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Abstract 

This thesis contains two main chapters. 

In Chapter 2, we study long circuits and long trails of graphs. We establish 

the existence of spanning circuits (or, trails) of (3,6)-edge-connected graphs. The 

results imply that every 7-connected line graph is Hamilton-connected which partially 

supports Thomassen's conjecture that every 4-connected line graph is hamiltonian. 

We also obtain an analogous result of Tutte's Bridge Lemma on circuits instead of 

on cycles. Therefore, Thomassen's conjecture is also true for planar graphs. Later, 

we find some applications of long circuits and long trails on the nowhere-zero integer 

flow problems, the cycle double cover problem and the vertex cycle cover problem by 

showing that every (3'6)-edge-connected graph has a nowhere-zero 4-flow and has a 3- 

circuit double cover, and by showing that every 2-edge-connected graph with minimal 

degree at least 3 and with order p has a vertex cycle cover with at most 2(p- 1) edges. 

This is conjectured to be true for any 2-edge-connected graph by Bermond, Jackson 

and Jaeger. 

In Chapter 3, we refine a result of de Werra on equitable edge-colourings of 

graphs. We use it to show that for an almost r-regular hamiltonian graph, there 

are at  least 2151 - 2 edge-disjoint Hamilton cycles in its line graph. This result sup- 

ports Bermond's conjecture that if a graph is Hamilton decomposable then its line 

graph is also Hamilton decomposable. 
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Chapter 1 

Introduction 

The notation and terminology which are not specified in this thesis can be found in 

pq or pq. 

This chapter is devoted to introducing some basic concepts of graph theory and 

to surveying some re~ul t s  related to this thesis. 

A graph G = (V, E )  consists of a non-empty set V ( G )  of elements, called vertices, 

and a set E(G)  of elements called edges, together with an incidence relation that 

associates with each edge two vertices, c&ed its end vertices or briefly ends. An edge 

with end vertices u and v is denoted by the unordered pair uv. The two end vertices of 

an edge are said to be joined by the edge and to be adjacent to one another. Adjacent 

v-ertices are also referred to as neighbours. The number of vertices of a graph G is 

denoted by v(G) and called the order of G; the number of edges is denoted by e(G) 

and called the size of G. A graph G is finite if both v(G) and e(G) are finite, and 

infinite otherwise. We consider finite graphs only. For a given vertex u ,  the set of 

vertices adjacent to  it is denoted by Nu and is called the neighbourhood of u in G and 

the set of edges incident with it is denoted by Eu and also denoted by ~ ( { u ) )  as a 

trivial cut. The cardindity of Eu is called the degree of u, deacted by degG(u), or 

simply, dG(u) or d(u). The maximum degree of a graph G is denoted by A(G) and 

the minimum degree of G is denoted by 6(G). We use 6 ( S )  to denote the minimum 

degree among the vertices of S 2 V. A graph is k-regular if every vertex of G has 
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degree k. A graph is almost k-regular if its vertices have degree either k or k + 1. 

An edge with identical end vertices is a loop; two or more edges with the same 

pair of end vertices are multiple edges. If there are loops in a graph, we can delete 

the loops fror? the graph. So we always assume that a graph has no loops. A simple 

graph is one with neither loops nor multiple edges. 

A graph H is a subgraph of G, denoted by H _< G, if V < d )  5 V(G) and E ( H )  5 
E(G) ,  and if every edge of H has the same pair of endvertices in H as it has in 

G. Meanwhile, G is also called a supergraph of H. H is a spanning subgraph of G 

if V(H) = V(G). H is a dominating subgraph of G if every edge of G is incident 

with ;1 vertex of V(H). For any non-empty set S f V(G), the induced subgraph 

on S, denoted by G[S], is the subgraph of G whose vertex set is S: and whose edge 

set consists of those edges of G with both end vertices in S. The induced subgraph 

G[V - S] is denoted by G - S; it is the subgraph obtained from G by deleting the 

vertices in S together with their incident edges. For a non-empty set T E E(G), the 

edge induced subgraph on T, denoted by GET], is the subgraph of G whose vertex 

set is the set of end vertices of edges in T and whose edge set is T. The spanning 

subgraph with edge set E - E' is written simply as G - El. The graph obtained from 

G by adding a set of edges E' is denoted by G + E'. We write G - u, G + e and G - e 

instead of G - {u), G + { e )  and G - {e). 

If f is a non-negative integer-valued function on V(G) such that f (u )  _< dG(u), 

then an f -factor F of G is a spanning subgraph of G such that f (u)  = dF(u). If f is 

a constant, say f r k, then an f-factor F is also called a k-factor. If the edge set of 

G can be decomposed into edge-disjoint f -factors, then G is called f -fuctorable. The 

decomposition is also called an f -factorization of G. 

A walk is finite sequence W = voelvleavz . . ekvk, whose terms are alternatively 
- - -  

vertices and edges such that, for P 5 i < k, the ends of ei are vi-1 and vi. We 

say that W is a walk from vo to vk, or a (vo,vk)-walk. The vertices vo and v k  are 

called the origin and terminus of W and the remaining vertices of the walk are called 

internal vertices. The number k is the length of the walk. In a simple graph the walk 



is determined by the vertices of the walk and hence we can simply use the vertex 

sequence v o q  . . . u k  to  denote the walk. The reverse walk 2 . k e k z t k - l  . . el  vo of W is 

denoted by W-l with origin v k  and terminus v o .  If the edges of the walk are distinct. 

then IV is called a trail. If, in addition, the vnrtices of the walk are distinct, W is 

called a p t h .  A closed trail is a circuit and a circuit with distinct vertices is a cycle. 

An acyclic graph is one that contains no cycles. It is also called a forest. A tree 

is a connected acyclic graph. Every non-trivial acyclic graph has at least two leaves, 

that is, the vertices of degree one. Every pair of vertices in a tree have a unique path 

connecting them. A star is a bipartite graph Kl,, for some n. A multistar is a graph 

obtained from a star by replacing some edges b? multiple edges. 

A graph G is eonnectecl if for any pair of vertices u and v in G there is a (u, v)-path 

joining them; otherwise, the graph G is disconnected. Maximal connected subgraphs of 

a graph are connected components of the graph. The number of connected components 

in G is denoted by w(G). 

'4 vertex cut in a connected graph is a subset of vertices whose removal will increase 

the number of connected components of the graph. A single vertex which forms a 

vertex cut is called a cut vertex. A graph G is k-connected if i i  has at least k + 1 

vertices and it has no vertex cut with fewer than k-vertices. The connectivity of G is 

the maximum number k such that G is k-connected. A graph is 1-connected if and 

only if it is connected. A ~onnec tc~ ;  graph G without cut vertices is called a block. 

Every block of at  least three vertices is 2-connected. A block of a graph is a subgraph 

which is a block and it is maximal with respect to this property. The block-cut graph 

of a graph G is a bipartite graph with the blocks and cut vertices of G as vertices and 

a block and a cut vertex are adjacent if and only if the cut vertex is in the block. A 

cut edge is regarded a blmk here. The block-cut graph of a graph is acyclic. If G 

is 2-connected and e Is an edge of G, then the block-cut graph of G - e must be a 

trivial graph or a path with the end vertices of e in either end blocks. 

For a proper vertex subset S of G let v(S) denote the set of edges with exactly 

one end vertex in S. We call v(S) an edge cut or, more briefly, a cut. A minimal 
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edge cut is a bond. tt'e use Q ( S )  to denote the cardinality of v(S). The vertex set S 
and V ( G )  - S are called shores of the cut v ( S )  (or v ( V ( G )  - $)1. .4 cut is trivial if 

one of its shores is a single vertex. A cut is cyclic if the induced subgraphs on both 

shores contain cycles. A cut is essential if there is at least one induced subgraph on 

its shores containing no edges. -4 non-trivial graph G is A-edge-connected if there is 

no cut with less than X edges. A g;aph is cyclically A,-edge-connected if there is no 

cyclic cut with less than A, edges. A graph is essentially A,-edge-connected if there is 

no non-essential cut with less than A, edges. 

One can obtain a new graph from graphs by binary graph operations, such as, 

cartesian product, wreath product (which is also called lexicographical product), con- 

junction, join, etc., of two graphs. One can also obtain a new graph from a graph by 

some monotone graph operation, such as taking the square, taking the dual, taking 

the complement or taking the line graph, etc.. In this thesis, we will mostly consider 

the line graph of a graph. The line graph of G is a graph with the edges of G as its 

vertices and two of them are adjacent if and only if they are adjacent in G' as edges. 

A directed graph, or briefly digraph, D = (Ir, /,A) consists of a vertex set V ( D )  and 

ail arc set A ( D ) ,  where each arc is an ordered pair of vertices. The first vertex is the 

origin of the arc and the other is the terminus of the arc. We can obtain a digraph 

from an undirected graph G by assigning each edge an origin and a terminus. The 
-+ 

resulting digraph, denoted by G , is called an orientation of G. The graph G is called 

the underlying graph of D if D is an orientation of G. For a proper subset S c V ( D ) ,  

we denote by v+(S) the set of arcs with origin in S and terminus not in S and denote 

by ~ ~ ( 5 )  the set of arcs with terminus in S and origin not in S. The cut v f S )  is 

the union of v+(S) and v-(S). It is easy to see that vf (S) = v - ( V ( D )  - S ) .  

For an abelian group I? (with additive notation), a r-pow in a digraph D is a 

mapping 4 from the arc set A(D) to the group I' such that for all S E V(D), 

A r-flow of D is a nowhere-zero r-flow if 4(e) takes a non-zero value for every arc 
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e of D. It is easy to see the following facts [ST] .  

1, The mapping 4 is a r-flow if and only if equation (1.1) is valid for all S consisting 

of a single vertex of G. 

2. A T-flow takes zero value on each cut edge. 

3. The equation (1.1) is still valid for all S E V ( D )  if the orientation of some 

edges of D are reversed while their flows are simultaneously replaced by their 

(additive) inverses. 

