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Abstract 

There are six chapters in this thesis. 
In Chapter !, we survey some important results and bai-kground in the history of 

the problems related to this thesis. Some frequently used definitions and notations 
are given. 

In Chapter 2, we study the existence of cyclic 1-factorizations of circulants C(n,  S). 
A r-invariant 1-factorization of a Cayley graph G = X(r,  S )  is a 1-factorization F of 
G such that r maps F to F. In the case of circulants, that is, I' = Z,, a cyclic group of 
order n, we call a r-invariant 1-factorization a cyclic 1-factorization. Some necessary 
conditions and problems equivalent to the existence of cyclic 1-factorizations with a 
single 1-factor orbit are obtained. We also classify some special classes of graphs. 

An isomorphic factorization of G is a partition of its edges into isomorphic sub- 
graphs. In Chapter 3, we deal with another factorization problem - the isomorphic 
factorization of circulants. Some partial results are obtained. 

In Chapter 4, we gise a classification of 2-extendable Cayley graphs on dihedral 
groups. A graph G is said to be k-extendable if it contains a k-matching and any 
k-matching of G can be extended to a perfect matching of G. 

In Chapter 5, we prove that the generalized Petersen graphs GP(n, 3) and GP(n, 2 ) ,  
where gcd(2, n)  = 1, n f 5 (mod S), are Hamilton-connected or Hamilton-laceable. 

A Hamilton decomposition of C(2p, S), where p is a prime, is given in Chapter 6. 
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Chapter 1 

Introduction 

1 .1 Definitions and notations 

A graph G is a pair (V(G), E(G)), where V(G) is a finite non-empty set of elements 
called vertices and E(G) is a finite set of unordered pairs of elements of V(G) called 
edges. We call V(G) the vertex set of G and E(G) the edge set of G. The number of 
vertices of G, denoted by v(G), is called the order of G. The number of edges of G, 
denoted by E(G), is called the size of G. 

An edge e with end vertices u and u is denoted by uv or (u, v); two edges el = uv 
and ez = xy are independent if ( u ,  u )  n(z, y )  = 0 .  

A set of m independent edges of G is called an m-matching of G. If m = f v(G),  
we call an m-matching M of G a perfect matching or a I-factor of G. 

X I-factorization of G is a partition of E(G) into 1-factors. 

An isomorphic facton'zction of G is a partition of E(G) into isomorphic subgraphs. 

A Hamilton cycle of G is a cycle which contains every vertex of G. We call G 
hamiltonian if G has a Hamilton cycle. A Hamilton decomposition of G is a partition 
of E(G) into Hamiiton cycies. 

An uuriomosphism of G is a pennutation 9 of V(G)  such that both rp and 9-' 
preserve adjacency. The automorphisms of G form a group Aut(G) under composition, 
called the automorphisnz grovp of G. 

A graph G is said to be vertex-tramitive if Aut(G) acts transitively on V(G) ,  that 
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- c p -  is, for any n ,  t. E 1.' (-1, there is a 9 E Aut(G) such that pju) = u .  

Let r be a group with identity 1. Suppose that S is a subset of I' wi th  the 
properties that L $ S and S = S-". The Cuyley graph G = .Y(T. S) is the  simplt. 
graph whose vertex set V-(G) = T. and edge set E(G) = ( (g .  f i )  : g- 'h  E S). 

Cayley graphs are a special class of vertex-transitive graphs, The main feature 
is that a graph G is a Cayley graph if and only if it admits a group l? acting on (i' 

regularly. In fact, if G = X(I',S) is a Cayley graph, then I" acts on G regularly by 
left multiplication, If r is a cyclic group (Z,, +), we call the Cayley graph X( 2, , S )  
a ciwulunt, and denote it by C(n. 3). In this case, S satisfies 0 $ S and S = -5'; thc 
edge set E(G)  = ( [ g ,  h )  : h - y E S ) .  

The dihedral group of order '3x1: denoted D,, is defined as follows: 

The generalized Petersen graph GP(n, k ) ,  where n > 2 and 1 5 k < n - 1, is 
defined in the following way. It has vertices zso, 211, . . . , s,-1. ~10, ul - . . , vn-l and edges 
U ; U ~ + ~ ,  uiv;, V ; E Q ~  for all 0 5 i 5 n - 1 with all subscripts reduced modulo n. 

Xote that GP(3,2) is just the Petersen graph. 

For definitions and notations shich do not appear here, we refer the reader to [IS]. 

1.2 Background 

The subjects of factors and cycles are fundamental to the study of graph theory. This 
thesis is mainly concerned with l-faetors and Hamilton cycles of graphs. 

As early as 1859, %I. Reiss $31 found that I&, is l-factorizable. Since then, there 
are many resuits about 1-factorizations ef graphs. For example, D. Kijnig Iff21 showed 
that a bipartite graph G is l-factorizable if and only if G' is regular; •’3. Alspach [3] 
proved that the iine graph L(&) is I-factorizable if and only if n, 1 0 or l(mod 4); 
the famous Four-color Theorem 1141 is also equivalent to the fact that every planar 
2-connected cubic multigraph is l-factorizable. In 1985, A. Wartman and A ,  Rosa 
[29f added some restrictions to l-factorizations of K,. A cyclic I-factorization F of 
It", is a l-factorization which is invariant under a permutation which is an n-cycle. 
They studied the existence of cyclic 1-factorizations of K ,  and proved that a cyclic 
1-factosizaticm of h", exists if and only if n is even and n # '2': t 2 3. 
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Some variations can be considered. R. Rees f42j studied cyclic k -matching de- 
compositions of Ir', for alt n, where k < n/2. G. Korchmkos 133) considered cyclic 
I-factorizations of h:, with an invariant 1-factor and applied the results to projective 
planes. 

The existence of 1-factorizations of a large family of Cayley graphs was studied 
by R. Stong [46]. He obtained that a connected Cayley graph G = X ( r , S )  has a 
f -factorization if f' is a cyclic group Zz,, a dihedral group Dn, etc. However, we want 
an abdit iod property- Since G has the group r acting on it regularly, it is natural 
to ask what the effect on a l-factorization F of G is under the action of I' on G ? If 
f' sends 3 to 3. we c d  F a r"-invanant 1-factoritation, and G is called r-invariant 
I - a c f  orizable. W e  have the following problem. 

Problem 1.1 Let G = X(I-,Sj be a Cayfey graph. Under what conditions does G 
admit a r-invariant 3-factorization? 

This problem was first posed by D. Jungnickel [31]. In Chapter 2, we will con- 
sider khe special case of circulants. We call a 2,-invariant 1-factorization a cyclic 1- 
jaeforization. Sote that the problems considered by Hartman, Rosa and Korchmziros 
are just some special cases of circulants. 

The isomorphic factorfzatim problem has attracted much attention. For example, 
&I. N. Ellingham f22, 23, 241, F, Harary? 141. Robinson, W.D. Wallis, Pi. Wormald 
@, 27, 30) and S- Quinn fifl] have all considered this problem. The graphs they 
have considered are complete graphs, complete multipartite g a p  hs, and other regular 
graphs. Some of these families are still not completely understood. In 1984, Wormald 
1491 even obtained that almost all labeled r-regular graphs cannot be factorized into 
i 2 2 isomorphic subgraphs, where r > -2t, but no examples of such no=-factorizable 
graphs are known, Note that many of the graphs considered by the above authors are 
circulants. This led Alspach to ask the following problem. 

Problem 1.2 Let G be a eirculant.. If ECG! Ofmod t ) ,  does G admit a factorization 
into t isomorphic subgraphs? 

I t  would be nice to gh-e a positive answer or find a negative example because of 
FVomdd's results on this problem. h Chapter 3, we give some partial results on this 
g d e m *  

Isomorphic factorizations f 1-factoriations) have relations to designs, latin squares, 
mom squares, etc. 
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In studying graphs, it is often worth considering the extension of some snlall 
subgraphs with certain properties to a spanning subgraph with the same properties. 
One such interesting graph is a matching. In 19S0, M. D. Plummer [38, 39, 401 
considered extending an n-matching to a perfect matching (called an n-extension). 
He showed that every 2-extendable graph is either bipartite or a brick( which plays an 
important role in matching polyhedra). J. Liu and Q. Yu[35] generalized the concept 
of n-extension to (m, nf-extension and studied their properties. Recently, G. Schrag 
and I,. Cammack 1451 and Yu [50] classified the 2-extendable generalized Petersen 
graphs. 0. Chan, C- C .  Chen and Yu [20] classified all 2-extendable Caylejr graphs 
on abelian groups. With Chen and Yu, we classify all 2-extendable Cayley graphs on 
dihedral gr9ups. This will be given in Chaper 4. 

The Petersen graph is probably the most important graph in graph theory. In 
1969, M. E. Watkins [48] defined generalized Petersen graphs, which includes the 
Petersen graph as a member, and posed the question of whether or not every cubic 
GP(n,  k) other than GP(5,cL) Z GP(5,3) has a 1-factorization. Meanwhile, G.  N. 
Robertson 1441 and J. A. Bondy [17] proved independently that GP(n,  2) is hamilta- 
nian if and only if n f 5(mod 6). In the latter paper, Bondy also proved that GP(n,  3) 
is hamiltonian whenever n # 5. Finally, F. Castagna and G .  Prins provided an af- 
firmative answer to  Watkin's 1-factorization question in [19]. Then they conjectured 
that Robertson's examples were the only non-hamiltonian examples. This conjecture 
lasted for over 10 years. The first important contribution was made by K. Bannai 
[lj] who showed that GP(n, k) is hamiltonian when n and k are relatively prime and 
GP(n, k) is not isomorphic to G(n, 2) with n 5(mod 6). The second contribution 
was due to Alspach, P. J. Robinson and hl. Rosenfold [ll] who proved that GP(n,  k )  
is hamiltonian if k 2 3 and n is sufficiently large. The conjecture was finally solved by 
Alspach [4]. The answer is that the generalized Petersen graph GP(n,  k )  is harnilto- 
nian if and only if it is neither GP(n, 2) 2 GP(n, n - 2) 2 GP(n, 9) S GP(n,  y), 
n G 5(mod 6) nor GP(n, :), n - O(mod 4) and n 2 8. 

Even though GP(n,2), where n r S(mod 6), is not hamiltonian, it misses by very 
fittle in the following sense. Alspach has proved [9] that there is a Hamilton path 
between any two non-adjacent vertices of GP(n, 2). 

Conjecture I The generalized Petersen graph GY(n, k), where gcd(n, k) = i and 
GP(n,  k) is not isomorphic to GP(6m+5,2) for some integer m, is Hamilton-connected 
or Hamilton-laceable. 

In Chapter 5, we will deal with the cases k = 2,3. The results support the above 
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conjecture. 

The purpose of considering this problem is that while studying the existence of 
Hamilton cycles in metacirculant graphs, which is a large class of vertex transitive 
graphs including many known Cayley griiphs. Alspach noticed that each pair of 
adjacent blocks contains a generalized Petersen graph as a subgraph (if each block is 
connected). If the above conjecture is true, then we will have that the metaciculant 
graphs with nonempty blocks are hamiltonian. 

A Hamilton decomposition of C(2p, S) is given in Chapter 6. For the case of 
vertex-transitive graph of order 2p, p G 3(mod 4) and p is a prime, Alspach [2] 
already gave a Hamilton decomposition. 
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The Cyclic 1-factorization of Circulants 

2.1 Introduction 

Let G = C(n,  S) he a circulant. Let S = {al, a2, . . . , ak, n - a*,  n - a2,. . . , n - u k )  

and S+ = {al, a2,. . . , ak}, where a; 5 n/2 for 1 5 i 5 k. Let E, = {(a, 6 )  : a - 6 = s 
or a - b = n - s). Then we have that E, is a union of disjoint cycles of length - 
if s # n/2, and Eni2 is a 1-factor of C(n, S) if n/2 E S. We call E, an even (odd) 
edge orbit when s is even (odd), where s # n/2, and call En12 the diagonal orbit. 

Assume n is even and let s = 2 j  + 1 be an odd element in S.  Then E, can be 
partitioned into two 1-factors 

Fl = {(%, 2i + 2 j  + 1) : 0 5 i < 72/21 and 

F2 = {(2i+ 1 , 2 2 + 2 j + 2 )  : 0 5 i < 72/21. (2.1) 

It is easy to see that {Fl, F2} is preserved under the action of 2,. We also see that 
Enl2 is invariant under the action of 2,. Therefore, the difficulty in constructing a 
cyclic 1-factorization arises because of the even edge orbits. 

Let F = (Fl, F2,. . . , F,) be a 2,-invariant 1-factorization of C(n, S). Then for 
any a E &,and Fi f F, we have a(Fi) = I;;. for some i 5 j 5 rn, where a(@, v) = 
(u + a,tr + a). In particular, for the element 1 E Z,, l (u ,v )  = (u + 1,v + 1). If we 
define 

a : Zn -) zn 

Then is an automorphism and the action of the element 1 on 2, is a. Therefore, F 
is cr-invariant. Conversely, if 3 is cr-invariant, then for any m f Zn7 m(Fj = am(F).  
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I 

Hence 3 is &-invariant. This shows that a 2,-invariant 1-factorization is equivalent 
to an a-invariant 1-factorization. It is convenient if we use a instead of 2,. The main 
idea is to obtain the structure of cyclic 1-factorizations of C(n, S )  by studying the 
orbits of < a >. 

2.2 The structure 

Definition 2.1 Let 3 be a cyclic 1-factorization of C(n, S) .  Then < a > acting on 
3 partitions the 1-factors into orbits, called 1-factor orbits. 

The number of 1-factors in a 1-factor orbit must be a divisor of n (Orbit-Stabilizer 
Theorem). If the number is rn, then < am > fixes each 1-factor in such an orbit. 

Lemma 2.1 Let F be a 1-factor in a 1-factor orbit of length m. Then F contains 
[1n/21 edges from disjoint edge orbits. 

Proof. Let F, a(F), . . . , am-'(F) be the 1-factor orbit, and let {al, a2, .  . . ah} = { S  : 

E, F # 8). Then F C ~ ; h = ,  Eai. Noticing that aj(&,) = E,, for any j, we have 

If there exists (u,v) E Eai for some 1 5 i 5 h,  such that ( u , ~ )  @ 
FUa(F)C: - - .Uam- ' (F) ,  then ( u , v ) , ( ~ b + l , v + l )  ,..., ( u + n - 1 , v + n - 1 )  4 F .  
This is a contradiction. Therefore, we have 

By counting the number of edges in both sides, we know that if m is even, then 
m 1 h = m / 2 ,  and if rn is odd, then h = f and one of E., is Enlz. I 

Corollary 2.2 A I-factor orbit o j  odd length must c o n t ~ i n  Enlz. In particular, a 
I-factor orbit of length 1 is Enlz. 
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The following lemma was proved by Hartman and Rosa for complete graphs. It, 
can be extended to circulants. 

Lemma 2.3 A I-factor orbit of even length contains an even number of even edge 
orbits. 

Proof. Let F be a I-factor in a 1-factor orbit of even length 2m. Then F is stabilized 
by < aZm > and contains m edges from distinct edge orbits, say, (xl ,  x1 +a l ) ,  (22, ~2 + 
a2),  . . . , (x,, 2, + a,). Let Fm = {(xl(mod 2m), ( X I  + al)(mod %m),  . . . , (r,(mod 
%m), (x, + a,)(mod 2m))). Then F, is a 1-factor of Kam. Let 1 be the number af 
even edges in F,. Then m - 1 is the number of odd edges in Fm, and there are rn - 1 
even vertices covered by these m - 1 odd edges. Since the total number of even vertices 
in I(2m is m, then there are m - (m - 1) = 1 even vertices covered by even edges of 
F,. But even edges cover two vertices of the same parity. Therefore, the number I of 
even edges per 1-factor must be even. I 

From Lemma 2.3, the following two corollaries follow easily. 

Corollary 2.4 A I-factor orbit of length 2 must be a partition of a non-diagonal odd 
edge orbit. 

Corollary 2.5 Let C(n, S )  have a cyclic 1-factorization. If n/2 4 S ,  then S4 con- 
tains an even number of even elements. 

Proof. Since n/2 4 S, then each 1-factor orbit has even cardinality by Corollary 2.2, 
Also, each 1-factor orbit contains an even number of even edge orbits by Lemma 2.3. 
Hence S+ contains an even number of even elements. 1 

Lemma 2.6 Let C(n, S) have a I-factor orbit of length m, and let F be a 1-factor 
in the orbit. Then 72 G O(mod m) and ai $ O(mod m) if E,, n F # 0 and a; # n/2. 

Proof. We have already seen that n = O(mod m). If E,, n F # 0, without loss 
of generality, say (0, ai) E F ,  then am(O, a i )  E F. Now if a, G O(rnod m),  then 
aag(O,ai) = (ai,2ai) E F, implying that F contains two adjacent edges (0, a i )  and 
(ai, 3ai). This is a contradiction. I 

We summarize as follows. 
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Lemma 2.7 For a cyclic 1-factorization 3 of C(n, S),  let ml, m2, . . . , m, be the 
lengths of I-factor orbits. Then 

1. c:=, m, = ISI, 

2. n O(mod mi) for 1 5 i < r ,  and 

3, if IS1 is odd, then only one of the mi's is odd; if IS] is even, then all mi's are 
even. 

Definition 2.2 Let ml,  mz, . . . , m, satisfy the above conditions and ml 2 m2 > 
. . . ,> mr. We call (ml,  m 2 , .  . . , m,) an orbit vector. 

If we denote the 1-factor orbits by f i , .  . . , F r ,  and let S;' = {a  : F n E, # 8, F E 
Fi), then UFEF, F = UaES.+ E,, and 3; is a cyclic 1-factorization of C(n, S;) with a 
single 1-factor orbit. The problem now becomes: 

1. Partition S+ into Sl+, . . . , S,', such that C(n, S;), ( i  = 1,2,.  . . , r ) ,  has a cyclic 
1-factorizat ion with a single 1-factor orbit. 

2. Study the cyclic 1-factorization of circulants with a single 1-factor orbit. 

In the next three sections, we will study the existence of cyclic 1-factorizations 
of circulants with a single 1-factor orbit. In fact, if one can give a characterization 
of cyclic 1-factorizations with a single 1-factor orbit, then one can characterize cyclic 
1-factorizations with any orbit vector. 

2.3 Equivalent conditions for existence of cyclic 
1-factorizations with a single I-factor orbit 

Lemma 2.8 If n r O(rnod m), a f O(mod m) and a < 7212, then the edges of Ea can 
be partitioned into n/m-matchings which are a-invariant. 

Proof. Let F = ((i, i+a),  (i+m, i+m+a) ,  . . . , (i+(n/m- l)m, i+(n/m-l)m+a)} 
for any i E 2,. Then F, aQF), . . . , om-' (F) is a desired partition. R 
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Consider the following rn x n/m array, denoted by A(i, nz). 

If we denote the first row by F and the first, column by I<, then we have 

A(i, a, m) = 

and 

F 
4 F )  
a2 (F) 

am- I  (F) 

For a = n/2, n z O(mod m), and m odd, then n r O(mod 2m), and we define in 
a similar way an m x & array A(i, n/2, m) for any i E Zn. 

Let n be an even integer. We call a partition of Zn into 2-subsets a 2-partition. 

