
M25.3 -4 Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 'Ne!iing!on Street
O??awa. Ontario
Kf A OF.44

NOTICE

Bibiioth&que nationale
du Canada

Direction des acqijisilions et
des services bibli~graphiques

335. rue Ct'eltinglan
Dnawa {Ontario)
K I A ON4

The quality of this microform is
heavily dependent upon the
quality of the original thesis
suiSKtitted far miefBfiiming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

tf pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. f 970, c. C-30, and
subsequent amendments.

La qualite de cette microforme
depend grandement de la qualit4
de !a these soumise au
rnicrofiimage. Nous awns totit
fait pour assurer une qualit6 -

su perieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'universite
qui a confkre le grade.

La qualite d'irnpression de
certaines pages peut laisser a
desirer, surtout si les pages
originales ont 6t6
dactylographibes a 19aide d'un
ruban us6 ou si I'universit6 nnos
a fait parvenir une photocopie de - -

qualite inferieure.

La reproduction, m&me partielle,
de cette microforme est soumise
a la boi canadienne sur le droit
d'auteur, SRC f 978, c. @-301 ei
ses amendements subsequents.

A STUDY OF COMPLEX SPATIAL OPERATION AND
ITS UXDIEIRLYIKG SPATIAL INDEXING METHODS

Hong Fan

f3.S~. I,Tnisersit~* of Science ancl Technology of China, 1989

A T H ESIS SUBMITTED IN PARTIAL FULFILLMENT

OF TIiE REQUIREhIENTS FOR TIIE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Hong Fan 1992

SIMON FRASER UNIVERSITY

August 1992

A11 rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without t h ~ permission of the author.

National Library 1*1 ~f Canada
BibtiothQue nationale
dtr Canada

Acquisiiions and Direction des acquisitions et
Elib!iographic Services Brsnch des sewices bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa. Ontario OItawa (Ontario)
KIA ON4 K I A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
pwsons.

k'auteur a accsrde une licence
irrevocable et non exctusive
permettant a la Bibliotheque
nationak du Canada de
reproduire, priiteter, distribuer ou -
vendre des copies de sa these
de quelque rnaniere et saus
qiaelque forme qrte ce soit pour
mettre des exernplaires de cette
these a la disposition des
personnes int6ress6es.

The author retains ownership of Cauteur conserve la propriete du
the copyright in hisjher thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial these. Ni la these ni des extraits
extracts from it may be printed or substantieis de celle-ci ne
otherwise reproduced without doivent Qre imprim6s ou
his/her permission. autrement reproduits sans son

autorisation.

ISBN 8-315-836354

nfaixe:

Degree:

Title of thesis:

klaster of Science

Spatial Join: A Study of Complex Spatial Operation and

its U~icferIying Spatial Indexing Methods

Examining Committee: Dr- Binay Bbattacharya

Professor, Computing Science

Chair

Date Approved:

Dr. ?Voslmn &k
Professor, Computing Science
Senior Supervisor

Dr. Jiawei Nan
Associate Profess r, Computing Science
Supgrvisory Committee Member

Dr. Nick Cercone
Professor, Computing Science
Esternal Examiner

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the r i g h t to l e n d

my thesis, project of extended essay (the title of which i s shown below)

i o users of the Simon Fraser University Library, and to make p a r t i a l or

single copies oniy for such users or in response to a request from t h e

f i brary of any other un l versi ty, or other educational I nst i i u t i on, an

i t s own behalf or for one of Its users. t further agree that permission

for muttlp!e copying of thls work for scholarly purposes may be granted

by ri or the Dean of Graduate Siudies. It i s understmd that copying

or publication of this work for financlai gain sha l l not be allowed

wiPhout my written permission.

Title of Thesis/Project/ExPended Essay

S p a t i a l Join: A Study of Complex S p a t i a l Operation and i t s ilnderl yin(: ...- S p a t i ; i l

Indexing Methods.

Author:

(signature)

Fan Hong

t name 1

August 18, 1492

(date)

Abstract

In recent literature, there has been extensive research on simple spatial

operations such as point location and range query, as well as comparative studies

on spatial indexing methods (SIM) for simple objects based on simple spatial

operations. The thesis iackles the problem of polygon spatial join, which is one

of the most complex spatid operations on complex objects which are simple

polygons.

Polygon spatial join can be defined as finding all pairs of polygonal objects

that overfap each other over their boundaries from two given polygonal data sets.

Spatial joill is used extensively in geographical informition systems, where geo-

graphical data is organized by "layer", and a join of the layers creates synthesized

information of the same geographical area. It can also be directly extended to

realize polygon overlay, which is also a very important complex operation in GIs.

We solve the problem by extensively utilizing popular SIMs: PM Quadtree

and R-tree such that complex objects and object relations can be handled efficiently

as well. This is based on the obselvation that spatial join relies on the object spatial

occupancy, and these SIMs decompose space from which the spatial data is drawn

in a way that spatial properties of spatial objects can be developed and stored.

We design algorithms for spatial join based on PM Quadtree and R-tree as well as

;ligorithn~s with no spatial index involved for comparisons. We also present Grid

Coordinate System (GCS) - a SIM for simple spatial objects which is a kind

of Grid File based on the object spatial occupancy instead of on the transformed

n~ultidi~nensionaI point space. Both GCS and R-tree are shown to be empirically

superior to Ph4 Quadtree with respect to the spatial join operation.

Comparative studies of the three SIR% under spatial join are also presented.

We make use of ObjeztStore which is an object-oriented database system as

.-.
l l i

the storage manager f ~ r the spatial data. Empir id results zlrs obtained through

extensive experiments on the random polygonal nets. We generate the polygonrl!

net for the studies in such a way thzt it can bc adjusted through pru-ameters

regardkg size, shape and distribtltion of the composing polygonal data. The

polygonal net is represented by a vector data model designed as a mtilti-tile

storage-saving structure enhanced with indexing capability.

Acknowledgments

I would tike to express my deepest appreciation and gratitude to Dr. Woshun

Luk, my senior supervisor, for his constant guidance, advice, and patience. He

has been available and helpful throughout the preparation of this thesis, and his

supervision and support is the key motivating force behind this thesis work.

I am very grateful to Dr. Nick Cercone for being my external examiner,

and Dr, Jiawei Han for being my supervisory committee member. They were

generous with their time, and both fair and helpful with their comments and

suggestions. Thanks are also due to Dr. Binay Bhattacharya for h ~ s ,zading a~kd

valuable comments on this thesis.

My special thanks to my friend Don Smith and Graham Finlayson who spent

much of their precious t h e reading my thesis and correcting my grammatical

mistakes. I would like to thank Kersti Jaager and other department secretaries for

giving various kinds of help during my study at Simon Fraser University.

My thanks go also to many of the graduate students in the School of

Computing Science at Simon Fraser University, who encouraged me, and provided

me with various kinds of help when they were most needed: Xiaobing Chen,

?Ifenfei Fan, Dai-yl Harms, Tong Lu, Wei Lu, Mark Maurice, Pat T. Pattabbiraman,

Kathy Peters, Frcank Tong, Yin Lam Wong, Ju Wu, Kuros Yalpani, Xiaogu Zhou,

?Vei Zhou.

Finally, this work is dedicated to my parents and Benguang Yao. Their

imnteasurable love and care have always been a source of confidence for me in

my life.

TABLE OF CONTENTS

Approval ii

Abstract ii i

1 f ntroduction i
3 . 1.1 Problem and Definitions

. 1.1.1 Motivations 2
. 1.1.2 Definitions 4
. 1.2 Literature Reviews 7

1.2.1 Spatial Join in PROBE: An Object-Oriented Image Databsse
. System 7

1.2.2 Spaiid Join in PSQL: A Relational Database System
. Incorporating Spatial Data Processing 9

. 1.2.3 Geographical Information System o. 10
. 1.2.4 Spatial Databases and Spatial Indexing Methods 12

. 1.3 General Idea of Thesis 14
. 1.4 Thesis Overview 16

2 Preliminav: Experimental Setup 18
. 2.1 Generating Random Polygonal Net 18

. 2.1.1 Randomly Generating Polygonal Net 18
. 2.1.2 Setting Up Testing Data Set 23

2.2 File Structures: A Vector Data Model With Topological Infbrnmtion 24
. 2.2.1 Definitions and Concepts 24

. 2.2.2 File Structures 25

3 Spatial Join Without Indexing 30
. 3.1 PJ: Polygon Spatial Join 30
. 3.2 BJ: Boundary Spatial Join 31

. 3.3 Empirical Results and Conclusion 33

4 PM Quad.tree. R-tree and GCS 36
4.1 Ph4QuaO-rreeFmily . 36

. 4.2 R-tree 38
. 4.3 GCS: Grid Coordinate System 39

5 PM Quadtree Based Spatial Join 42
. 5.1 PM Quadtree Based Top-Down Traversal Algorithms 42

. 5.1 - 1 PMSJ: Parallel Traversal With Splitting Join 42

. 5-12 PMNSJ: Pt?~i!l!el Traversal Non-Splitting Join 44
. 5-1-3 P.M IJ. PM Index Join 46

. 5.1.4 Empirical Results 48
5.2 Comparison Of the Aigorithms on Different Quadtree Varim-ts . . 49

. 5.2.1 / nalysis of PM Quadtrees in Spatial Join 50
. 5.2.2 Empirical Results 51

. 5.3 PR131J: A PM3 Quadtree Based Spatial Join Algorithm 54
. 5.3.1 P-M3U: Two-step Processing of Spatial Join 54

. 5.3.2 Empirical Results and Concluding Remarks 56

6 R-tree Based Spatial Join 59
. 6.1 Choose Processing Unit of the R-tree Representation 59

. 6.2 Two-step Processing of Spatial Join 60
. 6.2.1 General Outline of the Processing 61

. 6.2.2 RIJ: R-tree Index Spatial Join 62
. 6.2.3 RPJ: R-tree Parallel Comparison Spatial Joiil 66

. 6.2.4 Experimental Results 68

. 6.3 Measurement on Node Size 71
. 6.3.1 Experiments 71

. 6.3.2 Discussions 75

7 Grid Coordinate System (GCS) and Spatial Join 76
. 7.1 CSJ: Cell Spatial Join 76

. 7.1.1 Generd Processing Strategy of CSJ 76
. 7.1.2 Object Approximation and Net-Conversion 77

. 7.1.3 CSJ: Cell Spatid Join 81
. 7.1.4 Analysis of the CSJ 83

. 7.2 Empirical Analysis 85
. 7.2.1 Statistics of Different GCSs and Testing Data 86

. . . . 7.2.2 Performance of CSJ Under Different Grid Resolution 87
7.2.3 Chain Grid Volume and Number of (cell index, chain index)

. Pairs Under Optimal Resolution 89

8 Comparison of Spatial Joins and Their Underlying Spatial Indexing
Methods (SIR%) 93
8.1 Opriwize Spatial Join by PM Quadtree. R-tree and Grid Coordinate

. System (GCS) 93
. 8.1.1 Optimize Object Accessing Space by PM Quadtree 94

. 8.1.2 Optimize Object Accessing Space by R-tree 96

. 8.1.3 Optimize Object Accessing Space by GCS 99

8.2 Comparing Ph4 Quadtree. R.tree. and GCS iil Spatial Join 102
8.2.1 Ph% Quadtree vs . R-free and GCS 103
8.2.2 R-tree vs . GCS . 104

9 Concluding Remarks and Summary 107
9.1 Concluslons . 107
9.2 Thesis Summary . 109

9.2.1 Utilizing PM Quadtree Extensively to Realize Spatial Join . I09
9.2.2 Utilizing R-tree Extensively to Realize Spatial Join 110
9.2.3 Grid Coordinate System (GCS) and its Spatial Join 112

9.2.4 Comparison of Algorithms and Their Underlying Spatial
. Indexing Methods '113

9.3 Future Work . 115

References 117

viii

Chapter 1
Introduction

Non-standard computer applications such as robotics, computer vision, com-

puter aided design, and geographical data processing require special operations

that are defined on geometric data. These operations are substantially different

from the operations defined on non-spatial data, generally in two aspects: geo-

metric data are n-dimensional objects embedded in space, and are accessed by

their extent and positions in space as opposed to access by non-spatial attributes;

geometric operations possess complex data structures, and careful design of algo-

rithms and data structures are required in order to perform geometric operations

efficiently.

There has been extensive research on the point location and range query in

the database literature since they are typical database queries. These queries

are basically search-based; disk access times affect their performance. A large

number of multidimensional point access methods (PAM) and spatial indexing

methods (SIM) have been proposed, both hash-encoded and tree-structured, to

manage the retrieval of simple spatial objects and multidimensional point data in

order to process the queries efficiently. These include R-trees [GUTT84], K-D-

B-trees [ROB81 1, Rf trees fSELL873, Cell trees [GUN89], Grid File [NHS84],

2D-Isam [NIEV83f (a two-level tree structure similar to grid fiIes) and so on.

Since different types of queries pose distinct requirements, it is very important to

s ~ d y the perf~rmwte of the spatirtl access methods unde: vaious types of sptial

queries. Studies in [Gre88] have shown that among the most popular spatial access

riwthods, R-tree is a good choice for the general query processing such as point

and rmge queries. Studies in [KSSSQOJ further establish the BUDDY hash tree as

the choice for both point access methods and spatial access methods for rectangles.

However, little is known about the set operations such :IS computing MY

intersection. set inclusion, set difference or my other possible opelrtioi~s that

can be performed on sets of geometric objects, especirilty \\%en scl ~ t ~ j t ' c ' u

are extended spatial objects such as polygons. Even less is known about tftc

performance of spatial indexing methods under set-oriented sprit id qt iur ic~, ;ulJ

the performance of these set operations under various data circimxt:tnccs 'This

is largely due to the complex nature of the operations, frcnce thc con~plic;itccl

behavior of spafiat indexing methods involved as weil as tile variety of thc

representations of the problem itself.

In this thesis, we will study one of the most important set oper;ttic~ns: spatint

join in spatial information systems, such as geographicid infc1mm3tion systlttns

and spatial databases. Since this operation is heavily dcpendent on the sp:itinl

indexing method, comparative studies of popular spatial ittrfcsing rnethocls sill

also be presented. In fact, a new indexing method is presented in this thcsis,

which is shown to be empirically superior to other wcii-known spatial inderijlg

methods, such as Quadtree and R-tree with respect to the spatial join operation,

Section 1 .I Problem and Definitions

In this section, we intrcduce the set spatial join by first disctissjng the

motivation for the problem. Thereafter the problem is formally dcfincd.

1.1.1 Motivations

The most significant application of spatial join can be found in G1S, tvhctre

geographical data is stored as a series of x,y coordinate pai1-s reprexn ting points,

lines and polygons. Map information is organized into sets of 1qcr.r or tlrcttwx

of information. A base map can be organized into ltiyers such as strcarns, soill;,

world cities, crop productivity, and administrative boundaries such as land u w ,

time zones, trading areas, and political areas. Figure 1 below depicts an exsirnple

of a mtp sheet together with its composing layers. The base map is composed by

the join of four layers which are fmd use, soil types, crop productivity, and roads.

LAND USE (POLYGON)

SOIL TYPES (POLYGON)

CROP PRODUCTIVITY (POLYGON)

ROADS (LINE SEGMENT)

Figure 1 taym in Geographical Information Sysrern

Spatial join is a very powerful operator in the sense that it synthesizes

informstion found in multiple representations of the same geographical area, i.e.,

multiple layers. and can therefore answer complex queries. For example, the

spatial join of the two lfxjers will be able to answer queries about the area of the

land having various combinations of characteristics, such as finding the soil types

rrf ceaain Xand area, or determining the most productive soil for a particular crop.

Joining tfie l a p - of world cities with the layer of time-zones will give cities in

the world together with their time zones. Therefore, spatial join can add value to

the database by combining information on different fayen.

Spatial join can be further developed to realize mup ove1-1q which is a very

i~nportant operation in geographical information system. It is different in thc

sense that o~erlay creates all of the new regions resulted from the overlay out of thc

result of a spatial join. For example, the spatial join of two overlapping polygons

returns both polygons together with a flag indicating they overlap. The result of

overlay would be three new polygons - the common intersection, and thc two

polygons cut by the common intersecting area. But spatial join can not be rcpl3ced

by overlaji. When the user is concerned with only the synthesized information of

multiple layers, calculating their overlay to answer the query would be redundant

and extremely inefficient since overlay invoives extensive computation of join

results. It is necessary to separate the two operations in order to enhance thc

system's overall performance. In VLSI applications, some minimum separation

between objects of certain layers is checked. If one data set contains 2-D objects

of one layer, and the other data set contains objects of another layer, spatial jo in

will report violations of constraints required for this minin~um separation.

Spatial join could also be used in the query processing of spatial databxics.

The result of a spatial join c ~ m be saved as a join index, and used by the query

optimizer to speed up the general query processing. Therefore, spatial join plays

an essential role in spatial data management systems.

1.1.2 Definitions

Set spatial join is a set operation that operates on two or more sets of spatial

objects. The resulting set is obtained according to spatial property of geometric

data, namely intersection of spatial objects. Concepts involved and formal

definitions of two-way spatial joins are defined below.

A sputiul object is defined with respect to two-dimensional data. Points, lines

and polygons are examples of sp~-~ftal objects. A simple polygon is a polygon with

non-intersecting edges and uithout holes. Simple p d y g ~ n s are spnrial objects.

Since a simple polygon is the most compiicated of these spzitial objects defined,

and the way to detect overlapping involving points and lines is different from

involving only polygons, we will mainly study polygon spatial join. Our study

can be easily modified to include lines because they are closely related to polygons.

All indexing methods we study can accommodate lines as spatid objects, however

spatial indexing methods well suited for large numbers of simple polygons may

not be a good choice for lines and points.

For polygon spatial join, it is necessary to distinguish the polygon containment

or enclosure from polygon overlapping on the boundary. Geometrically, contain-

ment or enclosure is detected by applying a point-in-polygon algorithm, while

overlapping on the boundary is determined by checking boundary intersections.

Henceforth in this thesis, we study two-way polygon spatial join emphasizing

on the polygon boundary overlapping named partial spatial join as opposed to

totul spatial join. Our approach determines polygon overhp by examining bound-

ary intersections; containment or enclosure detection is realized by performing a

point-in-polygolz algorithm on the result of boundary overlapping join.

NOW we are ready to formally define the term spatial join as it is applicable

to this thesis:

Definition: Given two sets of spatial objects M and N, the Spatial Join

returns all pairs of objects (m, 11) such that, m belongs to M, n belongs to N,

and m and n overlap spatially on their boundaries.

"Join" here is used in a manner very similar to the natural join operator of

the relational model [CODD70], except that the selection of the tuples is based on

geometrical properties. The overlapping of spatial objects corresponds to shared

attributes in a corresponding relationai join. It c'an be considered a kind of cross

referencing of two data sets, but the result can not be obtained direc-lly from the

search of the data.

Figure 2 below pictures an example of the spatial join. Bold polygons

represent one data set, and plain polygons represeat another data set. The spatial

join of the two data sets returns the set of one pair (2, 5).

Figure 2 An example of two-way polygon spatial join

Spatial join can also be considered as a generalization of well studied queries

such as range Queries. Spatial join is reduced to a range qriery when M has only

one object, (i.e., a rectangular box representing a search area or a window), and

N has a set of objects. In this case, spatial join finds dl objects from N that

intersect with the box or the window.

However, for this tlhesis, both M and N have more than one spatial object,

i.e., iMbl and IN1 >I. Typically, M and N are both map layers composed of a

number of simple polygons. Therefore, the spatial join we are dealing with in

this thesis is a many-to-many kind of query or a set operator. A sct operator can

be realized by iteratively applying the corresponding non-set operator on a single

object or each pair of objects. The problem with impleme~tatlons of this kind is

one of performance, Algorithms which directly solve set operation will generally

yield better performance.

