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ABSTRACT 

The behaviour of certain population models in S2 and '@ is investigated. Involved in the 

growth rate of the first species are both a carrying capacity and a lower critical density, and 

we allow for the inclusion of harvesting or stocking of one of the species. The three-species 

model represents a predator-predator-prey system, while the two-species model may, by 

suitable selection of the sign of certain terms, portray three types of interaction: predator- 

prey, competition, or cooperation. These features affect the nature and multiplicity of 

the models' equilibria, which are analyzed from the point of view of structural stability. 

The locations of the simple and multiple equilibria of the unperturbed systems are found, 

and the local natures and stability properties are determined. Of particular interest are 

nonhyperbolic simple equilibria, and multiple equilibria (also nonhyperbolic), which are 

structurally unstable and may change radicdy when perturbations are introduced. Under 

the influence of perturbations, such a simple equilibrium of the unperturbed system may 

change its nature and stability, while a multiple equilibrium of the unperturbed system 

may disappear or may split (bifurcate) into several equilibria. These drastic changes are 

studied; the new equilibria are located, and their nature and stability properties are found 

and compared with those same properties of the corresponding unperturbed equilibria. 
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Introduction 
Population growth is a rich area of scientific interest. In viewing the world around us, it 

is apparent that a single specie's growth is not usually an isolated event; rather, there are 

other populations which affect this growth. Such population interactions may occur in a 

variety of ways, for example: they may compete with each other for needed resources, one 

species may prey upon another as its food source, or they might cooperate with each other 

improving their ability to survive. Mathematics is an important tool that can be employed 

in modelling these relationships; particularly, an autonomous system of ordinary differ- 

ential equations might be used. Insight into the dynamics of the species7 behaviour may 

then be gained by studying the mathematical model. Usually the differential equations 

are too complex to be solved analytically, and unless all constants and functions appearing 

in the equations are specified, neither can the system be solved numerically. It is possi- 

ble though, to find and study the equilibria, at least numerically. The equilibria, which 

are steady-state solutions of the system of differential equations, can provide invaluable 

information regarding the behaviour of solutions near these equilibria. 

In attempting to model a complex natural phenomenon (such as the interaction of 

populations) with a system of differential equations, it is necessary to make approximations 

and simplifications to the actual situation. Accordingly, the addition of perturbational 

terms characterised by a small positive parameter E may provide for a more realistic 

model, as they can be thought of as representing uncertainties and unknown errors in the 

approximation. Freedman and Waltman [I, 21 and Freedman [3] have studied perturbed 

population models. In [I, 21, the model 

U l l  = Q U l  - P u 1 ~ 2  - E fl(u1, ~2)7 

2121 = -7212 + 6211112 - E f 2 ( ~ 1 ,  212)~ 

was considered, which represents a two-species perturbed predator-prey system. Here and 

throughout this thesis, ()I = 9. In [3], the perturbed Kolmogorov model 



was investigated. 

In addition to perturbations, harvesting or stocking of one or more of the species may 

be considered. For example, Yodzis [4] studied 

where A, B represent the harvesting or stocking terms. Similarly, Brauer and Soudack 

[5, 6, 7, 81 considered 

F and G are the harvesting or stocking terms in this model. Harvesting of a population 

indicates that the members of a population are being removed at a constant rate. Stocking 

represents a constant rate of increase in a species. Harvesting or stocking can produce 

significant changes in a model, affecting the number, location, nature and stability of the 

equilibria; furthermore, multiple equilibria may appear or disappear. 

Consider the perturbed two-species model with harvesting or stocking given by: 

By varying the sign of the function g(x) and the constants a and b, a predator-prey 

(y "eats" x), cooperation, or competition relationship can be simulated. The function 

F(x) tells us in what way the growth of x is proportional to its own size. How the two 

populations affect each other is controlled by g(x). When R # 0, there is either harvesting 

(R > 0) or stocking (R < 0) of the second species y. This model, but with R = 0 (no 

harvesting or stocking) has been studied by Freedman [9], when he considered 

Note that the perturbational terms in (0.1) are of a more general nature than those 

considered in 191. It should be mentioned that in [9], g(x) (which corresponds to the F(x) 



term in (0.1)) satisfies g(0) = a > 0, g,(x) I 0 for x 2 0, and 3K > 0 such that g(K) = 0. 

Such a value K is called a carrying capacity. A carrying capacity is an upper limit on the 

size a population may grow to. A special case of model (0.1) was studied by Bojadziev, 

McConill and Yen [lo]: 

In this model L2 is a carrying capacity, and L1 is something called a critical density. If 

the size of x falls below L1 (in the absence of y at least), it will die out. Thus a critical 

density represents the minimum size necessary for a species to survive. 

Bojadziev and Wong [ll] analyzed a predator-predator-prey model with harvesting 

(R = H > 0) and perturbations of the form 

In Bojadziev and Wong's model, F(x)  satisfied F(0) = a > 0, F,(x) 5 0 for x > 0; 

thus, there is no critical density, and a carrying capacity is allowed for, but not explicitly 

assumed to exist. the same model as in [ll] but with E = 0 (no perturbations) has been 

studied by Bojadziev and Gerogiannakis [12] and by Freedman and Waltman (with R = 0) 

1131. In these models as in (0.2), population z preys on y which is preying on x; this is 

called a food chain. 

In this thesis I will study (0.1) and (0.2) under the assumption that F(x) has both 

a carrying capacity and a critical density. As already mentioned, in [9] (see also [14]) 

and [ll, 12, 131, F(x) did not contain a lower critical density. A lower critical density 

is an important and interesting feature not often incorporated into population models; 

however, authors such as Bazikin [15] have discussed systems containing a critical density 

in addition to a carrying capacity. The harvesting or stocking term R will be allowed 

to take on any value here, but in [9, 11, 121 only certain values of R were considered. 

The cases of E = 0 and E > 0 will be analyzed. This thesis represents an extension of 



[I, 3,9,10,11,12,13], and will focus primarily on studying the equilibria of the perturbed 

and unperturbed models and comparing them. 

An equilibrium of our systems of ordinary differential equations is a point satisfying 

XI  = yl = 0 in the case of (0.1), or XI = yl = zr = 0 in the case of (0.2) (it is a steady-state 

solution). The nature and stability of an equilibrium may be determined by finding its 

eigenvalues. The eigenvalues are the roots of the characteristic equation 

det (J -  XI) = 0 ,  

where J is the Jacobian of the system evaluated at the equilibrium, and I is the identity 

matrix. If all eigenvalues have negative real part, the equilibrium is asymptotically stable. 

Provided an orbit (solution) is sufficiently close to such an equilibrium, it will asymp- 

totically approach the equilibrium as time tends to infinity. If one or more eigenvalues 

have positive real part and none have real part equal to zero, the equilibrium is unstable. 

Provided an orbit is near an unstable equilibrium, it will move away from the equilibrium 

as time tends to infinity. Thus we see that in the case of a hyperbolic equilibrium (no 

eigenvalue has real part equal to  zero), its nature and stability predict the behaviour of so- 

lutions of the system near the equilibrium. This property does not hold for nonhyperbolic 

(at least one eigenvalue is zero or purely imaginary) equilibria. 