For an undirected graph G, there is a nowhere-zero I?-flow for some orientation if 

and only if there is a nowhere-zero I?-flow fcr every orientation. So the existence of a 

nowhere-zero r-flow is independent of the orientation. So we can simply say that G 
has a nowhere-zero r-flow. A nowhere-zero k-flow is a nowhere-zero Z-flow of G such 

that 0 < Id(e)/ < k for each edge e E E(G). On the other hand, referrinc to Jaeger 

1631, Tutte's dichromatic polynomial theory and Tutte's unimodular matroid theory 

imply that there is a nowhere-zero I?-flow of G for some abelian group I? of order k if 

and only if there is a nowhere-zero k-flow of G. Hence the existence of a nowhere-zero 

flow is independent of the choice of the group as well. 



Chapter 2 

Long Paths and Cycles 

Introduction. 

Consta.nt large connectivity (or minimal degree) cannot always guarantee the graph to 

be hamiltonian in the following sense: for any given positive integer n, there exists a 

non-hamiltonian graph G of connectivity (or minimal degree) at least n. For instance, 

Kn,n+l is an n-connected (or minimal degree n )  non-hamiltonian graph. Furthermore 

the longest cycle in an n-connected graph (or minimal degree n )  might be fairly short 

with respect to the order of the graph. 

Theorem 2.1.1 (Jackson and Parsons [60]) For a given integer r 2 3 an.d any 

real e > 0, there exists an integer N ( r ,  E )  such that if r is even and p > N ( T ,  E ) ,  or 

if r is odd and p is even and p 2 N ( r ,  E) ,  then there exists an r-regular r-connected 

graph of order p such that the length of a longest cycle in the graph is less than cp.  

A simple, but important, necessary condition for a graph to be hamiltonian (see 

[31, 321) is the following. 

Theorem 2.1.2 Let G be a hamiltonian graph, let S be a non-empty proper subset 

of the vertex set V ( G ) ,  and let a ( G  - S )  be the number of components of the graph 
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G - S. Then 

t ( G )  =: min 
S€V(G) m(G - S) - 

The parameter t(G) is the so-called toughness of the graph 6. The graph G is also 

called t-tough if t 5 t (G) .  It was also conjectured by Chvzital (later modified) that 

every '2-tough graph is hamiltonian. 

Conjecture 2.1.3 (Chvatal [31]) Every %tough graph is hamiltonian. 

There are many sufficient conditions for graphs to be hamiltonian. The following 

results are typical examples. Here K(G) is the connectivity of G, d(u, v)  is the distance 

between vertices u and v, and a(G) is the (vertex) independence number, that is, the 

cardinality of the largest independent vertex subset. 

Theorem 2.1.4 If any one of the following conditions is true for a graph G of 

order p 2 3, then the graph is hamiltonian. 

1. S(G) 2 (Dirac[36]); 

2'. d e g ~ ( u )  + d e g ~ ( v )  > p for any uv 4 E(G) (Ore[79]); 

3. K(G) 2 a (G)  (Chvatal and Erdos [33]); 

4 .  d; -I- dp-; > p, for degree sequence dl 5 d2  < . - 5 d,, and i < $ (Chv&tal[30]); 

5. 6(G) > 9, when G is &connected graph (Hiiggkvist and Nicoghossian [52]); 

6. min{max{deg~(u), degc(v)) : d(u, v) = 2) 2 $ (Fan [37]); 

2p-1 7. maX4~,,)=2 IN(u) U N(v)l 2 3 , when G is %connected (Lindquester[72]); 

8. d ( U )  + d(V)) 2 q, for an equal bipartite graph G = (U,  V; E) (Jackson[57]). 
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There are many improvements on these results, and there are many other suffi- 

cient conditions as well(see survey articles Bermond[ll], Berrr .,d and Thor-imssen 

[14], Bondy[15], Gould [50], etc.). Most sufficient conditions require the graph to be 

of 'high density', have high average degree, or involve a 'local (forbidden) structure'. 

All results except (3) in Theorem 2.1.4 require as many as 0 ( p 2 )  edges. One can show 

that the Chvital and ErdBs Theorem (3) requires ~ ( p t )  edges by an argument using 

the complementary version of Tur&nYs theorem. Our main focus in this chapter is on 

'low density' graphs, which only require as many as O(2p) edges. 
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Circuits and Trails 

A long circuit (a long trail) can be measured in two different ways: one way is in 

terms of the number of edges in the circuit (the trail) and another is in terms of the 

number of vertices in the circuit (the trail). -4 longest circuit (a longest traiC) is a 

circuit (a trail) which contains the maximum number of edges. A largest circuit ( a  

largest trail) is a circuit (a trail) which contains the maximum number of vertices. 

A circuit (a trail) is a dominating circuit (a dominating trail) if every edge of the 

graph has one end in the circuit (in the internal vertices of the trail) and a circuit (a 

trail) is a spanning circuit (a spanning trail) if, in addition, it contains all vertices of 

the graph. A graph with a spanning circuit is also called supereulerian. A graph is 

dominating trailable if for every pair of edges there is a dominating trail joining them. 

A graph is spanning trailable if for every pair of edges there is a spanning trail joining 

them. 

Unlike the long cycle (path) problem, which has a vast literature, the long circuit 

(long trail) problem has received attention only in recent years, even though Euler's 

paper on circuits appeased 250 years ago. Being a useful tool in graph theory, long 

circuits play an important role just as long cycles do. Circuits are the natural objects 

in matroid theory. They have many applications in flow problems and in cycle covers. 

They are also closely related to the Chinese Postman Problem. 

Large fixed connectivity can guarantee the graph to be supereulerian. To see 

this we need a result of Tutte[95] and Nash-Williams [77] on packing edge-disjoint 

spanning trees (or, equivalently, connected factors). Here w ( G  - S )  is the number of 

connected components of G - S. 

Theorem 2.2.i (Tutte [95] and Nash-Williams [77]j In order thai a graph G is de- 

composable into n connected factors it is necessary and suficient that for any edge 

subset S ,  

IS1 > n(w(G - S) - 1). (2.2) 
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Every 4-edge-connected graph satisfies the inequality (2.2) and hence can be de- 

composed into two connected factors. Actually Kundu showed more. 

Theorem 2.2.2 (Kundu [TO]) Every A-edge-connected graph has at least 1 9 1  -edge- 

disjoint spanning trees. 

Jaegerf62, 631 observed that if G has two edge-disjoint spanning trees: then G is 

supereulerian. . , 

Theorem 2.2.3 ( Jaeger [62, 631) Every 4-edge-connected graph is supereulerian. 

A 3-edge-connected graph need not be supereulerian, In Theorem 2.1.1 of Jackson 

and Parsons [60] (when E < 1 and r = 3), infinitely many examples of 3-connected 

non-supereulerian cubic graphs are given since cycle and circuit coincide in cubic 

graphs. Actually the longest circuit might be quite short by taking a small value 

for c. One can also obtain infinitely many examples of 3-connected (2r + 1)-regular 

graphs whose longest and largest circuits are fairly short. 

Proposition 2.2.4 For any given integer r 2 1 and any real E > 0, there exists 

an integer M ( r ,  6 )  such that for all even p 2 N ( r ,  E ) ,  there exists a (2r + 1)-regular 

3-connected graph of order p such that the length of a longest circuit and the order of 

a largest circuit in the graph are less than c p .  

Proof. We construct 3-connected graphs H2rS3 and H 2 r f 5  of orders 2r + 3 and 

2r+ 5 ,  respectively, with exactly three vertices of degree 2r and the remaining vertices 

of degree 2r -+ 1 for r 2 2 as follows: f i2r+3 is the graph obtaked f r ~ m  K2r+2 - F 

by adding a new vertex x and edges from x to 2r vertices of K2r+2 - F ,  where F is 

a 1-factor of K2r+2. The graph is obtained from K2r+4 - (C U F) by adding a 

new vertex x and edges from x to 27- + 1 vertices of K2r+4 - (C U F ) ,  where C is a 

Hamilton cycle and F is a 1-factor of K2r+4 such that K2r+4 - (CU F )  is 3-connected. 
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The vertices of H2r+3 and H2r+5 have degree 27- + 1 except three vertices in each graph 

which have degree 2r. 

Let " = (2r+5;(2r+6) and N(3,ef) be the integer of Theorem2.1.1. We can take 

N(3, r') to be even. Let p be an even number and p 2 (2r +5)N(3, el). Let p' = [&I 
and q = m. 2 Let Gpj be a cubic graph whose longest cycle has length less than 

dp'. Construct a (27- + 1)-regular graph Q of order p from G,t by replacing q vertices 

of G,) with copies of H2r+5 and replacing the remaining vertices of G,I with copies of 

H2r+3. For each vertex u of G,I let the three edges incident with u be incident with 

the three vertices of degree 2r in the copy H2r+3 or the copy H2r+5. Since ff2r+37 

H2r+5 and G,! are 3-connected, Q must be 3-connected of order p. 

Let T be a circuit of Q and let C be the corresponding cycle in G p ~  obtained from 

Q by shrinking all copies of H2r+3 and H2r+5 to single vertices. Since IC[ < r'p', 
2r+5 2r+l IV(T)I 5 e'p1(2r + 5) < e p  and IE(T) I < e'pl(l + +) < cp. 

Hence, a 3-connected (2r + 1)-regular graph might not have a dominating circuit. 

On the other hand, the class of graphs which are 3-edge-connected but not 4-edge- 

connected is very important in graph theory. Most of the problems in nowhere-zero 

integer flows and cycle covers are involved with this class (see next two sections). 

It is well known that the decision problem to determine whether a 3-connected 

cubic planar graph without faces of length less than 5 is hamilonian is NP-complete. 

Therefore the decision problem to determine whether a 3-edge-connected graph is 

supereulerian is also NP-complete since a circuit is a cycle in cubic graphs. But from 

Theorem 2.2.3, we know that every 4-edge-connected graph is supereulerian. It is of 

interest to discuss graphs whose edge-connectivity is between 3 and 4. We introduce a 

',frdctionnE7 edge-connectivity: A graph G is (n, rn) -edge-connected for positive integers 

m and n if G is n-edge-connected and any n-cut is edge-disjoint from any bond of size 

I < m except the n-cut itself. 

Proposition 2.2.5 Let I ,  m and n be positive integers. 
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1. Every (n, m)-edge-connected graph is (n', m')-edge-connected for integers n' < n 

3 r n ' =  n but m ' s  m.  

