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Abstract

‘Mixture models are encountered in a wide range of real world phenomena. The com-
plexity of the likelihood function of mixture models gives rise to difficulties in parameter

estimation.

An iterative scheme and the relevant software are developed to estimate the param-

eters of a two parameter Weibull mixture population.

Likelihood equations for Monte Carlo samples from Weibull mixture populations
with poorly separated components were found to have more than one solution point;
techniques are proposed to find these solution points. Each provided a very good fit to

the data.

-~ The Cramér-von Mises statistic is employed to test the goodness of fit of the ﬁtfed
mixture model. The complexity of the mixture distribution function makes it impos-
sible;t'o find a closed form solution for the covariance kernel. Suggestions are made
‘and software is developed to estimate the covariance of the asymptotic process and to
find estimates for the eigenvalues of the covariance kernel. The p-values for the test
,statistic are computed using these estimates. The usual asymptotic theory related to

the distribution of the Cramér-von Mises statistic is verified by a Monte Carlo study.
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Chapter 1
Introduction

- Mixture density functions are an important area Qf statistics with a wide range of appli-
cations. For example, in Biology, it is often required to measure a certain characteristic
of a population consisting of individuals with different ages. The characteristic of inter-
est may show a marked difference between individuals of different ages which is difficult

to ascertain and thus gives rise to a mixture population problem.

Another important area is often met in Engineering where the observations are times
to failure of a sample of items. Often failures can occur for more than one reason and
eéch cause of failure yields a subpépulation with aﬁ underlying distribution that can
be estimated by an Exppnential distribution or a Weibull Distribution.r Therefore, the

population as a whole can be treated as a mixture population.

We begin our study with a discussion of the mixture problem from a mathematical
point of view. In chapter 2, we discuss the problem of estimating the parameters of
a mixture population, with special emphasis on mixtures of Weibull populations. We

b

end chapter @ with a brief discussion of the problems encountered in the estimation

- procedure due to the behaviour of the likelihood function.

Chapter 3 is devoted to testing goodness of fit based on the Empirical Distribution



Funcfion(EDF). Section 3.1 introduces the empirical distribution function. Section 3.2
provides an introduction to the EDF stafistics. Section 3.3 briefly outlines how EDF
statistics are used in testing goodness of fit. Distributional properties of quadratic
- EDF statistics are discussed in section 3.4. For ease of exposition, we restrict our
‘attention to the Cramér-von Mises statistic. The complexity of the mixture distribution
' fu‘nction makes it impossible to find the exact eigenvalues of the covariance kernel

of the Gaussian process associated with the Crameér-von Mises statistic. Section 3.3

~ introduces what we call the brute force approdch to obtain estimates for the eigenvalues

of the covariance kernel. Computational formulas for EDF statistics are presented in

section 3.6. Computation of the p-values for the Cramér-von Mises statistic is discussed

- in section 3.7. In chapter 4, we present some applications of the procedure discussed in
~section 3.5.

‘Chapter 5 is concerned with the software developed for the computation of p-values

of the Cramér-von Mises statistic in Weibull mixture populations.

In chapter 6 we describe a Monte Carlo study that was performed to test the ac-
curacy of the asymptotic theory related to the distribution of the Cramér-von Mises
statistic.

F inally, a summary of our study and a discussion of the open problems related to

this study are offered in chapter 7.



| Chapter 2

\Discussion of the mixture problem
- and estimation of the unknown

parameters

We often come across the problem of fitting a model to 5. pOprlla.tion which 1s not
homogeneous, but is made up of two or more sub-populations. The mi’xlng proportions
of the sub-populations may or may not be known but are treated as fixed. A finite
rmixture is one which consists of only a finite number of components and is the topic of

interest here.

Section 2.1 provides a description of the mixture problem from a mathematical point
of view. Section 2.2 describes the notion of identifiability. In section 2.3 we discuss the
problem of estimating the unknown parameters of mixture populations. Three iterative
schemes pr0posed by Kaylan and Carl[10] to estimate the unknown parameters of a
mixture of two parameter Weibull distributions are also described in section 2.3. The
problems tha.t we encounter with the avallable 1terat1ve schemes motlvated us to look for
other p0551ble 1terat1ve procedures. Section 2. 4 surnmarlses these problems Section 2.5

, offers an alternatlve iterative scheme that we developed in this study for the above



purpose. We end this chaptér with a brief description of the behaviour of likelihood

functions for samples from Weibull mixture populations.

2.1 Mixture problem from a mathematical point

of view

In a more mathematical sense, we shall say that a random variable or vector X has a
finite mixture distribution, if its distribution can be represented by a probability density

function(or probability mass function in the case of discrete X) of the form,

f(@) = pifi(z,8)) + pafaz.8,) + ... + pefe(z,8,) where p; > 0 1 = 1,2,...,k,
Y pi=1,and fi(.) >0, [ fi(z)dz = l i =1,2,...,k. The density f(.) is called the

finite mixture density function.
The parameters py, ps, ..., px are called the mixing weights and
f1(1), f2(2), -, f(.) the component densities of the mixture.

Given a random sample from the mixture population, our interest is to decompose
- the mixture by estimating the unknown parameters, {p1.p2, s Pk, 6,,8,, ..., 0, } where
9,,8,,..., 8, are the vectors of parameters of each component distribution. Here & is the

-number of components that constitute the mixture.

Mixture problems, with k and the families of the component distributions known,

can basically be divided into two classes.

1. The component distributions are completely known and only the proportion pa-

rameters p, 2, ..., P are to be estimated.

2. The component distributions are known apart from the parameters 8,,8,, ..., ;.
- In this case vectors of parameters 6,,8,,...,6, and the proportion parameters

;pl,pz,y...,kpk‘a‘re to be estimated. It is noted that in this case, to be useful in

4



practice, k has to be a small number such as 2 and the f!s have to be all members of

some small parametric family such as the exponential, or normal, or two parameter

- Weibull families.

In this study we are concerned with the second class and from here onwards we will

~ assume that k = 2, and each component density is a member of the two parameter

Weibull family.

So, in our problem of interest the mixture density can be written as,
f(l‘v €, 017 Ca, 023p) =p fl(x’ 01,91) + (1 - p) f?(x;c'h 0'2) (21)

The mixing weights are p; = p and p, = (1 — p) and each f; is a two parameter

Weibull density;

(@000 = & (Z220)" 7 o [ (2220)7)
ft(z,q,,ﬁ,)-—ei'\ G; ) P 6

The parameters ¢;, ¢; are called shape parameters and 6, 6, are called scale param-
eters. The location parameters are assumed to be known and are further assumed to

be the same for both components.

2.2 Identifiability of the mixture

‘Before moving on to the problem of estimating the parameters, it is important to discuss
the notion of “identifiability”. In general, the parametric family of probability density
functions f(z,a) where @ is the vector of unkown parameters, is said to be identifiable,

if distinct values of o determine distinct members of the family.

In a more mathematical sense we shall say that a class of finite mixture densi-

ties is identifiable, if for any two members, f(z,0) = &5 pifi(z,8,), and f(z,0/) =



SF Pfiz,8), flz,a) = f(z,¢) if and only if k= k', and we can permute the

component labels so that p; = py and fi(z,8;) = f(z,8) (McLachlan and Basford [13].)

It is important to consider the identifiability in practice because, without it, es-
' timation procedures are not likely to be well defined. Furthermore, identifiability is
a necessary requirement for the usual asymptotic theory to hold for the estimation.

(Titt’erington, Smith and Markov(1985) [18]).

Now let us turn to our problem of interest. We note that in the mixture density
defined by equation 2.1, if we switch 6,,8, and p and (1 — p) accordingly we get the
same density. Therefore, we can only estimate the parameters if we decide to say that
the first population will be the one with the smaller shape parameter or if they have
trhe same shape parameter, the first population will be the one with the smaller scale

parameter. This convention identifies the parameters.

‘Technically, also, part of the difficulty arises from the fact that when pis 0 or 1,

then the corresponding §; is meaningless.

2.3 Estimation of the unknown parameters

In the literature, one can find several methods for estimating unknown parameters
, rsuch"asrth'e'method of moments, maximum likelihood estimation, Bayesian methods,
graphical methods, method of weighted least squares etc. We will confine our attention

to the method of maximum likelihood estimation.

At this point we would like to mention that our interest in mixture problems was
initiated by a problem that was broﬁght to the consulting service in the Department
of Mathematics and Statistics. -That problem was a case with grouped data. We will
present the likelihood estimation procedure for ungrouped data first and touch briefly

on grouped data.



Maximum Likelihood Estimation:
We now describe the maximum likelihood estimation procedure briefly. The like-

~ lihood function based on a sample of n observations from the mixture can be written

" as,
n .k
L(O’ H Z f(IJa
~ where « 1s the vector of unknown parameters.

Basically, maximisation of L(_a_) with respect to a for griven data z, yields the maxi-
-raum likelihood estimate of . Equivalently, the quantity maximised is the log-likelihood

function,

l{a) = log L(a);
- _which is also called the objective function.

In estimation problems related to mixtures, one has to take into account a set of
constraints in addition to the objective function. Fér exarhple, the mixing proportions
pi’s have to satisfy the condition that, 0 < p; < 1. Theré'ma’y exist other constraints
related to the pararmeters of sub-populations depending on the situation of interest. The
constraints are generally of a linear type, and hence the maximum likelihood estimation
,problem can be formulated as a mathematical programming problem with a non linear

objective function with linear constraints.

“Now we give a more detailed discussion of the maximum likelihood procedure for
the estimation of five parameters of a two component mixture of two parameter Weibuli
distributions. Equation 2.1 defines the mixture density function. This is the mixture

“that is used in the Monte Carlo study described in chapter 6.
Case 1: Ungrouped data

The likelihood function is,



- where p; = p, 'p2 =(1-p), af = (c1,¢2,0y,0,,p) is the vector of unknown parameters

and n is the number of observations in the sample.

The constraints on the parameters are, 0 < p<1l,¢i>0and 8§, >0for:=1,2.
It is also noted that in order to make the problem identifiable we have to impose other

restrictions on the parameters such as ¢; < ¢z and, if ¢; = ¢, then 6, < 6.

