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Abstract 

A Iccai tournament is an oriented graph in which the inset as well as the outset 

of each vertex induces a t tturnannenr. Local tournaments possess many properties 

of torrrnaments and ha\-e interesting structure. In 1982. Slcrien proved (in different 

terminology), using a deep structurai characterization of proper circular arc graphs 

hy Tucker, that a connected graph is local-tournament-orientable if and only if it is a 

proper circular arc graph. 

In Chapter 2: we s"RH give a simple 0Crn.I) algorithm to decide if a graph can 

be oriented as a Iocd tournament. and hence whether or not it is a proper circular 

arc graph. We analyze relationships among local tournaments, local transitive tour- 

naments, and proper circviar arc graphs. tVe obtain theorems to  describe all possible 

Iocaf-tournament orientations of a proper circular arc graph. 

En Chapter 3. we shall present an OfrnA) algorithm to  recognize comparability 

graphs and to calculate transitive orientatiofis. Our method can be applied to recog- 

nize proper circular axc graphs and to find local-transitit-e-tournament orientations, 

and can aim be applied to r e ~ o ~ i z e  proper interval graphs and to find acyclic local- 

tournament orientations. ti-e shdi  give a simple proof of Skrien's theorem, which does 

not depend on Tucker's result. 

In Chapter 1, we shaff present two Ojm+nj time algorithms. One is for recognizing 

proper interval graphs mci far finding an associated interval family. The other is for 

recognizing proper circular arc graphs and for finding an associated circuix arc family. 

Ia Chapter 5, xe shirff obtain two additional O ( m  $ n) time dgorithms for proper 

circular arc graphs try using the auxiliary focal-tournament orientations. One is for 

finding maximum cIiques, and the other is for de%rrnining c-colourablity. 



In Chapter 6. we shall introduce a new class of oriented graphs namely, in- 

tournaments, which contains the class of local tournaments. bVe shall show that 

some of the basic and very nice properties of tournaments extend not only to local 

tournaments, but also to this more general class of digraphs. Our results imply a 

polynomial time algorithm for finding hamiltonian paths and cycles i n  the class of 

in-tournaments. We shall also investigate the the class of graphs which are orierltable 

as in-tournaments. 

Finally, in Chapter 7, we shall introduce another class of oriented graphs, i.e., 

those of Moon type. We shall find a close relationship between the class of oriented 

graphs of Moon type and the class of local tournaments. Jn fact, oriented graphs of 

Moon type can be characterized in terms of local transitive tournaments. 
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Chapter - 1 

Introduction 

Overview 

A tournament is a complete oriented graph. Tournaments have been a popu1a.r oh- 

ject of study since the early days of graph theory. There is now an ttxterisive theory 

associated with tournaments, [13, 571. A semicomplete digraph is obtained from a 

tournament by adding additional arcs, i.e., it is a digraph in which any two distinct 

vertices are joined by at  least one arc. Clearly, semicompletc digraphs ger~eralizt* 

tournaments. Many difficult problems for general digraphs can be easily solvcc.1 for 

tournaments and semicomplete digraphs. For instance, the problems of finding a 

hamiltonian path and finding a hamiltonian cycle are NP-complete for general di- 

graphs, cf. [SO], and polynomial for both tournaments and semiconiplete digraphs, cf. 

[59]. 

It is natural to look for a larger class of digraphs, ~vhich still allows ay rrlariy 

problems to remain tractable as possible. Recently in [4], Rang-Jensen introdur:ecl 

one such interesting class of digraphs. He called them lr,cally semicomplete digraphs. 

A locally semicomplete digraph is a digraph in whicki the outset as well as the  inset, 

of each vertex is semicom~~kte .  In 141, Bang-.Jen;en proved that most properties 

that hold for sernicompl~t~e digraphs also hold for locally semicomplete digraphs. For 

instance, a connected locally semicomplete digraph has a directed harniltonian path. 
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A strong locally semicomplete digraph has a directed hamiltonian cycle, Moreover 

there are polynomial algorithms to find such a path or a cycle. 

An orienteci graph is a local tournament i f  the outset as well as the inset of each 

vertex is a tournament, 120, 391. So a local tournament is an oriented gr7,ph which 

is locally semicomplete. A local transitive tournamerlt is an oriented graph in which 

the outsct as well as the inset of each vertex is a transitive tournament, [20, 471. 

Local tournaments are natural generalizations of tournaments, and local transitive 

tournaments axe natural generalizations of transitive tournaments. 

A graph G is a circular arc graph if there is a one-to-one correspondence between 

the vertex set of G and a family .F of circular arcs on a circle such that two vertices 

are adjacent if and only if the corresponding two circular arcs intersect. The family 

.F is called a circular arc representation of G. If the circular arcs can be chosen so 

that no one is completely contained in another, then the corresponding graph is a 

proper circular arc graph. Similarly a graph is an interval graph if there is a one- 

to-one correspondence between the vertex set and a family Z of intervals on the real 

line such that two vertices are adjacent if and only if the corresponding two intervals 

intersect. The family Z is called an interval representation of the graph. Again 

if the intervals can be chosen so that no one is completely contained in another, 

then the graph is a proper interval graph. Interval graphs, proper interval graphs, 

circular arc graphs, and proper circular arc graphs have practical importance in many 

different sciences (e.g., genetics, archeology, ecology, computer science, electronics), 

cf. [15, 27, 33, 36, 51, 67, 731. 

Local tournaments not only possess many properties of tournaments but also have 

their own additional structure. In 1982, Skrien obtained a result which implies a rela- 

t ionship between local tournaments and proper circular arc graphs, [?I]. Specifically, 

a connected graph is a proper circular arc graph if and only if it can be oriented 

as a local tournament. This view leads to a new way to investigate proper circular 

arc graphs, namely, by studying local tournaments. In fact, as we shall show, many 

typical problems can be attacked in this way, and solved efficiently. 

According to Skrien's result, the problem of testing if a connected graph is a proper 
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circular arc graph is the same as the problem of testing if  the graph is orientable as 

a local tournament. The former problem was solved by Tucker with an 0 ( n 2 )  time 

algorithm (all comp!exities discussed here are worst-case), which makes use of a matrix 

characterization of proper circular arc graphs jcf. [81]). We shall transform the latter 

problem to one of testing 2-colourability of an associate graph, which we can sol\(. i n  

time O(mA). 

Circular arc graphs and proper circular arc graphs have been extensively studied 

for over twenty years and many nice results have been obtained for t,hese graphs (cf. 

[17, 33, 34, 36, 51, 56,801). According to the relationship established by Skrien, thosc 

results for proper circular arc graphs can be simply transferred to graphs which are 

orientable as local tournaments. 

We observe the following additional relationships: A connected graph is a proper 

circular arc graph if and only if it is orientable as a local transitive tournament. A 

graph is a proper interval graph if and only if it is orientable as a non-strong local 

tournament. Moreover, for a proper circular arc graph, obtaining a local-transitive- 

tournament orientation is equivalent to finding a corresponding proper circular arc 

family. Armed with this knowledge, we are able to analyze the structure of local tour- 

naments, and to obtain theorems which describe all possible local-tournament orien- 

tations of a proper circular arc graph, and all possible non-strong local-tournament 

orientations of a proper interval graph. From our theorems, the problem of generating 

all local tournaments is completely solved. 

An oriented graph is locally bicomplete if there is a complete adjacency between 

the outset and the inset of each vertex, [40]. An oriented graph is transitive if  the inset 

of each vertex dominates the outset of that vertex. A transitively orientable graph is 

of course local-bicomplete-orientable. A result due to Ghouilb-Houri, reformulated in 

our terminology, assures that a local-bicomplete-orientable graph is also tranvi tively 

orientable. 

Transitively orientable graphs are also called comparability graphs, j2.5, 02, 721. 

Comparability graphs are an important class of perfect graphs (cf. 1331). The problem 

of recognizing comparability graphs was first studied by Pnueli, Lernpel, and Even, 



Chapter I .  Introduction 4 

resulting in an algorithm with a time bound of O ( m A )  (cf. [63]). However this 

algorithm involves a complicated structural analysis of comparability graphs. We shall 

provide a simple algorithm by transforming the problem to the problem of testing the 

loc:al- bicomplete orientability. Our algorithm also finds a local-bicomplete orientation 

of a comparabtuty graph, in time O ( m A ) .  

We shall then introduce a new method which allows us to find a transitive orien- 

tation of a comparability graph also in time O ( m A ) .  This problem was also solved by 

Spinrad with an algorithm having a time bound sf 0 ( n 2 )  (cf. 1721). Our method can 

also be applied to  find, in time O ( m A ) ,  a local-transitive-tournament orientation of 

a proper circular arc graph, and an acyclic local-tournament orientation of a proper 

interval graph. As we mentioned above, these orientations are equivalent to  proper 

circular arc representations or proper interval representations. So our method is also 

useful for these purposes. 

There are efficient algorithms to  solve various problems for proper circular arc 

graphs and for general circular arc graphs, provided a circular arc family is given. For 

instance, the maximum independent set problem, the minimum clique cover problem, 

and the minimum dominating set problem can all be solved in time O(n) (cf. [46]). 

The recognition and the representation problems for circular arc graphs have been 

solved by Tucker with an 0 ( n 3 )  time algorithm (cf. [80]). The same problems for 

proper circular arc graphs were also solved by Tucker, as we mentioned earlier, with 

an 0 ( n 2 )  time algorithm, [81]. We shall present an optimal, i.e., O ( m  + n) time, 

algorithm to solve the problems for proper circular arc graphs. 

For interval graphs, the recognition and the rr.-tresentation problems were first 

studied by Booth and Lueker (cf. [17]). Their approach led to an O ( m  + n)  time 

algorithm. However the algorithm obtained by Booth and Lueker involves a compli- 

cated data structure called the PQ-tree. For proper interval graphs, we shall give 

an algorii hm of complexity O ( m  + n)  to solve the recognition and the representation 

problems. Our algorithm makes use of our structure theorems instead of PQ-trees. 

Recently, Hsu announced an O ( m  + n )  time algorithm for the recognition of interval 

graphs without using PQ-trees, [44]. 
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Gavril was first to consider the rnaximum clique problem for circular arc graphs. 

He solved this problem with an algorithm of c~~nplexi ty  O ( n 2 )  which was later irn- 

proved by Hsu to O ( m n )  (cf. [43]). For the special case of proper circular arc graphs, 

we shall give an O(m + n )  algorithm to solve the maximum clique problem. If the 

circular a x  representation is given, our algorithm runs in time O ( n  log 72).  The best 

previous algorithm, due to Apostolico and Hambrusch, which assumes that a circular 

arc representation is given, has a time Sound of O(n"og log n )  (sf. 131). 

The c-colouring problem, NP-complete for circular arc graphs [27], was first shown 

to be polynomial for proper circular arc graphs by Orlin, Bonuccelli, and Bovet. Their 

approach consisted of reducing the problem to a shortest path calculation, and resulted 

in an algorithm with a time bound of 0 ( n 2 )  (cf. [61]). This algorithm requires also 

that a circular arc representation be given. Subsequently, other authors improved the 

algorithm by improving on the shortest path method, culminating in the algorithm of 

Shih and Hsu, which has a time bound of ~ ( n t ) ,  [70]. Applying our maximum clique 

algorithm, we are able to  solve this problem with a general O(m + n)  algorithm, and 

an O(n log n)  algorithm when a circular arc representation is given. 

Note that all of our algorithms may meaningfully be restricted to connected graphs. 

Then we can replace the complexities O(m + n)  by O(m) throughout. 

The class of local tournaments can be generalized to the class of in-tournaments, 

i.e., those oriented graphs in which the inset of each vertex is a tournament, 68, 

10, 111. We shall show that many properties of local tournaments extend to this 

larger class of criented graphs. Our results imply a polynomial algorithm for finding 

hamiltonian paths and cycles. We shall also study those graphs which are orientable 

as in-tournaments. 

A tournament of Moon type is a tournament in which every subtournament is 

either acyclic or strong. The tournaments of Moon type have been studied by Moon 

and Guido, [35, 581. We shall generalize Moon type tournaments to the class of 

oriented graphs of Moon type, i.e., those oriented graphs in which every connected 

subgraph is either acyclic or strong. It turns out that there is a close relationship 

between oriented graphs of Moon type and local tournaments. We shall prove that 



all oriented graphs of Moon type can be generated from local transitive tournaments 

by sutA,itution operations. 

1.2 Terminology and Notation 

A y x p h  G' is an ordered pair (V, E ) ,  where- V is a finite set and E is a set of unordered 

pairs xy with x, 9 E V and x f y. 'The elements of V are vertices, and the elements of 

E are edges. Note that in our definition, we do not allow any loops, i.e., edges joining 

a vertex to itself. A graph is simple if it contains no multiple edges, i.e., edges joining 

the same two vertices. All graphs are assumed to be simple, unless stated otherwise 

(cf. Chapter 6). We will use G = (V, E) or simply G to denote a graph. 

If xy is an edge, then the vertex x is adjacent to the vertex y and is incident with 

the edge xy. We use x N y to denote that x is adjacent to y. If x is not adjacent to 

y,  then the vertex x is non-adjacent to the vertex y. If x N y, then y is a neighbour 

of x. The neighbourhood of x, denoted by N(x), is the set of all neighbours of x. 

The number of vertices in N ( s )  is the degree of x, denoted by deg(x). The mazimum 

degree of a graph G is the maximum value among the degrees of all vertices of G. 
We shall use A(G) or simply A to denote the maximum degree of G. The closed 

neighbourhood of x, denoted by N[x], is defined to be N(x) u {x}. Note that if two 

vertices z and y have the same closed neighbourhood, namely if N[xj = N[y], then x 

and y are adjacent. A graph is redzlced if any two distinct vertices have distinct closed 

neighbourhoods. 

Let G = (V, E) and G' = (V', El) be two graphs. Vfe call G' a subgraph of G if 

V' 2 I/ and E' 5 E. If in addition E' = {xy E El x,y E V'} then we call G' an 

induced subgraph of G. For each S C V ,  the subgraph of G induced by S, denoted by 

< S > or S ,  is the unique induced subgraph of G with vertex set S. 

Suppose that, G = ('If', E )  is s graph and S 5 V is a set of vertices of G. We US,P 

G - S to denote the subgraph induced by V - S. We write G - x instead of G - {x}. 

I f  S contains no adjacent vertices, then S is called an independent set of G. 

A graph C= = (V, E) is isomorphic to a graph G' = (V', E') if there is a one-to-one 
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r \ mapping f from 5/* to 1.'' such that zy E E if and only i f  f (s) f (y)  E E'. I he mapping 

f is an zsomorphism from G to G'. If G is isomorphic to G': then we  also say that 6' 

and G' are isomorphic, or G is a copy of G'. 

.A ua6k of length k in a graph G = (k; E) is a sequence t i ~ e l ~ 9 e 2 . .  . ekt'k where 

vo, v1.. . . , v k  are vertices, e l ,  € 2 , .  . . , ek are edges of G, and I J , - ~  and u, are the two ends 

of e,, 1 5 z 5 k. We will call such a walk a (uo, uk)-walk. If all :wtices 110, o l r . .  . , t + k  

and all edges el, e2, . . . , e k  are distinct, then the walk is a path. If vo = t~k, then the 

walk is closed. A closed walk voelvle2.. . ekvo is a cycle if v,  # v, and e, # e, when 

i # j. Whenever we deal with graphs without multiple edges, we may suppress the 

edges and write P = vl - v2 - . . . - v k  to denote a (vl, vk)-walk (resp. ( u l ,  vk)-path) 

and use C = vl - t 7 2  - . . . - v k  - vl to denote a closed walk (resp. cyclc). Vertices 

v, and v,+l are called consecutive vertices. (The subscript addition is modulo k in the 

case of C.) A path or a cycle is chordless (in a graph G) if non-consecutive vertices 

are not adjacent (in G). A graph is chordal if it contains no chordless cycle of length 

strictly greater than three. 

A graph G is connected if there is an (x,  y)-path for any two vertices x and y.  A 

connected component or simply a component of G is a maximal connected subgraph 

of G. For any two vertices x and y, the length of a shortest (x, y )-path is the distance 

between x and y. 

We now define the substitution operation: To substitute a graph H for a vertex t )  

of a graph G means to form a new graph G' from G by replacing v with H so that in 

G' every vertex of H is adjacent to every neighbour of v. 

Let F = {SI, S2, . . . , IS;,) be a family of sets. The intersection graph of F is a graph 

G with the vertex set {vl, va, . . . , v,) such that vi - v j  if and only if Si n $5; # t3. The 

family F is called a representation of the graph G. 

A circular arc family is a collection of ares on a circle. A circular arc family 

is inclusion-free or proper if no arc is completely contained in another. A graph G 

is a circular arc graph if it is an intersection graph of a circular arc family; G' is a 

proper circular arc graph if it is an intersection graph of a proper circular arc family. 

An interval family is a collection of intervals on the real line. An interval family is 
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inclusion-free or proper if no interval is completely contained in another. A graph 

G is ar, interval graph if it is an intersection graph of an  interval family; a proper 

interm1 graph is an intersection graph of a proper interval family. An interval graph 

is a circular arc graph and a proper interval graph is a proper circular arc graph. 

A digraph D is an ordered pair (V, A), where V is a finite set and A is a set of 

ordered pairs s y  with z, y f V (i.e., A is a binary relation on V). The elements of 

V are vertices and the elements of A are arcs. In our definition of a digraph, we do 

not allow multiple arcs, i.e., arcs joining two vertices x and y in the same direction 

(either all from x to y or all from y to x),  and we do not allow loops, i.e., arcs joining 

a vertex to itself. The vertices x and y are adjacent if there is an arc between them. 

We will use D = (I/, A )  or simply D to denote a digraph. We use G(D) to denote 

the underlying graph of D, i.e., the graph with vertex set V and u - v if and only 

i f  u and v are adjacent. We call D = (V, A) an oriented graph if the relation A is 

antisymmetric. 

If xy is an arc of a digraph D, then we say that x dominates y or y is dominated 

by s, written as x-+y. We shall write xf+y if x does not dominate y. Suppose that 

,4 and B are two subsets of VjD). If every vertex in A is adjacent to every vertex in 

B, then A and B are completely adjacent. If no vertex in A is adjacent to a vertex in 

B, then A and B are completely non-adjacent. If every vertex in A dominates every 

vertex in 5, then we say that A dominates B or B is dominated by A, and write 

-4- B. 

For any two vertices x and y, if x dorninates y ,  then y is an out-neighbour of x, 

and x is an in-neighbour of y.  The outset of x, denoted by O(x), consists of all out- 

neighbours of x, and the closed outset of s ,  denoted by O[x], is just O(x) CJ {x). The 

inset of x, denoted by I (x ) ,  consists of all in-neighbours of x, and the closed inset 

of x, denoted by I [ x ] ,  is I j x )  U {x). The number of vertices in O(x), denoted by 

d ' ( . ~ ) ,  is the outdegree of x, and the number of vertices in i (x ) ,  denoted by de(x), 

is the indegree of z. A digraph D is k-regular if all vertices of D have indegree and 

outdegree k. 

Let D = (1: A) and D' = (V', A') be two digraphs. We call D' a subdigraph of 
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D if V" V and '4' A. If in addition A' = {.ry E :$I .r, y E 1") then we call I)' 

an induced subdigraph of D. For each S 2 V ( D ) ,  the suhdigraph of D znduced by S, 

denoted by < S > or S, is the unique induced subdigraph of D with vertex set ,S. For 

convenience, we will usually not distinguish a subset S of vertices and the subdigraph 

induced by S. We define D - S to be the subgraph of D induced by V - S. We wri tr 

D - x instead of D - (2) .  

A directed path P of length k is a digraph with the vertex set {so, .xi , .  . . , x k }  and 

the arc set { x O - + x l ,  Xl--fx2,. . . , X ~ - ~ - + X ~ } ,  such that all the vertices and arcs shown 

are distinct. We will call such a directed path an (xo,xk)-path and will denote it by 

A directed cycle C of length k is a digraph with the vertex set {u , ,  v2,. . . , vk) and the 

arc set {xl-x2, x2-+x3, . . . , xk-l +xk, xk-'xl ). A hamiltonian path (resp. hamilto- 

nian cycle) in a digraph D is a path (resp. cycle) with the vertex set V(D). 

A digraph D is strong if for any two vertices x and y there is a directed (x,y)- 

path and a directed (y, x)-path. A strong component of a digraph D is a rnaxirnsl 

strong subdigraph. The strong component digraph S C ( D )  of a digraph D is obtained 

by contracting each strong component to a single vertex (some authors call this the 

condensation of D, 1371). 

Suppose that D is a digraph. We define a relation 'r' on the set V(D): Let x and 

y be two vertices of D. Then s r y if and only if N[x] = N[y] in G'(D). I t  is tmy 

to see 'E' is an equivalence relation on V(D). Let &, V2, . . . , V, be the equivalence 

classes of the corresponding partition. We refer to each V,  as a block. Then each 

block induces a semicomplete digraph and two blocks are either completely adjacent 

or completely non-adj acent. 

For digraphs, the substitution operation is defined as follows: To substitute a di- 

graph S for a vertex v of a digraph D means to form a new digraph 5' from I1 i)y 

replacing v with S so that in D' every vertex of S dominates every out-neighbour of 

v and is dominated by every in-neighbour of v. 
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A c-colouriny of a digraph D = (V, A )  (or a graph G = (V, E)) is a mapping from 

V to a set C of size c such that two adjacent vertices are mapped to distinct elements. 

Each element of C' is cai!ed a colour. For each colour, the set of preimages of that 

colour is called a colour class. 

A semicomplete digraph is a digraph which does not contain non-adjacent vertices. 

A tournament is a semicomplete oriented graph. A locally semicomplete digraph is a 

digraph D in which the outset as well as the inset of each vertex induces a semicom- 

plete digraph. 11. A local tournament is a locally semicomplete digraph which is an 

oriented graph, [20, 39, 41, 471. In other words, a local tournament is an oriented 

graph in which the outset as well as the inset of each vertex induces a tournament. 

An oriented graph D is transitzve if for each vertex x every vertex in I ( x )  dominates 

every vertex in O ( x ) .  An oriented graph is a local transitive tournament is an oriented 

graph in which the outset as well as the inset of each vertex induces a transitive 

tournament. 

An oriented graph is an in-tournament (resp. out-tournament) if the inset (resp. 

the outset) of each vertex induces a tournament, [I I]. The class of local tournaments is 

in fact the intersection of the class of in-tournaments and the class of out-tournaments. 

An oriented graph D is locally bicomplete if for each vertex x every vertex in I ( x )  is 

adjacent to every vertex in O ( x ) .  

An orientation of a graph G is a digraph obtained from G by assigning a direction 

to every edge of G. In other words, D is an orientation of G if and only if G = G(D). 

A graph is orientable as a local tournament or local-tournament-orientable if there 

is an orientation D of G which is a local tournament. The oriented graph D is a local- 

tournament orientation of G. Terms such as locally-transitive-tournament-orientable 

(orientable as a local transitive tournament), in-tournament-orientable (orientable as 

an in-tournament), local-bicomplete-orientable (orientable as a locally bicomplete ori- 

ented gmyh), and transitively orientable (orientable as a transitive oriented graph) are 

defined analogously. 

A full reversal of a digraph is an operation which reverses the direction of each arc 

of D. A graph G is uniquely orientable as a Iocat tournament if G admits precisely 
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two local-tournament orientations both of which are obtainable from the other by a. 

full reversal. 



Chapter 2 

Local Tournaments 

2.1 Local- tournament Orientability 

Recall that a local tournament is an oriented graph in which the outset as well as 

the inset of each vertex induces a tournament. All tournaments are of course local 

tournaments. Moreover all directed paths and cycles are also local tournaments. It 

has been shown in [4] that many nice properties of tournaments are valid for locally 

semicomplete digraphs and hence also for local tournaments. In particular, a locally 

semicomplete digraph always has a hamiltonian path, and it has a hamiltonian cycle 

i f  and only i f  it is strong. 

We are interested in graphs orientable as local tournaments (recall we refer to 

them as local-tournament-orientable graphs). Since every induced subgraph of a local 

tournament is also a local tournament, every induced subgraph of a local- tournament- 

orientable graph is also local- tournament-orientable. 

In 1982, Skrien discovered, in different %erminology, the following nice result which 

gives a full characterization of local-tournament-orientable graphs (cf. [71]). This 

result was independently found in [49] and we give our proof later in this thesis. 

Theorem 2.1.1 '4 connected graph is local-tournament-orientable if and only if  

it is a proper circular arc graph. 0 
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VI:e emphasize that the condition 'connected' is necessary. For example, a graph 

consisting of a directed cycle of length 4 and an isolated vertex is local-tourriar~irwt 

orientable but is not a proper circular arc graph. However a general proper circular 

arc graph is always local-tournament-orientable. Moreover if a graph (not necessarily 

connected) is local-tournament-orientable, then each connected component rriust be 

a proper circular arc graph. Since a proper interval graph is a proper circular arc 

graph, the following result is an easy consequence of Theorem 2.1.1. 

Corollary 2.1.2 Every proper interval graph is local-tournamc~~t-orierztnble. a 

To determine whether a connected graph is local-tournament-orientable, it i s  

enough, acc~rding to  Theorem 2.1.1, to verify whether it is a proper circular arc 

graph. In [81], Tucker gave a matrix characterization of proper circular arc graphs. 

From it an 0(n2) time algorithm can be obtained to recognize proper circular arc 

graphs (cf. [GI]). In this section, we will give a simple algorithm to recognize local- 

t~urnament-orientable graphs. Our algorithm runs in time O(m&) ,  where rn is thc 

number of edges and A is the maximum degree of the input graph. An optimal al- 

gorithm will be given in Chapter 4. In order to describe our algorithm, we givr the 

following notation which is also useful in later discussions. 

Let G = (V, E) be a graph. We define 

the set of all ordered pairs (u ,  v) such that uv is an edge of G'. Note that each uv E LFfl 

gives rise to  two ordered pairs (u,  v) and (v, u )  of F ( G ) .  We also define for each subs~t .  

B of F(G) ,  

B-' = {(u,v)l (v ,u)  E B }  and B = {uv E El ( u ,  71) E R U R"}  

We now define the characieristic graph G* with the vertex set F(G) and arljacency 

defined by the following: Each (u ,  v) E F ( C )  is adjacent to ( v ,  u) ,  to any (u ,  w )  F 

F ( G )  with v # w and vw 4 E ,  to any (w,v)  E F(G') with u # lu and ulu $ E:, artd to 

no other vertex of G*. 
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Theorem 2.1.3 A graph G' admits a local-tournament orientation if and only if 

the cfinractertstic graph G* is 2-colourable. 

Moreover, if G* is 2-coloured with A  being a colour class, then D = (V, A )  is a 

local-tuurnam.ent orientation of G. 

Proof: Suppose that D is a local-tournament orientation of G. We colour the 

vertices of C* with two colours p and T in the following way: Colour a vertex ( u ,  v )  

by p if  u dominates v, and by 7 if v  dominates u  in D. Let ( x ,  y )  and (x ' ,  y') be two 

adjacent vertices of G*. It is easy to see that x dominates y if and only if y' dominates 

x f  in D. Hence ( x ,  y )  and ( X I ,  y ' )  are coloured with different colours. Therefore G* is 

2-colonrable. 

Suppose now that G* is 2-coloured with A  being a colour class. We prove that 

D = (V ,  A )  is a local-tournament orientation of G. Since, for each ( 2 ,  v )  E F ( G ) ,  

( u ,  v )  and ( v ,  u )  are adjacent in G', exactly one of (u, v )  and ( v ,  u )  belongs to A. 

Thus D is an orientation of G. To show that D is a local tournament, let u, v, and w 

be three vertices of G such that v  and w are two non-adjacent neighbours of u. Then 

( u , v ) , ( u , w )  E F(G)  are adjacent in G* (and ( v , u )  and ( w , ~ )  are adjacent in G*). 

Hence at most one of ( u ,  v )  and ( u ,  w )  (and at most one of ( v ,  u )  and (w, u ) )  belongs 

to A. Therefore D is a local-tournament orientation of G. 

Theorem 2.1.3 proves the correctness of the following algorithm for recognizing 

local-tournament-orientable graphs and finding local-tournament orientations. 

Alg~rithrn 2.1.4 Let G = ( V ,  E) be a graph. 

S tep  1.  Construct the charucteristic graph G* of G. 

Step 2. If G' is not 2-colourable, then G is not local-tour~ament-orientable. 

Step 3. If G* is 2-coloura$le, then find any 2-cdouring of Gf and obtain a local- 

toz~rnarnent orientation D = (V ,  A)  of G where A is a colour class of G*. 0 

Theorem 2.1.5 There is an O(mA) algorithm to recognize local-tournament- 

orientable graphs and to find such an orientation i f  there is one. 
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Proof: The graph G* has O ( m )  vertices, O ( S u i E E d e g j u )  + degj t , ) \  = OjrnL_f'l 

edges and it can be constructed in time O(nrA). In the same time we can ttst , by 

breadth-first search, whether it is 2-colourable. and find a 2-cotouring of f ig.  CI 

Corollary 2.1.6 There is an O(mA) algorithm to recognxe proptyr- r.irrular. rtrc 

graphs. 

Proof: This is immediate from Theorems 2.1.1 and '2.1.5. o 

Let ( u ,  v ) ,  (x,  y )  E F(G)  be two ordered pairs. We say ( 2 ,  v )  forces js, y), denotd 

by ( u ,  v ) r ( x ,  y) ,  if one of the following conditions is satisfied. 

e v  = L, u  # y ,  and uy $ E; 

e u = y ,  v # x ,  and vx $ E. 

It is obvious that  if (u ,v)I ' (x ,y)  then ( u , v )  is adjacent to ( y , x )  (and (x ,y )  is 

adjacent to  ( v ,  u ) )  in G*. We say that (u, v )  implies (x,  y ), denoted by ( u ,  v ) P ( x ,  g ) ,  

if there exist ( u l ,  v l ) ,  (212,  v2) , .  - . , (uk ,  vk) E F(G) so that 

Lemma 2.1.7 For any graph G,  the binary relation f *  on F(G) is an equivalence 

relation. 0 

According to  Lemma 2.1.7, the equivalence relation T* partitions F(G) into equiv- 

alence classes. We call each of these equivalence classes a f*-class. 

Lemma 2.1.8 Let D be a local-tournament orientation of C. If (u ,  v)T*(x, y )  for 

some ( u ,  v )  and ( x ,  y )  in F (G) ,  then u+v if and only if x+y in D. 
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Proof: W e  prove that if  ( u ,  v j i  x. y) for some (u. v) .  (x ,  y) E F ( G ) ,  then u-it: if 

a ~ d  only if x i y .  The general proof can be done by induction. 

If u = L and v = y, then the conclusion follows trivially. Suppose that v = x,  

u # y, and uy $ E. If u+v and y - + x  in D ,  then the vertex v has two non-adjacent 

in-neighbours, contradicting the fact that D is a local tournament. If v-iu and x-iy 

in D ,  then the vertex v has two non-adjacent out-neighbours, contradicting the fact 

thdi  I; IS a locai tournament. A similar proof applies when u = y, v # x, and vx 6 E. 
0 

Theorem 2.1.9 4 graph G is orientable as a local tournament if and only if there 

is no (u, v) E F(G) such that (u, u)r*(v,  u).  

Proof: The nccessity follows immediately from Lemma 2.1.8. For the sufficiency, 

assume that there is no (u, v) E F ( G )  with (u, v)r8(v,  u). We apply the following 

procedure to obtaiz an orientation D of G. Arbitrarily pick an edge uv which has 

not been oriented and let x--+y in D for all (x, y) such that (u, v)r8(x,  y). Continue 

the procedure until every edze of G is oriented. Since there is no (u, v)  E F ( G )  with 

(u,  v)T8(u, u), each edge of G is assigned precisely one direction. Thus D is an orien- 

tation of G. If D is not a local tournament, then there exists a vertex x such that 

either O ( x )  or I ( x )  is not complete. Assume O ( x )  is not complete. Then there are 

two non-adjacent vertices y and z which are dominated by x. Hence (x, y)r8(z,  x) 

in F(G)  and by the above procedure x-+y if and only if z+z in D. We have z+x 

since x+y .  Therefore we have both x-+z and z-+x in D, a contradiction. A similar 

discussion applies when I ( x )  is not complete. ~1 

The proof of Theorem 2.1.3 gives an alternative implementation of Algorithm 

2.1.4, by working directly oii the graph G. 

Corollary 2.1.10 A graph G is orientable as a local tournament if and only if 

B n B-' = @ for any r*-class B. 
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Proof: This follows from Lemma 2.1.7, Theorem 2. I .9, and the fact that f m U - !  # 

0 if and only if B contains both ( u ,  v )  and ( r ~ ,  u )  for sornt ( u .  r )  E F'(G). CI 

Corollary 2.1.11 IfG is a ~ o c a ~ - t o u r n a r n e r ~ t - o r z ~ ~ t r r . b f ~  graph with A((:) = r t  - 1 ,  

then is bipartite. 

Proof: Suppose that  ?? is not bipartite. Let ul - u2 - . . . - U L ~ + ~  be an odd 

cycle in ??. Since A(G) = n - 1, G contains a vertex v  of degree n - I .  Note tilr2t, in 

G, v # u, and v - ut for each i = 1 , 2 , .  . . ,2k -I- 1. Then 

(v, ul)r(212, v ) r .  - . r ( v ,  ~ 2 k + l ) r ( ~ l  r u). 

Hence ( v ,  ul)I'*(ul, v )  and by Theorem 2.1.9 G is not. local- t,ournament-orientable, 

contradicting our hypothesis. o 

Net 

Figure 2.1: The CIaw and the Net  

A graph is claw-free if it contains no claw (see Fig. 2.1) as an induced subgraph. 

Similarly a graph is net-free if it contains no net as an induced subgraph. 

Corollary 2.1.12 A local-tournament-orientable graph is claw-free und net-free. 

Proof: It suffices to  show that neither the claw nor the net is local-tourrtarnertt- 

orientable. In the claw, we have 



ar!d i r l  the net. we have 

'l'herefore, t>y 'Theorem 2.1.9, neither the claw nor the net is orientable as a local 

tournament. 0 

Proposition 2. i .  13 Let G be a iocai-tournament-orientabie graph and suppose 

that G* is coloured with two colours. Then each I?*-class consists of all vertices of one 

colour. in one component of G*. 

Proof: Suppose that A is a r'-class. For any two elements (u, v)  and (x, y ) of A, 
by definition of a r*-class, there exist (xO, yo), (xl, yl), . . . , (xi, y,) such that 

is a path of even length from (u, v) to (x, y). Therefore (u, v) and (x, y )  are in the 

same component and must be coloured with the same colour. 

On the other hand, suppose that (u, v) and (x, y )  are coloured with the same 

co!our and are in the same component of G*. Then there is a path of even length 

from (11,  v )  to (x ,  y) .  Assume that 

is such a path. Then 

Hence ( t i ,  v )  and ( J ,  y) are in the same r*-class. 
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Suppose that G is local-tournament-orientable and suppose that (:* is colourtd 

with p and r .  If B is the set of all vertices coloured with p in orw component, then 

B-' is the set I > f  all vertices coloured with T in the  same corriponent as t h r *  vtkrtict~s 

of B. Hence both B and B-' are independent in G". 

Kote that by switching the two colours of vertices in a cornporicnt of (P we gt.1 a 

new 2-colouring. Therefore if we let 

be the decomposition of F(G)  into I?*-classes, then each B, (and each B,-') is izii 

independent set in G* and each B, U L3,-' induces a component of C3* for each i = 

1,2 , .  . . , t .  Moreover, by Algorithm 2.1.4, a local-tournament orientation of C: can be 

obtained by choosing the arc set to be Al  U Az u . . . u At where A, = B, or 13;' 

for each i = 1,2, .  . . , t .  In fact, it is not difficult to set. that this gives all possiblt. 

local-tournament orient at  ions of G. 