2. Every ( n +  1)-edge-connected graph is (n,  m)-edge-connected for any integer m > 
1. 

3. Euery n-edge-connected graph is (n, m)-edge-connected for m < n. 

4. Every 3-edge-connected essentially 7-edge-connected graph with at least 4 vertices 

other than a multistar is (3,6)-edge-connected, and in general, every n-edge- 

connected essentially (m + n - 2)-edge-connected gra;ih with p 2 4 other than a 

multistar is (n, m)-edge-connected for 7a 2 2. 

Proof. In (2), we suppose that G is (n,m)-edge-connected and suppose that 

n' < n. Then G is nt-edge-connected and has no n'-cut. Hence G is (n',m1)-edge- 

connected. We can use the same argument to prove (3). 

In (4), let G be n-edge-connected and essentially (n + m - 2)-edge-connected. 

It is trivially true if m 5 n. So suppose m > n. Then any n-cut n ( X )  of 

G must be a trivial cut, i.e., one of its shores is a single vertex. Let n ( Y )  be 

a bond different from v ( X )  and having non-empty intersection with v(X) .  If 

both shores of v ( Y )  have an edge, then by the essential edge-connectivity of G, 

e(Y) > m + n - 2 > m. If some shore of v ( Y )  has no edge, then v ( Y )  must 

be a trivial cut. So we can assume Y = {Y) and X = {x). We can also choo~e 

y such that deg(y) is minimum among all possible choice of y. Since the two cuts 

have a non-empty intersection, the two vertices x and y must be adjacent in G. If 

~ ( { x ,  y )) is a non-essential cut, then e((x, y )) 2 n i- m - 2 which implies Q(Y) 2 m. 

If v({x,y}) is an essential cut, then there is no edge in the subgraph induced by 

V ( G )  - {x, y )  (we will show that this is impossible). Since G is not a multistar 

and p 2 4, then there is a vertex u other than y adjacent, to 2, If there is a vertex 

v adjacent to y but not adjacent to x, then ~ ( { y ,  v}) is a proper subset of v ( Y ) .  

This contradicts to the minimality of v ( Y ) .  Hence every vertex in V ( G )  - (3, y) 
must be adjacent to x.  By the edge-connectivity of G and by the minimality of 
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Y,  we have d(u) 2 max{d(z),d(y)) for every E V(G) - {x, y). SO we have 

But C{d(u) : u. E V(G) - {x, y})  = d(x) +d(y) - 2e(x, y). This is also a contradiction. 

A possible reason why a 3-edge-connected graph might not be supereulerian is 

that there are too many 3-cuts. In the following result, certain number of 3-cuts are 

allowed. 

Theorem 2.2.6 Every (3, 6)-edge-connected graph is supereulerian. Every 3-edge- 

connected essentially 7-edge-connected graph is supereulerian. 

Actually, we will prove a stronger result (Theorem 2.2.9). We split the proof into 

the following lemmas. 

Lemma 2.2.7 If graph G is a (3, 6)-edge-connected, then for any subset S E E(G)  

which is not a 3-cut, 

Is\ 2 2w(G -. S).  (2.3) 

Proof Let GI , .  . . , G, be the components of G - S such that v(V(Gi) )  are 

3-cuts in G; let G,+l,. . . , G, be the components such that v (V(Gj ) )  are the cuts 

disjoint from all 3-cuts v(V(Gi) )  and let G,+l,. . . , G, be the remaining components 

of G - S (any of the above three classes of components might be empty). Then for 

~ ~ i ~ r , r + l ~ j ~ s a n d s + l ~ I c ~ a , w e h a v e  
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The above equalities or inequalities (2.4), (2.5), (2.6) and (2.9) are direct con- 

sequences from the definition and (2.7) and (2.8) are true because every edge in 

v(V(G;)) must have another end in some V(Gk). Therefore, 

If T 5 2 ( a  - s),  then, by 2.6, we have 

If r > 2 ( a  - s), then, by 2.8, we have 
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Lemma 2.2.8 If G is (3, 6)-edge-connected, then for any pair of edges el  and e2 of 

G, the subgraph G - { e l ,  e 2 } ,  or G-  e l ,  if el and e2 are in a 3-cut, can be decomposed 

into two connected factors Fl and F2. 

Proof. Case 1. If the edges el and e2 are in a 3-cut, then let S be an edge subset 

of G - e l .  If S is a 2-cut containing e2 in G - e l ,  then 

If S is a 3-cut in G - e l ,  then 

If S is none of above, then S U { e l }  is not a 3-cut and hence by Lemma 2.2.7, 

IS u { e l } /  > 2w(G - ( S  U { e l } ) ) .  (2.12) 

Therefore, 

IS1 > 2w((G - e l )  - S )  - 1 > rt(m((G - e l )  - S) - 1).  (2.13) 

Case 2. If the edges el and ez are not in a 3-cut, then for an edge subset S of 

G - { e l ,  e 2 ) ,  either 

Applying Theorem 2.2.1 to  either case, we can derive two edge-disjoint connected 

factors from inequalities 2.10, 2.11, 2.12, 2.13, 2.14 and 2.15. 0 
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Theorem 2.2.9 If G is (3, 6)-edge-connected, then for any three edges e l ,  ez and es 

of G, there are spanning circuits T I ,  T2 and T3 such that 

(e2, e3) 5 T2, el $ Tz (2.17) 

es E T3, el # T3, ez $! T3 (2.18) 

imless e l ,  e2 and e3 form a 3-cut of G in the cases (2.16) and (2.18). 

Proof Let Fl and F2 be the two connected factors of G - { e l ,  e 2 )  or G - el 

fro.% Lemma 2.2.8. Without loss of generality, we assume that e3 E Fl.  Let F: = 

Fl U { e l ,  e p ) ,  F: = Fl 1! { e 2 )  and F: = Fl.  Let Bi = O ( c ) ,  1 < i 5 3, be the sets 

of odd vertices tlf F,", respectively. Then IB'l = 2k; is even, and hence their vertices 

can be paired off. Let Pi ,  P& . . . , Pk be paths of F2 joining the two vertices of each 

pair. Then by adding the binary sum (or symmetric differences) P jAPiA.  - .  QP; to 

F,', we have 

Ti = F; 9 (P;AP;A.  - .  LIP;,) (2.19) 

to be the spanning circuits as desired. 0 

Proposition 2.2.10 If G is (3, 6)-edge-connected, then G is spanning trailable. 

Proof Let x = z v  and y = st be any two edges of G, If x and y are independent 

edges, and if one of the edges {us ,  u t ,  us,  v t )  is not an edge in G, say, z = us is not 

an edge in G, then by Proposition 2.2.9 there is a spanning circuit T containing x, 

y and z in G U { z )  ( since G U ( z )  sti!! satisfies the c~ndition of Proposition 2.2.9). 

T - z is a spanning trail with end edges x and y in G. If all edges { u s ,  u t ,  us ,  v t )  are 

in G,  then by Proposition 2.2.9 there is a spanning circuit T containing edge z = us 

but not x and y. Then TAix ,  y ,  z )  is a spanning trail with end edges x and y.  By 

Proposition 2.2.9, if x and y are incident with a common vertex (say, u = s), then 

there is a spanning circuit T containing y but not z. Then T U {x) is a spanning trail 



with end edges x and y.  

Consequently, we can obtain the following result. 

Theorem 2.2.11 If G' is ezther 4-edge-connected or 3-edge-connected and essentially 

7-edge-connected, then for any three edges el, e2 and e3 of G,  there are spanning 

circuits T I ,  T2 and T3 such that 

(e2re3) E T21el $ T2 (2.21) 

es E T3,el $ T3?e2 $2 T3 (2.22) 

unless el, ez and ea form a 3-cut o f G  in the cases (2.20) and (2.22). Furthermore, 

G is spanning trailable. 

Let G be a (3,6)-edge-connected graph or 3-edge-connected and essentially 7-edge- 

connected graph. To see the proof of Theorem 2.2.6, we take T to be the spanning 

circuit TI in G in Theorem 2.2.9 and Theorem 2.2.11 respectively, while el, e:! and 

e3 are any three edges which do not form a 3-cut. Then T is the required circuit in 

Theorem 2.2.6. 

If G is essentially A,-edge-connected and (; is not a star K1,,-l, then we can obtairi 

a 2-edge-connected essentially A,-edge-connected graph Gt by deleting all vertices of 

degree 1 and their incident edges. If A, 2 3, we can obtain a 3-edge-connected 

essentially A,-edge-connected graph Gff by replacing suspended paths (paths whose 

internal vertices are of degree 2) by edges. G" is unique up to isomorphism since the 

above graph operation will not reduce the essential edge-connectivi ty of the graph. 

Furthermore, V(G") is a dominating set of G. 
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Lemma 2.2.12 I f  G is an essentially A,-edge-connected graph with A, > 3, then G 

has a dominating circuit if GIf has a spanning circuit. ,tloreoz.er, G is domlnattng 

tradable if G" is spannzng trailable. 

Proof Since V(G")  is a dominating set. a spanning circuit of G'" induces a 

dominating circuit in G. 

Let x = uv and y = st be two edges of G. We choose two edges x' and y' of G" as 

follows: if x E E(Gf ' ) ,  choose x' = x: if x is incident with a kertex u of degree 'I! and 

if w is the other vertex adjacent to 27 in G, choose x = uw in G"; and if s is incident 

a vertex u of degree 1 in G, choose x' to be any edge of Gf' incident with the 

vertex c .  Choose y' the same way, but different from x' if possible. If T is a spanning 

trail with end edges x' and y', by naturally restoring the trail back to G, we can easily 

get a dominating trail with end edges z and y. u 

Proposition 2.2.13 Every essentially 7-edge-connected graph is dominating trail- 

able. 

Connectivity can not guarantee that a graph has a Hamilton cycle. But if a graph 

is planar, then Tutte showed that every 4-colznected planar graph is hamiltonian. That 

result is a consequence of Tutte's Bridge Lemma 197, 1011 (see also Ore [80]). 

A plane graph G is a plane embedding of a planar graph G. X simple face of a 

plane graph is a face whose edges form a cycle. A simple face of a planar graph G is 

a simple face of some plane graph of G. So every face in a 2-connected plane graph 

is simple. 