Therefore, maximum likelihood estimation can be formulated as,

maqx L{a) where, al = (c1, ¢z, 01, 62, p) and
ael

" S={a|0<p<l, >0, 06,>0fori=1,2 ¢; <c,and, tf ¢1 = c3 then 0; < 6,}

An estimate of the parameter vector a is said to be a “feasible estimate”, if it belongs

~to 5. The conditions which determine whether or not a solution is feasible are called

“feasibility conditions”.

Following the notation used by Kaylan and Carl [10] we erﬁploy fij and fj instead
of fi(zj,c:,0:), f(z;,a) respectively. 7 ' |

The log-likelihood function based on a random sample of n observations is,
) l(_"ll) .Q.) = Z?:l IOg f(‘TJaQ)

Vrr‘Whefe f(z;, @) = pfij +(1— P)fzj and f;; = fi(xj,chai)-

~ One can"ea,sily‘ obtain the partial derivatives EQC!I’ 8—8917, 5%’: given below.
_Q_l- = ip;% where pr=p and p,=1—p, (2.2)
aC,' j=1 fj ac,'
afii [l ., (z,— xo) (xj — z0>°‘ (a:j — xo)]
b = Jv [c; HH( o ) U ) U
ol — 1 afi;
— = —pi ==, (2.3)
96, ~ =77 o8,
Ui _ gl (mez) ]
60,‘ - Y 0, 6; 81
a1, ' ‘ ,
= = Y= lhi- fl = (2.4)
ap,s;‘:fj H ? ,



The maximum likelihood estimates are given by,

ol ol .

de; 0, 06; 0 ! L2 ; (2:5)
ol :

_— = o : 2
% 0 | (2.6)

Equations 2.5- 2.6 are called likelihood equations. “umerical methods are empioyed

to solve the likelihood equations simultaneously.

'2.3.1 Solution of the likelihood eqiaatioyns

- The surface determined by the log-likelihood function in the space of unknown param-
’eters is called the likelihood surface. The likelihood surface for samples from Weibull
‘mixture populations is flat over a wide range of the parameter space. Therefore, pop-
ular methods like the Newton Raphson method fail to converge and the need arises to

develop special techniques to solve the likelihood equations.

It is also noted that at any poinf on the lik'elihood surface the gradient vector to the

surface, usually denoted by 7(, is defined as /! = (3—%, Za%’ 589%, 88—9’2, %).

Kaylan and Carl[10] have suggested three iterative schemes that can be used to solve

the above equations numerically, which are br'fl'eﬂy deécribed below.

If we employ the notation ¢, 87, p}, f; and f! to indicate the values of ¢;,8;,p, f;;

and f; at step v of the iteration process then the set of equations at the step v + 1 for

an iterative scheme to find the maximum likelihood estimates of the parameters are,

v

et = [‘; ‘; f‘,fl n(= =) (Fg—) - 1) (27)

i

"R ‘
= 13 L =) R (29
J"l ) =171 .
v+l pv “ :3 ;
ptt = Z | (2.9)
B =I5 ,
A good guess a (c1,9$,c2,92, °) is to be chosen as an 1n1t1al estimate of the

.



parameters. In this study, we do not deal with the problem of finding an initial guess.
However, some met* . ‘hat are available in the literature are cited at the end of

section 2.5.

An alternative iterative scheme also proposed by Kaylan and Carl[10] replaces equa-

tion 2.9 above by,

put] =PU+Zflj—f2j/Z(flj—f2j)2 (2.10)

j=1 f ; j=1 f i

The second iterative scheme suggested is to iterate using equations 2.7, 2.8 and 2.10.

The third suggested scheme is to iterate with equations 2.7, 2.8 and 2.9 to begin
with, and then shifting to iterate with equations 2.7, 2.8 and 2.10, when the absolute
values of the components of the gradient vector are all less than 10(3) for a sample of
size 500(100). They refer to this iterative scheme as the two phase method. According

to Kaylan and Carl, the two phase scheme performs better.

Feasibility condition:

A set of parameter values is called a feasible solution if both shape and scale param-
eters are positive and the mixing proportion parameter p is between 0 and 1(exclusive).
At each step of the iteration this feasibility condition is checked. According to Kaylan
and Carl [10] if the initial point is feasible, the feasibility conditions hold true at every
iféfation for thé algorithm built on equations 2.7, 2.8 and 2.9. They also suggest that it
‘ ris required to check the mixing proportion constraint for the algorithms that use equa-
tion 2.10. Kaylan And Carl suggest that if the new solution point does not satisfy the

miXing proportion constraints, then one should move back to the boundary hyperplane

Copr+pet e+ Py =1

In particular, for a mixture of two components their suggestion is as follows. If p(vt%)

does not satisfy the proportion constraints 0. < p < 1, then replace p**! by 1.
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Improvement Condition:

At each step of the iteration tie conditibnr of improvement {("+1) > v is also checked.
If at é rcertain step v this condition is not satjsﬁed, then the algorithm step size is
bisected, until an improvement is observed in 1. That ’is? if 1"*1 < [¥ then try halfwéy
~ from a” to ”*!, and if [ is still not improved then try one quarter of that distance from

«” and so on.

~ The algorithm is terminated if either of the fol'lofwmg"two conditions is satisfied.

1. The absolute values of the gradient eler'néntsrafre all less than a small bvalue €1(e.g.
e1 = 0.001) and, the absolute relative difference in 1, that is [(I**' —1¥)/I¥)] is less .

than a small value ¢, (e.g.e; = 0.0001) or,

2. A maximum number of iterations(e.g.250) is reached.

2.3.2 Estimation of the variances of the parameter estimates

 The estimated variances of the parameter estimates are the diagonal elements of the

matrix —H~! evaluated at the solution point a, where H is the Hessian matrix. Thus,

we need the following second deriva.ﬁvés of l,"VWhich' are the elements of H.

Bl &gy P 0fs,
Z[?———L—P—< Sy,

a3 = : 2.‘11
Ot I fi 0 P 0’ (2.11)
32f£1’ 9fij 1 = T; —To, i~ %o
= e )
3 5 o +1n(Z 20 — ) (=)l
-1 ‘ N
ol - (”—Jgﬂ)s (2 20)]
o r&.a fii Pl Ofi 11, 5 1¢
= { — == (==)] (2.12)
87 T &'ee T 7l ee)
fi; _ Bfij i, Ti — To ¢ cilei) 25— o,
R AN B e
e

@z“gg%i | - @
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S L 1 2.7

2
ao(?aloz - ?ﬁ %J;zzj ?}Qj (2.18)

Case 2: Grouped Data:

" Now we briefly mention the alternatives available in literature for grouped data.

However, in this study, our emphasis is on ungrouped data.

Kaylan has suggested a method to deal with gfouped data. It is simply to replace
in the above equations suggested for case 1, z; by 7, which is the mudpoint of the j th
: Class J=12,.,k and I"7_, by Z?;l n; where n; is the number of observations in the

Jthiclass and &’ the total number of classes.

Another way to deal with grouped data is to ﬁnd the parameters that maximise
the log-likelihood function, I(z,a) = X}, n;log(F;), where P; = [ | f(z,a)dz and q;

, ‘rep‘rresents the upper boundary of the jth class.



2.4 Motivation for an alternative scheme

We first tried to estimate the five parameters of the Weibull mixture distribution, using
the two phase method described in Kaylan and Carl [10](section 2.3.1). For all of the
data sets we tried, the bisection method used when the improvement condition was not
satisfied failed to produce an increased value ofrl. Kaylan and Carl [10] report that the

subpopulations must be well separated for the convergence to be assured.

For example, Kaylan and Carl [10] have considered specific examples of mixtures
yof exbonentials with population parameters (1,1,2,4,0.5) and (1,1,0.4,2.5,0.5) in the
~order two shape, two scale and proportion. They report that the algorithm based on
the equations 2.7, 2.8 and 2.9 failed to converge for half of the computer runs using 250
iterations which is the maximum number of iterations suggested. The convergence rate
of the second and third iterative schemes are not reported. They have also reported
their computational experience with each of the three iterative schemes. According
to their report the second scheme requires less computational effort compared to the
—ﬁrstrscheme. They also report that there is substantial improvement if the two phase
method is employed, provided that the shift to the second phase is not made too early.
(This was described in section 2.3.1.) However, they have not reported their experience

on the performance of the two phase method in the case of Weibull mixtures.

We were interested in looking for other possible methods which can be applicable
" in more general situations. We started by using the Newton Raphson method which
takes a"t! = o" — (H")™' v I, where o” is the parameter vector at the step v of the
iteration and H is the Hessian matrix(i.e. the matrix of second derivatives). However,
it was found that due to the flat shape of the likelihood surface the iterative scheme
that was built on the Newton Raphson method often fails to converge. The divergénce
bf therscheme was so bad that in some caseé the estimates ‘e\‘zen failed to satisfy the

feasibility conditions.
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This motivated us to transform the problem into one which is an unconstrained

problem, so that, at each step of the iteration, the parameters satisfy the feasibility

conditions.

2.5 An alternative scheme for the solution of like-

lihood equations

In this section, we describe another method that we developed for the purpose of ob-

~ taining the solution of the likelihood equations.

The problem is to maximise, 7

log L(a Zlog (z;,a
where f(z;,a) = p fij+ (1 —p) f2;, and fi; = fi(z;,¢;,0:) is the two parameter
Weibull density, which was given in equation 2.1.
" The constraints of the problerﬁ are:
- 1). The mixing proportioﬁ p has to satisfy 0 < p <1
i1). The shape parameters ¢y, ¢; and the scale parameters 6;,6; are positive.

iii). ¢; < ¢z and if ¢; = ¢; then 701 < b,.

We begin by transforming the problem into one which is an unconstrained problem.

This is done as follows.

Define a;, b; such that ¢; = a? and 8; = b? for : = 1,2. In other words a; and b
. were taken as the positive square roots of ¢;, and 9; respectively. Let m =log ( )
. le.p=

T-:% so that at each a, b;, m, the shape and the scale pararneters, c,0; >0

| and ’ghe,,pr'c)portion‘ parameter p satisfies; 0 < p < 1, for all finite m. We do not deal

14



with the constraints due to the identifiability at this stage. Once we find the solution,

the components of the parameter vector can easily be permuted so as to meet these

constraints.