Corollary 2.1.14 A graph G is uniquely local-tournament-orientable if and onlg 

if G* is a connected bipartite graph. n 

We close this section by presenting the following theorem. 

Theorem 2.1.15 The following statements are equivalent for a connected gmph 

1. G is a proper circular arc graph; 

2. G is local-tournament-orientable; 

3. G is local-transitive-tournament-orientable; 

4. G* is 2-cofouriilile; 

5. B n B-I = 0 for each r*-class; 
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Proof: The equivalence between statements 1 and 2 is Theorem 2.1.1. The equiva- 

lence between statements 2 and 4 is basically Theorem 2.1.3. The equivalence between 

statements 2 and 3 will be proved later (see Corollary 2.2.16). Finally the equivalence 

between statements 2 and 5 is just Corollary 2.1.10. 0 

2.2 Local Tkansitive Tournaments 

We call an oriented graph D straight [20], if the vertices of D can be linearly ordered 

vl, VZ, . . . , v, SO that each vertex vi dominates v;+l, v;+2,. . . , v;+, and is dominated by 

v ; -~ ,  ui-2,. . . , v,-1, where 1 = d-(v;) and r = d+(vi). We call such a linear ordering of 

vertices a straight enumeration of D. We say that a graph G is straight-orientable if 

there is an orientation D of G so that D is straight. If G is straight-orientable, then 

the vertices of G can be linearly ordered vl, v2, . . . , V, SO that for each i there exist 

I ,  r 3 0 (which may depend on the subscript i )  such that 

where both {viWl,. . . , v ; - ~ ,  v;) and {v;, v ;+~,  . . . ,TI;+,) induce complete subgraphs sf 

G. We also call such a linear ordering of vertices a straight enumeration of G. We 

refer to v,v,-1 as the left-most wave at v, if I # 0 and to v;v;+, as the right-most wave 

at v; if r # 0. 

We call an oriented graph D round [20], if the vertices of D can be circularly 

ordered vl, vz, . . . , TI, so that each vertex v; dominates v,+l, v;+1,. . . , v,+, and is dom- 

inated by vi-1, v,-2, . . . , vi-~, where 1 = d-(v,), r = d+(vi), and subscript additions 

and subtractions are modulo n. We call such a linear ordering of vertices a round 

enumeration of D. ( A  round tournament is sometimes called dominating orientable 

cf. [2].) We say that a graph G' is round-orientable if there is an orientation D of G 

so that D is round. If G is round-orientable, then the vertices of G can be circularly 

ordered q ,  v2, . . . , v, so that for each i there exist I ,  r > 0 (which may depend on the 

subscript i )  such that 
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where both {z.,-~, . . . , t:,-l. r.,} and {zt,, r9,+l,. . . , r l , + , )  induce complete subgraphs of 

G and where subscript additions and subtractions here are nlodulo n. M;rt also call 

such a circular ordering of vertices a round enurneratzon of (7. We refer to c ,v , -~  as 

the left-most wave at t ~ ,  if l # 0 and v,v,+, as the right-most wavc at ti, if r + 0. 

Suppose that 711. v2, . . . , vn is a straight enumeri.2:ion. If, for some i c j, v,v, 

is an edge, then < (u , ,  v,+l , .  . . , v,) > is complete. Suppose that cl, v2,. . . , L!, is a 

round enumeration. If v,v, is an edge, then at  least one of < ( v , ,  v , + ~ ,  . . . , v, ) > and 

< {v3, v 3 + ~ ,  . . . , v,) > is complete. These are useful observations which are frequently 

employed in the sequel. 

We shall see below that the class of connected straight oriented graphs is the same 

as the class of connected non-strong local transitive tournaments, and the class of 

connected round oriented graphs is the same as the class of connected local transitive 

tournaments. First we have the following lemma. 

Lemma 2.2.1 If D is a connected local tournament which contains no directed 

cycle, then D contains a unique vertex of indegree zero. 

Proof: Since D is acyclic, D contains a t  least one vertex of indegree zero. On 

the other hand, if a and b were two distinct vertices of indegree zero, then a and b are 

non-adjacent, and it is easy to see that the shortest path (which contains no chord) 

joining a and b in G(D) must contain a vertex with both incident edges oriented 

towards it,  contradicting the fact that D is a local tournament. 0 

Theorem 2.2.2 The following four p~operties are equivalent jor n connected ori- 

ented graph D: 

I .  D is a non-strong local transitive tournament; 

2. D is an acyclic local tournament; 

3. D is a straight oriented graph; 
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4. there exists an inclusion-free family of intervals associated with the vertices of 

D such that u dominates v in D if and only if the interval associated with u 

contains the keJt endpoint of the interval associated with v (the interval of u 

intersects the interval of v 'on the left '). 

Proof: 1 * 2: Suppose that D is a connected non-strong local transitive tourna- 

ment. Assume that D contains directed cycles. Let 

be a longest directed cycle in D. Since D is non-strong, C can not contain all vertices 

of D. Since D is connected, there exists a vertex y which is not a vertex of C and is 

adjacent to some vertex x, of C. Suppose that xi--+y. (A similar discussion applies 

if y 4 x j . )  Then both and y are dominated by x,. Also y and x , + ~  are adjacent 

because D is a local tournament. Note that y can not dominate xi+l as otherwise we 

would obtain a cycle 

of length I + 1, contradicting the choice of C. Hence x,+l dominates y. Now both 

x,+z and y are dominated by x,+l and so x,+2 is adjacent to y. Again y can not 

dominate x,+2 as otherwise we would obtain a longer cycle in D. So x,+z dominates y. 

Continuing this discussion, we conclude that each vertex of C dominates y. Therefore 

C' is completely contained in I(y). This is impossible as I(y) must induce a transitive 

tournament. 

2 + 3: Suppose that D is an acyclic local tournament. We can obtain a straight 

enumeration of the vertices of D as follows: Let vl be the unique vertex of indegree 

zero (see Lemma 2.2.1). Assume vl , v2, . . . , vk have already been defined: let vk+l be 

the unique out-neighbour of vk in D - {vl, 2'2, . . . , vk) which dominates every other 

out-neighbour of vk in D - {vl, v2,. . . , vk). (Recall that the outset of vk is a transitive 

tournament.) We claim that when vk has no out-neighbours in D - {vl, v2,. . . , vk), 

then k = n, i.e., all vertices have been ordered. Suppose k < n. Since D is connected, 

there is an edge v, w or WV, with w not among vl, v2, . . . , v,. Since the two cases 
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are similar, assume that v, dominates u,. From the definition of U , + I  and the fact 

that D is a local tournament. we see that G , + I  must dornirtate uv. Continuing this 

way we conclude that vk dominates w ,  a contradiction. To see that this is a straight 

enumeration of D,  consider a vertex u, dominating a vertex LI, with J > t .  Since 

v,-1 always dominates v, ( i f  j > I ) ,  the vertices v, and v , - ~  are adjacent. If u, - ,  

dominates v,, then v,-1 and v,-1 are adjacent and hence V,-I dominates 21,-, (otherwise 

the choice of v, was incorrect). Continuing this way we see that v,-I dominates 

vl, a contradiction. Therefore v, must dominate u,-1. It follows that v, dominates 

v t + ~ ,  v,+~,. . . , v,+l for some I, and a similar argument shows that it is dominated by 

v,-I, v,-~, . . . , v,-k for some I c .  

3 + 4: Given a straight enumeration v ~ ,  VZ, . . . v, of D, we associate with v, the 

interval on the real line from i to i + d: + 1 - f, where d: is the outdegree of v,. Then 

it can be verified that this is a proper interval representation in which the interval u 

contains the left endpoint of the interval v if and only if in D the vertex associated 

with u dominates the vertex associated with v. 

4 j 1: The outset of a vertex x is associated with an inclusion-free family of 

intervals which all contain the right endpoint of the interval corresponding to x. 'Thus 

they are linearly ordered by their left endpoints. Hence the vertices associated with 

these intervals induce a transitive t ou rname~t  in D. Since all intervals are linearly 

ordered on the real line, D is non-strong. Therefore D is a non-strong local transitive 

tournament. (7 

Note that the constructions in the above proof can all be performed in time O(m + 
n). In fact, given a non-strong local transitive tourna.ment, it takes O(m + n) time to 

construct a straight enumeration. Now given a straight enumeration, it takes O(n) 

time to  construct a proper circular arc representation. 

@ordiary 2.2.3 Suppose an acyclic local-tournament orientation D o j  a proper 

interval graph G is given. Then a straight enumeration L3, and hence an interval 

representation G,  can be found in  time O(m + n) .  a 
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r 7 I h v  following lemma is taken from [4]. 

L e m m a  2.2.4 Suppose that D is a connectrd non-strong local tournament. Then 

the strong components of D can be linearly ordered C1, C2, .  . . , Ck so that 

1 .  each C, is complete, i = 1 ,2 . .  . . , k, 

3 .  if j < i then no vertex in C; dominates a vertex in C;, 

4 .  i f i  # j then C, and C, are completely adjacent or completely non-adjacent, and 

5 .  if Cr,--tC;; then C; U C,+, . . . U Cj  is complete. I7 

Theorem 2.2.5 If a connected graph G admits a non-strong local-toumament 

orientation, then G admits a straight enumeration. 

Proof: Suppose that D is a non-strong local-tournament orientation of G. Then 

the strong components of D can be linearly ordered C1, C2, . . . , Ck so that the proper- 

ties in Lemma 2.2.4 hold. We form an oriented graph D' from D in the following way: 

Replace each C, by a transitive tournament T, of order IV(C,)/. Note that T,+T, in 

0' if and only if C,-+C, in L?. We see that D' is an orientation of G. Since T, is 

a transitive tournament, the vertices of T, can be linearly ordered c,,l,c;,2,. . . ,c,J, SO 

that c,,,-+c,,, if p < q. We prove that the following linear order of the vertices is a 

st might enumeration of D': 

Consider a vertex c;,,. By property 3 of Lemma, 2.2.4, ~ ~ , ~ f t ~ ~ , ~  if j < i or i = j and 

q < p. We know that c ; ,  dominates c,,(,+l),~,,(~+2), . . . , c;,,,.  Furthermore, if q,, domi- 

nates cJ,,  for some j > 2 ,  then c,,, also dominates C ( i + l ) , l ,  . . . , ~(;+1),1,+~, . . . , Cj,17 . . . , Cj,l,  

according to properties 3 ,4 ,  and 5 of Lemma 2.2.4. Hence the out-neighbours of c , , ~  

appear consecutively succeeding c;,,. A similar argument applies to show that the 
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in-neighbours of c,., appear consecutively preceding c,.,. 0 

Let z be a circular arc on a circle. Suppose that 1 begins at y and t-nds a t  q in the  

clockwise direction of the circle. bye call p the head and q the t a z I  o f  1 ,  deiitrtrtf by 

h ( i )  and t ( i ) ,  respectively. 

Theorem 2.2.6 The following three properties are equiunlent for. a conn~ct td o n -  

ented graph D: 

1. D is a local transitive tournament; 

2. D is a round oriented graph; 

3. there exists an inclusion-free family of circular arcs associated with the vertices 

of D such that u-tv in D if and only if the circular arc associated with ti contains 

the head of the circular arc associated with IJ. 

Proof: We only need to show that  the properties are equivalent for the case when 

D is strong, as for the  non-strong case we have Theorem 2.2.2. We remark that in 

the  entire proof the subscript additions and subtractions are modulo n. 

1 + 2: Suppose that  D is a connected local transitive tournament. Wc oh- 

tain a round enumeration of D as follows: Start with any vertex 711. Assume that  

vl , vz, . . . , vk have already been defined. Let vk+l be the unique out-neighbour of 

vk in D - {vl, vz, . . . , vk) which dominates every other out-neighbour of vk in I1 - 
{vl, v2,. . . , vk). We claim that  when vk has no out-neighbours in 13) - {vl, v2,. . . , vk}, 

then k = n ,  i.e., all vertices have been ordered. For suppose k < n. Since I;) is 

connected and D is strong, there is an arc v,w with w not among vl, 'n2, . . . , Vn. From 

the  definition of v,+l and the  fact that  D is a local tournament, we see that v,+l must 

dominate w. Continuing this way we conclude that vk dominates w, a contradiction. 

To prove that  the  above vertex ordering is a round enumeration, it suffices to  

show that  if v,+v, then V , - + { V ~ + ~ , V ~ + ~ ,  ..., vJ-1) and {v,,v,+l, . . . ,  ?I,-l)-+v,. First 

we notice tha t  

V13V24. .  . +V,. 
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Wi. clitim that 7in-+vl. Since D is strong, v, must dominate some vertex v,. If a = I ,  

thcr~ we are done. Otherwise v, is dominated by both v , - ~  and v,. Since D is a local 

tournament, either v , -~ -tv, or v,-+v,-1. However va-l cannot dominate v, by the 

choice of v,. Hence v, dominates v,-1. Continuing this way, we conclude that v, 

dominates v,. So if j = i + 1, then we are done. If j # i + 1, then both v;+l and vj 

are dominated by v, and so, by the choice of vitl, vi+l dominates vj. Continuing this 

way we see that v, is dominated by each v, where m = i, i + 1,. . . , j - 1. Since D 

is a local transitive tournament, we know that ( v i ,  v;+l,. . . , vj-1) induces a transitive 

tournament. Since v;--+v;+1-+ . . . 3vJU3-1, we have V ; - + { V ~ + ~ ,  v,+2,. . . , vj-1). 

2 =+ 3: Suppose that v l ,  vz, . . . , v, is a round enumeration of D. Make a n- 

scale-clock on a cycle. We associate with each vertex vj a circular arc from j to 

( j  + d: + 1)  - f (here additions are modulo n ) ,  where d: is the outdegree of vertex 

vj. It is not difficult to verify that this is a proper circular arc representation in which 

the circular arc u contains the head of the circular arc v if and only if in 13 the vertex 

associated with u dominates the vertex associated with v. 

3 =s 1: The outset of a vertex z is associated with an inclusion-free family of cir- 

cular arcs which all contain the tail of the circular arc associated with x. Thus they 

are linearly ordered by their heads. Hence the vertices associated with these circular 

arcs induce a transitive tournament in D. A similar discussion applies to the inset of 

2, and hence D is a local transitive tournament. o 

Again there are two procedures involved in the above proof. One is to obtain a 

round enumeration from i~ local transitive tournament, the other is to obtain a proper 

circular arc representation. The first procedure can be performed in time O(m + n )  

and the second one can be performed in time O(n).  

Corollary 2.2.7 Suppose a local-transitive-tournament orientation D of a proper 

circltfar arc graph G is given. Then a round enumer~~tion of D,  and hence a circular 

arc r.epresenptation of G, can be found in time O(m + n) .  5 

The following lemma due to  Galumbic can be found in [33]. 
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Lemma 2.2.8 If G 1s a proper czrcular arc graph* t f i t .12 G ha:: a proper cirruitrr 

arc representation in which no two arcs share a common crrtipoiat and no two czrcs 

together cover the entire circk.  0 

Theorem 2.2.9 If a connected graph G ts ortentable as a loccd tournarnfrtt, tht,rt  

G admits a round enumeration. 

Proof: Suppose that  G is orientable as a local tournament. Then by 'l'htwrenl 

2.1.1, G has a proper circular arc representation F. In addition, by Lenlrna 2.2.8 the 

representation .F can be chosen so that no two arcs share a common endpoint and nu 

two arcs toget her cover the entire circle. Let Sx , Sz, . . . , S, be the arcs in F. r'or tach 

i = 1,2, . . . , n, suppose that v, is the vertex of G associated with S,, 

We obtain an oriented graph D as follows: The vertex set of D is the same as thc 

vertex set of G, and a vertex v, dominates a vertex v, in D if and only if S, contains 

the head of S, (or S, contains the tail of S,). By the assumption on F, i f  v, and v, 

are two adjacent vertices of G, then either S, contains the head of S, or S, cont.ains 

the head of S,. Thus D is an orientation of G. We claim that D is a local transitive 

tournament. In fact for each vertex v, the outset sf v, consists of the vertices which 

are associated with those arcs containing the tail of S, and hence they intersect each 

other. So the outset of v, induces a complete subgraph of D. By the assumption on F, 
if an arc contains the tail of S,, then it can not contain the head of S,. Hence the arcs 

which contain the tail of S, cannot cover the whole circle. Thus the subgraph induct4 

by the outset of v, can not contain any cycle. A similar argument can bc applied to 

show that the inset of v, induces a complete subgraph which contains no cycle. I-frnce 

D is a local-transitive-tournament orientation of G. Therefore by Theorem 2.2.6 G' 

admits a round orientation. B 

From the proof of Proposition 2.2.9, we see that a local- toarnament -orientable 

graph is in fact local-transitive-tournament-orientable. 
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Corollary 2.2.10 A connected graph is local-tournament-orientabie if and only if 

it is local-transitive-tournament-orientable. El 

2.3 Two Structure Theorems 

Suppose that G is local-tournament-orientable. Let B be a I"-class and let C = B-'. 

Then from Section 2.1 we know that B n C = 0 and i) = e. We call fi an implication 

class of G. Note that the edge set of C can be partitioned into implication classes. 

Suppose that uv, u'v' E E are in the same implication class. Consider (u, v) and 

(u ' ,v l )  in F(G).  Then either both (u, v )  and (u', 2;') are in B for some I"-class B, or 

(u,  v) is in B and (u', v') is in B-'. Hence either (u, v)I'*(u', v') or (u, v)r*(vf, u'). 

From the above discussion, we see that G has a unique local-touxnament orienta- 

tion i f  and only if the edge set of G  forms one implication class. One observation is 

that i f  u and v are two vertices of G with N[u]  = :V[v], then u is adjacent to v and 

the single edge uv forms an implication class. 

An edge z y  of a graph G is called balanced if N [ x ]  = N [ y ]  and unbalanced if N [ x ]  # 
N[y ] .  Similarly an arc xy of an oriented graph D is called balanced if N [ x ]  = N[y] and 

,unbalanced if N [ x ]  # N [ y ]  in G(D). (Thus a balanced arc joins two 'z'-equivalent 

vertices.) 

We defined the full reversal of a digraph D to be the operation which reverses the 

direction of each arc of D. We now define a particzl reversal of a digraph D to be an 

operation which reverses the directions of all unbalanced arcs within one component 

of G ( D ) ,  or reverses directions of all unbalanced arcs between two fixed components 
-- 

of G( C). Note that in a digraph D we can perform several different partial reversals. 

In the remainder of this chapter we shall prove the following two structure theorems. 

Theorem 2.3.1 Let D  be a connected oriented graph which is not a tournament. 

Then D is a non-strong local tournament if and only if it is obtained from some 

sirnight orzenied graph S with reduced G ( S )  and IS1 > 1 by substituting a tournament 

T, for each vertex v E V ( S ) .  
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alloreotw ewry  non-strong local-toun2antent or-?cntnfwrz o j G ( D )  1s obtalncd from 

D by ret7erszng the dzrecfions of some balanced arcs, yosssbly joifouled b y  (1 ! d l  rt-lle-r- 

sal. 0 

Theorem 2.3.2 Let D be a connected orzented graph. Then D 1,s a local fotlr- 

nament if and only if it is obtazned from some round orzented graph R wltfi r.educeii 

G( R)  first by substitutzng a tournament T, for each vertex t.1 E Vf  R)  and then b y  

performing partial reversals. 

,kforeover, every local-tournament orientation of G ( D )  zs obtainea by ptvforrnzrq 

partial reversals and changing directions of some balanced arcs, possibly followed by a 

full reversal. 0 

In what follows the notation N [ x ]  always refers to the closed neighhourhood of z 

in the graph G. We begin with the following proposition. 

Proposition 2.3.3 Let G be a reduced connected graph with A ( G )  < n - '2. If 
G is orientable as a non-strong local tournament, then G has exactly one implication 

class. 

Proof: Since G can be oriented as a non-strong local tournament, C: admits a 

straight enumeration by Theorem 2.2.5. Let v l ,  vz, . . . , v, be a straight enurneration 

of G. Note that n > 3 as G  ;3 connected with A ( G )  5 n - 2. For each vertex v,, v, is 

not adjacent to  either vl or v,; otherwise v; would be adjacent to every other vertex 

of G ,  contradicting the hypothesis that A ( G )  5 n - 2. Since (by the same argument) 

vl is not adjacent t o  v,, we see that is connected. 

Fix a vertex v; where 1 < i < n. Let vjvj be the left-most wave and let vivk he the 

right-most wave a t  v,, We prove that v,v, and v,vk are in the same implicatior! class. 

If v, is not adjacent to  27k, then (v, ,  v l ) r ( v k ,  v,) and so v,v, and v,vk are in the same 

implication class. Suppose that v, is adjacent to vk. Since C is reduced, we have that 

Njv,] # N[v,] and N[v,] # N [ v k ] .  Note that N[v,] C N[v,] and NIv,] c N[vk] .  Then 

iV[v,] - N[v,] # @ and N [ v k ]  - N[v,] # @. Let v,vr he the left-most wave at  v, and 
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U ~ L ' , ,  br the right-most wave at vk. Then f < j < z < k < m, and neither vr nor v, is 

adjacent to r f , .  Hence 

and so v,v, and vtvk are in the same implication class. 

We now show that all left-most waves and all right-most waves at all vertices are 

in one implication class. Let v1 = v , ~  - v12 . . . vZp = V n  ( i l  < i2  < . . . < i,) be a 

path of C such that vtJvt,+l is the right-most wave at  v,] for each j = 1 ,2 , .  . . , r - 1. 

We first notice that r 2 4 as otherwise there is a vertex of degree n - 1, contrary to our 

hypothesis. Since v,] is not adjacent to v,,,, for each j = 1,2, .  . . , r - 2, we have that 

(v,, : vt2 )i7(ut2, v t3)  r . . . r(vtr- l  , vtr ). Hence the edges v,] vt1+, where j = 1,2, . , . , r - 1 

are in the same implication class. We denote this implication class by C and claim 

that all right-most waves at all vertices are in C and hence also all left-most waves at 

all vertices are in C. Let vsvt be the right-most wave at  us. Suppose first that vt is the 

last vertex in the straight enumeration, namely, t = n. Then s > i,-2 as otherwise the 

edge v,v, implies that vtr-, is adjacent to v,, contradicting the fact that v,,-~v,,-, is the 

right-most wave at  vtr-,. If in addition s 5 then (v,, v,)I'(v,, V , ~ - ~ ) I ' ( V ~ , - ~ ,  v,,.-~) 

and so vsvn and v,,-,v ,r-3 are in the same implication class, namely, C. If 2,-I < s < n ,  

let vsv, the left-most wave at  us, then ir-2 < p and up E N[vs]  - N[v,]. Thus vp  is 

not adjacent to v,. Hence (u,, vs)r(v , ,  v,)I'(v,, v , , -~) I ' (v , , -~ ,  vtrA3) and so vsv, is in C.  

Suppose that vt is not the last vertex in the straight enumeration, namely, t < n. Let 

~t = z7t1 , vt2 . . - , vtp = v,  be a sequence of vertices such that tl < t z  < . . . < t ,  and 

U I , U I , + ~  is the right-most wave at  vt, for each j = 1,2 , .  . . , q - 1. We note that vsvt 

is in the same implication class as vt, vt2 and vtJvt1,, is in the same implication class 

as ~ t ~ + ,  ~ t , + ~  for each j = 1,2, . . . , q - 2. Then vsvt is in the same implication class as 

vt,-, 2+, = ~ f ~ - ~  vn which is in C. Hence v,vf is also in C. 

Finally suppose that v,v, is any edge of G where i < j. Since N[v,] # N[v,], either 

-v[t,l] - .V[v,] # @ or N[v,] - N[v,] # 0. If N[v,] - N[v,] # 0, then v,v, is in the 

same implication class as the Icft-most wave at  v, which is in C. If N[v,] - N[v,] # 0, 

then tS,u, is in the same implication class as the right-most wave at v, which is is C. 

Therefore t9,t3, is in C. 
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Suppose that G is s reduced connected graph with A((:) 5 n -2. if C; is orientable 

as a ncn-strong local tournament, then by Proposition 2.3.3 C: is uniquc.ly loca- 

tournament-orientable. If v;, 2 9 ,  . . . , U, is a straight enurnt>ration of f:, t hen  a non-  

strong local-tournament orientation of G can be obtained by letting o,-+v, for c ~ ~ l y  

edge v,vJ of G with i < j. Therefore the following corollary has been proved. 

Corollary 2.3.4 Let G be a reduced connected graph with AfG) < n - 2 .  If'C 
is orientable as a non-strong local tournament, then G IS  unzquely orientnbk a.s a 

non-strong kocal tournament. fl 

Proposition 2.3.5 Let G = (V,  E )  be a reduced connected graph with 1V/ > 3 

and assume that degtv) = n - 1 for some v E V .  If G can be oriented as a non-slrony 

locaI tournament, then G has precisely two implication classes: One class consists of 

all edges that are incident with v ,  the otheil. class consists of all edges that are not 

incident with v .  

Proof: Since G = (V, E) is orientable as a non-strong local tournament, by 

Theorem 2.2.5, G admits a straight enumeration. Let vl , v2, . . . , v, be a straight 

enumeration of G. Since G is reduced and deg(v) = n - 1, we know that deg(u) <. rt - 1 

for all u # v .  Let v = v,. We claim that n is odd, r = y, and ~ I , V , + , - ~  is t h p  right- 

most wave at v, for each 1 < i < r .  

We first apply induction on i to show that V,V,+,-~ is the right-most wave at v, 

for each 1 5 i 5 r. Since v, is adjacent to every other vertex, vl v, E E.  If 711v, C f+: 

for some j > T ,  then v, is adjacent to v1 ,v2 , .  . . , v , - ~ .  Since v, is adjacent to v,,, u, is 

adjacent to v,+l, v,+2,. . . , v,. Thus deg(v,) = n - 1, contradicting the fact that v, is 

the only vertex of degree n - 1. Hence vlv, 4 E for any J > r and so ?ilv, is the right- 

most wave at vl. Suppose that vr~l+, -~  is the right-most wave at TI/ for a11 1 < 2 5 r .  

Consider the vertex v,. Since G is reduced, N [ V , - ~ ]  f 4V[v,] and N[TI,-~] C N [ o , ] ,  

N[v,] - N [ V , - ~ ]  # 8. Hence there is tt vertex which is adjacent to v, hut nut to v,-1. 

We claim that N[v,] - N [ v , - ~ ]  = {v ,+ , -~ ) .  In fact, let v, F $ [ ? I , ]  -- N [ V , - ~ ] .  We know 
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t h a t  j > z + r - 2 bccause U , - I  u,+,-Z IS the right-most wave at  v,-1. If 3 > z + r - 1, 

then vertices L'] and u , + , - ~  would have the same closed neighbourhood, contradicting 

tile hypottiesis that G is reduced. Hence j = z + r - 1 and so v , + , - ~  is the only "vertex 

which is adjacent to v, but not v , -~ .  This also implies that V,V,+,_~ is the right-most 

wave at o,. Hence v,v,+,-1 is the right-most wave at  v, for all 1 5 z 5 r. In particular, 

we have Z I , V ~ , - ~  is the right-most wave at  v,. Therefore n = %r - 1 which is odd and 
E k L .  s o r =  

The vertex vl is not adjacent to t),. Each vertex v, is not adjacent to v, when 

I < r and is not adjacent to vl when z > r .  Thus has precisely two components 

induced by {v,) and V - {v,). First we note that an edge of G which is incident with 

v, can not be in the same implication class as an edge which is not incident with v,. 

Assume now that v,v, and v,v, are two edges of G which are incident with v,. Then 

v, and v, are two vertices in the set I/'- - {v,) which induces a connected subgraph in 
- 
G. Hence there is a path in from v, to v,. Let v, = xl -. xz . . . N xi = V, be 

such a path. Since, for each t = 1,2, .  . . ,1 - 1, (xt ,  v,)II(v,, x ~ + ~ ) ,  xtv, and xt+lvr are 

in the same implication class of G. Wep~e v,v, and v,v, are in the same implication 

class. 

Let G' be the graph obtained from G by removing the vertex v,. Then A(Gt) 5 
n - 2. Moreover G' is connected (as n > 3) and is straight-orientable. Hence by 

Proposition 2.3.3, G' has only one implication class. Therefore the s ~ t  of all edges of 

G which are not incident with the vertex v, form one implication class. 

We remark that if G is a reduced connected non-strong local-tournament-orientable 

graph with A(G) = n - 1, then G contains at least 3 vertices. When G contains ex- 

actly 3 vertices, G is a path of length 2. In this case, G has one implication class 

and G admits a unique local-tournament orientation. In fact, the orientation must 

be non-strong. If G has at  least 5 vertices (we know from the proof of Proposition 

2.3.5 that G must have an odd number of vertices), then G admits precisely two 

local-tourmimilt orientations up to full reversal. One orientation D can be obtained 

by letting v,-+v, if v,v, is an edge of G with i < j in the straight enumeration, Of 

course this is a non-strong orientation. Another local-tournament orientation can be 
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obtained from D by reversing all directions of the arcs incident w i t h  tj, j t hc vertex of 

degree n - 1).  This is a strong orientation. Hence we con<-lude from Proposition 2.3 .5  

that there are (up to full reversal) no other local-tournarrtent orientatioris of I;. Hence 

G is uniquely orientable as a non-strong local tournament. Thcrefort thr following 

corollary has been proved. 

Corollary 2.3.6 Let G = (V, EE) be a reduced connected graph with A(Gf .= 7 r  - 1 .  

If G can be oriented as a non-strong local tournantent, then G 1s unzqu~fy orlentable 

as a non-strong local tournament. Q 

The following result is a combination of Corollaries 2.3.4 and '2.3.6. 

Corollary 2.3.7 Let G = (V, E )  be a reduced connected graph. I fG  is orientablc 

as a non-strong local totirnament, then G is uniquely orientable as a non-strong focal 

tournament. 0 

Proof of Theorem 2.3.1: Let D be a connected oriented graph which is not a 

tournament. Suppose that  D is obtained from some straight oriented graph S with 

reduced G(S)  by substituting a tournament T, for each vertex 1) of S .  Let x 1 ,  x2, . . . , & I  

be a straight enumeration of S. We know that l # 1 since D is not a tournament. It 

is implied by the definition of a straight enumeration that there is no directed path 

from xi to  zl in S. Then there is no directed path from any vertex of T,, to any vertex 

of T,, in D. Hence D is non-strong. To see that D is a local tournament, let cc hc: a 

vertex of D and let y and z be two out-neighbours of x .  Then x E %',, , y E I;,, and 

z E T,, for some 1 < i ,  j ,  k 5 1. We note that i 5 j, k .  Without loss of gtmerality, 

assume that j 5 k. If j = k, then y and z are in T,, which is a tournament. Hence y 

and z are adjacent. Assume that j < k. Since x j z ,  we have that 2,411, and hence 

x,-+z~ for every r such that i 5 r < k .  In particular, xJ-+xk. So y 4 z  and y is 

adjacent to  z in D. A similar argument applies to show that any two in-neighhours 

of x are adjacent. Hence D is a local tournament. 
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Suppose now that D is a non-strong local tournament. Let Tl U T2 u . . . u Tp be 

a partition of D into blocks. Then each 1: must be a tournament and if i # j then 

Tt is (hither c-cmpletdy adjacent to T, or completely non-adjacent to T,. Since D is 

not a tournarnerit, we have p # 1. We note that p # 2 as otherwise TI and T2 are 

completely adjacent. Thus vertices in TI u T2 have the same closed neighbourhood, 

contradicting the maximality of TI. Therefore p >_ 3. 

Let x l ,  22,. . . , xp be vertices with x; E T, (2' = 1,2 , .  . . , p) such that (xl ,  x2, .  . . , xp) 

induces a non-strong subgraph of D. We use S to denote the subgraph of D induced 

by {XI,  x2:. . . , s,}. Note that such vertices X I ,  5 2 , .  . . , xp must exist because D is 

non-strong. Then S is a local tournament. We note that G ( S )  is reduced because 

distinct vertices of S have distinct closed neighbourhoods. By Theorem 2.2.5, S 

admits a straight enumeration. Without loss of generality, assume that X I ,  32,. . . , xp 

is a straight enumeration of S. 

Let {y,, 92,. . . ,yp)  be an arbitrary set of vertices with y, E Ti for each i = 

1,2,. . . , p  (possibly the same as {xl, 2 2 , .  . . ,x,}). Suppose that Sf is the subgraph 

of D induced by (yl, y2,. . . , yp). Then Sf is also a local tournament with reduced 

C(S ' ) .  I t  is easy to verify that the mapping f : xi -, Pi is an isomorphism between 

G ( S )  and G(Sf). By Corollary 2.3.7, G(S) is uniquely orientable as a non-strong 

local tournament. Nence, under the same isomorphism f ,  S is either isomorphic to 

S' or the ful l  reversal of S'. Thus either yl, yz,. . . , yp or yp,yp-1,. . . ,y1 is a straight 

enumeration of St .  

We first consider the case when p = 3. In this case S is a directed path xl-+x2-+x3 

where x l  and x3 are not adjacent. For any y E TI, we must have y-+x2-+x3. Hence 

Tl-+xz. Similarly we must have x2-+T3. For any z E T2, by considering the set 

(.T,: 2, x3), we must have either xl-+z+x3 or x ~ - + z + x ~ .  Hence either Tl-+z-+T3 or 

T3-+t4T1. 

Let H1 U H2 be a partition of T2 such that each vertex y f HI satisfies Tl-+y-+T3 

and each vertex 2 E H2 satisfies that T3--+z-+Tl. Then HI # 8 as x;! E HI. If Hz # 0, 
then we have TI --+HI -+T3-+H2-+Tl, which contradicts the fact that D is non-strong. 

Hence H z  = 0, that is, T1-+T2+T3. Thus D is obtained from S by substituting a 

tournanlent 1; for x,  for each i = 1,2,3. 
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To prove the second assertion of Theorem 2.3.1 for the case when p = 3, supptrscb 

that D' is any non-strong local tournament with G(D')  = G(L7). 'I'hen I)' can br. 

partitioned into vertex disjoint subgraphs T,' U Ti tl T;, whcrc C:(T, ' )  = G(T,) for crtctt 

i = 1,2.3 .  Again we must have eir,ier T~---+T~-+T~ or T~--tT~-+?;/. If 7; '41:1'- iY:J,  then 

D' is obtained from D by reversing some arcs in 'r, for each r = I , ? ,  3. If 7';--?'4-+ I';, 

then D' is obtained from D by first reversing some arcs in T, and then perfcrrrriing n 

full reversal. (Note that each arc of T, is balanced.) 

Assume now that p >_ 4. Lei y he any vertex of T, and let S" be the subgraph 

induced by isl,. . . . x , - ~ ,  y, x,+l,. . . , x,). Applying an argument similar to the above, 

we have either XI,. . . , x,-1, y, x,+l,. . . , x, or x,, . . . , x , + l ,  y, x , - 1 , .  . . , ; T I  is a straight 

enumeration of Sit. However S and S" have at  least one arc (x,, x , + ~ )  in conlmon 

for some j. Then XI,. . . , X , - ~ ,  y,x,+~, . . . , x p  must be a straight enumeration of S". 

Moreover y-tx, if and only if x,+x,, and x,-+y if and only x,+x,. This implies that 

T,-+T, if and only if x,4x,. Thus D is obtained from S by substituting 7: for s, for 

each i = 1,2,. . . ,p .  

The second assertion of Theorem 2.3.1 for the case p > 4 can be proved in thc: 

same way as in the case when p = 3. a 

For the case when D is a non-strong tournament, D can be viewed as an oriented 

graph obtained from a straight oriented graph which has only one vertex s by rt:placing 

x with D. In this case each edge af G(D)  forms an implication class. Hence all non- 

strong local-tournament orientations of G ( D )  are obtained from D by reversing some 

arcs in D. 

Proposition 2.3.8 Let G be a reduced connected graph. I f  G' is local-tournc~7ne711- 

orientable and ?? is bipartite, then the edges of G within each fixed connected corn- 

ponent of form one implication class, and the edges of G belwecn any two fixed 

connected components of form an implication class. 

