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Abstract 

Linear regression is a simple, powerful, often reasonable tool for modelling the de- 

pendence of a response variable upon other factors or conditions. However, incorrect 

inferences concerning parameters in the model may result if the underlying assumptions 

are not met. This project considers diagnostic techniques for model checking in linear 

regression, and influence measures for identifying observations which severely affect the 

results of the analysis. 

These techniques are illustrated by applying them to a Children's Aid Society Ex- 

penditures Data. The response variable in this data set is the per child capita expenditure 

in 44 Ontario counties and districts for Children's Aid Societies in 1980. The depen- 

dence of the expenditures by the Children's Aid Society on sixteen socioeconomic factors 

is investigated. Linear models that fit the data reasonably well are identified. 
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CHAPTER 1 

INTRODUCTION 

Linear Regression nlethods have been used for a long time as a tool for the investi- 

gation of the dependence of a response variable upon various conditions. There are many 

reasons for its popularity. It is easily understood and computationally simple. Because of 

the linear structure, the mathematics involved in fitting and making inferences in a linear 

model is tractable and simple. Most important of all, linear regression very often provides 

an adequate approximation to the underlying model and it can be a powerful tool when 

used properly. It can be applied not only to situations where linear dependencies exist, 

but to a variety of other situations. 

Like many scientific methods, linear regression is applicable only if certain assump- 

tions are satisfied, else incorrect inferences may result. This project describes test statistics 

and graphical procedures useful for checking the assumptions of the linear regression model. 

1.1 Basic Assumptions and the Theory of 

Linear Regression Models 

The linear regression model that will be used throughout this project is: 



This can be written compactly in matrix form as 

Y = X / ~ + E ,  

where Y is an n x 1 observable random vector, 

X is an n x p fixed design matrix of known constants describing the conditions upon 

which Y depends, 

/3 is an p x 1 vector of unknown parameters, 

and E is an n x 1 unobservable random error vector. 

Very often, the model contains a constant term so, for example, x;l = 1. 

It is assumed here that r a n k ( X )  = p. It is also assumed that the means of the 

y,'s can be expressed as linear functions of the unknown parameters P I , .  . . , Pp, hence 

the name linear model. The usual additional assumption imposed on the model is that 

E - ,V(O, 021). This simple looking expression implies 

(i) that the Ei have zero mean, 

(ii) that the ~i are independently distributed; that is, the observed yi are independent of 

each other, 

(iii) homoscedasticity; that is, the variance of y is the same regardless of the values of 

X I , .  . . , xp at which the observation is taken, and 

(iv) that the yi are normally distributed. 

The following is a brief review of the inference associated with the linear regression 

model. (See, for example, Christensen [1987], Draper and Smith [1981], and Graybill 
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[1976].) 

The least squares estimate of 0, usually denoted by p, is defined to be the value of P 

that minimizes the quantity ( Y  - XP)'(Y - XP). Since rank(X) = p, X'X is nonsingular 

and is invertible. In this case, the least squares estimate of ,B is unique and unbiased 

and is 0 = (X'X)-lX'Y. Consequently, all linear functions of 0, X'P, are estimable t 

with .>&mate X'p. In particular, the estimate of E ( Y )  = X P  is Y = X(XIX)-'X'Y. 

From the fact that X'p is estimable, it can be shown that A'$ is the unique best linear 

unbiased estimate of X'P, provided o2 > 0. Assuming that E - N(0,021), then A'P -. 
ni(A1p, a2A'(X'X)-'A) for any matrix A. 

2 - Y1(I-H)Y where ,4n unbiased estimate of a2 is given by the quadratic form 6 - 
n-P 

H = X(XtX)-'XI. The matrix H is sometimes called the hat matrix. It is also known as 

the projection matrix onto X since H Y  is the orthogonal projection of Y onto the space 

spanned by the columns of X. (In general, we will use C(Z) to denote the space spanned 

by the columns of Z and H z  to denote z ( z ' z ) - ~  Z' for any matrix or column vector Z.) 

Assuming s .v N ( 0 ,  a21), it can be shown that 6' is a minimum variance unbiased estimate 

of and that "'("-P) - Y1(I-H)Y 
'72 - u2 - x2(n -PI. 

Let Z be an n x r matrix such that C(Z) 2 C(X)  with rank(Z) = r 5 p. Assume 

that the model Y = X P  + E is being considered. Then the validity of the reduced model 

Y = Zy + s can be tested with the statistic 

Y1(H-Hz)Y/rank(H-Hz) - Y1(H-Hz)Y/(p-r) 
= Y1(I-H)Y/rank(I-H) - Y1(I-H)Y/(n-p) ' 

The distribution of F is .F(p - r, n - p, P'X1(H - H Z ) X P / ~ ~ ~ ) .  If the reduced model is 

correct, the noncentrality parameter reduces to 0. Since a nonzero noncentrality parameter 

t X'p is estimable if A' = plX for some vector p. 



shifts the .F distribution to the right, we reject the null hypothesis Ho : t h e  reduced model  

is correct with a significance level of a if F > F(l - a ; p  - r ,  n - p, 0). The hypothesis 

Ho : 3 9 1  - - /? t 2  - - . = j l l ,  = 0 with i l , .  . . . i k  E (1, .  . . , P )  can be tested by setting Z to be 

the resulting matrix after the i l  , . . . , i k  columns of X are deleted. 

1.2 Problems with Linear Regression Fitting 

Although linear regressions are easily performed, it is not so easy to justify the 

correctness of the conclusions that might be drawn from them. A deviation from the 

assumed model may alter the results substantially. Worst of all, many of these problems 

may go unnoticed unless further detailed analyses arc performed. 

One deviation from the linear model is that the dependence of the response variable 

upon the independent variables is not linear. As a result, the theory developed for the 

linear model, and hence the conclusion drawn from it, is irrelevant and incorrect. This 

problem can sometimes be solved by transformation of the independent or dependent vari- 

ables (Atkinson [1985]). Another departure from the model is that E ( Y )  4 C(X). In some 

situations where E ( Y )  depends on the values X I ,  . . . , xp in a non-linear manner, a trans- 

formation may linearize the problem if the transformed variates are normally distributed. 

A commonly violated assumption is COV(E) = u21. In this case, the tests and 

confidence regions constructed by the ordinary least squares method will be incorrect. If 

the deviation is such that COV(E) = 02V where V is some known positive definite matrix, 

then generalized least squares is used instead. (For a discussion of generalized least squares, 

see Graybill [1976].) A special case of this occurs when V is diagonal, so a weighted 
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regression analysis is appropriate. Another cause of incorrect confidence regions and tests 

is the violation of the normality assumption. Neter, Wasserman, and Kutner [1990; Section 

4.31 state that small departures fro~n normality do not create serious problems, but large 

departures, however, do. 

Conclusions can also be affected by the presence of outliers - extreme observations 

that are significantly 'different' from the rest of the data set; these observation arouse 

suspicion about the validity of the underlying distribution. .Outliers can have undue in- 

fluence on the regression line. They also may cause a2 to be overestimated. Sometimes 

outliers are the result of mistakes in encoding or recording the data, and the model can be 

rectified by correcting the mistakes or by discarding the observations associated with the 

outliers. However, such explanations may not be available. Outliers may contain valuable 

information; discarding them in this situation is inappropriate. 

Multicollinearity in the design matrix itself may also cause problems. This occurs 

when some of the columns of X are linearly or nearly linearly dependent to each other. An 

exact linear dependency among the columns of X implies that X'X is noninvertible and 

that X'p is not necessarily estimable. In particular, the least squares estimate of @ is no 

longer unique. Fortunately, the columns of X seldom exhibit exact linear dependencies. 

However, nearly linear dependencies are not rare. In these cases, the variance of the 

estimates of some linear functions of @ may be inflated. 

Influential observations may also give rise to misleading results. These are data 

points located in such a way that a change in their values will affect the regression line 

(i.e. ,h) substantially, regardless of the fact that they might make up only a very small 
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portion of the data. It is important to identify influential observations and to note their 

influence. Influential observations deserve further attention from the experimenter. 

1.3 Purpose and Outline s f  this Project 

The purpose of this project is to present and investigate statistical methods that are 

used to detect the various departures from the assumptions underlying the linear model, as 

discussed in the last section. The basic theory of residuals will be presented in Section 2.1. 

Diagnostic procedures based on residuals will be discussed in subsequent sections of Chap- 

ter 2. In particular, methods for detecting outliers will be discussed in Section 2.2; how to 

determine whet her the addit ion of further independent variables significantly improves the 

model is discussed in Section 2.3; tests for non-normal errors are given in Section 2.4, and 

methods for the detection of some special cases of heteroscedasticity in Section 2.5. Tech- 

niques for identifying influential observations will be treated in the last section of Chapter 

2. A discussion of transformations, variable selection and multicollinearity will be covered 

in the three sections of Chapter 3 in that order. A data set on Children's Aid Society 

expenditures will be introduced in Section 4.1. The rest of Chapter 4 will be devoted to 

an analysis of this data with special consideration to illustration of the statistical methods 

presented in Chapters 2 and 3. Conclusive remarks are given in Chapter 5. 



CHAPTER 2 

DIAGNOSTICS AND INFLUENCE ANALYSIS 

Most plots and tests in regression analysis are designed to either (i) criticize the 

model fitted, or (ii) criticize or examine any abnormality of the data. Procedures that 

aim for the former and latter tasks are called (Weisberg [1983]) diagnostics analysis and 

influence analysis. 

Diagnostic procedures for model criticism are usually statistics or plots designed to 

check the various assumptions imposed upon the model. The following summarizes the 

properties that Weisberg [I9831 proposed a good diagnostic should have. 

(D l )  The behavior of a diagnostic procedure should be known, at least approximately, 

both under the assumed model and other models with preferably only one assumption 

modified. 

(D2) The diagnostics can be derived by parameterizing the assumptions so that the problem 

of criticism can be investigated with significance test. 

(D3) Diagnostic methods should not be computationally intensive, with respect to current 

computing facilities. 

(D4) Diagnostics should be graphical or have graphical equivalents. 

(D5) Diagnostic procedures should suggest remedial action. 

The idea of influence analysis is to study the changes in the outcome of the regression 

when small perturbations are introduced in the data. As with regression diagnostics, 
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Weisberg I19831 also proposed that a good influence measure possess certain properties as 

summarized below. 