We note that if / is the log-likelihood function,

o dee_al,

O0a; = 0Oc¢;0a;  dc; %

o _ o,

ab; 06,7

al aldp ol e ol

= —_— 1 —
am Opom 6p(1 + em)? ap (1-p)
So for ¢;, §; >0 and 0 < p < 1, the two sets of equations

ol ol ol

{52—;20’—67,-:0’735=0}

and
ol ol ol
a9k~ " om

- will have zeros at the corresponding points.

=0}

So, we deal with the unconstrained problem that,

ol al ol
%:-0 BEZO, 5171'20.

It is noted that the components of of = (¢, ¢z, 61,8, p) are called untransformed

variables and the components of pT = (a1, az, by, b2, m) are called transformed variables.

Method of solution:

The method we use is based on the Newton Raphson method, (on the space of trans-
formed variables) which uses the iterative scheme, pvtt = Bv — (H*)™! 7 I*, where v
is the parémeter vector at sterp v of the iteration, H" is the matrix of second derivatives
of I'(i.e. the Hessian matrlx) and vl” = (5-;, 5&—;, ;%1—, -(,3%‘;, 6% T s the gradient vector

at step v of the iteration.
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In the case of mixture popﬁla.tions the behaviour of the likelihood function, that is.
the flat shape of the likelihood surface over a wide range of the parameter space makes
7 the estimation problem quite difficult. There is no gﬁarantee that the Newton Raphson
method works in such a case. However, if we carefully examine the step size taken and
the direction of movement at each step, making changes whenever it is necessary, the

method converges in our problem. Now we describe how this is done in our procedure.

At each step check whether the value of the log-likelihood / has increased or not.

¢ If the likelihood has increased, or in other words if I**! > [¥ we assume that
the step size taken and the direction of movement are both appropriate and we

proceed to the next step of the iteration.

o If [**1 < [¥ then it is viewed as due to one of the following reasons, and the

relevant change is made before proceeding to the next step of the iteration.

1. We are moving in the correct direction, in the sense that our step, g¥*! — g*
is in a direction along which the likelihood increases initially, but we have

taken a step so large that we have already passed the region of increase.

If the Hessian is negative definite then for all small positive ¢,

(8% + €(Bv*! — B¥)) is larger than I(3¥). Thus, when the Hessian is foﬁnd to
be negative definite, we cut the step size in half repeatedly until we find an
increase in the value of the likelihood. Once we observe an increase in l we

go back to the orginal iterative scheme.

2. We are not moving in the correct direction.
If the matrix of second derivatives is not negative definite there is no guaran-
tee that the method of bisection will eventually produce an increased value
for . In such a case, we replace the matrix H by H* = H ~'kI where [ is
the identity matrix with the same order as H and do one step of Newton

Raphson. Here, k is a scalar chosen so that H* is negative definite. In our
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program we select k& to be m + 3, where m is the largest eigenvalue of H.
This results in a chra;nge of the direction of movement.

However, after replacing H by H* in the Newton Raphson formula 5**! =
3Y — (H*)"'' 7 1" we may still not observe an increase in the likelihood
function. This is due to taking too large a step. Again we cut the step
size in half fepeatedly (the method of bisection) until we observe an increase
in the likelihood. It is worthwhile to note that, in this case the method of
bisection is assured to give an improved estimate, but the bisection has to
be done in the spapé of transformed variables. Once we observe an increase

in [, we go back to the original Newton Raphson iterative scheme.

We will also describe here another possibility which we investigated to change the
direction of movement. This is to replace the matrix H by, H** = PDPT where P is
the orthogonal matrix with columns as eigenvectors of H and D is the diagonal matrix
whoé;e diagonal entries are —A, where the A’s afe the absolute values of the eigenvalues
of H. H™ is aléo negative definite and thus we are moving in the correct direction.
Again, it is possiblé that the step size 8% — 3¥ = (—=H™")"! 7 I" is too large and in
such a case we cut the step size in half re’peatedly until an increase in [ is observed.r
This alternative was alSo,fou’nd to work well. However, in the software we developed

we used the previous method. -

Feasibility conditions:

Thé transformation equations guarantee that at each step of iteration the estimates
of all parameters are positive. However, if at a certain step of iteration m is very large
then the estimated proportion p becomes 1 due to rounding off. Then according to our
notation the pafameter vector of the second corﬁponeﬁt denéify 9y is rﬁeaningless. To
avoid this, if at a certain step v of iteration ;b” is 1, then we replace p” by 0.99, which

we assume to be a number close enough to retain the accuracy of the estimates and
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proceed.

The restriction we impoéed to cla.rify the problem of identifiability of the mixture,
that is, ¢; < ¢; and if ¢; = ¢, then #; < 6, is not directly touched in our iterative
scheme. However, it seems to happen that this restriction is taken care of when we give
initial guesses which have the first component having smaller shape, or if both shape
parameters are the same giving the first component as the one which has the smaller

- scale parameter.

The algorithm that we developed is terminated if either of the following two condi-

tions is satisfied.

1. The absolute values of all the components of the gradient vector are less than
a small value € (in our program we used € = 107°) and, the eigenvalues of the

Hessian matrix at the solution point are all negative.

2. A maximum number of iterations(e.g. 300) is reached. It is also noted that ac-
_cording to our experience with the simulated data sets the program does converge

after about 5-30 iterations, depending on the problem.)

We were able to use the algorithm outlined above to solve the likelihood equations.
- However, we discovered that for some of the data sets the likelihood surface has éaddle

- 'p;)inté and multiple local maxima.

In section 2.6 we present a more detailed description of the likelihood surface of
Weibull mixture distributions and offer two simulated data sets which have likelihood

surfaces with multiple maxima.

Finding maxima starting from a saddle point -

Existence of saddle points forces us to check whether the solution point is really

S a maximum. At the solution point the eigenvalues of the Hessian matrix are also
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computed. If all ’the eigenvalues are negative indicating that the Hessian matrix is
negative definite, the solution point is identified as a localrmaximum. If not, the solution
point is identified as a saddle point. If the solution point is a local maximum it is
- difficult to examine whether it is the global maximum and therefore, it is accepted as
the maximum likelihood estimate.‘ It is also noted that one can get a rough idea about
the global behaviour of the likelihood surface by starting with several different initial

points and examining each solution point. However, we did not explore this possibility.

If the solution point is a saddle point it does not give estimates that can be accepted
~as maximum likelihood estimates. At a saddle point all the components of the gradient
vector are almost zero and the Newton Raphson algorithm does not help us to take a
further step. Therefore, the need arises to develop techniques to find maxima starting
from a saddle point. Now we describe the algorithm that we developed to find maxima

starting from saddle points.

Suppose that at the step v we observe the saddle point 3%and let v; be the eigenvector
corresponding to the positive eigenvalue (we never observed more than one positive

eigenvalue) of the Hessian matrix at 3*. Consider,
— ; 2
f(a) =B+ al)_j) = f(B") + agff v+ %Q?Hyj + negligible terms .

~-We note that in a small neighbourhood of 3?, the gradient of the surface s/ is almost
zero, and ,QfHQj is positive so that the function f(a) increases in both directions of v;

away from 3%. Therefore, we use the algorithm
B = 8° + ay; (2.20)

to move away from the saddle point. This is repeated as long as the likelihood is
increased after each step. Suppose at a certain step v’, < 117”'.7 Even if the Hessian
at that point is negative definite there is no gua.rantée that we are moving in the
correct diréctioﬁ; This is because now the sign of (B — YT gl = (j:ap_j)T WA

| is not determinec{ by H. It is also noted that this can happen only after moving out
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f‘rornthe saddle point and therefore now we can use the Newton Raphson method
| BYFl = B¥ — (H)™' 7 1. It is-to be noted that if H is not negative definite at step
v', H* = H—kI takes the place of H in the above equation. (Again k is a scalar chosen
to make H* negative definite.) Now, an increase in [ is guaranteed unless the step size
is too large. Therefore, if [ is not increased, we cut the step size in half repeatedly until
we observe an increase in the likelihood. Once we observe an increase in / we go back
- to the iteration deﬁned by the equatlon .20 which requires less computational effort.

" This is repeated until we observe maxima on both directions of u; and finally we choose

‘the one which corresponds to the largest value of the likelihood function.

It is also noted that if the first observed solution point is a saddle point we are
almost always bound to see three solution points from our iterative scheme: two local

~maxima and a saddle point.

Finding an initial guess:

V'To use the iterative schemes presented, initial estimates of the parameters are re-
quired. Method of moments is suggeeted as an applicable method to find an initial
‘guess. An estimation procedure using the method of moments is presented in Falls [7].
ﬁrMacdonald [12] provides an estimation procedure using a weighted least squares esti-
'7 rrnd'tor. Bayesian estimation of the parameters of a mixture of Weibull distributions is

offered in Sinha [14].

- 2.6 Behaviour of the likelihood surface for samples
from Weibull mixture populations

A well separated two component mixture population is one in which almost all the small

: 'observatlons belong to one component and almost all the large observatlons belong to
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the other component. Figure 2.15 illustrates one such population. Figures 2.1, 2.2 are

two examples of mixture populatibns which do not have well separated components.

_In section 2.3.1 we have already noted that the likelihood surface for samples of
Weibull mixture populations appéar to be flat over a wide range of the parameter
space. The other striking feature is that when the component densities of the Weibull
mixture populations afe not very well separated the likelihood surfaces for samples
of such populations possess mofe than one maximum, and saddle points. It is also
worthwhile to note that we were not interested to see if there are any minima on the
likelihood surface. Each of these appear as SOlutidns of the likelihood equations. The
differences in likelihood values at these different solution points are so small that they
would not be judged significant by a likelihood ratio test. For convenience we will
refer to the local maximum which corresponds to the larger likelihood value as local

maximum(1) and the other as local maximum(2).