The theory of bridges was developed in Tutte's papers (9'7, 1011, and Tutte's books 

Introduction to the Theory of klatroids [loo], Connectivity in Graph [98] and Graph 

Theory [102]. Let N be a subgraph of G. A vertex-attachment, or briefly, an attach- 

ment, in G is a vertex of H that is incident in G with some edge not belonging to H. 

A bridge B of H is a subgraph of G that satisfies the following conditions. 
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1. Each vertex-attachment of B is a vertex of H. 

2. B is not a subgraph of H. 

3. S o  proper subgraph of B s5,tisfies conditions (1) and (2). 

B  is a!so called an H-bridge of G. 

There are two kinds of bridges. A single edge not in H but with both ends in 

H is a bridge of H .  Such a bridge is called a trivial bridge. Let B* be a connected 

component of G - V ( H )  with some vertices adjacent to some vertices of V ( H ) .  Let 

B be a subgraph of G consisting of the connected component B* and the edges with 

one end in H and the other end in B* and all end vertices of such edges. Evidently 

B  is an H-bridge, and is called a proper H-bridge of G. 

We define an edge-attachment of H to be an edge of G not in H but with at least 

one end vertex in H. All edge-attachments of a proper bridge form a cut v ( B * ) .  

Therefore, an edge-attachment is also a very natural object in graph theory. 

Theorem 2.2.14 (Tutte's Bridge Lemma [97, 1011) Let G' be any planar graph. Let 

x be an edge lying on simple faces F and K while y is another edge on F .  Then there 

exists a cycle J passing through x and y such that none of its bridges have more than 

three attachments while the special bridges having edges in common with F and K 

have at most two attachments. 

Tutte's Bridge Lemma can net be directly generalized to arbitrary graphs since 

connectivity cannot guarantee the existence of a Hamilton cycle. We propose the 

following possible generalizations of Tutte's Bridge Lemma. 

Corzjecture 22.15 Every graph has a circuit C such that every C-bridge has at most 

three edge-attachments in C .  

Conjecture 2.2.16 Let G be any graph. Let x be an edge lying on the minimal 

cycles F and A' while y is another edge on F .  Then there exists a circuit J passing 
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through x and y such that none of its bridges have more than three edge-attachments 

while the special bridges having edges in common with F and Ii' have at most two 

edge-attachments. 

Theorem 2.2.1 1 implies that every essentially 7-edge-connected graph has a circuit 

C such that every C-bridge has at most two edge-attachments in G. Every (3,6)-edge- 

connected graph, and hence every 4-edge-connected graph and every 3-edge-connected 

essentially 7-edge-connected graph, has a circuit such that every C-bridge has only 

trivial bridges. Moreover, Conjecture 2.2.15 is true for planar graphs. 

Proposition 2.2.17 Let G be any planar graph. Let x be an edge lying on the simple 

faces F and K while y is another edge on F .  Then there exists a circuit J passing 

through x and y such that none of its bridges have more than three edge-attachments 

while the special bridges having edges in common with F U K have at most two edge- 

attachments. 

Proof. Proceed by induction on the number of edges of the planar graph. It 

is easy to check the planar graphs having less than five edges. Let G be any planar 

graph with n edges. 

If G has a vertex cut u, which is also regarded as a subgraph of G, then we can 

split G into u-bridges GI,  G2, . . ., and G, by splitting the vertex u, where m is the 

number of bridges. The simple faces F and K must be in one of the G;. Without 

loss of generality, we assume F and K are in GI. By the induction hypothesis, G1 

has a circuit C1 passing through x and y such that none of the 61-bridges have more 

than three edge-at tachments while the special C1-bridges having edges in common 

with F U K have at most two edge-attachments. If u is not in CI, then C1 is a 

circuit of G as required since all C1-bridges in GI are also C1-bridges in G except 

one bridge, say B, of G1 which contains the vertex u while the corresponding C1- 

bridge in G consists of B and G2, G3, . . ., G,. If u is in C1, then let G2, G3, . . ., 
Gt be these C1-bridges which have at least four edge-attachments. These bridges 

must share a common vertex (attachment) u in G. All edge-attachments of G, must 
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be in a common block of Gi and hence we can find a simple face Fi containing two 

edge-attachments, say x, and y;. By the induction hypothesis, there exists a circuit 

Ci in G; passing through x, and y, such that none of its bridges have more than three 

edge-attachments while the special bridges having edges in common with Pi have at 

most two edge-attachments. The circuit Ci contains both edges and hence contains 

the vertex u. The circuit C = Cl LI (ufZ2Ci) is the required circuit in G since every 

C-bridge of G is a Ci-bridge for some i = 1,2 , .  . . , t .  

So we may assume that G is a 2-connected plane graph such that F and K are 

faces of the plane graph. Let - be the set of vertices of degree at least k. Let G' 

denote the pseudo-cubic plane graph derived from the plane graph G by replacing 

each vertex u E V>q - by a cycle C,, which also fo;rns a simple face of G', of length 

equal to degc(u) and by distributing the incident edges of u to the vertices ~f the 

cycle in a cyclic fashion in the plane. Let F' and K' be the (unique) faces expanded 

from F and K by this process and let x' and y' be the edges in G' corresponding to x 

and y . F' and h" are simple faces since F and K are simple faces. By Tut te's Bridge 

Lemma, there exists a cycle J passing through x' and y' such that none of J-bridges 

have more than three vertex-attachments while the special J-bridges having edges in 

common with F' U Kt have at most two vertex-attachments. Conversely, G can be 

obtained from G' by shrinking all cycles C, for u E V>* - (and by deleting loops). Let 

C be the corresponding circuit in G obtained from J by this shrinking process. If C is 

the required circuit, then the proof is completed. Otherwise, there exist C-bridges of 

G such that they have at  least four edge-attachments or there exist C-bridges which 

have edges in common with F U K and have at least three edge-attachments. After 

shrinking all C, for u E V&, - the subgraph of G corresponding to a J-bridge B' of G' 

must be a union of some C-bridges of G. On the other hand, for every C-bridge B 

of G there must be a J-bridge, denoted by r ( B ) ,  of G' such that the corresponding 

subgraph ia G contains 8. Since G is %-connected, every C-bridge in G must have 

at  least two vertex-attachments. First we show that if a C-bridge B has at least four 

edge-attachments, then it has exactly two vertex-at tachments in which one is incident 

with one of the edge-attachment of B and the other is incident with the remaining 
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edge-attachments of B, and show that if a C-bridge B has some edges in common 

with F U K,  then B has at most two edge-attachments. 

Let u be a vertex-attachment of B. Then it must be incident with some edge- 

attachments of B. If u @ - then u must be incident with one edge-attachment, 

which also corresponds to an edge-attachment of n(B)  in GI. If u E - and if u 

is incident with one edge-attachment e of B in G, then there must be at least one 

edge-attachment, which is either the edge corresponding to e or some edge in the 

cycle C, of GI, of n(B)  in G' incident with vertices of C,. If u E V>4 and if u is - 
incident with at least two edge-attachments of B in G, then there must be at least 

two edge-attachments, which are either the edges of G' corresponding to the edge- 

attachments of B or some edges appearing in pairs in the cycle C, of Gt, of K ( B )  in 

G' incident with vertices of C,. These edge-attachments corresponding to different 

vertices of V-4 - are distinct. Hence? if B has at 'Least four edge-attachments in G, 

then n(B)  has at least four edge-attachments in G' unless B has exactly two vertex- 

attachments in which one is incident with one of the edge-attachment of B and the 

other is incident with the remaining edge-attachments of B, and if 3 has some edges 

in common with F U K and has at least three edge-attachments in G, then n(B)  must 

have some edges in common with F' U K' and have at least three edge-attachments. 

The latter case is impossible since the number of vertex-attachments is the same as 

the number of edge-attachments of a bridge in a pseudo-cubic graph. So if B has at 

least four edge-attachments in G, then n ( B )  has at least four edge-attachments in G' 

unless B has exactly two vertex-attachments in which one is incident with one of the 

edge-attachment of B and the other is incident with the remaining edge-attachments 

of B. 

Let B1, B2, . . ., Bk be the C-bridges having at least four edge-attachments in 

G. Let v, be the vertex-attachment, of Bi which is incident with exactly one ebge- 

attachment of B; and also let w; be the other end of the edge-attachment. Let ui be 

the vertex-at tachment of B; which is incident with the remaining edge-attachments 

of B; for 1 5 i 5 k. Let Bf be the graph obtained from B; by deleting the vertex v; 

and the edge viwi. Since G is 2-connected, the graph obtained from Bi by identifying 
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the vertices u, and v; must be 2-connected. Hence the block-cut graph of Bf is a path 

while one end block contains the vertex ui and another end block contains w;. Let 

T;', Ti?, . . ., T:' be the consecutive blocks containing at  least two edges in B* where 

T: is the block containing u;. Let +i be the vertex in T! and T/+' for 1 < j 5 r; - 1. 

Lei z> ui in 7';' and let zarl = w, in Ti'' if w, E T:'. The vertices zi-l and z: are 

in the outer face of T/ .  Take any two edges from the outer face incident with each 

of these vertices zi-' and ri .  By the induction hypothesis, there exists a circuit C: 

passing through the two selected edges such that none of the c:-bridges of ~j have 

more than three edge-attachments while the special bridges having edges in common 

with the outer face of T;f have at  most two edge-attachments. Finally, the extended 

circuit C1 U u;,~C: is the required circuit in G. n 

If either Conjecture 2.2.15 or Conjecture 2.2.16 is true, then it implies the following 

conjectures. 

Conjecture 2.2.18 (Bandy [44]) There exists a constant c ,  0 < c < 1, such that 

every cyclically 4-edge-connected cubic graph has a cycle of length at least c p .  

Conjecture 2.2.19 (Jaeger [44]) Every cyclically 4-edge-connected graph C has a 

cycle C such that G - V ( C )  is acyclic. 

Conjecture 2.2.20 (Jackson, Fleischner 1441) Every cyclically 4-edge-connected cu- 

bic graph has a dominating cycle. 

Conjecture 2.2.21 (Thomassen [91]) Every 4-edge-connected line graph is hamilto- 

nian. 

the circuit C in Cmjecture 2.2.15 and the circuit J in Cnnjecture 2.2.16 

are dominating circuits when G is 3-edge-connected and cyclically 4-edge-connected. 

