polygon of the other polygonal net or map 2.
The intersection of two polygons is checked chain-by-chain, and the checking of

Chain intersections stops as soon as one intersection is found.

The algorithm can be described below:

[algorithm 3.1}

Input: m polygons and m’ segments in map 1, n polygons and n' segmenis;

in map2;

Output: Set of pairs (P;, 0;), such that P; belongs to map! and Q; belongs
tomap2; 0<i<m 0<j<nm

Begin

1. For each polygon P; from mapl; 0 < i <m;
2. For each polygon Q; from map2; 0 <j < n;
21. For each chain C; of P;i;

30

22. For each chain C’y of Qj ;

If Cy intersects C’y, report intersection of P; and Q; ;

End.

This is a straight forward implementation which has a time complexity of
order O(n’xm’). n” and m’ are number of polygon segments in the two polygonal
nets respectively, and each segment in map 1 has to be checked against each of

the segment in map 2.

Section 3.2 BJ: Boundary Spatial Join

Common boundary chains could be repeatedly tested for intersection during
the PJ, for the processing is polygon-based. The vector data model provides
additional topology for each chain: its left and right polygons. It is therefore
possible to process each chain exactly once, and yet obtain the result of polygon

intersections. This leads to the design of Boundary Spatial Join or BJ.

The algorithm also starts at some point of a boundary line and marches from a
segment to an adjacent segment according to local conditions for each polygon in
the two polygonal nets or maps. The process for each pair of polygon chains stops
as soon as a pair of chain intersections is detected, and the information is recorded.
In addition, since to a polygon chain is attached its left and right polygons, more
results can be obtained from this topology, i.e., both polygons in one map having
one of the intersecting chains as a common boundary, intersect with both polygons
in the other map having the other chain as a common boundary. The situation
can be shown in Figure 1 below. The graph shows that the two bold-bounded
polygons intersect with regular-bounded polygons respectively, as the result of

the intersections of AB and CD.

31

The information of polygon intersection is kept in an nxm matrix. It is
consulted each time before the pair-wise checking is performed. So only those
polygon pairs that are not present in the resulting sets are actually checked, and
its result is also recorded in this matrix. This matrix is implemented as a two-
dimensional array with polygon identity as the index, so the intersections from

the chain can be directly transferred and saved in the array, so is the retrieval of

polygon intersections. All these can be done in a constant time.

Figure 1 Intersection of Chains AB and CD Implies 4 pairs of polygon intersections

The algorithm can be described below. Time complexity of this algorithm is
also of order O(n’xm’) since it iterates through every polygon. By adding the
result matrix, more memory is needed, but the performance is expected to be better

than that of PJ by taking advantage of the topology implied in the data model.

[algorithm 3.2]

32

Input: m polygons and m’ segments in map 1, n polygons and n’ segments,

in map2;
Output: Set of pairs (P, Q}), such that P; belongs to mapl and Q; belongs

tomap2; 0<i<m 0<j<n
Begin

1. [Initialize the result matrix M, ,, to bit 0;
2. For each polygon P; from mapl; 0 <i<m;
3. For each polygon Q; from map2; 0 <j<n;
If M [P; Q;] is not set to I ;
31. For each chain Cy of P;, if Cibelongs to Py as well ;
32. For each chain C’; of Qj, if C’belongs to Qj as well ;
If Cy intersects C', set M [P; Q;], M [P; Qp |, M [Py O],
M [Pp Qj] to bit I;
4. For each M [i j] which is set to bit 1, report intersection of polygon i and j.

End.

Section 3.3 Empirical Results and Conclusion

Both PJ and BJ were implemented and tested over the six sets of data under

normal distribution described in chapter 2. The result is tabled in the Table 1

below.

" “Time " ~|'DataSet 1"| DataSet 2"
PJ 555.59 1230.60 1667.04 | 2916.04 | 6017.55 | 8427.19
BJ 353.66 1003.41 1257.55 | 2026.73 | 4381.03 | 6532.26

Table 1 Performance Comparison of Polygon Join and Boundary Join

Although more memory is needed by BJ, its performance is indeed better than
that of PJ. The type of matrix element was declared as char occupying one byte,

and none of the maps has more than 1200 polygons. This adds up to at most

33

1MB, which is reasonable compared with the 64MB main memory of phoenix on
which the algorithms were run.

However, there is a large amount of computation overhead with this method
due to its lack of space organization. Figure 2 below illustrates the situation in
which polygon A from the other map has to be checked with all the polygons

in area C of the map having polygons from c1 to ¢8, which are in fact far apart

from polygon A.

¢S

c6 <7

Figure 2 Checking Redundancy

The polygon address space in this case, that is the way polygons were
accessed, has nothing to do with polygon locality. Polygons are merely iterated
individually. Aithough polygon locality is reflected by polygon coordinate list,
the coordinates are only used when actual intersection checking is performed.
Deliberate utilization of the locality will make a better polygon address space.

In the following chapters, we will introduce different spatial indexing tech-

niques in order to realize spatial join efficiently. Since Boundary Spatial Join has

34

better performance over Polygon Join, we will use BJ as the base line perfor-
mance for the complex spatial join algorithms developed in the following chapters.

However, to be clearly distinguished, we will use Boundary-Join instead of BJ

in the later context.

35

Chapter 4
PM Quad-tree, R-tree and GCS

The spatial indexing method we chose first is PM Quad-tree family. It is a
compact hierarchical representation of polygonal maps based on recursive data
partitioning, and PM stands for “polygonal map”. R-tree is another hierarchical
data representation, while Grid Coordinate System uses uniform grid. Related
concepts and terms about these SIMs will be explained in this chapter to make

the algorithms developed on them in the later chapters easy to be understood.

Section 4.1 PM Quad-tree Family

PM Quad-tree family [Same85] [Nels86] represents an improvement over
edge quadtree [Shne81] [Warn69]. They both focus on a representation that
specifies the boundaries of areas, but PM Quad-tree is an exact representation
of collections of polygons, not an approximation one, like in edge quadtree, a
vertex is represented by a pixel. So PM Quad-tree can apply directly on our
vector data model.

The basic entities of PM Quad-tree are vertices and edges, since no isolated
vertex exists in our case, a complete PM Quadtrez is constructed by inserting all
the polygon edges into it. The construction requires non-intersection of existing
edges themselves. Edges are inserted into a PM Quad-tree by searching for the
position they are to occupy. This is done by traversing the tree in preorder and
clipping each edge against the block. Segment of an edge resulting from the
clipping of the edge on the border of the block is termed as g-edge. The clipping
stops when conditions on a number of g-edges in each block holds, otherwise,
the block is successively decomposed into four equal quandrants and clipping is

applied on each of them. This is called leaf splitting.

36

Different stopping conditions comprise different decomposition criterions,

which make the variants of PM Quad-tree: PM1, PM2, and PM3.

Figurc 1 An Example of PM1 Quad-tree

Figure 1 above is an example of PM1 Quad-tree. Each decomposition block
is represented by a node in the tree. There are two types of nodes: leaf node
(white node), and nonleaf node (grey node). Non-leaf nodes contain pointers to
the four sons corresponding to the direction NW, NE, SW, SE, while leaf nodes
contain collections of g-edges called dictionary associated with the leaf node.
Both types of node also contain information about the block they represent, i.e.,
the size and center of the sauare. This I for the clipping and further splitting.

In our experiments, g-edge is merely a pointer to the edge it belongs.
Clipping is performed as a checking, no actual g-edge is obtained. Dictionary
contains these g-edge pointers linked together by OS-list provided by ObjectStore

implementation. This saves time and reduces redundant storage.

37

Polygon chain is used as the basic unit when constructing the tree. Each
edge however is associated with its belonging chain id, so that the information
extracted from dictionary checking can be directed to the polygon information

based on our vector data model.

Section 4.2 R-tree

R-tree is another type of popularly used hierarchical spatial indexing method
derived from B-tree dealing with rectangular data. R-tree is a multi-level
tree structure designed to handle n-dimensional objects originally proposed in

[GUTM&4].

Although R-tree is derived from B-tree, unlike B-tree, the search of a specific
rectangle or the search of set of rectangles in the tree may often require several
nodes to be visited at each level before ascertaining the rectangles to be visited at
the next level. This is because the intermediary nodes on a given level can overlap,
therefore their rectangles do not represent disjoint regions. The more serious the

overlapping is, the more nodes have to be visited, the larger the search space.

Besides the root node, R-tree has leaf node and non leaf node. A non-leaf
node contains entries of the form (Child, Rect), where Child is the address of a
child node, and Rect is the minimum bounding rectangle of all rectangles which
are entries in its child node. A leaf node contains entries of (Object-id, Rect),
where Object-id refers to certain object , and Rect could be the object or object’s

MBR. All leaves of R-tree appear on the same level.

An example of R-tree is pictured in Figure 2 below.

38

rl 12

/ \\
1] 112 121122
\‘\\ \ \\\\
/ \ N\
al b g | h i l cid e f

Figure 2 A demonstration of R-tree structure

All the non-leaf nodes are assigned a minimum and maximum number of
entries. The maximum entries allowed is defined as node size. If node size is M,
each non-leaf node should have at least [M/2] entries. If m = [M/2], then the

order of the tree is defined as (M, m).

Section 4.3 GCS: Grid Coordinate System

GCS is orthogonal grids. Under this representation, a two dimensional space is
covered by a/ﬂat grid with equidistant on both X and Y axis. When superimposed
on a polygonal net, objects which could be polygons, chains, or segments, are
then divided into cell groups according to their cell occupancy. Grid cells are
numbered in a way by row and column and objects belong to the same cell are
stored in the cell index array by the object indices.

Grid resolution is defined as Gx G, where G is the number of grid cells in one
row or column, and 1/G is defined as grid size. Number of objects belonging to a
cell 1s defined as object grid volume, so there are polygon grid volume, chain grid

volume, and segment grid volume, depending on the object choszn. Pair of (cell

39

index, object index) is also defined so that the total number of (cell index, object
index) pairs can be used to measure the amount of computation with regarding to

different grid resolution and different data size.

A different grid resolution generates a different grid volume for same data set.
The smaller the grid volume, the less computation will be performed in each grid.
Resolution affects on the volume can be pictured in the Figure 3 and Figure 4
below. When grid resolution is chosen 2x2 in Figure 3, the average segment
grid volume is 8/4=2, while in Figure 4 when grid resolution is 4x4, the average

segment grid volume turns into 14/16=0.875.

Figure 3 grid resolution = 2x2, edge grid volume = 2

40

Figure 4 grid resolution = 4x4, edge grid volume = 0.875

In the extreme case where the grid size is maximum, i.e., no griding at all, the
grid volume is maximum which is equivalent to the total number of segments. But
not that the smaller the grid size, the better. When space is too much fragmented
to the extent that one single segment is clipped more than two or three times, the
number of total (cell index, object index) pairs will be very large, so the amount
of computation is unbearable. This is the case when data is almost rasterized but
the computation is still vector based.

Although GCS is independent of the input data, which is to be converted
according to its own data volume and data distribution, performance of any
operation based on this schema relies on choosing a appropriate grid size according
to the volume and distribution of the input data. It is therefore necessary to study

the statistical aspects of the input data in order to achieve good performance.

41

Chapter 5
PM Quadtree Based Spatial Join

PM quadtree appears to be an attractive data structure for spatial operations
including spatial join. It stores the polygonal map with precise information and can
be adapted to a dynamicaily changing environment. The virtue of the quadtree-
like representation to spatial join operation is its regular decomposition, which
makes uninteresting areas to be ignored and the searching of the interesting areas
efficient as well.

Although there has been some research and empirical results on the perfor-
mance of some spatial operations like point location under quadtree representa-
tions, we are concerned about the performance of different spatial join algorithms
under PM quadtree representation and the performance of certain spatial join
algorithms under different PM quadtree variants resulting from different decom-
position criterions. Our goal is to find an efficient method to perform spatial
join which would result from combining the best algorithm with the optimal PM

quadtree variant.

Section 5.1 PM Quadtree Based Top-Down Traversal
Algorithms

We are presenting three algorithms to perform spatial join. They all feature
top-down tree traversal no matter which PM quadtree variant is used. But different
strategies are used with respect to what object is used during the traversal and

whether further leaf splitiing is performed.

5.1.1 PMS]J: Parallel Traversal With Splitting Join
This is an algorithm performed on two Quadtrees at the same time. First,

Quadtrees for each of the two polygonal maps are constructed. Then the algorithm

42

traverses the two Quadtrees in parallel. Only corresponding quadtree nodes at the
same level are compared. When one tree is a leaf and the other tree is not, the leaf
is split into a node with four sons, each of which is leaf node. The procedure is
then applied recursively to the corresponding sons. When both Quadtrees are leaf
nodes, the dictionary of one of the Quadtrees is checked against that of the other
for possible intersections of the segments, and should any intersection occur, the

intersection of the corresponding polygons is recorded.

The algorithm is presented as below:

[algorithm 5.1]

Input: m polygons and m’ segments in map 1, n polygons and n’ segments
in map?2;
Output: Set of pairs (Pi, Qj), such that Pi belongs to mapl and Qj belongs
tomap2; 0 <i<m, 0<j<n

Begin

1. Construct Quadtree Q1 for mapl;

2. Construct Quadtree Q2 for map2;

3. Starting from root of QI and root of Q2, compare corresponding nodes;
if both are grey, go ro the next level, check corresponding nodes;
else
if both are leaf, perform dictionary to dictionary check and report
intersections, return;
else

if one Is grey, one is leqaf,
split the leaf, generating four new leaves, and comparing
leaves with the corresponding sons of the grey node.
End.

The fact that only leaves at the same decomposing level are compared and their
corresponding dictionaries are checked for the possible intersections, makes the

traversal very expensive. This is because both tree nodes are further decomposed

43

down to the level of whichever is deeper when the corresponding nodes are not
at the same leaf level, and each time with each node the splitting is done by
decomposing the present square into four equal quadrants, passing the dictionary
to each of them and clipping all the line segments in the dictionary against them.
The Quadtrees from the two different maps eventually turn into exactly the same

and the maximum decomposition schema and levels.

5.1.2 PMNSJ: Parallel Traversal Non-Splitting Join
PMNS]J is designed to eliminate the over-splitting of PMSJ and makes use of
the detailed representation provided by the decomposition.