To illustrate this now we offer two data sets(Appendix A) which are simulated from

the populations with pararnetérs given in table 2.1.

data set : ' 'pararnet'er

shape(1l) | shape(2) s’céle(l) scale(2) | proportion

1 e 3 3 0.9 0.5

2 1 3 2 4 0.5

Table 2.1: Population parameters of data sets given in Appendix A

Figures 2.1, 2.2 show the component densities and the mixture density in each case.
In the figures, the solid line denotes the mixture density while the dotted lines denote

the Component densities.
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‘Data set (1): (Appendix A.1)

Data set(1), a sample of size 100, which is attached in Appendix (A), was generated

- from a two component mixture population. Each component distribution is from the

two parameter Weibull family. The algorithm which we developed was used to find the

- estimates of the parameters. The estimates at different solution points together with

~ the parameter values that were used to generate the data set are given in table 2.2.

parameterr
shape(1l) | shape(2) | scale(1) | scale(2) | proportion [
true parameters | 2 3 3 0.9 0.5 —139‘.9548
| Tocal(1) 1271|4154 2279 |1.035 |0.631 136.5221
local(2) 2.160 | 2.414 | 3.422 10979 |0.375 1137.3578
saddle 1.693 2.628 2.967 0.968 0.457 -137.4828

Table 2.2: Parameter estimates and the value of the log-likelihood(!) at the three solu-

tion points: Data set(1)

Remarks on table 2.2:

" e It is seen that the individual parameter estimates provided by the three solution

points are quite different. This motivates us to look at the fitted distributions

provided by the three solution points.

¢ The differences in the log-likelihood values at the three solution points are so small

that they would not be judged significant by a likelihood ratio test.

e According to table 2.2 the local maximum(2) seems to provide a better fit com-

pared to the local maximum(1) even though the latter one corresponds to the

larger value of the likelihood.
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 Now we look at the fitted distributions using the estimates at each of the three

solution points.

parameter
shape(1) | shape(2) | scale(1) | scale(2) | proportion !
true parameters | 2 3 3 0.9 0.5 -139.9548
local(1) 1.271 | 4.154 2.279 1.035 0.631 h-136.5221

standard errors | 0.141 0.988 0.298 | 0.066 | 0.090

‘gradient 0.024 | 0.002 -0.009 | -0.021 -0.026

Table 2.3: Parameter estimates at the local maximum(1): Data set(1)
Remarks on tables 2.3- 2.9:

e In tables 2.3- 2.9, the rbots have been rounded to three decimal places. Values
of the gradient presented in the table were‘ calculated at the root achieved by
the algorithm after rounding. Near the roots the gradient vector has a rapidly
changing size; the gradients at the roots actually presented in the table (that is,
rounded to 3 decimal places) have a much larger magnitude compared to what we

really observe from the algorithm.

"¢ It is noted that the variahces of the estimates are computed by inverting the
negative Hessian matrix at the maximum likelihood estimate. However, in the
case when there is more than one local maximum the estimates are less reliable
and the actual variances of the estimates are expected to be higher than those

recorded in the tables.

® Another estimate for the variances of the estimates would be to use the inverse of
—H " where H' is the average of the Hessian matrices evaluated at the maximum

likeliho‘od éstir'na,\te‘using several samples(e.g. 500). This may be a better estimate
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than the one we have provided. Due to the time constraint we had to be satisfied

‘with the estimates provided because the latter requires more computational effort.

® In the case of saddle points the estimates are not the maximum likelihood esti-
mates. Thus, the theory of maximum likelihood does not provide estimates for

the standard errors.

Figure 2.3 shows the fitted distribution using the estimates at the local maximum(1)

together with the true distribution and the empirical distribﬁtion of the data.
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Figure 2.3: Fitted distribution at the local maximum(1): Data set (1)

As a further test of goodness of fit the observed cumulatives were plotted against the
- fitted cumulatives at each of the solution point. Figure 2.4 illustrates this plot using the
estimates at the local maximum(1). For ease of comparison, the straight line through

the Qrigin with sl(}péj 1 is also displayed.
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Figure 2.4: P-P plot using parameters at the local maximum(1): Data set(1)

. The estimates of the parameters and their standard errors corresponding to the local

maximum(2) are given in table 2.4.

~ parameter
shape(1) shépe(‘?.) scale(1) | scale(2) | propcrtion !
‘true parameters | 2 3 3 0.9 0.5 -139.9548
lotal(‘?.) 2.160 2.414 ‘ 3.422 0.979 0.375 -137.3578
“| standard errors | 0.670 0.345 0.577 | 0.074 | 0.099
gradient 0.004 -0.000 0.010 0.049 0.118

Table 2.4: Parameter estimates at the local maximum(2): Data set(1)



Figure 2.5 shows the fitted distribution using the estimates at the local maximum(2)

together with the true distribution and the empirical distribution of the data.
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Figure 2.5: Fitted Distribution at the local maximum(2) : Data set(1)

Figure 2.6 illustrates the plot of observed cumulative against the fitted cumulative
using the estimates at the local maximum. Again this indicates a good fit.
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Figure 2.6: P-P plot using pa.rameters‘ at the local maximum(2): Data set(1)
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The estimates of the parameters corrésponding to the saddle point are given in

table 2.5.

parameter
éhape(l) shape(2) | scale(1) | scale(2) | proportion !
true parameters | 2 3 3 0.9 0.5 -139.9548
saddle 1.693 2.628 2.967 0.968 0.457 -137.4828
gradient 0.012  ]0.002 0005 |-0.052 |-0.028

Table 2.5: Parameter estimates at the saddle point: Data set(1)

Figure 2.7 shows the fitted distribution using the estimates at the saddle point

together with the true distribution and the empirical distribution of the data.
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Figure 2.7: Fitted Distribution at the saddle point: Data set(1)
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Figure 2.8 illustrates the plot of observed cumulative against the fitted cumulative

using the estimates at the saddle point.
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Figure 2.8: P-P plot using parameters at the saddle point: Data set(1)

Remarks:

® The individual parameter estimates at the three solution points are quite different

yet each provides a good fit to the data.

e The estimateé,provided by the saddle point seem to be closer to the true pa-
rameter values. This motivated us to check whether the log-likelihood function
is concave at the true parameter value. The Hessian matrix and the eigenvalues
of the Hessian matrix at the true parameter values were computed. One of the
eigenvalues was found to be positive indicating that the log-likelihood function is

not concave at the true parameter value.
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Data set (2): (Appendix 1.1)

Data set(2), again a sample of size 100, which is attached in Appendix (A), was
generated from a two component mixture with one exponential component and one
non-exponential component.. The estimates at different solution points together with

the parameter values that were used to generate the data set are given in table 2.6.

. parameter
shape(1) | shape(2) | scale(1) | scale(2) | proportion [
true parameters | 1 3 ' 2 4 0.5 -190.655
local(1) 1.330 2.502 0.320 4.018 0.180 -186.1819
local(2) 0.831 3.310 | 1.300 |4.302 |0.365 -187.3228
saddle 0.831 3.160 1.162 4299 | 0.341 -187.3294

Table 2.6: Parameter estimates and the value of the log-likelihood(!) at the three solu-

“tion points: Data set(2)
Remarks on table 2.6:

o Unlike the previous case the estimates provided by the saddle point and the local

maximum(2) appear to be very close.

e Again the local maximum(2) seems to provide a better fit compared to the local
maximum(1) even though the latter one corresponds to the larger value of the

likelihood.

e The differences in the log-likelihood values at the three solution points is again

very small and would not be judged significant by a likelihood ratio test.

Now we examine the fits provided by each of these solution points. The estimates
of the parameters and their standard errors corresponding to the observed local maxi-

mum(1) are given in table 2.7.
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parameter

shape(1) | shape(2) | scale(1) | scale(2) | proportion [
true parameters | 1 3 2 4 0.5 -190.655
local(1) 1.330 2.502 0.320 4.018 0.180 -186.1819
standard errors | 0.372 0.280 0.102 0.211 0.047
gradient -0.004 | 0.011 0.034 |-0.012 |-0.235

Table 2.7: Parameter estimates at the local maximum(1) : Data set(2)

Figure 2.9 shows the fitted distribution using the estimates at the local maximum(1)

together with the true distribution and the empirical distribution of the data.
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Figure 2.9: Fitted Distribution at the local maximum(1) : Data set(2)
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Figure 2.10 illustrates the plot of observed cumulative against the fitted cumulative

using the estimates at the local maximum(1).
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Figure 2.10: P-P plot using parameters at the local maximum(1) : Data set(2)

The estimates of the parameters and their standard errors corresponding to the local

maximum(2) are given in table 2.8.

parameter
shape(1) | shape(2) | scale(1) | scale(2) ‘proportion l
true parameters | 1 3 2 4 0.5 -190.655
local(2) 0.831 3.310 1.360 4.302 0.365 -187.322

standard errors | 0.124 - - | 0.876 -0.747 0.220 0.139

gradient -0.036 -0.004 0.002 0.001 0.028

Table 2.8: Parameter estimates at the local maximum(2) : Data set(2)
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Figure 2.11 shows the fitted distribution using the estimates at the local maximum(2)

trogetrher with the true distribution and the empirical distribution of the data.
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Figure 2.11: Fitted Distribution at the local maximum(2) : Data set(2)

Figure 2.12 illustrates the plot of observed cumulative against the fitted cumulative

using the estimates at the local maximum(2).
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Figure 2.12: P-P plot using parameters at the local maximum(2): Data set(2)
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The estimates of the parameters corresponding to the saddle point are given in

table 2.9.
parameter log
shape(1) | shape(2) | scale(1) | scale(2) | proportion | likelihood
true parameters | 1 3 2 4 0.5 -190.655
saddle 0.831 3.160 1.162 4.299 0.341 -187.3294
gradient 0.010 0.003 0.003 -0.002. - | -0.023

Table 2.9: Parameter estimates at the saddle point : Data set(2)

Figure 2.13 shows the fitted distribution using the estimates at the saddle point

together with the true distribution and the empirical distribution of the data.
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Figure 2.13: Fitted Distribution at the saddle point : Data set(2)
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Figure 2.14 illustrates the plot of observed cumulative against the fitted cumulative

using the estimates at the saddle point.
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Figure 2.14: P-P plot using parameters at the saddle point: Data set(2)

Remarks:

e The parameter estimates provided by the local maximum(1), which is the local
maximum corresponding to the largest log-likelihood value, are quite different
from the true parameter values. The estimates provided by the other two solution
points are closer to each other and are also closer to the true parameter values
compared to those provided by the local maximum(1). However, each solution

point seems to provide a good fit to the data.

o In this case all the eigenvalues of the Hessian matrix at the true parameter values
were found to be negative indicating that the log-likelihood is concave in a small

neighbourhood of the true parameter.



