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Abstract 

Mxture models are encountered in a wide range of real world phenomena. The com- 

plexity of the likelihood function of mixture models gives rise to difficulties in parameter 

An iterative scheme and the relevant software are developed to estimate the param- 

eters of a two parameter Weibull mixture population. 

Likelihood equations for Monte Carlo samples from Weibull mixture populations 

with poorly separated components were found to have more than one solution point; 

techniques are proposed to find these solution points. Each provided a very good fit to 

the data. 

The Cramkr-von Mises statistic is employed to test the goodness of fit of the fitted 

mixture model. The complexity of the mixture distribution function makes it impos- 

sible to find a closed form solution for the covariance kernel. Suggestions are made 

and software is developed to estimate the covariance of the asymptotic process and to 

find estimates for the eigenvalues of the covariance kernel. The p-values for the test 

statistic are computed using these estimates. The usual asymptotic theory releked to 

the distribution of the Cram&-von Pilises statistic is verified by a Monte Carlo study. 
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Chawter 1 

Int reduction 

Mixture density functions are an important area of statistics with a wide range of appli- 

cations. For example, in Biology, it is often required to measure a certain characteristic 

of a population consisting of individuals with different ages. The characteristic of inter- 

est may show a marked difference between individuals of different ages which is difficult 

to ascertain and thus gives rise to a mixtxe  population problem. 

Another important area is often met in Engineering where the observations are times 

to  failure of a sample of items. Often failures can occur for more than one reason and 

each cause of failure yields a subpopulation with an underlying distribution that can 

be estimated by an Exponential distribution or a Weibull Distribution. Therefore, the 

population as a whole can be treated as a mixture population. 

We begin our study with a discussion of the mixture problem from a mathematical 

point of view. In chapter 2, we discuss the problem of estimating the parameters of 

mixture populatioo, with special emphasis o ~ ,  mixtures of Weibull populations. We 

end chapter :' with a brief discussion of the problems encountered in the estimation % 

procedure due to the behaviour of the likelihood function. 

Chapter 3 is devoted to testing goodness of fit based on the Empirical Distribution 



Funct ion(EDF) Section 3.1 

provides an introduction to 

introduces the empirical distribution function. Section 3.2 

the EDF statistics. Section 3.3 briefly outlines how EDF 

statistics are used in testing goodness of fit. Distributional properties of tquadratic 

EDF statistics are discussed in section 3.4. For ease of exposition, we restrict our 

attention to the Cramkr-von Mises statistic. The complexity of the mixture distribution 

function makes it impossible to find the exact eigenvalues of the covariance kernel 

of the Gaussian process associated with the Cram&-von Mises statistic. Section 3.5 

introduces what we call the brute force approach to obtain estimates for the eigenvalues 

of the covariance kernel. Computational formulas for EDF statistics are presented in 

section 3.6. Computation of the p-values for the Cram&-von Mises statistic is discussed 

in section 3.7. In chapter 4, we present some applications of the procedure discussed in 

section 3.5. 

Chapter 5 is concerned with the software developed for the computation of p-values 

of the Cram&-von Mises statistic in Weibull mixture populations. 

In chapter 6 we describe a Monte Carlo study that was performed to test the ac- 

curacy of the asymptotic theory related to the distribution of the Cram&-von Mises 

statistic. 

Finally, a summary of our study and a discussion of the open problems related to 

this study are offered in chapter 7. 



Chapter 

Discussion of the mixture problem 

and estimation of 

parameters 

the unknown 

We often come across the problem of fitting a model to a population which is not 

homogeneous, but is made up of two or more sub-populations. The mixing proportions 

of the sub-populations may or may not be known but are treated as fixed. A finite 

mixture is one which consists of only a finite number of components and is the topic of 

interest here. 

Section 2.1 provides a description of the mixture problem from a mathematical point 

of view. Section 2.2 describes the notion of identifiability. In section 2.3 we discuss the 

problem of estimating the unknown parameters of mixture populations. Three iterative 

schemes proposed by Kaylan and Carl[lO] to estimate the unknown parameters of a 

mixture of two parameter Weibull distributions are also described in section 2.3. The 

problems that we encounter with the available iterative schemes motivated us to look for 

other possible iterative procedures. Section 2.4 summarises these problems. Section 2.5 

offers an alternative iterative scheme that we developed in this study for the above 



purpose. We end this chapter with a brief description of the behaviour of likelihood 

functions for samples from Weibull mixture populations. 

2.1 Mixture problem from a mathematical point 

of view 

In a more mathematical sense, we shall say that a random variable or vector X has a 

finite mixture distribution, if its distribution can be represented by a probability density 

function(or probability mass function in the case of discrete X) of the form, 

f(z) = plfl(x,&) i- pzfz(x.82) + ... + pkfk(x,&) where P, 2 0 i = 1 , 2 , . . . , k 7  

~ f = ~  p; = 1, and fi(.) >_ 0, J f,(x)dz = 1, i = 1,2, ..., k. The density f ( . )  is called the 

finite mixture density function. 

The parameters pl , p2, .. ., p k  are called the mixing weights and 

fl(-) ,  f2(.), ..., fk(.) the component densities of the mixture. 

Given a random sample from the mixture population, our interest is to decompose 

the mixture by estimating the unknown parameters, {ply P2, ..., pk,el, e2, ..., &) where 

el, 8,, ..., & are the vectors of parameters of each component distribution. Here k is the 

number of components that constitute the mixture. 

Mixture problems, with k and the families of the component distributions known, 

can basically be divided into two classes. 

1. The component distributions are completely known and only the proportion pa- 

- rameters pl,p2, ..., pk are to be estimated. 

2. The component distributions are known apart from the parameters 8,,@,, ...,&. 

In this case vectors of parameters e l ,  e2, ..., & and the proportion parameters 

pl,pz, ..., pk are to be estimated. It is noted that in this case, to be useful in 

4 



practice, k has to be a small number such as 2 and the fis have to be all members of 

some small parametric family such as the exponential, or normal, or two parameter 

Wei bull families. 

In this study we are concerned with the second class and from here onwards we will 

assume that k = 2, and each component density is a member of the two parameter 

Weibull family. 

So, in our problem of interest the mixture density can be written as, 

The mixing weights are pl = p and p2 = (1 - p) and each f; is a two parameter 

Weibull density; 

C; 5 - 5 0  cl-l 

fi(.,c;,0;) = - 0; l \ ) ti; 
exp {- (7) c') 

The parameters cl, c;! are called shape parameters and dl, B2 are called scale param- 

eters. The location parameters are assumed to be known and are further assumed to 

be the same for both components. 

2.2 Identifiability of the mixture 

Before moving on to the problem of estimating the parameters, it is important to discuss , 

the notion of "identifiabilityn. In general, the parametric family of probability density 

functions f ( z , ~ )  where 2 is the vector of unkown parameters, is said to be identifiable, 

if distinct values of a determine distinct members of the family. 

In a more mathematical sense we shall say that a class of finite mixture densi- 

ties is identifiable, if for any two members, f (x ,g)  = x?=, pi f,(x7si)? and f (x,') = 



1 f i )  f (x, a) f (x, a') if and only if k = k f ,  and we can permute the 

component labels so that p, = p , ~  and f,(x, 8,) r f (st%) (McLachlan and Basford [Is] .) 

It is important to consider the identifiability in practice because, without it. es- 

timation procedures are not likely to be well defined. Furthermore, identifiability is 

a necessary requirement for the usual asymptotic theory to hold for the estimation. 

(Titterington, Smith and Markov(1985) [18]). 

Now let us turn to  our problem of interest. We note that in the mixture density 

defined by equation 2.1, if we switch e l ,  g2 and p and (1 - p) accordingly we get the 

same density. Therefore, we can only estimate the parameters if we decide to say that 

the first population will be the one with the smaller shape parameter or if they have 

the same shape parameter, the first population will be the one with the smaller scale 

parameter. This convention identifies the parameters. 

Technically, also, part of the difficulty arises from the fact that when p is 0 or 1, 

then the corresponding - 8; is meaningless. 

2.3 Estimation of the unknown parameters 

In the literature, one can find several methods for estimating unknown parameters 

such as the method of moments, maximum likelihood estimation, Bayesian methods, 

graphical methods, method of weighted least squares etc. We will confine our attention 

to the method of maximum likelihood estimation. 

At this point we would like to mention that our interest in mixture problems was 

initiated by a problem that was brought to the consulting service in the Department 

of Mathematics and Statistics. That problem was lz case with grouped data. ?Ve will 

present the likelihood estimation procedure for ungrouped data first and touch briefly 

on grouped data. 

6 



Maximum Likelihood Estimation: 

We now describe the maximum likelihood estimation procedure briefly, The like- 

lihood function based on a sample of n observations from the mixture can be written 

where is the vector of unknown parameters. 

Basically, maximisation of L(g) with respect to 14 for given data Z, yields the maxi- 

mum likelihood estimate of Q. Equivalently, the quantity maximised is the log-likelihood 

function, 

which is also called the objective function. 

In estimation problems related to mixtures, one has to take into account a set of 

constiaints in addition to the objective function. For example: the mixing proportions 

pi's have to satisfy ;;he condition that, 0 < p; < 1. There may exist other constraints 

related to the parameters of sub-populations depending on the situation of interest. The 

constraints are generally of a linear type, and hence the maximum likelihood estimation 

problem can be formulated as a mathematical programming problem with a non linear 

objective function with linear constraints. 

Now we give a more detailed discussion of the maximum likelihood procedure for 

the estimation of five parameters of a two component mixture of two parameter Weibuli 

distributions. Equation 2.1 defines the mixture density function. This is the mixture 

that is used in the Monte Carlo study described in chapter 6. 

