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Abstract

In this thesis, the Fokker-Planck equation is investigated theoretically and numeri-
cally. A class of tridiagonal matrices related to the static solution of the Fokker-Planck
equation is also considered. The first part of the thesis is devoted to the existence
of solutions to the one dimensional Fokker-Planck equation. The existence is proved
using semigroup theory. In the second part, the spectral method using Hermite func-
tions is developed for the one dimensional Fokker-Planck equation. Numerical results
are also presented. The third part of the thesis is to extend the Hermite spectral
method to the two dimensional equation. The last part is concerned with the distri-
bution of eigenvalues for certain tridiagonal matrices. We prove that all eigenvalues
of these matrices lie on the left half plane. This property is crucial for the spectral

approximation to the static solution of the Fokker-Planck equation.

i1



Dedication

TO: LEIWEN

iv -



Acknowledgements

I would like to express my gratitude to Dr. Tao Tang for his guidance, his encour-
agement and his help throughout the process of the research and the writing of this
thesis. Many thanks especially to Dr. Steve Hou for his very careful corrections to
this thesis, without which this work would not be fulfilled. Also, many thanks to Dr.

Bob Russell, who made it possible for me to study at Simon Fraser University.



Contents

Abstract
Dedication
Acknowledgements
1 Introduction

2 The existence of the solution
2.1 Semigroup and its application to evolution equations . .. ... ...
2.2 The existence of the 1-D Fokker-Planck equation . . . ... .. ...

3 Spectral method in one dimensional case
3.1 Hermite spectral method . . ... .. ... ... ... .00
3.2 More general cases . . ... ... e e e e e e

3.3 Numerical Examples . . . . .. ... ... ... L

4 Spectral Method in two dimensional case

4.1 Series Expansion . . .. .. .. ..o e
4.2 Spectral Method . . .. . ... ..

5 The eigenvalues of tridiagonal matrices

vi -

iii

v

15
16
20
22

29
30
32

37



Bibliography

vii

49



List of Tables

5.1 The statement not truefor k=6. . . .. ... ... .......... 45
5.2 The statement not true for ¥ = 6 for another matrix. . .. ... ... 46
53 Thestatementtruefork=5. ... .. ... .. .. ... ...... 46
54 The statement truefork=6. . .. .. ... .............. 46

Vil



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

The numerical solution with initial valueug=¢¢ ... .. ... ... 23
The numerical solution with initial valueuwo=¢, . .. .. ... ... 24
The numerical solution withug=¢att=05 ............ 25
The numerical solution with uo =¢@o at t=0.85 ... ........ 25
The numerical solution with up =@ att=15 .. .......... 26
The numerical solution with g =@ at t=3.0 ............ 27
The numerical solution with ug =g at t=0.05 . .......... 28
The numerical solution with ug =¢gat t=3.0 ............ 28

ix



Chapter 1

Introduction

Fluctuations are a very common feature in a large number of fields. Nearly every
system is subjected to complicated external or internal influences that are not fully
known and that are often termed noise or fluctuations. The Fokker-Planck equation
deals with thbse fluctuations of systems which stem from many tiny disturbances, each
of which changes the variables of the system in an unpredictable but small way. The
Fokker-Planck equation was first applied to the Brownian motion problem (see, e.g.
[8, 22]). Here the system is a small but macroscopic particle, immersed in fluid. The
molecules of the fluid kick around the particle in an unpredictable way so the position
of the particle fluctuates. Because of these fluctuations we do not know its position
exactly, but instead we have a certain probability to find the particle in a given region.
With the Fokker—Planck equation such a prdbability density can be determined. This
equation is now used in a number of different fields in natural science, for instance in
solid-state physics, quantum optics, chemical physics, theoretical biology and circuit
theory.
One of the simplest Fokker-Planck equations is

ow _ O(wW) *w
o v +78 ov?’ (1)

where W (v, t) is the distribution function, y~! the particle relaxation time, 8 = kT'//m
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CHAPTER 1. INTRODUCTION ’ 2

is the thermal velocity, k is the Boltzmann’s constant, T' the temperature and m the
mass of particle. By solving (1.1) starting with W(v,0) and subject to the appropriate
boundary conditions, one may obtain the distribution function W(v,t) for all later
times. In general, the distribution function W depends not only on velocity but also
on position. For example, Kramer’s equation is an equation of motion for distribution
functions in position and velocity space describing the Brownian motion of particles
in an external field. For details of the Fokker-Planck equations the reader is referred
to [22]. .

Solutions (esp. the stationary solutions) of the Fokker-Planck equation often decay
at infinity at least like exp(—pv?) for some positive constants p (i.e. Gaussian type).
Therefore, the Hermite expansions have natural applications for the Fokker-Planck

equation. The normalized Hermite functions are

o) = (o) (-5 ), 12

where the H,(v) are the usual (unnormalized) Hermite polynomials. Many researchers
have noticed that the close connection of Hermite functions to the physics makes them
a natural choice of basis functions for many fields of science and engineering, (see for
example Chapter 14 of [5] and the introduction of [25]). Also one of the reasons for
using Hermite spectral methods is that the Hermite system has some very attractive
properties from the numerical point of view (see, e.g. [4, 13, 28]). It is shown in [28]
that the spectral radii for the first and second Hermite differentiation matrices are
O(VN) and O(N), respectively, where N + 1 is the number of truncated terms used.
This places rather weak stability restrictions on the Hermite method. For example,
if we consider the standard heat equation, then a maximum step size in the time
direction of order O(N~1!) is required, whereas for Fourier and Chebyshev methods it
is of order O(N~?) and O(N~*), respectively. In the actual calculations this means

that one need not even consider implicit time integration methods with the Hermite
method.
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In this thesis, we shall study the theoretical properties of the Fokker-Planck equa-
tion. Numerical methods based on the Hermite expansion will be also investigated.
The first part of this thesis is devoted to the existence of solutions for the one dimen-
sional Fokker-Planck equation. We shall employ the semigroup theory to prove the
existence property for the one-dimension Fokker-Planck equation. There has been
a number of papers dealing with the existence of the solutions for various equations
including the Fokker-Planck equation (see, e.g. [20, 12]), but none of these has used
the semigroup theory. In the second part, a spectral method using Hermite functions
is developed for the one dimensional Fokker-Planck equation. The ordinary differen-
tial equation system derived from this method shows a very good simulation to the
Fokker-Planck equation. This can be seen from both the theoretical analysis and the
numerical examples. The trapezoidal method is used to solve the ordinary differential
equation system. In the third part, we apply the spectral method developed in [26] to
the two dimensional Fokker-Planck equation. The coefficients matrix involved in the
partial differential equation system derived from this method shows that the partial
differential equation system is hyperbolic. Artificial boundaries are set up for this
PDE system since the domain of the space variable is unbounded.