Generally speaking, objects from the same data set can intersect each other

not just over their common boundaries. But certain algorithms, including one of

them develaped in this thesis, require that objects in each set are strictly non-

overlapping. The restriction is necessary in order to maintain segment order or to

build the specific spatial indexing method as it requires. Besides, the concept of

Iuyer implies non-overlapping of objects in the layer. Therefore we assume that

polygons from one data set do not overlap each other except on their common

boundaries.

Section 1.2 Literature Reviews

There have not been many studies of spatial join appearing in the literature.

Two of the representative articles among those papers that do appear are the

paper on PROBE by Jack A. Orenstein and Frank A. Manola [OM88], and

that on PSQL by Nick Roussopou~os and Christos Faloutsos [RF88]. While

practical solutions have been developed and implemented in GIs, researchers in

computational geometry have been working on finding optimal solutions for basic

geometry problems which can be used to solve complex problems like spatial

join and overlay. They often require complex data structures and extensive

processing of raw data. Popular spatial indexing methods in spatial databases

operate efficiently on simple spatial objects. They can be extended to handle

more complex objects.

1.2.1 Spatial Join in PROBE: An Object-Oriented Image Database System

PROBE [OM881 is an object-oriented image database system which deals with

spatial data and data with complex data structures. In PROBE spatial objects ale

represented by collections of raster regions, i.e., each object is ripproxinlated by the

union of cells overlapping the object. The representation is therefore conservative,

and the precision is limited by the resolution of the grid. The raster approach

contrasts with the vector approach where objects me precisely specified by line

equations. However, both are fundamental spatial data modelling strategies.

Set operations for raster representations can be implemented simply- the

same action repeats for each cell unit. For example, the spatial join can be

implemented by applying the logical AND for each cell, and AND is a built-

in function available in standard programming languages. Unfortunatcly this

approach incurs large space requirements. This is especially truc when grid

resolution is high.

PROBE overcomes this drawback by encoding the grid. The encoding is

obtained by recursively partitioning the space containing the object until the

boundary of the object is obtained or the maxin~un~ resolution is reached. Each

partition is just a vertical or horizontal split of the space. A vertical split is

characterized by one bit from x, and a horizontal split characterized by onc bit

from y. The sequence of splits creates a sequence of these characteristic bits. Each

cell region has a uaique sequence of splitting, and interleaving of the characteristic

bits will generate a bit string that uniquely identifies this region. The unique bit

string is called the z value of the region.

Under this encoding scheme, 2 6 objects xire transformed into sets of I-d bit

strings. Tnstead of explicitly listing all the occupying cells, PROBE provides a

more compact representation by associating the z values with the object. Spatial

join call be performed by searching for any z value in one input that contains a

z value from the other input. This is easily done by checking if one z value is

a prcfix of the other.

The ProbIem with this approach is that a non-point object has more than one

z value associated with it; redundancy is therefore inherent. This is the problem

with all of the encoding schemes trying to optimize the handling of raster data.

Redundancy promotes computation overhead, yet the result is only an approximate

answer due to the conservative representation. Secondly, the algorithm relies on an

encoding of the objects, specifically objects have to be decomposed to obtain their

z values. Spatial join is a set-to-set operation, and thus the cost of decomposition

could be prohibitive. One solution is to maintain both the encoded and non-

encoded representations. This however is expensive in terms of space consumed

because for each of the objects, two representations are maintained.

1.2.2 Spatial Join in PSQL: A Relational Database System Incorporating

Spatial Data Processing

PSQL is a relational database system which allows spatial data processing. 2-d

objects can be directly manipulated by users through an SQL-like query language.

This is realized by specialized spatial operators and functions. Good query

performance is achieved by employing a specialized processor and spatial indices

such as R-tree and Rftree. Representation of the spatial object in PSQL is vector-

based for the computation of spatial operations, though a bit-map is used for

display purposes,

The vector representation strategy models a map by explicitly defining its

component geometric entities, and sometimes relationships among these entities.

Foini, iinc or line segment, and region or area, are the basic eiements comprising

fhe vector dais model, Although operations based on the vector form can be

c m k d out with exact precision, a great deal of coordinate calculations are

required. Especially when dealing with set operations, its raster equivalent is

not only computationrrily simpler, but aIso offers a variety of analytical options

by associating with each cell the attributes of interest. GenerAly, the computation

under the vector representation is characterized by complex d m striictuti;?, and

complicated algorithms. Optimization strategies such as using indices to spced

up object retrieval are also employed in an effort to achieve good pcrformnnce.

In PSQL, spatial join was imple~nented by a simult,meous search on the two

sets of spatial organizations corresponding to the same area. It is based on an

iterative search and segment intersection checking. S e c o n d q indices were only

used to speed up the object retrieval in order to reduce the disk page accesses,

but they do not contribute to the actual computation.

Savings in disk page accesses often result in performance improvement with

regard to simple spatial operations which do not require significant computnlion.

However, with complex operations like spatial join and overlay, the inside meinory

computation cost must be considered. It is worth the effort making an optimal

or suboptimal algorithm, or accommodating an optimization strategy in order to

cut down the total cost.

A problem with PSQL's implsmentarion is that little effort has been made

towards an efficient computation. However, [RF88] is currently improving the

segment intersection algorithm using the existing indexing capability.

1.2.3 Geographical Information System

Geographical information systems (GIS) allow the manipulation, storage, retrieval,

and analysis of geographical data and the display of data in the form of rnaps

[NW79] [SEBO]. Different from the conventional databa5e systems [SM89J,

GIS exhibits a range of requirements and techniques known coliectively as

geographical data processing tARON89f [BW90] [00ST90].

As one of the important application requirements, modem CIS has adapted

practical implementation solutions of spatial join and overlay according to differ-

ent data representation forms.

There are two broad appro~cches used by raster-based software. One is to store

the raster representations in a matrix, and then examine the related matrices using

the boolean operator AND, Output is produced for each cell when both values are

true. Optimization strategies include reorganization of the cells so that cells with

common values are grouped together to be manipulated efficiently, and encoding

of the grid cells so that, as in PROBE, the representation is more compact and

eflicient. It should be pointed out that recently, Quadtree encoding [Same841

[Same881 [Same891 has attracted more and more attention. For example, with

region quadtree, a 2-d raster array can be represented by its region quadtree. As

a hierarchical representation, it saves space, and it is possible for set operations

perfbrnmed on region quadtrees to visit less nodes than the sum of total nodes of

the input data.

The other approach is to use the computer's graphics system directly by

converting the raster image to a screen image, then applying the same logical test

AND to two screen images. The pixel will be "on" in the resulting screen if the

two corresponding pixels are both "on".

Generally, software based on the vector representation requires a test to find

out if 'any segment from polygon in one data set intersects with any segment from

any polygon in the other data set. The situation can be seen in Figure 3 below,

where all the edges in polygon A have to be checked for intersection against each

of the edges in polygon •’3.

One widely-used optimization technique is "buffering". Here complex objects

are bounded by simple geometric representation, usually rectangles, and spatial

join i s performed on these approximatiom to generate a conservative answer.

Only then is segment-bysegment checking carried out. This approach appears to

be an efficient strategy. ?Ire develop it in this thesis by using more complicated

processing techniques on the object rectangle approximations.

Figure 3 Testing polygon intersection by checking cdge-by-edgc

1.2.4 Spatial Databases and Spatial Indexing Methods

Many access methods have been designed for typical spatial database queries

involving point data. The typical queries request all objects that conlain a

given point (point query) or that overlap a given search space (range query).

Solutions to the efficient processing of these queries can be found in [BEN75],

[SAME84], [OREN84], [NHS84], [SW88], [KriegO], etc. Since these structures

were originally designed to manage point data, i.e., to provide an efficient search

among large sets of points, non-point data has to be parameterized and mapped

into a high-dimensional point. Segments, for example, can be represented by a

point in four dimensional space, while more complex objects like polygons have

to be approximated first by simple spatial objects like "box" in order to reduce

the dimensionality of its representative point in the mapping space. Qucrics bascd

on the approximation therefore cannot preserve the proximity.

Orenstein in [ORENgO] compares the performance of the object search in

the native space and the transformed space based on simple queries involving

different numbers of rectangles. It is shown that the cost of maintaining two

representations with many-to-many queries is high even when only searching

objects. With complex operations that involve the space occupied by the spatial

data, for example spatial join, the solutions are not straightforward, Retrieval

is based on spatial properties not explicitly stored in the database. It is thereby

inherently not appropriate to use point-based mu!tidimensional access methods

directly to solve complex spatial operations requiring space occupancy of complex

objects.

To accommodate this situation, many multidimensional point access methods

were extended to a spatial access method using the techniques of clipping, over-

lapping regions, and transforming. Performance comparisons of promising ones

can be found in the paper [KSSB89]. However, the results are based on rectan-

gles and intervals which are simple spatial objects, and range and point queries.

No further research has been carried out on extending the multidimensional point

access method to access complex objects like polygons, and to experiment with

complex spatial operations.

Recently, spatial indexing methods based on spatial occupancy have demon-

strated their efficiency with regard to optimizing range and point queries with

various underlying spatial data. Spatial occupancy implies objects' locations in

space and spatial relations among them. These popular spatial indexing methods,

including R-tree and PM Quadtree, provide efficient retrievaI of simple spatial ob-

jects like segments and rectangles. Diane Greene has provided the implementation

and performance analysis of four popular spatial access methods in [Gre89]. How-

ever, the result ~vas also based on rectangles. Access methods for more complex

objects, such as the polygon, is more suitable for operations dealing with complex

objects, such as polygon spatial join. However, only very few are known. The

cell-tree [Gun891 is the most promising candidate, but it is still far from practical

due to the high cost of building and maintaining the tree.

A very recent paper [KS92] talks about a qualitative colnparison of sonx

of the popular access methods for a large line database. The peribrrnancc

was again measured mainly by point and window queries, and the r-csult only

demonstrates their comparability as to when and why their performance dif'fer.

This is largely due to the high v,uiation of both object parameters (size, shapc.

degree of overlapping, distribution), and the index parameters unique to e:tch ot'

the access methods.

As these spatial access methods for simple objects hierarchically Icpresent

the space, or partition the space from which the spatial data is drawn into regions

according to their spatial occupancy, they not only overcome Lhc drawbacks

of those based on the multidimensional point access method, but also prcsent

potential for complex objects and complex operations. However, thcrc has bcen

little research on utilizing these spatial indexing methods for complex operations,

especially polygon spatial join, and even less is known regarding the performance

of these spatial access methods in complex spatial operations.

Section 1.3 General idea of Thesis

We were motivated by the potential of popular spatial access rnethocls for sim-

ple objects to deal with complex objects, as well as the demonstrated pcrfonrmcc

of the "buffering" or "filtering" technLque.

On one hand, the "buffering" technique provides basically a two-step proccss-

ing of the data, and the answer from the first step of processing is an approximate

one. This conservative result should be optimized based on thc observation that

candidates are selected out of the simple "boxes" - an extracted locational in-

formation from the local data structure of the complex objects. The surrogates

specify object extent as well as their general locations in the global space without

detail. Rut , sirice they exist independently, and representing a flat, disorganized

2-6 space, the search of spatial relationships has to be performed on all the sur-

rogates of objects in the space.

Thesefore, surrogates should be organized to create more topology such as

the re!alive position of the objects and the distribution of the objects. This global

information is esseniial for the efficient processing of set operations. Lack of this

global information results in exhaustive implementation. A good organization of

the objects means a good representation of the space as a whole. The "buffering"

technique itself basically sets no limit on the way these object approximations

should be organized, and the geometric simplicity of these approximations also

makes the intended optimization feasible.

On the other hand, populas spatial access methods like PM Quadtree and

R-tree, can be extensively utilized to handle complex operations such as spatial

join. This is based on the observation that these access methods decompose the

space from which the data is drawn, in a way that develops and stores spatial

properties, such as intersection of data or components of data. In PM quadtree,

space is recursively decomposed, accommodating line segments according to their

relationship to the sub-space; while in R-tree, the decomposition is dynamic,

driven by the rectangle objects and relative positions of rectangle objects. Since

spatial join relies on the object spatial occupancy, we believe that they are better

data structures for spatial join than any point-based spatial access method or

extended multidi~t~ensional point access methods.

The way we deal with complex objects utilizing simple-object-based spa-

tial access methods is to approximate con-iplex objects by simple objects such

xi rectangles which presenle both the spatial extent an3 the spatial relations of

the complex objects. Join results of complex objects are derived from that of

object cort-iponents according to the topology implied, or from applying further

intersection checks on the approximate results. Thc !titter uptii;&w tfr? "txxf'ftr-

ing" technique by organizing the surmgtms in a Ittore ctlrnpnct tvay rwanis the

efficient processi11,o of spatid join.

Ph4 Quadtree and R-tree present hierarchical space. I lk present thc Grid

Coordinate System (GCS) which exhibits a uniformly divided nort-hicr:irctiic:tl

space composed of disjoint cell units. Unlike the Grid Filc, \ ~ h i c h is appfic.t_i tu

the multidimensional data transforn~ed from the coniplcx objects as ctm~lnor~l?

known, GCS is applied on the original complex objccrs, anif ciividcs cornpks

objects into disjoint cefls according to their a p p r ~ x i ~ l ~ a t i ~ ~ l s ~ sp;tti;~I t~ccup;il~cy.

GCS is a spatiaI index method for simple spatial objects.

Section 1.4 Thesis Overview

In this thesis, we utilize and extend the spatiaI access inexhds for sinq-rlc

objects such as Phil Quadtree and R-tree to realize the conipfex spatitd opcfiitio~i -

polygon spatial join. We also develop the GCS as the version of Grid Filc working

on original spatial data for the efficient implementation of spaliial join. Not only

do we show that spatial access methods for simple spatial data can bc extensively

utilized to handle complex spatial objects, we also provide extensive con~part~r ive

studies of these spatial access methods in the context of this particuhr crmplex

spatial operation. We generate random polygonal nnets for the cunp+at ivc ~tutiics.

The polygonal net can be adjusted through parameters which modify the s ix ,

shape, and distribution of the polygonal dam, and is represented by a vector data

model which we design as a multi-fife aorage-saving structure with indexing

capability. The empirical resuft is obtained by using 0bjectStor.c which is arr

object-oriented database management system as the storage rnanagcr.

The thesis is organized as follows: Chapter 2 includcs preliminaries incfucfing

the file structures and experimental setup, Chapter 3 presents two pragmatic

soiutiorts of spatial join based on the fi!e stmctures established in Chapter 2, and

without utilizing afiy spatial access methods. Boundary Join is used as a baseline

to compare the index soIutions in later chapters. Chapter 4 introduces the basic

concepts and structure of Phii quadtrees, R-trees, and Grid Coordinate System

(CCS). Chapter 5, 6 and 7 present the design and implementation of spatial join

based on the three spatial access methods i~troduced in Chapter 4. In Chapter 8,

the performances of the three spatial access methods for spatial join are compared,

and empirical resuIb are analyzed. Finally, we conclude in Chapter 9 that PM

Quadtree, R-tree and GCS can be extensively utilized to realize spatial join, and

that they improve over the Boundary Join which has no indexing involved. Both

R-tree and GCS are feasible SIMs for the efficient implementation of spatial join,

wbik for PM Quadiree, sparial join does not bring out the best of it.

Chapter 2
Preliminary: Experimental Setup

In this chapter, we will briefly explain the experimental setups, including tho

implementation environment in which the main empirical results were obtained,

as well as how to generate a random net with different data distributions on this

platform, and the data model we used as the internal representation of polygonal

net.

Section 2.1 Generating Random Polygonal Net

We ran the performance and comparisons on SPARC stations under UNlX

using ObjectStore C++ implementations of all the algorithms. Performance wcrc

measured by the total execution time. All of the algorithms use ObjectStore as

the storage manager which provides virtual memory management and scalability

with large data size. We will first describe how random polygonal nets under

different distributions are generated.

2.1.1 Randomly Generating Polygonai Net

The spatial extent of the polygonal-net is restricted to a box of size [O, O] to thc

bottom left to [1,1] top light, and the origin located at the bottom left corner. A

set of straight lines in the box is defined by treating their orientations and the

positions of ending points on the four edges as random variables. As depicted i n

Figure 1 below, there are six total possible orientations of straight lines, which

are SE, SN, SW, EN, EW, WS and ending points on the edges are characterized

by (x, 01, (x, 11, (0, y) (1 , y).

Figure 1 Orientations of Straight Lines And Equations of Ending Points

The orientations are chosen independently, having a common uniform prob-

ability distribution. For each orientation, the positions of two ending points on

the two square edges follow a uniform or Gaussian distribution in (0, 11. The

number of straight lines thus generated can be decided in advance.

Figure 2 A Polygonal Net With Uniform Distribution Of Ending Points

19

Figure 2 above samples a polygonal net with nurnber of segnlents chosen ;IS 8,

and the positions of ending points follow a uniform distribution. As a contpntison,

Figure 3 below shows a polygonal set with positions of ending points folluwing n

Gaussian distribution N(0.5, 0.303), but with the same number of segment lines.

Figure 3 A Polygonal Net With Gussian Distribution N(0.5, 0,303) of Ending Points

Polygons, composed of intersecting points of the generated straight lines, were

traced out after the polygonal net. To enhance the line segments to simulate naluml

boundaries, a third random variation was introduced on each line segment, whcrc

m number of points are added to each segment, but connected with a uniform bias

towards the original straight line segment. This uniform bias can be controliecl

within a certain limit called s~~zoothness facror, so that it curves to different extent.

The snzoorlznessfactor ranges from 0 to 100 with increasing extent of curveness.

For example, a s~noorlzness factor of 0 represents straight lines with added paints

all on the original line segment, while a st~zoorlzness factor of 100 shows most

curved edges composed by the additional points.

Therefore the number of points added, together with the srnoo~lzness jk tor ,

can be adjusted to simulate a very curved boundary or a smooth one, while the

number of straight lines will directly affect the total number of polygons in the

polygonal-net. Besides, to eliminate those overly small polygons thus generated,

a ratio can be set as to what is the preferred relative size of the smallest polygon

generated compared to that of the largest polygon generated. It was set to 0.01

for our testing data, i.e., we keep only those polygons having its area size at Ieast

1 % of that of the largest polygon generated.

Figure 4 and Figure 5 below present polygonal nets after the boundary

modification of Figure 2 and Figure 3 respectively. The number of added points

was chosen to be 7, and the sinoothness factor as 80. The ratio of area of the

smallest polygon to that of the largest polygon is 0.01.

Figure 4 A h.lodification on Figure 2 with nnoorhness factor=80

and (a~a-of-smallest-polygon/area-of-l~gest-polygon~~.Ol

Figure 5 A h4odification on Figure 3 with smoothnrss f~ctoi=SO

and (area-of-sn1nllest-polygo~~re~.-of-1~rg~st-poly&~~n~=~.Ol

With Figure 5, the sl~zootZzrzess factor was also lowered down to 20 to makc

a comparison, and the result is shown in Figure 6 below.

Figure 6 A Modification on Figure 3 with smoorhness

,Cacror=20 (a r e a - o f - s m a l l e s t - p o l y g o n l a r e a - o f - l a r g e 1

2.1.2 Setting Up Testiag Data Set

There are six sets of test data used for the purposes of the experiments in this

thesis. All of them were generated under the same control variables as well as

uniform ending point distribution, i.e., a snzoothness factor 80, 7 additional points

for each line segments, and a polygon size ratio 0.01. They vary only by the

size of the polygonal net, i-e., the total number of polygons generated. When the

ending points distribution was chosen differently, i,e., Gaussian N(0.5, 0.303), we

have another 6 sets of data generated under the above circumstances. Both were

used for the experiments in this thesis.

To give an idea of the testing data, statistics of six sets of data under normal

distribution is listed below. Testing data under Gaussian distribution are slightly

different, but not by much.