In studying the effect of perturbations on the models7 equilibria, we will see that 

hyperbolic equilibria retain their local stability properties while nonhyperbolic equilibria 

might not. In particular, multiple equilibria (which have one eigenvalue equal to zero and 

are thus nonhyperbolic) may disappear or bifurcate into several new simple hyperbolic 

equilibria. Hyperbolic equilibria are said to be structurally stable, while nonhyperbolic 

equilibria are not. Models with certain qualitative properties that remain unchanged when 

subjected to perturbations, such as the hyperbolic nature of an equilibrium, are seen as 

being more credible than highly sensitive ones which might undergo significant changes. 

It is therefore important to study such effects in a model. 

The full conditions and assumptions imposed on the models (0.1) and (0.2) will be 

described in the next Chapter. The possible values of constants a, b, c, T and R will be 

given. We will specify the natures and biological interpretations of F(x), g(x), G(x) and 



K(y), and the choices of a, b and g(x) = f G ( x )  which lead to predator-prey, competitive, 

and cooperative interactions in (0.1) will be related. Furthermore, some research works 

that form the framework for this study will be surveyed; specifically, works that involve a 

carrying capacity or critical density, harvesting or stocking, and perturbations. 

Chapter 2, "The Two-Species Model," will contain the analysis of (0.1). First the 

equilibria of the unperturbed model will be located. Equilibria will be classified as simple 

or multiple according to a derived condition. The local nature and stability properties 

of the simple equilibria shall then be determined. Perturbation's effects on the simple 

and multiple (double or triple) equilibria of the unperturbed system will be calculated. 

Bifurcations of the multiple equilibria will be observed: a double equilibrium will either 

split into two simple equilibria or disappear, a triple equilibrium will split into three simple 

equilibria or will shift to a simple equilibrium. 

Following a similar pattern, system (0.2) will be examined in Chapter 3, "The Three- 

Species Model." In this chapter, as in Chapter 2, specific examples of the models will be 

presented. These examples are not derived from any real-world biological system, and in 

that sense are artificial. Regardless, we study them to give numerical confirmation to our 

analytic calculations, and because the phase diagrams produce visual descriptions of the 

models which are readily comprehensible. These numerical studies will illustrate, among 

other things, the perturbation of a simple equilibrium, and the bifurcation of a multiple 

equilibrium. 



Chapter 1 

PRELIMINARIES 

Thorough descriptions of the models are given. Important results related to this study 

are presented. 

1.1 The Models 

In the introduction systems (0.1) and (0.2) were presented, but not all constraints were 

given. First take into consideration the functions F ( x ) ,  g(x) ,G(x) ,  K ( y ) ,  $(x ,  y),  $ ( x ,  y),  

41(x,  y, z ) ,  $2(x, y, z )  and b3(x,  y, Z )  which are assumed to be analytic in their arguments. 

Given the constants ao, L1, L2 > 0  with L1 < a0 < L2, we further assume that F ( x )  and 

g ( x )  = f G ( x )  satisfy the conditions 

Fz(x)  > 0  V x  E [O,ao), (1.2) 

FX(4  < 0  v x  E (ao,oo), (1.3) 

G(0)  = 0,  (1.4) 

G,(z) > 0  Vx  > 0. (1-5) 

Using g ( x )  = f G ( x )  allows us to model different interactions with system (0.1). Similarly 

to G ( x ) ,  the function K ( y )  is asummed to satisfy 



The terms a ,  b, c, T and R are constants. Depending on model (0.1)'s interaction, a 

and b may be positive or negative; in the case of model (0.2) however, a, b, c, and T are all 

assumed to be greater than zero. For both models constant R represents a harvesting or 

stocking term: R = 0 if there is no harvesting or stocking, R = H > 0 for harvesting, and 

R = -S < 0 for stocking. Harvesting or stocking in a system usually arises from the effort 

of an external agent or manager (an agent other than one of the species present in the 

system) to control either the system itself, or just the one species in that system. When 

a population is harvested, members of that population are removed (culled) at a constant 

rate; stocking represents an increase at a constant rate of a population. In models (0.1) 

and (0.2), we subject one species only to harvesting or stocking. It is possible to have 

harvesting or stocking of any one of the populations in these models, or to have harvesting 

or stocking of two or more of the species. These cases may be studied in a way similar to 

the study in this thesis, but we do not do this here. 

Function F(x) is the specific growth rate of the first species; it describes how the 

members of population x affect their own growth. This function is a kind of generalized 

quadratic function with roots at L1 and L2. For example, F(x) might typically be F(x) = 

(x - L1)(L2 - x). We show such a typical F(x) in Fig.l.1, and in Fig.l.2 we show a typical 

xF(x). Constants L1 and Lz that satisfy (1.1) respectively represent a lower critical 

density and an upper carrying capacity. In the absence of interspecies interactions, when 

the initial population of the first species is below L1, that population will die out; while, 

if it is initially above L1 it will asymptotically approach L2. Functions G(x) and K(y) 

are the response functions for the second and third species respectively. Through G(x), 

the interaction of x and y is achieved; while, K(y) allows y and z to affect each other. 

Since G(x) is an increasing function with G(0) = 0, we are indicating that the strength 

of interaction between x and y increases as x or y increases, and (obviously) that there is 

no interaction should either x or y die out. A similar relationship between the members y 

and z of (0.2) is expressed by K(y). 

System (0.2) describes a predator-predator-prey interaction. The lowest trophic level 

population, the prey, is represented by x. Population y is the second species (middle 



Figure 1.1: A typical F(x) 

I 

Figure 1.2: A typical xF(x) 



trophic level) which preys upon x and is in turn preyed upon by z, the highest trophic 

level. The first and third populations do not directly interact with each other. In this 

system, as in [ll, 121, R appears in the growth relationship of the first species x. With 

harvesting, we decrease the rate of growth of x. Since y feeds on x, this will tend to slow 

the growth of y; and as z in turn feeds on y, we expect the growth of z to also be slowed. 

Stocking has the opposite effect, tending to increase the growth of y and z in addition to 

directly speeding the growth of x. Thus harvesting or stocking of the first species x makes 

its effects felt up to the last species z of the food chain. 

Three types of interaction are allowed in (0.1), these are achieved by suitable selection 

of the sign of a,  b and g(x): 

(i) Predator-Prey 

(ii) Competition 

(iii) Cooperation 

In the case of predator-prey, y preys on x, and we have either harvesting or stocking of 

the predator y. Harvesting y should tend to increase the growth of x because y eats x; 

while, stocking y would slow the growth of x. When x and y are competing, harvesting y 

would again tend to increase x; stocking y would tend to decrease x. On the other hand, 

if x and y are cooperating, the growth rate of x should be increased when y is subjected to 

stocking, and the growth rate of x should be diminished when y is subjected to harvesting. 

Note that it is possible to  study (0.1) with R on the first species. We are interested in 

multiple equilibria in the interior of the first quadrant though, and with R on the first 

species we only have the less interesting case of multiple equilibria on the boundary of the 

first quadrant (see Appendix B). 



1.2 Models with Carrying Capacity, Critical Density 

An upper carrying capacity represents the natural upper bound on the size of a population. 