When correspoending quadtree nodes at the same level are compared with each
other, no splitting is done if one tree is a leaf and the other tree is not. Instead, it
continues traversing down the other quadtree to its leaf level, and then compares
all the dictionaries along the traversal of the tree to that of the leaf node from
the other quadtree; i.e., the leaf dictionary of one of the Quadtrees is compared
with all the dictionaries of the subtree with the corresponding node as the root.
Although there is more dictionary checking due to the fact that traversal of any
one of the two quadtree stops as soon as its leave is reached, there is no further
splitting of the quadtree, which involves much more computation than that of the
dictionary checking.

The algorithm is presented below as well:

[algorithm 5.2]

Input: m polygons and m’ segments in map 1, n polygons and n’ segments
in map2;

Output: Ser of pairs (Pi, Qj), such that Pi belongs to mapl and (Jj belongs
tomap2; 0 £i<m 0<j<n;

44

Begin

1. Construct Quadtree Q1 for mapli;

2. Construct Quadtree Q2 for map2;

3. Starting from root of Q1 and root of Q2, compare corresponding nodes;
if both are grey, go to the next level, checking corresponding nodes;
else
if both are leaf, perform dictionary to dictionary check and report
intersections, refurn;
else
if one is grey, one is leaf,

perform dictionary to tree checking;
continue traversing down the quadtree with grey node, until leaves
are reached. Whenever a leaf is reached, perform the dictionary to
dictionary checking and report intersections, return.

End.

Dictionary to tree checking is done by a recursive procedure Dictionar-
ToTreeCheck(Dictionary, Quadrree). Tt calls itself until the leaf of the Quadtree
ic reached. So the intersections are checked between the Dictionary and all the
dictionaries of the Quadtree. Back to the PMNS]J, it implies that whenever the
corresponding tree nodes are not at the same level, i.e., one has reached its leave,
but the other has not, the dictionary of the leaf node from one of the Quadtrees
is checked against all the dictionaries under the corresponding grey node from
the other quadtree. The subtree under this grey node is traversed and all the

dictionaries are visited.

Below is the pseudo code for the DictionarToTreeCheck(Dictionary,

Quadiree).

Procedure DictionarToTreeCheck(Dictionarl, Quadtree);

Begin

If Is_Empry(Dictionaryi) Then

Return

If Is_Leaf{ Quadtree2) Then

{
DictionaryToDictionaryCheck(Dictionaryl, Quadtree2—>Dictionary);
Return;

b

For (j=o;j<NumberOfSons;j++)
DictionaryToTreeCheck(Dictionaryl, Quadtree2—>Son{j]);
End.

Procedure DictionaryToDictionaryCheck(Dictionaryl, dDictionary2) sequen-
tially traverses two lists and checks for the edge intersection. Since the number
of edges in each dictionary is small, a complex data structure is not necessary

in this case.

5.1.3 PM1J: PM Index Join
This is a method which uses quadtree as an index to search those edges that are
most likely intersecting the present edge.

First, a quadtree of the one of the two maps is constructed. Second, an
attempt is made for each chain from the other map to insert into the quadtree
already built, but no actual insertion is carried out when leaf level is reached,

rather the intersections against all the edges inside the dictionary are checked.

The algorithm is presented as below:

[algorithm 5.3}

Input: m pelygons and m’ segments in map 1, n polygons and n’ segments
in map2;

Output: Set of pairs (Pi, Qj), such that Pi belongs to mapl and Qj belongs
tomap2; 0<i<m 0<j<n

Begin

46

1. Construct Quadtree Q1 for mapl;
2. For each chain in map2, starting for the root node of Q1, examine the

chain segment against the node square;
If the node is grey, clip the chain segment against the node square;
if clipped, go to the next level of the grey node;
if not clipped, return;
if the node is leaf, perform dictionary checking between the chain
segment and the dictionary of the leaf, report intersections;
return;

End.

Step 2 is implemented by a recursive procedure QuadtreelnsertCheck (AChain,
Quadiree), in which the chain from one map to be checked with the present
quadtree of the other map, is clipped against the blocks of the Quadtrees starting
from the root, and only blocks that are clipped by the chain are further tra-
versed until their leaves are reached. Then intersections are checked between the
chain and the dictionaries of the leaves. By clipping the chain along the existing
quadtree, not only the areas that have no intersection with the chain are avoided,
but also the clip is conducted in the existing quadtree schema which leads the
direct mapping of the possible intersecting leaves to the chain. Furthermore, there

is again no additional splitting during the traversal.

The code for QuadtreeInsertCheck is presented below.

Procedure QuadtreelnsertCheck(Chain, Quadtree2)
Begin
ClipLine(Chain, Quadtree->Block, result-list);
If Is_Empty(result-list) Then

Return;

If Is_Leaf{Quadnee?) Then
{

DictionaryToDictionaryCheck(result-list, Quadtree2—>Dictionary);

47

(=]

Return;
b
For (j=o0;j<NumberOfSons;j++)
QuadtreelnsertCheck(result-list, Quadtree2—->Son[j]);
End.

5.1.4 Empirical Results

Each of the three algorithms PMSJ, PMNSJ, PMIJ described thus far were
implemented based on PM1 Quadtree for comparison purposes. The same six
sets of test data in chapter 3 were used here as well. Execution times were
measured in seconds. Figure 1 below pictures the performance curves of each

of the algorithms.

Notice that the second algorithm PMNSJ (Parallel Traversal Without Split-
ting) improves over the first algorithm PMSJ (Parallel Traversal With Splitting)
as we expected because further splitting is avoided, and replaced by dictionary

checking, which are less expensive than clipping and splitting.

The result also shows that PMIJ outperforms both of the parallel traversal
algorithms PMSJ ,and PMNSJ. By clipping the chains from one of the maps
along the existing quadtree from the other, those dictionaries that the chain is to
be inserted are the most likely intersecting ones with respect to the specific chain,
and not the whole dictionary as is the case in the second algorithms. Although
we don’t save much by not constructing the second quadtree because the chain is
to be clipped along the existing quadtree anyway, more accurate relative objects

are obtained by this clipping, and the redundancy is further reduced.

48

30 T T T 1 T 4,
“PMSJY ——

- 25 | L
0
4}
((g
= 20 F 1
-
Q - i
o 15
<
£
w 10 + a
[42]
[@]]
5
@ 5r i

0

0 1 2 3 4 5 6 7

Data Set

Figure 1 Performance of PMSJ, PMNSJ, and PMILJ

Another important fact is that the performance of all three algorithms drops
considerably as the number of polygons and edges are increased. It is due to the
fact that the quadtree representation occupies large amount of spaces. It provides
detail spatial information of a map down to lccations of segments of each edge.
When edges are heavily fragmented, it is repetitively stored in the quadtree much
more than once, since each leaf allows only one segment unless more than one
segments originate from the same point with PM1 Quadtree. But the extent of
the fragmentation can be reduced by adapting a less restrictive decomposition

criterion. This results in the experiments with different quadtree variants.

Section 5.2 Comparison Of the Algorithms on
Different Quadtree Variants

There are three variants of PM Quadtree developed by Samet and Webber
under different decomposition criterions . The PM2 and PM3 quadtree are

obtained by successively weakening the definition of what constitutes a valid leaf

49

node, resulting in PM Quadtrees with less depth and less leaves. Although with
PM1 quadtree, more detailed information could be obtained, chain segments are
overly fragmented such that redundant intersection checking can not be ignored

in the performance analysis as far as spatial join are concerned.

In this section, we discuss the way that different decomposition criterions
affect the performance of the spatial join, and conclude with one PM Quadtree
as the choice for spatial join. Empirical results will also be presented to verify

our analysis.

5.2.1 Analysis of PM Quadtrees in Spatial Join

Among the three variants PM1, PM2, and PM3, the PM3 quadtree has the least
requirement for segments in one block. It only limits the number of vertices in
each block area without the requirement to the segment across the block, while
PM1 Quadtree allows only one segment across the block, and PM2 Quadtree
allows more than one, but they have to meet at a common vertex exterior to the
block.

All of the three variants of the PM Quadtree present exact map data. What
would be the effect if different variants of the Quadtrees are used in our spatial
join algorithms?

In spatial join, we are concerned about how much benefit can be obtained from
this decomposition schema, such as how fast the interested area can be reached and
how accurate the information is, in the sense that those chain segments appeared
in the reached block area, are closely located to the searching chain segment.
They are the segments that most likely intersect this segment than that appeared

in any other block areas which can not be reached by this segment.

By this observation, quadtree is actually used as a space decomposition

method in our algorithms. The space is decomposed regularly into four equal

50

quandrants upon the arrival of the new chain segment and the violation of the
criterions. Clipping and node splitting make the chain segment appear in more
than one node, thus introduce redundancy. The space should be decomposed
to such an extent that the map chain segments are divided into groups by their
spatial locations under the quadtree decomposition schema, and there shouldn’t
be oo much redundancy with each chain segment resulting from node splitting
to meet the criterions.

Under quadtree decomposition schema, the more node splitting that happens,
the deeper the tree is, and hence the more fragmented the chain segment would
be. Since PM3 Quadtree has the least requirement for the ending block, it results
in least number of node splitting, but yet it decomposes the space to a quite fine
extent for spatial join, with each block containing maximum one vertex. A study
by Samet and Webber shows that from PM1 to PM3 quadtree, there are up to
19% reduction in depth and leaves with a cityline map. According to our analysis
with the spatial join, PM3 quadtree would have the best performance with any of
our algorithms discussed in the last section.

In general, redundancy can hardly be avoided due to the fact that it is very
difficult to have a variable space division of the space to include the polygonal
chains into non-intersecting groups, unless each chain segment is made one group
unit, in which case it is reduced to the brute-force performance. The way quadtree
divides the space is not variable, but the extent the space is decomposed can be

controlled, so is the redundancy resulted from the decomposition, but very limited.

5.2.2 Empirical Results

To verify our conclusions, the three algorithms were implemented on PM2 and
PM3 Quad-trees as well. The same six data sets were used and the results were
grouped by algorithms, i.e., we compare the performance of the same algorithm

on different PM Quadtree variants.

)

(100sec.

Elapse Time

)

(100sec.

Elapse Time

3 O T T l T T 1
“PM1.PMSJ™

o | "PM2. PMSJ"
"PM3. PMSJ"

20
i

5 L. ,#’I g ‘ 1
e : ; |

i i L i

Data Set

Figure 2 Performance of PMS]J on PMI1, PM2, and PM3 respectively

30 ! ; 3

T T T
| “PM1.PMNSJ

(LR

 "PM2.PMNSgE -
"PM3.EPMI\I/SJ:/»l o
; : / /" :

>
U‘| .
[e AN 1

Figure 3 Performance of PMNS] on PM1, PM2, and PM3 respectively

32

-
o

@0 PM1.PMIJN —— |
~ "PM2. PMIG"
o 20 r .
Ui
[}
=
=l 15 L
Y
=1
-

& 10 .
[
1]
on
5 5t
[F9]

0 :

0 1 2 3 4 5 6 7

Data Set

Figure 4 Performance of PMIJ on PM1, PM2, and PM3 respectively

Figure 2 above shows the performance curves of PMSJ on PM1, PM2, and
PM3 respectively. Figure 3 shows that of the PMNSJ, and Figure 4 presents

results of the PM1J.

Overall, PM3 quadtree has the best performance with any of the three
algorithms, which verifies our conclusion in the above section. Furthermore, when
tabling the PM3 Quadtree performance data of the three algorithms in Table 1

below, it is also the PMIJ that showed its best performance.

Although space requirements are reduced with both PM2 and PM3 Quadtrees,
which improves the performance with large data sets, the overall performance is

still not satisfying. We look at ways to further improve it in the following section.

53

DataSer2 | D

41.08 169.37 | 236.421 539.2 989.34 1687.41

PMS]J
7

prnsy | 3680 | 14308 | 18142 | 54215 | 97650 | 110342

pary | 3504 | 6555 | 15976 | 48973 | 88743 | 104533

Table 1 Performance of PMSJ, PMNSJ, and PMIJ on PM3 Quadtrce

Section 5.3 PM3IlJ: A PM3 Quadtree Based
Spatial Join Algorithm

So far we have concluded, that PMIJ (Quadtree-based index join) imple-
mented on PM3 Quadtree generates a best result among the three algorithms
implemented on different PM Quadtree variants. In this section, we present a
practical solution based on PMIJ of its PM3 Quadtree variant, by deferring the
dictionary checking, in order to reduce the amount of computation resulting from

the redundant storage.

5.3.1 PM31J: Two-Step Processing of Spatial Join

Careful study of the algorithm PMIJ shows that, even with PM3 Quadtree in
which chain edges are least fragmented, each edge may appear in more than one
leaf node, therefore more than one dictionary contains the same chain segment.
Since actual intersecting points are of no interest for spatial join, the dictionary
checking is inevitably redundant in this way. Although the storage of redundant
information can not be avoided, the redundant checking of the intersections could
be replaced by a two-step process, which will separate the process of grouping

the map chains from the process of the actual checking.

54

An extra data structure is needed to keep track of the possible intersecting
chain segments during the traversal of the quadtree for each chain segment. The
repetitive information will be filtered out by this structure, and each possible
candidate will be recorded only once. Actual intersection checking would not
take place until the end of the chain traversal, and then the structure is cleared
and reused for the next chain traversal.

The data structure we used is linked list. Again a complex data structure is not
necessary, since there are generally a small number of segments in eaci: list, and
each segment in the list has to be traversed. If a polygon chain has m segments,
then there are m such linked lists recording a very fine collection of candidates.
These m lists are organized in chain segment order, so corresponding checking
can be performed between each segment and its candidate lists. Intersections are

then collected from this checking as usual.

The algorithm is presented below:

[algorithm 5.4]

Input: m polygons and m’ segments in map 1, n polygons and n’ segments
in map2;

Output: Set of pairs (Pi, Qj), such that Pi belongs to mapl and Qj belongs
fomap2; 0Si<m 0<j<n

Begin

1. Construct PM3 Quadtree Q1 for mapl;
2. For each chain C; in map2, starting from the root node of QI;
2a. For each segment s; of C;, initialize list L;
If it’s grey, clip s; against the node square;
If clipped, go to the next level of the grey node;
If not clipped, return;
If it’s leaf, for all the segments in the leaf dictionary,
If it’s already in L;, return;
If not in the list, add sj to Lj; return;
2b. For each s; of C, and its corresponding list L;

55

Apply intersection checking. and report polvgon intersections;
Clear the list L,
End.

