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Abstract

There are six chapters in this thesis.
In Chapter !, we survey some important results and background in the history of

the problems related to this thesis. Some frequently used definitions and notations
are given.

In Chapter 2, we study the existence of cyclic 1-factorizations of circulants C'(n, S).
A T-invariant 1-factorization of a Cayley graph G = X (T', S) is a 1-factorization F of
G such that I’ maps F to F. In the case of circulants, that is, I' = Z,, a cyclic group of
order n, we call a I'-invariant 1-factorization a cyclic 1-factorization. Some necessary
conditions and problems equivalent to the existence of cyclic 1-factorizations with a
single 1-factor orbit are obtained. We also classify some special classes of graphs.

An isomorphic factorization of G is a partition of its edges into isomorphic sub-
graphs. In Chapter 3, we deal with another factorization problem — the isomorphic
factorization of circulants. Some partial results are obtained. '

In Chapter 4, we give a classification of 2-extendable Cayley graphs on dihedral
groups. A graph G is said to be k-extendable if it contains a k-matching and any
k-matching of G can be extended to a perfect matching of G.

In Chapter 5, we prove that the generalized Petersen graphs GP(n,3) and GP(n, 2),
where gcd(2,n) = 1, n £ 5 (mod 6), are Hamilton-connected or Hamilton-laceable.

A Hamilton decomposition of C(2p, S), where p is a prime, is given in Chapter 6.

1n
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Chapter 1

Introduction

1.1 Definitions and notations

A graph G is a pair (V(G), E(G)), where V(G) is a finite non-empty set of elements
called vertices and F(G) is a finite set of unordered pairs of elements of V(G) called
edges. We call V(G) the vertex set of G and E(G) the edge set of G. The number of
vertices of G, denoted by v(G), is called the order of G. The number of edges of G,

denoted by £(G), is called the size of G.

An edge e with end vertices u and v is denoted by uv or (u,v); two edges e; = uv
and e; = zy are independent if {u,v}N{z,y} = 0.

A set of m independent edges of G is called an m-matching of G. If m = 1u(G),
we call an m-matching M of G a perfect matching or a I-factor of G.

A I-factorization of G is a partition of E(G) into 1-factors.
An isomorphic factorizetion of G is a partition of E(G) into isomorphic subgraphs.

A Hamzilton cycle of G is a cycle which contains every vertex of G. We call G
hamiltonian if G has a Hamilton cycle. A Hamilton decomposition of G is a partition
of E(G) into Hamilton cycles.

An automorphism of G is a permutation ¢ of V(G) such that both ¢ and ¢!
preserve adjacency. The automorphisms of G form a group Aut(G) under composition,
called the automorphism group of G.

A graph G is said to be vertez-transitive if Aut(G) acts transitively on V(5), that
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is, for any u,v € V{G), there is a ¢ € Aut(G) such that »{u) = v.

Let I' be a group with identity 1. Suppose that 5 is a subset of I" with the
properties that 1 ¢ S and § = S™!. The Cayley graph G = X(I', §) is the simple
graph whose vertex set V(G) =TI', and edge set E(G) = {{(¢.h): g7 'h € §}.

Cayley graphs are a special class of vertex-transitive graphs. The main feature
is that a graph G is a Cayley graph if and only if it admits a group [ acting on
regularly. In fact, if G = X{(I', §) i1s a Cayley graph, then [' acts on G regularly by
left multiplication. If " is a cyclic group (Z,,+), we call the Cayley graph X{Z,, S)
a circulant, and denote it by C(n, S). In this case, S satisfies 0 ¢ S and § = —8; the
edge set E(G) = {{g,h) :h—g € S}.

The dihedral group of order 2n, denoted D,, is defined as follows:

D,={p7:p"=7"=1,7pT = p7').

The generalized Petersen graph GP(n,k), wheren > 2and 1 < k< n-—-1,1s
defined in the following way. It has vertices ug, uy,...,%n-1,v0,01,...,vn-; and edges
UiUig, Uil;, Uik for all 0 <7 < n — 1 with all subscripts reduced modulo n.

Note that GP(5,2) is just the Petersen graph.

For definitions and notations vhich do not appear here, we refer the reader to [18].

1.2 Background

The subjects of factors and cycles are fundamental to the study of graph theory. This
thesis is mainly concerned with 1-facters and Hamilton cycles of graphs.

As early as 1859, M. Reiss {43] found that K,, is 1-factorizable. Since then, there
are many results about 1-factorizations ef graphs. For example, D. Koénig [32] showed
that a bipartite graph G is 1-factorizable if and only if G is regular; B. Alspach [3]
proved that the line graph L(K,} is I-factorizable if and only if » = 0 or 1{mod 4);
the famous Four-color Theorem {14] is also equivalent to the fact that every planar
2-connected cubic multigraph is l-factorizable. In 1985, A. Hartman and A. Rosa
[29] added some restrictions to 1-factorizations of K. A cyclic I-factorization F of
K, is a 1-factorization which is invariant under a permutation which is an n-cycle.
They studied the existence of cyclic 1-factorizations of K, and proved that a cyclic
1-factorization of K, exists if and only if n is even and n # 2',¢ > 3.
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Some variations can be considered. R. Rees [42] studied cyclic k¥ -matching de-
compositions of K, for all n, where k < n/2. G. Korchmaros [33] considered cyclic
1-factorizations of K, with an invariant 1-factor and applied the results to projective

planes.

The existence of 1-factorizations of a large family of Cayley graphs was studied
by R. Stong [46]. He obtained that a connected Cayley graph G = X(I',S) has a
1-factorization if I 1s a cyclic group Z»,, a dihedral group D,, etc. However, we want
an additional property. Since G has the group I' acting on it regularly, it is natural
to ask what the effect on a 1-factorization F of G is under the action of ' on G 7 If
I sends F to F. we call F a I'-invariant 1-factorization, and G is called I'-inveriant
I-factorizable. We have the following problem.

Problem 1.1 Let G = X(TI',S) be a Cayley graph. Under what conditions does G
admit a I'-invariant 1-factorization?

This problem was first posed by D. Jungnickel [31]. In Chapter 2, we will con-
sider the special case of circulants. We call a Z,.-invariant 1-factorization a cyclic 1-
faciorization. Note that the problems considered by Hartman, Rosa and Korchmaros
are just some special cases of circulants.

The isomorphic factorization problem has attracted much attention. For example,
M. N. Ellingham [22, 23, 24], F. Harary, W. Robinson, W.D. Wallis, N. Wormald
{26, 27, 30] and S. Quinn [41] have all considered this problem. The graphs they
have considered are complete graphs, complete multipartite graphs, and other regular
graphs. Some of these families are still not completely understood. In 1984, Wormald
[49] even obtained that almost all labeled r-regular graphs cannot be factorized into
t > 2 isomorphic subgraphs, where r > 2t, but no examples of such non-factorizable
graphs are known. Note that many of the graphs considered by the above authors are
circulants. This led Alspach to ask the following problem.

Problem 1.2 Let G be a circulant. If £{G) = 0(mod t), does G admit a factorization
into ¢t isomorphic subgraphs?

It would be nice to give a positive answer or find a negative example because of
Wormald's results on this problem. In Chapter 3, we give some partial results on this
problem.

Isomorphic factorizations (1-factorizations) have relations to designs, latin squares,
ToOm squares, etc.
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In studying graphs, it is often worth considering the extension of some small
subgraphs with certain properties to a spanning subgraph with the same properties.
One such interesting graph is a matching. In 1980, M. D. Plummer [38, 39, 40]
considered extending an n-matching to a perfect matching (called an n-extension).
He showed that every 2-extendable graph is either bipartite or a brick( which plays an
important role in matching polyhedra). J. Liu and Q. Yu[35] generalized the concept
of n-extension to (m,n)-extension and studied their properties. Recently, G. Schrag
and L. Cammack [45] and Yu [50] classified the 2-extendable generalized Petersen
graphs. 0. Chan, C. C. Chen and Yu [20] classified all 2-extendable Cayley graphs
on abelian groups. With Chen and Yu, we classify all 2-extendable Cayley graphs on
dihedral groups. This will be given in Chaper 4.

The Petersen graph is probably the most important graph in graph theory. In
1969, M. E. Watkins [48] defined generalized Petersen graphs, which includes the
Petersen graph as a member, and posed the question of whether or not every cubic
GP(n,k) other than GP(5,2) = GP(5,3) has a 1-factorization. Meanwhile, G. N.
Robertson [44] and J. A. Bondy [17] proved independently that GP(n,2) is hamilto-
nian if and only if n # 5(mod 6). In the latter paper, Bondy also proved that G P(n, 3)
is hamiltonian whenever n # 5. Finally, F. Castagna and G. Prins provided an af-
firmative answer to Watkin’s 1-factorization question in [19]. Then they conjectured
that Robertson’s examples were the only non-hamiltonian examples. This conjecture
lasted for over 10 years. The first important contribution was made by K. Bannai
[15] who showed that GP(n, k) is hamiltonian when n and k are relatively prime and
GP(n, k) is not isomorphic to G(n,2) with n = 5(mod 6). The second contribution
was due to Alspach, P. J. Robinson and M. Rosenfold [11} who proved that GP(n, k)
is hamiltonian if £ > 3 and n is sufficiently large. The conjecture was finally solved by
Alspach [4]. The answer is that the generalized Petersen graph G P(n, k) is hamilto-
nian if and only if it is neither GP(n,2) £ GP(n,n—2) = GP(n, ﬁ—;—‘-) = GP(n, P—',fi),
n = 5(mod 6) nor GP(n,%), n = 0(mod 4) and n > 8.

Even though GP(n,2), where n = 5(mod 6), is not hamiltonian, it misses by very
little in the following sense. Alspach has proved [9] that there is a Hamilton path
between any two non-adjacent vertices of GP(n,2).

He also made the {
Conjecture 1 The generalized Petersen graph GP(n,k), where gcd(n,k) = 1 and

G P(n, k) is not isomorphic to GP(6m+5, 2) for some integer m, is Hamilton-connected
or Hamilton-laceable.

In Chapter 5, we will deal with the cases k = 2,3. The results support the above
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conjecture.

The purpose of considering this problem is that while studying the existence of
Hamilton cycles in metacirculant graphs, which is a large class of vertex transitive
graphs including many known Cayley graphs. Alspach noticed that each pair of
adjacent blocks contains a generalized Petersen graph as a subgraph (if each block is
connected). If the above conjecture is true, then we will have that the metaciculant

graphs with nonempty blocks are hamiltonian.

A Hamilton decomposition of C(2p,S) is given in Chapter 6. For the case of
vertex-transitive graph of order 2p, p = 3(mod 4) and p is a prime, Alspach [2]
already gave a Hamilton decomposition.



Chapter 2

The Cyclic 1-factorization of Circulants

2.1 Introduction

Let G = C(n,S) be a circulant. Let S = {a;,a,, ...,ak, n —a;,n —az,...,n — @i}
and S* = {a1,as,...,ax}, where a; <nf2for1 <:< k. Let £, = {(a,b):a-b=s
or a —b=n—s}. Then we have that E, is a union of disjoint cycles of length ;EJ%?T
if s # n/2, and E,j; is a 1-factor of C(n,S) if n/2 € S. We call E, an even (odd)
edge orbit when s is even (odd), where s # n/2, and call £,/, the diagonal orbit.

Assume n is even and let s = 27 + 1 be an odd element in S. Then E, can be
partitioned into two 1-factors

F={(2:,2t+2j+1):0<i <n/2} and
Fo={(204+1,2i+25+2):0<1<n/2}. (2.1)

It is easy to see that {Fj, F,} is preserved under the action of Z,. We also see that
E.,j; is invariant under the action of Z,. Therefore, the difficulty in constructing a
cyclic 1-factorization arises because of the even edge orbits.

Let F = {F, F,...,F,} be a Z,-invariant 1-factorization of C(n,S). Then for
any a € Z,,and F; € F, we have a(F;) = F; for some 1 < j < m, where a(u,v) =
(v + a,v + a). In particular, for the element 1 € Z,,,1(u,v) = (u+ L,v + 1). If we

define
a: Zn, —Zn

z m—z+1,

Then « is an automorphism and the action of the element 1 on Z, is a. Therefore, F
is a-invariant. Conversely, if F is a-invariant, then for any m € Z,, m(F) = o™(F).

6
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Hence F is Z,-invariant. This shows that a Z,-invariant 1-factorization is equivalent
to an a-invariant 1-factorization. It is convenient if we use « instead of Z,. The main
idea is to obtain the structure of cyclic 1-factorizations of C(n,S) by studying the

orbits of < a >.

2.2 The structure

Definition 2.1 Let F be a cyclic 1-factorization of C(n,S). Then < a > acting on
F partitions the 1-factors into orbits, called I-factor orbits.

The number of 1-factors in a 1-factor orbit must be a divisor of n (Orbit-Stabilizer
Theorem). If the number is m, then < a™ > fixes each 1-factor in such an orbit.

Lemma 2.1 Let F be a 1-factor in a 1-factor orbit of length m. Then F contains
[m/2] edges from disjoint edge orbits.

Proof. Let F,a(F),...,a™ 1(F) be the 1-factor orbit, and let {a;1,as,...ax} = {s:
E,NF #0}. Then F C UL, E,,. Noticing that a’(E,,) = E,, for any j, we have

FUUe(®)--- U™ '(F) C | E...

i=1

If there exists {u,v) € FE,, for some 1 < ¢ < h, such that (u,v) ¢
FUa(F)U---Ua™ 1 (F), then (u,v),(u+ L,v+1),...,(u+n—-1l,v+n—-1) ¢ F.
This is a contradiction. Therefore, we have

h

FUUaoF)Y---UYe™ ' (F)= | E.

=1

By counting the number of edges in both sides, we know that if m is even, then
h =m/2, and if m is odd, then h = 2t and one of E,, is E,/;. B

Corollary 2.2 A I-factor orbit of odd length must contain E,;;. In particular, a
1-factor orbit of length 1 is E,,. '
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The following lemma was proved by Hartman and Rosa for complete graphs. It
can be extended to circulants.

Lemma 2.3 A I-factor orbit of even length contains an even number of even edge
orbits.

Proof. Let F be a 1-factor in a 1-factor orbit of even length 2m. Then F is stabilized
by < &®™ > and contains m edges from distinct edge orbits, say, (z1, r14a1), (22, T2+
az),... (Tm,Zm + am). Let Fr, = {(z1(mod 2m), (1 + a;)(mod 2m), ..., (z.(mod
2m), (zm + am)(mod 2m))}. Then Fy, is a 1-factor of Kyn. Let | be the number of
even edges in F,,. Then m — [ is the number of odd edges in Fi,, and there are m —{
even vertices covered by these m —[ odd edges. Since the total number of even vertices
in K, is m, then there are m — (m — [) = [ even vertices covered by even edges of
F,.. But even edges cover two vertices of the same parity. Therefore, the number { of
even edges per 1-factor must be even. il

From Lemma 2.3, the following two corollaries follow easily.

Corollary 2.4 A [-factor orbit of length 2 must be a partition of a non-diagonal odd
edge orbit.

Coroliary 2.5 Let C(n,S) have a cyclic I-factorization. If nf2 ¢ S, then St con-
tains an even number of even elements.

Proof. Sincen/2 ¢ S, then each 1-factor orbit has even cardinality by Corollary 2.2,
Also, each 1-factor orbit contains an even number of even edge orbits by Lemma 2.3.
Hence St contains an even number of even elements. B

Lemma 2.6 Let C(n,S) have a I-factor orbit of length m, and let F be a I-factor
in the orbit. Then n = 0(mod m) and a; # O0(mod m) if E,;N\F # 0 and a; # n/2.

Proof. We have already seen that n = 0(mod m). If E,NF # @, without loss
of generality, say (0,a;) € F, then a™(0,a;) € F. Now if ¢; = 0(mod m), then
a%(0,a;) = (a;,2a;) € F, implying that F' contains two adjacent edges (0,a;) and
(ai,2a;). This is a contradiction. a

We summarize as follows.



Chapter 2. The Cyclic 1-factorization of Circulants 9

Lemma 2.7 For a cyclic I-factorization F of C(n,S), let mi,m,,...,m, be the
lengths of 1-factor orbits. Then

1. Z::::lmizlsll
2. n=0(mod m;) for1 <:<r, and

3. if |S| is odd, then only one of the m;’s is odd; if |S| is even, then all m;’s are

even.

Definition 2.2 Let m;,mo,...,m, satisfy the above conditions and m; > my, >
..., > m,. We call (m;,ms,...,m,) an orbit vector.

If we denote the 1-factor orbits by Fi,...,F,,and let S;* = {a: FNE, #0,F €
F:}, then Uper, F = U,es,+ Ea, and F; is a cyclic 1-factorization of C'(n,S;) with a
single 1-factor orbit. The problem now becomes:

1. Partition S* into 5;%,..., S,*, such that C(n, S;), (: =1,2,...,7), has a cyclic
1-factorization with a single 1-factor orbit.

2. Study the cyclic 1-factorization of circulants with a single 1-factor orbit.

In the next three sections, we will study the existence of cyclic 1-factorizations
of circulants with a single 1-factor orbit. In fact, if one can give a characterization
of cyclic 1-factorizations with a single 1-factor orbit, then one can characterize cyclic
1-factorizations with any orbit vector.

2.3 Equivalent conditions for existence of cyclic
1-factorizations with a single 1-factor orbit

Lemma 2.8 Ifn = 0(mod m), a # 0(mod m) and a < n/2, then the edges of E, can
be partitioned into n/m-matchings which are a-invariant.

Proof. Let F = {(z,i+a),(t+m,i+m+a),...,(i+(n/m—1)m,i+(n/m—1)m+a)}
for any i € Z,. Then F,a(F),...,a™ }(F) is a desired partition. B
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Consider the following m x n/m array, denoted by A(:,a,m).

(i,i+a) (i+m.1+m+a) 0 (it (n/m=1)m,i+(n/m—1)m+a)
(i+1,i+1+a) (i+1+m,i+14+m+a) cco (iH14(n/m-1)m,i+14(n/m-1)m+a)
x (i+m—-1,i+m-1+a) (i4+2m—1i42m—-14a) -+ (i=1,i-14a)

If we denote the first row by F and the first column by K, then we have

and
A(i,a,m) = (K,a™(K), o™ (K),...,oa"m" (),
For @ = n/2,n = 0(mod m), and m odd, then n = 0(mod 2m), and we define in
a similar way an m x ;= array A(¢,n/2,m) for any ¢ € Z,.

Let n be an even integer. We call a partition of Z, into 2-subsets a 2-partition.

Definition 2.3 Let St = {a1,a,,...,ax}, where a; < n/2 for : = 1,2,...,k. Let
m = 2k — 1 or 2k according to n/2 € S* or n/2 ¢ S*. If we can find 7,,...,2 so
that the elements in the first rows of A(zy,a1,m),..., A(%, akx,m) form a 2-partition
of Z,, then we put A(z1,a;,m), ..., A(i, ax, m) together to obtain an m x n/2 array

A = (A(41, a1,m), A(23,a2,m), . .., A(ik, ag, m)).
We call A a I-factorization arrayof C(n,S).