Hence both of them imply Conjecture 2.2.20 and Conjecture 2.2.21. Conjecture 2.2.18 

and Conjecture 2.2.19 are weaker than Conjecture 2.2.20 and Conjecture 2.2.21. We 

may propose the following stronger conjectures. 
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Conjecture 2.2.22 1. Every 3-edge-connected graph is supereulerian if and only 

if it is not contractable to a cubic non-hamiltonian graph. 

2. Every 3-edge-connected essentially 4-edge-connected non-cubic graph is supereu- 

Eerian. 

3. Every cyclically 4-edge-connected cubic graph has a 2-factor consisting of at most 

two cycles. 

4 .  Every 3-edge-connected essentially 4-edge-connected graph has a spanning trail. 

5. Every cyclicalIy 4-edge-conn.ected cubic graph has a hamiltonian path. 

6. Every 3-edge-connected essentially 5-edge-connected graph is supereulerian. 

One can also make similar conjectures on planar graphs. 

Conjecture 2-2-23 1. Every .?-edge-connected planar graph is svpereulerian if 

and only if it is not contractable to a cubic non-harniltonian planar graph. 

8. Every 3-edge-connected essentially 4-edge-connected non-cubic planar graph is 

supereulerian. 

3. Every cyclically 4-edge-connected cubic planar graph has a ,"-factor consisting of 

at most two cycles. 

4 .  Every 3-edge-connected essentially 4-edge-connected cubic graph has a spanning 

trail. 

5. Every cyclically 4-edge-connected cubic planar graph has a Hamilton path. 

6. Every 3-connected essentially A,-edge-connected planar graph is F.,amiltonian for 

some A, 2 5. 

7. Every cyclically 4-edge-connected cubic bipartite planar graph has a Hamilton 

path. 
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It is easy to see that Conjecture 2.2.22 (1) + (2) + (3) =+ (4) + ( 5 ) ?  (2) + (6), 

and Conjecture 2.2.22 (i) + Conjecture 2.2.23 (i), for 1 5 i < 6. In the next section, 

we will see that spanning and dominating circuits (trails) are closed related to the 

nowhere-zero 5-flow conjecture and the cycle double conjecture. Actually, the above 

Conjecture 2.2.22 (1)-(5) on trails or Hamilton paths will imply both of them. 
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2.3 Hamilton Cycles of Line Graphs 

Harary and Nash-Williams [53] derived the relation between the hamiltonicity of the 

line graph and the dominating cyclability of the graph itself. 

Theorem 2.3.1 (Harary and Nash-Williams [53]) I f G  is a graph with at least four* 

vertices, then its line graph L ( G )  is hamiltonfan if and only if G has a dominating 

circuit. 

There are many results on hamiltonian line graph in recent years. All results in 

Theorem 2.2.19 also imply that the graph L ( G )  is hamiltonian. Following are some 

selected results. 

Theorem 2.3.2 If G is a graph of order p, then each of the following conditions 

imply that L(G) is hamiltonian. 

1, degc(u) + degG(u) 2 p - 1 ,  for any uv 6 E(G)  (Lesniak and Williamson [71]). 

2. degG(u) + degG(v) > p ,  for any uu E E(G)  (Brualdi and Shanny [IT]). 

2 +3 4 .  degG(u) + degG(v) 2 +, for any uv 6 E ( G )  in a 2-edge-connected graph G 

(Benhocine, Clark, Kohler and Veldrnan [9]). 

5.  d e g ~ ( u )  + degc(v) + degG(w) > p + 1, for any three independent vertices in a 

2-edge-connected graph G (Catlin 1221). 

6.  degG(u) S degG(u) 2 $ * - 2, for any uv  E E ( G )  in a 3-edge-connected graph 

which is not contractable to the Petersen graph Plo (Chen and Lai [28],[291). 

In [76], Matthews and Sumner obtained a 3-connected non-hamiltonian claw-free 

graph, which is also a line graph of a graph. Again one can obtain infinitely many 



CHAPTER 2. LONG PATHS AND CYCLES 21 

3-connected non-hamiltonian line graphs L(G) by setting r = 3 and r < $ for the 

graph G in Theorem 2.1.1 and by applying Theorem 2.3.1. 

Thomassen observed that the line graph of a 4-edge-connected graph is hamilto- 

nian. The proof can be obtained from Theorem 2.2.3 and Theorem 2.3.1. 

Theorem 2.3.3 (Thomassen [93]) The line graph of a 4-edge-connected graph is 

hamiltonian. 

Thomassen conject wed that every 4-connected line graph is hamil tonian. 

Conjecture 2.3.4 (Thomassen 193, 141) Every ,$-connected line graph is hamiltonian. 

Similar to Theorem 2.3.1, in [I101 we proved the following result. 

Lemma 2.3.5 I fG is a graph with at least four vertices, then its line graph L(G)  is 

iiamilton-connected if and only if G has a dominating trail. 

From Corollary 2.2.11, Corollary 2.2.13 and Lemma 2.3.5, we can obtain the fol- 

lowing result. 

Theorem 2.3.6 (Zhan 1110, 11 11) Every 7-connected line graph is Hamilton-connected. 

Every line graph of a 4-edge-connected graph is Hamilton-connected. 

Proof. From Lemma 2.3.5, we only need to show that G' is dominating trailable. 

If L(G) is 7-connected, then G m ~ s t  be either essentially ?-edge=cor,nected or G is a 

star. By Proposition ref2113, G is dominating trailable. If G is 4-edge-connected, by 

Theorem 2.2.11 G is spanning trailable. hence L(G) is Hamilton-connected. 0 

To support Thomassen's Conjecture, we can prove that Thomassen's conjecture 

is true for planar graphs. 
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Theorem 2.3.7 Every ,$-connected line graph of a planar graph is hamiltonian, 

Proof. Let G be a planar graph such that its line graph L(G) is 4-connected. 

Then G is either a star or essentially 4-edge-connected. Let J be the circuit in Propo- 

sition 2.2.17 while x and y are any edges and F and K are any faces satisfying the 

assumption of Proposition 2.2.17. If G is a star, then L(G) is a complete graph and 

hence is hamiltonian. If G is essentially 4-edge-connected, then G has a dominating 

circuit J. L(G) is also hamiltonian. 
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2.4 Flows and Cycle Covers 

In this section, we consider some applications of the longest (or the largest) circuits 

or trails. We will address the relationship of the longest (or the largest) circuits or 

trails to nowhere-zero integer flow problems and cycle cover problems. 

2.4.1. Nowhere-zero Integer Flows 

The concept of a Bow in a graph is a useful model of Operation Research, and it is also 

essentially identical to the concept of a current in an electrical network. The concept 

of a flow can be regarded as the dual concept of tension (or potential diflerence) (see 

Jaeger [67]. Tutte observed that the whole theory of vertex-colourings of graphs can 

be formulated in terms of tension. In a plane graph, the four-colour theorem can be 

reformulated in terms of flows: Every 2-edge-connected planar graph has a nowhere- 

zero 4-flow. Tutte [99] introduced the concept of nowhere-zero integer flows and also 

made the following conjectures. 

Conjecture 2.4.1 (Tutte [99]) 

1. Every 2-edge-connected graph has a nowhere-zero $-pow; 

2. Every 2-edge-connected graph with no minor isomorphic to the Petersen graph 

PIO has a nowhere-zero &flow; 

3. Every 2-edge-connected graph with no 3-cuts has a nowhere-zero 3-flow. 

Jaeger [63] showed that every Zedge-connected graph has a nowhere-zero 8-flow 

and Seymour [86] improved Jaeger's result to a nowhere-zero 6-flow. We restate their 

resuits as f~iiows. 

Theorem 2.4.2 (Jaeger 2631) Every 2-edge-connected graph has a nowhere-zero 

8-flow. 
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Theorem 2.4.3 (Seymour [86]) Every 2-edge-connected graph has a nowhere-zero 6- 

flow. 

There are several other partial results related to Tutte's flow conjectures. Hoffman, 

Locke and Meyerowitz [55] showed that every Cayley graph of degree at  least 2 has a 

cycle double cover. 

Theorem 2.4.4 (Jaeger [64]) Every 2-edge-connected graph without $-cuts has a 

nowhere-zero 4-flow. 

Theorem 2.4.5 (Jaeger [67]) If G - e has a nowhere-zero 4-fEow for some edge e 

of a 2-edge-connected graph G, then G has a nowhere-zero 5-flow. 

A dual version of Grotsch's well known 3-colour theorem on triangle-free planar 

graphs can be formulated as follows. 

Theorem 2.4.6 ( Grotsch [51]) Every 2-edge-connected planar graph without 3-cuts 

has a nowhere-zero 3-flow. 

Thearern 2.4.7 (Steinberg and Younger 187, 881) Every 2-edge-connected graph e.m- 

beddable in a real projective plane has a nowhere-zero 5-flow. Every 2-edge-connected 

graph with at most on? 3-cut embeddable in a real projective plane has a nowhere-zero 

3-80 W .  

Lemma 2.4.8 If a 2-edge-connected graph G has has a spanning circuit, then G 

has a nowhere-zero 4-$ow. If a 2-edge-connected graph G has a spanning trail, then 

G has a nowhere-zero 5-flow. 

Proof. Let T be a spanning circuit in G and let H = G - E ( T ) .  Then O ( H ) ,  

the set of odd vertices in H, can be paired off into pairs. Let Pi be a path in 

T joining the i-th pair of vertices. Hence J = H U (PlAP2A . - . hPw ) is an even 
2 



CHAPTER 2. LONG PATHS A N D  CYCLES 3 1 

subgraph of G. S k r e  E ( J )  u E ( T )  = E ( G )  and J and T both have a i'?-flow, G has 

a Z2 x Z2-flow. If G has a spanning trail with ends u and u ,  then the graph G + uv  

has a spanning circuit and hence has a nowhere-zero 4-flow. Applying Theorem 2.4.5 

to G + uv, one can obtain a nowhere-zero 5-flow. Ci 

Therefore, the truth of Conjecture 2.2.22 (1)-(5) would imply the nowhere-zero 

5-flow conjecture is true. 

Theorem 2.4.9 If a graph G is a (3, 6)-edge-connected, then G has a nowhere-zero 

4-POW. 