This feature has appeared in many population models; for example, Freedman [9] (see also 

[14]) has studied the system 

where g(x) satisfies g(0) = a > 0, g,(x) < 0 for x 3 0 and 3K > 0 such that g(K) = 0 

( K  is a simple root of g(x) = 0); thus, K is the carrying capacity of population x. Simple 

equilibria were found and studied. For the equilibrium in the interior of the first quadrant, 

Freedman determined that it was either asymptotically stable, or had a periodic solution 

(stable from the outside) surrounding it. Next, this model was considered subject to 

enrichment of the environment; i.e., g(x) was replaced by g(x, K )  satisfying g(O, K )  = 

a > 0, g(K,K)  = 0, g,(x,K) < 0, g ~ ( x , K )  2 0 and ~ , K ( x , K )  2 0 for x 2 0. It 

was assumed there was an equilibrium in the interior of the first quadrant that was a 

centre of the linearized system for some particular value KO of K .  Utilizing the conditions 

on g(x, K), a criterion for the existence of small amplitude periodic solutions about this 

equilibrium was derived. 

In a series of papers, Brauer and Soudack [5, 6, 7, 81 studied predator-prey models of 

the form 

In these papers, the main interest was to investigate the role F and G played; however, it 

is important to note that a carrying capacity and critical density appeared in this system. 

The equation f(x, y) = 0 defined y as a single-valued function of x (under the given 

condition f,(x, y) # 0), which was assumed non-negative in the interval a < x < K ,  with 

f (K, 0) = 0; K is the carrying capacity of the first species. The possibility of a > 0 with 

f (a, 0) = 0 was allowed, in which case a is a lower critical density for population x. 

The feature of both a carrying capacity and a critical density has been discussed by 



Bazikin [15]. Indeed, Bazikin analyzed the model 

Other such models have been presented by Bazikin, some with critical density and satu- 

ration level (carrying capacity) for more than one species. In @, Bazikin looked at the 

system 

Note that (1.13) is a special case of (0.1) with R = E = 0, and (1.14) is a special case of 

(0.2) with R = E = 0. 

Bojadziev, McConill and Yen [lo] have discussed (1.13) with harvesting or stocking 

and perturbations added, giving 

This too is a special case of (0.1) where in particular, F(x) = al(L2 - x)(x - L1). 

1.3 Models with Harvesting or Stocking 

Harvesting effects on competing species modelled by 

were studied by Yodzis [4]. The harvesting terms A and B were not constants; rather, 

A was assumed to be a C1 function (of x alone) such that A(0) = 0, A monotonically 

increasing on 0 < x < E ( E a small parameter), and A = a =constant for x 2 E .  There were 

analogous conditions imposed on B. The harvested and unharvested (A = B = 0) systems 

were compared. More precisely, for the unharvested system with at most one simple (not 



multiple) equilibrium in the interior of the population quadrant, Yodzis tried to determine 

whether or not harvesting would produce or destroy stable equilibrium points. 

System (1.12) was probed by Brauer and Sanchez [16] as a predator-prey system with 

harvesting of the population x only (G = 0, F > 0). First the case F = 0 was considered: 

an equilibrium in the interior of the first quadrant was assumed to exist and a condition 

for the asymptotic stability of this point was given. Under the same assumptions for the 

case F > 0, the condition for the equilibrium to be asymptotically stable led to an upper 

bound on the harvesting rate, which the authors called a critical harvesting rate. Beyond 

this rate, the equilibrium would be unstable. 

Brauer, Soudack and Jarosch [17], examined model (1.12) with harvesting of population 

y only ( F  = 0, G > 0). Conditions for which detJ(G) = 0 and trJ(G) = 0 (J(G) is the 

Jacobian of system (1.12) evaluated at an equilibrium satisfying x > 0, y > 0) were 

derived, which led to two "critical" harvesting rates. For a specific case of this model, 

computer simulations were run for various values of G (and for different values of K, a 

carrying capacity of the specified model). 

In [5],  Brauer and Soudack studied (1.12) with F = 0 and G > 0. This time they 

developed techniques for determining the regions of asymptotic stability (that portion of 

the x-y plane having the property that any orbit of the system with initial point in that 

region remains in that region for all time), and instability (that portion of the x-y plane 

such that for an orbit with initial point in that region, at least one of the species will die 

out). For a class of examples, by using computer simulations, they observed how these 

regions would change as G was varied. For the same model, but with G = 0 and F > 0 in 

[6], and with F, G 5 0 in [7], a similar analysis was undertaken by Brauer and Soudack. 

Finally, in [8], these authors divided the F-G plane into different regions corresponding 

to different cases of behaviour of the model. Again using a numerical study of a specified 

system, they showed how to  explicitly determine these regions in the F-G plane. 

Freedman [9] (see also [14]) has added a source term (stocking) r > 0 to (1.11) 

"1 = zg(z) - yp(x) + T ,  

yf = Y[-3 + cp(x)l. 

He found that the equilibrium in the interior of the first quadrant would always be asymp- 



totically stable for sufficiently large r .  In that sense, stocking had a stabilizing effect on 

the model. 

The predator-predator-prey model with harvesting 

has been investigated by Bojadziev and Gerogiannakis [12] (note that f (x) had a carrying 

capacity, but no lower critical density). Harvesting effects on the location, nature and 

stability of the equilibria of the system were determined and a boundedness theorem was 

presented. The case H = 0 was earlier studied by Freedman [13]. 

As previously stated, Bojadziev, McConill and Yen [lo] have examined the model 

(1.15). For E = 0, the equilibria of the model were studied under either harvesting or 

stocking. Using graphical and analytical techniques, they showed what effect changing 

R had on the equilibria; they also showed how a double equilibrium could result for a 

certain critical harvesting or stocking value. Note that predator-prey, competition and 

cooperation interactions were allowed. 

A qualitative discussion of the role harvesting or stocking can play in changing the 

structural stability of populations, illustrated by certain examples, was given by Bojadziev 

[18, 191. 

1.4 Perturbed Models 

Hausrath [20] proposed 

Ef = g E  - a H E  + &EF1(E, H, P), 

H' = y H E  - tuH - f H P +  E H F ~ ( E , H , P ) ,  

P' = b P  - cp2 + k H P  + &PF3(E, H, P) ,  

as a model for the interaction between wolves (P),  moose (H) and the food supply (E) 

of the moose in Isle Royale National Park (Isle Royale is an island in Lake Superior). For 

the case P = 0, the equilibrium in the interior of the first quadrant of the E-H plane was 



studied when E = 0 and when E > 0. This further was done for the case P > 0 with E = 0 

and E > 0. Basically, for E = 0 the equilibrium was asymptotically stable; the resulting 

perturbed equilibrium arising when E > 0 remained asymptotically stable. Interestingly, 

the observed situation on Isle Royale compared favourably with the qualitative properties 

of this model. 

Equilibrium E(3,  $) was shown to be a centre (all solutions about the point are closed 

periodic orbits) for the unperturbed (E = 0) version of the model 

in Freedman and Waltman [I]. Then for E > 0, under the assumption that the equilibrium 

changes position (either fl(3, ;) # 0 or f2(3, 2) # 0), Freedman and Waltman determined 

that the local nature of the perturbed equilibrium would be either a spiral or a centre 

(stable or unstable), and gave conditions for this. Further, conditions were derived under 

which there would be a stable limit cycle about this perturbed equilibrium. For the same 

system, the authors [2] considered the case E > 0 such that fl(a,;) = f2(3,;) = 0 (the 

equilibrium does not move when E > 0). Using implicit function techniques, conditions for 

the existence of periodic solutions and the stability or instability of such solutions, were 

calculated. 

The perturbed two-species Kolmogorov model 

was investigated in [3] by Freedman. He assumed there was an equilibrium E(al, a2) with 

al ,  a2 > 0 when E = 0. The associated perturbed equilibrium of the perturbed model was 

then located. These equilibria were studied as to their nature and stability and compared, 

for E a simple or a multiple equilibrium. 

