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Abstract 

In this thesis, the Fokker-Planck equation is investigated theoretically and numeri- 

cally. A class of tridiagonal matrices related to the static solution of the Fokker-Planck 

equation is also considered. The first part of the thesis is devoted to the existence 

of solutions to the one dimensional Fokker-Planck equation. The existence is proved 

using semigroup theory. In the second part, the spectral method using Hermite func- 

tions is developed for the one dimensional fjbkker-Planck equation. Numerical results 

are also presented. The third part of the thesis is to extend the Hermite spectral 

method to the two dimensional equation. The last part is concerned with the distri- 

bution of eigenvalues for certain tridiagonal matrices. We prove that all eigenvalues 

of these matrices lie on the left half plane. This property is crucial for the spectral 

approximation to the static solution of the Fokker-Planck equation. 
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Chapter 1 

Introduction 

Fluctuations are a very common feature in a large number of fields. Nearly every 

system is subjected to complicated external or internal influences that are not fully 

known and that are often termed noise or fluctuations. The Fokker-Planck equation 

deals with those fluctuations of systems which stem from many tiny disturbances, each 

of which changes the variables of the system in an unpredictable but small way. The 

Fokker-Planck equation was first applied to the Brownian motion problem (see, e.g. 

[B, 22)). Here the system is a small but macroscopic particle, immersed in fluid. The 

molecules of the fluid kick around the particle in an unpredictable way so the position 

of the particle fluctuates. Because of these fluctuations we do not know its position 

exactly, but instead we have a certain probability to find the particle in a given region. 

With the Fokker-Planck equation such a probability density can be determined. This 

equation is now used in a number of different fields in natural science, for instance in 

solid-state physics, quantum optics, chemical physics, theoretical biology and circuit 

theory. 

One of the simplest Fokker-Planck equations is 

where W(v, t )  is the distribution function, 7-l the particle relaxation time, P = kT/m 
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is the thermal velocity, k is the Boltzmann's constant, T the temperature and m the 

mass of particle. By solving (1.1) starting with W(v, 0) and subject to the appropriate 

boundary conditions, one may obtain the distribution function W ( v , t )  for all later 

times. In general, the distribution function W depends not only on velocity but also 

on position. For example, Kramer's equation is an equation of motion for distribution 

functions in position and velocity space describing the Brownian motion of particles 

in an external field. For details of the Fokker-Planck equations the reader is referred 

to [22]. 

Solutions (esp. the stationary solutions) of the Fokker-Planck equation often decay 

at infinity at least like e ~ ~ ( - ~ v ~ )  for some positive constants p (i.e. Gaussian type). 

Therefore, the Hermite expansions have natural applications for the Fokker-Planck 

equation. The normalized Hermite functions are 

where the Ifn(v) are the usual (unnormalized) Hermite polynomials. Many researchers 

have noticed that the close connection of Hermite functions to the physics makes them 

a natural choice of basis functions for many fields of science and engineering, (see for 

example Chapter 14 of [5] and the introduction of [25]). Also one of the reasons for 

using Hermite spectral methods is that the Hermite system has some very attractive 

properties from the numerical point of view (see, e.g. [4, 13, 281). It is shown in [28] 

that the spectral radii for the first and second Hermite differentiation matrices are 

0 ( a )  and O(N), respectively, where N f 1 is the number of truncated terms used. 

This places rather weak stability restrictions on the Hermite method. For example, 

if we consider the standard heat equation, then a maximum step size in the time 

direction of order O(N-') is required, whereas for Fourier and Chebyshev methods it 

is of order 0(N-2)  and 0(N-4), respectively. In the actual calculations this means 

that one need not even consider implicit time integration methods with the Hermite 

method. 
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In this thesis, we shall study the theoretical properties of the Fokker-Planck equa- 

tion. Numerical methods based on the Hermite expansion will be also investigated. 

The first part of this thesis is devoted to the existence of solutions for the one dimen- 

sional Fokker-Planck equation. We shall employ the semigroup theory to prove the 

existence property for the one--dimension Fokker-Planck equation. There has been 

a number of papers dealing with the existence of the solutions for various equations 

including the Fokker-Planclc equation (see, e.g. [20, 12]), but none of these has used 

the semigroup theory. In the second part, a spectral method using Hermite functions 

is developed for the one dimensional Fokker-Planck equation. The ordinary differen- 

tial equation system derived from this method shows a very good simulation to the 

Fokker-Planck equation. This can be seen from both the theoretical analysis and the 

numerical examples. The trapezoidal method is used to solve the ordinary differential 

equation system. In the third part, we apply the spectral method developed in [26] to 

the two dimensional Fokker-Planck equation. The coefficients matrix involved in the 

partial differential equation system derived from this method shows that the partial 

differential equation system is hyperbolic. Artificial boundaries are set up for this 

PDE system since the domain of the space variable is unbounded. 