Proof. It is a direct consequence of Proposition 2.4.8 and Lemma 2.2.9. [7 

Theorem 2.4.10 Every 3-edge-connected essentially 'I-edge-connected graph has a 

nowhere-zero 4-flow. 

We propose the following conjectures. 

Conjecture 2.4.11 If G is (3,4)-edge-connected, then G has a nowhere-zero 4-flow. 

Every 3-edge-connected essentialhj 5-edge-connected graph has a nowhere-zero $-flow. 

Conjecture 2.4.12 If G is (3,4)-edge-connected, then G has a nowhere-zero 3-flow. 

Every 3-edge-connected essentially 5-edge-connected graph has a nowhere-zero 3-flow. 

2.4.2 Cycle Covers. 

A family of cycles of G is a cycle double cover of G if every edge of G is in precisely 

two of these cycles. A k-circuit double cover of G is a family of k even subgraphs such 

that every edge in precisely two of these even subgraphs. A k-circuit double cover is a 
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cycle double cover. Seymour [85] showed that every planar graph has a cycle double 

cover. .A result of Alspach, Goddyn and Zhang [3] on cycle covers implies that every 

2-edge-connected graph without a Petersen graph minor has a cycle double cover. 

Tarsi [go] (see also [49] for a short proof) showed that every 2-edge-connected graph 

with a Hamilton path has a cycle double cover. We restate the theorem as follows. 

Theorem 2.4.13 (Tarsi [go]) Every 2-edge-connected graph with a Hamilton path has 

a 6-circuit double cover. 

Therefore, the truth of Conjecture 2.2.22(1-5) would imply the cycle double cover 

conjecture. Catlin [23j eventually showed that if a 2-edge-connected graph has at 

most ten 3-cuts (improved to  at  most 13 3-cuts in [24]) and is not contractable to the 

Petersen graph, then the graph has a 3-circuit double cover. 

Theorem 2.4.14 (hlspach f i j ] )  If a 2-edge-connected graph G has a cycle through 

all odd vertices of G ,  then G has a cycle double cover. 

Then McGuinness [75] generalized the preceding to circuits. 

Theorem 2.4.15 (MCGuinness [75]) If a 2-edge-connected graph G has a circuit 

through all odd vertices of G ,  then G has a cycle double cover. 

Bondy showed that if a graph has two edge disjoint spanning trees, then G has 

a cycle double cover (see McGuinness [El), Therefore, every 4-edge-connected graph 

has a cycle doubie cover. By Lemma 2.2.9 and Theorem 2.4, i5, we can conclude that 

the following result is true. 

Theorem 2.4.16 If a graph G is a (3, 6)-edge-connected, then G has a 3-circuit 

double cover. And if a graph G is 2-edge-connected essentially 7-edge-connected, then 

G has a 3-circuit double cover. 
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Proof. If G has a spanning circuit C ,  then S = O(G) = O ( G -  E ( C ) ) ,  the set of 

odd vertices, must be even and hence can be paired off. Let Pi be a path in C joining 

the i-th pair of such vertices and let P = P I A P ~  . - P S- be the binary sum of the 4 
paths. Then C, P U (G - E ( C ) )  and ( C  - E ( P ) )  - U(G - E ( C ) )  are the required three 

even subgraphs which cover G exactly twice. If G is (3,6)-edge-connected, then G has 

such a spanning circuit. If G is 2-edge-connected essentially 7-edge-connected, then G 

is a subdivision of some 3-edge-connected essentially 7-edge-connected graph H. We 

know that H has a spanning circuit and hence has a 3-circuit double cover. It is also 

easy t o  see that a graph has a k-circuit double cover if and only if a subdivision of 

G has a k-circtiit double cover. Therefore, the graph G has a 3-circuit double cover. CI 

It is also conjectured [75] that every 2-edge-connected graph with a dominating 

circuit has a cycle double cover. 

An edge cycle cover, or briefly a cycle cover, of a graph is a collection of cycles 

such that each edge appears in at least one of the cycles. A vertex cycle cover is a 

collection of cycles such that each vertex appears in at least one of the cycles. 

A problem related to nowhere-zero integer flows and cycle double covers is to 

minimize the number of edges (i.e., CcEc 1CI) in a cycle cover C of a 2-edge-connected 

graph. Itai and Rodeh made the following conjecture. 

Conjecture 2.4.17 (Itai and Rodeh [56] )  Every 2-edge-connected graph has a cycle 

cover using at most 1 E(G)I + IV(G)I - 1 edges. 

Bermond, Jackson and Jaeger [13] also made a similar conjecture on vertex cycle 

covers. They also commented that the bound is the best possible because of the graph 

K,.,J. 

Conjecture 2.4. I8 (Bermond, Jackson and Jaeger 1131) Every 2-edge-connected graph 

has a vertex cycle cover usi-g at most 2]V(G)I - 2 edges. 
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Itai and Rodeh [56] showed that Conjecture 2.4.17 is true for graphs with two edge- 

disjoint spanning trees. Bermond, Jackson and Jaeger [13] showed that Conjecture 

2.4.17 is true for planar graphs. U. Jamshy, A. Raspaud and M. Tarsi 1681, and C. 

Q. Zhang [I131 proved that if a 2-edge-connected graph has a nowhere-zero 3-flow, 

then there is a cycle cover using at most I E(G) 1 + JV(G) I - 3 edges. G.-H. Fan [38] 

showed that if a 2-edge-connected graph has a nowhere-zero 4-flow, then there is a 

cycle cover using at most IE(G) I + IV(G) I - 2 edges. A. Raspaud [82] showed that 

if a 2-edge-connected graph has a nowhere-zero bflow, then there is a cycle cover 

using at  most IE(G) I + IV(G) / - 3 edges. There are also several other partial results 

on Conjecture 2.4.17. Bermond, Jackson and Jaeger [13] proved that there is a cycle 

cover of a 2-edge-connected graph with at most I E(G) I + min{i / E(G)J ,  ~(Iv(G)I  - 1)) 

edges by using Jaeger's 8-flow theorem. P. Fraisse [46] showed that there is a cycle 

cover of a 2-edge-connected graph with at  most I E(G)I + q(lV(G)I - 1) edges. 

Theorem 2.4.19 1. Every (3, 6)-edge-connected graph has a cycle cover using at 

most IE(G) 1 + IY(G)I - 1 edges. 

2. Every %edgeconnected essentially 7-edge-connected graph G has a cycle cover 

using at most I E(G)I + IV(G)( - 1 edges. 

Proof. If G is a (3,6)-edge-connected graph, then by Theorem 2.2.9, there is a 

spanning circuit T in G. Pair off the vertices of O(G- E(T) ) ,  the set of odd vertices of 

G-T. Let P, be a path in T joining the vertices of the i-th pair of O(G-T). Then the 

vertex degrees of the subgraph H = PI AP2A - - - A P I O f  ~ - E ( T ) ) [  have the same parity 
2 

as in G and G - E(T). Let K be the s~bgraph obtained by deleting edges of cycles 

of H. So K is a forest and has the same parity as H and hence has the siime parity 

as G - EIT).  Therefore (G - E ( T ) )  u K is an even subgraph. The cycles of T and 

(G-E(T))uK form a cyclecover using at most IE(G)I+(E(K)I 5 IE(G)I+IV(G)I-1 

edges. Each edge of G is in at  most two cycles of the cycle cover. 

If G is 2-edge-connected essentially 7-edge-connected, then let G' be the graph 

obtained from G by replacing all suspended paths by edges joining the end vertices 
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of the suspended paths. Then Gt must be (3, 6)-edge-connected. By ( I ) ,  there is a 

cycle cover of GI using at most (E(Gt)I + /V(Gt)I - 1 edges and each edge of G' is 

in at most two cycles of the cycle cover. Restoring the graph G back from G', we 

can obtain a cycle cover of G, corresponding to the cycle cover of GI, using at most 

IE(G)I + /V(G)/  - 1 edges. o 

For the vertex cycle cover conjecture (Conjecture 2.4.18), Bermond, Jackson and 

Jaeger [13j showed that there is a vertex cycle cover of a 2-edge-connected graph G 

using at  most ?(IV(G)I - 1) edges. P. Fraisse [46] showed that there is a vertex 

cycle cover of a 2-edge-connected graph G with at most G(IV(G)I - 1) edges. He 

also showed that Conjecture 2.4.18 is true for planar graphs. X. Yu [log] proved it 

is true for 2-edge-connected graphs with no Petersen minors by using a theorem of 

Alspach, Goddyn and Zhang [3]. By using the longest circuits, we show here that the 

conjecture is true for 2-edge-connected graphs with minimum degree at least 3. 

Theorem 2.420 If a 2-edge-connected graph G has minimal degree S(G) 2 3 ,  

then there is a spanning even subgraph with at most 2(V(G)I - 2 edges. 

Lemma 2.4.21 If G is a connected graph of order p, then there is a connected span- 

ning subgraph G' such that O(G) = O(Gt) and E(G1) < 2(p - I ) .  

Proof. If (5'1 2 2(w(G - S) - 1) for any edge subset S C E(G), then by 

Theorem 2.2.1, there are two edge-disjoint spanning trees TI and T2 in G. Let U = 

O(G)AO(Tl). Then JU/  must be even and hence the vertices U can be paired off. Let 

Pi be a path in T2 joining the i-th pair of U. Therefore, Gt = TI U(P1 AP2Q . . . APu ) 
2 

is a connected spanning subgraph of G with O(G) = O(G1) and E(Gt)  < 2(p - 1). If 

IS1 < ~ ( w ( G  - S) - l j  for some edge subset S C E(G),  then let So be such a subset 

such that w(G - So) is the largest. If w(G - So) = p, then I E(G)I 5 2(p - 1) and 

hence G' = G is desired. So we can assume that w(G - So) < p, and that GI,  G2, . . ., 
G, are the connected components of G - So with at least one of them non-trivial. By 
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the rnaximality of a ( G  - So), we can conclude that for each non-trivial component 

Gk, 
Is1 2 2(w(Gk - 3) - 1) 

for any edge subset S 2 E(Gk). Suppose that there is a subset Sk 5 E(Gk) such that 

ISk[ < 2(n(Gk - S >  - 1). Then m(So U Sk) = m(G - So) + w(G - Sk) - 1 and hence 

2(?7(So U S k )  - 1) = Z(E(G - So) - 1) + 2 ( a ( G  - S k )  - 1) > /Sol  + /Ski 2 ISo U Ski. 
(2.23) 

This contradicts the maximality of n ( G  - So). So for each non-trivial component Gk 

of G - So and for any edge subset S C E(Gk), 

Therefore, by the above arguments, there exist connected spanning subgraphs G; 

of Gk for each non-trivial component such that O(Gk) = O(G;) and E(GL) < 
2(1V(Gk)l - 1). Let G' be the graph obtained from G by replacing each non-trivial 

component Gk of G - So by Gi.  We have O(G') = O(G) and E(Gf) 5 2(p - 1) as 

required. 

