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Abstract 

A sequence is called Davenport-Schinzel if it contains no subsequence of the type 

ababa and avoids immediate repetitions of symbols. It was proven by S. Hart and 

M. Sharir that the maximum length of a Davenport-Schinzel sequence on n symbols 

is ncr(n), where a is the inverse Ackermann function. Here, we consider sequences 

avoiding an arbitrary finite forbidden subsequence. A complete characterization of 

forbidden subsequences on two letters with linear upper bounds is given. 
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Chapter 1 

Introduction 

In 1965 Davenport and Schinzel posed the problem of determining the maximum 

length of a sequence on n letters with no immediate repetition of the same letter, not 

containing any subsequence of the type ababa (i.e. the occurrences of two letters can 

give no configuration of the type a .. . b . .  . a . .  . b . .  . a). 

Originally this problem arose as a combinatorial problem connected with differen- 

tial equations [I], [2]. In later studies, connections with path compression algorithms 

in combinatorics were discovered [3], as well as further applications in combinatorial 

geometry [5] .  We will give a geometrical motivation for the problem in Chapter 2 

using line segments in the plane. 

In 1986 the maximum length of Davenport-Schinzel sequences on n letters was 

proven nonlinear in n, and a tight "almost linear" upper bound was found [3]. The up- 

per bound is ncr(n) where cr(n) is the inverse Ackermann function. Later P. Komjath 

found a simplified construction for the lower bound [7], which we present in Chapter 

4. Considering more general subwords of the type abab . . . of length s + 2 he proved 

that the lower bound is ncra(n). 

Here, we consider a natural generalization of the original problem. We study 

sequences not containing a given forbidden subword (i.e. subsequence) on generally 

more than two letters. Results regarding this, including those previously obtained in 

191, form Chapters 3 to 5. 

Chapter 3 deals with general forbidden words. In order to extend the original 



problem to forbidden words on more than two letters we have to replace the condition 

of no immediate repetitions by a new notion of k-regularity. A word is k-regular if 

every two occurrences of the same letter are at least k positions apart. Thus a word 

without immediate repetitions is 2-regular. A k-regular word avoiding a forbidden 

subword always has bounded length provided that k is sufficiently large. Excluding 

the trivial case of small k we show that the order of magnitude of the maximumlength 

of a k-regular word avoiding a forbidden subword f only depends on f .  In Theorem 

3 we find a sufficient condition for the linearity of the maximum length function. 

Finally we show in Corollary 2 that every forbidden word f can be reduced to a word 

red f not having more than two occurrences of the same letter in a row, such that the 

maximum length function for a word avoiding red f has the same order of magnitude 

as that for a word avoiding f .  
In Chapter 4 we show that the maximum length function for the reduced forbidden 

word abbaab is linear. Combining this result with Komjath's construction from [7] we 

give a complete characterization of two-letter forbidden words yielding linear upper 

bounds. 

In Chapter 5 we find a linear upper bound for abcd..  . mab and prove a lemma 

describing the behaviour of words avoiding abcabc. 

In Chapter 6 we study connections between forbidden subwords and forbidden 

submatrices in (0,l)-matrices. We present some results from [a] here. 

Chapter 7 contains the results of computer searches for various forbidden words 

as well as some conjectures based on them. 



Chapter 2 

Geometrical Motivation 

We will now give a geometrical motivation for the original problem by Davenport and 

Schinzel. Consider a set S of n open segments in the plane such that they only have a 

finite number of points of intersection. We colour the segments with n distinct colours 

al ,  a2, . . . a,. This way some points on the plane are coloured uniquely, while the points 

of intersection have several colours assigned to them. Choose a set of coordinates such 

that all the segments lie in the halfplane y 2 0. Pick a point P = (x, 0) on the x-axis. 

If there exists a point A = (2 ,  y) coloured uniquely with a colour c, such that the 

vertical segment AP does not contain any other colour, we say that the colour c is 

visible from the point P .  We colour each point on the x-axis with the colour visible 

from it if there is such a colour. We leave the point uncoloured otherwise. This way we 

obtain a sequence of segments on the x-axis, possibly degenerated to a point, coloured 

with the colours al ,  az,. . .a,. The corresponding sequence on n letters al, 0 2 , .  . .a, 

will be called the sequence generated by S (see the picture on the next page). 

Obsemtion 1 The sequence generated by S is Davenport Schinzel (i.e. avoids ababa 

and immediate repetitions). 

Proof: Let w be the sequence generated by S. There are no immediate repetitions 

because the only way that a sequence can be broken up is by a segment of another 

colour. Since the segments in S are open, we cannot have a segment interrupted by 

the endpoint of another segment. Furthermore, an a baba configuration requires that 



two segments intersect in two points. This would mean having an infinite number 

of points of intersection and a whole segment without unique colouring, which is 

impossible. 

It follows that the maximum length of a sequence generated by n segments is at 

most that of a Davenport-Schinzel sequence on n letters, which is O(na(n)). A 

natural question arises whether each Davenport-Schinzel sequence can be realized 

by segments. This is not generally known. There, however, exists a realization by 

segments of the Davenport-Schinzel sequences constructed by Hart and Sharir in [3] to 

prove that the upper bound O(na(n)) is tight. Thus for every no there exists n > no 
and a set of n segments generating a sequence of length o(na(n)). This does not 



mean that the maximum length of a sequence generated by segments is R(na(n)) in 

the sense we will use R for. What it actually proves is that the maximum length is not 

o(ncr(n)). (See definition 2 for asymptotic notation.) The construction of segment 

sets yielding superlinear sequences is due to Wiernik and can be found in 151. It 

involves the same double induction that Hart and Sharir use in [3], and we use in 

Chapter 4 to prove the superlineari ty of Davenport-Schinzel sequences. 



Chapter 3 

General Forbidden Words 

Definition 1 Let A be an infinite alphabet. 

By A* we denote the free monoid over A. The elements of the sets A* and A 
will be called words and letters respectively. Furthermore lA is the empty word 

and A+ is the set of all non-empty words. 

TWO words u,  v E A* are isomorphic, u 2 v, if v = a(u)  for some a! E Aut A*. 

Every w E A* can be considered a mapping w : [I, n] -+ A for some n. Thus we 

define rank w = (Imwl i.e. the number of letters in w, and lwl = n is the length 

of w. 

0 We call w E A* a word on n letters if rank w 5 n. 

A word u E A* is a factor of v E A* i f v  = xuy for some x , y  E A*. 

A word u E A* is a subword of v E A* if v = y0x1y1x2y2.. .xmym when u = 

21x2.. . X ,  and ~ ; , y j  E A*. 

A word u E A* avoids v E A* if there exists no subword w of u isomorphic to v. 

A word w is regular i f  rank w = Iwl i.e. there are no repetitions of letters in w. 

A word w is k-regular i f  every factor of w of length at most k is regular. 



There exists ambiguity in the asymptotic notation as used by various authors. We 

will stick to the following definition from "Introduction to Algorithms" by Thomas 

H. Cormen, Charles E. Leiserson and Ronald L. Rivest. 

Definition 2 Let g (n )  be a nonnegative function on the set of natural numbers. 

O ( g ( n ) )  = { f ( n )  : there exist positive constants c and no such that 0 < f ( n )  < 
cg(n) for all n > n o )  

o (g(n) )  = { f ( n )  : for any positive constant c > 0, there exists a constant no > 0 

such that 0 5 f ( n )  < cg(n) for all n 2 no}  

L?(g(n)) = { f  ( n )  : there exist positive constants c and no such that 0 5 cg(n) 5 
f ( n )  for all n > no )  

w (g (n ) )  = { f ( n )  : for any positive constant c > 0,  there exists a constant no > 0 

such that 0 5 cg(n) < f ( n )  for all n 2 no )  

O ( g ( n ) )  = { f ( n )  : there exist positive constants cl, c2, and no such that 0 5 

c ~ g ( n )  < f ( n )  < c2g(n) for all n > no) 

In accordance with generally accepted convention we write f ( n )  = O(g(n) ) ,  or f ( n )  

is O(g (n ) )  etc, rather than f (n)  E O(g(n ) ) .  

