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Abstract

A local tournament is an oriented graph in which the inset as well as the outset
of each vertex induces a tournament. Local tournaments possess many properties
of tournaments and have interesting structure. In 1982, Skrien proved (in different
terminology), using a deep structural characterization of proper circular arc graphs
by Tucker, that a connected graph is local-tournament-orientable if and only if it is a

proper circular arc graph.

In Chapter 2, we shall give a simple O(mA) algorithm to decide if a graph can
be oriented as a local tournament, and hence whether or not it is a proper circular
arc graph. We analyze relationships among local tournaments, local transitive tour-
naments, and proper circular arc graphs. We obtain theorems to describe all possible

local-tournament orientations of a proper circular arc graph.

In Chapter 3, we shall present an O(mA) algorithm to recognize comparability
graphs and to calculate transitive orientations. Our method can be applied to recog-
nize proper circular arc graphs and to find local-transitive-tournament orientations,
and can also be applied to recognize proper interval graphs and to find acyclic local-
tournament orientations. We shall give a simple proof of Skrien’s theorem, which does

not depend on Tucker’s result.

In Chapter 4, we shall present two O{m+n) time algorithms. One is for recognizing
proper nterval graphs and for finding an associated interval family. The other is for
recognizing proper circular arc graphs and for finding an associated circular arc family.

In Chapter 5. we shall obtain two additional O(m + n) time algorithms for proper

circular arc graphs by using the auxiliary local-tournament orientations. One is for

finding maximum cliques, and the other is for determining c-colourablity.
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In Chapter 6, we shall introduce a new class of oriented graphs namely, in-
tournaments, which contains the class of local tournaments. We shall show that
some of the basic and very nice properties of tournaments extend not only to local
tournaments, but also to this more general class of digraphs. Our results imply a
polynomial time algorithm for finding hamiitonian paths and cycles in the class of
in-tournaments. We shall also investigate the the class of graphs which are orientable

as in-tournaments.

Finally, in Chapter 7, we shall introduce another class of oriented graphs, i.e.,
those of Moon type. We shall find a close relationship between the class of oriented
graphs of Moon type and the class of local tournaments. In fact, oriented graphs of

Moon type can be characterized in terms of local transitive tournaments.
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Chapter 1

Introduction

1.1 Overview

A tournament is a complete oriented graph. Tournaments have been a popular ob-
ject of study since the early days of graph theory. There is now an extensive theory
associated with tournaments, {13, 57]. A semicomplete digraph is obtained from a
tournament by adding additional arcs, i.e., it is a digraph in which any two distinct
vertices are joined by at least one arc. Clearly, semicomplete digraphs generalize
tournaments. Many difficult problems for general digraphs can be easily solved for
tournaments and semicomplete digraphs. For instance, the problems of finding a
hamiltonian path and finding a hamiltonian cycle are NP-complete for general di-

graphs, cf. [50], and polynomial for both tournaments and semicomplete digraphs, cf.

[59].

It is natural to look for a larger class of digraphs, ‘vhich still allows as many
problems to remain tractable as possible. Recently in (4], Bang-Jensen introduced
one such interesting class of digraphs. He called them locally semicomplete digraphs.
A locally semicomplete digraph is a digraph in which the outset as well as the inset
of each vertex is semicomplete. In [4], Bang-Jensen proved that most properties
that hold for semicomplete digraphs also hold for iocally semicomplete digraphs. For

instance, a connected locally semicomplete digraph has a directed hamiltonian path.
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A strong locally semicomplete digraph has a directed hamiltonian cycle. Moreover

there are polynomial algorithms to find such a path or a cycle.

An oriented graph is a local tournament if the outset as well as the inset of each
vertex is a tournament, [20, 39]. So a local tournament is an oriented grapk which
is locally semicomplete. A local transitive tournament is an oriented graph in which
the outset as well as the inset of each vertex is a transitive tournament, [20, 47].
Local tournaments are natural generalizations of tournaments, and local transitive

tournaments are natural generalizations of transitive tournaments.

A graph G is a circular arc graph if there is a one-to-one correspondence between
the vertex set of G and a family F of circular arcs on a circle such that two vertices
are adjacent if and only if the corresponding two circular arcs intersect. The family
F is called a circular arc representation of . If the circular arcs can be chosen so
that no one is completely contained in another, then the corresponding graph is a
proper circular arc graph. Similarly a graph is an interval graph if there is a one-
to-one correspondence between the vertex set and a family 7 of intervals on the real
line such that two vertices are adjacent if and only if the corresponding two intervals
intersect. The family 7 is called an interval representation of the graph. Again
if the intervals can be chosen so that no one is completely contained in another,
then the graph is a proper interval graph. Interval graphs, proper interval graphs,
circular arc graphs, and proper circular arc graphs have practical importance in many
different sciences (e.g., genetics, archeology, ecology, computer science, electronics),

of. [15, 27, 33, 36, 51, 67, 73].

Local tournaments not only possess many properties of tournaments but also have
their own additional structure. In 1982, Skrien obtained a result which implies a rela-
tionship between local tournaments and proper circular arc graphs, [71]. Specifically,
a connected graph is a proper circular arc graph if and only if it can be oriented
as a local tournament. This view leads to a new way to investigate proper circular
arc graphs, namely, by studying local tournaments. In fact, as we shall show, many

typical problems can be attacked in this way, and solved efficiently.

According to Skrien’s result, the problem of testing if a connected graph is a proper
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circular arc graph is the same as the problem of testing if the graph is orientable as
a local tournament. The former problem was solved by Tucker with an O(n?) time
algorithm (all complexities discussed here are worst-case), which makes use of a matrix
characterization of proper circular arc graphs (cf. [81]). We shall transform the latter

problem to one of testing 2-colourability of an associate graph, which we can solve in

time O(mA).

Circular arc graphs and proper circular arc graphs have been extensively studied
for over twenty years and many nice results have been obtained for these graphs (cf.
(17, 33, 34, 36, 51, 56, 80]). According to the relationship established by Skrien, those
results for proper circular arc graphs can be simply transferred to graphs which are

orientable as local tournaments.

We observe the following additional relationships: A connected graph is a proper
circular arc graph if and only if it is orientable as a local transitive tournament. A
graph is a proper interval graph if and only if it is orientable as a non-strong local
tournament. Moreover, for a proper circular arc graph, obtaining a local-transitive-
tournament orientation is equivalent to finding a corresponding proper circular arc
family. Armed with this knowledge, we are able to analyze the structure of local tour-
naments, and to obtain theorems which describe all possible local-tournament orien-
tations of a proper circular arc graph, and all possible non-strong local-tournament
orientations of a proper interval graph. From our theorems, the problem of generating

all local tournaments is completely solved.

An oriented graph is locally bicomplete if there is a complete adjacency between
the outset and the inset of each vertex, [40]. An oriented graph is transitive if the inset
of each vertex dominates the outset of that vertex. A transitively orientable graph is
of course local-bicomplete-orientable. A result due to Ghouila-Houri, reformulated in
our terminology, assures that a local-bicomplete-orientable graph is also transitively

orientable.

Transitively orientable graphs are also called comparability graphs, [25, 32, 72].
Comparability graphs are an important class of perfect graphs (cf. (33]). The problem

of recognizing comparability graphs was first studied by Pnueli, Lempel, and Even,
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resulting in an algorithm with a time bound of O(mA) (cf. [63]). However this
algorithm involves a complicated structural analysis of comparability graphs. We shall
provide a simple algorithm by transforming the problem to the problem of testing the
local-bicomplete orientability. Our algorithm also finds a local-bicomplete orientation

of a comparabiiity graph, in time O(mA).

We shall then introduce a new method which allows us to find a transitive orien-
tation of a comparability graph also in time O(mA). This problem was also solved by
Spinrad with an algorithm having a time bound of O(n?) (cf. [72]). Our method can
also be applied to find, in time O(mA), a local-transitive-tournament orientation of
a proper circular arc graph, and an acyclic local-tournament orientation of a proper
interval graph. As we mentioned above, these orientations are equivalent to proper
circular arc representations or proper interval representations. So our method is also

useful for these purposes.

There are efficient algorithms to solve various problems for proper circular arc
graphs and for general circular arc graphs, provided a circular arc family is given. For
instance, the maximum independent set problem, the minimum clique cover problem,

and the minimum dominating set problem can all be solved in time O(n) (cf. [46]).

The recognition and the representation problems for circular arc graphs have been
solved by Tucker with an O(n®) time algorithm (cf. [80]). The same problems for
proper circular arc graphs were also solved by Tucker, as we mentioned earlier, with
an O(n?) time algorithm, [81]. We shall present an optimal, i.e., O(m + n) time,

algorithm to solve the problems for proper circular arc graphs.

For interval graphs, the recognition and the renresentation problems were first
studied by Booth and Lueker (cf. [17]). Their approach led to an O(m + n) time
algorithm. However the algorithm obtained by Booth and Lueker involves a compli-
cated data structure called the PQ-tree. For proper interval graphs, we shall give
an algorithm of complexity O(m + n) to solve the recognition and the representation
problems. Our algorithm makes use of our structure theorems instead of PQ-trees.
Recently, Hsu announced an O(m + n) time algorithm for the recognition of interval

graphs without using PQ-trees, [44].
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Gavril was first to consider the maximum clique problem for circular arc graphs.
He solved this problem with an algorithm of complexity O(n?) which was later im-
proved by Hsu to O(mn) (cf. [43]). For the special case of proper circular arc graphs,
we shall give an O(m + n) algorithm to solve the maximum clique problem. If the
circular arc representation is given, our algorithm runs in time O(nlogn). The best
previous algorithm, due to Apostolico and Hambrusch, which assumes that a circular

arc representation is given, has a time bound of O(n?loglogn) (cf. [3]).

The c-colouring problem, NP-complete for circular arc graphs [27], was first shown
to be polynomial for proper circular arc graphs by Orlin, Bonuccelli, and Bovet. Their
approach consisted of reducing the problem to a shortest path calculation, and resulted
in an algorithm with a time bound of O(n?) (cf. [61]). This algorithm requires also
that a circular arc representation be given. Subsequently, other authors improved the
algorithm by improving on the shortest path method, culminating in the algorithm of
Shih and Hsu, which has a time bound of O(n?), [70]. Applying our maximum clique
algorithm, we are able to solve this problem with a general O(m + n) algorithm, and

an O(nlogn) algorithm when a circular arc representation is given.

Note that all of our algorithms may meaningfully be restricted to connected graphs.

Then we can replace the complexities O(m + n) by O(m) throughout.

The class of local tournaments can be generalized to the class of in-tournaments,
i.e., those oriented graphs in which the inset of each vertex is a tournament, (8,
10, 11]. We shall show that many properties of local tournaments extend to this
larger class of criented graphs. Our results imply a polynomial algorithm for finding
hamiltonian paths and cycles. We shall also study those graphs which are orientable

as in-tournaments.

A tournament of Moon type is a tournament in which every subtournament is
either acyclic or strong. The tournaments of Moon type have been studied by Moon
and Guido, [35, 58]. We shall generalize Moon type tournaments to the class of
oriented graphs of Moon type, i.e., those oriented graphs in which every connected
subgraph is either acyclic or strong. It turns out that there is a close relationship

between oriented graphs of Moon type and local tournaments. We shall prove that
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all oriented graphs of Moon type can be generated from local transitive tournaments

by substitution operations.

1.2 Terminology and Notation

A graph GG is an ordered pair (V, E'), where V is a finite set and E is a set of unordered
pairs zy with ,y € V and = # y. The elements of V are vertices, and the elements of
E are edges. Note that in our definition, we do not allow any loops, i.e., edges joining
a vertex to itself. A graph is simple if it contains no multiple edges, i.e., edges joining
the same two vertices. All graphs are assumed to be simple, unless stated otherwise

(cf. Chapter 6). We will use G = (V, E) or simply G to denote a graph.

If zy is an edge, then the vertex z is adjacent to the vertex y and is incident with
the edge zy. We use = ~ y to denote that z is adjacent to y. If = is not adjacent to
y, then the vertex z is non-adjacent to the vertex y. If z ~ y, then y is a neighbour
of z. The neighbourhood of r, denoted by N(z), is the set of all neighbours of z.
The number of vertices in N(z) is the degree of z, denoted by deg(z). The mazimum
degree of a graph G is the maximum value among the degrees of all vertices of G.
We shall use A(G) or simply A to denote the maximum degree of . The closed
neighbourhood of z, denoted by N|[z], is defined to be N(z) U {z}. Note that if two
vertices « and y have the same closed neighbourhood, namely if N[z} = N{y], then z
and y are adjacent. A graph is reduced if any two distinct vertices have distinct closed

neighbourhoods.

Let G = (V,E) and G’ = (V', E’) be two graphs. We call G’ a subgraph of G if
V' C V and E' C E. If in addition E' = {zy € E| z,y € V'} then we call G’ an
induced subgraph of G. For each S C V, the subgraph of G induced by S, denoted by
< S > or S, is the unique induced subgraph of G with vertex set S.

Suppose that G = (V, E) is a graph and S C V is a set of vertices of G. We use
G — S to denote the subgraph induced by V — S. We write G — = instead of G — {z}.

If 5 contains no adjacent vertices, then S is called an independent set of G.

A graph G = (V| E) is isomorphic to a graph G’ = (V', E’) if there is a one-to-one



Chapter 1. Introduction

mapping f from V" to V' such that zy € £ if and only if f(r)f(y) € E'. The mapping
f is an isomorphism from G to G'. If (G is isomorphic to &/, then we also say that (7

and GG’ are isomorphic, or (G is a copy of .

A walk of length k in a graph G = (V| F) is a sequence vpejvi€y. .. €0, where
Vo, U1, . - ., Ug aTe vertices, e;, €y, ..., €x are edges of (G, and v;_; and v; are the two ends
of e;, 1 <1 < k. We will call such a walk a (vo, vi)-walk. If all vertices vy, vy,..., vk
and all edges ey, ez, ..., e, are distinct, then the walk is a path. If vy = vy, then the
walk is closed. A closed walk voeivieg. .. exvg is a cycle if v; # v; and e; # e; when
i # j. Whenever we deal with graphs without multiple edges, we may suppress the
edges and write P = v; ~ vy ~ ... ~ v to denote a (v, vi)-walk (resp. (v, vi)-path)
and use C = vy ~ vy ~ ... ~ vg ~ v; to denote a closed walk (resp. cycle). Vertices
v; and v;4; are called consecutive vertices. (The subscript addition is modulo k in the
case of C.) A path or a cycle is chordless (in a graph () if non-consecutive vertices
are not adjacent (in G). A graph is chordal if it contains no chordless cycle of length

strictly greater than three.

A graph G is connected if there is an (z,y)-path for any two vertices z and y. A
connected component or simply a component of G is a maximal connected subgraph
of G. For any two vertices z and y, the length of a shortest (z,y)-path is the distance

between z and y.

We now define the substitution operation: To substitute a graph H for a vertex v
of a graph (G means to form a new graph G’ from G by replacing v with H so that in

G' every vertex of H is adjacent to every neighbour of v.

Let F = {5, S5,,...,5,} be a family of sets. The intersection graph of F is a graph
G with the vertex set {vy,v,...,v,} such that v; ~ v; if and only if 5;NS; # §. The
family F is called a representation of the graph G.

A circular arc family is a collection of arcs on a circle. A circular arc family
is inclusion-free or proper if no arc is completely contained in another. A graph ¢
1s a circular arc graph if it is an intersection graph of a circular arc family; (4 is a
proper circular arc graph if it is an intersection graph of a proper circular arc family.

An interval family is a collection of intervals on the real line. An interval family is



Chapter 1. Introduction &

inclusion-free or proper if no interval is completely contained in another. A graph
(G i1s an interval graph if it is an intersection graph of an interval family; a proper
interval graph is an intersection graph of a proper interval family. An interval graph

is a circular arc graph and a proper interval graph is a proper circular arc graph.

A digraph D is an ordered pair (V, A), where V is a finite set and A is a set of
ordered pairs zy with z,y € V (i.e.,; A is a binary relation on V). The elements of
V are vertices and the elements of A are arcs. In our definition of a digraph, we do
not allow multiple arcs, i.e., arcs joining two vertices z and y in the same direction
(either all from z to y or all from y to z), and we do not allow loops, i.e., arcs joining
a vertex to itself. The vertices z and y are adjacent if there is an arc between them.
We will use D = (V, A) or simply D to denote a digraph. We use G(D) to denote
the underlying graph of D, i.e., the graph with vertex set V and u ~ v if and only
if u and v are adjacent. We call D = (V, A) an oriented graph if the relation A is

antisymmetric.

If zy is an arc of a digraph D, then we say that  dominates y or y is dominated
by z, written as z—y. We shall write z/4y if £ does not dominate y. Suppose that
A and B are two subsets of V(D). If every vertex in A is adjacent to every vertex in
B, then A and B are completely adjacent. If no vertex in A is adjacent to a vertex in
B, then A and B are completely non-adjacent. If every vertex in A dominates every
vertex in B, then we say that A dominates B or B is dominated by A, and write

A—-B.

For any two vertices z and y, if £ dominates y, then y is an out-neighbour of r,
and z is an in-neighbour of y. The outset of z, denoted by O(z), consists of all out-
neighbours of z, and the closed outset of x, denoted by O[z], is just O(z) U {z}. The
inset of z, denoted by I(z), consists of all in-neighbours of z, and the closed inset
of =, denoted by I{z], is I(z) U {z}. The number of vertices in O(z), denoted by
d*(z), is the outdegree of z, and the number of vertices in I(z), denoted by d™(z),
is the indegree of . A digraph D is k-regular if all vertices of D have indegree and

outdegree k.

Let D = (V,A) and D' = (V' A’) be two digraphs. We call D'’ a subdigraph of
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DifV'CVand A C A. If in addition A’ = {zy € 4] r,y € V’'} then we call D’
an induced subdigraph of D. For each S C V(D), the subdigraph of D induced by S,
denoted by < § > or 9, is the unique induced subdigraph of D with vertex set S. For
convenience, we will usually not distinguish a subset 5 of vertices and the subdigraph
induced by S. We define D — S to be the subgraph of D induced by V' — S. We write
D — z instead of D — {z}.

A directed path P of length k is a digraph with the vertex set {xg,x,,..., s} and
the arc set {zo—x,,z,—%2,...,Tk-1—Zk}, such that all the vertices and arcs shown

are distinct. We will call such a directed path an (zg, zx)-path and will denote it by
Tp—T1—7T2... Tk 1Tk

A directed cycle C of length £ is a digraph with the vertex set {v,vs,..., v} and the
arc set {T1—9,T2—T3,...,Tk-1—Tk, Tk—2T1}. A hamiltonian path (resp. hamilto-

nian cycle) in a digraph D is a path (resp. cycle) with the vertex set V(D).

A digraph D is strong if for any two vertices x and y there is a directed (z,y)-
path and a directed (y,z)-path. A strong component of a digraph D is a maximal
strong subdigraph. The strong component digraph SC(D) of a digraph D is obtained
by contracting each strong component to a single vertex (some authors call this the
condensation of D, [37]).

Suppose that D is a digraph. We define a relation ‘=’ on the set V(D): Let r and
y be two vertices of D. Then z = y if and only if N[z] = N[y] in G(D). It is easy
to see ‘=’ is an equivalence relation on V(D). Let Vj, V,,...,V, be the equivalence
classes of the corresponding partition. We refer to each V, as a block. Then each
block induces a semicomplete digraph and two blocks are either completely adjacent

or completely non-adjacent.

For digraphs, the substitution operation is defined as follows: To substitute a di-
graph S for a vertex v of a digraph D means to form a new digraph D' from D by
replacing v with S so that in D' every vertex of S dominates every out-neighbour of

v and is dominated by every in-neighbour of v.
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A c-colouring of a digraph D = (V, A) (or a graph G = (V, E)) is a mapping from
V to a set (' of size ¢ such that two adjacent vertices are mapped to distinct elements.
Each element of C is called a colour. For each colour, the set of preimages of that

colour is called a colour class.

A semicomplete digraph is a digraph which does not contain non-adjacent vertices.
A tournament is a semicomplete oriented graph. A locally semicomplete digraph is a
digraph D in which the outset as well as the inset of each vertex induces a semicom-
plete digraph. 1]. A local tournament is a locally semicomplete digraph which is an
oriented graph, [20, 39, 41, 47]. In other words, a local tournament is an oriented

graph in which the outset as well as the inset of each vertex induces a tournament.

An oriented graph D is transitive if for each vertex z every vertex in I{z) dominates
every vertex in O(z). An oriented graph is a local transitive tournament is an oriented
graph in which the outset as well as the inset of each vertex induces a transitive

tournament.

An oriented graph is an in-tournament (resp. out-tournament) if the inset (resp.
the outset) of each vertex induces a tournament, [11]. The class of local tournaments is
in fact the intersection of the class of in-tournaments and the class of out-tournaments.
An oriented graph D is locally bicomplete if for each vertex z every vertex in I(z) is

adjacent to every vertex in O(z).

An orientation of a graph G is a digraph obtained from G by assigning a direction

to every edge of G. In other words, D is an orientation of G if and only if G = G(D).

A graph is orientable as a local tournament or local-tournament-orientable if there
is an orientation D of G which is a local tournament. The oriented graph D is a local-
tournament orientation of G. Terms such as locally-transitive-tournament-orientable
(orientable as a local transitive tournament), in-tournament-orientable (orientable as
an in-tournament), local-bicomplete-orientable (orientable as a locally bicomplete ori-
ented graph), and transitively orientable (orientable as a transitive oriented graph) are

defined analogously.

A full reversal of a digraph is an operation which reverses the direction of each arc

of D. A graph G is uniquely orientable as a local tournament if G admits precisely
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two local-tournament orientations both of which are obtainable from the other by a

full reversal.



Chapter 2

Local Tournaments

2.1 Local-tournament Orientability

Recall that a local tournament is an oriented graph in which the outset as well as
the inset of each vertex induces a tournament. All tournaments are of course local
tournaments. Moreover all directed paths and cycles are also local tournaments. It
has been shown in [4] that many nice properties of tournaments are valid for locally
semicomplete digraphs and hence also for local tournaments. In particular, a locally
semicomplete digraph always has a hamiltonian path, and it has a hamiltonian cycle

if and only if it is strong.

We are interested in graphs orientable as local tournaments (recall we refer to
them as locai-tournament-orientable graphs). Since every induced subgraph of a local
tournament is also a local tournament, every induced subgraph of a local-tournament-

orientable graph is also local-tournament-orientable.

In 1982, Skrien discovered, in different terminology, the following nice result which
gives a full characterization of local-tournament-orientable graphs (cf. [71]). This

result was independently found in [49] and we give our proof later in this thesis.

Theorem 2.1.1 4 connected graph is local-tournament-orientable if and only if

it 15 a proper circular arc graph. Q

12
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We emphasize that the condition ‘connected’ is necessary. For example, a graph
consisting of a directed cycle of length 4 and an isolated vertex is local-tournament-
orientable but is not a proper circular arc graph. However a general proper circular
arc graph is always local-tournament-orientable. Moreover if a graph (not necessarily
connected) is local-tournament-orientable, then each connected component must be
a proper circular arc graph. Since a proper interval graph is a proper circular arc

graph, the following result is an easy consequence of Theorem 2.1.1.

Corollary 2.1.2 FEvery proper interval graph is local-tournament-orientable. O

To determine whether a connected graph is local-tournament-orientable, it is
enough, according to Theorem 2.1.1, to verify whether it is a proper circular arc
graph. In [81], Tucker gave a matrix characterization of proper circular arc graphs.
From it an O(n?) time algorithm can be obtained to recognize proper circular arc
graphs (cf. [61]). In this section, we will give a simple algorithm to recognize local-
tournament-orientable graphs. Our algorithm runs in time O(mA), where m is the
number of edges and A is the maximum degree of the input graph. An optimal al-
gorithm will be given in Chapter 4. In order to describe our algorithm, we give the

following notation which is also useful in later discussions.

Let G = (V, E) be a graph. We define
F(G) = {(v,v)| w € £}

the set of all ordered pairs (u,v) such that uv is an edge of G. Note that each uv € £

gives rise to two ordered pairs (u,v) and (v,u) of F(G). We also define for each subset

B of F(G),

B! = {(u,v)| (v,u) € B} and B = {uv € E| (u,v) € BUB™'}.

We now define the characteristic graph G* with the vertex set F'((/) and adjacency
defined by the following: Each (u,v) € F(G) is adjacent to (v,u), to any (u,w) €
F(G) with v # w and vw ¢ E, to any (w,v) € F(G) with u # w and uw ¢ E, and to

no other vertex of G*.
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Theorem 2.1.3 A graph G admits a local-tournament orientation if and only if
the characteristic graph G~ is 2-colourable.

Moreover, if G* is 2-coloured with A being a colour class, then D = (V, A) is a

local-tournament orientation of G.

Proof: Suppose that D is a local-tournament orientation of G. We colour the
vertices of G* with two colours g and 7 in the following way: Colour a vertex (u,v)
by p if u dominates v, and by 7 if v dominates u in D. Let (z,y) and (z/,y’) be two
adjacent vertices of G*. It is easy to see that z dominates y if and only if ¥’ dominates

z’ in D. Hence (z,y) and (z',y’) are coloured with different colours. Therefore G* is

2-colourable.
Suppose now that G* is 2-coloured with A being a colour class. We prove that

D = (V,A) is a local-tournament orientation of G. Since, for each (u,v) € F(G),
(u,v) and (v,u) are adjacent in G*, exactly one of (u,v) and (v,u) belongs to A.
Thus D is an orientation of G. To show that D is a local tournament, let u, v, and w
be three vertices of G such that v and w are two non-adjacent neighbours of u. Then
(u,v), (u,w) € F(G) are adjacent in G* (and (v,u) and (w,u) are adjacent in G*).
Hence at most one of (u,v) and (u,w) (and at most one of (v,u) and (w,u)) belongs

to A. Therefore D is a local-tournament orientation of G. O

Theorem 2.1.3 proves the correctness of the following algorithm for recognizing

local-tournament-orientable graphs and finding local-tournament orientations.

Algorithm 2.1.4 Let G = (V, E) be a graph.

Step 1. Construct the characteristic graph G™ of G.
Step 2. If G* s not 2-colourable, then G is not local-tournament-orientable.

Step 3. If G* is 2-colourable, then find any 2-colouring of G* and obtain a local-

tournament orientation D = (V, A) of G where A is a colour class of G*. O

Theorem 2.1.5 There is an O(mA) algorithm to recognize local-tournament-

orientable graphs and to find such an orientation if there is one.
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Proof: The graph G~ has O(m) vertices, O(S epdeg(u) + deg(v)) = O(mA)
edges and it can be constructed in time O(mA). In the same time we can test, by

breadth-first search, whether it is 2-colourable, and find a 2-colouring of (*. a

Corollary 2.1.6 There is an O(mA) algorithm to recognize proper circular arc

graphs.

Proof: This is immediate from Theorems 2.1.1 and 2.1.5. O

Let (u,v),(z,y) € F(G) be two ordered pairs. We say (u,v) forces (z,y), denoted
by (u,v)[(z,y), if one of the following conditions is satisfied.

o u=17rand v = y;
s v=2o,uFy, and uy ¢ E;
s u=y,v#z and vr ¢ E.

It is obvious that if (u,v)[(z,y) then (u,v) is adjacent to (y,z) (and (z,y) is
adjacent to (v,u)) in G*. We say that (u,v) implies (z,y), denoted by (u,v)[™*(z,y),
if there exist (uy,v1), (u2,v2),. .., (uk, vk) € F(G) so that

(u,v) = (ur, v1)T (v, v2)T .. Tug, o) = (2,y)-

Lemma 2.1.7 For any graph G, the binary relation I'* on F(G) is an equivalence

relation. O

According to Lemma 2.1.7, the equivalence relation I'* partitions F/(() into equiv-

alence classes. We call each of these equivalence classes a I'*-class.

Lemma 2.1.8 Let D be a local-tournament orientation of G. If (u,v)[*(z,y) for
some (u,v) and (z,y) in F(G), then u—v if and only if z—y in D.
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Proof: We prove that if (u,v}l . z,y) for some (u,v), (z,y) € F(G), then u—v if
and only if z—y. The general proof can be done by induction.

If v = r and v = y, then the conclusion follows trivially. Suppose that v = z,
u#y,and uy ¢ E. If u—v and y—z in D, then the vertex v has two non-adjacent
in-neighbours, contradicting the fact that D is a local tournament. If v—u and z—y
in D, then the vertex v has two non-adjacent out-neighbours, contradicting the fact
thai 0 1s a locai tournament. A similar proof applies when v = y, v # z, and vz ¢ F.

O

Theorem 2.1.9 4 graph G is orientable as a local tournament if and only if there
is no (u,v) € F(G) such that (u,v)[™*(v,u).

Proof: The necessity follows immediately from Lemma 2.1.8. For the sufficiency,
assume that there is no (u,v) € F(G) with (u,v)[™(v,u). We apply the following
procedure to obtain an orientation D of G. Arbitrarily pick an edge uv which has
not been oriented and let z—y in D for all (z,y) such that (u,v)[*(z,y). Continue
the procedure until every edge of G is oriented. Since there is no (u,v) € F(G) with
(u,v)T*(v, u), each edge of G is assigned precisely one direction. Thus D is an orien-
tation of G. If D is not a local tournament, then there exists a vertex z such that
either O(z) or I(z) is not complete. Assume O(z) is not complete. Then there are
two non-adjacent vertices y and z which are dominated by z. Hence (z,y)I*(z, z)
in F(G) and by the above procedure z—y if and only if z—z in D. We have z—zx
since z—y. Therefore we have both z—2z and z—z in D, a contradiction. A similar

discussion applies when I(z) is not complete. O

The proof of Theorem 2.1.9 gives an alternative implementation of Algorithm

2.1.4, by working directly on the graph G.

Corollary 2.1.10 A graph G is orientable as a local tournament if and only if
BN B! =9 for any I'*-class B.
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Proof: This follows from Lemma2.1.7, Theorem 2.1.9, and the fact that BNE-! #

0 if and only if B contains both (u,v) and (v, u) for some (u.v) € F(G). a

Corollary 2.1.11 If G is a local-tournament-orientable graph with A(G) = n —1,
then G is bipartite.

Proof: Suppose that G is not bipartite. Let uy ~ uz ~ ... ~ ugy; be an odd
cyclein G. Since A(G) = n — 1, G contains a vertex v of degree n — 1. Note that, in

G,v # u; and v ~ uy; foreach i =1,2,...,2k + 1. Then
(v, u)T(ug, V). . T (v, ot 1) (0, v).

Hence (v, u;)T"(u;,v) and by Theorem 2.1.9 G is not local-tournament-orientable,

contradicting our hypothesis. 0

N\
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®
Claw Net

Figure 2.1: The Claw and the Net

A graph is claw-free if it contains no claw (see Fig. 2.1) as an induced subgraph.

Similarly a graph is net-free if it contains no net as an induced subgraph.
Corollary 2.1.12 A local-tournament-orientable graph is claw-free and net-free.

Proof: It suffices to show that neither the claw nor the net is local-tournament-

orientable. In the claw, we have

(a, b)T(b, c)T(d, b)T(b,a),
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and in the net. we have
(a,)['(b, ) (c.e)l(d, )T (f,d)(d, 6)[ (b, a).

Therefore, by Theorem 2.1.9, neither the claw nor the net is orientable as a local

tournament. |

Proposition 2.1.13 Let G be a local-tournament-orientable graph and suppose
that G™ s coloured with two colours. Then each I'*-class consists of all vertices of one

colour in one component of G*.

Proof: Suppose that A is a ['"-class. For any two elements (u,v) and (z,y) of A4,
by definition of a I'*-class, there exist (zq,%0), (Z1,¥1),-- .. (Zi, ¥:) such that

(uvv) = (IO’ yO)F(‘rl’yl)F' - 'F(Iiv yi) = (.’L‘,y)
Hence, in G,
(u,v) = (z0,%0) ~ (yo, To) ~ (z1,51) ~ ... ~ (i, y:) = (2,y)

is a path of even length from (u,v) to (z,y). Therefore (u,v) and (z,y) are in the
same component and must be coloured with the same colour.

On the other hand, suppose that (u,v) and (z,y) are coloured with the same
colour and are in the same component of G*. Then there is a path of even length

from (u,v) to (z,y). Assume that
(u,v) = (a0, bo) ~ (a1,b) ~ ...~ (a;,b;) = (z,y)
is such a path. Then
(u,v) = (a0, bo)T'(by,a1)I' ... I'(a;, b;) = (z,y).