Definition 2.3 Let S+ = {al, a2, .  . . , ak), where ai 5 n/2 for i = 1,2,. . . , k .  Let 
m = 2k - 1 or 2k according to n/2 E S+ or n/2 4 S+. If we can find i l ,  . . . , i k  so 
that the elements in the first rows of A(il, al ,  m), . . . , A(ik, ak, m) form a 2-parti tion 
of Z,, then we put A(il, a l l  m), . . . , A(ik, ak,rn) together to obtain an rn x n/2 array 

We call A a 1-factorization array of C(n,  S) .  

The concept of starter plays an important roll in the study of 1-factorizations of 
I{,. We generalize it as follows. 

Definition 2.4 Let S+ = (al, a 2 , .  . . , ak) or S+ = ( a ~ ,  az, . . . ,ah, 72/21, where ai < 
n/2  for i < i < k. Let. rn = 2k+ 1 or 2k according to n/2 E S+ or n/2 4 S+. Suppose 
n G O(mod m) and a; f O(mod m) for 1 5 i 5 k. 

An (al, az,. . . , ak; m)-starter of 2, is a pair (U, P), where U is a 2k-subset of 2, 
such that for any x, y E U,x  - y f O(mod m); and P is a Zpartition of U such that 
( f ( z  - y) : {s, y) E P )  = (f al ,  . . . , f ak)(mod n). 
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Definition 2.5 Let 5 = {f bl, f b, . . . , f bk) C 2, - (0) be a multiset. We define a 
multigraph C a ( n ,  S) as follows: the vertex set is 2,; for any x ,  y E Z,, the number 
of edges between x and y equals the multiplicity of y - x in 5'. We call C a ( n ,  S) a 
circulant multigraph. 

Definition 2.6 Let C(n, S )  be a circulant. Let S+ = {a l ,  . . . , ak) or {a l , .  . . , ak, 72/21 
and m = 2k + 1 or 2k according to n / 2  in S+ or not. Suppose n r O(mod m) and 
a; b;(mod m) for 1 < i < k ,  where 0 < b; < m. We call C*(m, {f bl,. . . , f b k ) )  the 
modulo m multigraph of C(n, S )  . 

Note that we can assume that b; 5 k for 1 5 i 5 k. 

Definition 2.7 Let G be a graph, and ( E l , .  . . , E k )  be a partition of the edge set 
E(G). Let F be a subset of E(G). F is said to be orthogonal to { E l , .  . . , E k ) ,  if 
1FnE;I = 1 ,  for i =  1:2 ,..., k.  

I f  X = { x l ,  x2,. . . , z,) is a collection of I-subsets of integers and m is an integer, 
we denote the set {xi(mod m), x2(mod m), . . . , xl(mod m)) by X(mod m). 

Now we can state our theorem. 

Theorem 2.9 The following statements are equivalent. 

( 1 ) .  C (n ,S )  has a cyclic 1-factorization with a single 1-factor orbit of length m. 

( 2 ) .  There exists an m x n / 2  I-factorization array of C ( n ,  S ) .  

(3 ) .  There exists an (a l , .  . , ak; m)-starter of 2,. 

(4). (i) If m = 2k, there is a 2-partition of ZZk,  such that {f ( x  - y)  : {x, y )  E 
P )  r { f a l ,  ..., f a k )  (mod 2 k j .  

(ii) If m = '3k + 1 ,  there is a 2-partition of ZZk+l - { i )  for some z ,  such that 
{&(z - y )  : (x, y )  E P )  (f al ,  - . . f a k )  (mod 2k + 1). 

(5 ) .  The system of equations 

I; - y; a;(mod m) 2' = 1, 2,. . . , Lm/2j, (2.2) 

has a solution covering 2tnjfZJ elements of 2,. 

( 6 ) .  The modulo rn m~lltigraph C*(m, { f  b, . . . , f bk) )  has a k-matching M which 
is orthogonal to {Eb, ,  . . . ,Ebk),  where k = Lmj2j. 
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Proof. (1)=+(2) Let 3 = { F l ,  . . . , Fm) be a cyclic 1-factorization with a single 1-factor 
orbit of length rn. Without loss of generality, assume F, = cri-'(F,) for i  = 2 , 3 , .  . . , rn. 
By Lemma 3.1, we have Fl n E,, # 8 for i = 1,2,.  . . , k. 

Let el = (il,il + al),e2 = (iz,iz + a*) ,  - .  .,ek = (ik,ik + a k )  E F,. Then 
crhm({el,. . . , e k ) )  C Fl ,  for h = 0,1 , .  . . , n /m  - 1. In fact, we have 

if m = 2k. Therefore, by counting both side, we have 

i f  h # p,O 5 h , p  5 nfm - 1. Thus 

Fl = (e l ,crm(el ) ,  . . . ,a ( n f m -  l )m  an/m-l ( e l ) ,  . - .  , ek, am(ek) ,  - .  . , k k ) } ~  

and we have 
A = (A( i1 ,  a l ,  m),  . . . , A(& ak, m ) )  

is a 1-factorization array of C(n,  S). 

If .m = 2 k + 1, we have 

(n/m-1)m (n /m-  l )m  M = { e l ,  crm(el), . . . ,a ( e l ) ,  . . . , ek, a m ( e l ) ,  . . . , (ek )  1 
is a ( k z  =)k&-matching. The remaining 2 edges of Fl are diagonal edges, and 
say that (ik+*, zk+l + z )  is one of them. Then 

is a 1-factorization array of C(n,  S). 

(2)+(3) Let A = ( A ( i l ,  a l ,  m),  . . . , A(& ak, m ) )  or A = (A( i1 ,  a l ,  m) ,  . . . , 
A(ik, ak, m),  A(ik+1, n /2 ,  m ) )  be a 1-factorization array of C ( n ,  S) .  

Let; U = { i l ,  il + a l ,  . . . , ik ,  ik + ak ) .  Then for any x ,  y E CI, without loss of 
generditlv, we assume that x  = il, If y = il + a*, then y - x = a* $ O(mod m). 
If y = ij for some 1 < j < k, we also have y - x = i j  - il f O(mod m),  for 
otherwise, we will have ij = il + rnh for some h. This means i j  = uhm(il), which 
is a contradiction, since A is a 1-factorization array. If y = i j  + aj for some j ,  then 
y - z = ii - dl  +a,. As above, we also have i j  + aj = ahm(il) for some integer h,  which 
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is a contradiction. Hence we have proved that for any x, y E U, y - x f O(mod m). 
Let P = {{il, i l  + al), . . . , {ik, ik + ak)) .  Then (U, P) is an (al, a2, . . . , ak; m)-starter. 

(3)+(4) Let (U, P) be an (al, a2,. . . , ak; m)-starter. Then U(mod m) = 22k if 
m = 2k; and U(mod m) = Z2k+1 - {i) for some 0 _< i 5 2k if m = 2k + 1. In any 
case, P(mod m) is a desired 2-partition. 

(4)+(5) Let P be a 2-partition of ZZk or Z2k+, - {i) in (4). The:, we can assume 
f (xi - y;) f ai(mod m). By exchanging xi and yi if neccesary, we can assume 
x; - yi - a;(mod m). Clearly, this solution {(x;, y;) : i = 1,2,.  . . , [m/2] j covers 
2Lm/2J elements of 2,. 

( 5 )+ (6 )  Let M = {(x;, y;) : i = 1,2,. . . , [m/2J) be a solution of (2.2) satisfying 
(5). Then x; - y; a;(mod m) = hi,  where 1 < bi < rn. Hence, ] M n  Eb,J = 1. But 
I M I = k, and therefore, i2.I is orthogonal to {Eb,,  . . . , Ebk ). 

(6)=;(1) Let M be a &matching ir? (6) and M n &, = {(xi, y;)). Withoilt loss of 
generality, we assume y; - xi = bi in Z,, for i = 1,2,. . . , k. 

Case 1. m = 2k. 

Let h.3 = {(x:, Y:) : i = 1,2,. . . k), and F =< am > (M). 

Claim 1. F is a 1-factor of C(n, 5'). 

By the definition of F, F = {(xi + mh, y: + mh) : h = 0,1,. . . , n /m  - 1 and i = 
1,2,. . . , k). If yi + mh = y: + mh', then y; + mm; + r i~h = yj + mmj + mh', which 
implies that yj - y; r O(mod m). Since 0 < yi, y j  5 m - 1, we must have i = j and 
hence h = h'. 

By a similar argument, we can show that 

X: + mh # yi + mh', 

yl + mh # xi + mh', 

and 
21 + m h  # xi + mh', 

if (2, h )  # (j, h'). Therefore, F is a matching. By counting the edges in F, we know 
that F is a 1 -factor. 
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Claim 2. F, a ( F ) ,  ... , am-'(F) is a cyclic 1-factorization. 

To prove Claim 2, we need only show that F, a(F), . . . , am-' ( F )  is a 1-factorization. 
This is equivalent to showing that 

F U a ( F )  U - .  . U am-'(F) = E(C(n,  S)) .  

Let F, = {(xi + mh, y j  + mh) : h = O,l,. . . , n /m  - 1). Then F = u;, 1;:. 
Note that F; U a(+?) U. - .  U am-'(F:.) contains all the edges generated by a ; ,  that is, 
Eal = Fi U a(F;)  U . - . U am-'(F;). Therefore, 

Case 2. m = 2k + 1. 

Let u:=, (xj, IJ,} = Zm - {i} for some i. Let M be as in Case 1, and let 

n 
F =< am > (M) U{(i + mh, i + n/2 + mh) : h = 0,1,. . . , - - I ) .  

2m 

Then F,  a ( F ) ,  . . . , am-' (F )  is a cyclic 1-factorization of C(n, 3). The proof is similar 
to Case 1. I 

Remark 1. In statement (4), let a; bi(mod m). Then we can assume that 
bi < m/2, otherwise, we choose b; = -a;(mod m). Also if we use ordered 2-partition 
instead of 2-partition, then we can drop the 'f' sign. Hence we obtain that statement 
(4) is equivalent to the following. 

+ 
There exists an ordered 2-partition P = {(xi, y;) : i = 1,2,. . . , k )  of 2, (or 

2, - {i} for some i, if m a's odd) such that { y i  -xi : i = 1,2, .  . . , k} = { b l ,  62,. . . , bk). 

This observation will be very useful for finding cyclic 1-factorization of a circulant 
of small degree. 

2. Note that C'(m, {f bl, f bz, . . . , f bk))  is a multigraph in general, and if we 
delete the multiple edges, then we obtain a circulant C(m,  {f dl, f d2,. . . , fd,)), 
where {dl, d2, . . . , d t )  = { b l ,  b2 , .  . . , bk}. Let the multiplicity of d; in j bl, b2, . . . , b k }  
be r;. Then we have an equivalent form of Theorem 2.9(6). 
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There exists an [m / 2J -matching of I(, such that 1M n Ed, I = r ; .  

This observation allows us to work with the complete graph Km. 

3. It is interesting to note that the existence of a cyclic 1-factori~ati~ with a 
single I-factor orbit m of the circulant C(n ,  { f a l , .  . . , f ah))  does not depend on n 
very much. It depends only on the congruence class of n modulo m, that is, regardless 
how large n is, we only need n O(mod m). 

4. Alspach has posed the following question: 

If PI , .  . . , F,. is any  2-factorization of a 2r-regular simple graph G, does there 
always exist an orthogonal r-matching ? 

Statement (6) of Theorem 2.9 is similar to this question. M. Kouider and D. 
Sotteau 1341 have given a positive answer to this question when the order of G is at 
least 3.23r. 

2.4 Necessary conditions 

In this section, we apply Theorem 2.9 to obtain ;ome necessary conditions for the 
existence of a cyclic 1-factorization of circulants. 

Let C*(m, { f bl, f b, . . . , f bk) )  be the modulo m multigraph of C(n ,  S). Recall 
that {bl ,  b2,. . . , bk)  is a multiset in general, and that { b l ,  b, .. . , bk)  = { d l ,  d2, .  . . , d t ) .  
?Ve can assume that 0 < dl < d2 < - < dt 5 k, and that r j  is the multiplicity of d j  
in {b l , .  . . , b k ) ,  for I 5 j 5 t-  Then we have 

Let c ( j l , .  . . , j h )  be the number of connected components of C(m,  {f dj,, . . . , f d j , ) ) .  

Lemma 2.10 The number of connected components of C(m, { f  d j l , .  . . , f d j h ) )  is 
g i ~ e n ,  by 

c ( j l , .  . . , jh)  = gcd(m,  d j l ,  . . . , dj,).. 

Proof. Let d = gcd(m,dj , ,  . . . , djh) .  Then we can partition Zm into a union of left 
cosets of < d > as 
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W e  have < d  >= (d,.Zd,. . . . ( m / d - l ) d )  E Zmjd .  I f  we let d:. = 9, then the  subgrapll 
of C(m,  {f d j  ,,.. . , f d j , } )  induced on < d > is isomorphic to C(rn/d, {id:, , . . . . 

which is a connected graph. 

Furthermore, there are no edges between i+ < d > and j+ < d >, for i # j ,  For 
if (i + hd, j + Id) is an edge, then i -- j + ( h  - 1)d E S which implies i - j r Oirnod d) .  
But 0 5 i, j < d ,  and therefore, i = j. This is a contradiction. 

We have proved that Cf m, (f djl , . . . , f d j h ) )  is a disjoint union of d connected 
subgraphs. Thus cfj l , .  . . jh) = d = gcd(m, d j l $ - -  . , d i d  8 

For convenience, we denote { d l ,  dz,  . . . , d t )  - id;, ,  . . . . diJ } by { d ; ,  , . . . , di , jC and 
k t  2' denote aff nonernpty subsets of {1,2,. . . , t ) .  

Theorem 2. f f (:tPecessa3-y conditions) 

f .  If X = C[nr (al,. . . . ak, n /if. n - eel,. . . , n - ak )  j has a cyclic 1-jactor.i:ation 
with a single I-fact or orbit of lerrgift 2k + 1 ,  then 

(2) a; f O(rnod2k+?j, fori = 1,2 ,..., k, 

(3) gcd(2K + 1, al,  . . . , ak)  = 1, and 

gcd(2k+l.(d ,,...., d, )')-I 
( 4 )  r;, + r;, 3- - - - + r;, 2 2 for all (ill. - a ,  i,} E 2.  

2.  If X = C(n,  (al,. . . ,ak,n - al,. . . , n - u k } ) *  where a; < n/2, has a cyclic 
I-factorization with a single I-factor orbit of length 2k, then 

I f 1) n 0 (mod 2k), 

I (3) S+ contains an even number of even symbols, 



Proof- The proof of 1, f 1) and (2) %,ere proved in Lemma 2.6. 

(3) By Theorem 2.3, the modulo 2k 4 1 multigraph C'f2k + 1, (dzb,, . . . . f b)) has 
a k-matching M which is orthogonal to (Ebl,  - . . , Ebk f .  Then we must have that 
Cf"(2k + 1, (f b l , .  . . , ik)) is connected, for otherwise, eacfi connected component of 
C'(2k + l, (&bl . . . . f bk)) is odd, and we cannot have a k-matching. By Lemma 2.10, 
we h a w  gcd(2k + f , h, . . . , bk) = 1, this is equivdent to gcri(2k + 1, ax, . - -, a,) = 1. 

(4) As used in f 3f, C"f 2k +- 1, (f &, - . . , f bk)) has a k-matching r t i  which is or- 
thogonal to (&,, . . . -. This implies that M has rj edges in Ed, of C(2k + 
1, (id,, .. . . , f dt )) fcrr j = 1,2.. . . , F. Suppose that we have chosen r;, edges from 
Ed., . ra2 edges from - . - fil edges from Ed. . These edges are just between the 

I 

connected components of C(2k + 1, {f d l , .  . . , f d t ) )  - (E& U- - - UEd, ) = C(2k + 
1, { f d;, , . . . , f di, JC). But there are 9 4 %  + 1, {di, , . . . , di, 1') connected components, 
and each component has odd order, therefore, these edges IM n(Ed,% U - - U Ed5 ) must 
match those components, except one. Hence, 

The prmf of 2. (1) m b  (2) were proved in Lemma 2.6, and (3) was proved in 
Carollary 2.5. 

(1) By Theorem 2.9 again, C'(2k, (f b,. . . , f b k ) )  has zt perfect matching M 
which is orthogonal to (Eb - . . Ebk)- By Lemma 2-10, C'(2k, ( f bl , . . . , f bk)  ) 
has gal(%, bl , biz, . . . . bk) = gcd(3k, a1 , a*, . . , , ak)  isomorphic connected components. 

2E Hence, each component has order kpl Lt*-..,a k )  , and this n m b e r  must be even since 
Cm(2H, (f bl, . . + ,  f bc))  has a perfect matching. 

(3) The proof is simiEar to the prmf of lf4). The differences are that the order 
of Gf%k, {f dl,. . - , f tik)) is 2k, so the k-matching ,%f is a perfect matching, and the 
edges M n(E4z U - - - U E4.) must match all components of C(2k, {f d;, , . . . , f di, 1'). 

26; . , and if this number is odd, then we will Each comp*ents 
scd(2L.(4, *... -4, ) ) 

have 
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2.5 Some classes of circulants which have a cyclic 
I-factorizat ion 

This section deals with another application of Theorem 2.9. By Remark 2 following 
Theorem 2.9, we need only find a desired k-matching of K,  in the following proofs. 

Let X = C(n,  Sj be a circulant, and let C*(m, (f bl, . . . , f bk)) be the modulo m 
muf tigraph. 

Theorem 2.12 If all b; 's are distinct and m is odd, then X has a cyclic 1-factori,-ation 
with a single 1-factor orbit. 

Proof. Since all b;'s are distinct, then (bl,. . . , bk) = {1,2,. . . , k). Now (x l ,  yl) = 
(k, k + l ) ,  (xZ% y2) = (k - 1, k + 2), . . . , (xk, yk) = (1,2k), is a desired k-matching. 8 

Theorem 2.13 If bl = = - - -  = bk = c for some c # 0, then 

(1) X = C(n,  (f til,. . . , f ah, n/2)) has a cyclic 1- factorization with a single 1- 
factor orbit if and only if gcd(c, 2k + 1) = 1; and 

(2) X = C(n,  (f al, . . . , fak) )  has a cyclic 1-factorization with a single I-fnctor 
2k is  even. orbit 2f and only if gcd(Zk,c) 

Proof. In both cases, the necessity follows from Theorem 2.11. To prove the suffi- 
ciency, first we let gcd(f?k+l,c) = 1. Then E, = 0, c, 2c, 3c,. . . , (2k-2)c, (2k- l)c, 2kc 
is a Hamilton cycle in C"(2k +- 1, (f bl, . . . , f bk)). It is now easy to check that 
(zl, yI) = (O* c), (x2, m) = (2q 3c), . . . , (xk, yk) = ((2k - 2)c, (2k - 1)c) is a desired 
k-matching. 

I f  ICd;:k,c) = h is even. then each Ean = Ec in C*(2k, (f bl ,  . . . , f bk)) is a union of 
gcd(2k,c) cycles of even length h. Hence E, gives a k-matching ((xl, yl), (z2, v2), . . . , 
(xk, a)). which satisfies Remark 2 following Theorem 2.9- E 

CoroIiary 2.14 Let X = C(nl ( f al, . . . *ak)) be a 2k-regular circulant. Let 0 < 
c < rn, and ai e(rnod m), for i = Ill,.. . , k. Let c = 21p and k = 2hq, where 
1, h 2 O and p, g are odd integers. Then X has a cyclic 1-factorization with a single 
1 -fador orbit if and only if 1 5 h, 
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2 h t l  - 2h+l-i - If 5 h, then = g~d(2~+1; ,2~p) g~d(2~+l-?q,p) is even. If 1 > h, then 
2k is odd. The corollary follows from Theorem 2.13. 1 

gcd(2k.c) 

Theorem 2.15 Let bl = bz = - - - = bh = c, bh+l = - - = bk = d. 