Proof: Suppose that G is orientable a s  a local tournament and that C i u  bipartite. 

Let GI uG2 U .  . . U G r  be a decomposition of G into vertex disjoint ~ubgraphs such that 

each is a connected component of F .  Then, in G, every vertex of G, is adjacent 
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to every vertex of GI if i # j. Hence any implication class is contained in E ( G j )  for 

some i or is contained in the set of all edges between G, and GI for some fixed i and 

j .  It suffices to show that all edges of G in any Gi or between any two fixed G, and 

G', are in the same implication class. 

First we show that all edges of G within one G; are in the same implication class. 

Note that Tf; is a connected bipartite graph. Let (S, H) be a bipartition of c. Note 

that S and H induce complete subgraphs in G. We begin by showing that all edges 

of G within S are in the same imp!ication class. Similarly we can show that all edges 

of G within li are in the same implication class. If 1 5 IS/ 5 2, then S contains no 

edge or contains exactly one edge and so the statement is trivially true. If IS) > 3, 

it suffices to show that for three vertices s, y, z of S ,  the edges xy and x z  are in the 

same implication class. Since G, is connected, there is a path in G, from y to z .  Let 

y = xul - w2 - . . . - wt = z be any shortest (y, 2)-path. Note that vertices wi are 

taken from S and H alternatively, thus t is odd. It will be enough to  prove (for each 

odd i)  that if w; # x ,  then xwi and xw;+2 are in the same implication class, unless 

W;+Z = s in which case xwi and xw,+4 are the same implication class. Assume that 

w , + ~  = x. Note that w;+Iw;+~ and w;w;+s must be edges of G, as  otherwise we would 

have a shorter path in F from w, to  wi+4 and a shorter (y, zj-path, contradicting our 

choice of the (y, z)-path. Hence we have 

Assume next that wi+2 # x. If X W ; + ~ ,  then 

Otherwise we consider the following four cases, one of which must occur because G is 

reduced. 

Case 2 .  Assume that there exist vertices v E N [w;] - N [XI and u E N [ W ; + ~ ]  - N [ x ] .  

Then u, v E N. Thus 

if ZXL?,+~ is an edge in G; or 
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if w,u is an edge in G; otherwise 

Case 2. Assume that there exist vertices v E i'V[u?,] - ~ V [ X ]  and 1~ ~ r c  N [ x ]  - : V [ W , + ~ ] .  

Then u ,  v E H .  Thus 

(5, W ) ~ ( U ,  x)~(x: w1+2) 

if w ; u  is not an edge in G; or 

if vw;+2 is an edge in G; otherwise 

Case 3. Assume that there exists a vertex v E N [ x ]  - { N [ w , ]  U A ' [ W ; + ~ ] } .  Then 

Assume that there exist vertices v f N [ x ]  - N [ w i ]  and u E N [ z ]  - N [ w i g 2 ]  where 

u # v .  Then we have 

Case 4. Assume that there exist vertices in N i x ]  - M[w, ]  and in N [ W , + ~ ]  - N [ x ] .  

This is similar to Case 2. 

To complete the proof that all edges of G in G, are in the same implication c l a s ,  

consider an edge x y  of G where x  E S and y  E H. Since G is reduced, we have 

N i x ]  # N [ y ] .  If there is a vertex z E 5' such that z E N [ x ]  - N l y ] ,  then xy and s z  

are in the same implication class and xz lies in S. If there is a vertex z E N [ y ]  - N[z ]  

then z y  and yz  are in the same implication class and yz lies in H. 

Finally we show that all edges of G between any two fixed G, and G,, where i # j ,  

are in the same implication class. Let xz and yw be two edges of G between G, arid 

Gj, where x ,  y  f Gi and z ,  w E Gj. Since z and w are in the same connected compo- 

nent of c, there is a path in E3 from w to w. Let z = vl - v2 - . . . - vt = w  be such 
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a path. Then xu, is a n  edge of G for each i = 1 :  2 , .  . . , t .  We also not,ice that xu, and 

xv,, ,  are in the same implication class for each i = 1,2, .  . . , t - 1 .  Hence xz and zw 

are i n  t h e  same implication class. A similar argument applies to show that xz and yz 

are in the same implication class. Hence xz and yw are in the same implication class. 

CI 

Proposition 2.3.8 completely describes all implication classes of a reduced local- 

tournament-orientable graph G for which c is bipartite. 
* 

Suppose that G is a reduced local-tournament-orientable graph which contains a 

vertex v of degree n - 1. Then by Corollary 2.1.1 1 ,  c is a bipartite graph. So from 

now on we need to consider a reduced graph G for which A(G) < n - 2 and ?? is not 

bipartite. In addition (in view of Proposition 2.3.3) we may assume that G can only 

be oriented as a strong local tournament. 

By Theorem 2.2.9, we know that @ admits a round enumeration, that is, the 

vertices of G can be circularly ordered vl ,  v2, . . . , v, so that 

where { v ~ - ~ ,  t ~ i - 2 ~  . . . , U i - / )  and { v ; + ~ ,  v;+z, . . . , v;+,} induce complete subgraphs of 

G for each vertex v,. We shall call v,  and vi+l consecutive vertices (the subscript 

addition is modulo n). Note that all consecutive vertices are adjacent since G can not 

be oriented as a non-strong local tournament. 

If vivj is the left-most wave at  v;, then { v j ,  vj+l, .  . . , v ; )  induces a complete sub- 

graph. Similarly if v;vk is the right-most wave at v,, then {v;,  v;+l,. . . ?  v k )  induces a 

complete subgraph. Since A(G) < n - 2, there exists a non-neighbour of vi between 

ZQ and vj . 

Lemma 2.3.9 Suppose that G is a reduced connected graph for which F is not 

bipartite. Suppose that G is orientable as a strong local tournament and is not ori- 

entable as a non-strong local tournament. Let v17 vz, . . . , v, be a round enumeration 

of G. If the left-most wave and the right-most wave a t  each fixed vertex of G are in 
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the s a m e  implication class, then all left-most waves and all ryht-most utuvrs at all 

vertices of G are in one implication class. 

Proof: It suffices to  show that the left-most waves and the right-most waves at 

two consecutive vertices u, and u,+l are in the same implicntion class. We s t d l  only 

prove the case when i = 1. A similar proof applies for 2 # 1. 

Let vlv,  and ulv, be the left-most wave and the right-most wa,ve, respectively, at 

v l ,  and let V ~ V I ,  and v2v1 be the left-most wave and the right-most wave, respectively, 

a t  v2. Since N [ v l ]  # N[v2] ,  we have that j # 1 if i = k. Similarly we have i # rl. i f  

j = 1. We consider the following cases. 

Case 1. If i = k and j f 1, then (vl,v,)I'(vl,v,-l)I'(v2,vk). Hence the left-most 

wave a t  vl is in the same implication class as the left-most wave at  v2. 

Case 2. If j  = I and i # k, then ( v l ,  v,)I'(v,, ~ , + ~ ) I ? j v ~ ,  vl). Hence the right-most 

wave at  vl is in the same implication class as the right-most wave at  v2. 

Case 3. If i # k and j # I ,  then j < i ,  1 5 n. If i < I ,  then deg(v,) = n - 1 

because (v,, . . . , v,, v l )  and {v2 , .  . . , v,) induce completesubgraphs of C, contradicting 

our hypothesis. Thus j < 1 < i. Hence (v,, v l ) r ( v l ,  v2 ) r (v2 ,  v l )  and so the left-most 

wave a t  vl is in the same implication class as the right-most wave of vz. 

Therefore the left-most waves and the right-most waves at  vl and vz are in the 

same implication class. 0 

Proposition 2.3.10 Suppose that G is a reduced connected graph for which ?? 
is not bipartite. Suppose that G is orientable as a strong local tournament and is 

not orientable as a non-strong local tournament. Then the edge set of G forms one 

implication class. 

Proof: Let vl ,  vk, . . . , v,  be a round enumeration of G. Consider the vertex vl. 

Suppose that vlv; and vlv,, where i < j ,  are two arbitrary edges incident with vt 

(not necessarily waves) such that < { v l ,  v2, .  . . ,v ,)  >, < {vJ , vJ+l , .  . . , v,,, V I )  >, and 

< { v i ,  vi+l, . . . , v j }  > are complete. We claim that vlv, and vlv, arc in the same 

implication class. 
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Since A(G) < n - 2, there exists a vertex which is not adjacent to vj. Choose 

such a vertex with the greatest subscript, say ~ ' k .  Then 1 < k < i and v, is adjacent 

to v k + ~ .  Thus (v3, vl)l ' (vl ,vk) and so vlv, and vl?. are in thr  same implication class. 

We claim t h..: v k  and v , + ~  are not adjacent. If vk and vj+l are adjacent, then at least 

one of the subgraphs < {vk,vk+l,. . . , ~ j + ~ }  > and < ( ~ j + ~ , v j + 2 , .  . . , q  ,... ? v k }  > 
must be complete. However, < {vk, vk+l,. . . , v ~ + ~ )  > is not complete since v k  is 

not adjacent to vj. Therefore < {vj+l, V j + 2 ,  . . . , v1, . . . , vk j > must be complete. A 

similar argument shows that < (ur ,+*,  vk+z,  . . . , v,) > is complete. This contradicts 

our assumption that is not bipartite. 

Let vl be the vertex of greatest subscript such that vl is not adjacent to vk. Then 

j + 1 < 1 < n and vk is adjacent to vl+l. So (til, vk)F(vr, vl) and so vlvk and vivl 

are in the same implication class. Hence vlvj and vlvl are in the same implication 

class. Again by the condition that is not bipartite, vl is not adjacent to uk+l; or 

else < { v [ + ~ ,  v1+2,. . . , vn, vl , .  . . , vk) > and < {vk+], Vk+2,. . . ,2[) > are two complete 

subgraphs covering G and would be bipartite. 

If vt is not adjacent to v,, then vlvr and 2 1 1 ~ ;  are in the same implication class and 

we are done as this implies that vlvi and vlvj are in the same implication class. If vl 

and v; are adjacent, then again choose a vertex v, of greatest subscript so that v, and 

111 are not adjacent. Then k+ 1 < m < i and vlvr and vlv, are in the same implication 

class. So V~vj and vlv, are in the same implication class. Notice that k < m < i 
and so v, is relatively closer to v; than vk. Continuing the above procedure, we will 

eventually find that vlv; and vlvj are in the same implication class. 

Now we show that the left-most wave and the right-most wave at  each fixed vertex 

are in the same implication class. Without loss of generality, we only consider the left- 

most wave vlvj and the right-most wave vlv; at vl (Note that our discussion remains 

the same for every other vertex vi.) If vi is not adjacent to vj ,  then (vl, vj)I'(vj, vl) 

and vlvj  and vlvj are in the same implication class and we are done. Otherwise vi and 

I!, are adjacent. Then either < {v;,v;+l,. . . ,vj)  > or < {vj,vj+l,. . . , v l , .  . . ,vi)  > 
is complete. If < (v;, tli.+l, . . . , vj} > is complete, then we have proved that vlv; and 

tlltlj  are in the same implication class. If < {vj, vj+l,. . . , vn, vl, . . . , v;) > is complete, 

let 'tljvl be the right-most wave at  v; and let vjvk be the left-most wave at vj. Then 
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2 + 1 5 1, k 5 j - 1. If 1 2 k, then ( c l ,  z~,)I'(o,, ~ 1 , )  and ( ~ r .  rl,)r(r*,, / I , ) .  We xtote 

that c,ui and vrz; are two edges incident wit 11 vl, and < { r l , ,  . . . , z*,, 111, . . . , P , }  > is 

complete. \hTe conclude that v,z,l and vlv, are in the same irnpiication class, by using 

the same arguments made (at the beginning of the proof) for two edges incident with 

vl. Hence vlu, and vlv, are in the same impiication class. Suppose that I < k. W e  

claim that for any a such that 1 < a < j the vertex v, is not adjacent to v , .  I n  

fact, if v, is adjacent to  v,, then either < {v,,v,+l,. . . , I ? , ,  . . . , u , )  > is cnrrlplete or 

< (v , ,  vl+l, .  . . , v a )  > is complete. However we know that ul and v, are two non- 

adjacent vertices in < v,, v,+l,.. . , v,, . . . , v, >, and v,  and vr+l are two non-adjacent 

vertices in < v,,v,+l,. . . , v, >, a contradiction. A similar argument applies to show 

that for each 6 such that i < b < k the vertex u s  is not adjacent to v,. Note that 

vr vf+l - . . . vk is a path. So < {v, ,  v[+l,. . . , v k )  > is connected. Let 

r v '  be a shortest (vl ,  %)-path, denoted by P[vl ,  v k ] ,  in < {vl, v ~ + ,  , . . . , V L )  >. I hen we 

must have ml < r n z  < . . . < mh. The path P[u!, vk] is chordless since i t  is shortest. 

Hence 

( ~ 1 ,  urn1 )r(vrnl, urn2 )r(vrnZ, vrn3)Fs + . r(vmh-l  r 

Now urn, = vl is not adjacent to  vl .  We have 

Similarly urn, = uk is not adjacent to vl .  We have 

(urnh-, , vrnh)r(Vrnh , v j ) r ( v j  7 V I  ). 

Therefore ( v l ,  v i ) I ' (v j ,  v l )  and vlv; is in the same implication class as vlvj. By Lcrnrria 

2.3.9, all left-most waves and all right-most waves at  all vertices are in the same 

implication class. 

Finally we show that any edge belongs to  the same implication ~ 1 ~ 9 s  a9 the left- 

most wave or in the same implication class as the right-most wave at some vertex. 

Again without loss of generality, we consider an edge vlv, incident with vl . Then 

either 

< {2)1,v2, . . . ,v;)  3 ,  
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or 

is cornplet,e. Suppose that < {vl ,  VZ,  . - . , v, )  > is complete ( A  similar argument applies 

i f  < {ui, v,+1; . . . . tjn, v l )  > is complete.). Let v,v, be the left-most wave at  vl. Then 

j > i. I f  v, and v, are not adjacent, then (vl ,  vi)J?(vj, vl) and vlv; is in the same 

irnplication class as the left-most wave at  GI .  Suppose that vi and vj are adjacent. 

Then either 

< {Vj, V j + l r  - - .  ,V1,. - ,Vi) > 

is complete. Suppose that < {v;, v ; + ~ ,  . . . , vj) > is complete. Then vlv; and vlvj 

must be in the same implication class by earlier arguments. Finally suppose that 

< {v3,v3+1,. . . ,v1,. . . , v;) > is complete. Let v;vk be the right-most wave at  v;. Then 

i < k < j .  The vertex vk is not adjacent to vl as otherwise N[vl] = N[v;], con- 

tradicting the fact that G is reduced. Hence (vl, v;)r(v,, vk) and vlv; is in the same 

implication class as the right-most wave at v,. Therefore the edge set of G forms one 

implication class. 17 

All implication classes of a reduced local-tournament-orientable graph are therefore 

completely characterized. 

Theorem 2.3.11 Let G be a reduced connected local-tournament-orientable graph. 

Suppose that C1, Cz,. . . , Ck are the connected components of c. T.he one of the fol- 

lowing two state.ments is true. 

o If is bipartite, then the set of all edges of G within a fixed C, forms an 

implication class and the set of all edges of G beiween two fixed C; and C, 

f i  # j )  forms an implication class. 

If is not bipartite, then k = 1 and the edge set of G forms one implication 

class. 
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Proof: If c is bipartite. then the first statement is trut  according to Proposition 

2.3.8. If A(G) = n - 1. then c is bipartite by Corollary 2.1.1 1 and hence staterncnt 1 

is true. 

Suppose that G is not bipartite. Then -If G )  2 n - 2. .4ccording to Proposltior~ 

2.3.3 and 2.3.10, the edge set of G forms one implication class. Assumc that k > 1 .  

We note that the edges of G between C1 and C z  contain an implication class. Sincc 

all edges of G are in the same implication class, all edges of C: are between C', and 

C2.  Hence k = 2, and there is no edge of G within CI or Cr. Now we have jC'l[ 5 2 
a ~ d  1C21 5 2 as otherwise any three vertices in C1 (or C 2 )  together with a vertex in 

C2 (or C1) induce a copy of the claw (see Fig. 2.1) in G, contradicting the fact that (3 

is local-tournament-orientable. Therefore is bipartite, contrary to our hypothesis. LI 

Corollary 2.3.12 Let D be a connected local tournament with reduced G(D) .  

Then  any  local-tournament orientation of C ( D )  is obtained from D by performing 

partial reversals, possibly followed by a full reversal. 

Proof: Suppose that  D' is a local-tournament orientation of G(D).  Since G(11) = 

G(D1), an implication class of G(D)  is also an implication classes of G(D1). Suppose 

that C = {a lb l ,a2b2, .  . . , alb l )  is an implication class and suppose that a,  dorninates 

b, in D for each i. Then, in D', either a,  dominates b,, or O, dominates a,, for each i. 

If C1, C2, .  . . , Ck are the connected components of c, then by Corollary 2.3.11 one of 

the following cases occurs: 

C consists of all edges of G within C, for some i, 

9 C consists of all edges of G between C, and C, for some 2 and j ,  

9 C consists of all edges of G. 

Therefore, by the definitions of a partial reversal and a full reversal, B' is obtained 

from D by performing partial reversals, possibly followed by a full reversal. fl 
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Corollary 2.3.13 Suppose that G = (V,  E )  is a reduced proper circzllar arc graph 

utzth I VI > 4 which contains no isolated vertices. Then G is uniquely locai-tournament- 

orzentatiie zf and only i f  both G and are connected. 

Proof: We remark first that a connected graph is a proper circuiar arc graph if and 

only if it is local-tournament-orientable. The sufficiency follows from Theorem 2.3.11 

To prove the necessity, suppose that G is uniquely local-tournament-orientable. First 

G must be connected as otherwise each connected component has at  least two orien- 

tations (one is obtained by the full reversal of the other) and so the total number of 

local-tournament orientations of G is at  least 4. Suppose that is not connected. Let 

C1, C2, . . . , Ck be connected components of with k 2 1. Then by Theorem 2.3.11, 
- 
G must be bipartite. According to our hypothesis G is uniquely iocal-tournament- 

orientable, that is, the edge set of G must form one implication class. We note that 

the edges of G between C1 and C-, contain an implication class. Then all edges of G 

are between C1 and Cz. Hence k = 2, and there is no edge of G within C1 or C2. Now 

we have /GI I 5 2 and /C2 1 < 2 as otherwise any three vertices in C1 (or C2) together 

with a vertex in C2 (or C1) induce a copy of the claw in G, contradicting the fact that 

G is local-tournament-orientable. Therefore IVI 5 4, contradicting our hypothesis. 0 

Let P3 and C4 denote a path of length 3 and a cycle of length 4, respectively. Then 
- 
P3 and are not connected but both of P3 and C4 are uniquely orientable as a local 

tournament. So the condition IVI > 4 in Corollary 2.3.13 is necessary. 

We will next analyze the implication classes of a local-tournament-orientable graph 

G which is not necessarily reduced. First we have the following lemma. 

Lemma 2.3.14 Let G be a connected local-tournament-orientable graph. Suppose 

that xy and xz are two unbalanced edges and y z  is a balanced edge of G. If deg(y) < 
n - 2 ,  then (x, y)Fg(;c, z )  and hence zy  and zz are in the same i~p l ica t ion  class. 

Proof: ft suffices to  prove that in any local-tournament orientation of G, x dom- 

inat.es y if and only if x dominates z.  Assume to the contrary that x+y and z-+x 

in some local-tournament orientation D of G. Since z y  is an unbalanced edge, either 
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.V[X] - iV[y] # a or .Y[y] - *i-[s] j 8. If there is a vertes 1' E .V[.r] - :V[y], then u is 

adjacent to  x but not to y and hence not to 2 (since .%'[y] = .Y[z]) .  if sAu, then s has  

two non-adjacent out-neighbours u and y. If u t x ,  then r has two non-adjacent in- 

neighbours u and z .  Hence .V[s] - .Y[y] = 0 and so there is a vertex ui E ,l'[y] - ,V[.s]. 

Then w  is adjacent to y and ,T but not to x. Heme y -+to and w-t: i n  D.  An argutnent 

similar to  the one above, with w  replacing T, shows that N [ w ]  - i l r [ ~ ]  = @. 

Since d e g ( y )  5 n - 2, there exists a vertex z, which is not adjacent to y.  Howevtxr 

there is a path in G from v to y as G is connected. Let 2) = v l  -. 2 9  - . . . I+  = y 

be a shortest path from v to y. Then t 2 3 as v is not adjacent to y .  If v t - ~  = 2 

or vt-l = ZU, then vt-2 E N [ s ]  - N [ y ]  or vt-2 E N [ w ]  - N[y], contradicting the fact 

N [ x ]  - N [ y ]  = 0 and N [ w ]  - N[y] = 8. So vt-1 # x and vt-1 # w. We note that 

v t - ~  is adjacent to a t  least one of x  and w  as otherwise (2, y ,  w, vt-1) induces a copy 

of the claw in G and G is not local-tournament-orientable, a contradiction. Without 

loss of generality, suppose that v t - ~  is adjacent to w. If v t - ~  is not adjacent to x, 

then y-+vt-l and vt-l---+z because z- tx  and N [ y ]  = N [ z ] .  If vt-2-)vt-l, then vt-1 

has two non-adjacent in-neighbours vt-2 and y ,  contradicting the fact that D is local- 

tournament-orientable. If v ~ - ~ - - + v ~ - ~ ,  then vt-1 has two non-adjacent out-neighbours 

vt-2 and z ,  a contradiction. Hence vt-1 is also adjacent to x. 

Note that ct-2 is adjacent to at  least one of x  and w as otherwise {v t - ,  , vl-2, ;c, I D )  

induces a copy of the claw. However if vt-2 is adjacent to x or w, then vt.-2 E 

N [ z ]  - N [ y ]  or vt-2 E N [ w ]  - N [ y ] ,  which contradicts the fact that N [ x ]  - N[y] = V) 

and NEW] - N [ y ]  = 0 .  n 

Theorem 2.3.15 Let G be a connected local-tournament-orientable graph (not 

necessarily reduced). Suppose that C1, C2$ . . . , Ck are the connected components o j c .  

Then one of the following two statements is true. 

o 1fG is bipartite, then all unbalanced edges of G within a fixed Ci form. an impli- 

cation class and all unbalanced edges of G between two fixed C; m d  CJ ((i $ j) 

form an implication class. 
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r ~f is not bipartite, then k = 1 and all anbalanced edges of G form one impli- 

cation class. 

Proof: Let xy and uv  be two unbalanced edges of G, where x, u  E C, and y ,  v E Cb 

for some a and b with 1 < a,  b < k. Then N [ x ]  # N[y] and N [ u ]  # N[y]. Suppose 

that G' is bipartite. Assume first that a = 6. Note that each vertex of degree n - 1 

in C forms a connected component of c. In other words, if some C, has at least two 

vertices, then each vertex of C, has at  most n - 2 neighbours in G. Suppose that 

N[z] = N [ u ]  and N [ y ]  = N [ v ] .  Then x  is adjacent to v ,  and y is adjacent to  u. 

By Lemma 2.3.14, xy is in the same implication class as xv ,  and xv is in the same 

irnplication class as uo. Thus xy and uv are in the same implication class. Assume 

N I X ]  = N[u]  and N[y] # N [ v ] .  ( A  symmetric argument applies when N [ x ]  # N [ u ]  

and N[y] = N [ v ] . )  Applying Theorem 2.3.11 and Lemma 2.3.14 to  a subgraph of 

G which contains exactly one vertex from each block of G and contains the vertices 

x ,  y, and v ,  we conclude that zy is in the same implication class as xv. From above, 

we have that xu is in the same implication class as uv. Hence xy and uv are in the 

same implication class. Assume that the closed neighbourhoods N[x], N[y], N  [u] ,  and 

N [ v ]  are mutually distinct. Then applying Theorem 2.3.11 to  a subgraph of G which 

contains exactly one vertex from each block of G and contains the vertices x,  y ,  u, and 

v ,  we conclude that xy is in the same implication class as uv.  

Assume now that a # h. Suppose that each of C, and Cb consists of a single 

vertex of degree n - 1. Then x  = u  and y = v. Thus the conclusion follows trivially. 

Suppose that one of C, and Cb, say C,, consists of a single vertex of degree n - 1 .  

Then x = u. If N[y] = N [ v ] ,  then by Lemma 2.3.14, sy is in the same implication 

class as uv. Suppose that N[y] # N [ v ] .  Applying Theorem 2.3.1 1 to a subgraph of G 

which contains a vertex from each block of G and contains the vertices s,u, and v, 

we conclude that xy is in the same irnplication class as uv. For the case when none 

of and Cb consists of a single vertex of degree n - I ,  the discussions are similar to 

the case when a = b. 

Finally suppose that is not bipartite. Applying Theorem 2.3.11 to a subgraph 

of G which contains a vertex from each block of G, we conclude that k = 1. Note 

that none of z, y ,  21, v  has degree n - 1 .  Hence the discussions are similar again as for 
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the case when u = b. 

Proof of Theorem 2.3.2: Let D be a connected oriented graph. Stlpposc that 

D is obtained from some round oriented graph R by substituting a tournartlcbrlt ir:. for 

each vertex x of R. Let X I ,  xz, . . . , xl be a round enumeration of R. To s w  that f) 

is a local tournament, let x be a vertex of D and let y and 2 be two out-neighbt~rirs 

of 2. Then x E T,,, y E Tz,, and I? E T,, for some 1 5 1 ,  J ,  k _< 1 .  We show that y 

and z are adjacent. If i = j ,  then x and y have the same closed neighbourhood and 

hence y is adjacent to  z (as x is adjacent to z). A similar argument applies i f  i =: A-. If 
j = k, then y and z are adjacent because they are in the same tournarnent ?;. Assunkt 

that i ,  j, k are mutually distinct. Without loss of generality, assume that s,, x,, sl; are 

three vertices of R listed in clockwise circular order of the round enumeration. Sincc 

x+{y, z}, we have that  x,+{x,, xk}. By the definition of a round enumeration, we 

know that xj-+xk. Thus y 4 z  in D. Hence the outset of z induces a tournament in 

D. A similar argument applies to  show that any two in-neighbours of x are adjacent. 

Therefore D is a local tournament. 

Suppose in turn that D is a local tournament. Let TI UT2 U. . . U q  be a partition of 

D into blocks. Then each T, is a tournament and if i # j then T, is either completely 

adjacent to  T, or completely non-adjacent to T,. 

Let (xl, xz, . . . , xl) be a set of vertices such that x, E T, For each i = 1,2, .  . . ,l. 
Suppose that R is the subgraph of D induced by {xl, xz, . . . , xl).  Since D is a corr- 

nected local tournament, we know that R is also a connected local tournament. In 

fact R is reduced because distinct vertices of R have distinct closed neighbourhoods. 

By Theorem 2.2.9, R admits a round enumeration. Without loss of generality, amurne 

that z l ,  xz, . . . , zl is a round enumeration of R. 
Suppose that A ( D )  5 n - 2. It is implied by Lemma 2.3.14 that T,--+T, if and 

only if z,-+2,. Thus u" is obtained from ii by substituting a tournament '1: for z, 

for each i = 1,2,  . . . ,1 .  To prove the second assertion of Theorem 2.3.2, let D' be 

any local-tournament orientation of G(D) .  Then D' can be partitioned into vertex 

disjoint subgraphs TI, Ti , .  . . , T/ where G(T,') = G(T,) for each i = 1,2, .  . . , l .  We also 
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we that each TI' is a tournament and if i # j then T,' is either completely adjacent to 

7' o r  completely non-adjacent to Ti. Moreover if T: and T are completely adjacent 

then either TIt-+2;' or T'-+T: by Lemma 2.3.14. First we see that T[ is obtained from 

7: by reversing some arcs in T,. Suppose that T{ = T,. Let {yl, y2, . . . , y r )  be a set of 

vertices where y, f T: and let R' be the subgraph of D' induced by {yl, y2,. . . , y[). 

Then y,-+y, if and only if  q-+T;'.  It is easy to see that the mapping f : x, 4 y, is 

an isomorphism between G ( R )  and G(R1) .  Then by Corollary 2.3.12, R' is obtained 

from R by performing partial reversals, possibly followed by a, full reversal. Hence D' 
is obtained from D by performing partial reversals, possibly followed by a full reversal. 

Suppose in turn that A(D)  = n - 1. Without loss of generality, assume that TI 

is induced by the set of vertices of degree n - 1. Thus if i # 1 then every vertex of 

TT; has at  most n - 2 neighbours. By Lemma 2.3.14 we have (x, y)I'(x, z) for any two 

vertices y and z in Ti. Hence by Lemma 2.1.8 either x 4 { y ,  z) or (y, z)-+x. There- 

fore either x+T, or T,-+x. Let zl E TI and let R" be the subgraph of D induced by 

{zl, xz, . . . , x,). It is easy to verify that the mapping f : .zl -+ $1; --, x,(i 2 2) is 

an isomorphism between G(R)  and G(R1'). Hence, by Corolli?ry 2.3.12, R" is isomor- 

phic, under f ,  to R or to an oriented graph obtained from R by performing partial 

reversals of IZ. Note that R" differs from R in only one vertex, i.e., R" - zl = R - $1. 

So each possible partial reversal of R reverses some arcs incident with xi. Hence D 
is obtained from R by first substituting Ti for each xi and then by performing partial 

reversals (each partial reversal is performed by reversing some arcs incident with one 

vertex of T I ) ,  The second assertion of Theorem 2.3.2 can be proved analogously as 

for the case A(D) 5 n - 2. 0 
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The Lexicographic Method 

3.1 Local-bicornplete Orientability 

A transitively orientable graph is also called a coniparability graph (cf. [25, 32, 33, 

40, 711). Since every transitive oriented graph is locally bicomplete, all transitively 

orientable graphs are local-bicomplete-orientable. It was first observed by Ghouilk- 

Houri, in different terminology, that the converse of the statement is also true (cf. 

1311). 

Theorem 3.1.1 A graph is local-bicomplete-orientable zj and only if it is transi- 

tively orientable. 0 

In Chapter 2, we proved that a graph G is a proper circular arc graph if and only 

if the associated characteristic graph G* is 2-colourable. From this result, a simple 

algorithm was obtained there to recognize proper circular arc graphs. In  a similar 

way, we will define in this chapter another associated graph G'+ of G and prove that 

G is a comparability graph if and only if Gf is 2-colourable. This will also yield a 

simple algorithm to recognize comparability graphs. (We have recently learned this 

result was also formulated and proved by Ghouila-Houri (311. However our proof is 

simpler and additionally yields the algorithm below. ) 
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I x t  G = (V. E )  be a graph and recall from Chapter 2 the notation F(G)  for the set 

of all ordered pairs ( u ,  v )  such that uv is an edge of G. Note that in an orientation of 

G, each edge uv E E gives rise to two ordered pairs ( u ,  v )  and ( v ,  u )  of F(G).  In other 

words, by ( noosing one of (u ,  v )  or ( v ,  u )  for each edge uv of G we get an orientation 

of (7. 

We now define the ~:aracteristic graph G f  with the vertex set F ( G )  ?nd the 

adjacency defined by the following: Each (u ,  v )  E F(G)  is adjacent to ( v ,  u ) ,  to any 

( w , u )  f F(G)  such that v # w  and .ow $ E, to any ( v ,  w) E F(G)  such that u  # w  

and uw $ El and to no other vertex of G+. 

Theorem 3.1.2 A graph G = (V, E )  admits a local-bicornplete orientation if and 

only if the characteristic graph G+ is 2-colourable. 

Moreover, i f  G+ is 2-coloured with A  being a colour class, then D = (V, A )  is a 

local-bicornplete orientation of G. 

Proof: Suppose that D is a local-bicornplete orientation of G. We colour the 

vertices of G+ with two colours p and T in the following way: Colour a vertex (u ,  v )  

by p if u dominates 21, and by r if v  dominates u  in D. Let (x, y)  and (x', y') be two 

adjacent vertices of G f  . It is easy to see that x dominates y if and only if y' dominates 

x' in D. Hence ( x ,  y )  and (x' ,  y') are coloured with different colours. Therefore G+ is 

2-colourable. 

Suppose now that G+ is Zcoloured with A being a colour class. We prove that 

D = ( V, A )  is a local-bicornplete orientation of G. Since, for each (u ,  v )  E F(G) ,  

( u ,  U) and (v, u )  are adjacent in G+, exactly one of (u,  v )  and ( v ,  u )  belongs to A. 

Thus D is an orientation of G. To show that D is locally bicomplete, let u,  v ,  and w  

be three vertices of G  such that v  and w  are two non-adjacent neighbours sf u. Then 

( u ,  v ) ,  (w ,  u )  E F(G)  are adjacent in Gf (and ( v ,  u )  and ( u ,  w )  are adjacent in G+). 

Hence at  most one of (u,  v )  and (w ,  u )  (and at most one of ( v ,  u )  and (u ,  w ) )  belongs 

to A. Therefore D is a local-bicomplete orientation of G. 

Theorern 3.1.2 proves the correctness of the following algorithm for finding local- 

bicomplete orientations. 



Chapter 3. The Lexicographic Method 

Algorithm 3.1.3 Let G = (V, E )  be a graph. 

Step 1.  Construct the characteristic graph G+ of G .  

Step 2. If GS is not 2-colourable, then G is not L C ,  ui-bzcomplete-orientable, 

Step 3. If G+ is 2-colourable, then find any 2-colouring of GS and ohtain n locnl- 

bicumplete orientation D = (V, A)  of G where A is a colour class of C.'+ . 

Theorem 3.1.4 There is an O(rnA) time algorithm to recopzize local-bicomplete- 

orientable graphs and to find such an orientation if one exists. 

Proof: The graph G+ has O(m) vertices, O(&vfEdeg(u) + deg(v)) = O(rnA) 

edges and it can be constructed in time O(mA). In the same time we can test, by 

breath-first search, whether it is 2-colourable, and find a 2-colouriug of G+. u 

Corollary 3.1.5 There is an O(mA)  algorithm to recognize comparability graphs. 

Proofi This is immediate from Theorem 3.1.1 and 3.1.4. o 

Let (u,v), (2, y )  E F(G) .  Wesay that (u,v) pushes (x,y), denoted by (u,v)Q(x, y ) ,  

if one of the following conditions is satisfied. 

u = x, v # y, and vy 6 E; 

e v = y, u # x, and ux 4 E. 

It is obvious that (u, v)\ll(z, y) if and only if (u, v )  is adjacent to (Y, x )  (or (v, u )  1s 

adjacent to (3, y)) in G+. We say that (u, v )  controls (x, y j, denoted by (u, v )@*(s,  y ), 

if there exist (ul, vl), (u2, v2), . . . , (uk, vk)  E F(Gj so that 
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Proposi t ion 3.1.6 For any graph G, the binary relation 9" on F ( G )  is an equiv- 

alence relation. 0 

According to Proposition 3.1.6, the binary relation 9' partitions F ( G )  into equiv- 

alence classes. We call each of these equivalence classes a 9"-class. 

Lemma 3-1-7 Let D  = (V, A) be a local-bicomplete orientation o f G  = (V, E ) .  If 

(u ,  v)\II*(x, y )  for some ( u ,  v ) ,  ( x ,  y )  € F ( G ) ,  then u - w  if and only ifx+y in D. 

Proof: We prove that if ( u ,  v ) Q ( x ,  y)  for some ( u ,  v ) ,  ( x ,  y )  E F ( G ) ,  then u - w  if 

and only if x-+y. The gene~al proof can be done by induction, 

If u  = x  and v  = y ,  then the conclusion follows trivially. Suppose that v  = y ,  

u  # x ,  and ux 4 E. If u - w  and y+x in D, then u  E I ( v ) ,  x  E O ( v ) ,  and u  is not 

adjacent to x ,  contradicting the fact that D is locally bicomplete. If v-tu and x 4 y  

in D, then x  E I ( v ) ,  u  f O ( v ) ,  and x  is not adjacent to u ,  contradicting the fact that 

D is locally bicomplete. A similar proof applies when u  = x, v  # y ,  and vy 4 E. 