In the last part of this thesis, we consider the eigenvalues of a class of tridiagonal
matrices, which will appear when the Hermite spectral method is applied to the one
dimensional Fokker-Planck equation in the more general case. Each matrix in this
class cannot be similarly transformed into a symmetric matrix and may have complex
eigenvalues. We prove that all the eigenvalues of such a matrix lie on one of the half
planes depending on the signs of the diagonal entries. This property is very important
in showing 'tha,t the solutions of an ordinary differential equation system with such
a matrix are decaying. Some examples are given in this part to show some further

properties of this class of matrices.



Chapter 2
The existence of the solution

In this chapter, a model 1-D Fokker-Planck equation is investigated. The equation

1s given by
ou _ O(zu)  O%u
i +ﬁ —oo <<+ (21)

together with an initial condition

u(0) = uo. (2.2)

The solution of Egs. (2.1) and (2.2) is required to satisfy

/ " w(e)dz = / * vo()dz. (2.3)

—00 -0

The Eq. (2.3 is a natural property of the sdlution, i.e. the conservation of the maﬁs,
and will be discussed later. The semigroup method is used to prove the existence of
a solution to this equation.

In the following sections, we introduce some useful results from semigroup theory,
which can be found in {19, 30]. Throughout this chapter the letter C' will denote a

generic constant whose meaning and value varies with context.
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2.1 Semigroup and its application to evolution

equations

In this section some concepts of semigroups and major results related to the applica-

tions in this chapter will be briefly described.

Definition 2.1 Let X be a Banach space. A one parameter family T(t), 0 < t < oo,
of bounded linear operators from X into X is said to be a semigroup of bounded linear

operators on X if
(i) T(0) = I, ( I is the identity operator on X );
(i) T(t+s) =T()T(s) for every t,s > 0 (the semigroup property).

A semigroup of bounded linear operators, T'(t), is uniformly continuous if

ltllr(r)l | T@)—1I|=0. (2.4)
The linear operator A defined by
Az =lmI®Z=2 L D(A), (2.5)
t]0 t
where D(A) is a set defined by
D(A)={ze X: ltilr(r)lz(—t)—g-:—:E exists}, (2.6)

is the infinitesimal generator of the semigroup T(t), with D(A) being the domain of
A.

Definition 2.2 A semigroup T(t),0 <t < oo, of bounded linear operators on X is a
strongly continuous semigroup of bounded linear operators if

ltilrtr)lT(t):v =z VzelX. (2.7)

A strongly continuous semigroup of bounded linear operators on X will be called a

semigroup of class Cy or-simply a Cy-semigroup.
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Definition 2.3 Let T(t) be a Co-semigroup. T'(t) is called a Co-semigroup of con-
tractions if

T |IS1 Vvi>0 (2.8)
With these definitions, we have the following lemmas:

Lemma 2.1 (Hille-Yosida) ( See, e.g., [19]) A linear (unbounded) operator A is
the infinitesimal generator of a Co-semigroup of contractions T(t),t > 0 if and only
if

(i) D(A) is dense in X, i.e., D(A) = X;

(ii) Let Jy = (I — AA)™! for A >0, then

| Jx lleey<1 VA>0. (2.9)
Consider the following abstract Cauchy problem:
du(t) |
o = Au(t) (2.10)
and
u(0) =z €X (2.11)

where X is a Banach space and A is a linear operator from D(A) C X into X. Then

we have:

Lemma 2.2 (See, e.g., [19]) If A is an infinitesimal generator of a Co-semigroup of
contractions T'(t), then for every uo € D(A) the Cauchy problem has a unique solution
u € C([0,00), X) N C°([0, ), D(A)).

Now we consider the inhomogeneous Cauchy problem:
du(t)

— = Au(t) + F(u) V>0 (2.12)

with .
u)=z€X (2.13)
We have the following lemma about the solution of inhomogeneous Cauchy prob-

lems
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Lemma 2.3 (See, e.g., [19]) In addition to the hypotheses in the above lemma, let F

be Lipschitz continuous from X to X, i.e., there erists a constant L such that:
| Flu)= F) IS L{lu—v]| forany u,v€ X (2.14)
and F € CYX,X),uo € D(A). Then the inhomogeneous Cauchy problem has a

unique solution u € C*([0, 00), X) N C°([0, 00), D(A)).

2.2 The existence of the 1-D Fokker—Planck equa-
tion

Now we turn to the 1-D Fokker-Planck equation:
ou  O(zu) Ou

5 om +5$—2' —o00< <00 (2.15)

with

u(0) = uo, (2.16)
> v Ou O

u u u

with

u(0) = ug. (2.18)
Let 4.

X = L*(R)
and

D(A) = {u{ u, v, zu’,u” € L*(R)}.

Let A, F be the two operators defined by

Au = zu' +u” (2.19)
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and
Fu=u. (2.20)
The above problem (2.17) and (2.18) can be written as the following Cauchy problem:
d‘;it) = Au(t) + Fu(t), for t>0 (2.21)
with
u(0) = up € X. (2.22)

We will prove
H JA “Sl V/\>0’

or equivalently,

Fus i< VA0,
where u) is the solution of the following equation:
u— Mau' +u") = f. (2.23)

Consider the following variational problem associated with the above equation:
Find u € Hy, such that

a)(u,v) = f(v) Vv € Hy, (2.24)

where H, = H'(R) = {ulu,«’ € L*},H, = {u|u € H'(R),zv’ € L*},f € Hj, the

dual space of Hj, and a)(u,v) is a bilinear fgrm over Hy X H, defined by

ay(u,v) = [::o(uv — dzu'v + Au'v')dz. (2.25)
For simplicity, we will drop subscript A. Thus we have
Theorem 2.1 If there is a vo € Hy such that
a(u,v0) =0 VYu € Hy, (2.26)

then vg = 0.
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Proof. Let ¢, be defined by
2
oa(t) = (2"nly/T) 2T H, (2.27)
for n = 0,1,2,---. Then we know that the set ¢,,n =0,1,2,--- is a complete or-

thonormal basis in L?(R) , where H, is the Hermite polynomial of degree n. So v

has a unique expansion in terms of ,:

00
v = ) o

n=0

where ¢, = _'_"oo VoPn -

For ¢,,n=1,2,3,..., we have

90:1 = \/—Son—l H 9071+1’

n-—1 1 n+ 1} (n+2
-"«"P; = ‘*2—2%—2 “2"<Pn - \/( )2( )‘Pn+2

and

' I

Vo =3 dnpn.
n=0

where

n+1 7

T¢n+1 - é‘cn—l
and ‘

P2 =1 =c_1 =Ccp=0.