We say that f ( n )  and g (n )  are of the same order if f ( n )  = O ( g ( n ) ) .  

We concentrate on the following problem. A forbidden word f E A+ is given. Denote 

by s ( n )  the maximum length of a k-regular word w on n letters avoiding f .  What is 

the asymptotic behaviour of s ( n )  as a function in one variable n? 

It is easy to observe that s ( n )  is always a non-decreasing function. If k < rank f 

we have s ( n )  = +oo for almost all n. (This is because the infinite k-regular sequence 

ala2 . . . akala2. . . ar, . . . on k letters avoids f .) The following Theorem 1 shows that if 

k > rank f then s ( n )  < +oo for all n.  

Theorem 1 Let f E A+, k 2 rank f = r ,  and s ( n )  be the maximum length of a 

k-regular word on n letters avoiding f .  Then s ( n )  is O(n f  ). 



Proof: We will prove that 

Suppose w is a k-regular word on n letters avoiding f such that 

We can without loss of generality assume that equality holds because if we cut off the 

end of w, the word is still k-regular and avoids f .  We write w as 

where i = 1 f I ( ) , and / w i  = r for all i. Since r 5 k and w is k-regular, each 

factor w; is regular. Hence rank w, = r for all i, and Imw; is an r-subset of Imw. 

As rank w 5 n, there are at most different r-subsets of Imw, and by the 

pigeon-hole principle there exist 

factors w;, , w,,, . . . such that 

Taking any bijection from Im f to Im w;, we can find a subword isomorphic to f in w 

by picking one letter in each factor w;, . This is a contradiction, so s(n) is bounded 

by the function rl f 1 , which is a polynomial in one variable n of degree r .  Note 

that we are interested in the maximum length s(n) as a function of n for a fixed 

forbidden word f yielding constants r and If  1 .  

Remark 1 The function s(n) depends on f and k. To simplify the notation we 

suppose f and k known by context. We say that s(n) is the maximum length function 

for ( f ,  k). 



Observation 2 Let f ,g  E A+ be two forbidden words, f a subword of g and k > 
rank g (> rank f ). Let s ( n )  and t ( n )  be the mazimum length functions for ( f ,  k )  and 

(9, k )  respectively. Then s ( n )  5 t ( n )  for every n .  

Proof: Let w E A* be a k-regular word on n letters avoiding f such that Iwl = s (n ) .  

Since w avoids f it must avoid g, too, and lwl 5 t ( n ) .  

Algorithm A(k) Let w E A* and k 2 1. We define an algorithm A ( k )  which, 

applied to w,  finds a k-regular subword of w: 

Let w = ala2.. . a,, a l ,  a2.. . ,a ,  E A and wo = lA.  For i = 1,2,.  . . , m define 

w;-la; if w;-la; is k-regular 
W ;  = 

w otherwise. 

The k-regular subword w, of w is the output of A(k) .  

Theorem 2 A forbidden word f E A+ and integers k ,  1 > rank f are given. Let s (n )  

be the mazimum length function for ( f ,  k )  and t ( n )  the mazimum length function for 

( f  , I ) .  Then s ( n )  and t (n)  are of the same order. 

Proof: Without loss of generality k < 1. Obviously t ( n )  5 s ( n )  for every n because 

each 1-regular word is k-regular as well. Now let wo be a k-regular word on n letters 

avoiding f such that 1 woJ = s (n ) .  For i = 1,2, . . . , 1 -  k we define w; by applying 

A(k  + i )  to w;-I. In the end we get an 1-regular subword w,-k avoiding f .  Then 

I ~ ~ - ~ l  5 t (n ) .  For i = 1,2 , .  . . , 1 -  k the word w;-1 can be written in the form 

where aj E A, vj E A*, w; = ala2 . . . a, and vj are the sections left out by the 

algorithm A(k  + i). The algorithm A(k  + i )  reads letters from w;-1 one by one from 

the left to the right, and includes some of them in w;. At the moment that the first 

letter of the factor v, is to be read, the output produced so far is ala2.. .a,. The first 

letter of vj is not accepted by A(k  + i ) ,  which means that it occurs among the last 

k + i - 1 letters of ala2 . . . a,. Every following letter of vj is rejected through the same 



criterion, and therefore all letters from v j  are included among the last k + i - 1 letters 

of a1 a2 . . . a,. It follows immediately that 

Addition of one letter can only increase the rank of a word by at most one, so 

rankajvj 5 k + i 
and since w;-1 avoids f we have 

Therefore 

lw;-ll I Iw;ls(k + 2 )  

and finally 

s (n)  = lwol I Iw-klc I ct(n) 

where c = s (k  + l ) s ( k  + 2 ) .  . . s(1) is a constant independent of n. 

Remark 2 Let s (n )  be the maximum length function for (f, k)  where k > rank f .  It 

follows from Theorem 2 that O ( s ( n ) )  is independent of k. As we are interested in the 

asymptotic behaviour of s (n )  we do not have to care about k (providing k > rank f).  

So from now on saying s (n )  is the maximum length function for f E A+ we will mean 

s (n )  is the maximum length function for (f, rank f). 

Observation 3 The mazimum length function s (n )  is 0(1) if and only if the forbid- 

den word f is regular. 

Proof: Let f be regular, r = rank w ,  and w avoid f .  If Iwl 2 r then the initial factor 

v of w of length r contains each letter at most once because w is k-regular. This 

would mean v r f ,  which cannot happen, so the length of w must be less than r .  On 

the other hand if f is not regular then the regular word w = ala2. .  . a, on n letters 

always avoids f ,  and s (n )  2 n. 

From now on we will not consider the trivial case of a regular forbidden word. Thus 

we can always assume that s (n)  2 n holds for all n,  and consequently s (n)  = n ( n ) .  



Definition 3 By Af we denote the set of all non-regular words from A+. 

Lemma 1 Let f E ~f be a forbidden word, and k 2 rank f .  There ezists a constant 

d satisfying the following property: 

For each k-regular word w = uav avoiding f ,  where a E A and u ,  v E A*, 

there exists a k-regular subword w' of uv avoiding f such that Iw'l 2 Iwl-d. 

Proof: Denote 1 = ( f  1 and 

First suppose lul > k - 1 and Ivl > d + 2k - 3.We can divide w into disjoint factors: 

where (u2( = k - 1,lvll = d + k - 2 and 1v2) = k - 1. Furthermore we can express 

such that 1 x j  1 = rank xj = k. Suppose rank vl 5 3k - 4. By  the pigeon-hole principle 

there are at least 

disjoint factors xi,, x,,, . . . , xj, among all of the factors x,, such that 

Then we can find a subword of w isomorphic to f taking one letter in each factor xi,, 

which is a contradiction. Therefore rankvl 2 3k - 3. There must be at least k - 1 

different letters al ,  a2, . . . , ak-1 occurring in vl none of which occurs in u2v2 because 

rank u2vz < 2k - 2. We get 

We form a new word 

W' = ulu2ala2.. . ak-lV2v3. 

It is obviously a k-regular subword of uv avoiding f ,  and Iw'l = I w I  - d. If I u I  < k - 1 

or I V  I < d + 2 k - 3 the proof is analogical or even easier. 