Hence (u,v) and (z,y) are in the same '*-class. a
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Suppose that G is local-tournament-orientable and suppose that * is coloured
with ¢ and 7. If B is the set of all vertices coloured with u in one component, then

B~! is the set of all vertices coloured with  in the same component as the vertices

of B. Hence both B and B™! are independent in G*.

Note that by switching the two colours of vertices in a component of (7* we get a

new 2-colouring. Therefore if we let
F(G)=BUB,U...UBUB'UB;'U...UB!

be the decomposition of F((G) into I'*-classes, then each B, (and each B]') is an
independent set in G* and each B; U B! induces a component of G* for each ¢ =
1,2,...,t. Moreover, by Algorithm 2.1.4, a local-tournament orientation of (G can be
obtained by choosing the arc set to be A, U A, U ... U A, where A, = B, or B!
for each ¢ = 1,2,...,t. In fact, it is not difficult to see that this gives all possible

local-tournament orientations of G.

Corollary 2.1.14 A graph G is uniquely local-tournament-orientable if and only
if G* is a connected bipartite graph. a

We close this section by presenting the following theorem.

Theorem 2.1.15 The following statements are equivalent for a connected graph

(Y

. (G is a proper circular arc graph;
2. G is local-tournament-orientable;

3. G is local-transitive-tournament-orientable;

4. G* is 2-colourable;
5. BN B~ = for each I'*-class;
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Proof: The equivalence between statements 1 and 2 is Theorem 2.1.1. The equiva-
lence between statements 2 and 4 is basically Theorem 2.1.3. The equivalence between
staternents 2 and 3 will be proved later (see Corollary 2.2.10). Finally the equivalence

between statements 2 and 5 is just Corollary 2.1.10. a

2.2 Local Transitive Tournaments

We call an oriented graph D straight [20], if the vertices of D can be linearly ordered
v1,vg,. .., U, so that each vertex v; dominates v;11,vit2,..., v+, and is dominated by
Vi—1,Vi—2,.-.,Vi_1, where | = d~(v;) and r = d*(v;). We call such a linear ordering of
vertices a straight enumeration of D. We say that a graph G is straight-orientable if
there is an orientation D of G so that D is straight. If G is straight-orientable, then
the vertices of G can be linearly ordered vy, vs,...,v, so that for each ¢ there exist

[,7 > 0 (which may depend on the subscript ¢) such that
N[Ui] = {vl'—"i S T R VT N Ui-{—'r}?

where both {v;_i,...,vi_1,v:} and {vi,vi41,...,vi4-} induce complete subgraphs of
(. We also call such a linear ordering of vertices a straight enumeration of G. We
refer to v,u;_; as the left-most wave at v; if { # 0 and to v;v,y, as the right-most wave

at v; if » # 0.

We call an oriented graph D round [20], if the vertices of D can be circularly
ordered v),v,,...,v, so that each vertex v; dominates v;4,v;i42,..., Vi+, and is dom-
inated by vi_y,vi—2,...,vi—;, where | = d7(v;), r = d*(v;), and subscript additions
and subtractions are modulo n. We call such a linear ordering of vertices a round
enumeration of D. (A round tournament is sometimes called dominating orientable
cf. [2].) We say that a graph G is round-orientable if there is an orientation D of G
so that D is round. If G is round-orientable, then the vertices of G can be circularly
ordered vy, v, ..., v, so that for each 7 there exist [, > 0 (which may depend on the

subscript ) such that

N[vi] = {vi-la sy Vie1,y Uty Vi1, - - 'avi+r}a
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where both {vi_i,...,vio1, v} and {v;, viq1, ..., vigr} induce complete subgraphs of
(G and where subscript additions and subtractions here are modulo n. We also call
such a circular ordering of vertices a round enumeration of G. We refer to vjv,_; as

the left-most wave at v; if [ # 0 and v,viy, as the right-most wave at v; if r # 0.

Suppose that v),vs,...,v, 1s a straight enumeration. If, for some ¢ < j, vv,
is an edge, then < {v;,vi41,...,v;} > is complete. Suppose that vy, vs,...,v, 15 a
round enumeration. If v;v; is an edge, then at least one of < {vi,vit1,...,v,} > and
< {vj,Vj41,...,vi} > is complete. These are useful observations which are frequently

employed in the sequel.

We shall see below that the class of connected straight oriented graphs is the same
as the class of connected non-strong local transitive tournaments, and the class of
connected round oriented graphs is the same as the class of connected local transitive

tournaments. First we have the following lemma.

Lemma 2.2.1 If D s a connected local tournament which contains no directed

cycle, then D contains a unique verter of indegree zero.

Proof: Since D is acyclic, D contains at least one vertex of indegree zero. On
the other hand, if @ and b were two distinct vertices of indegree zero, then a and b are
non-adjacent, and it is easy to see that the shortest path (which contains no chord)
joining a and b in G(D) must contain a vertex with both incident edges oriented

towards it, contradicting the fact that D is a local tournament. 0

Theorem 2.2.2 The following four properties are equivalent for a connected ori-

ented graph D:
1. D is a non-strong local transitive tournament;
2. D is an acyclic local tournament;

3. D 1is a straight oriented graph;
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4. there exists an inclusion-free family of intervals associated with the vertices of
D such that v dominates v in D if and only if the interval associated with u
contains the left endpoint of the interval associated with v (the interval of u

intersects the interval of v ‘on the left’).

Proof: 1 = 2: Suppose that D is a connected non-strong local transitive tourna-

ment. Assume that D contains directed cycles. Let
C =z, ... 0101,

be a longest directed cycle in D. Since D is non-strong, C' can not contain all vertices
of D. Since D is connected, there exists a vertex y which is not a vertex of C and is
adjacent to some vertex z; of C. Suppose that z;—y. (A similar discussion applies
if y—z;.) Then both z,,; and y are dominated by z;. Also y and z,;, are adjacent
because D is a local tournament. Note that y can not dominate z;4, as otherwise we

would obtain a cycle
Ty ... DTY L1 ... — LT

of length ! + 1, contradicting the choice of C. Hence z;,, dominates y. Now both
z;42 and y are dominated by z;;; and so z;4; is adjacent to y. Again y can not
dominate z;,, as otherwise we would obtain a lohger cyclein D. So zi;; dominates y.
Continuing this discussion, we conclude that each vertex of C dominates y. Therefore
C is completely contained in I(y). This is impossible as I(y) must induce a transitive
tournament.

2 = 3: Suppose that D is an acyclic local tournament. We can obtain a straight
enumeration of the vertices of D as follows: Let v; be the unique vertex of indegree
zero (see Lemma 2.2.1). Assume vq,v2,..., v have already been defined: let vy, be
the unique out-neighbour of v¢ in D — {v1,v,,...,v¢} which dominates every other
out-neighbour of v in D — {vy,v,,...,vx}. (Recall that the outset of vx is a transitive
tournament.) We claim that when v, has no out-neighbours in D — {vy,va,..., v},
then k& = n, i.e., all vertices have been ordered. Suppose k < n. Since D is connected,

there is an edge v,w or wv; with w not among v;,vs,...,v,. Since the two cases
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are similar, assume that v; dominates w. From the definition of v;y; and the fact
that D is a local tournament, we see that v,y must dominate w. Continuing this
way we conclude that v, dominates w, a contradiction. To see that this is a straight
enumeration of D, consider a vertex v; dominating a vertex v; with j > i. Since
v;_1 always dominates v; (if j > 1), the vertices v; and v;_, are adjacent. If U1
dominates v;, then v;_; and v;_; are adjacent and hence v;_, dominates v;_, (otherwise
the choice of v; was incorrect). Continuing this way we see that v,_, dominates
v1, a contradiction. Therefore v; must dominate v;_,. It follows that v; dominates
Vit1,Vit2,.- -, Vip for some [, and a similar argument shows that it is dominated by
Vi1, Vi-2,- .., Vi_x for some k.

3 = 4: Given a straight enumeration vy, vs,...v, of D, we associate with v; the
interval on the real line from ¢ to i +df +1— 1, where d} is the outdegree of v;. Then
it can be verified that this is a proper interval representation in which the interval u
contains the left endpoint of the interval v if and only if in D the vertex associated
with u dominates the vertex associated with v.

4 = 1: The outset of a vertex z is associated with an inclusion-free family of
intervals which all contain the right endpoint of the interval corresponding to z. Thus
they are linearly ordered by their left endpoints. Hence the vertices associated with
these intervals induce a transitive tournament in D. Since all intervals are linearly
ordered on the real line, D is non-strong. Therefore D is a non-strong local transitive

tournament. Qa

Note that the constructions in the above proof can all be performed in time O{m+
n). In fact, given a non-strong local transitive tournament, it takes O(m + n) time to
construct a straight enumeration. Now given a straight enumeration, it takes O(n)

time to construct a proper circular arc representation.

Corollary 2.2.3 Suppose an acyclic local-tournament orientation D of a proper
interval graph G is given. Then a straight enumeration D, and hence an interval

representation G, can be found in time O(m + n). Wi
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The following lemma is taken from [4].

Lemma 2.2.4 Suppose that D is a connected non-strong local tournament. Then

the strong components of D can be linearly ordered Cy,C,,...,Cy so that
1. each C,; is complete, 1 = 1,2....,k,
2. C—Cipy,t=1,2,...,k—1,
3. if j <1 then no vertex in C; dominates a verter in C;,
4. if i # j then C; and C, are completely adjacent or completely non-adjacent, and

5. if C;—C, then C;UCiyy ... UC; is complete. a

Theorem 2.2.5 If a connected graph G admits a non-strong local-tournament

orientation, then G admits a straight enumeration.

Proof: Suppose that D is a non-strong local-tournament orientation of G. Then
the strong components of D can be linearly ordered Cy, Cs, ..., Cy so that the proper-
ties in Lemma 2.2.4 hold. We form an oriented graph D’ from D in the following way:
Replace each C; by a transitive tournament T; of order |V(C;)|. Note that T;—T; in
D" if and only if C;—C; in D. We see that D' is an orientation of G. Since T; is
a transitive tournament, the vertices of T; can be linearly ordered ¢;1,¢;2,...,¢iy so
that ¢; ,—e¢;, if p < q. We prove that the following linear order of the vertices is a

straight enumeration of D’:

Clay s CLyC2 1y - -9 C20pr v o 5 CRLy + o+ 5 CR Ll

Consider a vertex ¢; ,. By property 3 of Lemma 2.2.4, ¢; ,/5¢;, i ) <tori =} and
q < p. We know that ¢, dominates ¢; (p41), i (p+2), - - - » Cit,- Furthermore, if ¢; , domi-
nates ¢, , for some ) > 1, then ¢, also dominates c(iy1),1,. -+ €(i+1)lgrs -+ -2 Ciils e+ -5 G,
according to properties 3,4, and 5 of Lemma 2.2.4. Hence the out-neighbours of ¢;,

appear consecutively succeeding ¢;,. A similar argument applies to show that the
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in-neighbours of ¢, , appear consecutively preceding ¢, . Q

Let z be a circular arc on a circle. Suppose that ¢ begins at p and ends at ¢ in the
clockwise direction of the circle. We call p the head and ¢ the tail of i, denoted by
h() and t(z), respectively.

Theorem 2.2.6 The following three properties are equivalent for a connected ort-

ented graph D:
1. D 1is a local transitive tournament;
2. D is a round oriented graph;

3. there exists an inclusion-free family of circular arcs associated with the vertices
of D such that u—v in D if and only if the circular arc associated with u contains

the head of the circular arc associated with v.

Proof: We only need to show that the properties are equivalent for the case when
D is strong, as for the non-strong case we have Theorem 2.2.2. We remark that in
the entire proof the subscript additions and subtractions are modulo n.

1 = 2: Suppose that D is a connected local transitive tournament. We ob-
tain a round enumeration of D as follows: Start with any vertex »;. Assume that
V1, V2, ...,V have already been defined. Let viyy be the unique out-neighbour of
vp in D — {vq,va,...,vx} which dominates every other out-neighbour of v in D —
{v1,v2,...,vc}. We claim that when v has no out-neighbours in D — {v;,vq, ..., v},
then k = n, i.e., all vertices have been ordered. For suppose k& < n. Since D is
connected and D is strong, there is an arc v;w with w not among vy, v, ...,v,. From
the definition of v;4; and the fact that D is a local tournament, we see that v, ; must
dominate w. Continuing this way we conclude that vy dominates w, a contradiction.

To prove that the above vertex ordering is a round enumeration, it suffices to
show that if v;—v; then vi—{vit1,vi42,...,v;21} and {vi,vip), ..., v )=, First
we notice that

VU ... Uy,
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We claim that v,—vy. Since D is strong, v, must dominate some vertex v,. lf a =1,
then we are done. Otherwise v, is dominated by both v,_; and v,. Since D is a local
tournament, either v,_, —v, or v,—v,_;. However v,_; cannot dominate v, by the
choice of v,. Hence v, dominates v,_;. Continuing this way, we conclude that v,
dominates v;. So if j =1+ 1, then we are done. If 7 # ¢ + 1, then both v,;;; and v;
are dominated by v; and so, by the choice of v;y1, vit1 dominates v;. Continuing this
way we see that v, is dominated by each v,, where m =3,1+1,...,5 — 1. Since D
is a local transitive tournament, we know that {v;,v;41,...,v;-1} induces a transitive
tournament. Since v;—v; 41— ... —v;_1, we have v;—{viy1, Vig2, ..., Vj-1}

2 = 3: Suppose that v;,vs,...,v, is a round enumeration of D. Make a n-
scale-clock on a cycle. We associate with each vertex v; a circular arc from j to
(+df +1) - % (here additions are modulo n), where d is the outdegree of vertex
vj. It is not difficult to verify that this is a proper circular arc representation in which
the circular arc u contains the head of the circular arc v if and only if in D the vertex
associated with u dominates the vertex associated with v.

3 = 1: The outset of a vertex z is associated with an inclusion-free family of cir-
cular arcs which all contain the tail of the circular arc associated with x. Thus they
are linearly ordered by their heads. Hence the vertices associated with these circular
arcs induce a transitive tournament in D. A similar discussion applies to the inset of

z, and hence D is a local transitive tournament. g

Again there are two procedures involved in the above proof. One is to obtain a
round enumeration from & local transitive tournament, the other is to obtain a proper
circular arc representation. The first procedure can be performed in time O(m + n)

and the second one can be performed in time O(n).

Corollary 2.2.7 Suppose a local-transitive-tournament orientation D of a proper
circular arc graph G is given. Then a round enumerotion of D, and hence a circular

arc representation of G, can be found in time O(m + n). a

The following lemma due to Golumbic can be found in [33].
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Lemma 2.2.8 [f G is a proper circular arc graph, then G has a proper circular
arc representation in which no two arcs share a common endpoint and no two ares

together cover the entire circle. a

Theorem 2.2.9 [f a connected graph GG is orientable as a local tournament, then

G admits a round enumeration.

Proof: Suppose that G is orientable as a local tournament. Then by Theorem
2.1.1, G has a proper circular arc representation F. In addition, by Lemma 2.2.8 the
representation F can be chosen so that no two arcs share a common endpoint and no
two arcs together cover the entire circle. Let 5y, 5,,...,5, be the arcs in F. For each
t=1,2,...,n, suppose that v; is the vertex of G associated with S;.

We obtain an oriented graph D as follows: The vertex set of D is the same as the
vertex set of GG, and a vertex v; dominates a vertex v; in D) if and only if S; contains
the head of S; (or S; contains the tail of S;). By the assumption on F, if v; and v,
are two adjacent vertices of G, then either S; contains the head of S; or S; contains
the head of S;. Thus D is an orientation of (G. We claim that D is a local transitive
tournament. In fact for each vertex v, the outset of v; consists of the vertices which
are assoclated with those arcs containing the tail of S; and hence they intersect each
other. So the outset of v; induces a complete subgraph of D. By the assumption on F,
if an arc contains the tail of 9;, then it can not contain the head of 5;. Hence the arcs
which contain the tail of S; cannot cover the whole circle. Thus the subgraph induced
by the outset of v; can not contain any cycle. A similar argument can be applied to
show that the inset of v; induces a complete subgraph which contains no cycle. Hence
D is a local-transitive-tournament orientation of G. Therefore by Theorem 2.2.6 (4

admits a round orientation. 0

From the proof of Proposition 2.2.9, we see that a local-tournament-orientable

graph is in fact local-transitive-tournament-orientable.
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Corollary 2.2.10 A connected graph is local-tournament-orientable if and only if

it s local-transitive-tournament-orientable. O

2.3 Two Structure Theorems

Suppose that G is local-tournament-orientable. Let B be a I'*-class and let C = B~'.
Then from Section 2.1 we know that BNC =0 and B = C. We call B an implication
class of (. Note that the edge set of (G can be partitioned into implication classes.
Suppose that uv,u’v’ € E are in the same implication class. Consider (u,v) and
(u/,v") in F(G). Then either both (u,v) and (u',v’) are in B for some I'*-class B, or

(u,v) is in B and (u’,v’') is i B~!. Hence either (u,v)[™(u/,v") or (u,v)[™(v', u).

From the above discussion, we see that G has a unique local-tournament orienta-
tion if and only if the edge set of G forms one implication class. One observation is
that if u and v are two vertices of G with N[u] = NJ[v], then u is adjacent to v and

the single edge uv forms an implication class.

An edge zy of a graph G is called balanced if N[z] = N[y] and unbalanced if N[z] #
Nly]. Similarly an arc zy of an oriented graph D is called balanced if N[z] = N{y] and
unbalanced if N[z] # Nly] in G(D). (Thus a balanced arc joins two ‘=’-equivalent

vertices.)

We defined the full reversal of a digraph D to be the operation which reverses the
direction of each arc of D. We now define a particl reversal of a digraph D to be an
operation which reverses the directions of all unbalanced arcs within one component
of G(D), or reverses directions of all unbalanced arcs between two fixed components
of G{D). Note that in a digraph D we can perform several different partial reversals.

In the remainder of this chapter we shall prove the following two structure theorems.

Theorem 2.3.1 Let D be a connected oriented graph which is not a tournament.
Then D s a non-strong local tournament if and only if it is obtained from some
straight oriented graph S with reduced G(S) and |S| > 1 by substituting a tournament
T, for each verter v € V(S).
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Moreover every non-strong local-tournament orientation of G( D) is obtained from
D by reversing the directions of some balanced arcs, possibly followed by a full rever-

sal. a

Theorem 2.3.2 Let D be a connected oriented graph. Then D is a local tour-
nament tf and only if it is obtained from some round oriented graph R with reduced
G(R) first by substituting a tournament T, for each vertex v € V(R) and then by
performing partial reversals.

Moreover, every local-tournament orientation of G(D) is obtainea by performing
partial reversals and changing directions of some balanced arcs, possibly followed by a

full reversal. 0

In what follows the notation N[z] always refers to the closed neighbourhood of

in the graph G. We begin with the following proposition.

Proposition 2.3.3 Let G be a reduced connected graph with A(G) < n —2. If
G is orientable as a non-strong local tournament, then G has ezactly one implication

class.

Proof: Since G can be oriented as a non-strong local tournament, &G admits a
straight enumeration by Theorem 2.2.5. Let v;,vs,...,v, be a straight enumeration
of G. Note that n > 3 as G i3 connected with A(G) < n — 2. For each vertex v;, v; 18
not adjacent to either v; or v,; otherwise v; would be adjacent to every other vertex
of G, contradicting the hypothesis that A(G) < n —2. Since (by the same argument)
vy is not adjacent to v,, we see that G is connected.

Fix a vertex v; where 1 < ¢ < n. Let v,;v; be the left-most wave and let v;v; be the
right-most wave at v;. We prove that v,v; and v;v are in the same implication class.
If v; is not adjacent to v, then (v;,v;)I'(ve,vi) and so v;v; and v;v are in the same
implication class. Suppose that v; is adjacent to vx. Since G is reduced, we have that
N{v;] # N[v;] and N[v;] # N[v]. Note that N[v;] C N[v,] and N[v;] C N{vi]. Then
Nlv;] = Nlvi] # 0 and N{vi] — N[v;] # 0. Let vu be the left-most wave at v; and
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vgty, be the right-most wave at v,. Then [ < 7 <2 < k < m, and neither v; nor v,, is

adjacent to v,. Hence
(vi, v, ) (v, v0) T (vg, V)T (U, v )T (v, ;)

and so v,v, and v;vx are in the same implication class.

We now show that all left-most waves and all right-most waves at all vertices are
in one implication class. Let vy = vy, ~ v, ~...~v; =v, (11 <3< ...<1,)bea
path of G such that v; v; ,, is the right-most wave at v; for each j =1,2,...,r — 1.
We first notice that r > 4 as otherwise there is a vertex of degree n—1, contrary to our
hypothesis. Since v;, is not adjacent to v; ,, for each j = 1,2,...,7 —2, we have that
(viy, v, )1 (g, 05, )T ... T(v4,_,,vi, ). Hence the edges v; v;,, where j =1,2,...,r —1
are in the same implication class. We denote this implication class by C and claim
that all right-most waves at all vertices are in C and hence also all left-most waves at
all vertices are in C. Let v,v; be the right-most wave at v,. Suppose first that v, is the
last vertex in the straight enumeration, namely, ¢ = n. Then s > ¢,_; as otherwise the
edge v,v, implies that v;__, is adjacent to v,, contradicting the fact that v; _,v;__, is the
right-most wave at v;_,. If in addition s < ¢,_y, then (vn, vs)I'(vs, vi,_, )T (vi,_,, vi,_;)
and so v,v, and v;,_,v; _, are in the same implication class, namely, C. Ifz,_; < s < n,
let v,v, the left-most wave at v,, then i,_2 < p and v, € N[vs] — N{v,]. Thus v, is
not adjacent to v,. Hence (vn,vs)['(vs, vp)'(vp, vi,_, )T (vi,_,,vi._,) and so vyv, is in C.
Suppose that v, 1s not the last vertex in the straight enumeration, namely, ¢t < n. Let
Uy = Uy, Vg, .-,V = Uy be a sequence of vertices such that ¢, < #; < ... < t, and
Uy, Ve, 18 the right-most wave at v, for each j = 1,2,...,¢— 1. We note that v,v,
is in the same implication class as vy, vy, and v;,v; ,, is in the same implication class
as vy, vt,,, for each j = 1,2,...,¢ — 2. Then v,v; is in the same implication class as
Vs, Ve, = vy, _,vn Which is in C. Hence v,v; is also in C.

Finally suppose that v,v; is any edge of G where ¢ < j. Since N[v;] # Nlv,], either
Nlv,] = N{v;] # 0 or N[v;] — Nlv;] # 0. If N[v;] — Nlv;] # 0, then v;v; is in the

same implication class as the left-most wave at v; which is in C. If N{v;] — N[v;] # 0,

q—

then v;v, 1s in the same implication class as the right-most wave at v; which is is C.

Therefore v;v; is in C. ]
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Suppose that G is a reduced connected graph with A(G) < n—2. If (7 is orientable
as a ncn-strong local tournament, then by Proposition 2.3.3 (i is uniquely local-
tournament-orientable. If v;, vy, ..., v, 1s a straight enumeration of (7, then a non-
strong local-tournament orientation of G can be obtained by letting v,—v, for any

edge v,v; of G with i < j. Therefore the following corollary has been proved.

Corollary 2.3.4 Let G be a reduced connected graph with A(G) < n -2. If G
is orientable as a non-strong local tournament, then G is uniquely orientable as a

non-strong local tournament. 0

Proposition 2.3.5 Let G = (V, E) be a reduced connected graph with [V| > 3
and assume that deg(v) = n —1 for somev € V. If G can be oriented as a non-sirong
local tournament, then G has precisely two implication classes: One class consists of
all edges that are incident with v, the other class consists of all edges that are not

incident with v.

Proof: Since G = (V,FE) is orientable as a non-strong local tournament, by
Theorem 2.2.5, G admits a straight enumeration. Let vy,vz,...,v, be a straight
enumeration of G. Since G is reduced and deg(v) = n—1, we know that deg(u) < n—1
for all u # v. Let v = v,. We claim that n i1s odd, r = ”—ng, and v;v;4,_, is the right-
most wave at v; for each 1 <: <r.

We first apply induction on 7 to show that v;v,4,_; 1s the right-most wave at v,
for each 1 <: < r. Since v, is adjacent to every other vertex, vjv, € E. fvjv, ¢ E
for some j > r, then v; is adjacent to vy, vy, ...,v;-1. Since v, is adjacent to vn, v, 1s
adjacent to vj41,Vj42,...,0s. Thus deg(v;) = n — 1, contradicting the fact that v, is
the only vertex of degree n — 1. Hence v1v; ¢ F for any j > r and so »yv, is the right-
most wave at v;. Suppose that vivy, . is the right-most wave at v; for all { < ¢ < 7.
Consider the vertex v;. Since G is reduced, N{v,_;] # N[v.] and N{v,_\] C Nlv],
Nv;] — N{v;_1] # 0. Hence there is a vertex which is adjacent to v, but not to v,_.
We claim that N[v;] — N[vi_1] = {viy,_1}. In fact, let v, € N[v,] - N{v,_,]. We know
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that j > 1 + 7 — 2 because v,_;v,4,-2 is the right-most wave at v,_y. If j > 1 +7 1,
then vertices v, and v,,,_, would have the same closed neighbourhood, contradicting
the hypothesis that G is reduced. Hence 7 = ¢+ r —1 and so v,4,_; is the only vertex
which is adjacent to v; but not v;_;. This also implies that v,v;4,_; is the right-most
wave at v;. Hence v,v;,,_; is the right-most wave at v, for all 1 <z < r. In particular,
we have v,vy,_; is the right-most wave at v,. Therefore n = 2r — 1 which is odd and
so r = M

The vertex v; is not adjacent to v,. Each vertex v; is not adjacent to v, when
i < r and is not adjacent to v; when ¢ > r. Thus G has precisely two components
induced by {v,} and V — {v,}. First we note that an edge of G which is incident with
v, can not be in the same implication class as an edge which is not incident with v,.
Assume now that v;v, and v;v, are two edges of G which are incident with »,. Then
v; and v, are two vertices in the set V — {v.} which induces a connected subgraph in
G. Hence there is a path in G from v; to v;. Let v; = 1 ~ z, ~ ... ~ 13 = v; be
such a path. Since, for each t = 1,2,...,{ =1, (z¢,v,)[(vs, T441), T1v, and z,440, are
in the same implication class of G. Herce v;v, and v;v, are in the same implication
class.

Let G’ be the graph obtained from G by removing the vertex v,. Then A(G') <
n — 2. Moreover G’ is connected (as n > 3) and is straight-orientable. Hence by
Proposition 2.3.3, G’ has only one implication class. Therefore the set of all edges of

G which are not incident with the vertex v, form one implication class.

We remark that if G is a reduced connected non-strong local-tournament-orientable
graph with A(G) = n — 1, then G contains at least 3 vertices. When G contains ex-
actly 3 vertices, G is a path of length 2. In this case, G has one implication class
and (G admits a unique local-tournament orientation. In fact, the orientation must
be non-strong. If G has at least 5 vertices (we know from the proof of Proposition
2.3.5 that G must have an odd number of vertices), then G admits precisely two
local-tournament orientations up to full reversal. One orientation D can be obtained
by letting v;—wv; if v;v; is an edge of G with ¢ < j in the straight enumeration. Of

course this is a non-strong orientation. Another local-tournament orientation can be
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obtained from D by reversing all directions of the arcs incident with v, (the vertex of
degree n —1). This is a strong orientation. Hence we conclude from Proposition 2.3.5
that there are (up to full reversal) no other local-tournament orientations of ;. Hence
G is uniquely orientable as a non-strong local tournament. Therefore the following

corollary has been proved.

Corollary 2.3.6 Let G = (V, E) be a reduced connected graph with A(G) = n— 1.
If G can be oriented as a non-strong local tournament, then G is uniquely orientable

as a non-strong local tournament. 0

The following result is a combination of Corollaries 2.3.4 and 2.3.6.

Corollary 2.3.7 Let G = (V, E) be a reduced connected graph. If G is orientable
as a non-strong local tournament, then G is uniquely orientable as a non-strong local

tournament. 0

Proof of Theorem 2.3.1: Let D be a connected oriented graph which is not a
tournament. Suppose that D is obtained from some straight oriented graph S with
reduced G(S) by substituting a tournament T, for each vertex v of S. Let z,,z,,...,
be a straight enumeration of S. We know that { # 1 since D is not a tournament. [t
is implied by the definition of a straight enumeration that there is no directed path
from z; to z; in S. Then there is no directed path from any vertex of T, to any vertex
of T;, in D. Hence D is non-strong. To see that D is a local tournament, let x be a
vertex of D and let y and z be two out-neighbours of z. Then z € T, y € T}, and
z € Ty, for some 1 < 4,5,k < [. We note that 1 < j,k. Without loss of generality,
assume that j < k. If j = k, then y and z are in T, which is a tournament. Hence y
and z are adjacent. Assume that 7 < k. Since r—z, we have that z,~+z, and hence
z,—z; for every r such that ¢ < r < k. In particular, z;—z¢. So y—z and y is
adjacent to z in D. A similar argument applies to show that any two in-neighhours

of z are adjacent. Hence D is a local tournament.
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Suppose now that D is a non-strong local tournament. Let 7Y UT, U ... U T, be
a partition of D into blocks. Then each 7, must be a tournament and if ¢ # j then
T, is either completely adjacent to T; or completely non-adjacent to T;. Since D is
not a tournament, we have p # 1. We note that p # 2 as otherwise T and T, are
completely adjacent. Thus vertices in 71 U 77 have the same closed neighbourhood,
contradicting the maximality of T. Therefore p > 3.

Let z;,z2,...,2, be verticeswithz; € T; (: = 1,2,...,p) such that {z,,2,,...,2,}
induces a non-strong subgraph of D. We use S to denote the subgraph of D induced
by {zi,z2,...,2,}. Note that such vertices z,,zs,...,r, must exist because D is
non-strong. Then S is a local tournament. We note that G(S) is reduced because
distinct vertices of 5 have distinct closed neighbourhoods. By Theorem 2.2.5, S
admits a straight enumeration. Without loss of generality, assume that z,,z,,...,z,
is a straight enumeration of S.

Let {y1,¥2,-..,yp} be an arbitrary set of vertices with y; € T; for each i =
1,2,...,p (possibly the same as {z,z2,...,z,}). Suppose that S’ is the subgraph
of D induced by {y1,¥2,...,yp}. Then S’ is also a local tournament with reduced
G(S’). Tt is easy to verify that the mapping f: z; — y; is an isomorphism between
G(S) and G(S'). By Corollary 2.3.7, G(S) is uniquely orientable as a non-strong
local tournament. Hence, under the same isomorphism f, S is either isomorphic to
S” or the full reversal of S’. Thus either y1,y2,...,¥p OT Yp,Yp-1,...,¥1 is a straight
enumeration of 5’.

We first consider the case when p = 3. In this case S is a directed path z,—z,— 23
where r; and z3 are not adjacent. For any y € T}, we must have y—zy—z3. Hence
Ty—z,. Similarly we must have z,—73. For any z € T, by considering the set
{zy,z,23}, we must have either £, »z—z3 or T3—»2—z,. Hence either T;—2z—T; or
Ty—z—T).

Let H, U H, be a partition of T; such that each vertex y € H, satisfies Ty —»y—T;
and each vertex = € H; satisfies that T3—2—T;. Then H, # @ as =, € Hy. If H, # 0,
then we have T\ — H, —T3— H,—T), which contradicts the fact that D is non-strong.
Hence H, = 0, that is, Ty—T,—T5. Thus D is obtained from S by substituting a

tournament 7, for x; for each 7 = 1,2, 3.
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To prove the second assertion of Theorem 2.3.1 for the case when p = 3, suppose
that D’ is any non-strong local tournament with G(D') = G(D). Then [) can be
partitioned into vertex disjoint subgraphs T] U T, U T3, where G(T)) = G(T,) for each
¢ = 1,2,3. Again we must have eitiier T -1, —T3 or T,—T,—T|. f T{—1,-1}, then
D’ is obtained from D by reversing some arcs in T; for each » = 1,2,3. If Tj—T,-T7,
then [ is obtained from D by first reversing some arcs in T; and then performing a
full reversal. (Note that each arc of T; is balanced.)

Assume now that p > 4. Let y be any vertex of T; and let S” be the subgraph
induced by {z1,....zi-1,Y, Zis1,...,2p}. Applying an argument similar to the above,
we have either zy,...,2,-1,¥,Ziy1,.--,Tp OF Tp, ..., Tit1,Y,Lizg,..., L] I8 a straight
enumeration of S”. However S and S” have at least one arc (z;,z;41) in common
for some j. Then z1,...,7;_1,¥,Zi41,...,Tp must be a straight enumeration of S".
Moreover y—z; if and only if z,—x;, and z;—y if and only z;—z;. This implies that
T:—T; if and only if z;—z;. Thus D is obtained from S by substituting 7} for z; for
each:=1,2,...,p.