Case 1: Ungrouped data 

The likelihood function is, 



where p1 = p, p2 = (1 -p), I* = (cl, c2, 8I. 82, p) is the vector of unknown parameters 

and n is the number of observations in the sample. 

The constraints on the parameters are, 0 < p < 1: c; > 0 and 8, > 0 for i = 1,2. 

It is also rioted that in order to make the problem identifiable we have to impose other 

restrictions on the parameters such as cl 5 c2 and, if cl = cz then el < 02. 

Therefore, maximum likelihood estimation can be formulated as, 

max L ( g )  where, eT = (el, c2, 81,62, P )  and 
acS - 

S = (Q 1 0 < p < 1, c, > 0, 8; > 0 for  i = 1,2, CI 5 c2 and, if cl = c2 then O1 < 02) 

An estimate of the parameter vector is said to be a "feasible estimate", if it belongs 

to S .  The conditions which determine whether or not a solution is feasible are called 

"feasibility conditions". 

Following the notation used by Kaylan and Carl [lo] we employ f j j  and f j  instead 

of fi(xj, c;, Oi), f (xi, 0) respectively. 

The log-likelihood function based on a random sample of n observations is, 

where f ( x j , ~ )  = pfij t (1 - p)fij and fiJ = f,(x,, ci, 8;). 

One can easily obtain the partial derivatives g, g, given below. 

dl 1 8fij - = 2 -pi- where pl = p and p2 = I - p, 
ac, j=1 fj aci 



The maximum likelihood estimates are given by, 

Equations 2.5- 2.6 are called likelihood equations. "$imerical methods are empioyed 

to solve the likelihood equations simultaneously. 

2.3.1 Solution of the likelihood equations 

The surface determined by the log-likelihood function in the space of unknown param- 

eters is called the likelihood surface. The likelihood surface for samples from Weibull 

mixture populations is flat over a wide range of the parameter space. Therefore, pop- 

ular methods like the Newton Raphson method fail to converge and the need arises to 

develop special techniques to solve the likelihood equations. 

It is also noted that at any point on the likelihood surface the gradient vector to the 

a1 ar a1 a1 surface, usually denoted by vl, is defined as vl = (e, G, q, K, %). 

Kaylan and Carl[lO] have suggested three iterative schemes that can be used to solve 

the above equations numerically, which are briefly described below. 

If we employ the notation cr, OY,pY, ft and fy to indicate the values of ci, Oi,p, fi, 

and f j  at step v of the iteration process then the set of equations at the step v + 1 for 

an iterative scheme to find the maximum likelihood estimates of the parameters are, 



parameters. In this study, we do not deal with the problem of finding an initial guess. 

However, some met' . -hat are available in the literature are cited at the end of 

section 2.5. 

An alternative iterative scheme also proposed by Kaylan and Carl[lO] replaces equa- 

tion 2.9 above by, 

The second iterative scheme suggested is to iterate using equations 2.7, 2.8 and 2.10. 

The third suggested scheme is to  iterate with equations 2.7, 2.8 and 2.9 to begin 

with, and then shifting to iterate with equations 2.7, 2.8 and 2.10, when the absolute 

values of the components of the gradient vector are all less than 10(5) for a sample of 

size 500(100). They refer to this iterative scheme as the two phase method. According 

to  Kaylan and Carl, the two phase scheme performs better. 

Feasibility condition: 

A set of parameter values is called a feasible solution if both shape and scale param- 

eters are positive and the mixing proportion parameter p is between 0 and l(exc1usive). 

At each step of the iteration this feasibility condition is checked. According to Kaylan 

and Carl [lo] if the initial point is feasible, the feasibility conditions hold true at every 

iteration for the algorithm built on equations 2.7, 2.8 and 2.9. They also suggest that it 

is required to check the mixing proportion constraint for the algorithms that use equa- 

tion 2.10. Kaylan and Carl suggest that if the new solution point does not satisfy the 

mixing proportion constraints, then one should move back to the boundary hyperplane 

In particular, for a mixture of two components their suggestion is as follows. If p(v+') 

does not satisfy the proportion constraints 0 < p 5 1 ,  then replace pV+' by 1. 

10 



Impovenlent Condition: 

At each step of thz iteration tire conditiov of improvement l("+lI 2 1". is also checked. 

If at  a certain step z, this condition is not satisfied, then the algorithm step size is 

bisected. until an improvement is observed in I. That is, if l"+l < I" then try halfway 

from g" to q"+l, and if 1 is still not improved then try one quarter of that distance from 

a'' and so on. - 

The algorithm is terminated If either of the following two conditions is satisfied. 

1. The absolute values of the gradient elements are all less than a small value cl(e.g. 

€1 = 0.001 j and, the absolute relative difference in 1, that is t ( l U + l  - Ivj/lv)l is less 

than a small value €2 ( e .g .~ .~  = 0.0001) or, 

2. A maximum number of iterations(e.g.250) is reached. 

2.3.2 Estimation of the variances of the parameter estimates 

The estimated variances of the parameter estimates are the diagonal elements of the 

matrix -H-' evaluated at the solution point a, where H is the Hessian matrix. Thus? 

we need the following second derivatives of 6, which are the elements of H. 

ipj a2fij P: dfi, 127 xi-- - -(- 
3=1 

f j  as: j; as, 



Case 2: Grouped Data: 

Xow we briefly mention the alternatives available in literature for grouped data. 

However. in this study, our emphasis is on ungrouped data. 

Kaylan has suggested a method to deal with grouped data. It is simply to replace 

in the above equations suggested for case 1, x, by j ,  which is the rnldpoint of the j t h  

class j = 1: 2: ..., k' and E:=, by c::, n, where n, is the number of observations in the 

j th  class and k' the total number of classes. 

Another way to deal with grouped data is to find the parameters that maximise 

the log-likelihood function, l(g, cr) = E;=, n j  log(Pj); 

represents the upper boundary of the j th  class. 

where f (x: ~ ) d x  and a j  



2.4 Motivation for an alternative scheme 

?Ve first tried to estimate the five parameters of the Weibull mixture distribution, using 

the two phase method described in Kaylan and Carl [lOf(section 2.3.1). For all of the 

data sets we tried, the bisection method used when the improvement condition was not 

satisfied failed to produce an increased value of I .  Kaylan and Carl [lo] report that the 

subpopulations must be well separated for the convergence to be assured. 

For example, Kaylan and Carl [lo] have considered specific examples of mixtures 

of exponentials with population parameters (1,1,2,4,0.5) and (1,1,0.4,2.5,0.5) in the 

order two shape, two scale and proportion. They report that the algorithm based on 

the equations 2.7, 2.8 and 2.9 failed to converge for half of the computer runs using 230 

iterations which is the maximum number of iterations suggested. The convergence rate 

of the second and third iterative schemes are not reported. They have also reported 

their computational experience with each of the three iterative schemes. According 

to their report the second scheme requires less computational effort compared to the 

first scheme. They also report that there is substantial improvement if the two phase 

method is employed, provided that the shift to the second phase is not made too early. 

(This was described in section 2.3.1,) However, they have not reported their experience 

on the performance of the two phase method in the case of Weibull mixtures. 

We were interested in looking for other possible methods which can be applicable 

in more general situations. We started by using the Newton Raphson method which 

takes gV+l = " - ( H w ) - l  Z", where Q" is the parameter vector at the step v of the 

iteration and H is the Hessian matrix(i.e. the matrix of second derivatives). However, 

it was found that due to  the flat shape of the likelihood surface the iterative scheme 

that was built, on the ISewton Raphson method often fails to converge. The divergence 

of the scheme was so bad that in some cases the estimates even failed to satisfy the 

feasibility conditions. 



This motivated us to transform the problem into one which is an unconstrained 

problem, so that, at  each step of the iteration, the parameters satisfy the feasibility 

conditions. 

2.5 An alternative scheme for the solution of like- 

lihood equations 

In this section, we describe another method that 

taining the solution of the likelihood equations. 

The problem is to maximise, 

we developed for the purpose of ob- 

where f (I,, a )  = P fij + (1 - P )  f2,, and fij  = f,(x,, ci7 8,) is the two parameter 

Weibull density, which was given in equation 2.1. 

The constraints of the problem are: 

i). The mixing proportion p has to satisfy 0 < p < 1. 

ii). The shape parameters cl, c~ and the scale parameters B1, O2 are positive. 

iii). cl 5 c2 and if cl = c2 then O1 < 02. 

We begin by transforming the problem into one which is an unconstrained problem. 

This is done as follows. 

Define ai, b; such that c; = a: and 8; = E? for i = 1,2. In other words ai and bi 

were taken as the positive square roots of q, and Bi respectively. Let m = og . l (9 



with the constraints due to the identifiability at this stage. Once we find the solution, 

the components of the parameter vector can easily be permuted so as to meet these 

constraints. 

We note that if 1 is the log-likelihood function, 

d 1 - - 
a 

a dc, aa -- = ---2a, 
dai dc, da; dc, 

So for c,, 8; > 0  and 0  < p < 1, the two sets of equations 

and 

will have zeros at the cxresponding points, 

So, we deal with the unconstrained problem that, 

dl dl  dl  - = o ,  - = o ,  -- 
d b; 

- 0. 
da; d m  

It is noted that the components of crT = (cl , c2, dl, 192, pj are called untransformed 

variables and the components of PT = (al, a2, bl, 62, rn) are called transformed variables. 