A population with well separated components: 7
- parameter vector = (2,8,1,4,0.5)

To make the comparison easier, the component densities ahd the mixture density of
a population with well separated components are showﬁ in figure '2.15. The plot of the
fitted distribution, the true distribution a.ndrthe empirical distribution function is also
given for one data set from this population. This is the population which is labelled

population number ‘5’ in chapter 6.

PLOT OF MIXTURE DENSITY AND THE COMPONENT DENSITIES
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Figure 2.15: Plot of densities: well separated components
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Figure 2.16: Fitted distribution : population (5)-

R(_amarks:

~e In the case of well separated components we never witnessed multiple maxima

and saddle points.

- ® Even though the three data sets mentioned were all generated from mixture pop-.
| ulations, the empirical distribution functions of the former cases do not give as
~ clear evidence of the presence of a mixture as in the latter case. Therefore, we also

fitted a two parameter Weibull distribution instead of a mixture distribution in
each case. Howéver, we found that a two parameter Weibull distribution cannot

give a satisfactory fit in any of the two cases. |
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Chapter 3
‘Theory of EDF statistics

‘Suppose we are given a random sample of n observations from a continuous distribution
| F{z). The goodness of fit problem could simply be stated as a test of the null hypothesis
Hy that, the distribution F belongs to some parametric family, in this case, the family
~of all two component Weibull mix’curés. In this chapter, we propose tests based on the

empirical distribution function(EDF) of the sample.

3.1 The Empirical Distribution Function

“Let z; < z3 < ... < z, be the order statistics, that is, the observations arranged in
increasing order.

F(z) is the probability that the random variable takes a value less than or equal to

r. The empirical distribution function is a (non-parametric) estimate of F.

In a more mathematical sense, the empirical distribution function(EDF) is Fn(z)

defined by,

Fu(e) _ Number of observations <z _ 1 anl[xi <] o<z <00
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where 1[a < bj=1if a < band1[a < b = 0if a > b. Thus, F,(z) is the proportion of

observations less than or equal to z and we expect Fi,(z) to be close to F(z).

- 3.2 EDF statistics

- Any statistic which measures the difference between F,(z) and F(z) is called an EDF
statistic. EDF statistics are basically divided into two classes, supremum statistics and

quadratic or integral statistics.

3.2.1 The Supremﬁm Statistics

" These are based on the largest difference between F,(z) and F (z,0) where 8 is an

estimate of §. Four such statistics are,

D= (R~ Fle)
DT = sup (F(z,9) - Fu(2))
D = max(D*,D7) = _Oosg)(oo |Fo(z) — F(z,g)]

which is the Kolmogorov-Smirnov statistic and
V. = Dt+D"

. and is called the Kuiper statistic. If 8 is completely specified as 8y, then 6, is used to

replace € in the above expressions.

3.2.2 The Quadratic Statistics(or the Integral Statistics)

Quadratic statistics are based on the weighted and integrated squared discrepancies

between F, and F' given by the Cramér-von Mises family,
Q=n [ {Fi(z)- F@)}W(a)dF ()
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where ¥(z) is called the weight.

1\

1). When ¥(z) = 1 the statistic is called the Cramér-von Mises statistic;
W? = n/°° (F.(z) — F(2)}2dF(z).

Our particular interest here is in this statistic which is discussed in detail later.

2). When ¥(z) =

?(—5(1%1—__—(;)—) the statistic is called the Anderson-Darling statistic;

1
(z)[1 = F(z)]

A= n /j:o{Fn(z) - F@)l dF(z).

The other well-known statistic is the Watson statistic I/? defined by,

U =n ["{Fue) - F) - [ [Fat) - FOUF(0)PdF()

| 3.3 How to use EDF statistics in testing goodness

of fit

‘The key features of any hypothesis testing problem can be summarised as follows.

1. Settle on an appropriate test statistic with a known distribution.
2. Compute the value of the test statistic.
3. Compute the p-values based on the distribution of the statistic and either reject

or accept the null hypothesis by comparing the p-values with the tolerance level a.

Stephens(1986){17] provides some key facts on how to settle on an appropriate test
statistic. We only focus on W? and will explain below how to compute the asymptotic

distribution of W2. The remaining two steps are dealt with in sections 3.6 and 3.7.
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3.4 Distributional properties of quadratic EDF

statistics

It is known that the asymptotic distribution of any of the three statistics W2, A% and

U'? is that of 7
1
/ Y2(t)dt,
0
where Y'(t)-1s an appropriaté Gaussian Process, whose mean is 0 and whose covari-

ance function p(s,t) depends on the statistic, on F(z,a) and on the parameters to be

estimated. We will discuss the case of the Cramér-von Mises statistic in more detail.

3.4.1 Limiting distribution of the Cramér-von Mises test

statistic

Various authors have shown that under suitable regularity conditions
(Cramér [3], Durbin [4]), the limiting distribution of W? under the null hypothesis is
that of W? = %2, A; Z? where the Z

;s are independent N(0,1) variables and the As
are the eigenvalues of the covariance kernel p, namely, the solutions of the eigenvalue
equation,

[ el 0050t = A (s).
For W?, the appropriate covariance p is p(s,t) = po(s,t) = min(s,t) — st, if the null
hypothesis is a simple hypothesis and 5(s,t) = min(s,t) — st — ¥(s)'I~19(t), where
Y(s) = %E[F‘l(s, &), a], if the null hypothesis is composite. -
Durbin aﬁd Knott [5] provides an extensive discussion of the case when the null

hypothesis is simple. The case when the null hypothesis is composite is discussed in

Durbin, Knott and Taylor [6].

- While it is possible to coinpute the A’s in closed form when the null hypothesis is
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simple this seems impossible in the case at hand. In the next section we discuss the

problem of computing the eigenvalues.

3.5 Computation of the eigenvalues of the covari-

ance kernel

When the null hypothesis is simple the eigenvalues are the solutions of

M) = [ pols,0)f (1),

po(s,t) = min(s,t)— st.

With some algebra one can prove that the eigenvalues are 1/7%;2 j =1,2,... . and the

corresponding eigenfunctions are v/2sin(rjs) j =1,2,....

When the null hypothesis is composite, we have to solve

1
Ms) = [ sttt
Flot) = pols,t) — v(s) I (t),
oF '
(s) = %[F’l(s,&),a]
where I is the information of a single observa.tioﬁ,‘ @ is an asymptotically efficient

estimate of o and F is the distribution function.r

For covariances of this form Stephens [15] has shown how the eigenvalues and eigen-
functions may be calculated from those of py,. The method requires that, ¢, which is
defined by ¢(s)@(t) = 1(s)'I~'4(t) be expanded in a Fourier series in the eigenfunctions
of po. The method of finding such ¢ is also given. Stephens [15] provides eigenvalues
which are computed using this method for the cases when the underlying distribu-
tion is normal or exponential. This is extended to the extreme value distribution in

Stephens [16]. However, in our problem this seems impossible because of the difficulty
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associated with inverting the mixture distribution function and the difficulty associated

with finding a closed form for the information matrix.

In this study we use what we call a brute force approach to find the eigenvalues of

the covariance kernel p(s,t). The procedure is as follows.

If A is an eigenvalue of p(s,t) and f(s) is an eigenfunction corresponding to the
eigenvalue A then Af(s) = fy p(s,t)f(t)dt. Divide the interval [0,1’] into (m + 1) sub-
intervals each of length 1/(m + 1). Then,

1
Mi/(m+1) = /0 pli/ (m + 1),0) (1)dt

2 7—— Zp (m+1) ]/(m + 1))f(]/(m + 1)), for sufficiently large m

Let ,
f(1/(m +1))

<
I

f(m/(m +1))

Let ) be the m x m matrix whose (7, 7)th element is Qij = Lp(t/(m +1),7/(m +
1)). Then the above set of equations can be written as, AV’ = QV”, and finding the
~eigenvalues of p reduces to the discretised problem of finding the eigenvalues of the
matrix Q. In our analysis, we wrote a program to cfeate the matrix () using an estimate
of p(s,t) at each point (s,t); s, t = & /c'7= 1,2,...,m. Then we use the S-plus
function “eigen” to compute the eigenvalues of the rﬁatrix Q. This way we can find
estimates A for the eigenvalues A of p- The application of the above procedure will be

discussed in chapter 4.
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3.6 Computing formulas for EDF statistics

It is quite cumbersome to use the previous definitions to compute the values of the EDF

statistics.

Fortunately, the fact that the probability integral transformation z = F(z,6), when
F(z,0) is the true distribution, yields a new set of random variables which are uniformly
distributed between 0 and 1 makes the computation problem quité simple. Without
loss of genérality let us assume that =y, :vz,’...,mn are the order statistics of the original

sample and z; = F(z,0).

As is explained in Stephens(1986)[17] the hypothesis testing problem is then equiv-
alent to that of testing the hypothesis that z1,z,...,2, is an ordered sample of inde-

pendent uniform({0,1] variables.

This leads the following formulae for computing EDF statistics using the z-values.

Dt = rnax{—- -z
1<1<n n
(-1)

D~ = max{z —
1<ikn

}
D = max(D*, D7) |

1<i<n

V = D*+D-

2. (21 1) 1
W —E{z, 2n }+12n‘
A = —n-— —Z{ 21 — l)ln zi+(2n+1 —-22)111(1 -z,)}

1—1
1

2 _ 2 4 2

U? = W*-n{05 n;z,}.
It is noted that when the null hypothesis is composite we actually use z; = F(z;, 5)

to compute the test statistics.
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3.7 Computation of the p-values for the Cramér-

von Mises test statistic

In section 3.4 we have already noted that when the unknown parameters are estimated

by a method which is asymptotically efficient, the test statistic of interest,

s f.  @-DYV 1
W"“Z{”‘_ n }+12n

=1

(where z; = F(z;,8) are the probability integral transforms of the ordered statistics
r;) has asymptotically a weighted chi square distribution. The weights A; are the
eigenvalues of the covariance kernel of the Gaussian process {¥,(z)} where Yy(z) =
VA[F,(2) — z]. In section 3.6 we dealt with the problem of finding estimates A for the

eigenvalues \.

Thus, the computation of the p-values hinges on the calculation of
P(Z /\iX?i) > z)
1=1
where z(> 0) is the value of the test statistic.