In the last part of this thesis, we consider the eigenvalues of a class of tridiagonal 

matrices, which will appear when the Hermite spectral method is applied to the one 

dimensional Fokker-Planck equation in the more general case. Each matrix in this 

class cannot be similarly transformed into a symmetric matrix and may have complex 

eigenvalues. We prove that all the eigenvalues of such a matrix lie on one of the half 

planes depending on the signs of the diagonal entries. This property is very important 

in showing that the solutions of an ordinary differential equation system with such 

a matrix are decaying. Some examples are given in this part to show some further 

properties of this class of matrices. 
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The existence of the solution 

In this chapter, a model 1-D Fokker-Planck equation is investigated. The equation 

is given by 

together with an initial condition 

The solution of Eqs. (2.1) and (2.2) is required to satisfy 

The Eq. (2.3 is a natural property of the solution, i.e. the conservation of the mass, 

and will be. discussed later. The semigroup method is used to prove the existence of 

a solution to this equation. 

In the following sections, we introduce some useful results from semigroup theory, 

which can be found in [19, 301. Throughout this chapter the letter C will denote a 

generic constant whose meaning and value varies with context. 
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2.1 Semigroup and its application to evolution 

equations 

In this section some concepts of semigroups and major results related to the applica- 

tions in this chapter will be briefly described. 

Definition 2.1 Let X be a Banach space. A one parameter family T ( t ) ,  0 5 t < oo, 
of bounded linear operators from X into X is said to be a semigroup of bounded linear 

operators on X i f  

( i) T ( 0 )  = I ,  ( I  is the identity operator on X ); 
(ii) T ( t  + s )  = T ( t ) T ( s )  for every t ,  s 2 0 (the semigroup property). 

A semigroup of bounded linear operators, T ( t ) ,  is uniformly continuous if 

lim 11 T ( t )  - I I[= 0. 
tl0 

The linear operator A defined by 

T ( t ) x  - x 
Ax  = lim 

t 
for X E D ( A ) ,  

tl0 

where D ( A )  is a set defined by 

T ( t ) x  - x 
D ( A )  = {x E X : lim 

t 
exists}, 

t l0  

is the infinitesimal generator of the semigroup T ( t ) ,  with D ( A )  being the domain of 

A. 

Definition 2.2 A semigroup T ( t ) ,  0 5 t < oo, of bounded linear operators on X is a 

strongly continuous semigroup of bounded linear operators i f  

A strongly continuous semigroup of bounded linear operators on X will be called a 

semigroup of class Co or,simply a Co-semigroup. 
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Definition 2.3 Let T ( t )  be a Co-semigroup. T ( t )  is called a Co-semigroup of eon- 

With these definitions, we have the following lemmas: 

Lemma 2.1 (Hille-Yosida) ( See, e.g., 1191) A linear (unbounded) operator A is 

the infinitesimal generator of a Co-semigroup of contractions T ( t ) ,  t 2 0 if and only 

if - 
(i) D(A) is dense in X ,  i.e., D(A) = X ;  

(ii) Let Jx = ( I  - XA)-' for X > 0 , then 

Consider the following abstract Cauchy problem: 

and 

u(0) = x E X 

where X is a Banach space and A is a linear operator from D(A) c X into X. Then 

we have: 

Lemma 2.2 (See, e.g., 1191) If A is an infinitesimal generator of a Co-semigroup of 

contractions T ( t ) ,  then for every uo E D(A) the Cauchy problem has a unique solution 

u E C1([O, 4, X )  n C0([0, 4, D(A) ) .  

Now we consider the inhomogeneous Cauchy problem: 

with 

u(0) = x E X  (2.13) 

We have the following lemma about the solution of inhomogeneous Cauchy prob- 

lems 
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Lemma 2.3 (See, e.g., [19]) In addition to the hypotheses in the above lemma, let F 
be Lipschitz continuous from X to X ,  i.e., there exists a constant L such that: 

and F E C1(X, X ) ,  u o  E D ( A ) .  Then the inhomogeneous Cauchy problem has a 

unique solution u E C1([O, oo), X )  n CO([O, oo), D ( A ) )  . 

2.2 The existence of the 1-D Fokker-Planck equa- 

tion 

Now we turn to the 1-D Fokker-Planck equation: 

with 

or 

with 

Let 

and 

D( A )  = {u I u, u', xu', u" E L ~ ( R ) ) .  