Theorem 3 Let f E Af, k 2 rank f .  Let c be a constant such that in each k-regular 

w avoiding f there is a letter occurring at most c times. Then s ( n )  is O(n ) .  

Proof: Denote 1 = I f  1. We are going to prove that the length of a k-regular word w 

on n letters avoiding f is at most cdn where d is the constant (dependent on I )  from 

Lemma 1. For n = 0 the statement is obvious. Now let w be a word on n letters and 

a E A a letter occurring at most c times in w. Using Lemma 1 we can find a k-regular 

subword w' of w with no occurrences of a such that Iw'l 2 I w I  - cd. Since w' is a 

word on n - 1 letters we can use induction to get Iw'l 5 cd(n - 1)  and we are done. 

Theorem 4 Let f ,  g E Af be two forbidden words such that 

2 g = a v  

where a E A and v E A*. Then the mazimum length functions s ( n )  and t ( n )  for f 

and g respectively are of the same order. 

Proof: Denote k = rank f = rankg and 1 = Igl. Since f is a subword of g we have 

s ( n )  5 t ( n )  by Observation 2. Now let w be a k-regular word on n letters avoiding g 

such that Iw 1 = t ( n ) .  We form a subword w' of w by leaving out the first occurrence 

of each letter from w. Using Lemma 1 we can obtain a k-regular subword w" of w' 

such that 1 w"l 2 lw 1 - nd. Furthermore w" avoids f .  Hence Iwl'l 5 s (n )  and 

which proves Theorem 4. 

Corollary 1 It follows from Theorem 3 that for forbidden words 

f = avb 

g = akvb' 

where f E Af,  a ,  b E A, v E A* and k ,  1 2 1 the mazimum length functions s (n )  and 

t ( n )  are of the same order. 



Theorem 5 Let f, g E A f  be two forbidden words such that 

1 - 1  2 a z - 1  g = a:a a 2  . . . a 2 ~ m - 1  rn 

where aj E A,  aj # aj+l  and cuj 2 1. Then the maximum length junctions s ( n )  and 

t ( n )  for f and g respectively are of the same order. 

Proof: Denote k = rank f = rankg. As f is a subword of g we have s ( n )  5 t ( n )  

by Observation 2. Now let w be a k-regular word on n letters avoiding g such that 

lwl = t(n). We form a subword w1 of w by leaving out every other occurrence, starting 

with the second one, of every letter in w. Obviously w1 avoids f and Iwll 2 IW I, yet 

it may not be k-regular. We apply A(k)  to w1 and get a k-regular subword w" of wl. 

The word w" divides w' the following way: 

I I I I w' = a l x ~ y ; a 2 x 2 y 2 . .  . a p x , y ,  

where a ,  E A and x i ,  yi E A*. For each j = 1,2, .  . . , p  the factor xiy ;  is the factor 

omitted by A ( k ) .  The factors x j  and yj are chosen such that lx$l is divisible by k, 

and 1 yj 1 < k .  It is also possible to express w in the form 

such that x: is a subword of x j  and similarly y i  is a subword of yj for all j = 1,2,. . . , p. 

Now consider any j, 1 5 j 5 p. The words x i  and x j  can be divided as follows: 

where (z:l = k and r! is a subword of zi for every i ,  1 5 i 5 q. The algorithm A ( k )  

read the letters from w1 one by one from the left to the right, and included some of 

them in w". At the moment that the first letter of the factor x i y j  was to be read, the 

output produced so far was ala2  . . . a j .  The first letter of x j y j  was not accepted by 



A ( k ) ,  which meant that it occurred among the last k - 1 letters of ala2.. .a,. Every 

other letter from xJyj was rejected through the same criterion, and therefore all the 

letters from xjyi were among the last k - 1 letters of alaz .. . a,. It follows that 

for every i. There must be a letter a E A occurring twice in z:. It follows from the 

construction of w' that a occurs at least three times in zi. Since zi is k-regular we 

have Iz; 1 2 2k + 1 for every i and Isj 1 2 q ( 2 k  + 1). Realizing that 1s; 1 = qk we finally 

This holds for every j = 1,2,. . . , p .  Summing up: 

and 

At the same time lajyil < k for every j, i.e. 

and finally 

The word wl' is a k-regular word on n letters avoiding f, hence 

which proves Theorem 5. 



Definition 4 For every positive integer n we.put 

2 i f n L 2  
red n = 

1 i f n = l .  

Furthermore let 

u = aria:2 . . . aZm 

where a; E A,  aj # aj+l and aj 2 1 for all j .  We define the reduced subword o f u  as 

red u = 

This definition enables us to formulate the following corollary: 

Corollary 2 Let f ,  g E Af be two forbidden words such that f  = redg. Then the 
mazimum length functions for f and g are of the same order. 

Proof: Let g = a y l a y .  . . agm where aj E A,  aj # aj+l and aj 2 1. Denote fo = 
redal n d a z  a ,  a ,  . . . By Corollary 1 the maximum length functions for f  and fo are 

of the same order. For i 2 1 we define fi as follows. If 

then 

By Theorem 5 the maximum length functions for fi-, and fi are of the same order. 

Obviously there exists j such that g is a subword of fj. At the same time f is a 

subword of g. Let s (n ) ,  t ( n )  and r ( n )  be the maximum length functions for f ,  g and 

f j  respectively. We can use Observation 2 taking k = rank f j  = rankg = rank f  to 

obtain s (n )  _< t ( n )  5 r ( n )  for every n. Since s ( n )  and r ( n )  are of the same order we 

have s ( n )  = O( t (n ) ) .  



Chapter 4 

Forbidden Words on Two Letters 

Theorem 6 Let f = abba, a, b E A, and a # b. Then s(n) is O(n). 

Proof: Let w be a 2-regular word avoiding f .  Suppose that each letter occurs at least 

6 times in w. The factor beginning with the second and ending with the last but one 

occurrence of a letter x will be called the body of x. We will show that the bodies of 

two different letters cannot intersect. More precisely, the body of a letter x cannot 

contain any occurrence of y from the body of y. Assume the opposite. Then there 

exists the following configuration in w. 

where . :. x, is the body of x. Since the occurrence of y comes from the body of y , 
there must be another occurrence to the left of it. If the other occurrence were to 

the left of the first x, we would have a subword yxxy in w. If it were right of the 

first x, there would be an xyyx in w. Either way there is a subword isomorphic to f 

in w, which is a contradiction. Hence the bodies of two different letters are disjoint. 

The body of a letter x contains at least four occurrences of x and three gaps between 

neighbouring occurrences of x. If the number of letters in w is n, then there are at 

least 3n gaps between two neighbouring occurrences from the body of a letter. Each 

of these gaps must be filled by another letter to insure 2-regularity. An occurrence 

filling such a gap cannot come from the body of any letter, so it must be the first or 



the last occurrence. There are, however, only 2n first and last occurrences of letters 

in w, which is not enough to fill all the gaps. It follows from this contradiction that 

there exists a letter occurring at most five times in w, and by Theorem 3 the function 

s(n) is O(n). 

Corollary 3 Let f = a'Pak E Af, where a, b E A, a # b, and i, j, k > 0. Then s(n) 

is O(n). 

Proof: The reduced subword red f is a subword of abba, and by Theorem 6 its max- 

imum length function is O(n). Since f E Af, we also have s(n) = R(n) for both f 

and red f , and consequentely s(n) = O(n) for f .  

In the proof of Theorem 6 we used the fact that the factors determined by two different 

letters cannot intersect "too much". We will use a similar technique for f = abbuab. 

The proof is, however, much more complicated. 

Theorem 7 Let f = abbuab, a # b, a, b E A be the forbidden word, s(n) the maximum 

length function for f .  Then s(n) is O(n). 