Chen|2] provides literature related to the computation of the above probability to-
gether with a comparisor. of the accuracy of the methods. We will only discuss Imhof’s

method(Imhof [8]) which we used in this study. -
Computation of the p-values using Inihof’s method:

If 1, V4, ..., Vn are independent random variables with V; having a non-central chi-
square distribution on A; degrees of freedom with non-centrality parameter §; then

Imhof[8] shows

1 1 pesin O(u) ,
Izzg/\‘, >Jl)_2 7 Jo up(u) “aupla)
where |
B(u) = %Zlhr tan~ (A u) + 620 u(l + Mu?) ™Y - -;—zu
B
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. L
p() = TI(L + M) exp(5 T (6:Au)2/(L + M)},

==l

The weights A; are computed as discussed in section 3.5. We have software to
evaluate the integral numerically when the degrees of freedom are all equal to 1 and the

non-centrality parameters are all 0.
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Chapter 4

Computation of the eigenvalues of

the covariance kernel: Applications

In this chapter, we use the brute force approach discussed in chapter 3 to compute
eigenvalues of the covariance kernel from a given estimate of the parameter vector.
As a preview of the degree of accuracy of our approach we compute the eigenvalues
in some cases considered in Stephens [15] and compare with the tables provided. In
section 4.1, we discuss the application of the above approach for the case when the
| underlying distribution is hormal. In section 4.2 we extend the above ideas for the
exponential distributibh, and in seétion 4.3, for Weibull and for extreme value distri-
butions. Section 4.4 deals with the case when the data come from a Weibull mixture

populatioﬁ.

Outline of the procedure:

e If the covariance kernel p of the distribution of interest is unknown, find an

estimate of p.

- ® Decide on a suitable number of subdivisions m in the brute force approach, which

1s a compromise between the degree of accuracy and the computational effort.
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The accuracy of the results is increased when the number of subdivisions of [0,1]

is increased. We used 200 subdivisions.

e Create the matrix @) whose elements are @, = p(s,t),

for s,¢ = 1/(m +1),2/(m + 1), ..., m/(m + 1).

e The eigenvalues of () are taken as estimates for the eigenvalues of p. We wrote a

program in ‘Splus’ to create the matrix () and to compute the eigenvalues.

4.1 Eigenvalues of the covariance kernel for the

normal distribution

. In this section we closely follow the notation and procedure discussed in Stephens[15].
Let F(z,0) be the distribution function of the normal distribution where 8 = (u, 0?).
Following Stephens[15] we discuss four cases based on the prior knowledge about the

parameter vector.

~Case 0: the underlying distribution is completely specified by the null hypothesis.

~(i.e. both u,o? are known under Hp)

Case 1: 8 = (u,0%), with 0? is known and g is to be estimated by the sample 7
mean T

Case 2: u is known, but o2 is to be estimated by %, ﬁz—";—“—)i

Case 3: #, 02 are both unknown, and are respectively to be estimated using Z and

:,‘7‘2— L (5i-3)?
: 5——Zi=l£(_n..—1)L

‘St'ep'hens [15] presents the covariance kernel for each of thé above cases which takes
thé form;

; f‘rCa.rsek 0: p‘(“s,ft) = po(s,t) = min(s, t) — st
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Case 1: p(S,t) = p0(37~t) - ¢1(5)¢1(t)7
where ¢1(s) = 32(®7(s,0),0) = \/(lzfr) exp(—(®7'(s))?/2) and ® denotes the distribu-

tion function of the standard normal distribution.

Case 2 p(s,t) = po(s,t) — d2(s)al2),
where 6(s) = 53(071(5.60),0) = —- 2 f exp{~(971(3))/2}

. 'Cé,se 3: p(s,t) = po(s,t) — d1(s)r(t) — ¢2(5)'¢?(t7)

S ,The procedure'outlined above was used to find the estimates for the eigenvalues.

The estimates for the first ten eigenvalues are given in Table 4.1.

1 1 2 3 4 3 6 |7 8 9 10

Case 1 | 1.844 | 0.539 | 0.254 | 0.147 | 0.096 0.067 | 0.050 | 0.039.! 0.031 | 0.025

Case 2 | 1.351 | 0.439 | 0.217 | 0.130 | 0.086 | 0.061 | 0.045 | 0.035 | 0.028 | 0.023

Table 4.1: Estimated eigenvalues of the covariance kernel for the normal distribution

Remarks on table 4.1:

e In the above table the values recorded are the estimated eigenvalues multiplied
~ by 100.

- ® We have only recorded the estimates of the eigenvalues()) corresponding to those
provided in Stephens [15]. There are also eigenvalues of the form 1/7%52 with j

even for Case 1 or odd for Case 2. Qur estimates of these eigenvalues also agree

well. |

¢ The estimates of the eigenvalues for Case 3, are found to be the same as those

g‘iven by the two sets arising in Cases 1 and 2 excluding those of the form 1/7%52.

e On comparison w’ith‘ the eige'nvahies of p provided in Stéphens [15], we can say

B 'thrat:the' tabul‘a‘ted estimates p’rovyided by the‘,eigenvalues"of Q are quite close to the
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: eigenvalﬁes of’ p- The sum of our estimated eigenvalues which is also the trace of
@, provides a good estimate for f; p(s, s)ds. This is different from the infinite sum
of the eigenvalues provided by Stephens [15]. Since the first few eigenvalues agree
quite well the rest of the estimated eigenvalues can expected to be substantially

different from those values of Stephens [15] procedure.

® [t is also worthwhile to note that the precision of the above estimates can be
improved by computing the eigenvalues for several different m and using a method
like Richardson extrapolation or by plotting the eigenvalues vs. 1/m and choosing
the values corresponding to m = 0. However, we did not try doing this because
our main concern was to find the estimates of the eigenvalues corresponding to

the two parameter Weibull mixture distribution.

4.2 Eigenvalues of the covariance kernel for the

exponential distribution

- Following Stephens [15] when the underlying distribution is exponential with parameter

unknown, the covariance kernel is, for W2,
p(s,t) = po(s,t) — B(s)®(t), where ®(s) = (1 — s)In(1 — s).

The first ten estimates of the eigenvalues we got in this case using the brute force ap-

proach are given in table 4.2. The eigenvalues agree well with those given in Stephens [15].

i1 -2 3 4 5 6 7 8 9 10

A {4.223 ,1.721 0.820 | 0.512 | 0.335 | 0.243 | 0.181 | 0.142 | 0.113 | 0.093

Table 4.2: Estimated eigenvalues of the covariance kernel for the exponential distribu-
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"4.3 Eigenvalues of the covariance kérnel for the
Weibull and extreme value distributions

To make the discussion complete we briefly include the Weibull and extreme value

~ distributions as well. For more details one may refer to Stephens [17].

. We limit our discussion to two parameter Weibull distributions. For the case of
g | iyrtesrf; of fit for the three parameter Weibull distribuﬁqn,—, one may refer to Lockhart and
'Stjebhens [11]. | o R | |
As is explained in Chandra et.al. [1] we first note that when the sample is from the
two parameter Weibull distribution, Fi(z) =1 —'éxp[—{m/é}”], - >0, we can make
' uéé of the transformation y = —log(x) to transfbrm the data to those coming from
 the extreme value distribution, F(y) =exp[—exp—{(y — ()/6}];, —oo <y < oo with
¢ = —logé and § = 1/v. Thus, the problem is reduced to that of testing that the data
come from the eXtrérne value distribution, withf( or 9 or both unknown. So we will

onjlyif discuss the case that the data come from the ei;tréme value distribution.

Following Stephens [16] we discuss four test situations:
Case 0 : both ¢ and 8 are known.
Case 1 : @ is known and ( is to be estimated.

: "Case’2 : C is known and 6 is to be estimated.
Case 3 : both ¢ and 8 are unknown and must be estimated.

- The covariance kernel for each of the above cases takes the following form.
Case 0 : p(s,t) = p’g(s,t) :: min(s,t) — st.

Case 1 : p(s,t) = po(s,t) — ©1(s)®1(t), where, ®,(s) = slog(s).
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Case 2 : p(s,t) = po(s,t) — ®y(35)P,(t), where

®,(s) = s(log(s)){— log(log(s))}/1.350437

Casz 3 : In this study we only used the brute force approach to compute the estimates
 for the eigenvalues of p in cases 1 and 2. For case 3, one may refer to Stephens [16] or

Stephens [17].

As is explained in Stephens [17] case 1 above reduces to testing for the exponential
distribution. So, we only tabulate the first ten estimates of the eigénvalues correspond-

ing to case 2.

1|1 2 3 4 5) 6 7 8 9 10

>)

9.869 | 1.456 | 1.108 | 0.469 | 0.396 | 0.229 | 0.202 | 0.136 | 0.123 | 0.090

Table 4.3: Estimated eigenvalues of the covariance kernel for the extreme value distri-

bution
Remarks:

e It is noted that we only computed estimates for the eigenvalues of the covariance
kernel in each of the distributions discussed above. It would be useful to compute
the critical points and compare them with the published values in each case j, but
due to lack of time we had to limit our scope. Qur primary concern in this study
is to compute the rp-values for the Cramér-von Mises statistic in two component

Weibull mixtures.

¢ For the percentage points in each of the above cases one might refer to Stephens [16].



4.4 Eigenvalues of the covariance kernel for a mix-

ture of two Weibull distributions

In this section we deal with the case that the data come from a population which is

made up of two Weibull component populations mixed together in fixed proportions.

The data come from the distribution,

f(l': Ci’,gl, C2, 025?) =p fl(mvclaal) + (1 - p) fZ(I: 62;02)3
where f; is a two parameter Weibull density.

/ cy—1 .
i) = & G) expl~(3)%], 0 < 7 < o0, c;,0 > 0

i
We will only discuss the case of the full composite hypothesis.
As we discussed in the' previous chapter, the covariance kernel of the limiting process

Y is

p(s,t) = pos,t) = U(s)I""Y(t), where

po(s,t) = min(s,t) — st and
oF .. .
U(s) = S 7(s,8),0]

Unlike the previoué cases, due to the complexity of the mixture distribution function,
we cannot find a closed form solution for p. Therefore, it is not possible to create the
matrix ¢ as described in the previous cases. Instead we estimate the covariance kernel
at any given point and thus create the matrix ¢ using these estimates. In the néxt
chapter we describe the problems that we encounter in computing the eigenvalues and

the software that we developed to find estimates for the eigenvalues
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Chapter 5

Computation of the p-values:

Development of software

In the previous chapters we discussed the theory behind the computation of the p-
values of the Cramér-von Mises statistic in Weibull ’rnixtur’e populations. However, the
éOrnplexity of the rhixture population problem makes it difﬁculﬁ to find a closed form for
the covariance kernei. Therefore, the method described in Stephens [15] for the normal
case cannot be extended to find the eigenvalues of the covariance kernel for the mixture
model at hand. We begin this chapter with a brriefrdescr‘iption of the problems that
we encounter in computing the eigenvalues and the p—va.lues for the test statistics in
- Weibull mixture populations. Then, we describe the software that we develdped to find
an estimate of the covariance kernel at a given point and henceforth to find estimates
for the eigenvalues usiﬁg brute force approach. These estimated eigenvalues are used

to find an approximate p-value for the test statistic.