The second assertion of Theorem 2.3.1 for the case p > 4 can be proved in the

same way as in the case when p = 3. 0

For the case when D is a non-strong tournament, D) can be viewed as an oriented
graph obtained from a straight oriented graph which has only one vertex z by replacing
z with D. In this case each edge of G(D) forms an implication class. Hence all non-
strong local-tournament orientations of G(D) are obtained from [ by reversing some

arcs in D.

Proposition 2.3.8 Let G be a reduced connected graph. If G is local-tournament-
orientable and G is bipartite, then the edges of G within each fired connected com-
ponent of G form one implication class, and the edges of G between any two fizxed

connected components of G form an implication class.

Proof: Suppose that G is orientable as a local tournament and that G is bipartite.
Let G,UG,U...UG, be a decomposition of G into vertex disjoint subgraphs such that

each G; is a connected component of . Then, in G, every vertex of G; is adjacent
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to every vertex of G, if 1 # j. Hence any implication class is contained in E(G;) for
some ¢ or is contained in the set of all edges between G, and G, for some fixed 7 and
7. It suffices to show that all edges of G in any G; or between any two fixed G, and
(7, are in the same implication class.

First we show that all edges of G within one G| are in the same implication class.
Note that G; is a connected bipartite graph. Let (S, H) be a bipartition of G;. Note
that S and H induce complete subgraphs in G. We begin by showing that all edges
of G within S are in the same implication class. Similarly we can show that all edges
of G within /1 are in the same implication class. If 1 < |S| < 2, then S contains no
edge or contains exactly one edge and so the statement is trivially true. If |S] > 3,
it suffices to show that for three vertices z,y, z of S, the edges zy and zz are in the
same implication class. Since G; is connected, there is a path in G; from y to 2. Let
y = w, ~wy~ ...~ w = z be any shortest (y, z)-path. Note that vertices w; are
taken from S and H alternatively, thus ¢ is odd. It will be enough to prove (for each
odd 7) that if w; # z, then zw; and zw,,, are in the same implication class, unless
w42 = T in which case zw; and zw;,4 are the same implication class. Assume that
w;42 = z. Note that w;1wit4 and w;w; 3 must be edges of G, as otherwise we would
have a shorter path in G from w; to wi,4 and a shorter (y, z)-path, contradicting our

choice of the (y, z)-path. Hence we have
(z, wi) L (wi, wisa) T (Wits, wis1 )T (wig1, wira)T(wiga, 7).
Assume next that w;y2 # z. If zw;4q, then
(z, w;)T(wis1, 2) (2, wit2).

Otherwise we consider the following four cases, one of which must occur because G is
reduced.

Case 1. Assume that there exist vertices v € N[w;]—N[z] and u € N{w;y2]— N|z].
Then u,v € H. Thus

(z,w;)T(wi, v)T (v, wig1) T (Wig2, ) (2, wit2)
if vw, 4, is an edge in G; or

(z, wi) [(wi, u)T(w, wigr)F(wige, w)I(z, wiss)
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if wiu is an edge in G otherwise
(r,w)(wi, v)[ (v, W), wip ) T(wi o, 7).

Case 2. Assume that there exist verticesv € N[w,]—N[r]and u € N[x]— N[w,42].
Then u,v € H. Thus
(z,w)(u, o)z, w;42)

if w;u is not an edge in G; or
(x,wi)F(w,',v)F(v, w;+1)F(wi+2,v)F(x,w,<+2)
if vw;42 i1s an edge in G; otherwise
(z, wi) T (wi, v) T (wig2, wi) F(wiy u)Dw, winn )Tz, w) N wig, ).
Case 3. Assume that there exists a vertex v € N[z] — { N[w;] U N{w;42]}. Then
(z,w;)[(v,z)[(z, wisr).

Assume that there exist vertices v € N([z] — N|w;] and u € N[z] — N{wiy,] where

u # v. Then we have
(z,w;)[(v, )T (v, Wi 11) [ (Wig2, V)T (W, wig2) (u, wi) C(wipr, w) (2, w)(Wits, T).

Case 4. Assume that there exist vertices in N[z]— N[w;| and in N|w,;,] — N{z].
This is similar to Case 2.

To complete the proof that all edges of G in G| are in the same implication class,
consider an edge zy of G where z € S and y € H. Since G is reduced, we have
N(z] # Nly]. If there is a vertex z € S such that z € N[z] — N[y], then zy and zz
are in the same implication class and zz lies in S. If there is a vertex z € N[y| — N{z]
then zy and yz are in the same implication class and yz lies in H.

Finally we show that all edges of G between any two fixed G; and G, where i # j,
are in the same implication class. Let zz and yw be two edges of G between (; and
G;, where z,y € G; and z,w € Gj. Since z and w are in the same connected compo-

nent of G, there is a path in _G_"J- from w to w. Let z = v; ~ vy ~ ... ~ v, = w be such
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a path. Then zv, is an edge of G for each : = 1,2,...,t. We also notice that zv, and
zv,,; are in the same implication class for each : = 1,2,...,¢t — 1. Hence zz and zw
are in the same implication class. A similar argument applies to show that rz and yz
are in the same implication class. Hence rz and yw are in the same implication class.

a

Proposition 2.3.8 completely describes all implication classes of a reduced local-

tournament-orientable graph G for which G is bipartite.

Suppose that G is a reduced local-tournament-orientable graph which contains a
vertex v of degree n — 1. Then by Corollary 2.1.11, G is a bipartite graph. So from
now on we need to consider a reduced graph G for which A(G) <n —2 and G is not
bipartite. In addition (in view of Proposition 2.3.3) we may assume that G can only

be oriented as a strong local tournament.

By Theorem 2.2.9, we know that G admits a round enumeration, that is, the

vertices of G can be circularly ordered vy, vs,...,v, so that
N(’Ug) == {vi——la Vie2y v vy vi-—l} U {vi+1a Vit2y -+ 7vi+'r}7
where {v;.1,vi—2,...,vi—} and {vi41,Vit2,...,0i4,} induce complete subgraphs of

G for each vertex v;. We shall call v; and v;;; consecutive vertices (the subscript
addition is modulo n). Note that all consecutive vertices are adjacent since G can not

be oriented as a non-strong local tournament.

If viv; is the left-most wave at v;, then {vj,vj41,...,v} induces a complete sub-
graph. Similarly if v;ux is the right-most wave at v;, then {v;,vi41,..., v} induces a
complete subgraph. Since A(G) < n — 2, there exists a non-neighbour of v; between

vy and v;.

Lemma 2.3.9 Suppose that G is a reduced connected graph for which G is not
bipartite. Suppose that G is orientable as a strong local tournament and is not ori-
entable as a non-strong local tournament. Let vy,vs,...,v, be a round enumeration

of G. If the left-most wave and the right-most wave at each fized vertez of G are in
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the same implication class, then all left-most waves and all right-most waves at all

vertices of G are in one implication class.

Proof: It suffices to show that the left-most waves and the right-most waves at
two consecutive vertices v; and v;4+; are in the same implication class. We shall only
prove the case when ¢ = 1. A similar proof applies for : # 1.

Let vyv; and vyv; be the left-most wave and the right-most wave, respectively, at
vy, and let vyur and vyv; be the left-most wave and the right-most wave, respectively,
at ve. Since N{v)] # Nfvg], we have that j # if ¢ = k. Similarly we have ¢ # k if
j = 1. We consider the following cases.

Case 1. If i = k and j # [, then (v1,v;)T'(vi, vim1)T(v2,vk). Hence the left-most
wave at v; is in the same implication class as the left-most wave at vs,.

Case 2. If j = [ and ¢ # k, then (vy,v;)I'(v;,vj+1)I'(v2, vi). Hence the right-most
wave at v, is in the same implication class as the right-most wave at v,.

Case 3. If 1 # kand j # [, then j < ¢, | < n. Ifz <, then deg(vi) =n — 1
because {v;,...,v,,v1} and {vy,...,v;} induce completesubgraphs of G, contradicting
our hypothesis. Thus j < | < i. Hence (v;,v)['(v1,v2)[(v2,v) and so the left-most
wave at v; Is in the same implication class as the right-most wave of v,.

Therefore the left-most waves and the right-most waves at v, and v, are in the

same implication class. 0

Proposition 2.3.10 Suppose that G is a reduced connected graph for which G
is not bipartite. Suppose that G is orientable as a strong local tournament and s
not orientable as a non-strong local tournament. Then the edge set of G forms one

implication class.

Proof: Let vy,vs,...,v, be a round enumeration of G. Consider the vertex v;.
Suppose that v,v; and vyv;, where i < j, are two arbitrary edges incident with v,
(not necessarily waves) such that < {v1,vs,...,v:} >, < {v;,v,41,...,Vn, 01} >, and
< {vi,Vi41,.-.,v;} > are complete. We claim that v;v; and vyv; are in the same

implication class.
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Since A(G) < n — 2, there exists a vertex which is not adjacent to v;. Choose
such a vertex with the greatest subscript, say vx. Then 1 < k < ¢ and v; i1s adjacent
to vet1. Thus (v;,v1)[(v1,vx) and so vyv; and vy are in the same implication class.

We claim th.! v, and v;4; are not adjacent. If vi and v;4, are adjacent, then at least

one of the subgraphs < {vk, Vk41,---,0j41} > and < {vj41,V502, .+, V1, .., Uk} >
must be complete. However, < {vi,vk41,-..,0;41} > is not complete since v is
not adjacent to v;. Therefore < {v;41,v42,...,01,...,vc} > must be complete. A

similar argument shows that < {vi41,ves2,...,v;} > is complete. This contradicts
our assumption that G is not bipartite.

Let v; be the vertex of greatest subscript such that v; is not adjacent to v,. Then
7+ 1 <1 < n and v is adjacent to vi41. So (vy,vx)[(vi,v1) and so vivx and vy
are in the same implication class. Hence v,v; and v,v; are in the same implication
class. Again by the condition that G is not bipartite, v; is not adjacent to vx4;; or
else < {Vi31,Vi42,-+,Un,V1,..., Uk} > and < {Vk41, Vk4o,..., 01} > are two complete
subgraphs covering G and G would be bipartite.

If v; is not adjacent to v;, then vyv; and v,v; are in the same implication class and
we are done as this implies that vyv; and vyv; are in the same implication class. If v,
and v; are adjacent, then again choose a vertex vy, of greatest subscript so that v,, and
v; are not adjacent. Then k+1 < m < ¢ and vyv; and vyv,,, are in the same implication
class. So v,v; and v,v,, are in the same implication class. Notice that k < m < 3
and so v, is relatively closer to v; than vt. Continuing the above procedure, we will
eventually find that v;v; and vyv; are in the same implication class.

Now we show that the left-most wave and the right-most wave at each fixed vertex
are in the same implication class. Without loss of generality, we only consider the left-
most wave v1v; and the right-most wave v,v; at v; (Note that our discussion remains
the same for every other vertex v;.) If v; is not adjacent to v;, then (v, v;)I'(v;, 1)
and v,v; and vyv; are in the same implication class and we are done. Otherwise v; and
v; are adjacent. Then either < {vi,vi41,...,0;} > or < {vj,vj41,...,01,...,0i} >
is complete. If < {v;,vi41,...,v;} > is complete, then we have proved that vyv; and
v1v; are in the same implication class. If < {vj,vj41,...,vn,v1,...,0} > Is complete,

let v;1; be the right-most wave at v; and let v;v; be the left-most wave at v,. Then
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t+1 <Lk <j—=1. Ifl >k, then (vy,v,)T(vi.v1) and (v v))0(v,,v1). We note
that v;v; and vjv; are two edges incident with v, and < {v,,...,vh.vy,... 0} > is
complete. We conclude that v;v; and v, are in the same implication class, by using
the same arguments made (at the beginning of the proof) for two edges incident with
v1. Hence viv; and v v; are in the same implication class. Suppose that | < k. We
claim that for any a such that | < a < j the vertex v, is not adjacent to v,. In
fact, if v; is adjacent to v,, then either < {vs,va41,-..,0n,...,v:} > is complete or
< {v;,Vit+1,-..,Va} > is complete. However we know that v, and v, are two non-
adjacent vertices in < vg,Va41y.++,Uny-..,0 >, and v; and vy, are two non-adjacent
vertices in < v;, Vi41,--.,Vqa >, & contradiction. A similar argument applies to show
that for each b such that ¢ < & < & the vertex v, is not adjacent to v;. Note that

VI ~ Vg1 ~ ...~ Vi is a path. So < {vi,vi41,-..,vk} > is connected. Let

UV = Umy ~ Umy ™~ ..Uy = Uk

be a shortest (v, vk)-path, denoted by P[v,vi], in < {vj,viq1,...,0e} >. Then we
must have m; < my < ... < my. The path Plu;, vi] is chordless since it is shortest.
Hence

(V1 Vmy )L (Vmy s Vg )T (Vmy s Vma )T oo - T (Ve y s Uy )-

Now v,,, = v; is not adjacent to v;. We have

(v1, ) T(vi, Vi )T (Vimy 3 Vg ).
Similarly v,,, = vk is not adjacent to v;. We have

(Umh—l ’ Umh)r(vmh ? vj)r(vj"vl)'

Therefore (v1, v;)['(v;, v1) and vqv; is in the same implication class as vyv;. By Lemma
2.3.9, all left-most waves and all right-most waves at all vertices are in the same
implication class.

Finally we show that any edge belongs to the same implication class as the left-
most wave or in the same implication class as the right-most wave at some vertex.
Again without loss of generality, we consider an edge v v; incident with v,. Then
either

< {v1,vs,...,9} >,
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or

< Vi Vil Uny e, U1 >

is complete. Suppose that < {v,,va,...,v,;} > is complete (A similar argument applies
if < {v,vi41,-..,00, 01} > Is complete.). Let viv; be the left-most wave at v;. Then
7 > i. lf v; and v, are not adjacent, then (vy,v;)['(v;,v1) and vyv; is in the same
implication class as the left-most wave at v,. Suppose that v; and v; are adjacent.
Then either

<AV}, U1y ULy, Vi) >

or

< {vi, vig1, .., 051 >

is complete. Suppose that < {v;,vi41,...,v;} > is complete. Then vyv; and vv,
must be in the same implication class by earlier arguments. Finally suppose that
< {v;,vj415--.,01,...,vi} > is complete. Let v;vx be the right-most wave at v;. Then
i < k < j. The vertex v; is not adjacent to v; as otherwise N[v;] = N([v;], con-
tradicting the fact that G is reduced. Hence (vy,v;)I'(v;,vx) and vyv; is in the same
implication class as the right-most wave at v;. Therefore the edge set of G forms one

implication class. )

All implication classes of a reduced local-tournament-orientable graph are therefore

completely characterized.

Theorem 2.3.11 Let G be a reduced connected local-tournament-orientable graph.
Suppose that Cy,Cy,...,Cy are the connected components of G. The one of the fol-

lowing two statements is true.

o If G is bipartite, then the set of all edges of G within a fized C; forms an
implication class and the set of all edges of G between two fized C; and C;

(v # j) forms an implication class.

o If G is not bipartite, then k = 1 and the edge set of G forms one implication

class.
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Proof: If G is bipartite. then the first statement is true according to Proposition
2.3.8. If A(G) = n— 1, then G is bipartite by Corollary 2.1.11 and hence statement 1
1s true.

Suppose that G is not bipartite. Then A(G) < n — 2. According to Proposition
2.3.3 and 2.3.10, the edge set of (¢ forms one implication class. Assume that & > 1.
We note that the edges of GG between C; and C; contain an implication class. Since
all edges of GG are in the same implication class, all edges of G are between (') and
C,. Hence k = 2, and there is no edge of G within Cy or (. Now we have |('}] < 2
and |C3| < 2 as otherwise any three vertices in Cy (or C;) together with a vertex in
Cq (or C)) induce a copy of the claw (see Fig. 2.1) in G, contradicting the fact that 7

is local-tournament-orientable. Therefore G is bipartite, contrary to our hypothesis. O

Corollary 2.3.12 Let D be a connected local tournament with reduced G(D).
Then any local-tournament orientation of G(D) is obtained from D by performing

partial reversals, possibly followed by a full reversal.

Proof: Suppose that D’ is a local-tournament orientation of G(D). Since G(D) =
G(D"), an implication class of G(D) is aiso an implication classes of G(D'). Suppose
that C = {aib1,a2b2,...,a;b} is an implication class and suppose that a; dominates
b; in D for each i. Then, in D’, either a; dominates b,, or b; dominates a;, for each :.
If C1,Cs,...,Ck are the connected components of G, then by Corollary 2.3.11 one of

the following cases occurs:
e (C consists of all edges of G within C; for some ¢,
e ( consists of all edges of G between C; and C; for some z and j,
e ( consists of all edges of G.

Therefore, by the definitions of a partial reversal and a full reversal, D' is obtained

from D by performing partial reversals, possibly followed by a full reversal. O
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Corollary 2.3.13 Suppose that G = (V, E) is a reduced proper circular arc graph
with |V| > 4 which contains no isolated vertices. Then G is uniquely local-tournament-

orientable if and only if both G and G are connected.

Proof: We remark first that a connected graph is a proper circular arc graph if and
only if it is local-tournament-orientable. The sufficiency follows from Theorem 2.3.11
To prove the necessity, suppose that G is uniquely local-tournament-orientable. First
(G must be connected as otherwise each connected component has at least two orien-
tations (one is obtained by the full reversal of the other) and so the total number of
local-tournament orientations of G is at least 4. Suppose that G is not connected. Let
Cy,C,,...,Ck be connected components of G with ¥ > 1. Then by Theorem 2.3.11,
G must be bipartite. According to our hypothesis G is uniquely local-tournament-
orientable, that is, the edge set of G must form one implication class. We note that
the edges of G between C; and C; contain an implication class. Then all edges of G
are between C) and C;. Hence & = 2, and there is no edge of G within C or C;. Now
we have |C}| € 2 and |C;] < 2 as otherwise any three vertices in Cy (or C3) together
with a vertex in C3 (or Cy) induce a copy of the claw in G, contradicting the fact that

G is local-tournament-orientable. Therefore |V| < 4, contradicting our hypothesis. O

Let P; and C4 denote a path of length 3 and a cycle of length 4, respectively. Then
P; and C; are not connected but both of P; and C are uniquely orientable as a local

tournament. So the condition |V| > 4 in Corollary 2.3.13 is necessary.

We will next analyze the implication classes of a local-tournament-orientable graph

G which 1s not necessarily reduced. First we have the following lemma.

Lemma 2.3.14 Let G be a connected local-tournament-orientable graph. Suppose
that zy and =z are two unbalanced edges and yz is a balanced edge of G. If deg(y) <

n — 2, then (z,y)['"*(z,2) and hence zy and zz are in the same implication class.

Proof: It suffices to prove that in any local-tournament orientation of G, z dom-
inates y if and only if z dominates z. Assume to the contrary that z—y and z—z

in some local-tournament orientation D of G. Since zy is an unbalanced edge, either
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N[z] — Nly] # 0 or N[y] — N[z] # 0. If there is a vertex u € N[r] — N[y], then u is
adjacent to r but not to y and hence not to = (since N{y] = V[z]). If r—u, then r has
two non-adjacent out-neighbours v and y. If u—z, then r has two non-adjacent in-
neighbours v and z. Hence V[z] — N¥[y] = @ and so there is a vertex w € N[y] — N[z].
Then w is adjacent to y and z but not to r. Hence y—w and w—=z in D. An argument
similar to the one above, with w replacing z, shows that N[w] — N[y] = 0.

Since deg(y) €< n — 2, there exists a vertex v which is not adjacent to y. However
there is a path in G from v to y as G is connected. Let v = vy ~ v~ ... ~ vy =y
be a shortest path from v to y. Then t > 3 as v is not adjacent to y. If v,y = z
or vi_; = w, then v,_y € N[z] — N[y] or vi—2 € N|w] — N[y], contradicting the fact
N[z] — N[y] = 0 and N{w] — Nfy] = 0. So v;-; # r and v, # w. We note that
v¢_; is adjacent to at least one of z and w as otherwise {z,y,w, v, } induces a copy
of the claw in G and G is not local-tournament-orientable, a contradiction. Without
loss of generality, suppose that v, is adjacent to w. If v,_; is not adjacent to z,
then y—wv,_, and v;_;—z because z—z and Nly] = N[z]. If vy_y—ve_y, then v,
has two non-adjacent in-neighbours v¢_, and y, contradicting the fact that D is local-
tournament-orientable. If v,_;—v,_,, then v;_; has two non-adjacent out-neighbours
v, and z, a contradiction. Hence v,_; is also adjacent to z.

Note that v,_, is adjacent to at least one of z and w as otherwise {v;_1,v,-2, T, w}

induces a copy of the claw. However if v,_o is adjacent to = or w, then v, €
N{z] — Nly] or vi_y € N[w] — NJy], which contradicts the fact that N[z] - N[y] = 0
and N{w] — N[y] = 0. )

Theorem 2.3.15 Let G be a connected local-tournament-orientable graph (not
necessarily reduced). Suppose that Cy,Ca, ..., Cy are the connected components of G.

Then one of the following two statements is true.

o If G is bipartite, then all unbalanced edges of G within a fized C; form an impli-
cation class and all unbalanced edges of G between two fized C; and C; (v # j)

form an implication class.
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o If G is not bipartite, then k = | and all unbalanced edges of G form one impli-

cation class.

Proof: Let zy and uv be two unbalanced edges of G, where z,u € C, and y,v € C,
for some a and b with 1 < a,b < k. Then N[z] # Nly] and N[u] # N[y]. Suppose
that G is bipartite. Assume first that @ = 6. Note that each vertex of degree n — 1
in (G forms a connected component of G. In other words, if some C; has at least two
vertices, then each vertex of C; has at most n — 2 neighbours in (. Suppose that
N([z] = N[u] and N[y] = N[v]. Then z is adjacent to v, and y is adjacent to u.
By Lemma 2.3.14, ry is in the same implication class as zv, and zv is in the same
implication class as uv. Thus ry and uv are in the same implication class. Assume
N[z) = N[u] and N[y] # N[v]. (A symmetric argument applies when N{z] # N[u]
and Nly] = N[v].) Applying Theorem 2.3.11 and Lemma 2.3.14 to a subgraph of
G which contains exactly one vertex from each block of G and contains the vertices
T,y, and v, we conclude that zy is in the same implication class as zv. From above,
we have that zv is in the same implication class as uv. Hence ry and uv are in the
same implication class. Assume that the closed neighbourhoods N[z], N{y], N{u], and
N{v] are mutually distinct. Then applying Theorem 2.3.11 to a subgraph of G which
contains exactly one vertex from each block of G and contains the vertices z,y, u, and
v, we conclude that zy is in the same implication class as uv.

Assume now that a # b. Suppose that each of C, and C} consists of a single
vertex of degree n — 1. Then z = u and y = v. Thus the conclusion follows trivially.
Suppose that one of C, and C}, say C,, consists of a single vertex of degree n — 1.
Then z = u. If N[y] = N[v], then by Lemma 2.3.14, zy is in the same implication
class as uv. Suppose that N[y} # N[v]. Applying Theorem 2.3.11 to a subgraph of G
which contains a vertex from each block of G and contains the vertices z,u, and v,
we conclude that zy is in the same implication class as uv. For the case when none
of C, and C} consists of a single vertex of degree n — 1, the discussions are similar to
the case when a = b.

Finally suppose that G is not bipartite. Applying Theorem 2.3.11 to a subgraph
of G which contains a vertex from each block of G, we conclude that £ = 1. Note

that none of z,y,u, v has degree n — 1. Hence the discussions are similar again as for
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the case when a = b. 0O

Proof of Theorem 2.3.2: Let D be a connected oriented graph. Suppose that
D 1s obtained from some round oriented graph R by substituting a tournament T, for
each vertex r of B. Let z,,x,,...,x; be a round enumeration of B. To see that D
1s a local tournament, let = be a vertex of D and let y and = be two out-neighbours
of z. Thenz € T;,, y € T, and z € Ty, for some 1 < 12,j,k < [. We show that y
and z are adjacent. If : = j, then z and y have the same closed neighbourhood and
hence y is adjacent to z (as z is adjacent to z). A similar argument applies if ¢ = k. If
J = k, then y and z are adjacent because they are in the same tournament 7;. Assume
that 7, j, k are mutually distinct. Without loss of generality, assume that z,,z;, zx are
three vertices of R listed in clockwise circular order of the round enumeration. Since
z—{y, 2}, we have that z;—{z;,zx}. By the definition of a round enumeration, we
know that z;—xx. Thus y—=z in D. Hence the outset of r induces a tournament in
D. A similar argument applies to show that any two in-neighbours of z are adjacent.
Therefore D is a local tournament.

Suppose in turn that D is a local tournament. Let T3 UT,U...UT, be a partition of
D into blocks. Then each T; is a tournament and if z # 7 then T; is either completely
adjacent to T or completely non-adjacent to T}.

Let {z1,z2,...,z:} be a set of vertices such that z; € T; for each : = 1,2,...,[.
Suppose that R is the subgraph of D induced by {z,,z3,...,z;}. Since D is a con-
nected local tournament, we know that R is also a connected local tournament. In
fact R is reduced because distinct vertices of R have distinct closed neighbourhoods.
By Theorem 2.2.9, R admits a round enumeration. Without loss of generality, assume
that z,,z,,...,z;1s a round enumeration of R.

Suppose that A(D) < n — 2. It is implied by Lemma 2.3.14 that T;—T; if and
only if z;—z;. Thus D is obtained from R by substituting a tournament 7; for z,
for each 7 = 1,2,...,/. To prove the second assertion of Theorem 2.3.2, let D)’ be
any local-tournament orientation of G(D). Then D’ can be partitioned into vertex
disjoint subgraphs T7,T5, ..., T} where G(T}) = G(T;) for each ¢ = 1,2,...,[. We also
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see that each T/ is a tournament and if ¢« # j then T} is either completely adjacent to
T, or corpletely non-adjacent to T,. Moreover if T] and T, are completely adjacent
then either 7/—T, or T)—T by Lemma 2.3.14. First we see that T is obtained from
T, by reversing some arcs in 7;. Suppose that T, = T;. Let {y1,y2,...,u} be a set of
vertices where y; € T/ and let R’ be the subgraph of D’ induced by {y1,y2,--., ¥}
Then y,—y, if and only if T/ -T. It is easy to see that the mapping f: z; — y:is
an isomorphism between G(R) and G(R'). Then by Corollary 2.3.12, R’ is obtained
from R by performing partial reversals, possibly followed by a full reversal. Hence D’
is obtained from D by performing partial reversals, possibly followed by a full reversal.

Suppose in turn that A(D) = n — 1. Without loss of generality, assume that 7}
is induced by the set of vertices of degree n — 1. Thus if ¢ # 1 then every vertex of
T: has at most n — 2 neighbours. By Lemma 2.3.14 we have (z,y)['(z, z) for any two
vertices y and z in T;. Hence by Lemma 2.1.8 either z—{y, 2} or {y,z}—z. There-
fore either z—7T; or T;—z. Let 2; € T; and let R” be the subgraph of D induced by
{z1,Z2,...,x,}. It is easy to verify that the mapping f: z1 — z1; i = z;(1 2 2) is
an isomorphism between G(R) and G(R"). Hence, by Corollary 2.3.12, R" is isomor-
phic, under f, to R or to an oriented graph obtained from R by performing partial
reversals of B. Note that R” differs from R in only one vertex, i.e., R’ — z; = R~ z;.
So each possible partial reversal of R reverses some arcs incident with z;. Hence D
is obtained from R by first substituting T; for each z; and then by performing partial
reversals (each partial reversal is performed by reversing some arcs incident with one
vertex of T1). The second assertion of Theorem 2.3.2 can be proved analogously as
for the case A(D) <n —2. 0



Chapter 3

The Lexicographic Method

3.1 Local-bicomplete Orientability

A transitively orientable graph is also called a comparability graph (cf. [25, 32, 33,
40, 71]). Since every transitive oriented graph is locally bicomplete, all transitively
orientable graphs are local-bicomplete-orientable. It was first observed by Ghouila-

Houri, in different terminology, that the converse of the statement is also true (cf.

[31]).

Theorem 3.1.1 A graph is local-bicomplete-orientable if and only if it is transi-

tively orientable. 0

In Chapter 2, we proved that a graph G is a proper circular arc graph if and only
if the associated characteristic graph G* is 2-colourable. From this result, a simple
algorithm was obtained there to recognize proper circular arc graphs. In a similar
way, we will define in this chapter another associated graph G* of G and prove that
G is a comparability graph if and only if G* is 2-colourable. This will also yield a
simple algorithm to recognize comparability graphs. (We have recently learned this
result was also formulated and proved by Ghouila-Houri [31]. However our proof is

simpler and additionally yields the algorithm below.)

49
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Let G = (V, E') be a graph and recall from Chapter 2 the notation F(G) for the set
of all ordered pairs (u,v) such that uv is an edge of G. Note that in an orientation of
(;, each edge uv € F gives rise to two ordered pairs (u,v) and (v,u) of F(G). In other
words, by choosing one of (u,v) or (v,u) for each edge uv of G we get an orientation

of §.

We now define the haracteristic graph Gt with the vertex set F(G) and the
adjacency defined by the following: Each (u,v) € F(G) is adjacent to (v,u), to any
(w,u) € F(G) such that v # w and vw ¢ F, to any (v,w) € F(G) such that u # w

and uw ¢ F, and to no other vertex of G*.

Theorem 3.1.2 A graph G = (V, E) admits a local-bicomplete orientation if and
only if the characteristic graph G* is 2-colourable.

Moreover, if Gt is 2-coloured with A being a colour class, then D = (V, A) is a

local-bicomplete orientation of G.

Proof: Suppose that D is a local-bicomplete orientation of G. We colour the
vertices of Gt with two colours g and 7 in the following way: Colour a vertex (u,v)
by p if u dominates v, and by 7 if v dominates u in D. Let (z,y) and (z’,y’) be two
adjacent vertices of GT. It is easy to see that z dominates y if and only if 4’ dominates
z’ in D. Hence (z,y) and (2',y’) are coloured with different colours. Therefore G is
2-colourable.

Suppose now that G* is 2-coloured with A being a colour class. We prove that
D = (V,A) is a local-bicomplete orientation of G. Since, for each (u,v) € F(G),
(u,v) and (v,u) are adjacent in G, exactly one of (u,v) and (v,u) belongs to A.
Thus D is an orientation of G. To show that D is locally bicomplete, let u, v, and w
be three vertices of G such that v and w are two non-adjacent neighbours of u. Then
(u,v), (w,u) € F(G) are adjacent in Gt (and (v,u) and (u,w) are adjacent in G*).
Hence at most one of (u,v) and (w,u) (and at most one of (v,u) and (u,w)) belongs

to A. Therefore D is a local-bicomplete orientation of G. (m]

Theorem 3.1.2 proves the correctness of the following algorithm for finding local-

bicomplete orientations.
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Algorithm 3.1.3 Let G = (V, E) be a graph.
Step 1. Construct the characteristic graph G of G.
Step 2. If Gt 1s not 2-colourable, then G is not iv. al-bicomplete-orientable.

Step 8. If Gt is 2-colourable, then find any 2-colouring of Gt and obtain a local-
bicomplete orientation D = (V, A) of G where A is a colour class of G+. a

Theorem 3.1.4 There is an O(mA) time algorithm to recognize local-bicomplete-

orientable graphs and to find such an orientation if one erists.

Proof: The graph G* has O(m) vertices, O(E,,egdeg(u) + deg(v)) = O(mA)
edges and it can be constructed in time O(mA). In the same time we can test, by

breath-first search, whether it is 2-colourable, and find a 2-colouring of G*. W

Corollary 3.1.5 There is an O(mA) algorithm to recognize comparability graphs.

Proof: This is immediate from Theorem 3.1.1 and 3.1.4. 0

Let (u,v),(z,y) € F(G). We say that (u,v) pushes (z,y), denoted by (u,v)¥(z,y),

if one of the following conditions is satisfied.
e u=1zand v =y;
eu==z,v#y,and vy ¢ E;
ev=y,ufzr,and ur ¢ E.