The concept of starter plays an important roll in the study of 1-factorizations of
K,. We generalize it as follows.

Definition 2.4 Let S* = {a;,a,...,ax} or St = {ay,4as,...,a;,1n/2}, where ¢; <
n/2for i <i:<k. Let m = 2k+1 or 2k according ton/2 € S* or n/2 ¢ S*. Suppose
n = 0(mod m) and a; Z 0(mod m) for 1 <: < k.

An (ay,as,...,ax;m)-starter of Z, is a pair (U, P), where U is a 2k-subset of Z,
such that for any z,y € U,z — y # 0(mod m); and P is a 2-partition of U such that
{+(z —y): {z,y} € P} ={%a1,...,Lar}{mod n).
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Definition 2.5 Let S = {£b;,+b,,..., b} C Z, — {0} be a multiset. We define a
multigraph C*(n, S) as follows: the vertex set is Z,; for any z,y € Z,, the number
of edges between x and y equals the multiplicity of y — z in S. We call C*(n,S5) a
circulant multigraph.

Definition 2.6 Let C(n, S)beacirculant. Let S* = {a,,...,ax} or {a1,..., ax,n/2}
and m = 2k + 1 or 2k according to n/2 in St or not. Suppose n = 0(mod m) and
a; = bi(mod m) for 1 < i < k, where 0 < b; < m. We call C*(m, {£b,,...,xb}) the
modulo m multigraph of C(n, S).

Note that we can assume that b; < kfor 1 <:< k.

Definition 2.7 Let G be a graph, and {E,,..., Ex} be a partition of the edge set
E(G). Let F be a subset of E(G). F is said to be orthogonal to {E,..., Ec}, if
|[FNE;|=1,for:=1,2,...,k.

If X = {z1,72,...,%} is a collection of [-subsets of integers and m is an integer,
we denote the set {z;(mod m), z2(mod m), ..., z/(mod m)} by X(mod m).

Now we can state our theorem.

Theorem 2.9 The following statements are equivalent.
(1). C(n,S) has a cyclic 1-factorization with a single 1-factor orbit of length m.
(2). There ezists an m X nf2 I-factorization array of C(n,S).
"(3). There exists an (ay,. . .,ax; m)-starter of Z,,.

(4). (i) If m = 2k, there is a 2-partition of Zy, such that {£(zx —y) : {z,y} €
P} ={%a,...,xax} (mod 2k).

(it) If m = 2k + 1, there is a 2-partition of Zyryy — {2} for some i, such that
{£(z —y): {z.y} € P} = {+£a,...., tai}(mod 2k + 1).

(5). The system of equations
z; — y;i = a;(mod m) i=1,2,...,|m/2], (2.2)
has a solution covering 2|{m/2| elements of Z,.

(6). The modulo m multigraph C*(m, {£b,,...,1b}) has a k-matching M which
is orthogonal to {E,,,...,Ey,}, where k = |m/2].
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Proof. (1)=(2) Let F = {F1, ..., Fn} be a cyclic 1-factorization with a single 1-factor
orbit of length m. Without loss of generality, assume F; = a'~! (Fy)for: =2,3,...,m.
By Lemma 2.1, we have FiNFE,, #0fori=1,2,...,k.

Let e = (21,01 + a1),e2 = (i2,22 + @2),...,ex = (igik + ax) € F. Then
a"™({e1,...,ex}) C Fy,for h=0,1,...,n/m — 1. In fact, we have

n/m—1

U "™ ({eq,...,ex}) = Fi,

h=0

if m = 2k. Therefore, by counting both side, we have

ah’"({el,...,ek})ﬂa”m({el,...,ek}) = @,
ifh#p,0<hp<n/m-—1. Thus
Fy = {e1,a™(ey),. (“/m—l)’"(el),...,ek,am(ek),...,a"/’""l(ck)},

and we have
A = (A(41,a1,m), ..., A(ik, ar,m))
is a 1-factorization array of C(n,S).
If m =2k + 1, we have
A’I = {61, am(el), ey a(n/m—l)m(el)’ veeq €k, am(el), ey a(n/m—l)m(ek)}

isa (kX _)kﬁﬁ -matching. The remaining ;> edges of F; are diagonal edges, and

say that (Zx41,2k41 + 5) is one of them. Then
A = (A(%,a1,m),..., A(tk, ak,m), A(tks1,1/2,m))
is a 1-factorization array of C(n, S).

(2)=>(3) Let A = (A(i1,a1,m), ..., A(tk,ak,m)) or A= (A(t1,a1,m),...,
A(tg,ag,m), A(ik41,n/2,m)) be a 1-factorization array of C(n,S).

Let U = {i1,%1 + a1,.--,t, 1 + ax}. Then for any z,y € U, without loss of
gen era,ht,v, we assume that ¢ = 2,. If y = 4; + ay, then y — z = q; £ 0(mod m).
If y = i; for some 1 < j < k, we also have y — z = i; — 7, # 0(mod m), for
othermse we will have i; = i, + mh for some h. This means 7; = "™ (i), which
is a contradiction, since A is a 1-factorization array. If y = 1; + a; for some j, then
y— = i;-—4,+a;. As above, we also havei;+ a; = o"™(i;) for some integer h, which
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is a contradiction. Hence we have proved that for any z,y € U, y — 2 # 0(mod m).
Let P = {{i1,i1 +a1},-.., {tk, ik + ax}}. Then (U, P)is an (ay, az,...,ax; m)-starter.

(3)=(4) Let (U, P) be an (ay,az,...,ar; m)-starter. Then U(mod m) = Zy if
m = 2k; and U(mod m) = Zyt41 — {i} for some 0 < ¢ < 2k if m = 2k + 1. In any
case, P(mod m) is a desired 2-partition.

(4)=>(5) Let P be a 2-partition of Z; or Zzky1 — {¢} in (4). Thei we can assume
+(z; — yi) = +ai(mod m). By exchanging z; and y; if neccesary, we can assume
z; —y; = ai(mod m). Clearly, this solution {(zi,y:i) : 1 = 1,2,...,|m/2]} covers
2|m/2| elements of Z,.

(5)=(6) Let M = {(zi,y:) : ¢t = 1,2,...,|m/2]} be a solution of {2.2) satisfying
(5). Then z; — y; = a;(mod m) = b;, where 1 < b; < m. Hence, M E;,| = 1. But
M| = k, and therefore, M is orthogonal to {E,,, ..., E;}.

(6)=>(1) Let M be a k-matching in (6) and M N Ey, = {(z:,v:)}. Without loss of
generality, we assume y; — z; = b; in Z,, for i = 1,2,..., k.

Let a; = mm; + b;, and let z! = z;,y) = mm, + y;. Then y! — 2! = a;. There are
two cases.

Case 1. m = 2k.
Let M = {(z},¥i):2=1,2,...k}, and F =< a™ > (M).
Claim 1. F is a 1-factor of C(n,S).

By the definition of F, F' = {(z! + mh,y! + mh) : h=0,1,...,n/m —1 and ¢ =
1,2,...,k}. fy; + mh =y} + mhk', then y; + mm; + mh = y; + mm; + mh’, which

g -y

implies that y; — y; = 0(mod m). Since 0 < y;,y; < m — 1, we must have ¢ = j and
hence h = A’. :

By a similar argument, we can show that
z; + mh # y; + mk/,

y; + mh # :1:; + mh/,

and
z; + mh # =’ + mh/,

~if (2, k) # (3, /). Therefore, F' is a matching. By counting the edges in F', we know
‘that F is a 1-factor.
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Claim 2. F,a(F),...,a™ !(F) is a cyclic 1-factorization.

To prove Claim 2, we need only show that F,a(F),...,a™ !(F)is a 1-factorization.
This is equivalent to showing that

FUe(F)J---Ja™}(F) = E(C(n, S)).

Let F; = {(z! + mh,y' + mh) : h = 0,1,...,n/m — 1}. Then F = UL, F.
Note that F;Ua(F;)U---Ua™ ' (F;) contains all the edges generated by a;, that is,
E, = F.Ua(F)U---Ua™ '(F;). Therefore,

FUaF)---Ue™(F) =

UEUaF)U--- U™ (F) =

1=1

k
U B., = E(C(n,9))

Case 2. m =2k + 1.

Let U%, {zj,y;} = Zm — {1} for some i. Let M be as in Case 1, and let
F=< Otm>(M)U{(i+mh,i+n/2+mh):h=0,1,...,§2—-—1}.
m

Then F,a(F),...,a™ (F) is a cyclic 1-factorization of C(n,5). The proof is similar
to Case 1. B

Remark 1. In statement (4), let a; = bi(mod m). Then we can assume that
b; < m/2, otherwise, we choose b; = —a;(mod m). Also if we use ordered 2-partition
instead of 2-partition, then we can drop the ‘+’ sign. Hence we obtain that statement
(4) is equivalent to the following.

There exists an ordered 2-partition P = {(zi,y:) : ¢ = 1,2,...,k} of Zy (or
Zm — {3} for some i, if m is 0dd) such that {y;—z;:i=1,2,...,k} = {b1, bs,..., b}

This observation will be very useful for finding cyclic 1-factorization of a circulant
of small degree.

2. Note that C*(m,{%bi, £bs,...,2bi}) is a multigraph in general, and if we
delete the multiple edges, then we obtain a circulant C(m,{+xd, 2d,,...,+d}),
where {dy,d,,...,d:} = {b1,bs,...,bc}. Let the multiplicity of d; in {b1,b2,...,b:}
be r;. Then we have an equivalent form of Theorem 2.9(6).
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There exists an |m/2|-matching of Km such that |M (N Ey| = 7.
This observation allows us to work with the complete graph K,,.

3. It is interesting to note that the existence of a cyclic 1-factorizatic : with a
single 1-factor orbit m of the circulant C(n, {£a,,...,%+ai}) does not depend on n
very much. It depends only on the congruence class of n modulo m, that is, regardless
how large n is, we only need n = 0(mod m).

4. Alspach has posed the following question:

If Fy,...,F, is any 2-factorization of a 2r-regular simple graph G, does there
always erist an orthogonal r-matching ?

Statement (6) of Theorem 2.9 is similar to this question. M. Kouider and D.
Sotteau [34] have given a positive answer to this question when the order of G is at

least 3.23r.

2.4 Necessary conditions

In this section, we apply Theorem 2.9 to obtain some necessary conditions for the
existence of a cyclic 1-factorization of circulants.

Let C*(m, {£by, +bs,...,£bc}) be the modulo m multigraph of C(n,S). Recall
that {by, ba, ..., b} is a multiset in general, and that {5, bs,...,bc} = {d1,d2,...,d:}.
We can assume that 0 < dy < dy < --- < d; <k, and that r; is the multiplicity of d;
in {b,...,b}, for 1 <7 <t. Then we have

T1+T2+"'+T‘t:k.
Let ¢(j1, . - -, jn) be the number of connected components of C(m, {£d;,,...,+d;, H-

Lemma 2.10 The number of connected components of C(m,{xd;,,...,xd;}) is
given by
C(jlz cen 1jh) = ng(ms djl IR df,h)"

Proof. Let d = ged(m.d;,,....d;,). Then we can partition Z, into a union of left
cosets of < d > as

Zm=<d>J1+<d>)J --U{(d- 1)+ < d>).
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Wehave < d >= {d,2d,...,(m/d—1)d} = Z, ;4. If we let d;, = d—ét, then the subgraph
of C(m,{£dj,,...,%d;}) induced on < d > is isomorphic to C(m/d,{%d’ ,...,
+d’ }) which is a connected graph.

Furthermore, there are no edges between i1+ < d > and j+ < d >, for i # j. For
if (: + hd, 7 +ld) is an edge, then 1 -- 3 + (h — l)d € S which implies : — j = 0(mod d).
But 0 < 7,7 < d, and therefore, : = j. This is a contradiction.

We have proved that C(m,{%d;,...,+d;,}) is a disjoint union of d connected
subgraphs. Thus ¢(jy,..., Ja)=d=gcd(m,d; ,...,d; ). B

For convenience, we denote {dy,d,...,d:} — {d;,,....di } by {d;,..., d;, }° and
let 2! denote all nonempty subsets of {1,2,...,t}.
Theorem 2.11 (Necessary conditions)

1. If X = C(n,{a1,---.ak,n/2,n — ay,...,n — ai}) has a cyclic I-factorization
with a single 1-factor orbit of length 2k + 1, then

(1) n =0(mod 2k + 1),
(2) a; Z0(mod 2k + 1), for1=1,2,.. .k,

(3) gcd(2k + 1,ay,...,a;) =1, and

ged(2k+1,{d,, ,....di_}*)-1 . ;
(4)r,-1—i—r,-2+--»+r,-12g ¢ {2’ ) , for all {1,,...,1;} € 2"
2. If X = C(n,{a1,-..,ax,m — ay,...,1n — ax}), where a; < nf2, has a cyclic

1-factorization with a single 1-factor orbit of length 2k, then
(1) n = 0(mod 2k),
(2) a; £ 0(mod 2k), for1=1,2,... k,

)
(3) St contains en even number of even symbols,

{4) 2k is even, and
\VE] ged{2k,ay....,25} ¥

(5) for any {i ileot

{3} jor any yiy, 1335 €27,

. 2k .
if 9ed(2k{d;; . ds }°) is odd.




Chapter 2. The Cyclic I-factorization of Circulants 17

Proof. The proof of 1. (1) and (2) were proved in Lemma 2.6.

(3) By Theorem 2.9, the modulo 2k + 1 multigraph C*(2k+1, {£b,,...,£bc}) has
a k-matching M which is orthogonal to {E,,..., F; }. Then we must have that
C*(2k + 1,{£by,...,£b:}) is connected, for otherwise, each connected component of
C*(2k+1, {£b,,...,£b}) is odd, and we cannot have a k-matching. By Lemma 2.10,
we have ged(2k + 1,5y,...,b.) = 1, this is equivalent to ged(2k + 1,ay,...,a;) = 1.

(4) As used in (3}, C*(2k + 1, {£b,,...,+b}) has a k-matching M which is or-
thogonal to {E,,,....Es }. This implies that M has r; edges in Ey, of C(2k +
1,{£d,,....+d;}) for j = 1,2,...,1. Suppose that we have chosen r;, edges from
Ey, , ri, edges from Ey, , ..., r; edges from E¢J . These edges are just between the
connected components of C(2k + 1,{+d,,...,xd}) — (Eg U--- UEs) = C(2k +
1,{xd,,-..,xd; }°). But there are ged(2k+1,{d;,,...,d; }) connected components,
and each component has odd order, therefore, these edges M ((£4, U---U Ed_.J) must
match those components, except one. Hence,

d(2k + 1,{d;,,....d; }) =1
Tf,+r:,+~-+r;,ZgC( * {12 LA .

The proof of 2. (1) and {2) were proved in Lemma 2.6, and (3) was proved in
Corollary 2.5.

-

(4) By Theorem 2.9 again, C~(2k,{£b;,...,%b;}) has a perfect matching M
which is orthogonal te {E,,,...,Es}. By Lemma 2.10, C~(2k,{£b,,...,1b})

has ged(2k,b,,bs,...,b) = ged(2k,ay,a,, ..., a;) isomorphic connected components.

Hence, each component has order 2k and this number must be even since
ged(2k.24,92,...,0%)!

C=(2k, {xby,...,xb}) has a perfect matching.

(5) The proof is similar to the proof of 1(4). The differences are that the order
of C(2k,{xd,,...,2d:}) is 2k, so the k-matching M is a perfect matching, and the
edges M ({(E4, U---U Eq, ) must match all components of C(2k, {xd;,, ..., +d; }%).
Each components has order preTeT df:‘ T and if this number is odd, then we will

have I . ses
QCd(Qk! 1diys- - -5 di; i)

2

ro oo >

This finishes the proof. B
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2.5 Some classes of circulants which have a cyclic
1-factorization

This section deals with another application of Theorem 2.9. By Remark 2 following
Theorem 2.9, we need only find a desired k-matching of K,, in the following proofs.

Let X = C(n, S) be a circulant, and let C*(m, {£b,,...,+b}) be the modulo m
multigraph.

Theorem 2.12 [f all b;’s are distinct and m is odd, then X has a cyclic I-factorization
with a single 1-factor orbit.

Proof. Since all b;’s are distinct, then {b;,...,b} = {1,2,...,k}. Now (z,,3,) =
(kyk+1),(z2.y2) = (k= 1,k +2),...,(zx,yx) = (1,2k), is a desired k-matching. B

Theorem 2.13 Ifb; = b, = --- = by = ¢ for some ¢ # 0, then

(1) X = C(n,{xay,...,xar,n/2}) has a cyclic 1- factorization with a single I-
factor orbit if and only if ged(c,2k +1) = 1; and

(2) X = C(n, {ial, .»xai}) has a cyclic 1-factorization with a single I-factor

orbit if and only if —=— is even.

ycd(2k <)

Proof. In both cases, the necessity follows from Theorem 2.11. To prove the suffi-
ciency, first we let ged(2k+1,¢) = 1. Then E. = 0,¢,2¢,3¢,...,(2k-2)c,(2k—1)c, 2kc
is a Hamilton cycle in C*(2k + 1, {£b),...,£bc}). It is now easy to check that
(z1,71) = (0,¢),(z2,92) = (2¢,3¢),...,(zk,yx) = ((2k — 2)¢, (2k — 1)c) is a desired
k-matching.

If m = h is even, then each Ey, = E. in C*(2k, {£b,,...,+b}) is a union of

ged(2k, ¢) cycles of even length h. Hence E. gives a k-matching {(:cl,yl), (z2,92),- - -,
{zx,yx)}, which satisfies Remark 2 following Theorem 2.9. &l

Corollary 2.14 Let X = C(n,{+ay,...,+as}) be a 2k-regular circulant. Let 0 <
c < m, and a; = ¢(mod m), for i = 1,2,...,k. Let c = 2'p and k = 2*q, where
I,h > 0 and p,q are odd integers. Then X has a cyclic 1-factorization with a single
I-factor orbit if and only if I < h.
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2k _ 2h+1q 2h+1—lq .
Proof If ]l < h, then TA2ES = ATedy) = sed(BElgpy 1S even. If Il > h, then

is odd. The corollary follows from Theorem 2.13. &

g d(2k c)
Theorem 2.15 Let bl = bg == bh =C, bh+1 == bk =d.
(1) If ged(2k + 1,d) = 1, then X = C(n,{£ay,...,+ax,n/2}) has a cyclic I-

factorization with a single 1-factor orbit.

(2) If both c and h are even, and ged(2k,d) =1, then X = C(n, {£a1,...,*ac})
has a cyclic 1-factorization with a single I-factor orbit. /

Proof. (1) If gdc(2k + 1,d) = 1, then Ey lies along a Hamilton cycle in C*(2k +
1, {ib;, +b,, ..., xb}). Without loss of generality, we can assume that d = 1.