Let A, F be the two operators defined by 
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and 

Fu = u. 

The above problem (2.17) and (2.18) can be written as the following Cauchy problem: 

-- d " ( t ) - ~ u ( t ) + ~ u ( t ) ,  for t > ~  
dt 

with 

u(0) = uo E X.  

or equivalently, 

IIu*llLllf I 1  vx>o, 
where ux is the solution of the following equation: 

Consider the following variational problem associated with the above equation: 

Find u E H I ,  such that 

where H2 = H1(R)  = {ulu,ul E L2}, HI = {ulu E H 1 ( R ) , d  E L2),  f E Hi, the 

dual space of Hz,  and ax(u,v) is a bilinear form over Hz x H1 defined by  

For simplicity, we will drop subscript A. Thus we have 

Theorem 2.1 If there is a vo E Hr such that 

then vo = 0. 
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Proof. Let cpn be defined by 

for n = 0,1,2,- . .  . Then we know that the set cpn,n = is a complete or- 

thonormal basis in L 2 ( R )  , where Hn is the Hermite polynomial of degree n. So vo 

has a unique expansion in terms of cp,: 

where cn = vocpn . 
For cp,, n = 1,2,3,. . ., we have 

and 

where 

and 

(p-2 = 9 - 1  = C-1 = C-2 = 0. 

If we choose u = cp,, then 
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Therefore 

One easily sees that Q = cl = 0. Hence by using the recursive formula (2.35) we 

deduce that 

c, = 0 for n = 1 , 2 , 3 , . . .  (2.36) 

This completes the proof. 0 

Theorem 2.2 a ( u , u )  2 C 11 u V u  E HI C H2 

Proof. Using integration by parts we have 

so that 

Therefore 

where c = $ > 0. 

The proof of the following theorem for the variational problem (2.24) is similar to 

that of the Lax-Milgram lemma ( See, e.g., [9]). 

Theorem 2.3 Assume the bilinear form a ( u , v )  is defined by (2.25) and f E H i .  
Then there is  a unique solution to the variation problem (2.24). 
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Proof. Obviously, a(., a )  is a bilinear form on HI x H2. Then for a fixed u E HI, a(u, .) 
is a linear functional on Hz. Since Hz is a Ililbert space, by the Riesz representation 

theorem, there is an element R(u) E H2 such that 

where (., '-) represents the inner product on Hz. Assuming R(u,), n = 1,2,3,. . . is 
a Cauchy sequence in Hz, then (R(u,), v), n = 1,2,3, . . . is a bounded set of real 

numbers for every v E Hz. On the other hand, we may think of (R(u,), v) as a linear 

functional on H1 for every fixed u, and denote this by 

Then (u,, w), n = 1,2,3,.  . . is bounded for every w E HI. Therefore by the resonance 

theorem, / I  u, 11,  n = 1,2,3, . . . is bounded. Since Hl is a separable Hilbert space, 

there is a u* E Hl such that u, weakly converges to u*. Thus 

lim (u,, G(v)) = (u*, G(v)) Vv E 112, 
,--roo 

or, 

lim (R(u,), v) = (R(u*), v) Vv E Hz. 
ndoo 

(2.43) 

Since R(u,), n = 1,2,3,. . . is a Cauchy sequence, R(u,) must converge to R(u*) E HZ. 

This implies R(Hl) is closed. By Theorem 2.1 we obtain 

from which we may conclude the existence of a solution to the variational problem 

(2.24). The uniqueness can be simply proved by the inequality (2.39). 0 

Now we turn to the question of regularity of solutions of the equation 
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I f  f E L2 c I f ; ,  we know t h a t  there is a solution u E HI, i.e. u,xut E L2 , 
therefore u" E L2. Besides, we have 

which implies that 

By theorem 2.1, theorem 2.2, theorem 2.3 and all the lemmas in the previous section, 

we have 

Theorem 2.4 Operator A defined b y  (2.19) is an infinitesimal generator of 

a Co-semigroup of contractions. Therefore, Cauchy problem (2.21) (2.22) has a unique 

solution u E C1([O, oo), X )  f l  CO([O, oo), D(A) ) .  

Remark 2.1 Some investigation of L1 theory for the existence of the solution. 

We will first derive an estimate for u E L1 (R). Set 

Then 

since $,(u) + 2S(u) as n -, m. Also 

and 
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Thus, from 

we have 
+m +, J-, I"ldx J-rn lfldx i f f   EL^. 

Now assume u E L1. Then the equation 

may be rewritten as 

Therefore 
z2 2 

u' = e-T 1, elgds.  