Perturbations to  (1.11) were considered in Freedman [9], resulting in 



Here it was assumed that p ( x )  was such that for E = 0, there was an equilibrium in the 

interior of the first quadrant which was a centre (of the linearized system). The perturbed 

equilibrium was located (for E > 0) and a theorem for the existence of stable small am- 

plitude periodic solutions (or a limit cycle) surrounding this perturbed equilibrium was 

proved. 

A Lotka-Volterra competition model with perturbations has been studied by Bojadziev 

and Kim [21]. They examined the equilibria for E = 0 and E > 0, determining the local 

nature and stability. A condition for the existence of a double equilibrium was given, and 

the splitting of this double equilibrium under the influence of perturbations was calculated. 

The system under scrutiny was 

Following Freedman and Waltman [3], Bojadziev and Sattar [22, 231 made an investi- 

gation of the perturbed three-species Kolmogorov model 

First for E = 0 in [22, 231, it was assumed an equilibrium existed in the interior of the first 

octant. This equilibrium was assumed to be a simple equilibrium in [22], and a multiple 

equilibrium in [23]. For the simple equilibrium, the resulting perturbed equilibrium was 

located. A comparison of the possible nature and stability of the two equilibria was given. 

As to the multiple equilibrium, its possible bifurcation was investigated. In the case of the 

simple equilibrium, it was determined that the local stability of a hyperbolic equilibrium 

was unaffected by perturbations, while the stability of a nonhyperbolic equilibrium was 

affected. It is worth mentioning that system (1.17) has been studied from the point of 

view of persistence by Freedman and Waltman [24]. 

As discussed earlier, (1.15) was investigated by Bojadziev McConill and Yen [lo]. The 

nature of this study for E = 0 has been described in the previous section. When E > 0, the 

authors calculated the bifurcation of a double equilibrium. A similar study of the model 



(1.16) with perturbations, 

has been undertaken by Bojadziev and Wong [ll], wherein they gave a condition for the 

existence of a multiple equilibrium then calculated its bifurcation (only for a double). 

Bojadziev [25] has considered models of the form 

which can be transformed to  the differential system 

Of interest is that for E = 0, this system has a triple equilibrium (under given assumptions 

on f and g). Bojadziev studied the bifurcation of this triple equilibrium. 



Chapter 2 

THE TWO-SPECIES MODEL 

This chapter contains a study of system (0.1) under conditions (1.1)-(1.5), for the three 

cases of interaction determined by (1.8), (1.9) and (1.10). For the unperturbed model we 

locate and then determine the nature of the simple equilibria and the multiple equilibria. 

From these simple and multiple equilibria of the unperturbed system (E = O), new equi- 

libria may arise as perturbations ( E  > 0) are introduced. The location and nature of any 

such new equilibria are determined. 

2.1 Simple Equilibria of the Unperturbed Model 

When E = 0 in model (0.1), we are left with the unperturbed model 

An equilibrium point (sometimes called a critical point) of the system is one for which the 

right-hand-side of (2.1) is zero; consequently, we must look for solutions of the system of 

nonlinear equations 

Since we are modelling populations we only concern ourselves with the first quadrant 92: 

(population quadrant x, y 2 0). When x > 0, g(x) > 0 (see (1.4), (1.5)) and y can be 



eliminated from (2.2). The resulting equation is 

where 

If x is a root of (2.3), then we find the corresponding y-value from the first equation of 

When x = 0 (which satisfies the first equation of (2.2)) the corresponding y-value is 

Since x = 0 is also a root of (2.3), we see that E(x, y), with x, y 2 0, is an equilibrium 

provided (x, y) satisfies either (2.3) and (2.5), or (2.3) and (2.6). 

In this section we are concerned with simple equilibria, which we label EO(XO, an 

equilibrium EO(xO, yo) is called simple when x0 is a simple (not multiple) root of (2.3), 

which occurs when 

pz(xO> # 0- (2.7) 

Here the subscript x represents differentiation with respect to x. 

We now study the different interactions case by case. 

(i) Predator-Prey : Model (2.1) with condition (1.8). 

(A) R = 0; No harvesting or stocking. 

We must find the roots of (2.3) which reduces to  xF(x)[bg(x) - a] = 0. Obviously 

xO = 0 is a solution and from (1.1), xO = L1, L2 are also solutions. The corresponding 

y-values from (q.6) and (2.5) are all yo = 0. Thus we always have the equilibria Et(o,O), 

E:(L1, 0) and E;(L2, 0) . There is one more possibility: an equilibrium point in IntS: 

(interior of 8: ). If €RangeG(x), which guarantees there exists an 5 such that 



Figure 2.1: Predator-Prey or Competition with No Harvesting or Stocking 

and if 

L1< Z < L2, 

which by (1.1)-(1.5) guarantees that the corresponding y-value defined by (2.5) satisfies 

y > 0; then, E$(Z, #) is an equilibrium point. The equilibria are shown by asterisks in 

Fig.2.1; the curve and the y-axis represent the first equation of system (2.2), while the 

x-axis and the line x = 5 represent the second equation of this system. 

(B) R = H > 0; Harvesting. 

When x0 = 0, (2.6) gives yo = -5 < 0; this point is not in the population quadrant 

and is of no interest to us. The other possible simple equilibria, which we shall label 

~ ~ ( 5 ,  +), are in J.nt92:; f must satisfy (2.3) and (2.7) and + satisfies (2.5) with x = 2. 

There may be none, or there may be many such points; let us assume there is at least one. 

As in (i)(A) above, we must have L1 < f < L2 so that 9 > 0. From (2.3) with (2.4), 

R = H > 0, (1.1)-(1.5), (1.8) and L1 < 5 < L2, we see that we must have bg(f) - a > 0. 

Since (1.4) implies bg(0) - a < 0, there will be an Z satisfying (2.8) when E0(2, +) exists. 

With (1.5) we can place a tighter bound on i and say 

max(Ll,Z) < 5 < L2. (2.10) 

A necessary condition for the existence of EO(f, $) in IntB: is that 35 satisfying (2.8) and 



Figure 2.2: Predator-Prey with Harvesting or Competition with Stocking 

that 

5 < L2. 

The equilibrium points are shown in Fig.2.2. The first equation of (2.2) is represented in 

the same manner as in 2.1; the second equation describes a decreasing curve with vertical 

asymptote at x = 5 and horizontal asymptote along the x-axis. In Fig.2.2 we show the 

curves crossing twice, but of course there may be more than two equilibria (even numbers), 

or there may be none. In this figure one can see why (2.10) and (2.11) hold. 

(C) R = -S < 0; Stocking. 

We obtain an equilibrium Eg(0, :) from (2.6). If there exist i, 6 satisfying (2.3)-(2.5) 

and (2.7), then EO(i,P) is an equilibrium in IntR;. An argument similar to that of 

(i)(B) above gives that if 32 satisfying (2.8), then a necessary condition for the existence 

of EO(i ,  @) is 

2 > L1. (2.12) 

When such an x exists, 

Note that if there is no 5 satisfying (2.8), then f satisfies (2.9) with 5 replaced by 2. The 

equilibria are shown in Fig.2.3 which is similar to Fig.2.2 with the difference being that the 



Figure 2.3: Predator-Prey with Stocking or Competition with Harvesting 

second equation of (2.2) now represents an increasing curve (it has the same asymptotes 

as before). 