If we choose u = ¢, then

a(u,v) = cp— % [\/(n(n = 1))en-2 — cn — \/((n +1)(n + 2))cn+2]

/ 1
+A {\/—%—dn—l - E';——dnﬂ}

= ¢, —)\(n(n — 1))1/2Cn_2 + A(n + l)cn = 0.

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(234)
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Therefore
.= Mn(n — 1))1/20 N
T I+ Ml4n) "
One easily sees that ¢g = ¢; = 0. Hence by using the recursive formula (2.35) we
deduce that

(2.35)

=0 forn=1,2,3,--- (2.36)

This completes the proof. O
Theorem 2.2 a(u,u) > Cllul}, VYueH CH,

Proof. Using integration by parts we have

/_:)o rv'udz = —/+°° u(zu)'dz
= -—/+°° 2d:z:—/ ” ru'udz (2.37)
so that
/_:o zu'udz = —-;— [::o u?dz. (2.38)
Therefore
a(u,u) = [:o de—/\/ xuud:z:+/\/ u')dz

/::oud:v+§/_ 2da:+/\/ u')dz

> Cllully,  Vue (2:39)

wherec=%>0. O

The proof of the following theorem for the variational problem (2.24) is similar to
that of the Lax-Milgram lemma ( See, e.g., [9]).

Theorem 2.3 Assume the bilinear form a(u,v) is defined by (2.25) and f € Hj.

Then there is a unique solution to the variation problem (2.24).
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Proof. Obviously, a(-, ) is a bilinear form on H; x H;. Then for a fixed v € Hy, a(u,-)
is a linear functional on H;. Since H; is a Hilbert space, by the Riesz representation

theorem, there is an element R(u) € H; such that

a(u,v) = (R(u), v)n, (2.40)

where (-,-) represents the inner product on H,. Assuming R(u,),n =1,2,3,... is
a Cauchy sequence in Hj, then (R(u,),v),n=1,2,3,... is a bounded set of real
numbers for every v € H;. On the other hand, we may think of (R(u,),v) as a linear

functional on H; for every fixed u, and denote this by
(tn,w) = (un,G(v)) Vv € H,. (2.41)

Then (up,w),n =1,2,3,... is bounded for every w € H;. Therefore by the resonance
theorem, || u, |[,n =1,2,3,... is bounded. Since H; is a separable Hilbert space,

there is a u* € Hy such that u, weakly converges to u*. Thus

Iim (ua, G(v)) = (u”, G(v)) Vv € Hy, (2.42)
lim (R(ua),v) = (R(u"),v) Vvé€ Ha. (2.43)

Since R(un),n = 1,2, 3; ... is a Cauchy sequence, R(u,) must converge to R(u*) € H,. -
This implies R(H}) is closed. By Theorem 2.1 we obtain

R(H;) - H,, (2.44)

from which we may conclude the existence of a solution to the variational problem
(2.24). The uniqueness can be simply proved by the inequality (2.39). O

Now we turn to the question of regularity of solutions of the equation

u— Az +u") = f. : (2.45)
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If f € L* C Hj, we know that there is a solution u € Hy, i.e. u,zu’ € L?,

therefore u” € L?. Besides, we have

400 400 400 +o00
/ uldz + %/ uldz + /\/ (u')?dz = / fudz. (2.46)
So .\ .\
( / ude)'/? < ( / V2, (2.47)
which implies that
I (I — /\A)_1 ”[,(X,X)S 1 VA>0. (2.48)

By theorem 2.1, theorem 2.2, theorem 2.3 and all the lemmas in the previous section,

we have

Theorem 2.4 Operator A defined by (2.19) is an infinitesimal generator of
a Co-semigroup of contractions. Therefore, Cauchy problem (2.21) (2.22) has a unique
solution u € C([0,00), X) N C°([0, o), D(A)).

Remark 2.1 Some investigation of L' theory for the eristence of the solution.
We will first derive an estimate for u € L!(R). Set

1 ifz<~1/n
Yo(z) =4 nz if-l/n<z<1/n
1 fz>1/n
Then :
+c0 +o00
lim un(u)dz =/ |u|dz (2.49)

n—00 J_ o

since ¥, (u) — 26(u) as n — oco. Also

- /_:o zu'th,(u)dz = /_zo utpy (u)dz + /_.::0 zuth,(u)u'de (2.50)
and

+o0 ' +o0 v
-/ u'yn(a)de = | ha(u)(w)?de 2 0. (2.51)
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Thus, from

/+°° uhn(z)dz — A /::o zu'th,(z)dz — )\/::o u",(z)dz

oo o
= ftou(z)dz (2.52)
we have
400 +00
/ luldz < / Ifldz  if f e L% (2.53)
Now assume u € L. Then the equation
u—Azu — " = f (2.54)
may be rewritten as
zu'+u' =g=~1/N(f -u), geL. (2.55)
Therefore
22 x ’2
u = e'"T/ e7 gds. (2.56)

Note that at large z,

2 2
T e Tgds e~ %

ot = Jeo — - =% (2.57)
e 2 re 2

So that

zu' ~ g, atlarge 7.

This means zu’ € L!. By using the differential equation we see u” € L! . Based on
these observations, we deduce that the operator A is also an infinitesimal generator

of a Co-semigroup of contractions on X, = L'(R), where
D(A) = {u | u, v, zu',u" € L'}. (2.58)

The Cauchy problem has results in L!-setting that are similar to those in L%-setting.
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Remark 2.2 L! theory should be more natural.

Consider the static solution of the equation, i.e.,
(zu) +u" = 0.

We have
zutu =C

and

2[5 2 2
u=Cle“2/ e7ds + Cre™ 7.

-~00

The asymptotic relation

2
ot Tds 1
i’—'—‘?ﬁ— ~ — atlarge «
z

tells us u is in L? for any constant Cy, but not in L! unless C; = 0. On the other
hand, formally integrating the Fokker-Planck equation, we have
d [1 udz
di

= lim (eu +4) =0,

under the assumption lim,_,. zu = 0. Therefore

+o00 +00
/ udr = / uodz.