Step 2a is also implemented by a recursive procedure QuadtreeInsertCheck,
in which the dictionary checking is replaced by a procedure AddCandidateTolList
(result_list, Candidates_list). As a comparison, its pseudo-code is also presented

below.

Procedure QuadtreelnsertCheck(Chain, Quadtree2, Candidates_list)
Begin

ClipLine(Chain, Quadtree->Block, result-list);

If Is_Empty(result-list) Then

Return;

If Is_Leaf{Quadtree2) Then

{
AddCandidatesToList(result-list, Candidates_list);
Return;

b

For (j=o0;j<NumnberOfSons;j++)
QuadtreelnsertCheck(result-list, Quadtree2—>Son[j]);
End.

- In the implementation of PM31]J, memory for the additional lists is dynami-
cally allocated and deallocated. Besides, the number of segments of each chain
is limited, so is the number of lists needed. The following sub-section presents

our empirical result and the concluding remarks for this chapter as well.

5.3.2 Empirical Results and Concluding Remarks
When applied to the same sets of testing map data, the optimized solution showed
its improvement over the non-optimized. It is compared with all the three

algorithms based on PM3 quadtree. The result is pictured in the Figure 5 below.

56

18 H T T T T T
e ~ "PMSJ) —— |
- 197 " ‘PMNS/J I
- 113 PM ’J i .
0 . : :
i
el 10 7
;fy
5 8t N
o]
i) 6 4
84
@ 4 N
—i
m
2 . ad
0
0 1 2 3 4 5 6 7

Data Set

Figure 5 Comparing PM31} with PMSJ, PMNS]J and PMIJ of PM3 variant

A satisfying performance is obtained when smaller data sets are applied. e.g.,
with a 38 x 100 data set, the joining pairs can be computed in less than 30 sec.
Because it doesn’t consume less space, actually more by using additional data
structure, the performance is not improved much when large data sets are applied.

The conclusion we can draw from the above experiments is that, quadtree is
a fine, dynamic spatial data structure. Polygons, lines, and points can be inserted
into and deleted from the tree dynamically without having to rebuild the tree. As
it is a hierarchial data structure, the search of the object can take advantage of
the tree structure.

It is also an expensive data structure because the computation needed to build
up the tree takes approximately 60% of the total constructing iime. e.g. with data
set 38 x 100, the time spent to buvild the first quadtree is 34.8813 seconds, and
the clip-line function takes 25.5577 secs, which is 73.2% of the total constructing
time. The average time percentage of the clipping over the constructing time with

S of the polygonal nets is 66.1955% (see Table 2 below).

57

' Elapse s
: Tl"’m‘e”', o Net 1 Net 2 Net3 | - Net 4 Net 3
o (sec.) | v L
building 34.8813 86.2634 232.42 449238 636.274
clipping 25.5577 52.1516 154.1457 307.263 397.8768
clipping/
building 73.2704 60.4562 66.3220 68.3965 62.5323
x 100 %

Table 2 Clipping occupies over 60% of the total construction time

On the other hand, when we use it as a space decomposition method for the

spatial join, the space is decomposed into such a fine extent that the edge is subdi-

vided and their location recorded. The decomposition is overhead for the spatial

join, hence the space requirement is too high, which results in unsatisfactory

performance with large data sets.

For the later comparison with other spatial join algoritms based on different

spatial indexing methods, we will use PM31]J, and name it PM-Join as a notation

of PM31]J.

58

Chapter 6
R-tree Based Spatial Join

As with Quadtree, R-tree can also be used as a space decomposition method to
perform spatial join as well to incorporate topology into the precessing of object
intersecting detection. But it is different from Quadtree in the way the spatial
object is represented and the way the space is decomposed and organized. These

are the factors that affects our solution for the spatial join operation utilizing

R-tree indexing structure.

Section 6.1 Choose Processing Unit of the
R-tree Representation

Possible processing units are polygons, chains and segments (refer to Figure
1), all of them can be represented by R-tree data structure, i.e., representing them
as 2—-d minimum bounding rectangles, which results in polygon R-tree, chain
R-tree or segment R-tree. This is different from PM Quadtree’s segment and
vertex based only representation for 2—d objects. By choosing different objects
as the processing unit for the spatial join, we will have different R-tree nodes and
different R-tree representations for the same polygonal net, as well as different

outcomes from the tree processing.

Chain Polygon

Segment

Figure | MBRs for different processing umit

59

When chain is used as the processing unit, for the map that is to be presented,
there are obviously more MBRs than there are with polygons as the processing
unit, which will result in a larger R-tree, as it is assumed that polygon is composed
of chains. Under the assumption, we generate polygonal net with the number of
chains in the net approximately three times more than that of polygons, but only
1/n of that of segments, where remember n is chosen to simulate the natural
boundary and n=20.

This is observed from only the representation point of view. As far as spatial
join is concerned, the objective is polygon oriented, i.e., pairs of polygons that
intersect. By choosing polygon chain as the unit, the polygon intersections will

have to be recollected after the R-tree processing.

There are advantages with Grid Coordinate System when polygon chain is
chosen as the processing unit. We present the advantages in the next chapter.
However, to directly generate polygon candidate pairs, no advantages can be
taken here by choosing either segment or chain as the processing unit. The result
is a larger R-tree and computation overhead. Therefore, polygons should be the
processing unit, the result from the R-tree processing could be collected and made

use of directly in the later processing stage.

Section 6.2 Two-Step Processing of Spatial Join

Our approach to the spatial join involving R-tree as part of the data represen-
tation features two-step processing: the preprocessing step as a filter to find the
possible intersecting sets, i.e., where their MBA’s overlap; and the polygon-by-
polygon intersection checking as the second step. It is during the first step that
R-tree is utilized as a spatial data structure to provide additional topology on poly-
gons’ locations and relative positions. We will present two different algorithins

of using R-tree to fulfill the first step.

60

In this section, the general strategy of spatial join processing is presented,

followed by the description and analysis of two algorithms.

6.2.1 General Outline of the Processing

Under our strategy, map data is composed of two levels as one integrity:
Map Data Structure = vector Data Structure + Global Topology; Or
Map Data = Vector Data + R-tree Representation;

Hence, each polygon is represented both as coordinate list in vector form
and as MBRs of different levels in the R-tree, while the R-tree itself represents
the whole map the polygon belongs to. Vector data structure stores precise in-
formation of each polygon in the map, while global topology stores polygon
approximations and reconstructs them into a tree according to their space occu-
pancy. The spatial relationship of the polygons is therefore constructed through
their approximations, and provides additional topology for the spatial join oper-
ation. The approximations are boxes such that each edge is parallel to one axis

of the two dimensional space.

The whole processing can be stated as follows:

[Step 1} Find out all the pairs of polygons which could be overlapping poten-
tially according to their approximation constructs from the two maps. This includes

a design of nwo algorithms involving R-tree: Index Join and Parallel Join.

[Step 2] Find our the exact pairs of the overlapping objects by checking all the
pairschain-by-chain from the result of the first step, and calculate the intersection

information like the boundary or the area of the resulting pairs if needed.

61

Let n;, nz be the number of polygons in each polygonal net respectively,
and h;, hp the maximum heights of their corresponding R-trees. If M and m are
defined as the maximum and minimum entries allowed per node respectively, then

h; and hy can be calculated as [logy,(n;)] and [logy,(n2)].

If n;” and ny’ stand for the maximum number of non-leaf nodes in the
R-trees of the two polygonal net respectively, then Index Join has the worst
case complexity Ofn;x(np+n;’)] and best case complexity O[n;xh,]; while
Parallel Join has the worst case complexity O[(n;+n;’)x(ny+n>")] and best case
complexity O[Max(h; xh;)]. Maximum total number of nodes in a R-tree with N

rectangles can be calculated as [N/ m] + [N/ m?] + ... + 1.

The analysis above shows that number of polygons and maximum entries
allowed per node are critical factors of the algorithms’ performance in the two
extreme cases. Maximum entries allowed per node is defined as node size in our
context. So the analysis leads to a choice of large node size in the two cases.
However, in the average case, the way the node size affects the performance is
not so straight forward, and the overlapping extent between sibling rectangles at
each level is neither non-overlapping as in the best case, nor all overlapping as
in the worst case. We will further discuss them by conducting experiments on

node size in the later sections.

Index Join based spatial join is named R-tree Index Spatial Join or RLJ; while
parallel join based spatial join is named R-tree Parallel Comparison Spatial Join

or RPJ in our following context.

6.2.2 RIJ: R-tree Index Spatial Join
R-tree is used as an index in this algorithm. One of the maps having larger

number of polygons is represented as a R-tree; Each of the polygon MBRs from

62

the smaller polygonal net, is used as a known space to traverse the R-tree, starting
from the root, to find out all the polygons that could overlap it.

Suppose each node of the R-tree has maximum M entries per node, each entry
will be checked for the overlapping possibility because the enclosing rectangles
from each entry of the nodes on the same level are non-disjoint. If the entry is
intersecting, all the entries in the child node pointed by this entry will be checked
until the leaf level is reached. By checking the intersection with all the entries in
the leaf node, polygon identities can be obtained and resulting pairs are formed.
If at any level, the entry is not intersecting, the whole subtree under this entry

will not be examined and all the polygons at the leaf level will be exempted from
the resulting set.

The algorithm is presented below:

[algorithm 6.1]
Input: m polygons and m’ segments in map 1, n polygons and n’ segments
in map2;
Output:Set of pairs (Pi, Qj), such that Pi belongs to mapl and Qj belongs
tomap2; 0<i<m 0£j<n
Begin
1. Construct R-tree r2 for the map2 that has larger number of polygons;
2. For each polygon P; in mapl;
a. Compute its MBR R; by scanning through the vertices of P; ;
b. Starting from the root, for each node n of r2 at the same level ;
for each entry e of the node n with covering rectangle R,;
if R; intersects R,;
if n is leaf node, record pair (P;, P,), return;
if n is not leaf node, go to child node of entry e;
3. For each pair (P;, P,) from the result above;
For each chain C; of P;;
For each chain C, of P, ;
if C; intersects C,, report polygon intersection, return;
End.

63

Although a polygon identity can be associated with only one of the leaf nodes,
its MBR may be contained in the covering rectangles of many nodes, therefore,
all the nodes at the same level have to be checked. So only in the best case where
the searching MBR intersects with only one node at each level, the O(logy,n;)
performance can be achieved for each MBR.

Figure 2 below demonstrates the best situation at one level, in which the
searching rectangle A intersects only enclosing rectangle 7. The enclosing
rectangles on each other levels are disjoint as well. All the searching rectangles
are intersecting with only one of the enclosing rectangles on these levels. Since
the searching polygonal net has n; polygons, and exactly one node at each level
need to be visited, a total of O(n; xlog,,n,) time is needed at the first step, i.c.,

the index join.

Figure 2 Enclosing rectangles are disjoint and searching MBR intersects only one enclosing rectangle

In the worst case, all the non-leaf nodes have to be visited before ascertaining
the final intersecting objects, and the time needed for each processing at the first
stage is proportional to the total number of nodes including leaf-nodes in the tree.
The search space in this case is number-of searching-rectangles x number-of-total

non-leaf-nodes. Since the leaf-node contains the minimum bounding rectangles

64

of all the polygons in map 2, more than O(n;xn;) time is needed, where n; is
the number of polygons in the second polygonal net.

This situation can be demonstrated in Figure 3 below, in which the searching
rectangle A is included in all of the enclosing rectangles, so all of them have to
be visited on the next level by A. At each level, the sibling enclosing rectangles
are overlapping each other severely so that every searching rectangle intersects

with every enclosing rectangles on any one of these levels.

Figure 3 Enclosing rectangles overlap each other and searching MBR intersects all of them

But in the average case, only a limited number of nodes will be visited and
compared, because the worst case happens only when the size of the searching
MBR is comparable with the space of the intersecting polygonal net, or all the
MBRs comprising the R-tree are of similar size and are comparable with the
size of the whole map. The former leads to a search of most of the nodes at
each level, while the later results in a severely overlapped R-tree no matter what
splitting aigorithm is adapted when building the tree. Both situations will lead to
a search of the majority of the nodes.

In the general case, the map has polygons in uniformed scale. Polygons

composing the map are mutually non-overlapping. They could, however, share

65

common poundaries. Each polygon exists as a component of the map being not
comparable with the whole map in size. Therefore a large portion of the map
will be discarded for each searching MBR during the traversal, and the final

performance could be greatly upgraded by the added index join.
o

6.2.3 RPJ: R-tree Parallel Comparison Spatial Join

The Index Join does not take into consideration the fact that spatial join is a
set operation. From space decomposition point of view, R-tree is nothing more
than a hierarchical space occupancy approximation of the polygonal net. The root
specifies the bounding space occupied by the map, and each level specifies in detail
how the space from the above level is occupied in the form of a set of overlapping
rectangles. Down to the leaf level, the space occupancy approximation of each
polygon is stored. Therefore, R-trees from two maps representing two space
occupancy schemes, can be compared at corresponding approximation level to
detect possible set-to-set intersecting pairs.

This leads to the design of the second algorithm for the first step. With this
algorithm, the R-trees of both maps are constructed first. Then starting {rom
the root, two trees are compared in parallel manner at each corresponding level.
For each node of one tree at certain level, it is compared with all the nodes at
the corresponding level from the other tree to decide which node is of interest.
By corresponding level, it is the same level counting from the root, not in the
topological sense as is the case with Quadtree.

Starting from the root, the rectangle collection representing the space occu-
pancy of the map at each level is compared with that of the other map. This
is done by comparing any two of the covering rectangles from both collections.
The result of the comparison is recorded in two local stacks which are passed
down to the next level for further checking. These local stacks are acting as an

approximate snapshots of the sub-space intersections at different levels, and the

66

deeper the level is, the smaller the processing object is, and the more accurate

the snapshot is. At the leaf level, the possible intersections of polygon objects

are obtained.
Generally the two trees are not of same height. Whichever reaches the leaf

level first, the result will be recorded in its local stack and updated while the other
tree is traversing down to reach the leaf level.