Proof: Let w E A* and c occur at least three times in w. The factor beginning with 

the second occurrence of c ending with the last but one occurrence of c will be called 

the body of c. The minimal factor containing all occurrences of c is the hull of c. First 

we prove the following lemma: 

Lemma: Let w be a 2-regular word avoiding f ,  in which each letter occurs at least 

12 times. We leave out the first and the last occurrence of every letter to get w'. If 

c, d E Im w = Irn w' then there are the following four possibilities for their occurrences 

in w'. (We assume that c occurs before d in w'.) 

c d . . . d  ( i )  - 
(i i)  c .. c d  ... d c . .  c 

'-Q 
(iii) d . . . d  c d . . .d  c . . . c  - -- 
(iu) ~ $ . : . 4  c a or 

c . .  c d c . .  c d  ... d Q .1- 



where stands for a factor containing at least one c and no d,  similarly for d. 

Proof of lemma: We will discuss several possible cases of w. 

(1) The body of c  contains at least two occurrences of d. 

(a )  The body of c  contains all occurrences of d. If there were three occurrences 

of c  in the hull of d  there would be a subword isomorphic to f in w. If there are two 

occurrences of c  in the hull of d,  the situation in w looks like this: 

c c . .  j c d c u c d ~ ~ ~ ; ~ ~  

otherwise w would not avoid f .  Then the situation in w' looks like this: 

which is ( ii ). If there is one occurrence of c, or none, in the hull of d, we have the 

following possibilities for w: 

c  c . .  c  C . . . C  C .  
j - 

Then for w' we get 

c . . . c d . .  d c . .  c  " 
or 

which is (iii), (ii) or (ii). 

(b) There is d outside the body of c. Again there are two possibilities for w: 



or 

c c  c d u c u d c  
_...I 

(or the symmetrical ones). In w' we have 

or 

c c $.;A$ b 
which is (i i)  or (iv). (We get the same for the symmetrical cases.) 

(2) There is at most one occurrence of d in the body of c. Then there is at most one 

occurrence of d in the hull of c in w', so we have the. following diagrams for w': 

d . . . d c . . . c d c  c d . .  d -* w e  

where one of the outside factors may be empty, or 

with one of the outside factors possibly empty. This means we have (iii) or (i i)  in 

case of non empty outside factors and (iv) or ( i )  for empty outside factors. This 

completes the proof of the lemma. 

Now we can go on with the proof of Theorem 7. Let w be a 2-regular word avoiding 

f .  Suppose for contradiction that each letter of Im w occurs at least 12 times in w. 

We construct w' as in the lemma. Hence Im w' = Im w and the lemma holds. Define 

a partial order Q on Imw as follows: 

c Q d iff every occurrence of c is in the hull of d in w' or c = d. 

Let c, d, e E Im w', el! c, e a  d and c and d be incomparable. There are two possibilities 

for their occurrences in w': 

all e must be here 

,c...c d u  d . . . d  - 



and 
all e must be'here 

,c...c d . . . d  c - - d . . . d  

(Without loss of generality c occurs before d.) In the first case the ordered pair (e, d) 

will be called bad, in the second case the pair (e, c )  is bad. We leave out all bad pairs 

from a and get a new relation 9'. We define the partial order 5 as the transitive 

hull of 9'. Obviously 5 is a suborder of 9. From now on by a successor we will 

always mean the successor in 5 ,  the same for predecessors. Now we formulate some 

easy observations: 

(1) Every element from Imw' has at most one immediate successor so the Hasse 

diagram of 5 is acyclic. 

Proof of (1): If an element from Im w' had two immediate successors, it would form 

a bad pair with one of them. If there were a cycle in the Hasse diagram of 5 ,  then 

the two neighbours of a minimal element of the cycle would have to be its immediate 

successors. 

(2) If c 5 d, c # d then by the lemma above we have either 

d d c c d . .  d  --- 
in w'. 

Now we form the subword w" of w' by leaving out the first and the last occurrence 

of each letter from w'. Again Im w" = Im w'. 

(3) If c and d  are incomparable then they cannot intersect in wN, i.e. we have either 

c d . .  d  o r d  ... d c . . . c  inw". 
J- 

Let a l ,a l , . .  . , a ,  be a linear extension of 5. For i = 1 , 2 , .  . . ,m let w; be 
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the subword of w" containing all occurrences of al, a2, . . . , a; and no occurrence of 

a;+l, a2,. . . ,a,. Of course wg = l A  and w z  = w". For i = 1,2,. . . , m we can express 

uniquely: 

(4) Factors uy, u:, . . . , contain only predecessors of a,. 

Proof of (4) : This follows from (3); w:-'_, contains only predecessors of a; and letters 

incomparable with a;. 

Analogically we can uniquely express 

(5) For j  = 1,2,. . . , p- 1 the factor uy is a subword of U S ;  furthermore w: is a subword 

of wl. 

(6) Let ak 5 a,. The letter ak only occurs either in a unique factor uj for some 

j ,  0 5 j  5 p, or in two neighbouring factors uj-, and US for some j ,  1 5 j  5 p. 

Proof of (6) : This follows from (2). 

(7) If uj,O 5 j 5 p contains a predecessor ak of a; then it contains an immediate 

predecessor a1 of a;. 

Proof of (7) : Let a1 be an immediate predecessor of a; such that ak 5 a1 5 a;. 
Considering (2) for ak and al we observe that a; must occur before ak in w' so there 

is a1 in u'_,u&. . . uj. Similarly a1 occurs in ujuj+, . . . u;+, and because of (6) we have 

a1 in uj. 

(8) If there is a predecessor ak of a; in both uj-, and u; for some j, 1 5 j  5 p  then 

there is an immediate predecessor a1 of a; occurring in both and US. 



Proof of (8): As in the proof of (7) we find a1 such that ak 5 a1 5 a,. By ( 2 )  a1 

occurs in both u'_,uh . . . uj_, and ujuj+, . . . ub+'_,, and by (6) a, occurs in both uj-, 

and US. 

(9) Any letter ak occurring in wy-, can only occur in a unique factor uy for some 

j, 0 5 j 5 p or in two neighbouring factors u;-'_, and uy for some j, 1 5 j 5 p. 

Proof of (9): If there is a letter ak occurring in two non neighbouring factors uy and 

uf then we get a subword aka,a,ak in wr where by (3) ak and a, are not incomparable 

so ak 5 a;. By ( 5 )  we get aka;a,ak in w', which is a contradiction with (2). 

Denote by pi the number of immediate predecessors of a,. We are going to enu- 

merate the number r ,  of immediate repetitions in wi by induction. Obviously ro = 0. 

Now let 1 2 m. If luyl 2 0 for some j, 1 5 j < p - 1, then by (4) and (5) 

u$ contains a predecessor of a,  and by ( 7 )  u: contains an immediate predecessor of 
I a,. It follows from (6) that there are at  most 2pi factors among ui, ui, . . . , up-, con- 

taining an immediate predecessor of a, so there are at most 2pi factors of positive 

length among uy, u!j', . . . , u&,. In other words there are at least p - 1 - 2p; > 7 - 2pi 

immediate repetitions of a; in wb. If there is an immediate repetition R of ak in w;-'_, 

separated by some occurrences of a, in wb then by (9) there exists j, 1 5 j < p such 

that ak occurs only in uy-, and uy, and the immediate repetition R is separated by 

only one occurrence of a,, namely the jth one. Using (4) we get ak 5 a; and by ( 5 )  ak 

occurs in both u:-, and u:. Now we can use (8) to get an immediate predecessor a, 

of a, in both ui-, and u;. We will map R to a,. Two different immediate repetitions 

in w:,, separated by ai in w l  must be separated by two different occurrences of a, 

so they are mapped to two different immediate predecessors of a,. (This follows from 

(6) .) Consequently there are at most p; immediate repetitions in wr-, separated by 

a,.  Summing up, 



The sum of the pi is the number of edges in the acyclic Hasse diagram of 5 on m 

vertices, which is at most m - 1, therefore 

There are at least 4m + 3 immediate repetitions in wr-, . These repetitions must all 

be separated in the 2-regular word w by the 4m omitted occurrences of the m letters 

of Imw. This is a contradiction so there is a letter occurring at most 11 times in w; 

Using Theorem 3 we get Theorem 7. 