Data Set 1) 38x 100 polygons from the two maps making 234 pairs of partial

intersections. There are 105 x 241 chains having totally 945 x 2169 segments;

Dam Set 2) 1OOx I65 polygons from the two maps making 871 pairs of partial

intersections. There are 241 x414 chains having totally 2169x3726 segments;

Data Set 3) 165 x 269 polygons from the two maps making 101 1 pairs of partial

intersections. There are 414x636 chains having totally 3726x5724 segments;

Data Set 4) 382x538 polygons from the two maps making 2156 pairs of

partial intersections. There are 932 x 1307 chains having totally 8388 x 1 1763

segments;

Data Set 5) 538x761 polygons from the two maps making 3438 pairs of

partial intersections; There are 1 3 0 7 ~ 1858 chains having totally 11763 x 16722

segments;

Data Set 6) 916x 1144 polygons from the two maps making 6872 pairs of

partial intersections. There are 2009 xZ366 chains having totally 1808 1 x 21294

segments;

Section 2.2 File Structures: A Vector Data Model
With Topological Information

The way we organize the polygonal data is a muIti-file structure with indexing

capability. The main entity conlprising this vector data model is the chain. Othcr

entities include vertex, node, segment and polygon. Definitions of these entities

will be given initially, and then based on these definitions, we will explain the

file structures.

2.2.1. Definitions and Concepts

A vertex is described by a (x, y) co-ordinate pair. Asegrnent is defined as the

straight line connecting two vertices. A vertex degree is defined as numbcr of

segments passing through the vertex. A vertex having a degree of at least 3 is

called a node, or a node is a vertex that connects more than 2 segments.

A chain is defined as a sequence of line segments or vertices with no verlex in

the sequence connecting more than two line segments except for the two ending

vertices of the chain. In other words, a sequence of segments between two nodes

is a chain.

These concepts can be pictured in the Figure 7 below, in which a vertex, a

line segment, three nodes A, B, C , and two complete polygon clzuins AB and AC

are displayed, and A is the starting node, B and C are the ending node

R
A Vettex A Line SL, "o~aeni M e Nodes A, B. C and Ci'

i c
l Two Chains AB, AC

Figure 7 Entities of Vector Data Model

24

Notice from the Figure 7 above that, vertex A connects 4 segments, so it has

degree of 4, while B and C both have a degree of 3.

A polygon is a closed sequence of nodes or chaim. In addition, each

node is given a unique identification, and so is each polygon given an unique

polygon identification. Each chain can therefore be uniquely described by a node

identification pair (Ni, Nj), and each polygon be described by a sequence of node

identifications fN1, PI2, N3, .,...., Nk) .

2.2.2 File Structures

The vector data model has two types of data files: the chain file and the polygon

file. Both are composed of index file and data file, so polygon file is composed

of n polygon index file and a polygon data file; while a chain file is composed

of a chain index file and a chain data file, The organization is shown in Figure

8 below.

Figure 8 File Organization

Chain files contain dl the polygon chains generated without duplication. In

order to avoid duplication, each chain is assigned a direction from the smaller node

identification to the larger node identification and is stored once and only once by

preserving the direction. Since a chnitz is characterized by a node identification

pair (Ni, Nj), all the chains of (Ni, Nj), where j < i, and i ,i < (total number

of chains), are stored together in sequence under starting node N;, and each of

them can be identified by its ending node identification fofollowed by its segmont

coordinate sequence. The number of such (Ni, Nj) pairs with i < j. is tllereforc:

defined as the node degree., it specifies the nunlber of chains clustered under a

specific node which is different for each node.

Chain Index File is a fixed-length file recording all the nodes with a node

degree at least 1. It has three fields specifying respectively the starting node

identification, node degree, and first chain address in the relative Chain Data File.

In Chain Data File, each cfiai~z is specified by its ending node id and its segment

coordinate sequence, together with its right and left polygon identifications. This

is used to derive information an polygon relationships from the processing of

the chains. Segment sequence is a fixed-length field decided by the number

of additional points added during the modification of the originally generated

polygonal net. The field compositions of the chain files are depicted in Figure

9 below.

An arbitrary chain can therefore be retrieved by looking for the index record

first in the chain index file according to its starting node id, and then scquentially

search for the ending node id to find its segment coordinate sequence. Since node

degree is a small number, normally 3 or 4, the search in the data file is very

efficient, compared to the situation without an index file, where sequential search

is done on the whole chain data file.

CHAIN INDEX FILE

Sradng Node ID First Chain Address

CHAIN DATA FILE

Sequence jxl, yl , x2, y2, ...I

Figure 9 Chain File Data Structure

Polygon file structure is relatively simple. The index file is also a fixed-length

file with three fields specifying respectively polygon identification, the number of

nodes the polygon has, and the address of the node sequence in the related data

file. While in the data file, each polygon is represented by its node sequence {N1,

NZ., Nk) as well as other information associated with polygons if necessaiy,

like the minimum bounding rectangle, or area. Again without an index file, the

search of an arbitrary polygon by its polygon identification can only be done

sequentially on the whole polygon data file, since each polygon has a variable

number of composing nodes. The data structures of both polygon files are shown

in Figure 10 below.

POLYGON INDEX FILE

POLYGON DATA FILE

Pobgor~ Node Seque~lces (N!. N2, N3,, NX]

Figure 10 Polygon Filc Data Structure

Figure 11 below demonstrates the complete structure of this vector data

model.

To get a complete polygon coordinate representation, furthcr search on thc

chain file has to be done after obtaining the polygon composir~g node sequelwe.

But the duplicate storage of coordinates is therefore avoided - veilex coordinatcs

are stored only once in the whole file organization. Polygom, chains, and segtnents

are closely linked together by nodes to form a complete and non-redundant

organization, and searching is improved by the index files.

Polygon Indcx Fiie I3o1ygon Data File

/f r 1 Polygon Id
1 I I
, a

:-: ; ; PRI ;
i , , I) .
[Nurrlbcr of h'udrs i i

i ,

!... . r-..-.. - j s

I AMrcrs i-J ,,,j-----
i-..-... - i
1 Yolygon t c~ { ! PR2 I
i I / ; j : I j i

Nurnbcr of Ntxlrs I ,

Chain Index File Chain Data Fiie

-
Node Degree i
p-- / a

i Starting Add, /
1

4
1 C i ,

I Starting Node Id
1

i 1 c i
,/ 1 ... 1 Node Degree j 1 i

+- / , i Cj f . .
i Sraning AddOO.+' ! i
i i 1

Variable ILcord

Figure 1 I The complete structure of :he vectore data model

Chapter 3
Spatial Join Without Indexing

Based on the vector data model described in Chapter 2, two solulictns ~vithczut

using any indexing technique wilt be presented in this chapter: Pri1ygo11 Spatid

Join (PJ) and Boundary Spatial join (BJ). Both algorithn~s art: es;lniptt.s of

realizing the spatial join of complex objects with only the knowledge providcd

by the vector data model, and without explicitly using any spatial indexing

techniques. B u t they will provide the base line pcrformnnce for othcr 111or-t:

sophisticated algorithms developed in the later chapters.

Section 3.1 PJ: Polygon Spatial Join

Polygon Spatial Join uses a brute force approach. The algorithm itcrates

through all the polygons in one polygonal net or map 1, doing a pair-wise

intersection checking with each polygon of the other polygonal net or mtp 2.

The intersection of two polygons is checked chain-by-chain, 'and the checking of'

Chain intersections stops as soon as one intersection is found.

The dgorithm can be described below:

[algorithm 3.1 f

Input: i ~ z polygoizs and m' segirzents in i m p 1, n polygorzs uttd it' segnwrs;

in map2;

Begin

I . For eaeh pokygon Pi fmm nzapl'; O < i I m;
2. For each polygon Qj from tnap2; O < j I n;

21. For each cfrain Ck of Pi;

22. For euch c h i n C'l of Qj ;

(f Ck inlei-secfs C J L reporb intersection of Pi and Qj ;

This is a straight forward implementation which has a time complexity of

order O(n'x m'). n' and m' are number of polygon segments in the two polygonal

nets respectively, and each segment in map 1 has to be checked against each of

thc segment i n map 2.

Section 3.2 BJ: Boundary Spatial Join

Common boundary chains could be repeatedly tested for intersection during

the PJ, for the processing is polygon-based. The vector data model provides

additional topolom for each chain: its left and right polygons. It is therefore

possible to process each chain exactly once, and yet obtain the result of polygon

intersections. This leads to the design of Boundary Spatial Join or BJ.

The algorithm also starts at some point of a boundary line and marches from a

segment to an adjacent segment according to local conditions for each polygon in

the two polygonal nets or maps. The process for each pair of polygon chains stops

as soon as a pair of chain intersections is detected, and the information is recorded.

fn addition, since to a polygon chain is attached its left and right polygons, more

results can be obtained from this topology, i.e., both polygons in one map having

one of the intersecting chains as a common boundary, intersect with both polygons

in the other map having the other chain as a common boundary. The situation

can be s h o w in Figure 1 below. The graph shows that the two bold-bounded

polygons intersect with regular-bounded polygons respectively, as the result of

the intersections of AB and CD.

The information of polygon intersection is kept in an nxm matrix, It is

consulted each time before the pair-wise checking is performed. So only tt~osr:

polygon pairs that are not present in the resulting sets are actually checked, and

its result is also recorded in this matrix. This matrix is i~nplemented as :i two-

dimensional array with polygon identity as the index, so the intersections from

the chain can be directly transferred and saved in the array, so is the rctrievtll of

polygon intersections. All these can be done in a constant t h e .

Egure 1 Intersection of Chains A 3 and CD implies 4 pairs of polygon intcrsccdons

The algorithm can be described below. Time complexity of this algorithnl is

also of order O(n'xmY) since it iterates through every polygon. By adding the

result matrix, more memory is needed, but the performance is expected to be better

than that of PJ by taking advantage of the topology implied in the data model.

[algorithm 3-21

Input: in pcllygclns und rn' segments in map 1, rz polygorzs und n' segments;

in cnup2;
Output: Set of pairs (Pi, Qj), suclz that Pi belongs to map1 and Q, belongs

to tnup2; 0 < i < rrz, 0 < j < n;

Begin

I . Initialize the result matrix M,,x,, to bit 0;

2. For each polygon Pi fiutrz rnapl; 0 5 i 5 m ;

3. For euclz polygon Qj j?om inap2; 0 5 j I n ;

(f M [Pi Qj] is not set to 1 ;
31. For each clzain Ck of Pi, if Ckbefongs to Pi* as well ;

32. For each clzaitz CJI of Qj, if C'lbelongs to Qj. as well ;

Ck intersects CPt, set M [Pi Qj 1, M [Pi Qj' I, M [Pi. Qj 1,
M [Pi* Qj*] to bit I ;

4. For each M [i j] wlziclz is set to bit I , report intersectiolz of polygon i and j.

Section 3.3 Empirical Results and Conclusion

Both PJ and BJ were implemented and tested over the six sets of data under

normal distribution described in chapter 2. The result is tabled in the TabIe 1

below.

Table i PcrTonnance Compxison of Polygon Join and Boundary Join

Although more memory is needed by BJ, its performance is indeed better than

rhnt of PJ. Thc type of matrix element was declared as clzar occupying one byte,

and none of the maps has more than 1200 polygons. This adds up to at most

Elnpse
Tirtte
(sec.)

DnrnSer 1 DutaSet 2 DutaSet 5 DutaSet 3 DutnSet 6 DutaSet 4

1MB, which is reasonable compued with the 64h4B main Inertlory of plroetrix on

which the algorithms were run.

However, there is a large amount of computation overhead with this ~ncthod

due to its lack of space organization. Figure 2 below illustrates the situation in

which polygon A from the other map has to be checked with all thc polygons

in area C of the map having polygons from c l to c8, which are in fact far npnt-t

from polygon A.

I

Figure 2 Checking Redundancy

The polygon address space in this case, that is the way polygorls wcsc

accessed, has nothing to do with polygon locality. Polygons are merely iterated

individually, Although polygon locality is reflected by polygon coordinate list,

the coordinates are only used when actual intersection checking is perfcrrmed.

Deliberate utilization of the locality will make a better polygon address space.

In the following chapters, we will introduce different spatial indexing tcch-

niques in order to realize spatial join efficiently. Since Boiiridary Spatial Join has

better performance over Polygon Join, we will. use BJ as the base line perfor-

mance for the complex spatial join algorithms developed in the following chapters.

However, to be clearIy distinguished, we will use Boundary-Join instead of BJ

in the later context.

Chapter 4
PM Quad-tree, R-tree and GCS

W

The spatial indexing method we chose first is PM Quad-tree f~a~mily. It is a

compact hierarchical representation of polygonal maps based on recursive data

partitioning, and PM stands for "polygonal map". R-tree is another hicraschical

data representation, while Grid Coordinate System uses uniform grid. Related

concepts and terms about these SIMs will be explained in this chapter to makc

the algorithms developed on them in the later chapters easy to be understood.

Section 4.1 PM Quad-tree Family

PM Quad-tree family [Same851 [Nels86] represents an i~nprovernent over

edge qzradtree [Shne81] [Warn69]. They both focus on a representation that

specifies the boundaries of areas, but PM Quad-tree is an exact rcprcsentation

of collections of polygons, not an approximation one, like in edge quu~-ltree, a

vertex is represented by a pixel. So PM Quad-tree can apply directly on our

vector data model.

'The basic entities of PM Quad-tree are vertices and edges, since no isolated

vertex exists in our case, a complete PM Quadtrec is constructed by inserting all

the polygon edges into it. The construction requires non-intersection of existing

edges themselves. Edges are inserted into a PM Quad-tree by searching for the

position they are to occupy. This is done by traversing the tree in preordcr and

clipping each edge against the block. Segment of an edge resulting from the

clipping of the edge on the border of the block is termed as q-edge. The clipping

stops when conditions on a number of y-edges in each block holds, otherwise,

the block is successively decomposed into four equal quandrants and clipping is

applied on each of them. This is called leaf splitting.

Different stopping conditions comprise different decomposition criterions,

which make the variants of PM Quad-tree: PM1, PM2, and PM3.

Figure 1 An Example of PM1 Quad-tree

Figure 1 above is an exarnple of PM1 Quad-tree. Each decomposition block

is represented by a node in the tree. There are two types of nodes: leaf node

(wltite node), and nonleaf node (grey node). Non-leaf nodes contain pointers to

the four sons corresponding to the direction NW, NE, SW, SE, while leaf nodes

contain collections of q-edges called dictionary associated with the leaf node.

Both types of node also contain information about the block they represent, i.e.,

the size and center of the souare. This i; for the clipping and further splitting.

In our experiments, q-edge is merely a pointer to the edge it belongs.

Clipping is perfomled as a checking, no actual q-edge is obtained. Dictionary

contains these q-edge pointers linked together by 0s-list provided by Objectstore

implementation. This saves time and reduces redundant storage.

Polygon chain is used as the basic unit when constructing the tree. Each

edge however is associated with its belonging chain id, so that the infornlatiorl

extracted from dicrionmy checking can be directed to the polygon inform:ltion

based on our vector data model.

Section 4.2 R-tree

R-tree is another type of popularly used hierarchical spatial indexing l~icthud

derived from B-tree dea!ing with rectangular data. R-tree is a nlulti-level

tree structure designed to handle n-dimensional objects originally proposed in

[GUTM84].

Although R-tree is derived from B-tree, unlike B-tree, the search of a specific

rectangle or the search of set of rectangles in the tree may often require sevcral

nodes to be visited at each level before ascertaining the rectangles to be visitcd at

the next level. This is because the intermediary nodes on a given level can overlap,

therefore their rectangles do not represent disjoint regions. The more serious the

overlapping is, the more nodes have to be visited, the larger the search space.

Besides the root node, R-tree has leaf node and non leaf node. A non-lcuf

node contains entries of the form (Child, Rect), where Child is the address of i r

child node, and Recr is the minimum bounding rectangle of all rectangles which

are entries in its child node. A leaf node contains entries of (Object-id, /2ect),

where Object-id refers to certain object , and Rect could be the object or objcct's

hE3R. Ail leaves of R-tree appear on the same level.

An example of R-tree is pictured in Figure 2 below.

Figure 2 A demonstration of R-tree structure

All the non-leaf nodes are assigned a minimum and maximum number of

entries. The maximum entries dlowed is defined as node size. If node size is M ,

each non-leaf node should have at least [W2] entries. If m = [M/2], then the

order of the tree is defined as (M, m).

Section 4.3 GCS: Grid Coordinate System

GCS is orthogonal giids. Under this representation, a two dimensional space is

covered by a flat grid with equidistant on both X and Y axis. When superimposed

on 3 polygonal net, objects which could be polygons, chains, or segments, are

then divided into cel1 groups according to their cell occupancy. Grid cells are

numbered in a way by row and column and objects belong to the same cell are

stored in the cell index array by the object indices.

Grid resolrifioiz is defined as GxG, where G is the number of .grid cells in one

row or column, and 1/G is defined as grid size. Number of objects belonging to a

cell is defined as object grid volwne, so there are polygon grid volume, chaiiz grid

twlrime, and segineizr grid volume, depending on the object chosen. Pair of (cell

index, object index) is also defined so that the total number of (cell index, object

index) pairs can be used to measure the amount of computation with regarding to

different grid resolution and different data size.

A different grid resolution generates a different grid volume for same data set.

The smaller the grid volume, the less computation will be performed in each grid.

Resolution affects on the volume can be pictured in the Figure 3 and Figure 4

below. When grid resolution is chosen 2 x 2 in Figure 3, the average segment

grid volume is 8/4=2, while in Figure 4 when grid resolution is 4x4, the average

segment grid volume turns into 14/16=0.875.

Figure 3 grid resolution = 2x2, edge grid volume = 2

40

Figure 4 grid resolution = 4x4, edge grid volume = 0.875

In the extreme case where the grid size is maximum, i.e., no griding at all, the

grid volume is maximum which is equivalent to the total number of segments. But

not that the smaller the grid size, the better. When space is too much fragmented

to the extent that one single segment is clipped more than two or three times, the

number of total (cell index, object index) pairs will be very large, so the amount

of computation is unbearable. This is the case when data is almost rasterized but

the computation is still vector based.

Although GCS is independent of the input data, which is to be converted

according to its own data volume and data distribution, performance of any

operation based on this schema relies on choosing a appropriate grid size according

to the volume and distribution of the input data. It is therefore necessary to study

the statistical aspects of the input data in order to achieve good performance.

Chapter 5
PM Quadtree Based Spatial Join

PM quadtree appears to be an attractive data structure for spatial operations

including spatial join. It stores the polygonal map with precise information and can

be adapted to a dynamically changing environment. The virtue of thc qut~tltrec-

like representation to spatial join operation is its regular decomposition, which

makes uninteresting areas to be ignored and the searching of the interesting areas

efficient as well.

Although there has been some research 'and empirical I-esults on the pcrfor-

mance of some spatial operations Like point location under q~iadtrce regrcsenta-

tions, we are concerned about the performance of different spatial join algorithms

under PM quadtree representation and the performance of certain spafial join

algorithms under different PM quadtree variants resulting from different decorn-

position criterions. Our goal is to find an efficient method to perfor111 spatial

join which would result from combining the best algorithm with the optimal PM

quadtree variant.

Section 5.1 PM Quadtree Based Top-Down Traversal
Algorithms

We are presenting three algorithms to perform spatial join. They all fcature

top-down tree traversal no matter which PM quadtree variant is used. Rut different

strategies are used with respect to what object is used during the traversal and

whether further leaf splitiing is performed.

5.1.1 PMS J: Parallel Traversal With Splitting Join

This is an algorithm performed on two Quadtrees at the same time. First,

Quadtrees for each of the two polygonal maps are constructed. Then the algorithm

traverses the two Quadtrees in parallel. Only corresponding quadtree nodes at the

:;si;ie level are compared. ?Vhen one tree is a leaf and the other tree is not, the leaf

is split into a node with four sons, each of which is leaf node, The procedure is

then applied recursively to the corresponding sons. When both Quadtrees are leaf

nodes, the dictionary of one of the Quadtrees is checked against that of the other

for possible intersections of the segments, and should any intersection occur, the

intersection of the corresponding polygons is recorded.