It is obvious that (u,v)¥(z,y) if and only if (u,v) is adjacent to (y,z) (or (v,u) 18
adjacent to (z,y)) in G*. We say that (u,v) controls (z,y), denoted by (u,v)¥*(z,y),
if there exist (uy,v1), (u2,v2),. .., (uk, ve) € F(G) so that

(u,v) = (ug,v1)W(uz, v2)¥... U(uk,v) = (z,y).
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Proposition 3.1.6 For any graph G, the binary relation ¥* on F(G) is an equiv-

alence relation. o

According to Proposition 3.1.6, the binary relation ¥* partitions F(G) into equiv-

alence classes. We call each of these equivalence classes a ¥*-class.

Lemma 3.1.7 Let D = (V, A) be a local-bicomplete orientation of G = (V, E). If
(u,v)¥*(z,y) for some (u,v), (z,y) € F(G), then u—v if and only if z—y in D.

Proof: We prove that if (u,v)¥(z,y) for some (u,v), (z,y) € F(G), then u—wv if
and only if z—y. The general proof can be done by induction.

If u =2 and v = y, then the conclusion follows trivially. Suppose that v = y,
u # z,and uz ¢ E. If u—v and y—z in D, then u € I(v), z € O(v), and u is not
adjacent to z, contradicting the fact that D is locally bicomplete. If v—u and z—y
in D, then z € I(v), u € O(v), and z is not adjacent to u, contradicting the fact that
D is locally bicomplete. A similar proof applies when u =z, v #y,and vy ¢ E. 0O

Theorem 3.1.8 A graph G admits a local-bicomplete orientation if and only if
there is no (u,v) € F(G) such that (u,v)¥*(v,u).

Proof: The necessity follows immediately from Lemma 3.1.7. For the sufficiency,
suppose that there is no (u,v) € F(G) with (u,v)¥*(v,u). We apply the following
procedure to obtain an orientation D of G. Arbitrarily pick an edge uv E which has
not been oriented and let z—y in D for all (z,y) such that (u,v)¥*(z,y). Continue
the procedure until there are no unoriented edges left. Since there is no (u,v) € F(G)
with (u,v)¥*(v,u), each edge of G is assigned precisely one orientation. Thus D is
an orientation of G. It suffices to show that D is locally bicomplete. Suppose to the
contrary that D is not locally bicomplete. Then there exists a vertex z such that
there is a vertex in y € O(z) and a vertex z € I(z) such that y is not adjacent to z.
Hence (z,y)¥(z, z). By the above procedure, we have that z—y if and only if z—2

in D. Since z—y in D, we have z—z in D. Therefore in D we have both z—z and
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z—r, a contradiction. )

The proof of Theorem 3.1.8 gives an alternative implementation of Algorithm

3.1.3, by working directly on the graph G.

Corollary 3.1.9 A graph G is local-bicomplete-orientable if and only if BAB™' =
0 for each U*-class B.

Proof: This follows from Proposition 3.1.6, Theorem 3.1.8, and the fact that
BN B! # 0 if and only if B contains both (u,v) and (v,u) for some (u,v) € F(G).
O

Corollary 3.1.10 If G is local-bicomplete-orientable, then G contains no chord-
less cycle of odd length as an induced subgraph.

Proof: It suffices to show that a chordless of odd length is not local-bicomplete-
orientable. Assume that z; ~ 29 ~ ...z, ~ 1 is a chordless cycle where r is odd.
Since (z;, zi-1)¥(z;,Zis1) for each ¢ = 1,2,...,r, we have that (z1,z2)¥(z2, ) be-

cause r is odd. Hence the result follows from Theorem 3.1.8. O

Proposition 3.1.11 Let G be a local-bicomplete-orientable graph and suppose that
Gt is coloured with two colours. Then each W*-class consists of all vertices of one

colour in one component of G*.

Proof: Suppose that A is a U*-class. For any two elements (u,v) and (z,y) from

A, by the definition of a ¥*-class, there exist x,y;, Zay2, - . ., Z:y: such that

(u,v) = (z1,11)¥(z2, y2)¥ . .. ¥(zi,3) = (&, y).

Hence, in G,

(’U.,'U) = (zla yl) ~ (yl'yzl) ~ (z'la yl) e ("T"i?yi) = (I,y)
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is a path of even length from (u,v) to (z,y). Therefore (u,v) and (z,y) are in the
same component and must be coloured with the same colour.

On the other hand, suppose that (u,v) and (z,y) are coloured with the same
colour and are in the same component of G*. Then there is a path of even length

from (u,v) to (z,y). Assume that
(u,v) = (a1,b1) ~ (az,b2) ~ ... ~ (a;,b;) = (z,7),
such a path. Then
(u,v) = (a1, b)) ¥(bs, a2)¥ ... ¥(a,,b;) = (z,y).

Hence (u,v) and (z,y) are in the same ¥*-class. ]

Suppose that G is local-bicomplete-orientable and suppose that G* is coloured
with p and 7. If B is a set of vertices coloured with g in one component of G*, then
B! is the set of vertices coloured with 7 in the same component as the vertices of B.

Hence both B and B! are independent in G*.

Note that by switching the two colours of vertices in a component of G* we get a

new 2-colouring of G*. Therefore if we let
F(G)=BUB,U...UBUB'UB;'U...uB™

be the decomposition of F(G) into ¥*-classes, then each B; (and each B[') is an
independent set in Gt and each B; U B! induces a component of G* for each i =
1,2,...,t. Moreover, by Algorithm 3.1.3, a local-bicomplete orientation of G can be
obtained by choosing the arc set to be A; U A; U ... U A; where A; = B; or B!
for each : = 1,2,...,¢. In fact, it is not difficult to see that this gives all possible

local-bicomplete orientations of G.

Corollary 3.1.12 A graph G is uniquely local-bicomplete-orientable if and only if

G is a connected bipartite graph. a
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We close this section by presenting the following theorem.

Theorem 3.1.13 The following statements are equivalent for a graph G3:
1. G is a comparability graph;
2. G is local-bicomplete-orientable,

3. G 1is transitively orientable;

4. G* is 2-colourable;

[

. BN B! = for each ¥*-class.

Proof: The equivalence between statements 1 and 3 is from the definition of a
comparability graph. The equivalence between statements 2 and 3 is basically The-
orem 3.1.1. The equivalence between statements 2 and 4 is precisely Theorem 3.1.2.

Finally the equivalence between statements 2 and 5 is just Corollary 3.1.9. a

3.2 Orientation Algorithms

In 1971, Pnueli, Lempel, and Even [63] gave an O(mA) time algorithm to recognize
comparability graphs and to calculate transitive orientations. This algorithm relies
on a deep analysis of structures in comparability graphs and it is quite complicated.
Here we provide a simple algorithm to solve the same problem. Our algorithm also
runs in time O(mA) and makes use of a novel lexicographic method. Using the same
method, we will obtain O(mA) algorithms to recognize proper interval graphs and
proper circular arc graphs, and to calculate acyclic local-tournament orientations and

local-transitive-tournament orientations.

Let G be a graph. Suppose that the vertices of G are enumerated as v, vz, ..., vn.
In order to describe our algorithm, we define a lexicographic order among all subsets

of the vertex set of G. We say that {v;} is lexicographically less than {v,}, denoted
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by {v.} < {v,}, if ¢ < j. In general, let X and Y be two sets of vertices of G of size

k. Write
‘X = {mlv‘r?n"-a'rk}a {Il} < {3:2} L ... K {Ik}

and
Y = {ylsy%--wyk}a {yl} < {?Jz} ... L {yk}

We say that X is lexicographically less than Y, denoted by X « Y, if there exists an
r such that 1 <r <k, {z,} = {y:} for all t <r, and {z,} <« {y,}. Suppose that L
is a collection of sets of size k. Then X € L is called lexicographically smallest in L if

X « Y for any Y € £ such that Y # X.

3.2.1 The Transitive Orientation Algorithm for Compara-
bility Graphs

We consider the following algorithm for finding transitive orientations.
Algorithm 3.2.1 Let G = (V, E) be a graph.
Step 1. Construct the characteristic graph G*.
Step 2. If G is not 2-colourable, then G is not a comparability graph.

Step 8. If G is 2-colourable, then find a special 2-colouring of G* with colours . and
T by always first assigning y to the lexicographically smallest uncoloured verter
(z,y), and completing the unique 2-colouring of the corresponding component of

G+.

Step 4. Let A be the set of vertices of Gt which are coloured with u, and obtain a
transitive orientation D = (V, A) of G. O

Suppose that G is a comparability graph. By Theorems 3.1.1 and 3.1.2 we know
that G* is 2-colourable. For each vertex (u,v) of G, we use ¢[(u, v)] to denote the set

of vertices which have even distance from (u,v) in G*. Then for every (z,y) € o[(u, v)]
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we must have o[(r,y)] = o[(u.v)]. By Proposition 3.1.11, o{(u. )] is precisely the W*-
class which contains (u,v). So if o{(z,y)] = o{(u,v)], then in any locally bicomplete
orientation of G, r—y if and only if u—v. In other words. in any 2-colouring of G* all
vertices in o[(u, v)] must be coloured with the same colour. According to this notation,
Step 3 of Algorithm 3.2.1 can be interpreted as fc'lows: If Gt is 2-colourable, then
find a special 2-colouring of Gt with two colours u and 7 by alwavs first assigning
colour u to the lexicographically smallest uncoloured vertex (z,y), as well as to all
vertices in o[(z.y)], and colouring all vertices in o{(y, )] by 7. Note that if (x,y) is

the lexicographically smallest pair chosen by Step 3, then {z} < {y}.

The following lemma is crucial for proving the correctness of Algorithm 3.2.1.

Lemma 3.2.2 Suppose that D is locally bicomplete and suppose that a—b—c—a
is a directed triangle in D. If of(b,c)] = o{(V,c)] for some (V,') € F(G), then
ol(a,b)) = ol(a, )] and o{(c,a)] = o{(c',a)]

Proof: Since o{(b, c)] = o[(¥, )], we know that (b,c) controls (¥, ¢'). Then there
exist (by, 1), (b2, c2),...,(bi,c1) € F(G) for some ! such that

(b,c) = (by, 1) ¥ (by, c2)¥ .. . W(by,c)) = (¥, ).

Without loss of generality, we assume that (b;, ¢;) # (bi41,¢i41) foreache = 1,2,...,[—
1. Since b dominates ¢, we know that b; dominates ¢; for each + = 1,2,...,{ (see
Lemma 3.1.7). We prove that o[(a,b)] = o{(a,b;)] and 7[(c,a)] = o[(ci,a)] for each
i=1,2,....1.

It is trivial when ¢ = 1. Assume that o[(a,b)] = o[(a, b;)] and o[(c, a)] = o{(¢i, a)]
for some 1 < i < l. Then a—b; and ¢;—a in D. Since (b;,¢;)W(b;y1,¢41), by the
definition of ¥, either ¢;y, = ¢;, biy1 # b;, and b,y is not adjacent to b;, or biy1 = by,
Ciy1 # ¢i, and ci41 is not adjacent to ¢;. In the former case, we have that ¢;y1a = cia.
Hence o[(ci41,a)] = o{(ci, a)], and so o{(c, a)] = o{(ci41,a)]. Since by —ciy—ain D,
which is locally bicomplete, b;,; is adjacent to a. Hence o(a, b;11)] = o[(«, b;)] because
b; is not adjacent to b;,,. Therefore o[(a, b;41)] = o[(a, b)] because o{(a, b)] = o[(a, b;)].

A similar discussion applies in the latter case. u
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Theorem 3.2.3 [f G is local-bicomplete-orientable, then Algorithm 3.2.1 correctly

finds a transitive orientation D = (V, A) of G.

Proof: By Theorem 3.1.2, we know that D = (V,A) is a locally bicomplete
orientation of G. So it suffices to show that D is transitive. Suppose that D is not
transitive. Then there exists a vertex ¢ € V(D) such that an in-neighbour of z is
dominated by an out-neighbour of z, that is, y—z for some y € O(z) and z € I(x).
Hence D contains a directed triangle z—y—z—z.

Let {a, b, c} be the lexicographically smallest set of size 3 which induces a directed
triangle in D. Since {a,b,c} induces a directed triangle, there exist two vertices
z,y € {a,b,c} such that z—y and {y} < {z}. Without loss of generality, assume
that b and ¢ are two such vertices, that is, b—c and {c¢} <« {b}. Then there exists
(b',c') € F(G) such that (¥, ¢) was the lexicographically smallest one chosen in Step 3
of Algorithm 3.2.1, such that o{(b, c)] = o[(¥',c')]. Hence {¥',¢'} < {b,c}. By Lemma
3.2.2 we have c{(a, b)] = o[(a,t)] and o[(c,a)] = ¢[(c',a)]. So a—¥ and ¢'—a in D.
Therefore the set {a,b’,c'} induces a directed triangle in D and is lexicographically

less than {a, b, c}, contradicting the choice of {a, b, c}. O

We now provide a simple proof of Ghouila-Houri’s Theorem as follows.

Proof of Theorem 3.1.1: The sufficiency is obvious. To proof the necessity,
suppose that G is local-bicomplete-orientable. Then by Theorem 3.2.3, G is transi-

tively orientable. O

3.2.2 The Local-transitive-tournament Orientation Algorithm
for Proper Circular Arc Graphs
Now we turn to proper circular arc graphs and their related local-tournament ori-

entations and local-transitive-tournament orientations. Theorem 2.1.1 assures that

a proper circular arc graph is local-tournament-orientable. We shall prove that if



Chapter 3. The Lexicographic Method 50

a graph ic local-tournament-orientable then it is also local-transitive-tournament-
orientable. We have seen from Theorem 2.2.6 that a proper circular arc representation
of G can be obtained in time O(m+n) from a local-transitive-tournament orientation
of G. So it is important to understand how to obtain local-transitive-tournament

orientations of a proper circular arc graph.

Consider the following algorithm for finding local-transitive-tournament orienta-

tions.

Algorithm 3.2.4 Let G = (V, E) be a connected graph.
Step 1. Construct the characteristic graph G*.
Step 2. If G* is not 2-colourable, then G 1s not a proper circular arc graph.

Step 3. If G* is 2-colourable, then find a special 2-colouring of G with colours p and
7 by always first assigning u to the lexicographically smallest uncoloured vertex
(z,y), and completing the unique 2-colouring of the corresponding component of

G~.

Step 4. Let A be the set of vertices of G* which are coloured with p, and obtain «

local-transitive-tournament orientation D = (V, A) of G. O

Suppuse that G is a proper circular arc graph. By Theorems 2.1.1 and 2.1.3
we know that G~ is 2-colourable. For each vertex (u,v) of G*, we use p[(u,v)] to
denote the set of vertices which have even distance from (u,v) in G*. Then for every
(z,y) € pl(u,v)] we must have p[(z,y)] = p[(u,v)]. By Proposition 2.1.13, p[(u,v)]
is precisely the I'*-class which contains (u,v). So if p[(z,y)] = p[(u,v)], then in any
local-tournament orientation of G, z—y if and only if u—wv. In other words, in any
2-colouring of G~ the vertices in p[(u,v)] must be coloured with the same colour.
According to this notation, Step 3 of Algorithm 3.2.4 can be interpreted as follows:
If G* is 2-colourable, then find a special 2-colouring of G* with two colours g and 7

by always first assigning colour g to the lexicographically smallest uncoloured vertex
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(z,y), as well to all vertices in p{(z,y)], and colouring all vertices in p[(y, z)] by 7. Note

that if (r,y) is the lexicographically smallest pair chosen by Step 3 then {z} < {y}.

Now we prove the correctness of Algorithm 3.2.4. First we have the following

straightforward observation.

Lemma 3.2.5 Let D be a local tournament. Then D is a local transitive tourna-
ment if and only if neither the outset nor the inset of any verter contains a directed

triangle. =

Let a, b, ¢, and d be four vertices of D. If {b,¢,d} induces a directed triangle and
a is dominated by {b,¢,d} or dominates {b,c,d}, then we call {a,b,c,d} a forbidden
quadruplet.

Suppose that D = (V, A) is an orientation of G obtained by Algorithm 3.2.4.
By Theorem 2.1.3, we know that D is a local tournament. Assume that D is not
a local transitive tournament, i.e., that D contains a forbidden quadruplet. Among
all forbidden quadruplets of D, let {a,b,c,d} be the lexicographically smallest one.
Assume that a dominates {b,c,d} which induces a directed triangle b—c—d—b. (A
similar argument applies if a is dominated by {b,¢,d}.) Since {b,c,d} induces a
triangle, there are two vertices z,y € {b, ¢, d} such that z—y and {y} <« {z}. Without
loss of generality, assume that d and b are two such vertices, that is, {6} < {d}. Then
there exists an ordered pair (d',b") € F(G), which was the lexicographically smallest
one chosen by Step 3 of Algorithm 3.2.4 such that p[(d', )] = p[(d,b)]. Note that
{d'} <« {b'} and {d',V'} < {d, b}.

Since p[(d',¥)] = p[(d,d)], there exist (z1,y1),(z2,%2),.-.,(zi,y1) € F(G) such
that

(d,d) = (z1,y1)T (2, ¥2)T ... D(zr, 1) = (d', b).
Since (d',b') # (d,b), | > 2. Without loss of generality, we assume that (z; y;) #

(Lit1,Yig1) foreachi=1,2,...,/—1. By Lemma 2.1.8, r; dominates y; in D for each

1 =1,2,...,L
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For convenience, we now change notation. Let &, = y, if { is odd and b, = r, if 1 is
even. Let d; = r; if ¢ is odd and d; = y, if 7 is even. Then (b, d;)(di4y, b,41) for each

1 =1,2,..., 0 —1. Moreover b;—a; if 7 is even and d;—¥b, if 1 is odd.
Claim: The following three statements are true
1. For each : = 1,2,...,(, d; is adjacent to every vertex of {a,b, c}.
2. Foreach:=1,2,...,[, b; is adjacent to every vertex of {a,c,d}.
3. There exists a forbidden quadruplet which is lexicographically less than {a, b, ¢, d}.

Proof: We apply induction on [. Assume first that [ = 2. Note that d; = d is
adjacent to every vertex of {a,b,c}, and that b = b is adjacent to every vertex of
{a,¢,d}. Since (dy, b1)['(bs, d2), either dy = da, by # bs, and b; is not adjacent to by, or
by = by, dy # dj, and d; is not adjacent to d,. Suppose firsi that dy = dy, b # by, and
b, is not adjacent to by. Since a—d;, by—d,, and dy = ds, we have that b, is adjacent
to a. Then b;—a because a—b; and b, is not adjacent to b,. Since c—d;, by—d,, and
d, = dy, we have that by is adjacent to c¢. Then ¢—by because by —¢ and b; is not
adjacent to d,. Statements 1 and 2 now follow. We notice that {a,c, b2} induces a
directed triangle which dominates d,. Then {a,c, b2, d2} is a forbidden quadruplet in
D. This quadruplet is lexicographically less than {a, b, ¢, d} because {by,d2} < {b,d}.

Suppose in turn that b; = by, d; # ds, and d; is not adjacent to d;. Since by —e,
by—d,, and b; = by, we have that d, is adjacent to c. Then dy—c because c—d, and
dy is not adjacent to d,. Hence d; is adjacent to a as {a,d>}—c. Since a—d; and d,
is not adjacent to d,, we must have dy—a. Statements 1 and 2 now follow. We notice
that {a,b,,d>} induces a directed triangle which deminates ¢. So {a,c, by, d,} is a
forbidden quadruplet of D. This quadruplet is lexicographically less than {a,b, ¢, d}
as {by,d2} < {b,d}.

Now we assume that the Claim is true for all | < k and we consider the case when
=k +1 where k > 2.

Let By = {by,b,...,b:} and Dy = {di,d,...,dc}. By the induction hypothesis,

every vertex of {a, b, c} is adjacent to every vertex of Dy, and every vertex of {a, ¢, d}
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is adjacent to every vertex of Bi. Let b;,b,4, € Bix. Suppose that b; # b,,;. Then b,
and b,;, are not adjacent. So if a—b; (resp. b;—a) then b, —a (resp. a—b; ;). We
know that a—b;. Hence

a—by, if | Bx| is odd and by—a if | Bi| i1s even.

Applying a similar argument, we can show

a—di if | Dy is odd and dr—a if | Dy is even,

b—dy if |Dt| is even and dy—b if |Dy| is odd,

c—by if | B| is even and by—c if | By| is odd,

c—dy if | Di| is odd and dy—c if | Dy] is even, and

d— by if |Bg| is odd and by—d if | By| is even.

Since (bk,dk_)F(dk;,,l,bk.H), either by = byy), di # dis1, and di is not adjacent to
diy1, or dy = digr, bk # bryy, and b is not adjacent to bey;.

Since the two cases are similar, we only consider the case when b, = by, di #
diky41, and dy is not adjacent to dryq. An important fact to observe is that the integers
k and |Bg| + |Di| have distinct parity. We discuss the following cases.

Case 1. Suppose that k is odd. In this case, |Bi| and |Di| have the same parity.

Subcase 1.1. Suppose that both |Bi| and |D| are odd. Then from the above
discussion, we know that a—by, a—di, dy—b, c—d, by—c, and d—b;. Since k is
odd, we have b1 —diyq. Thus di,q is adjacent to ¢ because by—c, by —dii1, and
br = bry1. Hence dip1—c as c—d; and di is not adjacent to diyi. We see that diy
is adjacent to a and b because {a,b,di+1}—c. Since a—dy and di is not adjacent
to dky1, we have dgy;—a. Statements 1 and 2 now follow easily. We notice that
{a.biy1,drs1 } induces a directed triangle which dominates c. Then {a, ¢, bg41,dk+1} 18
a forbidden quadruplet of D. This quadruplet is lexicographically less than {a, b, ¢, d}
since {bg41,dr1} < {b,d}.

Subcase 1.2. Suppose that both |By| and [Dk| are even. Then by—a, di—a,
b—dy, c—by, dr—c, and by—d. Since byy;—dit1, bi—a, and by = bi41, we have that
di4+1 1s adjacent to a. Then a—di,, because dy—a and dj is not adjacent to dyy;. Now
we have a—{b, ¢, dr41} and hence di, is adjacent to b and c¢. Thus statements 1 and 2
have been proved. Since b—d; and dj is not adjacent to diy;, we have dx1—b. Since

dy—c and di is not adjacent to dy41, we have c—diy1. Thus {a,c,brs1} induces a
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directed triangle which dominates dixyy. So {a,c, bey1,dis1} is a forbidden quadruplet
of D which is lexicographically less than {a,b,c,d} because {byy1.diy)} < {b,d}.

Case 2. Suppose that k is even. Then |By| and |Di] have distinct parity.

Subcase 2.1. Suppose that | By is odd and that | Dy] is even. Then a— by, dy—a,
b—dy, by—c, dy—c, and d—b,. We note that dxy)— by since k is even. Then dyyy
is adjacent to a because dry i —bryy, a—bx, and by = byyy. Since dy—a and dj is not
adjacent to di;y, we have a—dkyy. Thus a—{b,c,dry1} and hence diyy is adjacent
to b and c. Since b—d; and dj is not adjacent to dyy,, we have dr,1—b. Since dx—c
and dj is not adjacent to diy1, we have c—dg;1. Hence statements | and 2 have been
proved. We see that {c, bxy1,dk+1} induces a directed triangle which is dominated by
a. So {a,¢,bksr1,drsr} 1s a forbidden quadruplet of D which is lexicographically less
than {a,b,c,d} because {bry1,dis1} < {b,d}.

Subcase 2.2. Suppose that |B| is even and that |Dy| is odd. Then bi-—a,
a—di, dg—b, c—bi, c—dy, and by—d. Since dry1—bryy, c—bk, and by = by, we
have that di,; is adjacent to ¢. Then dgy1—c¢ because c—dy and di is not adja-
cent to diy;. Thus we have {a,b,di;1}—c and hence di;, 1s adjacent to a and b.
Hence statements 1 and 2 follow. Since a—d; and di is not adjacent to dixyq, we
have dyy;—a. Since dy—b and di is not adjacent to dixiy, we have b—diyy. Now
we see that {a,c,bs;;} induces a directed triangle which is dominated by dii. So
{a,c,brs1,drs1} is a forbidden quadruplet of D which is lexicographically less than
{a,b,c,d} as {bxt1dks1} < {b,d}. a

However statement 3 of the above claim contradicts our choice of {a, b, c,d}. There-
fore D contains no forbidden quadruplet and D is a local transitive tournament by
Lemma 3.2.5. In conjunction with Theorem 2.1.15 and Corollary 2.2.10, we have

proved the following result.

Theorem 3.2.6 Algorithm 3.2.4 finds a local-transitive-tournament orientation

of G if one exists, and otherwise correctly reports that one does not erist. O

We now present a simple proof of Skrien’s Theorem which states that a connected



Chapter 3. The Lexicographic Method 64

graph is local-tournament-orientable if and only if it is a proper circular arc graph,

as an application of our lexicographic method.

Proof of Theorem 2.1.1: Suppose that G is a proper circular arc graph with
a circular arc representation F. By Lemma 2.2.8 the representation F can be chosen
so that no two arcs share a common endpoint and no two arcs together cover the
entire circle. Let S1,5,...,S, be the arcs in 7. For each : = 1,2,...,n, let v;
be the vertex of G associated with S;. We obtain an oriented graph D as follows:
The vertex set of D is the same as the vertex set of G, and a vertex v; dominates a
vertex v; in D if and only if S; contains the head of S; (or S; contains the tail of S;).
By Theorem 2.2.6, D is a local-transitive-tournament orientation of G. Hence G is
local-tournament-orientable.

Suppose in turn that G is local-tournament-orientable. Then by Theorem 3.2.6,
G admits a local-transitive-tournament orientation. Hence by Theorem 2.2.6, G is a

proper circular arc graph. a

3.2.3 The Acyclic Local-tournament Orientation Algorithm
for Proper Interval Graphs

A closed walk C = vy ~ vy ~ ... ~ v, ~ vy is called a semicycle if v;_; is not adjacent
to v;4, for each ¢ = 1,2,...,k, where the subscript addition and subtraction are

modulo k. The following lemma is the traditional characterization of interval graphs
due to Gilmore and Hoffman (cf. [32]).

Lemma 3.2.7 A graph G is an interval graph if and only if it contains no chord-
less cycle of length 4 and G contains no semicycles of odd It 2gth. O

A proper interval graph is of course an interval graph. However the converse is
not necessarily true, that is, not all interval graphs are proper interval graphs. The
following result, due to Roberts [68], shows which interval graphs are proper interval

graphs.



Chapter 3. The Lexicographic Method 65

Lemma 3.2.8 An interval graph is a proper interval graph if and only if it is

claw-free. (|

Theorem 3.2.9 The following statements are equivalent for a graph G.
1. G is a proper interval graph,

2. G is orientable as a non-strong local tournament,

3. (G is orientable as an acyclic local tournament,

4. G is claw-free, contains no chordless cycle of length 4, and G contains no semi-

cycles of odd length.

Proof: It suffices to show that the statements of Theorem 3.2.9 are equivalent
for a connected graph G. The equivalence between statement 1 and statement 4 is
implied by Lemma 3.2.7 and Lemma 3.2.8.

1 = 2: Assume that G is a proper interval graph and assume that 7 is a proper
interval representation of G. Without loss of generality, assume that the intervals of
T have distinct endpoints. Let Iy, I5,..., I, be the intervals of 7 and iet v; be the
vertex of GG associated with /; for each = 1,2,...,n. We obtain an oriented graph
D as follows: Let the vertex set of D be the vertex set of G and let v,—w,; if S;
contains the left endpoint of S;. We note that S; contains the left endpoint of 5 if
and only if S; contains the right endpoint of S;. Moreover, for any two intersecting
intervals S; and S;, either S; contains the left endpoint of S; or S; contains the left
endpoint of S;. Thus each edge of G is assigned exactly one direction and so D is
an orientation of GG. Since no interval of T contains the left endpoint of the left-most
interval of Z, the corresponding vertex associated with the first interval of Z has no
in-neighbour in D. Hence D is non-strong. For each vertex v;, the out-neighbours of
v; are associated with those intervals of Z containing the right endpoint of 5;. Hence
the intervals associated with the out-neighbours of v; intersect each other. So the

out-neighbours of v; induce a complete subgraph of D. A similar discussion applies
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to show that the in-neighbours of v, induce a complete subgraph of D. Therefore D
is a local tournament.

2 = 3: Suppose that (G is orientable as a non-strong local tournament. Then by
Corollary 2.2.5, GG is straight-orientable. Since a straight oriented graph is an acyclic
local tournament, GG is orientable as an acyclic local tournament.

3 = 1: Suppose that G is orientable as an acyclic local tournament. Then by
Corollary 2.2.5, G admits a straight orientation. Hence (' is a proper interval graph

by Theorem 2.2.2. ]

A graph G admits a perfect elimination order if the vertices of G can be linearly
ordered vy, vq,...,v, so that for each v; the vertices adjacent to v; with subscripts
greater than ¢ induce a complete subgraph. It has been proved by Fulkerson and
Gross that a graph admits a perfect elimination order if and only if it is chordal (cf.
[24]).

Suppose that G is a proper interval graph. Then G is a proper circular arc graph
and hence GG* is 2-colourable. Moreover G must be chordal and therefore it admits a
perfect elimination order. Given a perfect elimination order, vy, vz, ..., v,, we define

the lexicographic order according to this order.
Consider the following algorithm for finding acyclic local-tournament orientations.
Algorithm 3.2.10 Let G be a graph.
Step 1. Construct the characteristic graph G* of G.

Step 2. If G* is not 2-colourable or G does not admit a perfect elimination order,

then GG is not a proper interval graph.
Step 3. Find a perfect elimination order of G, vi,vq,...,Un.

Step 4. Find a special 2-colouring of G* with colours y and T by always first assigning
colour u to the lericographically (with respect to the perfect elimination order)
smallest uncoloured vertez (z,y), and then complete the unique 2-colouring of

the corresponding component of G*.
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Step 5. Let A be the set of vertices of G* which are coloured with u and obtain an

acyclic local-tournament orientation D = (V, A) of GG. a

The following lemma is a consequence of Theorem 2.3.1 and Theoren:1 3.2.9.

Lemma 3.2.11 Let G be a proper interval graph. Then G can be obtained from
a reduced straight-orientable graph S by substituting a complete graph for each verter
of S. 0

Lemma 3.2.12 Let S be a reduced connected graph with a straight enumeration
Ty, Tg,-..,T;. Suppose that G = (V, E) is a graph obtained from S by substituting a
complete graph H,, for each vertezx z; of S. If A(G) < n — 1, then the following hold:

1. For each z;, each edge of H;, forms one implication class, that is, if u,v € H,,

and (u,v)l™(u',v") for some (u',v') then (u,v) = (v',v').

2. All edges of G which are not in H,, for any z; form one implication class, that
15, if (zi,25), (20, 25) € F(G) where z; € Hy,, 2, € Hy,, 2; € H;, and z, € H,,
with i < j and a < b, then (z;, z;)T™ (24, 2).

Proof: The first assertion of the lemma is easy. To prove the second assertion,
we first note that S is uniquely orientable as a non-strong local tournament. In fact,
if (zi,2j),(za,zs) € F(S) where 1 < 7 and a < b, then (z;,z,)["*(z4,xs). Suppose
that y1,y2,...,y are vertices of G such that y; € H,, for each v = 1,2,...,[. Then
< {y1,y2,..-,y1} > is a subgraph of G which is just a copy of S. If (yi,y;), (¥, 1) €
F(G) where 1 < j and a < b, then (v, y;)T(ya, y»). The rest of the proof foliows b
Lemma 2.3.14. 0

Lemma 3.2.13 Let S be a reduced connected graph with a straiwght enumeralion
Ty, Z32,...,2;. Suppose that G = (V, E) is a graph which is oblained from S by subsii-
tuting a complete graph H, for each vertezx z; of S. If A(G) =n — 1, then:
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1. | is odd, and H,_, with r = %’l consists of vertices of G of degree n — 1;

2. For each z,, each edge of H, forms one implication class, that is, if u,v € H,,

and (u,v)[™(u',v') for some (u',v') then (u,v) = (u',0');

3. For each u € H,, all edges uv with v ¢ H, form one implication class, that
is, if o € Hy, z; € Hy )y 2o € Hy,, and 2y € H, with 1,57 < r < a,b, then
(u, z)0"(u, 2;), (u,2)*(u, 2), and (u, z;)I™(z4,u);

o

il edges not in H,, for any x; and not incident with any vertezx of H,, form one
implication class, that is, if (zi,2;),(24,20) € F(G) where z; € H,, z; € Hz,,
2, € Hy,, and zy, € Hy, withi,j,a,b# 1,1 < 7, anda < b, then (2;,z;)[*(2q4, 2).