(1) If ycd(2k + 1,d) = 1, then X = C(n, {fa l , .  . . ,f ak,n/2)) has a cyclic 1- 
factorization with a single 1-factor orbit. 

(2) If both c and h are even, and gcd(2k, d) = 1, then X = C(n,  {f al, . . . , f ak))  
has a cyclic 1-factorization with a single I-factor orbit. 

Proof. (1) If gdc(2b + 1, d) = 1, then Ed lies along a Hamilton cycle in C8(2k + 
1, { f bl , f b2, . . . , f bk)). Without loss of generality, we can assume that d = 1. 

Case 1. Suppose that h 5 c. We take an h-matching M = ((0, c), (1, c + 
l),. .. , (h  - 1, h + c - 1)) from Ec. After deleting the vertices of M ,  the subgraph 
remaining in El is two disjoint paths: Pl = h, h + 1,. . . , c - 1, and P2 = h + c, h + 
c +  1,. . . ,2k. But IPII = c - h and lP21 = 2k - h - c + 1, where IPI represents the 
number of vertices in the path P. If c - h is odd, then lP2i is even; if c - h is even, 
then IPII is even. In any case, one of IPlj and lP21 is even. Hence, we can obtain a 
(k - h)-matching from Pl U P2. Together with M ,  we obtain a desired k-matching. 

Case 2. Suppose that h > c. Let h = pc + r where p 2 1 and 0 5 r < c. One 
may choose p c-matchings MI, M2,. . . , Mp and an r-matching Mp+l as follows: 

MI = {(0, c), (1, c + I),  . . . , (c - I, 2c - I)}, 

MP = ( ( ( 2 ~  - 2)c, (2p - 2)c + c), . . . ,((2p - 2)c+c-  1,2pc- l )) ,and 

4+1 = ((% '2pc + c), . . . ,(2pc+ r - 1,(2p+ l )c  + r - 1)). 

After deleting the ~ertiees in f?fl tf - - - Lf the subgraph remaining in El is two 
disjoint paths 

Pi = ' 2 p c + r , 2 ~ + r + i , ~ . . , % p c + c - l  
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Hence (PI f = c- r and IP21 = 2(k - pc) - c -  r + 1. A simple argument shows that IPl I 
and 1P21 have different parity. Therefore, one may obtain a (k - h)-matching hilp+z 
from Pl (J P2. Now fl:; Mi is a required k-matching of I i , .  

(2). The proof is similar to the proof in (1) except that both (PI I and 1 Pz 1 are even 
in this case. Then we can obtain a (k - h)-matching from PI U P2, and hence obtain 
a desired k-matching of Ir',,. I 

Theorem 2.16 Let ( b l ,  b 2 1 . .  . , bk) = (a, a , .  . . , a,  i, j ) ,  where a,  i,  j < k. 

(1) Ifgcd(a, %+I) = 1, then C(n,  (f al, . . . , f ak,  72/21) has a cyclic 1-factorization 
.with a single 1-factor orbit. 

(2) If gcd(a, 21) = 1 and i, j are even, then C(n ,  {f al,  . . . , f a k ) )  has a cyclic 
1-factorization with a single 1-factor orbit. 

Proof. (1) Without loss of generality, we assume that a = 1. 

Case 1. i and j have the same parity. 

Assuming that i > j, then i > j + 1. We choose edges (0, i )  and (1, j + 1). The 
subgraph remaining in El after deleting (0, 1, i,  j + 1) is the disjoint union of three 
paths: PI = 2 , 3 , .  . . , j; P2 = j + 2, j + 3 , .  . . , i - 1; and P3 = i + 1, i + 2, .  . . , 2 k .  Then 
lPll = j - 1, lP21 = i - j - 2, and IP31 = 2k - i. If both i and j are even, then only 
IPll is odd; if both i and j are odd, then only IP31 is odd- In any case, we can obtain 
a (k  - 2)-matching from PI (J P2 IJ P3. This matching together with edges (0, i )  and 
(1, j + 1) gives a desired k-matching. 

Case 2. i is even and j is odd. 

Subcase 1. i < j. 

Choosing edges (0, i)  and (1, j+ I), then the remaining subgraph of El - {0,1,i, j )  
is a disjoint union of three paths: PI = 2,3 , .  . . , (i - I); P2 = ( i  + l), (i  + 2), . . . , j ;  
and P3 = ( j  + 2 ) , ( j  + 3) ,..., 2k. Then !PI ]  = i - 2 is even, !Pzl = j - i is odd, and 
IP31 = 2k - j - 1 is even. Thus we can obtain a (k  - 2)-matching from Pl U P2 U P3 
which, together with (0, ij  and (1, j + I) ,  gives a L-matching of Km. 

Subcase 2. i > j. 

If i > j + 1, choosing edges (0,i) and (1, j + l), the remaining subgraph of El - 
(0, 1, i, j + 1) is a disjoint union of three paths: Pl = 2,3,. . . , j ;  P2 = (j  + 2), ( j  f 
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3),. .. ,(i-1); and P3 = (i+l),(i+2),.  . .,2k. Then IPII = j-1 iseven, lP21 = i-j-2 
is odd, and IP31 = 2k - i is even. Hence, from Pl U P2 U P3, we can obtain a (k - 2 ) -  
matching which, together with (0,i) and (1, j + I), gives a desired k-matching of 
it', . 

If i = j + 1, choosing edges (0, i) and (3, j + 3), then the remaining subgraph of 
El - {0,3, i, j + 3) is a union of four disjoint paths: PI = 1,2; P2 = 4,5,. . . , i - 1; P3 = 
{ i+  1); P4 = ( j  +4) , ( j  +5)  ,..., 2k. And IPIJ = 2, is even, 191 = i - 4  is even, and 
P4 = 2k - j - 3 is even. Thus we can obtain a (k - 2)-matching from PI U P2 U P4 
which, toget her with (0, i) and (3, j + 3), gives a desired k-matching of I(, . 

(2) Again, we assume that a = 1. We choose edges (0, i) and (i - 1, i - 1 + j). 
Then the subgraph El - 10, i - 1, i, i + j - 1) is a disjoint union of three paths: PI = 
1,2,. . . , i-2; P2 = (i+l),  (i+2), . . . , (i+j-2); and P3 = (i+ j), ( i+ j+ l ) ,  . . . , (2k-1). 
But each of the paths has odd length, and therefore, we can obtain a (k  - 2)-matching 
from PI U P2 U P3 which, together with (0, i) and (i - 1, i - 1 + j ) ,  gives a desired k- 
matching of We have finished the proof. U 

2.6 The classification of C(2p ,  S), for prime p 

The case with n = 2p, where p is a prime, can be solved completely. If n = 4, all the 
possible circulants of C(4, S) are 1(4, C4, and 2Kz. It is easy to see that C(4, S) has 
a cyclic 1-factorization. So we assume that p > 2. 

Theorem 2.17 Let n = 2p, where p > 2 is a prime. Then C(2p, S )  has a cyclic 
1-factorization if and only if one of the following conditions holds: 

(1) S+ does not contain an even symbol; or 

( 2 )  if S+ contains an even symbol, then it has at most 9 even symbols, at least 
symbols, and p E S+. 2 

Proof. Let C(2p, S) have a cyclic 1-factorization. Suppose that S+ contains an even 
symboi. Note that the only possible 1-factor orbit sizes are 2 and p. Thus, C(2p, S) 
has a 1-factor orbit of length p since it contains an even symbol. But p is odd, so that 
!f = p must belong to S+, by Corollary 2.2. 

Since we have only one I-factor orbit of length p, each edge with even symbol must 
be in this 1-factor orbit and this 1-factor orbit contains at most 9 non-diagonal edge 
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orbits by Lemma 2.1. Therefore, the number of even symbols in S+ is at most 9. 
Furthermore, if we have a 1-factor orbit of length p, then the degree of C(%p, S) is 

at least p which implies that IS+/ > 9. We have proved that either (1) or (2) holds 
if C(2p, S j has a cyclic 1-factorization. 

Conversely, if S+ does riot contain an even symbol, it is clear that C(2p, $) has 
a cyclic 1-factorization such that each 1-factor orbit has length 2 or 1. If the even 
symbols in S' are al,a2,. . . ,a[, then 1 5 9. But IS+I 2 9, and p E 9, so that 
we can find ai+l, . . . , av, p E S+, where there are no additional ai's when 1 = 9. 

Let a; I bj(mod p), for i = 1,2,. . . ,q. Then bl, b2,. . . , -1  are all distinct (in b5- 
fact, a; = b;). Hence C(2p, (f al ,  f a2,. . . , f ae, p)) has a cyclic 1 - factorization 

2 

with a single 1-factor orbit of length p by Theorem 2.12. Let Sl = S+ - {al, .  . . , a I . 5) 
Then each element in Sl is odd, implying that C(2p, f Sl) has a cyclic 1-factorization 
with all 1-factor orbits of length 2. 

Putting all these 1-factors together, we obtain a cyclic 1-factorization of C(2p, S). 
I 

2.7 Cyclic 1-factorizations of circulants with de- 
gree at most 11 

In this section, by considering all possible orbit vectors, we can classify all cyclic 1- 
factorizable circulants of degree at most 11. For large degree circulants, the method 
works, but it is too complicated. 

Like the proofs in section 2.5, we need only find an ordered partition of Z2k or 
ZZk+l - {i) (for some i) for each (bl, b2, . . , , bk), then the proof follows from Remark 1 
following Theorem 2.9. 

Theorem 2.18 1. A I-regular circzliant has a cyclic I-faciorizaiion. 

2 .  A 2-regular circuiant has a cyclic I-factorization ij and sdy . j the only symbol 
in S+ is odd. 

3 .  A 3-regular circvZunt C(n, {f al, 72/21) has a cyclic 1-factorization if and on19 
of one of the following conditions holds: 
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(1) a1 is odd; or 

( 2 )  a1 is even and al f O(mod 3))  n - O(mod 3).  

4. A 4-regular circulant C(n ,  {f a l ,  f a 2 } )  has a cyclic 1-factorization if and only 
if one of the following conditions holds: 

( 1 )  both al  and a2 are odd; or 

(2) both a1 and a2 are even, a l ,  a2 f O(mod 4): and n E O(mod 4).  

5. A .5-regular circulant C ( n ,  {f a l ,  f a2,  n / 2 ) )  has a cyclic 1-factorization if and 
only if one of the following conditions holds: 

( 1 )  both al and a2 are odd; 

( 2 )  if ,  say, a1 is even, and a2 is odd, then a1 f O(mod 3), and n r O(mod 3); 

(3) a1 and a* are even, a ] ,  a2 f 0 fmod 4),  and n G 0 (mod 4); or 

( 4 )  a l ,  a2 f 0 (mod 5), and n r 0 (mod 5). 

6. A 6-regular circulant C ( n ,  {f al ,  f a2,  f a3) )  has a cyclic 1-factorization if and 
only if one of the following conditions holds: 

( 1 )  a l ,  a2 and a3 are odd; 

(2)  only one of the a; 's is odd, say a3, in  which case a l ,  a2 f O(mod 4),  n r 
O(mod 4); or 

(3) only one of the a; 's is odd, say as, in  which case a ] ,  a2, a3 f O(mod 6) )  n r 
O(mod 6 ) .  

7 .  A 7-regular circulant C ( n ,  {f al ,  f a2 ,  f a3, 72/21) has a cyclic I-factorization if 
and only i f  one of the fallowing conditions holds: 

( 1 )  al,a2 and a3 are odd; 

(2) only one of the a; k is even, say al ,  in which case al f O(mod 3) and n E 

0 (mod 3); 

(3) only one of the ai's is odd, say a ~ ,  in  which case al,a2 f O(mod 5)) and 
n r O(mod 5 ) ;  

( 4 )  oaly one of fhe ai 's is odd, say as, in  which case al ,  aa, f O(mod 4) ,  and 
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(5) only one of the a; 's is odd, a l ,  a2, a3 O(mod 61, and n r O(mod 6); or 

(6) a; $ O(mod 7), for i = 1,2,3, and n r O(mod 7). 

Proof. 1. This is easy to  see. 

2. There is a 1-factor orbit of length 2 if and only if it is a partition of an odd 
edge orbit. Hence, the only symbol in S+ is odd. 

3. If al is not odd, then the cyclic 1-factorization has a 1-factor orbit of length 
a t  least 3. But C(n,  {f al,n/2}) is 3-regular, so that the cyclic 1-factorization must 
have a single 1-factor orbit of length 3. Hence a1 f O(mod 3), and n 0 (mod 3) by 
Theorem 2.11. 

Conversely, if (1) holds, we have a cyclic 1-factorization with orbit vector (2 , l ) .  
If (2) holds, then a* = 1 or 2(mod 3). We can assume that a l  r l(mod 3) and then 
P = ((0, 1)) is the required ordered pair partition. 

4. The possible lengths of 1-factor orbits are 2 and 4. If al and a* have different 
parity, then the 1-factorization has a single 1-factor orbit of length 4. By Theorem 
2.11, 3+ contains an even number of even elements. This is a contradiction. Therefore, 
a1 and a2 have same parity. If both al and a2 are even, then the cyclic 1-factorization 
must have a single 1-factor orbit of length 4. Hence a l ,  a2 f O(mod 4), and n r O(mod 
4) by Theorem 2.11 again. 

Conversely, if (1) holds, then C(n,  {f al ,  f a2))  has a cyclic 1-factorization with 
orbit vector (2,2) or orbit vector (4). If (2) holds, then we have a l  r a2 r 2(mod 4) ,  

- 2. By Theorem 2.13, C(n ,  {f al,  f a2)) has a cyciic 1-factorization with and -j - 
orbit vector (4). 

5. Let C(n,  {f a l ,  f a2, 72/21) have a cyclic 1-factorization. The possible 1-factor 
orbit vectors are (2,2, I), (3,2), (4,1) and (5). 

If the vector is (2,2, I), we have that both a1 aad a;., are odd. If the vector is (3,2),  
and a t  least one of al ,a2 is even, say a l ,  then a2 must be odd, and a1 f O(mod 3), 
n r O(mod 3). 

If the vector is (4, l),  we have that both a l  and a2 are odd or even. In any case, 
we will have al, a2 f O(mod 4), and n r O(mod 4). 

If the vector is (51, then we will have al ,  a2 f O(mod 5) and n s O(mod 5). 
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Conversely, if C(n, { f a t ,  f a 2 , n / 2 ) )  satisfies (I), (2) or (3), then, by the above 
proof, we know that C(n,  {f al,  f a2, 72/21) has a cyclic 1-factorization with orbit 
vector (2,2, l ) ,  (3,2) or f 4, I), respectively. If (4) holds, let a; r bi(mod 5). We can 
assume that b; < 2, for i = 1,2, then (bl, b2) = (1, l )  or (2,2) or (1,2). All cases are 
covered by Theorem 2.12 and Theorem 2.13. 

6. The only possible orbit vectors are (2,2,2), (4,2) and (6). 

If the vector is (2,2,2), then (1) holds. If the vector is (4,2), we have (1) or (2) 
holds. If the vector is (6), that is, there is a single 1-factor orbit of length 6, then (3) 
holds by Theorem 2.1 1. 

On the other hand, if ( I )  or (2) holds, it is easy to see that C(n, {f al ,  f a2, f a3)) 
has a cyclic 1-factcx-ization. Let (3) hold, and let a; r bi(mod 6). As before, we can 
assume that bl, b2, b3 5 3, then (bl, b2, b3) = (2,2,1) or (2,2,3) since al ,  a2 are even 
and a3 is odd. The first case was covered by Theorem 2.15. For the second case, 
( ( 5 ,  I) ,  (2,4), (0,3)) is a desired ordered pair partition. 

7. In fact, all cases except (6) are essenti~lly proved above. The case (6) corre- 
sponds to the orbit vector (6), and the necessity follows from Theorem 2.11. 

On the other hand, if (6) holds, let a; bi(mod 7) for i = 1,2,3. Assuming 
{bl, b2, b3) C {1,2,3), all possible cases for (bl, b2, b3) are: ( l , l ,  I) ,  (2,2,2), (3,3,3), 
(1,2,3), (1,1,2) ,  ( l , 1 ,  3), (2,2,3), (3,3,1) and (3,3,2). All the cases are covered by 
Theorems 2.12, 2.13 and 2.15. 8 

Theorem 2.19 An 8-regular circulant C(n,  {f al, f a2, f as, f a4}) has a cyclic 1- 
factorization with a single 1-factor orbit if and only if 

1. n E O(mod 8) and a; f O(mod 8) for i = 1,2,3,4; 

2. {al, a2, a3, a4) contains an even number of even elements; and 

Proof. The necessity follows from Theorem 2.11 and some checking. For example, 
I lei (al, a2, as, ad) = (!,2,4,4). By the Remark 2 fdlowing Theorem 2.9, we need to 

show that a $-matching A4 of I b ,  such that M contains one edge with symbol 1, one 
edge with symbol 2 and two edges with symbol 4, does not exist. If M does exist, by 
symmetry, we can always choose (0,4) as an edge in M. The second edge with symbol 
4 can be chosen as (1,5) or (2,6), and these are all possible choices up to symmetry. 
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But then we cannot find an edge with symbol 2  which is independent from (O,4)  and 
( 1 , 5 ) ,  or an edge with symbol 1  which is independent from ( 0 , 4 )  and (2 ,6) .  

To prove the sufficiency, let a,  - b;(mod 8 ) ,  i = 1,2 ,3 ,4 .  We can assume that 
b, 5 4. We need consider only three caTes: (b l ,  b2, b3, b4) = ( 2 , 2 , 1 , 3 ) ,  ( 2 , 4 , 1 , 3 )  and 
( 2 , 2 , 4 , 4 ) ,  since all other cases are covered by Theorems 2.12, 2.13, 2.15, 2.16. For 
these three cases, ( ( 2 , 4 ) ,  7 ) ,  ( 0 ,  l), ( 3 , 6 ) ) ,  { ( 5 , 7 ) ,  ( 0 , 4 ) ,  ( 1 , 2 ) ,  ( 3 , 6 ) )  and ( ( 7 .  i ) ,  
( 3 ,  S ) ,  ( 0 , 4 ) ,  (2 ,G))  are the respective required ordered pair partitions. CCI 

Corollary 2.20 A n  %regular i '7-culant C ( n ,  { f  a l ,  f a 2 ,  f  a3, f  a 4 } )  has a  cyclic 1- 
factorization if and only if one of the following holds: 

1 .  a l ,  a2 ,  a3 and a4 are odd; 

2.  exactly two of a;'s are even, say al and a2, then a l ,a2  f O(n1od 4 ) ,  and 
n r 0  (mod 4);  

3 .  exactly two of ai 's are even, then a j ,  f O(mod 8 )  for j = 1,2 ,3 ,4 ,  and 12 r 
O(mod 8) ;  

4. all a; $ are even! a; $ @(mod 4 ) ,  for i = 1,2 ,3 ,4 ,  and n r O(mod 4); or 

5 .  all a ; $  are even, a; f @(mod 8) ,  for i = 1,2 ,3 ,4 ,  and n r O@od 8), 
{ a l ,  a2, a3, a 4 }  (mod 8)# { f  2 , 4 , 4 , 4 } ,  { f  2 ,  f  2 ,  f 2 , 4 ) .  