Theorem 3.1.$ A graph G  admits a local-bicomplete orientation if and only if 

there is no ( u ,  v) E F ( G )  such that ( u ,  v)lXl"(v, u ) .  

Proof: The necessity follows immediately from Lemma 3.1.7. For the sufficiency, 

suppose that there is no ( u ,  v )  E F ( G )  with ( u ,  v)@*(v,  u ) .  We apply the following 

procedure to obtain an orientation D  of G. Arbitrarily pick an edge uv E which has 

not been oriented and let x-+y in D  for all ( x ,  y )  such that ( u ,  v ) 9 * ( x ,  y ) .  Continue 

the procedure until there are no unoriented edges left. Since there is no ( u ,  v )  E F ( G )  

with ( u ,  v )  9 * ( v ,  u ) ,  each edge of G  is assigned precisely one orientation. Thus D is 

an orientation of G. It suffices to show that D  is locally bicomplete. Suppose to the 

contrary that D is not locally bicomplete. Then there exists a vertex x  such that 

there is a vertex in y E O(x )  and a vertex z  E I ( x )  such that y is not adjacent to z .  

Hence (x ,  y ) 9 ( x ,  2). By the above procedure, we have that x - +  y if and only if x-+z 

in D. Since x--+y in Dl we have x+z in D. Therefore in D we have both x 4 z  and 
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z--+x, a contradiction. u 

The proof of Theorem 3.1.8 gives an alternative inip!ementat,ioti of Algori t hrii 

3.1.3, by working directly on the graph G. 

Corollary 3.1.9 A graph G is local-bicomplete-orientable if and only if B(113-' = 

0 for each 9'-class B. 

Proof: This follows from Proposition 3.1.6, Theorem 3.1.8, and the fact that 

B n B-* # 0 if and only if B contains both (u, v )  and ( v ,  .u) for some (u, 1 1 )  E F'(G). 
0 

Corollary 3.1.10 If G is local-bicomplete-orientable, then C contains no chord- 

less cycle of odd length as an induced subgraph. 

Proof: It suffices to  show that a chordless of odd length is not local-bicomplete- 

orientable. Assume that xl - x2 - . . , x, - x1 is a chordless cycle where r is odd. 

Since (xi, x ~ - ~ ) Q ( z ~ ,  for each i = 1,2, . . . , r, we have that (xl, : r2)9(~2,  XI) be- 

cause r is odd. Hence the result follows from Theorem 3.1.8. o 

Proposition 3.1.11 Let G be a local-bicomplete-orientable graph and suppose that 

G+ is coloured with two colaurs. Then each 9*-class consists of all wrtices 01 one 

colour in one component of G+ . 

Proof: Suppose that A is a 9"-class. For any two elements (u ,  v )  and (3, I/) from 

A, by the definition of a 9'-class, there exist zlyl,  ~ 9 ~ 2 , .  . . . x,y, such that 
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is a path of even length from (u,v) to (x, y ) .  Therefore ( u , v )  and (x ,y )  are in the 

same corrtponent and must be coloured with the same colour. 

On the other hand, suppose that ( u ,  v )  and (I, y )  are coloured with the same 

colisur and are in  the same component of G S .  Then there is a path of even length 

from ( u ,  v )  to (x, y) .  Assume that 

such a path. Then 

Hence (u ,  v )  and (x, y ) are in the same @*-class. 0 

Suppose that G is local-bicomplete-orientable and suppose that G+ is coloured 

with p and T .  If B is a set of vertices coloured with p in one component of GS, then 

B-' is the set of vertices coloured with T in the same component as the vertices of B. 
Hence both B and B-' are independent in G+. 

Note that by switching the two colours of vertices in a component of GS we get a 

new 2-colouring of GS. Therefore if we let 

F (G)  = B1 U B2 U . .  . U Bt U Bcl U B,-' U . .  . u R;' 

be the decomposition of F ( G )  into 9'-classes, then each B, (and each I?;') is an 

independent set in G+ and each B, U B,-' induces a component of G+ for each i = 

2 , 2 ,  . . . , t .  Moreover, by Algorithm 3.1.3, a local-bicompiete orientation of G can be 

obtained by choosing the arc set to be Al U A2 U . . . U At where A; = B, or B;' 

for each i = 1 ,2 , .  . . , t .  In fact, it is not difficult to see that this gives all possible 

local-bicornpiete orientations of G. 

Caro!!ary 3.1.12 A graph G is uniquely iocal-bicumpleie-o~ieniilbfe if and only if 

C+ is a connected bipartite graph. 
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We close this section by presenting the following t.heorem. 

Theorem 3.1.13 The follouing statements are ~ q u l t w k n t  for n graph G :  

1. G is a comparability graph; 

3. G is transitively orientable; 

4 .  G+ is 2-colourable; 

5 .  B n B-I = 8 for each @*-class. 

Proof: The equivalence between statements 1 and 3 is from the definition of a 

comparability graph. The equivalence between statements 2 and 3 is basically The- 

orem 3.1.1. The equivalence between statements 2 and 4 is precisely Theorern 3.1.2. 

Finally the equivalence between statements 2 and 5 is just Corollary 3.1.9. a 

3.2 Orient at ion Algorithms 

In 1971, Pnueli, Lempel, and Even [63] gave an O(mA) time algorithm to recognize 

comparability graphs and to  calculate transitive orientations. This algorit hrn relies 

on a deep analysis of structures in comparability graphs and it is quite complicated. 

Here we provide a simple algorithm to solve the same problem, Our algorittm also 

runs in t i n e  O(mA) and makes use of a novel lexicographic rnet hod. IJsing the same 

method, we will obtain O(mA) algorithms to recognize proper interval graphs and 

proper circular arc graphs, and to calculate acyclic local-tournament orientations arid 

local-transitive-tournament orientations. 

Let G be a graph. Suppose that the vertices of G are enumerat.ed as v , ,  0 2 , .  . . , I ) , .  

In order to describe our algorithm, we define a lexicographic order among ;ill subsctu 

of the vertex set of G. We say that {v,) is 1exicographica.lly less than {?I,}, dttrtoted 
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by { ( I ,  ) < ( v , ) ;  i f  i < 1. In general, let X and Y be two sets of vertices of G ~f size 

k. Write 

.y = { X I ,  ~ 2 , .  . . , xk )?  ( X I )  << ( 5 2 )  << . . . << { x k )  

We say that X is lexicographically less than Y, denoted by X << Y, if there exists an 

r such that 1 2 r 5 k ,  ( x t )  = { y t )  for a11 t < r ,  and {x , )  << {y,j. Suppose that C 
is a collection of sets of size k. Then X E C is called lexicographically smallest in ,C if 

X << Y for any Y E C such that  Y # X. 

3.2.1 The Transitive Orientation Algorithm for Cornpara- 

bility Graphs 

We consider the following algorithm for finding transitive orientations. 

Algorithm 3.2.1 Let G = (V, E )  be a graph. 

Step 1.  Construct the characteristic graph G+ . 

Step 2. If G+ is not 2-colourable, then G is not a comparability graph. 

Step 3. I f  G+ is 2-colourable, then find a special 2-colouring of G+ with colours p and 

T b y  always first assigning p to the lexicographically smaIlest uncoloured vertex 

(s, y ) ,  and completing the unique 2-colouring of the corresponding component of 

Step 4.  Let A be the set of vertices of Gf which are coloured with p ,  and obtain a 

transitive orientation D = (V, A) of G. 13 

Suppose that G is a comparability graph. By Theorems 3.1.1 and 3.1.2 we know 

that GC is 2-colourable. For each vertex (u ,  v) of G+ , we use ~ [ ( u ,  v)] to denote the set 

of vertices which have even distance from (u ,  v) in G+. Then for every (x, y) E a [ (u ,  v)] 
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we must have a [ (x ,  y ) ]  = o [ ( u .  1-11. By Proposition 3.1.1 I ,  ~ [ ( u .  r I ]  is preciselv t hc \Z1* 

class which contains ( u ,  z.). So if a [ (x ,  y ) j  = a [ ( u ,  t l ) ] .  thtn i n  any locally bicornpltatta 

orientation of G,  r c t y  i f  and only if u t t 7 .  In other words. i n  any 2-calousing of G' ail 

vertices in a [ ( u ,  L*)] must be coloured with the same colour. According to this notation, 

Step 3 of Algorithm 3.2.1 can be interpreted as fc'Iows: If G' is 2-colourablt~, tttctl 

find a special 2-colouring of G+ with two colours p and r by a1w:tvs first ;~<signiiig 

colour p to the lexicographically smallest uncoloured vertex (.r . y ), a; well as to all 

vertices in a[(s. y)] ,  and colouring all vertices in a[(y, z)] by T .  Note that i f  ( .c ,  y )  is 

the lexicographically smallest pair chosen by Step 3 ,  then {x) < { y  ). 

The following lemma is crucial for proving the correctness of Algorithm 3.2.1. 

Lemma 3.2.2 Suppose that D is 1ocaCly bicornplete and suppose that a-+b-+c--)a 

is a directed triangle in D. Ifa[(b,c) \  = a[(bt,c')] for some (bt,c') E F(C) ,  then 

a[ (a ,  b)] = o [ ( a ,  bt)] and a[(c, a)]  = a[(d, a) ] .  

Proof: Since a[(b, c)] = a [ ( Y ,  ct)], we know that ( b ,  c) controls (bt, c'). Then thert:: 

exist ( b l ,  cl),  (b2, c2), . . . , (br, cl) E F ( G )  for some 1 such that 

(b, c) = (bl ,  cl)Q(b2, c2)Q . . . Q(bl, cl) = (b', d ) .  

Without loss of generality, we assume that (b,, c;) # (&;+I, c;+I) for each i = 1,2, . . . ,1- 

1. Since b dominates c, we know that bi dominates c; for each i = 1,2, . . . ,1 (see 

Lemma 3.1.7). We prove that a [ (a ,  b) j = a[(a ,  bi)] and ~ [ ( c ,  a)] = a [(c,, a ) ]  for each 

i =  1 ,2  ,..., 1. 

It is trivial when i = 1. Assume that a [ (a ,  b)] = a [ ( a ,  b;)] and a[(c, a ) ]  = ~ [ ( c ; ,  a ) ]  

for some 1 5 i < 1. Then a-tb; and c;-+a in D. Since (bi,c,)Q(b;+l,c,+l j, by the 

definition of Q, either c ; + ~  = c,, b;+I # b;, and bi+l is not adjacent to  b,, or b,+I = b;, 

c;+l # G,  and c;+l is not adjacent to c;. In the former case, we have that C , + ~ U  =: cia. 

Hence a [ ( ~ + ~ ,  a)] = ~ [ ( c : ,  ajj, and so ~ [ ( c ,  a)] = a [ ( ~ ; + ~ ,  a)j. Since -+ctti +a in D, 

which is locally bicomplete, br+: is adjacent to a .  Hence rr[(u, 5;+:)] = a[ (a ,  h, j] because 

b; is not adjacent to  b;+l. Therefore a [ (a ,  bi+l)] = a[ (a ,  b)] because u[(a,  h)] = rr[(a, b;)]. 

A similar discussion applies in the latter case. o 
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Theorem 3.2.3 i fG  is local-bicomplete-orientable? then Algorithm 3.2.1 correctly 

finds a Imnsitiue orientatior, D = (1/: A )  o j G .  

Proof: By Theorem 3.1.2, we know that D = (I/; A )  is a locally bicomplete 

orientation of G. So it suffices to show that D is transitive. Suppose that D is not 

transitive. Then there exists a vertex x E V ( D )  such that an in-neighbour of x is 

dominated by an out-neighbour of x, that is, y+z for some y E O ( x )  and z E l ( x ) .  

Hence D contains a directed triangle x+y-+z-+x.  

Let (a ,  b, c) be the lexicographically smallest set of size 3 which induces a directed 

triangle in D. Since {a, b, c) induces a directed triangle, there exist two vertices 

z, y E { a ,  5, c )  such that x- ty  and (y) << (x) .  Without loss of generality, assume 

that b and c are two such vertices, that is, b+c and {c) << {b). Then there exists 

(b', c') f F ( G )  such that (b', c') was the lexicographically smallest one chosen in Step 3 

of Algorithm 3.2.1, such that a [ (b ,  c)] = a [ (b f ,  c')]. Hence {b', c') << {b, c). By Lemma 

3.2.2 we have o[(a,  b)] = a[(a ,  b')] and a[(c, a)]  = a[(cl, a)] .  So a--+b1 and cl-+a in D. 

Therefore the set {a:  bf ,  c') induces a directed triangle in D and is lexicographically 

less than (a,  5, c), contradicting the choice of {a, b, c}. 

We now provide a simple proof of Ghouila-Houri's Theorem as follows. 

Proof of Theorem 3.1.1: The sufficiency is obvious. To proof the necessity, 

suppose that G is local-bicomplete-orientable. Then by Theorem 3.2.3, G is transi- 

tively orientable. 

3.2.2 The Local-transitive-tournament Orientat ion Algorit hrn 

for Proper Circular Arc Graphs 

Now we turn to  proper circular arc graphs and their related local-tournament ori- 

entat ions and local- transitive-tournament orientations. Theorem 2.1.1 assures that 

a proper circular arc graph is local-tournament-orientable. We shall prove that if 
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a graph is local-tournament-orientable then it is also local-tsn11siti\~t.-tour11arl1c*11t 

orientable. M'e have seen f rom Theorem 2.2.6 that a proper circular arc represcntatiori 

of G can be obtained in time O(m + n )  from a local-transitivc-to1ir11n111~~11t oritmtat Ion 

of G. So it is important to understand how to obtain local-trarlsitive-tour~lariit~nt 

orientations of a proper circular arc graph. 

Consider the following algorithm for finding local-transitjive-tournament orknta- 

t ions. 

Algorithm 3.2.4 Let G = (V, E) be a connected graph. 

Step 1. Construct the characteristic graph G*. 

Step 2. If G* is not 2-colourable, then G is not a proper circular arc grapli. 

Step 3. If G* is 2-colourable, then find a special 2-colouring of G* with colours p and 

T by a h a  ys first assigning p to the lexicographically smallest uncoloured V E ~ ~ C X  

(x, y), and completing the unique 2-colouring of the corresponding corrtpon,~rtt od 
G* . 

Step 4 .  Let A be the set of vertices of G* which are coloured with p ,  and obtuin (L 

local-transitive-tournament orientation D = (V, A) of G. 0 

Suppuse that G is a proper circular arc graph. By Theorems 2.1.1 and 2.1-3 

we know that G* is 2-colourable. For each vertex ( u ,  v )  of G*, we use p[ (n ,  I ) ) ]  to 
r - !  denote the set of vertices which have even distance from (u, v )  in (2". !hen for ctvcry 

(x,y) E ,~ [ (u ,v ) ]  we must have p[(x, y)] = p[(u,v)]. By Proposition 2.1.13, p [ (u ,  r l ) ]  

is precisely the r*-class which contains (u, v). So if p[(z, Y)] = p[(u, v)], then in any 

local-tournament orientation of G, x-ty if and only if u---*?I. In other words, in  any 

2-colouring of G* the vertices in ~ [ ( u ,  v)] must be coloured with the Name calour. 

According to  this notation, Step 3 of Algorithm 3.2.4 can be ~nterpreted as follows: 

If G' is 2-colourable, then find a special 2-colouring of G' with two colours p and r 

by always first assigning colour p to the lexicographically smallest uncoloured vertex 
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( x ,  y),  as well to a11 vertices in p [ ( x ,  y)], and colouring all vertices in p [ ( y ,  x)] by T. Note 

that, i f  (s,  y )  is the lexicographicallji smallest pair chosen by Step 3 then { x )  << {Y). 

Now we prove the correctness of Algorithm 3.2.4. First we have the following 

straight.forward observation. 

Lemma 3.2.5 Let D be a local tournament. Then D is a local transitive tourna- 

ment if and only if neither the outset nor the inset of any vertex contains a directed 

triangle. 0 

Let a ,  6, c,  and d be four vertices of D. If (b, c, d) induces a directed triangle and 

a is dominated by {b, c, d )  or dominates {b, c, d}, then we call (a,  b, c, d) a forbidden 

quadruplet. 

Suppose that D = (V, A )  is an orientation of G obtained by Algorithm 3.2.4. 

By Theorem 2.1.3, we know that D is a local tournament. Assume that D is not 

a local transitive tournament, i.e., that D contains a forbidden quadruplet. Among 

all forbidden quadruplets of D,  let {a, b, c,  d) be the Lexicographically smallest one. 

Assume that a dominates {b, c,  d) which induces a directed triangle b-+c+d-+b. ( A  

sirnilar argument applies if a is dominated by (6 ,  c, d).)  Since {b, c, d) induces a 

triangle, there are two vertices x ,  y E (b, c, d) such that x+y and { y )  < { x ) .  Without 

loss of generality, assume that d and b are two such vertices, that is, (b} << {d). Then 

there exists an ordered pair (d', b') f F ( G ) ,  which was the lexicographically smallest 

one chosen by Step 3 of Algorithm 3.2.4 such that p [ ( d l ,  bt)]  = p[(d, b)]. Note that 

{ d ' )  < {b') and {d', b') << ( d ,  b). 

Since (d', b') # (d,b), 1 2 2. Without loss of generality, we assume that (x,  y , )  # 
( . r , + ~ ,  gt+l) for each i = 1,2, . . . ,1- 1. By Lemma 2.1.8, x,  dominates y, in D for each 

i = 1.2 , . . . ,  l .  
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For convenience, we now change notation. Let h, = y, if  r is oc?d and b, = .r, i f  I is 

even. Let d ,  = a, if j is odd and dl  = y, i f  1 is even. Then ( b , ,  d , ) I ' (d ,+,  , b,,, ) for ~ n ~ h  

i = 1, '2,. . . , 1  - 1. Xloreover b,-+ci, if  z is even and d,-+h, i f  1 is odd 

Claim: The following three statements are trur. 

1. For each i = 1.2, .  . . ,1, d, is adjacent to every vertex of { a ,  h ,  c ) .  

2. For each i = 1 ,2 ,  . . . , 1 ,  E; is adjacent to every vertex of { a ,  c,  d )  . 

3. There exists a forbidden quadruplet which is lexicographically less than ( a ,  b, (I, d ) .  

Proof: We apply induction on I. Assume first that 1 = 2, Note that dl -7 d is 

adjacent to every vertex of ( a ,  b, c ) ,  and that bl = Ii 1s adjacent, to every vertex of 

{ a ,  c ,  d ) .  Since ( d l ,  b l ) r ( b 2 ,  d 2 ) ,  either dl = d 2 ,  bl # b2, and b1 is not acijaccnt to b2, or 

bl = b2, dl  # d 2 ,  and dl  is not adjacent to d2.  Suppose  firs^ -hat  d l  = d 2 ,  bl f bz ,  and 

bl is not adjacent to b2. Since a-+dl, b2-+d2, and dl = d 2 ,  we have that b2 is adjacent 

to  a .  Then b2+a because a+bl and bl is not adjacent to b2. Since c-+dl, b2-+d2, and 

dl = $2 ,  we have that b2 is adjacent to c. Then c+b2 because bl +c and b1 is not 

adjacent to  d2. Statements 1  and 2  now follow. We notice that { a , c ,  b2)  induces a. 

directed triangle which dominates d2. Then { a ,  c, 62, d 2 )  is a forbidden quadruplet in 

D. This quadruplet is lexicographically less than { a ,  6, c, d )  because (62, d 2 )  < { b ,  d). 

Suppose in turn that bl = b2, di # d 2 ,  and dl is i ~ o t  adjacent to dz .  Since bl --w, 

b2+d2, and bl = b2, we have that d2 is adjacent to c. Then d2+c because (:--*dl and 

dl  is not adjacent to  d2.  Hence d2 is adjacent to a  as { a ,  d2)+c. Since a i d l  and di 

is not adjacent to d 2 ,  we must have d2-+a. Statements 1 and '2 now follow. We notiw 

that ( a ,  b2, d 2 )  induces a directed triangle which dominates c. So ( a ,  c,  b2? d 2 )  is a 

forbidden quadruplet of D. This quadruplet is lexicographically less than { a ,  b, c , d )  

as {b2, d2)  < {b ,  d) .  

Now we assume that the Claim is true for all 1 < k arid we cor1sidt.r the case wher; 

I = k + I where k > 2. 

Let Bk = { b l ,  b2, .  . . , b k )  and D k  = { d l ,  d 2 , .  . . , d k } .  By the induction hypothtssis, 

every vertex of { a ,  6,  c) is adjacent to every vertex of Dk, and every vertex of {a, c ,  d )  
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and b,+] are not adjacent. So i f  a-tb,  (resp. b,-+a) then b,+l --+a (resp. a-+b,+l). Nre 

know tha t  ~ 4 6 ~ .  Hence 

a-bk if  1 Wkl is odd and bk-+a if  IBkl is even. 

Applying a similar argument, we can show 

a--tdk if IDk/  is odd and d k 4 a  if 1 Dkl is even, 

b+dk i f  )Dk l  is even and dk+b if lDkl is odd, 

c--+bk if 1Bkl is even and bk+c if lBk] is odd, 

C--+dk if IDkl is odd and dk-+c if IDk/ is even, and 

d+bk if lBkl is odd and bk-+d if ]BkJ is even. 

Sinc,e ( b k ,  dk)r(dki .1 ,  bk+*), either bk = bk+l, dk # dk+l, and dk is not adjacent to 

dk+l ,  or dk = dk+l ,  bk # bk+1, and bk is not adjacent to bk+i. 

Since the two cases are similar, we only consider the case when bk = bk+l, dk f 

d k S 1 ,  and dk is not adjacent to dkS1 .  An important fact to observe is that the integers 

k and I Bk ( + 1 Dk  1 have distinct parity. We discuss the following cases. 

Case 1. Suppose that k is odd. In this case, lBkl and I Dkl have the same parity. 

Subcase 1.1. Suppose that both lBkl and IDk/ are odd. Then from the above 

discussion, we know that a-+bk, a-+dk, dk-+b, c-+dk, bk-+c, and d-+bk. Since k is 

odd, we have bk+1 -+dk+1. Thus dk+* is adjacent to c because bk-+c, bk+l-+dk+l,  and 

bk = bk+,. Hence dk+1-+c as c+dk and dk is not adjacent to dk+1. We see that dk+1 

is adjacent to a and b because { a ,  b , d k + l } ~ ~ .  Since a i d k  and dk is not adjacent 

to dk+l,  we have dk+l - + a .  Statements 1 and 2 now follow easily. We notice that 

( a ,  bk+l, dk+l ) induces a directed triangle which dominates c. Then { a ,  c ,  bk+1, dk+l )  is 

a forbidden quadruplet of D. This quadruplet is lexicographically less than { a ,  b, c, d }  

since ( h . + l ,  &+I) < {b ,  d ) .  

Subcase 1.2. Suppose that both lBk( and IDk( are even. Then bk-+a, dk+a, 

b--+dk, c-+bk, dk-+c, and bk-+d. Since bk+l+dk+l, b k - + a ,  and bk = bk+1, we have that 

dk+* is adjacent to a .  Then a-+dk+1 because dk+a and dk is not adjacent to dk+1. Now 

we have n+{b, c ,  dk+1) and hence dk+1 is adjacent to b and c. Thus statements 1 and 2 

have been proved. Since b-+dk and dk is not adjacent to dk+1, we have dk+1-+b. Since 

&-+c and dk is not adjacent to dk+1, we have c-+dk+1. Thus {a, c ,  bk+l)  induces a 
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directed triangle which dominates dk+l .  So { a ,  c, dk+* ) is a forbiddt.11 quadruplet 

of D which is lexicographically less than {a,  b, c, d )  because ( b k c l .  ) < { b ,  d l .  

Case 2. Suppose that k i s  even. Then 1 Bkl and IDk 1 have distinct parity. 

Subcase 2.1. Suppose that IBk( is odd and that IDk/ is even. Then 0-+bk,  &--+a, 
r 7 b+dk, bk+c, dk-'c, and d-+bk. We  note that dk+l --+bk+, sirice rl. is even. 1 hrw dkcl  

is adjacent to a because dk+1 --+bk+1, a - -+bk,  and bk = bktl. Since dc-+n and dk  is not 

adjacent to  dk+1, we have a-+dk+1. Thus a-+{b,  c, d k + l )  and hence dkc l  is adjaccnt 

t o  b and c. Since b+dk and dk is not adjacent to dk+*,  we have dk+l-ab.  Since dk+c 

and dk is not adjacent to  dk+1, we have c+dkS1. Hence statements I and '2 have been 

proved. We see that { c ,  bk+1, dk+1 ) induces a directed triangle which is dominated by 

a .  So ( a ,  c ,  bk+l, dk+l )  is a forbidden quadruplet of D which is lexicographically less 

than { a ,  b, c ,  d )  because (bk+l, dk+l)  << {b ,  d ) .  

Subcase 2.2. Suppose that JBkl is even and that )Dkl  is odd, Then bk-+a, 

a+dk, dk+b, c+bk, c-+dk, and bk--.d. Since dk+l -+bk+l, c--+bk, and bk = hk+i we 

have that  dk+l is adjacent to c. Then dk+l-+c because c+dk and dk  is not adja- 

cent to  dk+l.  Thus we have {a, b,dk+l)-+c and hence dk+l is adjacent to a and b. 

Hence statements 1 and 2 follow. Since a+dk and dk  is not adjacent to ~ l ~ . + ~ ,  we 

have dk+1+a. Since dk+b and dk is not adjacent to dk+l,  we have b-+dk+l. Now 

we see that  { a ,  c ,  bk+l)  induces a directed triangle which is dominated by dk+, . SO 

{ a ,  c ,  bk+1, dk+1 ) is a forbidden quadruplet of D which is lexicographically less than 

{ a ,  4 c ,  d )  as {bk+ldk+l) << ( 4  4. a 

However statement 3 of the above claim contradicts our choice of ( a ,  b, c, d ) .  T h w -  

fore D contains no forbidden quadruplet and D is a local transitive tournaniwt, by 

Lemma 3.2.5. In conjunction with Theorem 2.1.15 and Corollary 2.2.10, we have 

proved the following result. 

Theorem 3.2.6 Algorithm 3.2.4 finds a local-transitive-tournament orientation 

o f  G if one exists, and otherwise correctly reports that one does not exist. o 

We now present a simple proof of Skrien's Theorem which states that a connt-:ct,ed 
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graph is local-totjrnarnent-orientable if and only if it is a proper circular arc graph, 

as a n  application of ou r  lexicographic method. 

Proof of Theorem 2.1.1: Suppose that G is a proper circular arc graph with 

a circular arc representation F. By Lemma 2.2.8 the representation .3 can be chosen 

so that no two arcs share a common endpoint and no two arcs together cover the 

entire circle. Let S1, Sz,. . ., S, be the arcs in F. For each i = 1,2 , .  . . , n ,  let vi 

be the vertex of G associated with S;. We obtain an oriented graph D as follows: 

The vertex set of D is the same as the vertex set of G, and a vertex vi dominates a 

vertex vj in D if and only if S, contains the head of Sj (or Sj contains the tail of S,). 

By Theorem 2.2.6, D is a local-transitive-tournament orientation of G. Hence G is 

local-tournament-orientable. 

Suppose in turn that G is local- tournament-orient able. Then by Theorem 3.2.6, 

G admits a local-transitive-tournament orientation. Hence by Theorem 2.2.6, G is a 

proper circular arc graph. a 

3.2.3 The Acyclic Local-tournament Orient at ion Algorithm 

for Proper Interval Graphs 

A closed walk C = ~9 - vz - . . . - vk - vl is called a semicycle if v;-1 is not adjacent 

to vi+, for each i = 1 , 2 , .  . . , k,  where the subscript addition and subtraction are 

modulo k. The following lemma is the traditional characterization of interval graphs 

due to Gilmore and Hoffman (cf. [32]). 

Lemma 3.2.7 A graph G is an interval graph if and only if it contains no chord- 

less cycle of length 4 and ?? contains no semicycles of odd It 19th. a 

A proper interval graph is of course an interval graph. However the converse is 

not necessarily true, that is, not all interval graphs are proper interval graphs. The 

following result, due to  Roberts [68], shows which interval graphs are proper interval 

graphs. 
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Lemma 3.2.8 A n  zntervab graph 1s a proper ~nterval graph if and only 1f ~t 1s 

cla w-free. 

Theorem 3.2.9 The following statements are equivalent for a graph G.  

1. G is a proper interval graph, 

2. G is orieniable as a non-strong local tournament, 

3. G is orientable as an acyclic local tournament, 

4. G is claw-free, contains no chordless cycle of length 4 ,  and ?? contains no semi- 

cycles of odd length. 

Proof: It suffices to show that the statements of Theorem 3.2.9 are equivalent 

for a connected graph G. The equivalence between statement 1 and statement 4 is 

implied by Lemma 3.2.7 and Lemma 3.2.8. 

1 + 2: Assume that G is a proper interval graph and assume that Z is a p r o p  

interval representation of G. Without loss of generality, assume that the intervals of 

Z have distinct endpoints. Let 11, 12,.  . . , I,  be the intervals of Z and iet v, be the 

vertex of G associated with 1: for each i = 1 ,2 , .  . . , n. We obtain an oriented graph 

D as follows: Let the vertex set of D be the vertex set of G and let v,+v, if S, 

contains the left endpoint of S,. We note that S, contains the left endpoint of S, i f  

and only if S, contains the right endpoint of S,. Moreover, for any two intersecting 

intervals S, and S,, either S, contains the left endpoint of S, or '9, contains the left 

endpoint of ,C,. Thus each edge of G is assigned exactly one direction and so D is 

an orientation of G. Since no interval of 1 contains the left endpoint of the left-most 

interval of 1, the corresponding vertex associated with the first interval of Z has no 

in-neighbour in D. Hence D is non-strong. For each vertex v,, the  out-neighbours of 

u, are associated with those izitervals of Z containing the right endpoint of S,. Hence 

the intervals associated with the out-neighbours of v, intersect each other. So the 

out-neighbours of v, induce a complete subgraph of D. A similar discussiorl applies 



to >how that the in-neighbouss of v, induce a complete subgraph of D. Therefore D 

is a local tournament. 

'L 3 3: Suppose that G' is orientable as a non-strong local tournament. Then by 

Corollary 2.2.5, G is straight-orientable. Since a straight oriented graph is an acyclic 

local tournament, G is orientable as an acyclic local tournament. 

:? 1: Suppose that G is orientable as an acyclic local tournament. Then by 

Corollary 2.2.5, G admits a straight orientation. Hence G is a proper interval graph 

by Theorem 2.2.2. 0 

A graph C admits a perfect elimination order if the vertices of G can be linearly 

ordered vl, vz, . . . , v, so that for each v; the vertices adjacent to v; with subscripts 

greater than i induce a complete subgraph. It has been proved by Fulkerson and 

Gross that a. graph admits a perfect elimination order if and only if it is chordal (cf. 

(241 1. 
Suppose that G is a proper interval graph. Then G is a proper circular arc graph 

and hence G* is 2-colourable. Moreover G must be chordal and therefore it admits a 

perfect elimination order. Given a perfect elimination order, vl, vn, . . . , v,, we define 

the lexicographic order according to  this order. 

Consider the following algorithm for finding acyclic local-tournament orientations. 

Algorithm 3.2.10 Let G be a graph. 

Step 1.  Construct the characteristic graph G* of G. 

Step 2. If G* is not 2-colourable or G does not admit a perfect elimination order, 

then G is not a proper interval graph. 

Step 9. Find a perfect elimination order of G, vl, vz, . . . , v,. 

Step 4.  Find a special 2-colouring of G* with cobours p and T by always first assigning 

cdour p to the lezicographically (with respect to the perfect elimination order) 

smallest uncoloured vertex (x, y),  and then complete the unique 2-colouring of 

fhe corresponding component of G*. 
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Step 5 .  Let A he the set of vert2ces of G* which c z r ~  c.olourt'ti with p t z n c i  obtcllri ( 1 1 ~  

acyclic local-tournament orzentation D = (I-; .-I) of G .  n 

The following lemma is a consequence of Theorem 2.3.1 and l ' heorcm 3.2.9. 

Lemma 3.2.11 Let G be a proper tnterval graph. Then G can bt' obiairwd frnrn 

a reduced straight-orientable graph S by substitutmg a c o r n p f r t ~  graph for each oer-tt-x 

of s. u 

Lemma 3-2-12 Let S be a reduced connected graph with a straight enumeration 

x l ,  x2 , .  . . , X I .  Suppose that G = (V, E )  is a graph obtained from 5' by substituting a 

com.plete graph Hz,  for each vertex x; of S .  IfA(G) < n - I ,  then the  following hold: 

1. For each xi, each edge of Hz,  forms one implication class, that is, if u ,  1 )  E H z ,  

~ n d  ( u ,  v ) r* (u l ,  v') for some (u', v') then ( u ,  v )  = (u' ,  d). 

2. All edges of G which are not in  Hz,  for any x; form one implication class, that 

is, if  ( z , ,  z j ) ,  (za, zb) E F ( G )  where 2; E Hz,,  za E Hz,,  zj E 1L,) and zb E Hz, 
with i < j and a < b: then (z, ,  z j ) r 8 ( z a ,  zb) .  

Proof: The first assertion of the lemma is easy. To prove the second assertion, 

we first note that  S is uniquely orientable as a non-strong local tournament,. In fact, 

if ( x , ,  x 3 ) ,  ( x a ,  x b )  E F ( S )  where i < j and a < b, then ( z , , z , ) r ' ( z , ,  zb ) .  Suppose 

that, y l ,  yz,. . . , yl are vertices of G such that y, E Hz,  for each z = I ,  2,. . . , 1. 'i'hcrt 

< { y l ,  y2,. . . , yr)  > is a subgraph of G which is just a copy of S'. If (y,, y, ) ,  (y,, g b )  E 

F ( G )  where i < j and a < b, then (y , ,  y , ) r " ( y , ,  yb). The rest of the  proof follows h. 

Lemma 2.3.14. r.3 

Lemma 3.2.13 Let S be a reduced connected graph with n struiyht enumeration 

X I ,  22,. . . , X I .  Suppose that G = ( V ,  E )  is a graph which is obtained from .5' b y  subsli- 

tuting a complete graph Hz,  for each vertex x,  of ,S. IfA(G') = .rt - 1 ,  then: 
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1. 1 is odd, and fixI,, , with r = y , consists of vertices of C o j  degree n - 1 ; 

2. 1 2 0 ~  emh x , ,  each edge r?f H,, forms one implication class, that is, if U ,  v E H,, 

m d  ( u ,  v ) r * ( u l ,  v') for some (u ' ,  v') then ( u ,  v )  = ( u p ,  v'); 

3. For. each u E I&, all edges uv with v f Hzr form one implication class, that 

is, i f  Z; E H z , ,  a j  E H,,; z, E N,,, and zb E Hz,  with i , j  < r < a ,  b, then 

(u, Z ; ) ~ * ( . U ,  z j ) ,  ( u ,  z a ) r f  ( u ,  zb ) ,  and ( u ,  zi)r*(z, ,  u ) ;  

4. All edges not in Ii,: for any x, and not incident with any vertex of Pi,r form one 

implication class, that is, if ( z ; ,  z,),  (z,, zb) E F ( G )  where z; E Hz,, rj E Hz,, 

z, E Hz,, and zb E Hz,  with i ,  j ,  a ,  b # r ,  i < j ,  and a < b, then ( z , ,  zj)l?*(a,, zb) .  