The algorithm is presented below formally:

[algorithm 6.2]

Input:m polygons and mn’ segments in map 1, n polygons and n’ segments
in map2;

Output:Set of pairs (Pi, Qj), such that Pi belongs to mapl and Qj belongs
tomap2; 0<i<m 05j<n

Begin

1. Construct R-trees rl and r2 for mapl and map2 respectively;
2. Initialize two stacks stackl and stack2;
a. Push root node address of rl into stackl;
b. Push root node address of r2 into stack2;
3. While stackl is not empty and stack2 is not empty;
a. Initialize two local stacks L_stackl and L_stack2;
b. Get node N; from stackl and node N; from stack2;
c. For each entry n; in NI and each entry nj in N2;
If the covering rectangles of n; and n; intersects;
Case:
1). both n; and nj are leaves;
record pair (F; , Pj);
2). n; is leaf and nj is nor leaf;
push address of n; into L_stackl;
push child address of n; into L_stack2;
3). nj is leaf and n; is not leaf;
push address of nj into L_stackl
push child node address of njinto L_stack2;
4). both n; and n; are not leaves;
push child node address of n; into L_srackl
push child node address of n; into L_stack2;

67

d. Go to step 3 passing down the nvo local stack;
4. For each pair (P;, P;) from the result above;
For each chain C; of P;;
For each chain C; of P; ;
if C; intersects Cj, report polygon intersection, return;
End.

Analysis of this algorithm shows that the configuration of the R-tree itself
has significant effect on its final performance. The best performance could be
achieved when there are no overlapping of the subspaces partitioned at each level
for both R-trees, and each sub-space from one tree on each level overlaps no more
than one sub-space from the other tree at the same level. In this very special case,
a time proportional to the maximum height of the two trees can be obtained which
is extremely fast. In the average case, we can eliminate sets of polygons at each
level although more than one node has to be visited and because it operates a
set of polygons once at a time, a better performance can be expected over the
index join based RI]J.

However, the worst case complexity is worse because not only does each leaf
node of one tree have to be compared with each of the other tree, but each interior
node of one tree has to be compared with that of the other as well. If there are
n;’ non-leaf nodes in rl and ny’ non-leaf nodes in r2, the time needed in this
case will be proportional to the total number of nodes including the leaf nodes
from both trees, which is O[(nj+n;")x(ny+n2’)]. This is worse than Ofn; xn;].
Fortunately this is an extreme case in which all the objects in the map is taking
up the entire map space, i.e., overlapping each other on the entire map.

Notable is the fact that the object overlap at each sibling level affects the

space partitioning at each level, and therefore affects the search complexity.

6.2.4 Experimental Results

68

Both RIJ and RPJ were implemented and tested over the same 6 sets of polygonal
data used in chapter 5. Since Index Join and Parallel Join are the major
difference of the two algorithms used as their first step respectively, we tested
the performance separately, so that we could compare the Index Join and Parallel
Join as well.

Firstly, the graphed results in Figure 4 below reflects the improvement of

the parallel join over the index join. They are the first steps of the algorithms

R1J and RPJ respectively.

45 T T T L

"parallél.join",r%—

)
(%]
wu
T
4

30 |

{sec.

20 b

15

Elapse Time

1]

0 500 1000 1500 2000
Number of Polygons

Figure 4 Comparison of RIJ and RPJ at their first step

On average, there is a 66% decrease in the time needed to perform the parallel
Join over the index join. As an example, with data set 6 having a size of 9161144,
parallel join takes only 14.54 secs which is 33.06% of the 43.99 secs by the index
join. It is shown from the figure that the parallel join takes approximately only
one third of the time needed by the index join, a significant improvement, which

verifies our analysis of the two joins in the above sections.

69

Since R-tree is not involved in the second step, which generates the final
intersecting pairs based on the approximate result from the first step, the time
needed at this stage is not different for the two methods. When considered as a

whole, Table 1 below shows the total time needed for RIJ and RPJ respectively

over the six sets of data.

DataSet? ; Dc‘zﬁtSetj‘: Da{aSéM; | DataSet5 | DataSet6
38.3617 65.9131 118.135 263.813 | 454.038 1205.16
36.5430 62.5122 1 113.9339 | 245.5521 | 415.738 | 1060.004
4.7401 5.1597 3.5139 6.9219 8.4354 12.045

Table 1 Comparison of RIJ and RPJ totally

The improvement of RPJ over RIJ is not however overwhelming, as shown
above, because the final intersection checking is still the most time consuming
operation of all. In our measurement, the final intersection checking takes about
95% of the total spatial join time. We use R-tree to perform rectangle join first,
in the light of reducing the redundant checking involved in this operation. As an
extra data structure to assist the computation, R-tree should never take a large part
of the whole operation, which best serves as a topological data structure to filter
out those impossible pairs. This can not be achieved by the vector data model
without utilizing indexing structure because of its lack of global topology.

On the whole, both RPJ and RIJ should dramatically improve over the
Boundary-Join, which uses only local data structure. This will be further
discussed in Chapter 8, in which we will use RPJ as the representative spatial

join algorithm on R-tree, and we name it R-Join to distinguish it from other join

algorithms.

70

Section 6.3 Measurement on Node Size

The experiment above was conducted under a certain node size 15, i.e., a
maximum 15 entries allowed for each node. According to the analysis we had
in section 6.2.2, node size affects the performance critically in both best and
worst situations. To estimate the effect that different node sizes generate in the

average case with the algorithms, we will have several experiments followed by

discussions in this section.

6.3.1 Experiments

In order to study the behavior under various node sizes, a wide range of node sizes
is tested: the sizes include 3, 5, 10, 15, 20, 30, 40, 50, and 60. The algorithm we
chose to experiment on is RIJ. Performance data were obtained from different
stages of the algorithm: the construction stage, the index join stage, and final stage,
in order to see the effects from various aspects. But the same 6 sets of testing
data were used. With each data set, the measurement is always taken by choosing

the larger map as the R-tree index and th= smaller map as the searching objects.

Node Size Affects R-tree Construction The time needed to build the tree is
measured first under various node size chosen. Figure 5 below graphs the testing
results.

The graph reflects firstly, that the time needed to build the tree is proportional
to the number of objects in the data set obviously, with the curve of data setl at

the bottom and the curve of data set6 above that of all the rest of the data sets.

71

100 “ H H H EH H T
*data_setl"
; "data_set2®
—~ 80 r "data_set3® .
3 . “data_set4d®
@ : "data_setS5" --
~— ! 1 3‘.-"11 .
60 - data_set® i
@ .
&
-
B
@ 40 + .
4]
o
]
—
=1 20 r Tl oo .
O 1
0 i0 20 30 40 50 60 70

Node Size

Figure 5 Node Size affects the tree construction ting

Secondly, for each data set, the time needed to build the tree tends to decicasc
as the node size grows larger. For example, for the fourth data set in the table
having map set size 382 x 538, when maximum only 3 entries are allowed for
each node, 65.73 secs which is more than one minute is necessary to build the
tree for 538 objects; while when the maximum entries is chosen as 50, only 5.62
secs is necessary. The larger the node size, the less time spent.

Thirdly, the decrease curve over the chosen 6 node size is not an even one.
Prominent drops occur when the node size is less than 10. The time remains low

when more than 10 entries are allowed, and change is not obvious thereafter.

Node Size Affects Performance of Index Join It can be concluded that having
a large node size, in our case more than 10 entries per node, will generate a tree
quickly, and therefore a shallow one. However, the choice also depends on the

performance of index join.

72

When index join 1s performed on the trees varying on the node size, Figure
6 graph below reflects that the index join on the shallow trees can be performed
indeed faster than on the deep trees with node size less than 10. For example, with
data set 4, 5.83 secs is needed to do an index join on tree with maximum 30 entries
per node, while 15.48 secs is needed with maximum only 3 entries per node.

However, when the node size is chosen more than 20, the difference tends to
diminish as the node size grows larger. Therefore, with a data set having under
1000 objects, the node size chosen should be least 10, and within the range of 10

to 60, join can be performed with no major time difference.

25 T H 7 H H H
"data_setl® —
e "data_setZ(‘_‘ ~~~~~~~
20 F o Tvdataset 3t -
v "data_set5" ----—
&= " [o
.; 15 L data__se‘.o N
D
bt PP
& 10 F e o .
-
[13]
5 F §
R et = "r“:’\”‘:i VVVVVVVVVVVVVVVVVVVVVVVVV
O b H 1 i i
0 i0 20 30 40 50 60 70

Figure 6 Nede Size affects the performance of Index Join

Notice that data set6 behaves slightly differently. Although the join time
decreases as the node size increases from 3 to 20, further increase of the node
size makes the join time go up. The join time needed remains higher after 30

than that of node size under 20 but above 10.

-~
2

Node Size Affects the Performance of RIJ When the two steps are considered
together, i.e., measuring the time needed from the beginning of building the tree
to the end of performing the final join, Figure 7 below graphically preseunts the

result obtained.

Figure 7 shows that each data set has its best performance under node size 20
or 30. Performance doesn’t change much thereafter. So generally, a node size of
more than 20 will generate a fairly good result, considering also the map size when
the final choice is made. With maps having more than 1000 objects, the testing

range of node size should be expended, and the best node size could vary as well.

160 : ; ; . ! r
"data_setl®
. *data_set2*
80 F - "data_set3” :
“data_set4d”
@ - "data_set5*
e o “data_set 6™ - -
= 60 L
a
75}
0o,
5] 40 r b
—
{'I] -~
206 + - J
0 \\\‘»;:{-v, — — L - ;

0 1c 20 30 40 50 65 70

Figure 7 Node Size affects the pedformance of RI1J

74

6.3.2 Discussions

Node size is an optimization parameter for our methods. A large node size means
that the tree is shallow; a small node size means that the tree is deep with respect
to the same map data. If overlapping at each level is not serious, searching sets
of objects will go quickly on a shallow tree, and building the tree needs less time.

Considering all the aspects, node size should be chosen experimentally in the
average overlapping situation. It is not simply that the larger the node size, the
better the performance. Our experiments on data sets under Gaussian disiribution
shows similar results. Both data sets show obviously better performance with
node size of more than 10, and the performance afterwards varies little, but does

not keep dropping down in certain range.

Chapter 7
Grid Coordinate System (GCS)
and Spatial Join

In our approach of spatial join processing, the main task of a spatial data
structure is to represent space in a way that would assist the object overlapping
detection. Both PM Quadtree and R-tree feature hierarchical representation, input
data dependent, and complicated computation. In this chapter, we will introduce
for the spatial join a Gird Coordinate System, which is independent of the objects
that populate the space and not requiring a substantial amount of space partition

calculation to achieve the same purpose.

Section 7.1 CSJ: Cell Spatial Join

In this section, we present a spatial join algorithm CSJ based on the Grid
Coordinate System (GCS). General strategy and its explanation is provided first,

followed by the detailed description of the algorithm and the analysis of it.

7.1.1 General Processing Strategy of CSJ

Grid Coordinate System provides a way of uniformly partitioning the space.
Spatial objects in the space are therefore divided into groups according to their
position in the space. The grouping of objects reduces computation by performing
the operation on the objects belonging to the same group.

The strategy of spatial join processing is also a two-step processing: griding
step and checking step. Griding step serves as a filter as PM Quadtrec and R-tree,
to provide possible objectives; only objects in the same grid cell are checked
for intersection. GCS combines “buffering technique” to convert objects in the

griding step by object approximation in stead of object itself .

6

The general processing can be stated as following:

[Step 1} Superimpose a Grid Coordinate System on one polygonal net, convert
it into grid representation by computing cell occupancy of objects according to their
approximations; This called Net-Conversion

[Step 2] For each object in second polygonal net, compute its cell occupancy,

and check for intersections with all the objects in the computed cells.

The processing can take advantage of PM Quadtree’s clipping and R-tree’s
object bounding rectangle representation. Objects are reallocated by the super-
imposing, and the calculation is not so expensive because of both the object
approximation, and non-hierarchical representation. The computational cost in
the second step is directly related to the number of objects in each cell, or the
number of (cell index, object index) pair (refer to Chapter 4 for the concept), and
the object chosen as the processing unit.

Object approximation depends on the object chosen which could be polygon,
chain or segment. Cell occupancy varies with the object approximation, and so
does the algorithm. Deciding an object approximation and calculating the cell
occupancy play an important role in the algorithm performance. We will discuss

them first before we proceed to the detailed algorithm.

7.1.2 Object Approximation and Net-Conversion

When superimposed by the flat grid, objects in the polygonal net are converted
to their grid representation by clipping the objects on the grid according to their
erid cell occupancy. This is called Net-Conversion.

Unlike in PM Quadtree where each segment clips on squares successively, the

clipping in GCS is done by object approximation to reduce the net conversion time.

77

A minimum bounding rectangle with its sides parallel to the axis is again chosen
as the approximation form. It is not only simple to find the bounding rectangle
of the object, but also very convenient to calculate the cell occupancy. Bounding
rectangles can be found by traversing the object once, and cell occupancy can
be computed without having to calculate the segment intersections and test the

ranges of the intersecting points as we do with PM Quadtree.

Calculating Cell Occupancy of Object Approximation Figure 1 below illus-
trates how grid cells are calculated according to the object bounding rectangle’s

occupancy.

j+n

o+l 42 | i+m

Figure 1 Calculating Grid Ceil Index By the Object Bounding Rectangie

In GCS, each grid cell has a unique number decided by its row and column
number. Suppose the uniform grid is composed of Gx G cells, a cell dwells in i
row and j cclumn has its cell number calculated as:

Nj =F@ j)=j+Gxi, 014, j£G-1;
For any arbitrary object O;, suppose its bounding rectangle is R;, which can

be represented by a quad tuple (Xiin, Ymins Xmax » Ymax)» and 0< X, Y <1. its

78

occupying cell indices can be computed by the cross product of the occupying
row numbers and column numbers.