(11) The perturbation scheme should be well defined (eg. the deletion of a case). 

(12) Influence measures must reter to some specific aspect of the problem. They must 

measure something interesting. 

(13) Influence measures should depend on the sa~nple at hand. 

(14) If a vector norm is used to summarize influential information provided by a vector, (a)  

it should possess desirable statistical properties, (b) it should depend on the specific 

aspect of the analysis of interest, and (c) the resulting values should be calibrated 

with respect to some external reference. 

However, seldom does a diagnostic or influence procedure possess all the above prop- 

erties. In this chapter, we will present some diagnostic methods that criticize different 

aspects of the model and possess some of the properties in Dl  to D5. Since most diagnos- 

tics are functions of the residuals, the first section will be devoted to the theory of residuals. 

Statistical procedures concerning the identification of outliers, the significance of the ad- 

dition of more independent variables to the current model, checking for non-normality of 

errors, and non-constant variance of errors will be presented in Section 2.2 through Section 

2.5 in that order. Some influence procedures that possess some of the properties in I1 to 

I4 are discussed in the last section. 

2.1 Residuals 

The ordinary residual is defined by 



A 

e = Y - Y = (I - H ) Y  = (I - H ) ( X P  + E )  = (I - H)E with e - ,V'(0, a 2 ( I  - H)) .  

The usual use of the residuals is to check for violations of a given standard regression model 

as described in Section 1.1. However, since I7ar(e,)  = aZ(l  - h , , )  (where h,,, usually called 

the leverage, is the z f h  diagonal entry of H) ,  the ordinary residuals have heteroscedastic 

variance. Thus, the assumption of ho~noscedastic variance of the errors may not be properly 

checked by looking at a plot of the ordinary residuals. Furthermore, Christensen [1987; 

Chapter 131 noted that since some normality tests are sensitive to inequality of variances, 

using the ordinary residuals may lead to a non-normal conclusion about the errors even 

though they are actually normally distributed. For these reasons, it is more appropriate 

to use the studentized residuals (also called standardized residuals): 

ei - 2 SSE Y1( I -  H ) Y  where a = - - ri = - 
I?,/- n - P  n - P  

It can be shown that, assuming that Y = X p  + E with E - N(0,a21) ,  r : / (n  - p) has a 

Beta distribution with parameter 112 and (n - p - 1)/2. (See Cook 119821 and Ellenberg 

[I9731 .) It follows that E[ri]  = 0 and Var[ri] = 1. Moreover, Cook [1982], applying results 

from Ellenberg [1973], showed that Cov[r,, r j]  = -hij/[(l - hii)(l  - hjj)]1'2 for i # j. The 

ri's are therefore not independent of each other. The last statement is clear from the fact 

that e - N(0 ,  a2(I - H)).  

An alternative is to use the standardized predicted residuals derived as follows. Let 

Ylil and X[il be, respectively, the corresponding Y and X with the ith case deleted. 
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Note that updating formula are available so that the above statistics can be obtained 

without actually deleting any cases and performing another regression. (Some of the 

updating formulae are given by Cook and Weisberg [I9821 and Atkinson [I9851 without 

proofs. I provide detailed proofs of them below.) First notice that, if x: represents the ith 

I =. X~ilX[zI  = X'X - xix; 

and, similarly, X[ilY[il = X'Y - xi yi.  Therefore, 

(xijlxril i ( ( x ' x ) - ' +  
(X'X)- 'X~X{(X'X)-~  

1 - x:(XIX)-'xi 

( 
( x ' x ) - ' x i ~ ~ ( X ' x ) - ~  

= (X'X - xixi) (xlx)-' + 
1 - x:(x1X)-lxi 

(X'X)(X'X)-'X~X:(X'X)-~ 
= ( x l X ) ( x ' x ) - '  + - x;x:(x'x)- l  

1 - x{(XIX)-'xi 

- x~x:(X'X)-'X~X!~(X'X)-' 
1 - x:(x1X)-'xi 

xix:(XIX)-I - x~x:(x'X)-'X~X~(X'X)-'  
= I - xix:(x'x)- '  + 

1 - x:(XIX)-'xi 
xi  [I  - x:(xlX)-'  x~]x:(X'X)-' 

= I - xix';(xlx)- '  + 
1 - x:(XIX)-'xi 



That is, (XiilX[il)-l = (XIX)-l + (x'x)-'x,x:(x'x)-I 1 - h i i  . Then 

= Y'Y - y: - yiil x [ ~ ~ P [ ~ ~  
( x ' X ) - ' X ~ ~ . ~  

- - Y'Y - y; - (Y'X - y,xi) 
1 - hii 

Y'x(x'x)-'xi ei y i ~ : ( X ' X ) - l ~ i  ei 
- - Y'Y - y; - Y ' X ~  + 

1 - hii 
+ yix:b - 1 - hii 

x'ipei yi hiiei 
- - Y'Y - y: - Y'HY + - 

1 - hii 
+ ~ i x i g  - 



2 ' i = S S E  - -. 
1 - h i ,  

Now let = Yi - x#[,], which is sometimes called the PRESS residual. With the 

help of the updating formula. we have 

and therefore 

Based on eitl, the standardized predicted residual is defined to be 

The distribution of rj,] can be derived as follows. Since ei - N(0,  02(1 - h . ,  w > > ,  

e(i]  - " - N ( 0 , l ) .  Furthermore, Yiil (I - H[il )Yii1 /02 - ~ ~ ( n  - p - I). Since 
a /  J- - u J ~  

8ri1 does not depend on yi and Bril can be shown to be independent of Diil , b?,] is independent 

of e[;] = yi - x#[,]. Therefore, 

eril 

For this reason, r[il is also called the studentized predicted residual and is sometimes 

denoted by ti. 



Note that 

= r,,p -'- '. 
n - p - r ,  

Therefore, if the studentized residual r, is available, rf,] can be easily calculated from the 

above formula. The advantage of using r[,] over r, is that the distribution of the former is 

known exactly to be t ( n  - p - 1), which is asymptotically normal. On the other hand, since 

the distribution of rT/(n - p )  is Beta, the distribution of r, is non-normal. For this reason, 

we intuitively expect I.[,] to reflect ~i (which is assumed to be normally distributed) better 

than ri does. Furthermore, note that the only computational difference between r[il and ri 

is that r[il uses B2 to estimate 02 while ri uses B2. Using r[il instead of ri in diagnostical 
[il 

methods should lead to more accurate and unbiased results because the estimate B;] does 

not depend on ei and therefore BGI should better estimate 02 when ei is large. 

As a final remark, note that, as the ri's, the r [ i l ' ~  are correlated. 

2.2 Outliers 

One task in model criticism is to check for outliers, observations yi that do not fit 

the linear model. This is usually done with statistics that are functions of the residuals 

since residuals contain the infor~nation not explained by the fitted line. The common ones 
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are: ei = y, - x$I, r .  - - e '  
i ]  = Y i  - x:P[i] 9 and '[i] = t i  = Any of 

these statistics can be used to detect outliers by plotting the statistic against & ,  and then 

picking out points that a,re far from zero and the other points. It is better not to use ei or 

q,] since they are not standardized and results may be complicated by the fact that the e, 

or e [ i ]  have different variances. The reason for plotting residuals against & ,  instead of y,, 

is that ei, and hence the above statistics, are not independent of y;. In fact, if h i j  is small 

for i # j, then 

Among the four statistics, the one that is most suitable to perform a significant test 

is t i  since it is standardized and has a known distribution. Since a large value of ti indicates 

the possibility of an outlier, we reject the null hypothesis Ho : the ith observation is not 

a n  outlier at a significance level of a if It,( > t ( l  - a/2; n - p - 1 ) .  

In the above test, we have assumed that i is known. However, in most cases, there 

is no way of knowing at which case will the outlier occur, if any. The natural thing to 

do is then to let i be the case number of the observation that yields the largest [ti 1 and 

test for the possibility of the ith case being an outlier. Though the distribution of m a x l t i l  

is not clear, we can find an upper bound for the ( 1  - a)th percentage point by using the 



Bonferroni inequality and the fact that ti .V t ( n  - p - 1 ): 

= P[ltzl > t ( l  - a/2n; n  - p - 1 )  for some i] 

n 

< - C P[ltil > t ( l  - a / l n ;  n  - p - l)] 

The test for a single outlier will then reject if rnaxlt,l > t(1 - a/2n; n  - p - 1) with 

a maximum type I error of a .  The test for an outlier can be turned into a test for a 

parameter in a linear model. Suppose that the i th  case is suspected as being an outlier. 

Consider the linear model 

where di is an n  x 1 column vector with a 1 in the i th element and 0 everywhere else. This 

model can also be rewritten as 

= X ( p  + (x'x)-'xld,$) + (I - H)d,$ + E 

= Xy + (I - H ) 4 $  + E ,  where y = p + ( x ' x ) - ~ x ' ~ ~ $ .  

Note that X and (I - H)di are orthogonal to each other. Now let Z = [X, (I - H)di], 
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then the usual F test for 4 = 0 is 

and F has an..F(l, n - p - 1) distribution with noncentrality of 

= 4d:(I - H ) ( H z  - H ) ( I  - ~ ) d , $ / ( 2 o ~ ) ,  since HzX = H X  

= 4d:(Hz - ~ ) d ~ $ / ( 2 a ' ) ,  since H z H  = H H  

has the same distribution as t i  under Consequently, s g n ( e i ) 0  .-. t ( n  - p - 1, 

Ho : 4 = 0. Testing whether the i t h  case is an outlier is therefore the same as testing 

Since the noncentrality is small when hii is close to 1, the test does not have much 

power in this situation. In other words, it is hard to detect outliers when the corresponding 



observations are influential. (See section 2.6 for a discussion on influential observation.) 

This agrees with the fact that influential points will pull the regression line in their direction 

and hence will reduce the value of the associated residuals. 

2.3 Inclusion of Additional Variables 

It is often desired to see whether the addition of an independent variable to the 

linear model will improve the fit of the model significantly. To be general, assume that q 

independent variables are added to the base model 

so that the expanded model is 

Y = X p + Z y + € ,  

where X is an n x p matrix of rank p, Z is an n x q matrix of rank q, p is an p x 1 column 

vector, y is an q x 1 column vector and r -. N(0, 021). Let p = (XIX)-'XIY be the usual 

linear estimate of /3 and 6 = (I - H)Y be the usual residual vector in the base model. 