(ii) Competition : System (2.1) with conditions (1.9). 

(A) R = 0; No harvesting or stocking. 

Similarly to  (i)(A) we get three equilibria: Et(0,O) , Ey(L1, 0) and E:(Lz, 0) . Pro- 

vided 32 satisfying (2.8) and (2.9), Eg(2, y) is also an equilibrium with y given by (2.5). 

The appropriate geometric interpretations are given by Fig.2.1. 

(B) R = H > 0; Harvesting. 

This is equivalent to  case (i)(C) above. The only difference is that now we have 

Eg(0, f ) instead of E{(o, q )  . View Fig.2.3 to  get a sense of the geometry. 

(C) R = -5' < 0; Stocking. 

This case is equivalent to  (i)(B), hence Fig.2.2 applies. 

(iii) Cooperation : Model (2.1) with (1.10). 

(A) R = 0; No harvesting or stocking. 

Like (i)(A) and @)(A) we again have Eg(0,O) , E:(L~, 0) and E:(L2, 0) as equilibria. 

This time 82: contains no other equilibria. We show the equilibria in Fig.2.4. The first 



Figure 2.4: Cooperation with No Harvesting or Stocking 

Figure 2.5: Cooperation with Harvesting 



equation of (2.2) represents the y-axis and the curve, while the second equation represents 

only the x-axis (in 8; ). 

(B) R = H > 0; Harvesting. 

E;(O, t) is an equilibrium point, and if (2.3), (2.5) and (2.7) are satisfied, then EO( i ,  y) 

is also an equilibrium. Since we must have 6 > 0, (2.5), (1.1)-(1.5) and (1.10) reveal that 

The equilibria are shown in Fig.2.5 where now the first equation of (2.2) is as in (iii)(A) 

above, but the decreasing curve represents the second equation of (2.2). As always there 

may be more or less equilibria in IntR: than the two shown. 

( C )  R = -S < 0; Stocking. 

The left-hand-side of the second equation of (2.2) is -ay - byG(x) + S > 0 in 8% 

(recall that a,  b < 0); it represents a curve which is below the x-axis (for values of x 2 O), 

thus there are no equilibria in 8:. 

2.2 Stability Properties of the Simple Equilibria 

We now look at the simple equilibria of (2.1), each of which we have denoted by EO(xO, yo). 

In order to  determine their local nature and stability, we first find the Jacobian matrix 

J ( x ,  y) and evaluate it at  EO(xO, yo). For system (2.1), this matrix is 

where: 

Po = - s(xO), 

Yo = bYOgz(xO), 

So = bg(xO) - a .  

The eigenvalues of (2.15), which are the roots of the characteristic equation 

det(JO - XI) = X2 - q:X + q; = 0, 



where 

The eigenvalues determine the local nature and stability properties of the equilibria (see 

Appendix A for classification of equilibria via eigenvalues). It is known ( see [26]) that for 

a simple equilibrium EO, 

d e t ~ '  = # 0. (2.20) 

Cases (i), (ii) and (iii) (defined in the previous section) will be studied separately. 

First we derive some results involving p(x) (as defined in (2.4)) that will help us investigate 

the equilibria. 

Lemma The terms p(x) and q: satisfy the relationship 

Proof If we substitute the expressions (2.16) into given by (2.19) and use the fact 

that 

ayO = byog(x0) - R = b x O ~ ( x O )  - R 

(from(2.2)), we get 

Note that (2.21) implies that condition (2.20) for simple equilibria is equivalent to  

condition (2.7). 

Theorem 1 If pZ(x0) > 0, then EO(xO, yo) is either a node, a focus, or a centre; being 

asymptotically stable if qy < 0, and unstable if q: > 0. If px(xO) < 0, EO(xO, yo) is a 



saddle point. 

Proof By substituting the expression for q: as given in (2.21) into (2.18), the theorem 

follows immediately 

Theorem 2 Assume that the following two conditions hold: 

1. E:(xy, y:) and E:(xi, y:) with x i  < x; are simple equilibria of (2.1), and 

Then either Ef' is a saddle point and E: is not a saddle point, or E: is a saddle point and 

Ef' is not a saddle point. 

Proof Conditions 1 and 2 imply xy and x: are two simple roots of p(x), and that there 

are no other roots of p(x) between xy and xi. Thus ~ , ( x ~ ) ~ , ( x ~ )  < 0. This, together with 

(2.21) and (2.18) prove the theorem a 

Keeping these results in mind, we look at the individual cases. 

(i) Predator-Prey 

(A) R = 0; No harvesting or stocking. 

We assume (2.8) and (2.9) hold. There are exactly four equilibria to study: E:(o, 0) , 

E,O(L1,0) , E,O(L2,0) and Et(j', jl) - 
Equilibrium Et. Using (xO, = (0,O) in (2.16) and (2.19), we see that the eigenvalues 

(2.18) are: X1 = -a < 0 and X2 = F(0). From (1.1) and (1.2) X2 < 0. Thus Et is an 

asymptotically stable node. 

Equilibrium E:. This time the eigenvalues are X1 = LIFx(LI) and X2 = -a + bG(L1). By 

(1.2), XI > 0; by (2.8),(2.9) and (1.5) X2 < 0. This tells us that E: is a saddle point. 

Equilibrium E i .  From the characteristic equation, we calculate that XI = L2Fx(L2) and 

X2 = -a + bG(L2). From (1.3) XI < 0; (2.8), (2.9) and (1.5) give X2 > 0. Like Ef', Eg is 

a saddle point. 

Equilibrium Eg. NOW qf = F(5) + 5Fx(5) - yGx(5), and we don't know whether this is 

positive, negative or zero. Since 5 satisfies (2.8), 60 = 0, which leaves us with a simple 

expression for qi (see (2.19)): q! = bjlG(Z)G,(B) > 0 by (1.4) and (1.5). From (2.18) we 

see that if X1 and X2 are real, they have the same sign, hence Et is not a saddle point. 



Now writing these points in the order E:, Ef, E: and E;, it is easily checked that the 

pairs Et, Ef;  Ef ,  E;; and E!, E; satisfy the conditions for Theorem 2. Corresponding to 

the above specified order, the nature of the equilibria goes: E:-not a saddle, Et-saddle, 

E$-not a saddle and E:-- saddle. This result agrees completely with Theorem 2. 

Note that E:, E: and E: are hyperbolic equilibria (see [26]) since none of their eigen- 

values have real part equal to zero; E: is nonhyperbolic if q: = 0, or hyperbolic if qf # 0. 

(B) R = H > 0; Harvesting. 

The only equilibria are of the type E0(2, $) (see Section 2.1, case (i)(B)) which are in 

IntR: . We cannot say anything about their stability other than what Theorems 1 and 

2 tell us. 

(C) R = -S < 0; Stocking. 

There is one equilibrium on the axis, Eg(0, f )  , whose eigenvalues (2.18) are X1 = -a, 

and X2 = F(0) - :G,(o). Now X1 < 0 and from (1.1), (1.2) and (1.5) we find Xg < 0. 

Thus Eg is an asymptotically stable node. Any other equilibria that may exist are of the 

form E0(2, $) E IntS? ; again, we can only apply Theorems 1 and 2 tb these points. 

(ii) Competition 

The derivation of the eigenvalues and of the signs of the real part of those values is 

straightforward and similar to the case of Predator-Prey just discussed; therefore, we 

simply present the results without elaboration. 