Theorem 2.21 A 9-regular circulant C ( n ,  {f a l ,  f a z ,  f a3, f  a4,  n / 2 ) )  has a  cyclic 
1-factorization with a single 1-factor orbit if and only if 0  $ { a l ,  a*, a3, a 4 )  (mod 9) ,  
{ a l ,  a2, as,  a 4 )  (mod 9)# { f  3 ,  f 3 ,  f  3 ,  f 3 )  and n z O(mod 9) .  

Proof. The proof is similar to the proof of Theorem 2.19. We need to check the follow- 
ing three cases: (b l ,  bz, b3, b4) = ( 3 , 3 , 1 , 2 ) ,  (3 ,3 ,1 ,4 )  and ( 3 , 3 , 2 , 4 ) .  The correspond- 
ing ordered %-partitions are: {(O, 3 ) ,  ( 2 , 5 ) ,  ( 6 , 7 ) ,  ( 8 , l ) ) ,  { ( 5 , 8 ) ,  ( 7 ,  l ) ,  ( 2 , s ) .  ( 0 , 4 ) }  and 
{ ( Z  51, (7, l ) ,  ( 6 ,  81, ( 0 , 4 ) ) .  

Theorem 2.22 A 10-regular circulant C(n,  { f a * ,  . . . , f  a s ) )  has a  cyclic l-factoriza- 
tion with a  single I-factor orbit i f  and only if n O h o d  101, a; f Q(mod lo ) ,  
i = 1 , 2 , 3 , 4 , 5 ,  and(al ,a2,a3,a4,a5)(mod l O ) # f ( 1 , 1 , 1 , 5 , 5 ) , f ( l , 5 , 5 , 5 , 5 ) , f ( 3 , 3 ,  
3,5,5),f(3,5,5,5,5),f(1,3,5,5,5),f(2,4,5,5,5),f(2,2,3,5,5) and f ( 4 , 4 , 1 , 5 , 5 ) .  

Proof. The necessity follows from Theorem 2.11 and some checking. 
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To prove the sufficiency, we give a table (see pages 29-30) providing ordered pair 
partitions of (bl, bZ, b3, b4, bs) which are not covered by Theorems 2.12, 2-13, 2-15, 2.16. 
a 

Theorem 2.23 An 11 -regular circulant C(n,  {f al, . . . , f as, n/2)) has a cyclic 1- 
factoritation if and only if n r 0 (mod 11) and a, f 0 (mod 11) for i = 1,2,3,4,5.  

Proof. The necessity follows from Theorem 2.11. To prove the sufficiency, we also 
give a table (see pages 31-32) as in the proof of Theorem 2.22. 

Remark. In fact, we can classify the cyclic 1-factorizable circulants with degrees 
9, 10, and 11. The statements are too lengthy to give here. 

2.8 Conclusion 

Now we see that if we can characterize all cyclic 1-factorizable circulants with a single 
1-factor orbit, then we can classify all cyclic 1-factorizable circulants by considering 
all the possible orbit vectors. We pose the following problem. 

Problem 2.1 Characterize all cyclic 1-factorizable circulants with a single I - factor 
orbit. 

Remark. Even though there are many necessary conditions in Theorem 2.1 1, they 
are still not sufficient. For example, one can easily check that,if n r O(mod 8) and 
{al, a2, a3, a4)(mod 8) ={2,2,2,4) or {2,4,4,4), then C(n,  {f al, f az ,  f a3, f a d ) )  has 
no cyclic 1-factorization with a single 1-factor orbit. So the first thing we need to do 
is find more necessary conditions. 

Another thing we want to point out is that when rn = 2k + 1 is a prime, then the 
necessary conditions in Theorem 2.11 become 

( i )  n r O(mod m): and 

(ii) a j  $ O(mod m) for i = 1,2, .  . . , k. 

The number of necessary conditions is much less than usual. Also we know that 
for m = 2,3,5,7 and 11, the necessary conditions are sufficient. Perhaps this is true 
for at1 primes. 
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G. Korchmkos [33] has posed the following problem: 

For which integer n r 2(mod 4 )  does there exist a cyclic I-factor-ixtion of I< ,  with 
an invai.iant 1-factor? 

A cyclic 1-factorization of Ii', with an invariant 1-factor is just a cyclic 1-factorization 
of C ( n ,  2, - (0, n / 2 ) ) .  

By using the previous results, we can prove the following. 

Theorem 2.24 1 .  If I<, has a cyclic 1-factorization with an invariant I-factor, and 
n r 2(mod 4j ,  then n r 2(mod 8). 

2. Let n = 2(4m + 1) and 4m + 1 = pt, where p is a prime. Then Ir', has no cyclic 
I-factorization with an invariant 1-factor. 

Proof. 1. If K, has a cyclic 1-factorization with an invariant 1-factor, then each 1- 
f x t o r  orbit must have even length, and each 1-factor orbit of even length contains even 
number of even symbols. So the total number of even symbols is even. For n r 2(mod 
4), the total number of even symbols is $(5 - l ) ,  which is even. Therefore, n I S(mod 
8). 

2. If K, has a cyclic 1-factorization with an invariant 1-factor, then each 1-factor 
orbit has even length. The possible even lengths are 2,2p, 2p2,  . . . , 2pt-' . But Ez,t-1 
is not empty, so it must be in a 1-factor of orbit length 2p' for some I 5 t - 1 .  By 
Lemma 2.6, we have 2pt-1 f O(mod 2p1). This is a contradiction. 0 
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ordered pair partition 

(9, 3)(S, 2)(4, 7)(0, 5)(1, 6) 
(6, 8)(7, 9)(2, 3)(1. l)(O, 5) 
(4, 5)('7, 1)(2, 3)(6. 9)(0, 5) 
(6, 8)(7,  1)(3. 4)(9, 2)(0. 5) 
(9, 1)(0, 4)(2, 3)(6, 7)(5. S) 
(9, I)(& 2)(3,4)(6, 7)(0, -5) 
(1,  3)(0, 4)(6, ?)(& gf(9,  2 )  
(9, 1)(8, 2)(3, 6 ) (4  7)(0, 5) 
(7, 9)(8, 2)(3, 4)(0. 5)( l ,  6) 
(9, 1)(4, 8)(3, 6)(0, 5)(2, 7) 
(9. lf(0.  4)(8, 2)(3. T)(5,  61 
(9. 1)(3, 5)(0, 4)(S, 2)(6, 7) 
(gt 1)(5, 7)(6, 8)(0, -1)(2. 3) 
(7- 9)(0, 4)(l ,  5 ) ( 6  2)(3, 6) 
(li? 9)(1, 3)(0, 4)(2, 6)(5, 8) 
(1: 3)(5, 7)(6, ro(& 4)(9, 2) 
(I, 3)f& 4)(6, 8)(7, 9)(0, J)  
(7, l)f2, 6)(4, 8)(9, 3)(0, 5 )  
(9. 1)f21 6)(3, 7)(4. 8)(0, 5 )  
(9. 1 j(4, 6)(8. 2)fX 73(0. ,j) 
f l .  3)(4, 6)(7, 9)(S. 2Q[O, 5) 
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ordered pair partition 

(1. 2)(& 8)(3, 3)(6, 9910, 4 
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ordered pair partition 
(1, 'L)(S, 9)(3, 6)(f. 7)(0, 5) 
(1, 2)(5. 6)(0, 4)(3, 7)(S. 10) 
(1, 2)(9, lo)(& 7)(0, .i-)(5, 8) 
(1. 2)(9, 10)(3, 7)(4, S)(O, 5 )  
(7, 8)(9, lo)(% 5)(L 6)(2, 4)  
(2,3)(i3, 9)(0, 5)(L 6)(7, 10) 
(2, 3)(9, W(0 ,  5)(L 6)(47 8) 
(5: 7)(6, 8)(0, 3)(1, 4)(9, 10) 
(1, 3)(& 10)(2, 5)(6, 9)(% 4) 
(1. 3)(2, 4)(6, 9)(7, 10)(0, 5) 
(6, 9)(7, 10)(0, 4)(1, 5) (Z 3) 
(5, 8)(7, 10)(0, 4)(2, 6)( l ,  3) 
(3, 6)(% 7)(8, 2)(0, 5 )  
(3, 7)(4, 8)(0, 5)(1, 6)(9, 10) 
(3,7)(9, 2)(0, 5)(1, 6)(8. 10) 
(3, 7)(4, 8)(0, 5)(1, 6)(10, 2) 
(7, 9)(8, 10)(0, 4)(1, 5)(% 3) 
(7, 9)(8, 10)(0, 4)(1, 5)(3, 6) 
(1, 3)(7, 9)(% 6)(4, 8)(& 5 )  
(4* 7)(10, 2)(0, 5)(1. 6)(8, 9) 
(:3. 6)(1, 4)(0, 5)(2, 7)(8, 10) 
(3, 6)(10, 2)(0, 5)(7, I)(% 8) 
(7, 9)(8, 10)(0, .5)(1, 6)(2, 3) 
(8, lo)(% 6)(0, 5)(% 1) 
(4, 6)(1O, I)(% 5)(3, 8)(9, 2) 



Chapter 3 

Isomorphic Factorizations of Circulant s 

3.1 Introduction 

Definition 3.1 Let G and H be graphs. The union of G and H is defined by 

G U H  = (V(G) U V(H), E(G) U V(H))- 

If E(G) n E(H)  = 0, we denoted GU H by G $ H. 

The union of k disjoint copies of G is denoted by kG. 

Definition 3.2 Let G be agraph. G is said to be t-divisible, denoted by tlG, if e(G) f 
O(mod t )  or E(G) can be partitioned into t isomorphic subgraphs GI, G2,. . . , Gt. We 
call GI, Gz, . . . , Gt a t-isomorphicfacto~zation of G, or simply a t-partition, and write 
G =  G1 @G*$ . - -$G* .  

If for all t such that tl,c(G) we have tlG, we say that G is divisible. 

Lemma 3.1 IfG is dizlisible, then nG is divisible for any integer n. 

Proof. ?Ve have that ~(raG) = n&(G). Let t l~ (nG) .  Then t ln~(G) .  

Case 1. tltz. 

Let n = tm. Then nG = t(mG), and hence tlnG. 

Case 2. tls(G). 
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Since G is t-divisible, then G = G1 @G2 $- . -$Gt. Let Hi = nG;, for 7: = 1,2, . . . , t .  
Then nG = H1 @ Hz @ - . . @ Ht , and Hi Hj  for 1 5 i,  j 5 t .  Therefore, t 1n.C. 

Case 3. n $O(mod t )  and E(G) $ O(mod t )  

We will have that t = tlt2 for some integers tl and t2, such that t l  In and tzl-c(G). 
Since G is tz-divisible, then G = G1 $ - .  . $ Gt,, where G; G, for 1 5 i, j _< t 2 .  Let 
Hi = :GI. Then n G =  HI @ - - . $ H t ,  and H, 9 H j .  Hence tlH. I 

Lemma 3.2 Any disconnected circulant graph is a disjoint union of isomorphic con- 
nected circulant graphs. 

Proof. Let X = C(n, {f al, . . . , f ak)) be a circulant which is disconnected. Then 
gcd(al, a2,. . . , ak, n)  = d # 1. Let n = dm and a; = dc; for i = 1 , 2 , .  . . , k. 

Partition the vertex set 2, into 

Then X[i+ < d >I,  the induced subgraph of X on i+ < d >, is a circulant which is 
isomorphic to C(m, {f cl, f cz, . . . , f ck)) for each I 5 i 5 k. Furthermore, there arc 
no edges of X between any i+ < d > and j+ < d > for i # j. Therefore, 

Moreover, gcd(cl, c2, . . . , ck, m) = 1, thus C(m, { f cl , f c2, . . . , f c k )  ) is connected. 
This completes the proof. I 

From the proof above, we obtain a formula for circulant graphs, which we write 
as a corollary. 

Corollary 3.3 

C(drn, {dq,.  . . ,dck, d f n - q ) ,  . . . , d(m-ck))) = dC(m, {cl, . . . , ck, m - q , .  . . ,m-ck)). 

Remark. By Lemma 3.1 and Lemma 3.2, we need only consider connected circu- 
lants when we investigate the divisibility of circulants. From now on, we assume that 
all circulants are connected. 
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3.2 Main results 

Theorem 3.4 Let X = C(n,  S) be a d-regular circulant, and t be a positive integer. 
Then tlX if tin. 

Proof. Since tin, then we can partition 2, into the left cosets 

If d is odd, then t (%  and tin imply that 5 EE O(moa i). If d is even, then 5 6 S .  
Therefore, in any case, the diagonal edges (if they exist) must be in X[i+ < t >] for 
2 = 0 , 1 , 2  , . . . ,  t - 1 .  

Let S+ = {al,  a2, . . . , ak).  As defined in Chapter 2, S+(mod t)  = {al(mod t), 
. . . , ak(mod t))  is a multiset in general, but here we treat S+(mod t )  as a non-multiset. 
Let S+(mod t )  = {jl ,  . . . , jr), where j; # jh if i # h. 

Case 1. t # 2 and 8 $ S+(mod t). 

If ai ZE j(rnod t ) ,  we can assume that a, = j + tm for some integer m. Between 
< t > and j+  < t >, there is a 'parallel' nlt-matching ((0,mt + j ) ,  (t, (m + l ) t  + 
j), . . . , ((: - l ) t ,  (: + m - l ) t  + j)). We call this the matching starting at < t > 
generated by a;, and denote it by M(< t >,a;). 

and 

It is easy to see that Xi Z Xj and E ( X i ) n E ( X j )  = fl if i # j. Also, E ( X )  = 
E(_ri;), therefore, tlX. 

Case 2. 2 E S+(mod t). 

- Without loss of generality, let 2 = jr ,  and a1 a? . - - a,  r t(mod t ) .  Then 2 
between i+ < t > and f + i+ < t >, each edge orbit E., contributes two perfect 
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matchings, one with symbol a h ,  denoted by F:, another with symbol n - a h ,  denoted 
by FL, for 15 h 5 m. 

Let Fo = Ur=l Fk+. Then : + Fo = UZI - Fh-. Now, define 

and 
X i = i + X ~ = X [ i + < t > ] U < i + < t > , i + j ~ + < t > >  

Then Xo,Xl,.  . . , .Xt-l gives a t-partition of X. 

Case 3. t = 2. 

In this case, 2, is partitioned into < t > and 1+ < t >. Between < t > and 
1+ < t >, all edges have odd symbols. Let {al, a2, . . . , al) be the odd symbol set of 
X, and let F, = {(2j,2j + a;) : 0 < j < 5). Then 

and 
Xl = X[l+ < t >] U(1 + Fl) U(1 + Fz) IJ . . . U(1  + f i )  

is a 2-partition of G. This completes the proof. I 

Corollary 3.5 Let X = C(n,  S) be a d-regular circulant with d > 2. Then X is 
t-divisible if t 3 d - 2. In particular, 4-regular circulants are divisible. 

Proof. A result of Ellingham and Wormald [24] says that a d-regular graph is t -  
divisible if t > d. So we need only prove the corollary for t 5 d.  But we give a proof 
for d - 2 5 t < d + 2 here. 

Let tl$. If t = d-1, or d+1, then gcd(t,d) = 1. If d is odd, and t = d-2 or d + 2 ,  
we still have gcd(t, .I) -- 1. Otherwise, say gcd(t, d)  = m # 1, then m l d  and ml(d - 2) 
or mf(d+ 2). Hence, rn = 2 and d is odd. This is a contradiction. For any of the 
above cases, we have tin. If d is even and t = d - 2 or d $2,  then gcd(t, d) = 2. Now 
tl? implies f I f .  Again we have tin. By Theorem 3.3, we know that X is t-divisible 
for t = d - 2,d - l , d  + 1 and d + 2. If t = d, and dln, then we are done. So assume 
that n f 0 (mod d), in which case n is even. But it is well known that X has a 
1-factorization, and this 1-factorization gives a d-isomorphic factorization. I 
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Corollary 3.6 L.et X = C(n,  S )  be a d-regular circulant, and let d be a prime. Then 
X is divisible. 

Proof. Let t be any positive integer such that t l ~ ( X ) .  Then ti?. We can assume 
that 2 < t < d from the above corollary. Then gcd(t,d) = 1, and hence tln. By 
Theorem 3.3, X is t-divisible, and therefore X is divisible. I 

Remark. Recall that in Chapter 2, we have that the necessary condition for 
X = C(n,  S )  to have a cyclic 1-factorization with a single 1-factor orbit of length t 
is tln. Unfortunately, it is not sufficient in general. But from the proof of Theorem 
3.3, we knot<,, that we actually proved that X = C(n ,  S )  has a cyclic t-isomorphic 
factorization if tln. Therefore, if we do not restrict our factor graph to be a 1-factor, 
we have proved: 

Corollary 3.7 There is a cyclic isomorphic factorization of C(n,  S )  with single factor 
orbit of length t if and only if tln. 

By the proof of Corollary 3.1, 3.2, we actually have proved: 

Corollary 3.8 A d-regular circulant C(n,  S )  has a cyclic t-isomorphic factorization 
for t = d - 2, d - 1, d + 1, d +  2. If d is a prime, then C(n ,  S) has a cyclic t-isomorphic 
factorization for t # d. 

Also notice that, by the proof of Theorem 3.3, it is not hard to  determine the 
factor graph, which depends on the symbols of C(n,  S). For example, if n/2 4 S and 
a; f aj(mod t )  for a; # aj,  then the factor graph is a union of n / t  k-stars and some 
isolated vertices. For the case t = n (in this case, d is even), the factor graph is a 
union of a d/2-stars and (n - d/2 - I)  isolated vertices. 

Some special t 's are more interesting, among them are t = 2, d/2. 

If t = 2, we have the following result as a corollary of Theorem 3.3. 

Coroliary 3.9 Let X = C(n, 5') be la d-regular circulant. Then X is %divisible if n 
is even o r  d f O(mod 4). 

The case t = d l %  is a weak form of the following problem: 
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Every connected circulant with even degree has a Hamilton decomposition. 

Since a Hamilton decomposition is a special d/Zisomorphic factorization, it would 
be interesting to solve the weak form. 

To end this chapter, we pose some problems. 

Problem 3.1 Prove that C(n ,  S )  is 2-divisible. 

Problem 3.2 Prove that the 2k-regular circulant C(n ,  S )  is k-divisible. 

Problem 3.3 Let C(212, S )  be a d-regular circulant. Show that there is a cyclic d- 
isomorphic factorization of C(2n, S ) .  



Chapter 4 

On 2-extendable Dihedral Cayley Graphs 

4.1 Introduction 

Recall that the dihedral group Dn is a group which is generated by two elements p 
and T ,  where pn = r2 = 1 and T ~ T  = p-l. We denote ( X T ~ X  E< p >} by < p > T .  

From the relations pn = r2 = 1 and T P T  = p-l, we can easily obtain ($r)* = 1 and 
p l ~ p  = r p - ( ' + j )  = p ' + j ~ ,  which are useful later. It is easy to see that Dn has a 
cyclic subgroup < p > of index 2 which is isomorphic to 2,. Moreover, Dn =< p > 
J < p > T .  

Let S be a graph. If M is a k-matching of X and M* is a perfect matching of X 
such that M E M*, we call M* a matching extension of M, or say M can be extended 
to kf*. A graph X' is said to  be k-extendable if it has Ic-matchings and any k-matching 
of X can be extended to a perfect matching of X .  