Suppose the occupying row numbers are i, i+1, i+2, , 1+m and column
numbers are j, j+1, j+2, , j+n, since the occupying row numbers or column
numbers are always consecutive, these two sequences can be calculated as:

i=[Xnin +~ (17 G)] = [Xmin x G],

i+m = [Xmax +~ (1 / G)] = [Xmax X G] ; and

J=Nmin + 17 G6)] = [Ymin x G] ,

jrn = [Yoax = (1 / G)] = [Ymax x GJ;

Therefore the cell index set I' can be computed as:

I'= {Np, ¢ isp<i+m,j<q<j+n} = {F(p,q)l isp<i+m,j<q<j+n} ;

where {(p, Qh<p<(i+m); j<q<(j+n) } = (i,i+],.....,i+m)x(j, j+1,......, j+n),

Although the object bounding rectangle reduces the amount of computation,
it inevitably introduces the inaccuracy. The precise calculation of the object cell
occupancy will result in less number of cell indices, i.e. less redundancy, and
therefore will result in less amount of further computation. But it is cost to clip
the object on the grid to obtain exact cell occupancy.

As we use griding only as a filter step for the actual intersection checking,
it should take least time to serve its role of generating possible candidates.
Reasonable amount of redundancy is tolerable as the cost of reducing tedious
intersection checking. By choosing an appropriate approximation object and
processing unit, the redundancy can be reduced, so is the amount of processing

to achieve a good performance.

Segment approximation and Chain-based Processing By choosing polygon
as the approximation unit, we have the advantage of smallest number of processing

units compared with using segment or chain as the approximation unit, but also

79

have the disadvantage of computation overhead and needs of calculating the
bounding rectangle.

The computation overhead is not so severe with R-tree based spatial join when
we chose polygon as the processing unit. This is because R-tree generates better
candidate sets, i.e., a more accurate candidate set, while with Ner-Conversion,
the coarse calculation of the cell occupancy results in a much larger candidate
set. For example in the Figure 2 below, polygon § occupies 15 cells while its

bounding rectangle occupies 30 cells, which is 100% redundancy.

Figure 2 polygon # occupies 15 cells, its bounding rectangle occupies 30

Considering the further checking based on this intermediate result, this poly-
gon has to be checked with all the polygons in the false cells, and common
boundary chains are processed twice causing more redundancy. The overhead
can not be ignored.

Computation overhead caused by the conversion inaccuracy exists as well
with chain or segment being the processing unit. With segment, we have the
benefit of obtaining the bounding rectangle directly from the coordinates of the

ending points, but the number of (cell index, segment index) pairs would be greatly

80

increased. This is based on the definition that a polygon is a closed sequence of
chains, and each chain is composed of sequence segments. Therefore in general,
number of segments is much larger than number of polygons. As the objective is

polygon intersection detection, there is inevitable computation overhead.

Generally, the number of chains is comparable with the number of polygons.
As the processing unit, it is better than polygon with respect to the repetitive
checking of polygon common boundary. Not only is the common boundary
checked only once, but repetitive checking of false cells brought by the inaccurate
occupancy of the boundary is eliminated as well. It is also better than using
segment as the processing unit, because the number of (cell index, chain index)
pair is much less, so is the total amount of computation, and more topology is
attached. Therefore, chain is chosen as the processing unit in our algorithm. The
cell occupancy of chain is calculated segment by segment, so to avoid calculating
bounding rectangles first. Chain index is preserved in the cell index array after
the computation by segment, and repetitive chain index is not stored. Thus we
achieve small number of (grid index, chain index) pairs to reduce the computation
overhead. Furthermore, each chain is processed once and only once. The polygon
information attached to the chain makes it efficient to collect polygon intersections

out of the chain’s.

7.1.3 CS8J: Cell Spatial Join

The spatial join starts with applying Net-Conversion algorithm on each polygon
chain of one of the two maps. During the conversion, the bounding rectangle
of each segment of the chain is superimposed on the grid, and indices of the
intersecting grid cells are computed. Pairs of (cell index, chain index) are recorded
in the index array in which chain indices are linked together as a list and referenced

by cell index which is the array script. No repetitive chain index is stored in the

Fx

81

list so to avoid redundant computation. The data structure can be pictured in

Figure 3 below.

Cell Number Chain Index List

Figure 3 Data suucture of Cell Index Array

After the net conversion on the first map, chains of the map are divided into
groups according to their occupancy on the 2—d space, and stored in the grid index
array. Applying the net-conversion on each polygon chain of the second map
generates its occupying grid cell indices stored in a cell list as well. Referenced
by the indices computed, those chain lists in the index array from the first map are
possible candidates for actual intersection checking. Chain by chain intersection
checking is therefore performed between this chain and each of the chains in the
lists, and once there is an intersection, the intersections of left and right polygons

of the two chains are recorded in a matrix recording the polygon intersections.

The algorithm is presented below:

82

[algorithm 7.1]
Input: m polygons and m’ segments in map 1, n polygons and n’ segments
in map2;
Output:Set of pairs (Pi, Qj), such that Pi belongs to mapl and Qj belongs
to map2; 0 <i<m 0<j<n
Begin
1. Apply Net-Conversion algo:ithm on the first polygonal net Map 1;
la. Initialize cell index array A;
1b. For each polygon chain Cy; of Map 1;
For each segment Sy; of Cy; ;
a) Get its enclosing rectangle SRjj;
b) Compute indices x of grid cells intersecting with SRy; ;
c) Add Cjy; to the lists pointed by A[x], if Cj; is not in the lists;
2. Initialize result matrix M, set M [i, j] to bit 0;
3. For each polygon chain C; in Map2 belonging to polygon P>y and P, ;
3a. Clear cell list CList;
3b. For each segment Sy of Cy;i,
a) Find its enclosing rectangle SRj; ;
b) Compute indices y of grid celis intersecting with SRy; ;
c). Record indices y in CList, if y is not in CList;
3c. For each chain Cyy in the list pointed by A[y];
If Cji and Cy; intersects, and Cyy belongs to polygon Py and Py,
Set M [Py, Py], M [Py, Par], M [Py, Pyi], M [Py, P] to bit 1;
4. For each M [i, j] which is set to bit 1, report intersection of polygon i and j.
End.

We will analysis the algorithm generally in the following sub section.

7.1.4 Analysis of the CSJ

Let E(Cy) be the expected number of chains of map 1 passing through one grid
cell, and E(C>) be the expected number of chains of map2 passing through one grid
cell. Given a grid having G x G number of composing cells, the computational
cost for this algorithm is O[GXE(C;)XE(C;y)]. E(C;) and E(C,) are the actual

expected chain grid volum.

83

The expected number of chains passing through one grid cell is directly
proporticnal to the expected number of segments passing through each cell, or
expected segment grid volume, according to the algorithm. Let E(Sy), E(S2)
be the expected segment grid volume in mapl and map2 respectively. E(S) is
composed of expected number of segments completely contained in the cell E|(S)
and expected number of segments crossing the cells E,(S).

So we have

E(S1) = Ei(S1) + Ea(S1) 5 E(S2) = Ei(S2) + Ea(S2);

These expected values are closely related to the underlying data distribution,
or in other words, the performance of the algorithm is input data dependent.
Without the statistical knowledge of the polygonal net, calculating the expected
value about segment is very difficult. With our randomly generated net, although
the points were controlled under certain distribution, the polygonal net resulted
from the line intersections present an unknown distribution.

However, whatever the data distribution is, the grid resolution affects the
performance significantly along with the number of segments and chains in the
net. Generally, more number of segments or chains results in larger E(S) with a
given grid resolution. With specific data set, as the grid resolution increases, i.e.,
1/G— 0, E(S) decreases, so is the amount of computations. This explains why
the cost can be cut down greatly after applying uniform griding schema. But G
can not be increased forever.

When grid resolution grows very large such that the grid size is too small
compared with the average segment length. Number of segments intersecting the
grid cells will be very large, i.e.. E2(S) — infinite, when 1/G—0; In this case,
Net-Conversion will cost more than the intersection checking in each cell, even
though E;(S) is very small, and amount of computation units increases unbearably

with the high resolutions, which results in too many (cell index, chain index) pairs.

84

Therefore, grid resolution shculd be bounded by the average segment length to
obtain a reasonable segiment grid volume.

Since for those segments belonging to same polygon chain, only one chain index is
recorded, chain volume is generally smaller than segment grid volume, this is what
we do to reducc the computation units of further checking. But the inaccuracy
of segment cell cccupancy introduces redundancy, hence makes the chain grid
volume larger than it actually is.

There is no neat mathematical solution. But it can be concluded from the
above analysis, that firstly, a grid size that is comparable with average segment
length should yield a good enough performance, i.e., the average segment length
should be about the size of the grid, or larger but not too much which will result in
heavily fragmented segments, high chain grid volume, and too many (cell index,
chain index) pairs. Furthermore, with the comparable sizes, the best performance
should be able to obtained under one certain grid resolution which generates a
low chain volume for certain data set.

Section 2 presents results from empirical tests that verifies the above analysis.

Section 7.2 Empirical Analysis

Experiments were conducted to find out how grid resolution, chain grid
volume, (cell index, chain index) pair are related to each other, and how they
relate to the algorithm performance. We used same six sets of polygonal data
from Chapter 5 and 6. Data with Gaussian distribution bf the ending points was
also tested for certain performance data.

In this section, we first list the statistics of the testing polygonal data in order
to be used in the later comparison. Then we present the study of optimal grid
resolution for each of the data set. Related facts under the optimal grid resolution

are listed to verify our analysis in the above section.

85

7.2.1 Statistics of Different GCSs and Testing Data

In the preliminary Chapter, we have stated that the polygonal net is generated
in a 1x1 unit. So the GCS is also within the unit. If grid resolution is set as
GxG, G=1, then the grid size can be computed as 1/G, which is less or equal to
1. Since segments come from the intersecting of straight lines within the unit,

we also have O>segment length<l.

Nzuﬁberﬂf R Numberof E ~Average

Polygons * -+~ Edges: | Segment length
DataSet 1 38 x 100 945 x 2169 0.145
DataSet 2 100 x 165 2169 x 3726 0.096
DataSet 3 165 x 269 3726 x 5724 0.078
DataSet 4 382 x 538 8388 x 11763 0.057
DataSet 5 538 x 761 11763 x 16722 0.048
DataSet 6 916 x 1144 19458 x 24615 0.036

Table [Statistics of each testing data sct

Each set of data is composed of two po’vgonal nets, and each net has its
own statistics, therefore functions differently on the same GCS. The overali
performance of CSJ is decided by the average statistics of the two nets. Table
1 above presents the statistics of the 6 data sets, and segment length is based on
the average result.

To be comparable with the average segment length, the resolution of the GCS
we have chosen varies from 21x21 up to 91x91. The statistics of these GCSs
is listed in Table 2. Notise that the grid size ranges from 0.011 to 0.0476. With
DataSet 1, having the maximum average segment length, it indicates a range of 3
to 10 times of segment length to the grid size, while with DataSet6, it indicates

a range of 1 to 3 times.

86

- Grid
Res-
~ olu
_~tion
- Grid
- Size

20 30 40 50 60 /0 80 90

0.0476 1 0.0323 1 0.0244 {1 0.0196 | C.0164 | 0.0141 | 0.0124 | 0.0110

Table 2 Statistics of different GCSs

7.2.2 Performance of CSJ Under Different Grid Resolution

Figure 4 below presents the performance curve of each data set on the 8 GCSs.
The result shows that each set of data has its best performance under certain
grid resolution which we call optimal resolution. For example, data set | has its
optimal resolution 40x40, while data set 6 achieves its best performance with
optimal resolution 70x70. For whichever data set, the performance declines on
both side of the optimal resolution, and the difference presented is not minor. For
example, with data set 6, nearly 520 seconds is needed to do the CSJ when the
resolution is 90x90, while only 273.681 seconds is needed if we perform CSJ
under the optimal resolution of data set 6. This verifies our conclusion, that time
needed to perform the join decreases as the grid resolution increases from I,
but further increase of resolution causes the drop of the performance. The best
performance is achieved under one certain resolution. In the next sub section,
we will study the related facts under optimal grid resolution in order to be able

to decide it beforehand.

87

)
L

(sec

Elapse Time

<)

(sec

Elapse Time

o)

{sec

Elapse Time

40

30

20

85
80
75
70
65
60
55
50
45
40

200
190
180
170
160
150
140
130
120
116

4 T T K - 60 T T T Y

"data_setl” —— 1 : "data_set2" ——

e

25 -whﬁwW€¢”w“Mmémmmnmémm_”. ém”w"m_

20 40 60 80 100 0 20 40 60 80 100

T T T T 150 T T T T

"data_set3" ——._ data_setﬂﬁf-

140

L

120

T

.4 110

T

<100

80 ._-

20 40 60 80 100 0

V5. . . "data_isetS5": -—e— _
N ;

T T T T 550

d 450 b

350

© 300 b N

i i

L 4 i i 1

20 40 60 80 100 0 20 40 60 _ 80 100
Grid Resolution Grid Resolution

Figure 4 Performance of CSJ under different grid resolution

88

7.2.3 Chain Grid Volume and Number of (cell index, chain index) Pairs
Under Optimai Resolution

To find out what is related to the oprimal resolution, for each data set, we also
tested their average chain grid volume and number of (cell index, chain index)
pairs along with the total grid number under each grid resolution. The results are

listed in the Table 3 to Table 8 below. Each figure tables the data of one data set.

, Ry -} Nanzbqr of Average
| Grid - Number of |- . Pair oy
| Resolution—1 Grid Cell | (cell index, chain grid
, ‘ * chain index) volum
720 F47 8085 T%3
130 961 1215 1.26
1 40%* 1681%* 1723% 1.03*
150 2601 2271 0.87
- 160 3721 2850 0.77
|70 5041 3546 0.70
180 6561 4245 0.64
{90 8281 5021 0.61
Table 3 Suatistics under various grid resolurion for data set |
| Nwmber of Average
CooGrnid o F| ‘Number of | Pair (cell .
| Resotution—1 | Grid Cell index, chain | hein srid
B . ‘ - index) volusm
70 1341 TT31 756
30 961 1629 1.70
40 1681 2189 1.30
1 50%* 2601* 2810%* 1.08*
160 3721 3400 0.91
170 5041 4168 0.83
{80 6561 4854 0.74
190 8281 5682 0.69

Table 4 Statistics under various grid resolution for data set 2

89

Number of

Grid Number of Pair (cell A'v erage
resolution—1 Grid Cell | index, chain cham 3”d
L volum
index) ,
20 441 1570 3.56
30 961 2218 2.31
, 40 1681 2888 1.72
S 50%* 2601%* 3650%* 1.40%*
DataSet 3 160 3721 4446 1.20
70 5041 5325 1.06
80 6561 6200 0.95
90 8281 7271 0.87

Table 5 Statistics under various grid resolution for daia set 3

Grid

: 1 Number of
Resolution—1

 Grid Cell.