(A) R = 0; No harvesting or stocking. 

We assume that (2.8) and (2.9) are satisfied so that E ~ ( z ,  y) is an equilibrium point. 

Eg(0,O) is a saddle point; 

Ef(Ll, 0) is an unstable node; 

Eg(L2, 0) is an asymptotically stable node; 

Eg(5, y) is a saddle point. 

Writing these in the order E:, E:, Eg and E:, the nature of these points follows the 

pattern: Eg-saddle, E:--not a saddle, Eg-saddle, and Ei-not a saddle. Theorem 2 

gives us precisely this result. 

(B) R = H > 0; Harvesting. 

Eg(0, $) is a saddle point. 



EO(f,  y) ; here we resort to Theorems 1 and 2. 

(C) R = - S  < 0; Stocking. 

~ ' ( 2 ,  y) ; similarly, we apply Theorems 1 and 2. 

(iii) Cooperation 

Once again we simply present the results. 

(A) R = 0; No harvesting or stocking. 

E ~ ( o ,  0) is a saddle p i n t ;  

E,O(L1, 0) is an unstable node; 

E;(L2, 0) is a saddle p i n t .  

Here also Theorem 2 is in accordance with these results. 

(B) R = H > 0; Harvesting. 

E,O(O, t) is an unstable node if F(o)+~G,(o) > 0, or a saddle point if F(o)+~G,(o) < 

0. For EO(f,  c) we refer to Theorems 1 and 2. 

(C) R = -5' < 0; Stocking. 

There are no equilibria in R: . 

Now we present three examples in which the functions and const .ode1 (2.1) 

are specified; hence, we are able to locate equilibria of the type EO(f,  i )  and determine 

their nature and stability properties. To obtain the figures, the system of differential 

equations has been solved numerically using a Runge-Kutta-Fehlberg method (see Danby 

[27]) starting from various initial points. 

2.2.1 Example 1 

Consider the predator-prey system without harvesting or stocking 

X I  = x[1 - (2  - 3)4] - xy, 

yl = - 5 y t 2 x y .  

We see from (2.1) that F(x) = 1 - (x - 3)4, G(x) = x, a = 5 and b = 2. Furthermore, 

it is easily checked that L1 = 2, a0 = 3 and L2 = 4. Thus from (i)(A) of Section 2.1, 

we automatically know that E:(o, 0), EY(2,O) and Ei(4,O) are equilibria. Equation (2.8) 

for this model reads 22 - 5 = 0, which is satisfied by S = q.  Since 2 < $ < 4 (i.e. 



Figure 2.6: Example 1 

(2.9) is satisfied), we find from (2.5) that @ = 2. Then E;(Z, $) is an equilibrium in 

IntR:. From Section 2.2 we know that Et is an asymptotica,lly stable node, Ey is a saddle 

point, and E: is also a saddle point, but all we know about E! is that it is not a saddle 

point. Evaluating (2.16) and (2.19) at  E;, the eigenvalues (2.18) are = g(l  f im). 
Hence E; is an unstable focus. The phase portrait is shown on Fig.2.6. The orbits are the 

curves with arrows (which point in the direction of flow as time increases), the dashed lines 

indicate the curves where XI = 0 or yt = 0, and the equilibria are indicated by asterisks. 

2.2.2 Example 2 

Now we study a competition model with harvesting: 

We have from (2.1), F(x)  = i ( x  - 2)(9 - x), G(x) = x, a = 7, b = 1 and R = H = 8. 

In addition, L1 = 2, a0 = and L2 = 9. From (ii)(B), E:(O,f) is a saddle point. 

Now we must see if there are any more equilibria. Equation (2.3) (with x # 0) can be 



Figure 2.7: Example 2 

written in the form Qx3 - 6x2 + F x  - 50 = 0; its roots are 3,5 and 10. Note that i. = 7 

satisfies (2.8), so according to (2.13) we must have 2 < 5 < 7. Thus only 3 and 5 give 

equilibria in R: . From (2.5), we calculate the corresponding y-values, giving the equilibria 

E:(3,2) and Eg(5,4). Further, we find p,(x) = 623 - 18x2 + y x  - 50; px(3) = 14 > 0 

and px(5) = -- 530 < 0; hence, by Theorem 1, E: is a saddle point and E: is not a 

saddle point. We must calculate the eigenvalues for E: in order to completely deternine 

its stability; these are XI = 7 and X2 = 2, indicating this equilibrium is an unstable node. 

The phase portrait for this example is shown on Fig.2.7. 

2.2.3 Example 3 

Finally we look at a model wherein the populations are cooperating: 

XI = ix(x  - 4)(7x - 23) + xy, 

yl = 4y+ xy - 18. 

Comparing this system with (2.1), we see that we have R = H = 18 > 0 (harvesting), 

23 F(x) = i ( z  - 4)(7x - 23), -g(x) = G(x) = x, a = 4, b = 1, a0 = $, L1 = 7,  and 



Figure 2.8: Example 3 

L2 = 4. According to  (iii)(B) of Section 2.2, equilibrium Et(0,;) is a saddle point 

23 3 since F(0) + $G,(o) = -? < 0. For this model p(x) = - i x4  + T X  + F x 2  - y x  

(see (2.4)), which has non-zero roots at  -?, 2 and 5. Only 2 and 5 give equilibria in 

the population quadrant: E:(2,3) and E;(5,2); which, according to Theorems 1 and 

2 must respectively be not a saddle and a saddle point. Since the eigenvalues of E! are 

XlT2 = i ( 41  k a) > 0, Ef(2,3) is an unstable node. The phase portrait for this example 

is given on Fig.2.8. 

2.3 Location and Nature of a Multiple Equilibrium of the 

Unperturbed System 

In Sections 2.1 and 2.2 we only looked at simple equilibria of the unperturbed system 

(2.1). A multiple (critical) equilibrium of (2.1), which we label EC(xC, yC) , occurs when 

condition (2.7) is not satisfied; that is, when 

p: = (FC  + xCFi)(-a + bgC) + bxcFCgi - RCgi = 0, (2.22) 



which is equivalent to  detJC = 0, JC is the Jacobian of (2.1) at EC(xC, yC) . Here p i  = 

px(xc), F$ = Fx(xC), gg = gx(xC), FC = F(xC) and gC = g(xC). We call RC the critical 

harvesting or stocking value. This number RC is not necessarily unique as there may be 

more than one critical harvesting or stocking value. A further possibility is that for one 

value of RC, there are several multiple equilibria. 

The multiplicity of a multiple equilibrium may be of any order (see Andronov et al[28]). 

Later in this Section we will study a multiple equilibrium in more detail, concentrating on 

the cases of a double or triple equilibrium which occur respectively when 

We seek to  determine the local nature of a multiple equilibrium EC(xC, yC) of the unper- 

turbed model (2.1), which lies in 8:. First, we suppose that such a multiple equilibrium 

exists; i.e., we assume 3xC, yC 2 0 satisfying (2.3), either (2.5) or (2.6), and (2.23) or (2.24). 

Then following Andronov et al [28], and the papers [lo, 21, 251, we shift EC(xC, yC) to the 

origin via the substitution x = xC + u, y = yC + v, after F(x)  and g(x) have been expanded 

in Taylor series about xC. The resulting differential system in (u, v) space is 

Here a, , PC , 7, and 6, are nothing but ao, Po, 70 and 60 (see (2.16)) with x0 and 

replaced by xC and yC correspondingly. As usual, subscripts on F and g represent the order 

of differentiation with respect to x, and superscript c indicates evaluation of the function 

at (xC, yC). 