Note that at large x, 
s2 2 

I Sf, e-Tgds e-Tg 
U = 9 

N - = -  
22 e-T xe-g X '  

So that 

XU' N g, at large x. 

This means xu' E L1. By using the differential equation we see uN E L1 . Based on 

these observations, we deduce that the operator A is also an infinitesimal generator 

of a Co-semigroup of contractions on X2 = Lf(R), where 

The Cauchy problem has results in Lf-setting that are similar to those in L2-setting 
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Remark 2.2 L1 theory should be more natural. 

Consider the static solution of the equation, i.e., 

We have 

XU + ut = C, 

and 

The asymptotic relation 

tells us u is in L2 for any constant Cl, but not in L1 unless Cl = 0. On the other 

hand, formally integrating the Fokker-Planck equation, we have 

d JZ udx 
dt 

= lim (xu + u') = 0, 
2-+00 

under the assumption lim,,, xu = 0. Therefore 

Therefore, if the solutions are sought in L2, then the Fokker-Planck equation may 

have nonunique static solutions while if the solutions are sought in L1, the static 

solution is unique, determined by the initial data uo. 
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Spectral method in one 

dimensional case 

In this chapter, the Hermite spectral method is employed for the Fokker-Planck equa- 

tion. The convergence rate of the spectral method is high for many classes of problems 

( if the solution is sufficiently smooth) compared to the finite element method or finite 

difference method. For example, suppose we use a spectral method and a finite dif- 

ference method to solve two point boundary value problem. If the number of the grid 

points is N, then the convergence rate of the difference method will not be changed as 

N grows, but the convergence rate of the spectral method will grow as N grows. The 

reason for this is: spectral method uses global functions to approximate the solution 

and the differential equation is usually demanded to be satisfied at a set of points, for 

example, collocation points. So it is like an N-th order approximation. In many cases 

the spectral method converges at exponential rate. Because of the high convergence 

rate the spectral method has become more and more popular, especially after it was 

found that the FFT technique can be applied to spectral methods (See [4] and [5]) .  

The spectral method for the Fokker-Planck equation will be introduced in sections 

3.1 and 3.2. The numerical results will be presented in section 3.3. 
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3.1 Hermite spectral method 

We assume that the solution of the Foltker-Planck equation has the following series 

expansion: 

where 

in which Hn(s) is the Hermite polynomial of degree n. For cpn defined above, one can 

find the following recurrence relations: 

and 

By these relations, we have 

xu, = 
" 1 

2 cn(Pn-2 -, C zcn(Pn 
n=O n=O 

" ( ( n  + l ) ( n  + 2))'12 -C 2 c n V n + ~  
n=O 

" ( ( n  + l ) ( n  + 2))'12 " 1 
= C 2 c n + 2 ( ~ n  - C 5 ~ ' ~ n  

n=O n=O 

" (n(n - 1))'12 
C 2  cn-2yn n=O 

( (n  + l ) ( n  + 2 )  j ' I2  
cn+2 - -% - 2 2 n=O 
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where c-1 = C-2 = 0. 

Similarly, we have 

By substituting these into the Fokker-Planck equation (2.1) and equating the coeffi- 

cients of pn on the two sides, we have the following ordinary differential system: 

Let dk = C2k, ek = C2k+l, k = 0,1,2,. -. Then, the above equations become 

and 

e; = -(2k + 1)ek + ((2k + 2)(2k + 3))l12ek+, (3.1 1) 

where k = 0,1,2,. . .. Take an approximation of u as a truncated series expansion of 

the first 2k + 2 terms, i.e. 

Let D and E denote (k + 1)-dimensional column vectors 

and 

E = [eo, el, e2, , ekIT. 

Then the ODE systems (3.13) and (3.14) become 

and 
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subject to some initial conditions, where 

and 

Since all the eigenvalues of Al are negative, we know that 

For the behavior of D( t )  for large t ,  we need to know more about the eigenvectors of 

Ao. We consider the eigenvectors of a matrix in the general case. Assume 

where a;, i = 1,2, . . n are distinct real numbers and pi, i = 1,2,. . , n - 1 are nonzero 

real numbers. Obviously, al, as, q3, . . . are the eigenvalues of A. Now, we try to find 

the eigenvector of A corresponding'to ai, which is denoted by 
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Each x(') should be a nonzero solution of the following system: 

where 

in which, dk) = dk) - # 0 since all the a's are distinct. It is easily found that 

.#I - -0,k = n , n - l , - . . , i + l  (3.24) 

and 
p k  (i) $1 = -- 

k Bk 5 k + n  k = i -  1 , i -2 , . - - , I .  (3.25) 

Therefore, I!') # 0, so we may choose sp) = 1. If we denote 

x = [x('), x(2), . . . , X(4], (3.26) 

where X is an upper triangular matrix with unitary diagonal entries, then 

(3.27) 

for 

Thus for Ao, we know that there is an upper triangular matrix w 

entries To such that 

A. = TOAT<', 

where 

A = diag[O, -2, -4, . . , -2kl. 