Corollary 2.4.22 Every eulerian graph has a connected spanning circuit with at most 

2(p - 1 )  edges. Every even graph has a spanning even subgraph with at most 2(p - 1) 

edges. 

Corollary 2.4.23 Every 4-edge-connected graph and every 3-edge-connected essen- 

tially 7-edge-connected graph have a spanning circuit containing less than 2(p - 1 )  

edges. They abo have a spanning circuit containing at least q - p + 1 edges. 

The following result is in Lov&sz's book "Combinatorical Problems and Exercises" 

7.42(b), page 54. 

Lemma 2.4.24 (Lovtisz [73]) If G is a 2-edge-connected graph with minimal degree 

at least 3, then there is a spanning even subgraph. 
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Proof of Theorem 2.4.20. Let G be a 2-edge-connected graph with minimal 

degree a t  least 3. Then by Lemma 2.4.24, there is a spanning even subgraph G'. 

Applying Corollary 2.4.22 to  G', We can obtain a spanning even subgraph with at 

most 2 ( p  - 1) edges. ~1 

Theorem 2.4.20 can be improved slightly to  2-edge-connected graphs with at most 

two vertices of degree 2. 



Chapter 3 

Edge-Disjoint Ham.ilton Cycles 

3.1 Introduction 

A graph G has a Hamilton cycle decomposition if its edge set E ( G )  can be decomposed 

into edge-disjoint Hamilton cycles and possibly one perfect matching. The graph G is 

also called Hamilton (cycle) decomposable . For convenience, K1 and K2 are regarded 

as Hamilton decomposable. Similarly, one can define a graph G to be Hamilton path 

decomposable . 

A matching N is suborthogonal to a Hamilton cycle decomposition if each Hamil- 

ton cycle in the decomposition contains at most one matching edge; a matching M is 

orthogonal to a Hamilton cycle decomposition if each Hamilton cycle in the decom- 

position contains precisely one matching edge. A matching M is almost orthogonal 

to a Hamilton cycle decomposition if each Hamilton cycle bct one in the decompo- 

sition contains precisely one matching edge. One can also define a matching to be 

suborthoj.ona1 (or orthogonal, or almost orthogona!) to a Hamilton path decomposition. 

If two graphs G and H are Hamilton decomposable, one may ask whether the 

graph obtained from G and H by a certain binary graph operation, e.g., cartesian 

product, lexicographic product, or conjunction, is Hamilton decomposable. There are 
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many results on these topics [ 5 ] ,  [6 ] ,  [ll], [7 ] ,  [89], and there are several good survey 

papers on this topic [llj and [4]. If a graph G is Hamilton decomposable, one may 

also ask whether the graph obtained from G by a monotone graph operation, such as 

taking the line graph, preserves the Hamilton decomposable property. 

In 1951, Kotzig [69] first studied the Hamilton decomposition of line graphs of 

cubic graphs. Kotzig proved that a cubic graph has a Hamilton cycle if and only if 

its line graph has a Hamilton decomposition. Later in f 983, Jaeger [65] showed that 

if a 4-regular graph G is Hamilton decomposable, then its line graph L(G) is also 

Hamilton decomposable. Recently, Jackson's results on compatible eulerian tours of 

4-regular graphs imply that if a 4-regular graph G is 3-edge-connected, then its line 

graph is Hamilton decomposable. We restate these results as follows. 

Theorem 3.1.1 (Kotzig, [69]) A cubic graph G has a Hamilton cyrle if and only if 

its line graph L(G) can be decomposed into two Hamilton cycles. 

Theorem 3.1.2 (Jaeger, [65]) If a 4-regular graph G can be decomposed into two 

Hamilton cycles, then its line graph can be decomposed into three Hamilton cycles. 

Theorem 3.1.3 (Jackson, [59]) If a 4-regular graph is 3-edge-connected, then its line 

graph can be decomposed into three Hamilton cycles. 

Bermond made following general conjecture 

Conjecture 3.1.4 (Bermond, 1121) If an r-regular graph can be decomposed into L;J 
Hamilton cycles and possibly a 1-factor, then its line graph can be decomposed into 

r - l Hamilton cycles. 

As far as I know, even for complete graphs h:, and for n = 6 or n > 8 the 

conjecture is still open, which was also conjectured by McKay (see, [4]). 

Conjecture 3.1.5 (McKay) L(K,) can be decomposed into n - 2 Hamilton cycles 

for every n ;1 3. 
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In this chapter, our main result is the following therorem. In section 3.2.1 and 

section 3.3, we will provide some necessary tools used in the dec~mpositions. We will 

show the main theorem in section 3.4. 

Theorem 3.1.6 Let G be a graph with a Hamilton cycle and minimal degree 6 .  If 

Ideg(u) - degjv)j 5 1 when S is odd, and jdeg(u) - degjv)j < 2 when 6 is even for 

any two vertices u and v ,  then its line graph L(G) has at least 2\$] - 2 edge-disjoint 

Hamilton cycles. 

Corollary 3.1.7 The line graph of an r-regular hamiltonian graph has at Eeast 2l;j - 
2 edge-disjoint Hamilton cycles. 

As a consequence, we can get a partial result related to Bermond's conjecture. 

Corollary 3.1.8 If a graph &: can be decomposed into r Hamilton cycles, then its line 

graph L ( G )  can be decomposed into at least 2r - 2 Hamilton cycles and a 2-factor. 

I f a  graph G can be decomposed into r Hamilton cycles and a 1-factor, then its line 

graph L ( G )  can be decomposed into at least 2r - 2 Hamilton cycles and a 4-factor. 

Using Dirac's theorem, we can get the following corollary. 

l!Wl and for any two vertices Corollary 3.1.9 If a graph G has minimal degree S > 
u and v of G, Ideg(v) - deg(v)l 5 1 when 6 is odd, and Ideg(u) - deg(v)l < 2 .when 6 

is even, then its line graph L ( G )  has at least 21$] - 2 edge-disjoint Hamilton cycles. 
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3.2 Almost Even Factorizations 

3.2.1 Balanced Orientations 

Recall that an orientation of an undirected graph G is digraph which can be obtained 

from G by assigning each edge an origin and a terminus. An orientation of G is 
3 

denoted by G. For a vertex u ,  we use Ef ( u )  to denote the set of edges of G which 
G 

--i 

have u as an origin in G ;  and E- ( u )  to denote the set of edges of G which have u 
3 

3 

as a terminus in G . 

Therefore, 

and 

+ 
are the outdegree and indegree of G , respectively. 

A digraph D is balanced if for each vertex u E V(D), 

( idD(u)  - 0dD(u)1 5 1. 

Lemma 3.2.1 Every graph G has a balanced orientation. 

3 

Proof If the graph G is an even graph, then the orientation G of G along an eu- 

lerian tour of each connected component of G is balanced. Actually, idD(u)  = odD(u) 

for all u E V(G). If G is not a even graph, then the number of odd vertices of G 

must be even and non-zero. The supergraph obtained from G by adding a new ver- 

tex and adding new edges between the odd vertices of G and the new vertex must 

be an even supergraph and hence has a balanced orientation. This orientation will 

induce a balanced orientation of G by deleting the new vertex from the supergraph. 
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3.2.2 Equitable Edge- Colourings 

Consider an edge-colouring of a graph G with colours I ,  2, . . ., and k. For each vertex 

u of G, let C ; ( u )  be the set of edges incident with u  of colour i; and for two vertices 

u  and v of G, let C;(u, v )  be the set of edges joining u and v of colour i. Denote 

and 

Therefore, 

are the colour classes. In this chapter, we do not distinguish between the colour 

classes, the edge subsets and the edge spanned subgraphs of the same colour. 

An edge-colouring of G is equitable if, for every vertex u E V ( G )  and 1 5 i < j 5 

k, 

Ici(u) - c j ( ~ > I  < 1, 

and it is balanced if , in addition, for all u, v E V ( G ) ,  u  f. v and 1 <_ i < j < k, 

Thus, an edge colouring is balanced if the colours occur as uniformly as possible at 

each vertex and if the colours are shared out as uniformly on multiple edges between 

two vertices. 

Similarly one can define equitable arc-colourings on a, digraph D given an arc- 

colouring of a digraph D with colours 1, 2, . . ., and k. For each vertex u of D, 

let C:(u) and C ~ ( U )  be the set of arcs with origin u and terminus u of colour i, 

respectively; and let Cf(u,  v) ( CiI(u, v) ) be the set of arcs with origin u  and terminus 

v ( with origin u and terminus u of colour i, respectively). Let 
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c+(u, v )  = IC+(u, v j /  

c;(u) = 1C,-(u)l 

c;(u, v )  = ICJu, v ) ( .  

An arc-colouring of D is called equitable if, for every vertex u E V ( D )  and 1 < i < 

j < k, 

lc+(u) - c;(u)i 5 1 

and 

Ic,(u) - cj-(u)l < 1, 

and it is called balanced i f ,  in addition, for all u, v E V(D), u # v and 1 < i < j 5 k, 

and 

Let p : V(G) -, 2' be a function assigning to each vertex u of a graph G a positive 

integer p(u). A k-colouring (C1, C2,. . . , Ck) of G is an equitable (k, p)-colouring if for 

each vertex u and each colour i, 1 < i < k, 

The graph G is also called equitable (k, p)-colourable. 

In other words, a graph G has an equitable (k,p)-calouring if and only if for every 

vertex u E V(G) and colour 1 5 i 5 k, 

for some 0 I e;(u) I p ( u ) .  