—00 —00

Therefore, if the solutions are sought in L?, then the Fokker-Planck equation may
have nonunique static solutions while if the solutions are sought in L', the static

solution is unique, determined by the initial data uq.



Chapter 3

Spectral method in one

dimensional case

In this chapter, the Hermite spectral method is employed for the Fokker-Planck equa-
tion. The convergence rate of the spectral method is high for many classes of problems
(if the solution is sufficiently smooth) compared to the finite element method or finite
difference method. For example, suppose we use a spectral method and a finite dif-
ference method to solve two point boundary value problem. If the number of the grid
points is NV, then the convergence rate of the difference method will not be changed as
N grows, but the convergence rate of the spectral method will grow as N grows. The
reason for this is: spectral method uses global functions to approximate the solution
and the differential equation is usually demanded to be satisfied at a set of points, for
example, collocation points. So it is like an N-th order approximation. In many cases
the spectral method converges at exponential rate. Because of the high convergence
rate the spectral method has become more and more popular, especially after it was
found that the FFT technique can be applied to spectral methods (See [4] and [5]).
The spectral method for the Fokker—Planck equation will be introduced in sections

3.1 and 3.2. The numerical results will be presented in section 3.3.

15
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3.1 Hermite spectral method

We assume that the solution of the Fokker-Planck equation has the following series

expansion:
u(e,t) = 3 calt)n(a), (3.1)
n=0
where
o2
¢n = (2"nIVE) T T Hyn =1,2,3, - (3.2)

in which H,(z) is the Hermite polynomial of degree n. For ¢, defined above, one can

find the following recurrence relations:

n n + 1
(P:t = (_2—)1/29071—1 "’( )1/2(Pn+11 (33)
n + 1
ITPn = ( )1/2 Pn-1 +( )1/2(Pn+17 (34)
n(n — 1))V/2 1 n+ 1)(n 4 2))/2
S W (RS LA
and
nln — 1))1/2 1 n+1)(n +2))1/2
(pZ = —————————-( ( 5 )) Pn—2 — (n + 5)9071 + (( )(2 )) Pnt2. (3'6)
By these relations, we have
n — 1))1/2 =1
U = Zucn¢n—2_z =CnPn
n=0 "1"0 2
n+1)(n + 2))/2
I SYCED T
n=0
n +1)(n + 2))1/2
= Z (( )(2 )) cn+2(Pn Z C,,,(Pn
n=0 n—O
n(n — 1))1/2
Z _————( ( 2 )) cn—-2(Pn
n=0
n +1)(n + 2))1/2 1 (n(n—1)?
= Z ( )(2 )) Crt2 = 56— Gl ) ) Coz|Pny  (3.7)

n=0
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where c_; = c_, = 0.

Similarly, we have

Ugr =

oo n n 1/2 n nn — 1/2
(( +1)(2+2)) Cn — 2 2+1c,.+(( 22)) Cn.—2] on.  (3.8)

n=0
By substituting these into the Fokker-Planck equation (2.1) and equating the coeffi-

cients of ¢, on the two sides, we have the following ordinary differential system:

d = —ncy + (n+1)(n+2) 242, n=0,1,2,--- (3.9)
Let d. = ¢or, ek = €241, K =0,1,2,--. Then, the above equations become
&, = —2kdi + ((2k +1)(2k + 2))%drys (3.10)
and
ey = —(2k + 1)ex + ((2k + 2)(2k + 3))erss (3.11)
where k£ = 0,1,2,--.. Take an approximation of u as a truncated series expansion of

the first 2k + 2 terms, i.e. :
2k+1

Usk = Y ca(t)n(T). (3.12)
n=0
Let D and F denote (k + 1)-dimensional column vectors
D = [do,dy,dp,-- -, di]" (3.13)
and “
E = [eo,e1,€9,- -+, e] . (3.14)
Then the ODE systems (3.13) and (3.14) become
dD
S =D (3.15)
and dE
== =AE (3.16)
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subject to some initial conditions, where

[0 V3 0 0 ...
0

Ao= |0 —4 /30 --. (3.17)
0

and

i

!
3
8
X

Ay (3.18)
0 -7
Since all the eigenvalues of A; are negative, we know that
}LTO E(t) =0. (3.19)

For the behavior of D(t) for large ¢, we need to know more about the eigenvectors of

Ap. We consider the eigenvectors of a matrix in the general case. Assume

(o0 f 0 0 -]
0 a; B2 O
A = 0 0 '(13 ,33 L (3.20)
0 0 0 a4
where a;,7 = 1,2, ~- - n are distinct real numbers and f;,7 = 1,2,--~,n~—1 are nonzero

real numbers. Obviously, oy, a9, a3, ... are the eigenvalues of A. Now, we try to find

the eigenvector of A corresponding to ¢;, which is denoted by

x(i) = [xgi)1 xg), te x:(i)a 93&21, e zgn)] (321)
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Each x*) should be a nonzero solution of the following system:
Ax) =0 (3.22)

where

-511 .Bl 0 0 W

0 & B, 0
A=]0 0 & fB5 --- (3.23)

0 0 0 @&y

in which, @¥ = a(¥) — oli) £ 0 since all the s are distinct. It is easily found that

e =0,k =n,n~1,--,i+1 (3.24)
and
zf)= ﬁz ﬁ'lpk i—1,4—2---,1. (3.25)

Therefore, a:S'.) # 0, so we may choose a:si) = 1. If we denote

X =[xW,x®, ... x™), (3.26)
where X is an upper triangular matrix with unitary diagonal entries, then
A=XAX", (3.27)

for
A = diagfog, ag,- -, ], (3.28)

Thus for Ao, we know that there is an upper triangular matrix with unitary diagonal
entries T such that
" A = ToATy 1, (3.29)

where

A = diag[0, 2, —4, - - -, —2K]. (3.30)
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So, the solution D(t) could be expressed as :
D(t) = ettd,
= ToeMTydo (3.31)
where do is a (k + 1)-dimensional vector and
eM = diag[l, e, e, ... 7M. (3.32)
Therefore
lim D(t) = Todiag(L,0,---,0]T5do
= diag(1,0,---,0)T3do
= [do,0,---, 0], (3.33)

i.e., the behavior of the solution for the spectral method at large ¢ is similar to ¢y
modular a constant multiplier, which coincides with the result for the static solution

of the Fokker-Planck equation.