(3.28) 

i th  unitary diagonal 
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So, the solution D(t) could be expressed as : 

D ( t )  = eAotdo 

= ~ ~ e ~ ~ ~ i ~ d ~  

where do is a (k + 1)-dimensional vector and 

eAt = diag[l, e-2t, e-4t', . . . e-2kt]. 

Therefore 

lim D(t) = Todiag[l, 0, . . - , O]Tgldo 
t--roo 

= diag(l,O,. ,O)Tcldo 

= l;i0,0,".,0]~, (3.33) 

i.e., the behavior of the solution for the spectral method at large t is similar to yo 

modular a constant multiplier, which coincides with the result for the static solution 

of the Fokker-Planck equation. 

3.2 More general cases 

Consider the following more general Fokker-Planck equation 

subject to initial condition: 

where p is a constant. 

By the relations (3.3) - (3.6) we could similarly get 

for n = 0,1,2, .- . ,  
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and 

for k = 0,1,2,  . and where dk = C2k, e k  = c~k+l ,  k = 0,1,2,  . .. Taking an approxi- 

mation of u as 
2k+l 

U2k = C c n ( t ) p n ( ~ )  
n=O 

we get the following ODE systems for the approximate solution of the Fokker-Planck 

equation: 
dD 
- = AoD 
dt 

(3.40) 

and 

where D,  E are defined by (3.13) , (3.14) with 
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and 

in which 

for i = 0,1,2.. .  . 

Remark 3.1 If 1 < 1.1 < 3 then bici < 0,a; < 0. By the result given in Chapter 5, 

we know that all the eigenvalues of Al have negative real part, therefore the solution 

E( t )  will approach 0 as t approaches to infinity. But for A. or for the other values of 

p, it is not so clear theoretically. 

3.3 Numerical Examples 

In this section we give some numeribal examples. In all these examples, the approxi- 

mate solutions are taken as the sum of the first 2N + 2 terms in the expansion series 

of the solution. 
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Example 1. ( The time-independent solution. ) 
In chapter 2 we know that the static solution of the 1-D Fokker-Planck equation is 

US = CVO, (3.50) 

where po is defined by (2.27). So, if the initial value uo = yo, then the solution 

obviously is u ( t )  z yo. Figure 3.1 indicates the numerical result obtained by using 

our spectral method for this example. The numerical solution coincides with the static 

Figure 3.1: The numerical solution with initial value uo = yo 

solution since the solution is independent of t. 
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Figure 3.2: The numerical solution with initial value uo = cpz 

Example 2. ( The time-dependent solution and its long-time behavior). We know 

that (3.50) is the static solution of the Fokker-Planck equation in which cis a constant 

determined by the integral of initial value uo, since 

So if we take uo = ( ~ 2 ,  we have 

Combining the last equation and the fact that 
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Figure 3.3: The numerical solution with uo = cpa at t = 0.5 

N=4, t=0.5 

we obtain 

c = I/&. 

0.6 

0.5 

0.4 

u 0.3 

0.2 

0.1 

0 

Figure 3.2 to Figure 3.6 illustrate the numerical results of our spectral method. It 
can be observed from these figures that as t is large the numerical solution approaches 

- I I I I . 
Static solution - 

- Numerical solution - - 
- - 

- - 

- - 

- - 

the static solution. 

Example 3. If we take uo = cps, we can obtain 

-6 -4 -2 0 2 4 6 
X 

where c is the constant in the static solution defined by (3.50). Figure 3.7 and Fig- 

ure 3.8 are the numerical solutions at small and large time, respectively. 
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I I 

Static solution - 
Numerical solution - 

1 

Figure 3.4: The numerical solution with uo = cpz at t = 0.85 

N=4, t=1.5 
I I I I 

Static solution - - Numerical solution - - 
- - 

- - 

- - 

- 

I 

Figure 3.5: The numerical'solution with uo = cpz at t = 1.5 
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" /' 
N=4, ts9.0 