The algorithm is presented as below:

[algorithm 5.11

Input: tn polygons and nz' segments in map 2, n polygons and n' seg~nents

in 1nup2;

Output: Set ($'pairs (Pi, a), szrclz tlzat Pi belongs to mupl and QJ belongs

to 1wp2; 0 I i -< in, 0 -< j L: 11;

IFkgin

I . Cotutrrrcr Qrtridtree Q l for rnapl;

2. con st^-uct Qzrcidtree Q2 fur rncrp2;

3. Strirtingfi.nin rout of Q l mcl root of Q2, compare correspoilding nodes;

if both tire pey , go to the next level, check col-responciing nodes;

else

if boilr lire leal; pe@onii d ic f io~aly to dictiuna~y check and report

intersc~tinns. r~t tml;

clse

if one is grey, m e is leaJ

splir rhe leclf; generating four new leaves, and coinparing

l e m w with rlte cort-espo~ldirzg sons of the grey node.

End.

The fact that only leaves at the same decomposing Ievel are compared and their

corresponding dictionaries are checked for the possible intersections, nukes the

tra~ersal very expensive. This is because both tree nodes are further decomposed

dow:! tc! the Ievel of tvhichever is deeper when the corres:~c?i~riirtg il0r1t.s nw tot

at the same leaf Ievel, and cach time with each node the splitting is donc by

decomposing the present square into four equal quadrants. pssing the cfictionar!

to each of them and clipping all the line seg~nents i t1 the dictiitn:iry against fhc ' n~

The Quadtrees from the two different maps eventually turn into esnctIjr t hc m n c

and the maximum decomposition schernia and levels.

5-12 PhlNS J: Parallel Traversal Son-Spli tting Join

PR'lNSJ is designed to eliminate the over-splitting of Pll1S.J and nnktts usc ol

the detailed representation provided by the decomposition.

When corresponding quadtree nodes at the same level :KC con~pttwtl with c;tch

other, no splitting is done if one tree is a lezf and the other- tree is not. Ir~stc;ul, i t

continues traversing down the other quadtree to its leaf level, and then cornp;u.cs

dl the dictionaries dong the traversal of the tree to thnt of the leaf ~mdc f rom

the other quadtree; i.e., the leaf dictionary of one of the Qurtdtrcus is cvrnl~arctl

with all the dictionaries of the subtree with the corresponding node as 111c root.

Although there is rnore dictionary checking due to the fact thnt traversal of any

one of the two quadtree stops as soon r*s its leave is reached, there is no f'urthct.

splitting of the quadtree, which involves much rnore computation t h m that of the

dictionary checking.

The algorithm is presented below as well:

[algorithm 5.21

Input: 112 polygons and tn' segments in nzap 1, 11 polygn~rs and 1 2 ' . ~ ~ g ~ l w t l t s

iuz map2;

Outpuf- Set of pail-s (Pi, Qj], siicfz t h r Pi belongs to iiwpl uncl QJ belorigs

to map2; 0 5 i 5 nz, 0 5 j 5 n;

I. Cmstnrct Qr~udtree Q l for mapl;

2. Cortstrrrcr Qttdtree Q2 fur tnq2;

3. Starting fram root of Qf und rmi of Q2, cornpure ccoresporzding nodes;

gbotlz w e grey, go to the next level, checki~zg con-espondirzg nodes;

e /.re

if both 61t.e f e d peifirtn dicfionuiy to dictionary check and report

intersec f iotzs, refrim;

e/se

m e is grey, one is leu3

petjbrnr dkiionai-); to tree checking;

continue trnsersing down the quadtree with grey node, wztil leaves

ure redzed. IVhetzever cc leaf is reached, petfortx the dicrior?a~y to

~iificrirmccty cfiecking and report intersections, retrim.

End.

Dictionary to tree checking is done by a recursive procedure Dictionnr-

I'oEzeCheck(Dic~i0~1n1y~ Quadtree). Tt calls itself until the leaf of the Quadtree

i~ reached. So the intersections are checked between the Dictionary and all the

dictionaries of the Qirncirree, Back to the PMNSJ, it implies that whenever the

corresponding tree nodes are not at the same level, i.e., one has reached its leave,

but the other has not, the dictionary of the leaf node from one of the Quadtrees

is checked against a11 the dictionaries under the corresponding grey node from

the other quadtree. The subtree under this grey node is traversed and all the

dictionnries we visited.

Return;

1;
For ij=a;j<lvrr~~zberOfSons;j+ +)

End.

Procedure Dic~io1zaryTuDictioi~niyClzeck(Dicti~1, dDictiorrnry2) sequcn-

tially traverses two lists and checks for the edge intersection. Since the nunhcr

of edges in each dictionary is small, a complex data structure is not ncccssary

in this case.

5.1.3 PMIJ: PhiI Index Join

This is a method which uses quadtree as an index to search those cdgcs that arc

most likely intersecting the present edge.

First, a quadtree of the one of the two maps is constructed. Second, an

attempt is made for each chain from the other map to insert into the quadtrce

already built, but no actual insertion is carried out when leaf level is rcachcd,

rather the intersections against dl the edges inside the dictionary arc cfrccked.

The algorithm is presented as below:

I . Consltuct Qiradtree QI for mapl;

2. Fur each chain in tnap2, starting for- tlze root node of Ql , examine tlze

chain segment against the node square;

IJ-'rhe rzode is grey, clip tlze clzain segment against the node square;

if clipped, go to the next level of the grey node;

if not clipped, ret~im;

if the node is lea$ petfonn dictionary checking between tlze chain

segment and tlze dictionary of the leaj report intersections;

ietlrrn;

End.

Step 2 is implemented by a recursive procedure QuadtreelnsertClzeck (AChain,

Qucdtree), in which the chain from one map to be checked with the present

quadtree of the other map, is clipped against the blocks of the Quadtrees starting

from the root, and only blocks that are clipped by the chain are further tra-

versed until their leaves are reached. Then intersections are checked between the

chain and the dictionaries of the leaves. By clipping the chain along the existing

quadtree, not only the areas that have no intersection with the chain are avoided,

but also the clip is conducted in the existing quadtree schema which leads the

direct mapping of the possible intersecting leaves to the chain. Furthermore, there

is again no additional splitting during the traversal.

The code for QuadtreefnsertCheck is presented below.

Procedure Qunritreeli~serrCIreck(Cl~ain, Quadtree2)

Begin
ClipLine(Cliain, Quadrree- >Block, result- list);

If Is-Ettlp~y(resrr1t-lisf) Then
Return;

If Is-LeilJ{Qrradtree2) Then

{
Dicrionnr_vToDictio~~a~~~Clzeck(res~ilt-list, Quadtree2->Dictiona1y);

Return;

1;
For (j=o;j<N~rnzberOflo~z~r;j+ +)

QuadtreeIrzsertClteck(l.esrrlr-list, Quadtree2->Soll[j]);

End.

5.1.4 Empirical Results

Each of the three algorithms PMSJ, PMNSJ, PMIJ described thus far wcrc

implemented based on PM1 Quadtree for comparison purposes. The same six

sets of test data in chapter 3 were used here as well. Execution times wcrc

measured in seconds. Figure 1 below pictures the performance curves of each

of the algorithms.

Notice that the second algorithm PMNSJ (Parallel Tr~zvel:rcrl Without Split-

ting) improves over the first algorithm PMSJ (Parallel Trixversal 'C"/irh Splittiirg)

as we expected because further splitting is avoided, and replaced by dictionary

checking, which are less expensive than clipping and splitting.

The result also shows that PMIJ outperforms both of the parallel tmversal

algorithms PMSJ ,and PMNSJ. By clipping the chains from one of thc maps

along the existing quadtree from the other, those dictionaries that the chain is to

be inserted are the most likely intersecting ones with respect to the specific chain,

and not the whole dictionary as is the case in the second algorithms. Although

we don't save much by not constructing the second quadtlce because the chain is

to be clipped along the existing quadtree anyway, more accuratc relative objects

are obtained by this clipping, and the redundancy is further reduced.

Figure 1 Perfonnnnce of PMSJ, PMNSJ, and PhlIJ

Another important fact is that the performance of all three algorithms drops

consitlerably as the number of polygons and edges are increased. It is due to the

fact that the quadtree representation occupies large amount of spaces. It provides

detail spatial information of a map down to lccations of segments of each edge.

When edges are heavily fragmented, it is repetitively stored in the quadtree much

more than once, since each leaf allows only one segment unless more than one

segments originate from the same point with PM1 Quadtree. But the extent of

the fragmentation can be reduced by adapting a less restrictive decomposition

criterion. This ~ ~ s u l t s in the experiments with different quadtree variants.

Section 5.2 Comparison Of the Algorithms on
Different Quadtree Variants

Thcre arc three vtu-iants of PM Quadtree developed by Samet and Webber

under different decomposition criterions . The PM2 and PM3 quadtree are

obtained by successively weilkeriing the definition of what constitutes a valid leaf

node, resulting in PM Quadtrees with less depth and less lewcs. Although wi th

" <TIllC I l f S asC Ph4l quadtree, more detailed information could be obtahed, chain sc,

overly fragmented such that redundant intersection checking can not bc ignored

in the performance analysis as far as spatial join are concerned.

In this section, we discuss the way that different decomposition critcrions

affect the performance of the spatial join, and conclude with one PM Qundtrce

as the choice for spatial join. Empirical results will also be presented to verify

our analysis.

5.2.1 Analysis of PM Quadtrees in Spatial Join

Among the three variants PMl, PM2, and PM3, the PM3 quadtree has thc Icnsr

requirement for segments in one block. It only limits the number of vertices in

each block area without the requirement to the segment across the block, while

PM1 Quadtree allows only one segment across the block, and PM2 Quadtree

allows more than one, but they have to meet at a common vertex exterior to the

block.

All of the three variants of the PM Quadtree present exact map data. What

would be the effect if different variants of the Quadtrees are used in our spatial

join algorithms?

In spatial join, we are concerned about how much benefit can be obtained from

this decomposition schema, such as how fast the interested area can be reached and

how accurate the information is, in the sense that those chain segments appeased

in the reached block area, are closely located to the searching chain segment.

They are the segments that most likely intersect this segment than that appeased

in any other block areas which can not be reached by this segment.

By this observation, quadtree is actually used as a space decomposition

method in our algorithms. The space is decomposed regularly into four equal

quandrants upon the arrival of the new chain segment and the violation of the

criterions. Clipping and node splitting mate the chain segment appear in more

than one node, thus introduce redundancy. The space should be decomposed

to such an extent that the map chain segments are divided into groups by their

spatial locations under the quadiree decomposition schema, and there shouldn't

be too much redundancy with each chain segment resulting from node splitting

to meet the criterions.

Under quadtree decomposition schema, the more node splitting that happens,

the deeper the tree is, and hence the more fragmented the chain segment would

be. Since PM3 Quadtree has the least requirement for the ending block, it results

in least number of node splitting, but yet it decomposes the space to a quite fine

extent for spatial join, with each block containing maximum one vertex. A study

by Samer and Webber shows that from PM1 to PM3 quadtree, there are up to

19% reduction in depth and leaves with a cityline map. According to our analysis

with the spatial join, PM3 quadtree would have the best performance with any of

our algorithms discussed in the last section.

I n general, redundancy can hardly be hvoided due to the fact that it is very

difficult to have a variable space division of the space to include the polygonal

chains into non-intersecting groups, unless each chain segment is made one group

unit, in which case it is reduced to the brute-force performance. The way quadtree

divides the space is not variable, but the extent the space is decomposed can be

controlled, so is the redundancy resulted from the decomposition, but very limited.

~.L.L En~piricaI Results

To ~erifq. oiir conclusions, the three algorithms were implemented on PM2 and

PM3 Quad-trees as well. The same six data sets were used and the results were

grouped by algorithms, i.e., we compare the performance of the same algorithm

on different PM Quadtree variants.

0 1 2 3 4 5 6 7
Data S e t

Figure 2 Perfonnancc of PMSJ on PMl, PM2, and PM7 scspectivcly

0 I 1 2 3 4 5 rj 7 r

Data S e t

Figure 3 Performance of PMNSJ on PMl, PM2, and PM3 respectively

52

Figure 4 Pcllbrmnncc of PMIJ on PM1, PM2, and PM3 respectively

Figure 2 above shows the performance curves of PMSJ on PMl, PM2, and

PM3 respectively. Figure 3 shows that of the PMNSJ, and Figure 4 presents

results of the P M J .

Overall, Ph43 quadtree has the best performance with any of the three

algorithms, which verifies our conclusion in the above section. Furthermore, when

tabling the PM3 Quadtree performance data of the three algorithms in Table 1

below, it is also the PhgIJ that showed its best performance.

Although space requirements are reduced with both PM2 and PM3 Quadtrees,

which improves the performance with lasge data sets, the overall performance is

still not satisfying. We look at ways to further improve it in the following section.

Table 1 Performance o f PMSJ, PRINSJ, and YMlJ on PM3 Qundtlvc

Secti~n 5.3 PM31J: A PM3 Quadtree Based
Spatial Join Algorithm

So far we have concluded, that PMIJ (Qlmdtree-based iizrlex join) imple-

mented on PM3 Quadtree generates a best result among the three algorithm

implemented on different PM Quadtree variants. In this section, we present a

practical solution based on PMIJ of its PM3 Quadtree variant, by deferring the

dictionary checking, in order to reduce the amount of computation resulting f'rorn

the redundant storage.

5.3.1 PM3W: Two-step Processing of Spatial Join

Careful study of the algorithm PMIJ shows that, even with PM3 Quadtree in

which chain edges are least fragmented, each edge may appear in more than onc

leaf node, therefore more than one dictio~zary contains the same chain segment.

Since actual intersecting points are of no interest for spatial join, the dictionary

checking is inevitably redundant in this way. Although the storage of rcdunrlant

information can not be avoided, the redundant checking of the intersections could

be replaced by a two-step process, which will separate the process of grouping

the map chains from the process of the actual checking.

An extra data structure is needed to keep track of the possible intersecting

chain segments during the traversal of the quadtree for each chain segment. The

repetitive information will be filtered out by this structure, and each possible

candidate will be recorded only once, Actual intersection checking would not

take glace until the end of the chain traversal, and then the stn~cture is cleared

and reused for the next chain traversal.

The data structure we used is linked list. Again a complex data structure is not

necessary, since there are generally a small number of segments in each list, and

each segment in the list has to be traversed. If a polygon chain has an segments,

then there are rn such linked lists recording a very fine collection of candidates.

These m lists are organized in chain segment order, so corresponding checking

can be performed between each segment and its candidate lists. Intersections are

then collected from this checking as usual.

The algorithm is presented below:

Input: ill polygons and in' s ~ ~ m e n t s in map 1, n polygons and n' segments

irz 1nap2;

Output: Set ofyuirs (Pi, a), such that Pi belongs to map1 and QJ belongs

to nmp2; 0 < i < m, 0 < j < n;

Begin

I . Constrirct PM3 Quadtree Q l for anapl;

2. For each chain Ci in t~apir, starting jkonz the root node of Q l ;

20. Fa:. each seginent sj of Ci, initialize list Lj

I f it's grey, clip sj against the node square;

&'clipped, go ro the next level of the grey node;

ff m t clipped, return;

F i t ' s leaj; for all the segments in the leaf dictionary,

it's already in Lj, ret~mz;

If not in the list, add sj to L,; return;

28. For each sj of C;, and its corresponding list Lj

End.

Step 2a is also implemented by a recursive procedure QuadtrceI~lsert Check,

in which the dictionary checking is replaced by a proct3dure tldclCrz~1~1iii~rti.~1i)Li.~t

(result-list, Candidates-list). As a connparison, its pseudo-code is also psescritcd

below.

Procedure Q~iadtreebzsertCheck(Clznitz, Qudtree2, C'cu~rlirliztes-lisr)

Begin
ClipLine(Clzain, Qzradtl-ee->Black, i-esult-list);

If 1s-Empty(resu1t-list) Then

Return;
If IsJeaf(Quadtree2) Then

{
AddCandidutesirbList(i'esi11t-list, Candidates-list);

Return;

1;
For (j=o;j<N~unberO;fSons;j+ +)

QuadtreeInsertCheck(reer~rlt-list, Qiiadtree2->Son[j]);

End.

- In the implementation of PM3IJ, memory for the additional lists is dynami-

cally allocated and deallocated. Besides, the number of segments of each chain

is limited, so is the number of lists needed. The following sub-section presents

our empirical result and the concluding remarks for this chapter as well.

5-32 Empirical Resalts and Conduding Remarks

When applied to the same sets of testing map data, the optimized solution showed

its improvement over the non-optimized. It is compared with all the three

algorithms based on PM3 quadtree. The result is pictured in the Figure 5 below.

0 1 2 3 4 5 6 7
Data S e t

Figurc 5 Comparing P M 3 4 with PMSJ, PMNSJ and PMU of PM3 variant

A satisfying perforn~ance is obtained when smaller data sets are applied. e.g.,

with a 38 x 100 data set, the joining pairs can be computed in less than 30 sec.

Because it doesn't consume less space, actually more by using additional data

structure, the performance is not improved much when large data sets are applied.

The conclusion we c,m draw from the above experiments is that, quadtree is

a fine, dynamic spatial data structure. Polygons, lines, and points can be inserted

into and deleted from the tree dynamically without having to rebuild the tree. As

i t is a hierarchial data structure, the search of the object can take advantage of

the tree structure.

It is aIso an expensive data structure because the computation needed to build

up ihe tree takes approximaiely 60% of the iota1 consiruciing time. e.g, with data

set 38 x 100, the time spent to build the first quadtree is 34.8813 seconds, and

the clip-line function takes 25.5577 secs, which is 73.2% of the total constructing

time. The average time percentage of the clipping over the constructing time with

5 of the polygonal nets is 66.1955% (see Tabie 2 below).

Table 2 Clipping occupies over 60% of the total construction l i i w

clipping/
building
x 100%

On the other hand, when we use it as a space decomposition method for thc

spatial join, the space is decomposed into such a fine extent that the edge is subdi-

vided and their location recorded. The decomposition is overhead for the spatial

join, hence the space requirement is too high, which results in ilrtsatisTactory

performance with large data sets.

For the later comparison with other spatial join algoritms based on different

spatial indexing methods, we will use PM3IJ, and name it PM-Join as a notation

of PM31J.

73.2704 60.4562 66.3220 68.3965 62.5323

Chapter 6
R-tree Based Spatial Join

As with Quadtree, R-tree can also be used as a space decomposition method to

perform spatial join as we11 to incorporate topology into the prccessing of object

intersecting detection. But it is different from Quadtree in the way the spatial

object is represented and the way the space is decomposed and organized.

are the factors that affects our solution for the spatid join operation ut

K-tree indexing structure.

These

:ilizing

Section 6.1 Choose Processing Unit of the
R-tree Representat ion

Possible processing units are polygons, chains and segments (refer to Figure

I), all of them can be represented by R-tree data structure, i.e., representing them

as 2-d minimum bounding rectangles, which results in polygon R-tree, chain

R-tree or segment R-tree. This is different from Phil Quadtree's segment and

vertex based only representation for 2-6 objects. By choosing different objects

as the processing unit for the spatial join, we will have different R-tree nodes and

different R-tree representations for the same polygonal net, as well as different

outcomes from the tree processing.

Polygon

Figure 1 MRRs for different processing unit

59

When chain is used as the processing uni:, for the ~tlsp that is to be presented,

there are obviously more MBRs than there are with polygotrs as the processing

unit, which wiH result in a larger R-tree, as it is assumed that polygon is co~npused

of c5ains. Under the assumption, we generate polygonal net with the nunrber of

chains in the net approximatsly three times more than that of polygons, hut only

1/51 of that of segments, where remember 11 is chosen to simulate the natur:d

boundary and n2O.

This is observed from only the representation point of view. As fitr as spati:ii

join is concerned, the objective is polygon oriented, i,e., pairs of polygons that

intersect. By choosing polygon chain as the unit, the polygon intcrscctions will

have to be recollected after the R-tree processing.