Recently, 0. Chan, C. C. Chen and Q. L. Yu classified the 2-extendable Cayley 
graphs on abelian groups. Their classification, as stated below, will be used in the 
proof later. 

Theorem 4.1 L.et S = X(I',S) be a Gayley graph on an abelian group l? of even 
order. Then ,Y is 2-eztendabie if and only if it is not isomorphic to any of the foilowing 
graphs: 
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(IV) C(4n + 2, {2,4n, 2n + I}), n 2 1; and 

Stong [46] has proved that any Cayley graph on a dihedral group is 1-factorizable. 
His result implies that X(D,, S )  is 1-extendable. In this chapter, we shall give a 
classification for 2-extendable Cayley graphs on dihedral groups by showing that, 
except for the five classes of graphs in Theorem 4.1, X(D,, S) is %extendable. 

From now on, we shall assume that X = X(D,,S) is connected, that is, S is a 
generating set of D,, or < S >= D,. For convenience, we let St = Sn < p > and 
SN = S n < p >T.  Then clearly, St' # 0 as X(D, , S )  is connected. E,, the set of 
edges with symbol s: is a perfect matching of S(D, ,  S) for s E S". Also, without loss 
of generality, we may always assume T E S". 

We introduce a class of graphs, denoted by C[2q, s, t] (where s + t r O(mod 2)) ,  
which are defined as follows. The vertex set is {(i, j)lO 5 i _< 29 - 1; 0 < j < s - I ) ,  
which is the cartesian product of 2 2 ,  and 2,. The edge set consists of three types of 
pairs as given below: 

(1) (i, j ) ( i  + 1, j )  and (2q - 1, j)(O, j) ,  where i = 0,1,2, .  . . ,2q - 2 and j = 
0,1,2 ,..., s - 1 ;  

(2) (i, j)(i ,  j + I) ,  where i + j - O(mod 2), i = 0,1,2, . . . ,2q - 1 and j = 
0, 1,2,. . . , s  - 1; and 

(3) (2i + 1,0)(2i + 1 + t ,  s - I ) ,  where i = 0, 1, . . . , q - 1 and the first coordinate 
is computed modulo 2q. 

Clearly, C[2q, s, t] is a 3-regular graph. Alspach and C. Q. Zhang [12] introduced 
the brick product of C2, with P, which is a C[2q, s, t] without edges of type (3).  As 
an exampie, the graph C[6,5,1] is given in Figure 4.la. 

To conclude this section, we make the following observation which sketches the 
structure of Cayley graphs on dihedral groups. 

Obeservation 4.2 Any connected Cayley graph X = X(D, ,S )  can be decomposed 
into two subgraphs on < p > and < p >T together with a class of perject matchings 
joining them. Furthermore, the two subgraphs on < p > and < p >T are isomorphic 
to the same circulant on 2,. 
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Proof. Let X[< p >] and X[< p >TI be the induced subgraphs on < p > and < p >T,  

respectively. Then X[< p >] = X(< p >, S') 2 C(n, S*),  where S* = {ilpi E S'), 
which is a circuiant and 4 : X[< p >] -+ X[< p >TI defined by +(pi) =  pi^ is an 
isomorphism (note that X[< p >] may be edgeless). 

The class of perfect matchings is {E,ls E S"). I 

We set El = E(X[< p >I) ,  E2 = E(X[< p >TI) and E3 = E(X(D,, S")). Then 
EinEj = 0 if i # j, and E(X)  = ElUE2UE3.  

4.2 Basic Lemmas 

We need the following lemmas in the proof of the main theorem. 

Lemma 4.3 If n is odd, then C(n, S )  x Ii; C(2n,2SU{n)). 

Proof. C(n ,  S )  x K2 has two subgraphs X1 and X2 each of which is isomorphic 
to C(n,  S ) ,  and there is an isomorphism 8 : X1 + X2, such that the set of edges 
{v(B(v))lv E V(XI)) is a perfect matching between X1 and X2. 

We can label the vertices of XI by 0,2,4,. . . ,2(n - I ) ,  and then 2 s  is the symbol 
set of XI. Similarly, labelling the vertices of X2 by {n, n + 2, n + 4,. . . ,3n - 2)(mod 
2nj = {1,3,5,. . . ,271 - 1) (as n is odd) will turn X2 into a circulant with 2 s  as the 
symbol set. 

Note that the mapping 5, : XI -+ X2 defined by d(v) = (n + v)(mod 2n) is an 
isomorphism. So if we add n to the symbol set 2S, then we obtain the desired perfect 
matching between X1 and X2. Therefore, C(n,  S) x K2 C(2n,2S U{n)). %3 

Lemma 4.4 Let X = X(D,, ($7, P T ,  pfk)) be connected. 

(1)  IfX(Dn, {p'r, pi,)) is connected, then X is a 3-regular or 4-regular circulant. 

(2) ff X(D,,(pir,p'r)f is disconnected, then X has C$, x Ph as a spanning 
s-flbgraph f ~ r  some rn 2 2 end h 2 2. 

Proof. f 1) Let XI = X(D,, (pir, pir)). Since p'7 and p'r are of order 2, XI is a 2 - 
regular graph. If it is connected, then it is a 2n - cycle 

1(JT)  ( $ - ~ ) ( ~ 2 i - j ~  )(#i-jI) . . . (p(n-lMi-~) )(pni-(n-l)~ ~ ) 1 .  
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Figure 4.1: 

We use {0,1,2, . . . : 212 - 1) to relabel this cycle so that pti-(t-')j T ++ 2t - I and 
pt('-j) * 2t. Then the cycle becomes 0 1 2 . . . (2n-1) 0 after the relabelling. 

Let pk = phli-j). Then edges of X with symbol pk and p-k become edges with sym- 
bol 2h and -2h, respectively, after relabelling. Therefore, X = X(D,, { p ' ~ ,  pJ7, p* k)) 
2 C(212, {1,2n - 1, f 2h)). If h = n/2, then X is 3-regular. Otherwise, it is 4-regular. 

(2) If X I  = X(D,, {pir,p17)) is disconnected, then it is a union of h disjoint 
even cycles Czm, for some m > 1, h > 1. We can arrange the vertices of each cycle 
in a column such that the first column begins with 1, the second column begins 
with pk (note that pk does not belong to the first column, for otherwise X will be 
disconnected), the third column begins with p2k, and so on. We thus obtain a 2m x h 
array in which each row forms an h-path whose edges have the same symbol pk or pek 
(an example with X = X(DI2, ( r ,  p47, p * 5 ) )  is illustrated in Figure 4.lb). Therefore, 
X has a spanning subgraph Czm x Ph. / 

We quote the following result which is implied in the proof of Theorem 3.1 of [12]. 

Lemma 4.5 Let X = X(&, IPir, fi, pkr))  be connected. If X(D,, (p'r, @ T ) )  is 
disconnected, then X is isomorphic to C[2q, s, t' for some q > 2, s > 2 and t 2 1 .  

We also need the following result from [51]. 

Lemma 4.6 C2, x Ph (m > 2, h 2 2) is 2-eztendable. 
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4.3 The Main Theorem 

In this section, we shall prove the following result which is a characterization of 2- 
extendable Cayley graphs on dihedral groups. 

Theorem 4.7 Let X = X(D, ,  S )  be connected. Then X is 2-extendable if and only 
if it is not isomorphic to any of the following graphs: 

( I )  C(2n, (1,2n - l } ) , n  > 3; 

(11) C(2n, {l ,2 ,2n - 1, '3n - 2)), 2 3; 

(Ul) C(4n., (1,472 - 1, 2n)), n 2 2; 

(f V )  C(4n + 2, {2,4n, 2n + I ) ) ,  n 2 1; and 

Proof. It is not hard to see that each class of graphs in (I) - (V) can be realized by 
Cayley graphs on dihedral groups. If X  is isomorphic to any graph in these classes, 
then X is not 2-extendable by Theorem 4.1. 

Let X = X(D,, S). We shall show that if X is not isomorphic to any of the graphs 
in the five classes, then X is Zextendable. If n = 2, then X = X ( D 2 ,  S) is either 
C4 or IC4. In any case, S is Zextendable. So we may assume that n 2 3. Recall 
that El = E ( X [ <  p >I), E2 = E ( X [ <  p > T I ) ,  E3 = E ( X ( D , ,  St')) and r E S. Let 
M = {el, e 2 ) ,  where el and e2 are any two independent edges of X. 

Case 1. 11.1 = {el, e 2 )  E El or C E2. 

Since X[< p >] Z X [ <  p > T I ,  we may assume that M El. Suppose el = ( p i )  (p' ) 
and ez = ( P " ) f P h ) .  Then i, j, k and h are all distinct. Let 

Without loss of generalit_v, assume q = ( p i ) ( # )  E El and e2 = ( p k ) ( p k + h ~ )  E E3, 
where k, i and j are all distinct and phr E St. Then 

W,h, U h  ( p i + h W f h ~ ) H  - {(pi)(piihr),  ( P ~ ) ( B + ~ T ) I  
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is a perfect matching of ,Y which contains M. 

Case 3. el E El,e2 E E2. 

Let GI, G2,. - . , G, be the components of X[< p > I .  Then G, G, for 1 _< i ,  j < I . .  

Let G: be the subgraph of Sf< p >TI induced by (nix E V ( G i ) ) .  Then G: 2 G, 
(1  5 i 5 r ) .  

In this case, we have three subcases to consider. 

Case 3.1. el and e2 lie in G; and Gi, respectively, and i # j. 

Let el = ( p i ) ( 2 )  and e2 = ( p k ~ ) ( p h ~ ) .  Then 

is a perfect matching containing M. 

Case 3.2. el and e2 lie in G; and Gf, respectively, and IV(G';)I = [V(G:)l  is even. 

It is easy to see that every connected circulant of even order is I-factorizable and 
each component of Xf< p >f is a circulant. Hence el can be extended to a perfcct 
matching MI in ,Yf< p >] and e2 can be extended to a perfect matching IZ& ill 

-Y[< p  >TI .  Then All U ;%I2 is a perfect matching of X as required. 

Case 3.3. el and el lie in Gi and G:, respectively, and fV(Gi)j = (V(G:)I is odd. 

Let el = (p' ) (pt)  and e2 = ( p k ~ j f p h ~ ) .  

fa) If X[< p  >f is disconnected, then so is X(D,, S ' ~ ( T ) ) .  Since -Y is connected, 
there exists pmr  E S" so that pi - ( p m ~ )  = p i + m ~  4 V(GIf). Therefore. ( r  . ( p " ~ ) l z  E 
V(Gi ) ]  nV(G:) = !it. In this case, 

is a perfect matching containing el and e2. 

(b) If Xf< p >j is connected, then el E E ( X [ <  p >]),e2 E E ( X [ <  p > T I )  and n 
is odd. Let n = 2k+ 1. 

If tSf/ L: 4, then ,Y' = X(L),. S r U ( r ) )  E C(n, S*f x h; 2 C'(2n, 25- U(n) )$  where 
S' = (ilpi E 9) (by Lemma 4.3). Hence X' is a circulant of degree at least 5 and is 
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2-extendable by Theorem 4.1. But X' is a spanning subgraph of X which contains el 
and ez. Hence (el, E*) can be extended to a perfect matching of X. 

Suppose now S = {pf'). Then el and ez have the same symbol. If 3'" = { T ) ,  

then ,Y is %regular znd X S C(4k + 2, ('2k + 1,2,4k)9, which is a graph belonging 
to class [IV). Hence we must have fS"f > 2. 

When IS"/ = 2 and X(I>,, Y j  is disconnected, X(D,, S'iJ 9') has C2, x Fh as a 
spanrring subgraph bz Lemma 2.2, &ere h 2 2. But 2mh = 2n = 2(26 4- 11, and we 
must have that h is odd. Hence h > 3. Therefore, we can rearrange the columns in 
the proof of Lemma 4-4, such that €1, €2 f E(C2rn x PA). But CZm x Ph is %extendable 
/by Lemma 4.6). Hence el and e2 can be extended to a perfect matching of X. 

When /S"j = '2 and X{D,,Sf'j is connected, X(DnIS'US1') is a 4-regular circu- 
lant by Lemma 4-4 again,. If X = X(D,,S) = X ( D P ~ + l , S )  C(4k + 2, (1,4k + 
1, %, 2k + 211, then .Y is a graph of class (V), which is not Zextendable. (For in- 

2 3 stance, S( DsI ( T ~ ~ T ,  p .p )J C(10, (l,-i, 6,9)) is such a graph.) In all other cases, 
S ( D , ,  S )  is ?-extendable by Theorem 4.1. 

Now assume [YE[ > 2- tk s h d  show that el and e;! can be extended to a per- 
fect matching of -Y. Sote again that el and e2 have the same symbol. Without 
Ioss of genera&& we assume that el = l(pi),e2 = fpi~)(p%). Tf  pi^ E S"? then 
(E,, U(el, e l , ) )  - ( l (p'~) ,  jp'){p2%r!) is a perfect matching containing el and e2. If 
p'r 4 SN. then there is a gis E SN such that j # 0, j # 2i as lSNf 2 3. Let 

Then &I- is a perfect matching of ,Y which extends el and ez. 

If el and €2 have the same sq-mbd p'i, then E,., is a perfect matching of X which 
cont aim el and ea. So we assume that el has symbol pii  and e;! has symbol $7,  i > j .  

Case 4.1. If XI = X(&, (p'r, #rf) is disconnected, then -XI is a disjoint union of 
same even cycks. K el, e-, b d m g  $0 different cycles? then we can easily extend el and 
€2 to a perfect matching of ,Y. So suppose that el and ez belong to the same cycle 
and no perfect matching of this cycle contains bdh el and ez- Let (21. Gz, . .. - . Gh be 
the disjoint q-cles af Xx.  where G, r C2,f 1 5 i 5 h)  and el, e2 E EIGl). Since X is 
vertex-transitive. we may assume el = f ( p ' ~ ) .  Thus G1 is a 2m-cycle: 
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where m(i - j) r @(mod n). 

f a )  Suppose S' - {P( ' -~) .  p2( i -~) ,  . . . . p i m - l ) ( l - ~ ) )  is not empty, containing some 
Since p" VV(Gl), we may assume that pk E V ( C 2 ) .  Then the subgrayh St of 
X(Da, { p i r , p ' ~ , p * k ) )  induced by V ( G I ) U  I ' (G2)  is isomorphic to C2,  x K2. By 
Lemma 4.6, C2, x h; is ?-extendable. Thus there is a perfect matching ,'lit of ,Yt 
containing el and €2. For other G;, i 2 3. simply choose a perfect matching iZft of G,. 
Then M' u(u:=~ -lfJ) is a perfect matching of X containing el and e2. 

tt>) ~f - {pt'-jt + p2G-i) ? - . - ,  p("-')('-J)) = 0 ,  then XfD,, S " { p i ~ , p l ~ ) )  is dis- 
connected. Since *t' is connected, t.here is a p T ~  E St' such that the edges with symbol 
f~ join G1 and another Gi,, say. Let X" = X(D,, { $ T ,  p ' ~ ,  pr+)). Then each com- 
ponent of ,Yt' is also a Cayley graph on a dihedral group Db for some b. So, without 
loss of generality. we assume that ,Ti" is connected. By Lemma 4.5, X" is isomor- 
phic to Cf2q, sl tj for some q 2 2, s 2 '2 and t >_ 1. For convenience, we assume that 
,YN = Cf29.s,tItand wecan assume that el = (0 ,0)(1 ,0)  and e2 = (2p+1,0)(2p+2,0) 
for some p. 

If s is odd, let 
M" = ( ( 0 ,  j ) ( l ,  j ) [  j  = 0,1,2,.  . .,s - 2)U((2 , i ) (2 ,2  + 111 i = 0,2,4, .  . . , s  - 3 )  U 
{ (2q  - 1,0)(2q - 1 +- t:s  - 1):(2q - l7 l@q - l J ) ,  . . . ,(2q - 1,s - 2 ) p q  - 1,s - I ) }  
U ( ( i , j ) ( i + l t j ) / i = 3 , 5  ...., 2 q - 3 ; j = 0 , 1 , 2  ,..., s - 2 ) U B 7  
where B is a perfect matching of (C2q x (S - I ) )  - ((24 - 1,s - I ) ,  (29 - I + t, s - 1 ) )  
which is a union of paths of odd length (since 29 - 1 + t - (29 - 1 )  = t is odd). Then 
:ti' is a perfect matching of -X which contains el and ez. 

If s is even. let 
X'= { (O, j ) ( l , j ) f  j  = 0,1,2 ,..., s  - 2 ) U f ( 2 , i ) ( 2 , i +  1)1 i = 0,2,4, .  . . , s  - 2)U 
f(2*- l ,O)(2q- I + t : s -  1) , (2q-  1 , f ) ( 2 q -  1,2)  ,... , (2q-  1 ,s  -3 ) (2q  - 1,s - 2 ) )  - ' ~ - 3 ; j = 0 , 1 , 2  ,..., s - G U B ,  U{( i> j ) {2  4- l > j ) l  2 = 3> a$ -. - ? - 
where B is a perfect matching of (C2, x (s - 1 ) )  - ( (2 ,  s - l) ,  (2q - 1 + t ,  s  - 1 ) )  which 
is a union of paths of odd length (since 2q - 1 + t - 2 = 29 - 3 + t is odd). Then M* is 
a perfect matching of X which contains el and e2, (We illustrate the above patterns 
wit' C[6,5,3] and C[6,6,2] in Figure 2.2a and Figure 4 2 b ,  respectively.) 

Caw 42. = ZT(D=, ( p i ~ , p ' ~ ) )  is connected. Then X1 2 C2,- We assume that 
no perfect matching of C2, contains both el and e2. 

(a) If S = { p ' ~ , # r ) ~  then X 2 C2, = C(272, {1,2n - I)), (n > 3), which is in 
dais [I). 
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Figure 4.2: 

(b) If S = (pir, p'r, pn12), then n is even, say n = 2m. By Lemma 4.4, we 
have X(Dn ,  S )  is a 3-regular circulant and X(D,, S) r C(2n, (1,2n - 1, n)) = 
C(4m, {1,4m - 1,2m)). This is a graph of class (111). 

(c) If S = {pir, @r,pfk), (k # n/2), then X(Dn,  S )  is a 4-regular circulant by 
Lemma 4.4. By Theorem 4.1, X(Dn, S)  is Zextendable if it is either not isomorphic 
to C(4k+ 2, {1,4k+ 1,2k, 2k+2)), (which belongs to class (V)), or to  C(2n, {1,2,2n - 
1,2n - 2)): (which is a graph in class (11)). 

(d) If IS'/ > 3, then X(Dn, Sf u(pir, p7r)) is a circulant of degree at  least 5, by the 
proof of Lemma 4.4. By Theorem 4.1, X(Dn,  Sru{p'r, Br)) is Z-extendable. Hence 
(el, e2) can be extended to a perfect matching of X. 

(e )  If IS'I = 0, then IS"f 2 3. We have pkr  E S" for some k distinct from i and 
j .  W e  shall show that, for some pkr  E S",.X1 = X(Dn, S*) has a perfect matching 
containing (el,e2), where 9 = { p i ~ , # r ,  pkr).  This is also a perfect matching of X. 

For convenience, we can assume that $7 = T. Then 

A!so assume that el = I f ~ h  e2 = ( p - ~ r ) ( p - ~ q i ' ) f i  /. Let pk = p-mj. We can assume 
that m > q + 1, for else consider p-k)). Now let 
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Figure 4.3: 

Then 121' is a perfect matching of X which contains el and e2 (see Figure 4.3). 3 



Chapter 5 

Hamilton Connectivity of GP(n, k) 

5.1 Introduction 

In this chapter, all subscripts are taken modulo n. 