DataSet 4

— %

130
140
150%

60

170

80

190

441

961
1681
2601*
3721
5041
6561
8281

2494
3306
4122
5055%*
6023
7031

8034
9174

5.66
3.44
245
1.94*
1.62
1.39
1.22
1.11

Table 6 Siatistics under various grid resolurion for data set 4

90

Number of

Grid Number of “pair (cell Average
Resolution—1 Grid Celi index, chain c'ha”f grid
iéz dex) volfum
120 441 3227 7.32
130 961 4184 435
140 1681 5157 3.07
50 2601 6287 242
— 1 60* 3721% 7394% 1.99%
V 70 5041 8614 1.71
80 63561 9776 1.49
190 8281 11060 1.34
Table 7 Statistics under various grid resolution for dala set 5
Number of e
, Grid Number of - ot verage
| Resotution—1 | Grid Celt | | chaingrid
KRR LD R T G Ceee - volum
20 441 10.11
30 961 5.84
40 1681 4.03
50 2601 301
|90 3721 249
R 5041* 10132* 2.01*
|80 6561 12115 185
199 8281 13532 1.63

Table 8 Statistics under various grid resolution for data sct 6

91

of the total grid cell number under the opfimal grid resolution.

Those lines marked with * are data under optimal resolution. The data shows
that the optimal resolution grows from 41x41 up to 71x71 along with the growth
of the data set, and the average chain grid volume remains at the rate of 1 or 2,

i.e. the number of (cell index, chain index) pairs is approximately 1 to 2 times

Table 9 below also presented the comparison between the average segment

length and the grid size when the best performance is achieved.

DataSet 1 | DataSet 2 | DataSet 3 | DataSet 4 DataSet 5 DataSet 6
grid size | 0.024 0.02 0.02 0.02 0.017 0.014
Average
segment” | 0.145 0.096 0078 | 00565 | 0.0475 | 0.036
length
Ratio 6.05 4.8 3.9 2.85 2.79 2.57

Table 9 Comparison of grid size and average segment length under optimal grid resolution

The data in the Table 9 shows that as the data set grows larger, grid size needs
to be decreased to achieve the best performance, i.e., grid resolution needs to be
increased to adapt to the high data density, and the ratio of the average segment
length to the grid size ranges from 2.57 to 6.05, which reflects the comparable
sizes of the two, i.e., the segment length should not be overly large compared

with the grid size when the best performance is to be achieved.

Chapter 8

Comparison of Spatial Joins and
Their Underlying Spatial Indexing
Methods (SIMs)

In this chapter, we will use Boundary-Join as the base line performance
to demonstrate the point of introducing SIM for the design and implementation
of spatial join. Next, we compare these index-dependent algorithms among
themselves, in the mean time, present comparative studies of the underlying SIMs.

We will show how GCS functions with respect to spatial join operation.

Section 8.1 Optimize Spatial Join by PM Quadtree,
R-tree and Grid Coordinate System (GCS)

Spatial join deals with complex objects, in our case, 2—d simple polygons.
Object representation and object accessing space affect the way of the spatial join
processing. In Chapter 5,6, and 7, we have introduced additional spatial data struc-
tures to assist the processing, especially in the aspect of object accessing space.
It is aimed at making use of the object spatial occupancy in the object space, and
saving the high cost of actual join by processing the object approximation to gen-
erate candidate set for further processing, or applying recursive data partitioning

such that objects are accessed in a more efficient way for the spatial join.

In this secticn, we will demonstrate the efficiency of our three spatial join

w

processing strategies represented by algorithms PM-Join, R-Join, and Grid-Join
as explained from the previous Chapters by comparing each of them with the
non-optimized method: Boundary-Join. The comparison will be based on both

analysis and empirical results,

93

8.1.1 Optimize Object Accessing Space by PM Quadtree

For PM Quadtree, space is regularly and recursively decompos=d into quadrants
until a very fine separation of segments is obtained. It yields an exact representa-
tion of collection of segments, not an approximation. Each segment has its specific
position in the reorganized tree space and any segment intersecting or neighboring
will be led to this segment by the tree within limited number of steps and with

certain amount of calctlations. The exhaustive search is therefore avoided.

PM Quadtree is an example of reorganizing the segments by regularly dividing
the object space and repositioning segments according to its relationship to the

square units of the decomposed space.

Empirical results was obtained on the performance of both Boundary-Join
and PM-Join over 2 groups of data. Each group has six sets of polygonal data
and similar data sizes for each data set, but with different distributions. The
first group of data was generated by having a uniform distribution of the ending
points composing the polygonal lines; while the second group having a Caussion

distribution. Results are shown in Figure 1 and Figure 2 respectively.

In both figures, PM-Join keeps its performance fairly low under 1000secs,
while Boundary-Join grows up vastly along with the growth of data size.
However, performance of PM-Join on normally generated data appeared a little
worse than that on uniformly generated data with respect to similar but large
data set, while with Boundary-Join they vary little. For example, with data set
6, 1644.43 secs is needed on data size 916x 1044 in group 1, and 1980.54 secs
needed on size 907x 1123 in group 2. This is because PM Quadtree is sensitive
to input data, and different data distribution produces different decomposition
schema, hence different quadtrees. Data resulted from Gaussian distribution has
a more uneven distribution of polygons (refer to Figure 2,3 in Chapter 2), which

results in more unbalanced quadtree. Boundary-Join is sensitive only to data

94

size, not to data distribution.

7000 T T T T T

“PM-Join’ ——
6000 F- - . - "Boundary-Join" v o

ec.

(8

J
)

TIME

2000 +- - o - ,J R , P

ELAPSE

1000 + - ///.;..,,v-f'. B ;/.,é/“ s *

[ew]
[
[\

3 4 5
DATA SET

(e
~J

Figure 1 PM-Jein improves over Boundary-Join on uniformly gencrated data sets

7000 T T T g T T

. : " PM_ JOiI’}"" [-
6009 F - o - “Boundary-Join® e 4

[6))] , : : :

3000 - S l 1

2000

ELAPSE TIME

1000 F ¢

0 1 2 3 4 5 6 7
DATA SET

Figute 2 PM-Join improves over Boundary-Join on normally generated data sets

95

However, as the result of exact representation, the computation involved in
PM-Join is quite expensive. Square clipping and node splitting are repeatedly
performed on every insertion and traversal of a segment. As an example, Table
1 below presents the time needed to construct PM3 Quadtree for one polygonal

net, the total time needed to perform PM-Join , and the percentage of the former

over the latter with respect to the first group of testing data.

’ Elapse‘ : S 1
" Time | DataSet 1 | DataSet 2 DataSet 3 I

" {(Secs)y |} ' i

building

PM3 13.7806 |28.1150 |64.4320 |177.1361 | 413.85 778.60

Quadtree

PM3IJ |35.0408 655513 |159.762 |489.732 | 104533 175243

o 37.16 42.89 40.33 36.17 39.59 44.43

Table | Constructing a PM3 Quadtree takes around 40% of the 1otal spatial join time

About 40% of the time is spent on reorganizing the net into a tree. As
intersection checking is intermingled with the construction, this is acceptable
especially after considering the improvement it produces over the Boundary-

Join. Introducing PM Quadtree has improved the performance of spatial join.

8.1.2 Optimize Object Accessing Space by R-tree

R-tree generates irregular grouping out of object approximations. Unlike PM
Quadtree, the space at each level is not regularly decomposed and sub-spaces
are overlapped. Polygon approximation MBR (Minimum Bounding Rectangle)
instead of polygon itself is processed at the first stage. MBRs can be obtained

by traversing each polygon once.

96

MBR serves as a surrogate with not precise but enough occupancy informa-
tion of its belonging polygon. These surrogates are organized hierarchically and
rectangle brings the simpiicity of R-tree computation. Intersecting and neighbor-
ing polygon MBRs can be found efficiently by going through each level of the

R-tree "o check the rectangle intersections.

Figure 3 and Figure 4 below reflect the dramatic effect by introducing R-tree

at the first stage on two group of data under different distribution.

7000 ¥ T T T T T
. - "R-Join¥ -
6000 - - : - "Boundary-Joimn" 4
u : .
~ ; : A
. 4000 - S . . L . N
z : /’
H : s :
E 3000 F-o | .
£ © ;
o 2000 F : e .
= T ﬁ
1 0 0 0 - o e /‘.”,%_1,—.*”_‘ Lo Cre e e ;///;;, -
0 i e i |
0 1 2 3 4 5 6 7
DATA SET

Figure 3 R-Join improves over Boundary-Join on uniforsly generated data scts

97

~J
O
(]
O

H T H T T T

nR__JOin'n P

"Boundary-Join® v 4

(@)

c"\

S

[}
Y

)

{(sec.
w
[
-
[o»)
T

ME

-
£ 3000 f
[¥a}
Ui

ELAP
N
o
<
<

|

DATA SET

Figure 4 R-Join improves over Boundary-Join on normally generated data sets

As with PM Quadtree, curves representing the Boundary-Join keep growing
up along with data size in both figures, while curves representing R-Join, remains
very low as the data size grows. The contrast is sharper with larger data set.
The performance of R-Join doesn’t show much difference with different data
distributions. This is due to its dynamic nature of the decomposition. By
accommodating objects dynamically, data distribution does not have much impact
on the performance; while the size of the single objects, and the order objects are
inserted into the tree, affect the overlapping extent of sibling rectangles of R-tree,
therefore affect the performance mainiy.

Most significantly, R-tree brings over 90% improvement over the Boundary-
Join. Table 2 below presents the time needed to generate the candidate sets at the
first R-tree stage, the total time needed to perform boundary join on the candidate

sets, and the ratio of the two based on the test on first data group.

938

Elapse
Time DataSet 1 { DataSet 2 | DataSer 3 | DataSer 4 | DaraSet 3 | DaraSer 6

(sec)

first 9.5022 14.6804 | 30.1852 | 82.002]1 | 104.323 | 336.479

stage

Total 365430 | 625122 | 113984 | 245552 | 345.738 | 960.004
%o 26.01 23.48 26.48 33.40 30.17 35.05

Table 2 Processing in the first stage takes around 30% of the total processing time
2 g p £

For example, for the third data set with the size of 165 x 269, the total
time needed with R-Join is 113.984 secs, out of which 30.1852 secs is spent
on generating an approximate intermediate results, and 83.799 secs are used to
perform the final checking. The same data set applied to Boundary-Join, a total
of 1667.04 secs is needed which are almost 10 times that of R-Join. This is a
dramatic improvement, especially in the sense of the extra 30.1852 secs it spends,
i.e. the additional spatial data operation taking only 27% of the performance time,
generated 90% decrease of the total spatial join time on the data structure without

any spatial indexing technique.

£.1.3 Optimize Object Accessing Space by GCS

Both PM Quadtree and R-tree make hierarchical representation of the space.
Object locational information was elaborately used. Grid Coordinate Systen,
however, organizes the space directly by dividing the space into flat, non-
overlapping uniform cells, and object is represented by marking all the cells it
occupies. All the objects are therefore allocated into one or more cells according to

their cell occupancy, and intersection checking is based on this 2—d space division.

To obtain exact object cell occupancy would cost too much considering what

is to be achieved at this stage. Instead, approximate cell occupancy is calculated.

99

Though computation can take advantage of the object simple approximation,
precision is limited by object approximation.
From the discussion in Chapter 7, polygon chain is chosen as the processing

unit and segment bounding rectangle is the basic superimposing unit.

Figure 5 and Figure 6 below picture the performance curves of Grid-Join
under uniformly and normally generated data respectively, compared with that
of Boundary-Join. Grid resolution was 61x61. Overall, there is about 95%
decrease generated by adding the GCS on the space, which shows its striking
impact on the join performance. Again, performance of Grid-Join under different
data distribution varies only a little with respect to similar data size. This
is because the space division of GCS is independent of data. Different data
distributions causes different allocations of segments in the cell index array, but

the amount of computation of cell occupancy as well as the final checking is not

affected.
7 O OO T T T T T T
"Grid-Join'
5000 . - “"Boundary-Joia* -
& 5009 : :
oy i
— T;
823 4 G{.\“u 2 - "
=
g
kN 3000 F s
v
= 2000 F 4 .
E:-I
1000 ¢+ = - ; :
//
- M’_//
I % e s £ .
o H 2 3 4 5 & 7
DATE SET

Figare 5 Grid-Join improves over Boundary-Join on sniformly generated data sets

100

7000

T T . . I‘
"Grid-Join®
6000 t+ *Bounda r_\./"—JO.Ln "
® 5000 F
w :
v} 4000 F J
=
e 3000 |-
£3]
w2 v‘
< 2000 | .
-
[se] B
1000 —
0 D |
DATA SET

Figure 6 Grid-Join improves over Boundary-Join on normally generated data sets

Table 3 above presents the similar comparison we had with R-tree in the

above sub-section, about how overall performance is improved by the conversion

effort in the first stage which takes only small percentage of the total time. Notice

that 80% of the time was spent on the final checking, while converting the one

map into its grid representation took only about 20% of the total time.

Elapsé ,
Time DataSet I | DataSet 2 | DataSet 3 | DataSet 4 | DataSet 5 | DatSet 6
(sec)
Total | 33.0405 | 47.0607 | 865414 | 195253 | 239.614 | 776.85
C‘;f;;r 6.5802 | 86402 | 12.9502 | 21.2406 | 283609 | 124.01]
% 19.92 18.36 14.96 10.88 11.84 15.96

Table 3 Conversion takes only 20% of the total join time

101

Section 8.2 Comparing PM Quadiree, R-tree,
and GCS in Spatial Join

Careful study of the three SIMs shows surprisingly that GCS outperforms both
PM Quadtree and R-tree in spatial join. Figure 7 and Figure 8 below picture
the three performance curves under the two data distributions, noticeably with
that of Grid-Join having the lowest cost, and R-Join in between of the PM-Join
and Grid-Join in both of the figures. PM-Join showed worse performance under
normally generated data compared with Grid-Join and R-Join.

All of them were implemented by using ObjectStore as the storage manager,
and tested over the same testing data. The timing was measured under same
machine load and over contiguous time period. The algorithm itself makes the
difference mainly.