3.2 More general cases

Consider the following more general Fokker-Planck equation

_aﬁ _ O(zu) 0%u

ot = "oz Tom (3.34)
subject to initial condition:
u(0) = wuo (3.35)
where p is a constant.
By the relations (3.3) — (3.6) we could similarly get
-~ 1))1/2 1—
a = (1- p)gg(n—i—)z——c,._g +( 5 £ n)ey,
n + 1)(n + 2))1/2
+(1+ I‘)((n )(g ) Cnt2 (3.36)

for n='0,1,2,---,
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or,

& o= (1= p)ZECE - D s (AL ~ 2k
+(1+ p) (2F + 1)(;2k uk)ik di41 (3.37)
and
e, = (1— 2K n ) (A5 2k~ 1)es
1+ 4) ((2k + 2)(2k + 3))1/2 - (3.38)

2

for k =0,1,2,- - and where d; = e, ex = a1,k = 0,1,2,- . Taking an approxi-

mation of u as
2k+1

Ugk = Y, n(t)pn(z) (3.39)

n=0
we get the following ODE systems for the approximate solution of the Fokker-Planck

equation:
dD

I AoD (3.40)
and .
e AE, (3.41)

where D, E are defined by (3.13) , (3.14) with

rCYo Yo

fo a1 m
Ao = B ar . (3.42)
) . Ye-1
Br-1 i
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and i ;
ap Co
bo a G
A= by ap - (3.43)
) ) Ck-1
i b1 ar |
in which
a = i;—l—zi (3.44)
2k + 1)(2k + 2))1/2
g = (1L DZEAT) (3.49
2%k + 1)(2k + 2))1/2
3= (4 (BEFNCEED) (3.46
a; = "—'2'-1—-21'—1 (3.47)
2k + 2)(2k + 3))1/2
b = (1— u)(( )(2 ) (3.48)
2k + 2)(2k + 3))1/2
o = (14p)28E )(2 +3)) (3.49)
fori=0,1,2--.

Remark 3.1 If 1 < p < 3 then bic; < 0,a; < 0. By the result given in Chapter 5,
we know that all the eigenvalues of Ay have negative real part, therefore the solution

E(t) will approach 0 as t approaches to infinity. But for Ao or for the other values of

i, tt is not-so clear theoretically.

3.3 Numerical Examples

In this section we give some numerical examples. [n all these examples, the approxi-

mate solutions are taken as the sum of the first 2V 4 2 terms in the expansion series

of the solution.
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Ezample 1. ( The time-independent solution. )
In chapter 2 we know that the static solution of the 1-D Fokker-Planck equation is

u, = o, (3.50)

where @o is defined by (2.27). So, if the initial value up = (o, then the solution
obviously is u(t) = . Figure 3.1 indicates the numerical result obtained by using

our spectral method for this example. The numerical solution coincides with the static

N=2, =0.05

T ¥ T T T

008 ¥ H 14
Numer. solu. ***

0.7+ Static solu. ---

0.5}

0.3

02F

0.1F

Figure 3.1: The numerical solution with initial value ug = ¢

solution since the solution is independent of ¢.
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N=4, t=0.05
0.6 T T T T i
0.5 -
.04 -
0.3 [ -
0.2 -1
0.1 F -

-0.1 -
0.2 Static solution — ]
-0.3 & Numerical solution == ]
04+ O 1
0.5 — ' ' )

6 4 -9 0 2 4 6

Figure 3.2: The numerical solution with initial value ug = ¢,

Erample 2. ( The time-dependent solution and its long-time behavior). We know
that (3.50) is the static solution of the Fokker-Planck equation in which cis a constant

determined by the integral of initial value ug, since

+0c0 +00
/ u(t)dz = / wodz. (3.51)
So if we take ug = (2, we have

400 +oo
/ ude = lim [ u(t)de

—00 =00 J w00
+co
= / uodx
o0
= padz
= 7l/4 | (3.52)

Combining the last equation and the fact that

+oo, "
wodz = 211/, (3.53)
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N=4, t=0.5 .
0.6 T T 1 |

Static solution —
- Numerical solution —— 7

04

-

0.2

0.1

-6

Figure 3.3: The numerical solution with uo = ¢, at t = 0.5

we obtain
c=1/V2. (3.54)

Figure 3.2 to Figure 3.6 illustrate the numerical results of our spectral method. It
can be observed from these figures that as ¢ is large the numerical solution approaches

the static solution.
Ezample 3. If we take uo = s, we can obtain
135
= -8- 7, (3.55)

where c is the constant in the static solution defined by (3.50). Figure 3.7 and Fig-

ure 3.8 are the numerical solutions at small and large time, respectively.
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N=4, t=0.85
0.6 T T - T I

‘Static solution ——
Numerical solution — -

0.5

0.2 |

0.1 p

Figure 3.4: The numerical solution with ug = ¢, at t = 0.85

N=4, t=1.5
0.6 T T T ]

Static solution —
0.5 Numerical solution =—— -

04

02 |

0.1

Figure 3.5: The numerical solution with U = o at £t = 1.5

26
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0.6 T T T T T T L) L]
Numer. solu, ***
Static solu. ---

0.5

04

02+

0.1

Figure 3.6: The numerical solution with up = ¢, at £ = 3.0

27
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N=6, t=0.05
0.5

04
03
0.2

-0.1
-0.2 -
-0.3

.

Stat. solu. —
Nume;. solu, —

4 6

0.4 T T
0.35
0.3
0.25

T T

Stat. solu. — -
Numer. solu, —

H

0.15 -
0.1
0.05

Figure 3.8: The numerical solution with up = g at ¢ = 3.0

28



Chapter 4

Spectral Methoci in two

dimensional case

Now we turn to the following two-dimensional Fokker—-Planck equation

9P 9P dU (z)
BT Vs AP [ﬂ”*—d;"]

o | pKTEP

dv  mw? Jv?

subject to initial data. Here U(x) is a given function defined by:

3(@+2)? fz<-1
Ul)=4 1-12?, if-1<z<1
H(z—2)2, ifz>1

(4.1)

To solve this equation, a number of numerical methods have been developed. In

Cartling [7], difference method has been applied, whereas in Moore and Flaherty [17],

Galerkin’s method with adaptive mesh refinement techniques has been applied to the

above Fokker-Planck equation. Numerical results are presented in both papers. In

this chapter, we try to solve the Fokker—Planck equation by spectral method developed

for the kinetic equation in Tang et al.- [26]. All the techniques used in [26] work for

the Fokker-Planck equation as well, but with some adaptations.