Proof: Assertion 1 is a consequence of Proposition 2.3.5. Assertion 2 is easy. To 

prove assertions 3 and 4, let yl, yz, . . . , yl be a set of vertices of G such y; E Hz: for 

each i = 1,2, .  . . , l .  Then < {y1,y2, .  . . , y l )  > is a reduced connected graph which 

is a copy of S .  Hence it can be oriented as a non-strong local tournament. By 

Proposition 2.3.5, < { y l ,  yz, . . . , y ~ )  > has precisely two implication classes: One class 

consists of all edges that are incident with y, ( r  = ), the other class consists of all 

edges that are not incident with y,. In fact, if i ,  j < r < a ,  b, then (y,, y,)l?"(y,, y j ) ,  

( Y T ,  ya)rn(yr,  yb), and ( Y T ,  yi)r8(ya,  yr). Moreover, if ( y ; ,  y j ) ,  (yay yb) E F ( G )  where 

i, j ,a ,  b # r ,  i < j ,  and a < 6 ,  then (yi ,yj)I '*(y, ,  yb). The rest of the proof follows by 

using Lemma 2.3.14. 0 

If G is a proper interval graph, then G is a proper circular arc graph and hence G* 

is 2-colourable. Recall from Chapter 2 that if (u, v ) ,  (x, y ) E F ( G )  with ( u ,  v ) r 8 ( x ,  y )  

then ( u ,  v )  and ( x ,  y )  must be coloured with the same colour in any 2-colouring of G'. 
'% 

Theorem 3.2.14 Algorithm 3.2.10 correctly produces an acyclic local-tournament 

orientation D = (1/, A )  of G,  provided one exists, and otherwise correctly reports that 

one does not exist. 

Proof: Clearly the algorithm finds ahat an acyclic local-tournament orientation 

does not exist if and only if this is the case (cf. Theorem 3.2.9). Suppose that 
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G = ( V, E) 1s a proper interval graph and D = (L.. .I) is the orient at ion of t: chtai~ied 

by Algorithm 3.2.10. Let S be a, reduced connected straight-orientable graph wi th  cl. 

straight enumeration X I ,  22,. . . , XI. Suppose that G is a graph which is obtained front 

S by substituting a complete graph Hz, for each vertex s, of S. 

Let vl, v2?.  . . , vn be a perfect elimination order of G. Consider N,, for sonlc .r,. 

Assume that bl, b2,. . . , bp are vertices of H,, listed in the perfect elimination order of 

G. Note that each {(b,, bk)) is a I?*-class. According to Step 4 the colour p is always 

assigned to (b,, bk)  with j < k. Hence ( (b , ,  bk)[  j < k) c A. Therefore each ii,, 
obtains a transitive tournament orientation. 

We note that Algorithm 3.2.10 is the same as Algorithm 3.2.4 except that, it, 

chooses a special order, namely, a perfect elimination order sf vertices of G. Thcn by 

Theorem 3.2.6 D is a local-transitive-tournament orientation of G. So it suffices to 

show that D is acyclic. 

We consider the following two cases. 

Case 1. Suppose that A(G) 5 n - 2. Then all edges of G which are not in Hz,  

for any 2, form an implication class. Without loss of generality, assume that v l  E [ I , ,  

and assume that v h  is the first vertex in the perfect elimination order which is adjacent 

to vl and is not in H,,. Suppose that vh is in H,,, where g # h. Without loss of 

generality, assume that g > h. Then (vl ,  vh) is coloured with colour p according to 

the Step 4 of Algorithm 3.2.10. By Lemma3.2.12, if x E Hz, and y f Hz,, with i < 3 ,  

and if (x, y)  E F(G) ,  then (x, y )  must be coloured with p.  We know that each H,, i u  

oriented as a transitive tournament. Therefore D may be viewed as an oriented graph 

obtained from a straight orientation of S by substituting a transitive tournament for 

each vertex of S .  Hence D is acyclic. 

Case 2. Suppose that A(G) = n - 1. By Lemma 3.2.13, 1! is odd and H,, consists 

of vertices of degree n - 1, where r = y. We consider the first vertex vl in the 

perfect elimination order. Suppose that vl E Hz,. If 1 < i < 1, let s,x, and X , I C ~  be 

the left-most wave and the right-most wave at 2, in the straight enumeration of S, 

then x, is not adjacent to xb. Then vl has two non-adjacent neighbours, violating t h e  

perfect elimination order. Thus i = 1, or 1. 
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Ass~lnle without loss of generality that z = 1. Suppose that a l ,  a2, . . . , a ,  are the 

vertir cs o f  Fi,, . Then ( v l ,  a l ) ,  ( v l ,  a 2 ) ,  . . . . ( u l ,  a,) are chosen by Step 4 of Algorithm 

3.2.10 to kt. iexicographically smallest. Hence they are coloured with p .  Therefore, 

by Lernrna 3.2.13, if u E Hz, with i < r then (u,a,) is coloured with p ,  and if 27 E Hz, 
with k > r ,  then (a , ,  v )  is coloured with p.  

Suppose that there is a vertex which is adjacent to vl but not in Hz, (note that 

such a vertex may not exist when 1 = 3, if there is no such vertex then D is easily seen 

to be acyclic). Let vk be the first such vertex in the perfect elimination order. Then 

(vl ,vk)  is chosen by Step 4 of Algorithm 3.210 to  colour with p.  Thus, by Lemma 

3.7.13, i f  u E H,, and v E Hz, with i < j and i,j # r, and if (x ,y)  E F(G) ,  then 

(14 ,  v) must be coloured with p.  

As we have shown above, each H,, obtains a transitive tournament orientation. 

So D may be viewed as an oriented graph obtained from a straight orientation of S 

by substituting a transitive tournament for each vertex of S .  Therefore D is acyclic. O 

From the above proof we see that Step 2 is not necessary if AiG) < n - 1. 



nit ion epresentat ion 

lgorit s 

4.1 Introduction 

The algorithmic aspects of interval graphs have been extensively studied, [33] - in 

particular, the recognition and the representation problems for interval graphs havc* 

been solved by Booth and Lueker 1171 with an O ( m  + n)  algorithm, The algorithm 

given by Booth and Lueker relies on a complicated data structure called a PC) tree. 

Another O(m + n)  time algorithm for solving the same problem was later obtailicd 

by Korte and Mijhring [53]. Again the algorithm uses PQ-trees. Since then, many 

people tried to  find a simpler algorithm without using PQ-trees. For proper interval 

graphs, we solve the problem with an O(m + n )  algorithm. Our  algorithm makes uuc: 

of ocr structure theorem for proper interval graphs instead of PQ-trees. R.ec.ently flsu 

[44] announced a simple O(m + n)  algorithm for testing interval graphs without using 

PQ-trees. 

It is a longstanding open prohlem to find an O(m + n )  time algorithm for thc! 

recognition and representation of circular arc graphs. I-!owever, f a -  proper. circular arc 

graphs, we have mentioned that Tucker gave a matrix characterization, and a rwogni- 

tion algorithm of complexity 0(n2) .  in Section 3,2 we gave an O(mA) time algorithm 
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tcj  recognize proper circular arc graphs and to obtain local-transitive-tournament ori- 

cntat,ions. As we have seen in Section 2.2, a local-transi tive-tournament orientation is 

equivalent to a proper circular arc representation, hence the representat,ion problem 

for proper circular arc graphs can also be soIved in O(nzA) time. In Section 4.3, we 

will give the first optimal algorithms, i.e.: of complexity O ( m  + n),  for the recognitior? 

and representation of proper circular arc graphs. 

A mixed gruph has some directed edges (i-e., arcs) and some undirected edges. The 

terms, 'block', 'inset': 'oiitset', in a mixed graph car, be defined in a similar fashion 

as in a digraph fcf. Section 1.2). For instance, two vertices are in the same block if 

and only if they have the same closed neighbourhood in the underlying graph. 

We shall be dealing with a particular kind of mixed graph. Let K ,  V 2 , .  . . , Vp be the 

blocks of H. Then H is a mized locab tournament provided all edges of H within each 

block I/; are undirected, all edges of H between two fixed blocks V; and 6 are directed 

in the same direction (all from t/I to 5 or all from V, to  I/;), and provided the inset as 

well as the outset of every vertex is a complete mixed graph, i.e., any two vertices are 

adjacent by some (directed or undirected) edge. A mixed local tournament is acyclic 

i f  it contains no directed cycle. 

Note that each block is a complete subgraph. So if H is a mixed local tournament, 

then a local tournament can easily be obtained from N by assigning any orientation 

to each block I.:. If in addition H is an acyclic mixed local tournament, then an 

acyclic local tournament can be obtained from H by assigning a transitive orientation 

to each V,.  

Suppose that H is a mixed local tournament. If we reverse all arcs in H, then 

we again get a mixed local tournament. We call the operation of reversing all arcs 

(directed edges) in a mixed graph also a full reversal (It extends the earlier definition 

we gave for a full reversal in an oriented graph.) In particular, if H is an acyclic 

inised local tournament, then by the full reversal of ii we again obtain an acyclic 

I>, zll;.xLd t x - n  !GC&I tournament. 

Let H be a mixed local tournament. Suppose that S is a subgraph of H which 

contains one vertex from each block of If. It is clear that S is a local tournament. 
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If in addition fi is acyclic, then S is an acyclic local tournament and hence admits <I 

straight enumeration. So i f  N is an acyclic mixed local tournament, then the 1)locl;s 

can be uniquely ordered L;, I.;, . . . . I ,  so that L;-+I.?_-t . . . --I ,, and, tor c.ach .r E \, , 

there exist 1, and r, (which depend on j )  such tha t  

We call this order of blocks the strazght enumeratzon. We call I.',V,-[, the leff-most 

wave and V,V,+,, ;he rzgbt-most wave at the block 1',. An acyclic mixed loca! tour- 

nament is also called a straight mixed graph. 

The straight enumeration of the blocks of a straight mixed graph is very similar 

to the straight enumeration of the vertices of a reduced straight oriented graph. 'I'hey 

share many properties. For instance, if V,  and r/', ( i  < j )  are adjacent blocks, then 

V j  U Vj+l U . . . U V, is complete. 

If H is a mixed graph obtained from a graph G by assigning directions to edges of 

G, then H is a mixed-graph orientation of G. If in addition H is a straight mixed gra,ph, 

then G is orientabbe as a straight mixed graph or straight-mixed-graph-orientable, and 

H is a straight-mized-graph orientation of G. If G has precisely two straight-rnixcd- 

graph orientations for which each is obtained from the otiier by full reversal, then G 

is uniquely orientable as a straight mixed graph. 

For proper interval graphs the situation is very simple. 

Theorem 4.1.1 A connected proper internal graph G is uniquely orientable as a 

s tr~ight  mixed graph. 

Proof: By Theorem 2.3.1. 0 

4.2 Proper Interval Graphs 

In this section, we give an O(m + n )  time algorithm t,o recognize proper intc:rval 

graphs. Assume that G is a connected graph, as otherwise we can  work separately 
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on  each component of G'. Our algorithm will insert vertices of G one by one into 

an already formed straight mixed graph to form a new straight mixed graph. If G 

is a proper interval graph, then. as we shall show below, this process continues until 

a st,raight-mixed-gra~\h orientation of G is obtained. Since a straight-mixed-graph 

orientation of G can be easily modified to an acyclic local-tournament orientation of 

G,  G can be represented by a proper intervd family (see Theorem 2.2.2). 

By Theorem 4.1.1, a straight-mixed-graph orientation of a connected proper in- 

terval graph is unique. So the corresponding straight enumeration of blocks is unique. 

l 'his is crucial in what follows, even though it is not always explicitly mentioned. 

We state our algorithm as follows. 

Algorithm 4.2.1. Let G = (V, EE) be a conneeled graph. 

[Step 1.1 Order the vertices o f G  as vl, vz, . . . , v, in szlch o m y  t h d  < {vl, v2,. . . , v ; )  > 
is connected, for each i = 1,2, .  . . , n. 

[Step 2.1 Let H1 =< (vl)  > and 2 = 1. M i l e  possible, insert vi+l into Hi to form 

a straight mixed graph Hi+l, and increase i by 1 .  o 

For Step 1, \;.e may apply breadth-first search to sort the vertices as required. 

This can be done in time O(m + n). Xoreover, we may arrange to store, for each i. a 

vertex v,, j < I ,  such :hat v, is adjacent to v,. For Step 2, suppose that G is a proper 

interval graph and suppose that, for some i = 1 ,2 , .  . . , n - 1. < (v l ,  212,. . . , v;) > has 

been oriented as a straight mixed graph H,. Then the orientation H, is unique. 

Note that < ( u l ,  v 2 > .  . . , z',, v , + ~ )  > is also uniquely aientable as a straight nixed 

graph. If is a straight-mixed-graph orientatiors of < {UI, 212,. . . , vl, v,+1} >, 
then H,+l agrees with the orientatior! on H,, t ~ p  to fujl reiiersz!. Using a similar 

approach, we conclude that any straight-mixed-graph orienration D of G agrees with 

the orientation on H,, up to fuil reversal. Therefore, to obtah a straight-mixed-graph 

orientation of < { u l  , U . J ,  . . . , r,, v,+1) >, we need or ly add v;+l to H, and appropriaiely 

assign directions to some undirected edges. 
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Let I.;. Vz, . . . ,I3; be the straight enumeration of the blocks of Ii,, and let I) be a 

straight-mixed-graph orientation of G which agrees wi th  the orientation on H,.  

Fact 1. Suppose that b',, 6 ,  and I;, where a < b < c,  are three blocks of H,. If 

v,+l is adjacent to a vertex in V, and to a vertex in 1C/17, then is adjacent to every 

vertex in K,. 
Proof of Fact 1: Assume that v,+l is adjacent to s E bi and ,- E b, but  tiot to 

y E I/b. Choose such a ,  b, and c with c - a minimal. Then c - a > - 2 and ?) ,+I  is not 

adjacent to at least one vertex in Vd for each d such that a < d < c .  Since u,+l is 

not adjacent to a vertex in Va+1 and V,+V,+l, v,+l must dominate r in D. Similarly 

since Vc-l +Vc and v , + ~  is not adjacent to a vertex in V,-l, v , + ~  must be dominated 

by z in D. Hence there is a directed cycle of D contained in 

contradicting the fact that D is acyclic. R 

Fact 2. Let V,, 15, and V,, where a < b < c, be three blocks of I ] , .  Suppose that 

v ; + ~  is adjacent to y E I/b and suppose that v ; + ~  is not adjacent to x E V, and 2 E V,. 

Then V, is completely non-adjacent to V,. 

Proof of Fact 2: Assume that Va is completely adjacent to V'. The blocks Va and 

1% must have distinct closed neighbourhoods, i.e., there is a block which is completely 

adjacent to exactly one of V, and Vb. If there is a block Vd which is completely adjacent 

to L$ but non-adjacent to V,, then d > c because Va is completely adjacent to V,. Note 

that v , + ~  is not adjacent to any vertex in Vd according to Fact 1 .  Hence for any w E Vd 

{x, y, w, v ; + ~ )  induces a copy of the claw in G, contradicting the fact that C is local- 

tournament-orientable. Thus there must be a block V ,  which is conlpletely adjacent to 

V, hut non-adjacent to &. Similarly there is a block Vj  which is completely adjacent 

to F/, but non-adjacent to I/b. Note that e < a and f > c. Hence v,+l is adjacent to no 

vertex ic V,  or Vj .  Therefore, for any a E & &and v E VI, ( x ,  y,z2u,v,v,+1} induces 

a copy of the net in G, contradicting the fact that G' is local-tournament,-orientable. a 
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Fact 3. Let V,, I/b, and V,, where a < b < c .  be three blocks of H,. Suppose that 

C/,-Vb-V,. If V,+I is adjacent to some vertex in G, then r,+l is adjacent to either 

every vertex in LL or every vertex in V,. 

Proof of Fact 3: Suppose that there are three vertices x E V,,  y E Vb, and r E V, 

such that us+ ,  is adjacent to y but not to x or r .  By Fact 2. x is not adjacent to z. 

Then G contains a copy of the claw induced by {x, y,  z ,  v,+l). 

We now insert v;+l into Hi and find a straight mixed graph Hi+l which agrees with 

the orientatioi! on H*. We discuss the following cases and in each case we express Hi+1 

by the straight enemeration of its blocks. 

Case 1. Nihen p = 1, i.e., when Hi has only one block V l ,  then if vi+l is adjacent 

to all vertices of Vl we include v;+l in Vl and Hi+1 again has only one block, namely, 

V, u {v;+~). If there is some S such that 69 # S c & and vs+l is adjacent to all vertices 

of S but to no vertices of Vl - S ,  then the straight enumeration of the blocks of Hi+1 

Case 3. When p 2 2, i.e., when Hi has at  least two blocks, then according to 

Fact 1 we may assume that there exist a < c such that v;+l is adjacent to  all vertices 

of each V, such that n < j < c (if any), and v,+l is not adjacent to any vertex in each 

L i  such that k < a or k > c. 

Subcase 2.1. Suppose that v , + ~  is not adjacent to any vertex in IL U I/,. 

In this case we must have c # a -k 1 as otherwise v,+l is adjacent to no vertex of 

H;,  contradicting our hypothesis. Thus c > a + 2, that is, there is at  least one block 

between V, and T.',. By Fact 2, Va is completely non-adjacent to  V,. 

Let L,L1,,'i be the right-most wave at ',/, ad let '?/,Vd be the left-most wave at 5/,. 

Since I, is not completely adjacent to V,, blocks 14 and Vd sre between Va and V,, 

i.e.. n < b, d < c. By Fact 3 we must have b < d. We claim that d < b + 4. First we 

note that for each block 5/;  with b < j < d, V, is completely adjacent either to Va+1 

or to as otherwise any choice of three ve1 :ices from Va+l, Vc-l ,  V, , respectively, 
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together with z ~ , + ~  wouid induce a copy of the claw, contradicting t h  fact that i ;  

is locai-tournament-orientabfe. Now since distinct blocks rnust have distinct closrti 

neighbourhoods, there are at most three blocks between and I.&. 

Suppose that there is no block between bi and S.2, nanlely, d = b + 1. W'c. prove 

that 

. . . , K,. . . , &, {u,+~}, I$, . . . . l/ic,. . . 

is the straight enumeration of the block. of To do this, we need to verify that 

each of the sets above is a block and that any two completely adjacent sets must be 

adjacent to each set between them. 

We need to show that two vertices are in the same set if and only i f  they have the 

same closed neighbourhood in First it is clear that vertices i n  each set have the 

same closed neighbourhoods. Suppose that z and y are two vertices in different sets. 

If neither x nor y  is the vertex v,+l, then x and y  have distinct neighbourhoods i n  I-[, 

and hence in Suppose that one of x and y ,  say x,  is the vertex u , + ~  and sripposc 

that y  E 5 for some j .  If j < a or j 2 c, then x and y are not adjacent and hence 

have distinct closed neighbourhoods. If a < j < b, then y is adjacent to the vertices 

of Va which are not adjacent, to x. If d < j < c,  then y is adjacent to the vertices of V, 

which are not adjacent to x. Hence x and y have distinct closed neighbourhoods. Now 

we shall show that, two completely adjacent blocks must be completely adjacent to 

each block between them. Let A and B be two completely adjacent blocks. Suppose 

that one of A and 8, say A, is the block {v,+~} and suppose that R = for some j. 

Then a < j < c and it is clear that A is completely adjacent to each block between A 

and B. Suppose that neither A nor B is {v,+~). We only need to show that A and FI 

are completely adjacent to { v , + ~ ]  if { v , + ~ }  is between A and B. In fact if { 1 1 , + ~ )  is a 

block between A and B, then A and B must be blocks between Va and V,  and hence 

A and B must be completely adjacent to (v,+~}. 
In the cases below, similar arguments can he applied to verify that we have defincd 

a straight enumeration. We shall ornit the details. 

Suppose that d = b + 2 and suppose that V, is the only block between Vb and Vd. 

If V, is completely adjacent to V,+l and V,-l, then the straight enumeration of the 
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If V, is completely adjacent to V,+l but non-adjacent to V,-l, then the straight enu- 

rrteration of the blocks of H,+l is 

If I/; is completely adjacent to V,-l but non-adjacent to Va+l, then the straight enu- 

meration of the blocks of H;+l is 

Suppose that d = b + 3 and suppose that V, and Vk are the two blocks between 

&, and Vd where j = b  + 1 and k = b + 2. If V, is completely adjacent to V,+l but 

non-adjacent to 1/,-*, and if Vk is completely adjacent to  V,-l but non-adjacent to 

Va+l, then the straight enumeration of the blocks of is 

If k/, is completely adjacent to  V,+i but non-adjacent to V,-l, and if Vk is completely 

adjacent to and Va+l, then the straight enumeration of the blocks of H,+i is 

If I/, is compietely adjacent to K-1 and Va+l, and if Vk is completely adjacent to IL1 
but non-adjacent to V,+l, then the straight enumeration of the blocks of Hi+i is 

Suppose that d = b  + 4. Let l/,,Vk, and V;, where j = b +  1, k - b +  2, and 

1 = b  + 3, be the three blocks between l.4, and Vd. Then the only possible situation 

is the following: is completely adjacent to  K+l but non-adjacent to Vk is 

coinpktely adjacent to  both VcJ,_l m d  Vu+l, and 5?; is completely adjacent to  but 

non-adjacent to Vu+l. In this case the straight enumeration of the blocks cf H;+l is 
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Subcase 2.2. There exist S and S' with 0 f: S c I; nnd 0 # St c I - ,  such that 

v,+* is adjacent to every vertex in S L! Sf but to no vertex in (\I, - S) L! (I., - S'). 

Suppose that c = a + 1. Fact 3 implies that a = 1 and c = p ,  that is, I: is the first 

block and & is the last block in the straight enumeration of t h e  blocks of H,. Since 

V, and 5/', are completely adjacent, I/: L! Vi must be a block in H,, contradirti~lg the 

hypothesis. Thus c > a + 2. By Fact 2, I./, is completely non-adjacent to I(.. Let I ;l'b 

be the right-most wave at L', and let 1/,I/h be the left-most wave at E / d .  By Fact 3, 

b < d. Suppose that d > b + 1. Let T/', be a block between l/j and i.e., b < -1 < d.  

Then any choice of three vertices from S, St, y ,  respectively, togetter with would 

induce a copy of the claw in G, a contradiction. Hence d = b + 1, i.e., there is no 

block between & and Vd. In this case, the straight enumeration of the blocks of 

Subcase 2.3. There exists 0 # S c V, such that v , + ~  is adjacent to every vertex 

in S but to no vertex in (V, - S) U V,. (A similar discussion applies when there exists 

0 # St c V,  such that  v,+l is adjacent to every vertex in St but to no vertex in 

(K - S )  U va-) 
Suppose that V, is completely adjacent to V,. If there exists a block V, wl1ir.h is 

completely adjacent to  Va but non-adjacent to V,, then e < a and any choice of three 

vertices from V,, S ,  V,, respectively, together with v , + ~  induce a copy of the cla,w in 

G, a contradiction. So there exists a block Vj which is completely adjacent to V, but 

not to  Va. Then f > c. 

Let &Vd be the left-most wave at  L$. Siuppose that u # 1. Then d < a and from 

the above discussion V, I/& also must be the left-most wave at  V,. Then d 5 a - 1 .  I f  

d # 1, then any choice of vertices from Vd-l, Vd, S,  q, V j ,  respectively, together wi th  

v,+l induce a subgraph of G which is not local-tournament-orientable, a contradictiori. 

Assume that d = 1. Consider the block Vd and the block I/,. Then there must be a 

block I/, which is completely adjacent to Va but not to Vd. w e  must have y > c and 

hence any choice of three vertices s, y, z from Vd, V,, V, together wi th  v,+l induce a 

copy of the claw in G, a contradiction. Therefore a = 1 and the straight enurncration 
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of the blocks of HScl is 

( ~ , + 1 ) , S ,  - s, K , .  - .  

Suppose now that the block I/, is completely non-adjacent to the block I/,. Then 

c > a + 1. Let Va & be the right-most wave at  Va and tf& be the left-most wave 

at V,. By Fact 3, b < d. We observe that for each block V, with b < j < d, V, is 

completely adjacent to  XA1,  as otherwise any choice of three vertices from S, V,, Vc-l, 

respectively, together with v ; + ~  would induce a copy of the claw in G, a contradiction. 

Hence the straight enumeration of the blocks of Hi+1 is 

Subcase 2.4. There exists 0 # S c V, such that v;+l is adjacent to  every vertex 

in S u 1/, but to no vertex in Va - S .  ( A similar discussion applies when there exists 

S' such that 8 # S' c V ,  and v,+l is adjacent to  every vertex in Sf U Va and to no 

vertex in V ,  - Sf.) 

If V, is not the last block, i.e., c # p, then it can be treated as Subcase 2.3. 

Suppose that tf is the last block, namely, c = p. Let VaK be the right-most wave at  

V, and V,Vd be the left-most wave a t  F/,. 

Suppose that b = c. Then the straight enumeration of the blocks of Hi+l is 

Suppose that b < c. If d > b + i and Vj is a block between & and Bd, then any 

choice of three vertices from S, V,, V,, respectively, together with v,+l would induce a 

copy of the claw, a contradiction. Hence d < b + 1. If d = b + 1, then the straight 

enumeration of the blocks of H;+l is 

If d < b + 1, then the straight enumeration of the blocks of Hj+P is 

Subcase 2.5. Finally we consider the case when v ; + ~  is adjacent to every vertex 

in \:& U I,',. If I/', is not the first block and V,  is not the last block in the straight 
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enumeration of the blocks of HI, i.e., a # 1 and c # p,  then it can be t>reated as in  

Subcase 2.1. 

Suppose a = 1 and c = p. Note that Va is completely nori-adjacent to I.:.. Let I;\ 

be the right-most wave at C/, and let I/,& be the left-most wave dt C: . If d < b, then. 

for any x E r//b and y E Vd, N i x ]  = lV[y], a contradiction. Hence d > b. If  d = b, then 

the straight enumeration of the blocks of H,+l is 

Suppose that d > b. If d > b+ 1 and V, is a block between L$ and Vd, then any choice 

of three vertices from \', , V,, V,, respectively, together with v,+* induce a copy of the 

claw in G, a contradiction. Hence d = b + 1. Therefore the straight enumeration of 

the blocks of H,+l is 

. Va,. - I / I 6 r  { ~ , + 1 } ,  v d 1 -  * K.  

Suppose that Va is not the first block and suppose that V, is the last block in 

the straight enumeration of the blocks of H i ,  namely, a > 1 and c = p (a  similar 

discussion applies if a = 1 and c < p). Let Va-lV, be the right-most wave at  V,-l. 

Then a < e 5 c. If e = c, then the straight enumeration of the blocks of Hi+1 is 

Suppose that e < c. Note that any block between V,  and V ,  ( if  there is any)  must 

be either completely adjacent to  V, or to V,. Hence there are at most three blocks 

between V,  and V,, that  is, c < e + 4. 

When c = e+l ,  there is no block between V ,  and I(. Then the straight enumeratiorr 

of the blocks of is 

- .  ., Va,. 7 V e )  {v~+I), Vc. 

For the case when c = e + 2, let V, be the only block between 'J, and t/,. We know 

that L< has to  be completely adjacent to  at  least one of f . and V,. If V, is completely 

adjacent to both I/, and V,, then the straight enumeration of the blocks of is 
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I f  V, is completely adjacent to Va but non-adjacent to V,, then the straight enumeration 

of t,he blocks of H,+, is 

. . . , \/a,. . . , V e ,  y/;? (v;+1), K.  

If V, is completely adjacent to K bllt non-adjacent to V,, then the straight enumeration 

of  the blocks of H,+l is 

. . . ,  v a v .  - .  3 K: (ui+l), 'tj, V,. 

Suppose that c = e + 3. Let r/; (md I/k be the two blocks between I/, and V ,  vrhere 

j = e + 1 and k = e + 2. If V, is completely adjacent to V,  but non-adjacent to 

V,, and if Vk is completely adjacent to Vc but non-adjacent to V,, then the straight 

enumeration of the blocks of is 

If V, is completely adjacent to both Va and V,, and if Vk is completely adjacent to V, 

but non-adjacent to Va, then the straight enumeration of the blocks of H;+l is 

If V, is completely adjacent to Va but non-adjacent to Vc, and if Vk is completely 

adjacent to both I/, and V,, then the straight enumeration of the blocks of Hi+1 is 

Suppose that c = e + 4. Let V,, Vk, and & be the three blocks between and V,, 
where j = e + I ,  iE = e + 2, and 1 = e + 3. Then the c-ii-iy situation is the following: 

T/;; is completely adjacent to Va but non-adjacent to V,, Vk is completely adjacent to 

both L< and d, and V; is completely adjacent to V ,  but non-adjacent to Va. Then the 

straight enumeration of the blocks of Hi+* is 

We now analyze the time cost of Step 2 of Algorithm 4.2.1. We show that it takes 

t.inle OjcJey(~ .~+~) )  to insert the vertex v , + ~  into H;. When Hi has only one block, it 
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is clear. Suppose that Hz contains at least two blocks. (Note that in this castb H ,  

must contain at least three blocks.) According to the above discussion, we  nerd to 

find I/, and I', where a < c such that v,+l is adjacent to all vertices in Vb for tact1 

b with a < b < c, and v,+l is adjacent to no vertex in b:i for any d with ti  < a or 

d > c. Let Vj  be a block of H, which contains a, neighbour of . r ~ , + ~ .  We can find f 

from the knowledge of a vertex v,, j 5 z adjacent to Z I , + ~  (cf. Step 1) .  If f -1 1, then 

we let a = f .  Choose a vertex s of Vrll. If f - 1 = 1, then a = 1. Otherwise, i f  .r 

is not a neighbour of  ti,+^, then a inust be either f - 1 or f .  We can decide which of 

these two is the case, in time O(deg(v,+l)), as follows: We test adjacency of v , + ~  to 

individual elements of Vj, until we find the first element of Vj which is not adjacent 

to v,+l. If such an element exists, then a = f; otherwise a = f - 1.  If x is a neighbour 

of vZcl, then we choose a vertex of V'-2, and continue in this fashion, until we find 

vertices y E V,, z E such that v,+l is adjacent to z but not to y .  Then a = g or 

a = g + 1, and we decide as above. If v,+l is adjacent to a vertex in each of the blocks 

&, &, . . . , Vjt then a = 1. This procedure takes time O ( d e g ( ~ , + ~ ) ) .  Similarly in time 

O ( d e g ( ~ , + ~ ) )  we can find the block V,. 

,4t each stage, we keep track of enough information for the straight enunieration 

of the blocks of KT,, such as the left-most wave and the right-most wave at each block 

of Hi. .After we have found the blocks V, and V,, we can obtain a straight-mixed- 

graph orientation Hi+l in time O ( d e g ( ~ , + ~ ) ) ,  by considering the above cases. (The 

neighbours of v;+l in any V, can also be identified in time O ( ~ l e g ( . u , + ~ ) ) . )  Hence we 

can find a straight-mixed-graph orientation of G in time O ( m  + n). 

Theorem 4.2.2 Algorithm 4.2.1 takes time O(m + n )  (.in the worst case) to find 

a straight-mixed-graph orientation of C, or to correctly report that G' is not a proper 

interval graph. fl 

Suppose that H is a straight-mixed-graph orientation of G. if we orient each blcck 

of H transitively, then we obtain an acyclic local-tournament orientation of G'. By 

applying the technique explained in the proof of Theorem 2.2.2, we obtain, in time 
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O ( m  + n ) ,  a n  inclusiori-free interval family associated with G. Therefore we have the 

followirlg result. 

Corollary 4.2.3 The recognition and representation problem for proper interval 

gruphs can be solved in time O ( m  + nj .  0 

Proper Circular Arc Graphs 

In this section, we . ive an O ( m  + n )  time algorithm for the recognition and repre- 

sentation of prqper circular arc graphs. The idea of our algorithm is in fact to test 

if a graph is ocientable as a local transitive tournament. W1e know that a graph is 

not a proper circular arc graph if it is not local-trar-sitive-tournament orientable. If 

a graph is local- transi t ive- tournament -orientable, then a local-transitive-tournament 

orientation is obtained. By Corollary 2.2.7 a representation can be obtained in time 

O(m + n)  from a local-transitive-tournament orientation. Our algorithm involves 

an O ( n  + n) algorithm for testing proper interval graphs and finding corresponding 

acyclic local-tournament orientations. 

111 view of Tucker's 0 ( n 2  j time algorithm, we only need to deal with the case when 

the number of edges is small relative to n2. 

Algorithm 4 3 . 1  Let G be a graph with n vertices and m edges. 

[Step 0.1 Test i f G  is a proper interval graph. If it is, represent it b y  intervals (viewed 

as a special case of circular arcs). 

[Step f .] Choose a vertex z of minimum degree in G.  Let A be the subgraph induced by  

N [ s ]  and let B = 6- A. If B is a clique, solve the recognition and representation 

problems for G b y  Tucker's algorithm. 

[Step 2.1 Orifnt  both graphs '4 and B as straight mixed graph. (This is unique (cf. i 

Theorem 4.1.11.) 
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[Step 4.1 Modify the result into a  local transifzz~e tournnrneni .  

[Step 5.1 Transform the local t ro~~sz izve  tournament into rt~*cular arc r ~ p r t ' s ~ n f n f i o u  

o j  G. n 

Step 0 can be done in time O(m + n )  (see Section -1.2). Step 1 also takcs tirric 

O(m + n)  because when B is a clique, the number of edges of G is rn > - 4 (recall 

that x is a vertex of minimumdegree), and so Tucker's algorithm runs in time O(?n-trtr) 

in this case. The previous section covers Step 2. Step 5 can he carried out in lime 

O ( m  + n) ,  as explained in Theorem 2.2.6. 

Thus we only need to  discuss Steps 3 and 4. Let G be a proper circular arc graph 

which is not a proper interval graph and for which B is not a clique. 

Proposition 4.3.2 Both A and B are connected proper interval graphs. 

r COIl-  Proof: Since B is not a clique, any proper circular arc representation of ( '  

tains three disjoint circular arcs - one corresponding to .z and two correspondirlg t,o 

two non-adjacent vertices of B. Let X be a point on the circular arc corresponding 

to  x. The other two circular arcs divide the circle into two segments. Choose a point, 

Y on that segment which does not contain X. Then no circular arc in E f  corltairls the 

point X and no circular arc in A contains Y. Thus both A and B are proper intmval 

graphs. Since G is not a proper interval graph, A and R are connected. u 

Proposition 4.3.3 The graph G is uniquely orientable as a mixed local towma- 

ment. 

Proof: The above three disjoint circular arcs correspond to a triangle in the corn- 

plement of G. Hence the orientation is essentially unique by Propositiorl 2.3.10. 
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From Theorem 4 .  l . l ,  we know that .4 and B are uniquely orient able as straight 

mixed graphs. FVe consider the following two cases. 

Case 1. Suppose that A is not a clique. Then, i n  the rniscd-graph orientation 

of A, let L be t k .  s t  of vertices in r-l which are not in the outset of s, artif 1t.t li 

be the set of vertices of A which are not in the inset of .r, Let j' bc t,iw graph 

induced by B and L,  and let R be the graph induced by B and R. Sinw C: is r i o t ,  

an interval graph, both C and D are connected. It is also easy to sec that  both ( '  

and D are proper interval graphs: it is enough to choose points Z and W as the 

leftmost and rightmost endpoints of the intervals representing x and all vertices with 

the same closed neighbourhood as x in A. No circular arc of C contains the point W 

and no circular arc of D contains 2. Now all four graphs A ,  El, C ,  D can be uniquely 
4 

oriented as straight mixed graphs. Consider G ,  an orientation of G, as a mixed local 

tournament. Of the two possible orientations of A (and similarly for H, C, and D), 
one must agree with d in the sense that any edge oriented in A is oriented in in the 

same direction. Therefore, if we choose one of the two aientations of A and one of C', 

either the edges oriented in both all agree or all disagree in direction. Thus we may 
- . - + - -  

choose orientations A, B, C, D such that any edges oriented in two (or more) agree i r ~  

their direction. 

Theorem 4.3.4 The oriented edges of the mixed iocal tournament (li are preciscly 
-+ -., 

the anion of the oriented edges of A, B, t?, d. 