Also, let W = (I  - H)Z. 

To estimate p and y in the expanded model, we rewrite the model as 

Y = X p + ( I - H ) Z y + H Z y + r  

Since X1(I - H)Z = (X - X)Z = 0, X and W are orthogonal matrices, so the estimate of 

y and p + (XIX)-lXIZr are simply given by the projections of Y onto C(W) and C(X) 
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respectively: 

and 

p + (x'x)-'x'zy = (xtx)-'X'Y 

* p = p - (xlx)-'x'zy. 
The covariance matrix for + and the residual vector of the expanded model are then given, 

respectively, by 

Cov 

and 

e = ~ - Y  

= Y - (x#b + zj.) 

= Y - x(p - (xlx)-'x'z~.) - zi. 

= Y - xp + x(x'x)-'x'zj. - Zj. 

= e - (I - x(x1X)-'x')z;j. 

= e - Wy. 

To see whether the addition of the extra variables improves the fit of the model, we 
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test Ho : y = 0 with 

- - 
2W(W1W)-1W15? n - p - q  

6 - w ( W 1 w - w  q 7 

which has a central F ( q ,  n - p - q) distribution under the base model. 

Now suppose that q = 1, then the expanded model reduces to 

with 
4 = [Z1(I - H)z]- '~ ' (1  - H ) Y  

( ~ ~ w ) ~ ( n - ~ - l )  
and we reject Ho : 4 = 0 with a significance level of a if F = G w w G l w 2  > F(1 - 

a; 1, n - p - 1) and conclude that the added variable does improve the fit of the model 

significantly. Here we have assumed that Z < C(X).  Graphically, the significance of 4 can 

be detected by the added  variable  plot of e vs. (I - H)Z. Since 

Y = x p + z ( i ! ) + E  

+ E[e]  = $(I - H)Z, 

a plot of e vs. (I - H)Z should reveal a straight line with slope 4, which can be esti- 

mated by d, in expectation. The variability of t,he slope can be estimated by var(4) = 



1 - 2  - Y1(I-H-Hw)Y [''(I - H)Zl -  - z t ( l - ~ , z ( ~ - ~ - ~  . Added variable plots are helpful since they allow 

one to see wh~ther  the F statistic, on which we may base our decision, is influenced by 

isolated points. t 

Note that, instead of using a new constructed variable, Z can be one of the variables 

in the model. This allows a check on the significance of the variables already in the model. 

Let X, denote the i t h  colunm of X and H, the projection matrix onto the space spanned 

by the vectors X I ,  . . . , X,+l,  . . . , Xp. Then we can apply the above technique to the 

model 

and plot e = (I - H i ) Y  vs. (I - Hi)Xi  to see whether the variable xi should be included 

in the model. A straight line graph with a nonzero slope indicates that x, should be kept 

in the model. These kinds of added variable plots are called partial leverage regression 

plots. 

2.4 Normality 

The assumption of normality is important primarily for prediction; it is also impor- 

tant because many statistics used to test various aspects of the model assume the normality 

of the distribution of the error, E ,  . To construct a test, first suppose that ~ 1 ,  . . . , E ,  are 

i.i.d. N(0,  a2) so that E ~ / U , .  . . ,&,/a are 2.i.d. N(0 , l ) .  Also let denote the distribution 

function of the standard normal with 4 representing the corresponding density function. 

One of the examiners of this project has pointed out that these plots can also probably 

be used to identify whether the candidate variable should be transformed for better fit. 



Now let lT(,), . . . , LT(,) be the order statistics of n i . i .d. U ( 0 , l )  random observations. Then 

Tra~isfor~ning the lT1 ,,'s by Z( ,) = 0 - I  ( ( I ( , )  ), we have lT( ,) = O(Z( , )  ) and, therefore, 

statistics of n i.1.d. N ( 0 , l )  random variables. If ~ ( ~ 1 , .  . . , & ( , I  are the order statistics of 

for n l 5 .  

(See Blom [l958] for a proof of the last approximation.) Consequently, a plot of the ordered 

standardized residuals r ( , )  = e( i '  vs. O-I [s] ~houldresembleastraightlinewith 

slope 1. If the plot is not linear, the assumption of normality may be violated. A test 

statistic that is closely related to this graphical procedure is the Shapiro and Wilk statistic: 

where Z' = [Z(l), . . . , Z(,)] and V is the variance-covariance matrix of Z(i). Since V cannot 

be computed easily, an approximation to the W test statistic, the square of the sample 

correlation coefficient between E[Z]  and €10, is often used instead: 



Since E ( ~ ) / O  is not observable, it is usually replaced by r ( , ) .  If the of vs E[Z(z,I 

reveals a straight line graph, r(,i and E[Z( , , ]  are then highly correlated and W' should be 

large. Therefore, we reject Ho : i, -- i.i.d.,t'(0,02), against the arbitrary alternative of 

non-normal errors, if IC-' is small. Percentage points for the distribution of W' are given 

in Weisberg [19i4]. 

2.5 Heteroscedasticity 

Another important assumption in the linear model that should be investigated is the 

assumption of constant variance of the errors. First, suppose that all other assumptions of 

the linear model hold except for this one so that E -- N(O, o2 w), where W has diagonal 

elements uli and zero off-diagonal entries. Since ~i is not observable, the problem of 

heteroscedasticity is usually investigated with functions of the residual e; instead. Even 

if mi = 1, ti has nonconstant variance, (1 - hii)a2, so to check the constant variance 

assumption, the standardized residual T i  should be used instead. A graphical procedure 

plots ri vs. ci or against the observed values Xi j  of any independent variable An 

improvement suggested by Cook and Weisberg I19831 is to use r: instead of ri, especially 

when the sample size is small; this has the effect of doubling the sample size since the 

pattern suggested by the negative residuals and that of the positive residuals are 

superimposed to give a single pattern. Another improvement is to use (1 - hii)ci and 

(1 - h i i ) X i j  in place of ii and X i j .  A plot with non zero slope then suggests that the 

variance is a function of the independent variable being plotted against. A wedgedmshaped 

graph indicates that the variance is a monotonic function of the independent 
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Statistical tests for homoscedasticity are more co~nplicated. The idea of the score test 

presented below can be extended to include more general, twice differentiable functions 

u1, = f (z1, A ) ,  where z, is a known a x  1 vector not necessarily chosen from the design matrix 

and X is a b x 1 vector of unknown parameters. For simplicity, we only consider the special 

cases where a = b = 1, f(z,, A )  = e"~ with 2, = E(y,) and z, = X,,. That is, we will be 

testing the hypothesis of constant variance of the errors (i.e. X = 0) against the alternative 

that the variance depends exponentially on the mean response or the independent variables 

(i.e. X # 0). 

A test statistic for testing whether the variance depends on the mean response in the 

form uii = e X E ( y i )  is 

which has an asymptotic X2(1) distribution under Ho : X = 0. (See Cook and Weisberg 

[1983].) Similarly, the test statistic for testing whether the variance depends on the j t h  

independent variable in the form u,, = e X X i ~  is 

where the average X,, is taken over the observed values of the j t h  independent variable. 

The asymptotic distribution of S2 is also X2(1) under the hypothesis Ho : X = 0. It should 

be noted that using the chi-squared approximation for small sample size will in general 

lead to a conservative test. 



2.6 Influence 

The analysis of residuals allows one to check the fit of a regression line on a set of 

data. However, it does not allow the user to assess the sensitivity of the results against 

modifications of the data set. In particular, none of the procedures discussed in previous 

sections are designed to detect the presence of influential observations, those whose deletion 

will lead to a dramatic change in the regression estimates. One way to detect an influential 

observation is to compare the difference in the estimates P and ,B[,]; that is, to compare 

the difference in estimating P with and without the observation being investigated. One 

measure of this difference is provided by the sample influence curve for the parameter ,8 

SIC, = (n - I)@ - PI,]). 

(See Mallows [I9753 for details.) Since SIC, is a vector- valued function, it is difficult to 

compare the SIC,'s for different observations (i.e. different value of i). Hence, we can 

instead consider norms of SIC, that have the form 

Dz(M, c) = 
(SIC,)~M(SIC,) - - (B[,] - B)'M(B[ - B) 

c(n - 
, 

C 

where M is a p x p symmetric, positive (semi-) definite matrix and c is a positive scale 

factor. For any fixed M and c, contours of D, are ellipsoid in pdimension with /!l (or &,]) 

as the center. For an influential observation, Bill would be 'far away' from f i  and hence D, 

would be large. 

To compute D,, Cook [I9771 suggested using M = X'X and c = p ~ 2 .  In this case, 

Di is called the Cook's distance 



Therefore, Ci is also a summary of how far apart are the predicted values with and without 

the i t h  observation. A high Ci value ( C ,  2 1; see Cook [1982]) then indicates that the 

i t h  observation is influential in the sense that deleting it from the data set will alter the 

( x ' x ) - ' x , e ;  estimated mean responses significa,ntly. Since 0 - Plil = , Ci can be written as 

- - 1 2 hzi 
-ri -. 
p 1 - hzi 

It is clear that Ci will be large if hii is close to 1 (unless ri is very close to zero) or if 

ri is large. The increasing function Pi = & is called the potential. It is interesting to 

note that (i) Pi = )-lxZ, which is a measure of distance relative to the ellipsoids 

defined by ( X ; i l X l i l ) - l ,  (ii) yi = (1 - hii)yIili + hiiyi, so that Pi is the quotient of the 

is the difference of the total variance of the estimated mean values with and without the 

i th  case. 

Another measure, known as the D F F I T S ,  uses c = &2 instead of its square is 
[il 

defined by 

It should be clear that DFFITS? is essentially the same as Ci except that DFFITS: 

gives more weight to outliers, where r[ii > ri > 1. One shortcoming in using &GI instead of 



e2 is that the shape of the contours of DFFITS? (still ellipsoidal) now depends on i .  This 

makes comparison between D FFITS? for different observations less meaningful since the 

distances from ,d[,] and ( i  # j) to are now on different scales. 

Another related measure is the Mahalanobis distance, which measures the distance 

of a random vector to the middle of its distribution. (See Christensen [1987].) Let z be a 

random (column) vector with mean p  and covariance ~natrix U ;  the squared Mahalanobis 

distance is defined by 

o2 = (z  - p ) I ~ - ~ ( z  - p ) .  