29 .
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4.1 Series Expansion

Since the range of the variable v is (—00, +00), it is natural to represent the unknown
function P(z,v,t) by an expansion of Hermite polynomials in v with coefficients de-

pending on z and i, i.e.,
o
P(z,v,t) = dnfo(z,t)Ho(aw) exp(—a?v?), (4.2)
n=0
where fu(z,t),n = 1,2,-- are unknown functions, « is a constant and H, is the n-th
order Hermite polynomial. We choose thé”factor d, =1/ v27n! so that the coefficient
matrix of the induced partial differential equation system for f, is symmetric, which

implies this partial differential equation system is hyperbolic. We will see this later.

For the sake of simplicity, we set
H(v) = d, Hy(cw) exp(—a?v?). (4.3)
Thus we could easily find the following recurrence relations among those functions:

dj{;;(”) = —ay/2(n + 1) B (v), (4.4)

T o it Dt 2) o) (1.5)

vH,(v) = %r- [\/ z ;— lﬁnﬂ(v) + \/gﬁ _1(1))] (4.6)

and
i, i i
v dv(v) = —\/(n +1)(n + 2)Hpy2(v) — (n + 1) H,(v). (4.7)
From these relations, we have
_or
oz

- ER[FE o]
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1 & a4l 6fn 1 &
= == [ Hn)5E - = \/—H_

n=0 n"O

- E % T "’22“]ff<> ws

Similarly, we can obtain

20n) _g(m 0 facs + 1) n(0), (4.9
?;: az_:\/_fn_lH() . (4.10)

and | -
o - gz\/m_’l—)nfn_zﬁn(v), (4.11)

where f_; = f_, = 0. Substituting all these into equation (4.1) and equating the
coefficient of H,(v) on the two sides of the equation, we obtain the following partial

differential equation system:

ok _ _1[ fOfu , [a¥10fm
2t T a [23m+ 5 am]“"ﬂf"

—\/iaiUT@l\/ﬁfn_l + (2221 - B)/(n — Dn fo, (4.12)

or,
Ofn 1| @0fass  [n+10fum
79?2—3[5631: +\/2_—a—]
+dnofr + dn(-1) fr-1 + dn(2) fa-2 (4.13)
where
do = —pn, (4.14)
do(-1) = -?'\/iaé—Uc-,-gd,m—)\/ﬁ, (4.15)

dn-2y = PR2Pp—1)/(n—1n (4.16)
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and

© KT/muw?, (4.17)

forn=0,1,2,---

4.2 Spectral Method

The spectral method & order N consists of solving the first N + 1 equations of (4.13)
for the N + 1 unknown functions fo, f1, f2,--- fn. All the functions f,,n > N +1,
are set to 0, i.e. take the approximate solution to P(z,v,t) as the following truncated

series Py(z,v,t)

Pn(z,v,1) Z \/___fn(a: t)H,(av) exp(—a?v?). (4.18)

n=0

Let f denote a (N + 1)-dimensional column vector defined by

f = f(z,t) = {fo(z,1), fi(z,1),- -, fnu(z, )] (4.19)
Then equations (4.13) become

of of
5= —-&R 5 + S (4.20)

where R and S are (N +1) x (N +1) matrices given by

-

[ 0 (03}
o 0 (42)]
R= a 0 - (4.21)

aN

aN 0_
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and

dOO
di(-1) duo 0
dy—2) dy—1)  dao

(4.22)
da(-2)\ \\da(-l) dso

L dn(-2) dn(-1) dno |
in which e, = /n/2,n = 1,2,---, N and dno, dp(~1), dn(-2),7 = 0,1, -+, N are defined
by (4.14)-(4.16), plus initial data.

Obviously, R is a symmetric matrix, and thus has N + 1 real eigenvalues. Fur-

thermore, we have

Theorem 4.1 (See [26]) The eigenvalues of R are the zeroes of the (N +1)-th order
Hermite polynomial Hy41(A).

Proof. Let pyy1()) be the characteristic polynomial of R. Since R is tridiagonal, we

have

PNy1 = APN(’\)_a?VPN—l(’\)

= ov()) — -Jz\pr_l(A) (4.23)
for N =2,3,4,--- and
n o= A (4.24)
pp = M- % (4.25)
We shall prove that
pn=2"NHyforn>1. (4.26)

Obviously this is true for N = 1,2." Assume (4.26) is true for N < n. From (4.23)

and the recurrence relations among Hermite polynomials, we have

n
P41 = ’\pn(/\)_é‘pﬂ—l(’\)
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= A2""H,(\) —n2"H,_1(}\)
= 27D ()) — 2nH,o1()))- (4.27)

This completes the proof of the theorem. O

Let Mg < A; < --- < An be the zeros of the Hermite polynomial Hy4, and Cj be
defined by

N ;\fw)
Cr = {3 gl ORI (4.28)

We have the following result regarding the eigenvectors of R.

Theorem 4.2 (See [26]) The eigenvector of R corresponding to the eigenvalue A

can be given by

g, = [tok, Uik v, uNK|T (4.29)
in which u,y ts defined by c
k

Unk = ——é\/;——rﬂHn(/\k) (430)

Proof. Assume that an eigenvector of R corresponding to A is

y= [yO) Yi,°0 '!/N]T (4.31)

Then
Ry = A\y. (4.32)

This is equivalent to the following difference equation

- .
\/gyn—l + V z -2*- Ynt1 = ’\kyn) n= 01 17 e )N (4'33)

with boundary conditions y—; = yn4+1 = 0. This could be directly verified by setting

Yn = Uni noticing the fact that Hyy1(Ax) = 0. The theorem is therefore proved. O
Obviously the eigenvectors defined by (4.29) are normalized and they are mutually

orthogonal since R is a symmetric matrix. Let matrix U be defined by

U= [ub,ul,---,uN]. (4.34)
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then U is an orthogonal matrix and
- UTRU = A = diag[)o, M1, - -, An]. (4.35)
If we premultiply (4.20) by U7, we obtain

of 1. 0f  x=
5= f&-A% + Sf (4.36)

by letting f=UTfand §=UTSU. ¢
Eq. (4.36) is a typical hyperbolic system. Since the entries of the diagonal matrix
A change signs, we need to consider different finite difference approximations for /\,'%E__i

according to the signs of );,0 <7 < N in order to ensure the stability of the difference
methods. If X; > 0, the backward space difference scheme

i _ Nz z
/\,-EE~ RS Z—;(f,(x,t) — fi(z — Az, t)) (4.37)
should be used. If \; < 0, the forward space difference scheme
afi _ N,z =
)‘i'b'*x‘ 2 K;(f:(x + Az, t) — fi(z,1)) (4.38)
should be used. Therefore, the numerical scheme for (4.36) is
Flat 4t = fiet) = 22 (f(0,1) - fiz - As,))
iz, 1+ = Jiz, a Ay fi(z, ,(:1: z,
+AL(SE)i(z,t), if X > 0; (4.39)
~ » Ai At ~ ~
f,’(.’L‘,t + At) - fi(x,t) - Z—A—y(f'(x + Ax,t) - ft(x,t))
+AL(5E)i(z,t), if X <0 . (4.40)
filz,t+ At) = fi(z,t) + At(SD)i(=, 1), if N =0. (4.41)

It is easy to see that the above scheme (4.39)-(4.41) can produce stable solutions for
the hyperbolic system (4.36).