The covariance kernel of the limiting process is,

ﬁ(st) = po(s,t) — \Il(s)'f"l\ll(t), where

po(s,t) = min(s,f) —st and

54



oF

[F~(s, &), q]
The problems associated with the computation of p-values in the mixt re case are:

e In the above formula, I is the information matrix corresponding to a sirzle ob-
servation. Since the information matrix is not available in closed form we were

forced to estimate it.

e Computation of ¥(s) requires the inverse of the mixture distribution function and
this has to be done numerically. In normal and other cases considered before we

were able to solve for ¥(s) I~1¥(t) algebraically.

@ In the previous cases the eigenvalues and the critical points do not depend on the
values of the parameters. Thus critical points could be given in a small table. In

the mixture case, critical points would depend on all five parameters.

These problems make direct computation of eigenvalues and preparation of tables of
critical points impractical. Instead we developed software to compute an approximate
p-value based on the asymptotic distribution for the covariance using an estimate of

the information matrix.

5.1 An estimate of the information matrix

The information matrix for a sample of size n, I, is given by,

Olog L. Olog L,

I = B{[e= =T},

If the ‘estimated parameters are close to the actual parameters, the elements of I,
are almost the same as the elements of the matrix — H, where H is the matrix of second

derivatives with fespect to the parameters and is called the Hessian matrix. In our
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procedure we estimate the information matrix of a single,observation I, by the matrix
—H/n, evaluated at the maximum likelihood estimaté. We therefore find p-values from
the distribution of [} Y'2(¢)dt; Y is a mean 0 Gaussian process with covariance function
min(s,t) — st — U(s)T(—H/n)"1¥(t), where —H/n is the Hessian matrix evaluated at
the maximum likelihood estimate. It is also noted that for the normal and exponential

distributions the matrix —H/n gives the exactly correct form of p.

‘5.2’: Covariance kernel under composite hypothesis

The covariance function is

p(s,t) = min(s,t) — st — U(s)T(=H/n) ' ¥(t), where,

oF , 1, .
ra—a(F (s,a), ).

U(s)-
Computation of ¥(s) requires the inverse of the distribution function at the point s.
This again cannot be found algebraically and now we describe the software that we

- developed to find this numerically.

Inverse of the mixture distribution function

The distribution function is,

z\4 R r\=
ronar=sfi-on (3 )] 0 -on(-(3))
01 02
where af = (c1,cg,01,602,p). We first compute the inverse of the mixture distribution
function at a given point numerically. Given t, we want to find z s.t. F(z,a) =t. This

is exactly the same as finding zeros of ¢(z) = F(z,q) — t.

In cur procedure we use the “Secant method”, that is, the iterative scheme

$ng(xn*i) - 2711—1.9(37n)
g(xn) ~ g(Tn-1)

o = o) Y v np-n{- (7))

Tpp1 = , where



Two initial points are required to start with.

Finding an initial guess:

From equation (3.4) if we put p=0, g(x)=0 when,

e {(5)} =
exp{—- (0%) } =1t
) -

We know that log(l —t) < 0, since t > 0. So, we can write the above equation as,

-(5)" = -hogt-1)
and thus, z, = 6,(]log(1 —t)))"/<.

i

Note that we simply escape from the problem of log(1 — t) being negative by using
the absolute value. This step is very important for z, to be meaningful.

Similarly, when p =1, z; = 01(]log(1 — t)l)l/cl-

We take z,, z2 as initial points. We found that in all the examples we tried it is the
case that z; and z; are on the opposite sides of the root, and this scheme serves the

purpose well with a satisfactory degree of accuracy.

The Newton Raphson method which uses,

9(zs)
g'(z5)

with the initial guess, z¢9 = pz; + (1 — p)z2, wa¥ also-found to work well except in a few

(if '(zn) # 0)

Tppl = Tpn —

cases where ¢’(z), ¢"(z) are vanishingly small at certain points.
 Here, 7 o 7 ‘
’ T (] ' T c2
o) =t —exp{= () ]+ (-0 [t —en{= ()7} -+
0msp () e G g ()l ()
9(@)=rg (91) *o\~\g) 1T0-Pg\e) 1 \g)
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In our problem we have to evaluate the inverse of the mixture distribution at all
the points cofresponding to the subdivisions of the interval [0,1]. In other words we
have to evaluate the inverse of a vector of points; the components of the vector being
‘the subdivisions of the interval [0,1]. It is noted that rather less computational time
is required if we can extend the above program to compute the inverse of a given
vectof of points instead of evaluating the inverse of one point at a time. However, the
difficulty is that different points in the vector require a different number of iterations to
‘converrge. Fortunately the languager ‘Splus’ that we use has the ability to select those
components which satisfy a certain given condition called the convergence criterion
and do iterations with the selected ones for which the convergence criterion is not yet
satisfied thereafter by recalling the same function. In our problem we take the condition
to be: the difference between two consecutive iterated pcﬁnts is less than a small number
e (for exra.mrple we used € = 5x 107%). If this condition is met for a parficular point in the
vector we consider that the convergence criterion-has been met for that particular point
and iterate with rest of the points, until the convergence criterioﬁ,is met with all the
points in the vector. The advantage of using the aforementioned prbéedure to compute
the inverée is that we can save lot of comput‘a,tidnal time and effort by adopting this
procedure. The function we wrote to find the inverse of a vector of points (“inv.Weib”)
is attached in Appendix B. '

' s of 2F are 2E 9F BE 9F .4 OF o o
The relementrs of 3 are 35 Bepr 88y a(,z,,zrmd 5 These are given by,

5 = nla) s(g) e {-(3)")
ac,‘ = P 9,’ & 0,‘ exPp 0,‘
oF ¢ T\& T\ .
86; P (0,) (a,-) ex"{ (a,-) } fri =1,
5 = o=@} - {-G))
G exp 7 exp "
In the above equations- py = p and p, = (1 — p). Now we can approximate ¥(s)

by, %{‘(F~1(8,&),a) evaluated at « = @ and z = F~(s,a). This way we have an

estimate for the covariance kernel at any given point (s,%).
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5.3 Eigenvalues of the covariance kernel

We create the matrix @ whose (s,%)th element is p(s,t) = po(s,t) — ¥(s)' I (1),
for s;t = 1,2,...,n. Then as describéd in the previous chapter the eigenvalues of the
covariance kernel p can be estimated by the eigenvalues of the matrix ). In our program
we used 100 subdivisions of the interval [0,1], in the brute force abproach, and so @ is
a 100 x 100 matrix. This way we find 100 eigenvalues of ¢} and thus estimates for 100

eigenvalues of p.

5.4 p-values based on the asymptotic distribution

- of the test statistic

Now we outline the procedure that is used to compute an approximate p-value based

on the asymptotic distribution of the Cramér-von Mises statistic.
1. Estimate the parameters by the method of maximum likelihood.

2. Compute z; by the probability integral transform. Use z; = F/(z;, 8), where 8 is
~ the maximum ylikelihood estimate of 8, when 6 1s not §omplétely specified by the

null hypothesis.
3. Compute W? using the computing formulas. |

4. Estimate I by —H/n, where H is the Hessian matrix evaluated at the maximum

likelihood estimate.

(W) §

Compute ¥ numerically at a grid of points.

6. Evaluate the matrix Q using the results of 4 and 5.
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7. Find the eigenvalues of (). These are the weights to be used in the asymptotic
distribution of the Cramér-von Mises statistic, which is a weighted chi-square

distribution.

8. Find the probability that a linear combination of chi-squares (the coefficients being
the weights mentioned in 7), exceeds the value of the test statistic in 3, using the

procedure described in section 3.7.

W'ér developed software using the language ‘Splus’ to implement the above procedure.
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Chapter 6

Monte Carlo study on mixtures of
two parameter Weibull

distributions

6.1 Objective

The objective of the Monte Carlo study is to test the accuracy of the asymptotic results
for the Cramér-von Mises statistic applied to Weibull mixture populations and to study

further the behaviour of the likelihood function in Weibull mixture populétions.

We begin this study by showing that, if the Cramér-von Mises statistic has the
weighted chi square distribution mentioned in section 3.4 then the p-values for the test

statistic are uniformly distributed on [0,1].

Let w be the value of the test statistic W, computed using a sample of size n.
Let G(t,6,I) be the distribution of f; Y?(t)dt, where Y is a mean zero Gaussian process
with covariance, |

p(s,t) = min(s,i) — st —U(s,6)T I71 ¥(¢,6)
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If 0 is the true parameter value W, converges in distribution to G.

That is, P(W,, < w) — G(w, 8, I(9)), where [ is the information at- §.

If G, is the exact distribution of W,, then,

P(1 - G,(W,) <u)

VP(Gn(Wn) >1—u)
= P(W,>G.'(1-u)

= 1- Gn(G;l(Vl —u))=u

So that 1 — G,(W,,) has a uniform distribution.

The asymptotic theory is that, G.(z) — G(z,8,1(8)) and also,

' G(z,0,1) — G(z,6,1(6)) so that, p = 1 — G(W,,8,1) is close to 1 — G(W,) and
therefore has a nearly uniform distribution. The validity of the asymptotic theory can
thus be tested by checkihg to see if the p-values are approximately uniformly distributed

when the null hypothesis is true.