Let G = GP(n, k) be the generalized Petersen graph with vertex set V(G) = 
{u;, vi : i = 0,1,. . . , n - 1) and edge set E(G) = {U;U;+~, v;v;+k, uiv; : i = 0,1,. . . , n - 
1). We call El = {U;U;+~ : i = 0 , l , .  . . , n - 11, EZ = { v ; v ~ + ~ ,  U,V; : i = 0,1,. . . , n - 1) 
and E3 = {uiv; : i = 0,1,. . . , n - 1 )  Type I, Type 11 and Type 111 edges of GP(n, k) ,  
respectively. 

The classification of hamiltonian generalized Pertersen graphs was carried out by 
many people. Their results, stated below, will be used later. 

Theorem 5.1 The generalized Petersen graph GP(n, k )  is hamiltonian if and only if 
neither 

(i) GP(n, k) 2 GP(n, 2) Z GP(n, n - 2) 2 GP(n, F) I GP(n, y), - 
5fmod 6)' nor 

(ii) GFfn,kj  S GPjn,n/Zj,n r Girnod 4 )  and n 3 8 .  

The exceptional graphs (i) may not have a Hamilton cycle but, they come so close. 
Alspach 161 has pointed out the following. 

Theorem 5.2 Any two non-adjacent vertices ofGP(6m + 5,2), rn 2 0, are joined b y  
a Hamilton path, 
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In this chapter, we will study Conjecture 1 of Chapter 1. The first thing we need 
to do is to distinguish bipartite generalized Petersen graphs. We have the following 
theorem. 

Theorem 5.3 G = GP(n,  k) is bipartite if and only if n is even and k is odd. 

Proof  Let G = GP(n,  k) be a bipartite graph. We have that u o u l  . . . u n - l u O  and 
u ~ v o v k u k u k - 1 .  . . u l u ~  are cycles of length n and k + 3, respectively, implying that n 
is even and k is odd. 

Conversely, suppose that n is even and k is odd. Let 

be a 2-partition of V(G). If E(G[X]) # 0, then there exists an edge v i v j  E E(G).  
This implies that i - j (or j - i) = k which is odd, and hence i and j have different 
parity. This is a contradiction. 

Similarly, E(G[Y]) = 0. Therefore, G = GP(n,  k) is a bipartite graph with 
bipartition A' and Y. I 

The following lemmas simplify many cases in later proofs. 

Lemma 5.4 If gcd(n, k) = 1, then there exist Hamilton paths from uo to v k W l  and 
vk+l in GP(n,  k), respectively. 

Proof. The path ~ 0 ~ 1 ~ 2 .  . . un-1vn-1vn-1-kvn_1-2k . . . v,-l-(,-l)k is a Hamilton path 
in GP(n, k), but n-1-(n-l)k = n-nk+k-1 r k - l(mod n), so ~ , - ~ - ( , - ~ ) k  = v k - ,  . 

The path U O U , - ~ U ~ - ~ .  . . U1V1vl-kU1-2k. .  . ~ ~ - ( ~ - ~ ) k  is a Hamilton path in GP(n,  k )  
and vl-(n-l)k = v ~ - ~ k + k  = v k f l .  Therefore, there exist Hamilton paths from to 
vk-1 and vk+1 in GP(n, k), respectively. R 

Lemma 5.5 IfGP(n, k) is  a harniltonian generalized Petersen graph, then it is edge- 
hamiltonian. 

Proof. It is easy to  see that if C is a Hamilton cycle of GP(n, L), it must contain edges 
of each type. But Aut(GP(n, k)) acts transitively on each edge type, and therefore, 
GP(n,  k) is edge-hamiltonian. I 
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(a) 

Figure 5.1: A Type ,4 insertion 

One of our main results is next. 

Theorem 5.6 1. GP(n,3) is Hamilton-connected if and only i f  n is odd and n # 5.  

2. GP(72,3) is Hamilton-laceable if and only if n is even and n # 6. 

Proof. Proof of 1. Let GP(n, 3) be Hamilton-connected. Then GP(n,  3) is noc 
bipartite, and hence n is odd by Theorem 5.3. Also, we know that n # 5 since 
GP(5,3)  is the Petersen graph, which is not hamiltonian. 

Conversely, let n be odd, and n # 5. To prove GP(n,3) is Hamilton-connected, 
it suffices to prove that there are Hamilton paths from u0 to urn, from uo to u,, and 
from vo to v,, for m = 2,4,. . . ,n - 1 since both (uOul.. . U , - ~ ) ( V ~ V ~ .  . - v,-1) and 
(uo)(vo)(ulu,~l)(u2u,~2) . . . (v+vl+?) 2 are automorphisms of GP(n, 3). 

Case 1. There is a Hamilton path from uo to urn for m = 2,4,. . . , n - 1 

Note that if n f 3(mod 6), then gcd(n, 3) = 1. We know that there are Hamilton 
paths from uo to v2 and v4, respectively by Lemma 5.4. 

Subcase 1.1. n E l(mod 6). 

(i) m E O(mod 6). 

In this case, n - rn 2 1 and rn 1 6. For m = 6 ,  n = 7, a Hamilton path from uo 
to v6 in GP(?, 3) is given in Figure 5.la. For m = n - 1, successive Type A insertions 
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Figure 5.2: A Type B and a Type C insertions 

in Figure 5.la starting at u; = uz give a Hamilton path from uo to v,-1 in GP(72,3). 
In fact, we need % Type A insertions. Figure 5.1 shows one Type A insertion in 
GP(7,3). 

Let n - m 2 7. Then n 2 13. A Hamilton path from uo to ve in GP(13,3) is 
given in Figure 5.2a. 

Let m = 6h and m < n - 1. Then n > 13. Successive h - 1 Type B insertions 
starting at u; = ul in Figure 5.2a give a Hamilton path P from u0 to v, in GP(G(h - 

n-6 h-1)-13 1) + 13,3). Followed by successive ( , Type C insertions based on P starting 
at i = m + 4 in GP(6(h - 1) + 13,3) give a Hamilton path from uo to v, in GP(n,  3) ,  
for all n r l(mod 6). Figure 5.2 shows one Type B insertion and one Type C insertion 
in GP(13,3). 

Remark. The proof in (i) indicates the general strategy we follow. 

1. Find a small graph for which it is easy to perform the insertions. 

2. Find two types of insertions and the inserting points such that the insertion 
preserves the local property of the inserting points, that is, we can perform the next 
insertion after each insertion. 

In order to  simplify the proof, we indicate only the above two steps. We do not 
give the figures as in (i) since it is easy to draw a figure following the description. 

(ii) m G 2(mod 6). 
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In this case, n - m 2 5 and m 2 2. If m = 2, then we are done by Lemma 5.4. 
So assume that m > 8. Then n 2 13. A Hamilton path from uo to vs in GP(13,3) is 
given in Figure 5.3a. 

One type of insertion is a Type D starting at i = 4. The other is a Type E starting 
at i = m + 3 .  

(iii) m r 4(mod 6). 

In this case, n - m > 3 and m 2 4. If m = 4, we are done by Lemma 5.4. So 
assume that m 2 10 and hence n 2 13. A Hamilton path from uo to vlo in GP(13,3) 
is given in Figure 5.3b. 

One type of insertion is a Type F starting at i = 3. The other is a Type G starting 
at i = m + 2 .  

Subcase 1.2. n E 3(mod 6). 

(i) m G O(mod 6). 

We have that m 3 6 and n - m 2 3. A Hamilton path from uo to v~ in GP(9,3) 
is given in Figure 5 .3~.  A sequence of Type B insertions starting at i = 3 gives a 
Hamilton path from uo to v,-3 in GP(n,  3) for all n = 3(mod 6). 

We may assume n - m _> 9. A Hamilton path from uo to v~ in GP(15,3) is given 
in Figure 5.3d. 

One type of insertion is a Type B starting at i = 3. The other is a Type H starting 
at  i = m + 2 .  

(ii) m E 2(mod 6). 

In this case, n - m 2: 1 and m 2 2. We have n 2 9. A Hamilton path from uo to 
zr8 in GP(9,3) is shown in Figure 5.3e. A sequence of Type B insertions starting at 
i = 1 gives a Hamilton path from uo to v,-1 in GP(n, 3) for all n E 3(mod 6). 

We may assume that n - m 2 7. A Hamilton path from uo to vz in GP(9,3) 
is given in Figure 5.3f. A sequence of Type I insertions starting at i = 5 gives a 
Hamilton path from UQ to in GP(n,3) for all n r 3(mod 6). 

Let m >_ 8. A Hamilton path from uo to us in GP(15,3) is given in Figure 5.3g. 

One type of insertion is a Type A starting at  i = 2. The other is a Type I starting 
at i = m + 3 .  
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(iii) sn r 4(mod 6 ) .  

In this case, m 2 4 and n - m  2 5. A Hamilton path from uo to ,u4 in GP(9,3)  
is given in Figure 5.3h. A sequence of Type E insertions starting at 2: = 6 gives a 
Hamilton path from u0 to v4 in GP(n, 3) for all n r 3(mod 6). 

We may assume -m 2 10. A Hamilton path from u0 to vlo in GP(15,3) is given in 
Figure 5.3i. 

One type of insertion is a Type A starting at i  = 6. The other is a Type E starting 
at i = m + 2 .  

Subcase 1.3. n - 5(mod 6). 

(i) m E O(mod 6). 

In this case, m 3 6 and n - m  3 5. A Hamilton path from uo to ve i n  GP(11,3) 
is given in Figure 5.3j. 

One type of insertion is a Type B starting from i  = 1. The other is a Type I 
starting from i = m + 2. 

(ii) m  r 2(mod 6). 

In this case, we have that m 2 2 and n - m  2 3. By Lemma 5.4, we can assume 
that m  2 8. Then n 2 13. A Hamilton path from uo to v g  in G P j l l , 3 )  is given in 
Figure 5.3k. 

One type of insertion is a Type B starting at i  := 1. The other is a Type G starting 
at  z = m+2. 

We have that m 2 4 and n - m  2 1. A Hamil-ton path from uo to vlo in GP(11,3) 
is given in Figure 5.31. A sequence of Type B insertions starting at i = 1 gives a 
Hamilton path from uo to v,-1 in GP(n,  3) for all n 5(mod 6). 

Let m  < n - 1. Then rn 5 n - 7. A 'riamiiton path from uo to ir4 in G'P(11,3) is 
given in Figure 5.4a. 

One type of insertion is a Type J insertion followed by a sequence of Type B 
insertions starting at i = 1. The other is a Type G starting at i  = m  + 6. 

Case 2. There is a Hamilton path from uo to u, for rn = 2,4 , .  . . , n - 1. 
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Subcase 2.1. n r l(mod 6). 

(i) m r O(mod 6). 

We have that m 2 5 and n - m 2 1. By Lemma 5.5, we can assume m < n - 1. 
Then n - m 2 7, and n 2 13. A Hamilton path from uo to u6 in GP(13,3) is given 
in Figure 5.4b. 

One type of insertion is a Type E starting at i = 2. The other is a Type D starting 
a t i = m + 2  

(ii) m 2(mod 6). 

We have that m 2 2 and n - m > 5. A Hamilton path from uo to uz in GP(7,3) 
is given in Figure 5 .4~.  

One type of insertion is a Type G starting at i = 1. The other is a Type J insertion 
followed by a sequence of Type B insertions starting at  i = m + 1. 

(iii) m r 4(mod 6). 

In this case, m 2 4 and n - m > 3. A Hamilton path from uo to u4 in GP(7,3) 
is shown in Figure 5.4d. A sequence of Type K insertions starting a t  i = 1 gives a 
Hamilton path from uo to u,-3 in GP(n,3) for all n r l(mod 6). 

We may assume n - m 2 9. A Hamilton path from uo to u4 in GP(13,3) is given 
in Figure 5.4e. 

One type of insertion is a Type K starting at i = 1. The other is a Type A starting 
a t i = m + 2 .  

Subcase 2.2. n r 3(mod 6). 

(i) rn r O(mod 6). 

We have that m 2 6 and n - m 2 3. The smallest graph is GP(9,3). A Hamilton 
path from uo to u6 in GP(9,3) is given in Figure 5.4f. For m = n - 3, successive Type 
I insertions starting at i = 3 give a Hamilton path from uo to u,-3 in GB(n, 3) for all 
n 3(mod 6). 

Now let ?n 5 n - 9. Then n 2 15. !i Hamilton path from uo to  u6 in GP(15,3) is 
given in Figure 5.4g. 
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One type of insertion is a Type I starting at i = 3. The other is a Type J insertion 
followed by a sequence of Type B insertions starting at i = m. + 5 .  

(ii) m r 2(mod 6). 

In this case, m 2 2 and n - m 2 1. By Lemma 5.5, we can assume r n  < n - 1. 
Then n - m > 7. A Hamilton path from uo to u2 in GP(9,3) is given in Figure .5.411. 

One type of insertion is a Type G starting at i = 1. The other is a Type B starting 
at i = m + l .  

(iii) m - $(mod 6). 

In this case, we have m > 4 and n - m 2 5. A Hamilton path from uo to u4 in 
GP(9,3) is given in Figure 5.4. A sequence of Type I insertions starting at i = 1 
gives a Hamilton path from uo to u,-5 in GP(n, 3) for all n 3(mod 6). 

Let n - m > 11. A Hamilton path from uo to u4 in GP(15,3) is given in Figure 
5.4j. 

One type of insertion is a Type I starting at i = 1. The other is a Type D startirig 
at i = m+6. 

Subcase 2.3. n E 5(mod 6). 

In this case, we assume n 2 11 because if n = 5, it is the Petersen graph! 

(i) m z O(mod 6). 

We have that m 2 6 and n - m 2 5. A Hamilton path from uo to us in GP(l1,3)  
is given in Figure 5.4k. 

One type of insertion is a Type C starting at i = 2. The other is a Type A starting 
at i = r n + 2 .  

(ii) m r 2(mod 6). 

--- we have that rn 2 2 and n -m > 3. A Hamilton path from uo to 212 in U P ( i  l , 3 )  is 
given in Figure 5.41. One Type J insertion followed by a sequence of Type B insertions 
starting at i = 7 give a Hamilton path from uo to u2 in GP(n, 3) for all n r 5(mod 
6)- 

We may assume m 2 8. A Hamiiton path from uo to us in GP(17,3) is given in 
Figure 5.5a. 
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One type of insertion is a Type H starting at i = 4. The other is a Type J insertion 
followed by a sequence of Type B insertions starting a t  i = m + 5. 

(i i i)  m r 4(mod 6). 

We have that m 2 4 and n - m > 1. We can assume m < n - 1 by Lemma 5.4. 
Then n - m 2 7 and n > 11. A Hamilton path from u0 to u4 in GP(11,3) is given in 
Figure 5.5b. 

One type of insertion is a Type I starting at i = 1. The other is a Type J insertion 
followed by a sequence of Type B insertions starting at i = m $1. 

Case 3. There is a Hamilton path from vo to v, for m = 2,4 , .  . . , n - 1, 

Subcase 3.1. n r l(mod 6). 

(i) m O(mod 6). 

We have m 2 6 and n - m > 1. A Hamilton path from vo to v~ in GP(7,3) is 
given in Figure 5 .5~ .  For m = n - 1, successive Type E insertions starting at i = 3 
give a Hamilton path from vo to vnWl in GP(n, 3) for all n l(mod 6). 

Let nt < n - 7. Then n 2 13. A Hamilton path from vo to v6 in GB(13,3) is given 
in Figure 5.5d. 

One type of insertion is a Type E starting at i = 3. The other is a Type B starting 
at  i =m+2. 

(ii) m 2(mod 6). 

In this case, m > 2 and n - .m > 5. A Hamilton path from vo to v2 in GP(7,3) is 
z ~ ~ ~ ~ u ~ v ~ v ~ u ~ ~ ~ ~ ~ v ~ v ~ u ~ u ~ v ~ v ~ .  A Hamilton path from vo to -vz in GP(13,3) is given 
in Figure 5.5e. For m = 2, successive Type D insertions starting at i = 7 give a 
Hamilton path from vo to uz in GP(n, 3 )  for all n r 1 (mod 6). 

We may assume m > 8. X Hamilton path from vo to in GP(13,3) is given in 
Figure 5.5f- 

One type of insertion is a T-vpe C starting at  i = 3. The other is a Type F starting 
a t  a'=m+2. 



We have m > 4 and n - m 2 3. By Lemma 5.5, w e  may assume n - 772 2 $1. 
A Hamilton path from zto to v4 in GP(13,3) is given in Figure 5.5g. For tiz = -1, 
successive Type F insertions starting at t = 6 give a Hamilton path from vo to it4 in 
GP(n,3) for a11 n l(mod 6). 

Let m 2 10. A Hamilton path from 210 to v lo  in GP(19,3) is given in Figure 5.5h. 

One type of insertion is aType H starting at i  = 3. The other is a Type F starting 
at i = m + 2 .  

Subcase 3.2. n G 3fmod 6 ) .  

(i) m - O(mod 6) .  

?Ve have rn 2 6 and n - m 2 3. By Lemma 5.5, we may assume n - m 2 9. A 
Hamilton path from co to .1;6 in GP(1-5: 3) is given in Figure 5 5 .  

One type of insertion is a Type E starting at i = 2. The other is a Type D starting 
at i = r n + 3 .  

(ii) m  r 2(mod 6) .  

We have that m > 2 and n - m 2 1. A Hamilton path from vo to 238 in GP(9 ,3 )  is 
given in Figure 5.5j. Successive Type C insertions starting at i = 3 give a Hamilton 
path from uo to v,-~ in GP(n,3) for all n r 3(mod 6). 

Let n - rn 2 '7. A Hamiiton path from vo to vz in GPf9,3) is given in Figure 5.5k. 
Successive Type L insertions starting at i = 5 give a Hamilton path from wo to in 
GP(n,  3) for all n r 3(mod 6). 

Let m 2 8. A Hamilton path from zro to v g  in GP(1&3) is given ir! Figure 5.51 

One type of insertion is a Type C starting at i = 3. The other is a Type F starting 
a t 'E=m+2 .  

We have- that m > 4 and n - m > 5. A Hamilton path from wo to v4 in GP(f3,3) is 
given in Figure 5 . 6 ~ ~  Suczcessi\;e Type B insertions starting at t = 5 give a Hamilton 
path from to ttg in GP(nz 3) for all n r 3(mod 6). 

W e  may assume rn 2 10- A Hamilton path from va to tslo in CP(15,3) is given in 
Figure 5.6b. 
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One type of insertion is a Type E starting at i = 3. The other is a Type B starting 
at i = m+'. 

In this case, we assume n 2 1 I sinax GP(5,3) is the Petersen graph. 

W e  have m 2 6 and n - m 2 5. A Hamilton path from vo to v6 in GP(11,3) is 
given in Figure 5 . 6 ~ .  For rn = n - 3, one Type M insertion starting at i = 1 followed 
by a sequence of Type H insertions starting at i = 4 give a Hamilton path from vo to 

in CP(n, 3) for d l  n 5fmod 6). 

Let n < n - 5.. i! Hamilton path from vo to v6 in Gf (l7,3) is given in Figure 
.5.6d. 

Use one Type Bd inser'tton starting at i = 1 foUowed by a sequence of Type H 
insertions starting at, i = 4. The other is a Type D starting at 2 = m + 3. 