Method of solution: 

The method we use is based on the Newton Raphson method, (on the space of trans- 

formed variables) which uses the iterative scheme, PV+' = /?" - (Ifv)-' P, where BV 
is the parameter vector at step v of the iteration, HV is the matrix of second derivatives 

of lV(i.e. the Hessian matrix) and ~ 1 "  = (e, &, z, &, f!-)T is the gradient vector 

at step v of the iteration. 
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In the case of mixture populations the behaviour of the likelihood function, that is, 

the flat shape of the likelihood surface over a wide range of the parameter space makes 

the estimation problem quite difficult. There is no guarantee that the Newton Raphson 

method works in such a case. However, if we carefully examine the step size taken and 

the direction of movement at each step, making changes whenever it is necessary, the 

method converges in our problem. Now we describe how this is done in our procedure. 

e If the likelihood has increased, or in other words if I"+' > I " ,  we assume that 

the step size taken and the direction of movement are both appropriate and we 

proceed to the next step of the iteration. 

If I"+' 5 I" then it is viewed as due to one of the following reasons, and the 

relevant change is made before proceeding to the next step of the iteration. 

1. We are moving in the correct direction, in the sense that our step, ,5'"+' - 0" 

is in a direction along which the likelihood increases initially, but we have 

taken a step so large that we have already passed the region of increase. 

If the Hessian is negative definite then for all small positive 6, 

l (Pv + E(P"+' - p")) is larger than l(,B"). Thus, when the Hessian is found to 

be negative definite, we cut the step size in half repeatedly until we find an 

increase in the value of the likelihood. Once we observe an increase in 1 we 

go back to  the orginal iterative scheme. 

2. We are not moving in the correct direction. 

If the matrix of second derivatives is not negative definite there is no guaran- 

tee that the method of bisection will eventually produce an increased value 

for 1. In such a case, we replace the matrix H by H' = H - kl where I is 

the identity matrix with the same order as H and do one step of Newton 

Raphson. Here, k is a scalar chosen so that H* is negative definite. In our 
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program we select E to be m + 5 ,  where m is the largest eigenvalue of H .  

This results in a change of the direction of movement. 

However, after replacing H by H' in the Kewton Raphson formula PUi1 = 

9" - (HV) - '  1' we may still not observe an increase in the likelihood 

function. This is due to taking too large a step. Again we cut the step 

size in half repeatedly (the method of bisection) until we observe an increase 

in the likelihood. It is worthwhile to note that, in this case the method of 

bisection is assured to give an improved estimate, but the bisection has to 

be done in the space of transformed variables. Once we observe an increase 

in I :  we go back to the original Newton Raphson iterative scheme. 

We will also describe here another possibility which we investigated to change the 

direction of movement. This is to replace the matrix H by, H" = PDPT where P is 

the orthogonal matrix with columns as eigenvectors of H and D is the diagonal matrix 

whose diagonal entries are - A ?  where the X's are the absolute values of the eigenvalues 

of H. H*' is also negative definite and thus we are moving in the correct direction. 

Again, it is possible that the step size 3'+' - , 8" = f -If"*)-' I" is too large and in 

such a case we cut the step size in half repeatedly until an increase in 1 is observed. 

This alternative was also found to work well. However, in the software we developed 

we used the previous method. 

Feasibility conditions: 

The transformation equations guarantee that at each step of iteration the estimates 

of all parameters are positive. However, if at a certain step of iteration m is very large 

then the estimated proportion p becomes 1 due to rounding off. Then according to our 

notation the parameter vector of the second component density - O2 is meaningless. To 

avoid this, if at a certain step v of iteration pu is 1, then we replace p* by 0.99, which 

we assume to be a number close enough to retain the accuracy of the estimates and 



proceed. 

The restriction we imposed to clarify the problem of identifiability of the mixture. 

that is, cl 5 cz and if cl = cz then O1 < O2 is not directly touched in our iterative 

scheme. However, it seems to happen that this restriction is taken care of when we give 

initial guesses which have the first component having smaller shape. or if both shape 

parameters are the same giving the first component as the one which has the smaller 

scale parameter. 

The algorithm that we developed is terminated if either of the following two condi- 

tions is satisfied. 

The absolute values of all the components of the gradient vector are less than 

a small value E (in our program we used E = 10-9 and, the eigenvalues of the 

Hessian matrix at  the solution point are all negative. 

A maximum number of iterati0nste.g. 300) is reached. It is also noted that ac- 

cording to our experience with the simulated data sets the program does converge 

after about 5-30 iterations, depending on the problem.) 

points and multiple local maxima. 

In section 2.6 we present a more detailed description of the likelihood surface of 

We were able to use the algorithm outlined above to solve the likelihood equations. 

However, we discovered that for some of the data sets the likelihood surface has saddle 

Weibull mixture distributions and offer two simulated data sets which have likelihood 

surfaces with multiple maxima. 

Finding maxima starting from a saddle point 

Existence of saddle points forces us to check whether the solution point is really 

a maximum. At  the solution point the eigenvalues of the Hessian matrix are also 
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computed. 'Ef all the eigenvalues are negative indicating that the Hessian matrix is 

negative definite, the solution point is identified as a local maximum. If not, the solution 

point is identified as a saddle point. If the solution point is a local maximum it is 

difficult to examine whether it is the global maximum and therefore, it is accepted as 

the maximum likelihood estimate. It is also noted that one can get a rough idea about 

the global behaviour of the likelihood surface by starting with several different initial 

points and examining each solution point. However, we did not explore this possibility. 

If the solution point is a saddle point it does not give estimates that can be accepted 

as maximum likelihood estimates. At a saddle point all the components of the gradient 

vector are almost zero and the Newton Raphson algorithm does not help us to take a 

further step. Therefore, the need arises to develop techniques to find maxima starting 

from a saddle point. Now we describe the algorithm that we developed to find maxima 

starting from saddle points. 

Suppose that at the step v we observe the saddle point ?"and let gj be the eigenvector 

corresponding to the positive eigenvalue (we never observed more than one positive 

eigenvalue) of the Hessian matrix at " .  Consider, 

a2 
f (a) = I(?" + agj) = f (,BY) + a$ v 1 + -vTHgJ + negligible terms 

2 -I 

We note that in a small neighbourhood of PV, the gradient of the surface ~1 is almost 

zero, and g;HEj is positive so that the function f (a) increases in both directions of gj 

away from PV. Therefore, we use the algorithm 

fy+l - - pv f agj (2.20) 

to  move away from the saddle point. This is repeated as long as the likelihood is 

increased after each step. Suppose at  a certain step v', P I C 1  < 1"'. Even if the Hessian 

a t  that point is negative definite there is no guarantee that we are moving in the 

u' T correct direction. This is because now the sign of (,@"+' - /3 ) v I =. (ix21)T V I 

is not determined by H. It is also noted that this can happen only after moving out 



from the saddle point and therefore now we can use the Newton Raphson method 

Put+' = flu' - ( H ) - l  2''. It is to  be noted that if H is not negative definite at step 

v', H* = H - kI takes the place of H in the above equation. (Again k is a scalar chosen 

to make H* negative definite.) Now, an increase in I is guaranteed unless the step size 

is too large. Therefore, if E is not increased, we cut the step size in half repeatedly until 

we observe an increase in the likelihood. Once we observe an increase in I we go back 

to the iteration defined by the equation 2.20 which requires less computational effort. 

This is repeated until we observe maxima on both directions of gJ and finally we choose 

the one which corresponds to the largest value of the likelihood function. 

It is also noted that if the first observed solution point is a saddle point we are 

almost always bound to see three solution points from our iterative scheme: two local 

maxima and a saddle point. 

Finding an initial guess: 

To use the iterative schemes presented, initial estimates of the parameters are re- 

quired. Method of moments is suggested as an applicable method to find an initial 

guess. .4n estimation procedure using the method of moments is presented in Falls [TI. 

Macdonald [12] provides an estimation procedure using a weighted least squares esti- 

mator. Bayesian estimation of the parameters of a mixture of Weibull distributions is 

offered in Sinha [14]. 

2.6 Behaviour of the likelihood surface for samples 

from Weibull mixture populations 

A well separated two component mixture population is one in which almost all the small 

observations belong to one component and almost all the large observations belong to 
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the other component. Figure 2.15 illustrates one such population. Figures 2.1, 2.2 are 

two examples of mixture populations which do not have well separated components. 

In section 2.3.1 we have already noted that the likelihood surface for samples of 

Weibull mixture populations appear to be flat over a wide range of the parameter 

space. The other striking feature is that when the component densities of the Weibull 

mixture populations are not very well separated the likelihood surfaces for samples 

of such populations possess more than one maximum, and saddle points. It is also 

worthwhile to note that we were not interested to see if there are any minima on the 

likelihood surface. Each of these appear as solutions of the likelihood equations. The 

differences in likelihood values at these different solution points are so small that they 

would not be judged significant by a likelihood ratio test. For convenience we will 

refer to the local maximum which corresponds to the larger likelihood value as local 

maximurn(1) and the other as local maximum(2). 

To illustrate this now we offer two data sets(Appendix A) which are simulated from 

the populations with parameters given in table 2.1. 

I data set j parameter 

I shape(1) I shape(2) scale(1) scale(2) proportion 
I 

Table 2.1: Population parameters of data sets given in -4ppendix A 

Figures 2.1, 2.2 show the component densities and the mixture density in each case. 

In the figures, the solid line denotes the mixture density while the dotted lines denote 

the component densities. 
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Figure 2.1: Plot of mixture density and the component densities: Data set (1) 
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Plot of mixture density and the component densities: Data set (2) 



Data set (1): (Appendix A.1) 

Data set(l), a sample of size 100, which is attached in Appendix ( A ) ,  was generated 

from a two component mixture population. Each component distribution is from the 

two parameter Weibull family. The algorithm which we developed was used to find the 

estimates of the parameters. The estimates at different solution points together with 

the parameter values that were used to generate the data set are given in table 2.2. 

shape(1) shape(2) scale(1) scale(2) proportion 6 

true parameters 2 3 3 0.9 0.5 -139.9548 

/ saddle 

Table 2.2: Parameter estimates and the value of the log-likelihood(1) at the three solu- 

tion points: Data set(1) 

Remarks on table 2.2: 

a It is seen that the individual parameter estimates provided by the three solution 

points are quite different. This motivates us to look at the fitted distributions 

provided by the three solution points. 

a The differences in the log-likelihood values at the three solution points are so small 

that they would not be judged significant by a likelihood ratio test. 

e According to  tabie 2.2 the local maximum(2) seems to provide a better fit com- 

pared to the local maximum(1) even though the latter one corresponds to the 

larger value of the likelihood. 