6.2 Description

We chose five different Weibull mixture populations for the study. From éach popu-
| l@tion, we generated 75070 samples each of sizer 100. For each sample we estimated the’
parémeters by maximum likelihdod' and the information matrix using —H/n, evalu-
ated at the maximum likelihood estimate. Then we computed an approximate p-value
following the method outlined in section 5.4 above. The p-values obtained for each pop-
ulation were tested for uniformity. In section 6.3 we describe the 5 mixture populations

used. Results are in section 6.4. Conclusions are in section 6.5.
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6.3 Populations used in the Monte Carlo study

Parameter values of the populations that are used in this study are given in table 6.1.
Populations number 1, 2, 4 and 5 are mixtures of Weibull components, while popula-
tion 3 is a mixture of an exponential and a Weibull component. Populations were chosen
to rahge from poorly separated components to very well separated components. As we
mentioned in section 2.6 if the component densities are not well separated, the likelihood
functions for the data sets taken frorh such populations sometimesr have more than one
maximum and saddle points. In the figures which show the densities of the populations
we have also marked whether or not saddle points are observed when sampling from

that population.

parémeter
population | shape(1) | shape(2) | scale(1) | scale(2) | proportion
1 2 3 13 0.9 0.5
2 1.5 3 2 4 0.5
3 1 3 2 4 05
4 2 4 0.5 3 ' 0.5
5 2 8 |1 |4 05

‘Table 6.1: Populations used in the Monte Carlo study

To ease the comparison of results in each case the plots of densities are given in the
next section (Figures 6.1- 6.10) together with the results. In each figure, the solid line

denotes the mixture density, while the dotted lines denote the component densities.
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6.4 Results

As a preliminary look at the p-values histograms and plots of quantiles of the uniform

distribution against the ordered p-values(Q-Q plots) were considered.
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Figure 6.1: Density of popﬁlation 1: (saddle points were observed)
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Figure 6.2: Histogram and Q-Q plot of p-values: Population 1
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Figure 6.3: ‘Density of population 2: (saddle points were observed)
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Figure 6.4: Histbgrém and Q-Q plot of p-values: Population 2
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Figure 6.5: Density of population 3 : (saddle points were ohserved)
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Figure 6.6: Histogram and Q-Q plot of p-values: Population 3

66



DENSITY AT X

15

0.5

PLOT OF MIXTURE DENSITY AND THE COMPONENT DENSITIES

i

i —~———  MIXTURE DENSITY
—-—= COMPONENT 1

—~ COMPONENT 2

X
PARAMETER VECTOR = (2,4,0.5,3,0.5}

Figure 6.7: Density of population 4 : (no saddle points were observed)
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Figure 6.9: Density of population 5 : (no saddle points were observed)
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Figure 6.10: Histogram and Q-Q plot of p-values: Population 5
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Figures 6.2- 6.10 suggest that p-values observed in each case are uniformly dis-
tributed. We used the Anderson-Darling statistic as a measure of uniformity of p-values.
The null hypothesis to be tested is, Hy : the p values are uniformly distributed on [0,1].
Thus under Hy the distribution is completely specified. According to Stephens(1986) it
falls under Case 0. Percentage points are given in Table 4.2(page 105) of Stephens(1986).
We arrange the p-values in ascending order and we note that the probability integral
transforms z; are exactly the values itself because the distribution of interest is the
uniform distribution. The value of the test statistic is computed using the formula
for A given in section 3.6. The value of the test statistic and the corresponding p-
value of the Anderson-Darling test in each case are given in table 6.2. The p-values
- for the Anderson-Darling test given in the table are computed by first estimating the

“eigenvalues of the covariance kernel, for A2,

min(s,t) — st
\/tT1 —t)s{l — s)

using the brute force approach described in section 3.5 and then using these eigenvalues

PO(S, t) =

as weights to compute the p-values.

parameter And.
, pop. shape(1) | shape(2) | scale(1) scalrer(Q} prop. | test stat. | p-value
1 2 3 3 0.9 0.5 0.78 0.49
2 1.5 3 2 4 0.5 1.28 0.24
3 1 3 2 4 0.5 0.95 0.38
4 2 4 0.5 3 0.5 1.47 0.18
5 2 8 1 4 0.5 2.43 0.05

Table 6.2: Table of Anderson Darling test statistics and p-values
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6.5 Conclusions

® According to the above results, the Anderson-Darling test does not reject the null

‘hypothesis that p-values are uniformly distributed in any of the above cases.

e Therefore, it is reasonable to assume that the usual asymptotic theory for the

Cramér-von Mises statistic is valid in the Weibull mixture case.

e This justifies the use of the approximate p-value suggested in section 5.4 to test

the goodness of fit of the fitted Weibull mixture model.
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Chapter 7

Conclusions and summary of open

problems

7.1 Concluding remarks

1. The likelihood surfaces for samples of Weibull mixture distributions appear to be
flat over a wide range of the parameter space. This gives rise to difficulties in
maximum likelihood estimation. For example, the Newton Raphson method fails
to converge in such a case and special techniques have to be implemented to find

the solution.

2. Likelihood functions for samples of Weibull mixture distributions whose compo-
nents are not well separated sometimes have more than one maximum; it is hard

to find the global maximum with certainty.

3. In some cases several very different roots of the likelihood equations all gave good

fits. This problem arose only when the components are not well separated.

- 4. Surprisingly, the values of the log-likelihood function at each of these roots were

similar.
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3.

P-values for the Cramér-von Mises statistic computed on the basis of our asymp-
totic distribution have the predicted uniform distribution. Therefore, our approx-
imate asymptotic distribution may be used to compute an approximate p-value

for the test of fit of the fitted Weibull mixture model.

7.2 Summary of open problems and suggestions

L.

o

In this study we developed software to compute the p-values of the Crameér-von
Mises test statistic applicable to Weibull mixture populations. These can very
easily be extended to other mixture distributions as well as to cover other test

statistics which are based on the empirical distribution.

In this study, we restricted ourselves to ungrouped data. One could extend the

‘above ideas to grouped data as well as to censored data.
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Appendix A

Data Sets

A.1 Data set(1)

1.0223828
1.2504893
1.3060745
0.6935191
4.9822883
1.3421827
0.2601858
1.3588268
2.6971382
0.8787339
1.2992692
1.4110422
0.8928673
0.7881533
0.3657555
1.1502145
0.6484203

0O O O W O .0 O Ww

.0177587
.9950643
.9868945
.1426349
.3284718
.2220684
.0476711
.0786055
.7689321
.7855622
.6983452
.8139170
.2456759
.9514808
.2313114
.3070789
.1819143

1.2011735
0.7833413
0.7655612
0.7916427
6.3209155
3.9372875
1.1927935
0.7658786
0.3520612
0.5815194
1.1057061
1.3478895
4.5736033
0.5999366
1.5166873
1.3349492
1.9878050

1

1.
1.
0.

1.

.5710518
.6836319
.1595537
.T769707
.0002028
.8543468
.0856903
.3017336
.1589643
.0529836
.9616712
.6982980

-2828072

3146535
7566231
8103855
0272895

.8460915
.6721168
.8788154
.5357167
.4567053
.6672644
.9174970
.0074364
.7830480
.0518783
.3353226
.9535968
.8081162
.3457089
.1964081

.1184989

-

= O ©O© O o ©°o W o w

o N

-1069041
.5171286
.8687286
.6057939
.4622927
.7983155
.2188122
.3545173
.7530154
.3965225
.9271150
.3889530
.2699175
.9094415
.3675468
. 7745366



A.2 Data set(2)

5.3042269 2.6350808 1.2531883 3.0837725 3.9388123 0.1950201 1.0304685
1.3744614 3.1815707 3.3786843 1.6643244 7.0453781 0.5569809 0.93845950
5.1281041 0.6424147 0.8965324 3.7326078 0.5616477 2.6328054 0.9321107
4.6326301 4.0407108 4.4729154 2.9519342 2.0761575 -2.0717230 0.8072693

.3826999 2.7898499 1.6345463 - 1.5631035 1.6419326

(4]

2.5395409 2.9170521
3.0749187 1.5481462 5.3976012 .0693061 0.2379801 2.9776892 3.1170207

2.9082141 0.4268044 3.5837500 .3376380 2.6252562 - 1.2038543 1.8331696

3

0o
2.7439493 2.1922736 1.9830151 4.3473678 4.7277217 ~ 0.4119260 0.7855037
1.2149359 3.3253510 3.4293134 2.2921864 2.6141537 3.6185271 0.8654889
2.5747383 2.7976565 3.6060248 3.7215747 3.0944627 2.5974006 2.5554961
1.1919997 1.7530734 3.3257847 3.5877874 2.6251822 2.5897634 1.0296417
2.2877457 1.3918966 4.0280519 0.7155959 5.9203678 1.9450702 .5671604

3
.5701826  2.8480250 0.8028973 2.2337762 0.4703389

-

2.9074556 1.1480348
4.6829135 1.1444424 1.4796428 4.0830916 1.7523359 2.5985532 2.7180774

3.3873932 4.4156611



Appendix B

B.1 Inverse of the Weibull mixture distribution

function

The function which we call “inv.Weib” computes the inverse of a vector of points us-
ing less computaional time and effort compared to finding the inverse at each point

separately.
Description:

If ¢l is the vector which contains the inverses of the points of the vector ¢1 then
F(cl,a) = t1. So cl is a root of the equation g(z) = F(cl,a) —tl. We use the

Secant Method to compute the root at each point of the vector cl.

The input variables for the function are;

1. v = parameter vector in the order (shapel,shape2,scalel,scale2,proportion).

[\

. t1 = vector of points that are to be inverted

3..a, b = two initial points which are on the opposite side of the root.

The output variable ¢l contains the inverse points of the vector 1.

A more detailed description of this function is offered in section 3.2.
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inv.Weib_
function(u,t1,a,b){
f_function(u,t1,y){
ul5] * (1 - exp(-((y/ul3])-ul1])))
+ (1 - ul8]) * (1 -exp(-((y/ula])~ul2]))) - t1}
fa_f(u,t1,a) |
fb_f(u,t1,b)
cl_(b*fa-a*fb)/(fa-fb)
fcl_f(u,t1,cl)
recur_{abs(fc1)>0.5e-05)
if(any(recur)) {
c2_cl[recur]
fc2_f(u,t1[recur],c2)
blrecur] [falrecur] *fc2<0] _c2[falrecur] *fc2<0]
alrecur] [fblrecur] *fc2<0] _c2[fblrecur] *fc2<0]
ci[recur]_inv.Weib(u,t1[recur],alrecur],b[recur])}

ci}
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