(ii) rn z 2(mod 6). 

We ha-ge m 2 2 azd n - n 1 3. A Hamilton path from vo to t'q in GP(11,3) 
is given in Figure 5.k .  A qr teme  of Type B insertio~s starting at i = 8 gives a 
Hamilton path from 00 to 2 ; ~  in GP(n, 3) for dl n S ( m d  6) .  

Let m 2 8. By Lemma 5.5, we may assume n - m 1 9. A Hamilton path from vo 
to vs in GP(17.3) is shown in Figure 5.6f. 

One type of insertion is a Type C starting at a' = 4. The other is a Type A starting 
at i = r n + 3 .  

W e  have rn 2 4 and n - rn 3 1. A Hamilton path from vo to a10 in GF(11,3) is 
given in Figure 5.6g Successive Tjpe H insertions starting at i = 4 give a Hamilton 
path from z:a to Z F ~ - ~  ~ E E  GPfn,  3) for all n E 5(mod 6). 

We may assume n - rn > 7. A Hamilton path from z.q, to w4 in GP { l l ,3)  is given 
in Figure 5.6h. Successive Type F insertions starting at i = 6 give a Hamitton path 
fmm 2.o a 0  v4 ia GP(n, 3) for all n G S(mod 6). 



One type of insertion is a Type H starting at i = 3. The other is a Type F starting 
at i = m+2, 

This completes the proof of 1. 

Proof of 2. The necessity is easy to see from Theorem 5.1 and Theorem 5.3. 

To prove the sufficienc_v, recall that a bipartition of GP(n, 3) is 

By the same reason as in the proof of 1 and by Lemma 5.5, we need only prove that 
there are Hamilton paths in GP(n, 3) from uo to z;, for rn = 2,4,. . . , n - 2, and frotn 
uO to 26, for n = 3,3, - . . , n -3, and from uo to v, for m = 1,3, . . . , n - 1, respectively. 

Case 1 There are Hamilton paths in GP(n, 3) from uo to v, for m = 2,4,  . . . , n -2. 

Subcase 1.1. n O(mod 6). 

In this case, we can assume n > 12 since GP(6,3) is not 3-regular 

(i) m O(mod 6). 

We have rn > 6 and n - m 2 6 .  A Hamilton path from uo to vs 
given in Figure 5.6j. 

One type of insertion is a Type K starting at i = 1. The other is a Type D starting 
a t i = m + 3 .  

(ii) m r 2(mod 6).  

We have m 2 2 a d  ta - rn > 4. A Hamilton path from z ~ o  to uz in GP(12,3) is 
given in Figure 5.6k. Successive Type C insertions starting at i = 9 give a Hamilton 
path from uo to vz in GP(n, 3) for dl n - O(mod 6). 

W e  may assume m > 8. A Hamilton path from uo to vs in C P ( l 3 )  is given in 
Figure -5.61. Successive Type I insertions starting at i = 3 give a Hamilton path from 
uo to wm-q in GPCn, 3) for atl n r Ofmad 6)- 

kt m < n - 4. A Hamilton pat~h from uo to ws in G f  (l8,3) is given in Figure 
r 3 a. t a. 
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One type of insertion is a Type I starting at i = 3. The other is a Type F starting 
at i = r n + 2 .  

We have m 2 4 and n - m 3 2. A Hamilton path from u o  to vlo in GP(12,3) is 
given in Figure 5.7b. Successive Type F insertions starting at i = 2 give a Hamilton 
path from uo to v,-2 in GP(n,3) for all n O(mod 6). 

Let m < n - 2. Then n - m 2 8. A Hamilton path from uo to v4 in GP(12,3) is 
given in Figure 5.7~.  Successive Type C insertions starting at i = 9 give a Hamilton 
path from ti0 to v4 in GP(n, 3) for all n O(mod 6). 

Let m 2 10. A Hamilton path from u o  to vlo in GP(18,3) is given in Figure 5.7d. 

One type of insertion is a Type I3 starting at i = 2. The other is a Type C starting 
at  i = r n + 5 .  

Subcase 1.2. n r 2(rnod 6 ) .  

(i) rn r O( mod 6 ) .  

We have m 2 6 and n - rn > 2. A Hamilton path from uo to ve in GP(8,3) is 
given in Figure 5.7e. Successive Type L inserticns starting at i = 1 give a Hamilton 
path from uo to un-2 in GP(n, 3) for all n r 2(mod 6 ) .  

Let n - rn 2 8. Then n 2 14. A Hamilton path from zlo to . v ~  in GP(14,3) is 
given in Figure 5.7f. 

One type of insertion is it Type K starting at i = 2. The other is a Type D starting 
at i = m + 5 .  

We have rn 2 2 and n - rn > 6.  A Hamilton path from uo to v2 in GP(8,3) 
is given in Figure 5.?g. A sequence of Type C insertions starting at  i = 5 gives a 
Hamilton path from tro to t:2 in GP(n,3) for all n - 2(mod 6). 

One type of insertion is a Type B starting at i = 1. The other is a Type C starting 
at i = m+3.  
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We have m 2 4 and n - m 2 4. Since ( u ~ ) ( v ~ ) ( u ~ u , - ~ ) ( v ~ v ~ ) .  - .  ( u ~ - ~ u ~ + ~ )  
( v ~ - ~ v ~ + ~ ) ( u ~ ) ( v ~ )  is an automorphism interchanging vn-4 and Q and there is a 

2 

Hamilton path joining zso to v4 (by Lemma 5.4), we may assume m < n - 4. Then 
n 2 14. 

A Hamilton path from uo to v4 in GP(14,3) is given in Figure 5.7i. 

One type of insertion is a Type K starting at i = 1. The other is a Type A starting 
at z = nz+3. 

Subcase 1.3. n r a(mod 6). 

(i) m E O(mod 6). 

We have that m 2 6 and n-m 3 4. Since ( ~ ~ ) ( v ~ ) U ) ( u ~ u ~ - ~ ) ( ~ ~ v ~ ~ ~ ) ~  . ( u ~ - ~ u ~ + ~ )  
( ~ ~ - ~ v ~ + ~ ) ( u ~ ) ( v ~ )  is an isomorphi~m interchanging vn-4 and v4 and there is a Hamil- 
ton path joining uo to v4 (by Lemma 5.4), we may assume m < n - 4. Then n > 16. 

A Hamilton path from uo to vf, in GP(16,3) is shown in Figure 5.7j. Successive 
Type D insertions starting at i = 9 give a Hamilton path from uo to v~ in GP(n, 3) 
f ~ r  all n 4(mod 6). 

We may assume rn 2 12. A Hamilton path from uo to vl2 in GP(22,3) is given in 
Figure 5.7k. 

One type of insertion is a Type H starting at i = 5. The other is a Type D starting 
at  i = n z + 3 .  

(ii) m r ?(mod 6). 

In this case, n - m > 2. Since there is an isomorphism interchanging vn-2 and 
uz and there is a Hamilton path joining uo to v2 (by Lemma 5.4), we may assume 
m < n - 2 and m >_ 8. Then n 2 16. A Hamilton path from uo to vs in G'P(16,3) is 
given in Figure 5-71. 

One type of insertion is a Type A starting at i = 2. The other is a Type C starting 
at i = m+3*  

(iii) rn r 4(mod 6). 

We have m 2 4 and n - rn 2 6,  X Hamilton path from uo to vd in GP(lO,3) is 
given in Figure -5.8a- 
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One type of insertion is a Type B starting at i = 1 .  The other is a Type C starting 
at  i = m + 3 .  

Case 2 There is a Hamilton path from uo to u, for m = 3 ,5 , .  . . , n - 3 .  

Subcase 2.1. n = O(mod 6). 

In this case, n 2 12. 

(i) m l(mod 6) .  

We have m 2 7 and n - m > 5 .  A Hamilton path from uo to u7 in GP(12,3) is 
given in Figure 5.Sb. 

One type of insertion is a Type D starting from i = 2.  The other is a Type C 
starting at i = m + 2. 

(ii) m E 3(mod 5) .  

We have m >_ 3 and n-rn > 3. A Hamilton path from uo to u3 in GP(12,3) i s  given 
in Figure 5 . 8 ~ .  Successive Type I insertions starting at i = 4 give a Hamilton path from 
uo to u3 in GP(n,  3 )  for all n E O(mod 6) .  But ( U O > ( V ~ ) ( U ~ U ~ - ~ ) ( V I V ~ - ~ )  . = - ( ~ n - ~ u n + ~ )  2 

2 

( V ~ - ~ V ~ + ~ ) ( U ~ ) ( V ~ )  is an isomorphism interchanging u,-3 and us, there is a Hamilton 
path from uo to u,-3 in GP(n, 3 )  for all n r O(mod 6 ) .  

Let rn 2 9 and rn < n - 3. A Hamilton path from u0 to ug in GP(18,3) is given 
in Figure 5.Sd. 

One type of inser' ion is a Type D starting at i = 4. The other is a Type I starting 
a t  d = m +  1. 

We have rn 2 5 and n - rn 2 1. By Lemma 5.5, we can assume rn < n - 1 ,  and 
hence rn 5 n - 7. A Hamilton path from uo to us in GP(12,3) is given in Figure 5.8e. 

One type of insertion is a Type J insertion followed by a sequence of Type B 
insertions starting at i = 1. The other is a Type C starting at i = m + 4. 

Subcase 2.2. n r 2Crnod 6)-  

( i )  m r l(mod 6). 

Inthiscase. rn? I ,n -m>_  1. W m a y a s s u m e m > ? , n - r n z  7 byLemma5.5. 
Then n 2 $4. A Hamifton path from uo t uf in GP(14,3) is given in Figure 5.8f. 
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One type of insertion is a Type K starting at i = 1. The other is a Type D start.ing 
at i = m + 4 .  

(ii) m 3(mod 6). 

We have m > 3 and n - m 2 5. A Hamilton path from uo to u3 in G P ( 8 , 3 )  is 
given in Figure 5.8g. 

One type of insertion is a Type G starting at i = 2. The other is a Type J insertion 
followed by a sequence of Type B insertions starting at i = m + 1. 

We have n2 2 5 and n - m 2 3. A Hamilton path from uo to us in GP(S,3) is 
given in Figure 5.Sh. 

One type of insertion is a Type J insertion followed by a sequence of Type I 
insertions starting at i = 1. The other is a Type G starting at i = m + 2. 

Subcase 2.3. n r 4(mod 6). 

(i) m E l(mod 6). 

We have that rn 2 7 and n - m 2 3. A Hamilton path from uo to 217 in GP(10,3)  
is given in Figure 5.Si. Successive Type I insertions starting at i = 1 give a Harniiton 
path from uo to u,-3 in GP(n, 3) for all n - 4(mod 6). 

Let m < n - 3. A Hamilton path from uo to u7 in GP(16,3) is given in Figure 
5.8j. 

One type of insertion is a Type I starting at i = 1. The other is a Type D starting 
at i = m f 4 .  

(ii) m 3(mod 6). 

We have that rn 2 3 and n - m 2 1. By Lemma 5.5, we may assume n - rn 2 7. 
A Hamilton path from uo to u3 in GP(10,3) is given in Figure .5.8k. Successive Type 
I insertions starting a t  i = 4 give a Hamilton path from uo to u3 in GP(n,3)  for all 
n z $(mod 6). 

Let rn 2 9. A Hamilton path from uo to u g  in GP(16,3) is given in Figure 5.81. 

One type of insertion is a Type D starting at  i = 4. The other is a Type I starting 
ati=rnf 1- 
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( i i i )  m E j(mod 6). 

We have m 2 5 and n - m _> 5. A Hamilton path from uo to us in GP(10,3) is 
given in Figure 5.9a. 

One type of insertion is a Type L starting at i = 2. The other is a Type H starting 
at i = m + l .  

Case 3 There is a Hamilton path from vo to urn for m = 1,3,.  . . , n - 1. 

Subcase 3.1. n z O(mod 6). 

In this case, 72 2 12. 

(i)  m r l(mod 6 ) .  

We have m 2 1 and n - m 2 5. A Hamilton path from vo to vl in GP(12,3) is 
given in Figure 5.9b. Successive Type E insertions starting at i = 4 give a Hamilton 
path from vo to vl in GP(n, 3) for all n r O(mod 6). 

Let m > 1. Then m 2 7. A Hamilton path from vo to v7 in GP(12,3) is given in 
Figure Fj.9~. One Type M insertion at  i = 8 followed by successive Type H insertions 
starting at i = 11 give a Hamilton path from vo to v7 in GP(n,  3) for all n r O(mod 
6). 

Let m 2 13. A Hamilton path from vo to vl3 in GP(18,3) is given in Figure 5.9d. 

One type of insertion is a Type F starting at i = 2. The other is a Type M insertion 
at  i = r;: -t 1 followed by a sequence of Type H insertions starting at i = m + 4. 

(ii) m f 3(mod 6)- 

We have m 2 3 and n - rn 2 3. If m = 3, or n - 3, then vo and urn are adjacent 
in GP(n, 3) and hence there is a Hamilton path joining them in GP(n,  3) by Lemma 
5.5. Let n - m 2 9 and m 2 9. A Hamilton path from vo to vg in GP(18,3) is given 
in Figure 5.9e. 

One type of insertion is a Type H starting at i = 2. The other is a Type B starting 
at i = m + &  

(iii) m r 5(mod 6) .  

W e  have n 2 5 and n - rn 2 1. A Hamilton path from vo to ql in GP(12,3) is 
given in Figure 5.9f. One Type Bf insertion at i = 1 followed by succesive Type H 
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insertions starting at i = 4 give a Hamilton path from vo to vn-l in GP(n ,  3) for a l l  
n - O(mod 6). 

Let m < n - 1. Then n - m 2 7. A Hamilton path from uo to v5 in GP(12,3) 
is given in Figure 5.9g. A sequence of Type B insertions starting at i = 7 gives a 
Hamilton path from vo to v5 in GP(n,  3). 

Let m > 11. A Hamilton path from vo to vll in GP(18,3) is given in Figure 5.9h. 

One type of insertion is a Type H starting at i = 3. The other is a Type B starting 
at i = m + 2 .  

Subcase 3.2. n r 2(mod 6). 

(i) m - l(mod 6). 

We have m 2 1 and n-m 2 1. A Hamilton path from vo to vl in GP(8,3) is given 
in Figure 5.9i. A sequence of Type A insertions starting at  i = 4 gives a Hamilton path 
from vo to vl in GP(n,  3) for all n r 2(mod 6). Since (u~)(v~)(u~u,-~)(v~v,-~) - . . 
(u~-lug+l)(vg-lvt+l)(~)(v~) is an automorphism interchanging vn-1 and ul , we 
also have that there is a Hamilton path from vo to v,-1 in GP(n ,3)  for n r 2(rnod 

6). 

Let m > 1 and n - m 3 7. Then m > 7. A Hamilton path from uo to v7 in 
GP(14,3) is given in Figure 5.9j. 

One type of insertion is a Type A starting at i = 3. The other is a Type I( starting 
at  i = m + 4 .  

(ii) m - 3(mod 6). 

We have m 2 3 and n - m 2 5. Since vo and v3 are adjacent, we may assume 
m 2 9 by Lemma 5.5. A Hamilton path from vo to v g  in GP(14,3) is given in Figure 
59k. 

One type of insertion is a Type H starting a t  i = 2. The other is a Type F starting 
at i = m m i *  

CVe have m 2 3 and n - rn 2 3. Since vo is adjacent to v,-3 in GP(n,3),  by 
Lemma .5.5, we can assume that n - rn 2 9. Then n 2 14. A Hamilton path from vo 
to v5 in GP(14,3) is given in Figure .5.91. 
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One type of insertion is a Type B starting at i = 2. The other is a Type C starting 
at i = m + 3 .  

Subcase 3.3. n r 4(mod 6). 

( i )  m r l (mod 6). 

We have m > 1 and n - m 2 3. A Hamilton path from vo to v l  in GP(10,3) is 
given in Figure 5.10a. Successive Type L insertions starting at i = 5 give a Hamilton 
path from vo to v l  in GP(n, 3) for all n - 4(mod 6). 

Let m 2 7. Since vn-3 is adjacent to vo, by Lemma 5.5, we may assume m 5 n - 9. 
A Hamilton path from vo to v7 in GP(16,3) is given in Figure 5.10b. 

One type of insertion is a Type K starting at i = 3. The other is a Type F starting 
at i = m+2. 

(ii) m G 3(mod 6). 

We have rn > 3 and n - m 2 1. A Hamilton path from vo to vg in GP(10,3) is 
given in Figure 5.10~. Successivz Type L insertions starting at i = 5 give a Hamilton 
path from vo to u,-~ in GP(n,3j  for all n r 4(mod 6 ) .  

Let m < n - 1. Then n - m 2 7. By Lemma 5.5, we may assume m 2 9. A 
Hamilton path from vo to vg in GP(16,3) is given in Figure 5.10d. 

One type of insertion is a Type D starting at i = 3. The other is a Type E starting 
at i =m+2.  

We have rn 2 5 and n - n 3 5. A Hamilton path from vo to v5 in GP(10,3) is 
given in Figure 5.10e. One Type h4 insertion at i = 6 followed by a sequence of Type 
H insertions starting at t = 9 give a Hamilton path from vo to v5 in GP(n, 3) for all 
n - (i(mod 6). 

Let YIZ > 11. Then pa 2 16. A Hamilton path from vo to vll in GP(16,3) is given 
in Figure 5.1 M. 

One type of insertion is a Type f starting at  i = 2. The-other is a Type B starting 
at i = n2 + 2. 

Combining all the cases, we have finished the proof of the theorem. 1 
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Theorem 5.7 If gcd(n, 2) = 1, then GP(n, 2) is Hamilton-connected eaceyt for r~ r 
5 (mod 6). 

Proof. We divide the proof into several cases. 

Case 1 There are Hamilton paths from u o  to v1, v2,. . . , v,-1, respectively. AS 
shown in the begining of Theorem 5.6, we need only prove that there is a Hamilton 
path from uo to v, for m = 1,3,. . . ,n - 2. 

By Lemma 5.4, there is a Hamilton path from u o  to each of vl,  vg. SO some of the 
time we can assume rn > 3. 

Subcase 1.1. n - l(mod 6). 

(i) m  G l(mod 6). 

We have n - m 2 6. We can assume m  > 7. A Hamilton path from uo to v7 in 
GP(13,2) is given in Figure 5.10g. 

One type of insertion is a Type N starting at i = 1. The other is a Type 0 
insertion starting at i = m  + 5 followed by a sequence of Type R insertions starting 
at i=m+S .  

(ii) m  - 3(mod 6 ) .  

We have n - rn 2 4. We may assume rn 2 9 by Lemma 5.4. A Hamilton path 
from uo to vg in GP(13,2) is given in Figure 5.10h. 

One type of insertion is a Type N starting a t  i = 2. The other is a Type P 
insertion starting at i  = m  + 3 followed by a sequence of Type R insertions starting 
at i =m+6. 

We have m 2 -5 and n - rn > - 2.  A Hamilton path from u o  to v~ in GP(7,2) is 
given in Figure 5.iOi. Successive Type Q insertions starting at i = 3 give a Hamilton 
path from .e6o t o  z~,-z in GP(n, 2) for all n l(mod 6). 

Let m  < n - 2. A Hamilton path from uo to v5 in GP(13,2) is given in Figure 
5.10j. 
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One type of insertion is a Type Q starting at i = 3. The other is a Type R starting 
at z=m+4.  