Eow we look at the fitted distributions using the estimates at each of the three 

solution points. 

I parameter 

shape(1) shape(2) scale(1) scale(2) proportion 1 

true paramet,ers 2 3 3 0.9 0.5 -139.9545 

local(1) 1.271 4.154 2.279 1.035 0.631 -136.5221 

standard errors 0.141 0.988 0.298 0.066 0.090 

gradient 0.024 0.002 -0.009 -0.021 -0.026 

Table 2.3: Parameter estimates at the local maximum(1): Data set(1) 

Remarks on tables 2.3- 2.9: 

In tables 2.3- 2.9, the roots have been rounded to three decimal places. Values 

of the gradient presented in the table were calculated at the root achieved by 

the algorithm after rounding. Near the roots the gradient vector has a rapidly 

changing size; the gradients at the roots actually presented in the table (that is, 

rounded to 3 decimal places) have a much larger magnitude compared to what we 

really observe from the algorithm. 

e It is noted that the variances of the estimates are computed by inverting the 

negative Hessian matrix at  the maximum likelihood estimate. However, in the 

case when there is more than one local maximum the estimates are less reliable 

and the actual variances of the estimates are expected to be higher than those 

recorded in t.he tables. 

Another estimate for the variances of the estimates would be to use the inverse of 

-H' where H' is the average of the Hessian matrices evaluated at  the maximum 

likelihood estimate using several samples(e.g. 500). This may be a better estimate 



than the one we have provided. Due to the time constraint we had to be satisfied 

with the estimates provided because the latter requires more computational effort. 

In the case of saddle points the estimates are not the maximum likelihood esti- 

mates. Thus, the theory of maximum likelihood does not provide estimates for 

the standard errors. 

Figure 2.3 shows the fitted distribution using the estimates at the local maximum(1) 

together wit.h the true distribution and the empirical distribution of the data. 

Figure 2.3: Fitted distribution at the local maximum(1): Data set (1) 

As a further test of goodness of fit the observed cumulatives were plotted against the 

fitted cumulatives at each of the solution point. Figure 2.4 illustrates this plot using the 

estimates at the local maximum(1). For ease of comparison, the straight line through 

the origin with slope 1 is also displayed. 



PLOT OF OBSERVED CUMULATIVE AGAINST THE FllTED CUMULATIVE 

Figure 2.4: P-P plot using parameters a t  the local maxirnum(1): Data set (1) 

The estimates of the parameters and their standard errors corresponding to the local 

maximum(2) are given in table 2.4. 

i 

Table 2.4: Parameter estimates a t  the local maximum(2): Data set(1) 

! 
I 

true parameters 

local (2) 

standard errors 

gradient 

parameter 

1 

-139.9548 

-137.3578 

shape(1) 

2 

2.160 

0.670 

0.004 

shape(2) 

3 

2.414 

0.345 

-0.000 

scale(1) 

3 

3.422 

0.577 

0.010 

scale(2) 

0.9 

0.979 

0.074 

0.049 

prop~rtion 

0.5 

0.375 

0.099 

0.118 



Figure 2.5 shows the fitted distribution using the estimates at the local maximum(2) 

together with the true distribution and the empirical distribution of the data. 

Figure 2.5: Fitted Distribution at the local maximum(2) : Data set(1) 

Figure 2.6 illustrates the plot of observed cumulative against the fitted cumulative 

using the estimates a t  the local maximum. Again this indicates a good fit. 

PLOT OF OBSERVED CUMULATIVE AGAINST THE FITTED CUMULATIVE 

F r n D  CUMUUTtVE 

Figure 2.6: P-P plot using parameters at the local maximum(2): Data set(1) 
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The estimates of the parameters corresponding to the saddle point are given in 

table 2.5. 

true parameters 

Table 2.5: Parameter estimates at the saddle point: Data set(1) 

saddle 

Figure 2.7 shows the fitted distribution using the estimates at the saddle point 

together with the true distribution and the empirical distribution of the data. 

1 

- 139.9548 

parameter 

1.693 

Figure 2.7: Fitted Distribution at the saddle point: Data set(1) 

shape(l) 

2 

gradient / -0.012 .. 

2.628 

shape(2j 

3 

0.002 

2.967 

scale(1) 

3 

0.968 / 0.457 1 -137.4828 

0.005 

scale(') 

0.9 

-0.052 

proportion 

0.5 

-0.028 



Figure 2.8 illustrates the plot of observed cumulative against the fitted cumulative 

using the estimates at the saddle point. 

PLOT OF OBSERVED CUMULATIVE AGAINST THE FllTED CUMULATIVE 

Figure 2.8: P-P plot using parameters at the saddle point: Data set(1) 

Remarks : 

The individual parameter estimates at the three solution points are quite different 

yet each provides a good fit to the data. 

The estimates provided by the saddle point seem to be closer to the true pa- 

ramet er values. This motivated us to check whet her t he log-li kelihood function 

is concave at the true parameter value. The Hessian matrix and the eigenvalues 

of the Hessian matrix at the true parameter values were computed. One of the 

eigenvalues was found to be positive indicating that the log-likelihood function is 

not concave at  the true parameter value. 



Data set (2): (Appendix 1.1) 

Data set(2), again a sample of size 100, which is attached in Appendix (A) ,  was 

generated from a two component mixture with one exponential component and one 

non-exponential component. The estimates at different solution points together with 

the parameter values that were used to generate the data set are given in table 2.6. 

j parameter I 
shape(1) shape(2) scalefl) scale(2) proportion I 

true parameters 1 3 2 4 0.5 -190.655 

local(1) 2.330 2.502 0.320 4.018 0.180 -186.1819 

local(2) 0.831 3.310 1.300 4.302 0.365 -187.3228 

saddle 0.831 3.160 1.16% 4.299 0.341 -187.3294 
- - -  

Table 2.6: Parameter estimates and the value of the log-likelihood(l) at the three solu- 

tion points: Data set (2) 

Remarks on table 2.6: 

Unlike the previous case the estimates provided by the saddle point and the local 

maximum(2) appear to be very close. 

Again the local maximum(2) seems to provide a better fit compared to the local 

maximum(1) even though the latter one corresponds to the larger value of the 

likelihood. 

The differences in the log-likelihood values at  the three solution points is again 

very small and would not be judged significant by a likelihood ratio test. 

Now we examine the fits provided by each of these solution points. The estimates 

of the parameters and their standard errors corresponding to the observed local maxi- 

mum(1) are given in table 2.7. 



Table 2.7: Parameter estimates at the local maximum(1) : Data set(2) 

Figure 2.9 shows the fitted distribution using the estimates at the local maximum(1) 

together with the true distribution and the empirical distribution of the data. 

1 

-190.655 

-186.1819 

.. 

--- -- 

I parameter 

X 
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Figure 2.9: Fitted Distribution at  the local maximum(1) : Data set(%) 

shape(1) 

true parameters 1 1 

local(1) 

standard errors 

gradient 

proportion 

0.5 

0.180 

shape(2) 

3 

2.502 1 .330 

0.372 

-0.004 

0.280 

0.011 

scale(1) 

2 

0.320 

scale(2) 

4 

4.018 

0.102 

0.034 

I 
0.211 

-0.012 

0.047 

-0.235 



Figure 2.10 illustrates the plot of observed cumulative against the fitted cumulative 

using the estimates at  the local maximum(1). 

PLOT OF OBSERVED CUMULATIVE AGAINST THE FITTED CUMULATIVE 
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Figure 2.10: P-P plot using parameters at the local maximum(1) : Data set(2) 

The estimates of the parameters and their standard errors corresponding to the local 

maximum(2) are given in table 2.8. 

true parameters 

standard errors 

gradient 

Table 2.8: Parameter estimates at the local maximum(2) : Data set(2) 

1 

parameter 

shape(1) scale(1) shape(2) scale(2) proportion 



Figure 2.11 shows the fitted distribution using the estimates at  the local maximum(2) 

together with the true distribution and the empirical distribution of the data. 

X 
TRLE PARAMETER VECTOR - (r.3.2.4 0 6). FITTED PAFiALETER VECTOR - (0-77.3 30s62W.l X)01577.4 3017631.0 -(LID) 

Figure 2.11: Fitted Distribution at the local maximum(2) : Data set(2) 

Figure 2.12 illustrates the plot of observed cumulative against the fitted cumulative 

using the estimates at the local maximum(2). 
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Figure 2.12: P-P plot using parameters at the local maximum(2): Data set(2) 



The estimates of the parameters corresponding to the saddle point are given in 

table 2.9. 

Table 2.9: Parameter estimates at  the saddle point : Data set(2) 

true parameters 

saddle 

gradient 

Figure 2.13 shows the fitted distribution using the estimates at  the saddle point 

together with the true distribution and the empirical distribution of the data. 

x 
TRUE PAiUMETERMCTOR- (t.3.2,4,0 5). FR'TED PARALETER VECTOR - 10 8311558.3 15-.1 1619223.4 2990128.0 3408T34) 

Figure 2.13: Fitted Distribution at  the saddle point : Data set(2) 

log 

likelihood 

-190.655 

-187.3294 

parameter 

shape(1) 

1 

0.831 

0.010 

scale(2) 

4 

4.299 

-0.002 

shape(2) 

3 

3.160 

0.003 

proportion 

0.5 

0.341 

-0.023 

scale(1) 

2 

1.162 

0.003 



Figure 2.14 illustrates the plot of observed cumulative against the fitted cumulative 

using the estimates at the saddle point. 