Originally, system (4.20) is a Cauchy problem and we know that only those solu-

tions which go to zero as t goes to inﬂxﬁty make sense in physics. So we may turn the
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Cauchy problem into an initial-boundary problem by setting the following artificial

boundary conditions:

fi(M,t) =0 \7't20,j=0,1,2,---,1—V—;—l | (4.42)
and . N Nt
fi(-Mt)y=0 Vt>0,j= ———;—r—l—;f— +1,--+,N (4.43)
when N is odd; and
< : N
f(Mt)=0 Vt20,j=0,1,:--,%~1 (4.44)
and
Ji(-M,t)=0 VtZO,J'=%+1,%r-+2,---,N (4.45)

when N is even.



Chapter 5

The eigenvalues .of tridiagonal

matrices

Tridiagonal matrices are very common and important in many applications. For
the eigenvalue problem of symmetric tridiagonal matrices, extensive theoretical and
numerical work can be found in the literature. In this chapter, we will investigate
the eigenvalue distribution of some class of non-symmetric tridiagonal matrices. This
class of matrices would arise from the spectral method for the Fokker-Planck equation
when Hermite polynomials are employed. We have seen this in chapter 3 and we will
see the details in the following section.

Denote a n x n tridiagonal matrix by A,:

ar B
N o P '
A, = Yo az . (5.1)
' Br-1
Tr-1 Qn

L -

where 8;7; < 0,7 = 1,2,---,n — 1. Under this condition we may prove that A, is

37
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similar to a matrix

[ o 51 1
_Bl a2 Bz
An: "‘Bz (%3
B
L _Bn—l Qn ]

where all Bj,j =1,2,---,n —1 are positive. In fact, by taking
D = diag{d,, dy,ds, - ,d,),d; # 0,7 =1,2,--- n, we have

j\) a; b
¢ oy b
DAnD—l = Cy QO3
bn—l
Cn—1 Qn

where

b = d;fid;}yc; = dipay;d?

38

(5.2)

(5.3)

(5.4)

for j = 1,2,3,--~,n. Thus we may choose some d; for each j = 1,2,3,---,n, such

that
bj=1¢;>0,5=1,2,3,---,n, (5.5)
i.e.,
ﬁﬂz—%ﬁjéLZ&ngm (5.6)
Therefore we may assume v; = —ﬂjJ< 0,7 =1,2,3,---,n in (5.1) without loss of
generality. We still denote this matrix by A,,, i.e.
[ o B ]
—b Ro2’ B2
A, = —B2 a3 (5.7)

ﬂn-—-l

_:Bn—l (877 i
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Then we have the following theorem for such types of matrices:

Theorem 5.1 If all the diagonal entries in A, are strictly positive, all the eigenvalues

of A, are on the right half complez plane.

Before we prove this theorem, we need to prove some auxiliary results. Let B(t),D,C,

be respectively defined as follows:

[t A ]
- By —t B
A B.n, (t) = ﬂz -t . 5 (58)
c. ﬂn-—l
L Bt —t |
D = diag[ay, aa, a3, -+, ) (5.9)
and i
e ﬂl W
B ias P
Cn = ﬂg ’I:a3 .. (5.10)
ﬂn—l
| ﬂn—l ian i

where ¢ is the imaginary unit. Using the matrices defined above we have

Theorem 5.2 iA, and C, have the same characteristic polynomials, therefore they

have the same set of eigenvalues.

Proof. Both iA, and C, are tridiagonal matrices, thus we know that the recurrence

relations for them are

det(iA, — zI) = (ian— 2)det(iAn—y — 2I) + (ifn-1)’det(iAn-z — zI)
= (ion — z)det(iAp_y — 2I) — B2_,det(iAp—a — zI)  (5.11)

n—1
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and
det(Cp — 2I) = (ian — 2)det(Cpoy — 2I) — Bi_idet(Coz —2I)  (5.12)
for n = 3,4,5,---. It can be easily verified that
det(¢A, — 2I) = det(C, — 2I) (5.13)

for n = 1,2. Therefore both characteristic polynomials are identical for any integer

number n. O
Theorem 5.3 C, has no real eigenvalue if all 0,1 =1,2,---,n are strictly positive.

Proof. Assume that C, has a real eigenvalue ¢ and let x + ¢ty be the corresponding

eigenvector. Then we have

Ca(x +1y) = t(x +iy), (5.14)
(B(t) + iD)(x + iy) = 0. (5.15)
(5.15) can be rewritten as

B({t)x—-Dy = 0 ‘ (5.16)

and
B(tly+Dx = 0 (5.17)

’ Bty -D 1{x]_

ERIRE o

But

_[p B(t) (5.19)
0 —(B(t)D-'B(t)+ D)
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thus
’ B(t) -D = +de o -1
det |~ 50 | = 4det(D)det(B(t) D™ B(t) + D). (5.20)
On the other hand,
(B(t)D™'B(t) + D) = D*((D~¥B(t)D"%)? + I\D% | (5.21)

and D% B(t)D~7 is a symmetric matrix so that B(t)D~1B(t)+D is a positive definite
matrix. Therefore, system (5.18) has only the trivial solution. This is contradictory

to the assumption at the beginning. O

Theorem 5.4 A, has no pure imaginary eigenvalue under the same condition in
Theorem 5.1.