Corollary 4 Let f E Af be a forbidden word on two letters avoiding ababa and let 

s ( n )  be the maximum length function for f .  Then s ( n )  is O(n ) .  

Proof: A word f on two letters avoids ababa if and only if f aibJak b' where a, b E A 

and i ,  j ,  k, 1 2 0. Then red f is a subword of abbaab and by Theorem 7 its maximum 

length function s ( n )  is O(n) .  Taking f E Af we get s ( n )  = O(n) .  

Now we will prove the superlinearity of s ( n )  for f = ababa using Komjith's construc- 

tion from [7]. KomjLth uses double induction to prove the following statement for all 

values of k and m. 

Statement S(k,m) There exists a number n = Fk(m)  and a word w formed from 

mn different letters (i.e. rank w = m n )  decomposed into square and round blocks, 

such that the following hold. 

( i )  Thewordwavoidsababa. 

( i i )  There are at most 3n - 2 blocks. 

(iii) Every letter occurs at least k times. 

( i v )  There are n square blocks, each of length m, together containing 

every letter exactly once. 

( v )  Square blocks are separated from each other and from both ends of 

the word by round blocks. 

( v i )  If a and b are different letters, only one round block can contain 



both of them. 

(uii) For every letter, its unique occurrence in a square block is either its 

first or its last occurrence in the word. 

A block means a regular factor. By saying that a word is decomposed into square 

and round blocks we simply mean that the word is decomposed into blocks, some of 

which we decide to call square; the remaining blocks are round. The unique occurrence 

of a letter in a square block is called its square occurrence. The square occurrence of 

each letter is either of the first or of the last type according to whether it is the first 

or the last occurrence of the letter in the word. 

Proof of S(1,m): We claim n = 3. If m > 1 then 3m > 4 and we can construct the 

following word on 3m letters al, a2,. . . , a3,. 

w = (al) [alaz . . . a,] (a2)[arn+~am+2 . . . UZ,] ( Q ) [ ~ Z ~ + I Q Z ~ + ~  . . . a3m] (a4) . 

Square brackets denote square blocks, round brackets round blocks. The blocks are 

really regular factors, and the rank of w is as required. We check the conditions. 

( i  ) This holds for m > 1 because no letter occurs more than twice. The case of m = 1 

is easy to check. 

( ii ) There are exactly 7 = 3n - 2 blocks. 

( i i i)  Every letter occurs at least once. 

( iv ) There are three square blocks, each of length m, together containing each letter 

exactly once. 

( v )  Square blocks are separated as required. 



( vi ) This holds because the length of each round block is 1 

(vii) Holds for m > 1 because each letter occurs at most twice and therefore every 

occurrence of a letter is either first or last. For m = 1 we check the three letters in 

square blocks. 

Deduction o f  S(k,l) f r o m  S(k-1,2): The word w witnessing S(k-l ,2) has two-letter 

square blocks. We replace each square block B = ab of w by 

0 [ a ] ( a ) [ b ] (  b) if a, b are both of the first type 

0 ( a ) [ a ] ( b ) [ b ]  if a, b are both of the last type 

0 ( b ) [ a ] ( a ) [ b ]  if a is of the first type and b is of the last type 

0 ( a ) [ b ] ( b ) [ a ]  if a is of the last type and b is of the first type 

We obtain a new word w' witnessing S(k, 1) for n = Fk(l) = 2Fk-1(2). The blocks of 

w' stay regular; rank w' = rank w = n. We have to check the conditions. 

( i )  Suppose w' does not avoid f .  Then the subword isomorphic to f must contain a 

letter duplicated in the transition from w to w'. However, in the first two cases only 

one occurrence of the duplicated letter can be used. If these were the only types of 

duplication used in the forbidden subword, we would have the same forbidden subword 

in w as well. In the third case we cannot have ababa or babab because a is of the first, 

and b is of the last type, and their occurrences in w' have the form 

We cannot have either of ababa and babab in the fourth case for much the same reasons; 

the occurrences of a and b are now 

a b b a  u .  b 



If only a (or b )  from one of the last two cases is used in the forbidden subword then, 

as in the first two cases, only one occurrence of a (or b )  can be used, and again we 

have a forbidden subword in w. Therefore condition ( i )  holds. 

( i i )  The number of blocks of w is at most 3Fk-l(2) - 2; the number of square blocks 

is Fk-1(2).  We have replaced each square block by four blocks. The number of blocks 

of w' is then at most 3Fk-1 ( 2 )  - 2 + 3Fk-1(2) = 3[2Fk-l ( 2 ) ]  - 2 = 3n - 2. 

( i i i )  Every letter occurs at least k times in w and exactly once in some square block of 

w. Duplicating all the letters in square blocks we increase the number of occurrences 

of each letter by one, and consequently each letter occurs at least k times in w'. 

( i v )  In w there are Fk-l ( 2 )  square blocks, each with two letters. Every square block 

of w yields two square blocks of w' of length 1. This way we get exactly 2Fk-l(2) = n 

square one-letter blocks in w'. They contain each letter exactly once because the 

blocks of w did. 

( v )  Two square blocks of w' obtained by the breakup of a square block of w are 

separated by a duplicated letter forming a round block. All other pairs of square 

blocks of w' are separated by the original round blocks of w, and so are the ends of 

w'. 

( v i )  New round blocks only contain one letter, so condition ( v i )  holds in w' if and 

only if it holds in w. 

( v i i )  In all four cases we preserved the type of the square occurrence of a letter by 

putting the new round occurrence to the right for letters of the first type, and to the 

left for letters of the last type. 

Proof of S(k,m+l) assuming S(k,m) and S(k-1,t) for every t :  By the inductive 

hypothesis there exist numbers n = Fk(m) and N = Fk,1(n) satisfying S(k,  m )  and 



S(k - 1, n). We pick words vl, v2,. . . , VN witnessing S(k, m) on disjoint sets of letters. 

Consider the word 

V = VlV2.. . VN . 

We know that rankv, = mn, so rankv = mnN. Let u be a word disjoint from v 

witnessing S(k - 1, n); of course rank u = nFk-l(n) = nN. The word u has exactly 

N square blocks. It can be written as 

where s l ,  s 2 , .  . . , SN are the square blocks, and each r, contains at least one round 

block. Similarly, each of vl, v2,. . . , VN has exactly n square blocks. We can write 

We are going to build a word w witnessing S(k, m + 1). We set 

where each t i  is a combination of s; = a,,la;,2 . . . a ; ,  and v; obtained as follows. 

where 
j j j  if a i j  is of the last type 

ai,jai j 

( s i j  

= { S;,jai,ja;,j if a i j  is of the first type. 

Putting Fk(m + 1) = nN we have to show that w really witnesses S(k,m + 1). The 

square blocks of w are the factors si,j expanded by one occurrence of ai,j on the right 

or on the left. The round blocks of w are the factors r, together with factors r;,j 

possibly expanded by one occurrence of ai,j on the left and ai,j+l on the right. Each 

block has been augmented by at most two different letters from a disjoint word, so 

the regularity of blocks has been preserved. Furthermore 

as required. 