Proof: If an edge uv is oriented in then u and v are not equivalent, i.e., have 

distinct closed neighbourhoods in the underlying graph of e. Suppose both .u and 

o belong to A, and have the same neighbours in A (otherwise uu is oriented in i). 
Then u and v are both in R or both in L. Suppose they are both in I, arid thus 

both in C. Since they are not equivalent in G and are equivalent in A, they must be 

not equivalent in C. The other cases (one in A one in B or both in B )  are similar. 

Therefore any edge oriented in is oriented in at  least one of 2, 8, 2, 6.  
+ -+ 

Let uv be oriented ir. A, B, (? or d. Then the neighhourhoods of u m d  o are 

distinct in that graph, and hence certainly also distinct in G'. Therefore uv is also 

oriented in 6. Since we observed above that there are no conflicts in the oricantations, 
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the* proof is complete. 0 

T h u s  Step 3 is done by orienting C and D and then combining the orientations 

of A,  N, C', D as above. It is clear that each of these steps can be performed in time 

O(m + n) .  

Step 4 is then accomplished by defining an arbitrary transitive tournament on the 
* 

vertices of each equivalence class of the mixed local tournament G. 

Case 2. Suppose now thdt A is a clique. Suppose that &, K , .  . . , Vk is the straight 

enumeration of the blocks of B. Since B is not a clique, we know that k 2 3. Let 

i be the set of vertices in A which are adjacent to at least one vertex in h, and let 

R be the set of vertices in A which are adjacent to at least one vertex in 1% (note 

that these vertex sets can be found in time O(m + n)) .  Let C be the graph induced 

by B and L, and D be the graph induced by B and PZ. We follow the procedures 

as above by considering A, B,C,  and D. Again A, B , C ,  and D are proper interval 

graphs and hence they can be oriented uniquely as a straight mixed graph. If we -.-,-' 
choose orientations A, O, C, d such that any edges oriented in two (or more) agree in 

their direction, then we can apply a proof similar to the proof of Theorem 4.3.4 to 
- . - + + - +  

show that the union of the oriented edges in A, B, C, D, and L-+R give a mixed-local- 
4 

taurnament orientation G of G. Therefore a local-transitive-tournament orientation 

of G can be obtained from 6. This completes the proof of correctness of Algorithm 

4.3.1. 

There exist efficient algorithms for solving many basic optimization problems for 

proper circular arc graphs which assume that a proper circular arc representation is 

given. For instance, Hsu and Tsai [46] have an O(n) algorithm to find a maximum 

independent set and to find a minimum clique covering in a proper circular arc graph. 

(In fact, the algorithm applies in a general circular arc graph.) In view of our O(m+n)  

representat ior! algorithm, we may now conclude that the maximum independent set 

problem and the minimurn clique covering problem for proper circular arc graphs are 

solvable in time Q(nz + n) .  



Chapter 

Maximum Chques an 

~Colourings 

In this chapter, we will give two algorithms: one is an O ( m  + n)  time algorithm to 

find a maximum clique of a proper circular arc graph, and the other is an O ( m  + n )  

algorithm to determine c-colourability of a proper circular arc graph. Again these 

algorithms do not require an arc representation, but can be implemented in tirncb 

O(n log n)  if such a representation is given. 

Proper circular arc graphs have applications in trafic control [74] cyclic scheduling 

and compiler design, 1791. The problem of finding the maximum clique in general 

circ lar arc graphs has been previously solved by Apostolico and IIambrusch [3], by 

an algorithm which has a time bound of 0 ( n 2  log log n) .  However this algorithm 

requires that the representation by a circular arc fami!y be given. For the special 

case of proper circular arc graphs, we shall give here an O(m + n )  algorithm. If thc 

representation is known, our algorithm can be implemented to run in time O(n log n) .  

The problem of c-colouring proper circular arc graphs arose in the cyclic scheduling 

and register allocation applications. It was first studied by Orliii, Bonuccelli and Ruwt  

[61]. Their approach consisted of reducing the problem to a shortest path calculatiou, 

and resulted in an algorithm with a time bound of 0 ( n 2 ) .  Subsequently, other authors 

improved the algorithm by improving on the shortest path method, culminating in the 
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algorithm of Shih and Hsu l i O i ;  which has a time bound of ~ ( n t ) .  However all these 

algorithms require the representation by a circular arc ianiily to  be given. By applying 

o u r  maximum clique algorithm we are also able to give an O ( m  -+ n)  aigorithm for 

this problem. If the representation is known, our algorithm can be implemented to 

r u n  also in time O(n log n) .  

We first remark that we may assume that G is connected and that it has no vertices 

of degree n - 1. Indeed, both the colouring and the maximum clique problems can 

be solved for each component separately. Furthermore, any maximum clique must 

contain all vertices of degree n - 1, and any cofoilring must assign each vertex of 

degree rl - 1 a colour not used by any other vertex. Thus it is sufficient to solve both 

problems for the graph obtained by removing a11 vertices of degree n - 1. Therefore 

we shall assume from now on that G is a connected graph with A(G) 5 n - 2. 

The new element in our approach is Theorem 2.1.15 which allows us to search 

for maximum cliques and minimum colourings in a more efficient way. From Section 

4.3, we can obtain in time O(m -+ n)  a local transitive tournament orientation of any 

pmper circular arc graph and hence in time O(m + n )  a round enumeration of the 

corresponding local transitive tournament. 

Suppose that D is a local-transitive-tournament orientation of G. Then D is a 

round oriented graph. Let vl, v2, . . . , v, be a round enumeration of D, such that for 

each i there exist non-negative integers l i  and r; with vi+vj if and only if i + 1 5 j 5 
i t r, and vk-3~;  if and only if i - li 5 k 5 i - 1 (with the additions and subtractions 

modulo n).  We define R(u)  = w just if u = v, and w = vi+,,, and L(u) = w just if 

u = v; and u) = ZJ,-I~. 

Note that the assumption that A(D)  <_ n - 2 implies that for every vertex u 

there is at  least one non-neighbour of u between R(u) and L(u). Thus for every u 

moving clockwise we first enmunter all out-neighbours of u (the lase being R(u)), 

then all non-neighbours of u (of which there is at  least one) and finally, just before 

returning to u, all in-neighbours of u (the first one being L(u)). In particular, for 

each vertex 21 = v,, the set {u = v,, v,+l, v,+2,. . . ,vi+,, = R(u) )  induces a clique (in 

fact s transitive tournament of 0 ) .  
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In the sequel, we show how searching for maximurn c1iqut.s and f ~ r  rnininirim 

colourings in G can be made more efficient if we p~r form i t  on a round eniinlerntion 

of a local transitive orientation D of G. 

Let v1,2'2, . . . , z7, be a round enumeration of a local transitive tournament D. 1,t.t 

a = v, and b = u, .  The interval [ a ,  b] is the set of vertices ( P , ,  v,+; ,  . . . , t l l - l ,  v , } ,  

with the subscripts calculated modulo n. (Thus If we draw P I ,  19, . . . , u ,  clockwise 

around the circle, the interval [a ,  b] extends from a to b clockwise.) The intrrvds 

( a ,  b ) ,  ( a ,  b] and [a ,  b)  are defined analogousiy. 

We observe that if a-tb  then x t y  for a11 x, y with [x, y] C [ a ,  b] ,  and so [a ,  b] is a 

complete graph (in fact, a transitive tournament). 

-4 clique of a graph (or an oriented graph) is just a complete subgraph. A clique 

of 1 laximum size is called a m a s i m u m  clique. 

5.1 TheMaximumClique Algorithm 

Assume that D is a iocal transitive tournament with a round enumeration 211,  v2, . . . , ,otl. 

We shall rcstrict our search for a maximum clique in D to a special class of cliqucs de- 

fined as follows: Let m be an odd integer m > 3, and let a l ,  b,, a2 ,  b2, . . . , urn, b, he dis- 

tinct vertices of D listed in clockwise circular order, such that for each i = 1 , 2 , .  . . , m 

we have 

where m' = and the subscript additions are modulo m. Then we say that 

C = [a1 ,  b l ] u  [a2,  b2] U. . .U [a,, b,] is an m-overlap clique generated b y  { a l ,  a?,  . . . , a,}. 

We also refer to  the vertices a l ,  up, . . . , a ,  as the generators of C. 

It is possible to  specify an m-overlap clique by its generators. The generator3 

must be distinct vertices a l ,  a2, . . . , a ,  listed in clockwise circular order; we intro- 

duce b, = R(a,-,I) and verify that each b, E (a , ,  a,+,).  If we aiso have / [a, ,  b,]l 

I(b,+,t, a,+m,+l)l, then C = [ a l ,  bl] U [a2 ,  b2] u . . . U [a,, b,] is an m-overlap clique 

generated by the given a l ,  a2, . . . , a,. It follows that between any t w o  successive 
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gcnc.rators a,, of a n  m-overlap clique, there must be some R(a,) for a generator 

a,. Artother useful prop~rty to observe is that for any two generators a,, a, of an 

rn-overlap clique we have  [al, R(a,)] n [a,, R(a,)] # 0. Finally, we also note that in an 

nt-ovcrlap clique C = [al ,  bl]  U [az, bz] LJ . . . U [a,, b,] we must have each (b,, a,+l) # 0 
because n,+,~+, = a,-,l dominates b, and is dominated by a,+l (as a,+l-+b,+mt+l),  so 

that in order to have the degree of a,-,# smaller than n - I ,  we need (b,,a,+l) # 0. 

For convenience we also define 1- and (-1)-overlap cliques: A 1-overlap clique is 

any intervai [a, b] with b = R(a). Thus the interval [a ,R(a)]  is the 1-overlap clique 

generated by a. (This coincides with the definition of ar, "overlap clique" in [61]). A 

(-1)-overlap clique is just the empty set 0. 

Lemma 5.1.1 i n  the digraph D, we have: 

e Any rn-overlap clique is a clique; 

There exists a maximum clique which is an m-overlap clique for some odd m 

Proof: The first statement clearly holds for 1- and (-1)- overlap cliques. Thus 

let [al, bl] U [a2, b2] u . . . U [a,, b,] be an m-overlap clique of D with m 2 3. Let 

u E [al, b,]. Since a,  dominates b,+,t, the vertex u dominates all vertices of (u, b,] u 
[a,+l, b,+,] u . . . [a,+,!, b,+,l]. Since b,+2m!+l = b, is dominated by the vertex 

u is dominated by all vertices of b,+,t+l] U . . . u [a,, u). Therefore [al, bl] U 

[a2, b2] U . . . U [a,, b,l is a clique of D. (Recall that rn' = F, so that 2m' + 1 = m.) 

To prove the seccnd statement, consider a set of vertices C which induces a max- 

imum clique of G. If C # 8, then there exists an integer rn such that C may be 

written as C = [al, bl] u [a2, b2] U . . . U [a,, b,] where al ,  bl, a2, b 2 , .  . . , am,  bm appear 

in clockwise circular order in the round enumeration. Let C and m be chosen so that 

rn is as small as possible among all maximum cliques of G. 

Suppose that rn = 1, i.e., that C = [al, bl]. Consider the adjacent vertices a l ,  bl. 

If bl+al, then [bl, all is also a clique, contradicting A ( D )  < n - 2. Thus al--+bl, 

and hence R(al)  E [b l ,  a l ) .  Since [al, bl] is a maximum clique, R(al)  = bl and C is a 

1-overlap clique. Thus suppose for the rest of this proof that m > 1. 
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Claim 1. If u 4 [a, ,b ,]  is adjacent to all vertices of [a , .b , ] ,  then u-+[n,,b,] or 

[a, ,  ~ , ] + z L .  

Suppose there are two vertices x,  9 E [a , ,  b,] such that u 4 . r  and g--+u. This rrlclarw 

that zi- i(u, xj and [y, u f - t u .  Together with the assumption that u is adjacent to each 

vertex of [a,, b ; ] ,  we contradict the fact that A ( D )  < n - 2. 

Claim 2. If i # j then either [a; ,  b;]-+[a,, b j ]  or [a,, b,]+[n,, b;]. 

If ai-+bj then x-y for each x f [a; ,  b;] and y E [u.j, b,]. On the other hand, if 

bj-+ai then two applications of Claim 1 yield bj - -+bi  and a,-+b,. Thus in this case 

x 4 y  for each s E [ a j ,  b j ]  and y E [a; ,  b;]. 

Claim 3. If [a; ,  b ;] -+[aj ,  b,] then [a;+l, bi+l]+[aj+l, bj+1]- 

Suppose that [a; ,  b;]+[aj, bj] and [aj+l ,  bj+l]-t[a;+l,  b;+l]. Let u E (b; ,  a ,+l ) .  ( I t ,  

was noted above that (b; ,  # 8.) Then u is adjacent to all vertices of [a;+,, b,+,] u 
, . . U [ a j ,  b j ]  because a; ib j ,  and to all vertices of [ ~ j + ~ ,  b,+l] U . . . U [a,, b;] because 

aj+l-tbi+l. This contradicts the maximality of our clique. 

Claim 4. m is odd. 

If rn is even, then [a, ,  b , ] - - + [ ~ ~ + , ~ ~ ,  bi+m12] implies bi+m12]-+[a;, bi] by Claim 3, 
contrary to Claim 2.  

Claim 5. R ( a , )  = bi+,l for each i = 1 , 2 , .  . . ,m. 

Since a; and bi+,1 are in C ,  they are adjacent. If some b,+,t-+a;, then Claim 2 

implies that [a;+,~, b;+,l]+[a;, b;] and Claim 3 implies that [a,, hi]--+ [ ~ ; + , r + ~ ,  b;+,rcr]. 

However, this is impossible as ai-+bi+m~+l implies ai-+ b;+,l. Hence a;+ hi+,,# for each 

i = 1 ,2 , .  . . , m. In particular, ai+ml+l--+bi+2m~+l = b;. So R ( a ; )  G [bi+ml, ai+,1+l). On 

the other hand, if R ( a , )  # bi+ml, then R ( a i )  is adjacent to every vertex of [a,, b;] U 

[ai+i, bi+l] U .  . . U ja;+,t, b,+,~], and because U;+,I -+b;+2m1 = biml, R ( a ; )  is also adjaceni 

to every vertex of [ ~ ; + , l + ~ ,  bi+,l+l] U . . . Cj  [a ie l ,  bi-l] .  Thus R(ai) is adjacent to evcry 

vertex of C, contradicting its rnaximality. Therefore R ( a i )  = b;+,l. 

Claim 6. / [ a i ,  b;]\ > I(bi+,~, a;+ml+l)l for each i = 1 , 2 , .  . . ,m. 

If l[ai, bill 2 I(b;+,~,a,+ml+l)l for some i, then let C' = [a, ,  blj u . . . U [~ , -2 ,h i - z]  U 

[a;-1, hi] U [ai+l, bi;:] U . - . U [ ~ 1 + ~ 1 - 1 ,  bi+,l-l] U ja;+,~, b:+ml+l] IJ [ai+ml+~,  b?+m'+l] U 

. . . [a,, b,]. In effect, C' is obtained from C by replacing [a , ,  b,] with  (b;+,:, a;+,,lcl). 

We see easily that C' is also a clique. We only n ~ e d  to verify that each vertex 
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IL F f6,+m,. is adjacent to all other vertices of C". Since a.+l-+b,+,~+l and 

hmce  r~,+~--u, we conclude u is adjacent to [az + 1. b,+l] LJ . . . U [ ~ , + , l - ~ ,  b,+,l-l] U 

[ u t S m ~ ,  uj: since a,+,, -b,-l and hence ~ - - - - + b , - ~ ;  we also conclude that u is adjacent 

to ( u ,  b,+,l+l] u . . . u [a , - ] ,  b,- , ] .  Thus C' is a clique with fewer intervals than C and 

with /("I > / C J ,  contradicting the choice of C. 

Yote that, the converse of the second statement of Lemma 5.1.1 is not true, namely, 

an m-overlap clique is not necessarily a maximum clique. In fact, there may be m- 

overlap cliques of different sizes. We call an m-overlap clique of maximum size a 

largest m-overlap clique. 

Lemma 5.1.2 L e t m  > 3 be a n  oddinteger. L e t C  = [ a 1 7 5 1 ] ~ [ a 2 , b 2 ] ~  . . .  ~[a, ,b ,]  

be an m-overlap clique of D and suppos: that x E (b;-1, bi] for some i = 1,2 , .  . . , m.  

l f I [ x ,  R ( x ) ]  I > ] [a ; ,  R(a;)] l 7  then the vertices a l ,  . . . a;-1, x ,  a;+*, . . . , a ,  generate an  

m-overlap clique C', with IC'l > f CI. Moreover, IC'I = ICI if and only if i [ x ,  R ( x ) ] l  = 

I[.;, R(a;)lI. 

Proof: To prove that C' is an m-overlap clique we need to show 

1. x E (b i - l ,  b i )  (that is, x # bi) ,  

By the assumption, x E (b i - l ,  b;]. If x = b;, then x-+b;+,t and a;+,t+l+x. Thus 

R ( r )  E [bi+mt, ai+mt+l )a Since 1[x7 R(x )]  1 L / [a ; ,  R ( a i ) ]  I ,  then I[bi+mt, R(x)]  ( > I[ai, 211. 

> Note that A(D) < 72. - 2 implies that ( R ( z ) ,  ai+,til) # 0. Then I(bitmrr a;+ml+l)l - 

t[b;+,t, R(z)]l  2 \ [ a i ,  z]l (recall that x = bi),  contradicting the fact that C is an 

rn-overlap clique. Hence s # bi and 1 holds. 

NGW wo comider the vertex R ( x ) .  Since a;-l -+b;+,~-~, we have ~ + b ~ + , , - ~ .  Since 

ai+tn~+l+bi, we also have a;+,l+l+x. Thus R(x )  E [bi+mt-l, ~ , + , t + ~ ) .  We claim that 
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R(x) 4 [b,+,f-l. a,+,~]. Suppose. to the contrary, that H(.r\ t [ h , + , , , r - l ,  a ,,,,, , I .  l'twt 

x E (b , - l .  a ,  ) because a,-+b,+,I. Since l[x, R(.r)] 1 > \ [ i t , .  !? (a , ) ]  1, havc / [ . I - ,  ( I , ]  1 2 
\ ( x )  ( a ) .  consider two cases: first if R(.r) # u,,,,,!, t h r n  / ( b , - l ,  a , ) J  

I bl+,lj\. contradicting the fact that  C is an rn-overlap clique; secondly i f  H(.r) --- 
a,+,,, then, noticing that the  assumption A ( D )  < n - 2 implies that (b , - l ,  x )  # Q,  ive 

again have l (bl - l ,  a , ) /  > I b,+,Il J, contradicting the fact that i' is an nz-overlap 

clique. This proves 2. 

Finally we prove 3 and 4 together. 

If 5 E (bl-? ,  a , ] ,  then R(5) 6 (b,+,I, as otherwise we would have a,+l i (x )  

contradicting the fact that  R ( a , )  = b,+,l. Thus R ( x j  E (a,+,,, b,+,i]. Then [ [ x .  a , ) !  > 
I(R(x),  b,+,l] I because / [x, R ( x ) ]  1 2 I [a, ,  R ( a , ) ]  1 ,  and hence 

with a similar proof for I(bi-l, x ) l  < I[a,+,I, R ( x ) ] ~ .  

I t  is now easy t o  conclude that  IC'I 2 lC1 because I i x ,  R ( x ) ]  1 > I[al, R fa , ) ]  i ~ncaris 

1 [ x ,  ail I 2 I [ R ( x ) ,  R ( a ; ) ]  I (or I [ a i ,  x] 1 5 I [ R ( a ; ) ,  R ( x ) ]  1 ) ;  similarly we can conclude that 

IC'I = ICl if and only if l [ x l  R ( x ) ] l  = [ [a ; ,  R(a , )J I .  o 

Let C = [ a l ,  bl] U [a2 ,  b2] U . . . U [am,  b,] be an m-overlap clique. We say that C 

is localized if for every i = 1,2,  . . . , m and each x E (b , - l ,  b;] we have I [ x ,  R ( x ) ]  1 5 
[a,, R ( a ; ) ]  1 .  Note that  the  (- 1)-overlap clique 0 is localized, as is each largest i -overlap 

clique. 

We derive the  next result from Lemma 5.1.2. 

Corollary 5.1.3 Let m > -1 be a n  odd integer. Every largest rrt-overlap clique 

is localized. a 



Corol lary 5.2.4 Lrf rn > 3 be an odd znteger. If C = [al ,  bl]  U [a2, ha] U . . . U 

[a,,. h,,,] 25 (1 I~lrgc~t  m - o w r l ~ p  chque, then for any x E jb,-l. b?], wzth /[x, R(x)] /  = 

[el ,  N ( ( J ~  ) ] I ,  t t b ~  (itrtzces a , ,  . . . a, - l .  5 ,  . . . , an generate an m-overlap clzque C', 

w h ~ h  also zs (2 largrst rn-o~~erlap clzque. 0 

Suppose k is the smallest integer such that there exists a maximum clique C sf D 

which is a k-overlap clique. Then any largest k-overlap clique is a maximum clique. 

We shall assume k is fixed from now on, and denote k' = y. 
Let A' be a localized m-overlap clique of D, for some m < k. We say that Pi' 

is admissible i f  there exists a largest k-overlap ciique (hence a maximum clique) C 
of D such that each generator of K is also a generator of C. We also say that C 

is a certificate of admissibility of K. Note that an admissible clique is by definition 

localized. 

Our strategy in searching for a maximum clique of D is to find an admissible 

1-overlap clique, then to modify it to an admissible 3-overlap clique, then to an ad- 

missible 5-overlap clique, and so on, terminating with an admissible k-overlap clique 

which is also a maximum clique. The following lemma explains how to obtain an 

admissible 1-overlap clique. 

Lemma 5.1.5 Each largest 1 -overlap clique is admissible. 

Proof: Suppose [x, R(x)] is a largest 1-overlap clique. By Corollary 5.1.3, [x, R(x)] 

is localized. Let C = [al, bl] u [a2, b2] U .  . . U [ak, bk]  be any largest k-overlap clique (and 

thus a maximum clique of) D. Then x E (!I;-~, b;] for some i, and hence [[x, R(x)]l = 

[[a , ,  R(a,)]l because C is localized and [x, R(x)] is a largest 1-overlap clique. Therefore 

by Corollary 5.1.4 the k-overlap clique C' generated by a l ,  . . . , ai-1, x, ai+l, . . . , ak is 

a, certificate of [x, R(x)]. 0 

Let n2 3 1 be an odd integer. Suppose M = [al, bl] u [a2, bz] U . . . U [a,, b,] 

is a localized m-overlap clique of D,  and suppose that there exist vertices c, d and 

subs-ript i = 1,2,. . . , rn such that 
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Let K* = [ a l ,  b l ] ~ .  . . u [ a , ,  R ( d ) ] ~ [ c ,  b , ] ~ [ a , + l ,  h ,+ l ]u .  . . ~ [ n , + , , , l ,  b , + , n l ] ~ ~ [ d ,  N(c)]u 

b,+ml+l] U  . . . U  [am, b,]. We say that K* is a n2odzficczt~on of I< obtaincct by 

replacing (R(d), c j  wiih [d, R ( c ) ] .  If m = - 1, we say that a n y  1-ovrrlap cliqtw li* is 

a modification of the (-1 )-overlap clique 0. Let /HI denote the  numbcr of vertices of 

H .  

Lemma 5.1.6 Let m 2 - 1 be a7i odd integer, and let It' be a localized m -ovt~riap 

clique. Each modification K* of h' is an ( m  + 2)-overlap clique, and /A'*/ > Ih'I. 

Note that the modification K* of K has IK*l > IKI. It follows that,, in  partic- 

ular, a largest k-overlap clique (which is necessarily a maximum clique) admits no 

modification. There may of course be several possible modifications for a given h'. A 

localized modification of K is any modification A" of K which is itself localized. In 

particular, a localized modification of 0 is any !argest 1-overlap clique. 

The importance of localized modifications to our algorithm is underscored hy t h e  

following crucial result. 

Theorem 5.1.7 Let rn 2 -1  be an odd integer. If K is an adrnissih!e m-overlap 

clique, then any localized modification K* of K is an admissible (rn+2)-overlap clique. 

Proof: Let C = [a l ,  bl] U [a2 ,  b2] U .  . . U [ak ,  bk] he a certificate for h'. Assume that, 

K* is a modification of K obtained from K by replacing ( R ( d ) ,  c )  with [d, R(c ) ] .  T h c t n  
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I<' is a n  ( r ; ~  + 'L)-ov~rIap clique hy Lemma 5.1.6. We may assume that c E (a,, b,) 

whew In,. b,] is one of the m intervals defining K. (Note that the generators of A' 

art. i r l c . l u c k d  among the generators of C'.) It follows from the definition of A" that 

d f (bp+kj ,  n,+k:+, ), where (bpCk l r  & + k ' + l )  is one of the open intervals separating two 

of thc cicfinirtg intervals of A'. Similarly. R ( c )  E ( d ,  a,+kr+l) and R(d) E ( a p ,  c ) .  

We show that A" is admissible. Without Ioss of generality, let c  E (b , - l ,  b,] 

and d E (b , - , ,  b,]. We shall show that we can alter C by removing both genera- 

tors c,  d and inserting the generators a,,  a j ,  obtaining a ceriificate C* of K". To do 

this, by Corollary 5.1.4, we need to prove ( [ c ,  R ( c ) ] /  = / [ a i ,  R ( a ; ) ]  1 and I[d, R ( d ) ]  ( = 

/ [a , ,  R (a , ) ] l .  Since C' is localized according to Corollary 5.1.3, I[c, R ( c ) ] l  5 [ [a ; ,  R ( a ; ) ] /  

and 1 [d ,  R ( d ) ]  1 5 I [a,, R ( a ,  ) ]  1. Thus we only need to show that / [c,  R ( c ) ]  1 > j [a;, R ( a ; ) ]  j 

and \Id, R ( d ) ]  1 > I [a,, R ( a j ) ]  1. So it suffices to show that a,  E ( R ( d ) ,  b,] and aj  E 

(b,+p, R ( c ) ]  as h" is localized. Since the two cases are similar, we only show that 

a;  E ( R ( d ) ,  b,]. 

If a; $ ( R ( d ) ,  h , ] ,  then a;  E (b; - l ,  R ( d ) ] .  Thus R ( d )  6 [a; ,  bi] because c E ( R ( d ) ,  b;]. 

Hence R ( c )  E ( d ,  ai+klil). Since a;-+bi+k~ and a i+k l+ l tb i ,  we have d E (bi+k,, ai+kg+l]. 

If c = b;, noting that ( R ( ~ ) , a ; + k r + ~ )  # 8, then we have ( ( R ( C ) , ~ ; + ~ I + ~ ) ~  > I[c, bill = 1. 

Combining this with the fact that I[d, R (c ) ] l  > I ( R ( d ) ,  c ) ( ,  we have I[d, ai+kJ+l)( > 

I ( R ( d ) ,  bi] 1 .  Thus ( [ d ,  R ( d ) ]  1 > I[a;+k~+l, R ( a i + ~ + , ) ]  1 ( recall that R(ai+kl+l) = b;) ,  

contradicting the fact that C is localized. If R ( d )  = a; ,  in a similar way, we will 

have ([c.  R ( c ) ] (  > ( [a , ,  R ( a ; ) ] j ,  again contradicting the fact that C is localized. Hence 

c # b, and R(d) # a, and so C has a modification which can be obtained by replacing 

(R(d ) ,  c )  with Id, R ( c ) ] ,  contradicting the fact that C is a maximum clique. o 

Let r ( x )  = J[x, R ( x ) ; J .  We define for each pair of vertices x, y ,  the quantities 

M ( a , y )  = m a z j r ( z ) )  z E ( x , y ) ) ,  M[x,y] = m a x ( r f . z ) J  .z E [ x , ~ ] ) ,  and M [ x , Y )  = 

r n a x { r ( z ) l  2 E [s, y j ) .  

Theorem 5.1.8 Admissible cliques have the following properties: 

e ,4ng ndrnissible m-overlap clique with m < k admits  a localized modification; 

0 ..in$ admissible k-ouerlap d : p e  is u m a x i m u m  clique. 
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Proof: If A' is an admissible rn-overlap clique, then  r , .  5 k. 1,i.t I' == [ ( z l ,  h i ]  1-1 

[az. b2] 6.. . L) [nk .  bk]  be a certificate of A'. I t  is easy to sce tl!at i f  nt - k, then li -- ( '  

and K admits no modification or localized modific a t '  ion. 

Suppose that m < k .  Then there exist, p and r wi th  p # r. such tthat [cr , ,  b,] is c.trlc. 

of m intervals defining A' (note that the generators of I< art. also gewrators of I ' ) .  

Let f E (a,, 6,) be the first vertex in the order froin a, to b, such that,  for any  $1 w i t h  

g E (bp+p ,  R( f f ) and r ( g )  = M(bp+kl ,  R( f )  f , we have the  following propert i tas :  

We note that such a vertex f exists because a,+l E (a,, 6,) satisfies these thrtxe 

properties. Therefore we also have f f (a,, If f E (a,, b,), then R( f )  E 

(bp+k~,ap+k~+l)  and hence C can be modified by replacing ( R ( g ) ,  f )  with [g,  f 2 ( j ) ] ,  

contrary to the maximality of C .  Suppose now that f = 6,. Then again R( f )  E 

(bp+kl, ap+kl+l), and by the hypothesis that A ( D )  5 n-2, I(R( f ), np+k14.1)l > 1.  1T~r1c.e 

1 [s, ap+kl+l 11 > I ( R ( g ) ,  b p ]  1 ,  which implies that I[g, R(g)]  1 > IIap+kl+l f i ( a p f  k i+l  ) ]  1 
(since R(aP+kl+l) = b,), contradicting the fact thzt C is localized. 'I'hereforr j E 

(b,, ap+l] .  Now let c ,  d be vertices such that r j c )  = M [  f, b,) and r ( d )  = M(b,+kl, R(t-)). 

We will show that a localized modification of K ,  can be obtzined frorn It', hy re- 

plac~ng ( R ( d ) .  c )  with [d ,  R ( c ) ]  . 
Since c E [ f ,  b,), we have c E (b,-:, b,] where z E { p +  1 , p + 2 , .  . . , r ) .  'I'hcn r ( a , )  1 

r ( c )  because r ( c )  = M [ f ,  b,) and r ( a , )  = M ( b l e l ,  b,] = M [ f ,  b,) (as a ,  E [f, b,) and (' is 

localized). Hence Corollary 5.1.4 implies that c E (;,,-;, 6,) and R(c) E (a ,+p ,  a,+kltl ). 

Suppose that d E (b,-l.b,] for s o m e j .  Then3  E ( p + k 1 $ - i , p + k f + 2 ,  . . . ,  z +  k f +  1 ) .  

First we claim that j # z -I- k' + 1 .  Assume to the contrary that 1 = z + k' + 1.  '1 hr-it 

d E (bt+kl, bt+kl+l] and hence d E j b,+k~,  R j c ) ) .  This mgiies that R(c j  E ( br+kl, a1+k'+] j 

and hence c E (a , ,  b,) .  Since d-+b, - l  (as al+kl-+bl- l )  and c - 4  (as U , + ~ I - + ~ ~ - ~ ) ,  

we see that R ( d )  E [ b I - 1 , ~ ) .  If R ( d )  E [b , - l ,a , ) ,  then r(cl ,+p) = I [ ~ , + ~ ~ , b , - l ] j  2 

lEd, R (d ) l j  = r ( d )  because j[at+kt, d j I  >_ I[at+kl, b,+kl]i > j(b,-1, a , ) (  >_ if&,-,, fW)]I. 
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T h ~ s  c-ontradirt5 our choice of d. The above contradiction applies even when R(d) = 

a, ,  because in that case d-a, and ~ , - b , + ~ : ,  which implies that (b,+k: ,  d) # 0 (as 

d c g ( a , )  < TL - 2). If R(d) E (a , ,  c), then there is a modification of C obtained from 

C hy replacing ( R ( d ) ,  c) with [d, R(c)] ,  contrary to the maxirnality of C. Therefore 

j E { P +  kt+ 1,p+ k f + 2 , .  . . , z + k l } .  '4pplying similar arguments, we have r(d) = r(a,), 

d E (b,-,, b,), and R(d) f (a,+k*, a,+k~+,) (note that these arguments hold even when 

3 = ? + k' because a,+p E (R(c), b,+k~-~). Finally we claim that a modification 

of K ,  can be obtained from K ,  by replacing (R(d),e) with [d, R(c)]. Indeed, it 

follows from the above that c E (a,, b,), R(c) E (b,+p, ~ , + ~ : + ~ ) , d  E (b,+p, R(c)), 

and Rjd) f (a,,c) (note that c-+d). Since r(a,)  = r(c) and r(a,) = r(d), we 

have 1 [a,, c)l = [(br+kl, R(c)] 1 and 1 [d, a,) I = I(R(d), b~+kl] 1 .  Therefore, 1 [d, R(c)] 1 = 

I[at,bi+kl]l+![d,a~)l+~(bt+kl, R ( c ) ] ~  > \(bj+kl,a,)l+l(B(d), b,+k~]I+i[at,c)l = I(R(d),c)l. 

(In these calculations we have assumed that [d, R(c)] > [a,, bl+p]; otherwise we need 

to replace "+l[d,a,)l" by "-/[a,, d)l'? and "+I(R(dj, b,+k:]jn by "-l(b,+k~, R(d)]l" if 

d E (a,, b,+kt) and similarly for c E (b,+kt,a,).) Furthermore, this modification is 

localized because of the choice of c and d. 0 

We observe here that the theorem implies that a localized modification exists if 

and only if a modification exists. 

Consider now the following algorithm. 

Algorithm 5.1.9 Let D be a connected local transitive tournament with a round 

enumeration and with A ( D )  < n - 1. 

Initialize m t - 1, KP1 + @. 
Sit7Lile A', admits a modification, let K,+z be a localized modification of K, and 

increase nz by 2. 

Theorem 5.1.10 We ham 

c rfigorithm 5 .  f .9  comectly finds a maximum clique in D, 

Algorithm 5.1.9 can be implemented to run in time O(n log n),  and 
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e there is an  O ( m  + n )  algorithm to find a maztrrrurn c lqur  zn a n y  pr.opc7r crrculnr 

arc graph. 

Proof: The algorithm will, in its first iteration, find a largest 1-overlap cliquc i<,. 

Clearly Kl is localized, and. by Lemma 5.1.5, it is also admissible. 'I'hrrt Theort>rn 

5.1.7 guarantees that all subsequent m-overlap cliques A',, arc also adrnissil,lc. At 

termination, K, does not admit a modification, hence K,, is a rnaxinlurn clique by 

Theorem 5.1.8. 

We now discuss the implementation of Algorithm 5.1.9. Suppose that we have a 

local transitive tournament D with a round enumeration, i.e., suppose that we have 

the parameters L(x), R(x) (and hence r (x) )  for each vertex x. In preparation, we 

can find in time O ( n )  a vertex a with r (a )  = max(r(x)  : ;t. E V ( D ) ) .  Next, we 

store the values r(x) for x E [L(a),  R(a)] in the leaves of a balanced tree struct,ure, 

such as a 2 - 3-tree [I],  where each internal node stores the maximum value of r ( s )  

among its descendants. (To facilitate the calculation, we may in fact store in  each 

internal node two values, the maximum I(x) in its left subtree and the maximum l l ( x )  

in its right subtree.) This can be done in time O(n log n), [ I ] .  Then, given any x 

and y, the tree can be pruned down, in time O(1og n) ,  to a subtree representing only 

the leaves between x and y, and hence having the value M(x, y j  stored in the root. 

This is explained in detail in [I], Section 4.12. Thus each evaluation of M(x, y )  (or 

M [ x ,  y], M [ x ,  y), for which the computation is similar) takes time O(1ogn). 