Even though the rows of X are not random vectors, we can still apply the idea of the 

Mahalanobis distance to find out how extreme a particular covariate vector, x,,  is. Es- 

timating p by x = i~'1, (where 1, is a column vector with n 1's) and U by S = 

1 I 
,I [c:,~ XiXi - n s ]  = A X 1  (I - +l:) X (where 1: is an n x n matrix with all 

elements being I) ,  an estimate of the Mahalanobis distance for the i th data point is 

D: = (x, - x)'s-' (xi - x )  

which is the i th  diagonal element of 

= (n  - ~ ) K ( K ' K ) - ~ K '  where K =  

projection matrix onto the orthogonal complement 
= (n  - 1) ( 

of the column space of 1, with. respect to X 

This has diagonal element (n - 1) (hii - +). Therefore, D: = (n  - 1) ( h i i  - i). Note that 

DFFITS? is an approximate Mahalanobis distance between BIil and p. 



A quick way to detect influential cases (influential in the sense that they are far from 

the center of the data set) is then to pick out cases with high h,, values. This can be 

done by plotting h, ,  vs. case number and identifying those with larger leverages. Since 

€[,I = :A,, z e l  for small h,, ,  a plot of e[,] VS. e, should form a straight line with slope 

1. Any points that significantly fall away from such a line may be considered as having 

high leverage. However, this method may not be appropriate for small n. Since h,, has 

a lower bound of l l n ,  the slope of the graph of €[,I vs. e, (assuming it is straight) can 

be quite different from 1 for small n. Since Cr=l h,, = p, the average value of h,, is 

- - n r a t h e r t h a n  1. Note that p l n .  This suggests a guiding line with a slope n-P 

the identification of influential points should be followed with a discussion of how they are 

expected to sway the analysis and a discussion with the experimenter as to why they arise. 



CHAPTER 3 

TRANSFORMATION, VARIABLE SELECTION, 

AND MULTICOLLINEARITY 

The first section of this chapter is devoted to a discussion of transformations on the 

response variable to make the errors (more nearly) normally distributed. Although we will 

not be discussing transformations on the independent variables, it should be mentioned 

that they are equally important. &o omitted is a discussion of joint modelling of the 

mean and variance of the response variable via generalized linear models. The second 

section deals with techniques for identifying important factors (independent variables) 

that explain the variation in the response variable. The computational aspect of one such 

technique will be discussed in the third section. The fourth section discusses the problem 

of multicollinearity and procedures for detecting the existence of multicollinearity. 

3.1 Transformat ion 

It is not always possible to satisfy all the assumptions of the linear model in the 

original scale of the responses yi.  Sometimes the problem can be resolved by transforming 

the y, by a nonlinear function such that the new transformed observations would then 

satisfy these assumptions. Mathematically, we write 



For example, if the standard deviation of y  increases as p = E ( y )  increases, then, to the 

first order of y  - p, 

and hence the transformed response 2; = In y,  may have a stable variance. The In 

transformation is a special case of the family of transformations considered by Box and 

Cox [1964]: 

i fX#O 
l n y  i f ~ = 0 '  

where X is a constant to be determined. Note that g ( y )  is a continuous function with 

respect to X since, by 17H6pital's rule, 

y A  - 1 
1i1n - - y A l n  Y  - In y .  - lim - - 
A-0 X A-0 1 

A regression model usually includes a constant term. In this case, the transformed model 

can be assumed to have the form 

A yi = x:p + & i  

since 

+ y,X = 1 + x:(pX) + h i ,  

and 1 can be absorbed by the constant term. The procedure is then to estimate X and to 

test whether it is significantly different from 1; if so, a transformation is in the order. One of 



the methods of estimating X is the likelihood ratio method. Since g (Y)  = [g(yl ), . . . , g( y, )I1 

is assumed to be ,kr(X/3, a21) distributed, its density function is: 

where 

and 

Chen [1991] pointed out that t,he density function f ( Y )  is not proper in the sense that 

it does not integrate to 1. Fortunately, after adjusting the linear model to remedy this 

defect, he found that approaches with and without the adjustment 'will lead to practically 

the same para~neter estimates for a given set of data' (Chen [1991], Section 5.2.1). 

An estimate of X is then found by maximizing the log likelihood 

Note that, for fixed A, In J is a constant and so maximizing l ( P ,  a, A) can be viewed 

X 

- I .  Therefore, for a fixed A ,  the maximum as a least squares problem with response 

likelihood estimates for /3 and a2 are, respectively, 

p = ( x ' ~ ) - ~ x ' ~ ( Y )  

and 



With P and o2 estimated by p and d2 ,  the log likelihood then becomes 

n 
= - -In c2 + In J + constant 

2 

The maximum likelihood estimate, , is the value of X that maximizes the above log 

likelihood. This is usually done by evaluating l ( p , e 2 ,  A)  at selected points A, over a 

reasonable range, say -2 to 2. The A, which yields the maximum log likelihood in this set 

can be treated as i .  Accuracy can be increased by "fine tuning" the values of A, at which 

the log likelihood is evaluated. However, since the values of X are often rounded to values 

such as -2, -1, -1/2,0,1/3,1/2,1,2, for the sake of convenience, ease of interpretation, 

or physical reason associated with the problem at hand, it is thus usually not necessary to 

estimate X to a high accuracy. 

An approximate 100(1 - a)% confidence interval for X is given by the values of Xo 

such that 

2[e(i) - e(x0)] 5 X 2 ( i  - 0; I); 

this is based on the asymptotic property of the likelihood ratio test. The likelihood ratio 

test can be used to test the hypothesis Ho : X = 1, whose rejection indicates the need for 

a transformation. 

A graphical aid to check on the need for transformation can be derived from the 

following. First, following Atkinson [1985], we normalize the power transformation by the 

geometric mean of the response values so that the transformation is: 



where y = (n:=l yi)l'n. Now assume that, for some value A, the model 

is 'correct'. (Of course, the value of X that makes G(Y; A) nornlally distributed is, in 

general, not the same as the one that makes g(Y; A )  normally distributed. However, it 

should be mentioned that, asymptotically, G(Y; A )  and g(Y; A )  are identically distributed.) 

Expanding G(Y; A )  about some point A = A. and ignoring terms after the first order, we 

have 

The model can then be written approximately as 

The significance of X - A. can be checked by the added variable plot (see Section 2.3) 

aGcY'A) 1 . This should yield a straight line of e = (I - H)G(Y; A o )  vs. w = (I - H) 
L A ' ,  

graph with slope -(A - Ao). Therefore, if no transformation is needed, the added variable 

plot for A. = 1 should display, approximately, a horizontal line. 

The advantage of the added variable plot is that it shows not only the need for a 

transformation, but also whether such a need is dictated by the whole set of data or just 

by one or a few cases. In the latter case, all but a few data points would lie around 

a horizontal line. This information is very useful because sometimes the untransformed 

model is perfectly all right after the deletion of an outlying case. (For an example, see 

Example 8 in Chapter 6 of Atkinson [1985].) In contrast, the likelihood test statistic is a 

single summary value pooling information possessed by the data. 



Very often one simply wants to see whether a transformation of the response variable 

is necessary; that is, to see whether X  = 1. In this situation, estimating X  is not the prime 

directive and therefore using the likelihood ratio test may be too time-consu~ning for such 

a simple task. An alternative is to use the usual F test on the expanded model 

As mentioned Section 2.3, the F test for y = X  - X o  = 0 H X  = X o  is 

and we reject Ho : X  = X o  with a significance level of a if F > F ( 1  - a; 1, n - p - 1). 

(Atkinson [I9851 mentioned that the equivalent score test T p ( X o )  = s p ( - e l w ) @  is an 

approximation to the likelihood test for the hypothesis ,\ = X o . )  

3.2 Variable Selection 

One of the major goals in regression is to find out the factors that strongly influence 

the values of the response variable. It is therefore desirable to cut down the number of 

independent variables by deleting those which do not contribute significantly. Besides, 

although it is no longer a heavy job to perform a regression based on many variables, 

the inclusion of irrelevant independent variables will result in complicated models which 

are difficult to interpret. Furthermore, deleting variables has some desirable statistical 

properties as discussed below. 

Consider the model 



where Xp (with rank p) and X, (with rank r )  form a partition of X (rank(X) = q )  so 

that X = [X, X,], and similarly PI = [PI, P:]. It is assumed that the variables in X, are 

the ones we are attempting to delete; the reduced model is then 

Let p1 = [PI, and p, be, respectively, the usual least square estimate of the PI and ,Bp 

in the full and reduced nlodels. Also, let u2 and bf be the residual mean squares for the 

two models; that is, 

82 = Y1(I - H ) Y  /(n - p - r ) ,  

8: = Y1(I - x,(x;x,)-'x;)Y/(~ - p). 

Then, from Section 2.3, we have 

pp = ,Bp - (x;x,)-~x;x~& 

* E@,) = ~ ( 6 , )  - (x6xp) - '  X;X,E(B,), 

and, if we assume the full model is correct, 

If pr = 0, the resulting estimate p, is unbiased. If P, # 0, gp is only unbiased if XLX, = 0; 

that is, the columns in X, are orthogonal to those in X,. 

Another desirable property is that Cozr(Bp) - Cov(p,) is positive semidefinite, which 

I prove below. Note first that 



If we let 

then 

= n2 B(D - B ' A - ~  B)-' B ' A ~ .  

Now, for any column vector a, 

a l [ ~ o v ( p p )  - cov(p,)]a 

= b ' ( ~  - B ' A - ~ B ) ~ ,  where b ' = a ' ~ - ~ B  

> 0. - 

The last inequality holds since (D - B'A-'B)-' is the covariance matrix of ,& and hence 

positive (semi-) definite. This concludes the required proof. 

The advantage of COV@,) - COI@,) being positive semidefinite can be realized if we 

look at the variance of the estimate of A'@,. Consider any linear function of P,, 4 = Alp,. 