Case 1. Suppose that h < c¢. We take an h-matching M = {(0,¢),(1,c +
1)y...,(h=1,h+c—1)} from E.. After deleting the vertices of M, the subgraph
remaining in E) is two disjoint paths: P, = h,h+1,...,c—1,and P, =h+¢,h +
c+1,...,2k. But |P| = c— h and |P;] = 2k — h — ¢ + 1, where |P| represents the
number of vertices in the path P. If ¢ — h is odd, then |P;] is even; if ¢ — h is even,
then |P,| is even. In any case, one of |P;| and |P] is even. Hence, we can obtain a
(k — h)-matching from P, |J P;. Together with M, we obtain a desired k-matching.

Case 2. Suppose that h > c. Let h = pc+r where p > 1 and 0 < r < ¢. One
may choose p c-matchings My, Ms,..., M, and an r-matching M, as follows:

M, ={(0,¢),(1,c+1),...,(c—1,2¢ - 1)},

M; = {(2¢,3¢),(2¢ + 1,3¢ + 1),...,(3c — 1,4¢c - 1)},

M, = {((2p - 2)c,(2p = 2)c +¢),.-.,((2p — 2)c + ¢ — 1,2pc — 1)}, and
My = { 2pc,2pc+c),...,(2pc+r— L,(2p+ 1)c+r—1)}.
After deleting the ces in M1U---UM,41, the subgraph remaining in F; is two

disjoint paths
' Po=2pc+r,2pc+r+1,...,2pc+c—1

and
P=02p+1)c+r,2p+1l)c+7+1,...,2k
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Hence |P,| = c—r and |P| = 2(k—pc) —c—r+1. A simple argument shows that | P;|
and |P;| have different parity. Therefore, one may obtain a (k — h)-matching M,y,
from P;|J P>. Now Uf’:f M; is a required k-matching of K.

(2). The proof is similar to the proof in (1) except that both |£;| and | P,| are even
in this case. Then we can obtain a (k — h)-matching from P, {J P, and hence obtain
a desired k-matching of K,,. B

Theorem 2.16 Let (by,b2,...,b) = (a,a,...,a,1,3), where a,z,j < k.

(1) Ifgcd(a,2k+1) = 1, then C(n, {+£ay,. .., Tak, n/2}) has a cyclic 1-factorization
with a single 1-factor orbit.

(2) If ged(a,2k) = 1 and i,j are even, then C(n,{+£a,...,xar}) has a cyclic
1-factorization with a single 1-factor orbit.

Proof. (1) Without loss of generality, we assume that a = 1.
Case 1. 7 and j have the same parity.

Assuming that i > j, then ¢ > j + 1. We choose edges (0,7) and (1,7 +1). The
subgraph remaining in E; after deleting {0,1,7,j + 1} is the disjoint union of three
paths: P, =2,3,...,5; P =j+2,5+3,...,i—1;and Ps =14+ 1,:+2,...,2k. Then
|P,]=j—1,|P| =i—j—2, and | P3| = 2k — 1. If both i and j are even, then only
|P,| is odd; if both ¢ and j are odd, then only | P3| is odd. In any case, we can obtain
a (k — 2)-matching from P, U P, U Ps. This matching together with edges (0,:) and
(1,7 + 1) gives a desired k-matching.

Case 2. ¢ is even and j is odd.
Subcase 1. ¢t < j.

Choosing edges (0,) and (1, 5+ 1), then the remaining subgraph of £, - {0,1,4,7}
is a disjoint union of three paths: P, = 2,3,...,(i = 1); o = (1 + 1),(¢ + 2),...,J;
and Py =(j+2),(j +3),---,2k. Then |P,| =i — 2 is even, |P,| = j — i is odd, and

|Ps| = 2k — j — 1 is even. Thus we can obtain a (k — 2)-matching from P, U P, U Ps
which, together with (0,:) and (1,7 + 1), gives a k-matching of K,,.

Subcase 2. 7 > ;.

If i > j + 1, choosing edges (0,4) and (1,5 + 1), the remaining subgraph of E, ~
{0,1,7,7 + 1} is a disjoint union of three paths: P, = 2,3,...,5; P = ( +2),( +
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3),...,(i—1);and Py = (i+1),(¢+2),...,2k. Then |P| = j—1liseven, |P| =i—j5-2
is odd, and | P3| = 2k — 7 is even. Hence, from P, U P, U P3, we can obtain a (k — 2)-
matching which, together with (0,7) and (1,7 + 1), gives a desired k-matching of

K.

If i = j + 1, choosing edges (0,7) and (3,7 + 3), then the remaining subgraph of
E1—{0,3,7,7+3} is a union of four disjoint paths: P, =1,2; P, = 4,5,...,i—1; Py =
{i+1};P =G +4),( +5),...,2k. And |P)] = 2, is even, |P,| = ¢ — 4 is even, and
P, = 2k — j — 3 is even. Thus we can obtain a (k — 2)-matching from P,U P, U P,
which, together with (0,7) and (3,5 + 3), gives a desired k-matching of K.

~ (2) Again, we assume that a = 1. We choose edges (0,2) and (z — 1,z — 1 + j).
Then the subgraph E; — {0,7 —1,4,7+ j — 1} is a disjoint union of three paths: P, =
1,2,...,i=2; P, = (i+1),(i+2),...,(i+j—2);and Ps = (i+j), (¢ +j+1),...,(2k-1).
But each of the paths has odd length, and therefore, we can obtain a (k —2)-matching
from P, U P, U Ps which, together with (0,¢) and (: — 1,2 — 1 + j), gives a desired k-
matching of K,,. We have finished the proof.

2.6 The classification of C(2p, S), for prime p

The case with n = 2p, where p is a prime, can be solved completely. If n = 4, all the
possible circulants of C(4, S) are Ky, Cy4, and 2K,. It is easy to see that C(4,5) has
a cyclic 1-factorization. So we assume that p > 2.

Theorem 2.17 Let n = 2p, where p > 2 is a prime. Then C(2p,S) has a cyclic
1-factorization if and only if one of the following conditions holds:

(1) S* does not contain an even symbol; or

(2) if St contains an even symbol, then it has at most P.%l even symbols, at least
el symbols, and p € S*.

Proof. Let C(2p, S) have a cyclic 1-factorization. Suppose that S* contains an even
- symbol. Note that the only possible 1-factor orbit sizes are 2 and p. Thus, C(2p, S)
has a 1-factor orbit of length p since it contains an even symbol. But p is odd, so that
i g,f- = p must belong to S*, by Corollary 2.2.

Since we have only one 1-factor orbit of length p, each edge with even symbol must
be in this 1-factor orbit and this 1-factor orbit contains at most 25+ non-diagonal edge
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orbits by Lemma 2.1. Therefore, the number of even symbols in S§* is at most %‘

Furthermore, if we have a 1-factor orbit of length p, then the degree of C(2p, S) is
at least p which implies that |$*| > 2t1. We have proved that either (1) or (2) holds
if C(2p, S) has a cyclic 1-factorization.

Conversely, if S* does not contain an even symbol, it is clear that C(2p, S) has
a cyclic 1-factorization such that each 1-factor orbit has length 2 or 1. If the even
symbols in S* are a,,a,...,a;, then | < ”—'2'—1 But |St| > P—';—l, and p € S*, so that
we can find aj4, ... »@p=1,p € S*, where there are no additional a;’s when | = B%=.

Let a; = b;(mod p), for : = 1,2,..., 2—'241 Then bl,bg,...,bg_;_x are all distinct (in
fact, a; = b;). Hence C(2p, {:i:al,:i:ag,...,:tag_;_x,p}) has a cyclic 1 - factorization
with a single 1-factor orbit of length p by Theorem 2.12. Let $; = S* —{ay,..., ap_;_u}.

Then each element in S; is odd, implying that C(2p, +5)) has a cyclic 1-factorization
with all 1-factor orbits of length 2.

Putting all these 1-factors together, we obtain a cyclic 1-factorization of C'(2p, S).
N

2.7 Cyclic 1-factorizations of circulants with de-
gree at most 11

In this section, by considering all possible orbit vectors, we can classify all cyclic 1-
factorizable circulants of degree at most 11. For large degree circulants, the method
works, but it is too complicated.

Like the proofs in section 2.5, we need only find an ordered partition of Zy; or
Zak+1 — {i} (for some ) for each (b, bs,. .., bi), then the proof follows from Remark 1
following Theorem 2.9.

Theorem 2.18 1. A l-regular circulant has a cyclic I-factorization.

2. A 2-regular circulant has a cyclic 1-factorization if and only :f the only symbol

in ST is odd.

3. A 3-regular circulant C(n, {£a1,n/2}) has a cyclic 1-factorization if and only
of one of the following conditions holds:
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(1) ay is odd; or
(2) a is even and a, # 0(mod 3), n = 0(mod 3).

4. A 4-regular circulant C(n,{xa,, Las}) has a cyclic I-factorization if and only
if one of the following condztwns holds:

(1) both a, and a, are odd; or
(2) both ay and a; are even, ay,a; # 0(mod 4), and n = 0(mod 4).

5. A 5-reqular circulant C(n,{%xa;,+az,n/2}) has a cyclic 1-factorization if and
only if one of the following condztzons holds:

(1) both a; and a, are odd;

(2) ¢f, say, a, is even, and a, is odd, then a; # 0(mod 3), and n = 0(mod 3);
(3) a, and ay are even, a),a; Z 0(mod 4), and n = 0(mod 4); or

(4) a1,a; Z0(mod 5), and n = 0(mod 5).

6. A 6-regular circulant C(n,{%a1, taz, tas}) has a cyclic 1-factorization if and
only if one of the following condztzons holds:

(1) a1,a9 and a3 are odd;

Hl

(2) only one of the a;’s is odd, say a3, in which case ay,a; # 0(mod 4), n
0({mod 4); or

(3) only one of the a;’s is odd, say a3, in which case ay,az,a5 #Z 0(mod 6), n =

0(mod 6).

. A T-regular circulant C(n, {%a,, taz, ta3,n/2}) has a cyclic -factorization if
and only if one of the followzng condztzons holds:

(1) a1,az and a3 are odd;

(2) only one of the a;’s is even, say a,, in which case a; Z 0(mod 3) and n =

0(mod 3);

(3) only one of the a;’s is odd, say a3, in which case ay,a, # 0(mod 5), and
n=0(mod5);

(4) only one of the a;’s is odd, say a3, in which case ay,az,# 0(mod 4), and
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n = 0(mod 4);
(5) only one of the a;’s is odd, ay,a3,a3 # 0(mod 6), and n = 0(mod 6); or
(6) a; Z0(mod 7), fori=1,2,3, and n = 0(mod 7).

Proof. 1. This is easy to see.

2. There is a 1-factor orbit of length 2 if and only if it is a partition of an odd
edge orbit. Hence, the only symbol in S% is odd.

3. If @, is not odd, then the cyclic 1-factorization has a 1-factor orbit of length
at least 3. But C(n, {£a1,n/2}) is 3-regular, so that the cyclic 1-factorization must
have a single 1-factor orbit of length 3. Hence a; # 0(mod 3), and » = 0 (mod 3) by
Theorem 2.11.

Conversely, if (1) holds, we have a cyclic 1-factorization with orbit vector (2,1).
If (2) holds, then a; =1 or 2(mod 3). We can assume that a; = 1(mod 3) and then

P {(0,1)} is the required ordered pair partition.

H

4. The possible lengths of 1-factor orbits are 2 and 4. If a; and a; have different
parity, then the 1-factorization has a single 1-factor orbit of length 4. By Theorem
2.11, 5% contains an even number of even elements. This is a contradiction. Therefore,
a; and a,; have same parity. If both a; and a; are even, then the cyclic 1-factorization
must have a single 1-factor orbit of length 4. Hence a;,a; # 0(mod 4), and n = 0(mod
4) by Theorem 2.11 again.

Conversely, if (1) holds, then C(n, {£a),ta,}) has a cyclic 1-factorization with
orbit vector (2,2) or orbit vector (4). If (2) holds, then we have a; = a; = 2(mod 4),
and Eﬁf)' = 2. By Theorem 2.13, C(n, {£a), *a2}) has a cyclic 1-factorization with
orbit vector (4).

5. Let C(n,{+£a;,+az,n/2}) have a cyclic 1-factorization. The possible 1-factor
orbit vectors are (2,2,1),(3,2),(4,1) and (5).

If the vector is (2,2,1), we have that both a; and a; are odd. If the vector is (3, 2),
and at least one of ay,a; is even, say a;, then a; must be odd, and a; # 0(mod 3),
n = 0(mod 3).

If the vector is (4,1), we have that both a; and a, are odd or even. In any case,
we will have a;,a; # 0(mod 4), and n = 0(mod 4).

If the vector is (5), then we will have a1, a; # 0(mod 5) and n = 0(mod 3).
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Conversely, if C(n, {£a1, £az,n/2}) satisfies (1), (2) or (3), then, by the above
proof, we know that C(n,{*a;,xa2,n/2}) has a cyclic 1-factorization with orbit
vector (2,2,1), (3,2) or (4,1), respectively. If (4) holds, let a; = b;(mod 5). We can
assume that b; < 2, for 2 = 1,2, then (4,,6;) = (1,1) or (2,2) or (1,2). All cases are
covered by Theorem 2.12 and Theorem 2.13.

6. The only possible orbit vectors are (2,2,2),(4,2) and (6).

If the vector is (2,2,2), then (1) holds. If the vector is (4,2), we have (1) or (2)
holds. If the vector is (6), that is, there is a single 1-factor orbit of length 6, then (3)

holds by Theorem 2.11.

On the other hand, if (1) or (2) holds, it is easy to see that C(n, {xa,, xa,, +a3})
has a cyclic 1-factorization. Let (3) hold, and let ¢; = b;(mod 6). As before, we can
assume that by,b,,b3 < 3, then (b, b,,83) = (2,2,1) or (2,2,3) since a;,a; are even
and a3 is odd. The first case was covered by Theorem 2.15. For the second case,
{(5,1),(2,4),(0,3)} is a desired ordered pair partition.

7. In fact, all cases except (6) are essentially proved above. The case (6) corre-
sponds to the orbit vector (6), and the necessity follows from Theorem 2.11.

On the other hand, if (6) holds, let a¢; = bi(mod 7) for ¢ = 1,2,3. Assuming
{b1,b,b3} C {1,2,3}, all possible cases for (b;, b, b3) are: (1,1,1),(2,2,2),(3,3,3),
(1,2,3),(1,1,2),(1,1,3),(2,2,3),(3,3,1) and (3,3,2). All the cases are covered by
Theorems 2.12, 2.13 and 2.15. B

Theorem 2.19 An 8-regular circulant C(n,{%a;,*as, a3, tas}) has a cyclic 1-
factorization with a single 1-factor orbit if and only if

1. n =0(mod 8) and a; # 0(mod 8) for: =1,2,3,4;

(8]

. {a1,a2,a3,a4} contains an even number of even elements; and

w

. {a1,az,a3,a4} (mod 8)7# {£1,+£2,4,4,},{£2,4,4,4},{£2, £2,+2,4}.

Proof. The necessity follows from Theorem 2.11 and some checking. For example,
let (ay,a2,a3,a4) = (1,2,4,4). By the Remark 2 following Theorem 2.9, we need to
show that a 4-matching M of Kjg, such that M contains one edge with symbol 1, one
edge with symbol 2 and two edges with symbol 4, does not exist. If M does exist, by
symmetry, we can always choose (0,4) as an edge in M. The second edge with symbol
4 can be chosen as (1,5) or (2,6), and these are all possible choices up to symmetry.
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But then we cannot find an edge with symbol 2 which is independent from (0, 4) and
(1,5), or an edge with symbol 1 which is independent from (0, 4) and (2, 6).

To prove the sufficiency, let a; = b;(mod 8), : = 1,2,3,4. We can assume that
b; < 4. We need consider only three cases: (b, b, b3,b04) = (2,2,1,3),(2,4,1,3) and
(2,2,4,4), since all other cases are covered by Theorems 2.12, 2.13, 2.15, 2.16. Tor
these three cases, {(2,4),(5,7),(0,1),(3,6)},{(5,7),(0,4),(1,2),(3,6)} and {(7.1
(3,5),(0,4),(2,6)} are the respective required ordered pair partitions. B

Corollary 2.20 An 8-regular «:rculant C(n,{£a), taz, taj, tas}) has a cyclic I-
factorization if and only if one of the followzng holds:

1. a),dq,as and ay are Odd,'

2. ezactly two of a;’s are even, say a, and ay, then ay,a; # O(mod 4), and
n = 0(mod 4);

3. exactly two of a;’s are even, then a;,# O(mod 8) for j = 1,2,3,4, and n =
0(mod 8);

4. all a;’s are even, a; Z 0(mod 4), fori=1,2,3,4, and n = 0(mod 4); or

5. all a;’s are even, a; Z O(mod 8), for i = 1,2,3,4, and n = 0(mod 8),
{a1, a2, a3,a4} (mod 8)# {£2,4,4,4}, {£2, £2, £2,4}.

Theorem 2.21 A 9-regular circulant C(n,{ta), ta,, tas, tas,n/2}) has a cyclic
1-factorization with a single 1-factor orbit if and only if 0 ¢ {a1,az,a3,a4}(mod9),
{a1,a2,a3,a4} (mod 9)# {£3,£3,13,£3} and n = 0(mod 9).

Proof. The proof is similar to the proof of Theorem 2.19. We need to check the follow-
ing three cases: (by, b2, b3, b4) = (3,3,1,2),(3,3, 1,4) and (3 3 2 4) The correspond-
ing ordered 2-partitions are: {(0,3),(2,5),(6,7),(8,1)},{(5 ,1),(2,3),(0,4)} and
{(2,5),(7,1),(6,8),(0,4)}. ®

Theorem 2.22 A 10-regular circulant C(n,{xay,...,xas}) has a cyclic 1-factoriza-

 tion with a single I-factor orbit if and only if n = 0(mod 10), a; # O(mod 10),
1=1,2,3,4,5, and (ay, az,as, a4,as)(mod 10) # :t:(l 1,1,5,5),%(1,5,5,5,5), £(3, 3,

3,5,5),+(3,5,5,5,5), £(1,3,5,5,5), £(2,4,5,5,5), £(2,2,3,5,5) and £(4,4,1,5,5).

Proof. The necessity follows from Theorem 2.11 and some checking.
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To prove the sufficiency, we give a table (see pages 29-30) providing ordered pair
partitions of (b1, b2, b3, by, bs) which are not covered by Theorems 2.12, 2.13, 2.15, 2.16.

Theorem 2.23 An 1l-regular circulant C(n,{za,,...,+as,n/2}) has a cyclic 1-
factorization if and only if n = 0(mod 11) and a; # 0(mod 11) for i =1,2,3,4,5.