Subcase 1.2. n = 3(mod 6) 

( i )  m l(mod 6 ) .  

We may assume m 2 7 by Lemma 5.4. A Hamilton path in GP(9,2) from uo 

to v . ~  is given in Figure 5.10k. Successive Type N insertions starting at i = 1 give a 
Hamilton path from uo to v,-2 in GP(n,2) for all n r 3(mod 6). 

We may assume m < n - 2. A Hamilton path from uo to v . ~  in GP(15,2) is given 
in Figure 5.101. 

One type of insertion is a Type S starting at i = 3. The other is a Type R starting 
at i = m + 4 .  

(ii) m 3(mod 6). 

We have m 3 3 and n - m 2 6. A Hamilton path from uo to v 3  in GP(9,2) is 
~ i v e n  in Figure 5.11a. 

One type of insertion is a Type Q starting at i: = 1. The other is a Type 0 
insertion starting at i = n + 5 followed by a sequence of Type R insertions starting 
at  i = nz + 8. 

We have rn > 5 and n - m 2 4. A Hamilton path from uo to US in GP(9,2) is 
given in Figure 5.11b. 

One type of insertion is a Type N starting at  i = 2. The other is a Type P 
insertion starting at i = rn + 3 followed by a sequence of Type R insertions starting 
at z = m + 6 .  

Case 2 There are Hamilton paths from uo to ~1,212,. . . , u,-1, respectively. 

- " m r  By the same reason as given in the begining 01 1 neorem 5.6, we need oniy show 
that uo is joined by a Hamilton path to u, for rn = 2,4,. , . , n - 1. 
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In this case, rn 2 6, n - m 2 1. By Lemma 5.5, we can assume that n - nz 2 7 .  
Then n > 13. A Hamilton path from uo to u6 in GP(13,2) is given in Figure 5.11~. 

One type of insertion is a Type T starting at i = 3. The other is Type N starting 
at i = m + 4 .  

(ii) m r 2(mod 6). 

A Hamilton path from uo to u2 in GP(7,2) is given in Figure 5.1 1d. A sequence of 
Type S insertions starting at i = 4 gives a Hamilton path from uo to uz in GP(n,  2 )  
for all 12 - l(mod 6). 

Assume m 2 8. Then n 2 13. A Hamilton path from uo to us in GP(13,2) is 
given in Figure 5.11e. 

One type of insertion is a Type S starting at i = 3. The other is a Type 0 insertion 
starting at i = rn +4 followed by a sequence of Type R insertions starting at i = rn + 7. 

(iii) m - 4(mod 6). 

A Hamilton path from uo to u4 in GP(7,2) is given in Figure 5.1 If. A sequence 
of Type T insertions starting at i = 1 gives a Hamilton path from uo to u,$-3 for all 
n r l(mod 6). 

We may assume m < n - 3. A Hamilton path from uo to u4 in GP(13,2) is given 
in Figure 5.1 1g. 

One type of insertion is a Type T starting at i = 1. The other is a Type S starting 
at  i = m + 6 .  

Subcase 2.2. n r 3(mod 6). 

(i) m - O(mod 6 ) .  

We have m 2 6 and n - m > 3. A Hamilton path from uo to u6 in G'P(9,2) is 
given in Figure 5.11h. 

One type of insertion is a Type S starting at i = 3. T'he other is a Type 0 insertion 
starting a t  i = m i 2  followed by a sequence of Type R insertions starting at 2 = rn + 5 .  

(ii) m r 2(mod 6). 

We have na 3 2 and n - rn 2 1, Since uo and u , - ~  are adjacent, we may assume 
that m < n - 1. X Hamilton path from uo to u2 in GP(9,2) is given in Figure 5.lli. 
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A sequence of Type S insertions starting at i = 6 gives a Hamilton path from uo to 
u2 for all n z 3(mod 6). 

Let rn 2 8. .4 HamiIton path from uo to us in GP(15,2) is given in Figure 5.11j. 

One type of insertion is a Type R starting at i = 1. The other is a Type S starting 
at i = m + 4 .  

(iii) m r 4(mod 6). 

We have m > 4 and n - m > 5. A Hamilton path from uo to u4 in GP(9,2) is 
given in Figure 5.11k. 

One type of insertion is a Type N starting at i = 1. The other is a Type 0 
insertion starting at i = m + 4 fi, ,:owed by a sequence of Type R insertions starting 
at i = m + 7 .  

Case 3 There are Hamilton paths from vo to each of vl, V Z ,  . . . , vnel. We need only 
prove that there is a Hamilton path from vo to v, for m = 2,4,. . . , n - 1. 

Subcase 3.1. n r l(mod 6). 

(i) m - O(mod 6). 

We have rn 2 6 and n - m > 1. A Hamilton path from vo to v6 in GP(7,Z) is 
given in Figure 5.111. Successive Type S insertions starting at i = 2 give a Hamilton 
path from vo to W,-I in GP(n, 2 )  for all n 1 (mod 6). 

A Hamilton path from vo to v6 in GP(13,2) is given in Figure 5.12a. 

One type of insertion is a Type T starting at  i = 2. The other is a Type S starting 
a t  k = n + 2 .  

(ii) rn - 2(mod 6). 

We have m > 2 and 7a - rn >_ 5. We may assume m 2 8 by Lemma 5.5. Then 
n 2 13. A Hamilton path from vo to in GP(13,2) is given in Figure 5.12b. A 
sequence of Type S insertions starting a t  i = 4 gives a Hamilton path from vo to v,-5 
far ~ L I I  n f (mod 6). 

Let rn < n - 5. A Hamilton path from vo to vg in GP(19,2) is given in Figure 
5.12~. 
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One type of insertion is a Type S starting at i = 4. The other is a Type T starting 
at i =rn$7. 

We have m 2 4 and n - m 2 3. A Hamilton path from 170 to t.4 in G P ( 7 , 2 )  is 
v o v 2 u ~ u 3 u 4 u 5 v 5 ~ ~ 2 ; 1 ~ 1 u o ~ ~ t ' ~ ~ 4 .  A Hamilton path from vo to ulo in GP(13,2) is given 
in Figure 5.12d. A sequence of Type R iasertion starting at i = 1 gives a I-Iarniltun 
path from vo to ~ , + 3  in GP(n,2) for all n - l(mod 6 ) .  X Hamilton path from vo to 
vq in GP(13,2) is given in Figure 5.i2e. A sequence of Type S insertion starting at 
i = 9 gives a Hamilton path from vo to v4 in GP(n, 2) for all n 1(1nod 6) .  

We may assume m 2 10 and m < n - 3. A Hamilton path from uo to vlo  in 
GP(!9,2) is given in Figure 5.12f. 

One type of insertion is a Type R starting at i = 4. The other is a Type Q starting 
at  i=m+7. 

Subcase 3.2. n Sfmod 6). 

(i) m - O(mod 6). 

A Hamilton path from vo to vs in GP(9? 2 )  is given in Figure 5.12g. A sequence of 
Type T insertions starting at  i = 2 gives a Hamilton path from uo to v,-3 in GP(n,  2) 
for all n r 3(n=od 6 ) .  

Let- rn < n - 3. X Hamilton path from uo to vs in GPj15,2) is given in Figure 
3.12h. 

One type of insertion is a Type T at i = 2. The other is a Type N starting at 

i = m + 6 .  

(ii) rn r 2Cmod 6) .  

We have m > 2 and n - m > 1.. X Hamilton path from VQ to vg in CP(Y,2) is 
given in Figure -5.1'2i- Successive Type S insertions starting at  i = 4 give a Hamilton 
path from vo to 27n-l in @Pjn,2) for all n S(mod 6). 

Since vo is adjacent to-zr2, we may assume that rn 3 8 by Lemma -5.5. A Hamilton 
pa+h from q, to z% in GP(L5,2j is given in Figure 5-12j. 

One type of insertion is a Type X at i = 5. The other is a Type R starting at 
i = m f  2. 
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A Hamiltofr path from zro to in GP9,2)  is given in Figure 5.12k. Successive 
Type T insertions starting at i = 6 give a Hamilton path from z.0 to v4 in C;?(n, 2) 
for all n 3(rnod 6) .  

Let m 2 10, A Hamilton path from ~0 to 1110 in GP(13,2) is given in Figure 5.121. 

One type of insertion is a Type N at i = 5. The other is a Type T starting at 
i = r n + 2 .  

This completes the p rmi  I 

Remark. The tequirment of gcd(n, k) = 1 is important in Conjecture 1. For 
example, GPfG.2) is hamifionian, but it is not Hamilton-connected as there is no 
Hamilton path joking uo to s2i h t  for k = 3, we have prot-ed that except for n = 5, 
GPCn, 3) is Hamiitan-connected or Hamilton-laceable. 
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Figure 5.3 Figure -5.3a - Figure 5.31 
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Figure 5-4: Figure 5.4a - Figure 5.41 
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Figare 5-5: Figure .L5a - Figure 5.51 
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Figure 5.6: Figure 5.6a - Figure 5-61 
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Figure 5.2 Figure -?.?a - Figure 5-71 
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Figure 5.8: Fi,aure 5.8a - Figure 5.81 



Chapter 5. Hamilton Connectivity of GP(n, k) 

k 

Figure 5.9: Figure 59a - Figure 5-91 
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Figure 5.10: Figure 5-fOa - Figure 5.101 
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Figure 5-11: Figure 5.fIa - Figure .5.111 
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Figure 5-12: Figure 5.L2a - Figure 5.121 
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Figure -5.13 Type A - Type J 
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Figure 5.14: Type K - Type T 



Chapter 6 

Hamilton Decompositions of C ( 2 p ,  S )  

6.1 Introduction 

Definition 6.1 Let G be a regular graph. It is said to have a Hamilton decomposition 
[or to be Hamilton-decomposable) if either 

(i)  deg(G) = 2d and E(G) can be partitioned into d Hamilton cycles, or 

(ii) deg(G) = 26 + 1 and E(G) can be partioned into d Hamilton cycles and a 
perfect matching. 

Many known Cayley graphs on abe l i a  groups are HamiIton-decomposable. This 
led Alspach [5] to ask the following question: 

Does every connected Caayley graph on an abelian group have a Hamilton decnnr- 
position '2 

If the degree of the graph is 2, the answer is obviously yes. If the degree is 3, the 
answer is again yes since such a graph has a Hamilton cycle. The case of degrcc 4 
has been solved by J-C. Bermond, 0.. Favaron and M. Maheo (161 and the answer is 

mi again yes. r ne answer is also yes for degree 5 jiOj.. Here we write t h e e  resdts as a 
theorem in the case when G is a circulant. 

Theorem 6.1 If Cfn, S )  is a connected circdant of degree at most 5, then C(n ,  S'j 
is Hamiiton-decompusa5le. 



The Hamilton decomposabiiity of a graph some times depends on the Hamilton 
decomposability of the cartesian product of two graphs. 

Definition 6.2 The cartesian product G1 x G2 of GI and G2 has vertex set b'(G1 ) x 
V(G2) with jul, ~ a ~ )  adjacent to jv1. r2) if and only if either ul = z.1 and 1 ~ 2  is adjacerit 
to 2;2 in G2 or t i 2  = 2.2 and ti1 is adjacent t o  vl in G1. 

The strongest result about the Hamilton decomposability of cartesian products 
was obtained by Stong [47] recently. 

Theorem 6.2 If GI has a decomposition into nl Hamilton cycles and Gz has a rle- 
composition into nz HamiZion cycles, rtl < 722, then G1 x G2 has a Hamilton decom- 
position if any one o j  the following is true: 

(iii) G1 has an even number of vertices, or 

(i.) v(GZ) ) 6 a  - 3. 
nl 

For a general class of vertex-transitive graphs, Alspach [2] proved that every con- 
nected vertex-transitive graph of order 2p,  p 3(mod 4) and p a prime, has a Hamil- 
ton decomposition. 

It is expected that the same result holds for p r l(mod 4) except for some special 
cases. In section 2, we shall show that this is true for circulants. 

6-2 Main Result 

Let rt = pq, where p an4 q are distinct primes. Let S, = {mp : mp E S) ,  S, = 
( r n q : r n q  E S)  andS,= (3:s E S , s i s a u n i t  05Z,j. Then S =  SPijS',US,,. Let 
S = (m  : mp E S,] and = {m : mq E S,). We have the following decomposition 
P Q 

result. 



Proof. Consider -X = C(pq, Sp U Sq). We partition Zp, into the left cosets of < p >, 
that is. Zp, =< p > IJ I+< p > lJ-- - U ( p  - I)+< p > . On each coset i+< p >, the 

s 
induced suhgraph Xfi i -  < p >) is isomorphic to C ( q ,  f ), for i = 0 , 1 , .  . . ,p - 1. 

ff there is an edge between i+< p > and j+< p > with symbol in S,, then there 
is a perfect matching between i+< p > and j+< p > with the same symbol. The 
edges with the same symbol in S, between the cosets consist of p-cycles. 

There is at most one symbol which belongs to S, contributing to edges between 
i+< p > and j+< p >. Otherwise, we will have j - i  +mop,  j - i + m l p  E S, for some 
mo and m l ,  mo # "I.. This implies that j - i + mop = koq and j - i + m l p  = klq for 
some kO and k l .  Therefore, (mo - m l ) p  = (ko - k l )q  which is a contradiction. 

If we let {< >, 1+< p >, . . . , ( p -  l)+< p >) be a vertex set and % be a symbol 

set, we obtain a circulant C ( p ,  9).  Clearly, 

Therefore, 

This completes the proof. I 

f i r  example, C(i3, (3,6,Ei3I2,8, lO))  C ( 3 ,  {l ,2))  x C(5, { l , 2 , 3 , 4 ) ) .  

Corollary 6.4 I f p  and q are odd primes, and 0 < ISPI 5 JS,I 5 3 ] S p ]  or ]S,I 2 6 ,  
then C ( p q ,  S )  has a Hamilfon decomposition. 

Proof. The proof follows from Lemma 6.3 and Theorem 6.2. 1 

Theorem 6.5 C(2p, S )  is Hamilton-decomposable. 

Proof. Recall that Sp = (mp  : rnp E S )  and S2 = (2m : 2 m  E S ) .  There are two 
cases to consider. 

Case 1.  Sp # $. 

In this case, we have that S, = { p }  and C(2, $) Kz. Therefore, 
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by Lemma 6.3. 

If S2 # @, let = (al, Q2.. . - , a,.p - al, . . . , p - a,). Take an rn-matching of 
C(p, $), sap { ( x l ,  31). . . . , ( z m ,  y,)} such that yi - xi = a; or p - a;. 

There are two parts in K2 x C(p,  ?), each of which is isomorphic to C(p,  +), 
and there is a perfect matching between the two parts. We can label the vertices of 
one part by {xl,xz,.  . . ,zp}, and the other by {x;,x;, . . .,xi}, such that (xi .  x : )  E 

E ( 4  x C(P,  +)I. 
Now we can give the Hamilton decomposition as  follows. Let 

for i = 1,2,. . . , m, where EA, is the image of E,, under the prime map. Then each Hi is 
a Hamilton cycle of K2 xC(p, %), and Hi n Hj  = 0. What remains in K2 x C(p,  $) is a 

perfect matching { ( X I *  Y I ) ,  . - - (xm7 y m ) )  U{ (X ' , ,  Y ; ) ,  - .  ( xk7  Y;)} U((xi75:) ,  (yt, 3:) : 
z # 1,2,.. - ,m} .  

I f  S2 = 0 ,  then C(2p, S) Ep @ C(2p, S,). E, is a perfect matching of C(2p, S). 
C(2p, S,) is Hamilton-decomposable i f  S, # 0. We also have that C(2p, S) is Hamilton- 
decomposable. 

Case 2. Sp = 0. 

Since C(%p, S )  is connected, there is at least one a E S,. The map a-' : C'(2p7 S )  t 
C(2p, a w l s )  defined by a-'(s) = a-'s for any s E Z2p is an isomorphism. So we can 
assume that 1 E S. 

Let Sf = S, - { I ,  -1). Then we hase that C(2p7 S f )  is Hamilton-decomposable i f  
Sf is nonempty, and C(2p, S )  C(2p, S2 U{ - l , 1 ) )  $ C(2p, S'). 

Let Y = C(2p, S2 U(-1,l)).  We partition Z2, into < 2 > and 1+< 2 >. The 
edges with symbols in S2 induce subcirculants on < 2 > and 1+< 2 >, both of  
which are isomorphic to C(p, %). The edges with symbol 1 form two 'parallel' perfect 
matchings between < 2 > and 1+< 2 >: one is ((0, I ) ,  (2,3), . . . , ( 2 p  - 2,2p - I ) ) ,  
denoted by kfl, and the other is { ( 2 , 1 ) ,  (4, 3), . . . , ( 2 p  - 1 ,  O ) ) ,  denoted by  M - I .  

Let S2 = (b l ,  b2:. . .,bm,2p - bl,.  . . , 2 p  - b,), where b1 > b 2 . - .  > b,. To decom- 
pose C(2p, S2 U{-1: I ) )  into Hamilton cycles, we need to find a special matching. 

Claim. There is an rn-matching Mo == {(XI, yl), . . . , (x,, Y,)) in X [ <  2 > I  such 
that 
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Figure 6.1: 

( i )  yi - X; = b;, i = 1: 2,. . . , rn, and 

To prove the claim, let Kp be a complete graph with vertex set 2,. Then M(0) = 
{ ( l ,  p  - I), ( 2 , p  - 21,. . . , (9,F)) is a near perfect matching of K p .  

Let 2 M ( p )  = {(2,'>(p - I ) ) ,  ( 4 , 2 ( p  - 2)), . . . , ( p  - 1, p + 1 ) ) .  Then 

M, = ~ ( ~ 1  n 2 >I) 

has the required properties. 

Let Hi' = -Eb, n E ( X [ <  2 >I). ?Ve know that H i , .  . . , H:, is a Hamilton decom- 
position of X [ <  2 >f, and (xi, yi)  E H;'. Let Hi', H;, . . . , H c  be the corresponding 
Hamilton decomposition of X[l+< 2 >I. Note also that (1 + x;, 1 + y;) E H:. 

Now let 

for a = 1 , 2 , .  . . , m. Then Hi is a ~ami l ton  cycle of C(2p7 S2 U{-1, I)), and Hi n H j  = 
0, i f ;  # j .  

The remaining edges are 

TO show that is a Hamilton cycle of C(2p ,  S2 U(-1 ,  I ) ) ,  iet x' = 1 + x. Then 
I C = M m ' .  - (s* - l)*xmym(y, - 1)yym - l ) ( y ,  -2)'. . . yrn4x;&,4 + l ) ( ~ , - ~  + 



I I / 1)' - - - ~ m - 2 ~ r n - ~ ( ~ r n - 2 - 1 )  f ~ m -  3-1: - - - x i ~ i ~ f - ~ ~ i - ~ ~ : - ~ ~ i - *  . - - ~ ; + ~ x ~ + ~  ( s i t l f  1 ) ( x * + l +  

1)'- - - - t t + ~ ~ i + ~ ( ~ i + - 2  - f ) ' ( ~ i + ~  - 1)  - . . X Z ? ( ~ Z  - l ) ' ( r z  - 1). - . ~ ; & f y l  + 1). . . ( p  - 1)O 
is a Hamilton cycle. But E(C)  = (see Figure 6.1) and therefore, fin,+, is it 

Hamilton cycle and hence C(+, S )  is Hamilton-decomposable. This completes the 
proof of the theorem- O 
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