(Note that 4 is estimable for any vector X because pp itself is estimable.) Let d = X'p, 

and 4 = A'$, be the estimate of 4 based on ,hp and pp respectively. Then 

~ a r ( $ )  - var(6)  = ~ ' ~ o v ( j 3 , ) ~  - X'COV@~)X 



That is, estimating linear combinations of 0, using pp rather than b, yields more precise 

results. Consequently, confidence intervals for 4 will be narrower if they are constructed 

using p, rather than p,. Of course, even though ~ o o ( p , )  - ~ o r ( D , )  is positive semidefinite 

regardless of whether f i p  is unbiased, the advantages just discussed are desirable only if Dp 

is unbiased. 

The remaining question is then how to decide which variables may be deleted.+ 

Some common procedures designed for such a purpose are forward regression, backward 

regression and stepwise regression (a  combination of forward and backward regression). 

Between forward and backward regression, the latter is more appropriate since it starts 

with a full model and eliminates only those variables that are not significant; however the 

resulting models can be complicated. Among the three, stepwise regression seems to be 

the most acceptable and widely used method. However, since all three methods process 

only one variable at time, valuable information provided by certain combinations of the 

independent variables can easily be missed, and the resulting model may be far from the 

best. Another shortcorning of these methods is that they only give a single model - they 

do not provide the second best or other alternative models for further consideration and 

decision; in many situations involving observational studies, there may not be a single 

best subset but several good ones. An alternative is to consider all possible regressions, 

provided that the number of variables is not very large (say, 5 15). This method considers 

t Note that the experimenter may be able to suggest which variables are expected 

to be of foremost importance in influencing the response. Sometimes, variables may be 

grouped into and secondary categories of potential importance. In any case, 

variable selection methods are useful. 



the effect of each of the 2 9  possible linear combinations of the independent variables on 

the response and allows one to select the best subset (or the first, say, ten best ones) based 

on some predefined criteria. One common criterion for this method is the Cp criterion. 

Before stating the criterion, we first derive the Cp statistic. Consider the mean square 

error for the fitted value i ,  = xb,pp (where xb, denotes the i t h  row of Xp) defined by 

E[it - E(yz ) I2  

= Var(yi) + [E(yi) - E( y i ) I2 .  

The (scaled) total mean square error for all n fitted values is then 

where the subscript p indicates that the statistic is calculated from a model with p variables 

employed. Assuming the full model is correct, E(Y) = XP.  Then, in matrix form, 

1 
= p + ,PIX'(I - Hxp )XP. 

ff 

Note that 

E(Y'(I - Hxp)Y)  = trace[(I - Hx, b21] + E(Yt ) ( I  - HxP)E(Y) 



Therefore, 
1 rp  = p + bl [E (Yt ( I  - HxP ) Y )  - g2 ( n  - p)] 

Since rp  contains unknowns parameters, it is usually estimated by 

(Discussions of r p  and Cp can be found in Christensen [1987], Daniel and Wood [1980], 

Hocking [1976], and Neter e t  al. [1985].) 

It should be clear that, for a correct reduced model, the total mean squared error, 

and hence the Cp value, should be small. It is therefore possible to use Cp as a guideline for 

selecting the best subset. The procedure for variable selection is to perform 2 4  regressions 

using different subsets of the independent variables. For each regression, the value of Cp 

is calculated. The better models have small C p ,  with Cp M p. Often, especially when q 

is large, more than one Cp may satisfy the above criterion. Note that we do not simply 

choose the subset associated with the smallest Cp as the best subset. The reason is that 

= p. 

Therefore, if the bias in Y is small, we expect Cp to be close to p. 

Graphically, variable selection can be done by plotting Cp VS. p together with the 

line Cp = p. The points with small C, values that are relatively close to the line are usually 

chosen as the better subsets. To get an idea of the variation in the Cp VS. p plot, consider, 

again, the full model 



The test statistic for 0, = 0 is 

Since F - 3 ( r ,  n  - q )  (recall that q  is the number of independent variables in the full 

model) under Ho : P,  = 0, 

2 2 ( n  - q ) 2 ( r  + n  - q  - 2)  
V a r ( C p  - p) = r  for n - q > 4  

r ( n  - q  - 2 ) 2 ( n  - q  - 4 )  

=+ Jw= n - 9 - 2  n - q  J 2 r ( r + n - - 2 )  n - q - 4  for n - q  > 4 .  

The table below gives values of J v a r ( c p  - p) for various values of r  and q  - n .  

As seen from the table, the variation can be quite large as compared to the value of 

p, which is usually less than 15. This makes the problem of selecting the best subset more 

difficult since points that are close to the line Cp = p  statistically (in the sense that their 



distances to the line are within, say, one standard deviation of Cp - p) may not appear so 

to the human eye. 

3.3 Computational Aspects of Variable Selection 

Even with a computer, performing 2 9  regression is still a tremendous amount of 

work and may take a long time for q 2 10. Since most selection criteria are functions 

of (X;XP)-' or the error sum of squares (ESS, = Y'(1- Hxp )Y), the task of finding 

the best subset can be speeded up if there is a quicker way of finding (X6Xp)-' and/or 

ESSp for all 2q regressions. One such method uses the S W E E P  operator (cf. Goodnight 

[1979]). Given an n x n matrix A,  the S W E E P  operator on A is defined by the following 

algorithm. 

1. Let b = nkr, and divide row k of A by b. 

2. For each row i # k,  let c ,  = a,k and add (-a,k)*(row k )  to row i. 

3. Set akk to l l b  and a,k(i # k )  to -c,/b. 

In matrix form, this is 

If we now perform another S W E E P  operation, SI, we will have 



It should be'obvious from the last matrix that interchanging the subscripts I and k 

(including the one used to indicate the row and column) will leave the matrix unchanged. 

41 



That is 

( P I )  SlSkA = SkSlA.  

Furthermore. by performing another Sk operation on the matrix S k A ,  we can see 

that 

This proves 

(P2) S k S k A  = A. 

Although not straightforward, it can be shown that, 

(P3) If A is transformed by S i ,  , S i , ,  . . . , Sik successively to a matrix B , the k x k submatrix 

of B indexed by {il ,  . . . , i k }  is the inverse of the corresponding k x k submatrix of 

A indexed by { i l , .  . . : i k } .  



Finally, note that, after a S k  operation on A, the elements in the k t h  colurnn can 

affect only themselves in further SJVEEP operations. That is, if we are to perform a S, 

on S k  A,  the resulting values of the elements that do not fall in the k t h  column will be the 

same whether or not we carried out step 3 of the algorithm when we performed SkA. We 

therefore conclude that 

(P4) Let S,, . . . . .  St, be the operation performed on A so far. (Without loss of generality, 

we can assume that none of the subscripts is the same due to property P2.) The 

. . . . .  matrix obtained after deleting the columns indexed by {il i ) would have been 

the same had we carried out only steps 1 and 2 of the algorithm; this is essentially 

Gauss- Jordan elimination. 

To use the S W E E P  on variable selection, consider the model 

Y = XpPp + XrPr + E ,  

and augment the matrix X'X to 

Now let B = Spy . . . .  S1 A. As far as the submatrix XbY and Y'Y are concerned, these 

operations are the same as performing the Gauss-Jordan elimination on the first p rows. 

(This follows from P4.) Therefore 

Moreover, P3 tells us that the submatrix X6Xp will be reduced to (XkXP)-l and B thus 

becomes 



(For simplicity, we have used the first p rows of the matrix A. The results still hold if 

we apply the SI i -EEP operators to rows chosen according to some other schemes. For 

example. if ran k(X)  = q and we apply S,, , . . . , S,, to A to obtain B = S,, , . . . , S,, A, we 

will have ( i )  bb ,q+l = D,, for 1 5 j 5 k ,  (ii) bq+l ,q+l  = ESSk, and (iii) the submatrix 

formed by b,, ,,,, 1 5 j ,  I 5 k, is the inverse of the submatrix formed by a,] ,,, , 1 5 j, 1 5 k,.) 

Applying the SWEEP operator successively, we can then obtain (X6Xp)-l, pp, and ESSp 

for all possible subsets. This is illustrated in the table below, where we have 3 regressor 

variables and we want to fit all Z3 - 1 = 7 models. 

Step Operator Resulting Matrix Variables in Model - 

0 A none 

1 s1 S1 A x 1 

2 S2 S2 S1 A ~ 1 ~ x 2  

3 S1 SlS2SlA = S2SlSlA = S2A 2 2 

4 s3 s3S2A x2, x3 

5 S 2  S2S3S2A = S3S2S2A = S3A 2 3 

6 s1 S1 S3A xl , x3 

7 s 2  s2S1 S3A Xl,x2r23 



3.4 Multicollinearity 

Consider again the model Y = XP + E .  The most fruitful statistical inference results 

from a well designed experiment where the columns of X are orthogonal. Observational 

studies are not rare, however, especially in medical statistics, and in these studies X is 

generally non-orthogonal. Multicollinearity refers to the fact that the columns of the design 

matrix X are not linearly independent. The effect of this is that some linear functions of 

,B do not have unique estimates. Fortunately, it is unusual in regression analysis that 

columns of X will exhibit exact linear dependency. However, near multicollinearity does 

occur occasionally. 

Since XIX is a real symmetric matrix, it can be decomposed as X'X = PAP' such 

that A = diag(X1. . . . , X p )  with X I ,  . . . , Xp being the eigenvalues of X'X and P being 

the matrix whose columns, VI , . . . , vp, are orthonormal eigenvectors corresponding to 

XI,. . . , Xp. Suppose we want to (%,rimate p'PIP for some vector p. The least squares 

estimate is 

with variance 
~ar(p'P'B) = ~'P~(x'x)-'x~(~~I)x(x'x)-'P~ 

From the last expression, it is obvious that the variance of the estimate would be large 



if any of the X,'s is small but p,  (the i t h  component of p) is not zero or compatible to 

A. In other words, linear functions of p in the form p'PtP will be accurately estimated 

only if p'P1 is a linear combination of eigenvectors of X'X associated with relatively large 

eigenvalues. 

The last st atenlent can be generalized to any linear function of ,d since, for any vector 

= p1P'/3, where = c'P. 

Therefore, all linear functions of ,B can be written in the form p'Pt/3. Consequently, for any 

c, c'p can be accurately estimated only if c can be approximated by a linear combination 

of the eigenvectors corresponding to relatively large eigenvalues. In particular, the estimate 

of the j t h  component of 8, 3, = d,P (where d, is a vector with its j t h  component equals 1 

and the rest zeroes), and the prediction of the future response value at xo, ijo = xbp, will 

not be precise if the projections of d, and xo onto the space spanned by the eigenvectors 

associated with small eigenvalues is not much smaller in magnitude than their projections 

onto the space spanned by the eigenvectors associated with larger eigenvalues. (See Silvey 

[I9691 for a more detailed discussion on imprecise estimation caused by multicollinearity.) 