Proof. The necessity follows from Theorem 2.11. To prove the sufficiency, we also
give a table (see pages 31-32) as in the proof of Theorem 2.22. B

Remark. In fact, we can classify the cyclic 1-factorizable circulants with degrees
9. 10, and 11. The statements are too lengthy to give here.

2.8 Conclusion

Now we see that if we can characterize all cyclic 1-factorizable circulants with a single
1-factor orbit, then we can classify all cyclic 1-factorizable circulants by considering
all the possible orbit vectors. We pose the following problem.

Problem 2.1 Characterize all cyclic 1-factorizable circulants with a single 1-factor
orbit.

Remark. Even though there are many necessary conditions in Theorem 2.11, they
are still not sufficient. For example, one can easily check that,if n = 0(mod 8) and
{a1, a2, a3,a,}(mod 8) ={2,2,2,4} or {2,4,4,4}, then C(n, {£a1, £a,, tas, ta4}) has
no cyclic 1-factorization with a single 1-factor orbit. So the first thing we need to do
is find more necessary conditions.

Another thing we want to point out is that when m = 2k + 1 is a prime, then the
necessary conditions in Theorem 2.11 become

(i) n = 0(mod m); and
(i1) a; Z 0(mod m) for: = 1,2,..., k.

The number of necessary conditions is much less than usual. Also we know that
for m = 2,3,5,7 and 11, the necessary conditions are sufficient. Perhaps this is true
for all primes.
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G. Korchmaros [33] has posed the following problem:

For which integer n = 2(mod 4) does there erist a cyclic I-factorization of K,, with
an invariant 1-factor?

A cyclic 1-factorization of I, with an invariant 1-factor is just a cyclic 1-factorization

of C(n, Z, — {0,n/2}).

By using the previous results, we can prove the following.

Theorem 2.24 1. If K, has a cyclic I-factorization with an invariant [-factor, and
n = 2(mod 4), then n = 2(mod §).

2. Letn = 2(4m+1) and 4m+1 = p*, where p is a prime. Then K, has no cyclic
1-factorization with an invariant I-factor.

Proof. 1. If I, has a cyclic 1-factorization with an invariant 1-factor, then each 1-
factor orbit must have even length, and each 1-factor orbit of even length contains even
number of even symbols. So the total number of even symbols is even. For n = 2(mod
4), the total number of even symbols is (% —1), which is even. Therefore, n = 2(mod
8).

2. If K, has a cyclic 1-factorization with an invariant 1-factor, then each 1-factor
orbit has even length. The possible even lengths are 2,2p,2p?,...,2p'"'. But Ejpe-
is not empty, so it must be in a 1-factor of orbit length 2p' for some ! < t — 1. By
Lemma 2.6, we have 2p'~! # 0(mod 2p'). This is a contradiction. B
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(b1, b2, b3, by, bs) ordered pair partition
(11113) (1, 2)(4, 5)(6, 7)(8, 9)(0, 3)
(11133) (1, 2)(5, 6)(8, 9)(0, 3)(4, 7)
(11333) (6, 7)(8, 9)(0, 3)(1, 4)(2, 5)
(13333) (7, 8)(0, 3)(1, 4)(2, 5)(6, 9)
(1111 5) (1, 2)(3, 4)(6, 7)(8, 9)(0,
(1155 5) (3, 4)(8, 9)(0, 5)(1, 6)(2,
(33335) (9, 2)(8, 1)(4, 7)(3, 6)(0,
(33555) (6, 9)(1, 4)(0, 5)(2, 7)(3,
(13511) (2, 3)(1, 4)(0, 5)(6, T)(8,
(13533) (2, 3)(4, 7)(0, 5)(8, 1)(8,
(135335) (3, 4)(6, 9)(0, 5)(8, 1)(2,
(1351 3) (2, 3)(6, 9)(0, 5)(7, 8)(1,
(1351 5) (3, 4)(9, 2)(0, 5)(7, 8)(1,
(22113) (6, 8)(7, 9)(1, 2)(4, 5)(0,
(221153) (1, 3)(2, 4)(6, 7)(8, 9)(0,
(22133) (9, 1)(4, 6)(7, 8)(0, 3)(2,
(22335) (1, 3)(6, 8)(9, 2)(4, 7)(0,
(22155) (1, 3)(4, 6)(8, 9)(0, 5)(2,
(44113) (0, 4)(1, 5)(2, 3)(7, 8)(S,
(44115) (7, 1)(2, 6)(3, 4)(8, 9)(0,
(44133) (0, 4)(1, 5)(7, 8)(3, 6)(9,
(44335) (7, 1)(4, 8)(3, 6)(9, 2)(0,




(bla b?: b3e 641 b5)

ordered pair partition

(44355)
(22135)
(4114135)
(24135)
(21113)
(24115)
(24133)
(24335)
(2415 5)
(24355)
(24141)
(22441)
(22241)
(24443)
(22443)
(22243)
(22225)
(44445)
(244 45)
(22445)
(222145)

(9. 3)(8, 2)(, )(0, 3)(L.
(6, 8)(7, 9)(2, 3)(1. 4)(0,
(4, 8)(T, 1)(2, 3)(6, 9)(0.
(6, 8)(7, 1)(3, 4)(9, 2)(0.
(9, 1)(0, 4)(2, 3)(6, 7)(5,
(9, 1)(8, 2)(3, 4)(6, 7)(O,
(1, 3)(0, 4)(6, 7)(5, 8)(9,
(9, 1)(8, 2)(3, 6)(4, 7)(0,
(7, 9)(8, 2)(3, 4)(0. 5)(1,
(9, 1)(4, 8)(3, 6)(0. 5)(2,
(9. 1)(0, 4)(8, 2)(3, T)(5,
(9. 1)(3, 5)(0, 4)(8, 2)(6, 7
(9, 1)(5, 7)(6, 8)(0, 4)(2,
(7, 9)(0, 4)(1, 5)(8, 2)(3,
(7. 9)(1, 3)(0, 4)(2, 6)(5,
(1. 3)(5, 7)(6, 8)(0, 4)(9,
(1, 3)(2, 4)(6, 8)(7, 9)(0,
(7, 1)(2, 6)(4, 8)(9, 3)(0.
(9. 1)(2, 6)(3, 7)(4. 8)(0,
(9, 1)(4, 6)(8, 2)(3, 7)(0,
(1. 3)(4, 6)(7, 9)(8, 2)(0,
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(blz b2.- b_';, b4: bS)

ordered pair partition

(112319
(11235)
(11245)
(11345)
(22134)
(22135)
(22145)
(22315)
(24155)
(33124)
(33125)
(33145)
(33245)
(44123)
(14125)
(44135)
(44235)
(55123)
(55124)
(551 34)
(55234)
(11223)
(11224)
(11225)
(11332)
(11334)

(1, 2)(7, 8)(3, 5)(6, 9)(0, 4)
(2, 3)(6, 7)(8, 10)(1, 4)(0, 5)
(1, 2)(3, 4)(7, 9)(6, 10)(0, 5)
(2, 3)(7, 8)(1, 4)(6, 10)(0, 5)
(1, 3)(6, 8)(9, 10)(2, 5)(0, 4)
(6, 8)(7, 9)(2, 3)(1, 4)(0, 5)
(7, 9)(8, 10)(3, 4)(2. 6)(0, 5)
(7. 9)(8, 10)(1, 4)(2, 6)(0, 5)
(7. 9)(8. 1)(2, 3)(0, 5)(10, 4)
(2, 3)(6, 9)(7, 8)(1, 3)(0, 4)
(3, 6)(4, 7)(1, 2)(8, 16)(0. 5)
(1, 4)(7, 10)(8, 9)(2, 6){7. 5)
(10, 2)(1, 4)(6, 8)(3, T){0, 5)
(0, 4)(1, 5)(2, 3)(8, 10)(6, 9)
(2, 6)(4, 8)(9, 10)(1, 3)(0, 3)
(2, 6)(3, 7)(9, 10)(1, 4)(0, 5)
(2, 6)(3, 7)(8, 10)(1, 4)(0, 5)
(0, 5)(1, 6)(8, 9)(2, 4)(7, 10)
(0, 5)(1, 6)(8, 9)(2, 4)(3, T)
(0, 3)(1, 6)(2, 3)(7, 10)(4, 8)
(0. 5)(3, 8)(7, 9)(1, 4)(2, 6)
(1, 2)(4, 5)(6, 8)(T7, 9)(0, 3)
(1, 2)(9, 10)(3, 5)(6, 8)(0, 4)
(1, 2)(3, 4)(6, 8)(T, 9)(0, 5)
(1, 2)(5, 6)(4, 7)(0, 3)(8, 10)
(1, 2)(9, 10)(3, 6)(5, 8)(0, 4)

()]

31
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‘b]1b2: 63:! b—‘ls b5)

ordered pair partition

i
i
i

I (11335) (1, 2)(8, 9)(3, 6)(4, T)(D, 5)
(11442) | (1,2)(5, 6)(0, 4)(3, 7)(8, 10)
(11443) | (1,2)9, 10)(3, 7)(0, 4)(5, 8)
(11445) | (1,2)(9, 10)3, 7)(4, 8)(0, 5)
(11552) 7, 8)(9, 10)(0, 5)(1, 6)(2, 4)
(11553) | (2 3)8,9)0, 5)(1, 6)(7, 10)
(11554) | (2 3)(9,10)(0, 5)(1, 6)(4, 8)
(22331) | (5 7)(6, 8)(0, 3)(1, 4)(9, 10)
(22334) | (1.3)(8, 10)(2, 5)(6, 9)(0, 4)
(22335) | (1, 3)(2 4)(6, 9)(7, 10)(0, 5)
33441) | (6,9)(7,10)(0, 4)(1, 5)(2, 3)
(331442) | (5, 8)(7,10)(0, 4)(2, 6)(1, 3)
(33445) | (3,6)(4, 7)(8, 1)(9, 2)(0, 5)
(44551) | (3.7)(4 8)(0, 5)(1, 6)(9, 10)
(14552 | (3, 7)9, 2)(0. 5)(1, 6)(8, 10)
(44553) | (3, 7)(4, 8)(0, 5)(1, 6)(10, 2)
(22441) | (7, 9)(8, 10)(0, 4)(1, 5)(2, 3)
(22443) | (7, 9)8, 10)(0, 4)(1, 5)(3, 6)
(22445) (1, 3)(7, 9)(2, 6)(4, 8)(0, 5)
(33551) | (4, 7)(10, 2)(0, 5)(1, 6)(3, 9)
(33552) | (3.6)(1, 4)(0, 5)(2, 7)(8, 10)

| (335 54) | (3, 6)(10, 2)(0, 5)(7, 1)(4, b)
(22551) | (7.9)(8, 10)(0, 3)(1, 6)(2,
(22553) | (8, 10)(4, 6)(0, 5)(2, 7)(9, 1)
(22554) | (4, 6)(10, 1)(0, 5)(3, 8)(9, 2)




Chapter 3

Isomorphic Factorizations of Circulants

3.1 Introduction

Definition 3.1 Let G and H be graphs. The union of G and H is defined by
GUH = (V(G)UV(H), E(G)JV(H)).
If E(GYNE(H) =0, we denoted GUUH by G& H.
The union of k disjoint copies of G is denoted by kG.
Definition 3.2 Let G be a graph. G is said to be t-divisible, denoted by t|G, if (G) #
0(mod t) or E(G) can be partitioned into ¢ isomorphic subgraphs Gy, G,...,G;. We

call Gy, Gy, ..., G; a t-isomorphic factorization of G, or simply a t-partition, and write
G=G19G,@&---9 G,

If for all ¢ such that t|c(G) we have t|G, we say that G is divisible.
Lemma 3.1 If G is divisible, then nG s divisible for any integer n.

Proof. We have that ¢(nG) = ne(G). Let tle(nG). Then t|ne(G).
Case 1. t|n. |
Let n = tm. Ther nG = t(mG), and hence t|nG.
Case 2. t|<(G).

33
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Since G is t-divisible, then G = G1®G,®- - - ®G,. Let H; = nG;, fori = 1,2,... 1.
Then nG = H, ® H, ®--- ® Hy, and H; = H; for 1 <1,7 <t. Therefore, t|nG.

Case 3. n Z 0(mod t) and £(G) # 0(mod t).

We will have that t = t,t; for some integers ¢, and ¢, such that ¢,|n and t,](().
Since G is tp-divisible, then G = G, @ --- ® Gy, where G; = G for 1 <1,j <. Let
H; = ﬁGl. Then nG=H,®--- @ H;, and H; £ H;. Hence t|H.

Lemma 3.2 Any disconnected circulant graph is a disjoint union of isomorphic con-
nected circulant graphs.

Proof. Let X = C(n,{%ai,...,+ar}) be a circulant which is disconnected. Then
ged(ay,az,...,ag,n) =d#1. Let n =dm and a; = dc; for:1 =1,2,... k.
Partition the vertex set Z, into
<d>, 1+ <d>,...,(d=-1)+<d>.

Then X[i+ < d >}, the induced subgraph of X on i+ < d >, is a circulant which is
isomorphic to C(m, {%c;, cg,...,%ck}) for each 1 < ¢ < k. Furthermore, there are
no edges of X between any 1+ < d > and j+ < d > for 7 # 5. Therefore,

X=X[<d>]®-- 8 X[d- 1+ <d>] =2 dC(m, {£e, ..., Lck}).

Moreover, gcd(ci,co,-.-,ck,m) = 1, thus C(m,{£e), £ea,...,Ecr}) is connected.
This completes the proof. 8

From the proof above, we obtain a formula for circulant graphs, which we write
as a corollary.
Corollary 3.3
C(dm,{dc;,...,dck,d(m—cy),...,d(m—ck)}) = dC(m,{c1,...,ce,m—cq,...,m=ck}).
Remark. By Lemma 3.1 and Lemma 3.2, we need only consider connected circu-

lants when we investigate the divisibility of circulants. From now on, we assume that
all circulants are connected.
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3.2 Main results

Theorem 3.4 Let X = C(n,S) be a d-regular circulant, and t be a positive integer.
Then t| X if t|n.
Proof. Since t|n, then we can partition Z, into the left cosets

<t>, 1+ <t>,..., -+ <t>.

If d is odd, then t ";—" and ¢|n imply that 3 = O(moa ¢). If d is even, then Z ¢ S.
Therefore, in any case, the diagonal edges (if they exist) must be in X[i+ <t >] for
i=0,1,2,...,t— L.

Let S* = {a1,a2,...,ax}. As defined in Chapter 2, S*(mod ¢) = {a;(mod ¢),
...,ak(mod t)} is a multiset in general, but here we treat S*(mod t) as a non-multiset.

Let S*(mod t) = {j1,...,51}, where j; # jn if 1 # h.
Case 1. t # 2 and § ¢ S*(mod t).

If a; = j(mod t), we can assume that a; = j + tm for some integer m. Between
<t > and j+ <t >, there is a ‘parallel’ n/t-matching {(0, mt + j), (¢, (m + 1)t +
3y (3 = 1)t (3 +m = 1)t + j)}. We call this the matching starting at < ¢ >
generated by a;, and denote it by M(< t >, a;).

Let <<t >,j+ <t>>=U{M(< t >,a;)|a; = j(mod t)}.
Let
Xo=X[<t>]<<t>pt<t>> - U<<t>,n+ <t>>
and
Xi=X[i+ <t>)]U<i+ <t>i+p+<t>>{-U<it <t >,i+h+<t>>
for:=1,2,...,t - 1.

t {t is easy to see that X; = X; and E(X;)NE(X;) =0if i # ;. Also, E(X) =
UiZe E(X:), therefore, ]| X.

Case 2. { € S*(mod t).

Without loss of generality, let £ = jj,and ¢ = ay =--- = ap, = f(mod t). Then
between i+ < t > and } + i+ < t >, each edge orbit E,, contributes two perfect
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matchings, one with symbol as, denoted by F;', another with symbol n — aj, denoted
by Fy,for 1 < h<m.

Let Fo = U}, F.*. Then %+ Fo =Ui., Fr™. Now, define
Xo=X[<t>lURU<<t>n+t<t>>J-U<<t>a+<t>>

and
Xi=i+Xo=X[i+ <t>]<i+ <t>i+5+<t>>

U--U<it <t> i+t <t>> i+ Fo)

fort=1,2,...,t—1.
Then Xo, X4,...,X:_1 gives a t-partition of X.
Case 3. t = 2.

In this case, Z, is partitioned into < ¢ > and 1+ < ¢ >. Between < t > and
1+ < t >, all edges have odd symbols. Let {a;,a,...,a;} be the odd symbol set of
X, and let F; = {(24,2j + ai): 0 < j < 3}. Then

Xo=X[<t>IURUFU - UFR

and

X, = X[+ <t>]Ja+ AU+ R)Y---Ua + F)
is a 2-partition of G. This completes the proof. il

Corollary 3.5 Let X = C(n,S) be a d-regular circulant with d > 2. Then X 1is
t-divisible if t > d — 2. In particular, 4-regular circulants are divisible.

Proof. A result of Ellingham and Wormald [24] says that a d-regular graph is t-
divisible if t > d. So we need only prove the corollary for ¢ < d. But we give a proof
ford —2 <t <d+2 here.

Let t|%. Ift =d—1, or d+1, then ged(t,d) = 1. If dis odd, and t = d~2 or d+2,
we still have ged(t,d) = 1. Otherwise, say gcd(t,d) = m # 1, then m|d and m|(d - 2)
or m|(d + 2). Hence, m = 2 and d is odd. This is a contradiction. For any of the
above cases, we have t|n. If d is even and t = d — 2 or d + 2, then gcd(t,d) = 2. Now
t|2 implies £|2. Again we have t|n. By Theorem 3.3, we know that X is {-divisible
fort=d—-2,d—1,d+1and d+ 2. If t = d, and d|n, then we are done. So assume
that n # 0 (mod d), in which case n is even. But it is well known that X has a

1-factorization, and this 1-factorization gives a d-isomorphic factorization. B



Chapter 3. Isomorphic Factorization of Circulants 37

Corollary 3.6 Let X = C(n,S) be a d-regular circulant, and let d be a prime. Then
X is divisible.

Proof. Let t be any positive integer such that tJe(X). Then t|%. We can assume
that 2 < t < d from the above corcllary. Then ged(t,d) = 1, and hence t|n. By
Theorem 3.3, X is t-divisible, and therefore X is divisible. B

Remark. Recall that in Chapter 2, we have that the necessary condition for
X = C(n,S) to have a cyclic 1-factorization with a single 1-factor orbit of length ¢
is t|n. Unfortunately, it is not sufficient in general. But from the proof of Theorem
3.3, we know that we actually proved that X = C(n,S) has a cyclic t-isomorphic
factorization if t|n. Therefore, if we do not restrict our factor graph to be a 1-factor,
we have proved:

Corollary 3.7 There is a cyclic isomorphic factorization of C(n, S) with single factor
orbit of length t if and only if t|n.