( i )  Suppose that w contains a subword ababa. One of the letters a and b must come 

from u, the other one from some v,. If a comes from v; and b from u, only one of 

the duplicated occurrences of b can be used. This is impossible, because they are the 

only occurrences of b between the elements of v,. If a comes from u, and b from v,  

then the middle a must come from the duplicated square occurrence. This cannot 

happen because in this case the middle a is the first or the last occurrence of a, or its 

neighbour. 

(ii) The round blocks of w include the round blocks of u and the possibly augmented 

round blocks of v. The square blocks of w are the augmented square blocks of v. 

There are at most 3N - 2 blocks in u, 3n - 2 blocks in each v;, N(3n - 2) blocks in 

v ,  and exactly N square blocks in u. The number of the blocks of w is then at least 

(iii) The number of occurrences of letters from v has not changed. The number of 

occurrences of each letter from u has increased by one because we doubled its unique 

square occurrence. Hence the number of occurrences of letters from v stays at least 

k, while the number of occurrences of letters from u goes up from at least k - 1 to at 

least k. 

( i v )  The number of square blocks of w is the same as that of v. There are exactly 

n square blocks in every vi, each of length m. Hence we get N n  = Fk(m + 1 )  square 

blocks of length m in v and Fk(m + 1) augmented square blocks of length m + 1 in 

w. Each letter from v has exactly one square occurrence in w in the same block as 

in v and in the original word v;. Round occurrences of letters from u stay round in 

w as well. One copy of the duplicated square occurrence of a letter was included in a 

square block of w, the other one in a round block. So the letters from u have unique 

square occurrences, too. 



( v )  The square blocks of w are separated by the same round blocks as they were in v. 

The augmentation of blocks and addition of new round blocks does not change this. 

( v i )  Letters from v stay in the same round blocks in w as they were in v. So ( v i )  

holds for pairs from v. A pair containing a letter a from u and a letter b from v can 

only lie together in one round block of w, namely the unique block of v the letter a 

has been added to. Hence the only way that two round blocks of w could contain the 

same pair of elements is that the pair of elements lies in a round block from u and 

has been added to a round block r from v. This is, however, impossible because the 

letter added on the left was of the first type, and the letter added on the right of a 

round block was of the last type. Any round block other than r lies either right of 

the occurrence of the last type or left of the occurrence of the first type, and cannot 

contain both letters. 

( v i i )  The square occurrences of letters from v have not changed; they are still of the 

first or of the last type. The square occurrence of the first type of a letter from u 

has been replaced by a square occurrence in w followed by a new round occurrence. 

Hence the square occurrence is still the first occurrence of the letter. The case of the 

square occurrence of the last type is symmetric. 

Komjith goes on to prove that s ( n )  is O ( n a ( n ) )  for f = ababa. Since we are mainly 

interested in giving a characterization of forbidden words with maximum length func- 

tions in Q ( n ) ,  it suffices to show that s ( n )  is not O ( n ) .  We use the above construction 

to prove the following Lemma 2. 

Definition 5 A word w with rank w = n is block-regular if it can be decomposed into 

at most 3n - 2 regular factors. 

Lemma 2 Let S ( n )  be the mazimum length of a block-regular word w avoiding f = 

ababa such that rank w = n.  Then S ( n )  is not O ( n ) .  



Proof: Suppose there exists a constant k such that S ( n )  < kn for all n. Let w be a 

word witnessing S ( k ,  I ) ,  and n  = F k ( l ) .  Then w avoids ababa, and rank w = n. The 

number of blocks is at most 3n - 2, so w is block-regular. Since every letter occurs 

at least k times, lwl 2 kn. This is a contradiction with Iwl 5 S(n) .  

Theorem 8 The maximum length function s ( n )  for f = ababa is not O ( n ) .  

Proof: Suppose there exists a constant k  such that s ( n )  5 kn for all n. By Lemma 

2 there exists a number n  and a block-regular word w with rank w = n  such that 

lwl 2 ( k  + 3)n. We form a word w' by applying A(2) to w, in other words by 

removing immediate repetitions. We remove at most one letter from each block, so 

Iw'I > I w I  - (3n - 2) 2 ( k  + 3)n - 3n + 2 = kn + 2. This is a contradiction, because 

w' is 2-regular, avoids f ,  and therefore satisfies I w'l 5 s (n) .  

We are now ready to state the main theorem. 

Theorem 9 (main) Let f E Af be a forbidden word on two letters. The mazimum 

length function is O ( n )  if and only i f f  avoids ababa. 

Proof: It follows from Observation 2 that if f does not avoid ababa then the maximum 

length function for f is at least as large as that for ababa, which is superlinear by 

Theorem 8. Combining this with Corollary 4 we get Theorem 9. 



Chapter 5 

Forbidden Words on Three Letters 

Theorem 10 Let s(n) be the mazimum length function for f = abwab, where a, b E 

A, w E A*, and abw is a regular factor. Then s(n) is O(n). 

Proof: Let k = rank f ,  and v be a k-regular word avoiding f .  Denote by x the letter 

that occurs last in v, that is the first occurrence of x in v is preceded by an occurrence 

of every other letter. Suppose x occurs twice. Consider the first two occurrences of x. 

We can write v = pxqxr, where p, q, r E A*, p contains all letters from Im v except x, 

and q contains no x. Since v is k-regular, the two occurrences of x must be separated 

by a regular factor of length k - 1. We can write this factor as uy, where u E A* and 

y E A. As y is different from x, it must appear in p. We have a subword yxuyx in 

w. Since there is no x in u, the factor xuy is regular, and so is yxu. At the same 

time rank yxuyx = rank yxu = k, and therefore yxuyx is isomorphic to f .  This is a 

contradiction, so x only occurs once in w, and by Theorem 3 s(n) is O(n). 

Corollary 5 The mazimum length function is O(n) for f = abuzb, where a, b, c E A. 

Proof: Set w = c in Theorem 10. 

We know from Theorem 1 that s(n) = 0(n3). Using Corollary 5 we can prove a 

stronger result. 



Theorem 11 Let s(n) be the mazimum length function for f = abcabc. Then s(n) = 

0(n2) .  

Proof: We are going to prove the following claim, from which Theorem 11 follows 

immediately. 

Let s(n) and t (n) be the maximum length functions for abcabc and abcab 

respectively. Let K be a constant such that t(n) 5 Kn for each n. Then 

s(n) 5 Ln2 for each n, where L = K + 1. 

The existence of K is guaranteed by Corollary 5, so this is enough. To prove the 

claim by induction consider a word w on n letters avoiding abcabc. If n = 1 then 

Iwl = 1 and the proof is trivial. If n > 1, consider the letter x that occurs last in 

w. Then w can be written as uxv, where u contains all letters but x, and v avoids 

abcab. Indeed, if there were a word isomorphic to abcab in v, say yztyz, we could find 

tyztyz in w because the factor ux contains all letters including t. Therefore Ivl 5 Kn. 

At the same time u is a word on n - 1 letters avoiding abcubc, and by the induction 

hypothesis u 5 L(n - I ) ~ .  Then 

This holds for every w ,  so s(n) 5 Ln2. 