Proof: Assertion 1 is a consequence of Proposition 2.3.5. Assertion 2 is easy. To
prove assertions 3 and 4, let y;,ys2,...,y be a set of vertices of G such y; € H,, for
each ¢ = 1,2,...,l. Then < {y1,y2,...,y1} > is a reduced connected graph which
is a copy of S. Hence it can be oriented as a non-strong local tournament. By
Proposition 2.3.5, < {y1,y2,-.., ¥} > has precisely two implication classes: One class
consists of all edges that are incident with y, (r = ‘—'g—l), the other class consists of all
edges that are not incident with y,. In fact, if 1,7 < r < a,b, then (y-, y:)I™(yr,y;),
(yrs¥a)T"(yr, o), and (yr,y:)0"(ya, y,). Moreover, if (yi,y;), (ya,yp) € F(G) where
t,7,a,b# r, 1 < 3, and a < b, then (y:,y;)I"™(¥a,ys). The rest of the proof follows by

using Lemma 2.3.14. 0

If (G is a proper interval graph, then G is a proper circular arc graph and hence G*
is 2-colourable. Recall from Chapter 2 that if (u,v), (z,y) € F(G) with (u,v)I*(z,y)

then (u,v) and (r,y) must be coloured with the same colour in any 2-colouring of G*.

Theorem 3.2.14 Algorithm 3.2.10 correctly produces an acyclic local-tournament
orientation D = (V, A} of G, provided one exists, and otherwise correctly reports that

one does not exist.

Proof: Clearly the algorithm finds that an acyclic local-tourrament orientation

does not exist if and only if this is the case (cf. Theorem 3.2.9). Suppose that
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G = (V, E)1s a proper interval graph and D = (V, A) is the orientation of (i obtained
by Algorithm 3.2.10. Let S be a reduced connected straight-orientable graph with a
straight enumeration zy, z3,...,z;. Suppose that G is a graph which is obtained from
S by substituting a complete graph H,, for each vertex r; of S.

Let v1,v,,...,v, be a perfect elimination order of G. Consider H, for sowme r,.
Assume that by,b,,...,b, are vertices of H;, listed in the perfect elimination order of
G. Note that each {(b;,b¢)} is a I'*-class. According to Step 4 the colour u is always
assigned to (b;,br) with 7 < k. Hence {(4;,b:)] 7 < k} € A. Therefore each H,,
obtains a transitive tournament orientation.

We note that Algorithm 3.2.10 is the same as Algorithm 3.2.4 except that it
chooses a special order, namely, a perfect elimination order of vertices of (G. Then by
Theorem 3.2.6 D is a local-transitive-tournament orientation of G. So it suffices to
show that D is acyclic.

We consider the following two cases.

Case 1. Suppose that A(G) < n — 2. Then all edges of G which are not in H,
for any z; form an implication class. Without loss of generality, assume that v, € H.,
and assume that vy, is the first vertex in the perfect elimination order which is adjacent
to vy and is not in fo. Suppose that vy, is in H; , where g # h. Without loss of
generality, assume that ¢ > h. Then (vy,v;) is coloured with colour p according to
the Step 4 of Algorithm 3.2.10. By Lemma 3.2.12,if z € H;, andy € H, , with: < j,
and if (z,y) € F(G), then (z,y) must be coloured with ;. We know that each H,, is
oriented as a transitive tournament. Therefore D may be viewed as an oriented graph
obtained from a straight orientation of S by substituting a transitive tournament for
each vertex of 5. Hence D is acyclic.

Case 2. Suppose that A(G) = n—1. By Lemma 3.2.13, [ is odd and H,, consists
of vertices of degree n — 1, where r = 41, We consider the first vertex v; in the
perfect elimination order. Suppose that v, € H,. If 1 <t < [, let z,z, and z;z), be
the left-most wave and the right-most wave at z; in the straight enumeration of S,
then z, is not adjacent to x,. Then v; has two non-adjacent neighbours, violating the

perfect elimination order. Thus : = 1, or (.
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Assume without loss of generality that : = 1. Suppose that a;,as,...,a, are the
vertices of H,,. Then (v, a;),(vy,az2),...,(v1,a,) are chosen by Step 4 of Algorithm
3.2.10 to be lexicographically smallest. Hence they are coloured with u. Therefore,
by Lemma 3.2.13, if u € H,, with i < r then (u, q;) is coloured with g, and if v € H,,
with k > r, then (a,,v) is coloured with 4.

Suppose that there is a vertex which is adjacent to v; but not in H,, (note that
such a vertex may not exist when [ = 3, if there is no such vertex then D is easily seen
to be acyclic). Let v, be the first such vertex in the perfect elimination order. Then
(v1,vx) is chosen by Step 4 of Algorithm 3.2.10 to colour with g. Thus, by Lemma
3213, ifu € H,, and v € H;, withi < j and ¢,j # r, and if (z,y) € F(G), then
(u,v) must be coloured with p.

As we have shown above, each H. obtains a transitive tournament orientation.

So D may be viewed as an oriented graph obtained from a straight orientation of S

by substituting a transitive tournament for each vertex of S. Therefore D is acyclic. O

From the above proof we see that Step 2 is not necessary if A(G) < n — 1.



Chapter 4

Recognition and Representation

Algorithms

4.1 Introduction

The algorithmic aspects of interval graphs have been extensively studied, [33] - in
particular, the recognition and the representation problems for interval graphs have
been solved by Booth and Lueker {17] with an O(m + n) algorithm. The algorithm
given by Booth and Lueker relies on a complicated data structure called a PQ-tree.
Another O(m + n) time algorithm for solving the same problem was later obtained
by Korte and Mohring [53]. Again the algorithm uses PQ-trees. Since then, many
people tried to find a simpler algorithm without using PQ-trees. For proper interval
graphs, we solve the problem with an O(m + n) algorithm. Our algorithm makes use
of our structure theorem for proper interval graphs instead of PQ-trees. Recently Hsu

[44] announced a simple O(m 4 n) algorithm for testing interval graphs without using

PQ-trees.

It is a longstanding open problem to find an O(m + =) time algorithm for the
recognition and representation of circular arc graphs. However, for proper circular arc
graphs, we have mentioned that Tucker gave a matrix characterization, and a recogni-

tion algorithm of complexity O(n?). In Section 3.2 we gave an O(mA) time algorithm

71
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to recognize proper circular arc graphs and to obtain local-transitive-tournament ori-
entations. As we have seen 1n Section 2.2, a local-transitive-tournament orientation is
equivalent to a proper circular arc representation, hence the representation problem
for proper circular arc graphs can also be solved in O(mA) time. In Section 4.3, we
will give the first optimal algorithms, 1.e., of complexity O(m + n), for the recognition

and representation of proper circular arc graphs.

A mized graph has some directed edges (1.e., arcs) and some undirected edges. The
terms, ‘block’, ‘inset’, ‘outset’, in a mixed graph can be defined in a similar fashion
as in a digraph (cf. Section 1.2). For instance, two vertices are in the same block if

and only if they have the same closed neighbourhood in the underlying graph.

We shall be dealing with a particular kind of mixed graph. Let V3, V,,..., V], be the
blocks of H. Then H is a mized local tournament provided all edges of H within each
block V; are undirected, all edges of H between two fixed blocks V; and V; are directed
in the same direction (all from V; to V; or all from V; to V), and provided the inset as
well as the outset of every vertex is a complete mixed graph, i.e., any two vertices are
adjacent by some (directed or undirected) edge. A mixed local tournament is acyclic

if it contains no directed cycle.

Note that each block is a complete subgraph. So if H is a mixed local tournament,
then a local tournament can easily be obtained from H by assigning any orientation
to each block V;. If in addition H is an acyclic mixed local tournament, then an
acyclic local tournament can be obtained from H by assigning a transitive orientation

to each V;.

Suppose that H is a mixed local tournament. If we reverse all arcs in H, then
we again get a mixed local tournament. We call the operation of reversing all arcs
(directed edges) in a mixed graph also a full reversal. (It extends the earlier definition
we gave for a full reversal in an oriented graph.) In particular, if H is an acyclic
mixed local tournament, then by the full reversal of H we again obtain an acyclic

mixed local tournament.

Let H be a mixed local tournament. Suppose that S is a subgraph of H which

contains one vertex from each block of H. It is clear that S is a local tournament.
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If in addition H is acyclic, then S is an acyclic local tournament and hence admits a
straight enumeration. So if H is an acyclic mixed local tournament, then the blocks
can be uniquely ordered V;,15,....V, so that Vi—V;— ...V, and. tor each r € V),

there exist /; and r; (which depend on ;) such that
Iz)=V,,,UV,o,..., UV, ; O(z) =Vt UV, .. UV, .

We call this order of blocks the straight enumeration. We call V;V;_; the left-most
wave and V;V,;, ihe right-most wave at the block V;. An acyclic mixed local tour-

nament is also called a straight mized graph.

The straight enumeration of the blocks of a straight mixed graph is very similar
to the straight enumeration of the vertices of a reduced straight oriented graph. They
share many properties. For instance, if V; and V; (¢ < j) are adjacent blocks, then

ViU Vi UL UV is complete.

If H is a mixed graph obtained from a graph G by assigning directions to edges of
G, then H is a mized-graph orientation of G. If in addition H is a straight mixed graph,
then G is orientable as a straight mized graph or straight-mized-graph-orientable, and
H is a straight-mized-graph orientation of G. If G has precisely two straight-mixed-
graph orientations for which each is obtained from the other by full reversal, then

is uniquely orientable as a straight mized graph.

For proper interval graphs the situation is very simple.

Theorem 4.1.1 A connected proper interval graph G is uniguely orientable as a

straight mized graph.

Proof: By Theorem 2.3.1. a

4.2 Proper Interval Graphs

In this section, we give an O(m + n) time algorithm to recognize proper interval

graphs. Assume that G is a connected graph, as otherwise we can work separately
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on each component of G. Our algorithm will insert vertices of G one by one into
an already formed straight mixed graph to form a new straight mixed graph. If G
is a proper interval graph, then, as we shall show below, this process continues until
a straight-mixed-graph orientation of (G i1s obtained. Since a straight-mixed-graph
orientation of G can be easily modified to an acyclic local-tournament orientation of

(7, G can be represented by a proper interval family (see Theorem 2.2.2).

By Theorem 4.1.1, a straight-mixed-graph orientation of a connected proper in-
terval graph is unique. So the corresponding straight enumeration of blocks is unique.

This is crucial in what follows, even though it is not always explicitly mentioned.

We state our algorithm as follows.

Algorithm 4.2.1 Let G = (V, E) be a connecied graph.

[Step 1.] Order the vertices of G as vy, v, ..., v, in such e way that < {vy,vq,...,v;} >

is connected, for each 1 =1,2,...,n.

[Step 2.] Let Hy =< {v;} > and ¢« = 1. While possible, insert v;y; into H; to form

a straight mired graph H;,,, and increase ¢ by 1. O

For Step 1, we may apply breadth-first search to sort the vertices as required.
This can be done in tiue O(m + n). Moreover, we may arrange to store, for each ¢. a
vertex v;, 7 < i, such that v; is adjacent to v;. For Step 2, suppose that G is a proper
interval graph and suppose that, for some ¢ =1,2,...,n — 1. < {v1,vg,...,v;} > has

been oriented as a straight mixed graph H;. Then the orientation H; is unique.

Note that < {v1,v2,...,vi,vi41} > is also uniquely crientable as a straight mixed
graph. If H,;, is a straight-mixed-graph orientation of < {v1,vz2,...,%;,vi41} >,
then H,,, agrees with the orientation on H;, up to fuil reversal. Using a similar
approach, we conclude that any straight-mixed-graph orientation D of G agrees with
the orientation on H;, up to full reversal. Therefore, to obtaic a straight-mixed-graph
orientation of < {vy,va,...,v;,v;41} >, we need orly add v;;, to H; and appropriaiely

assign directions to some undirected edges.
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Let V1, V5, ..., V, be the straight enumeration of the blocks of H;, and let D be a

straight-mixed-graph orientation of G which agrees with the orientation on H,.

Fact 1. Suppose that V,,V,, and V., where a < b < ¢, are three blocks of H,. If
v;41 1s adjacent to a vertex in V, and to a vertex in V,, then v, is adjacent to every
vertex in V.

Proof of Fact 1: Assume that v;;, is adjacent to z € V, and z € V. but not to
y € V4. Choose such a, b, and ¢ with ¢ — @ minimal. Then ¢ —a > 2 and v,y is not
adjacent to at least one vertex in V; for each d such that @ < d < ¢. Since v;;, is
not adjacent to a vertex in V,,; and V,—V, 1, v;;1 must dominate z in D. Similarly
since V._,—V, and v;;, is not adjacent to a vertex in V._;, v;;; must be dominated

by z in D. Hence there is a directed cycle of D contained in
Vi1 —=T— Vo — . =V —z—ovi,

contradicting the fact that D is acyclic. a

Fact 2. Let V., V;, and V,, where a < b < ¢, be three blocks of H;. Suppose that
v;41 is adjacent to y € V; and suppose that v;4; is not adjacent toxz € V, and z € V.
Then V, is completely non-adjacent to V..

Proof of Fact 2: Assume that V; is completely adjacent to V.. The blocks V, and
V, must have distinct closed neighbourhoods, i.e., there is a block which is completely
adjacent to exactly one of V, and V}. If there is a block V; which is completely adjacent
to V, but non-adjacent to V,, then d > ¢ because V, is completely adjacent to V.. Note
that v;41 is not adjacent to any vertex in V; according to Fact 1. Hence for any w € V;
{z,y,w,v;y1} induces a copy of the claw in G, contradicting the fact that G is local-
tournament-orientable. Thus there must be a block V, which is completely adjacent to
V. but non-adjacent to V. Similarly there 1s a block V; which is completely adjacent
to V. but non-adjacent to V,. Note that e < a and f > ¢. Hence v;;; is adjacent to no
vertex in V, or V;. Therefore, for any v € V. and v € V}, {z,y, 2, u.v,v;41} induces

a copy of the net in G, contradicting the fact that G is local-tournament-orientable. O
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Fact 3. Let V_,V,, and V,, where a < b < ¢, be three blocks of H;. Suppose that
V,—V,— V.. If v;y; is adjacent to some vertex in V,, then v;y; is adjacent to either
every vertex in V, or every vertex in V..

Proof of Fact 3: Suppose that there are three verticesz € V,,y € V,, and z € V,
such that v, is adjacent to y but not to z or z. By Fact 2, z is not adjacent to z.

Then G contains a copy of the claw induced by {z,y,z,vi41}. O

We now insert v;;, into H; and find a straight mixed graph H,;, which agrees with
the orientation on H;. We discuss the following cases and in each case we express H;;;

by the straight enumeration of its blocks.

Case 1. When p = 1, i.e., when H; has only one block V;, then if v;;; is adjacent
to all vertices of V; we include v;4, in Vj and H;;; again has only one block, namely,
ViU{vis1}. If there is some S such that @ # 5§ C V; and v;4, is adjacent to all vertices
of S but to no vertices of V; — 5, then the straight enumeration of the blocks of H;.;
1s

{vinr}, S, Vi = 8.

Case 2. When p > 2, i.e., when H,; has at least two blocks, then according to
Fact 1 we may assume that there exist ¢ < ¢ such that v;;; 1s adjacent to all vertices
of each V; such that a < j < ¢ (if any), and v;41 is not adjacent to any vertex in each

Vi such that k< aor k> c.

Subcase 2.1. Suppose that v;,; is not adjacent to any vertex in V, U V.

In this case we must have ¢ # a + 1 as otherwise v;4; is adjacent to no vertex of
H;, contradicting our hypothesis. Thus ¢ > a + 2, that is, there is at least one block
between V, and V.. By Fact 2, V, is completely non-adjacent to V..

Let V.V, be the right-most wave at V, and let V.V be the left-most wave at V,.
Since V, is not completely adjacent to V., blocks V; and V, are between V, and V.,
i.e., a < b,d < ¢. By Fact 3 we must have b < d. We claim that d < b+ 4. First we
note that for each block V; with b < j < d, V; is completely adjacent either to V4,

or to V,._1, as otherwise any choice of three vertices from Vi1, V.1, V;, respectively,
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together with v,4; would induce a copy of the claw, contradicting the fact that &
is local-tournament-orientable. Now since distinct blocks must have distinect closed
neighbourhoods, there are at most three blocks between V4 and Vj.

Suppose that there is no block between Vj and V, namely, d = b+ 1. We prove
that

4 r
Ve Vi v 1 Ve, VL

is the straight enumeration of the blocks of H;1;. To do this, we need to verify that
each of the sets above i1s a block and that any two completely adjacent sets must be
adjacent to each set between them.

We need to show that two vertices are in the same set if and only if they have the
same closed neighbourhood in H;,;. First it is clear that vertices in each set have the
same closed neighbourhoods. Suppose that z and y are two vertices in different sets.
If neither z nor y is the vertex v;41, then z and y have distinct neighbourhoods in H;
and hence in H;;,. Suppose that one of z and y, say z, is the vertex v;;, and suppose
that y € V; for some j. If j < aorj > ¢, then z and y are not adjacent and hence
have distinct closed neighbourhoods. If a < j < b, then y is adjacent to the vertices
of V, which are not adjacent to z. If d < j < ¢, then y is adjacens to the vertices of V,
which are not adjacent to z. Hence r and y have distinct closed neighbourhoods. Now
we shall show that two completely adjacent blocks must be completely adjacent to
each block between them. Let A and B be two completely adjacent blocks. Suppose
that one of A and B, say A, is the block {v;4,} and suppose that B =V, for some ;.
Then a < 7 < ¢ and it is clear that A is completely adjacent to each block between A
and B. Suppose that neither A nor B is {v,;;}. We only need to show that A and B
are completely adjacent to {viy1} if {vi41} is between A and B. In fact if {v,4,} is a
block between A and B, then A and B must be blocks between V, and V, and hence
A and B must be completely adjacent to {v,;}.

In the cases below, similar arguments can be appiied to ver:fy that we have defined
a straight enumeration. We shall omit the details.

Suppose that d = b + 2 and suppose that V; is the only block between V, and V.

If V; is completely adjacent to V,4; and V., then the straight enumeration of the
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blocks of H;41 is
~~7I'/a7---7‘/by‘/] U{vi-}-l}a‘/;i""a‘/m"'

If V; is completely adjacent to V.4, but non-adjacent to V._, then the straight enu-

meration of the blocks of H;;q is
-~,Va7~--,%,‘/},{Ui+l},‘/ei’--',‘/c,---

If V, is completely adjacent to V._; but non-adjacent to V;,, then the straight enu-

meration of the blocks of H,4; is
"‘7‘/a)"‘7%7{U€+1}3‘/j7vd)"'3‘/c,'-'

Suppose that d = & + 3 and suppose that V; and Vi are the two blocks between
V, and V; where j = b+ 1 and k = b+ 2. If V} is completely adjacent to V,4; but
non-adjacent to V,_;, and if Vi is completely adjacent to V._; but non-adjacent to

Vas1, then the straight enumeration of the blocks of Hiy, is
..,Va,...,Vb,Vj,{vi+1},Vk,l/(1,...,1/c,...

If V; is completely adjacent to V.41 but non-adjacent to V._;, and if Vi is completely

adjacent to V,_; and V,,,, then the straight enumeration of the blocks of H;y; is
--~a"/aa'-'a%av}7{vi+l}kay"/:iv"'a‘/c)"-

If V; is completely adjacent to V., and V;41, and if Vi is completely adjacent to V.,

but non-adjacent to V,,, then the straight enumeration of the blocks of H;;; is
"w"/tl',"‘?‘/ba‘/jU{vf+l}$‘/ltvvd7“'1‘/C7"'

Suppose that d = b+ 4. Let V;, Vi, and V|, where j = b+ 1, k = b+ 2, and
!l = b+ 3, be the three blocks between V, and V;. Then the only possible situation
is the following: V, is completely adjacent to V,4; but non-adjacent to V._;, Vi is
completely adjacent to both V._; and V,4,, and V] is completely adjacent to V,_; but

non-adjacent to V,4;. In this case the straight enumeration of the blocks of H;4, is

cos Vo Vi ViU {via 1, Vi Vo VG L
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Subcase 2.2. There exist S and 5’ with @ # S C V, and @ # S’ C V. such that
vi+1 1s adjacent to every vertex in S U S’ but to no vertex in (V, — S) U (V. — §).

Suppose that ¢ = a+ 1. Fact 3 implies that a = 1 and ¢ = p, that is, V; is the first
block and V; is the last block in the straight enumeration of the blocks of H;. Since
V, and V, are completely adjacent, V, UV, must be a block in H;, contradicting the
hypothesis. Thus ¢ > a+ 2. By Fact 2, V, is completely non-adjacent to V.. Let V,V,
be the right-most wave at V, and let V.V, be the left-most wave at V. By Fact 3,
b < d. Suppose that d > b+ 1. Let V] be a block between V;, and Vy, 1.e., b < j < d.
Then any choice of three vertices from S, 5, V;, respectively, togett.er with v,,, would
induce a copy of the claw in G, a contradiction. Hence d = b+ 1, i.e., there is no
block between V, and V. In this case, the straight enumeration of the blocks of H;;
is

o Vae 5.8, Vi {viad, Vs SV S

Subcase 2.3. There exists § # S C V, such that v, is adjacent to every vertex
in S but to no vertex in (V, — S)U V.. (A similar discussion applies when there exists
0 # S’ C V. such that v;;; is adjacent to every vertex in S’ but to no vertex in
(Ve =S)uVa.)

Suppose that V, is completely adjacent to V.. If there exists a block V. which is
completely adjacent to V, but non-adjacent to V., then e < a and any choice of three
vertices from V,, S, V., respectively, together with v;;; induce a copy of the claw in
G, a contradiction. So there exists a block V; which is completely adjacent to V. but
not to V,. Then f > c.

Let V.V, be the left-most wave at V,. Suppose that a # 1. Then d < a and from
the above discussion V,V; also must be the left-most wave at V,. Thend <a—1. lf
d # 1, then any choice of vertices from V,_;, V4, S, Vi, V4, respectively, together with
v;i;+1 induce a subgraph of G which is not local-tournament-orientable, a contradiction.
Assume that d = 1. Consider the block V; and the block V,. Then there must be a
block V, which is completely adjacent to V, but not to V. We must have ¢ > ¢ and
hence any choice of three vertices z,y, 2> from V,, V,,V, together with v,;; induce a

copy of the claw in G, a contradiction. Therefore @ = 1 and the straight enumeration
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of the blocks of H,,, 1s
{Ui-}-l},sgl/a - Sa ‘/ca

Suppose now that the block V, is completely non-adjacent to the block V.. Then
¢ > a+ 1. Let V,Vi be the right-most wave at V, and V.V, be the left-most wave
at V.. By Fact 3, b < d. We observe that for each block V; with b < 3 < d, V) is
completely adjacent to V._;, as otherwise any choice of three vertices from S, V,, V._y,
respectively, together with v;;; would induce a copy of the claw in G, a contradiction.

Hence the straight enumeration of the blocks of H;,; is

VeSS, Ve Ao}y Vi Vi

Subcase 2.4. There exists § # S C V, such that v;;; is adjacent to every vertex
in SU V. but to no vertex in V, — 5. ( A similar discussion applies when there exists
S’ such that § # S’ C V. and v;4; is adjacent to every vertex in S’ UV, and to no
vertex in V. — 5'.)

If V. is not the last block, i.e., ¢ # p, then it can be treated as Subcase 2.3.
Suppose that V; is the last block, namely, ¢ = p. Let V.V, be the right-most wave at
V., and V.V, be the left-most wave at V..

Suppose that b = c¢. Then the straight enumeration of the blocks of H;y; is

o Va= 8,8, Vo {vin}

Suppose that b < ¢. If d > b+ 1 and V] is a block between V, and By, then any
choice of three vertices from S, V}, V., respectively, together with v;1; would induce a
copy of the claw, a contradiction. Hence d < b+ 1. If d = b+ 1, then the straight

enumeration of the blocks of H;,, is
oy Va =585 Vi, {vinn 1, Vg, .. VL
If d < b+ 1, then the straight enumeration of the blocks of H;y; is

.-,‘/a—S,S,...,I/b,{'l)ﬁ.l},‘/[H_l,...‘/c

Subcase 2.5. Finally we consider the case when v;,; 1s adjacent to every vertex

in V, UV.. If V, is not the first block and V, is not the last block in the straight
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enumeration of the blocks of H;, i.e., @ # 1 and ¢ # p, then it can be treated as in
Subcase 2.1.

Suppose a = 1 and ¢ = p. Note that V, is completely non-adjacent to V.. Let V,V;
be the right-most wave at V, and let V,V} be the left-most wave at V.. If d < b, then.
for any r € V4, and y € V;, N[z] = N[y], a contradiction. Hence d > b. If d = b, then

the straight enumeration of the blocks of H;,, is
"aVaa'--v‘/bU {vi+1}s~--u‘/¢:-

Suppose that d > b. If d > b+ 1 and V; is a block between V, and V;, then any choice
of three vertices from V;,V;, V., respectively, together with v;;, induce a copy of the

claw in G, a contradiction. Hence d = b+ 1. Therefore the straight enumeration of

the blocks of H;,; is
'"‘/a,-'-a‘/za{vi+l}a‘/clv'--1‘/(:'

Suppose that V, is not the first block and suppose that V. is the last block in
the straight enumeration of the blocks of H;, namely, a > 1 and ¢ = p (a similar
discussion applies if ¢ = 1 and ¢ < p). Let V,_,V, be the right-most wave at V,_;.

Then a < e <c. If e = ¢, then the straight enumeration of the blocks of #;,, is
"a‘/a—la‘/av"'u‘/cv{vi-kl}-

Suppose that e < c¢. Note that any block between V, and V. (if there is any) must
be either completely adjacent to V, or to V.. Hence there are at most three blocks

between V, and V,, that is, ¢ < e + 4.

When ¢ = e+1, there is no block between V. and V,. Then the straight enumeration
of the blocks of H;., is

"7VG7"'7‘/E){Ui+1}3‘/C"

For the case when ¢ = e + 2, let V; be the only block between V, and V.. We know
that V; has to be completely adjacent to at least one of ¥, and V.. If V] is completely

adjacent to both V, and V,, then the straight enumeration of the blocks of H,;q 1s

—-,‘/fzu-v-,‘/e:,%U{Ui+1},V;-
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If V, is completely adjacent to V, but non-adjacent to V¢, then the straight enumeration
of the blocks of H,;, is
ViV, Vo), Ve
If V; is completely adjacent to V. but non-adjacent to V;, then the straight enumeration
of the blocks of H;;; is
T "/ﬂv' . ‘7‘/67 {vi-f—l}"/_’js "/C
Suppose that ¢ = e + 3. Let V; and Vi be the two blocks between V. and V, where
j=e+1and k = e+ 2 If V, is completely adjacent to V, but non-adjacent to
V., and if V; is completely adjacent to V, but non-adjacent to V,, then the straight

enumeration of the blocks of H;y, is
R Vaa sy I'/ev ‘/jv {Uﬂ-l}) Vk) ‘/c

If V; is completely adjacent to both V, and V., and if Vi is completely adjacent to V.

but non-adjacent to V,, then the straight enumeration of the blocks of Hi;; is
--a‘/aw-'a"/ev‘/ju{UH-}}’Vka‘/c-

If V, is completely adjacent to V,; but non-adjacent to V., and if Vj is completely
adjacent to both V, and V,, then the straight enumeration of the blocks of Hi; is

Ve SV Vi ViU {oin ], Ve

Suppose that ¢ = e + 4. Let V,, Vi, and V| be the three blocks between V, and V.,
where j = e+ 1,k =e+2, and | = e+ 3. Then the cr:y situation is the following:
V, is completely adjacent to V, but non-adjacent to V,, Vi is completely adjacent to
both V, and V,, and V] is completely adjacent to V, but non-adjacent to V,. Then the

straight enumeration of the blocks of Hii; is

eV WV Vi Vi U {vi ), Vi Ve

We now analyze the time cost of Step 2 of Algorithm 4.2.1. We show that it takes
time O(deg(vi;1)) to insert the vertex v;y; into H;. When H; has only one block, it
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is clear. Suppose that H; contains at least two blocks. (Note that in this case H,
must contain at least three blocks.) According to the above discussion, we need to
find V, and V. where a < ¢ such that v;,; is adjacent to all vertices in Vj for each
b with a < b < ¢, and v;4, is adjacent to no vertex in Vy for any d with d < a or
d > c. Let V; be a block of H; which contains a neighbour of v,y;. We can find f
from the knowledge of a vertex v;,7 < ¢ adjacent to vy (cf. Step 1). If f =1, then
we let a = f. Choose a vertex z of Vy_;. If f —1 =1, then a = 1. Otherwise, if ¢
is not a neighbour of v;4;, then a must be either f — 1 or f. We can decide which of
these two is the case, in time O(deg(viy;)), as follows: We test adjacency of vy, to
individual elements of V;, until we find the first element of V; which is not adjacent
to vy41. If such an element exists, then a = f; otherwise a = f—1. 1f z is a neighbour
of viy1, then we choose a vertex of V;_», and continue in this fashion, until we find
vertices y € V,,z € V4, such that vy, is adjacent to z but not to y. Then a = g or
a = g+ 1, and we decide as above. If v;4; is adjacent to a vertex in each of the blocks
Vi, Va,...,V;, then a = 1. This procedure takes time O(deg(vi4,)). Similarly in time
O(deg(v;i+1)) we can find the block V..

At each stage, we keep track of enough information for the straight enumeration
of the blocks of H;, such as the left-most wave and the right-most wave at each block
of H;. After we have found the blocks V, and V., we can obtain a straight-mixed-
graph orientation H;y; in time O(deg(vi41)), by considering the above cases. (The
neighbours of v;,; in any V, can also be identified in time O(deg(vi4,)).) Hence we

can find a straight-mixed-graph orientation of G in time O(m + n).

Theorem 4.2.2 Algorithm 4.2.1 takes time O(m +n) (in the worst case) to find
a straight-mized-graph orientation of G, or to correctly report that G is not a proper

interval graph. a

Suppose that H is a straight-mixed-graph orientation of . If we orient each block
of H transitively, then we obtain an acyclic local-tournament orientation of . By

applying the technique explained in the proof of Theorem 2.2.2, we obtain, in time
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O{m + n), an inclusion-free interval family associated with . Therefore we have the

following result.

Corollary 4.2.3 The recognition and representation problem for proper interval

graphs can be solved in time O(m + n). O

4.3 Proper Circular Arc Graphs

In this section, we :ive an O(m + n) time algorithm for the recognition and repre-
sentation of proper circular arc graphs. The idea of our algorithm is in fact to test
if a graph is orientable as a local transitive tournament. We know that a graph is
not a proper circular arc graph if it is not local-transitive-tournament orientable. If
a graph is local-transitive-tournament-orientable, then a local-transitive-tournament
orientation is obtained. By Corollary 2.2.7 a representation can be obtained in time
O(m + n) from a local-transitive-tournament orientation. Our algorithm involves
an O{m + n) algorithm for testing proper interval graphs and finding corresponding

acyclic local-tournament orientations.
In view of Tucker’s O(n?) time algorithm, we only need to deal with the case when

the number of edges is small relative to nZ.

Algorithm 4.3.1 Let G be a graph with n vertices and m edges.

[Step 0.] Test if G is a proper inlerval graph. If it is, represent it by intervals (viewed

as a special case of circular arcs).

[Step 1.] Choose a vertez x of minimum degree in G. Let A be the subgraph induced by
N(z] and let B = G—A. If B is a clique, solve the recognition and representation

problems for G by Tucker’s algorithm.

[Step 2.] Ortent both graphs A and B as straight mized graph. (This is unique (cf.
Theorem 4.1.1).)
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[Step 3.] Merge (cf. below) these orientations into a strong local-tournament orien-

tation of the entire graph 5.
[Step 4.] Modify the result into a local transitive tournament.

[Step 5.] Transform the local transitive tournament into a circular arc representation

of GG. 0

Step 0 can be done in time O(m + n) (see Section 4.2). Step 1 also takes time
O(m + n) because when B is a clique, the number of edges of G is m > 2= (recall
that z is a vertex of minimum degree), and so Tucker’s algorithm runs in time O(rn+n)
in this case. The previous section covers Step 2. Step 5 can be carried out in time

O(m + n), as explained in Theorem 2.2.6.

Thus we only need to discuss Steps 3 and 4. Let GG be a proper circular arc graph

which is not a proper interval graph and for which B is not a clique.
Proposition 4.3.2 Both A and B are connected proper interval graphs.