By the proof of Corollary 3.1, 3.2, we actually have proved:

Corollary 3.8 A d-regular circulant C(n,S) has a cyclic t-isomorphic factorization
fort =d—2,d—1,d+1,d+2. Ifd is a prime, then C(n,S) has a cyclic t-isomorphic
factorization for t # d.

Also notice that, by the proof of Theorem 3.3, it is not hard to determine the
factor graph, which depends on the symbols of C(n,S). For example, if n/2 ¢ S and
a; # aj(mod t) for a; # a;, then the factor graph is a union of n/t k-stars and some
isolated vertices. For the case t = n (in this case, d is even), the factor graph is a
union of a d/2-stars and (n — d/2 — 1) isolated vertices.

Some special t's are more interesting, among them are t = 2,d/2.

If t = 2, we have the following result as a corollary of Theorem 3.3.

Corollary 3.9 Let X = C(n,S) be a d-reqular circulant. Then X is 2-divisible if n
is even or d # 0(mod 4).

The case t = d/2 is a weak form of the following problem:
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Every connected circulant with even degree has a Hamilton decomposition.

Since a Hamilton decomposition is a special d/2-isomorphic factorization, it would
be interesting to solve the weak form.

To end this chapter, we pose some problems.
Problem 3.1 Prove that C(n,S) is 2-divisible.
Problem 3.2 Prove that the 2k-regular circulant C(n,S) is k-divisible.

Problem 3.3 Let C(2n,S5) be a d-regular circulant. Show that there is a cyclic d-
isomorphic factorization of C(2n,S).



Chapter 4

On 2-extendable Dihedral Cayley Graphs

4.1 Introduction

Recall that the dihedral group D, is a group which is generated by two elements p
‘and 7, where p* = 72 = 1 and 7p7 = p~!. We denote {z7|r €< p >} by < p >T.
From the relations p® = 72 = 1 and 7p7 = p~!, we can easily obtain (p'r)? = 1 and
pitp~l = 1p~i+) = pi+ir  which are useful later. It is easy to see that D, has a
cyclic subgroup < p > of index 2 which is isomorphic to Z,. Moreover, D, =< p >

Jd<p>T.

Let X be a graph. If M is a k-matching of X and M~ is a perfect matching of X
such that M C M=, we call M~ a maiching extension of M, or say M can be extended
to M*. A graph X is said to be k-eztendable if it has k-matchings and any k-matching
of X can be extended to a perfect matching of X.

Recently, O. Chan, C. C. Chen and Q. L. Yu classified the 2-extendable Cayley
graphs on abelian groups. Their classification, as stated below, will be used in the
proof later.

Theorem 4.1 Let X = X(T',S) be a Cayley graph on an abelian group T' of even
order. Then X is 2-extendable if and only if it is not isomorphic to any of the following
graphs:

() C(2n,{1,2n — 1}),n > 3;
(I) C(2n,{1,2,2n - 1,2n - 2}),n 2 3;

39
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(I11) C(4n,{1,4n — 1,2n}),n > 2;
(IV) C(4n + 2,{2,4n,2n + 1}),n > 1; and
(V) C(4n+2,{1,4n + 1,2n,2n + 2}),n > 1.

Stong [46] has proved that any Cayley graph on a dihedral group is 1-factorizable.
His result implies that X(D,,S) is 1-extendable. In this chapter, we shall give a
classification for 2-extendable Cayley graphs on dihedral groups by showing that,
except for the five classes of graphs in Theorem 4.1, X(D,, S) is 2-extendable.

From now on, we shall assume that X = X(D,,S) is connected, that is, S is a
generating set of D,,, or < § >= D,. For convenience, we let 5’ = S < p > and
S§" = SN < p >71. Then clearly, S” # @ as X(D,,S) is connected. E,, the set of
edges with symbol s, is a perfect matching of X(D,, S) for s € 5”. Also, without loss
of generality, we may always assume 7 € S”.

We introduce a class of graphs, denoted by C[2gq,s,t] (where s +t = 0(mod 2)),
which are defined as follows. The vertex set is {(z,7)|0 < <2¢—-1;0 < j < s~ 1},
which is the cartesian product of Z;, and Z,. The edge set consists of three types of
pairs as given below:

(1) (¢,7)(z + 1,7) and (29 — 1,5)(0,5), where : = 0,1,2,...,2¢ ~ 2 and j =
0,1,2,...,s—1;

(2) (4,7)(5,7 + 1), where : + 3 = O(mod 2), z = 0,1,2,...,2¢ — 1 and ; =
0,1,2,...,s—1; and

(3) (2¢ +1,0)(2{ +1+¢,s—1), wherei =0,1,...,¢9 — 1 and the first coordinate
is computed modulo 2gq.

Clearly, C[2q, s,t] is a 3-regular graph. Alspach and C. Q. Zhang [12] introduced
the brick product of Cy, with P, which is a C{2q, s, ] without edges of type (3). As
an exampie, the graph C[6,5,1] is given in Figure 4.1a.

To conclude this section, we make the following observation which sketches the
structure of Cayley graphs on dihedral groups.

Obeservation 4.2 Any connected Cayley graph X = X(D,,S) can be decomposed
into two subgraphs on < p > and < p >7 together with a class of perfect matchings
joining them. Furthermore, the two subgraphs on < p > and < p >7 are isomorphic
to the same circulant on Z,.
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Proof. Let X[< p >] and X[< p >7]| be the induced subgraphs on < p > and < p >,
respectively. Then X[< p >] = X(< p >,5’) = C(n,S”), where S* = {i|p' € '},
which is a circulant and ¢ : X[< p >] — X[< p >7] defined by ¢(p') = p'r is an
isomorphism (note that X[< p >] may be edgeless).

The class of perfect matchings is { E,|s € S"}.

We set E) = E(X[< p >]), E. = E(X[< p >7]) and E;3 = E(X(D,,S")). Then
ENE; =0ifi #j, and E(X) = By U E;U Es.

4.2 Basic Lemmas

We need the following lemmas in the proof of the main theorem.
Lemma 4.3 [f n is odd, then C(n,S) x K; = C(2n,25 U{n}).

Proof. C(n,S) x K, has two subgraphs X; and X, each of which is isomorphic
to C(n,S), and there is an isomorphism & : X; — X,, such that the set of edges
{v(8(v))|v € V(X,)} is a perfect matching between X, and Xo.

We can label the vertices of X; by 0,2,4,...,2(n — 1), and then 25 is the symbol
set of X,. Similarly, labelling the vertices of X; by {n,n+2,n+4,...,3n — 2}(mod
2n) = {1,3,5,...,2n — 1} (as n is odd) will turn X; into a circulant with 25 as the

symbol set.

Note that the mapping ¢ : X; — X, defined by ¢(v) = (n + v)(mod 2n) is an
isomorphism. So if we add n to the symbol set 25, then we obtain the desired perfect
matching between X; and X,. Therefore, C(n, S) x K, = C(2n,25U{n}). B
Lemma 4.4 Let X = X(Dn, {p'r, 01, p**}) be connected.

(1) If X(D,.,{p'r, p’1}) is connected, then X is a 3-reqular or 4-regular circulant.

(2) If X(Dn,{p'r,p’7}) is disconnected, then X has Com X Py as a spanning
subgraph for some m > 2 and h > 2.

Proof. (1) Let X; = X(D,, {p'r, p’}). Since p't and p’r are of order 2, X; isa 2 -
regular graph. If it is connected, then it is a 2n - cycle

L' )oY ™ r)(p* 7). (p T (o i,
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Figure 4.1:

We use {0,1,2,...,2n — 1} to relabel this cycle so that p**~(*=1ir « 2¢t — 1 and
pt=7) s 2t. Then the cycle becomes 0 1 2 ...(2n-1) 0 after the relabelling.

Let p* = p"(i=7), Then edges of X with symbol p* and p~* become edges with sym-
bol 2h and —2h, respectively, after relabelling. Therefore, X = X (D,, {p'r, p’1, pt*})
> C(2n,{1,2n —1,%2h}). If A = n/2, then X is 3-regular. Otherwise, it is 4-regular.

(2) If X; = X(Dg,{p'r,p’7}) is disconnected, then it is a union of A disjoint
even cycles Cy,,, for some m > 1,h > 1. We can arrange the vertices of each cycle
in a column such that the first column begins with 1, the second column begins
with p* (note that p* does not belong to the first column, for otherwise X will be
disconnected), the third column begins with p%*, and so on. We thus obtain a 2m x A
array in which each row forms an h-path whose edges have the same symbol p* or p*
(an example with X = X(Dy,, {7, p*r, p*°}) is illustrated in Figure 4.1b). Therefore,
X has a spanning subgraph Cy,,; x Py. B

We quote the following result which is implied in the proof of Theorem 3.1 of [12].

Lemma 4.5 Let X = X(Dn, {p't, P, p*7}) be connected. If X(D,,{p'r,p’7}) is
disconnected, then X is isomorphic to C[2q,s,t' for some ¢ > 2,3 > 2 and t > 1.

We also need the following result from [51].

Lemma 4.6 C,,,, X P, (m > 2,h > 2) is 2-eztendable.
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4.3 The Main Theorem

In this section, we shall prove the following result which is a characterization of 2-
extendable Cayley graphs on dihedral groups.

Theorem 4.7 Let X = X(D,,S) be connected. Then X is 2-extendable if and only
if it is not isomorphic to any of the following graphs:

(I) C(2n,{1,2n —1}),n > 3;

(1) C(2n,{1,2,2n — 1,20 — 2}),n. > 3;
(III) C(4n,{1,4n — 1,2n}),n > 2;

(IV) C(4n + 2,{2,4n,2n + 1}),n > 1; and

(V) Clan +2,{1,4n +1,2n,2n + 2}),n > 1.

Proof. It is not hard to see that each class of graphs in (I) - (V) can be realized by
Cayley graphs on dihedral groups. If X is isomorphic to any graph in these classes,
then X is not 2-extendable by Theorem 4.1.

Let X = X(D,,S). We shall show that if X is not isomorphic to any of the graphs
in the five classes, then X is 2-extendable. If n = 2, then X = X(D,,S5) is either
C, or K4. In any case, X is 2-extendable. So we may assume that n > 3. Recall
that E, = E(X[< p >]), E; = E(X[< p >7]), Es = E(X(D»,5")) and 7 € S. Let

M = {ei1,e;}, where e; and e, are any two independent edges of X.
Case 1. M = {e;,e;} C Eyor M C E,.

Since X[< p >] = X[< p >7], we may assume that M C E;. Suppose e; = (p*)(¢’)
and e; = (p*)(p"). Then ¢,j,k and h are all distinct. Let

M~ = (E-{er, &5, (p'7)(#'7), (P°7)(p"7) } =
{2 7). (PP 7), (") (6" T), (6") (0" 1)}
Then M™ is a perfect matching containing M.
Case 2. MNEs £ 0, MN(E.1UE;) #£80.

Without loss of generality, assume e, = (p*)(p’) € E; and e; = (p*)(p**"1) € E;,
where k,7 and j are all distinct and p"r € S”. Then

(Ep U {en (0 1) 1)1 = {(0) (™), (P) (7))}
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is a perfect matching of X which contains M.
Case 3. ¢, € F,e, € F,.

Let G1,Ga,....G; be the components of X[< p >]. Then G; Z G, for1 <i,j <r.
Let G! be the subgraph of X[< p >7] induced by {z7|z € V(G;)}. Then G = G,
(1<z<r).

In this case, we have three subcases to consider.
Case 3.1. €, and e; lie in G; and G, respectively, and : # ;.
Let e; = (p')(p’) and e; = (p*7)(p"7). Then
E-Ufer e, (p'1)(07). (P")(0")} -
{(P) P, ()P 7). (PN P 7). ()0 7))
is a perfect matching containing M.
Case 3.2. e; and e; lie in G; and G, respectively, and |V(G;)| = |V(G})] is even.

It is easy to see that every connected circulant of even order is 1-factorizable and
each component of X[< p >] is a circulant. Hence €, can be extended to a perfect
matching M, in X[< p >] and e; can be extended to a perfect matching M, in
X[< p >7]. Then M; U M, is a perfect matching of X as required.

Case 3.3. €; and e; lie in G; and G, respectively, and |V (G;)| = |V (G?)] is odd.
Let €, = (¢)(#') and €5 = (s*r)("7).

(a) If X[< p >] is disconnected, then so is X(D,, S'U{7})- Since X is connected,
there exists p™r € S§” so that p* - (p™7) = p*™r ¢ V(G"). Therefore, {z - (p™1)|z €
V(G)}INV(G:) = B. In this case,

M~ = Epm.U{es e2. (87" 7)(p* 1), (05" )"} -
{(P)NeHm ) (PP 7), (P57 )(PE ), (0" )0 7))

is a perfect matching containing e; and e;.

(b) If X[< p >] is connected, then ¢; € E(X[< p >]),e2 € E(X[< p >7])and n
is odd. Let n = 2k + 1.

If |S'] > 4, then X' = X(D,..S'U{r}) = C(n,S5") x K; = C(2n,25" U{n}), where
5= = {1}p’ € 5’} (by Lemma 4.3). Hence X’ is a circulant of degree at least 5 and is
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2-extendable by Theorem 4.1. But X’ is a spanning subgraph of X which contains e;
and e;. Hence {€;,€;} can be extended to a perfect matching of X.

Suppose now S’ = {p*'}. Then ¢; and e, have the same symbol. If 5" = {7},
then X is 3-regular and X = C(4k + 2, {2k + 1,2,4k}), which is a graph belonging
to class (IV). Hence we must have [S"] > 2.

When |S”] =2 and X{(D,,5") is disconnected, X(D,,S5'|JS5") has Comu X Py as a
spanning subgraph by Lemma 2.2, where & > 2. But 2mh = 2n = 2(2k + 1), and we
must have that A is odd. Hence A > 3. Therefore, we can rearrange the columns in
the proof of Lemma 4.4, such that €1, e; € E(Cyn X Pp). But Cy,, X Py 1s 2-extendable
(by Lemma 4.6). Hence €; and ¢, can be extended to a perfect matching of X.

When |S$”] = 2 and X(D,,5") is connected, X(D,,5'1JS") is a 4-regular circu-
lant by Lemma 4.4 again. If X = X(D,,S) = X(Dy1.5) = C(4k + 2,{1,4k +
1,2k,2k + 2}), then X is a graph of class (V), which is not 2-extendable. (For in-
stance, X(Ds, {7, pr. p%. p°}) = C(10. {1.4,6,9}) is such a graph.) In all other cases,
X(D,,S) is 2-extendable by Theorem 4.1.

Now assume |S5”] > 2. We shall show that e¢; and e; can be extended to a per-
fect matching of X. Note again that e; and e; have the same symbol. Without
loss of generality, we assume that ¢; = 1{p‘),es = {p'T)(p*r). I p'r € S”, then
(E,.U{er,e2}) — {1{p'T), (p*)p*7)} is a perfect matching containing e, and e;. If
p't € 5”. then there is a p’t € 5" such that j #£ 0,5 # 2i as |S”] > 3. Let

M = By ers e, (97) (6 7), (57 T) (6% 1)}~
{1 )). () ). (P 2)p'r), (P57 )P 7))}
Then M~ is a perfect matching of X which extends e; and e,.
Case 4. {e.€2} C E;.

If €; and e; have the same symbol p°r, then E,, is a perfect matching of X which
contains ¢; and €3. So we assume that €, has symbol p'r and e; has symbol p’7, 7 > ;.

Case 4.1. if X; = X(D..,{p'r,p't}) is disconnected, then X is a disjoint union of
some even cycles. If e;.¢e; belong to different cycles, then we can easily extend ¢; and
€2 to a perfect matching of X. So suppose that e; and e; belong to the same cycle
and no perfect matching of this cvcle contains both e; and e;. Let G,G3,...,G, be
the disjoint cycles of X, where G; = C,,n(1 <1 < h) and e;,¢; € E(G,). Since X is
vertex-transitive, we may assume ¢; = 1(p*’7). Thus G, is a 2m-cycle:

1{p' Yo" ) p* ) () - - - (I (pmimtm=igyy
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where m(z — j) = 0(mod n).

(a) Suppose S' — {pl=7), p2(i=7) _ _ pltm=1(-1)} is not empty, containing some p.
Since p* ¢ V(G,), we may assume that p¥ € V(G;). Then the subgraph X' of
X (D, {p'r, 0’1, p*¥*}) induced by V(G,)UV(G,) is isomorphic to Ci,, x K;. By
Lemma 4.6, C,,, x K; is 2-extendable. Thus there is a perfect matching M’ of X’
containing e; and es. For other G;,7 > 3, simply choose a perfect matching M; of (5.
Then M’ U(U" M;) is a perfect matching of X containing e; and e,.

=3+

(b) If & — {p=9, p26-9) __ ptm=1G=1} = @ then X(Dn, S U{p'r,p'7}) is dis-
connected. Since X is connected, there is a p"r € S” such that the edges with symbol
p’1 join G; and another Gy, say. Let X" = X (D,,{p'r,p’7,p"7}). Then each com-
ponent of X" is also a Cayley graph on a dihedral group D, for some 6. So, without
loss of generality, we assume that X” is connected. By Lemma 4.5, X" is isomor-
phic to C[2q, s, t] for some ¢ > 2,5 > 2 and t > 1. For convenience, we assume that
X" = C[2q, s, 1], and we can assume that e; = (0,0)(1,0) and e, = (2p+1,0)(2p+2,0)
for some p.

If s is odd, let
M ={0,)1.)l7=01,2,...,s -2}U{(2,)(2,:+1)| : =0,2,4,...,s - 3} U
{(2¢—-1,0)(2¢ =1 +t,s—1),(2¢—1,1)(2¢ - 1,2),...,(2¢ - 1,s — 2)(2¢ — 1,5 — 1)}
WGE.DE+1,))]1=3,5,...,2¢-3;j=0,1,2,...,s =2} UB,
where B is a perfect matching of (Cpq X {s—1}) — {(2¢—1,s—1),(2¢—1+¢,s - 1)}
which is a union of paths of odd length (since2¢ —14+¢ —(2¢—1) =t is odd). Then
M~ is a perfect matching of X which contains €, and e,.

If s 1s even, let
M=={(0,7)(1,7)17 =0,1,2,...,s =2} U{(2,7)(2,: + 1)] i = 0,2,4,...,s — 2} U
{(2¢—1,0)(2¢ —1+¢t,5—1),(2¢ —1,1)(2¢—1,2),...,(2¢9— 1,5 — 3)(2¢ — 1,5 — 2)}
UL )G+ L) i=3,5,....29— 3 = 0,1,2,...,5 — 2} U B,
where B is a perfect matching of (Cy, x {s—1})—{(2,5—1),(2¢—1+t,s—1)} which
is a union of paths of odd length (since 29 —1+¢—2 = 2¢—3+1tis odd). Then M" is
a perfect matching of X which contains e; and e;. (We illustrate the above patterns
wit2 C[6,5, 3] and C[6.6,2] in Figure 4.2a and Figure 4.2b, respectively.)