There is a reason to believe that the maximum length function s(n) is Q(n) for the 

forbidden word f = abcabc (see Chapter 7). Though the pattern discovered by the 

computer seems to be surprisingly regular and simple, we have not been able to find 

a proof of linearity. However, the following Lemma 3 might be helpful in finding 

the proof because it gives a similar insight into the behaviour of letters in a word w 

avoiding abcabc, as the lemma in the proof of Theorem 7 did for abbaab. In Theorem 

7 we used the fact that two different letters could not intersect "too much". Here 

we are only able to prove that among every three letters there are two that do not 

intersect "too much". We cannot say anything about the way an arbitrary pair of 



letters intersect. In f u t ,  the length of an alternating subsequence ababa . . . in a 3- 

regular word avoiding akabc can get arbitrarily large, as we can see in the following 

example: 

Obviously, the length of the alternating subsequence ababa . . . goes to infinity as n 

goes to infinity. 

Definition 6 Let w E A*. We define a partial order << on Imw as follows: 

a << b if all occurrences of a lie between two neighboun'ng occurrences of b 

o r a = b  

We say that a and b are separated i f  all occurrences of a come before the first occurrence 

of b, or the other way round. 

Lemma 3 Let f = abcabc, a,  b and c be three diflerent letters from A and let w be a 

word avoiding f .  Let x, y, z E Im w be three diferent letters. Then there ezists a pair 

of letters from among x, y and z that are separated or comparable in <. 

Proof: Consider two letters from among x, y and 2, say x and z, that are neither 

separated nor comparable. There are two possibilities for their occurrences in w 

(without loss of generality x appears first in w): 

with at least four underbraced factors, and 

with at least five underbraced factors. First suppose w given by Equation 5.1. We 

will discuss the following possible cases of the first occurrence of y in w. 

(1) The first y appears left of or in the first underbrace. There is no y in the second 

overbrace in the following expression else we would have a subword yxzyxz in w.  



If there is no y in the first overbrace then x and y are separated or x << y. If there 

is a y in the first overbrace then there can be no y in the third overbrace else there 

would be a subword xyzxyr in w .  Hence z and y are separated or z << y. 

(2) The first y appears left of or in the second underbrace and (1) does not hold. 

There can be no y in the second overbrace in the following expression else we would 

have xyzxyz in w. 

If there is no y in the first overbrace then z and y are separated or r << y. If there 

is a y in the first overbrace then there can be no y right of the last overbrace else we 

would have a subword xzyxzy in w. Hence y < x. 

(3) The first y appears between the second and third underbrace. There can be no y 

in or right of the fourth underbrace or we would have a subword xzyxzy in w. Hence 

all y appear in the overbrace and y << z. 

(4) The first y is in or right of the third underbrace. There is a subword xzx left of 

the first y. If there are both x and z between the first and the last occurrence of y 

then we get either xzyxzy or zxyzxy in w. Hence at least one of x and z is either 

separated from or greater than y in <. 

Let now w be given by Equation 5.2. 

(1) The first y appears left of or in the first underbrace. There is no y in the first 

overbrace in the following expression else we would have a subword yxzyxz in w. 

There is no y in the second overbrace either, or we would have yzxyzx. 

Hence z and y are separated or z < y. 



(2) The first y appears left of or in the second underbrace and (1) does not hold. 

We can consider the following expression and realize that the proof of case (2) above 

works without any changes. 

The remaining two cases (3) and (4) are exactly the same as they were in the case 

of w given by Equation 5.1. 



Chapter 6 

Matrices 

For a word w = alaz. .  .a,, a, E A, of length 1 we define a matrix W = ( w j l j )  of the 

type 1 x 1 as follows. 
1 if a; = aj 

w;,j = 
0 otherwise. 

Then W is the matrix of an equivalence relation. This means u;,; = 1 and u;,, = uj,, 

for all i, j = 1,2,.  . . ,1, and if D is a 2 x 2 submatrix with three nonzero entries then all 

four entries of D are nonzero. We will call matrices of this type equivalence matrices 

and W the equivalence matrix of w. There is a unique correspondence between words 

of length 1 and equivalence matrices of side 1. 

Definition 7 A (0,l)-matrix is called k-sparse if  every pair of two nonzero entries 

lying in the same row or column are separated by at least k - 1 zero entries. 

Observation 4 A word w is k-regular if and only i f  its equivalence matrix is k-sparse. 

Proof: I f  w is not k-regular then there must exist two different positions i and j in 

w containing the same letter, such that Ij - il < k. Then w;j = w;,; = 1 are two 

entries in the ith row such that there are at most Ij - il - 1 < k - 1 cells between 

them, and there is no room for k - 1 zeros there. Now let W not be k-sparse. Since 

it is symmetric, we can without loss of generality assume that there exist two entries 

in the same row, say w;j  and w;,,, that do not have k - 1 zeros between them. Take 



a pair with minimum Ij - mj. There cannot be any nonzero entries between w,,j and 

Wi,, because this would contradict minimality. Hence the number of cells between 

wi,j and w,,, is the same as the number of zeros, which is at most k - 2. Then 

Ij - ml 5 k - 1. It follows from w,,, = 1 that a, = aj, and similarly w;,, = 1 implies 

a, = a,. Consequently a j  = a,, I j - ml < k, and w is not k-regular. 

We can associate the occurrence of forbidden subwords in w with the occurrence of 

forbidden submatrices in W. 

Observation 5 A 3-regular word w contains a subword isomorphic to f = abcabc if 

and only if its equivalence matriz contains the identity matriz I3 of side 3 on one side 

of the main diagonal. 



Remark 3 By saying "on one side of the main diagonaln we mean that for all w,,, 

lying on the identity submatrix the sign of i - j is the same (i.e. either i - j > 0 for 

all W,, j ,  or i - j < 0 for all Wi, j ) .  

Proof: The situation is shown in the picture. Let w = a laz . .  .a,, where a ,  E A. Let 

aiajakapaqa, 2 abcabc, where i < j < k < p < q < r .  Then in the equivalence matrix 

W we have 

and k < p, so all entries of I3 lie in the upper right-hand corner of W. Conversely, let 

there be a submatrix I3 on one side of the main diagonal of W. Owing to symmetry 

there is such a matrix in the upper right-hand corner of W. Denote its entries as in the 

identity matrix above. Then k < p, and the inequality i < j < k < p < q < r holds. 

Consequently in the subword a,ajaka,a,a, of w we get a ,  = a,, a, = a,, ak = a,, and 

a,, a,, ak are all different. Hence a,ajakapaqa, S abcabc, and we are done. 

This means that the maximum length function s ( n )  for the forbidden word f = abcabc 

is the maximum side of a 3-sparse equivalence matrix not containing I3 on either side 

of the main diagonal. 

Fiiredi and Hajnal employ a slightly different approach in [B]. Instead of forbidden 

submatrices they use forbidden configurations. 

Definition 8 

A configuration C = (qj) of the type u x v is a nonempty partial matriz with 

1's and blanks for entries with no blank rows and columns. 

A (0,l)-matrix M = (rn;,j) contains the configuration C if there ezists a subma- 

tr iz  B = (bi,j) of M of the type u x v such that G,, = 1 implies bi,, = 1 for all i 

and j .  



Definition 9 

0 For a (0,l)-matrix M we denote by I MI the number of nonzero entries. in M .  

In the case of matrices, s(n) denotes the mazimum IM( of an n x n matrix 

M avoiding a given forbidden configuration F .  We retain the name maximum 

length function for s ( n ) .  

Theorem 12 The maximum length function s(n) is O(na(n)) for the forbidden con- 

figuration 

Proof: Let M = (m;,j) be an n x n (0,l)-matrix avoiding F such that IMJ = s(n). 

We replace the first and the last nonzero entry in each row of M by zero and keep 

only the columns with at least two nonzero entries to get a matrix Mr. We removed 

at most 2n ones in the first step and at most n ones in the second step, hence (M'I 2 
I M I - 3n. We pick a number j from {1,2, . . . , n)  and consider the jth column of M .  