There are advantages with Grid Coordinate System when poIygon chain is

chosen as the processing unit. We present the advantages in the nest ch:~pter.

However, to directly generate polygon candidate pairs, no advantages can be

taken here by choosing either segment or chain as the processing unit. The result

is a Iarger R-tree and computation overhead. Therefore, polygons should bc the

processing unit, the result from the R-tree processing could be collected and ntade

use of directly in the later processing stage.

Section 6.2 Two-Step Processing of Spatial Join

Our approach to the spatid join involving R-tree as part of the data replcscn-

tation features two-step processing: the preprocessing step as a filter ro find thc

possible intersecting sets, i.e., where their MBA's overlap; and the polygon-by-

polygon intersection checking as the second step. It is during the first step that

R-tree is utilized as a spatial data structure to provide additional topology on pol y-

~ o n s ' locations and relative positions. ?Ye will present two different algorithrns
C

of using R-tree to fulfill rhe first step.

In this section, the general strategy of spatial join procssing is presented,

fol!owcb by the description m d analysis of two algorithms.

6.2.1 General Outline of the Processing

Under our strategy, map data is composed of two levels as one integrity:

Map Data Structure = vector Data Structure + Global Topology; Or

Map Data = Vector Data + R-tree Representation;

Hence, each polygon is represented both as coordinate lisi in vector form

and as MBRs of different levels in the R-tree, while the R-tree itself represents

the whole map the polygon belongs to. Vector data structure stores precise in-

formation of each polygon in the map, while global topology stores polygon

approximations and reconstructs them into a tree according to their space occu-

pancy. The spatial relationship of the polygons is therefore constructed through

their approximations, and provides additional topology for the spatial join oper-

ation, The approximations are boxes such that each edge is parallel to one axis

of the two dimensional space.

The whole processing can be stated as follows:

[Step I] Find our all the pairs of polygons which could be overlapping poten-

r W l [~ trccol-ding rc, their npprt7xi1nation constrwtsfi.orn the two rnnps. This inclrrdes

u design of ntw algo~itfims itiwhing R-tree: Index Join and Parallel Joitz.

[Step 21 Find our rhe esnct pairs ofthe overlapping objects by clzeckirig all the

pzirxfiuin-&-chtri~z frum rfre reszrlt offhe Jirst step, and calctilate tlze irztersecfioiz

ir!fi>marirlm like rlre boli~zdnt?r or the area of tlze resulting pairs if needed.

Let HI, 11; be the number of polygons in each polygons1 net rt.spectivcly.

and hI , h2 the maximum heights of their corresponding K-trees. If M and n a :uc

defined as the maximum and minimum entries allowed per node respectively, tl~cn

IzI and hZ can be calculated as [log,(nI)] and [log,,(n2)].

If nl' and tz2' stand for the maximum number of non-leaf ncxlcs in rllc

R-trees of the two polygonal net respectively, then Index Join has the worst

case complexity O[nl x(n2+n2')j and best case coniplexiiy O[nl x b] ; while

Parallel Join has the worst case complexity 0[(nl+nl')x(n2-m2')] and best cnsc

complexity OIMax(hl x ha)]. Maximum total number of nodes in n R-tree with N

rectangles can be calculated as [N / m] + [N / m2] + ... + I .

The analysis above shows that number of polygons and m,wimu:n entries

allowed per node are critical factors of the algorithms' performance i n he two

extreme cases. Maximum entries allowed per node is defined as n o c k s iw in our

context. So the analysis leads to a choice of large node size in the two cuscs.

However, in the average case, the way the node size affects the pesfos~nance is

not so straight forward, and the overlapping extent between sibling rectangles at

each level is neither non-overlapping as in the best case, nor all overlapping as

in the worst case. We will further discuss them by conducting expesimenls on

node size in the later sections.

Index Join based spatid join is named R-tree Index Spariul Join or RIJ; while

parallel join based spatial join is named R-tree Parullel Cortzparisotz Spcl[ial Join

or RPJ in our following context.

6.2.2 RIJ: R-tree Index Spatial Join

R-tree is used as an index in this algorithm. One of the maps having larger

mmber of polygons is represented as a R-tree; Each of the polygon MRRs from

the smaller polygonal net, is used as a known space to traverse the R-tree, starting

from the root, io find out all the polygons that could overlap it.

Suppose each node of the R-tree has maximum M entries per node, each entry

will be checked for the overlapping possibility because the enclosing rectangles

from each entry of the nodes on the same level are non-disjoint. If the entry is

intersecting, all the entries in the child node pointed by this entry will be checked

until the leaf level is reached. By checking the intersection with all the entries in

the leaf node, polygon identities can be obtained and resulting pairs are formed.

If at any level, the entry is not intersecting, the whole subtree under this entry

will not be examined and all the polygons at the leaf level will be exempted from

the resulting set.

The algorithm is presented below:

[algorithm 6.11
Input: m polygons and in' segrnenfs in map 1, n polygons and n' segments

in tnap2;

0utput:Set of pairs (Pi, a), sixlz that Pi belongs to rmpl and belongs
to tnq>2; 0 I i S In, 0 < j 5 n;

Begin
I . Construct R-tree r2 for the map2 that has larger number of polygons;

2. For each polygon Pi in mapl;

a. Corriputz its MBR Ri by scanning through the vertices of Pi ;
b. Startingfiom the root, for each node n of r2 at the same level ;

for ench entry e of the node n with covering rectangle Re;

i f Ri intersects R,;
if n is leaf node, record pair (Pi, P,), return;

if n is not leaf node, go to child node of entry e;

3. For ench pair (Pi , P,) from the result above;
For eaclz c h i n Cj of Pi ;

For each chain Ce of P, ;
i f Ci intersects C,, report polygon intersection, return;

End.

Although a polygon identity can be associated with only one of the leaf nodes,

its ,hXBR may be contained irt the covering rectang!ec of m m y nodes, thcrefosc,

all the nodes at the same level have to be checked. So only in the best case where

the searching MBR intersects with only one node at each level, the O(log ,~ ,~z~)

performance can be achieved for each MBR.

Figure 2 below demonstrates the best situation at one level, in which the

searching rectangle A intersects only enclosing rectangle 7. The enclosing

rectangles on each other levels are disjoint as well. All the searching rectnnglcs

are intersecting with only one of the enclosing rectangles on these levels. Since

the searching polygonal net has 121 polygons, and exactly one node at each level

need to be visited, a total of O(nl xlag,nz) time is needed at the first step, i.e.,

the index join.

Figure 2 Enclosing rectangles are disjoint and searching MBR intersects only one enclosing reclanglc

In the worst case, all the non-leaf nodes have to be visited before zcertaining

the final intersecting objects, and the time needed for each processing at the first

stage is proportional to the total number of nodes including leaf-nodes in the tree.

The search space in this case is nrtrnber-of seurching-rectangles x number-c$-total

non-leaf-nodes. Since the leaf-node contains the minimum bounding rectangles

of all the polygons in map 2, more than O(nl xn2) time is needed, where rz2 is

the nurnber of polygons in the second polygonal net.

This situation can be demonstrated in Figure 3 below, in which the searching

rectangle A is included in all of the enclosing rectangles, so all of them have to

be visited on the next level by A. At each level, the sibling enclosing rectangles

are overlapping each other severely so that every searching rectangle intersects

with every enclosing rectangles on any one of these levels.

Figure 3 Enclosing rectangles overlap each other and searching MBR intersects all of them

But in the average case, only a limited number of nodes will be visited and

compared, because the worst case happens only when the size of the searching

MBR is comparable with the space of the intersecting polygonal net, or all the

MBRs comprising the R-tree are of similar size and are comparable with the

size of the whole map. The former leads to a search of most of the nodes at

each leveI, while the later results in a severely nverhpped R-tree no matter what

splitting aigorithm is adapted when building the tree. Both situations will lead to

n sexch of the majority of the nodes.

In the general case, the map has polygons in uniformed scale. Polygons

composing the map are n~utudly non-overlapping. They could, however, share

common boundaries. Each polygon exists as a component of the map being not

comparable with the whole map in size. Therefore a large portion of the map

will be discarded for each searching MBR during the traversal, and the fi nnl

performance could be greatly upgraded by the added index join.
0

6.2.3 RPJ: R-tree Parallel Comparison Spatial Join

The Index Join does not take into consideration the fact that spatial join is a

set operation. From space decomposition point of view, R-tree is nothing more

than a hierarchical space occupancy approximation of the polygonal net. The root

specifies the bounding space occupied by the map, aild each level specifies in dctail

how the space from the above level is occupied in the form of a set of overlapping

rectangles. Down to the leaf level, the space occupancy approximation of each

polygon is stored. Therefore, R-trees fi.om two maps representing two spxc

occupancy schemes, can be compared at corresponding approximation level to

detect possible set-to-set intersecting pairs.

This leads to the design of the second algorithm for the first step. With this

algorithm, the R-trees of both maps are constructed first. Then starting Srolrl

the root, two trees are compared in parallel manner at each corresponding level.

For each node of one tree at certain level, it is compared with all the notics at

the corresponding level from the other tree to decide which node is of inlcrest.

By corresponding level, it is the same level counting from the root, nut in the

topological sense as is the case with Quadtree.

Starting from the root, the rectangle collection representing the space occu-

pancy of the map at each level is compared with that of the other map. This

is done by com~aring any two of the covering rectangles from both collections.

The result of the comparison is recorded in two local stacks which are passed

down to the next level for further checking. These local stacks are acting as an

approximate snapshots of the sub-space intersections at different levels, and the

deeper the level is, the smaller the processing object is, and the more accurate

the snapshot is. At the leaf level, the possible intersections of polygon objects

are obtained.

Generally the two trees are not of same height. Whichever reaches the leaf

level first, the result will be recorded in its local stack and updated while the other

tree is traversing down to reach the leaf level.

The algorithm is presented below formally:

[algorithm 6.21
Input:nz polygons and nz' segrrzents in map I, n polygons and n' segments

in nzap2;
0utput:Set of pairs (Pi, QJ), suclz that Pi belongs to rnizpl and belongs

to m q 2 ; 0 -< i I in, 0 5 j < n;
Begin

I . Constrirct R-trees 1.1 a d 1.2 for rnapl and map2 respectively;
2. Itritialize t ~ ~ o stacks stack1 and stack2;

a. Puslz root node address of rl into stackl;

b. PLISIZ root node address of r2 into stack2;
3. While stack1 is not empty and stack2 is not empty;

a. Initialize two local stacks L-stack1 and L-stack2;
b. Get jzude N; fi.oin stackl and node Nj from stack2;

c. For each entry ni in NI and each entiy nj in N2;
lj'tize cowriirg rec~angles of nj and nj intersects;

Case:

I) . both iti and nj are leaves;
record pair- (Pi , Pj);

3). n; is leaf and nj is not leafl.
prtsh adhess of izi into L-stackl;

prslz cltild address of rzj into L-stack2;

3). Rj is lenf and iZi is izot leaf;

pmh address ~f ?.zj into L-stack1
pslr cidd node address of niinto L-stack2;

4)- both and il j are izot leaves;
p s h ciziid node address of ni into L-srackl
plrsfx child inode address of nj into L-stack2;

d. Go to step 3 passing down rhe nvo forrrzl stack;
4. For each pair (Pi, Pj)fr-rmz tlze restift above;

For each clzain Cj of Pi ;
For each chain Cj of Pj ;

if C; intersects C;., report polygon irzteisectiotr, let~rm;

End.

Analysis of this algorithm shows that the configuration of the R-tree itself

has significant effect on its final performance. The best perforrnancc could bc

achieved when there are no overlapping of the subspaces partitioned at each lcvel

for both R-trees, and each sub-space from one tree on each level overlaps no inore

LZ case, than one sub-space from the other tree at the same level. In this very specil 1

a time proportional to the maximum height of the two trees can be obtained which

is extremely fast. In the average case, we can eliminate sets of polygons at cach

level although more than one node has to be visited and because i t operates a

set of polygons once at a time, a better performance can be expected over the

index join based R I J .

However, the worst case complexity is worse because not only does each leaf

node of one tree have to be compared with each of the other tree, but each interior

node of one tree has to be compared with that of the other as well. I f there arc

nl' non-leaf nodes in r l and na' non-leaf nodes in r2, the time needed in this

case will be proportional to the total number of nodes including the leaf rlodcs

from both trees, which is O[(nI+nl ') x (n2+n2 ')I. This is worse than O[nl x nzJ.

Fortunately this is an extreme case in which all the objects in the map j s taking

up tr're entire map space, i.e., overlapphg each other i;n the entire map.

Notable is the fact that the object overlap a; each sibling level affects the

space partitioning at each level, and therefore affects the search complexity.

6.24 Experimental Results

Both RIJ and RPJ were implemented and tested over the same 6 sets of polygonal

data used i n chapter 5 . Since h d e x Join and Bamllel Join are the major

difference of the two algorithms used as their first step respectively, we tested

the perfosrnance separately, so that we could compare the I d e x Join and Parallel

Join as well.

Firstly, the graphed results in Figure 4 below reflects the improvement of

the parallel join over the index join. They are the first steps of the algorithms

rCIJ and RPJ respectively

0 500 1000 1500 2000
Number of Polygons

Figure 3 Camparisorr of RIJ and RPJ at their first step

On average, there is a 66% decrease in the time needed to perform the parallel

join over the ir1de.r joitz. As an example, with data set 6 having a size of 916x 1 144,

pat-crlkt joifi takes only 14.53 secs which is 33.06% of the 43.99 secs by the index

join. It is shown from the figure that the parallel join takes approximately only

one third of the time needed by the index join, a significant improvement, which

verifies our analysis of the two joins in the above sections.

Since R-tree is not involved in the second step, which generates the fin:tl

intersecting pairs based on the approximate result from the first step, the t i n w

needed at this stage is not different for the two methods. When consiclered as 3

whole, Table 1 below shows the total time needed for RIJ and Rl'J respcctivciy

over the six sets of data.

Table 1 Comparison of RIJ and RI'J t o ~ ~ l l y

The improvement of RPJ over RIJ is not however overwhelming, as shown

above, because the firin! intersection checking is still the most time cunstirtling

operation of all. In our measurement, the final intersection checking takes about

95% of the total spatial join time. We use R-tree to pcrfonn rectangle join first,

in the light of reducing the redundant checking involved in this operation. As an

extra data structure to assist the con~putation, R-tree should never take rt large part

of the whole operation, which best serves as a topological data structure to filter

out those impossible pairs. This can not be achieved by the vector data modci

without utilizing indexing structure because of its lack of global topology.

On the whole, both RPJ and IUJ shouid dramatically improve over thc

Boundary-Join, which uses only local data structure. This will be fusthcr

discussed in Chapter 8, in which we will use RPJ as the rcpresentative spatial

join algorithm on R-tree, and we name it R-Join to distinguish it from other join

algorithms.

Section 6.3 Measurement on Node Size

The experiment above was conducted under a certain node size 15, ie. , a

maximum 15 entries allowed for each node. According to the analysis we had

in section 6.2.2, node size affects the performance critically in both best and

worst situations. To estimate the effect that different node sizes generate in the

average case with the algorithms, we will have several experiments followed by

discussions in this section.

6.3.1 Experiments

in order to study the behavior under various node sizes, a wide range of node sizes

is tested: the sizes include 3, 5, 10, 15, 20, 30, 40, 50, and 60. The algorithm we

chose to experiment on is RIJ. Performance data were obtained from different

stages of thc algorithni: the construction stage, the index join stage, and final stage,

in order to see the effects frcm various aspects. But the same 6 sets of testing

data were used. With each data set, the measurement is always taken by choosing

the larger map as the R-tree index and th? smaller map as the searching objects.

Node Size Affects R-tree Construction The time needed to build the tree is

measured first under various node size chosen. Figure 5 below graphs the testing

results.

The graph reflects firstly, that the time needed to build the tree is proportional

to the riun~ber of objects in rhe data set obviously, with the curve of data set1 at

the bottom mil thc curve of data set6 above that of all the rest of the data sets.

"data-set 1"
"data-set2"
"data-set3"
"data-set4"
"data-sei5" -

"data-set6"

0 7 0 LLI 20 30 40 5 0 60 7 0
Node Size

Figure 5 Node Size affcc& the trce conslruction tint:

Secondly, for each data set, the time needed to build the tree tends to dcmxsc

as the aode size grows larger. For example, for the fourth data set in the table

having map set size 382 x 538, when maximum only 3 entries are allowed for-

each node, 65.73 secs which is more than one nlinute is nccessnry to build the

tree for 538 objects; while when the maximum entries is chosen as 50, only 5.62

secs is necessary. The larger the node size, the less time spent.

Thirdly, the decrease curve over the chosen 6 node size is not an evert one.

Prominent drops octur when the node size is less than 10. The time remains low

when more than 10 entries are allowed, and change is not obvious thereafter.

Node Size Affects Performanee of Index join It can be concluded t h t h:wing

a Iarge node size, in our czse more than 10 entries per node, wiil generate a trce

quickly, and therefore a shallow one. However, the choice also dcpcnds on the

performance of index joitt.

When irzdcn joirz is performed on the tress varying on the node size, Figure

6 gmph hclow r&lects that the index join on the shallow trees can be performed

indeed faster than on the deep trees with node size less than 10. For example, with

data set 4,5.83 secs is needed to do an irzdex join on tree with maximum 30 entries

per node, while 15.48 secs is needed with maximum oniy 3 entries per node.

ffowevcr, when the node size is chosen more than 20, the difference tends to

rtirllinish as the node size grows larger. Therefore, with a data set having under

I000 objects, the node size chosen should be least 10, and within the range of 10

to 60, join can be performed with no major time difference.

"data-setl" -
"data-set2 " --- - -
U-ZJaf 3- se+3<1 -
"data-set4"
"data-set5" - - - -

15 "data-set6" - - - - -

0 2.0 2 0 3 3 40 50 60 7 3
Node S i z e

Figure 6 Ncdr SIX affects the performance of I t d ~ s Join

Kotite that d m set4 behaves slightly differently. Although the join time

ciecreasec as the node size increases from 3 to 20, further increase of the node

size makes the join rime go up. The join time needed remains higher after 30

than that of node size wdsr 20 but above 10.

Node Size Affects the Performmce of RIJ When the t \ v ~ > steps arc consiitcsc.~i

together. i.e., measuring rne tin:? needed from the beginning of building t 1 ~ trcc

to ;he end of performing the find join. Figure 7 below graphicnlly pscscnts tllc

result obtained.

Figure 7 shows that each data set has its best perlosrn;tncc untkr iludc s i ~ e 20

or 30. Performance doesn't chmge nluch thereafter. So gcncrnlly, n nottc size of

more than 20 will generate a fairly good result, considering also the 1mp s i x whcn

the find choice is made. With maps having more than 1000 ol~jccts, the tcsting

range of izode size should be expended, and the best node size could vary :IS ~ 1 1 .

F i g u ~ 7 S&2 Size affects rhc pc&rmancc o f RJJ

6.3-2 Discussions

Node size is an optimization parameter for our methods. A large node size means

that the tree is shallow; a srnafl node size means that the tree is deep with respect

to the same map data. If overlapping at each level is not serious, searching sets

of objects will go quickly on a shallow tree, and building the tree needs less time.

Considering all the aspects, nude size should be chosen experimentally in the

average overlapping situation. It is not simply that the larger the node size, the

better the performance. Our experiments on data sets under Gaussian disiribution

shows similar results. Both data sets show obviously better performance with

node size of more than 10, and the performance afterwards varies little, but does

not keep dropping down in certain range.

Chapter 7
Grid Coordinate System (GCS)
and Spatial Join

In our approach of spatial join processing, the main task of a sp:itial data

structure is to represent space in a way that would assist the object overlapping

detection. Both ?M Quadtree and R-tree feature hierarchical sepreserttation, input

data dependent, and complicated computation. In this chapter, we will introduce:

for the spatial join a Gird Coordinate System, which is independent of the objects

that populate the space and not requiring a substantial amount of space pastition

calculation to achieve the same purpose.