Case 4.2. X; = X(D,.{p'r, p’t}) is connected. Then X; = Cz,. We assume that
no perfect matching of C;, contains both e, and e,.

(a) If S = {p'r,p’7}, then X = Cy, = C(2n,{1,2n — 1}),(n > 3), which is in
class (I).
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Figure 4.2:

(b) If S = {p’r,p°r,p™?}, then n is even, say n = 2m. By Lemma 4.4, we
have X(D,,S) is a 3-regular circulant and X(D,,S) = C(2n,{1,2n — 1,n}) =
C(4m,{1,4m — 1,2m}). This is a graph of class (III).

(c) f § = {p'r, p’1,pt*}, (k # n/2), then X(D,,S) is a 4-regular circulant by
Lemma 4.4. By Theorem 4.1, X(D,, S) is 2-extendable if it is either not isomorphic
to C(4k+2,{1,4k+1,2k,2k+2}), (which belongs to class (V)), or to C(2n, {1,2,2n—
1,2n — 2}), (which is a graph in class (II)).

(d) If |S'] > 3, then X(D,, S’ U{p'r, ’7}) is a circulant of degree at least 5, by the
proof of Lemma 4.4. By Theorem 4.1, X(D,, S U{p'r,p°7}) is 2-extendable. Hence
{e1,e2} can be extended to a perfect matching of X.

(e) If |S’| = 0, then |S”] > 3. We have p*r € S” for some k distinct from ¢ and
j. We shall show that, for some p*r € $”, X' = X(D,, S*) has a perfect matching
containing {e;, ez}, where §* = {p'r, p’1, p*7}. This is also a perfect matching of X.

For convenience, we can assume that p'7 = 7. Then
Y S P R Y PR VP AV PRV ) AV (7
X(Du {r, 7} = Hr)p7 ' W7 7)p ))(P 7)...(F7)L.
Also assume that e; = 1{7), e3 = (p797)(p~4*1). Let p* = p~™I. We can assume
that m > g+ 1, (or else consider p~*). Now let

M = {er, (p7 )™ in), (07 7) (07N, (PTOTIY(07TY), o
€2, (p~ O VIT)(p7 M) L (p7mIr)(pm DI, (pm MR (pm i), (0) (0T}
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p—(m+2)jp-(m 1 lt

Figure 4.3:

Then M* is a perfect matching of X which contains €; and e, (see Figure 4.3). 8



Chapter &

Hamilton Connectivity of GP(n,k)

5; 1 Introduction

In this chapter, all subscripts are taken modulo n.

Let G = GP(n,k) be the generalized Petersen graph with vertex set V(G) =
{ui,vi:2=0,1,...,n—1} and edge set E(G) = {u;uip1, v;vipr, usv; 1t = 0,1,...,n—
1}. We call By = {uwjujq 11 =0,1,...,n — 1}, E; = {vivigs,uivi 1 1 =0,1,...,n =1}
and E3 = {uv; : 1 =0,1,...,n — 1} Type I, Type II and Type III edges of GP(n,k),
respectively.

The classification of hamiltonian generalized Pertersen graphs was carried out by
many people. Their results, stated below, will be used later.
Theorem 5.1 The generalized Petersen graph GP(n, k) is hamiltonian if and only if

neither

(i) GP(n,k) = GP(n,2) 2 GP(n,n —2) = GP(n,%3) = GP(n,%1),n =
5(mod 6), nor

(11) GP(n,k) =2 GP(n,nf2),n =0(mod 4) and n > 8.

The exceptional graphs (i) may not have a Hamilton cycle but, they come so close.
Alspach [6] has pointed out the following,.

Theorem 5.2 Any two non-adjacent vertices of GP(6m +5,2),m > 0, are joined by
a Hamilton path.

49
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In this chapter, we will study Conjecture 1 of Chapter 1. The first thing we need
to do is to distinguish bipartite generalized Petersen graphs. We have the following
theorem.

Theorem 5.3 G = GP(n, k) is bipartite if and only if n is even and k is odd.

Proof Let G = GP(n,k) be a bipartite graph. We have that wou,...u,_jup and
UQUoUkUEUk—] - - - U g are cycles of length n and &k + 3, respectively, implying that n
is even and k& is odd.

Conversely, suppose that n is even and & is odd. Let
d
X = {Uo,uzy-- c U2y oy Un—2,V1, V3, .-, V2541, -,vn—l},

and

Y = {u1,us3, .-, U2j41y- -+ » Un=1,V0,V2; -« - y U2y« - -, U2}
be a 2-partition of V(G). If E(G[X]) # 0, then there exists an edge v,v; € E(G).
This implies that ¢ — j (or j —z) = k which is odd, and hence : and j have different
parity. This is a contradiction.

Similarly, E(G[Y]) = 0. Therefore, G = GP(n,k) is a bipartite graph with
bipartition X and Y.

The following lemmas simplify many cases in later proofs.

Lemma 5.4 If ged(n, k) = 1, then there exist Hamilton paths from ug to vi_; and
vk+1 in GP(n,k), respectively.

Proof. The path uou1u;. .. Un—1Vn_1Vn—1-kVUn-1-2k - - - Un—1-(n-1)k 1S @ Hamilton path
in GP(n, k), but n—1—(n—1)k = n—nk+k—~1 =k — 1(mod n), 50 vy_1_(n-1)k = Vk-1.

The path uotn—1Un—2 ... U1V1V1—kV1-2k - - - V1—(n—1)k is @ Hamilton path in GP(n, k)
and vi_(n-1)k = Vi-nk+k = Vk41. Lherefore, there exist Hamilton paths from ug to
vg—1 and vg41 in GP(n, k), respectively. B

Lemma 5.5 If GP(n, k) is a hamiltonian generalized Petersen graph, then it is edge-
hamiltonian.

Proof. It is easy to see that if C is a Hamilton cycle of GP(n, k), it must contain edges
of each type. But Aut(GP(n,k)) acts transitively on each edge type, and therefore,
GP(n,k) is edge-hamiltonian. B
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(a)
Figure 5.1: A Type A insertion

5.2 GP(n,3)

One of our main results is next.

Theorem 5.6 1. GP(n,3) is Hamilton-connected if and only if n is odd and n # 5.

2. GP(n,3) is Hamilton-laceable if and only if n is even and n # 6.

Proof. Proof of 1. Let GP(n,3) be Hamilton-connected. Then GP(n,3) is not
bipartite, and hence n is odd by Theorem 5.3. Also, we know that n # 5 since
GP(5,3) is the Petersen graph, which is not hamiltonian.

Conversely, let n be odd, and n # 5. To prove GP(n,3) is Hamilton-connected,
it suffices to prove that there are Hamilton paths from ug to vy, from ue to u.,,, and
from vo to v, for m = 2,4,...,n — 1 since both (ugu;...up—1)(vev1...vs—1) and
(uo)(vo)(u1un—1)(U2Un-2)... (vg_;ivgz-_x) are automorphisms of GP(n,3).

Case 1. There is a Hamilton path from ug to v,, for m =2,4,...,n = 1.

Note that if n # 3(mod 6), then ged(n,3) = 1. We know that there are Hamilton
paths from ug to v, and vy, respectively by Lemma 5.4.

Subcase 1.1. n = 1(mod 6).
(i) m = 0(mod 6).

In this case, n — m > 1 and m > 6. For m = 6,n = 7, a Hamilton path from u,
to v in GP(7,3) is given in Figure 5.1a. For m = n — 1, successive Type A insertions
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(1]
b

V/’

(a)

Figure 5.2: A Type B and a Type C insertions

in Figure 5.1a starting at u; = u, give a Hamilton path from ug to v,—; in GP(n,3).

In fact, we need =< Type A insertions. Figure 5.1 shows one Type A insertion in

6
GP(7,3).

Let n —m > 7. Then n > 13. A Hamilton path from u to ve in GP(13,3) is
given in Figure 5.2a.

Let m = 6h and m < n —1. Then n > 13. Successive h — 1 Type B insertions
starting at u; = u; in Figure 5.2a give a Hamilton path P from ug to vn, in GP(6(h —
1) +13,3). Followed by successive 1'—'—6—@;—153 Type C insertions based on P starting
at it =m+4in GP(6(h—1)+13,3) give a Hamilton path from ug to v, in GP(n,3),
for all n = 1(mod 6). Figure 5.2 shows one Type B insertion and one Type C insertion

in GP(13,3).
Remark. The proof in (i) indicates the general strategy we follow.
1. Find a small graph for which it is easy to perform the insertions.

2. Find two types of insertions and the inserting points such that the insertion
preserves the local property of the inserting points, that is, we can perform the next
insertion after each insertion.

In order to simplify the proof, we indicate only the above two steps. We do not
give the figures as in (i) since it is easy to draw a figure following the description.

(i1) m = 2(mod 6).
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In this case, n —m > 5 and m > 2. If m = 2, then we are done by Lemma 5.4.
So assume that m > 8. Then n > 13. A Hamilton path from uo to vs in GP(13,3) is

given in Figure 5.3a.

One type of insertion is a Type D starting at : = 4. The other is a Type E starting
atz=m+ 3.

(iii) m = 4(mod 6).

In this case, n — m > 3 and m > 4. If m = 4, we are done by Lemma 5.4. So
assume that m > 10 and hence n > 13. A Hamilton path from up to v, in GP(13,3)
is given in Figure 5.3b.

One type of insertion is a Type F starting at : = 3. The other is a Type G starting
at 1 =m+ 2.

Subcase 1.2. n = 3(mod 6).
(i) m = 0(mod 6).

We have that m > 6 and n — m > 3. A Hamilton path from ug to vs in GP(9,3)
is given in Figure 5.3c. A sequence of Type B insertions starting at : = 3 gives a
Hamilton path from ug to v,—3 in GP(n,3) for all n = 3(mod 6).

We may assume n —m > 9. A Hamilton path from u, to ve in GP(15,3) is given
in Figure 5.3d.

One type of insertion is a Type B starting at : = 3. The other is a Type H starting
at e =m+ 2.

(1) m = 2(mod 6).

In this case, n ~ m > 1 and m > 2. We have n > 9. A Hamilton path from ug to
vg in GP(9,3) is shown in Figure 5.3e. A sequence of Type B insertions starting at
1 =1 gives 2 Hamilton path from ug to v,—1 in GP(n,3) for all n = 3(mod 6).

We may assume that n — m > 7. A Hamilton path from ug to v; in GP(9,3)
is given in Figure 5.3f. A sequence of Type I insertions starting at ¢ = 5 gives a
Hamilton path from ug to v2 in GP(n,3) for all n = 3(mod 6).

Let m > 8. A Hamilton path from ug to vs in GP(15,3) is given in Figure 5.3g.

One type of insertion is a Type A starting at ¢ = 2. The other is a Type I starting
at t = m+ 3.
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(iii) ' = 4(mod 6).

In this case, m > 4 and n — m > 5. A Hamilton path from up to v4 in GP(9,3)
is given in Figure 5.3h. A sequence of Type E insertions starting at i = 6 gives a
Hamilton path from wug to vy in GP(n,3) for all n = 3(mod 6).

We may assume m > 10. A Hamilton path from ug to v1o in GP(15,3) is given in
Figure 5.31.

One type of insertion is a Type A starting at i = 6. The other is a Type E starting
at i =m+ 2.

Subcase 1.3. n = 5(mod 6).
(1) m = 0(mod 6).

In this case, m > 6 and n — m > 5. A Hamilton path from ug to ve in GP(11,3)
is given in Figure 5.3].

One type of insertion is a Type B starting from ¢ = 1. The other is a Type I
starting from : = m + 2.

(ii) m = 2(mod 6).

In this case, we have that m > 2 and n — m > 3. By Lemma 5.4, we can assume
that m > 8. Then n > 13. A Hamilton path from ue to vs in GP(11,3) is given in
Figure 5.3k.

One type of insertion is a Type B starting at ¢ :== 1. The other is a Type G starting
atz=m+ 2.

(iii) m = 4(mod 6).

We have that m > 4 and n —m > 1. A Hamilton path from ug to vjo in GP(11, 3)
is given in Figure 5.31. A sequence of Type B insertions starting at z = 1 gives a
Hamilton path from ug to v,—; in GP(n,3) for all n = 5(mod 6).

Let m < n—1. Then m < n— 7. A Hamilton path from up to v4 in GP(11,3) is
given in Figure 5.4a.

One type of insertion is a Type J insertion followed by a sequence of Type B
insertions starting at ¢ = 1. The other is a Type G starting at : = m + 6.

Case 2. There is a Hamilton path from ug to u, form =2,4,...,n — 1.
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Subcase 2.1. n = 1(mod 6).
(i) m = 0(mod 6).

We have that m > 6 and n — m > 1. By Lemma 5.5, we can assume m < n — 1.
Then n —m > 7, and n > 13. A Hamilton path from ug to us in GP(13,3) is given

in Figure 5.4b.

One type of insertion is a Type E starting at : = 2. The other is a Type D starting
att=m+2

(i) m = 2(mod 6).

We have that m > 2 and n — m > 5. A Hamilton path from ug to u; in GP(7,3)
is given in Figure 5.4c.

One type of insertion is a Type G starting at ¢ = 1. The other is a Type J insertion
followed by a sequence of Type B insertions starting at : = m + 1.
(iii) m = 4(mod 6).

In this case, m > 4 and n — m > 3. A Hamilton path from ug to u4 in GP(7,3)
is shown in Figure 5.4d. A sequence of Type K insertions starting at : = 1 gives a
Hamilton path from wug to u,_3 in GP(n,3) for all n = 1(mod 6).

We may assume n —m > 9. A Hamilton path from u, to us in GP(13,3) is given
in Figure 5.4e.

One type of insertion is a Type K starting at ¢ = 1. The other is a Type A starting
att=m+ 2.

Subcase 2.2. n = 3(mod 6).
(i) m = 0(mod 6).

We have that m > 6 and n — m > 3. The smallest graph is GP(9,3). A Hamilton
path from ug to ug in GP(9,3) is given in Figure 5.4f. For m = n — 3, successive Type
I insertions starting at : = 3 give a Hamilton path from ug to u,—_3 in GP(n,3) for all
n = 3(mod 6).

Now let m < n—9. Then n > 15. A Hamilton path from us to ug in GP(15,3) is
given in Figure 5.4g.
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One type of insertion is a Type I starting at : = 3. The other is a Type J insertion
followed by a sequence of Type B insertions starting at ¢ = m + 5.

(i1) m = 2(mod 6).

In this case, m > 2 and n — m > 1. By Lemma 5.5, we can assume m < n — 1.
Then n —m > 7. A Hamilton path from up to u; in GP(9,3) is given in Figure 5.4h.

One type of insertion is a Type G starting at : = 1. The other is a Type B starting
atz=m+ 1.

(iii) m = 4(mod 6).

In this case, we have m > 4 and n — m > 5. A Hamilton path from wug to u4 in
GP(9,3) is given in Figure 5.4i. A sequence of Type I insertions starting at : = |
gives a Hamilton path from ug to u,_s in GP(n,3) for all n = 3(mod 6).

Let n —m > 11. A Hamilton path from ug to u4 in GP(15,3) is given in Figure
5.4j.

One type of insertion is a Type I starting at : = 1. The other is a Type D starting
at t =m+6.

Subcase 2.3. n = 5(mod 6).
In this case, we assume n > 11 because if n = 5, it is the Petersen graph!
(i) m = 0(mod 6).

We have that m > 6 and n —m > 5. A Hamilton path from ug to ug in GP(11,3)
is given in Figure 5.4k.

One type of insertion is a Type C starting at z = 2. The other is a Type A starting
at 1 =m+ 2.

(11) m = 2(mod 6).

We have that m > 2 and n—m > 3. A Hamiiton path from u, to u, in GP(11,3) is
given in Figure 5.41. One Type J insertion followed by a sequence of Type B insertions
starting at ¢ = 7 give a Hamilton path from ug to u, in GP(n,3) for all n = 5(mod

6).

We may assume m > 8. A Hamilton path from ug to ug in GP(17,3) is given in
Figure 5.5a.
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One type of insertion is a Type H starting at ¢ = 4. The other is a Type J insertion
followed by a sequence of Type B insertions starting at z = m + 5.

(i1i) m = 4(mod 6).

We have that m > 4 and n — m > 1. We can assume m < n — 1 by Lemma 5.4.
Then n —m > 7 and n > 11. A Hamilton path from ug to u4 in GP(11,3) is given in
Figure 5.5b.

One type of insertion is a Type [ starting at : = 1. The other is a Type J insertion
followed by a sequence of Type B insertions starting at : = m + 1.

Case 3. There is a Hamilton path from vg to v,, form =2,4,...,n - 1.
Subcase 3.1. n = 1(mod 6).
(i) m = 0(mod 6).

We have m > 6 and n — m > 1. A Hamilton path from vg to ve in GP(7,3) is
given in Figure 5.5¢c. For m = n — 1, successive Type E insertions starting at : = 3
give a Hamilton path from vg to v,_; in GP(n,3) for all » = 1(mod 6).

Let m <n—7. Then n > 13. A Hamilton path from vy to ve in GP(13,3) is given
in Figure 5.5d.

One type of insertion is a Type E starting at : = 3. The other is a Type B starting
at 1 =m+ 2.

(ii) m = 2(mod 6).

In this case, m > 2 and n —m > 5. A Hamilton path from vy to v, in GP(7,3) is
VoUoUeUeU3U3U2UI V1 Vg U4UsUsV2. A Hamilton path from vg to v in GP(13,3) 1s given
in Figure 5.5e. For m = 2, successive Type D insertions starting at : = 7 give a
Hamilton path from v to ve in GP(n,3) for all n = 1(mod 6).

We may assume m > 8. A Hamilton path from vg to vs in GP(13,3) is given in
Figure 5.5f.

One type of insertion is a Type C starting at 1 = 3. The other is a Type F starting
at1=m+2.

(i1i) m = 4(mod 6).
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We have m > 4 and n — m > 3. By Lemma 5.5, we may assume n — m > 9.
A Hamilton path from vp to v4 in GP(13,3) is given in Figure 5.5g. For m =
successive Type I insertions starting at i = 6 give a Hamilton path from v to v, in

GP{n,3) for all n = 1(mod 6).
Let m > 10. A Hamilton path from vg to v30 in GP(19, 3) is given in Figure 5.5h.

One type of insertion is a Type H starting at ¢ = 3. The other is a Type F starting
atz=m+2.

Subcase 3.2. n = 3(mod 6).
(1) m = 0(mod 6).

We have m > 6 and n — m > 3. By Lemma 5.5, we may assumen —m > 9. A
Hamilton path from vy to v in GP(15,3) is given in Figure 5.5i.

One type of insertion is a Type E starting at = 2. The other is a2 Type D starting
at z =m+ 3.
(i1) m = 2(mod 6).