Proof. This is quite staightforward since ¢A, and C,, have the same set of eigenvalues.
m]

Now a proof of Theorem 5.1 could be given.
Proof of Theorem 5.1. Let

(431 3P
~sp  ay  sP :
An(s) = -3 az .. . (5.22)
8Pn-1
L ~$fn-1 an i

Then A(0) = D, A(1) = A, and all the eigenvalues of A(s),Aj,7 = 1,2,-++,n, are
continuous functions of s since eigenvalues of a matrix are continuous functions of its
entries. When s = 0, obviously };(0) = «a;,j = 1,2,--+,n; thus all eigenvalues are
on the right half plane. For any 0 < s < 1, the condition in Theorem 5.1 for A,
is satisfied, thus A(s) has no pure imaginary eigenvalue. Therefore, no eigenvalue of
A(s) can go to the left half plane without crossing the imaginary axis. This implies
that all the eigenvalues of A(s) stay on the right half plane, i.e.,

. Re{X;(s)} > .O,j =1,2,---,n. (5.23)



CHAPTER 5. THE EIGENVALUES OF TRIDIAGONAL MATRICES 42

In particular,
Re{};} = Re{};(1)} > 0,5 =1,2,---,n (5.24)

where A;,7 = 1,2,---,n are the eigenvalues of A,. O

As a consequence of Theorem 5.1, we have:

Theorem 5.5 If all diagonal entries in A, are strictly negative, then all eigenvalues
of A, are on the left half plane.

Furthermore we have the following result under a slightly different condition.
A

Theorem 5.6 If A, satisfies the conditions in Theorem 5.1 except that ay = 0, the

statement in Theorem 5.1 is still true.

Proof. From the proof of Theorem 5.1 we know that the key point is to show that

the matrix in system (5.18) is nonsingular, or to show that the following matrix

D B(@)
B(t) -D

(5.25)

is nonsingular for any real number ¢. Let

0 of
D= [0 Dl} (5.26)

and .
~t- bT
by  Bi(?)

Then Dy is positive definite. There can be only two cases for ¢:

B(t) =

. (5.27)

(i) t is not eigenvalue of B(0) then B(t) is invertible;

(ii) ¢ is an eigenvalue of B(0), then ¢ is not an eigenvalue of B;(0) and thus By(t) is

invertible.
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Case (i). We have

I 0 } [ B(t) -D } _[ B ~D (5.28)
—-DB-(t) I D B(t) D DB™(t)D + B(t)
, B(t) -D | _ 1
det [ D B = ddet(B(t))det(DB~'(t)D + B). (5.29)

-

Similar to the proof of Theorem 5.1 it could be verified that above determinant is

nonzero. ,
Case (ii). For simplicity we will drop ¢ in B;(t) and denote both 0 and 07 by 0

from now on. We can make following multiplication for T

1 0 000 0 —t bT]
0 I 00 0 Di by B
0 —bID;* 1 0| =t BT 0 0
|0 -BD* 0 I|| b, Bl 0 D|
[0 0 —t b7
0 D b B
_ 1 1 1 ! 1 (5.30)
—~t 0 —bTD;'b, ~-bT D' By
| by 0 —BiDi'by —(BiD7'By + DiY) |
Let
b, = B,D{'by, o (5.31)
a = bID'b, (5.32)
and

E == BID;1B1+D;1 (5.33)
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Then it is not difficult to prove that F is positive definite since D, is positive definite

and Bj is symmetric. From this notation one sees that

1 0 blE-! 0 -t bl
0 1 —blTE —~t —¢ —bT
00 I b; -b, -F
) bTE-1b, —(t+bTE-b,) 0
L= —(t+bTEb)) bIE'by—¢; 0 |. (5.34)
by ~b, -E
Therefore,
0 -t bf
det(T) = tdet(Dy)det | —~t —¢; —b7
b, -b, —-E
= +det(D;det(E)[bY E='b, (b E~ by — ¢;) — (t + bT E~'b,)?] (5.35)

since bl E-'b, = bY E~'b,. Thus we only need to prove that

¢1 —bTE"'by > 0, | (5.36)
or,
P=D;'— D{'B,E-'B,D;! > 0. (5.37)
From (5.33) we know that
E~Y(B,D{'B, + DiY) = 1. (5.38)

So,

P = Di'—Di'By(Bi' — ET'DiB;Y)
= D{'B,E-'\D, B[
= D*(Dy¥B)E(D} 3By Dy
- DiipDE (5.39)
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-

eigenvalues
—0.0000 + 8.3666:
—0.0000 — 8.36662
—0.0037 4- 4.2802:
—0.0037 — 4.2802:
—0.1340 4- 1.5688:
—0.1340 — 1.5688:
—0.7247

»—Awwqactcs?

(] Hen) Hon) ) Nan) e

3| O] G| =] O DO =

t
—

Table 5.1: The statement not true for k = 6.

where P, = (D] %BI)E”I(D; %Bl)'l. Therefore all eigenvalues of P, are strictly

positive since E~! is positive and similar to P;, and P is positive definite. O

Remark 5.1 An interesting question is, if a; = 0,1 <1 < k < n, does the result still
hold? Some numerical examples indicate that k could be larger than one, but what is

the largest k? This is attractive to me and maybe to some readers as well.

Ezamples. Table 5.1 to Table 5.4 give some examples of the eigenvalues of tridiag-
onal matrices. From Table 5.1 and Table 5.2, we see that the real part of the first
two eigenvalues should be zero. The next two tables show the cases that k = 5,6

respectively.
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eigenvalues
—0.0000 4 8.3665:
—0.0000 — 8.36652
—0.0055 + 4.26752
—0.0055 — 4.2675:
—0.0431 4 1.3503:
—0.0431 — 1.3503z
—9.9027

.—amwuscxcaﬁ

I O Ot | O DO =
olojo| oo

—_
=

Table 5.2: The statement not true for & = 6 for another matrix.

'

R
w

eigenvalues
—0.0007 4 8.3665:
—0.0007 — 8.36652
—0.0704 4 4.2622:
—0.0704 — 4.2622;
—0.6032 + 1.5545:
—0.6032 — 1.5545¢
—0.6515

o|lojololo

wa-hcwc:?

~J| O] Ut =] O D] —
‘
— -

Table 5.3: The statement true for k=5

a’s | Bs eigenvalues

11 0} 1 |—0.2123 + 8.3463:
210 2 | —0.2123 — 8.3463:
3 0] 3 —0.0660

41 0 | 4 | —0.1026 + 1.6318:
5/ 0 | 5 | —0.1026 — 1.6318:
6] 0 | 6 | —0.1521 +4.2729:
7] -1 —-0.1521 — 4.2729%:

Table 5.4: The statement true for k = 6.
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