Proof: Since B is not a clique, any proper circular arc representation of (' con-
tains three disjoint circular arcs ~ one corresponding to z and two corresponding to
two non-adjacent vertices of B. Let X be a point on the circular arc corresponding
to . The other two circular arcs divide the circle into two segments. Choose a point
Y on that segment which does not contain X. Then no circular arc in B contains the
point X and no circular arc in A contains Y. Thus both A and B are proper interval

graphs. Since G is not a proper interval graph, A and B are connected. 0

Proposition 4.3.3 The graph G is uniquely orientable as a mized local tourna-

ment.

Proof: The above three disjoint circular arcs correspond to a triangle in the com-

plement of G. Hence the orientation is essentially unique by Proposition 2.3.10. T
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From Theorem 4.1.1, we know that A and B are uniquely orientable as straight

mixed graphs. We consider the following two cases.

Case 1. Suppose that A is not a clique. Then, in the mixed-graph orientation
of A, let L be tho et of vertices in A which are not in the outset of r, and let R
be the set of vertices of A which are not in the inset of x. Let (" be the graph
induced by B and L, and let D be the graph induced by B and E. Since (7 is not
an interval graph, both C and D are connected. It is also easy to see that both ("
and D are proper interval graphs: it is enough to choose points Z and W as the
leftmost and rightmost endpoints of the intervals representing z and all vertices with
the same closed neighbourhood as z in A. No circular arc of C contains the point W
and no circular arc of D contains Z. Now all four graphs A, B,C, D can be uniquely
oriented as straight mixed graphs. Consider G, an orientation of G, as a mixed local
tournament. Of the two possible orientations of A (and similarly for B, C, and D),
one must agree with G in the sense that any edge oriented in A is oriented in G in the
same direction. Therefore, if we choose one of the two orientations of A and one of ,
either the edges oriented in both all agree or all disagree in direction. Thus we may
choose orientations A, B, C, D such that any edges oriented in two (or more) agree in

their direction.

Theorem 4.3.4 The oriented edges of the mized local tournament G are precisely
the union of the oriented edges of A, B,C,D.

Proof: If an edge uv is oriented in G then u and v are not equivalent, i.e., have
distinct closed neighbourhoods in the underlying graph of G. Suppose both u and
v belong to A, and have the same neighbours in A (otherwise uv is oriented in /i)
Then u and v are both in R or both in L. Suppose they are both in L and thus
both in C. Since they are not equivalent in G and are equivalent in A, they must be
not equivalent in C'. The other cases (one in A one in B or both in B) are similar.
Therefore any edge oriented in G is oriented in at least one of /_l‘, l§, (j, D.

Let uv be oriented in A, B,C or . Then the neighbourhoods of u and v are
distinct in that graph, and hence certainly also distinct in . Therefore uv is also

oriented in G. Since we observed above that there are no conflicts in the orientations,
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the proof is cornplete. O

Thus Step 3 is done by orienting C' and D and then combining the orientations

of A, B,C, D as above. It is clear that each of these steps can be performed in time

O(m + n).

Step 4 is then accomplished by defining an arbitrary transitive tournament on the

vertices of each equivalence class of the mixed local tournament G.

Case 2. Suppose now that A is a clique. Suppose that V;, V4, ..., Vj is the straight
enumeration of the blocks of B. Since B is not a clique, we know that & > 3. Let
L be the set of vertices in A which are adjacent to at least one vertex in V4, and let
R be the set of vertices in A which are adjacent to at least one vertex in Vi (note
that these vertex sets can be found in time O(m + n)). Let C be the graph induced
by B and L, and D be the graph induced by B and R. We follow the procedures
as above by considering A, B,C, and D. Again A, B,C, and D are proper interval
graphs and hence they can be oriented uniquely as a straight mixed graph. If we
choose orientations E, E, 5', D such that any edges oriented in two (or more) agree in
their direction, then we can apply a proof similar to the proof of Theorem 4.3.4 to
show that the union of the oriented edges in /-f, B, C-", 5, and L— R give a mixed-local-
tournament orientation G of G. Therefore a local-transitive-tournament orientation
of G can be obtained from G. This completes the proof of correctness of Algorithm
4.3.1.

There exist efficient algorithms for solving many basic optimization problems for
proper circular arc graphs which assume that a proper circular arc representation is
given. For instance, Hsu and Tsai [46] have an O(n) algorithm to find a maximum
independent set and to find a minimum clique covering in a proper circular arc graph.
(In fact, the algorithm applies in a general circular arc graph.) In view of our O(m+n)
representation algorithm, we may now conclude that the maximum independent set
problem and the minimum clique covering problem for proper circular arc graphs are

solvable in time O(m + n).



Chapter 5

Maximum Cliques and

c-Colourings

In this chapter, we will give two algorithms: one is an O(m + n) time algorithm to
find a maximum clique of a proper circular arc graph, and the other is an O(m + n)
algorithm to determine c-colourability of a proper circular arc graph. Again these
algorithms do not require an arc representation, but can be implemented in time

O(nlog n) if such a representation is given.

Proper circular arc graphs have applications in traffic control [74] cyclic scheduling
and compiler design, [79]. The problem of finding the maximum clique in general
circ lar arc graphs has been previously solved by Apostolico and Hambrusch {3}, by
an algorithm which has a time bound of O(n?loglogn). However this algorithm
requires that the representation by a circular arc familv be given. For the special
case of proper circular arc graphs, we shall give here an O(m + n) algorithm. If the

representation is known, our algorithm can be implemented to run in time O(n log n).

The problem of c-colouring proper circular arc graphs arose in the cyclic scheduling
and register allocation applications. It was first studied by Orlin, Bonuccelli and Bovet
[61]. Their approach consisted of reducing the problem to a shortest path calculation,
and resulted in an algorithm with a time bound of O(n?). Subsequently, other authors

improved the algorithm by improving on the shortest path method, culminating in the

88
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algorithm of Shih and Hsu [70], which has a time bound of O(n%). However all these
algorithms require the representation by a circular arc tamiily to be given. By applying
our maximum clique algorithm we are also able to give an O(m + n) algorithm for
this problem. If the representation is known, our algorithm can be implemented to

run also in time O(n logn).

We first remark that we may assume that G is connected and that it has no vertices
of degree n — 1. Indeed, both the colouring and the maximum clique problems can
be solved for each component separately. Furtherniore, any maximum clique must
contain all vertices of degree n — 1, and any colouring must assign each vertex of
degree n — ! a colour not used by any other vertex. Thus it is sufficient to solve both
problems for the graph obtained by removing all vertices of degree n — 1. Therefore

we shall assume from now on that G is a connected graph with A(G) <n - 2.

The new element in our approach is Theorem 2.1.15 which allows us to search
for maximum cliques and minimum colourings in a more eflicient way. From Section
4.3, we can obtain in time O(m + n) a local transitive tournament orientation of any
proper circular arc graph and hence in time O(m + n) a round enumeration of the

corresponding local transitive tournament.

Suppose that D is a local-transitive-tournament orientation of G. Then D is a
round oriented graph. Let v, v,,...,v, be a round enumeration of D, such that for
each ¢ there exist non-negative integers [; and r; with v;—v; ifand only if 1 +1 < j <
t+7; and vg—wv; if and only if ¢ — [; < k <7 —1 (with the additions and subtractions
modulo n). We define R(u) = w just if u = v; and w = vi4r,, and L(u) = w just if

u=wv; and w = v;_,.

Note that the assumption that A(D) < n — 2 implies that for every vertex u
there is at least one non-neighbour of u between R(u) and L(u). Thus for every u
moving clockwise we first encounter all out-neighbours of u (the last being R(u)),
then all non-neighbours of u (of which there is at least one) and finally, just before
returning to u, all in-neighbours of u (the first one being L(u)). In particular, for
each vertex u = v;, the set {u = v,,vi41,viy2,...,0i4r, = R(u)} induces a clique (in

fact a transitive tournament of D).
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In the sequel, we show how searching for maximum cliques and for minimum
colourings in G can be made more efficient if we perform it on a round enumeration

of a local transitive orientation D of (.

Let v;,vq,..., v, be a round enumeration of a local transitive tournament [). Let
a = v; and b = v;. The interval [a, b] is the set of vertices {v;, vip1, viy2, ..., 0,1, )},
with the subscripts calculated modulo n. (Thus if we draw vy, v,,... v, clockwise
around the circle, the interval [a, b] extends from a to b clockwise.) The intervals

(a,b), (a,b] and [a, b) are defined analogously.

We observe that if a—b then z—y for all z,y with [z,y] C [a, b], and so [a,b] is a

complete graph (in fact, a transitive tournament).

A clique of a graph (or an oriented graph) is just a complete subgraph. A clique
grap g ) p grap |

of 11aximum size is called a marimum clique.

5.1 The Maximum Clique Algorithm

Assume that D is a local transitive tournament with a round enumeration v, vz, . .., Un.
We shall restrict our search for a maximum clique in D to a special class of cliques de-
fined as follows: Let m be an odd integer m > 3, and let ay, by, az, bs, . . ., am, b be dis-

tinct vertices of D listed in clockwise circular order, such that for each: = 1,2,...,m

we have

R(a;) = biym and @i, b]] > [(bigmrs @i,
where m’ = 221 and the subscript additions are modulo m. Then we say that
C = [a1, b1]U[az, by]U. . .U am, bn] is an m-overlap cligue generated by {a,,ax, . .. A}

We also refer to the vertices aj,a,,...,a, as the generators of C.

It is possible to specify an m-overlap clique by its generators. The generators
must be distinct vertices aj,a,,...,a, listed in clockwise circular order; we intro-
duce b; = R(ai_m/) and verify that each b; € (ai,ai+1). If we also have |[a,, b]| >
|(bigm’s Gigme41)], then C = [a1,b1] U [az,02] U ... U [am,bm] is an m-overlap clique

generated by the given ai,as,...,a,. It follows that between any two successive
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generators a,,a,4; of an m-overlap clique, there must be some R(a;) for a generator

a,. Another useful propcrty to observe is that for any two generators a;,a; of an

5
m-overlap clique we have [a;, R(a;)] N [a;, R(a;)] # 0. Finally, we also note that in an
m-overlap clique C' = [a,b;]U [az, b2] U ... U [an, by] we must have each (b;,a,41) # 0
because a,;m41 = ai—m dominates b; and is dominated by a,41 (as a;11—b;4;m41), 50

that in order to have the degree of a;_, smaller than n — 1, we need (b;,a;;,) # 0.

For convenience we also define 1- and (~—1)-overlap cliques: A l-overlap clique is
any interval [a,b] with b = R(a). Thus the interval [a, R(a)] is the l-overlap clique
generated by a. (This coincides with the definition of ar. "overlap clique” in [61]). A
(—1)-overlap clique is just the empty set 0.

Lemma 5.1.1 [n the digraph D, we have:
e Any m-overlap clique is a clique;

o There erists a maxtmum cliqgue which is an m-overlap clique for some odd m.

Proof: The first statement clearly holds for 1- and (—1)- overlap cliques. Thus
let [a1,b1] U laz,b;] U ... U [am,bn] be an m-overlap clique of D with m > 3. Let
u € [ai, b;]. Since a; dominates b;4, the vertex u dominates all vertices of (u, b;] U
[@;41,0i11] U ... [@ixms, Biyms]. Since biyomrs1 = b; is dominated by a;ymi1q, the vertex
u is dominated by all vertices of [@itmr41, Digmi+1] U ... U [ai,u). Therefore [ay,b] U
[a2, b2] U ... U [am, b is a clique of D. (Recall that m’ = —"igl, so that 2m' +1 =m.)

To prove the seccnd statement, consider a set of vertices C' which induces a max-
imum clique of G. If C' # 0, then there exists an integer m such that C' may be
written as C' = [ay, by] U [az, b2 U ... U [am, bm] wWhere ay,b1,a2,b2, ..., 0, b, appear
in clockwise circular order in the round enumeration. Let C' and m be chosen so that
m is as small as possible among all maximum cliques of G.

Suppose that m = 1, i.e., that C' = [ay,b;]. Consider the adjacent vertices a, b;.
If by—a;, then [b;,a;] is also a clique, contradicting A(D) < n — 2. Thus a;—b,
and hence R(a;) € [b;,a1). Since [a1,b;] is a maximum clique, R(a;) = b, and C is a

l-overlap clique. Thus suppose for the rest of this proof that m > 1.
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Claim 1. If u ¢ [a;,b] is adjacent to all vertices of [a,.b,], then u—]a;, b;] or
[ai, bi]—w.

Suppose there are two vertices r,y € [a;, b;] such that u—x and y—u. This means
that u—(u, z] and [y, u)—u. Together with the assumption that u is adjacent to each
vertex of [a;, b;], we contradict the fact that A(D) < n - 2.

Claim 2. If ¢ # j then either [a;, b;]—[a;, b;] or [a;, b;]—[a, b;].

If a;—b; then z—y for each z € [a;,b] and y € [a;,b;]. On the other hand, if
b;j—a; then two applications of Claim 1 yield 6;—b; and a;-+b;. Thus in this case
z—y for each z € [a;,b;] and y € [a;, bi].

Claim 3. If [a;, b;]—[a;, b;] then [ait1, biy1]—[a;+1, bj41]-

Suppose that [a;, b;]—]aj, b;] and [a;41,bj41]—[ait1, bit1]. Let u € (by,aipy). (It
was noted above that (b;,a:+1) # @.) Then u is adjacent to all vertices of [a;41, biy1]U
... U [aj, bj] because a;—bj, and to all vertices of [a;41,b;41] U ... U [a;, b;] because
aj+1—bit1. This contradicts the maximality of our clique.

Claim 4. m is odd.

If m is even, then {a;, ;] —=[ai1m /2, biym/2] iIMplies [@iymy2, biym 2] —[ai, bi] by Claim 3,
contrary to Claim 2.

Claim 5. R(a;) = biym for each: =1,2,...,m.

Since a; and b;1. are in C, they are adjacent. If some b;,,,,—a;, then Claim 2
implies that [@iym/, bi4m/]—[a;, b;] and Claim 3 implies that [a;, b;]— [@itmet1, bigmes1]-
However, this is impossible as a;—b;; /41 implies a;—b; .. Hence a;—b;4, for each
:=1,2,...,m. In particular, aiyme1—biyom+1 = b;. So R(a;) € [biym’, Gitmr41). On
the other hand, if R(a;) # bitm:, then R(a;) is adjacent to every vertex of [a;, b;] U
[@iv1, bit1]U. . .U[@itms, bitm’], and because aiym =bitom: = bi_1, R(a;) is also adjacens
to every vertex of [a;ymis1, bigmeg1] U ... Ulai-1, bi-1]. Thus R(a;) is adjacent to every
vertex of C, contradicting its maximality. Therefore R(a;) = b;ym.

Claim 6. |[a;, ]! > |(bitm’, @izmr41)| for each ¢ =1,2,...,m.

If {[a;, &:]] < {(bixm'» Qigmi+1)] for some ¢, then let C' = [ay, ] U ... U [ai_2,bi4] U
[@io1, 5] U [@is1, bip1] U oo U [Gimr—1s Bitmr 1] U [@ipmes bigmrgr) U [@igmeg2, bipmiga] U
... [@m, bn]. In effect, C’ is obtained from C by replacing [a;, b;] with (biym’, Gigmr41)-

We see easily that C' is also a clique. We only need to verify that each vertex
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1 € (byym.¢iymi41) is adjacent to all other vertices of (. Since a 41 —b;4m41 and
hence a,;;—u, we conclude u is adjacent to [at + 1,041 U ... U [@iymio1, bigmr—1] U
(diyme,u); since a4 —b,_y and hence u—b;_, we also conclude that u is adjacent
to (u, biymis1) U ... Ula,_;,bi1]. Thus C'is a clique with fewer intervals than C and

with |C’] > |C], contradicting the choice of C. O

Note that the converse of the second statement of Lemma 5.1.1 is not true, namely,
an m-overlap clique is not necessarily a maximum clique. In fact, there may be m-
overlap cliques of different sizes. We call an m-overlap clique of maximum size a

largest m-overlap clique.

Lemma 5.1.2 Let m > 3 be an odd integer. Let C = [ay, )1]U[aq, bo]U. . .U[am, bn]
be an m-overlap clique of D and suppose that x € (b;—1,b;] for somei=1,2,...,m.

If|[z, R(z)}| = |[ai, R(a;)]|, then the vertices ay,...ai_1,Z,ait1,. .., an generate an
m-overlap clique C', with |C'| > |C|. Moreover, |C'| = |C| if and only if |[z, R(z)]| =
l{a:, R(a)]l.

Proof: To prove that C' is an m-overlap clique we need to show

1. x € (bi_1,b;) (that is, T # b;),

o]

R(I) S (a.'+m', ai+m’+l)v

3. |[$,b,” > |(R($)’ai+m’+l)l’ and

N=N

. Hai+m’aR($)“ > %(bi—l’xﬂ-

By the assumption, ¢ € (bi_,b;]. If z = b;, then z—b;4,,» and a; 441 —z. Thus
R(x) € [bitm; @iymr+1). Since |[z, R(z)]| 2 |[a;, R(a))]], then |[biym:, R(z)]| 2 |[ai, z]].
Note that A(D) < n — 2 implies that (R(z), aiym41) # 0. Then |(bivms, Givmrs1)| 2
I[biyms R(2))] > |lai, )] (recall that z = b;), contradicting the fact that C is an
m-overlap clique. Hence z # b; and 1 holds.

Now we consider the vertex R(z). Since a;_1—b;ym—1, we have z—b; . _1. Since

@iym'+1—bi, we also have a;ym41—z. Thus R(z) € [bitmi—1,@itmr41). We claim that
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R(z) & [biym—1.a:+m/]. Suppose. to the contrary, that R(:r) € [biym_q,aipm]. Then
r € (bi-1.a,) because a;—b,ym. Since |[r, R(x)]] > Ha‘ R(a)]l. we have |[r,a)]| >
[[R(x). R(a;)]|. We consider two cases: first if R(x) # d,ym. then |(b_,a)] >
l{@iymss biyme]l. contradicting the fact that (" is an m-overlap clique; secondly if R{r) =
a;+m’, then, noticing that the assumption A(D) < n —2 implies that (b,_y,r) # 0, we
again have |(b;_1, a;)| > |[@iym': bigm]], contradicting the fact that ' is an m-overlap
clique. This proves 2.

Finally we prove 3 and 4 together.

If z € (b;_y,a:], then R(z) & (bitm’, Giymr41) as otherwise we would have a,— R(r)
contradicting the fact that R(a;) = b,‘+m' Thus R(z) € (@iym’, bigm]. Then |[z,a;)| >
|(R(x), biym]| because |[z, R(z)]| > |[a:, R(a;)]|, and hence

l[$3bi” = HI,CL,')| + Haiabi” > '(R( ) t+m]| + l( itm’ s Qitm!+1 l = l( ) Aiym! +l)l

with a similar proof for |(b;-1, )| < |[@itm’, R(z)]|. On the other hand, il = € (a;, b;)
then R(z) € (bism', Gismis1) and [‘bipms, R(z)}l > |lai,z)| because ||z, R(z)]| >
l{a:, R(a;)]]. Thus

[z, b:]] = |[a:, b]] — l[as, )| > |(bisms, @izmi41)| = [(bigmr, R(2)]] = [(R(2), @iymr+1)l,

with a similar proof for |(b;—1, )| < |[@i+m’, R(Z)]].

It is now easy to conclude that |C’] > |C| because |[z, R(z)]| > |{ai, R(a;)]| means
l[z,ai]| > |[R(x), R(a:)]] (or |[a;, x]] < |[R(as), R(x)]|); similarly we can conclude that
|C’| = |C] if and only if |[z, R(z)}| = |[a:, R(a))]]- O

Let C = [a1,b1] U [az,b2] U ... U [ap, bn] be an m-overlap clique. We say that
is localized if for every ¢ = 1,2,...,m and each z € (b;_,,b;] we have |[z, R(z)}]| <
[a;, R(a;)]|. Note that the (—1)-overlap clique 0 is localized, as is each largest 1-overlap

clique.

We derive the next result from Lemma 5.1.2.

Corollary 5.1.3 Let m > —1 be an odd integer. FEvery largest m-overlap clique

1s localized. J
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Corollary 5.1.4 Let rn > 3 be an odd integer. If C' = [a1,b] U [aq,82] U ... U
[, b] 15 a largest m-overlap clique, then for any x € (b;_y, b, with |[z, R(z)]| =
la,, R(a,)]|, the vertices ay,...a,-1,T,8i41,-..,0y generate an m-overlap cligue C’,

which also is a largest m-overlap clique. a

Suppose k is the smallest integer such that there exists a maximum clique C of D
which is a k-overlap clique. Then any largest k-overlap clique is a maximum clique.

We shall assume k& is fixed from now on, and denote k' = 5—5—’-

Let K be a localized m-overiap clique of D, for some m < k. We say that K
is admussible if there exists a largest k-overlap clique (hence a maximum clique) C
of D such that each generator of K is also a generator of C. We also say that C
is a certificate of admissibility of K. Note that an admissible clique is by definition

localized.

Our strategy in searching for a maximum clique of D is to find an admissible
l-overlap clique, then to modify it to an admissible 3-overlap clique, then to an ad-
missible 5-overlap clique, and so on, terminating with an admissible k-overlap clique
which is also a maximum clique. The following lemma explains how to obtain an

admissible 1-overlap clique.
Lemma 5.1.5 Fach largest 1-overlap clique is admissible.

Proof: Suppose [z, R(7)] is a largest 1-overlap clique. By Corollary 5.1.3, [z, R(z)]
is localized. Let C' = [ay, b;]U[a2, bo]U. . .U[ay, bk] be any largest k-overlap clique (and
thus a maximum clique of) D. Then z € (b;—1, ;] for some z, and hence |[z, R(z)]| =
{la;, R(a;)]| because C is localized and [z, R(z)] is a largest 1-overlap clique. Therefore
by Corollary 5.1.4 the k-overlap clique C” generated by ay,...,a;-1,7,ai41,...,a% 18

a certificate of [z, R(z)]. O

Let m > | be an odd integer. Suppose K = [ai,b] U [a2,b2] U ... U [am, b
1s a localized m-overlap clique of D, and suppose that there exist vertices c,d and

subscript 7 = 1,2, ..., m such that
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@ CcE (a,‘, b,‘).d € (b,‘+mr,a,+mr+1)
e R(C) € (d ai+m’+l)~R(d) € (CL“ C)
o |(R(d). o) < |ld, R{c)]l.

Let K* = [a1,0]U...U[a;, R(d)]U[e, b]U aipr, biz1]U. . Ufaiymr, by ]ULd, R(C)]U
[@ivmis1, Oiymrp1] U ... Ulam, br]. We say that A is a modification of K obtained by
replacing (R(d), ¢y with [d, R(c)]. f m = =1, we say that any l-overlap clique K~ is
a modification of the (—1)-overlap clique (. Let |H| denote the number of vertices of

H.

Lemma 35.1.6 Let m > —1 be an odd integer, and let K be a localized m-overlap

clique. Fach modification K* of K is an (m + 2)-overlap clique, and |K*| > |K]|.

Proof: This is clear for m = —1. For m > 1, it suffices to show that |[c, ]| >
I(R(C)vai-i—m'-\‘—l)l and I[a,,R(d)H > l(bi+m’vd)l' If I[vaf” S l(R(C)vai+rrt’+l)" then
I(R(d), b:]| < |d, aismr41)|. Hence I[d, R(d)” > |[a,~+m/+1,b,-]{. Since R(aitm41) = b
this contradicts the hypothesis that K is localized. A similar argument applies to

show |[ai, R > |(Bizmr, d)]. 0

Note that the modification K* of K has |[K*| > |K|. It follows that, in partic-
ular, a largest k-overlap clique (which is necessarily a maximum clique) admits no
modification. There may of course be several possible modifications for a given K. A
localized modification of K is any modification K* of K which is itself localized. In

particular, a localized modification of § is any largest 1-overlap clique.
The importance of localized modifications to our algorithm is underscored by the

following crucial result.

Theorem 5.1.7 Let m > —1 be an odd integer. If K is an admissible m-overlap

clique, then any localized modification K* of K is an admissible (m+2)-overlap clique.

Proof: Let C = [ay,5]U[az, b]U. .. U[ag, b] be a certificate for K. Assume that
K* is a modification of K obtained from K by replacing (R(d), c) with [d, R(c)]. Then
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K< s an (m + 2)-overlap clique by Lemma 5.1.6. We may assume that ¢ € (a,, b;)
where [a,.b,] is one of the m intervals defining K. (Note that the generators of K
are included among the generators of (') It follows from the definition of K™ that
d € (byirr,arykryr), where (byyr, aryiy1) is one of the open intervals separating two
of the defining intervals of K. Similarly, f(c) € (d, @r4x4+1) and R(d) € (a,, c).

We show that A" is admissible. Without loss of generality, let ¢ € (b;-1,b;]
and d € (b,-1,b,]. We shall show that we can alter C by removing both genera-
tors ¢,d and inserting the generators a,, a;, obtaining a certificate C* of K*. To do
this, by Corollary 5.1.4, we need to prove [[c, B(c)]| = |[ai, R(a;)]| and |[d, R(d)]| =
lla;, R(a,)]]- Since C is localized according to Corollary 5.1.3, |[c, R(c)]| < |[ai, R(a;)]|
and |[d, R(d)]| < |[a;, R(a;)]|- Thus we only need to show that |{c, R(c)]| > |[ai, R(a:)]]
and |[d, R(d)]| > |la;, R(a,)]|. So it suffices to show that a; € (R{d),b.] and a; €
(bpixi, R(c)] as K~ is localized. Since the two cases are similar, we only show that
a; € (R(d),b,].

If a; ¢ (R(d),b,], then a, € (b;—y, R(d)]. Thus R(d) € [ai, b;] because ¢ € (R(d), b;].
Hence R(c) € {d,a;+r+1). Since a;—b;ri and a; 41— b;, we have d € (bikr, @ipars1]-
If ¢ = b;, noting that (R(c), aisx+1) # &, then we have |[(R(c), aivir41)| 2 |[c, b}l = 1.
Combining this with the fact that |[d, R(c)]| > |[(R(d),c)|, we have |[d, aitr41)| >
[(R(d),bi]]. Thus |[d, R(d)]| > |[@i+r+1, R(aiyr+1)]] ( recall that R(aitr41) = b)),
contradicting the fact that C is localized. If R(d) = a;, in a similar way, we will
have |[c, R(¢)]| > [lai, R(a;)]|, again contradicting the fact that C is localized. Hence
¢ # b; and R(d) # a; and so C has a modification which can be obtained by replacing
(R(d),c) with [d, R(c)], contradicting the fact that C is a maximum clique. a

Let r(z) = |[z, R(z)!|]. We define for each pair of vertices z,y, the quantities
M(z,y) = maz{r(z)] = € (2,9}, Mlz,y] = maz{r(2)] = € [z,5]}, and Mz,y) =
max{r(z)| z € [z,y)}.

Theorem 5.1.8 Admissible cliqgues have the following properties:

e Any admissible m-overlap clique with m < k admits a localized modification;

o Any admissible k-overlap cl:que is u mazimum cligue.
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Proof: If A" is an admissible m-overlap clique, then n: < & Let (" = [a;. 5] U
laz, boJU. ..U [ak. bi] be a certificate of K. It is easy to see that if m = k. then K = (
and K admits no modification or localized modification.

Suppose that m < k. Then there exist p and r with p # r such that [a,.b,] is one
of m intervals defining A" (note that the generators of A arc also generators of ().
Let f € (a,,b,) be the first vertex in the order from a, to b, such that, for any g with

g € (byrr, R(f)) and r(g) = M(by4r, R(f)), we have the following properties:

o R(f) € (bpsrr, rirrsr),

o R(g) € (ap, f), and
e |[g, R(N)]l > [(R(9), f)I.

We note that such a vertex f exists because a,41 € (a,,b,) satisfies these three
properties. Therefore we also have f € (a,,a,41]. If f € (a,,by), then R(f) €
(bptkrs apikr+1) and hence C' can be modified by replacing (R(g), f) with {g, R([)],
contrary to the maximality of C. Suppose now that f = b,. Then again R([) €
(bp+ks aptkr+1), and by the hypothesis that A(D) < n—2, |[(R(f), @psr+1)] > 1. Hence
l9: ap+r+1)] > [(R(g),by)], which implies that |[g, R(¢)]| > [laptarsrs R{apsrs1)]]
(since R(apik+1) = by), contradicting the fact that C is localized. Therefore [ €
(bp, ap+1]. Now let ¢, d be vertices such that r(c) = M|[f,b,) and r(d) = M(b,4i, RB(c)).
We will show that a localized modification of K, can be obtained from K,, by re-
placiag ( R(d), c) with [d, R(c)].

Since ¢ € [f,b.), we have ¢ € (b;_y,b;] wherei € {p+1,p+2,...,7}. Then r(a,) =
r(c) because r(c) = M{f,b,) and r(a;) = M(b;_1,b;] = M[f,b,) (asa; € [f,b,) and C'is
localized). Hence Corollary 5.1.4 implies that ¢ € (s, {: b;) and R(c) € (aiyry Gith'41)-
Suppose that d € (b;_1,6,] for some j. Then j € {p+ k' +L,p+&' +2,... 2 +k +1}.
First we claim that j # ¢ + £’ + 1. Assume to the contrary that j = ¢+ &"+ 1. Then
d € (biprr, biywr+1] and hence d € (b4, R(c)). This implies that £(c) € (bippr, diprrsr)
and hence ¢ € (a;,b;). Since d—b;,_; (as ajrpr—b_y) and c—d (as appw—bi_1),
we see that R(d) € [bi_,c). If R(d) € [bi_y,a;), then r(a,ip) = |[@ssr, biza]] >
[d R(@)]| = r(d) because (s dll > [[veirbupll > [(bersail]l = [, R
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This contradicts our choice of d. The above contradiction applies even when R(d) =
a;, because in that case d—a, and a,—b,4x, which implies that (biyx,d) # @ (as
deg(a,) < n —2). If R(d) € (a;,c), then there is a modification of C obtained from
C by replacing (R(d),c) with [d, R(c)], contrary to the maximality of C. Therefore
J € {p+K+1,p+E+2,...,i+k'}. Applying similar arguments, we have r(d) = r(a;),
d € (bj_1,b;), and R(d) € (a;j4x,a;4441) (note that these arguments hold even when
j = 1 4+ k' because a;yp € (R(c),bitsr—1). Finally we claim that a modification
of K,, can be obtained from K, by replacing (R(d),c) with [d, R(c)]. Indeed, it
follows from the above that ¢ € (ap,b,), R(c) € (bpti',ariki41),d € (bpswr, R(c)),
and R(d) € (a,,c) (note that ¢c—d). Since r(a;) = r(c) and r(a;) = r(d), we
have {[a;,c)| = |(bi+r, R(c)]| and |[d,a;)| = |(R(d), b;4x]|. Therefore, |[d, R(c)]| =
e b 411, a5)] 4 | (Bigi RO > (55800 01) [+ (R(), byl + e O] = I(R(), )l
(In these calculations we have assumed that [d, B(c)] D [aj, biys]; otherwise we need
to replace " +][d,a,)]" by " [la;d)|" and "+|(B(d), bysw]l” by "~|(bse REP if
d € (a;,biyr) and similarly for ¢ € (bj4x,a;).) Furthermore, this modification is

localized because of the choice of ¢ and d. O

We observe here that the theorem implies that a localized modification exists if

and only if a modification exists.

Consider now the following algorithm.

Algorithm 5.1.9 Let D be a connected local transitive tournament with a round
enumeration and with A(D) <n —1.

Initiclize m «— —1, K_y « 0.

While K., admits a modification, let K, ., be a localized modification of K, and

increase m by 2.
Theorem 5.1.10 We have
e Algorithm 5.1.9 correctly finds a mazimum clique in D,

o Algorithm 5.1.9 can be implemented to run in time O(nlogn), and
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o there is an O(m + n) algorithm to find @ marimum clique in any proper circular

arc graph.

Proof: The algorithm will, in its first iteration, find a largest l-overlap clique R;.
Clearly K, is localized, and, by Lemma 5.1.5, it is also admissible. Then Theorem
5.1.7 guarantees that all subsequent m-overlap cliques A, are also admissible. At
termination, K,, does not admit a modification, hence A, is a maximum clique by
Theorem 5.1.8.