In the following sub sections, we will make a general analysis of the three

algorithms from the aspect of implementation technique.

200 T T T T T T
. "Grid-Join" —
. " PM- Join® -
@ "R-Join# -
w0
o
—
= .
fr} ’ //,(. /'/
w 4
% 50 + . . /, I // . .
3] /’/
0 [SRS 1 1 n
0 1 2 3 4 5 6 7
DATA SET

Figure 7 Compare performance of PM-Join, R-Join, and Grid-Join on uniformly generated data

102

200 : , v ; |
"Grid-Joig" -- -

W " PM-J04n "
o "R~Join*
o 150 | -Join” |
[#3]
(e
—
S 100 b - | , S | ‘
H 2 .
> -
[£3]
A ; o
L[] N 7

O i

0 1 2 3 4 5 5 .

DATA SET

Figure 8 Compare performance of PM-Join, R-Join, and Grid-Join on normally gencrated data

8.2.1 PM Quadtree vs. R-tree and GCS

The most significant computational cost for PM-Join is segment clipping and leaf
node splitting. For R-Join, it is mainly MBR calculating and rectangle intersecting
checking. Since segment is the approximation unit in Grid-Join, which makes
the approximation inherent in itself, the only costly computation is the grid cell
index computation. The basic operation for all of the three is segment intersection
checking.

Segment clipping is repeatedly applied for each segment and each inner node
along the path due to the way the PM3 Quad-tree organizes the space. Clipping
of the square requires not only range checking, but most frequently the clipping
of the 4 square sides to decide whether the segment is crossing the square, or
clipping on the boundary, or outside of the square. Leaf node splitting is relatively
cheaper, because it involves only creating new PM3 node and dictionary copying,
but it creates more inner node therefore more segment clipping. The improvement

shows in algorithm PMNSJ(Parallel Traversal Without Splitting Join) over PMS]J

103

(Parallel Traversal With Splitting Join) when we reduce the number of node
splitting. However, all of the algorithms shows that segment clipping takes around
60% of the total time.

For example, with PM-Join , when total time needed to perform the join was
231.68 secs, 147.79 secs was spent simply on the segment clipping. The pre-
ciseness of the segment representation results in the smaller amount of dictionary
checking, i.e., segment intersection checking, compared with that of R-Join and
Grid-Join, in which there are much more segment intersection checking based
on approximate results.

Unfortunately, the high cost of clipping can not be compensated by the precise
dictionary checking. Even after we add data structure in PM-Join to reduce the
redundancy occurred in the dictionary checking, performance was not greatly
improved, for the main cost was not reduced. Therefore we conclude that spatial
join can not bring out the best of PM Quadtree, for example, it’s dynamic measure,

and fine description of the object location.

8.2.2 R-tree vs. GCS

Unlike PM-Join, R-Join and Grid-Join make use of approximate information:
R-Join operates on the polygon approximation (MBR), while Grid-Join operates
on the segment approximation. Traversal of the segments is necessary for both
of them to obtain the approximation, so it does not bring the major performance
difference.

Both methods characterize in two clearly separated step of processing, i.e.,
generating a candidate set in the first stage, and performing actual checking in the
second stage. Since segment intersection checking is the basic operation performed
by both in the second stage, only the size of the candidate sets and the way of

generating the candidate sets cause the main difference between the two.

104

Table 4 and Table 5 below lists the measurement on each step of the

algorithms R-Join and Grid-Join.

. Elapse

. Time for

~Approx.

 Result
Grid
-Join

R-Join 9.5002 14.6804 | 30.1852 | 82.0021 | 104.323 | 336.479

DataSet 1 | DataSet 2 | DataSet 3 | DaraSet 4 } DataSet 5 | DaraSer 6

6.8502 8.6402 12.9502 | 21.2406 | 28.3609 | 124.011

Table 4 Time spent to generate approximate results for R-Join and Grid-Join respectively

nal | DataSet I | DataSet 2 | DataSet 3 | DataSet 4 | DataSer 5 | DataSet 6

g |
Grid-
Join

R-Join | 27.0428 | 47.8318 | 83.7988 | 163.549 | 241.415 | 623.523

26.4603 | 38.4205 | 73.5912 | 174.012 | 211.253 | 652.839

Table 5 Time spent to perform the final checking on the

approximate results for R-Join and Grid-Join respectively

In Grid-Join, Grid cell index computation is the Cartician Product of the index
tuples from the division of segment coordinates by the grid size. The candidate set
is therefore generated after computing each polygon chains’ cell occupancy. As
for R-Join, more complex computation has to be performed to get the candidate
set. Besides building trees for each of the map, two trees intersects with each
other at every level starting from the root to the leaf level to generate groupings

of possible intersecting polygons. Rectangle intersecting checking is the main

105

computation during this first step. As the data size grows larger, more splitting
happens during the construction of the tree, and the tree becomes deeper. All of
the above causes more cost for R-Join in the first stage than that of Grid-Join,
which is shown in the Table 4. For example, with data set4, only 21.2406 secs
is needed for Grid-Join to generate candidate set, for R-Join however, a total
of 82.0021 secs was spent. The contrast becomes more distinctive with larger
data sets.

The time spent on performing the final checking are very close shown in
Table 5 above. R-Join should yield a more precise approximate result than
Grid-Join. But they each choose different processing unit. It is polygon in R-
Join, and chain in Grid-Join. Polygon by polygon checking is more costly than
chain by chain checking because it is based on chain by chain checking. There
is more redundant checking considering that a polygon usually consists of 2 or
more chains, so each checking is equivalent to 2 or 3 number of chain checking.
Even if the intermediate result set is smaller, and more precise, this redundancy
would bring down the total performance close to that of the chain based checking,
as shown in Table 5. Therefore, GCS is more suitable for spatial join than both
R-tree and PM Quadtree.

Overall, both Grid-Join and R-Join present good performance, although
Grid-Join outperforms both PM-Join and R-Join with its simplicity and effi-
ciency. Grid-Join also has the potential of extending to parallel implementation
due to its unit independent feature. R-Join also produces fairly good results.
They are both feasible to be adapted in spatial databases or GIS to enhance the

system’s functionality.

106

Chapter 9
Concluding Remarks and Summary

Section 9.1 Conclusions

This thesis tackles the problem of polygon spatial join on the vector data
model by extensively utilizing spatial indexing methods (SIM) for the simple
spatial objects. The problem can be defined as finding all the pairs of polygon
objects that overlap each other over their boundaries from the two given polygonal
data sets. The polygon spatial join is one of the most important and complex
operations in systems that deal with 2—dimensional objects. Applications of spatial
Jjoin can be found largely in GIS, where geographical data is organized by “layers”
and the joining of the layers creates synthesized information related to the same
geographical area. Furthermore, it can be extended to obtain intersecting points
and additional spatial properties to realize the overlay operation, which is also
very important in GIS.

We solve the problem by extensively utilizing present popular SIMs such that
complex objects and object relations can be handled efficiently. This is based
on the observation that the spatial join relies on the object spatial occupancy,
and these SIMs decompose the space from which the spatial data is drawn in
such a way that the spatial properties of spatial objects can be developed and
stored. Two of the representative SIMs, namely PM Quadtree and R-tree, were
used. The PM Quadtree represents a disjoint hierarchical partition of space,
and the R-tree represents an overlapping hierarchical partition. We observed
that these SIMs are access methods for simple spatial objects like line segments
and rectangles. Few studies have been seen on handling complex objects using

these methods, especially studies on performances of these indexing methods in

107

complex operations like the spatial join. We present a study of this problem in the
context of polygon spatial join which requires the handling of simple polygons

and compositions of search results.

We also propose the use of the Grid Coordinate System (GCS) — a spatial
indexing method for simple spatial objects as a version of Grid File based on
the object spatial occupancy instead of on the transformed multidimensional point
space. Unlike the R-tree and PM Quadtree’s hierarchical partitioning of the space,
GCS presents a non-disjoint, non-hierarchical uniform grid space. We show how
cell indices can be computed and objects are grouped into relating cells according

to their approximations’ cell occupancy in the GCS.

We design and implement polygon spatial join algorithms based on PM
Quadtree, R-tree and GCS respectively. We also design and implement the spatial
join algorithms with no spatial indexing involved for comparisons. The spatial
join results of polygons’ can be derived by the topology implied in the vector
data model with segment-based PM Quadtree. Spatial join based on the R-
tree and GCS, however, are realized by incorporating a “buffering” technique
into the processing. The “buffering” technique generates approximate result by
processing the “boxes” which are surrogates of the complex objects. With previous
experiments, lack of topology of these object surrogates leads to an exhaustive
process to obtain this conservative result. When organized by the R-tree and GCS,
the relative positions of these surrogates can be derived out of their spatial extent,
and therefore facilitates the retrieval of objects of interest during the spatial join

processing. In other words, SIM optimizes the “buffering” technique.

The “buffering” technique enables a two-step processing of complex objects
for R-tree and GCS. We justify that this will lead to a reasonable performance
of spatial join by using SIMs of simple objects. It is based on the observation

that the performance of polygon spatial join is seriously bounded by the redun-

108

dant segment intersection checking operation under vector representation. Qbject
approximations combined with their efficient organization would yield a conserva-
tive yet fairly concise result to eliminate those potentially unqualified object pairs.
The redundant segment intersection checkings are therefore greatly reduced.

As the spatial join is a complex query, the operation is not only search-based,
but also involves extensive computation of the search results. To compare the
performance of these SIMs is a sophisticated experiment in the sense that SIMs
are used differently in each of the algorithms designed because of their different
ways of partitioning and representing the space, and various distributions of the
underlying data. Since each SIM has multiple factors affecting its performance,
and the experiment is carried out in a multiple client/server network environment,
it is not complete to measure the performance of each SIM only in terms of disk
accesses as it is with search-based operations such as range query and point query.

We believe that the measurement of total execution time is more accurate in
this particular context, and we show an extensive comparison of the three SIMs
after initially experimenting on each of the SIMs to select a best representative
for the comparison of SIMs. Wz generate random polygonal nets with different
data distributions as the test data for all of the experiments.

In the following section, we summarize what we have achieved from the

aspects we described above.

Section 9.2 Thesis Summary

9.2.1 Utilizing PM Quadtree Extensively to Realize Spatial Join

The PM Quadtree regularly and recursively decomposes the space into quadrants
until a fine representation of segments is obtained. The algorithms for spatial join
based on PM Quadtree are Parallel Traversal With Splitting (PMSJ), Parallel
Traversal Without Splitting (PMNSJ), and PM Quadtree Index Join (PML]).

109

PMSJ and PMNSJ are characterized by their simultaneously searching on
two PM quadtrees, and checking with the corresponding nodes. A grey node
implies further traversing of the tree, while a leaf node leads to the objects of
interest. The leaf node is further split with PMS] if the corresponding node is
not leaf. PMNS]J proceeds by checking through all the dictionaries in the sub-
trees with grey nodes as the root. PMI1J uses quadtree as an index to search for
the most likely intersecting segments. A result matrix is used in all of the three
algorithms to keep track of the polygon intersection information. Testing on the
random polygonal net shows PMI1J has better performance.

There are three PM Quadtree variants:PM1, PM2, and PM3. The PM2 and
PM3 Quadtrecs are obtained by successively weakening the definition of what
constitutes a valid leaf node. The PM3 Quadtree has the weakest requirement for
ending blocks which results in a search with the least depth and least number of
leaves. It decomposes space to a fine extent, but the segments are not as seriously
fragmented as they are in the PM1 and PM2 Quad-trees. Algorithms based on
the PM3 Quadtree therefore should yield better performance than that of PMI
and PM2 Quad-trees.

A practical solution, PM3L]J is based on PMIJ of its PM3 quadtree variant.
To reduce the redundant dictionary checking, an extra data structure is used as a
“filter” to keep track of the possible intersecting segments during the traversal of
the quadtree for each chain segment without repetition. This results in a two step
processing with deferred dictionary checking. PMB3ILJ showed its improvement
over the rest of the algorithms based on PM3 Quadtree, therefore, we use PM3L)
as the representative of PM Quadtree based spatial join, and we name it PM-Join

for the later comparison.

9.2.2 Utilizing R-tree Extensively to Realize Spatial Join

The R-tree decomposes the snace dynamically dependant on the input data. Since

110

it processes only rectangles, the complex objects are reduced to their minimum
bounding rectangles (MBR), and therefore can be represented by R-tree. Any
operations on the tree would generate only a conservative result. Since MBR
preserves object spatial extent, the tree structure constructed from object MBRs

provides additional topology in terms of object intersections.

The spatial join algorithms based on R-tree feature two step processing with
the first step generating possible intersecting polygon pairs through the use of
R-trees, and the second step performing the chain-by-chain intersection checking.
Polygons are chosen as the basic processing unit. The different processing of
R-trees in the first step leads to two spatial join algorithms: R-tree Index Spatial
Join (R1)) with iadex join as the first step, and R-tree Parallel Comparison Spatial

Join (RPJ) with parallel join as the first step.

Index join uses a R-tree as an index to search for the interesting MBRs, while
parallel join produces candidate pairs by comparing two R-trees in parallel. Each
node in one tree is compared with all the nodes at the corresponding level in the
other tree because sibling nodes at each level could overlap. The outcomes of the
comparison at each level are kept in two local stacks and passed on to the next

level for corresponding checking until both leaf levels are reached.

Analysis of both algorithms were emphasized on their first step, i.e., index
join and parallel join respectively. If n; and n; are the number of MBRs in
each data set, and the tree is of order(M,m), then the index join has the best case
complexity Ofn; xlognn;], and the worst case complexity O[n; x{nz+n;")], where
n;’ and n,’ stand for the maximum number of non-leaf nodes in the corresponding
R-trees. Parallel join has the best case complexity O[Max(logmn xlogmny}, and
the worst case complexity Of(n;+n;’)(ny+n;’)]. In the average case, parallel join

generates candidate set faster than index join does.

Node size M is an optimization parameter of the algorithms. Generally, a

11

large node size results in better performance time than a small node size. 1t should
be chosen experimentally with regard to different data size. Experiments on the
randomly generated data with around 1000 polygons in each data set show better
performance when node size is chosen larger than 10. As with PM Quadtree, we
use the algorithm R-tree Parallel Comparison Spatial Join for the later comparison,

and we name it R-Join to distinguish it from PM Quadtree based PM-Join.