Section 7.1 CSJ: Cell Spatial Join

In this section, we present a spatial join algorithm CSJ based on the Grid

Coordinate System (GCS). General strategy and its explanation is provided first,

followed by the detailed description of the algorithm and the analysis of it.

73.1 General Processing Strategy of CS J

Grid Coordinate System provides a way of unifornlly partitioning the s p ~ x

Spatial objects in the space are therefore divided into groups according to thcir

position in the space. The grouping of objects reduces computation by performing

the operation on the objects belonging to the same group.

The strategy of spatial join processing is also a two-step processing: gsiding

srep and checking sxep. Griding step serves as a fiiter as PM Quadrrce and it-tree,

to provide possible objectives; only objects in the same grid cell are checked

for intersection. GCS combines "buffering technique" to convert objects in the

priding step by object approximation in stead of object itse!f .

The general processing can be stated as following:

[Step 11 Superiinpase u Grid Coordinate Systetn on one potygonal net, convert

it into grid representation by cotnputing cell occupancy of objects according to their

upproximutions; This culled Net- Conversion

[Step 21 For each object ir~ second polygonal net, compute its cell occlrpaizcy,

and check for intersections izlitiz all the objects in the cornprrted cells.

The processing can take advantage of PM Quadtree's clipping and R-tree's

object bounding rectangle representation. Objects are reallocated by the super-

imposing, and the calculation is not so expensive because of both the object

approxin~ation, and non-hierarchical representation. The computational cost in

the second step is directly related to the number of objects in each cell, or the

numbsr of (cell itdex, ctbject index) pair (refer to Chapter 4 for the concept), and

the object chose11 as the processing unit.

Object approximation depends on the object chosen which could be polygon,

chain or segment. Cell occupancy varies with the object approximation, and so

does the algorithm, Deciding an object approximation and calculating the cell

occupancy play an important role in the algorithm performance. We will discuss

them first before we proceed to the detailed algorithm.

7.1.2 Object Approximation and Net-Conversion

When s~perimpsect by the flat grid, ebjects in the po!ygor,d net are converted

to their grid representzition by clipping the objects on the grid according to their

grid cell occupmcy. This is called Net-Contvmion.

Unlike in PM Quadtree where each segment clips on squares successively, the

dipping in GCS is dons by object approximation to reduce the net conversion time.

-4 minimum bounding rectangle with its sides parallel to the axis is again choscn

as the approximation form. It is not only simple to find the bounding rectrrnglc

of the object, but dso very convenient to calculate the cell occupancy. Bixiniliiig

rectangIes can be found by traversing the object once, and cell occupancy can

be computed without having to calculate the segment intersections and test the

ranges of the intersecting points as we do with PM Quadme.

Calculating Cell Occupancy of Object Approximation Fignre i bclow illus-

trates how grid cells are calculated according to the object hounding rect:lngic's

occupancy.

Figure 1 Calculating Grid Cell Index By the Objcct Hounding IZcctangle

In GCS, each grid cell has a unique number decided by its row and crtlurnn

nnmkr. Segpose the vtnifmm grid is cclcnposed of GxG celk, a cc!! dwcils In i

row j cofum has its cell number calculated a$:

Nij = F(i, j) = j -r Cxi, 0 5 i, j 5 G-1;

For any arbitrary object Oi, suppose its bounding rectangle is Ki, which can

be represented by s quad tuple (Xmin, Y,,, X,, , Y,,j, and 01 X, Y 51, its

occupying cell indices can be computed by the cross product of the occupying

row numbers and column numbers.

Suppose the occupying row numbers are i, i+l, i+2,, i+m and column

~lun~bers arc j, j+l, j+2, .,...., j+n, since the occupying row numbers or column

nurnbcrs are always consecutive, these two sequences can be calculated as:

i = [XInin t {I / G)] = [Xmin X GI ,

i+m = [X,,, -+ (1 / G j] = [Xmax x GI ; and

j = [Ymin + (I / G)] = [Ymin x GI ,

j+n = [Ymax + (I / G)] = [Ymax x GI ;

Therefore the cef l index set r can be computed as:

r= {N,, qi iipli+m,jSq<j+n} = {F(p,q)l i<p_<i+m,jlqi;j+n) ;

where ((p, q)lilpl(i+rn); j_<ql(j+n)) = (i,i+l,, i+m)x(j, j+l,, j+nj,

Although the object bounding rectangle reduces the amount of computation,

it inevitably introduces the inaccuracy. The precise calculation of the object cell

occupancy will result in less number of cell indices, i.e. less redundancy, and

therefore will result in less amount of further computation. But it is cost to clip

the object on the grid to obtain exact cell occupancy.

As we use griding only as a filter step for the actual intersection checking,

it should take least time to serve its role of generating possible candidates.

Reasonable amount of redundancy is tolerable as the cost of reducing tedious

intersection checking. By choosing an appropriate approximation object and

processing unit, the redundancy c m be reduced, so is the amount of processing

tn achieve a good performance.

Segment approsimation and Chain-based Processing By choosing polygon

as the approximation unit, we have the advantage of smallest number of processing

units compared with using se-pent or chain as the approximation unit, but also

have the disadvantage of computation oserhead and needs of cnlcukiting the

bounding rectangle.

The computation overhead is not so severe with R-tree based spnti:~l join n4wn

we chose polygon as the processing unit. This is because R-tree genesates better

candidate sets, i.e., a more accurate candidate set, while L~i th Nrt-Cotit-ersiotl.

the coarse calcuIation of the cell occupancy results in a much larger crindidntc

set. For example in the Figure 2 below, polygon P occupies 15 cells whilc its

bounding rectangle oecupies 30 cells, which is 100% rediintlancy.

Figure 2 polygon $ occupies 15 celis, its bounding ~xctangle ctccupics Xi

Considering the further checking based on this intermediate result, this p l y -

gon has to be checked with all the polygons in the Mse ce1Is, and conmolt

boundary chains are processed twice causing more redundmcy. The ovcrhcad

can not be ignored.

Computation overhead caused by the conversion inaccuracy exists as well

with chain or segment being the processing unit. With segment, wc have the

benefit of obtaining the bounding rectangle directly from thz coordinates of thc

ending points, but the number of (cell index, segment index) pairs would be greatly

increzc~ed. This is based on the definition that a polygon is a closed sequence of

chains, mr! each chain is composed of sequence segments. Therefore in general,

number of segments is much larger than number of polygons. As the objective is

polygon intersection detection, there is inevitable computation overhead.

Generally, the number of chains is comparable with the number of polygons.

As the processing unit, it is better than polygon with respect to the repetitive

checking of polygon common boundary. Not only is the common boundary

checked only once, but repetitive checking of false celk brought by the inaccurate

occupancy of the boundary is eliminated as well. It is also better than using

segment as the processing unit, because the number of (cell index, chain index)

pair is much less, so is the total amount of computation, and more topology is

attached. Therefore, chain is chosen as the processing unit in our algorithm. The

cell occupancy of chain is calculated segment by segment, so to avoid calculating

bounding rectangles first. Chain index is preserved in the cell index array after

the computation by segment, and repetitive chain index is not stored. Thus we

achieve small number of (grid index, chain index) pairs to reduce the computation

overhead. Furthermore, each chain is processed once and only once. The polygon

inforrmtion attached to the chain makes it efficient to collect polygon intersections

out of the chain's.

7.1.3 CS J: Cell Spatial Join

The spatial join starts with applying Net-Conversion algorithm on each polygon

chah of one of the two maps. During the conversion, the. bounding rectangle

of each segment of the chain is superimposed on the grid, and indices of the

intersecting grid cells are computed. Pairs of (cell index. chain index) are recorded

in the index m y in which chain indices are linked together as a list and referenced

by cell index which is the m a y script. No repetitive chain index is stored in the
==

fist so to avoid redundant computation, The data structure can be pictured in

Figure 3 below,

Cell Number Chain Index List

Figun: 3 Data structure of Cell hdex Array

After the net conversion on the first map, chains of the map are divided inlo

groups according to their occupancy on the 2-d space, and stored in the grid index

may. Applying the net-conversion on each polygon chain of the second rnap

generates its occupying grid cell indices stored in a cell list as well. Referenced

by the indices computed, those chain lists in the index array from the first map arc

possible candidates for actual intersection checking. Chain by chain intcssection

checking is therefore performed between this chain and each of the chains in the

lists, and once there is art intersection, the intersections of left and right polygons

of the two chains are recorded in a matrix recording the polygon intersections,

The algorithm Is presented below:

[algorithm 7.11
Input: m pdygons and m' segments irz map I, n polygons and n' segmizts

in map2;

0utput:Set of pairs (Pi, QJ), s t ~ h that Pi belongs to map1 and QJ belongs

to rnup.2; 0 5 i I 112, 0 5 j 5 n;

Begin

I . Apply Net-Conversion ulgo. itlzi~z on the "first polygonal net Map I;

l a , Initialize cell index array A;

Ib. For each polygon chain CIi of Map I ;

For euch segmenr Slj of Cli ;

a) Get its enclosing rectangle SRI;;

6) Cornprte indices x of grid cells intersecting with SRlj ;

C) Add Cli to the lists pointed by A[x], if Cl is not in the lists;

2. Initiulize restilt matrix P$II set M fi, j] to bit 0;

3, For each polygon claaiiz Czi in May2 belonging to polygon PZ1 and Pzr ;

3a. Clear cell list CLisr;

36. For ecrclz segiizent SZj C2i ,
a) Find its enclosing rectangle SR2; ;

b) Cornpttte indices y of grid cells intersecting with SR?; ;

c). Recold indices y in CList, if y is not in CList;

3c. For each chain CIk in the list pointed by A[y];

If Clk and C2i intersects, crnd CIk belongs to polygon PI , and PI,

Set M fPlr, P21f. hf [PII. P2r-I, [Plr, P2,1, M [PIrt P2rl to bit 1;
4. For each M [i, j] which is set to bit 1, report intersection ofpolygon i and j.

End.

We will analysis the algorithm generally in the following sub section.

7.1 '4 Analysis of the CSJ

Let E;Ct) be the expected ntiiilber of chains of map 1 passing through one grid

cc!!, and E(C2) be the expected number of ch ins of map2 passing tl-sough one grid

xlt. Given 3 grid having G x G number of composing cells, the computational

cost for this algorithm is 0[GxE(Cl)xE(C2)]. E(C1) and E(C2) are the actual

expected chair1 grid wltnn.

The expected number of chains passing through one grid cull is clirectly

proportional to the expected number of segments passing through each cell, or

expected segment grid volrrme, according to the algorithm. Let E(S1), E(S2)

be the expected segnzerzt grid vofzrme in map1 and map2 respectively. E(S) is

composed of expected number of segments completely contained in the cell EI(S)

and expected number of segments crossing the cells E2(S).

So we have

E(Sd = E i G d + E2(f1) ; Wd = EI(SZ) + E2G2);

These expected values are closely related to the underlying dat:~ distribution.

or in other words, the performance of the algorithm is input data dependent.

Without the statistical knowledge of the polygonal net, calculating the expczted

value about segment is very difficult. With our randomly generated ncl, although

the points were controlled under certain distribution, the polygonal net rcsultcd

from the line intersections present an unknown distribution.

However, whatever the data distribution is, the grid resd~rtiotl affects the

performance significantly along with the nulnber of segments and chains in the

net. Generally, more number of segments or chains results in larger E(S) with a

given grid resolzltion. With specific data set, as the grid resolirtioit incrcascs, ix.,

1/G+ 0, E(S) decreases, so is the amount of computations. This explains why

the cost can be cut down greatly after applying uniform griding schcrnu. I3ut G

can not be increased forever.

When grid resohtion grows very large such that the grid size is too small

compared w;fh the average seg-f?z-Pnt !etzgth. Number of segments intersecting the

mid cells will be very large, i.e.. E2(S) --+ infinite, when I/C-0; In this case, w

Aret-Conversioir will cost more than the intersection checking in each cell, even

though El (S) is very small, and amount of computation units increases unbearably

with the high resolutions, which results in too many (cell index, chain index) pairs.

Therefore, grid resol~ttiort shculd be bounded by the average segment leqtlz to

obtain a reasonable .yeginent ,grid volttme.

Since for those segments belonging to same polygon chain, only one chain index is

recorded, chain volume is generdly smaller than segment grid vol~mze, this is what

we do to reducc the computation units of furiher checking. But the inaccuracy

of segment cell occupancy introduces redundancy, hence makes the chain grid

volime Iarger than it actual.1~ is.

Tnere is no neat mather-naticili solution. But it can be concluded from the

abovc analysis, that firstly, a grid size that is comparable with average segment

length should yield 8 good enough performance, i-e., the average segment length

should be about the size of the grid, or larger but not too much which will resclt in

hcaviiy fragmented segments, high chain grid vol~rrne, and too many (cell index,

chain itzdex) pairs. Furthermore, with the comparable sizes, the best performance

should be able to obtained under one certain grid resolution which generates a

low chain volzme for certain data set.

Section 2 presents results from empirical tests that verifies the above analysis.

Section 7.2 Empirical Analysis

Experiments were conducted to find out how grid resolution, chain grid

wiwze, (cell itldex-, c1mii.r index) pair are related to each other, and how they

relate to the algorithm performance. We used same six sets of polygonal data

from Chapter 5 and 6. Data with Gaussian distribution of the ending points was

2ko tested for certain performance data.

In this section, we first list the statistics of the testing polygonal data in order

to be used in the later comparison. Then we present the study of optimal grid

msoftr:iuri for each of the data set. Related facts under the optimal grid resolution

are fisted to verify our andysis in the above section.

7-23 Statistics of Different GCSs and Testing Data

In the preliminary Chapter. we have stated that the polygonal net is ge!~~.a!cd

in a I x 1 unit. So the GCS is also within the unit. If' grid r~svlltriml is set as

GxG, G21, then the grid size call be computed as l/G, which is less or q u a 1 to

I. Since segments come from the intersecting of straight lines within the unit ,

we also have O>seg~nmt Jengtkl .

DataSet 1 38 x 100 945 x 2169 I 0.1 45

DataSet 2 100 x 165 2169 x 3726 1 0,096

DataSet 3 I 165 x 269 3726 x 5724 1 0.C178

DataSei: 4 382 x 538 8358 x 11763 0.057

DataSet 5 538 x 761 11763 x 16722 0.048

I DataSet 6 916 x 1144 19458 x 24615 0.036

Table I Statistics of each testing data sct

Each set of data is composed of two po'vgonal nets, and each nct has its

own statistics, therefore functions differently on the same GCS. The ovel-ali

performance of CSJ is decided by the average statistics of the two nets. 'l'al~le

I above presents the statistics of the 6 data sets, and segment length is based on

the average result.

To be comparable with the average segment length, the resolution of the CCS

we have chosen r m k c from 21 x21 lap to 91 x91. The statistics of thcsc CiCSs

is listed in Table 2. Notise that the grid size ranges from 0.01 1 10 0.0476. With

DataSet I , having the maximum average segment lengtlz, it indicates a range of 3

to 10 times of segment tengtlz to the grid size, while with DataSet6, it indicates

a range of I to 3 times.

Tdble 2 Statistics of different GCSs

7.2.2 Performance of CSJ Under Different Grid Resolution

Figure 4 below presents the performance curve of each data set on t l~c 8 GCSs.

The result shows that each set of data has its best perfos~nance under ccstain

grid resolution which we call optimal resollition, For example, data set I has its

optimal I-esolution 40x40, while data set 6 achieves its best performance with

optimal resolution 70x 70. For whichever data set, the performance dcclincs on

both side of the optimal r-esol~rtion, and the difference presented is not minor. For

example, with data se: 6, nearly 520 seconds is needed to do the CSJ when the

resolution is 90x90, white only 273.681 seconds is needed if we pcrfonrl US,J

under the oyrinzal ?-esolutiorz of data set 6. This verifies our conclusion, that iirrx

needed to perform the join decreases as the grid resolution increases from I ,

but further increase of resolution causes the drop of the pcrfbrrnance. The best

performance is achieved under one certain resolution. In the next sub section,

we will study the related facts under optimul grid r.esolution in order to bc able

to decide it beforehand.

0 20 40 60 80 100 0 20 40 60 80 100
Grid Resolution Grid Resolution

Figurc 4 Performmx of CSJ under different grid resolrrrion

85

7.2.3 Chain Grid Volume and Number of (cell index, chain irdcs) 1'uirs

Under Optimai Resotutim

To find out what is rclated to the oprimtlf r~saErition, fur each data set, \vc also

tested their average chain gt-id ~olirme and number of (cell i ~ d a r , rhr7in itztlex)

pairs along with the total grid number under each grid resoIution. The results are

listed in the Table 3 to Table 8 below. Each figure tables the data of one data sct.

Grid
Resoliition- 1

20
3 0
40"
50
60
70
80
90

Table 3 Statisrics under various grid rr.solution I'm' data sct 1

1 Resolution - I Number of
Grid Cell

441
96 1
1681
2601 *
3721
5041
6% 1
8281

Number oj
Pair (cell

iidex, clzu i ~ r
inclex)

Average
clmiu g rid

V C J E I I I I I

.
1.26
1 .W*
0.87
0.77
0.70
0.64
0.61

Table 4 Statisdcs under various grd resoluiiut: for daka sst 2

89

I Grid
resohtiorz - I

iVumber of
Grid Cell

Nuinber of
Pair {cell
index, clzairz
iildex)

1570
221 8
2888
3650"
4446
5325
6200
727 1

Grid Nztinber of
Grid Cell

441
961
1631
2601"
372 1
504 1
656 1
5281

Average
chain grid
t'011i1~2

Table 5 Stahties under various grid resolution for data set 3

Table 5 Sratistics under various g d resolution far data set 4

90

Table 7 Staristics under various grid rrsolutiori for data sct 5

-

Nrimber of
Grid Cell

441
96 1
1681
260 1
372 1
5041"
6% 1
8281

Nutrtber of
Pair (ceN

i~icIex, clzaiu
itzdexf

4459
5608
6769
8069
9279
10132"
12115
13532

Average
clia iit grid

v o i m

Table 8 Statistics under various grid resobtion for data sct 6

Those lines marked with * are data under optitnut resul~rfimn. The data show?;

that the uptit~mi resolution grows from 41 x41 up to 71x71 along with thc growth

of the data set, and the average chain grid volume remains at the rate of 1 or 2 ,

i.e. the number of (cell index, cJmin index) pairs is approximately 1 to 2 times

of the total grid cell number under the optimal grid resultition.

Tattle 9 below also presented the comparison between the average segltzent

6eng'ih and the grid size when the best performance is achieved.

Table 9 Comparison of grid she and average segment length under opfiinal grid resolurion

The data in the Table 9 shows that as the data set grows larger, grid size needs

to be decreased to achieve the best performance, i.e., grid resol~i#ion needs to be

increased to adapt to the high data density, and the ratio of the average segment

length to the grid size ranges from 2.57 to 6.05, which reflects the comparable

sizes of the two, i.e., the segrnmt le~zgth should not be overly large compared

with the grid size when the best performance is to be achieved.

Comparison of Spatial Joins and
Their Underlying Spatial Indexing
Methods (SIMs)

In this chapter, we will use Boundary-Join as the base line pcrformtlncc

to demonstrate the point of introducing SIM for the design and i~nplernentation

of spatial join. Next, ive compare these index-dependent. algorithms arnung

themselves, in the mean time, present comparative studies of the underlying SIMs.

We will show how GCS functions with respect to spatial join operation.

Section 8.1 Optimize Spatiat Join by PM Quadtree,
R-tree and Grid Coordinate System (GCS)

Spatial join deals with complex objects, in our case, 2-d simple polygons,

Object representation and object accessing space affect the way of the spatial join

processing. In Chapter 5,6, and 7, we have introduced additional spatial data struc-

tures to assist the processing, especially in the aspect of object accessing space.