0.6 , I I , , 

Numer. solu. *** 
Static solu. --- 

0.5 - 

0.4 - 

5 0.3 - 

0.2 - 

X 

Figure 3.6: The numerical solution with uo = cps at t = 3.0 



CHAPTER 3. SPECTRAL METHOD IN ONE DIMENSIONAL CASE 

Figure 3.7: The numerical solution with uo = q 8  at t = 0.05 

t=3.0 
I I 

Stat. soh. - 

N=6, t=3.0 
0.4 I 

0.35 - Stat. soh. - 
Numer. soh. - 

0.3 - 

0.25 - 
0.2 - 

0.15 - 
0.1 - 

0.05 - 

0 I 

-6 -4 -2 . 0 2 4 6 
X 

Figure 3.8: The numerical solution with uo = cps at t = 3.0 



Chapter 4 

Spectral Method in two 

dimensional case 

Now we turn to the following two-dimensional Fokker-PIanck equation 

subject to initial data. Here U(x) is a given function defined by: 

To solve this equation, a number of numerical methods have been developed. In 

Cartling [7], difference method has been applied, whereas in Moore and Flaherty [17], 
Galerlcin's method with adaptive mesh refinement techniques has been applied to the 

above Fokker-Planck equation. Numerical results are presented in both papers. In 

this chapter, we try to solve the ~okker-~lanck equation by spectral method developed 

for the kinetic equation in Tang et al. [26]. All the techniques used in [26] work for 

the Fokker-Planck equation as well, but with some adaptations. 
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4.1 Series Expansion 

Since the range of the variable v is (-00, +oo), it is natural to represent the unknown 

function P(x,  v, t) by an expansion of Hermite polynomials in v with coefficients de- 

pending on x and t, i.e., 

where fn(x, t ), n = 1,2, - . are unknown,functions, a is a constant and Hn is the n-th 

order Hermite polynomial. We choose th8 factor dn = 1/m so that the coefficient 

matrix of the induced partial differential equation system for fn is symmetric, which 

implies this partial differential equation system is hyperbolic. We will see this later. 

For the sake of simplicity, we set 

Thus we could easily find the following recurrence relations among those functions: 

and 

From these relations, we have 
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Similarly, we can obtain 

and 

where f-l = fe2 = 0. Substituting all these into equation (4.1) and equating the 

coefficient of &(v) on the two sides of the equation, we obtain the following partial 

differential equation system: 

where 
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and 

for n = 0,1,2,... . 

4.2 Spectral Method 

The spectral method &&her N consists of solving the first N + 1 equations of (4.13) 

for the N + 1 unknown functions fo, fl, f2, fN. All the functions f,, n > N + 1, 

are set to 0, i.e. take the approximate solution to P(x,  v, t )  as the following truncated 

series PN(x, v, t )  

Let f denote a ( N  + 1)-dimensional column vector defined by 

Then equations (4.13) become 

where R and S are ( N  + 1) x (N + 1) matrices given by 
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and 

S = 

in which an = Jn/2, n = 1,2, . , N and dno, dn(-,), d,(-q, n = 0,1, . , N are defined 

by (4.14)-(4.16), plus initial data. 

Obviously, R is a symmetric matrix, and thus has N + 1 real eigenvalues. Fur- 

thermore, we have 

Theorem 4.1 (See [26]) The eigenvalues of R are the zeroes of the ( N  + 1)-th order 

Hemite polynomial NN+l (A). 

Proof. Let p ~ + ~  (A)  be the characteristic polynomial of R. Since R is tridiagonal, we 

have 

N 
= 'PN(X) - - p ~ - ~  2 (A) (4.23) 

We shall prove that 

p~ = 2 - N ~ N  for n 2 1 . 
Obviously this is true for N = 1,2. Assume (4.26) is true for N 5 n. From (4.23) 

and the recurrence relations among Hermite polynomials, we have 
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= A2-"Hn(A) - n2-"H,+1 (A)  

- - 2-(n+1)(2A~&(A) - 2nHn-1 (A)). (4.27) 

This completes the proof of the theorem. CI 

Let A. < A1 < . < AN be the zeros of the Hermi te polynomial HN+I and Ck be 

defined by 

We have the following result regarding the eigenvectors of R. 

Theorem 4.2 (See [26]) The eigenvector of R corresponding to the eigenvalue Xk 
can be given by 

T 
U k  = [UOB, U l k ,  ' ' ' , U N ~ ]  (4.29) 

in which u,k is defined by 
f i  

Proof. Assume that an eigenvector of R corresponding to X k  is 

Then 

Ry = Aky. 