The problem now is to devise a way to detect collinearity. First of all, given the 

matrix X, we should scale the columns so that they are compatible in length. The reason 

for doing so is that it should make no difference to the resulting model whether, say the 

mass of an object, is measured in kg or g. However, it makes a difference numerically 

and affects the prdcedures that we are going to discuss. One common way to scale X is 

to normalize its columns. Another way centers the independent variables first so that the 
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model is (assuming there is a constant term) 

1 
where S ~ = - - X ~ , ,  

The independent variables are then standardized so that 

variable corresponding to the i + l th column of the matrix X.) 

One way to detect nl~lticollinearit~ is by means of the variance inflation factor, V I F  

(see Neter e t  al. [1985]), which is defined to be 

V I F i  = (R-l)ii  for l s i l p - 1 ,  

where R is the correlation matrix for z l  , . . . , x p - l  in the standardized model. Note that, 

for the standardized model Y = ,&,In + Xsp, + E with COZ)(E) = u21, 



Therefore, 

and it will be large if V I F i  is large, hence the name variance inflation factor. 

It is possible to show thatt 

t See Appendix A for proof. 



where R, is the coefficient of multiple determination when the i th  column of X, is regressed 

upon the other p-2 columns. If a linear relation exists between x, and some other variables 

in the model, Rz will be near 1 and VIF, will be large. Therefore, a large VIF, value 

indicates a problem of multicollinearity. A common practice is to take maxi <z<p-l - - V IFz > 

10 as an indication of the existence of near dependency anlong the columns X,. 

Belsley e t  al. [I9801 noted that a shortcoming of the use of the V I F  is that it cannot 

distinguish the difference between one linear dependency and the coexistence of several 

linear dependencies. For example, high values of VIF l , .  . . , VIF4 can result from a single 

linear relationship between xl , x2, x3 and x4 , or two linear relations, one between x1 and 

5 2  and one between x3 and xq. 

A better method for detecting multicollinearity is based on the singular values of X. 

(See Belsley e t  al. [1980].) By the Singular-Value Decomposition, the p x p matrix X can 

be written as 

X = UDV', 

where U is an n x p matrix whose columns are orthonormal eigenvectors of XX', 

D = d i a g ( f i )  is an p x p matrix, and 

V is an p x p matrix whose columns are orthonormal eigenvectors of X'X. 

The quantities pi = f i ,  1 5 i 5 p, are called the singular values of X. Since V is an 

orthogonal matrix, 

XV = UDV'V = UD. 

If pi is near zero, then 



where XI and U, represent the j t h  column of X and U respectively, and r,t denotes the 

j k t h  entry of V .  Therefore, each small value of p ,  corresponds to a near linear dependency 

between the colunlns of X .  This agrees with the fact that small A, are problematic, as 

discussed in the beginning of this section. Xote that if there are r small p,, there will be 

r near linear dependencies between the columns of X.  To see how small should p, be for 

it to be considered problematic, Belsley et a1 recommended using the condi t ion  index  

1 3 1 p  
7 7 2  = 

P 2 

instead of 11, .  Since Cr=l = Cf=l A, = Trace(XIX) = p (the last equality holds because 

columns of X are assumed to be normalized), not all p, can be small simultaneously. For 

this reason, a small p ,  will result in a large q,. By their experience, weak dependencies are 

associated with q, around 10, whereas moderate to strong relations are associated with 77, 

of 30 to 100. 

Once a linear dependency is detected, the independent variables that are involved 

can be found by using the variance-decomposition proportion defined below. Since 

var (p)  = U ~ ( X I X ) - '  

= g 2 ( p ~ ~ ' ) - 1  = U ~ P A - ~ P '  

= u ~ v D - ~ v ' ,  

we have var(?i) = u2 C:=l 3. It is then obvious that 
J 

decomposition proportion, defined by 

the quantity, called the variance 

represents the proportion of the variance of Bi associated with pj. For a high value of qi, 

the variables xj, , xj,, . . . , xj, (j l , .  . . , j ,  E (1,. . . ,p ) )  are considered to be nearly linearly 

50 



dependent if rzlk is large for 1 5 k 5 r. Belsley e t  a1 used rzlk > 0.5 as a judgement for 

large rzlk. Such variables can be easily picked out with the help of a variance-decomposition 

proportion table like the one shown below. 

A few remarks are in order here: 

(1) A linear relation must involve at least two variables; a single high nj; value at any 

row cannot be used to establish linear dependence. 

(2) The involvement of the variates in two or more linear relations may be confounded 

if the associated condition indexes are roughly equal in magnitude. 

To clarify this point, I considered a hypothetical example where I related four variables in 

the following manner: xl +x2 x 0, x3 +x4 = 0 (i.e. C:=,(xl, + ~ 2 , ) ~  and C : . , ( X ~ ~  + ~ 4 , ) ~  

are small). The resulting table may look somewhat like 

even though it is expected to be something like 



Although it is still clear that two linear relations exist (two 77, are considerably greater 

than 15), the variables that are involved in each dependency can no longer be definitely 

picked out. 

(3)  When a variable is involved in two or more linear dependencies, its involvement in 

the weak one may be masked by that in the strong one. 

For example, suppose X I  + x2 z 0 and xz + x3 + xi 0 where it is assumed that the latter 

linear relation is much stronger than the first one. Then the following table may result. 

Although x2 is involved in a linear relation with X I ,  its involvement in such a relation 

did not show up in the table because its effect is being dominated by its involvement 

in the stronger relation with 2 3  and x4 where qi = 290. This problem can sometimes be 

overcome by picking an involved variable from each dependency and regressing them on the 

remaining variables. For the example above, we can pick x3 from the stronger dependency 

and xl from the weaker one and regress each on x2 and 5 4 ;  the regression coefficient of 

x2 should be significant for the regression of XI  on x2 and xa, indicating a relationship 

between x1 and x2. 
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The advantage of using condition index over the \, 'IF is obvious. To obtain all the 

\*'IF'S, a matrix multiplicat,ion and an inversion are required. To find all q , ,  a singular 

value deconlposition and some divisions are required. With some more arithmetic, all 

variance decomposition proportions can be found. With a computer, both procedures can 

be performed in seconds. However, the information ~rovided by the 7,  and x,, are more 

valuable than that by the VIF,. 

We shall now briefly describe the Ridge Regression, an alternative that can be used 

in place of the usual linear regression when multicollinearity is detected. The idea is to 

use X'X + t I  instead of X'X in the estimate of 0 so that, instead of b = (XIX)-'X'Y, 

we have 

where k is a non-negative constant to be determined. Returning to our original problem 

in estimating plP 'P (see the beginning of this section), we can now use p'P1pR instead. 

It can be shown that the mean square error for p lp lPR is 

= Variance  + Bias  

Note that the problem of inflated variances in the presence of small eigenvalues can be 

eliminated by choosing a value of k that is considerably larger than 0. However, there is 
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a trade off: a non-zero value of k  creates bias. Kevertheless, it can be shown that there 

exists k > 0 such that the mean square error is smaller than that given by the least square 

estimate ( k  = 0). Unfortunately, such a k is generally unknown. A method commonly 

used in determining the value of k  to use (say k o )  is the ridge trace, a simultaneous plot 

of the estimated regression coefficients against k; ko is usually chosen as the value of k  

beyond which the graph looks flat. (Ridge regression has been discussed by Hoerl and 

Kennard [1970], Neter et al., and Smith and Carnpbell [1980], for example.) 



CHAPTER 4 

ANALYSIS OF CHILDREN'S AID SOCIETY 

EXPENDITURES DATA 

4.1 Children's Aid Society Expenditures Data 

The data set that we investigate deals with the per child capita expenditure by the 

Children's Aid Society in 44 Ontario counties and districts. The Children's Aid Society 

is interested in determining how this expenditures is related to the sixteen variables listed 

below. 



x1 : proportion of population whose   not her tongue is not English or French. 

x2 : proportion of children less than 18 who are from single parent families. 

xj : proportion of tax returns from the two lowest categories. 

x4 : proportion of GWA beneficiaries. 

x 5  : ~roportion of legal aid cases. 

x6 : migration rate outside of ~nunicipality. 

x7 : infant mortality rate. 

xe : cri~ninal code offense rate. 

xg : Juvenile Delinquent Act offense rate. 

x 10 : number of doctors/ 1,000 population. 

211 : proportion of population of (N.A.) Indian descent. 

x12 : proportion of tenant occupied dwellings. 

x 13 : proportion of population from large families. 

x14 : proportion of population with grade 8 education or less. 

xi5 : dependency ratio. 

216 : rate of incidence of births to unmarried mothers. 

All rates are measured in incidents per 100 population. The data is given in Appendix B 

where y represents the response variable, 

y = per child capita expenditure (i.e. total amount spent divided by number of children 

in the region) on Children's Aid Society services in 1980, in dollars. 

This data is analyzed in the following sections. Outlying and influential cases are 

discussed, as well as the ~roblem of multicollinearity in the design matrix and the identifi- 
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cation of the important factors influencing the response. Many of the diagnostic procedures 

presented in the previous two chapters will be illustrated here. For the convenience of the 

reader, these are listed below and their previous references are indicated. 

Table 4.1 Diagnostics discussed in the analysis of the Children's Aid Society data. 

First Reference 

Statistic/ Procedure 

t test for outliers 

F test for a single added variable 

Added variable plot 

Normal plot 

W' test for normality 

Cook's distance, C, 

D F F I T S 2  

Mahalanobis distance, D: 

Leverage, h, ,  

e[,] vs. e ,  plot 

Added variable plot for transformation 

F test for transformation 

CP 

V I F ,  

Condition number, q, 

Variance-decomposi tion proportion table 

5 7 

Sect ion 

2.2 

2.3 

2.3 

2.4 

2.4 

2.6 

2.6 

2.6 

2.6 

2.6 

3.1 

3.1 

3.2 

3.3 

3.3 

3.3 

P a g e  

14 

19 

19 

2 1 

21 

24 

25 

26 

2 7 

2 7 

32 

33 

38 

47 

50 
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4.2 Analysis 

The objective of this section is to identify important factors influencing the response 

y ,  and to simultaneously demonstrate some of the techniques discussed in previous chap- 

ters. The software MIXITAB will be used as a tool for fitting the regression line and 

providing basic statistics. Analyses based on procedures discussed in previous chapters 

are provided by a program written by the author. 