9.2.3 Grid Coordinate System (GCS) and its Spatial Join

Grid Coordinate System exhibits a uniformly partitioned space composed of
disjoint cell units. Each cell unit has a unique number decided by its column
and row number. By superimposing the GCS on the object approximation space,
objects are divided into groups according to their approximations’ occupancy of
cell units. Object cell occupancy can be calculated by the Cartisian Product of
the object’s occupying row numbers and column numbers. The calculation of
cell occupancy together with the object approximation causes redundancy and
inaccuracy. But the conversion of objects to grid representation is simplified and
fast, and reduces computation of an operation by performing the operation on the
objects belonging to the same group.

Spatial join based on GCS is realized by the algorithm Cell Spatial Join (CSJ).
CSJ also features two-step processing. It applies the Net-Conversion algorithm
first to transfer the object approximation into a grid representation, and then checks
for the actual intersections according to the grid representation. The segment is
chosen as the basic approximate object to be clipped on the GCS, and the chain
is the processing unit to reduce the amount of calculation in each grid cell. The
grid representation is implemented as a cell index array. The cell index array
is referenced by cell indices, and each array element points to a linked chain
list. Intersection checking is performed cell by cell, and result is recorded in the

result matrix.

General analysis of CSJ also indicates that the underlying data distribution
and the data size affect the algorithm’s perforinance . Grid reselution ¢an be
adjusted to suit data sets with different sizes and distributions in order to obtain

low chain volume and a reasonable number of (cell index, chain index) pairs.

Grid size is decided by grid resolution. To obtain a low chain volume, the
segments should not be overly fragmented by the chosen GCS, i.e., average
segment length should not be too large compared with grid size. It should be
about the size of the grid, or larger but not too much. Grid resolution is bounded
by the average segment length. Besides, a very large grid size means too many
number of computation units.

The experiments on the random net verify that best performance can be
achieved under a certain grid resolution we call optimal resolution. Performance
drops on both sides of the optimal resolution. Carefully designed experiments
also reveal that under optimal resolution, the number of (cell index, chain index)
pairs is approximately | or 2 times of the total grid number, and the average

segment length is greater than 2 but less than 10 times of the grid size.

We use CSJ as the representative of teh GCS based spatial join in ihe later
comparison, and we name it Grid-Join to distinguish it from both PM Quadtree

based PM-Join and R-tree based R-Join.

9.2.4 Comparison of Algorithms and Their Underlying Spatial Indexing
Methods

The PM-Join, R-Join and Grid-Join all improve over the Boundary-Join dra-
matically. The Boundary-Join is a spatial join algorithm without utilizing any
spatial indexing method. This shows that introducing SIM can indeed improve
spatial join under vector data model. Empirical results also show that both the

R-Join and the Grid-Join outperform PM-Join with fairly good performance on

113

all of the random testing polygonal nets. The Grid-Join shows slightly better

performance than the R-Join in this context.

The GCS appears ideal for uniformly distributed data, while the PM Quadtree
is suited for the arbitrarily distributed data. In general, since spatial data is not
usually uniformly distributed as the randomly generated data set we had, the
PM Quadtree’s regular decomposition approach is more flexible, therefore, PM
Quadtree based retrieval and simple operations should yield better average perfor-
mance. However, when the operation requires the composition of search opera-
tions and results, like spatial join, the way that the objects are represented in each
SIM decides the way that data are further processed, and therefore greatly affects
the overall performance. It is observed that the PM-Join involves expensive op-
erations like segment clipping and node splitting which are applied frequently,
while the computations involved in Grid-Join and R-Join like calculating cell
occupancy and rectangle intersection checking, are relatively simpler and less fre-
quent. The fine description of objects by PM3 Quadtree can not be fully utilized

by the algorithms of spatial join based on PM Quadtree.

The GCS overcomes the PM Quadtree’s computational overhead by using an
approach similar to R-tree’s. But the R-tree decomposes the space dynamically
so that different data environments can be accommodated, whereas with the
GCS, the decomposition induced are static. Therefore, R-tree can generate a
more accurate candidate set. However, R-Join does not outperform Grid-Join
dramatically since it takes less time for GCS to generate a candidate set, although it
is less accurate, by taking advantage of its simple computation of cell occupancy.
Furthermore, final intersection checking still occupies most of the total spatial
join time. Overall, both the GCS and the R-tree are feasible for the spatial join

operation.

114

Section 9.3 Future Work

All of the algorithms designed can be extended to realize the Totul Spatial
Join as defined in the introductory chapter by adding a point-in-polygon algorithm
to determine the containment or enclosure relation of polygons. But it should be
applied on different result sets with different spatial join algorithms. For example,
for R-tree based algorithms, containment and enclosure test should be applied only
on the non-intersecting pairs of the candidate set, since the candidate set includes
possible containing or enclosure pairs. While for both PM quadtree based and
GCS based algorithms, the test has to be applied also on the pairs that are not in
the candidate set. So R-tree is more suitable when both partial spatial join and
total spatial join are intended.

To realize sparial overlay by extending the spatial join algorithm is not
straightforward. Generally the spatial join algorithms can be modified 1o record
all the intersecting points, and the resulting polygonal net can be traced out
by processing the two polygonal nets together with the resulting sct. More
sophisticated methods can be studied by using the PM Quadtree and R-free
directly, and generating a resulting PM Quadtree or R-tree which represents the
overlaid map.

‘When modifying the algorithms to accommodate /ine objects, we could have
an extensive performance comparison of these spatial indexing methods in the
context of performing set operation on the large number of line segments. As
line data is much simpler, performance relies more on the indexing structure
themselves, hence the conclusion could be different from that of polygon’s.

Experiments can also be extended by implementing the algorithms on top
of existing spatial databases, and making use of their underlying index structure
directly, for example, a spatial database which uses R-tree as its secondary index to

speed up object retrieval. Indices can be loaded into memory directly to gencrate

115

a much smaller candidate set, then perform the actual intersection checking by
loading in the actual objects. In this case, the number of disk access plays
an important role on the algorithm performance. Therefore it requires different
performance measurements.

Although the spatial indexing methods for simple objects can be extended
to process complex spatial objects, these ¢xtended methods should be compared
with the typical spatial indexing medhods of complex objects such as the Cell
Tree, in terms of retrieval, insertion and deletion of complex objects as well
as implementation complexity and storage since indexing methods for complex
objects are inherently more complicated. The comparison appears rare in the
literature. Techniques other than approximation to extend the indexing structure

of simple objects for the processing of complex objects should also be explored.

References

[ARONS89] S. Aronoff, Geographical Information Systems: A Management Perspective,

WDL Publications, c1989.

[BEN75] J. L. Bentley, Multidimensional Binary Search Trees Used for Associative

Searching, Communications ACM, Vol. 18, No. 9, pp. 509-517, 1975.

[BEN79] J. L. Bentley, Multidimensional Binary Search Trees in Database Applica-

tions, IEEE Transactions on Software Engineering, Vol. SE-5 No. 4, July 1979.

[BIMA90] H. Blanken, A. Ijbema, P. Meek, B. V. D. Akker, The Generalized Grid File:

Description and Performance Aspects, Proc. of 6th International Conference on Datu

Engineering, pp. 380-388, Feb. 1990.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R*-trec: An Efficient

and Robust Access Method for Points and Rectangles, Proc. ACM SIGMOD International

Conference on Management of Data, pp. 322-331, May 1990.

[BW90] [Bracken, C. Webster, Information Technology in Geography and Planning,

Routledge 1990.

[CODD70]E. F. Codd, A Relational Model for Large Shared Data Banks, Communica-

tions ACM, Vol. 13, No. 6, pp. 377-387, 1970.

[FRAN90] Wm. R. Franklin, Calculating Map Overlay Polygons’ Areas Without Explic-

itly Calculating the Polygons-Implementation, Proc. of the 4th International Sympaosium

on Spatial Data Handling, Vol. 1, pp. 151-160, 1990.

[GH91] R. Gupta, E. Horowitz, Object-Oriented Databases with Applications to

CASE, Networks, and VLSI CAD, Reading, Prentice Hall Series in Data and Knowledge

Base Systems, 1991.

117

[GRES9] D. Greene, An Implementation and Performance Analysis of Spatial Data Ac-

cess Methods, Proc. of 5th International Conference on Data Engineering, pp. 606-615,
May 1989.

[GUNS89] O. Gunther, The Design of the Cell-tree: An Object-Oriented Index Structure

for Geometric Databases, Proc. of the 5th International Conference on Data Engineering,

pp. 598-605, Feb. 1989

[GB90] O. Gunther, A. Buchmann, Research Issues in Spatial Databases, SIGMOD

RECORD, Vol. 19, No. 4, pp. 61-68, December 1990.

[GUNS88] O. Gunther, Efficient Structures for Geometric Data Management, Lecture

Notes in Computing Science 337, Springer 1988.

[GUTT84] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching.,

Proc. ACM SIGMOD, pp. 47-57, June 1984.

[GS90] M. F. Goodchild, Y. Shiren, A Hierarchical Data Structure for Global Ge-

ographic Information Systems, Proc. of 4th International Symposium of Spatial Dara

Handling, Vol. 2, pp. 911-917, 1990.

[HS92] E. G. Hoel, H. Samet, A Qualitative Comparison Study of Data Structures
for Large Line Segment Databases, Proc. ACM SIGMOD, pp. 205-214, June 1992.

[KSSS90] H. Kriegel, M. Schiwietz, R. Schneider, B. Seeger, Performance Comparison

of Point and Spatial Access Methods, Design and Implementation of Large Spatial

Databases, Lecture Notes in Computer Science 409, pp. 89-114, July 1989.

[KW87] A. Kemper, M. Wallrath, An Analysis of Geometric Modeling in Database

Systems, ACM Computing Surveys, Vol. 19, No. 1, pp. 47-119, March 1987.

[ML84] D. M. Mark, J. P. Lauzon, Linear Quadtrees for Geographic Information

Systems, Proc. of the 2nd International Symposium on Spatial Data Handling, Vol. 2,

1984.

118

[MOS86] F. Manola, J. A. Orenstein, Toward a General Spatial Data Model for an

Object-Oriented DBMS, Proc. of the 12th International Conference on Very Large Dara

Bases, pp. 328-335, August 1986.

[NHS84] J. Nievergelt, H. Hinterberger, K.C. Sevcik, The Grid File: An Adaptable,

Symmetric Multikey File Structure, ACM Transactions on Database Systems, Vol. 9, No.

1, pp. 38-71, March 1984.

[NORS88]] V. T. Noronha, A Survey of Hierarchical Partitioning Methods for Vector

Images, Proc. of the 3rd International Symposium on Spatial Data Handling, Vol. 1,
pp. 185-200, 1988.

[NW79] G. Nagy, S. Wagle, Geographic Data Processing ,Computing Surveys, Vol.

11, No. 2, pp. 139-163, June 1979.

[OHMS92]J. A. Orenstein, S. Haradhvala, B. Margulies, D. Sakahara, Query Processing

in the ObjectStore Database System, Proc. ACM SIGMOD , pp. 403-412, June 1992.

[OMS88] J. A. Orenstein, F.A. Manola, PROBE Spatial Data Modeling and Query Pro-

cessing in an Image Database Application, IEEE Transactions on Software Engineering,

Vol. 14, No. S, pp. 611-629, May 1988.

[OOST90] P. V. Oosterom, Reactive Data Structures for Geographical Information

Systems, Reading, ADDIX, Wijk bij Duurstede, 1990.

[ORENS84]J. A. Orenstein, T. H. Merrett, A Class of Data Structures for Associative

Searching Proc. of 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, pp. 181-190, 1984.

[ORENS6]J. A. Orenstein, Spatial Query Processing in an Object-Oriented Database

System Proc. ACM SIGMOD, pp. 326-335, 1986.

[ORENS89]J. A. Orenstein,Redundancy in Spatial Databases Proc. of ACM SIGMOD

Conference on Management of Data, pp. 294-305, June 1989.

119

[OSM89] B. C. Ooi, R. Sacks-Davis, K. J. McDonell, Extending A DBMS for Geo-

graphic Applications IEEE Proc. of 5th International Conference on Data Engineering,

pp. 590-597, Feb. 1989

[PS85] F. P. Preparata, M. I. Shamos, Computational geometry: An Introduction ,

Reading, Springer-Verlag, 1985.
[RE88] N. Roussopoulos, C. Faloutsos, An Efficient Pictorial Database System for

PSQL [EEE Transactions on Software Engineering, Vol. 14, No. 5, pp. 639-650, May

1988.
[ROB81] J. T. Robinson, The K-D-B-tree: A Search Structure for Large Multidimen-

sional Dynamic Indexes. Proc. ACM SIGMOD International Conference on Management

of Data, pp. 10-18, 1981.
[SAMS84] H. Samet, The Quadtree and Related Hierarchical Data Structures ACM

Computing Surveys 16, pp. 187-260, June 1984.

[SAMSS8] H. Samet, Hierarchical Representations of Collections of Small Rectangles

ACM Computing Sueveys 20, pp. 271-309, 1988.
[SAM90a] H. Samet, The Design and Analysis of Spatial Data Structures, Reading,

Addison-Wesley, MA, 1990.
[SAM90b] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image

Processing, and GIS, Reading, Addison-Wesley, MA, 1990.

[SE90] J. Start, J. E. Estes, Gecgraphic Information Systems: An Iutroduction,

Reading, Prentice Hall, 1990.
[SRF87] T. Sellis, N. Roussopoulos, C. Faloutsos, The R+ _Tree: A Dynamic Index for

Multi-Dimensional Objects. Proc. of the 12th International Conference on Very Large

Data Bases, pp. 507-518, Sept. 1987.
[SW89] H. Samet, R. E. Webber, A Comparison of the Space Requirements of

Multidimensional Quadtree-based File Structures , Visual Computer, 1989.

120

[TJS88] A. T. Teng, S. A. Joseph, A. R. Shojaee, Polygon Overlay Processing: A

Comparison of Pure Geometric Manipulation and Topological Overlay Processing Proc.

of the 3rd International Symposium on Spatial Data Handling, Vol. 1, pp. 102-119, 1988.

[ULLS88] J. D. Uliman, Principles of Database and Knowledge-base Systems, Vol. 1,

Principles of Computer Science Series, Reading, 14. Computer Science Press, 1988.

121