It is aimed at making use of the object spatial occupancy in the object space, and

saving the high cost of actual join by processing the object approximation to gcn-

ei-ate candidate set for further processing, or applying recursive data partitioning

such that objects are accessed in a more efficient way for the spatial join.

In this sectien, we *i!I demonstrate the efficiency of our three spatial join

processing strategies represented by algorithms PM-Join, R- Join, and Grid-Join

as explained from the previous Chapters by comparing each of them with the

non-optiwJzed method: Boundary-Joh. The comparison will be baed on both

analysis and empirical results.

8.3.1 Optimize Object Accessing Space by PR,I Quadtree

For ,DM Quadtree, space is regularly and recursively decornpos~d into quadrants

until a very fine separation of segments is obtained. It yields an exact representa-

tion of collection of segments, not an approximation. Each segment has its specific

position in the reorganized tree space and any segment intersecting or neighboring

will be led to this segment by the tree within limited number of steps and with

certain amount of calcclations. The exhaustive search is therefore avoided.

PM Quadtree is an example of reorganizing the segments by regularly dividing

the object space and repositioning segments according to its relationship to the

square units of the decomposed space.

Empirical results was obtained on the performance of both Boundary-Join

and PM-Join over 2 groups of data. Each group has six sets of polygonal data

,and similar data sizes for each data set, but with different distributions. The

first group of data was generated by having a uniform distribution of the ending

points composing the polygonal lines; while the second group having a Caussion

distribution. Results are shown in Figure 1 and Figure 2 respectively.

In both figures, Ph9-Join keeps its performance fairly low under 1000secs,

while Boundary-Join grows up vastly along with the growth of data size.

However, performance of PRg-Join on normally generated data appeared a little

worse thm thar on uniformly generated data with respect to similar but large

data set, while with Boundary-Join they vary little. For example, with data set

6, 1644.43 secs is needed on dat; size 916x 1044 in group 1, and 1980.54 secs

needed on size 907x ! 123 in group 2. This is because ph4 Quadtree is sensitive

to input data, and different data distribution produces different decomposition

schema, hence different quadtrees. Data resulted from Gaussian distribution has

a mare uneven distribution of polygons (refer to Figure 2,3 in Chapter 2), which

results in more unbalanced quadtree. Bound-ary-Join is sensitive only to data

size, not to data distribution,

Figure 1 PM-Join improves over Boundary-Join on uniforn~ly gencratcfd data sels

0 1 2 3 4 5 7
DATA SET

Figure 2 Phl-Join improves over Boundary-Join on normally gcncratcd data sets

However-, a-, the result of exzct representation, the computation involved in

IWi-Join is quite expensive. Square clipping and node splitting are repeatedly

performed on every insertion and traversal of a segment. As an example, Table

1. below presents the time needed to construct PM3 Quadtree for one polygonal

net, the total time needed to perform PM-Join , and the percentage of the former

over the latter with respect to the first group of testing data.

Td3e 1 Consrructing a PM3 Quadtree takes around 40% of the total spatial join time

About 40% of the time is spent on reorganizing the net into a tree. As

intersection checking is intermingled with the construction, this is acceptable

especidIy after co~lsidering the improventent it produces over the Boundary-

Join, Introducing Ph4 Quadtree has improved the performance of spatial join.

8.1.2 Optimize Object Accessing Space by R-tree

2-tree generates inegii'lar goirping out of object approximations. Unlike PM

Quadtree, the space at each leve! is not regula!y decomposed and sub-spaces

aft. over1apped. Polygon approximation hJBR {Minimum Bounding Rectangle)

instead of polygo:~ itself is processed at the first stage. MBRs can be obtained

by traversing each polygon once.

Datdet 3 DataSet 2

f
Elupse
Time

{Sees)
DatuSet 1 DataSet 4

building
BR13

Quadtree

1 PM31J

I %

177-1361

489.732

36.17

DataSef 5

1
13.7806 28.1 150

35.0408 1 65.55 13

DataSet 6

413.85

1045.33

39.59

64.4320

159.762

778.60

1752.43

44.43 37.16 f 42.89 1 40.33

h B R serves as a surrogate with not precise but enough occupnncy inhrrnn-

tion of its belonging polygon. These ssrrog~tes are organized hier:trchiu;~Iiy and

rectangle brings the simplicity of R-tree computation. Intersecting and ~ieighbor-

ing polygon MBRs can be found efficiently by going through each level of the

R-tree '3 check the rectangle intersections.

Figure 3 and Figure 4 below reflect the dramatic effect by introducing R-tree

at the first stage on two group of data under different distribution.

0 1 2 3 4 5 G 7
DATA SET

7000 t t i 1 t t

Figure 3 R-Join improves over Boundary-Join on unifomly gencratcd data sets

97

6000

" R - J o i f i * --
- "Boundary-Join" +

-

I
5000 I- 4'

4000 t
3000

2000

1000

0

- A -

- --<
_.--- - -- A

,- , ,YJ"

i
f - - -A- - - l
1 > 1

ci 1 2 3 4 5 6 7
DATA SET

Figulr: 4 R-Join improves ovcr Boundary-Join on normally generated data sets

As with Phl Quadtree, curves representing the Boundary-Join keep growing

up along with data size in both figures, while curves representing R-Join, remains

very low as the data size grows. The contrast is sharper with larger data set.

The performance of R-Join doesn't show much difference with different data

distributions. This is due to its dynamic nature of the decomposition. By

accommodating objects dynamically, data distribution does not have much impact

on the performance; while the size of the single objects, and the order objects are

inserted into the tree, affect the overlapping extent of sibling rectangles of R-tree,

therefore affect the performmxe mainly.

Most significanily, R-tree brings over 90% improvement over the Eoundary-

Join. Table 2 below presents the time needed to generate the candidate sets at the

first R-tree stage, the total time needed to perform bounda~y join on the candidate

sets, and the ratio of the two based on the test on first data group.

Table 2 Processing in the first stage takes around 30% of t h ~ to~aI proct'ssir!~ h e

For example, for the third data set with the size of 165 x 269, the total

time needed with K-Join is 113.953 secs, out of which 30.1552 sccs is q x n t

on generating an approximate intermediate results, and 83.799 secs arc used to

perform the final checking. The same data set applied to IZonndary-Join, a total

of 1667.04 secs is needed which are almost 10 times that of R-Join. This i s a

dramatic improvement, especially in the sense of the extra 30.1852 sccs it spends,

i.e. the additional spatial data operation taking only 27% of the pcrfilrmoncc Lirnc,

generated 90% decrease of the total spatial join time on the data structure withijut

any spatial indexing technique.

8.1.3 Optimize Object Accessing Space by GCS

Both PM Quadtree and R-tree make hierarchical representation of the spacc.

Object locational information was elaborately used. Grid Coordinate Syslenr,

however, organizes the space direc~ly by dividing the space into flat, n c m -

overlapping uniform cells, and object is represented by marking all the cclls i t

occupies. All the objects are therefore allocated into one or Inore cclls according to

their cell occupancy, and intersection checking is based on this 2-d space division.

To obtain exact objecr cell occupancy would cost too much considering what

is to be achieved at this stage. Instead, approximate cell occupancy is calculated.

Though computation can fake advantage of the object simple approximation,

pi-ecision is limited by object approximation.

From the discussion in Chapter 7, poiygm chain is chosen as the processing

unit and segmcn t bounding rectangje is the basic superimposing unit.

Figure 5 and Figure 6 Mow picture the performance curves of Grid-Join

under uniformly and norntalIy generated data respectively, compared with that

of Boundary-Join. Grid t-esufrrfior-r was 61 x6f. Overall, there is about 95%

decrmce generated by adding the GCS on the space, which shows its striking

Impact on the join perfonnmce. Again, performance of Grid-Join under different

data distribution varies only a little with respect to similar data size. This

is because the space division of GCS is independent of data. Different data

distributions causes different aIlocations of segments in the cell index army, but

the amount of computation of cell occupancy as well as the final checking is not

affected.

Figax 5 Grid-Join impwvzj. over Boundary-Join on uniformly genented d%i sers

1

0 2. I 2 3 4 5 6 7
DATA SET

Figure 6 Grid-Join improves over Boundary-Join on norma1ly gcncratcd data sccs

Table 3 above presents the similar compzu-ison we had with R-trcc in the

above sub-section, about how overall perforrnance is improved by the conversion

effort in the first stage which takes only small percentage of the total time. Noticc

that 80% of the time was spent on the final checking, while converting thc onc

map into its grid representation took only about 20% of the total time.

Table 3 Conversion rakes only 20% of the total join time

101

Section 8.2 Comparing PM Quadtree, R-tree,
and GCS in Spatial Join

Careful study of the three SIMs shows surprisingly that GCS outperforms both

PM Quadtree and R-tree in spatial join. Figure 7 and Figure 8 below picture

the three performance curves under the two data distributions, noticeably with

that of Grid-Join having the lowest cost, and R-Join in between of the PM-Join

and Grid-Join in both of the figures. PM- Join showed worse performance under

norn~ally generated data compared with Grid-Join and R-Join.

All of them were implemented by using Objectstore as the storage manager,

and tested over the same testing data. The timing was measured under same

machine load and over contiguous time period. The algorithm itself makes the

difference mainly.

In the following sub sections, we will make a general analysis of the three

algorithms from the aspect of implementation technique.

0 1 2 d 4 4 5 6 7
DATA SET

Eigun: 7 Cornpan. p f~xrnancz of Phl-Join, R-Join! and Grid-Join on uniformly generated data

102

0 1 2 3 4 5 6 7
DATA SET

Figure 8 Compare performance of PM-Join, R-Join, nnd Grid-Join on norn~ally gc~lcrmxl data

8.2.1 PM Quadtree vs. R-tree and GCS

The most significant computational cost for PM-Join is segtnent clippirlg and let$'

node splitting. For R-Join, it is mainly MBR culctrluting and rectangle iratet-sectirlg

checking. Since segment is the approximation unit in Grid-Join, which makcs

the approximation inherent in itself, the only costly computation is the grid cell

index computation. The basic operation for all of the three is segrnerzt intersection

checking.

Segment clipping is repeatedly applied for each segment and each inncr node

along the path due to the way the PM3 Quad-tree organizes the space. Clipping

of the square requires not only range checking, but most frequently the clipping

of the 4 square sides to decide whether the segment it; crossing the square, or

clipping on the boundary, or outside of the square. Leafnode splitling is relatively

cheaper, because it involves only creating new PM3 node and dictionary copying,

but it creates more inner node therefore more segment clipping. The irnprovenmt

shows in algorithm PMNS J(Puralle1 Traversal Without Splitting Join) over YMSJ

(Pamllel Trcivet-sul IVith Spli!fitzg Join) when we reduce the number of node

splitting, However, all of the aIgorithms shows that segment clipping takes around

60% of the total time.

For example, with PM-Join , when total time needed to perform the join was

23 1 -68 secs, 147.79 secs was spent simply on the segment clipping. The pre-

ciseness of the segment representation results in the smaller amount of dictioizaly

cha-king, i.e., segmetzt intersection clzecking, compared with that of R-Join and

Grid-Join, in which there are much more segment intersection checking based

on approximate results.

Unfortunately, the high cost of clipping can not be compensated by the precise

dictionary checking. Even after we add data structure in PM-Join to reduce the

redundancy occurred in the dictiorzniy checking, performance was not greatly

improved, for the main cost was not reduced. Therefore we conclude that spatial

join can not bring out the best of PM Quadtree, for example, it's dynamic measure,

and fine description of the object location.

8.2.2 R-tree vs. GCS

Unlike Phl- Join, R- Join and Grid- Join make use of approximate information:

R-Join operates on the polygon approxi~mtion (MBR), while Grid-Join operates

on the segment approximation. Traversal of the segments is necessary for both

of then1 to obtain the approximation, so it does not bring the major performance

di ffcrence.

Beth methods characterize in two clearly separated step of processing, i.e.,

generating a candidate set in the first stage, and performing actual checking in the

second stage. Since seginenr iiztersection checking is the basic operation performed

by both in the second stage, only the size of the candidate sets and the way of

generating the candidate sets cause the main difference between the two.

Table 4 and Table 5 below lists the measurement on ex11 step of the

algorithnts R- Join and Grid-Join.

Table 4 Time spent to generate approxima& rcsulls for R-Join and Grid-Join ~espcc~ivcly

Table 5 Time spent to perfo~m the final checking on the

approximate results for R-Join and Grid-Join rcspcctively

DafaSet 3

12.9502

30.1852

In Grid-Join, Grid cell itzdex cotrzl;rutation is the Cartician Product of the index

tuples from the division of segment coordinates by the grid size. Thc candidate sct

is therefore generated after computing each polygon chains' cell occupancy. As

for R-Join, more complex computation has to be performed io get the candjdate

set. Besides building trees for each of the map, two trees intersects with cach

other at every level starting from the root to the leaf level to generate groupings

of possible intersecting polygons. Recturzgle intersecting checking is the main

1

Dnrt~Sc) 6

124.0 1 1

036.479

DataSer J

2 1.2406

82.0021

DatoSef 2

Elclpfe

for
Approx.
Result

DaraSer 5

28.3609

101.323

DataSer I

DutaSet 5

21 1.253

241.4 15

DatnSet 4

174.012

163.549

Grid
-Join

DniaSet 6

652.839

623.523
i

DataSet 3

73.59 12

83,7988

DataSet 2

38.4205

47.8318

Elapse
Tirne for

Final
Check-
ing

Grid-
Join

R-Join

6.8502

DataSet 1

26.4603

27.0428

8.6402

i R-Join / 9.5002 14.6801

computation during this first step. As the data size grows Iarger, more splitting

happens during the construction of the tree, and the free becomes deeper. All of

the above causes more cost for R-Join in the first stage than that of Grid-Join,

which is shown in the Table 4. For example, with data set4, only 21.2406 secs

is needed for Grid-Join to generate candidate set, for RJoin however, a total

of 82.0021 sees was spent. The contrast becomes more distinctive with larger

data sets.

The time spent on performing the final checking are very close shown in

Table 5 above. R-Join should yield a more precise approximate result than

Grid-Join. But they each choose different processing unit. It is polygon in R-

Join, and chain in Grid-Join. Polygon by polygon checking is more costly than

chain by chain checking because it is based on chain by chain checking. There

is more redundant checking considering that a polygon usually consists of 2 or

more chains, so each checking is equivalent to 2 or 3 number of chain checking.

Even if the intermediate result set is smaller, and more precise, this redundancy

would bring down the total performance close to that of the chain based checking,

as shown in Table 5. Therefore, GCS is more suitable for spatial join than both

R-tree and PM Quadtree.

Overdf, both Grid-Join and R-Join present good performance, although

Grid-Join outperforms both PM-Join and R Join with its simplicity and effi-

ciency. Grid-Join also has the potential of extending to parallel implementation

due to its unit independent feature. R-Join also produces fairly good results.

They are both feasible to be adapted in spatial databases or GIs to enhance the

system's functionality.

Chapter 9
Concluding Remarks and Summary

Section 9.1 Concf usions

This thesis tackles the problem of polygon spadal jairl on the vector data

model by extensively utilizing spatial indexing methods (SIM) for the sinlple

spatid objects. The problem can be defined as finding all the pairs of polygon

objects that overlap each other over their boundaries from the two given polygonal

data sets. The polygon spatial join is one of the most important and complcx

operations in systems that deal with 2-dimensional objects, Applications of spcrticll

join can be found largely in GIs, where geographical data is organized by "luyer.~"

and the joining of the layers creates synthesized information related to the same

geographical area. Furthermore. it can be extended to obtain intersecting paints

and additional spatial properties to realize the overluy operation, which is also

very important in GIs.

We solve the problem by extensively utilizing present popular SIMs such that

complex objects and object relations can be handled efficiently. This is bascd

on the observation that the spatial join relies on the object spatial occupancy,

md these SIMs decompose the space from which the spatial data is drawn in

such a way that the spatial properties of spatial objects can be developed and

stored. Two of the representative SIMs, namely PM Quadtree and K-tree, were

used. The PM Quadtree represents a disjoint hierarchical partition of space,

and the R-tree represents an overlapping hierarchical partition. We observed

that these SIMs we access methods for simple spatial objects like line segments

and rectangles. Few studies have been seen on handling complex obiects using

these methods, especially studies on performances of these indexing methods in

contplex operations like the spatial join. We present a study of this problem in the

context of polygon spatial join which requires the handling of simple polygons

and compositions of search results.

We also propose the use of the Grid Coordinate System (GCS) - a spatial

indexing method for simple spatial objects as a version of Grid File based on

the object. spatial occupancy instead of on the transformed multidimensional point

space, Unlike the R-tree and PM Quadtree's hierarchical partitioning of the space,

GCS presents a non-disjoint, non-hierarchical uniform grid space, We show how

cell indices can be computed and objects are grouped into relating cells according

to their approximations' cell occupancy in the GCS.

We design and implement polygon spatial join algorithms based on PM

Quadtree, R-tree and GCS respectively. We also design and implement the spatial

join algorithms with no spatial indexing involved for comparisons. The spatial

join results of polygons' can be derived by the topclogy implied in the vector

data model with segment-based PM Quadtree. Spatial join based on the R-

tree and GCS, however, are realized by incorporating a "buffering" technique

into the processing. The "buffering" technique generates approximate result by

processing the "boxes" which are surrogates of the complex objects. With previous

experiments, lack of topology of these object surrogates leads to an exhaustive

process to obtain this conservative result. When organized by the R-tree and GCS,

the relative positions of these surrogates can be derived out of their spatial extent,

'and therefore facilitates the retrieval of objects of interest during the spatial join

processing. In other words, SIM optin~izes the "buffering" technique.

The "buffering" technique enables a two-step processing of complex objects

for R-tree and GCS. We justify that this will lead to a reasonable performance

of spatial join by using SIMs of simple objects. It is based on the observation

that the performance of polygon spatial join is seriously bounded by the redun-

dant segment intersection checkirtg operation under vector representation. Object

approximations combined with their efficienf organization would yield x conserva-

tive yet fairly concise result to eliminate those potentially unqualified object pairs.

The redundant segment i~itersection checkings are therefore greatly reduced.

As the spatial join is a complex query, the operation is not only search-based,

but also involves extensive computation of the search results. To compare thc

performance of these SlMs is a sophisticated experin~ent in the sense that SlMs

are used differently in each of the algorithn~s designed because of their different

ways of partitioning and representing the space, and various distributions of thc

underlying data. Since each SIM has multiple factors affecting its performance,

and the experiment is carried out in a multiple clientlserver network environnlcnt,

it is not complete to measure the performance of each SIM only in terms of disk

accesses as it is with search-based operations such as range query and point query.

We believe that the measurement of total execution time is more accurate in

this particular context, and we show an extensive comparison of the three SIMs

after initially experimenting on each of the SlMs to select a best representative

for the comparison of STMs. V's generate random polygonal nets with different

data distributions as the test data for all of the experiments.

In the following section, we summarize what we have achieved from the

aspects we described above.

Section 9.2 Thesis Summary

9.2.1 UiiIfzing PM Qiladtree Extensively to Realize Sp=t!a! Soin

Th:: Ph4 Quadtree regularly and recursively decomposes the space into quadrants

until a fine representation of segments is obtained. The algorithms for spatial join

based on PM Quadtree are Parallel Pc~versul With Splitting (PMSJ), Parullel

Traversal WitFzozrt Splitting (PMNSJ) , and PA4 Quadtree index Join (YMIJ).

PMSJ and PMNSJ are characterized by their simultaneously searching on

two PM quadtrees, and checking with the corresponding nodes. A grey node

implies further traversing of the tree, while a leaf node leads to the objects of

interest. The leaf node is further split with PMSJ if the corresponding node is

not leaf. PMNSJ proceeds by checking through all the dictionaries in the sub-

trees with grey nodes as the root. PMIJ uses quadtree as an index to search for

the most likely intersecting segments. A result matrix is used in all of the three

algorithms to keep track of the polygon intersection information. Testing on the

random polygonal net shows PMIJ has better performance.