4.2.1 Identification of potentially out lying and influential cases 

The estimated regression line from the full model is 

E ( y )  = - 89.9 + 26.0~1 + 3 5 5 ~ ~  - 3 . 6 ~ ~  + 188x4 - 3 4 7 ~ ~  - 297x6 

- 48x13 + 9 0 . 9 ~ ~ ~  + 204xl5 + 5 8 . ~ ~ 6 .  

Table 4.2 gives the estimated coefficients, their standard errors, the significance level as- 

sociated with a test that the variable may singly be excluded from the model (p), and the 

variance inflation factors (VIF) ;  the analysis of variance table is also given. Notice that 

some of the coefficients are different in sign than perhaps would initially be expected; for 

example, the coefficient of 2 3  is negative. Comments on the variance inflation factors will 

be given in the following section. Figure 4.1 and Figure 4.2, plots of ei and ri against y i7  

show the difference between using the ordinary residuals and the standardized residuals. 

Comparing the relative positions of the points, the two plots are similar; the greatest lo- 

cation change occurs for cases 40 and 43, which are labelled on the plots. Table 4.3 gives 

information on some potentially influential points. These cases can also be identified from 

Figure 4.3-4.6, which plot hii, D:, Ci, and DFFITS: against i. As expected, hii and ~f 

provide very similar results. With leverage values in the proximity of 0.9, both cases 6 and 
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Table 4.2 Estimates from fitting a full model to the Children's Aid Society Data 

Standard 
Variable Coefficient Error P VIE 

Constant 
X1 
X2 
X3 
X4 
X5 
X6 
X7 
X8 
X9 
X10 ' 
XI1 
X12 
X13 
X14 
X15 
X16 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 16 13510.4 844.4 5.24 0.000 
Error 27 4354.5 161.3 
Total 43 17865.0 



Figure 4.1 Plot of ordinary residuals, e i ,  vs. fitted mean values, cis 

Figure 4.2 Plot of standardized residuals, r ,  , vs. fitted mean values, t i .  



Table 4 3  Statistics concerning potentially outlying and influential cases. 

Case PRESS Cook ' s 
Number District Leverage Residual Distance DFFITS~ 

Kenora 

Rainy River 

Cochrane 

York 

Toronto 

Frontenac 

Ottawa-Carleton 

Prescott & Russel 

Durham 



C a s e  N u m b e r  

Figure 4.3 Plot of leverage, hi;,  vs. case number. 

Figure 4.4 Plot of ~f (estimate of Mahalanobis distance) vs. case number. 



Case N u m b e r  

Figure 4.5 Plot of Cook's distance, Ci, vs. case number. 

Figure 4.6 Plot of DFFITS: vs. case number. 



43 should be considered influential since they are far from the center of the data. The next 

two most influential cases are 31 and 40, having leverage values larger than 0.7. Observa- 

tion of the Cook's distance values (see Figure 4.5)  also indicates that cases 6 and 43 are 

influential, with the latter case being more so. Detailed analysis indicates that case 6 has 

values of X I ,  . r ~ ,  xg , . r l l ,  and x l6  far outside the range of the other cases (.ee Appendix C). 

With C, values slightly larger than 0.5, cases 39 and 40 are slightly influential. The graph 

of DFFITS:  gives very similar results as that of C, except that in Figure 4.6 case 39 

stands out more because case 39 is an outlier (see the discussion in the second paragraph 

on p.25). Similar conclusions concerning which cases are influential can be drawn from 

the plot of €[,I vs. e, in Figure 4.7. Cases 6 and 43 distinctly fall outside the linear trend 

outlined by the other data points. Note that cases 6, 40, and 43 are identified by all three 

( h,, , C, , and e1.1 VS. e,) graphs. It should also be mentioned that the potentially influential 

cases 7, 9, 32, and 33 included in Table 4.3 are not recognized as highly influential in these 

three graphs. 

Figure 4.8 shows a plot of the absolute standardized PRESS residual, It, 1, against 

case number. With I = nzax It, 1 = 4.369, the Bonferroni test is significant with a p-value 

less than 0.008. We conclude that case 39 is much different from the rest of the data and 

can be considered as an outlier. It is not unlikely that case 39 should behave differently 

from the other districts since it corresponds to the Ottawa-Carleton region. 

4.2.2 The problem of multicollinearity 

The correlation matrix of the independent variables is given Table 4.4. There are 

slight correlations between x8 and x16, xg and x l l ,  x13 and $14,  212 and XIS ,  and x i 1  and 
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Figure 4.7 Plot of PRESS residuals, e[,l, vs. ordinary residuals, ei. 

-I t,t =4.s69 (p< 0.008) Case N u m b e r  
Figure 4.8 Plot of absolute standardized PRESS residuals, Iti 1, vs. case number. In- 
cluded is the value of the maximun Iti I ;  the quantity in parenthesis gives the significance 
level for testing whether the observation associated with the largest Iti 1 is an outlier. 



Table 4.4 Correlation matrix of independent variables. Larger values are identified by 
asterisks. 

x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 
x10 
xll 
x12 
x13 
x14 
x15 
x16 

x10 
xll 
x12 
x13 
x14 
x15 
x16 

x9 x10 xll x12 x13 x14 x15 
-0.029 
0.735.* 0.027 

-0.118 0.678 -0.040 
0.407 -0.367 0.394 -0.329 
0.281 -0.375 0.270 -0.336 0.775* 
0.225 -0.602 0.210 -0.792* 0.609 0.646 
0.604 0.104 0.780* 0.164 0.489 0.403 0.087 



xis. Note further that two L'IF, values are greater than 10 (see Table 4.2). The variance 

decomposition proportions are given in Table 4.5, and these provide a deeper insight into 

the problem of multicollinearity. There are three condition numbers that are significantly 

greater than 30. indicating that there are three strong linear dependencies. The strongest 

relation has a condition number of 255, and it involves the constant term and X I S ,  with 

xlz and ~2.11 playing minor roles. The linear relation with condition number 94 seems to 

involve the variables X Z  , .rs. x 13, and x 16 ; a regression of x 13 upon other variables confirms 

that these are the major variables that enter the relation. Since all variance decomposition 

proportions for the third strongest dependency, with condition number 52, are less than 

0.45, it is not clear which variables are involved. It is likely that their involvements in this 

relation is either masked by their involvement in the stronger relations or confounded with 

relations having compatible condition numbers, 32 and 35. 

4.2.3 Selecting a transformation 

Since the results of the rest of the analysis may be affected significantly by influential 

or outlying cases, we delete them from the data set initially and consider re-including 

them later. The cases deleted are 6, 40. 13, and 39 as the first three seem to be the most 

influential and the last is an outlier. Table 4.6 gives estimates from fitting a regression 

without these observations. Comparing the regression equations with and without these 

cases, we note a significant change in the regression coefficients for XI ,  X ~ , X B ,  xlo , x12, and 

116. The sign of d3 is now meaningful, but that of j16 is not. Note the significant decrease 

in the variance estimate (from 161.3 to 65.49). With these four points deleted, case 31 

stands out as an influential point while case 32 is an outlier. 

6 7 





Table 4.6 Estimates from fitting a full model to the Children's Aid Society Data with cases 
6,  39, 40, and 43 deleted. 

The regression equation is 
E(Y) = - 130 + 139 xl + 380 x2 + 112 x3 + 178 x4 - 404 x5 - 195 x6 

- 898 x7 + 317 x8 + 895 x9 + 19613 x10 + 377 xll - 18.2 x12 
- 73 x13 + 75.8 x14 + 277 x15 - 80 x16 

Standard 
Variable Coefficient Error 

Constant 
xl 
x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 
x10 
xll 
x12 
x13 
x14 
x15 
x16 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 16 9038.51 564.91 8.63 0.000 
Error 23 1506.28 65.49 
Total 39 10544.79 



Figure 4.9 gives a plot of r ( , )  vs. E [ z ( , ) ] .  The It" statistic for testing normality has a 

value of 0.957, which is almost significant at the 0.10 significance level. Also, the plot does 

not resernble a straight line. Figure 4.10 is an added variable plot for detecting whether 

a transfornlation is required (see Section 3.1). The F statistic associated with this plot 

has a large value of 23.218 with corresponding significance level less than 0.0001, and the 

graph certainly seems to follow a linear trend. Note the striking difference in significance 

levels corresponding to these two tests. 

We consider a Box-Cox tra~lsformation to normalize the response. To estimate the 

parameter X in the Box-Cox transformation, we plot maximized log likelihood for various 

X in Figure 4.11. The ~naxinlum likelihood estimate of X is approximately -0.7. Note that 

X = -1.0 is well within the 95% confidence interval and, for convenience, we will therefore 

use the inverse transformation to normalize the data. 

Figure 4.12 is a plot of r( , )  against E [ z ( , ) ]  for the transformed model with all variables 

included, while Figure 4.13 gives an added variable plot for checking whether this trans- 

formation is satisfactory. These two plots can be contrasted to the corresponding plots for 

the untransformed model (Figure 4.9 and 4.10). It is apparent that the transformed model 

follows a normal distribution more closely. The W' statistic corresponding to Figure 4.9 

is 0.983 and the corresponding significance level is well above the 50 percent point. Since 

maxl t , /  = 2.071, there are no apparent outliers. 

4.2.4 Variable Selection 

In this section we attempt to identify the variables which most highly influence 

the response. First, we consider all possible regressions to the transformed response. 
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Figure 4.9 Plot of ordered standardized residuals, r ( i ) ,  vs. expected values of normal 
order statistics, E[q i ) ] .  Included is the associated test statistic for normality, W'; the 
quantity in prenthesis gives the significance level for the test. 

Figure 4.10 Added variable plot for detecting the need for a transformation (Xo = 
1) for the full model. Included is the associated F test statistic for testing that a 
transformationis required; the quantity in parenthesis gives the significance level for the 
test. 



Figure 4.11 Plot of maximum log likelihood vs. A. The vertical lines form an approxi- 
mate 95 percent confidence interval for A. 