PLOT OF OBSERVED CUMULATIVE AGAINST THE FIlTED CUMULATIVE 

Figure 2.14: P-P plot usirig parameters at the saddle point: Data set(2) 

Remarks: 

e The parameter estimates provided by the local maximum(l), which is the local 

maximum corresponding to the largest log-likelihood value, are quite different 

from the true parameter values. The estimates provided by the other two solution 

points are closer to each other and are also closer to the true parameter values 

compared to those provided by the local maximum(1). However, each solution 

point seems to provide a good fit to the data. 

a In this case all the eigenvalues of the Hessian matrix at the true parameter values 

were found to be negative indicating that the log-likelihood is concave in a small 

neighbourhood of the true parameter. 



A population with well separated components: 

parameter vector = (2,8,1,4,0.5) 

To make the comparison easier, the component densities and the mixture density of 

a population with well separated components are shown in figure 2.15. The plot of the 

fitted distribution, the true distribution and the empirical distribution function is also 

given for one data set from this population. This is the population which is labelled 

population number '5' in chapter 6. 

PLOT OF MIXTURE DENSITY AND THE WWiFONENT DENSITIES 
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P A R W E E R  VECTOR - (2.8.1.4.0 5) 

Figure 2.15: Plot of densities: well separated components 
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Figure 2.16: Fitted distribution : population (5) 

Remarks: 

e In the case of well separated components we never witnessed multiple maxima 

and saddle points. 

Even though the three data sets mentioned were all generated from mixture pop- 

ulations, the empirical distribution functions of the former cases do not give as 

clear evidence of the presence of a mixture as in the latter case. Therefore, we also 

fitted a two parameter Weibull distribution instead of a mixture distribution in 

each case. However, we found that a two parameter Weibull distribution cannot 

give a satisfactory fit in any of the two cases. 



Chapter 3 

Theory of EDF statistics 

Suppose we are given a random sample of n observations from a continuous distribution 

F ( x ) .  The goodness of fit problem could simply be stated as a test of the null hypothesis 

Ho that, the distribution F belongs to some parametric family, in this case, the family 

of all two component Weibull mixtures. In this chapter; we propose tests based on the 

empirical distribution function(EDF) of the sample. 

3.1 The Empirical Distribution Function 

Let xl _< x2 5 ... 5 x, be the order statistics, that is, the observations arranged in 

increasing order. 

F(x) is the probability that the random variable takes a value less than or equal to 

x. The empirical distribution function is a (non-parametric) estimate of F. 

In a more mat hematical sense, the empirical distribution function(EDF) is F, (x) 

defined by, 

Number of observations < x 1 " 
Fn(x) = = - C l[x, 5 X I  - a ? < x < a ?  n i=l 



where l [ a  5 bf = 1 if a < b and l f a  5 b] = 0 if a  > 6. Thus, Fn( r ]  is the proportion of 

observations tess than or equal to x and we expect F,(rc) to be close to F ( s ) .  

3.2 EDF statistics 

Any statistic which measures the difference bktween F,(xj and F ( x )  is called an EDF 

statistic. EDF statistics are basically divided into two classes, supremum statistics and 

quadratic or integral statistics. 

3.2.1 The Supremum Statistics 

These are based on the largest difference between F,(x) and F ( x , @  where 8 is an 

estimate of 8. Four such statistics are, 

D+ = SUP (Fn(x)-J ' (x78))  
-w<x<w 

D = m a x ( D + , ~ - )  = SUP IFn(x) - F(X,$)I 
-m<t<w 

which is the Kolmogorov-Smirno-r statistic and 

V = D++D-  

and is called the Kuiper statistic. If 0 is completely specified as eO, then Oa is used to 
.. 

replace 8 in the above expressions. 

3.2.2 The Quadratic Statistics(or the Integral Statistics) 

Quadratic statistics are based on the weighted and integrated squared discrepancies 

between F, and F given by the Cramdr-von Mises family, 



where 8 ( x )  is called the weight. 

1 j. When P(x)  = i the statistic is called the Cram&-von Mises statistic; 

Our particular interest here is in this statistic which is discussed in detail later 

the statistic is called the Anderson-Darling statistic; 2) .  jPh3-l *!XI = F(I - ) ( l -F j r ) )  

The other well-known statistic is the Watson statistic Liz defined by, 

3.3 How touseEDFstatisticsin testinggoodness 

of fit 

The key features of any hypothesis testing problem can be summarised as follows. 

1. Settle on an appropriate test statistic with a known distribution. 

2.  Compute the value of the test statistic. 

3. Compute the p-values based on the distribution of the statistic and either reject 

or accept the null hypothesis by comparing the p-values with the tolerance level a. 

Stephens(1986)[17] provides some key facts on how to settle on an appropriate test 

statistic. We only focus on W2 and will explain below how to compute the asymptotic 

distribution of W 2 .  The remaining two steps are dealt with in sections 3.6 and 3.7. 



3.4 Distributional properties of quadratic EDF 

statistics 

It is known that the asymptotic distribution of any of the three statistics W2, A2 and 

C,-= is that of 

where Yjt) is an appropriate Gaussian Process, whose mean is 0 and whose covari- 

ance function p(s, t )  depends on the statistic, on F ( x ,  a )  and on the parameters to be 

estimated. We will discuss the case of the Cram&-von Mises statistic in more detail. 

3.4.1 Limiting distribution of the Cramkr-von Mises test 

Various authors have shown that under suitable regularity conditions 

(Cram& [3], Durbin [4]), the limiting distribution of W2 under the null hypothesis is 

that of W2 = X;i_, XjZ; where the 2;s are independent X(0,1) variables and the X:s 

are the eigenvalues of the covariance kernel p, namely, the solutions of the eigenvalue 

equation, 

For W2, the appropriate covariance p is p(s, t)  = po(s, t)  = min(s, t )  - st ,  if the null 

hypothesis is a simple hypothesis and p"(s, t)  = min(s, t)  - st  - @ ( s ) ' I - l ~ ( t ) ,  where 

+(s )  = %[F-'(S, 81, a], if the null hypothesis is composite. 

Durbin and Knott [5] provides an extensive discussion of the case when the null 

hypothesis is simple. The case when the null hypothesis is composite is discussed in 

Durbin, Knott and Taylor 161. 

While it is possible to compute the X's in closed form when the null hypothesis is 



simple this seems impossible in the case at hand. In the next section we discuss the 

problem of computing the eigenvalues. 

3.5 Computation of the eigenvalues of the covari- 

ance kernel 

When the null hypothesis is simple the eigenvalues are the solutions of 

po(s, t )  = min(s, t )  - st. 

With some algebra one can prove that the eigenvalues are 1/n2 j2  j = 1,2,  . . . . and the 

corresponding eigenfunctions are fi sin(a j s )  j = 1 2, . . . . 

~Ghen  the null hypothesis is composite, we have to solve 

where I is the information of a single observation, 5 is an asymptotically efficient 

estimate of a and F is the distribution function. 

For covariances of this form Stephens [15] has shown how the eigenvalues and eigen- 

functions may be calculated from those of po. The method requires that, 4, which is 

defined by $(s)$(t) = G(s)'I-'$(t) be expanded in a Fourier series in the eigenfunctions 

of po. The method of finding such 4 is also given. Stephens [15] provides eigenvalues 

which are computed ilsing this method for the cases when the underlying distribu- 

tion is normal or exponential. This is extended to the extreme value distribution in 

Stephens [16]. However, in our problem this seems impossible because of the difficulty 



associated with inverting the mixture distribution function and the difficulty associated 

with finding a closed form for the information matrix. 

In this study we use what we call a brute force approach to find the eigenvalues of 

the covariance kernel p(s, t ) .  The procedure is as follows. 

If X is an eigenvalue of p(s, t )  and f ( s )  is an eigenfunction corresponding to the 

eigenvalue X then X f ( s )  = J: p(s, t )  f ( t )dt .  Divide the interval [O;l] into ( m  + 1 )  sub- 

intervals each of length l / ( m  + 1 ) .  Then, 

i 
z - p i  + 1 ( m  + ) ) ( ( r n  + 1 )  for sufficiently large m 

rn ]=I 

Let 

Let Q  be the m x rn matrix whose (i, j ) th  element is Qij = $p( i / (m -I- I),  j / ( m  -I- 

1)). Then the above set of equations can be written as, XV' = QV', and finding the 

eigenvalues of p reduces to the discretised problem of finding the eigenvalues of the 

matrix Q. In our analysis, we wrote a program to create the matrix Q using an estimate 

k' of p(s, t )  at each point (s, t ) ;  s,  t  = m, k' = 1,2, ..., m. Then we use the S-plus 

function "eigen" to compute the eigenvalues of the matrix Q. This way we can find 

estimates 1 for the eigenvalues X of p. The application of the above procedure will be 

discussed in chapter 4. 



3.6 Computing formulas for EDF statistics 

It is quite cumbersome to  use the previous definitions to compute the values of the EDF 

statistics. 

Fortunately, the fact that the probability integral transformation r = F ( x ,  9), when 

F ( x ,  6 )  is the true distribution, yields a new set of random variables which are uniformly 

distributed between 0 and 1 makes the corr.putation problem quite simple. Without 

loss of generality let us assume that XI, 22, ..., x. are the order statistics of the original 

sample and zr = F(x; ,  9). 