We now discuss the implementation of Algorithm 5.1.9. Suppose that we have a
local transitive tournament D with a round enumeration, i.e., suppose that we have
the parameters L(x), R(z) (and hence r(z)) for each vertex z. In preparation, we
can find in time O(n) a vertex a with r(a) = maz{r(z) : z € V(D)}. Next we
store the values r(z) for z € [L(a), R(a)] in the leaves of a balanced tree structure,
such as a 2 — 3-tree [1], where each internal node stores the maximum value of r(x)
among its descendants. (To facilitate the calculation, we may in fact store in each
internal node two values, the maximum {(z) in its left subtree and the maximum !'(x)
in its right subtree.) This can be done in time O(nlogn), [1]. Then, given any z
and y, the tree can be pruned down, in time O(logn), to a subtree representing only
the leaves between r and y, and hence having the value M(z,y) stored in the root.
This is explained in detail in (1], Section 4.12. Thus each evaluation of M(z,y) (or
M(z,y], M[z,y), for which the computation is similar) takes time O(logn).

In each iteration we have a current cliqgue K,,. We have noted above how to obtain
the current clique K of the first iteration. We shall maintain additional information
which will allow us to estimate the complexity of the algorithm, as well as to proceed
from K,, to K42 in the m-th iteration. (Note that we have first, third, fifth, etc.
iterations and no second, fourth, etc. iterations, in this terminology.) Specifically, we
shall charge certain vertices of D. The intention is to have the number of charged
vertices proportional to log n times the work performed so far. A vertex will be charged
at most once. We only charge vertices of the current clique. A charged vertex may be
absent from later current cliques, but if it is not in K, it will not be in K, either.

Initially no vertex is charged. A defining interval [a,, b;] of the current clique is

active if not all of its vertices have been charged. We will operate on active intervals
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only.

In the first iteration we have K, = [a, R(a)], no vertex has been charged and the
unique defining interval [a, R(a)] is active. In general we shall have the current clique
K., (which shall always be a subset of [a, R(a)] U [L(a),a]), some charged vertices
and some active intervals. An ctive interval [a,, b;] will either contain no charged
vertices, or will consist of an interval [a;, f) of charged vertices and an interval [f, b/]
of uncharged vertices. If there is an active interval of the second kind, there will be
only one such interval and we will operate on it. (If all active intervals are of the first

kind then we operate on any of them.)

To operate on an active interval [ai, ;] which contains no charged vertices, we
search, in the order from a; to b;, for the first vertex f € (as, ;) such that for any

9 € (bixmr, R(f)) with 7(g) = M(biym:, R(f)) we have
o R(f) € (biym', Giymi41),
* R(g) € (a;, f), and
e |lg, RO > [(K(g), F)I

If there is no such vertex f, then we charge all vertices of [a;, b;]. If there is such
a vertex f, then we only charge all vertices of [a;, f).
To operate on an active interval [a;, b;] in which the vertices ot [a;, f) are charged

(and the vertices of [f, b;] uncharged), we perform the following operations:

e ['ind any vertices ¢ and'd such that r(¢) = M{f,b;) and r(d) = M (biym, R(c)),

and

o Define A4 to be obtained from K, by replacing (R(d),c) with [d, R(c)], i.e.,
the defining intervals of K,,,, are all the defining intervals of K., except [a;, b;],
plus the intervals [a,, B(d)], [c, b;] and [d, R(c)].

The correctness and the claimed complexity of our implementation will follow from

the following observations, all of which have been asserted above.
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1. If r1s a vertex charged in the [-th iteration, and if r+ € A,, with m > [, then

r€ A, Npoa, ... K.

QW]

An active interval [a;, b;] contains no charged vertices or consists of an interval
[aj, f) of charged vertices and an interval [f, b;] of uncharged vertices, for some
f € (a;,b;). Moreover, there is always at most one active interval of the second

kind.
3. A vertex is charged at most once.

4. The work performed in each iteration is proportional to logn times the number

of vertices that have been charged during that iteration.

5. The clique K,,42 i1s a localized modification of the clique A,,.

Suppose that z is a vertex charged in the [-th iteration and let z € K,, with m > L.
We shall show that z € K,._,. Let [a),b1],...,[am, bn] be the defining intervals of
K. Say z € [a;,b;]. If z ¢ K\n_2, then = € (b;-1,a;41). In the [-th iteration, =
belongs to an active interval of K;. That active interval must be some [a;, b} such
that [ai,bx] D (bj—1,aj41) (since m — 2 > l,a; # a;). Recall that z was charged
when we found (or failed to find) the first vertex f € (a, bi) that satisfied the above
conditions. But it is easy to see that the vertex a; satisfies these conditions. Hence
f must be in (a;, ;] and so z would not have been charged. Thus z € K,,_,. Now 1
follows.

Suppose z € [aj, b;] is a charged vertex. When z was charged, in the I-th iteration,
! <m, we had z € [a;, bs] such that [a;, bi] 2 [a;,b;]. As above, we were searching for
the first vertex f € (a;, b;) that satisfied the above conditions. If there was no f, or if
f € (bj, bi), then each vertex of the entire interval [a}, b;] has been charged. Otherwise,
since z is charged, we must have f € (z,b;], in which case [q,, b;] consists of the
interval [aj, f) of charged vertices and the interval [f, b,] of uncharged vertices. There
is always at most one interval of this kind, because we keep processing it (without
creating additional intervals of this kind), until there are only active intervals without

charged vertices. This proves 2.
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When a vertex is charged, we compute a value of M(z,y) (or M|z,y], M[z,y)), at
a cost of O(logn) (see above). This explains 4.

The assertion 5 follows from the fact that our construction of K42 agrees with
that explained in the proof of Theorem 5.1.2.

To obtain an O(m +n) algorithm for the maximum clique problem in proper circu-
lar arc graphs G we proceed as follows: Firsi applying Algorithm 4.3.1 we can obtain
in time O(m + n) a local-transitive-tournament orientation D of G; secondly we use
the method of Theorem 2.2.6 to find in time O(m + n) a round enumeration of D.
Hence we have parameters R(z),r(z), L(z) for each vertex z of D and we can find in
time O(n) a vertex a with r(a) = maz{r(z) : z € V(D)}. Now instead of building a
2 — 3-tree as above, we compute M(z,y), M[z,y), M[z,y] for all pairs z,y such that
[x,y] C [a, R(a)] or [z,y] € [L(a),a]. This can be done in time O(m + n) by dynamic
programming, because [a, R(a)] and [L(a), a) are vertex-disjoint complete subgraphs
of D and there are only O(m) pairs of vertices z,y in [a, R(a)] and in [L(a),a]. The
iterations of Algorithm 5.1.9 can be done as above. Note that the work in each itera-
tion of Algorithm 5.1.9 is now proportional to the number of vertices that have been

charged during that iteration. O

5.2 The c-Colouring Algorithm

Assume again that D is a connected local transitive tournament (such that A(D) <
n—2), with a cound enumeration vy, v,,...,v,. Let c be a fixed integer. In this section,
we present an algorithm to decide whether or not D is c-colourable. We begin with

the following two results of Orlin, Bonuccelli, and Bovet, reformulated from [61).

Lemma 5.2.1 Suppose that n is divisible by c. Then D is c-colourable if and
only there is no 1-overlap clique of size ¢ + 1. If there is no 1-overlap clique of size
c+ 1, then the vertices of D can be coloured in clockwise circular order of the round

enumeration, 1,2,...,¢,1,2,...,¢,...,1,2,...,¢c. a
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In general, we let n = gc + r, where 0 < r < c.

Lemma 5.2.2 If D is c-colourable, then it can be coloured with ¢ colours in such
a way that r colour classes have g+ 1 vertices each, and the remaining (c - r) colour

classes have g vertices each. 0

Consider now the following algorithm.

Algorithm 5.2.3 Let D be a connected local transitive tournament with a round

enumeration and with A(D) <n —1.

Step 1. Find a mazimum clique C' which is a k-overlap clique with |C| = w.
Step 2. If w > ¢, then D is not c-colourable.

Step 3. Ifw < c and n > (c—1)?, then D is c-colourable by the technique ezxplained
in Lemma 5.2.4.

Step 4. Ifw < ¢ and n < (c — 1)?, then determine whether or not D is c-colourable
by the algorithm from [70].

Step 5. Ifw = c andr =0, then D is c-colourable by the method explained in Lemma
9.2.1;

Step 6. If w = ¢ and r > 1, then determine whether or not D is c-colourable by the
technique of Lemma 5.2.5 if k > 1, and of Lemma 5.2.6 if k = 1.

Step 1 of our Algorithm 5.2.3 can be done in time O(m +n) according to Corollary
5.1.10. Step 2 can be done in time O(1). For Step 3 we apply the technique (easily

implemented in time O(n)) inherent in the following lemma.

Lemma 5.2.4 Ifw < c andn > (c — 1)?, then D is c-colourable.
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Proof: Since w < ¢—1 we can construct a colouring in which consecutive vertices
in clockwise circular order of the round enumeration obtain colours 1,2,....,¢,1,2,....,¢
as well as 1,2,...,(c = 1),1,2,...,(c — 1), provided we can fit these “runs” to-
gether to yield n. Since n > (¢ — 1)2, this can for example be done as follows:
Let n = p{c — 1) + s where 0 < s < ¢— 1. Since n > (c — 1)%, we have p > (¢ — 1).
Colour the first sc vertices in clockwise circular order of the round enumeration by
1,2,...,¢,1,2,...,¢c,...,1,2,...,¢, and colour the remaining (p — s)(c — 1) vertices
by 1,2,...,(c—=1),1,2,...,(¢c = 1),...,1,2,...,(c = 1). To see this is a proper ¢
-colouring, suppose that there are two adjacent vertices v; and v; which obtain the
same colour. Since v; and ; are adjacent, we know from the definition of a round
enumeration that either [v;,v;] or [vj,v;] is complete. But each of [v;,v;] and [v},v;]

has size at least ¢, contradicting the hypothesis that w < c. a

Step 4 takes time O(1) since c is fixed and so O(n%?) = O(c®) = O(1). Step 5 can

be easily executed in time O(n) according to Lemma 5.2.1.

For Step 6, suppose first that w = ¢, r > 0, and k£ > 3. Let C = {a), 5] U [az, 8] U

... U [ag, by] be the maximum clique of D found in Step 1.

Let : = 1,2,..., or k, and suppose that ![la;, b]] = | and |(biys, aizrrs1)| = s.
Let y1,92,...,y, be the vertices of (biyxr, @itar4+1) listed in clockwise circular order
of the round enumeration. Note that [ > s by the definition of a k-overlap clique.
Let H; be the complement of the underlying graph of the subgraph of D induced by
[@i, b)) U (bipxr, @ivrr41)- Since each of [a;, b] and (biyrr, @iyr41) induces a complete
subgraph of D, the graph H; is bipartite. We shall say that H; has a round matching
if there exist vertices z,,x2,...,, of [a;, b;], appearing in clockwise circular order,
such that y,z1, y27s, ..., and y,z, are edges of H;. Note that it is easy to determine

in time O(|H;|) whether or not each H; has a round matching.

Lemma 5.2.5 The digraph D is c-colourable if and only if each graph H; (i =

1,2,...,k) has a round matching.

Proof: Suppose that H; has the round matching y,z1,y272,...,ys2s. Then D

can be coloured with ¢ colours in the following way: Arbitrarily colour the vertices in
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[y, b1] U [az, b2] U. ..U [ak, bk] with ¢ colours. Then colour each vertex (j = 1,2,...,s)
Y; € (biyr,aiyr41) with the colour assigned for the matched vertex r,. it is easy to
verify that this is a proper ¢ -colouring of D.

Suppose in turn that D is c-coloured. Note that the vertices in [a;, ;] U [ay, b2] U
... U [ak, 5] must obtain ¢ distinct colours. Moreover, vertices in (b, @, 441 ) may
use only colours assigned to vertices in [a;, b;] since every vertex in (bjyxr, @iypriqy) 18
adjacent to every vertex in each [a;,b,] for j # 2. Hence H, must have a matching of
size s. We apply induction on s to show it must also have a round matching of size s.
When s = 1, there is nothing to prove. When s > 1, let M = {y,x],y275,...,y,z,} be
a matching in H;; let {z1,22,...,z,} = {2}, 2},..., 2.}, where z,,x2,...,x, are listed
in clockwise circular order. If ] = z,, then we are done by induction. Otherwise
ry = z5 and 7, = z, for some f > 1 and g > 1. Thus y,r; and y,z, are edges of
H;, and hence y, is not adjacent to zy, and z, is not adjacent to y, in D. If y, is
adjacent to «; in D, then either [y, z;] induces a complete subgraph and it implies
that y, and z, are adjacent, or {z,y;] induces a complete subgraph and it implies
that y, and z; are adjacent in D, contradicting the hypothesis. Therefore y, is not
adjacent to z;. A similar argument applies to show that y, is not adjacent to z;.
Consequently, {y12}, Y25, - .-, YgZ}, Ug+1T5 15 - - - Ys Ty} is @ matching of H; in which
z! = z,. Therefore, by induction H; has a matching of the required form. a

g

By Lemma 5.2.5 the first part of Step 6 can be implemented in time O(n).

Finally suppose that w = ¢, r > 1, aad k& = 1. Let ' be a maximum clique
of D which is a l-overlap clique. Without loss of generality, assume that ' =
{vi,v2,...,v.}. We need to decide whether or not there exists a c-colouring of D;
according to Lemma 5.2.2 it is enough to seek a c-colouring with r ‘larger’ classes of
size ¢ + 1 and ¢ — r ‘smaller’ classes of size q. The clique ' must have one vertex
from each of the larger colour classes. In other words, if there exists a ¢-colouring of
D, then for some c-colouring of D and some set Y of r vertices of (', it is the case
that D — Y has precisely g vertices of each of ¢ colours. Since c is fixed, there is only
a constant number C¢ of possible sets Y. Thus we may fix a set Y of r vertices of C',

y3,v9, ..., y0 (listed in clockwise circular order), and ask if there exists a c-colouring
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of D in which D — Y has precisely g vertices of each of the ¢ colours. Note that we
only need to colour the vertices of D — C. We have a linear order on D — C, induced
by clockwise order of D. We shall in the sequel use terms like “before, after, precedes,

follows, first, last, next”, etc., with reference to this linear order, v.,y,...,vn.

For each vertex y?, we shall associate a set of “stretch” B, B!,... Bfin D, which
will guide our choice of a c-colouring. Suppose y? = v,. The stretch B? consists of
the first r vertices starting from y? = Vg, 1.€., Vg, Vsl -+, Vser—1, and each subsequent
stretch B! consists of the next ¢ consecutive vertices (in clockwise circular order).

Thus for 1 <7 <y,

J
B.‘ - {v(j—-l)c+s+r7 V(j~1)cts+r+1s- - -2 Vjctatr—1 }

For convenience, we use f] to denote the first vertex of B,-j and l{ the last vertex of

B! with respect to clockwise circular order of the round enumeration.

We will seek a c-colouring in a greedy fashion, guided by the associated stretches.

Specifically, we shall find vertices

1 1 1 2 .2 2 q .9 q
y17y21--'7yr7y17y2’*'°)yra"'7y11y2"'"7yr

1-1

in such a way that y/ is the first vertex of Bf which 1s not dominated by y/” and

comes after y/_; (or after y=! if i = 1). The existence of such a sequence will follow
from Lemma 5.2.6.

Let C; = {y2,y},...,y?}, with 1 <4 < r. We show that each class C; is either

independent or contains the single arc yfy®. Suppose y* dominates yf Itk <y

then y* dominates y**! contrary to the choice of y***

T

. If j < k < ¢, then again y¥
dominates y*', a contradiction. Finally, if 0 < j < k, then /™" dominates y/, again

a contradiction. Thus the only possible arc inside the set C; is yly?.

Suppose that all classes C; are independent and define D' = D-C,—-Cy—...—-C,.
We shall show below that D' contains no 1-overlap clique of size ¢ — r + 1. Therefore
it can, by Lemma 5.2.1, be coloured with ¢ — 7 colours forming the colour classes

Crt1.Cryzy ..., Ce. Clearly, Cy,Cs,...,C. is a c-colouring of D.
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Otherwise we shall try a different set Y. We shall prove below that if no set Y

allows a desired colouring, then D is not c-colourable.

Lemrna 5.2.6 [f D is c-colourable, then there erists a set Y of r vertices of
such that D has a c-colouring in which D —Y has prec: :ly q vertices of each of the

¢ colours.

Proof: Suppose that D is c-colourable. Then by Lemma 5.2.2 there is a c-
colouring of D with r colour classes of size ¢ + 1. Suppose that the vertices of these

r colour classes are

o 0 o] 1 1

! 9 .9 q
T Ty Ty T3 Ty v oy Tryee oy Ty Loy ey Y,

listed in clockwise circular order. Applying Lemma 5.2.1 to the subgraph induced by
1

the z7, we see easily that each D; = {z9,z!,...,z%} is a colour class of the above
¢-colouring of D.

Note that C contains exactly one vertex of each D;, 1 = 1,2,...,r. Without loss
of generality, we may assume that (foreach i =1,...,7) 20 € C. Let y? = 29, i.e., let

Y = {29,23,...,20}. Suppose that

1 1 1 2 2 2 q ,4 q
:‘ll,y’p-"5yr7ylay2a'"7yr,'-'7ylay2a'"’yr

is the sequence of vertices defined above.

This sequence is well defined. Indeed, suppose that

1 1 1 .2 2 2 j=1 7-1 7-1
y17y2""1yray13y27"'7yr""7y1 y Y2 a"‘vyr

have been found as required. There is in each B! (: = 1,...,r) a vertex which is not

dominated by y/~' and which comes after y/_, (or y2~! if i = 1). In fact, if /™' = v,
then v, is such a vertex. In particular, vy, = y/ € B! because v, = y?™' € B!™',
and yf comes after y{_l (or y271 if i = 1) because y! ™' is after y77) (or y27%if i = 1).
This also implies that y{ comes at most ¢ + 1 vertices after y/~'. Therefore, after we
remove all yf (z=1,...,7,) =1,...,¢) from D, there is no l-overlap clique of size

¢ —r + 1. We also note that by definition

1 1 1 2 .2 2 q .49 219
yl?y27-"7yr7y17y27"'7yr7“'7y17y29""yr
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appear in clockwise circular order.

Claim. For each ¢ and j, we have y! € (y°, 2] or y? = f}.

It is not difficult to see that the Claim holds for j = 1.

Suppose to the contrary that there is some 3/ (j > 1) with y/ # f} and y! ¢
(y°,z7]. We may assume y] is the first such vertex in clockw1se circular order. Then
22 ¢ [1,4°) and hence 7 € (y?, /7). Consider the vertex y?~'. Then ™! € (y°,277}]
ory!™ = f7".

Ify!™' = f77", then y,j = f7, by the definition of y!, contradicting our hypothesis.

1 1 =1 _j j : .
€ (y0,217"]. Then y!™', 227", 27, y’ are in clockwise circular order.

Suppose that y!~
Hence y?~" does not dommate 27 because 227! is not adjacent to zl. We consider the
following two cases.

Case 1. If 7 € | 7 17}, then at least one vertex from yf:ll,...,y{’l,y{,...,yf_l
must be in [z7, ), as otherwise y? € (f7,z]], contradicting our hypothesis. Let y? be
such a vertex. Then 3% € [f7,#7). This implies that y? # f* (because the stretch B
precedes the stretch B’ ) and hence 3° € (y2,z¢]. Therefore z] precedes (or equals)
y®, which precedes (or equals) z¥. This means that z? ' precedes z° while y] ' follows 32,
which is impossible according to our numbering conventions.

Case 2. If 27 € (42, f7), then yJ™", 277", 2, f7 appear in this order. Hence y!~!
does not dominate f/ because z7™' and z! are not adjacent. Since y! # f7, there
exists a vertex y® among yiI},...,¥" yl,..., ¥, which is after f{. This implies

r

that y? must be after 7 and thai y? can not be the first vertex fb of B®. So y’ must
b

precede (or equal) z.. Therefore zf precedes z° while y? follows y2, which violates
our numbering conventions.

Applying the Claim to y{, we conclude that either y! € (y?,z?] or y? = f? for each
i = 1,2,...,r. Suppose that y! € (y?,27]. Then y? does not dominate y? because
ly?, y?] D [z}, 2] and 2! is not adjacent to z?. Suppose that y¢! = f7. Then y? does
not dominate y? because |[y!,y?]| > ¢. Hence the only possible arc yfy? contained in
C; does not exist, namely, the set C; = {3°,y},...,%?} is independent.

The digraph D — Cy — ...~ C, has ¢(c —r) vertices and no 1-overlap clique of size
¢ —r+ 1. Thus by Lemma 5.2.1 it has a (¢ — r)-colouring in which each colour class

has ¢ vertices. a
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Note that all procedures in the Lemma take O(n) time.

Theorem 5.2.7 Let ¢ be fized.
o Algorithm 5.2.3 correctly decides whether or not D is c-colourable.

e Step 1 of Algorithm 5.2.3 can be implemented to run in time O(m + n), and in

time O(nlogn) if a proper circular arc representation s given.
e The remaining steps of Algorithm 5.2.8 can be implemented to run in time O(n).

e There is an O(m + n) algorithm to decide whether or not a proper circular arc
graph is c-colourable and there is an O(nlogn) algorithm to decide whether or
not a proper circular arc graph s c-colourable if a proper circular arc represen-

tation 1s given. Q



Chapter 6

In-tournaments

6.1 Introduction

An oriented graph D is an in-tournament if the inset of each vertex induces a tour-
nament. If the outset of each vertex of D induces a tournament, then D is an
out-tournament. It is easy to see that a full reversal of an in-tournament is an
out-tournament; similarly a full reversal of an out-tournament is an in-tournament.
For this reason, we only deal with in-tournaments as all results are transferable to
out-tournaments. A local tournament is of course an in-tournament and an out-
tournament. So the class of in-tournaments properly contains the class of local tour-

naments. Note that any induced subdigraph of an in-tournament is an in-tournament.

We have seen that many nice properties of tournaments remain valid for local
tournaments. In the first part of this chapter we will investigate which of these
properties hold also for in-tournaments. As we shall see in Section 6.2 it turns out
that in-tournaments still have considerable structure. It follows easily from the results
given in this section that deciding whether an in-tournament has a hamiltonian path,
a hamiltonian cycle, or a cycle through two given vertices z and y can all be done in

polynomial time.

The second motivation of studying in-tournaments was an open problem due to

Skrien [71]: Using our notation it is the problem of characterizing those graphs which

111
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are orientable as in-tournaments. For local tournaments, the analogous question was
treated in [39] and [T1]. We are not able to give a complete characterization in terms
of forbidden induced subgraphs. However we prove that chordal graphs and graphs
representable {cf. Section 6.3) in unicyclic graphs are orientable as in-tonrnaments.
We also characterize those line graphs that can be oriented as in-tournaments. In
the final section of this chapter, we briefly discuss orientations of graphs as strong
in-tournaments. We give examples of classes of graphs that can be oriented in this
way, as well as an example of a class of graphs which are orientable as in-tournaments

precisely when they are orientable as strong in-tournaments.

An in-semicomplete digraph is a digraph in which the inset of each vertex induces
a semicomplete digraph: similarly an out-semicomplete digraph is a digraph in which
the outset of each vertex induces a semicomplete digraph. [n-tournaments and out-
tournaments are defined as above for oriented graphs. So a locally semicomplete

digraph is a digraph which is both in-semicomplete and out-semicomplete.

An in-branching is a spanning tree rooted at some vertex v and oriented 1n such a
way that every vertex other than v has one arc cut of it. An out-branching is defined
analogously. For any positive integer k, the k-th power D* of a digraph D has the
same vertex set as D, and a vertex z dominates a vertex y whenever there is a directed

(z,y)-path of length at most k£ in D [5].

We close this section by giving a characterization of in-semicomplete digraphs that
will be of use in Section 6.3. A pointed set is a pair consisting of a set and one element
in it. The catch digraph [54] Q(F) of a family F = ((S.,p:)/z € V) of pointed sets
has vertex set V and an arc from z to y if p, € 5;, for z # y € V. The inlersection
graph I'(F') of a family F' = (S§./z € V) of sets has vertex set V and two distinct
vertices r and y are adjacent whenever S, N S, # @. Obviously the underlying graph
of Q((S;,pz)/z € V) is a spanning subgraph of ['(5./z € V) for any family of pointed

sets. The converse does not hold in general. However we have the next result.

Lemma 6.1.1 If D is an in-semicomplete digraph, then Q{{Olz],z)/z € V)= 1)
and I'(O[z]/z € V) = G(D).
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Proof: The first statement is obvious. Now let r.y be distinct vertices of D
such that O[z] (i Oly] # 8. Then z—y or y—z or z and y have some common suc-
cessor z. In the latter case. either z—y or y—z, since D is in-semicomplete. Then

G(D) = T'(Ofz]/z € V) by the remarks above. m|

Theorem 6.1.2 [8/]: A digraph D = (V, A) is in-semicomplete if and only if it
s the catch digraph of a family ((S;,p:)/x € V) such that G(D) equals ['(S./z € V).

Proof: Let D be the catch digraph of ((S;,pz)/z € V) such that G(D) is the
intersection graph G of (S,/z € V). Choose any predecessors r and z of a vertex y.
Then p, € S; N S,, which implies zz € E(G). But then r—z or z—z in D. The

converse follows from Lemma 6.1.1. O

6.2 On the Structure of In-tournaments

In this section we study the properties of in-tournaments and show that some of the
basic and very nice properties of tournaments extend not only to local tournaments,

but even to this more general class of digraphs.

6.2.1 Path Merging in In-tournaments

The first result is a very useful property of in-tournaments. We say that a digraph is
in-path-mergeable if it has the property that for any choice P;, P, of internally vertex-
disjoint paths with terminal vertices z, z and y, z, respectively, there exists a path P
with initial vertex z or y and terminal vertex z such that V(P) = V(P)U V(P,) and
vertices from the same path P, (: = 1 or 2) remain in the same order in P. The path

P is called the merging of P, and P;.

Proposition 6.2.1 [n-tournaments are in-path-mergeable and the merging can be

done in O(m + n) time.
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Proof: Let P, and P, be internally vertex-disjoint {r,2)~ and (y.z) paths, re-
spectively. Let p; and p, denote the lengths of these paths. We shall prove the tirst
claim by induction on p; + p2. The case p; + p = 2 is trivial, so assume p, + p, > 3.
Let z; and z; denote the predecessor of z on P} and P,, respectively. By the definition
of an in-tournament, z; and z; are adjacent. Assume without loss of generality that
21—z If 23 = y, then P = Pr,z;] U {s;—y—z} is the desired path. Otherwise
apply induction to the paths Pi[z, 1] U {z1—z22} and By, z). The proof is easily

turned into a O(m + n) time algorithm. 0

Corollary 6.2.2 Let D be an in-tournament with two distinct vertices x and y,
such that there are two internally vertex-disjoint (z,y)-paths P, end Py in D. Then
P, and P, can be merged into one (z,y)-path P such that V(P) = V(P) U V(P,).
Such a path P can be found in O(m + n) time. 0

One will often use Corollary 6.2.2 in the following form.

Corollary 6.2.3 Let P, = 22— ... =T, and P, = y;—y,— ... —y, be dis-
joint paths in an in-tournament D. If there exist 7,3,1 < ¢ < 3 < p, such that
Ti—Y1,y,—; then D has an (z,,z,)-path P such that V(P) = V(P ) U V(F).

Proof: Apply Corollary 6.2.2 to the paths P[z,,z,] and 2,y — ... —y,—z;. O

The proof of the next result shows the usefulness of the merging property. For
any pair of vertices r and y we use d(z,y) to denote the length of a shortest directed

(z,y)-path in D, if there exists one.
Proposition 6.2.4 Any power of an in-semicomplete digraph is in-semicomplete.

Proof: Let D be an in-semicomplete digraph, and let D* be the k-th power of D
for an integer k > 2. We claim that for any three vertices r,y,z of D the following

property holds: If d(z,y) < kand d(z,y) < k, then d(z,2) < kord(z,z) < k. Clearly
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it is enough to prove the claim for internally vertex-disjoint (z,y)—, (z,y)-paths. Now
it is easy to see that the claim follows from Proposition 6.2.1, since any two such
internally vertex-disjoint paths can be merged such that the relative order of the ver-

tices from the same path is retained. O

In [6] it is shown that any digraph D with the path-merging property - that is,
for any two internally disjoint paths P, and P, with the same initial vertex z and the
same terminal vertex y, there exists an (z,y)-path P, such that V{(P) = V(A )UV(F,)
~ still has a hamiltonian cycle whenever it can possibly have one, i.e., whenever D
is strong and G(D) has no cutvertex. Furthermore this class of digraphs properly

contains the class of in-tournaments.

6.2.2 The Strong Components of In-tournaments

Next we turn to the structure of the strong components of in-tournaments. For
local tournaments, the structure is very similar to that of tournaments: Any strong
component is a tournament: if there is an arc between two strong components, then
onie completely dominates the other; and finally SC(D) has a unique spanning path
(cf. Lemma 2.2.4). For in-tournaments, not all of this structure is retained. However,

as we shall see there is still a lot of structure.
Lemma 6.2.5 Fvery connected in-tournament has an out-branching.

Prcoof: We use induction on n. If n < 2 this is clear, so assume n > 3. Let z be
a vertex such that the underlying graph of D — z is connected. We see that D — z
is an in-tournament and, by induction, it has an out-branching. If z is dominated by
some vertex of D — z, then the claim follows. Hence we may assume that z dominates
some vertex y € D — r and is not dominated by any vertex. Now, it follows from

Proposition 6.2.1 that D has an out-branching rooted at . O

Theorem 6.2.6 Let D be an in-tournament.
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(a) Let A and B be distinct strong components of D. If a verter a € A dominates
some verter in B, then a—B. Furthermore A0 I{b) induces a tournament for

each b € B.

(b) If D is connected, then SC(D) has an out-branching. Furthermore, if B is the
root and A is any other component, there is a path from R to A containing all

the components that can reach A.

Proof: Let A and B be strong components of D for which there is an arc a—b
from A to B. Since B is strong, there is a (¥, b)-path for any ¥’ € B. Hence, it follows
from the definition of an in-tournament and the fact that there are no arcs from 8 to
A that a—b'. This proves the first part of (a). The second part of (a) is immediate
from the definition of an in-tournament.

The first part of (b) follows by observing that SC(D) is itself an in-tournament
and then applying Lemma 6.2.5. The second part follows from Proposition 6.2.1. We

leave the details to the reader. O

Let B and C be two vertex-disjoint connected subgraphs of a digraph D. A B~
separating set is a subset S C V(D) such that B and C are in distinct components of
D — S. A B — C separating set is minimal if B and C are in the same component of
D — S for any S’ C S. A minimal separating set of a strong digraph D is a subset
S C V(D) such that D — S is not strong, but D — 5’ is strong for any S’ C S.

Corollary 6.2.7 Let D be a strong in-tournament and let S be a minimal sepa-
rating set. There is a unique order D\, Ds, ..., Dy of the strong components of D - S,

such that there are no arcs from D; to D; for j > 1 and D, has an arc to Dy, for
t=1,..,k—1.

Proof: We shall prove that D — S has precisely one sink component. Suppose
D — S has at least two sink components. By the minimality of S every vertex z € 5
must be dominated by at least one vertex from each sink component of D — 5. Thus

by the definition of an in-tournament, all sink components are adjacent, contradicting
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the fact that they are sink components. Hence D — 5 has precisely one sink com-
ponent and the claim follows from Theorem 6.2.6 (b) (when there is only one sink

component, every component has a directed path to that component). O

6.2.3 Paths and Cycles in In-tournaments

We begin this section by characterizing those in-tournaments that have hamiltonian
paths. In [4] it was shown that every connected local tournament has a hamiltonian
path. This does not extend to in-tournaments (e.g., take any out-branching with at
least two branches), but as we shall see below, there is still a good characterization

of those in-tournaments that have hamiltonian paths.

Theorem 6.2.8 A connected in-tournament D has a hamiltonian path if and only

if it has an in-branching.

Proof: Since any hamiltonian path is an in-branching we need only prove the
other half of the claim. Suppose D has an in-branching. Using Proposition 6.2.1 it
is easy to prove, by induction on the number of branches of the in-branching, that D
has a hamiltonian path ending in the root of the in-branching. We leave the details
to the reader. 0

Corollary 6.2.9 There is a polynomial algorithm to decide if a given in-tournament

has a hamiltonian path and find one if it ezxists.

Proof: For any digraph D deciding the existence of an in-branching and finding
one if it exists can be done in O(mlogn) (see [75]). Given an in-branching of D,
its branches can be merged into a hamiltonian path ending in z in time O(n?) by

Proposition 6.2.1. O

Now we show that just as for tournaments and local tournaments, every strong
in-tournament has a hamiltonian cycle. First we prove a result which has several nice

consequences, as we shall see below.
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Theorem 6.2.10 Let D be a strong in-tournament having a cycle of length k. but

for some l with2 <1< n—k.