In each iteration we have a current clique K,. We have noted above how to obtain 

the current clique K1 of the first iteration. We shall maintain additional information 

which will allow us to estimate the complexity of the algorithm, as well as to proceed 

from K,  to K,+2 in the m-th iteration. (Note that we have first, third, fifth, etc. 

iterations and no second, fourth, etc. iterations, in this terrninology.) Specifically, wt.: 

shall charge certain vertices of D. The intention is to hate the number of charged 

vertices proportional to !og n times the work performed so far. A vertex will be charged 

at  most once. We only charge vertices of the current clique, A charged vertex may be 

absent from later current cliques, but if it is not in K,  it will not he in K,+z either. 

Initially no vertex is charged. A defining interval [a,, b,] of the current clique is 

active if not all of its vertices have been charged. We will operate on active int,ervals 
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only. 

In the first iteration we have K l  - [a, Ria)], no vertex has been charged and the 

unique defining interval [u ,  R(u)]  is active. In gencral we shali have the current clique 

K ,  (which shall always be a subset of [a. R(a)] il,(a), a]) ,  some charged vertices 

and some active intervals. An ctive interval [a,, tr,l will either contain no charged 

vertices, ar will consist of an  interva! [a,, f )  of charged vertices and an interval [f, b,] 

of uncharged vertices. If there is an active intervai of the second kind, there will be 

only one such interval and we will operate on it. (If all active intervals are of the first 

kind then we operate on any of them.) 

To operate on an active interval [a,, b,] which contains no charged vertices, we 

search, in the order from a ,  to b,, for the first vertex f E (a,, b,) such that for any 

g E (b,+,l, R( f ) f  with ~ ( g )  = M(b,+mt, R( f ) )  we have 

If there is no such vertex f ,  then we charge all vertices of [a;, b;]. If there is such 

a vertex f, then we only charge all vertices of [a;,  f ). 

'To operate on an active interval [a;, b;] in which the vertices ot [a;, f )  are charged 

(and the vertices of [ f ,  b,] uncharged), we perform the following operations: 

Find any vertices c andsd such that r(c) = M[f, bi) and r(d) = M(bi+,r, R(c)), 

and 

Define Km+2 to  be obtained from h', by replacing (R(d), c )  with [d, R(c) ] ,  i.e., 

the defining intervals of Km+Z are all the defining intervals of K, except [a; ,  b,], 

plus the intervals [ai, R(d)], [c, bi] and [d, R(c)]. 

The correctness and the claimed complexity of our implementation will follow from 

the following observations, all of which have been asserted above. 
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If x is a vertex charged in the I- th  iteration, and i f  .r E I<,,, w i t h  r r ,  > I ,  then  

x Em, I<,- .2. .  . . , A'[. 

An active interval [a,, b,] contains no charged vertices or consists of an inttxrv;tl 

[a,, f )  of charged vertices and an interval [f, h,] of uncharged wrtices, for sollie 

f E (a , ,  b,). Moreover, there is always at most one active int,erval of tllc scco~~ti  

kind. 

A vertex is charged at  most once. 

The work performed in each iteration is proportional to log n times the titin~bc:r 

of vertices that have been charged during that iteration. 

The clique Km+* is a localized modification of the clique I<,,,. 

Suppose that x is a vertex charged in the l-th iteration and let x 6 A', with m > 1. 

We shall show that x E Km-2. Let [ a l ,  b l ] ,  . . . , [a,, b,] be the defining intervals of 

K m .  Say x E: [a,, b,]. If x 6 Km-z,  then x E (b,-l ,a,+l).  In the I- th iteration, z 

belongs to an active interval of K r .  That active interval must be some [a,, bk] such 

that [a, ,  bk] 3 (b,-l,a,+l) (since m - 2 > l , a ,  # a,). Recall that z was chargctl 

when we found (or failed to find) the first vertex f E (a , ,  b k )  that satisfied the above 

conditions. But it is easy to  see that the vertex a,  satisfies these conditions. Hence 

f must be in (a , ,  a,] and so x would not have been charged. Thus s E K,-z. Now 1 

follows. 

Suppose x E [a,, b,] is a charged vertex. When z was charged, in the 1-th iteration, 

1 5 m, we had x E [a,, bk] such that [a,, bk] 2 [a,, b,]. As above, we were searchir~g for 

the first vertex f E ( a , ,  bk )  that satisfied the above conditions. If there was no i, or if 

f E (b,, bk ) ,  then each vertex of the entire interval [a,, b,] has been charged. Otherwise, 

since s is charged, we must have f E (x ,  b, ] ,  in which case [a,, b,] cmsists of t h t b  

interval [a,, f )  of charged vertices and the interval [ f ,  b,] of uncharged vertices. 'l'hcrr 

is always at most one interval of this kind, because we keep processing it (without 

creating additional intezvals of this kind), until there are only active intervals without 

charged vertices. This proves 2. 
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W h e n  a vertex is charged, we compute a value of M ( x ,  Y) (or M [ x ?  y ] ,  i2rl[x, Y)), at 

a cost of O(log n )  (see above). This explains 4. 

The assertion 5 follows from the fact that our construction of K,+2 agrees with 

that explained in the proof of Theorem 5.1.2. 

To obtain an O(m + n )  algorithm for the maximum clique problem in proper circu- 

lar arc graphs G' we proceed as follows: Firs: applying Algorithm 4.3.1 we can obtain 

in time O ( m  + n) a local-transitive-tournament orientation D of G; secondly we use 

the method ol' 'Theorem 2.2.6 to find in time O(m + n )  a round enumeration of D. 
Hence we have parameters R ( x ) ,  r ( x ) ,  L ( x )  for each vertex x of D and we can find in 

time O ( n )  a vertex a with r ( a )  = m a x { r ( x )  : x E V ( D ) ) .  Now instead of building a 

2 - %tree as above, we compute M ( z ,  y) ,  M [ x ,  y ) ,  M [ x ,  y] for all pairs x ,  y such that 

[ x ,  y] C_ [a, R ( a ) ]  or [ x ,  y] 2 [ L ( a ) ,  a] .  This can be done in time O(m + n) by dynamic 

programming, because [a,  R(a) j  and [ L ( a ) ,  a )  are vertex-disjoint complete subgraphs 

of D and there are only O ( m )  pairs of vertices x, y in [a,  R(a)] and in [L (a ) ,  a] .  The 

iterations of Algorithm 5.1.9 can be done as above. Note that the work in each itera- 

tion of Algorithm 5.1.9 is now proportional to the number of vertices that have been 

charged during that iteration. 0 

5.2 The c-Colouring Algorithm 

Assunle again that D is a connected local transitive tournament (such that A(D)  < 
n - 21, with a round enumeration ~ 1 , 2 1 2 ,  . . . , v,. Let c be a fixed integer. In this section, 

we present an algorithm to decide whether or not D is c-colourable. We begin with 

the following two results of Orlin, Bonuccelli, and Bovet, reformulated from [61]. 

Lemma 5.2.1 Suppose that n is divisible by c. Then D is c-coiourable if and 

only there is no I-overlap clique of size c +- 1. _If there is no 1-overlap clique of size 

c + 1, then the vertices of D can be coloured in clockwise circular order ~f the round 

enumeration, 1 ,2 , .  . . , c, 1 ,2 , .  . . , c, . . . , 1 ,2 , .  . . , c. 0 
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In general, we let n = qc + r ,  where 0 5 r < c. 

Lemma 5.2.2 If D is c-colourable, then it can be coloureti t r t f h  (- ~olours i n  s : ~ h  

a way that r colour classes haup q + 1 vertices each, and the rernnzning ( c  - I . )  colocnr 

classes have q vertices each. o 

Consider now the following algorithm. 

Algorithm 5.2.3 Let D be a connected local transitive tourna~ment ,with a round 

enumeration and with A ( D )  < n - 1. 

Step 1. Find a maximum clique C which is a k-overlap clique ,with ICI = w .  

Step 2. If w > c, then D is not c-colourable. 

Step 3. If w < c and n > ( c  - then D is c-ccilourable by the technique ezpiained 

in Lemma 5.2.4. 

Step 4 .  If w < c and n 5 ( c  - then determine whether or not D is c-colourable 

by the algorithm from [?'ill. 

Step 5. I fw  = c and r = 0, then 3 is c-colourable by  the method explained in Lernma 

5.2.1; 

Step 6.  If w = c and r > 1, then determine whether or not D is c-colourable by the 

technique of Lemma 5.2.5 if k > 1, and of Lemma 5.2.6 if k = 1 .  

Step 1 of our Algorithm 5.2.3 can be done in time O ( m  -+- n )  according to Corollary 

5.1.10. Step 2 can be done in time O ( 1 ) .  For Step 3 we apply the technique (easily 

implemented in time O ( n ) )  inherent in the following lemma. 

Lemma 5.2.4 If w < c and n > (c - I ) ~ ,  then D is c-colourable. 
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Proof: Since 5 L - 1 we can consiruct a colouring in which consecutive vertices 

in rlockwise circular order of the round enumeration obtain colours 1,2 , .  . . , c,  I ,  2 , .  . . , c 

as well as 1 ,2 . .  . . , ( c  - 1 ) ,  l , ' , .  . . , (c - 1 ) ,  provided we can fit these "runs" to- 

gether to yield n .  Since n > ( c  - 1 1 2 ,  this can for example be done as follows: 

Let n = p(c - 1) + s where 0 5 s < c - 1. Since n > (c - we have p > ( c  - 1). 

(-'olour the first s c  vertices in clockwise circular order of the round enumeration by 

I ,  2 , .  . . , c, 1 ,2 , .  . . , c,  . . . , 1 , 2 , .  . . , c: and colour the remaining ( p  -- s j(c - 1 )  vertices 

by 1 , .  . . , ( c  - 1 )  1 ,  . . , ( c  - 1 . . . , 2  ( c  - 1 To see this is a proper c 

-colouring, suppose that there are two adjacent vertices v, and v, which obtain the 

same colour. Since v,  and , are adjacent, we know from the definition of a round 

enumeration that either [v,,v,] or [v,, v,] is complete. But each of [v,,v,] and [v,,v,] 

has size at  least c, contradicting the hypothesis that w < c. 0 

Step 4 takes time O(1)  since c is fixed and so O(n3I2) = 0(c3 j  = O(1).  Step 5 can 

be easily executed in time O ( n )  according to Lemma 5.2.1. 

For Step 6, suppose first that w = c,  r > 0,  and k > 3. Let C = [al ,  bl] U [al ,  b2] U 

. . . U [ak ,  h k ]  be the maximum clique of D found in Step 1 .  

Let i = 1,2, .  . . , or k, and suppose that !fai, bill = 1 and ((bi+kl,ai+kr+l)l = s. 

Let yl ,  ya, . . . , yB be the vertices of (bi+p, ai+k~+l) listed in clockwise circular order 

of the round enumeration. Note that 1 > s by the definition of a k-overlap clique. 

Let Hi be the complement of the underlying graph of the subgraph of D induced by 

[a; ,  b;] U (bi+p, a;+k~+r ). Since each. of [a;, bi] and (bi+klr ~ ~ + ~ l + ~ )  induces a complete 

subgraph of D, the graph H; is bipartite. We shall say that Hi has a round matching 

i f  there exist vertices zl, x2, . . . , x ,  of [a,, b;], appearing in clockwise circular order, 

such that ~11~1,9212, .  . . , and y,x, are edges of H i .  Note that it is easy to determine 

in time O(IH,I) whether or not each Hi has a round matching. 

Lemma 5.2.5 The digraph D is c-colourable if and only if each graph Hi ji = 

I ,  2 , .  . . , k )  has a round matching. 

Proof: Suppose that F, has the round matching ~11x1, ~ 2 x 2 , .  . . , ysx,*. Then D 
can be coloured with c colours in the following way: Arbitrarily colour the vertices in 
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[al ,  bl] U [az,  b2] U . . . u [ ak ,  bkj with c colours. Then colour cach vertex (1 = I , ? ,  . . . , s) 

g3 E fb,+[r. a,+p+l) with the colour assigned for the matched vertex s,. it is easy t o  

verify that this is a proper c -colouring of D. 

Suppose in turn that D is c-coloured. Note that the vertices in \ a t ,  h l ]  u [ a 2 ,  hi] u 
. . . U [ak ,  bk]  must obtain c distinct colours. Moreover, vertices in (bttkt, at+klti ) may 

use only colours assigned to  vertices in [a,, b,] since every vertex in ( b l + k l , u ,  + k l + f )  is 

adjacent to  every vertex in each [a,, b,] for j # i. Hence H ,  must have a rnatrching of 

size s. We apply induction on s to  show it must also have a round matching of size s .  

When s = 1, there is nothing to prove. When s > 1, let hf = {ylx', , g 2 4 ,  . . . , ysx',) be 

a matchixlg in H,; let {xl,  XZ, . . . , xs} = 1x11, x i , .  . . , xi ) ,  where xl ,  x z ,  . . . , .r, are listtd 

in clockwise circular order. If x', = xl ,  then we are done by inductmion. Otherwisc. 
I 

2, = x i  and x1 = xk, for some f > 1 and g > 1. Thus ylxf and y,xl are edges of 

H i ,  and hence yl is not adjacent to  x i ,  and X I  is not, adjacent to y, in 12. If y l  is 

adjacent to t l  in D, then either [>l ,xl]  induces a cornpkte subgraph and it implies 

that y, and xl  are adjacent, or [z l ,  yl] induces a complete subgraph and it irnpli~s 

that yl and xf are adjacent in D, contradicting the hypothesis. Therefore y, is not 

adjacent to X I .  A similar argument applies to show that y, is not adjacent, to z,. 

Consequently, {ylxb, y2x;, . . . , ygx',, ~ ~ + ~ x $ + ~ , .  . . , y s 4 )  is a matching of H ,  in  which 

X$ = XI. Therefore, by induction H, has a matching of the required form. o 

By Le~nma  5.2.5 the first part of Step 6 can be implemented in time O ( n ) .  

Finally suppose that w = c,  r > 1, and k = 1. Let C be a maximurn clique 

of D which is a 1-overlap clique. Without loss of generality, assume that C = 

{vl, v2, . . . , v,). We need to  decide whether or not there exists a c-colouring of L);  

according to Lemma 5.2.2 i t  is enough to seek a c-colouring with r 'larger' c l a x ~ s  of 

size q + 1 and c - r 'smaller' classes of size q. The clique C must have one vertex 

from each of the larger colour classes. In other wads ,  if there exists a c-colouring of 

O, then for some c-colouring of D and some set Y of r vertices of C ,  it is the  case 

that D - Y has precisely q vertices of each of c colours. Since c is fixed, there is only 

a constant number CS of possible sets Y. Thus we may fix a set Y of r vertices of G ,  
0 0 yl, y2, .  . . , Y: (listed in clockwise circular order), and ask  if there exists a c-colouring 
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of li in which II - Y has precisely q vertices of each of the c colours. Note that we 

only necd to coiour t h e  vertices of D - C. We have a linear order on D - C, induced 

by clock wise order of D. We shall in the sequel use terms like "before, after, precedes, 

follows, first, last, next", etc., with reference to this linear order, v , + ~ ,  . . . , v,. 

For each vertex yp, we shall associate a set of "stretch" B!, B!, . . . , BP in D, which 

will guide our choice of a c-colouring. Suppose yp = u,. The stretch Bp consists of 

the first r vertices starting from yp I- v3, i.e., 213) vS+l,. . . , vs+,_l, and each subsequent 

stretch 8; consists of the next c coasecutive vertices (in clockwise circular order). 

Thus for 1 5 j < (1, 

For convenience, we use j: to denote the first vertex of B! and ii the last vertex of 

B? with respect to clockwise circular order of the round enumeration. 

We will seek a c-colouring in a greedy fashion, guided by the associated stretches. 

Specifically, we shall find vertices 

in such a way that y: is the first vertex of B! which is not dominated by y:-' and 

comes after y:-, (or after yj-l if i = 1). The existence of such a sequence will follow 

from Lemma 5.2.6. 

Let C, = {y:, y!, . . . , yg}, with 1 5 i < r .  We show that each class C, is either 

independent or contains the single arc yyy;. Suppose yf dominates y!. If k < j 
t.hen y"ornlnates yf+' contrary to  the choice of yf+l.  If j < k < q,  then again y: 

dominates yft l ,  a contradiction. Finally, if 0 < j < k,  then dominates y:, again 

a, contradiction. Thus the only possible arc inside the set C; is ygyy. 

Suppose that ail classes C, are independent and define D' = D - C1 - C2 - . . . - Cr . 
- - -  
We shall show below that D' contains no 1-overlap clique of size c - r + 1. 'Therefore 

i t  can, by Lemma 5.2.1, be coloured with c - r colours forming the colour classes 

C7r+1, CrSLt. . . , Cc. Clearly, C1, C2,. . . , C, is a c-colouring of f?. 
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Otherwise we shall try a different set k-. We shall prove bPloiv that if no set I -  

allows a desired colouring, then D is not c-colourable. 

Lernr.m 5.2.6 if D zs c-coiourable, then thew exlsls a s ~ t  1 '  of r wrtrces of ( ' 

such that D has a c-colourzng in uhzch D - Y has ywc !Y q ~ * e d z c e s  of twrh of i h ~  

c colou~.s. 

ProoE Suppose that D is c-colourable. Then by Lemma 5.2.2 t,herc is a r- 

colouring of D with r colour classes af size q  + 1. Suppose that the vertices of these 

r colour classes are 

listed in clockwise circular order. Applying Lemma 5.2.1 to the subgraph induced by 

the z j ,  we see easily that each Di = {x:, xf , . . . , x:} is a colour class of the above 

c-colouring of D. 

Note that C contains exactly one vertex of each D,, i = 1,2, . . . , r .  Without loss 

of generality, we may assume that (for each i = 1, .  . . , r )  xp E C. Let yo = xy, ix., let 

Y = {xy, x!, . . . , x:). Suppose that 

is the sequence of vertices defined above. 

This sequence is well defined. Indeed, suppose that 

have been found as required. There is in each B: (i = 1, .  . . , r )  a vertex which is not 

dominated by yj-l and which comes after yi-, (or y:-l i f  i = I ) .  In fact, i f  y:-' = v, 

then us+, is such a vertex. In particular, us+, = yj E B: hecause u, = y:-' E El:-', 

and y! comes after yj-l (or y:-' if i = I )  because y:-l is after y:~: (or y:-2 i f  i = I ) .  

This also implies that y! comes at  most c + 1 vertices after y:". Therefore, after we 

remove all yi ( i  = 1,. . . , r ,  j = 1 , .  . . , q )  from D, there is no 1-overlap clique of size 

c - r + 1. We also note that by definition 
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appear in clockwise circular order. 

Claim. For each i and j ,  we have yf E (yP,x;] or yf = fj 

It is not difficult to see that the Claim holds for j = 1. 

Suppose to the contrary that there is some y: ( j  > 1) with y: # f: and y: 4 
($,xi]. We may assume y i  is the first such vertex in clockwise circular order. Then 

r: 6 [ I : ,  y9) and hence z: E (yy, I:). Consider the vertex y:-'. Then yl-' E (yo, xi-'1 
2-1 - p .  or y, - 

If y:-' = f!-', then y; = f:, by the definition of y:, contradicting our hypothesis. 

Suppose that yi-' E (yo, x:-']. Then yi-', xi-', xi, yj are in clockwise circular order. 

Herlce y:-' does rrot dominate xi because xi-' is not adjacent to xi. We consider the 

following two cases. 
j-1 j j Case 1. If xi E [f:, I:), then at least one vertex from y:;:, . . . , y, , yl, . . . , y,-' 

must be in [xi, li), as otherwise yf E ( f i ,  xj], contradicting our hypothesis. Let y; be 

such a vertex. Then y: E [ f:, li). This implies that y: # f: (because the stretch Bt 

precedes the stretch B!) and hence y: E (y:, x:]. Therefore xi precedes (or equals) 

y:, which precedes (or equals) x:. This means that L.! precedes xb while y j  follows y:, 

which is impossible according to our numbering conventions. 

Case 2. If xi E (yP, I:), then y:-', xi-', xi, f: appear in this order. Hence yi-' 

does not dominate f: because xi-' and x( are not adjacent. Since yj # f:, there 
5 j-1 j-1 j exists a vertex y, among y,+', . . . , y, , y,, . . . , yj-, which is after fj. This implies 

that y: must be after xi and t h a ~  y: can not be the first vertex ft of 8:. So y: must 

precede (or equal) x:. Therefore xi precedes zt while y; follows y:, which violates 

our numbering conventions. 

Applying the Claim to y f ,  we conclude that either yf E (y;, x:] or y4 = f;P for each 

i = 1,2, .  . . , r .  Suppose that yf E (y:, x:]. Then yf does not dominate y: because 

[yy, y?] > [xq, xg] and X U  is not adjacent to xQ. Suppose that y; = f!. Then y: does 

not dominate y; because [[y;, yP]/ > C. Hence the only possible arc y;yP contained in 

C, does not exist, namely, the set C, = {y;, y,', . . . , y:} is independent. 

The digraph D - C1 - . . . - C, has q ( c  - r) vertices and no l-overlap clique of size 

c - r + 1. Thus by Lemma 5.2.1 it has a (c - r)-colouring in which each colour class 

has q vertices. 0 



Chapter 5.  -Maxim urn Cliques and c-  Colourings 

Sote that all procedures in the Lemma take 0 ( n )  ti~ile. 

Theorem 5.2.7 Let c be fixed. 

o Algorithm 5.2.3 correctly decides whether or not D is c-colourubl~ 

e Step 1 of Algorithm 5.2.3 can be implemented to run 271 t m ~  O ( m  + r ~ ) ,  c t n d  in 

time Q(n  log n )  if a proper circwkar arc representation is gzrlen. 

e The remaining steps ofL41gorithm 5.2.3 can be implemented to run in  t intc o(11). 

o There is an O ( m  + n )  algorithm to decide whether or not a proper circular urc 

graph is c-colourable and there is an O(n  log n )  algorithm to decide whether or 

not a proper circular arc graph is c-colourable if a proper circular arc represen- 

tation is given. 0 
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In- t aurnarnent s 

6.4. Introduction 

An oriented graph D is an in-tournament if the inset of each vertex induces a tour- 

nament. If the outset of each vertex of D induces a tournament, then D is an 

out-toumament. It is easy to see that a full reversal of an in-tournament is an 

out-tournament; similarly a full reversal of an out-tournament is an in-tournament. 

For this reason, we only deal with in-tournaments as all results are transferable to 

out-tournaments. A local tournament is of course an in-tournament and an out- 

tournament. So the class of in-tournaments properly contains the class of local tour- 

naments. Note that any induced subdigraph of an in-tournament is an in-tournament. 

We have seen that many nice properties of tournaments remain valid for local 

tournaments. In the first part of this chapter we will investigate which of these 

properties hold also for in-tournaments. As we shall see in Section 6.2 it turns out 

that in- tournaments still have considerable structure. It follows easily from the results 

given in this section that deciding whether an in-tournament has a hamiltonian path, 

a hamiltonian cycle, or a cycle through two given vertices x and y can all be done in 

polynomial time. 

The second motivation of studying in-tournaments was an open problem due to 

Skrien (711: Using our notation it is the problem of characterizing those graphs which 
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are orientable as in-tournaments. For loca! tourrtarncnts, t h t x  ni~alogoi~s quc'st ioii \\.;IS 

treated in i39] and ['ill. We are not a,ble to give a completta charai-tt!rizatitttl i t !  tc>rtlrl; 

of forbidden induced subgraphs. However we prove t,hat chordal grnplls itnd gritpl~': 

representable (cf. Section 6.3) in unicyclic graphs are orientablc as iri-tc)~~r!larnet~ts. 

We also charact,erize those line graphs that can be orient,ed as in-tourna.rncnts. I n  

the final section of this chapter, we briefly discuss orientations of graphs as str-ong 

in-tournaments. We give examples of classes of graphs that. can be oritwted i n  this 

way, as well as an example of a class of graphs which are orientahlc as in- tor~rnarricwts 

precisely when they are orientable as strong in-tournaments. 

An zn-semzcomplete digraph is a digraph in which the inset of each vertex i t ic l t lc - t .~  

a semicomplete digraph; similarly an out-semicomplete digraph is a digraph in which 

the outset of each vertex induces a semicornplete digraph. In-toiftrm~mrnts and on/ -  

tournaments are defined as above for oriented graphs. So a locally se~nicornplc~t,c~ 

digraph is a digraph which is both in-semicomplete and out-semicomplete. 

An in-branching is a spanning tree rooted at  some vertex z) and oriCrrtcti in  such a 

way that every vertex other than v has one arc c u t  of it. A n  out-bi-anching is dcfincbci 

analogously. For any positive integer k ,  the k-th power Dk of a digraph D has the 

same vertex set as D, and a vertex x dominates a vertex y whenever t h e  is a tlircv-ttd 

(x, y )-path of length at most k in D 151. 

We close this section by giving a characterization of in-semicomplcte digraphs that, 

will be of use in Section 6.3. A pointed set is a pair consisting of a set and one elerrtcwt 

in it. The catch digraph [54] O ( F )  of a family F = ((S,,p,)/r E V)  of pointrd sets 

has vertex set V and an arc from x to y if p, E S,, for x # y E V. The zntrrsecezorl 

graph l?(F') of a fxnily F' = (S,/z E V) of sets has vertex set V and two distir~ct, 

vertices x and y are adjacent whenever S, n S, # 0. Obviously the undrrlying graph 

of ft((S,, p,)/x E V )  is a spanning subgraph of T(S,/x E V )  for any family of po~ntcd 

sets. The converse does not hold in general. However we have the next result. 

Lemma 6.1.1 If D is an in-sernicom.plete digraph, then 12((O[s], x ) / x  E V j .= 1) 

and T(O[X] jx E V)  = G'(D).  



Proof:  1 f l ~  fir\? 5tdterricnt 1s obvlous. Now let x. y be distinct vertices of D 

5uch that O [ L ]  rl OIy] + 0. Then x-+y or y-+x or x and y have some common suc- 

c~~s5or r. f n  the ldt t e r  rase. either x-+y or y+x, since D is in-semicomplete. Then 

G(1.) = r(f)[xj/s  E V )  by the remarks above. 

Theorem 6.1.2 (841: A digraph D = (V,  -4) is in-semicomplete if and only if it 

zs the catch digraph of a fami ly  ((S,,  p,) /x E V )  such that G ( D )  equals I'(S,/x E V ) .  

Proof: Let D be the catch digraph of ((S,,p,)/s E V) such that G ( D )  is the 

intersection graph G of (S, /x  E V ) .  Choose any predecessors x and z of a vertex y. 

Then p, E S, fl S,. which implies xz E E(G) .  But then x-+z or z-+x in D. The 

converse follows from Lemma 6.1.1. 

6.2 On the Structure of In-tournaments 

In this section we study the properties of in-tournaments and show that some of the 

basic and very nice properties of tournaments extend not only to local tournaments, 

but even to this more general class of digraphs. 

6.2.1 Path Merging in In-tournaments 

The first result is a very useful property of in-tournaments. We say that a digraph is 

in-path-mergeable if it has the property that for any choice PI ,  P2 of internally vertex- 

disjoint paths with terminal vertices x ,  z and y ,  z ,  respectively, there exists a path P 

wi th  initial vertex s or y and terminal vertex z such that V ( P )  = V ( P l )  U V ( P 2 )  and 

vertices from the same path P, (i = 1 or 2 )  remain in the same order in P. The path 

P is called the merging of PI and P2. 

Proposition 6.2.1 In-tournaments are in-path-mergeable and the merging can be 

done in  O(n2 + n )  time. 
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Proof: Let PI and P2 be internally vertex-disjoint (s, 2 ) -  nnd (y .  :) pdt \is, rc' 

spectively. Let p, and pz denote the lengths of these paths. tVc sha l l  provt. t t l ~  f irst  

claim by induction on pl + p2. The case pl + pl = 2 is trivial, so dsstirnr- pl + p2 1 : I .  

Let t l  and 2 2  denote the predecessor of 2 on f i  and 6, re'sp~ctively. By t h e  c t t%f ir i l t  ion 

of an in-tournament, 21 and z2 are adjacent. Assume without loss of gvnera l i ty  t tint 

z l - + z z .  If 2 2  = y, then P = Pl[x, zl] U ( ~ l + j r - - + ~ )  is the desired path. O t l ~ t ~ s w i ~ t ~  

apply induction to the paths P l [ x , ~ l ]  U ( z ~ - - + : ~ )  and Pz[y,:r]. l'hc proof is tusi ly 

turned into a O ( m  + n) time algorithm. ~3 

Corollary 6.2.2 Let D be an in-tournament with two distinct vertices .c t : c ~ n c t  y ,  

such that there are two internally vertex-disjoint (x, y)-paths PI and P2 in 13. T h m  

Pl and P2 can be merged into one ( z ,  y)-path P such that V ( P )  =I V ( i < j  U V ( I 5 ) .  
Such a path P can be found in O ( m  + n )  time. 0 

One will often use Corollary 6.2.2 in the following form. 

Corollary 6.2.3 Let Pl = xl-+xz-' .  . . 3 x p  and P2 = y1-3yz--+.  . . 4 p q  be dis- 

joint paths in  an in-tournament D.  I f  there exist i ,  j ,  1 < i < j < p,  such thal 

x,-+Y~, yq-x3 then D has an (xl, x,)-path P svch that V ( P )  = V(f3[) U V(P2).  

Proof: Apply Corollary 6.2.2 to the paths PI [x,, x,] and z,-tyl i . . . --+y,-+x,. fl 

The proof of the next result shows the usefulness of t,he rrmgirtg pmperty. Fclr 

any pair of vertices x and y we use d(x, y )  to denote the length of a short,cst dire(-t,(4 

(x, y)-path in D, if there exists one. 

Proposition 8-2.4 A z y  power of an in-semicomplete digraph is in-semicompkte. 

Proof: Let D be an in-semicomplete digraph, and let DQhe the k-t,h power of II 
for an integer k > 2. We claim that for any three vertices x,  y, z of I1 the following 

property holds: If d(x, y )  < k and d(z,  y )  5 k, then d ( s ,  z)  5 k or d ( z ,  x )  5 k .  C:icai~rly 
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it ,  is ermt~gh to prove the claim for internally vertex-disjoint jx, y)-. ( z ,  y)-paths. Sow 

it is txasy to we that t h e  claim follows from Proposition 6.2.1, since any two such 

internally vertex-disjoint paths can be merged such that the relative order of the ver- 

tices from the same path is r~ ta ined .  ~3 

In [S] it is shown that any digraph D with the path-merging property - that is, 

for any two internally disjoint paths PI and P2 with the same initial vertex z and the 

same terrrtinal vertex y, there exists an (2, 9)-path P,  such that V ( P )  = V(P1)uV(P2) 

- still has a harniltonian cycle whenever it can possibly have one, i.e., whenever D 

is strong and G ( D )  has no cutvertex. Furthermore this class of digraphs properly 

contains the class of in- tournaments. 

6.2.2 The Strong Components of In-tournaments 

Next we turn to the structure of the strong components of in-tournaments. For 

local tournaments, the structure is very similar to that of tournaments: Any strong 

component is a tournament: if there is an arc between two strung components, then 

oae completely dominates the other; and finally S C ( D )  has a unique spanning path 

(cf. Lemma 2.2.4). For in-tournaments, not all of this structure is retained. Howelrer, 

as we shall see there is still a lot of structure. 

Lemma 6.2.5 Every connected in-tournament has an out-branching. 

Proof: We use induction on n.  If n < 2 this is clear, so assume n > 3. Let x be 

a vertex such that the underlying graph of D - x is connected. We see that D - x 

is an in-tournament and, by induction, it has an out-branching. If x is dominated by 

some vertex of D - x ,  then the claim foiiows. Hence we may assume that x dominates 

some vertex y E D - x and is not dominated by any vertex. Now, it follows from 

E'roposition 6.2.1 that D has an out-branching rooted at T .  a 

Theorem 6.2.6 Let D be an in-toumament. 
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(b) If D zs connected, then S C ( D )  has an out-branchtrtg. fi'urthr r-mar-t, tj '  N r,G t h t  

root and A zs any other component, there 1s a path from R to .-I cvntn inrng  t r l l  

the components that can reach '4. 

Fro& Let A and B be strong components of D for which there is an arc c t - t b  

from A to B. Since B is strong, there is a (b', b)-path for any h' E B. Hence, it follows 

from the definition of an in-tournament and the fact that there are no arcs from H to 

A that a-b'. This proves the first part of (a). The second part of (a )  is irnmctiintf* 

from the definition of an in-tournament. 

The first part of (b)  follows by observing that S C ( D )  is itself a n  in-tousnanirwt 

and then applying Lemma 6.2.5. The second part follows from Proposition 6.2.1. Wth 

leave the details to the reader. ~3 

Let B and C be two vertex-disjoint connected subgraphs of a digraph U .  h U - C' 

separating set is a subset S c V ( D )  such that R and C are in distinct cornptrncrlts of 

D - S.  A B - C separating set is minzmal if B arid C are in the same compontwt of 

D - 5'' for any S' C S. A minimal separating set of a strong digraph D is a sut~set 

S C V ( D )  such that D - S is not strong, but D - S' is strong for any 5'' c S. 

Corollary 6.2.7 Let D be a strong in-tournament and let S' be a minimu1 sepa- 

rating set. There is a unique order D l ,  D2, . . . , Dk of the strong components o j  I) -- S ,  

such t!zat there are no arcs from Dj  to D, for j > i and L), has an arc lo Di+, for 

i = 1,  ..., k - 1. 

Proof: We shall prove that D - S has precisely one sink curnportnnt. Suppose 

D - S has at  least two sink components. By the rninimality of S every vertihx z F, .5' 

must be dominated by at  least one vertex from each sink component of D - S'. r?'hus 

by the definition of an in-tournament, all sink components are adjacerrt, contradicting 
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the fact that they are sink ccrnponents. Hence D - S has precisely one sink com- 

ponent and the claim follows from Theorem 6.2.6 (b )  (when there is only one sink 

component, chvery component has a directed path to  that component). 

6.2.3 Paths and Cycles in In-tournaments 

We begin this section by characterizing those in-tournaments that have hamiltonian 

paths. in 141 it was shown that every connected local tournament has a hamiltonian 

path. This does not extend to in-tournaments (e.g., take any out-branching with at 

least two branches), but as we shall see below, there is still a good characterization 

of those in-tournaments that have hamiltonian paths. 

Theorem 6.2.8 A connected in-tournament D has a hamiltonian path if and only 

if il has an in-branching. 

Proof: Since any hanliitonian path is an in-branching we need only prove the 

other half of the claim. Suppose D has an in-branching. Using Proposition 6.2.1 it 

is easy to prove, by induction on the number of branches of the in-branching, that D 

has a hamiltonian path ending in the root of the in-branching. We leave the details 

to the reader. 0 

Corollary 6.2.9 There is a polynomial algorithm to decide if a given in-tournament 

has n ha.miltonian path and find one if it exists. 

Proof: For any digraph D deciding the existence of an in-branching and finding 

one if it exists can be done in O ( m  logn) (see 1751). Given an in-branching of D, 
it.s branches can be merged into a hamiltonian path ending in x in time 0(n2)  by 

Proposition 6.2.1. 0 

Now we show that just as for tournaments and local tournaments, every strong 

in-tournament has a hamiltonian cycle. First we prove a result which has several nice 

consequences, as we shall see below. 
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Theorem 6.2.10 Let  D be a strong ~n-tourrtnment hurtng a cycff o ~ / c I I ~ ~ ~  k ,  h u t  

no cycle of length k + 1 (k < n l .  Thcn zt has cycles of all it-nglhs I + 1, I + 2 , .  . . , [ + k 
for some 1 ~ 1 1 t h  2 < I < 12 - k. 