This is equivalent to the following difference equation 

with boundary conditions y-1 = y ~ + l  = 0. This could be directly verified by setting 

y, = u,k noticing the fact that HN+i(Ak)  = 0. The theorem is therefore proved. 0 

Obviously the eigenvectors defined by (4.29) are normalized and they are mutually 

orthogonal since R is a symmetric matrix. Let matrix U be defined by 
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then U is an orthogonal matrix and 

If we premultiply (4.20) by UT,  we obtain 

a?. -- 1 a?. -- 
at 
- --A- + Sf 

a! ax  

by letting ?. = uTf and 3 = uTSu. r' 

Eq. (4.36) is a typical hyperbolic system. Since the entries of the diagonal matrix 

A change signs, we need to consider different finite difference approximations for A;% 
according to the signs of A;, 0 5 i 5 N in order to ensure the stability of the difference 

methods. If X i  > 0,  the backward space difference scheme 

aji xi 
Xi- z - ( f i ( x ,  t )  - f;(s - A x ,  t ) )  ax ny 

should be used. If X i  < 0, the forward space difference scheme 

aji xi 
hi- z - ( f i ( x  + AX, t )  - A(", t ) )  

a x  A y  

should be used. Therefore, the numerical scheme for (4.36) is 

+At (S f ) i ( x , t ) ,  if X i > O ;  (4.39) 
X i  'At 

J ( x ,  t + At) = J ( x ,  t )  - --(&(x + A x ,  t )  - &(x,  t ) )  
0 AY 

+ ~ t ( S T ) i ( x ,  t ) ,  if X i  < 0; (4.40) 

j;(x,t  + A t )  = &(x ,  t )  + ~ t ( S ' f ) ~ ( s , t ) ,  if A; = 0. (4.41) 

It is easy to see that the above scheme (4.39)-(4.41) can produce stable solutions for 

the hyperbolic system (4.36). 

Originally, system (4.20) is a Cauchy problem and we know that only those solu- 

tions which go to zero as t goes to infinity make sense in physics. So we may turn the 
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Cauchy problem into an initial-boundary problem by setting the following artificial 

boundary conditions: 

and 

when N is odd; and 

and 

when N is even. 



Chapter 5 

The eigenvalues <of t ridiagonal 

matrices 

Tridiagonal matrices are very common and important in many applications. For 

the eigenvalue problem of symmetric tridiagonal matrices, extensive theoretical and 

numerical work can be found in the literature. In this chapter, we will investigate 

the eigenvalue distribution of some class of non-symmetric tridiagonal matrices. This 

class of matrices would arise from the spectral method for the Fokker-Planck equation 

when Hermite polynomials are employed. We have seen this in chapter 3 and we will 

see the details in the following section. 

Denote a n x n tridiagonal matrix by A,: 

where Pjyj < 0, j = 1,2,.  -. ,n - 1. Under this condition we may prove that An is 
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... 
where all Pj, j = 1,2, - . , n - 1 are positive. In fact, by taking 

similar to a matrix 

where 

A, = 

for j = 1,2,3, . . , n. Thus we may choose some dj for each j = 1,2,3, . , n, such 

- a 1  D l  

-a a2 & 
-a as 

* 

' . . Pn-1 
.% 

-&-I a n  - 

that 

i.e., 

Therefore we may assume yj = -pj < 0, j = 1,2,3,..- ,n in (5.1) without loss of 

generality. We still denote this matrix by An, i.e. 
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Then we have the following theorem for such types of matrices: 

Theorem 5.1 If all the diagonal entries in An are strictly positive, all the eigenva 

of An are on the right half complex plane. 

Before we prove this theorem, we need to prove some auxiliary results. Let B(t) ,  D, C, 
be respectively defined as follows: 

and 

where i is the imaginary unit. Using the matrices defined above we have 

Theorem 5.2 iAn and Cn have the same characteristic polynomials, therefore they 

have the same set of eigenvalues. 

Proof. Both iAn and Cn are tridiagonal matrices, thus we know that the recurrence 

relations for them are 

det(iAn - zI )  = (ian - ~)det( iA,-~ - zI )  + (iPnd1)2det(iAn-2 - zI) 
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and 

det(C, - r I )  = (in, - z)det(C,-I - zI) - &,det(~,_z - r I )  (5.12) 

for n = 3,4,5, -. It can be easily verified that 

det(iA, - 21) r det(Cn - 21) (5.13) 

for n = 1,2. Therefore both characteristic polynomials are identical for any integer 

number: n. 

& 1 
Theorem 5.3 C, has no real eigenvalue if all ni, i = 1,2, . . , n are strictly positive. 

Proof. Assume that C, has a real eigenvalue t and let x + i y  be the corresponding 

eigenvector. Then we have 

C,(X + iy) = t (x  + iy), 

or, 
(B(t) + iD)(x + iy) = 0. 