We have that m > 2 and n —m > 1. A Hamilton path from vg to vg in GP(9,3) is
given in Figure 5.5]. Successive Type C insertions starting at 2 = 3 give a Hamilton
path from vg to v,—; in GP(n,3) for all n = 3(mod 6).

Let n—m > 7. A Hamilton path from vg to v2 in GP(9,3) is given in Figure 5.5k.
Successive Type L insertions starting at : = 5 give a Hamilton path from v to v, in

GP(n,3) for all n = 3(mod 6).
Let m > 8. A Hamilton path from v to vg in GP(15,3) is given in Figure 5.5]

One type of insertion is a Type C starting at 2 = 3. The other is a Type F starting
att=m+ 2.

(i11) m = 4(mod 6).

We have that m > 4 and n —m > 5. A Hamilton path from vy to vg in GP(9,3) is
given in Figure 5.6a. Successive Type B insertions starting at z = 6 give a Hamilton
path from vy to v4 in GP(n,3) for all n = 3(mod 6).

We may assume m > 10. A Hamilton path from vg to vy in GP(15,3) 1s given in
Figure 5.6b.
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One type of insertion is a Type E starting at ¢ = 3. The other is a Type B starting
atz=m+ 2.

Subcase 3.3. n = 5(mod 6).
In this case, we assume n > 11 since GP(5,3) is the Petersen graph.
(i) m = 0(mod 6).

We have m > 6 and n — m > 5. A Hamilton path from v to vg in GP(11,3) is
given in Figure 5.6¢c. For m = n — 5, one Type M insertion starting at : = 1 followed
by a sequence of Type H insertions starting at : = 4 give a Hamilton path from v, to
Un-s in GP(n,3) for all n = 5(mod 6).

Let m < n — 3. A Hamilton path from vy to ve in GP(17,3) is given in Figure
5.6d.

Use one Type M inseriion starting at : = 1 followed by a sequence of Tvpe H
insertions starting at 7 = 4. The other is a Type D starting at : = m + 3.

(ii) m = 2(mod 6).

We have m > 2 and n — m > 3. A Hamilton path from vp to v; in GP(11,3)
is given in Figure 5.6e. A sequence of Type B insertions starting at z = 8 gives a
Hamilton path from v to vz in GP(n,3) for all n = 5(mod 6).

Let m > 8. By Lemma 5.5, we may assume n —m > 9. A Hamilton path from v,
to vg in GP(17,3) is shown in Figure 5.6f.

One type of insertion is a Type C starting at : = 4. The other is a Type A starting
ati=m+3.

(111) m = 4(mod 6).

We have m > 4 and n — m > 1. A Hamilton path from vp to v10 in GFP(11,3) is
given in Figure 5.6g. Successive Type H insertions starting at : = 4 give a Hamilton
path from vy to vn—; in GP(n,3) for all n = 5(mod 6).

We may assume n — m > 7. A Hamilton path from vg to v4 in GP(11,3) is given
in Figure 5.6h. Successive Type F insertions starting at 1 = 6 give 2 Hamilton path
from vy to v4 in GP{n,3) for all n = 5(mod 6).

Let m > 10. A Hamilton path from v to vy in GP(17,3) is given in Figure 5.6i.
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One type of insertion is a Type H starting at : = 3. The other is a Type F starting
atz=m+ 2.

This completes the proof of 1.
Proof of 2. The neccessity is easy to see from Theorem 5.1 and Theorem 5.3.

To prove the sufficiency, recall that a bipartition of GP(n,3) is

X= {UOau21-"su2is---1un~2,vlav3v'"1v'2j+l)"'7vn—l}a

and

Y = {u11u31"'2u2j+11~‘ <y Un-1,Y0,02,-.-,02,--. 1vﬂ—2}-

By the same reason as in the proof of 1 and by Lemma 5.5, we need only prove that

there are Hamilton paths in GP(n,3) from ug to vy, for m = 2,4,...,n—2, and from
ug to u,, form = 3,5,...,n—3, and from vg to v, for m = 1,3,...,n—1, respectively.
Case 1 There are Hamilton paths in GP(n,3) from ug to vy, form = 2,4,...,n-2.

Subcase 1.1. n = 0(mod 6).
In this case, we can assume n > 12 since GP(6,3) is not 3-regular.
(1) m = 0(mod 6).

We have m > 6 and n — m > 6. A Hamilton path from ug to vs in GP(12,3) is
given in Figure 5.6).

One type of insertion is a Type K starting at : = 1. The other is a Type D starting
atz1=m+ 3.

(i) m = 2(mod 6).

We have m > 2 and n — m > 4. A Hamilton path from ug to v; in GP(12,3) is
given in Figure 5.6k. Successive Type C insertions starting at z = 9 give a Hamilton

path from ug to v, in GP(n,3) for all n = 0(mod 6).

We may assume m > 8. A Hamilton path from ug to v in GP(12,3) is given in
Figure 5.61. Successive Type I insertions starting at i = 3 give a Hamilton path from
up t0 vp_4 in GP(n,3) for all n = 0(mod 6).

Let m < n —4. A Hamilton path from up to vg in GP(18,3) is given in Figure
H.7a.
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One type of insertion is a Type I starting at : = 3. The other is a Type F starting
at i1 =m+2.

(iii) m = 4(mod 6).

We have m > 4 and n — m > 2. A Hamilton path from ug to vy in GP(12,3) is
given in Figure 5.7b. Successive Type F insertions starting at ¢ = 2 give a Hamilton
path from g to v,—; in GP(n,3) for all n = 0(mod 6).

Let m < n —2. Then n —m > 8. A Hamilton path from u to v4 in GP(12,3) is
given in Figure 5.7c. Successive Type C insertions starting at : = 9 give a Hamilton
path from wg to v4 in GP(n,3) for all n = ((mod 6).

Let m > 10. A Hamilton path from up to vy in GP(18, 3) is given in Figure 5.7d.

One type of insertion is a Type D starting at z = 2. The other is a Type C starting
atz =m+5.

Subcase 1.2. n = 2(mod 6).
(i) m = 0(mod 6).

We have m > 6 and n —m > 2. A Hamilton path from ug to vs in GP(8,3) is
given in Figure 5.7e. Successive Type L insertions starting at : = 1 give 2 Hamilton
path from g to v,—» in GP(n,3) for all n = 2(mod 6).

Let n —m > 8. Then n > 14. A Hamilton path from ug to vs in GP(14,3) is
given in Figure 5.7f.

One type of insertion is a Type K starting at = 2. The other is a Type D starting
at t=m+35.

(ii) m = 2(mod 6).

We have m > 2 and n —m > 6. A Hamilton path from u, to v, in GP(8,3)
is given in Figure 5.7g. A sequence of Type C insertions starting at 7 = 5 gives a
Hamilton path from ug to v; in GP(n,3) for all n = 2(mod 6).

2 Then + 1 A Hamiltan
Let m>8 Thenn>14. AH 1t

Figure 5.7h.

GP(14,3) is given in

One type of insertion is a Type B starting at : = 1. The other is a Type C starting
atr=m+ 3.
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(iii) m = 4(mod 6).

We have m > 4 and n — m > 4. Since (uo)(vo)(ulun_l)(vlvn-l)---(u§_,u§+,)
(va—1vz41)(uz)(vz) is an automorphism interchanging v._4 and vs and there is a
Hamilton path joining ug to v4 (by Lemma 5.4), we may assume m < n — 4. Then
n > 14.

A Hamilton path from ug to v4 in GP(14,3) is given in Figure 5.7i.

One type of insertion is a Type K starting at ¢ = 1. The other is a Type A starting
at z = m+4 3.

Subcase 1.3. n = 4(mod 6).
(i) m = 0(mod 6).

We have that m > 6 and n—m > 4. Since (uo)(vo)(urtn-1)(v1vn-1) - (u.;._lu;H)
(vz-1vz41)(uz)(vz) is an isomorphism interchanging v,-4 and v4 and there is a Hamil-
ton path joining ug to v4 (by Lemma 5.4), we may assume m < n — 4. Then n > 16.

A Hamilton path from ug to ve in GP(16,3) is shown in Figure 5.7j. Successive
Type D insertions starting at ¢ = 9 give a Hamilton path from ug to v in GP(n,3J)
for all n = 4(mod 6).

We may assume m > 12. A Hamilton path from ug to vy2 in GP(22,3) is given in
Figure 5.7k.

One type of insertion is a Type H starting at = 5. The other is a Type D starting
att=m+3.
(i1) m = 2(mod 6).

In this case, n — m > 2. Since there is an isomorphism interchanging v,_, and
vz and there is a Hamilton path joining ug to v2 (by Lemma 5.4), we may assume
m<n—2and m> 8. Then n > 16. A Hamilton path from ue to vg in GP(16,3) is
given in Figure 5.71.

One type of insertion is a Type A starting at : = 2. The other is a Type C starting
at:=m+4.

(111) m = 4(mod 6).

We have m > 4 and n — m > 6. A Hamilton path from ug to v4 in GP(10,3) is
given 1n Figure 5.8a.
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One type of insertion is a Type B starting at ¢ = 1. The other is a Type C starting
at : = m + 3.

Case 2 There is a Hamilton path from ug to u,, for m = 3,5,...,n — 3.
Subcase 21 n = 0(mod 6).

In this case, n > 12.

(i) m = 1(mod 6).

We have m > 7 and n — m > 5. A Hamilton path from ug to u7 in GP(12,3) is
given in Figure 5.8b.

One type of insertion is a Type D starting from z = 2. The other is a Type C
starting at : = m + 2.

(i1) m = 3(mod 6).

We have m > 3 and n—m > 3. A Hamilton path from ug to uz in GP(12,3) is given
in Figure 5.8¢. Successive Type I insertions starting at : = 4 give a Hamilton path from
ug to uz in GP(n,3) for alln = 0(mod 6). But (uo)(vo)(urttn—1)(v1vn-1)- - (uz-1uz41)
(vg-1vg+1)(ug)(vz) is an isomorphism interchanging u,-3 and u3, there is 2 Hamilton
path from ug to u,—3 in GP(n,3) for all n = 0(mod 6).

Let m > 9 and m < n —3. A Hamilton path from ug to ug in GP(18,3) is given
in Figure 5.8d.

One type of inser‘ion is a Type D starting at : = 4. The other is a Type I starting
ati=m+ 1.

(i11) m = 5(mod 6).

We have m > 5 and n — m > 1. By Lemma 5.5, we can assume m < n — 1, and
hence m < n—7. A Hamilton path from ug to us in GP(12,3) is given in Figure 5.8e.

One type of insertion is a Type J insertion followed by a sequence of Type B
insertions starting at 2 = 1. The other is a Type C starting at : = m + 4.

Subcase 2.2. n = 2(mod 6).
(1) m = 1(mod 6).

In this case, m > 1,n—m > 1. We may assume m > 7,n—m > 7 by Lemma 5.5.
Then n > 14. A Hamilton path from ug t-- u7 in GP(14,3) is given in Figure 5.8f.
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One type of insertion is a Type K starting at : = 1. The other is a Type D starting
at t=m+4.

(ii) m = 3(mod 6).

We have m > 3 and n —m > 5. A Hamilton path from ug to u; in GP(8,3) is
given in Figure 5.8g.

One type of insertion is a Type G starting at = 2. The other is a Type J insertion
followed by a sequence of Type B insertions starting at : = m + 1.

(iii) m = 5(mod 6).

We have m > 5 and n — m > 3. A Hamilton path from ug to us in GP(8,3) is
given in Figure 5.8h.

One type of insertion is a Type J insertion followed by a sequence of Type 1
insertions starting at z = 1. The other is a Type G starting at 7 = m + 2.

Subcase 2.3. n = 4(mod 6).
(1) m = 1(mod €).

We have that m > 7 and n —m > 3. A Hamilton path from ug to us in GP(10,3)
is given in Figure 5.8i. Successive Type I insertions starting at : = 1 give a Hamilton
path from ug to up_3 in GP(n,3) for all n = 4(mod 6).

Let m < n — 3. A Hamilton path from ug to u; in GP(16,3) is given in Figure
5.8j.

One type of insertion is a Type I starting at ¢ = 1. The other is a Type D starting
at 1 = m+4.

(ii) m = 3(mod 6).

We have that m > 3 and n — m > 1. By Lemma 5.5, we may assumen —m > 7.
A Hamilton path from ug to u3 in GP(10,3) is given in Figure 5.8k. Successive Type
I insertions starting at ¢ = 4 give a Hamilton path from ug to uz in GP(n,3) for all
n = 4(mod 6).

Let m > 9. A Hamilton path from ug to ug in GP(16,3) is given in Figure 5.8].

One type of insertion is a Type D starting at ¢ = 4. The other is a Type I starting
att=m+ 1.
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(iii) m = 5(mod 6).

We have m > 5 and n —m > 5. A Hamilton path from ug to us in GP(10,3) is
given in Figure 5.9a.

One type of insertion is a Type L starting at : = 2. The other is a Type H starting
att=m+1.

Case 3 There is a Hamilton path from v to v, for m =1,3,...,n — 1.
Subcase 3.1. n = 0(mod 6).

In this case, n > 12.

(i) m = 1(mod 6).

We have m > 1 and n — m > 5. A Hamilton path from v to v; in GP(12,3) is
given in Figure 5.9b. Successive Type E insertions starting at : = 4 give a Hamilton
path from vy to vy in GP(n,3) for all n = 0(mod 6).

Let m > 1. Then m > 7. A Hamilton path from vy to v7 in GP(12,3) is given in
Figure 5.9c. One Type M insertion at 7 = 8 followed by successive Type H insertions
starting at ¢ = 11 give a Hamilton path from v, to vz in GP(n,3) for all n = 0(mod

6).
Let m > 13. A Hamilton path from vg to v;3 in GP(18,3) is given in Figure 5.9d.

One type of insertion is a Type F starting at : = 2. The other is a Type M insertion
at ¢ = ri: + 1 followed by a sequence of Type H insertions starting at z = m + 4.
(i) m = 3(mod 6).

We have m >3 and n—m > 3. If m = 3, or n — 3, then vy and v,, are adjacent
in GP(n,3) and hence there is a Hamilton path joining them in GP(n,3) by Lemma
5.5. Let n —m > 9 and m > 9. A Hamilton path from vg to ve in GP(18,3) is given
in Figure 5.9e.

One type of insertion is a Type H starting at : = 2. The other is a Type B starting
at z =m+6.

(iii) m = 5(mod 6).

We have m > 5 and n — m > 1. A Hamilton path from vo to vy; in GP(12,3) is
given in Figure 5.9f. One Type M insertion at : = 1 followed by succesive Type H
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insertions starting at 7 = 4 give a Hamilton path from v to v,_, in GP(n,3) for all
n = 0(mod 6).

Let m < n —1. Then n —m > 7. A Hamilton path from vy to vs in GP(12,3)
is given in Figure 5.9g. A sequence of Type B insertions starting at 7 = 7 gives a
Hamilton path from vy to vs in GP(n,3).

Let m > 11. A Hamilton path from vg to vy 1n GP(18,3) is given in Figure 5.9h.

One type of insertion is a Type H starting at : = 3. The other is a Type B starting
at 1 =m+ 2.

Subcase 3.2. n = 2(mod 6).
(i) m = 1(mod 6).

We have m > 1 and n—m > 1. A Hamilton path from v to vy in GP(8,3) is given
in Figure 5.9i. A sequence of Type A insertions starting at ¢ = 4 gives a Hamilton path
from vg to v; in GP(n,3) for all n = 2(mod 6). Since (uo)(vo)(u1un—1)(V1Vn-1)- -
(uz—1up41)(vz-1v241)(ug)(ve) is an automorphism interchanging v,-1 and v;, we
also have that there is a Hamilton path from vy to v,—; in GP(n,3) for n = 2(mod

6).

Let m > 1and n —m > 7. Then m > 7. A Hamilton path from vy to v7 in
GP(14,3) is given in Figure 5.9j.

One type of insertion is a Type A starting at 2 = 3. The other is a Type K starting
at z=m+4.

(ii) m = 3(mod 6).

We have m > 3 and n — m > 5. Since vg and v3 are adjacent, we may assume
m > 9 by Lemma 5.5. A Hamilton path from v to ve in GP(14,3) is given in Figure
5.9k.

One type of insertion is a Type H starting at « = 2. The other is a Type F starting
ati=m+2.

(iii) m = 5(mod 6).

We have m > 5 and n — m > 3. Since vg is adjacent to v,_3 in GP(n,3), by
Lemma 5.5, we can assume that n —m > 9. Then n > 14. A Hamilton path from vo
to vs in GP(14,3) is given in Figure 5.91.
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One type of insertion is a Type B starting at : = 2. The other is a Type C starting
at 1 =m + 3.

Subcase 3.3. n = 4(mod 6).
(i) m = 1(mod 6).

We have m > 1 and n — m > 3. A Hamilton path from vy to v; in GP(10,3) is
given in Figure 5.10a. Successive Type L insertions starting at : = 5 give a Hamilton
path from vy to v; in GP(n,3) for all n = 4(mod 6).

Let m > 7. Since v,_3 is adjacent to vg, by Lemma 5.5, we may assume m < n—9.
A Hamilton path from v to vz in GP(16,3) is given in Figure 5.10b.

One type of insertion is a Type K starting at ¢ = 3. The other is a Type F starting
at t =m+ 2.

(1) m = 3(mod 6).

We have m > 3 and n — m > 1. A Hamilton path from vo to vg in GP(10,3) is
given in Figure 5.10c. Successive Type L insertions starting at : = 5 give a Hamilton
path from vo to v,_; in GP(n,3) for all n = 4(mod 6).

Let m < n—1. Then n ~m > 7. By Lemma 5.5, we may assume m > 9. A
Hamilton path from vg to vg in GP(16,3) is given in Figure 5.10d.

One type of insertion is a Type D starting at : = 3. The other is a Type E starting
att=m42.

(iii) m = 5(mod 6).

We have m > 5 and n — m > 5. A Hamilton path from vg to vs in GP(10,3) is
given in Figure 5.10e. One Type M insertion at ¢ = 6 followed by a sequence of Type
H insertions starting at ¢ = 9 give a Hamilton path from vg to vs in GP(n,3) for all
n = 4(mod 6).

Let m > 11. Then n > 16. A Hamilton path from v, to vy; in GP(16,3) is given
in Figure 5.10f.

One type of insertion is a Type I starting at i = 2. The.other is a Type B starting
atz=m+2.

Combining all the cases, we have finished the proof of the theorem. N
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53 GP(n,2)

Theorem 5.7 If ged(n,2) = 1, then GP(n,2) is Hamilton-connected except for n =
5(mod 6).

Proof. We divide the proof into several cases.

Case 1 There are Hamilton paths from ug to vy, va,...,vn-1, respectively. As
shown in the begining of Theorem 5.6, we need only prove that there is a Hamilton
path from ug to vy, for m=1,3,...,n— 2.