We investigate two cases. 

Case 1 (zC, yC) E Int9: . 
In (2.25) we make the substitution: 

where we must assume that a, + 6, # 0. This substitution produces the new system 

where: 

in the vicinity of (0, 0), of the form 



Substitution of (2.30) in (2.29) and solving for M, N gives 

M = 0, 
1 (2.31) 

N = PC (ac +6, 13 [ - i a C  P C  W; - f P: - a c  (ac - b p ~  )&I. 

Now we use (2.30) in Q1(E, 7) given by (2.28) and find that in the vicinity of (0,O) 

Q I ( ~ ,  ~ ( 5 ) )  = Ale2 + ~~t~ + w4), 
with 

Al = - 1 [lac sc w; - 4 ~ :  byCg:, + ac ( w c  + bc )g:], 
P C  ( a c  +6c )3 

A2 = B1 + B2N; 

1 (2.33) B~ = - pc (ac +bC 14 [-;PC 6, Wii + fP: b~'g&x - fa, (bPc + 6, )g:x], 

B2 = - 1 pc (ac +bC )3 [ - P C  6. w,' + P: brCs:x - (a. - 6c )(WC + $ )!I:]; 

N is given in (2.31). 

We have calculated, using formulas (2.3), (2.2), (2.16), (2.22) and (2.33) that 

and if pix = 0, then 

Making use of (2.34) and (2.35), we conclude that: 

(a) If (2.23) is satisfied so that Ec is a double equilibrium, then Al # 0; and according 

to  [28], since the lowest power of 5 in q(t)) is 2, an even number, EC is a saddle-node 

which bifurcates into a saddle point and a node. 

(b) If (2.24) is satisfied so that EC is a triple equilibrium and A1 = 0 while A2 # 0; 

then according to  [28], since the lowest power of ( in Q1(e, q(t)) is 3, an odd number, EC 

is a topological node when A2 > 0 (pi,, > 0), or a topological saddle point when A2 < 0 

(P:,, < 0)- 

Case 2 (xC, yC) E the boundary of 92: . 
Here we are able to  find the coordinates of the possible multiple equilibria. 



If (xC, yC) E x-axis and xC > 0, which is only possible for the case of predator-prey and 

competition with R = 0, then the analysis in Case 1 above holds. Using formulas (2.8), 

(2.5), (2.22) and (1.1), we find that such a multiple equilibrium must be located at either 

the point (L1, 0) or (L2, 0) and that it will always be a double equilibrium. 

If (xc, yC) E y-axis, which is only possible in the case of cooperation with R = H > 0, 

then the one possible multiple equilibrium is located at the point (O,?). This critical 

equilibrium may be a double or triple (or greater) equilibrium. Since in this case a, = 

PC = 0, we cannot use substitution (2.26). If we instead use ,$ = 7, u, 77 = yc u + 6, v, 

r = 6, t, we obtain for [ and 7 a system of the form (2.27). Following the same procedure, 

we get for Q1 expression (2.32), but now we calculate that 

and when pi, = 0, then 

1 c A2 = - fj7: 6: pxxx' 

The conclusions drawn in Case 1 (a) and (b) remain valid. 

We investigate two examples. 

2.3.1 Example 4 

Let us look at the predator-prey model with harvesting 

Equation (2.3) for this model reduces to  p(x) = -3x4 + 41x3 - 168x2 + l8Ox = 0. The 

roots are x = 0, {, 6. It is easily checked that only x = 6 satisfies (2.10); thus, by (i)(B) of 

Section 2.1, E(6,4) is the only equilibrium in 8:. As px(6) = 0, and px,(6) = -156 # 0, 

E(6,4) is a double equilibrium; a saddle-node. The phase portrait is presented on Fig.2.9. 



5.0 6 0 7.0 8. 3 

Figure 2.9: Example 4 

2.3.2 Example 5 

Consider the model 

4031 2 2935 8105 
XI = x ( - x ~  - -x  + - 

24 6 
x  - -) - x y ,  

24 

This is again a predator-prey model with harvesting. Equation (2.3) reads -x6  + 23x5 - 

m x 3  - w z 2  + w x  = 0, which has solutions x  = 0,7,1+ g, 1 - g. Only 
24 -" + 24 24 24 

z = 7 and x  = 1 + satisfy (2.10) (recall that x  = 0 does not give an equilibrium in 

8: for a predator-prey system with harvesting). Now px(7) = pxx(7) = 0, but p,,,(7) = 

-? # 0, and px(l + g) s 95.7. Thus EO(l  + g, 18&) is a simple equilibrium, while 

Ec(7, 8) is a triple equilibrium. Moreover, according to (2.35) and Case 1 (b), EC(7, 8) 
is a topological saddle point since pxx,(7) < 0. We show the phase portrait in Fig.2.10 for 

a neighbourhood of the triple equilibrium; observe how it resembles a saddle point. 



Figure 2.10: Example 5 

2.4 Perturbations of a Simple Equilibrium 

Suppose E O ( x O ,  yo) is a simple equilibrium in 8; of ( 2 . 1 )  (recall: xO satisfies ( 2 . 3 )  and 

( 2 . 7 ) ) .  We seek the associated perturbed equilibrium Ep(xp,  yp) of system (0 .1 )  in the 

form of an asymptotic expansion (see Kevorkian and Cole [29] ) :  

For E = 0 ,  model ( 0 . 1 )  reduces to model ( 2 . 1 )  and EP to E O .  

The expressions for xp and yP given in (2 .38)  must satisfy the equations 

In (2 .39)  we expand F ( x ) ,  g ( x ) ,  4 ( x ,  y )  and $ ( x ,  y )  in Taylor series about ( x O ,  yo) and 



obtain the system 

+ E [$O + 0 ( ( x  - x O ) )  + 0 ( ( y  - yO))] = 0. 
(2.40) 

We substitute (2.38) into (2.40), noting that ( xO ,  yo) satisfies (2.2), and divide the result 

by E , giving 

where a0 , Po , Y O  and 60 are given in (2.16). In (2.40), subscript x indicates differentiation 

with respect to x. Superscript 0 in (2.40) and (2.41) indicates evaluation of the functions at 

( xO ,  yo). We assume here that we do not have 4 O  = tit0 = 0. , otherwise, (xp,  yp) = ( xO ,  yo), 

and the unperturbed equilibrium is not shifted by the addition of perturbational terms. 

This is a special case not considered here. 

Since EO(xO,  yo) is a simple equilibrium, qg = a0 So - Po YO # 0 according to (2.20) 

with (2.19). Neglecting the terms of order O ( E  ) in (2.41) produces 

Thus (2.38) with (2.42) represents the approximate location of the perturbed equilibrium 

EP(xp, yp) . 
To study the local nature and stability of EP, first we find the Jacobian matrix for 

system (0.1) and evaluate it at EP: 

where J0 is given in (2.15), 



and W t  is Wg given in (2.25) with superscript c replaced by superscript 0. 