(5.15) can be rewritten as 

B(t)x-  Dy  = 0 

and 

or, 

But 
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thus 

det [ '(') ] = *det (D)de t (~( t )D- '~( t )  + D). 
D '(t) 

On the other hand, 

and D- f  B(~)D-; is a symmetric matrix so that B(t)D-'B(t)+D is a positive definite 

matrix. Therefore, system (5.18) has only the trivial solution. This is contradictory 

to the assumption at  $he beginning. 
h 

Theorem 5.4 A, has no pure imaginary eigenvalue under the same condition in 

Theorem 5.1. 

Proof. This is quite staightforward since iA, and C, have the same set of eigenvalues. 

0 

Now a proof of Theorem 5.1 could be given. 

Proof of Theorem 5.1. Let 

Then A(0) = D, A(l)  = A, and all the eigenvalues of A(s), Aj, j = 1,2, , n, are 

continuous functions of s since eigenvalues of a matrix are continuous functions of its 

entries. When s = 0, obviously Xj(0) = aj, j = 1,2, . , n; thus all eigenvalues are 

on the right half plane. For any 0 < s 5 1,  the condition in Theorem 5.1 for A, 
is satisfied, thus A(s) has no pure imaginary eigenvalue. Therefore, no eigenvalue of 

A(s) can go to the left half plane without crossing the imaginary axis. This implies 

that all the eigenvalues of A(s) stay on the right half plane, i.e., 
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In particular, 

Re{Xj) = Re{Xj(l)) > 0, j = 1,2, - , n 

where Xj, j = 1,2, . , n are the eigenvalues of A,. 

As a consequence of Theorem 5.1, we have: 

Theo rem 5.5 If all diagonal entries in A, are strictly negative, then all eigenvalues 

of A, are on the left half plane. 

Furthermore we have the following result under a slightly different condition. 
a: 

Theorem 5.6 If A, satisfies the conditions in Theorem 5.1 except that a1 = 0, the 

statement in Theorem 5.1 is still true. 

Proof. From the proof of Theorem 5.1 we know that the key point is to show that 

the matrix in system (5.18) is nonsingular, or to show that the following matrix 

is nonsingular for any real number t .  Let 

and 

Then Dl is positive definite. There can be only two cases for t: 

(i) t is not eigenvalue of B(0) then B(t) is invertible; 

(ii) t  is an eigenvalue of B(O), then t is not an eigenvalue of B1(0) and thus Bl(t) is 

invertible. 
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Case (i). We have 

det [ '(') ] = & d e t ( B ( t ) ) d e t ( ~ ~ - ' ( t ) ~  + B). 
D B(t) 

Similar to the proof of Theorem 5.1 it could be verified that above determinant is 
6, j 

nonzero. 

Case (ii). For simplicity we will drop t in Bl(t) and denote both 0 and oT by 0 

from now on. We can make following multiplication for T: 

Let 

and 
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Then it is not difficult to prove that E is positive def nite since Dl is positive definite 

and B1 is symmetric. From this notation one sees that 

Therefore, 

= f det(Dldet(E)[b~~-'b,(b:E-'b~ - cl) - (t + b :~ -*b~)~ ]  

since bFE-'bz = bTl3-l bl. Thus we only need to prove that 

From (5.33) we know that 
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Table 5.1: The statement not true for k = 6. 

1 

where PI = ( D r t  B1) E-I (D;T BI) - ' .  Therefore all eigenvalues of PI are strictly 

positive since E-I is positive and similar to PI, and P is positive definite. 

Remark 5.1 An interesting question is, if a; = 0 , l  5 i 5 k < n, does the result still 

hold? Some numerical examples indicate that k could be larger than one, but what is 

the largest k ?  This is attractive to me and maybe to some readers as well. 

Examples. Table 5.1 to Table 5.4 give some examples of the eigenvalues of tridiag- 

onal matrices. From Table 5.1 and Table 5.2, we see that the real part of the first 

two eigenvalues should be zero. The next two tables show the cases that k = 5,6  

respectively. 
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Table 5.2: The statement not true for k = 6 for another matrix. 

- 

Table 5.3: The statement true for k = 5 

a's 
0 1 

I a's 
1 I 0 

a's P's eigenvalues 
.. 

1 0 1 -0.2123 + 8.34632' 

Table 5.4: The statement true for k = 6 .  

P's 
6 

,8's 
6 

eigenvalues 
-0.0000 + 8.36652' 

eigenvalues 
-0.0007 4- 8.36652' 
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