Let il < i2 < . . . < il be the subscripts of nonzero entries in the jth column. Formally 
- - m;,j = 1 and mi,, = 0 for any other value of i. Define a word mil,, = mi2,, - . . . - 

wj on n letters as 
. . 

wj = 2 1 2 2  . . .21. 

Obviously 1 2 2 because we left out the columns with less than two nonzero entries. 

Repeating this for each j = 1,2,. . . , n  we get words wl, wz,. . . wn on the letter set 

{1,2,. . . , n). (Here we assume that the integers we have used are all in A. We can 

easily avoid formal inconsistency by renaming them conveniently.) Finally we put 

and applly A(2) to w' to obtain a word w. In other words we remove each immediate 

repetition from W' leaving a single occurrence of the letter instead. We claim that 

w avoids ababa. Assume the contrary. Then there exists a subword g = x y x y  in w 

such that z < y . We must have g in w' as well. The second and the third letters of 

g lie in two different factors wj of w' because each of these factors is increasing. Now 



there are four possibilities for the occurrences.of s and y in w', each corresponding to 

a configuration that must have occured in M' to yield it. 

a The 

The 

a The 

The 

first two letters of g come from the same factor; the last two letters do not. 

configuration is 

last two letters of g come from the same factor; the first two letters do not. 

configuration is 

a Both the first and the last two letters of g come from the same factor. The 

configuration is 

(: : ) a  

a The letters of g come from four different factors. The configuration is 

In every case adding 1 at the beginning and the end of each row yields the forbidden 

configuration F, so F must have been contained in M. This is a contradiction. 

Denoting the maximum length function for ababa by t (n)  we get Iwl 5 t(n). The 

algorithm A(2) left out at  most one letter from each factor wj because wj is increasing, 

and lwjl 2 2 for all j .  Hence Iw'l 5 t (n)  + n. This means IM'I 5 t(n)  + n, and 

s(n) = [MI 5 t(n)+4n. Since t (n)  is known to be O(na(n)), we get s(n) = O(ncu(n)) 

as  well. 

Fiiredi and Hajnal also show that the obtained upper bound is tight using the same 

double induction we used in Chapter 4 to prove superlinearity for ababa. They con- 

struct matrices of side n with R(na(n)) ones for infinitely many values of n. This 



does not mean that s ( n )  is fl(ncr(n)) in the sense of Definition 2. The correct inter- 

pretation of their result is that s ( n )  is not o (na (n ) ) .  Their construction, referring to 

[3], can be found in[8]. 

Definition 10 Let C be a configuration. The following two operations on C are called 

the elementary operations. 

deleting an entry 

0 attaching a new column or row to the boundary of C with ezactly one entry 1 

next to an existing one in C 

If there is a blank row or column in C after the deletion of an entry, we leave them 

out, too. 

Definition 11 We write C -P D if D can be obtained from C by a finite sequence of 

elementary operations. 

Theorem 13 Let C and D be configurations such that C -+ D in k steps, and 

s ( n )  and t ( n )  be the mazimum length functions for C and D respectively. Then 

t ( n )  5 s ( n )  + kn .  

Proof: It is enough to prove the statement for only one step. If the step is deleting 

an entry, the statement is trivial because a matrix avoiding D avoids C as well. If 

the step is adding a new column to the right, we consider an n x n (0,l)-matrix M 

with I M I = t ( n ) .  We replace the last occurrence of 1 in each nonzero row of M by 0 

to get a matrix M'. If M' contained C, then we could find C in corresponding cells 

of M and extend it to D by adding one of the nonzero entries that had been left out. 

Hence M' avoids C, and IM'I 5 s(n) .  We left out at most n 1's from M to obtain 

M', so 

t ( n )  = [MI < IM'l+ n 5 s ( n )  + n .  

The case of adding a new column to the left or adding a new row is virtually the 

same. Now, Theorem 13 follows easily by induction. 



Observation 6 If F # ( 1 )  then the mazimum length function s ( n )  for F satisfies 

s ( n )  2 n for all n .  

Proof: If F has at least two columns then it is always possible to construct an n x n 

matrix with n nonzero entries avoiding F. Just set all the entries in one column equal 

to 1 and all the other entries equal to 0. If F has at least two rows, the construction 

is symmetric. The only case we did not cover is F = ( 1 )  when s (n )  = 0 for all n. 

Corollary 6 Let s ( n )  and t ( n )  be the mazimum length functions for two configura- 

tions C and D respectively, and C # ( 1 ) .  

0 If C + D then t ( n )  = O ( s ( n ) ) .  

0 If D can be obtained from C by elementary operations of only the second type, 

then s (n )  and t(n) are of the same order. 

Proof: If C -+ D then t ( n )  5 s ( n )  + kn  by Theorem 13. It follows from s (n )  2 n 

that kn  = O ( s ( n ) ) ,  s ( n )  + kn  = O(s (n ) ) ,  and finally t ( n )  = O(s (n ) ) .  If we only use 

elementary operations of the second type to derive D, then of course D # ( I ) ,  and 

C + D. Hence trivially t ( n )  = O(s (n ) ) .  At the same time we can get back from D 

to C by deletions of the added 1's. Therefore D + C ,  s (n )  = O( t (n ) ) ,  and s ( n )  and 

t ( n )  are of the same order. 

Corollary 7 The mazimum length function s ( n )  is O(ncr(n)) for the following con- 

figurations. 

Proof: Each of the above four matrices can be easily derived by elementary operations 

from the forbidden configuration F used in Theorem 12. 



Chapter 7 

Computer Searches 

A computer search has been conducted to find the maximum length function for 

f = abcabc for n 5 7. The search also generated the first maximum sequence in the 

lexicographic order. The results follow. 

sequence 

The pattern in the table suggests that the maximum sequence on n + 2 letters can 

be obtained from the sequence on n letters by juxtaposing a sequence of the type 

61762712 where 7 and 6 stand for n and n - 1. If this is true then s ( n )  = 4n - 6 for 

n even and s ( n )  = 4n - 7 for n odd greater than 1. The pattern is convincing enough 

to enable us to formulate a conjecture. 

Conjecture 1 The mazimum length function for f = abcabc is O ( n ) .  

What adds plausibility to this conjecture is that all forbidden words that are known 

to be O ( n )  show similar regularity while f = ababa, which is known to be superlinear, 



does not. For f = abbaab we get 

I n I 4 4  I sequence I 

For f = abcab we get 

sequence 

However, the following table for f = ababa lacks symmetry. 

For f = abab we can even prove easily that the upper bound we conjecture is correct 

2  

and tight. The table is 

44 
4  

sequence 

1 2 1 2  

2  

3  

4  

5  

44 
3  

5  

7 

9 

sequence 

1 2  1 

1 2 1 3 1  

1 2 1 3 1 4 1  

1 2 1 3 1 4 1 5 1  



Conjecture 2 For f = abab the mazimum length function is s (n )  = 2n - 1. 

Proof: Obviously it is always possible to construct a word avoiding f of length 2n - 1 

extending the pattern. Now we must prove that 2n - 1 really is an upper bound. The 

case of n = 1 is trivial. Let n > 1 and w be a word on n letters avoiding f .  Denote the 

first letter by a. If a never appears again then by leaving out its only occurrence from 

w we get a word w' on n - 1 letters. By the induction hypothesis Iw'l 5 2(n - 1 )  - 1 

and lwl 5 2n - 1. If a does appear again then w can be written as auav where u 

and v are disjoint words. Let rank u = t .  Then rank av  < n - t ,  lavl 5 2(n - t )  - 1, 

lul 5 2t - 1 and lwl = 1 + IuI + lavl 5 2n - 1. 
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