As is explained in Stephens(1986)[17] the hypothesis testing problem is then equiv- 

alent to 

pendent 

This 

that of testing the hypothesis that z l  ,z2, ..., 2, is an ordered sample of inde- 

uniform[O, 1] variables. 

leads the following formulae for computing EDF statistics using the z-values. 

2 
max {- - s;} 
l s t < n  n 

max { z ;  - - 
l s i s n  n 

max (D+, D-) 
1 SiSn  

It is noted that when the null 
. . A 

hypothes~s 1s csmposite we actually use z; = F(x; ,  8 )  

t o  compute the test statistics. 



3.7 Computation of the p-values for the Cram&- 

von Mises test statistic 

In section 3.4 we have already noted that when the unknown parameters are estimated 

by a method which is asymptotically efficient, the test statistic of interest, 

(where r; = F(z i ,  6) are the probability integral transforms of the ordered statistics 

z;) has asymptotically a weighted chi square distribution. The weights X i  are the 

eigenvalues of the covariance kernel of the Gaussian process {Pn(z)) where P,(Z) = 

\15i[Fn(z) - z]. In section 3.6 we dealt with the problem of finding estimates for the 

eigenvalues A. 

Thus, the computation of the p-values hinges on the calculation of 

where x(> 0) is the value of the test statistic. 

Chen [2] provides literature related to the computation of the above probability to- 

gether with a comparisor, of the accuracy of the methods. We will only discuss Imhof's 

method(1mhof [8]) which we used in this study. 

Computation of the p-values using Imhof's method: 

If K,  ..., Vm are independent random variables with V; having a non-central chi- 

square distribution on hi degrees of freedom with non-centrality parameter 6; then 

imhof[8] shows 
m 1 1 L~ sin 8(u) 

P(CX*l/, > s)  = - + - 
2 n Jo up(u) du, i=l 

where 



The weights i, are computed as discussed in section 3.5. We have software to 

evaluate the integral numerically when the degrees of freedom are all equal to 1 and the 

non-centrality parameters are all 0. 



Chapter 4 

Computation of the eigenvalues of 

the covariance kernel: Applications 

In this chapter, we use the brute force approach discussed in chapter 3 to compute 

eigenvalues of the covariance kernel from a given estimate of the parameter vector. 

As a preview of the degree of accuracy of our approach we compute the eigenvalues 

in some cases considered in Stephens 1151 and compare with the tables provided. In 

section 4.1, we discuss the application of the above approach for the case when the 

underlying distribution is normal. In section 4.2 we extend the above ideas for the 

exponential distribution, and in section 4.3, for Weibull and for extreme value distri- 

butions. Section 4.4 deals with the case when the data come from a Weibull mixture 

population. 

Outline of the procedure: 

e If the covariance kernel p of the distribution of interest is unknown, find an 

estimate 

Decide on a suitable number of subdivisions m in the brute force approach, which 

is a compromise between the degree of accuracy and the computational effort, 



The accuracy of the results is increased when the number of subdivisions of [O,l] 

is increased. We used 200 subdivisions. 

Create the matrix Q whose elements are Q,,t = p(s, t ) ,  

for s, t = l / ( m  + l ) ,  2/(m + I) ,  ..., m/(m + 1). 

The eigenvalues of Q are taken as estimates for the eigenvalues of p. We wrote a 

program in 'Splus' to create the matrix Q and to compute the eigenvalues. 

Eigenvalues of the covariance kernel for the 

normal distribution 

In this section we closely follow the notation and procedure discussed in Stephens[l5]. 

Let F ( x ,  8) be the distribution function of the normal distribution where 8 = (p, 02). 

Following Stephens[15] we discuss four cases based on the prior knowledge about the 

parameter vector. 

Case 0: the underlying distribution is completely specified by the null hypothesis. 

(i.e. both p, a2 are known under Ho) 

Case 1: 8 = (p ,a2) ,  with a2 is known and p is to be estimated by the sample 

mean 5 

Case 2: p is known, but a2 is to be estimated by Cr=l (G -P )~  n 

Case 3: p, a2 are both unknown, and are respectively to be estimated using z and 

(zI -a)2 
s2 = CLl (n-l) 

Stephens [I51 presents the covariance kernel for each of the above cases which takes 

the form; 

Case 0: p(s, t) = po(s, t)  = min(s, t)  - st 

48 



where dl (s) = %(@-'(s, 0): 8 )  = 1 exp(-(0- ' (~))~/2) and O denotes the distribu- 

tion function of the standard normal distribution. 

where 4 Z ( ~ )  = %(@-I (3; o), 0) = l.q exp{-(0-'(s))*/2} 
4 2 4  

The procedure outlined above was used to find the estimates for the eigenvalues. 

Remarks on table 4.1: 

The estimates for the first ten eigenvalues are given in Table 4.1. 

a In the above table the values recorded are the estimated eigenvalues multiplied 

by 100. 

1 

Case1 

Case2 

We have only recorded the estimates of the eigenvalues(s) corresponding to those 

provided in Stephens [15]. There are also eigenvalues of the form l /n2  j2 with j 

Table 4.1: Estimated eigenvalues of the covariance kernel for the normal distribution 

1 

1.844 

1.351 

even for Case 1 or odd for Case 2. Our estimates of these eigenvalues also agree 

well. 

2 

0.539 

0.439 

o The estimates of the eigenvalues for Case 3, are found to be the same as those 

given by the two sets arising in Cases 1 and 2 excluding those of the form l /n2  j2. 

3 

0.254 

0.217 

e On comparison with the eigenvalues of p provided in Stephens [15], we can say 

that the tabulated estimates provided by the eigenvalues of Q are quite close to the 
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4 

0.147 

0.130 

5 

0.096 

0.086 

6 

0.067 

0.061 

7 

0.050 

0.045 

8 9 10 

0.025 

0.023 

0.039'0.031 

0.035 0.028 



eigenvalues of p. The sum of our estimated eigenvalues which is also the trace of 

Q ,  provides a good estimate for Ji p(s, s)ds. This is different from the infinite sum 

of the eigenvalues provided by Stephens [15]. Since the first few eigenvalues agree 

quite well the rest of the estimated eigenvalues can expected to be substantially 

different from those values of Stephens [I51 procedure. 

It is also worthwhile to note that the precision of the above estimates can be 

improved by computing the eigenvalues for several different m and using a method 

like Richardson extrapolation or by plotting the eigenvalues vs. l / m  and choosing 

the values corresponding to m = 0. However, we did not try doing this because 

our main concern was to find the estimates of the eigenvalues corresponding to 

the two parameter Weibull mixture distribution. 

4.2 Eigenvalues of the covariance kernel for the 

exponential distribution 

Following Stephens [15] when the underlying distribution is exponential with parameter 

unknown, the covariance kernel is, for W2, 

p(s, t )  = &(s7 t) - @(s)@(t), where @(s) = (1 - S) ln(1 - s). 

The first ten estimates of the eigenvalues we got in this case using the brute force ap- 

proach are given in table 4.2. The eigenvalues agree well with those given in Stephens [15]. 

Table 4.2: Estimated eigenvalues of the covariance kernel for the exponential distribu- 

tion 
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Weibull and 

of the covariance kernel for 

extreme value distributions 

the 

To make the discussion complete we briefly include the Weibull and extreme value 

distributions as well. For more details one may refer to Stephens [17]. 

We limit our discussion to two parameter Weibull distributions. For the case of 

test of fit for the three parameter Weibull distribution, one may refer to Lockhart and 

Stephens [ l l ] .  

As is explained in Chandra et.al. [I] we first note that when the sample is from the 

two parameter Weibull distribution, Fl (x) -- 1 - exp[- {x/S}'Y], x 2 0, we can make 

use of the transformation y = - log(x) to transform the data to those coming from 

the extreme value distribution, F(y)  = exp[- exp -{(y - 5)/8}], -m < y < oo with 

C = - log6 and 8 = 117. Thus, the problem is reduced to that of testing that the data 

come from the extreme value distribution, with 5 or 8 or both unknown. So we will 

only discuss the case that the data come from the extreme value distribution, 

Following Stephens [16] we discuss four test situations: 

Case 0 : both (: and 8 are known. 

Case 1 : 0 is known and C is to be estimated. 

Case 2 : C is known and 8 is to be estimated. 

Case 3 : both 5 and 8 are unknown and must be estimated. 

The covariance kernel for each of the above cases takes the following form. 

Case 0 : p(s, t )  = po(s, t)  = min(s,t) - st .  

Case 1 : p(s, t )  = pots, t)  - ( s )@l ( t ) ,  where, (s) = s log(s). 



Case 2 : p(s ,  t )  = po(s, t )  - Q2(s)<PZ(t ) ,  where 

Casc 3 : In this study we only used the brute force approach to compute the estimates 

for the eigenvalues of p in cases 1 and 2. For case 3, one may refer to Stephens [16] or 

Stephens [17]. 

As is explained in Stephens [17] case 1 above reduces to testing for the exponential 

distribution. So, we only tabulate the first ten estimates of the eigenvalues correspond- 

ing to case 2. 

Table 4.3: Estimated eigenvalues of the covariance kernel for the extreme value distri- 

bution 

Remarks: 

It is noted that we only computed estimates for the eigenvalues of the covariance 

kernel in each of the distributions discussed above. It would be useful to compute 

the critical points and compare them with the published values in each case j ,  but 

Cue to lack of time we had to limit our scope. Our primary concern in this study 

is to  compute the p-values for the Cram&-von Mises statistic in two comporent 

Wei bull mixtures. 

For the percentage points in each of the above cases one might refer to Stephens 1161. 



4.4 Eigenvalues of the covariance kernel for a mix- 

ture of two Weibuli distributions 

In this section we deal with the case that the data come from a population which is 

made up of two Weibull component populations mixed together in fixed proportions. 