By Lemma 5.4, there is a Hamilton path from g to each of vy, v3. So some of the
time we can assume m > 3.

Subcase 1.1. n = 1(mod 6).
(i) m = 1{mod 6).

We have n — m > 6. We can assume m > 7. A Hamilton path from ug to v; in
G P(13,2) is given in Figure 5.10g.

One type of insertion is a Type N starting at : = 1. The other is a Type O
insertion starting at : = m + 5 followed by a sequence of Type R insertions starting
at 1 =m+8.

(i1) m = 3(mod 6).

We have n — m > 4. We may assume m > 9 by Lemma 5.4. A Hamilton path
from ug to ve in GP(13,2) is given in Figure 5.10h.

One type of insertion is a Type N starting at ¢ = 2. The other is a Type P
insertion starting at z = m + 3 followed by a sequence of Type R insertions starting
at 2 = m+ 6.

(iii) m = 5(mod 6).

We have m > 5 and n — m > 2. A Hamilton path from ug to vs in GP(7,2) is
given in Figure 5.10i. Successive Type Q insertions starting at ¢ = 3 give a Hamilton
path from ug to v,_s in GP(n,2) for all » = 1(mod 6).

Let m < n — 2. A Hamilton path from up to vs in GP(13,2) is given in Figure
5.10j.
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One type of insertion is a Type Q starting at ¢ = 3. The other is a Type R starting
atz =m+ 4.

Subcase 1.2. n = 3(mod 6)
(i) m = 1(mod 6).

We may assume m > 7 by Lemma 5.4. A Hamilton path in GP(9,2) from ue
to v7 is given in Figure 5.10k. Successive Type N insertions starting at : = 1 give a
Hamilton path from ug to vn—; in GP(n,2) for all n = 3(mod 6).

We may assume m < n — 2. A Hamilton path from u; to v; in GP(15,2) is given
in Figure 5.101.

One type of insertion is a Type S starting at ¢ = 3. The other is a Type R starting
atz =m+ 4.

(ii) m = 3(mod 6).

We have m > 3 and n —m > 6. A Hamilton path from up to v3 in GP(9,2) is
given in Figure 5.11a.

One type of insertion is a Type Q starting at ¢ = 1. The other is a Type O
insertion starting at z = m + 5 followed by a sequence of Type R insertions starting

at z =m+ 8.
(iii) m = 5(mod 6).

We have m > 5 and n — m > 4. A Hamilton path from ug to vs in GP(9,2) is
given in Figure 5.11b.

One type of insertion is a Type N starting at ¢ = 2. The other is a Type P
insertion starting at : = m + 3 followed by a sequence of Type R insertions starting
atz =m+6.

Case 2 There are Hamilton paths from ug to uy,us,...,u,—1, respectively.

By the same reason as given in the begining of Theorem 5.6, we need only show
that up is joined by a Hamilton path to u,, for m =2,4,...,n — 1.

Subcase 2.1. n = 1(mod 6).

(i) m = 0(mod 6).
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In this case, m > 6, n — m > 1. By Lemma 5.5, we can assume that n — m > 7.
Then n > 13. A Hamilton path from ug to ug in GP(13,2) is given in Figure 5.11c.

One type of insertion is a Type T starting at ¢ = 3. The other is Type N starting
at 7 = m + 4.

(i1) m = 2(mod 6).

A Hamilton path from ug to uz in GP(7,2) is given in Figure 5.11d. A sequence of
Type S insertions starting at z = 4 gives a Hamilton path from ug to uy in GP(n,2)
for all n = 1(mod 6).

Assume m > 8. Then n > 13. A Hamilton path from ug to ug in GP(13,2) is
given in Figure 5.11e.

One type of insertion is a Type S starting at z = 3. The other is a Type O insertion
starting at ¢ = m +4 followed by a sequence of Type R insertions starting at : = m+7.

(1ii) m = 4(mod 6).

A Hamilton path from ug to uy in GP(7,2) is given in Figure 5.11f. A sequence
of Type T insertions starting at : = 1 gives a Hamilton path from o to u,_3 for all
n = 1(mod 6).

We may assume m < n — 3. A Hamilton path from ug to u4 in GP(13,2) is given
in Figure 5.11g.

One type of insertion is a Type T starting at ¢ = 1. The other is a Type S starting
at t =m+6.

Subcase 2.2. n = 3(mod 6).
(i) m = 0(mod 6).

We have m > 6 and n — m > 3. A Hamilton path from ug to ue in GP(9,2) is
given in Figure 5.11h.

One type of insertion is a Type S starting at i = 3. The other is a Type O insertion
starting at ¢ = m+2 followed by a sequence of Type R insertions starting at 1 = m+5.

(i1) m = 2(mod 6).

We have m > 2 and n — m > 1. Since ug and u,-; are adjacent, we may assume
that m < n — 1. A Hamilton path from ug to u, in GP(9,2) is given in Figure 5.11i.
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A sequence of Type S insertions starting at ¢ = 6 gives a Hamilton path from u, to
u, for all n = 3(mod 6).

Let m > 8. A Hamilton path from wug to ug in GP(15,2) is given in Figure 5.11j.

Cne type of insertion is a Type R starting at ¢ = 1. The other is a Type S starting
at : =m+ 4.

(iii) m = 4(mod 6).

We have m > 4 and n — m > 5. A Hamilton path from ug to uy in GP(9,2) is
given in Figure 5.11k.

One type of insertion is a Tvpe N starting at ¢ = 1. The other is a Type O
insertion starting at ¢ = m + 4 fc.iowed by a sequence of Type R insertions starting
atz=m+T.

Case 3 There are Hamilton paths from vy to each of vy, v,,...,v,_1. We need only
prove that there is a Hamilton path from vg to v,, for m =2,4,...,n — 1.

Subcase 3.1. n = 1(mod 6).
(i) m = 0(mod 6).

We have m > 6 and n — m > 1. A Hamilton path from vy to vs in GP(7,2) is
given in Figure 5.111. Successive Type S insertions starting at z = 2 give a Hamilton
path from vg to v,—; in GP(n,2) for all n = 1(mod 6).

A Hamilton path from v to v in GP(13,2) is given in Figure 5.12a.

One type of insertion is a Type T starting at 2 = 2. The other is a Type S starting
atz=m+2.

(i1) m = 2(mod 6).

We have m > 2 and n — m > 5. We may assume m > 8 by Lemma 5.5. Then
n > 13. A Hamilton path from vy to vg in GP(13,2) is given in Figure 5.12b. A

sequence of Type S insertions starting at 7 = 4 gives a Hamilton path from v to v,_s
for all n = 1(mod 6).

Let m < n — 5. A Hamilton path from v to vg in GP(19,2) is given in Figure
2.12¢.
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One type of insertion is a Type S starting at z = 4. The other is a Type T starting
atz=m+ 7.

(iii) m = 4(mod 6).

We have m > 4 and n — m > 3. A Hamilton path from vy to vy in GP(7,2) is
VoUaUa U3 U4 Us Vs U3V U UoUsUsty. A Hamilton path from vg to vye in GP(13,2) is given
in Figure 5.12d. A sequence of Type R insertion starting at : = 4 gives a Hamilton
path from vg to v,_3 in GP(n,2) for all n = I(mod 6). A Hamilton path from v, to
vy in GP(13,2) is given in Figure 5.12e. A sequence of Type S insertion starting at
¢ = 9 gives a Hamilton path from v to v4 in GP(n,2) for all n = 1(mod 6).

We may assume m > 10 and m < n — 3. A Hamilton path from vy to vy In
GP(19,2) is given in Figure 5.12f.

One type of insertion is a Type R starting at ¢ = 4. The other is a Type Q starting
atz=m+7.

Subcase 3.2. n = 3(mod 6).
(1) m = 0(mod 6).

A Hamilton path from v to vs in GP(9,2) is given in Figure 5.12g. A sequence of
Type T insertions starting at ¢ = 2 gives a Hamilton path from v to v,_3 in GP(n,2)

for all n = 3(mod 6).

Let m < n — 3. A Hamilton path from v to vg in GP(15,2) is given in Figure
5.12h.

One type of insertion is a Type T at 1 = 2. The other 1s a Type N starting at
t=m+6.

(1) m = 2(mod §).

We have m > 2 and n — m > 1. A Hamilton path from v to vg in GP(9,2) is
given in Figure 5.12i. Successive Type S insertions starting at ¢ = 4 give a Hamilton
path from vg to vn_; in GP(n,2) for all n = 3(mod 6).

Since vq is adjacent to-w,, we may assume that m > 8 by Lemma 5.5. A Hamilton

» - =1

path from v to vg in GP(15,2} is given in Figure 5.12j.

One type of insertion is a Type N at 1 = 5. The other is a Type R starting at
t=m+ 2.
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(iii) m = 4(mod 6).

A Hamilton path from vy to vg in GP’9,2) is given in Figure 5.12k. Successive
Type T insertions starting at : = 6 give a Hamilton path from v to v4 in G.7(n,2)
for all n = 3{mod 6}.

Let m > 10. A Hamilton path from vg to vy in GP(13,2) is given in Figure 5.12].

One type of insertion is a Type N at : = 5. The other is a Type T starting at
t=m+ 2.

This completes the proof. B

Remark. The requirment of ged(n,k) = 1 is important in Conjecture 1. For
example, GP(6,2} is hamiltonian, but it is not Hamilton-connected as there is no
Hamilton path joining up to u;! But for k = 3, we have proved that except for n = 5,
GP(n,3) is Hamilton-connected or Hamilton-laceable.
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Figure 5.5: Figure 5.5a - Figure 3.51
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Figure 5.9: Figure 5.9a - Figure 5.91
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Chapter 6

Hamilton Decompositions of C(2p, S)

6.1 Introduction

Definition 6.1 Let GG be aregular graph. It is said to have a Hamilton decomposition
(or to be Hamilton-decomposable) if either

(i) deg(G) = 2d and E(G) can be partitioned into d Hamilton cycles, or

(i1) deg(G) = 2d + 1 and E(G) can be partioned into d Hamilton cycles and a
perfect matching.

Many known Cayley graphs on abelizan groups are Hamilton-decomposable. This
led Alspach {5] to ask the following question:

Does every connected Cayley graph on an abelian group have a Hamilton decom-
posttion?

If the degree of the graph is 2, the answer is obviously yes. If the degree is 3, the
answer is again yes since such a graph has a Hamilton cycle. The case of degree 4
has been solved by J-C. Bermond, O. Favaron and M. Maheo [16] and the answer is

inl IT

again yes. The answer is also yes for degree 5 [10]. Here we write these results as a
theorem in the case when G is a circulant.

Theorem 6.1 If C(n,S) is a connected circulant of degree at most 5, then C'(n,S5)
is Hamilton-decomposable.
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The Hamilton decomposability of a graph some times depends on the Hamilton
decomposability of the cartesian product of two graphs.

Definition 6.2 The cartesian product G) X G; of G; and G, has vertex set V' (G;) x
V(G2) with {uq, u2) adjacent to (vy, v2) if and only if either u; = vy and u, is adjacent
to v in (G2 or uz = v, and u, is adjacent to v, in G,.

The strongest result about the Hamilton decomposability of cartesian products
was obtained by Stong [47] recently.

Theorem 6.2 If G; has a decomposition into ny Hamilton cycles and G, has a de-
composition into ny Hamilton cycles, ny < ng, then Gy, X G, has a Hamilton decom-
position if any one of the following is true:

(2) ng S 3711,
(i) ny > 3,
(i1t} G1 has an even number of vertices, or

(iv) v(G2) 2 622 3.

For a general class of vertex-transitive graphs, Alspach [2] proved that every con-
nected vertex-transitive graph of order 2p, p = 3(mod 4) and p a prime, has a Hamil-
ton decomposition.

It is expected that the same result holds for p = 1{mod 4) except for some special
cases. In section 2, we shall show that this is true for circulants.

6.2 Main Result

Let n = pq, where p and ¢ are distinct primes. Let S, = {mp : mp € §5},5, =
{mg:mge S}and S, = {s:5€ S,sisaunit of Z,}. Then 5 = S,US,US.,. Let
3 = {m:mpe€ S,} and %1 = {m : mq € S,}. We have the following decomposition

P £

result.

Lemma 6.3 C(pq, 5) = (C(p, 32) x C(g,2)) & C(pg, Su)-
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Proof. Consider X = C(pq, S, U S,). We partition Z,, into the left cosets of < p >,
that is, Z,, =< p>Ul+<p>U---U(p — 1)+< p > . On each coset i+< p >, the
induced subgraph X[i+< p >] is isomorphic to C(g, %ﬂ), for:=0,1,...,p— 1.

If there is an edge between i+< p > and j+< p > with symbol in S,, then there
is a perfect matching between i+< p > and j+< p > with the same symbol. The
edges with the same symbol in S, between the cosets consist of p-cycles.

There is at most one symbol which belongs to S, contributing to edges between
i+< p > and j+< p >. Otherwise, we will have j —1+mop,j —24+m,p € S, for some
mg and m,, mg # m;. This implies that 7 — i + mop = kog and 7 — i + myp = kyq for
some kg and k,. Therefore, (mg — m;)p = (ko — k1)q which is a contradiction.

fwelet {<p>,14<p>,...,(p—1)+< p >} be a vertex set and %‘1 be a symbol
set, we obtain a circulant C(p, %‘1) Clearly,

S S
Clpq, S, Sa) = C(o, ;q) x C(q, f)-

Therefore,

%)) @ C(pg, S.).

S,
C(W,S)%'(C(p,?")xc(q,—;

This completes the proof. B
For example, C(15,{3,6,5,12,9,10}) = C(3,{1,2}) x C(5,{1,2,3,4}).

Corollary 6.4 If p and q are odd primes, and 0 < |S5,| < |S,] < 3|S,| or |S,| > 6,
then C(pq,S) has a Hamilton decomposition.

Proof. The proof follows from Lemma 6.3 and Theorem 6.2. il
Theorem 6.5 C(2p,S) is Hamilton-decomposable.

Proof. Recall that S, = {mp : mp € S} and S; = {2m : 2m € S}. There are two
cases to consider.

Case 1. 5, #£ 0.

In this case, we have that S, = {p} and C(2, -‘?—f) = K,. Therefore,

S
C(2p, S) = (K2 x C(p, -23)) @ C(2p, S.)
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by Lemma 6.3.

If 5'2 # 0, let 51 = {a1,a3,...,8m,p— a1,...,p — an}. Take an m-matching of
C(p, %), say {(z1, y )s---s(Tm,Um)} such that y; — z; = a; or p — a;.

There are two parts in K, x C(p, 3 > 32), each of which is isomorphic to C(p, 22 =),
and there is a perfect matching between the two parts. We can label the vertices of
one part by {z1,23,...,%,}, and the other by {z},z5,...,z,}, such that (z;,z!) €
E(K; x C(p, —521))

Now we can give the Hamilton decomposition as follows. Let

H; = (Ea; — (x4, 3:)) U(E,, — (=5,90) U{(21,20), (95,90}

for: =1,2,...,m, where E_is theimage of E,, under the prime map. Then ea(,h H;is
a Hamilton cycle of Ky xC(p 52) and H; N H; = 0. What remains in I&oxC'(p, Jisa
perfect matching {(z1,%1),.-.,(Zm,ym)} U{(z},¥1), - - -, (2, ¥0) Y U{(zi, 2! (y,,J) :
t#1,2,...,m}.

If 5'2 = @, then C(2p,S) = E, & C(2p, S,). E, is a perfect matching of C(2p, 5).
C(2p, S.) is Hamilton- decomposable if S, # 0. We also have that C(2p, S) is Hamilton-
decomposable

Case 2. 5, =90.

Since C(2p, S) is connected, there is at least one a € S,. Themapa™' : C(2p, S) —
C(2p,a™'S) defined by a~(s) = a~'s for any s € Z,, is an isomorphism. So we can
assume that 1 € S.

Let S’ =S, — {1,—1}. Then we have that C(2p, S’) is Hamilton-decomposable if
S’ is nonempty, and C(2p, S) = C(2p, S U{—-1,1}) & C(2p, S’).

Let Y = C(2p, S2U{—1,1}). We partition Zz, into < 2 > and 14< 2 >. The
edges with symbols in S, induce subcirculants on < 2 > and 14+< 2 >, both of
which are isomorphic to C(p, §22) The edges with symbol 1 form two ‘parallel’ perfect
matchings between < 2 > and 14+< 2 >: one is {(0,1),(2,3),...,(2p — 2,2p — 1)},
denoted by M, and the other is {(2,1),(4,3),...,(2p — 1,0)}, denoted by M_,.

Let S; = {b, b2, ..., b, 2p — by,...,2p — by}, where by > by--- > b,,. To decom-
pose C(2p, S;1U{—1,1}) into Hamilton cycles, we need to find a special matching.

Claim. There is an m-matching My = {(z1,11),---,(Tm,¥m)} in X[< 2 >] such
that
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(1)0<z1<Za < < Ty < Ym < Ym-1 < - < Y2 <Y1

To prove the claim, let K, be a complete graph with vertex set Z,. Then M(0) =
{(1,p=1),(2,p = 2),---, (5>, &22)} is a near perfect matching of K.

Let 21\'/1(1)) = {(2- 2(17 - l))a (4a2(p - 2))’ ety (p - l,_D + l)}‘ Then
Mo =2M(p)[)E(X[< 2>])
has the required properties.

Let H! = E,, NE(X[< 2 >]). We know that Hy,..., H;, is a Hamilton decom-

‘position of X[< 2 >], and (z;,y:) € H!. Let H,Hj,...,H; be the corresponding
Hamilton decomposition of X[1+< 2 >]. Note also that (1 + z;,1 + ;) € H{'.
Now let
H; = (H! — (zi, y))JH = A+ 20,1+ 3)) U{ (20, 1 + 2), (93,1 + 90)}

fori =1,2,...,m. Then H; is a Hamilton cycle of C(2p, S; U{—1,1}), and H;NH; =
0,ifi .

The remaining edges are
Hm+1 = ﬂrd’o U(]. + Mo) U(JMI - {(Il, 1 + .’1,'1), ey (Im, 1 -+ .’L'm)}) U M_.l.

To show that H,4, is a Hamilton cycle of C(2p, 52 U{—1,1}), let 2’ = 1 + z. Then
C =0022...(¢;m — 1) Zomthm(¥m — 1) (ym = 1)(gm —2) - - . Yo 1T 1 (Tmo1 + 1) (Tm—1 +
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1Y . m2ym-2(ym—2— 1) (ym- 21} . .- Tiyayi 1 ¥ica¥iog¥iv2 - - - Vi i (T H ) (i +
Y. aisayira(ivz — D (gisz — 1) . czo(z2 — D) (z2 = 1) oxjgi(sn + 1) ... (p - 1)0
is a Hamilton cycle. But E(C) = Hn41 (see Figure 6.1) and therefore, H, 4, is a
Hamilton cycle and hence C{2p,S) is Hamilton-decomposable. This completes the

proof of the theorem.
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