If a graph G is k-regular and p r 1, then the equitable (k, I )-colouring problem 

is equivalent to the edge-colouring problem. So it is not surprising that completely 

determining the equitable (k ,  p)-colourable graphs is very hard. 

D. de Werra [I031 proved the following theorem. 
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Theorem 3.2.2 (de Werra [103]) For each integer k 2 1 ,  any bipartite graph has an 

equitable ( k ,  1 )-colouring. 

Theorem 3.2.3 (de Werra [104]) Let k be a positive integer and p : V ( G )  --+ Zi 

a given function. If each odd cycle H of G with degrees d H ( u )  3 0 (mod % p ( u ) ) .  

( u  E V ( H ) ) ,  meets either a vertez u with dc (u )  2 k ( y  + 1)  - 1 or a vertez u with 

dG(u) 5 k 9  - 1 ,  then G has an equitable (k,p)-colouring. 

3.2.3 Almost Even Equitable ( k ,  p)-Colourings 

An even equitable ( k ,  p)-colouring is an equitable ( k ,  p)-colouring such that c,(u) is 

even for 1 5 i 5 k and u E V ( G ) .  An almost even equitable (k,p)-colouring is an 

equitable ( k ,  p)-colouring such that for each vertex u ,  u E V ( G ) ,  all c,(u) but possibly 

one are even for 1 5 i 5 k. 

Proposition 3.2.4 For every graph G,  there is an equitable ( k ,  2)-colouring of G.  

--+ 
Proof Let G be a graph. By Lemma 3.2.1, G has a balanced orientation G .  

Let B ( V f ,  V - ;  E) be a bipartite graph with two disjoint parts V f  = {u+ : u E 

V ( G ) }  and V -  = {u- : u E V ( G ) }  and with edge set E ( B )  = {u+v- : nv E A(??)}. 

We use a to denote the natural bijection from E ( B )  to A(??) and ,B to denote the 

natural bijection from A(??) to E ( G ) :  

3 

It is easy to see that dB(u+)  = od+(u) and d B ( u - )  = id+(u). Since G is balanced, 

then 
G G 
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and 
> k 

ds (u - ' )  = zd+(u) G > 1- 2 I -  
By de Werra7s Theorem 3.2.2, the bipartite graph B has an equitable (k ,  I )-colouring 

(CI,C2..-.  ,Ck) 

This edge colouring of B induces an edge colouring (a0 P(Cl), a 0 P(C2), . . . ? Q O  P(Ck)) 

of G: 

c;(u) = c;(u+) + c ~ ( u - )  

and hence 

and 

Therefore, c,(u) = 2 1 w j  + r i ,  where 0 < e ,  < 2. In the following proposition, we 

try to control the E'S. An edge-colouring is even if all c;(u) are even for u E V ( G )  and 

all colours 1 < i < k. An edge-colouring is almost even if for every vertex u f V ( G ) ,  

there is at most one c;(u) which is odd, 1 5 i 5 k. C] 

Proposition 3.2.5 For all k 5 n i n { ~ y ~  : u E V ( G ) ) ,  there is an almost even 

equitable (k, 2)-colouring. 

Proof If G is almost 2k-regular, i.e., dG(u) = 2k or dG(u) = 2k + 1 for every 

vertex v E V ( G ) ,  then any equitable (A:,  2)-cslousing from Proposition 3.2.4 will be 

almost even. 

If G is not almost 2k-regular, then we construct an almost 2k-regular graph G* 

by splitting each vertex u of degree at least 2k + 2 into vertices ul, 212,. . . , ul, where 
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I = [ e l ,  and distributi~g the edges of EG(u) to each ui as follows: Each vertex u, 

(1 < i < k - 1) is incident with 2k edges of EG(U);  vertex ur is incident with the rest. 

If the degree of ul is even, then add loops at the vertex ul such that the degree of ul 

is 2k. If the degree of ul is odd, then add a new vertex u* and one edge between ur 

and u* and add loops at  ul and u* such that the degree of ul is 2k and the degree of 

u* is 2k + 1. 

By Proposition 3.2.4, G* has an equitable (k ,  2)-colouring which also is almost 

even since C' is almost even. Restoring G back fron G", the edge-couloring of G* 

induces an almost even equitable (k, 2)-colouring of G. 0 

Corollary 3.2.6 If G is an even graph with minimal dcgree at least 2k, then G can 

be decomposed into k even factors. 

Edge colourings of G can be regarded as a certain factorization of the graph. As 

a direct consequence, the above result implies the following classical result. 

Theorem 3.2.7 (Petersen,[81]) Every 2k-regular graph has a 2-factorization. 
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3.3 Complementary Poles 

3.3.1 Complementary Poles of Kc 

Let ?l = {HI. Hz,. . . . H T )  be a collection of Hamilton cycles of G. Two vertices 

of G are said to be poles of 7.1 if they divide each cycle of 3-1 into two paths of 

equal length. when the order is even, or almost equal length. when the order of G is 

odd. The paths are called semicircles. Furthermore, if G' is a graph with vertex set 

C = {C'.C; : 0 5 i 5 k), then two vertices C: and C; are complementary poles of 

G if each pair C: and C, are never in the same semicircle for all i # j. Let Kc be 

the complete graph with vertex set C. Then we have the following lemma. 

Lemma 3.3.1 Kc has a Hamilton decomposition with complementary poles Cof and 

Proof The following construction is classical. Let a be the permutation 

acting on the set of vertices of Kc, and let H be the Hamilton cycle 

C;G':C;C:C,, ...C&C;C+ ..-C:C;C;C$, for k even 
2 (3.4) 

C$qC;qC;-, . . + C+C;C$ - .  . C:C;C;Cof, for k odd. 

Then 

7-f = (aO(H)  = H, o1 (H) ,  a2 (H) ,  . . . , ak-'(H)) (3.5) 

is a Hamilton decomposition with complementary poles C$ and CG. CI 
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Remarks. 

1. Each pair C+ and C,, 1 < i < k, are also complementary poles of the Hamilton 

decompostion of Kc - F. 

2. The Hamilton cycle decompostion is symmet.ric between Cf 's and C-'s. 

3.3.2 Orthogonalities. 

Lemma 3.3.2 Let 31 be the Hamilton decompostion in Proposition 3.3.1 with com- 

plementary poles C$ and C;, Then for each it 1 _< i < k ,  there are edge-disjoint 

orthogonal matchings M;" , Mc, such that each edge in M: is in the same semicircle 

as the vertex C+ is, and each edge in M;' is in the same semicircle as the vertex C,-. 

Proof If k is even, then for 1 5 i _< k, 

and 

M; = a k ( ~ + )  

are edge-disjoint matchings both orthogonal to the Hamilton decompostion. If k is 

odd, then for 1 < i 5 k, 

and 

-44; = nk (M;)  

are edge-disjoint matchings both orthogonal to the Hamilton decompostion, where P 

is the permutation in Lemma 3.3.1. 0 
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3.4 Edge-Disjoint Hamilton Cycles 

Theorem 3.4.1 If (I graph G has a Hamilton cycle and has minimal degree 6 !  and 

if Ideg(u) - deg(v)l 5 1 when 6 is odd and Ideg(u) - deg(v)l < 2 when 6 is even for 

any two vertices u and u ,  then its line graph L(G) has at least % [ $ I  - 2 edge-disjoint 

Hamilton cycles. 

Proof Let Co be a Hamilton cycle in G and let r = [$I - 1. Then 6(G) 2 2r + 2 

and S(G - Co) 2 2r. By Proposition 3.2.5, there is an almost even equitable (r, 2)- 

colouring {C1, C2, . . . , C, ) of G - Co. Applying Lemma 3.2.1, we can obtain balanced 

orientations of Ci, O 5 i 5 r. Since ideg(u) - deg(v)( < 1 when 6 is odd and 

Ideg(u) - deg(v)l 5 2 when 6 is even for any two vertices u and v, we have three 

possible cases: degG-co ( u )  = 2r, degGWco ( u )  = 2r + 1 and degG-c0 ( u )  = 2r + 2. We 

denote 

C =  {CT,C,- :O 5 i 5 r )  

and 

C ( u )  = {C?(u),C,T(u) : 0 5 i < r ) .  

Hence, 

By Lemma 3.3.1, the Hamilton decompostion (3.5) 

of Kc has complementary poles C$ and C{. Denote the semicircles by 
5- 

L,1:  L1,2: L2,2: - - - 7 L,I? Lr,2! (3.7) 

Case 1. If d e g ~ - ~ ,  ( u )  = 2r, then ICi(u)l = 2 and /C'(u)l = /C,y(u)l = 1, for 

1 5 i < r .  Let 
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be the corresponding semicircles of KEG(Ul. 

Case 2. If degG-co(u) = 2r + 1,  then ICi(u)l are all equal to 2 with one exception 

which is equal to 3, and hence /C;(u)l and jCr(u)l are equal to 1 with one excep- 

tion, say, /Cc(u)/ = 2. Regard KEG(,) as a graph obtained from fi by inserting 

a duplicated vertex C:. By Lemma 3.3.1, the Hamilton decompostion (3.5) has an 

orthogonal ma.tching M:. We obtain semicircles 

of KEG(,) by subdividing the matching edges of semicircles of Kc using the duplicated 

vertex. 

Case 3. If degc-co(u) = 2r  + 2 ,  then ICi(u)I are all equal to 2  except one which 

is equal to 4 and IC+(u)l and [C;-(u) 1 are equal to 1 except for some io satisfying 

iCz(u)l = lCti(u)l = 2. Regard KEG(,) as a graph obtained from Kc by inserting 

a depulicated vertex of C: and a depulicated vertex of C*;. By Lemma 3.3.1, the 

Hamilton decornpostion (3.5) has disjoint orthogonal matchings iW2 and M;:. We 

obtain semicircles 

of KEG(u) by subdividing the matching edges of Mf using the duplicated vertex Cz(u) 

and subdividing the matching edges of M,; using the duplicated vertex Ci, from the 

semicircles of Kc. 

Note that the vertex and its duplicated vertex are in the same semicircles. 

We construct 2 r  edge-disjoint Hamilton cycles Hij , 1 5 i < r ,  j = 1 , 2 ,  as follows: 
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