The data come from the distribution, 

where f, is a two parameter Weibull density. 

We will only discuss the case of the full composite hypothesis. 

As we discussed in the previous chapter, the covariance kernel of the limiting process 

p(s, t )  = po(s, t )  - @ ( s ) ' I - ' ~ ( t ) ,  where 

po(s,t) = min(s , t ) -s t  and 

Unlike the previous cases, due to the complexity of the mixture distribution function, 

we cannot find a closed form solution for p. Therefore, it is not possible to create the 

matrix Q as described in the previous cases. Imtead we estimate the covariance kernel 

at  any given point and thus create the matrix Q using these estimates. In the next 

chapter we describe the problems that we encounter in computing the eigenvalues and 

the software that we developed to frnd estimates for the eigenvalues. 



Chapter 5 

Computation of the p-values: 

Development of software 

In the previous chapters we discussed the theory behind the computation of the p- 

values of the Cram&-von Mses statistic in Weibull mixture populations. However, the 

complexity of the mixture population problev -nakes it difficult to find a closed form for 

the covariance kernel. Therefore, the method described in Stephens [15] for the normal 

case cannot be extended to find the eigenvalues of the covariance kernel for the mixture 

model at  hand. We begin this chapter with a brief description of the problems that 

we encounter in computing the eigenvalues and the p-values for the test statistics in 

Weibull mixture populations. Then, we describe the software that we developed to find 

an estimate of the covariance kernel at a given point and henceforth to find estimates 

for the eigenvalues using brute force approach. These estimated eigenvalues are used 

to find an approximate p-value for the test statistic. 

The mvariance kernel of the limiting process is, 

p(s,t) = po(s,t)-9(s)'I-'Q(t), where 

po(s, t )  = min(s, t )  - st and 



The problems associated with the computation of p-values in the mixt-lre case are: 

o In the above formula, I is the information matrix corresponding to a sir. ;le ob- 

servation. Since the information matrix is not available in closed form we were 

forced to estimate it .  

e Computation of @(s)  requires the inverse of the mixture distribution function and 

this has to be done numerically. In normal and other cases considered before we 

were able to solve for q(s ) ' I - l@( t )  algebraically. 

In the previous cases the eigenvalues and the critical points do not depend on the 

values of the parameters. Thus critical points could be given in a small table. In 

the mixture case, critical points would depend on all five parameters. 

These problems make direct ccmputation of eigenvalues and preparation of tables of 

critica! points impractical. Instead we developed software to compute an approximate 

p-value based on the asymptotic dstribution for the covariance using an estimate of 

the information matrix, 

5.1 An estimate of the information matrix 

The information matrix for a sample of size n, In, is given by, 

if the estimated parameters are close to the actual parameters, the elements of In 

are almost the same as the elements of the matrix -H, where H is the matrix of second 

derivatives with respect to  the parameters and is called the Hessian matrix. In our 



procedure we estimate the information matrix of a single observation I, by the matrix 

- H / n ,  evaluated at the maximum likelihood estimate. We therefore find p-values from 

the distribution of J: YY2(t)dt;  Y is a mean 0 Gaussian process with covariance function 

min(s, t )  - st - q ( ~ ) ~ ( - H / n ) - ' B ( t ) ,  where -H/n  is the Hessian matrix evaluated at 

the maximum likelihood estimate. It is also noted that for the normal and exponential 

distributions the matrix - H / n  gives the exactly correct form of p. 

5.2 Covariance kernel under composite hypothesis 

The covariance function is 

p(s, t )  = min(s, t )  - st - ~ ( s ) ~ ( - ~ / n ) - '  * ( t ) ,  where, 

Computation of 9 ( s )  requires the inverse of the distribution function at the point s. 

This again cannot be found algebraically and now we describe the software that we 

developed to find this numerically. 

Inverse of the mixture distribution function 

The distribution function is, 

where oT = (cl, c2, &, 02, p ) .  We first compute the inverse of the mixture distribution 

function at  a given point numerically. Given t ,  we want to find x s t .  F ( x ,  Q) = t .  This 

is exactly the same as finding zeros of g ( x )  = F ( x ,  9) - t .  

In our procedure we use the "Secant method", that is, the iterative scheme 

- xng(%-l ) - xn-lg(xn) %+I - , where 
g(xn> - 9bn-1 > 



Two initial points are required to start with. 

Finding an initial guess: 

From equation (3.4) if we put p=O, g(x)=O when, 

We know that logjl - t)  < 0, since t > 0. So, we can write the above equation as, 

and thus, x2 = Oz([log(l -t)l)1'c2. 

Note that we simply escape from the problem of log(1 - t )  being negative by using 

the absolute value. This step is very important for xz to  be meaningful. 

Similarly, when p = 1, xl  = el(] log(1 - t)l)llc1. 

We take XI ,  x2 as initial points. We found that in all the examples we tried it is the 

case that xl and x2 are on the opposite sides of the root, and this scheme serves the 

purpose well with a satisfactory degree of accuracy. 

The Newton Raphson method which uses, 

with the initial guess, z o  = pxl + (1 - p)x2, wag also-found to work well except in a few 

cases where g' (x), gM(x) are vanishingly small at certain points. 

Here, 

g(x) = p [I - exp {- (t)cl}] + (1 - p )  [I - exp {- (t) '*}I - t -  

q -1 c2-1 
g 1 ( x ) = p s ( 2 )  01 01 exp{- (~ )c l}+( l -p )e ' ( l )  82 02 ?XP{-(t)c2}- 



In our problem we have to evaluate the inverse of the mixture distribution at all 

the points corzesponding to the subdivisions of the interval [0,1]. In other words we 

have to evaluate the inverse of a vector of points; the components of the vector being 

the subdivisions of the interval [0,1]. It is noted that rather less computational time 

is required if we can extend the above program to compute the inverse of a given 

vector of points instead of evaluating the inverse of one point at a time. However, the 

difficulty is that different points in the vector require a different number of iterations to 

converge. Fortunately the language 'Splus' that we use has the ability to select those 

components which satisfy a certain given condition called the convergence criterion 

and do iterations with the selected ones for which the convergence criterion is not yet 

satisfied thereafter by recalling the same function. In our problem we take the condition 

to  be: the difference between two consecutive iterated points is less than a small number 

e (for example we used e = 5 x If this condition is met for a particular point in the 

vector we consider that the convergence criterion has been met for that particular point 

and iterate with rest of the points, until the convergence criterion is met with all the 

points in the vector. The advantage of using the aforementioned procedure to compute 

the inverse is that we can save lot of computational time and effort by adopting this 

procedure. The function we wrote to find the inverse of a vector of points ("inv.Weib") 

is attached in Appendix B. 

The elements of $$ are G, aF 
ac2 aor , ao2, and These are given by, 

3~ ' 

dF 
- dc; = a (i) " log (t ) exp {- ( z )  "1 

Ic the above equations p, = p and p;? = (1 - p). Now we can approximate Q(s)  

by, %(F-'(s,B),a) evaluated at a = B and x = F-'(s ,&).  This way we have an 

estimate for the covariance kernel a t  any given point (s ,  t). 



5.3 Eigenvaiues of the covariance kernel 

We create the matrix Q whose ( s ,  t ) t h  element is P(s , t )  = po(s, t )  - Q(s) ' I - 'Q( t ) ,  

for s ,  t = 1,2,  ..., n. Then as described in the previous chapter the eigenvalues of the 

covariance kernel p can be estimated by the eigenvalues of the matrix Q. In our program 

we used 100 subdivisions of the interval [O,l], in the brute force approach, and so Q is 

a 100 x 100 matrix. This way we 

eigenvalues of p. 

5.4 p-values based 

find 100 eigenvalues of Q and thus estimates for 100 

on the asymptotic distribution 

of the test statistic 

Now we outline the procedure that is used to compute an approximate p-value based 

on the asymptotic distribution of the Cram&-von Mises statistic. 

1. Estimate the parameters by the method of maximum likelihood. 

2. Compute zi by the probability integral transform. Use q = F ( x i ,  8^), where 8  ̂ is 
the maximum likelihood estimate of 8 ,  when 0 is not completely specified by the 

null hypothesis. 

3. Compute W2 using the computing formulas. 

4. Estimate I by -H/n ,  where H is the Hessian matrix evaluated at the maximum 

likelihood estimate. 

5. Compute Q numerically at  a grid of points. 

6. Evaluate the matrix Q using the results of 4 and 5. 



Find the eigenvalues of Q. These are the weights to be used in the asymptotic 

distribution of the Cramer-voo Mises statistic, which is a weighted chi-square 

distribution. 

Find the probability that a linear combination of chi-squares (the coefficients being 

the weights mentioned in 7), exceeds the value of the test statistic in 3, using the 

procedure described in section 3.7. 

We developed software using the language 'Splus' to implement the above procedure. 



Monte Carlo study on mixtures of 

two parameter Weibull 

distributions 

6.1 Objective 

The objective of the Monte Carlo study is to test the accuracy of the asymptotic results 

for the Cramir-von Mises statistic applied to Weibull mixture populations and to study 

further the behaviour of the likelihood function in Weibull mixture populations. 

We begin this study by showing that, if the Cramir-von Mises statistic has the 

weighted chi square distribution mentioned in section 3.4 then the p-values for the test 

statistic are uniformly distributed on [0,1]. 

Let tu be the value of the test statistic M/, computed using a sample of size n. 

Let G(t, 0, I )  be the distribution of J,' Y2(t)dt, where Y is a mean zero Gaussian process 

with covariance, 



If 0 is the true parameter value W, converges in distribution to G. 

That is, P( Wn 5 w) -+ G(w, 8,1(8)), where I is the information at 9. 