Proof: Let C be a cycle of length k in D. Since k < rz and D is st rotlg, t twrc 

exits a vertex x E E(D)  - ' I*(C)  such that x dominates a vertex on  C'. I f  .r is also 

dominated by some vertex of C ,  then it follows from Corollary 6.2.2 that I )  tms a 

cycle of length k + 1. Hence we may assume that x is not dominated by any vr*rtcas 

of C. Now we conclude, by the fact that D is an in-tournament,, that s ciominates all 

of C. Since D is strong, there exists a directed path P from C to x ,  let I deiiotv t,tw 

length of P. Since x- tC,  1 > 2. Now, since z+C, we conclude that IT) has ciirr.cted 

cycles of lengths 1 + 1 , .  . . , I + k, all containing P as a subpath. o 

Corollary 6.2.11 An in-tournament D has a hamiltonian cycle ij and only if it 

is strong. Furthermore there is a polynomial algorithm to  find a ha~niltonian cycle in 

any s t r ~ . + ~  in-tournament. 

Proof: Since D is strong, it has a cycle By Theorem 6.2.10, t h c  length of a 

lo~igest cycle must be n,  so D is hamiltonian. It is easy to derive an O(71') algorithrrl 

for finding a hamiltonian cycle from the proof of Theorem 6.2 10. We leave. t h r  dt4i&i 

to  the reader. CI 

Corollary 6.2.1 2 Any two vertices in each strong component of a n  in-tou~numonl 

lie on a cycle. 

Pro& This is immediate from Corollary 6.2.1 1. u 

Corollary 6.2.13 Let D be a strong in-tournament. If  /) has a cyclc C' of length 

k ,  for some k 2 r;l, then D has cycles of all lengths k ,  k -t 1 , .  . . , 7 ~ .  
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Proof: This follows immediately from Theorem 6.2.10 by backwards induction on 

k. 0 

Corollary 6.2.14 Any strong in-tournament D which is not a directed cycle con- 

tains a vertex x such that D - J: is strong. 

ProoE Let D be a strong in-tournament on n vertices which is not a directed 

cycle. It follows easily from Theorem 6.2.10 that D has a cycle of length k for some 

5 k < n. Thr:. the claim follows from Corollary 6.2.13. 

An oriented graph D = (V, A)  is pancyclic if it contains a directed cycle of length 

1 for each 1 = 3 , 4  , . . . ,  1V/. 

Corollary 6.2.15 An in-tournament D for which G(D) is chordal is pancyclic if 

and only if it is strong. 

Proof: This follows from Corollary 6.2.1 1 and Corollary 6.2.14 by induction. 

Note that Corollary 6.2.13 cannot be extended to cycles of length k ,  k + 1,. . . , n 

through some specific vertex, as was the case for local tournaments (see Theorem 3.4 

in 141). 'This is shown by the digraph D in Figure 6.1, where r < k. By Corollary 

6.2.13, D has cycles of all lengths k, k + 1 , .  . . , n, but the vertex ck is not on any cycle 

of length s with k < s < n. By choosing r = k + 1, we get a family of digraphs 

showing that k 2 I:] is best possible for Corollary 6.2.13. This digraph has a cycle 

of length 1; J but no cycle of length 

Before closing this section we point out that all the results in Section 6.2 are 

true for in-semicomplete digraphs as well. We also point out that in [8] it is shown 

that by a more detailed inspection and use of suitable datastructures, one can obtain 

O ( m  + n log n) algorithms for finding hamiltonian paths and cycles in in-tournaments 

if they exist. 
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Figure 6.1: An in-tournament D on k + r vertices, r < k. where the vertex ck is not 
on an s-cycle for any k < s < k + r.  

6.3 In-tournament Orientability 

Theorem 6.3.1 Graphs that are orientable as in-tournamnnts can b p  r*trcognizd 

in polynomial time. 

Proof: Let a graph G = (V, E )  be given, and let A = {al ,  a2,. . . , a,) be art a rk -  

trary orientation of the edges of G . If a, is an orientation of the edge yz of G', then 

the reverse orientation of that edge is denoted by a,. We now construct an iristarice 
- of the 2-SAT problem as follows: The set of literals is X = {a , , .  . . ,a, ,al , .  . . ,li,,), 

- - 
and two such literals e, and e, lie in a common clause ( l ,  v l , )  precisely when P,,P, 

correspond to arcs with the same terminal vertex and non-adjacent initial vertices. I t ,  

is easy to see that G is orientable as an in-tournament if and only if the  above-tiefirit*d 

instance of 2-SAT is satisfiable. The complexity of 2-SAT is O(#eluuuea) (see [62]). 

Hence, it follows from the way we construct the clauses above that we can recognizts 

graphs orientable as in-tournaments in time O(mA), where A denotcs the rnaxitntm 

degree of G. CI 
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Figure 6.2: The digraphs B1, B2, B3 

Let Z? be the family of the three digraphs shown in Figure 6.2 and let F be any 

subset of B other than { B 1 )  or { B 2 ) .  Skrien [31] characterized the classes of those 

graphs which can be oriented without a member of F as an induced subdigraph. 

These are the classes of complete graphs, comparability graphs, proper circular arc 

graphs, and nested interval graphs [71]. Since each of the forbidden configurations 

contains just two arcs, ?-SAT could be used to solve the recognition problem for each 

of these four classes, all in time O(mA). 

A graph G is called representable in the graph H if G is isomorphic to the in- 

tersection graph of a family of connected subgraphs (H,/x f V ( G ) )  of H. It seems 

interesting that three of these four classes above can be defined by representability. In 

the case of the underlying graphs of ia-tournaments, we have not been able to find a 

similar characterization. However, we have the following sufficient condition in terms 

of representabi!ity. 

Theorem 6.3.2 [64]: Every graph that is representable in a unicyclic graph is 

orientable as an in-toumament. 

Praof: Let (HZ/x E V ( G ) )  be a representztien of G in the unicyclic graph H 

with cycle C = zo, z , ,  . . . , z!-~. The numbering is done clockwise around the cycle 

(the reader should think of this as drawn in the plane). We may assume H connected. 

For vertices x of G whose representative H, contains all vertices of the cycle C, we 

define y, := 20. If H, contains some but not all of the vertices of C, then it contains 
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just a subpath, since Hx is connected. For such vertices s we denote the first vertex 

of this path in clockwise orientation by p,. If H, n C = 0, then there is a unique 

vertex p, of H, separating the rest of H, from C. 

By Theorem 6.1.2, it suffices to show that the catch digraph I) of the fanlily 

((V(H,),p,)/x E: V(G)) is an orientation of G. Let xy be an edge of G, that is, 

Hz n H, # 0. Let z be a vertex of Hx n H, . If Hz i7 C and H ,  n C are nonempty, then 

it is easy to see that p, E V(H, n C) or p, E V(H,  n C). Thus x -+ y or y -+ s in P). 

So suppose without loss of generality that H, f l  C = 8. Then there is exactly ortc 

path from z to C. Hence p, lies on this path, and if H, n C = 0, then p, does also. 

If H, n C = 0, then we may assume without loss of generality that p, lies on the 

( p , ,  z)-subpath. Now p, E V(H,) and y -, x in D. If Hy fl C # 0, then the whole 

path from z to  C must lie inside H,, whence y 4 z in 5. 13 

The converse is not true. The underlying graph of the in-tournament of Fig. 

6.1 is not representable in any unicyclic graph. It can be easily shown that in any 

graph G representable in a unicyclic graph the following must hold: Any vertex z of 

an induced cycle of length at  least 4 must be adjacent to at least one vertex from 

any other induced cycle in G - s. But this property is certainly not obeyed by the 

underlying graph of che digraph of Fig. 6.1. 

We believe that any graph orientable as an in-tournament is representable in it 

cactus - a connected graph in which any block is a cycle or an edge. Note that the 

opposite is not true: no cactus with at least two induced cycles of length at lea& 

four can be oriented as an in-tournament (every c a c t ~  can be represented in some 

subdivision of itself). 

Theorem 6.3.2 has several consequences. We list some of them below. 

Corollary 6.3.3 Every chordal graph and every circular arc graph is orientable 

as an in-tournament. 

Proof: Chordal graphs are representable in trees (see [ 3 3 ] )  and hence in unicyclic 

graphs. By definition, circular arc graphs are representable in a unicyclic graphs. 
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%ow the claim follows from Theorem 6.3.2. 

A Hetly-represents t ion is a representation which has the so-called Helly-property 

-- the total intersection of any family of pairwise intersecting representatives is 

nonempty. 

Corollary 6.3.4 Every graph with exactly one induced cycle of length greater than 

3 is orientable as an in-tournament. 

Proof: By Theorem 6.3.2 it suffices to show that such a graph is representable 

in a unicyclic graph. Let G be a graph with only one nontrivial induced cycle C = 

cocl . . . C C - I Q ,  ! 2 4.  Let W be the set of vertices that are adjacent to all vertices of C 

and T = V ( G )  - V ( C )  - W. Since G contains exactly one induced cycle of length at 

least four, W induces a complete subgraph and vertices in T are adjacent to at  most 

two consecutive vertices of C. Similarly, no two vertices of T with noncomparable 

neighbourhoods in C can be adjacent. 

It is clear that there is a Helly representation of G[V(C)  U W] in a cycle of length 

B. Also it is true that any Helly representation of G - x in some unicyclic graph can 

be extended to another Helly representation of G in another unicyclic graph provided 

x is a simplicia1 vertex of G. So now it suffices to show that if T # @, then T contains 

a simplicia1 vertex. 

First we prove that if T contains a vertex x which is not adjacent to any vertex of 

C ,  then T contains a simplicia1 vertex with this property. In fact, let S be a minimal 

x - C separating set with A and B being the components of G - S containing z 

and C7 respectively. Since S is minimal, each y E S is adjacent to some vertex in 

'4 and some vertex in B.  Thus for any pair u, v E S there exists a path ual . . . a,v 

and a path vbl . . . btu, where all a, E '4 and all b, E B, such that these paths are 

chosen to be of smallest possible lengths. It foilows that ual . . . a,ubl . . . btu is a cycle 

of length at least four, which is distinct from C, implying that it must have a chord. 

But a,b, @ E ( G )  by definition of a vertex separating set, and a,a, @ E(G)  and 

b, b, 4 E(G)  by the rnini~nality of r and t .  Thus the only possible edge is uv E E(G).  

Hence S is complete. Since G[A U S] is chordal, by Dirac's Theorem (see [33]), A U S 
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contains two non-adjacent simplicial vertices or G[,4 u S] is uxnplete. IIctm :i must 

contain at least one simplicia1 vertex since G [ S ]  is complete. 

Now assume that all vertices in T are adjacent to either one vertex o r  two con st^ 

utive vertices of C. If x E T is adjacent to c, and c,+l but not c , + ~ ,  then It'u {c,,c,+,) 

is a x - cI+2 separating set. Let A be the conlponent in G - ( l i7u { c , ,  c,+[ ) )  cwtitairting 

x.  Then G[A U lit' U {c,, c,+l}] is chordal. Again, by Dirac's Theorc~m, i t  contains two 

non-adjacent vertices if it is not complete. So T must contain at ieast one simplicinl 

vertex. If x E T is adjacent to c, only, then either W U {c, ,  c,+l) or kk' u ( c , ,  c , - ~  ) is 

a x - c , + ~  separating set. By a similar discussion we can see that T contains at least 

one simplicia1 vertex. fl 

6.4 Strong In-tournament Orientability 

Skrien [71] completely solved the problem concerning acyclic orientations of graphs 

without an induced subgraph from the set F for any F C B ,  where Z? is the set of 

digraphs in Fig. 6.2. We now turn to  the problem of orienting graphs as strong in- 

tournaments. Deciding whether a graph can be so oriented seems to be quite difficult. 

This is partly due to  the fact that handling the strong connectivity requirerncrit is 

not easy; for example, the class of graphs orientable strong in-tournaments is not, 

closed under induced subdigraphs. However, as we shall see below, for some classes of 

graphs, being orientable as a strong in-tournament is equivalent to being orientable 

as an in- tournament. 

Proposition 6.4.1 A graph without a separating complete subgraph (sornetimrs 

called a prime graph) is orientable as a strong in-tournammt if and only if it 5.9 

orientable as an in-tournament. 

Proof: One direction is trivial. For the other, let C he a graph without a sepa- 

rating complete subgraph, and let D be an orientation of G' as an in- tournament, with 

the minimum number k of strong components. We may assume k > 2. Let 11, tx3 the 

source component, and let D2 be another strong component such that D2 has exactly 



one prr~dccessor in t h e  strong component digraph S C ( U ) .  namely D l .  Such a D2 can 

LC. found by Theorem 6.2.6(b). Let Vl be those vertices of Dl that dominate the ver- 

tices of / I 2 .  Again by Theorem 6.2.6, V; induces a tournament in D. If Vl = V ( D I ) ,  

we art3 done since in that case we can reorient an arbitrary arc between Dl and D2 

to obtain an in-tournament with fewer strong components, a contradiction. So 12t 

u s  assume # V ( D 1 ) .  By Theorem 6.2.6, there is no path between V ( D 1 )  - Vl 

and V ( D 2 )  which avoids Vl. Then C/1 induces a separating complete subgraph in G 

contradicting our assumptions. (7 

Note that there exist hamiltonian chordal graphs (and thus graphs orientable as in- 

tournaments (cf. Corollary 6.3.3)) which are not orientable as strong in-tournaments. 

Such an example is given in Fig. 6.3. It is clear that this example can be generalized 

to an infinite family. Although we are not able to  solve the problem of characterizing 

those chordal graphs which are orientable as strong in- tournaments, we will mention 

a partial result. 

Figure 6.3: A hamiltonian chordal graph which is not orientable as a strong in- 
tournament 

The following is a Corollary of the work in [49]. 

Proposition 6.4.2 A graph G can be oriented as a strong local tournament if it 

is n proper circular arc graph which is not an interval graph. 

Corollary 6.4.3 A chordal graph is orientable as a strong local tournament if it 

is claw-free and net-free and not an interval graph. 
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Proof: It was s h o i ~ n  in ['i] t h a t  a chordal g raph  is a proper c-irt.ular arc graph i f  

a n d  only if i t  is claw-free a n d  net-free. Now the claim follow fro111 Proposition 6.4.2. 



Oriented Grap s of Moon Type 

A n  oriented graph D is of Moon type if every connected induced subgraph is either 

strong or acyclic. If D is also a tournament, then it is called a tournament of Moon 

l ype  ( 3 5 ) .  In f.571. Moon gave a striictural characterization of tournaments of Moon 

type. He proved that every tournament of Moon type can be obtained from a highly 

regular (cf. below) tournament by substituting transitive tournaments for the vertices. 

'Tournaments of Moon type have also been studied by Burzio, Demaria, and Guido, 

118, 351. 

In this chapter, we give a similar structural characterization of oriented graphs of 

Moon t,y pe. Our characterization generalizes Moon's result. Specifically, we prove that 

ever! oriented graph of Moon type can be obtained from a local transitive tournament 

by substituting acyclic oriented graphs for the vertices. 

In Section 7.1, we will mainly review previous results and some equivalent defini- 

tions of tournaments of Moon type. In Section 7.2, we shall discuss oriented graphs 

of Moon type and analyze several properties of such graphs. We also give some equiv- 

alent definitions of oriented graphs of Moon type, one of which implies a polynomial 

algorithm for recognizing these oriented graphs. Finally in Section 7.3, we prove our 

main result, which generalizes a theorem of Moon. 

Let 5 be a subgraph of D and let x E D - S. The vertex x cones S or S is coned 

bc x if s-+S or S i x  whenever x is adjacent to a vertex of S. The subgraph S is 
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shrznkable if S is coned by all vertices in II - 5. A shrinkable sul>,qrnph .\' is ruarirrlrll 

if it is not D and it is not properly contained in any shrii~kable stibgraph otht-r tilii11 

D. If S is shrinkable, then the vertices of S are said to be q ~ ~ t u l l ~ r z f .  

Suppose that the vertices of D are partitioned into vertex-disjoint sttbgraptis 

S1, SS, . . . , Sk of equivalent vertices. Then S,+S, or S, --+&<, i f  there is at lcast onc art* 

between S, and ,5;. If Dk is an oriented graph on k vertices in which r 1 , - + 1 1 ,  i f  and  

only if S,-+S,, then we write D = Dk(S1, S2. . . . . Sk) .  An oriented graph is strnplt. i f  

there are no proper non-trivial subgraphs of equivaleni verticps, that is, i f  the eqm-  

tion D = Dk(S1, Sz,  . . . , Sk) implies that k = 1 and S1 = D,  or k = n ,  D = [Ik and 

st = v,. 

For each subgraph B of D,  the set of vertices which are dominated by at least orw 

vertex of B is called the outset of B, denoted by O ( B ) ;  similarly the set of vcrticcs 

which dominate at  least one vertex of B is called the inset of B, denoted by l ( B ) .  

7.1 Tournaments of Moon Type 

In [35], a tournament of Moon type is defined to be a tournament, in which ~ a c h  

subtournament is hamiltonian or transitive. Note that a tournar~ient is hamiltonian 

if and only if it is strong, and transitive if and only if it is acyclic. 'T'hus our defiriition 

of an oriented graph of Moon type is consistent with this definition of a tourriarrwrit 

of Moon type. 

A tournament T is highly regular if the vertices T can he labeled as o i l  U . L ,  . . . , l ) . ~ k + 1  

in such a way that v,+v, for all subscripts i = 1,2, . . . , "2 + 1 and for all subscripts 

j = i + 1, i $2,.  . . , i + k (n;od2k+ 1). It is easy to see that a highly regular t20tirnarricxr~t, 

is a local transitive tournament. 

The following theorem is reformulated from [18, 57j 

(a/ T is a tournament of Moon type; 
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(b) e1;ery subtoumament of T z.s a tournament of 'Moon t y p e ;  

(c j  'I' zs a local transitive tournament; 

(d)  ?' = D 2 k + l ( S 1 ?  ,S2,. . . S 2 k + l ) ,  where &k+l is G highly regular tournament and 

each S, is a transitive tournament. 0 

If a !ocai tournament is of Moon type, theu we ca!l it a local tclzlrnament of Moon 

t g p e .  From Theorem 7.1.1, we know that every tournament of Moon type is a local 

transitive t,ournament. The following proposition assures that every local tournament 

of Moon type is also a local transitive tournament. 

Proposition 7.1.2 An oriented graph is a local tournament of Moon type i f  and 

only ij it is a local transitive tournament. 

Proof: Suppose that a local tournament D is not a local transitive tournament. 

Then by Lemma 3.2.5, D contains a forbidden quadruplet. Since a forbidden quadru- 

plet is connected but neither strong nor acyclic, D is not of Moon type. 

Suppose that D is a local transitive tournament. Then D is a local tournament. 

If D is not of Moon type, then D contains a connected subgraph S which is neither 

strong nor acyclic. Since S is not acyclic, S must contain at  least one cycle. Let 

be a longest cycle in S .  Since S is connected and not strong, there exists a vertex 

y E V ( S )  - V(C) which is adjacent to a vertex, say v,, in C. Suppose that y dominates 

I ? , .  ( A  similar discussion applies when v,-y.) Note that both y and v,-1 dominate 

P , .  The vertex y and the vertex v,-~ must be adjacent as D is a local tournament. 

Observe that Z J , - ~  can not dominate y ,  as otherwise there is a cycle 

of length I + 1, contradicting the choice of C. Thus y dominates vi-1. Continuing 

this argument, we  conclude that y dominates all vertices of C. But this is impossible 



as D i s  a local transitive tournament in which the outset of vvery 1.ertcs contains I W  

cycle. Therefore D is of hloon type. fl 

Corollary 7.1.3 Let  T be a tournament. Then ?' ts n locnf frctnsltivc tot~ruar~tt 'r l i  

if and only if zt is of Moon t y p e .  

P r o d  This follows immediately from Proposition 7.1.2. CJ 

7.2 Oriented Graphs of Moon Type 

The definition of an oriented graph of Moon type guarantees that evcry acyclic ori- 

ented graph is of Moon type. Nevertheless a strong oriented graph is not necessarily 

of Moon type. For example, an oriented graph formed by identifying t,wo vcr't.icrs 

from two distinct directed cycles is strong but not of Moon type. 

Suppose that S is a subgragh of an oriented graph D which is of Moon type. S i n c ~  

every connected subgraph H of S is also a connected subgraph of D, H triust be ci t l i t ~  

strong or acyclic. Hence S is of Moon type. Conversely, i f  every subgra,ph of 1) is of 

Moon type, then 63 is of Moon type. Therefore we have the following proposition. 

Proposition 7.2.1 An oriented graph D is of Moon type zj and only ij every d- 

graph of D is of Moon type. o 

Proposition 7.2.2 An oriented graph D is of Moon type ij and o d y  iJ O ( B )  .= 

I ( B )  for every strong subgraph B of D with IV(B)I > 1. 

Proof: Suppose that  D is an oriented graph of Moon type and suppose h a t  13 is 

a strong subgraph of l? with IV(-R)I > 1. F o ~  each vertex x which is dorr~inated hy at 

least one vertex of B,  x must dominate some vertex in U as otherwise N + z W C I I I I ~  t ) ~  

a connected subgraph of D which is neither strong nor acyclic. 'f hen O(B) l(lf j. 
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Sirrlildrly for  each ve r t ex  .r wh~ch dominates at least one vertex of B, x must be 

dornirlatcd Ky a v e r t e x  of H .  Then ( ( H )  C O ( B ) .  Hence O(Bj  = I ( B ) .  

Suppost- that D is not of Moon type. Then there is a connected subgraph S 

which is nc~t,lter strong nor acyclic. Let .St be a strong component of S of maximum 

size. Since .5' is not acyclic, we have / V (  :')I > 1. Since S is not strong, we have 

S' # S. Note that S is connected. Then there exists a vertex x E S - S1 such that 

x is adjacent, to at least one vertex of St. From the maximality of St ,  we have either 

x E O(S1) - I(S1) or x E I(St) - O(St). 

The following theorem turns out to  be very useful in later discussions. 

Theorem 7.2.3 A connected oriented graph is of l%foon type if and only if every 

(not necessarily connected) subgraph is either strong or acyclic. 

Proof The sufficiency is obvious. To prove the necessity, suppose that D is of 

Moon type and S is a disconnected subgraph of D. We claim that each connected 

component of S is acyclic and hence S is acyclic. 

Let S1, S2,. . . , Sk where k > 1 be the components of S. Without loss of generality, 

assume that S1 contains a cycle. Since S1 is a connected subgraph of D which is of 

Moon type, S1 is strong. By hypothesis, the underlying graph G of D is connected. 

'Thus there exists a path (in G) from S1 to S2. Let xl - x2 - . . . - x[ be a shortest 

path from S1 to S2 in G. From the connectivity of S we conclude that 1 > 2. Since 

S1 is strong, S, + {xl ,  22,. . . , x i )  must be also strong. On the other hand, the only 

vertex in Sl + {xl, x2,. . . , xI)  which is adjacent to  xr is X I - 1 .  Hence the vertex xl 

has degree one in S1 + {xl ,  x2 , .  . . ,x l ) .  So S1 + { X I ,  52,. . . , X I )  can not be strong, a 

contradiction. Therefore S is acyclic. 0 

Proposition 7.2.4 If D is a strong oriented graph of Moon type, then every 

iongest directed path induces a strong subgraph. 

Proof Suppose L = Xl*32*. . . -txl is a longest path in D. Since D is strong, 

sl must dominate s o r e  vertex in D. Since L is a longest path, xl can only dominate 
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vertices in L.  Thus L contains a cycle and hence i t  must strong. n 

We have seen from Theorem 7.1.1 that all tournaxuents of hIoon type arcx local 

transitive tournaments, that is, the outset as well the inset of each vt.rttbs is a transit ivc' 

tournament. For geceral oriented graphs of Moon type, there is a nicc local propc'rty 

for each vertex. 

Proposition 7.2.5 If D is an oriented graph of Moon type, then t t tc  outsrt  us 

well the inset of every vertex is acyclic. 

Proof: If the outset (or the inset) of some vertex x contains a cycle, then this cy- 

cle together with x induces a connected subgraph which is neither strong nor acyclic. 

0 

The following theorem will imply a polynomial algorithm to recognize all orierittd 

graphs of Moon type. Define Q*(x) = V ( D )  - I[x] and I*(z) = V ( D )  - O[z). We call 

0'(x) the super-outset of x and I'(x) the super-inset of x. 

Theorem 7.2.6 '4 connected oriented graph is of Moon t gpe  i f  and only i f  the 

super-outset as well as the super-inset of each vertex is acyclic. 

Proof: Suppose that  D is of Moon type. No vertex in O*(x) dorniriates x ,  so 

O*(x) U (I) can not be strong and hence, by Theorem 7.2.3, OV(x) U { x )  must b r a  

acyclic, and therefore also O*(xj. Similarly I*(x) is acyclic. Conversely, supposti 

that  D is not of Moon type. By Proposition 7.2.2, there exists a strong subgraph U 

(jBI > 1) for which O ( B )  # I(B). If O(B) - I ( 8 )  # 0, letting 3 E O ( H )  - I ( S ) ,  

then Im(x) is not acyclic as B contains at  least one cycle. A similar argurrler~t appiics 

if I(B) - O(B) # 0. u 

Corollary 7.2.7 There exists a polynomial algorithm to recoynize oriented g ~ u p h ~  

of Moon type. 
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Proof: Thcrt- exists a linear time algorithm (cf. [ I ] )  to test whether an oriented 

graph is acyclic or not. T h u s  to test whether J * ( x )  and O*(z) contain a cycle, for any 

vertex s, takes O(mnj time, where n and m denote the numbers of vertices and arcs 

respect,ivcly. C3 

It is well known that  every strong tournament T on at least 4 vertices has a vertex 

r such that T - x is still strong (cf. [58]j. For a local tournament D, if D is strong 

and not a directed cycle, there exists a vertex x such that D - x is still strong (cf. [4]). 

Thc following more general theorem of this type is an easy consequence of Theorem 

7.2.3. 

Theorem 7.2.8 A connected oriented graph D is of Moon type if and only i f f o r  

every ordering of vertices of D, vl, 272, . . . , v,, the following property holds: for some 

0 I< k 5 n,  V - {v,, 212,. . . v;) is strong for i < k and is acyclic for i > k .  ~1 

7.3 Oriented Graphs of Moon Type and Local 

Tournaments 

We have seen that a tournament T = Dk(S1, S2 , .  . . , S k ) ,  1 < k < n = /TI, is of Moon 

type if and only if Dk is of Moon type and each S; is transitive. A similar statement 

holds for general oriented graphs. Let n = ID[. 

Proposition 7.3.1 Let D = Dk(S1, S 2 , .  . . , Sk), 1 < k < n, be connected. Then 

I) is of Moon type if and only if Dk is of Moon type and each S, is acyclic. 

Proof: Suppose that D is of Moon type. If Dk is not of Moon type, then there 

exists a connected subgraph S in Dk which is neither strong nor acyclic. For each 

vertex t7 ,  cf S ,  arbitrarily choose a vertex from S, corresponding to vim Then the 

subgraph of D induced by these vertices is connected but neither strong nor acyclic, 

contradicting the assumption. Therefore Dk is of Moon type. Now suppose some S, 

cont*a.ins a cycle. Since D is connected and k > 1, there exists a vertex x 6 S; which 
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is adjacent to some vertex in S,. Then we must have either x-+.q, or St-+.r i n  D. R u t  

then by Proposition 7.2.5 D is not of hloon type, contradicting t h e  hypothesis. 

Conversely, suppose that Dk is of Moon type and each S, is acyclic. 1,t.t .r t>c. 

any vertex in D. Then x is in some S,. Let t ~ ,  be the vertes of Dk corresponding t o  

S,. Since Dk is of Moon type, O*(v,) is acyclic by Theorern 1.2.6. 111 fact, / I m [ l ? , ]  1s 

acyclic. Suppose that St is the subgraph of D induced by Uu,EO.iu,l I r (Sj) .  r lw  5'' 

must I-tp acyclic in D because each ST is acyclic. It is easy to see that O W ( . r )  in  1)  is 

a subgraph of St.  So 0 8 ( x )  is also acyclic. Similarly I'jz) is acyclic and iic~rrct~, hy 

Theorem 7.2.6, D is of Moon type. TJ 

Proposition 7.3.2 Let D be a connected strong oriented gruph. Th.en no two 

distinct maximal shrinkable subgraphs contain a com.mon vertex. 

Proof: Let S1 and S2 be any two distinct maximal shrinkable subgraphs in 11 

with x E Sl n S2. We claim first that V(Sl) U V(S2) # V ( D ) .  Assume to the contrary 

that  V(S1) U V(S2) = V(D). Since D is connected, there is a vertex y in S2 - S1 

which is adjacent to  a t  least one vertex in SI. Then either y4S1 or -+y because 

S1 is shrinkable. Assume y-+S1. ( A  similar argument applies when SL-ty.) If tfttw 

is a vertex z E S1 - S2 and a vertex w E S2 such that .z--tw, then a4S2 i ts S2 is 

shrinkable. In particular, z-+y, contradicting the fact that y--+Sl. Hence n o  vertcx 

in S1 - S2 dominates a vertex in S2 and S1 u S2 = D is not strong, a contradiction to 

the hypothesis. 

To complete the proof, suppose that y E D - (S1 u Sz) is a vertex wtiich is adja- 

cent to a t  least one vertex in S1 U S2, say to a vertex in Sl. Then y+S1 or Sl -+!I, 

in particular, y+x or x-y. Hence y+S2 or S2-4y. Therefore .(;, U Sz is a shrinkhlc 

subgraph which strictly contains S1, contradicting the maximality of S1. Therefore 

S1 and S2 have no common vertex. 13 

Let D be an oriented graph of Moon type. From the above proposition, we know 

that  for each vertex x of D there exists a unique maximal acyclic shrinkable subgraph 

S, containing x, such that some Ic of these subgraphs, say SI, '5'2, . . . , S k ,  form a 
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partition of I I .  (Equivalent vertices x and y wili have S, = S,.) Hence each oriented 

graph I)  can be written, in a n  essentially unique way, as D = D k ( S l ,  Sa,.  . . , Sk ) .  We 

call Uk (SI , S2. . . . , .Sk) the canonical expression. It is easy to see that Dk is simple. 

Lemma 7.3.3 Let L3 be a connected oriented graph of Moon type and le t  C be a 

directed cycle in D .  Then each vertex of D must have at least one in-neighbow and 

at least one out-neighbour in C .  

Proof: Since D is a connected oriented graph of Moon type, by Theorem 7.2.3, 

C u {a) is strong as it is not acyclic. Hence there is at  least one vertex in C domi- 

nating x and at  least one vertex in C being dominated by x. CJ 

The following theorem conjectured by Hell 1381 is the main result of this chapter 

Theorem 7.3.4 Let D be an oriented graph with the canonical expression Dk(SI, S2, 

. . . , Sk). Then D is of Moon type if and only if Dk is a local transitive tournament 

and each Si is acyclic. 

Proof: For the sufficiency, suppose that Dk is a local transitive tournament and 

each S, is acyclic. Then Dk is of Moon type by Proposition 7.1.2, and hence D is of 

Moon type by Proposition 7.3.1. 

For the necessity, suppose that D is of Moon type. Without loss of generality, 

assume that D is connected otherwise we consider each component of D. Then Dk is 

connected. If D is acyclic, then k = 1, and so D k  has only one vertex and it is trivially 

a local transitive tournament. If D is strong, then Dk must be strong. By Proposition 

7.3.1 each S, is acyclic, and by Propositions 7.3.1 and 7.1.2 it suffices to s h ~ .  that 

Dk is a local tournament. Suppose to  the contrary that Dk is not a local tournament. 

Then in Dk there exists a vertex which has two non-adjacent out-neighbours or there 

exists a vertex which has two non-adjacent in-neighbours. Since the two cases are 

symmetric, assume that there is a vertex z which has non-adjacent out-neighbours x 

and y . We claim that there exists an acyclic shrinkable subgraph containing vertices 

x and y. 
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Since Dk is strong. there exist directed paths from .r to ,- and  from g to :. Among 

all directed paths from x to 2 and from y to 2, choose a shortc*st cmc. N;it,hont loss 

of generality, let 

P : x*xl *X2* . . 4 . r k  = .u" 

be such a path. Note that s 4 ~ 1 - t . .  . - -+x~- 's is a directed cycle. By IJerr1ina 7 . 3 . 3 ,  

y+x, for some z = 1,2 , .  . . , k. f f  2 # 1, then y-+x , - -+~ ,+~- - -+ .  . . xk  = 2 is a path from 

y to z of length < k, contradicting the choice of P. Thus 1 = I .  

Among the vertices x2,x3,. . . , xk, let X I  be the one of the miallest subscript sltch 

that xl+x or 21-y. If x : - + x ,  then x-+xl+. . . xr+x is a cycle. By Lernrna 7.3.3, 

x,-+y for some j with 2 < j 5 1. Since 1 is the smallest subscript,, j = I .  Similarly 

if 21-y then xr-+x. Thus, in Dk, x ~ - + ( x ,  y)--+xl and no vertex s, with 1 < i < I is 

adjacent to x or y. Moreover xl-tccz-, . . . -+xi is a directed path. 

Let S = { v  E V ( D k ) l  X / - - + V - - + X ~ ,  and v is not adjacent to x ,  for any i with 

1 < i < 1) .  Then {r, y )  5 S .  Let S' E S be a subset of the smallest, cardinality 

which contains both x and y and is coned by all vertices in S - St .  Now S' E O ( s l )  

and hence St induces an acyclic subgraph in Dk by Proposition 7.2.5.  We claim that 

St is shrinkable in Dk. 

Suppose that w 6 S' is a vertex dominated by some vertex v E St. We will show 

that w is dominated by all vertices of St. One can show, apk'ying a similar argument, 

that if w $ St dominates some vertex in St then w dominates all vestzx of St.  

Without loss of generality, we assume that w 4 S (since St is shrinkable in  

Sj .  By Lemma 7.3.3,  w--+x, for some 1 5 i 5 1 as 2 1 - + ~ ~ - + .  . . --+z~I'~J is a C:Y- 

cle. Suppose that w is not dominated by some vertex u E S'. Consider the cycle 

C' = u - - + x l - + .  . . 4x1-+u. Since w dominates x,  of C', (11 must be dominated by it. 

vertex x,  of Ct by Lemma 7.3.3.  

Now let i and j be chosen so that x, E {x1 ,x2 ,  ... , x l )  is the vertex with the 

greatest index such that w-+x, and s, E ( x 1 , x 2 , .  . . , _ r l )  is the vertex of the srrdlest 

subscript such that x,-+w. Since w $ S ,  it is not the case that i = 1 arid 1 =: I .  ti cnce 

we have the following two cases. 

Case 1. Suppose that z = 1 and j < 1. Then w - - + x 1 4 . .  .4x , -+w is a d i r e c t d  

cycle and v - + { w , x l )  is not adjacent to xk with I < k. 5 I .  Herice ( 7 1 ,  lo, sl , .  . . , r,)  
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inc1uc.r- a connect,ed subgraph which is neither strong nor acyclic, contradicting the 

fact t ha t  Ill, is of ,Moon type. 

Case 2. Suppose that : > 1. Then, for each a E St such that a - w ,  a+w-+x,-+.  . . 

- -+x[+a  is a cycle, and, for each 6 E Sf,  b must dominate some vertex in this cycle 

by 1,cmrna 7.3.3. If b does not dominate w, then b-ia as b does not dominate any xk 

(1. 5 k < 1 )  either. 

Suppose that riot all vertices of S' dominate w and let 5': = { c  E S'I c-tw) and 

S; = { c  E •̃ ''I c+w). Then Si CJ 5'; = Sf and from the above discussion we have 

,Si # 0, S; # 8, and Si t Sb. Since x and y are not adjacent, exactly one of Si and 

Sb contains both x and y.  Without loss of generality, let Si contain both x and y. 

Then S: c S is coned by all vertices in S-  S', with ]S',I < IS'/, which contradicts the 

choice of S'. 

Therefore Sf induces an acyclic shrinkable subgraph in Dk and 1 < IS'I < IDk/. 
'This contradicts the fact that Dk is simple. So Dk is a local tournament, and this 

completes the proof of the theorem in view of the earlier observations. n 

From Theorem 7.3.4, we know that all oriented graphs of Moon type can be 

generated from a local transitive tournament by substituting acyclic oriented graphs 

for the vertices. 
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