Proof: Let C be a cycle of length & in D. Since k < n and D is strong, there
exits a vertex r € V(D) — V(C) such that z dominates a vertex on (. If r is also
dominated by some vertex of €', then it follows from Corollary 6.2.2 that D has a
cycle of length £ + 1. Hence we may assume that z is not dominated by any vertex
of C'. Now we conclude, by the fact that D is an in-tournament, that r dominates all
of C'. Since D is strong, there exists a directed path P from C to z, let [ denote the
length of P. Since t—C, ! > 2. Now, since z—C, we conclude that D has directed

cycles of lengths [ +1,...,1+ k, all containing P as a subpath. O

Corollary 6.2.11 An in-tournament D has a hamiltonian cycle if and only if it
is strong. Furthermere there is a polynomial algorithm te find a hamiltonian cycle in

any stro... in-tournament.

Proof: Since D is strong, it has a cycle. By Theorem 6.2.10, the length of a
longest cycle must be n, so D is hamiltonian. It is easy to derive an O(n®) algorithm
for finding a hamiltonian cycle from the proof of Theorem 6.2.10. We leave the details

to the reader. 0

Corollary 6.2.12 Any iwo vertices in each strong component of an in-tournament

lie on a cycle.

Proef: This is immediate from Corollary 6.2.11. O

Corollary 6.2.13 Let D be a strong in-tournament. If D has a cycle C' of length
k, for some k > [3], then D has cycles of all lengths k,k +1,...,n.
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Proof: This follows immediately from Theorem 6.2.10 by backwards induction on
k. 0

Corollary 6.2.14 Any strong in-tournament D which is not a directed cycle con-

tains a vertex x such that D — z is strong.

Proof: Let D be a strong in-tournament on n vertices which is not a directed
cycle. It follows easily from Theorem 6.2.10 that D has a cycle of length & for some
[%] < k < n. Thu- the claim follows from Corollary 6.2.13. 0

An oriented graph D = (V, A) is pancyclic if it contains a directed cycle of length
[ for each | = 3,4,...,|V].

Corollary 6.2.15 An in-tournament D for which G(D) is chordal is pancyclic if

and only if it is strong.

Proof: This follows from Corollary 6.2.11 and Corollary 6.2.14 by induction. O

Note that Corollary 6.2.13 cannot be extended to cycles of length k,k+1,...,n
through some specific vertex, as was the case for local tournaments (see Theorem 3.4
in [4]). This is shown by the digraph D in Figure 6.1, where r < k. By Corollary
6.2.13, D has cycles of all lengths k, k+1,...,n, but the vertex c is not on any cycle
of length s with £ < s < n. By choosing r = k + 1, we get a family of digraphs
showing that k > [2] is best possible for Corollary 6.2.13. This digraph has a cycle
of length 2] but no cycle of length [2].

Before closing this section we point out that all the results in Section 6.2 are
true for in-semicomplete digraphs as well. We also point out that in [8] it is shown
that by a more detailed inspection and use of suitable datastructures, one can obtain
O(m + nlog n) algorithms for finding hamiltonian paths and cycles in in-tournaments

if they exist.
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Figure 6.1: An in-tournament D on k + r vertices, r < k, where the vertex ¢, is not
on an s—cycle for any k < s < k + 7.

6.3 In-tournament Orientability

Theorem 6.3.1 Graphs that are orientable as in-tournaments can be recognized

in polynomial time.

Proof: Let a graph G = (V, E) be given, and let A = {a;,a2,...,am} be an arbi-
trary orientation of the edges of G . If a; is an orientation of the edge yz of G, then
the reverse orientation of that edge is denoted by @,. We now construct an instance
of the 2-SAT problem as follows: The set of literals is X = {a;,...,am,@1,...,8n},
and two such literals ¢ and ¢; lie in a common clause (¢; V ¢;) precisely when K,?l
correspond to arcs with the same terminal vertex and non-adjacent initial vertices. It
is easy to see that G is orientable as an in-tournament if and only if the above-defined
instance of 2-SAT is satisfiable. The complexity of 2-SAT is O(#clauses) (see [62]).
Hence, it follows from the way we construct the clauses above that we can recognize
graphs orientable as in-tournaments in time O(mA), where A denotes the maximum

degree of G. 0



Chapter 6. In-tournarnents 121

SN SN N

31 BZ BS

Figure 6.2: The digraphs By, B;, B

Let B be the family of the three digraphs shown in Figure 6.2 and let F' be any
subset of B other than {B;} or {B,}. Skrien [71] characterized the classes of those
graphs which can be oriented without a member of F' as an induced subdigraph.
These are the classes of complete graphs, comparability graphs, proper circular arc
graphs, and nested interval graphs [71]. Since each of the forbidden configurations
contains just two arcs, 2-SAT could be used to solve the recognition problem for each

of these four classes, all in time O(mA).

A graph G is called representable in the graph H if G is isomorphic to the in-
tersection graph of a family of connected subgraphs (H./z € V(G)) of H. It seems
interesting that three of these four classes above can be defined by representability. In
the case of the underlying graphs of in-tournaments, we have not been able to find a
similar characterization. However, we have the following sufficient condition in terms

of representability.

Theorem 6.3.2 [64]: Every graph that is representable in a unicyclic graph is

orientable as an in-tournament.

Proof: Let (H./x € V(G)) be a representation of G in the unicyclic graph H
with cycle C = zg,2y,...,2¢-1. The numbering is done clockwise around the cycle
(the reader should think of this as drawn in the plane). We may assume H connected.
For vertices z of G whose representative H, contains all vertices of the cycle C, we

define p, := zo. If H, contains some but not all of the vertices of C, then it contains



Chapter 6. In-tournaments 129

et e

just a subpath, since H; is connected. For such vertices r we denote the first vertex
of this path in clockwise orientation by p,. If H. N C = 0, then there is a unique
vertex pr of H, separating the rest of H, from C.

By Theorem 6.1.2, it suffices to show that the catch digraph D of the family

((V(H;),pz)/z € V(G)) is an orientation of (. Let ry be an edge of (7, that is,
H.NH, #0. Let z be a vertexof H,NH,. If H:NC and H,N(C are nonempty, then
it is easy to see that p, € V(H.NC)or p, € V(H,NC). Thusz - yory — zin D.

So suppose without loss of generality that H, N C = (. Then there is exactly one
path from z to C. Hence p, lies on this path, and if H, N C = 0, then p, does also.
If H,n C = 0, then we may assume without loss of generality that p, lies on the
(py, z)-subpath. Now p; € V(H,) andy — = in D. If H N C # §, then the whole

path from 2z to C must lie inside H,, whence y = z in D. 0

The converse is not true. The underlying graph of the in-tournament of Fig.
6.1 is not representable in any unicyclic graph. It can be easily shown that in any
graph G representable in a unicyclic graph the following must hold: Any vertex z of
an induced cycle of length at least 4 must be adjacent to at least one vertex from
any other induced cycle in G — z. But this property is certainly not obeyed by the
underlying graph ot the digraph of Fig. 6.1.

We believe that any graph orientable as an in-tournament is representable in a
cactus — a connected graph in which any block is a cycle or an edge. Note that the
opposite is not true: no cactus with at least two induced cycles of length at least
four can be oriented as an in-tournament (every cactL can be represented in some

subdivision of itself).

Theorem 6.3.2 has several consequences. We list some of them below.

Corollary 6.3.3 Fvery chordal graph and every circular arc graph is orientable

as an in-tournament.

Proof: Chordal graphs are representable in trees (see {33)) and hence in unicyclic

graphs. By definition, circular arc graphs are representable in a unicyclic graphs.
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Now the claim follows from Theorem 6.3.2. O

A Helly-representation is a representation which has the so-called Helly-property
-~ the total intersection of any family of pairwise intersecting representatives is

nouempty.

Corollary 6.3.4 Fvery graph with exactly one induced cycle of length greater than

3 is orientable as an in-tournament.

Proof: By Theorem 6.3.2 it suffices to show that such a graph is representable
in a unicyclic graph. Let G be a graph with only one nontrivial induced cycle C =
€oCl ... Co—1¢0, £ > 4. Let W be the set of vertices that are adjacent to all vertices of C
and T = V(G) — V(C)— W. Since G contains exactly one induced cycle of length at
least four, W induces a complete subgraph and vertices in T' are adjacent to at most
two consecutive vertices of C. Similarly, no two vertices of T' with noncomparable

neighbourhoods in C can be adjacent.

It is clear that there is a Helly representation of G[V(C)U W] in a cycle of length
¢. Also it is true that any Helly representation of G — z in some unicyclic graph can
be extended to another Helly representation of GG in another unicyclic graph provided
z is a simplicial vertex of G. So now it suffices to show that if T # @, then T contains

a simplicial vertex.

First we prove that if T contains a vertex z which is not adjacent to any vertex of
C', then T contains a simplicial vertex with this property. In fact, let S be a minimal
r — C separating set with A and B being the components of G — S containing z
and C respectively. Since S is minimal, each y € S is adjacent to some vertex in
A and some vertex in B. Thus for any pair u,v € § there exists a path ua;...a,v
and a path vb;...bu, where all a; € A and all b; € B, such that these paths are
chosen to be of smallest possible lengths. It follows that ua; ...a,vd, ...bwu is a cycle
of length at least four, which is distinct from C, implying that it must have a chord.
But a;b; ¢ E(G) by definition of a vertex separating set, and a;a; ¢ E(G) and
bib, ¢ E(G) by the minimality of r and ¢. Thus the only possible edge is uv € E(G).
Hence S is complete. Since G[AU S is chordal, by Dirac’s Theorem (see [33]), AU S
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contains two non-adjacent simplicial vertices or G[A U S} is complete. Hence 4 must

contain at least one simplicial vertex since G[S] is complete.

Now assume that all vertices in T are adjacent to either one vertex or two consec-
utive vertices of C'. If r € T 1s adjacent to ¢; and c¢;41 but not ¢,42, then WU {¢y, i1}
is a £ — ;4 separating set. Let A be the component in G — (W U {c,,¢;41}) containing
z. Then G[AU W U {¢,, cit1}] is chordal. Again, by Dirac’s Theorem, it contains two
non-adjacent vertices if it is not complete. So T must contain at least one simplicial
vertex. If z € T is adjacent to ¢; only, then either W U {¢;, ;41 } or W U {c;,cio1} 18
a T — ci4o separating set. By a similar discussion we can see that T contains at least

one simplicial vertex. 0

6.4 Strong In-tournament Orientability

Skrien [71] completely solved the problem concerning acyclic orientations of graphs
without an induced subgraph from the set F' for any F' C B, where B is the set of
digraphs in Fig. 6.2. We now turn to the problem of orienting graphs as strong in-
tournaments. Deciding whether a graph can be so oriented seems to be quite difficult.
This is partly due to the fact that handling the strong connectivity requirement is
not easy; for example, the class of graphs orientable as strong in-tournaments is not
closed under induced subdigraphs. However, as we shall see below, for some classes of
graphs, being orientable as a strong in-tournament is equivalent to being orientable

as an in-tournament.

Proposition 6.4.1 A graph without a separating complete subgraph (sometimes
called a prime graph) is ortentable as a strong in-tournament if and only if it is

orientable as an in-tournament.

Proof: One direction is trivial. For the other, let G be a graph without a sepa-
rating complete subgraph, and let D be an orientation of (G as an in-tournament with
the minimum number k of strong components. We may assume k > 2. Let D be the

source component, and let D, be another strong component such that [, has exactly
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one predecessor in the strong component digraph SC (D), namely D;. Such a D; can
be found by Theorem 6.2.6(b). Let V| be those vertices of D that dominate the ver-
tices of ;. Again by Theorem 6.2.6, V| induces a tournament in D. If V| = V(D,),
we are done since in that case we can reorient an arbitrary arc between D, and D,
to obtain an in-tournament with fewer strong components, a contradiction. So [zt
us assume Vi # V(D,). By Theorem 6.2.6, there is no path between V(D,) — WV
and V(D,) which avoids Vj. Then V; induces a separating complete subgraph in G

contradicting our assumptions. O

Note that there exist hamiltonian chordal graphs (and thus graphs orientable as in-
tournaments (cf. Corollary 6.3.3)) which are not orientable as strong in-tournaments.
Such an example is given in Fig. 6.3. It is clear that this example can be generalized
to an infinite family. Although we are not able to solve the problem of characterizing
those chordal graphs which are orientable as strong in-tournaments, we will mention

a partial result.

Figure 6.3: A hamiltonian chordal graph which is not orientable as a strong in-
tournament

The following is a Corollary of the work in [49].

Proposition 6.4.2 A graph G can be oriented as a strong local tournament if it

s a proper circular arc graph which is not an interval graph. O

Corollary 6.4.3 A chordal graph is orientable as a strong local tournament if it

is claw-free and net-free and not an interval graph.
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Proof: It was shown in 7] that a chordal graph is a proper circular arc graph i

and only if it is claw-free and net-free. Now the claim follows from Proposition 6.1.2. O



Chapter 7
Oriented Graphs of Moon Type

An oriented graph D is of Moon type if every connected induced subgraph is either
strong or acyclic. If D is also a tournament, then it is called a tournament of Moon
type [35]. In [57], Moon gave a structural characterization of tournaments of Moon
type. He proved that every tournament of Moon type can be obtained from a highly
regular (cf. below) tournament by substituting transitive tournaments for the vertices.
Tournaments of Moon type have also been studied by Burzio, Demaria, and Guido,

18, 35).

In this chapter, we give a similar structural characterization of oriented graphs of
Moon type. Our characterization generalizes Moon'’s result. Specifically, we prove that
every oriented graph of Moon type can be obtained from a local transitive tournament

by substituting acyclic oriented graphs for the vertices.

In Section 7.1, we will mainly review previous results and some equivalent defini-
tions of tournaments of Moon type. In Section 7.2, we shall discuss oriented graphs
of Moon type and analyze several properties of such graphs. We also give some equiv-
alent definitions of oriented graphs of Moon type, one of which implies a polynomial
algorithm for recognizing these oriented graphs. Finally in Section 7.3, we prove our

main result, which generalizes a theorem of Moon.

Let S be a subgraph of D and let z € D — S. The vertex z cones S or S is coned

by r if r—5 or S—r whenever z is adjacent to a vertex of S. The subgraph S is
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shrinkable if S is coned by all vertices in D — S. A shrinkable subgraph & is marimal
if it is not D and it is not properly contained in any shrinkable subgraph other than

D. If S is shrinkable, then the vertices of S are said to be equivalent.

Suppose that the vertices of D are partitioned into vertex-disjoint subgraphs
S1,Sa, ..., Sk of equivalent vertices. Then 5,— 5, or S, =S5, if there is at [cast one arc
between S; and S;. If Dy is an oriented graph on & vertices in which v,—uv, if and
only if S;—S;, then we write D = D(S1,S2,...,5). An oriented graph is simple if
there are no proper non-trivial subgraphs of equivalent vertices, that is, if the equa-
tion D = Di(S),S2,...,Sk) implies that k =1 and S, = D, or k =n, D = D; and
S = v;.

For each subgraph B of D, the set of vertices which are dominated by at least one
vertex of B is called the outset of B, denoted by O(B); similarly the set of vertices

which dominate at least one vertex of B is called the inset of B, denoted by I(B).

7.1 Tournaments of Moon Type

In [35], a tournament of Moon type is defined to be a tournament in which each
subtournament is hamiltonian or transitive. Note that a tournament is hamiltonian
if and only if it is strong, and transitive if and only if it is acyclic. Thus our definition
of an oriented graph of Moon type is consistent with this definition of a tournament

of Moon type.

A tournament T is highly regularif the vertices T can be labeled as vy, vz, ..., Va4
in such a way that v;—uv; for all subscripts 7 = 1,2,...,2k + 1 and for all subscripts
j=14+1,14+2,...,1+k (mod2k+1). It is easy to see that a highly regular tournament

is a local transitive tournament.

The following theorem is reformulated from (18, 57].
TL 1

heorem 7.1.1 The following statements are equivalent for « tournament T':

(a) T s a tournament of Moon type;
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(b) every subtournament of T is a tournament of Moon type;
(c) T s a local transitive tournament;

(d) T = Dops1(S1, 52, ..., S2ks1), where Dogyq is ¢ highly reqular tournament and

each S, is a transitive tournament. 0

If a local tournament is of Moon type, then we call it a local tournament of Moon
type. From Theorem 7.1.1, we know that every tournament of Moon type is a local
transitive tournament. The following proposition assures that every local tournament

of Moon type is also a local transitive tournament.

Proposition 7.1.2 An oriented graph is a local tournament of Moon type if and

only if it is a local transitive tournament.

Proof: Suppose that a local tournament D is not a local transitive tournament.
Then by Lemma 3.2.5, D contains a forbidden quadruplet. Since a forbidden quadru-
plet is connected but neither strong nor acyclic, D is not of Moon type.

Suppose that D is a local transitive tournament. Then D is a local tournament.
If D is not of Moon type, then D contains a connected subgraph S which is neither

strong nor acyclic. Since S is not acyclic, S must contain at least one cycle. Let
C = v1—v— ... —2u—v;

be a longest cycle in S. Since S is connected and not strong, there exists a vertex
y € V(8)—V(C) whkich is adjacent to a vertex, say v;, in C. Suppose that y dominates
v;. (A similar discussion applies when v;—y.) Note that both y and v;-, dominate
v,. The vertex y and the vertex v;_; must be adjacent as D is a local tournament.

Observe that v;,_; can not dominate y, as otherwise there is a cycle
Up— ... U YU .U Uy

of length { + 1, contradicting the choice of C. Thus y dominates v;,_;. Continuing

this argument, we conclude that y dominates all vertices of C'. But this is impossible
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as D is a local transitive tournament in which the outset of every vertex contains no

cycle. Therefore D is of Moon tvpe. 0

Corollary 7.1.3 Let T be a tournament. Then T is a local transitive tournament

if and only if it is of Moon type.

Pronsf: This follows immediately from Proposition 7.1.2. 1

7.2 Oriented Graphs of Moon Type

The definition of an oriented graph of Moon type guarantees that every acyclic ori-
ented graph is of Moon type. Nevertheless a strong oriented graph is not necessarily
of Moon type. For example, an oriented graph formed by identifying two vertices

from two distinct directed cycles is strong but not of Moon type.

Suppose that S is a subgraph of an oriented graph D which is of Moon type. Since
every connected subgraph H of S is also a connected subgraph of D, H must be either
strong or acyclic. Hence S is of Moon type. Conversely, if every subgraph of D is of

Moon type, then D is of Moon type. Therefore we have the following proposition.

Proposition 7.2.1 An oriented graph D is of Moon type if and only if every sub-
graph of D is of Moon type. O

Proposition 7.2.2 An oriented graph D is of Moon type if and only of O(B) =
I(B) for every strong subgraph B of D with |V(B)| > 1.

Proof: Suppose that D is an oriented graph of Moon type and suppose that B is
a strong subgraph of D with |V(B)| > 1. For each vertex z which is dominated by at
least one vertex of B, z must dominate some vertex in B as otherwise B+ z would be

a connected subgraph of D which is neither strong nor acyclic. Then O(B) C I(B).
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Similarly for each vertex r which dominates at least one vertex of B, z must be
dominated by a vertex of B. Then [(B) C O(B). Hence O(B) = [(B).

Suppose that D is not of Moon type. Then there is a connected subgraph S
which is neither strong nor acyclic. Let S’ be a strong component of S of maximum
size. Since S is not acyclic, we have |V{ )] > 1. Since S is not strong, we have
S"# 5. Note that S is connected. Then there exists a vertex r € § — S’ such that
T is adjacent to at least one vertex of S’. From the maximality of S’, we have either

z€0(S') - I(8") or z € I(S") — O(S"). O

The following theorem turns out to be very useful in later discussions.

Theorem 7.2.3 A connected oriented graph is of Moon type if and only if every

(not necessarily connected) subgraph is either strong or acyclic.

Proof: The sufficiency is obvious. To prove the necessity, suppose that D is of
Mooen type and S is a disconnected subgraph of D. We claim that each connected
component of S is acyclic and hence S is acyclic.

Let S1,S,,...,Sk where k£ > 1 be the components of S. Without loss of generality,
assume that S; contains a cycle. Since 5) is a connected subgraph of D which is of
Moon type, S) is strong. By hypothesis, the underlying graph G of D is connected.
Thus there exists a path (in G) from S; to S;. Let 1 ~ 22 ~ ... ~ x; be a shortest
path from S to S; in G. From the connectivity of S we conclude that { > 2. Since

Sy is strong, Sy + {z1,z2,...,z;} must be also strong. On the other hand, the only

vertex in Sy + {xy,z2,...,z;} which is adjacent to z; is z;-;. Hence the vertex z
has degree one in S| + {z,,z,,...,2/}. So Sy + {z1,2,...,2:} can not be strong, a
contradiction. Therefore S is acyclic. 0

Proposition 7.2.4 If D is a strong oriented graph of Moon type, then every

longest directed path induces a strong subgraph.

Proof: Suppose L = z,—z;— ... —z; is a longest path in D. Since D is strong,

x; must dominate sore vertex in D. Since L is a longest path, z; can only dominate
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vertices in L. Thus L contains a cycle and hence it must strong. a

We have seen from Theorem 7.1.1 that all tournaments of Moon type are local
transitive tournaments, that is, the outset as well the inset of each vertexis a transitive
tournament. For general oriented graphs of Moon type, there is a nice local property

for each vertex.

Proposition 7.2.5 If D is an oriented graph of Moon type, then the outset as

well the inset of every vertex is acyclic.

Proof: If the outset (or the inset) of some vertex z contains a cycle, then this cy-
cle together with = induces a connected subgraph which is neither strong nor acyclic.
O

The following theorem will imply a polynomial algorithm to recognize all oriented
graphs of Moon type. Define O*(z) = V(D) —I{z] and I"(z) = V(D) — Ofz]. We call

O*(z) the super-outset of z and I*(x) the super-inset of .

Theorem 7.2.6 A connected oriented graph is of Moon type if and only if the

super-outset as well as the super-inset of each vertez is acyclic.

Proof: Suppose that D is of Moon type. No vertex in O"(z) dominates z, so
O*(z) U {z} can not be strong and hence, by Theorem 7.2.3, O*(z) U {z} must be
acyclic, and therefore also O*(z). Similarly I*(z) is acyclic. Conversely, suppose
that D is not of Moon type. By Proposition 7.2.2, there exists a strong subgraph B
(IB| > 1) for which O(B) # I(B). If O(B) — I(B) # 8, letting z € O(B) — I(B),
then I*(z) is not acyclic as B contains at least one cycle. A similar argument applies

if I(B) - O(B) # 0. 0

Corollary 7.2.7 There ezists a polynomial algorithm to recoynize oriented graphs

of Moon type.
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Proof: There exists a linear time algorithm (cf. [1]) to test whether an oriented
graph is acyclic or not. Thus to test whether /*(z) and O*(z) contain a cycle, for any
vertex z, takes O(mn) time, where n and m denote the numbers of vertices and arcs

respectively. o

It is well known that every strong tournament T on at least 4 vertices has a vertex
r such that T — z is still strong (cf. [58]). For a local tournament D, if D is strong
and not a directed cycle, there exists a vertex z such that D —z is still strong (cf. [4]).
The following more general theorem of this type is an easy consequence of Theorem

7.2.3.

Theorem 7.2.8 A connected oriented graph D 1s of Moon type if and only if for
every ordering of vertices of D, vy, vq,...,Us, the following property holds: for some

0<k<n,V-—{uv,vg...,u} is strong for 2 < k and is acyclic for 1 > k. O

7.3 Oriented Graphs of Moon Type and Local

Tournaments

We have seen that a tournament 7' = Dy (51, Ss,...,5%), 1 <k <n =|T|, is of Moon
type if and only if Dy is of Moon type and each S; is transitive. A similar statement

holds for general oriented graphs. Let n = |D|.

Proposition 7.3.1 Let D = Di(S1,5q,...,5:), 1 < k < n, be connected. Then
D s of Moon type if and only if Dy is of Moon type and each S; is acyclic.

Proof: Suppose that D is of Moon type. If Dy is not of Moon type, then there
exists a connected subgraph S in D, which is neither strong nor acyclic. For each
vertex v, of S, arbitrarily choose a vertex from S; corresponding to v;. Then the
subgraph of D induced by these vertices is connected but neither strong nor acyclic,
contradicting the assumption. Therefore Dy is of Moon type. Now suppose some S;

contains a cycle. Since D is connected and k > 1, there exists a vertex z ¢ S; which
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1s adjacent to some vertex in S,. Then we must have either r—5, or S,-»r in ). But
then by Proposition 7.2.5 D is not of Moon type, contradicting the hypothesis.
Conversely, suppose that Dy is of Moon type and each S, is acyclic. Let & be
any vertex in D. Then z is in some S;. Let v; be the vertex of D, corresponding to
Si. Since Dy is of Moon type, O*(v;) is acyclic by Theorem 7.2.6. In fact, O~[x,] is
acyclic. Suppose that S’ is the subgraph of D induced by Uy, e00w) V(S)). Then 8
must he acyclic in D because each 5; is acyclic. It is easy to see that O*(r) in D is
a subgraph of S’. So O*(z) is also acyclic. Similarly /*(z) is acyclic and hence, by

Theorem 7.2.6, D is of Moon type. 0

Proposition 7.3.2 Let D be a connected strong oriented graph. Then no two

distinct mazimal shrinkable subgraphs contain a common verter.

Proof: Let S; and S; be any two distinct maximal shrinkable subgraphs in D
with z € 5;NS,;. We claim first that V(S51)UV(S,) # V(D). Assume to the contrary
that V(S5;) U V(S;) = V(D). Since D is connected, there is a vertex y in S; ~ S
which is adjacent to at least one vertex in S;. Then either y—S) or 5)—y because
Sy is shrinkable. Assume y—S,. (A similar argument applies when S;—y.) If there
is a vertex z € 5} — 5, and a vertex w € Sy such that z—w, then z—5, as S, is
shrinkable. In particular, z—vy, contradicting the fact that y—5;. Hence no vertex
in S; — 5, dominates a vertex in S, and S5; US; = D is not strong, a contradiction to
the hypothesis.

To complete the proof, suppose that y € D — (5, U S2) is a vertex which is adja-
cent to at least one vertex in S5; U S,, say to a vertex in S,. Then y—.5, or 5y,
in particular, y—z or z—y. Hence y—5; or S;—y. Therefore S;, U S, is a shrinkable
subgraph which strictly contains S;, contradicting the maximality of S;. Therefore

S; and S, have no common vertex. "

Let D be an oriented graph of Moon type. From the above proposition, we know
that for each vertex z of D there exists a unique maximal acyclic shrinkable subgraph

S, containing z, such that some k& of these subgraphs, say S5i,52,...,5, form a
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partition of D. (Equivalent vertices r and y will have S; = S,.) Hence each oriented
graph D can be written, in an essentially unique way, as D = Di(S51, S2,..., Sk). We

call Di(Sy,5,,...,5k) the canonical expression. 1t is easy to see that D, is simple.

Lemma 7.3.3 Let D be a connected oriented graph of Moon type and let C be a
directed cycle in D. Then each vertex of D must have at least one in-neighbour and

at least one out-neighbour in C.

Proof: Since D is a connected oriented graph of Moon type, by Theorem 7.2.3,
C U {z} is strong as it is not acyclic. Hence there is at least one vertex in C domi-

nating = and at least one vertex in C being dominated by z. a

The following theorem conjectured by Hell [38] is the main result of this chapter.

Theorem 7.3.4 Let D be an oriented graph with the canonical expression Di(S1, S2,
..., St). Then D is of Moon type if and only if Dy is a local transitive tournament

and each S; is acyclic.

Proof: For the sufficiency, suppose that Dy is a local transitive tournament and
each S; i1s acyclic. Then Dy is of Moon type by Proposition 7.1.2, and hence D is of
Moon type by Proposition 7.3.1.

For the necessity, suppose that D is of Moon type. Without loss of generality,
assume that D is connected otherwise we consider each component of D. Then Dy is
connected. If D is acyclic, then ¥ = 1, and so Dy has only one vertex and it is trivially
a local transitive tournament. If D is strong, then Dy must be strong. By Proposition
7.3.1 each S; is acyclic, and by Propositions 7.3.1 and 7.1.2 it suffices to sho:. that
Dy is a local tournament. Suppose to the contrary that Dy is not a local tournament.
Then in Dy there exists a vertex which has two non-adjacent out-neighbours or there
exists a vertex which has two non-adjacent in-neighbours. Since the two cases are
symmetric, assume that there is a vertex z which has non-adjacent out-neighbours
and y. We claim that there exists an acyclic shrinkable subgraph containing vertices

r and y.
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Since Dy is strong, there exist directed paths from r to : and from y to z. Among
all directed paths from r to = and from y to z, choose a shortest one. Without loss
of generality, let

P: zor,>r— ... ooy ==

be such a path. Note that r—z;— ... -ry—z is a directed cycle. By Lemma 7.3.3.
y—z; for some: = 1,2,... k. If 2 # 1, then y—z,—z,{|— ... 04 = 2 is a path from
y to z of length < k, contradicting the choice of P. Thus ¢ = 1.

Among the vertices 3,3, ..., Tk, let ; be the one of the smallest subscript such
that z;—z or ;—y. If z;—z, then z—z,— ... 2>z is a cycle. By Lemma 7.3.3,
z;—y for some j with 2 < j < I. Since ! is the smallest subscript, j = {. Similarly
if z;—y then z;—z. Thus, in Dk, z,—{z,y}—z; and no vertex «; with 1 <i < [is
adjacent to z or y. Moreover r{—z,— ... —x; 15 a directed path.

Let S = {v € V(Dy)| z;—v—=z,, and v is not adjacent to z; for any i with
1 < i< l}. Then {z,y} € S. Let & C S be a subset of the smallest cardinality
which contains both z and y and is coned by all vertices in S — S§’. Now §' € O(x)
and hence S’ induces an acyclic subgraph in D, by Proposition 7.2.5. We claim that
S’ is shrinkable in Dy.

Suppose that w ¢ S’ is a vertex dominated by some vertex v € S’. We will show
that w is dominated by all vertices of S’. One can show, app.ying a similar argument,
that if w ¢ S’ dominates some vertex in S’ then w dominates all vertex of S’

Without loss of generality, we assume that w ¢ S (since S’ is shrinkable in
S). By Lemma 7.3.3, w—z; for some | < i < [ as v—ag,—... oz—v is a cy-
cle. Suppose that w is not dominated by some vertex u € S’. Consider the cycle
C' = y—z,—...—1;—u. Since w dominates z; of C’, w must be dominated by a
vertex z; of C' by Lemma 7.3.3.

Now let ¢ and j be chosen so that z; € {z1,2,...,z/} is the vertex with the
greatest index such that w—r; and z; € {z,2,,..., 2} is the vertex of the smallest
subscript such that z;—w. Since w ¢ S, it is not the case that ¢ = 1 and j = [. Hence
we have the following two cases.

Case 1. Suppose that : = | and j < I. Then w—z;— ... —z,—w is a directed

cycle and v—{w, z;} is not adjacent to r, with | < & < I. Hence {v,w,zy,...,2;}
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induces a connected subgraph which is neither strong nor acyclic, contradicting the
fact that Dy 1s of Moon type.

Case 2. Suppose that : > 1. Then, for each a € 5’ such that a—w, a—w—z,— ...
—z;—a is a cycle, and, for each b € S', b must dominate some vertex in this cycle
by Lemma 7.3.3. If b does not dominate w, then b—a as b does not dominate any z
(» < k <) either.

Suppose that not all vertices of .S’ dominate w and let S| = {c € §'| c>w} and
! = {c € 5 chw}. Then S{U S; = § and from the above discussion we have

2
S # 0,8, #0, and S;—S5;. Since r and y are not adjacent, exactly one of 5] and
S% contains both z and y. Without loss of generality, let S| contain both z and y.
Then S} C S is coned by all vertices in S — S| with [S7| < |S’|, which contradicts the
choice of S’.

Therefore S’ induces an acyclic shrinkable subgraph in Dy and 1 < |S’| < |Dyl.
This contradicts the fact that Dy is simple. So Dy is a local tournament, and this

completes the proof of the theorem in view of the earlier observations. a

From Theorem 7.3.4, we know that all oriented graphs of Moon type can be
generated from a local transitive tournament by substituting acyclic oriented graphs

for the vertices.
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