If G, is the exact distribution of W i  then, 

So that 1 - Gn(Wn) has a 

The asymptotic theory 

= P(Wn > ~ i ' ( 1  - u ) )  

uniform distribution. 

is that, Gn(x) t G(x, 6, I(6)) and also, 

so that, p = 1 - G(W,,$,~)  is close to 1 - Gn(Wn) and 

therefore has a nearly uniform distribution. The validity of the asymptotic theory can 

thus be tested by checking to see if the p-values are approximately uniformly distributed 

when the null hypothesis is true. 

6.2 Description 

We chose five different Weibull mixture populations for the study. From each popu- 

lation, we generated 500 samples each of size 100. For each sample we estimated the 

parameters by maximum likelihood and the information matrix using -H/n, evalu- 

ated at the maximum likelihood estimate. Then we computed an approximate p-value 

following the method outlined in section 5.4 above. The p-values obtained for each pop- 

ulation were tested for uniformity. In section 6.3 we describe the 5 mixture populations 

used. Results are in section 6.4. Conclusions are in section 6.5. 



6.3 Populations used in the Monte Carlo study 

Parameter values of the populations that are used in this study are given in table 6.1. 

Populations number 1, 2, 4 and 5 are mixtures of Weibull components, while popula- 

tion 3 is a mixture of an exponential and a Weibull component. Populations were chosen 

to range from poorly separated components to very well separated components. As we 

mentioned in section 2.6 if the component densities are not well separated, the likelihood 

functions for the data sets taken from such populations sometimes have more than one 

maximum and saddle points. In the figures which show the densities of the populations 

we have also marked whether or not saddle points are observed when sampling from 

that population. 

I I parameter I 

Table 6.1: Populations used in the Monte Carlo study 

population 

1 

2 

3 

4 

w 

r3 

To ease the comparison of results in each case the plots of densities are given in the 

next section (Figures 6.1- 6.10) together with the results. In each figure, the solid line 

shape(1) 

2 

1.5 

1 

2 

2 

denotes the mixture density, while the dotted lines denote the component densities. 

shape(2) 

3 

3 

3 

4 

8 

scale(1) 

3 

2 

2 

0.5 

1 

scale(2) 

0.9 

4 

4 

3 

4 

J 

proportion 

0.5 

0.5 

0.5 

0.5 

0.5 



As a preliminary look at  the p-values histograms and plots of quantiles of the uniform 

distribution against the ordered p-values(Q-Q plots) were considered. 

PLOT OF MIXTURE DENSIN AND THE COMPONENT DENSITIES 

r\ 
i' '\ 

Figure 6.1: Density of population 1 : (saddle points  were observed) 

HISTOGRAM OF P-VALUES 

P-VALUES 

0-0 PLOT OF P-VALUES 

0 0  0 2  0 4  0 8  0 8  1 0  

OROERED P-VALUES 

Figure 6.2: Histogram and Q-Q plot of p-values: Population 1 



PLOT OF MIXTURE DENSITY AND THE COMPONENT DENSITIES 

Figure 6.3: Densit'y of population 2: (saddle po in ts  were observed)  

HISTOGRAM OF P-VALUES Q-Q PLOT OF P-VALUES 

0 0  0 2  0.4 0  0 %  1 0  0 0  0 2  0 4  0 6  0.B 1 0  

P-VALUES ORBEFED P.VA4UEB 

Figure 6.4: Histogram and Q-Q plot of p-values: Population 2 



PLOT OF MIXTURE DENSITY AND THE COMPONENT DENSITIES 

- 

MIXTURE OENlrrY 
WkPONEM 1 
MLROHENT 2 

Figure 6.5: Density of population 3 : (saddlt: points were observed) 

HISTOGRAM OF P-VALUES Q-Q P!-OT OF P-VALUES 

Figure 6.6: Histogram and Q-Q plot of p-values: Population 3 



PLOT OF MIXTURE DENSITY AND THE COMPONENT DENSITIES 

Figure 6.7: Density of population 4 : (no saddle points were observed) 
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, Figure 6.8: Histogram and Q-Q plot of p-values: Population 4 



PLOT OF MIXTURE DENSITY AND THE COMPONENT DENSITIES 

- 

X 
PARAMETER MCTOR - (2.a.? .a,o.s) 

Figure 6.9: Density of population 5 : (no saddle points were observed) 

HISTOGRAM OF P-VALUES 

P-VAWES 

Q-0 PLOT OF P-VALUES 

I 

0.0 0.2 0 4 0.0 0 8 1.0 

ORDERED P-VALUES 

Figure 6.10: Histogram and Q-Q plot of pvalues: Population 5 



Figures 6.2- 6.10 suggest that p-values observed in each case are uniformly dis- 

tributed. We used the Anderson-Darling statistic as a measure of uniformity of p-values. 

The null hypothesis to be tested is, Ho : the p values are uniformly distributed on [O,l]. 

Thus under Ho the distribution is completely specified. According to Stephens(l986) it 

falls under Case 0. Percentage points are given in Table 4.2(page 105) of S tephens(1986). 

We arrange the p-values in ascending order and we note that the probability integral 

transforms z, are exactly the values itself because the distribution of interest is the 

uniform distribution. The value of the test statistic is computed using the formula 

for A2 given in section 3.6. The value of the test statistic and the corresponding p- 

value of the Anderson-Darling test in each case are given in table 6.2. The p-values 

for the Anderson-Darling test given in the table are computed by first estimating the 

eigenvalues of the covariance kernel, for i42, 

using the brute force approach described in section 3.5 and then using these eigenvalues 

as weights to compute the p-values. 

1 
parameter 1 And. 

I 

Table 6.2: Table of Anderson Darling test statistics and p-values 

I 

p-value 

0.49 

0.24 

0.38 

i 

pop. shape(1) 1 shape(2) / rcalejl) 1 scale(2) prop. / test stat. 

1 0.5 

2 

0.78 
f 

2 / 3 / 3 

0.5 

0.5 

1.41 

2.43 

0.9 

0.18 

0.05 

3 4 \ 2  

1.5 

i t I 

5 / 2 / 8 11 / 4 

4 : 0.5 

3 1 2  4 

0.95 3 

I 
0.5 

I 

1 / 3 
1 

i.28 

0.5 
I 

2 4 



According to  the above results, the Anderson-Darling test does not reject the null 

hypothesis that p-values are uniformly distributed in any of the above cases. 

Therefore, it is reasonable to assume that the usual asymptotic theory for the 

Cram&-von >Iises statistic is valid in the Weibull mixture case. 

This justifies the use of the approximate p-value suggested in section 5.4 to test 

the goodness of fit of the fitted Weibull mixture model. 



Chapter 7 

Conclusions a d summary of open 

problems 

7.1 Concluding remarks 

1. The likelihood surfaces for samples of Weibull mixture distributions appear to be 

flat over a wide range of the parameter space. This gives rise to difficulties in 

maximum likelihood estimation. For example, the Newton Raphson method fails 

to converge in such a case and special techniques have to be implemented to find 

the solution. 

2. Likelihood functions for samples of Weibull mixture distributions whose compo- 

nents are not well separated sometimes have more than one maximum; it is hard 

to find the global maximum with certainty. 

3. In some cases several very different roots of the likelihood equations all gave good 

fits. This problem arose only when the components are not well separated. 

4. Surprisingly, the values of the log-likelihood function at each of these roots were 

similar. 



5 .  P-values for the Cram&-von Mises statistic computed on the basis of our asymp- 

totic distribution have the predicted uniform distribution. Therefore, our approx- 

imate asymptotic distribution may be used to compute an approximate p-value 

for the test of fit of the fitted Weibull mixture model. 

7.2 Summary of open problems and suggestions 

1. In this study we developed software to compute the p-values of the Cram&-von 

Mises test statistic applicable to Weibull mixture populations. These can very 

easily be extended to other mixture distributions as well as to cover other test 

statistics which are based on the empirical distribution. 

2. In this study, we restricted ourselves to ungrouped data. One could extend the 

above ideas to grouped data as well as to censored data. 



Appendix A 

Data Sets 

Data set(1) 



Data set(2) 



Appendix B 

B.1 Inverse of the Weibull mixture distribution 

function 

The function which we call "inv.Weibn computes the inverse of a vector of points us- 

ing less computaional time and effort compared to finding the inverse at each point 

separately. 

Description: 

If cl is the vector which contains the inverses of the points of the vector t l  then 

F ( c 1 , ~ )  = t l .  SO c1 is a root of the equation g(x) = F ( c 1 , ~ )  - t l .  We use the 

Secant Method to compute the root at each point of the vector cl. 

The input variables for the function are; 

1. u = parameter vector in the order (shapel,shape2,scalel,scale2,proportion). 

2. t l  = vector of points that are to be inverted 

3. a. b = two initial points which are on the opposite side of the root. 

The output variable el contains the inverse points of the vector t l .  

X more detailed description of this function is offered in section 5.2. 



inv  . Weib- 

f u n c t i o n ( u , t l , a , b ) (  

f , func t ion (u , t l , y ) (  

uC5l * (1  - exp(-((y/uC31>-uCi1))) 

fa-f  ( u , t l , a )  

fb-f ( u , t l , b )  

c l -  (b*f a-a*fb) /(f a-fb) 

f c l - f  ( u , t i , c f )  

recur-  (abs (f  c l )  >0.5e-05) 

i f  (any(recur) ) { 

c2,cl [recur] 

f c2-f (u , t 1 [recur] , c2) 

b Crecurl Cf a Crecurl *f c2C01 -c2 Cf a [recur] *f c2<0] 

a [recur] Cfb [recur] *f c2C01 -c2 [f b [recur] *f c2<0] 

c l  [ recur l  2 n v .  Weib (u, t 1 [recurl  A r e c u r l  , b [recur] ) 3 

c l 3  
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