There are three PM Quadtree variants:PMl, PM2, and PM3. The PM2 and

PM3 Quadtrecs are obtained by successively weakening the definition of what

constitutes a valid leaf node. The PM3 Quadtree has the weakest requirement for

ending blocks which results in a search with the least depth and least number of

leaves. It decomposes space to a fine extent, but the segments are not as seriously

fragmented as they are in the PM1 and PM2 Quad-trees. Algorithms based on

the PM3 Quadtree therefore should yield better performance than that of PM1

and PM2 Quad-trees.

A practical solution, PM3IJ is based on PMIJ of its PM3 quadtree variant.

To reduce the redundant dictionary checking, an extra data structure is used as a

"filter" to keep track of the possible intersecting segments during the traversal of

the quadtree for each chain segment without repetition. This results in a two step

processing with deferred dictionary checking. PM3IJ showed its improvement

over the rest of the algorithms based on PM3 Quadtree, therefore, we use PM3IJ

as the representative of PM Quadtree based spatial join, and we name it PM-Join

for the latela comnparison,

9.2.2 Utilizing R-tree Extensively to Realize Spatial Join

The R-tree deco~npcsses the srlace dynamically dependant on the input data. Since

it proceqses only rectangles, the cornples objects are reduced to their ~ninimurn

bounding rectangles (MBR), and therefore can be represented by R-tree. Any

operations on the tree would generate only a conservative result. Since kIBK

preserves object spatial extent, the tree structure constructed from object MBKs

provides additional topology in terms of object intersections.

The spatial join algorithms based on R-tree feature two step processing with

the first step generating possible intersecting polygon pairs through the use of

R-trees, and the second step performing the chain-by-chain intersection checking.

Polygons are chosen as the basic processing unit. The different processing of

R-trees in the first step leads to two spatial join algorithms: R-tree Irzdex Spcztitrl

Join (RIJ) with index join as the first step, and R-tree Purullel Compnt.isou Spatid

Join (RPJ) with parallel join as the first step.

Index join uses a R-tree as an index to search for the interesting MHRs, while

parallel join produces candidate pairs by comparing two R-trees in parallel. Each

node in one tree is compared with all the nodes at the corresponding level in the

other tree because sibling nodes at each level could overlap. The outcomes of thc

comparison at each level are kept in two local stacks and passed on to the next

level for corresponding checking until both leaf levels are reached.

Analysis of both algorithms were emphasized on their first step, i.e., index

join and parallel joirz respectively. If nl and nl are the number of M13Rs in

each data set, and the tree is of order(M,m), then the index join has the best case

complexity O[nl xlogmn2], and the worst case complexity O[nI x!n2+n2')], where

nl' and nz' stand for the maximum number of non-leaf nodes in the corresponding

R-trees. Parallel join has the best case complexity OIMax(log,ni xlog,n~J, and

the worst case complexity 0[(nl+nl')(n2cn2')]. In the average case, pat-ullel join

generates candidate set faster than index join does.

Node size M is an optimization parameter of the algorithms. Generally, a

large rztzde size results in better performance time than a small node xize. It should

be chosen experimentally with regard to different data size. Experiments on the

randomly generated data with around 1000 polygons in each data set show better

pcrforlnance when rzode size is chosen Larger than 10, As with PM Quadtree, we

use the algorithm R-tree Parallel Coinparison Spatial Join for the later comparison,

and we name i t K-Join to distinguish it from PM Quadtree based PM-Join.

9.2.3 Grid Coordinate System (GCS) and its Spatial Join

Grid Coordinate System exhibits a uniformly partitioned space composed of

disjoint cell units. Each cell unit has a unique number decided by its column

and row number. By superimposing the GCS on the object approximation space,

objects are divided into groups according to their approximations' occupancy of

cell units. Object cell occupancy can be calculated by the Cartisian Product of

the object's occupying row numbers and column numbers. The calculation of

cell occupancy together with the object approximation causes redundancy and

inaccuracy. But the conversion of objects to grid representation is simplified and

fast, and reduces computation of an operation by performing the operation on the

objects belonging to the same group.

Spatial join based on GGS is realized by the algorithm Cell Spatial Join (CSJ).

CSJ also features two-step processing. It applies the Net- Conversion algorithm

first to transfer the object approximation into a grid representation, and then checks

for the actual inter-sections according to the grid representation. The segment is

chosen as the basic approximate object to be clipped on the GCS, and the chain

is rht: processing unit to reduce the mmant of ca!culatim in each cell. The

grid representation is implemented as a cell index array. The cell index array
w

is referenced by cell indices, and each anay element points to a linked chain

tist. Intersection checking is perfonned cell by cell, and result is recorded in the

result matrix,

General analysis of CSJ also Indicates that rhs underlying d m distributitw

and the data size affect the algorithrn's perforinanoe . GJYJ t-e.sr?iriiior; can be

adjusted to suit data sets \vith different sizes and distributiuw in order to obtain

low chnitz ~,olrrnze and a reasonable numbcr of (wl l i u d e ~ , cilirilr i m f t : ~) pairs.

Grid size is decided by grid resolrrriotz. To obtain a low r-1icri:t ivtlirm~, the

segments should not be overly fragmented by the choscn GCS, i . ~ . , ;~vmgc '

segiuent length should not be too large compared with grid size:'. I t ~houlii he

about the size of the grid, or Ixger but not too much. Grid wsoltttin~r is bounded

by the average seginent leizgtlt. Besides, a very large grid size nmns too rimy

number of computation units.

The experiments on the random net verify that best perfosntt-tnee can be

achieved under a certain grid resolution we call opti~nnl resttlurion, Vc~fosnt:~ncc

drops on both sides of the opfij~zcil resnlurintz. Carefully designcd expcri~ttcnts

also reveal that under optiiml r m h f i ~ i z , the number of (cell irirla, c!zaiit i~tilrx)

pairs is approxinlately 1 or 2 times of the total grid number. 31"l dht: average

seginent length is greater than 2 but less rhm 10 times of the grid . f ix.

We use CSJ as the representative of teh GCS based spatial jt>in i n ihe later

comparison. and we name it Grid-Join to distinguish it from burl1 PM Cfuarftsec

based PM-Join and R-tree based R-Join.

9.2.4 Comparison of Algorithms and Their Underlying Spatisl Indexing

Methods

The PM-Join, R-Join and Grid-Join all improve over the Boundary-Join dm-

matically. The Boundary-Join is a spatial join algorithm without utilizing any

spatial indexing method, This shows that introducing Sfh4 can indccd irnprovl:

spatial join under vector data model. Empirical results also show that both the

R- Join and the Grid-Join outperform Pal- Join with fair1 y good perforn~ancc on

aff of' the randorn te~ting polygonal nets. The Grid-Join shokvs slightly better

f>erfo~ntance than the K-Join in this contcxt.

The GCS appears idea1 for uniformly distributed data, while the Ph4 Quadtree

i(; suited for the arbitrarily distributed data. In general, since spatial data is not

usually unifurrnly distfibuterf as the randomly generated data set we had, the

YM Quadtree's regular decornposition approach is more flexible, therefore, PM

Quadfree based retrieval and simple operalions should yield better average perfor-

mance. However, when the operation requires the composition of search opera-

tions and results, like spatial join, the way that the objects are represented in each

SJM decides the way that data we further processed, and therefore greatly affects

the overall performance. It is observed that the PM-Join involves expensive op-

erations like segment clipping and node splitting which are applied frequently,

while the computations involved in Grid-Join and R- Join like calculating cell

occupancy and rectangle intersection checking, are relatively simpler and less fre-

quent. The fine description of objects by PM3 Quadtree can not be fully utilized

by the algorithms of spatial join based on PM Quadtree.

The GCS overcomes the Phif Quadtree's computational overhead by using an

approach similar to R-tree's. But the R-tree decomposes the space dynamically

so that different data environments can be accommodated, whereas with the

GCS. the decornposition induced are static. Therefore, R-tree can generate a

mare accurate candidate set. However, R-Join does not outperform Grid-Join

dnmatically since it takes less time for GCS to generate a candidate set, although it

is less accurate. by taking ad~mtage of its simple computation of cell occnpancy,

Frtrtherrnore, final intersection checking still occupies most of the total spatial

join time. Overall, both the GCS and the R-tree are feasible for the spatial join

operat ion,

Section 9.3 Future Work

,411 of the algollthms designed can be extended to realize rhc 7i)rtrl S/xrri:li

Join as defined in the introductory chapter by adding a point-in-polygo~~ nlgorith~t~

to determine the containment or enciosurc relation of polygons. But it should bc

applied on different result sets with different spatial join algorithms. For cs;tn~plc,

for R-tree based algorithms, containment and enclosure test should be applied mljl

on the non-intersecting pairs of the candidate set, since the cmdidr~tc set incli~tes

possible containing or enclosure pairs. While for both Y M qaadirce basctl and

GCS based algorithms, the test has to be applied also on thc pairs that are not irt

the candidate set. So R-tree is more suitable when both pnrticrl spcrtitz/ joi~r and

total spatial join are intended.

To realize spcrrial overlay by extending the spurid joirr algorithm is not

straightfonvard. Generally the spatial join dgorith~ns can be rnodiiicd lu record

all the intersecting points, and the resulting polygonal net can be traccd out

by processing the two polygonal nets together with the rcsultjng sol. Morc

sophisticated methods can be studied by using the YM Qu;ldtrcc and R-tscc

directly, and generating a resulting PM Quadtree or R-trce which represents the

overlaid map.

When modifying the algorithms to accommodate line objects, we could have

an extensive performance comparison of these spatial indexing rncthocls i n the

context of performing set operation on the large number of line segments. As

line data is much simpler, performance relies more on the indexing structurc

themselves, hence the conclusion could be different frurrt that of polygon's.

Experiments can also be extended by implementing the algorithms on top

of existing spatial databases, and making use of their underlying index structurc

direcdy, for example, a spatial database which uses R-tree as its secondary index to

speed up object retrieval. Indices can be loaded into memory directly to gencrate

a much sintiller candidate set, lhen perkrm the actual intersection checking by

loading it? the actual object<. in !his case, the number of disk access plays

an important role on the algorithm performance. Therefose it requires diRerent

perl'orrnance ~ncasurernenls.

AIthough the spatial indexing methods for simple objects can be extended

to process colnplcx spatial objects, these cxtended methods should be compared

with the typical spatial indexing rneLhods of complex objects such as the Cell

Tree, in terms of retrieval, insertion and deletion of complex objects as well

as implementation complexity and storage since indexing methods for complex

objects are inhescntly more complicated. The cornparison appears rare in the

litesattlre. Techniques other than approximation to extend the indexing structure

of simple objects for the processing of complex objects should also be explored.

References

CARON891 S. Aroaoff, Geographical Infor~nation Systems: A Managc~ueu t Pcrspcct ive,

WDL Publications, c 1989.

[BEN751 J. L. Bentley, Multidimensional Binary Search Trccs L!scd for Associ;~tive

Searching Cotnt~zzinicntions ACM, Vol. 18, No. 9, pp. 509-5 17, 1975.

[BEN791 J. L. Bentley, Multidimensional Binary Search Trccs in Ihtnbast. Applica-

tions, IEEE Tmizsnctions on Softwcire Etzgineerirlg, Vol. SE-5 No. 4, Ju ly 1979.

[BIMAgO] H. Blanken, A. Ijbema, P. Meek, B. V. D. Akker, YIC Gcncralizcd Grid Filc:

Description and Performance Aspects, Proc. of 6th Iirterimtiontrl CoirJet.t>ni.e or/ fliri(t

Engineering, pp. 380-388, Feb. :990.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, B. Secger, The R*-tree.: An El-ficm

and Robust Access Method for Points cvld Rectangles, Proc. ACM SIGMOII I r ~ ~ c . t . r t c l t i c m r I

Conference on Mnnagerrzent of Data, pp. 322-33 1, May 1990.

[BVV90] I. Bracken, C. Webster, Information Technology in Geography and I'lanninl;r,

Routledge 1990.

[CODD70] E. F. Codd, A Relational Model for Large Shared Data Ranks, Cot~rullrrricx-

tions ACM, Vol. 13, No. 6, pp. 377-387, 1970.

[FRAN90] Wm. R. Franklin, Calculating h4ap Overlay Polygons' Areas Without Explic- -
itly Calculating the Polygons-Implementation, Proc. of the 4th Iiitertturioncil Sytitposiutri

on Spatial Dutn Handling, Vol. 1, pp. 15 1-160, 1990.

[GH91] R. Gupta, E. Horowitz, Object-Oriented Databases with Applica~icons to-

CASE, Networks, and VLSI CAD, Reading, Prentice Hall Series itz Dutu and Kno\vledgc

Base Systems, 199 1,

[GREW] D. Greene, An Implcrnentation and Performance Analysis of Spatial Data Ac-

cess Methods, fJroc. of Sih fntemutionaf Cot$ei-ence on Data E;zgi;leerirzg, pp. 006-015,

May 1989.

[GUN891 O. Gunther, The Design of the Cell-tree: An Object-Oriented Index Structure

Tor Geometric Databases, Proc. of the 5th Zrzle~-national Conference on Data Engineering,

pp. 598-605, Feb. 1989

[GI3901 0. Gunthcr, A. Buchmann, Research Issues in Spatial Databases, SIGMOD

RECORD, Vol. 19, No. 4, pp. 61-68, December 1990.

[GUN881 0. Gunther, Efficient Structures for Geometric Data hknagement, Lectirre

Notes in Cotupiitiqq Science 337, Springer 1988.

[GUTT84] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching.,

PI-oc. ACM SlGMOD, pp. 47-57, June 1984.

[GS90] M. F. Goodchild, Y. Shiren, A Hierarchical Data Structure for Global Ge-

ographic Information Systems, Pmc. of 4th International Syr~zposiuin of Spatial Data

Ehmdliizg, Vot. 2, pp. 91 1-917, 1990.

[MS92] E. G. Hoel, H. Sarnet, A Qualitative Comparison Study of Data Structures

for Large Line Segment Databases, Proc. ACM SZGMOD, pp. 205-214, June 1992.

[KSSS9Q] H. Kriiegel, M. Schiwietz, R. Schneider, B. Seeger, Performance Comparison

of Point and Spatial Access Methods, Dwign and I~npleinerztatiotz of Large Spatial -

Dtttd?rases, Lecture Notes in Computer Science 409, pp. 89-1 14, July 1989.

[KW87] A. Kemper, 1\13. Wallrath, An Analysis of Geometric Modeling in Database

Systems, ACM Conrprtii~g Surveys, Vol. 19, No. 1, pp. 47-1 19, March 1987.

[RIL84] D. M. Mark, J. P. Lauzon, Linear Quadtrees for Geographic Information

Systems, Proc. of the 2nd I~zreri~atiortial Sytnposium on Spatial Data Handling, Vol. 2,

1 %H.

@a0861 F. Manola, J. A. Orenstein, Toward n General Spntid Data Madd for an

Object-Oriented DBMS. PI-oc. o f f h e 12th i~~remcrticmat Cntzjiir~~~rr, on I?~ry i . c~?;qc~ Dcrfrr

Bases, pp. 328-335, August 1986.

[NM•˜84] J. Nievergelt, H. Hinterberger, K.C. Sevcik, The Grid File: An Adaptable,

Symmetric Multikey File Structure, ACkf Ecznsactions oil i3nrcrbu.w S>stc?ms, Vol. 9, No .

1, pp. 38-71, March 1984.

[NORSS]] V. T. Noronha, A Survey of Hierarchical Partitioning Methods for Vector

Images, Proc, of the 3rd Irztemntior7nl Sytqmsirrtn on S]?trtinl Dlrtcl iLIotzdliilg, V01. 1 ,

pp. 185-200, 1988.

[NIT791 G. Nagy, S. Wagle, Geoyraphic Data Processing ,,Corq?iiti~lg S ~ r r w y s , Vol.

11, No. 2, pp. 139-163, June 1979.

[OHMS92]J. A. Orenstein, S. Haradhvala, R. Margulies, D. Snkahara, Qucry I~roccssinlr,

in the Objectstore Database System, Pmc. ACM SIGMOD, pp. 403-412, June 1992.

[OM881 J. A. Orenstein, F.A. Manola, PROBE Spatial Data Modcling and Qucry I-'ra-

cessing in an Image Database Application, IEEE Trutzsczcticm.~ on SoJiwcrrx~ fiigi~~eeriqq,

Vol. 14, No. 5, pp. 611-629, May 1988.

[00ST90] P. V. Oosterom, Reactive Data Structures for Geagraphicnl Infornlatio~l

Systems, Reading, ADDIX, Wijk bij Duurstede, 1990,

[OREN841 J. A. Orenstein, T. H. Merrett, A Class of Data Structures for Associative

Searching Proc. of 3rd ACM SIGACT-SIGMOD Syrnposi~rtn otz Pritzcip1e.s oJ' Dntcilxm

Systems, pp. 18 1-190, 1984.

[OREN861 J. A. Orenstein, Spatial Query Processing in an Object-Oriented i'>at:hse .-

System Proc. ACM SIGMOD, pp. 326-335, 1986.

[OREN891 J. A. Orenstein,Redundancy in Spatial Databases PI-oc. ofACh4 SiGMOD

Conference on Mnrzngetnent of Data, pp. 294-305, June 1989.

[OSh4$9] R. C. Ooi, R. Sacks-Davis, K. J. McDonell, Extending A DBMS for Geo-

graphic Applications IEEE ?roc. o f ' t h In?ei-national CorZfPrence on Data Efzgii~eerii~g,

pp. 590-597, Feb. 1989.

lPS851 F. P. Preparata, M. I. Shamos, Computational geometry: An Introduction ,

Reading, Springer-Verlag, 1 985.

[R1J88] N. Roussopoulos, C. Faloutsos, An Efficient Pictorial Database System for

PSQL IEEE 7i.unsactioizs on Sofhvare Eizgineering, Vol. 14, No. 5, pp. 639-650, May

1988.

[ROB811 J. T. Robinson, The K-D-B-tree: A Search Structure for Large Multidimen-

sional Dynamic Indexes. Proc. ACM SIGMOD International Conference on Management

($'Data, pp. 10-18, 1981.

[SAM841 H. Sanlet, The Quadtree cad Related Hierarchical Data Structures ACM

Crtt~qmting Surveys 16, pp. 187-260, June 1984.

[SAM881 H. Samet, Hierarchical Represcnrations of Collections of Small Rectangles

ACM Cotnprrting Srreveys 20, pp. 2'7 1-309, 1988.

CSAM90aI 13. Sarnet, The Design and Analysis of Spatial Data Structures, Reading,

Addison-Wesley, MA, 1990.

[SAMgOb] H. Smet , Applications of Spatial Data Structures: Computer Graphics, Image

Processi~~g, and GIs, Reading, Addison-Wesley, MA, 1990.

[SE90] J. Start, J. E. Estes, Geographic Information Systems: An h,troduction,

Reading, Prentice Hall, 1990.

ESRF871 T. Sellis, N. Roussopoulos, C. Faloutsos, The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects. Proc. of the 12th International Coizfererzce on Very Lnrge

Dmi Sases, pp. 507-5 18, Sept. 1987.

[SVT89] H. Smet , R. E. Rrebber, A Comparison of the Space Requirements of

kZultidimensiona1 Quadtree-based File Structures , Visual Coinp~iter, 1989.

[TJS88] A. T. Teng, S. A. Joseph, A. R. Shojaee, Polygon O\-erla_v Processing: A

Comparison of Pure Geometric h/fanipulation and Topalogicaf O\wlnv Y~x>ccssing 1 ' 1 7 ~ ~ .

ofthe 3rd Ii~temnfiorzaI Synzpmizm on Spntirrl Data H~zrrtllin,g, Vd. 1 , pp- 102- I 19, 1985.

[ULL88] J. D. Ullman, Principles of Database and Knowledge-base Systenls, Val. 1 ,

PrilzcipZes of Conzpurer Science Series, Reading, 14. Computer Science Press. 1988.