Figure 4.12 Plot of ordered standardized residuals, r(i), vs. expected values of 
normal order statistics, E [qi)], for the transformed model. Included is the associated 
test statistic for normality, W'; the quantity in parenthesis gives the significance level 
for the test. 

Figure 4.13 Added variable plot for detecting the need for a further transformation 
(Xo = 1) for the transformed model. Included is the associated F test statistic for testing 
that a transformation is required; the quantity in parenthesis gives the significance level 
for the test. 



Reducing the number of explanatory variables in the model may remove some of the 

problems encountered above, especially multicollinearity. All submodels contain a constant 

term. Many of the models with low C p  values include xl , x2, xs, X G ,  x i ,  xll , xld, and x15, 

with XI ,  x2,.r3 and xll included most often. 

Based on the Cp statistic and with a consideration of parsimony, eight reasonable 

submodels are shown in Table 4.7 together with some of their respective diagnostic and 

influence statistics. Testing for normality using the w' statistic shows that all models 

have errors which are reasonably approximated by the normal distribution. The last four 

models provide small C p  - p values. Note that xl ,  x;,, x3, and X I  1 are common to all these 

models. 

To illustrate the technique of added variable plots and to test the importance of x2 . 

an added variable plot of x;, for model 1 is displayed in Figure 4.14. Both the linear trend 

and the highly significant F value strongly suggest keeping xz in the model. Figure 4.15 

shows the added variable plot of x4 for the same model (with x2 included). With a more 

or less random pattern in the plot and a non-significant F value, adding x4 to the model 

does not significantly improve the model. 

4.2.5 A working model 

Before comparing the models in Table 4.7, we should return to the (four) influential 

and outlying cases that we have deleted and try to re-include them. Out of the four cases, 

only case 40 can be re-included in models 1, 2, 3, 4, and 6 without significantly altering the 

estimates. Cases 6 and 43 are still highly influential; similarly, case 39 is again an outlying 

value. 
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Figure 4.14 Added variable plot for adding 22 to the model with X I ,  x3, xs, xll, 
and 214. The associated F test statistic for including x2 in the modelis is stated; the 
quantity in parenthesis gives the significance level for the test. 

Figure 4.15 Added variable plot for adding x4 to the model with XI, x2, xs, zs, xii, 
and 314. The issociated F test statistic for including x4 in the model is stated; the 
quantity in parenthesis gives the significance level for the test. 



From the previous analysis, the factors important in explaining y are X I ,  x2, x3, x 4 ,  

x6, x7, xlo, x11, x14, X I S .  A11 of the models in Table 4.7 provide a good fit to the data. 

Models 3, 5 ,  6, 7 and 8 all have s~nall C p  - p values; model 3 may be preferable overall 

since xis is highly correlated with the constant term. Details of the fitted model with cases 

6, 39, and 43 deleted are given in Table 4.8. Figure 4.16 and 4.17 give, respectively, the 

added variable plots of x4 and xl5 for this model. The F test for including 6 4  is significant, 

but the plot indicates that it is affected by an isolated case. Figure 4.17 shows an opposite 

situation. The F test for including x15 is non-significant but the plot reveals that it might 

be influenced by case 40. 

4.2.6 Discussion 

The variables that seem to be important in explaining the variation in y are: 

xl : proportion of population whose mother tongue is not English or French. 

x2 : proportion of children less than 18 who are from single parent families. 

x3 : proportion of tax returns from the two lowest categories. 

.-cs : migration rate outside of municipality. 

x;. : infant mortality rate. 

xlo : number of doctors/1,000 population. 

xll : proportion of population of (N.A. ) Indian descent. families. 

x14 : proportion of population with grade 8 education or less. 

Note, however, that some of the other independent variables originally considered are 

correlated with those listed above, as discussed previously. In addition, some of the districts 

have values of independent variables very different from the rest of the cases. Inclusion of 



Table 4.8 Estimates from fitting a submodel to the transformed Children's Aid Society data 
with cases 6, 39, and 43 deleted. 

The regression equation is 
E[y(-1)] = 0.946 + 0.0197 xl + 0.118 x2 + 0.0181 x3 - 0.0771 x6 

- 0.234 x7 + 5.10 x10 + 0.109 xll + 0.0693 x14 

Predictor 
Constant 
xl 
x2 
x3 
x6 
x7 
x10 
xll 
x14 

Coef 
0.945954 
0.01968 
0.11824 
0.01809 

-0.07709 
-0.2343 

5.098 
0.10931 
0.06933 

Analysis of Variance 

Stdev 
0.004263 
O.OlOO3 
0.03609 
0.01255 
0.03247 
0.1478 
2.389 

0.04388 
0.01436 

SOURCE DF SS MS F P 
Regression 8 0.00115363 0.00014420 15.02 0.000 
Error 32 0.00030720 0.00000960 
Total 40 0.00146083 



Figure 4.16 Added variable plot for adding x4 to the model with X I ,  22, x3, xs, 37, 
xlo, xll, and 214. The associated F test statistic for including x4 in the model is stated; 
the quantity in parenthesis gives the significance level for the test. 

0.008 

Figure 4.17 Added variable plot for adding x15 to the model with X I ,  22, x3, xs, 
27, 210, 211, and ~ 1 4 .  The associated F test statistic for including xis in the model is 
stated; the quantity in parenthesis gives the significance level for the test. 



these observations would have biasing effect on the analysis. These districts are: 

1. Kenora. 

2. Prescott and Russel. 

3. Durharn. 

4. Ottawa-Carleton. 

The fourth of the districts above is also an outlying case since it does not fit into any of the 

reasonable sub~nodels discussed in Section 4.2.4. Note that Kenora is the largest district. 

Also, the per child capita expenditure in the Ottawa-Carleton region is far higher than 

that predicted by any of the regression models studied. 



CHAPTER 5 

CONCLUSION 

After fitting a regression line, it is important to consider the goodness of fit of the 

model. The procedures discussed in this project can be helpful in this regard. Note that 

sometimes two statistics can give very similar results, as in the case of the Cook's distance 

and D F F I T S ~ ,  or leverages and Mahalanobis distance. Considering Cook's distance and 

DFFITS2, Cook's distance may be preferable over DFFITS2 because the former statistic 

is invariant under nonsingular linear transformations and can be calibrated by comparison 

to confidence contours for p. Likewise, h,, may be preferred over D, since its bounded 

range provides an easy way to measure the 'strength' of influence of an observation. 

Graphs are powerful analytical tools and they are easily understood. Some statis- 

tics, such as the S test for heteroscedasticity and the F test for determining whether a 

transformation is required, can be misleading if not presented together with their graphi- 

cal equivalence or graphical procedures that are designed for similar purposes; the latter 

methods can help to identify whether a significant result is caused by a few cases or the 

data set as a whole. 

Care should be taken when using some of the statistical procedures presented as 

often they require some underlying assumptions, and violation of these assumptions may 

lead to misleading interpretations. For example, non-constant variances may offset the 

W' test for normality to indicate that the errors are non- normal when they are actually 
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normally distributed. Similarly, all F tests discussed rely on normality of the errors. 

Finally, it should be mentioned that there are many other statistical procedures that 

are not considered here, but may be useful or necessary in some situations. Some examples 

are the test for lack of fit when repeated measurenlents are available, a consideration of 

transfornlations of independent variables, or transformations of the response values other 

than the Box-Cox transformation, and the assessment of influence when more than one 

case is deleted. Some recent work in regression goodness of fit include diagnostics for 

measurement-error nlodels (Carroll and Spiegelman [1992]) and diagnostics for assessing 

the influence of individual cases on the estimation of the parameter in the Box-Cox trans- 

formation model (Tsai and Wu [1992]). 



APPENDIX A 

Proof of brIF, = 

Consider the standardized model 

and define V I F ;  as in Section 3.4 by 

brIFt = ( R - I  ),; for l < i < p - 1 ,  

1 where R is the correlation matrix for xl , . . . , xp- 1 .  Proving that V IF,  = I-R: is therefore 

the same as proving that the i i th entry of the inverse of R = XiX, is the same as ~&, 

where R, is the coefficient of multiple determination when the i t h  column of X, is regressed 

upon the other p- 2 colu~nns. Without lost of generality, we can assume i = 1 and partition 

X, as 

U'U ulv x:xs = [vlu v'v] 7 

where U is the first column of X, and V is X, without the first column. Using the fact 

that 

we would have 



The last equality follows frorn the fact that X, is a standardized matrix. 



APPENDIX B 

Children's Aid Society Expenditures Data 

Area - 
1 Algoma 
2 Muskoka 
3 Nipissing 
4 Parry Sound 
5 Sudbury 
6 Kenora 
7 Rainy River 
8 Thunder Bay 
9 Cochrane 

10 Timiskamlng 
11 Brant 
12 Halton 
13 Hamilton- Wentworth 
14 Niagara 
15 Elgin 
16 Haldimand- Norfolk 
17 Huron 
18 Middlesex 
19 Oxford 
20 Perth 
21 Bruce 
22 Grey 
23 Waterloo 
24 Wellington 
25 Essex 
26 Kent 
27 Lambton 
28 Dufferin 
29 Peel 
30 Simcoe 
31 York 
32 Toronto 
33 Frontenac 
34 Hastings 
35 Leeds & Grenville 
36 Lennox & Addington 
37 Prince Edward 
38 Lanark 
39 Ottawa-Carleton 
40 Prescott & Russel 
41 Renfrew 
42 Str., Dund. & Glen. 
43 Durham 
44 Northumberland 





APPENDIX C 

Standardized Residual Plots 

Figure C.l Plot of standardized residuals, r;, vs. proportion of population whose 
mother tongue is not English or French, XI. 



Figure (2.2 Plot of standardized residuals, r;, vs. proportion of GWA beneficiaries, 
5 4 -  

-3 1 I 1 I I I 1 I I I I I I I I I I I I 1 

0.000 0.005 0.010 0.015 0.020 

x9 

Figure C.3 Plot of standardized residuals, r;, vs. JDA offense rate, xs. 



Figure C.4 Plot of standardized residuals, ri, vs. proportion of population of (N.A.) 
Indian descent, xll . 

Figure C.5 Plot of standardized residuals, ri, vs. rate of incidence of births to 
unmarried mothers, 316. 
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