The characteristic equation, det(JP - XI) = 0 ( I  is the 2 x 2 identity matrix), reduces 

to 

A2 - + Q: + E [-(go + 70 )A + 0 0  ] + O(E 2, = 0, (2.45) 

where qy and q: are to  be found in (2.19) and 

Suppose that are the eigenvalues of EO(xO, yo) ; then, we search for the perturbed 

eigenvalues in the form 

with A t  as given in (2.18). Substituting (2.47) into (2.45), then setting the coefficient of e 

to  zero (the term without e , that is e O, is already zero since (A:)2 - qyA: + qi = 0) allows 

us to  solve for I,: 

Equation (2.48) is only valid provided 

Now we study the eigenvalues (2.47) using (2.18) and (2.48). 

(i) Suppose EO(xO, yo) has eigenvalues (2.18) that have non-zero real part and are not 

repeated (in such a case E0 is a hyperbolic equilibrium). Then E0 is a saddle if the 

eigenvalues A:, A: are real and of opposite sign; a proper node if A:, A: are real, distinct 

and of the same sign; or a focus if A:, A; are complex (with nonzero real part). Since E is 

sufficiently small, from (2.47) with (2.18) and (2.48) we see that A:, A; are close to A:, A:. 

This implies EP(xP, yP) has the same local nature and stability as EO(XO, yo) . 

(ii) Suppose EO(XO, yo) is a centre of the linearized model (2.1) (it may be a centre or 



a weak focus for the nonlinearized model (2.1)); it is nonhyperbolic. In this case q? = 0 

and q; > 0. Using (2.18) and (2.48) we observe that (2.47) becomes 

So if 90 + TO # 0, then are complex with non-zero real part; EP(xP, yP) is a focus 

and i t  may be asymptotically stable if 90 + TO < 0, or unstable if 80 + TO > 0. We do 

not consider the case where 90 + TO = 0; it requires investigation to O(E 2). Under the 

influence of perturbations, we observe that the nonhyperbolic equilibrium E0 may change 

its nature and stability. 

(iii) Suppose EO(xO, YO) is a node-star; X i v z  = iqf, (qf)2 - = 0; condition (2.49) is 

not satisfied. In this case (2.47) is not appropriate; instead we try to find A:,2 in the form 

Substituting this last expression into (2.45), we determine that the coefficients of E O and 

E are identically zero. Setting the coefficient of E to zero allows us to solve for 1;. The 

result is: 

So 1; may be real or complex. Assuming 1; # 0 we have that X i  may be real and distinct 

but of the same sign, or complex with nonzero real part. Equilibrium EP(xP, yP) may 

thus be a proper node or a focus; in either case though, it has the same stability property 

as EO(xO, , since for sufficiently small e the real part of A$ is of the same sign as as 

the term q:. In this case, the stability of the hyperbolic equilibrium EO(XO, does not 

change when perturbations are introduced even though its nature may change. 

Two examples are now investigated. 



2.4.1 Example 6 

For this example, we look at the perturbed predator-prey model without harvesting or 

stocking: 

XI = X(X - 1)(9 - x) - xy, 

yl = -3y + X Y  + E  (-l)"y, n = 1,2. 

So we see that F(x)  = (x - 1)(9 - x), G(x) = x, a = 3, b = 1, L1 = 1, L2 = 9, a. = 5, 

4(x, y) G 0 and +(x, y) = -y for n = 1, +(x, y) = y for n = 2. When E = 0 the system 

has equilibria: E ~ ( o ,  0) an asymptotically stable node, Et(1,O) a saddle point, ~ t ( 9 , O )  a 

saddle point, and ~30(3,12) an unstable node-star as (qt)2 - 4q; = (12)~  - (4)(36) = 0. In 

Fig.2.11 we show the phase portrait of the unperturbed system. In Fig.2.12 we show an 

expanded view of E;. 

From the discussion in this Section, under the influence of perturbations (E > 0) E: 

will be an asymptotically stable node, Ef will be a saddle point, and Ei will be a saddle 

point. Equilibrium El may be either a proper node or a focus, but will remain unstable. 

We now determine what El is. 

Equation (2.16) gives a0 = 12, Po = -3, yo = 12 and 60 = 0; furthermore, 

9' = 0 and $O = (-l)"12. Thus (2.42) gives ml  = (-l)"+l, nl  = (-l)"+l4. From 

(2.44) we obtain: O0 = (-l)n2, po = (-l)n, uo = (-l)n+14 and TO = 0. Then 

(2.51) takes the form 1: = (-1)'6J(-l)nOn Thus E; which is given approximately by 

E1(3+(- I)"+'& ,12+(- I)"+'& ) has eigenvalues given by = 6&6t/(-l)n~ l I2+0(& ). 

For n = 1, E:(3 + E , I 2  + 4~ ) has eigenvalues = 6 z t  6 i ~  + O(E ). This means 

that El is an unstable focus for n = 1. The case n = 1, e = 3 is drawn on Fig.2.13, 

and on Fig.2.14 where we show a close up view of Ei. On the other hand, when n = 2, 

E i (3  - E ,12 - 4~ ) has eigenvalues X L 2  = 6 f 6~ 'I2 + O(E ), making it an unstable proper 

node. This case is shown on Fig.2.15 and on Fig.2.16 (neighbourhood of E:), where again 

we use the value E = 4. 



Figure 2.11: Example 6 with E = 0 

Figure 2.12: Example 6 with E = 0, expanded view 



Figure 2.13: Example 6 with n = 1 and E = 0.5 

Figure 2.14: Example 6 with n = 1 and E = 0.5, expanded view 



Figure 2.15: Example 6 with n = 2 and E = 0.5 
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Figure 2.16: Example 6 with n = 2 and E = 0.5, expanded view 



Figure 2.17: Example 7 with E = 0 

b.-----.-.----+ ...... - ..... .............. + ............. .i+ ............................... ...................................... n 
0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8 0 0.0 y'-o 

Figure 2.18: Example 7 with E = 0.1 



The model 
xr = X(X - 3)(7- X) - ~y + E X, 

is an example of a perturbed predator-pr~v system without harvesting or stocking. When 

E = 0, the equilibria are: Eg(0,O) an asymptotically stable proper node, Ef(3,O) a saddle 

point, E;(7,O) a saddle point, and E30(5,4) a centre of the linearized unperturbed model 

(the eigenvalues at this point are = f 2i&). In fact, from Fig.2.17, wich shows the 

phase portrait of the system with E = 0, we see that E$ appears to be an asymptotically 

stable (weak) focus for the unperturbed model. 

If we now consider the model with E > 0, we know that E: will be an asymptotically 

stable node, and Ef and Ei will be saddle points. Calculations give that to O(E ), E; is 

E$(5 - E , 4  + E ), and at this point the Jacobian (2.43) is 

Thus, we find that to order O(E ) the eigenvalues (2.50) are XI,, = *2i& f E (5 f i g ) .  

Equilibrium Eg is an unstable focus. The results for the perturbed model are displayed in 

Fig.2.18 were we have used the value E = 0.1. Under the influence of perturbations, the 

nonhyperbolic equilibrium Eg has gone from being asymptotically stable, to unstable. 

2.5 Bifurcation of a Multiple Equilibrium 

In this Section we examine the effect of perturbations on a multiple equilibrium EC(xC, yC) 

of the unperturbed system, determining the conditions under which EC splits (bifurcates) 

into several new equilibria. 

We assume that either a double or triple equilibrium exists in 8:; hence, we assume 

there is an EC(xC, yC) with xc, yc 2 0 satisfying (2.3)-(2.5) and either (2.23) (double) or 

(2.24) (triple). Following the method of [25], which is a slight generalization of the method 

used in [lo], [ll] and [21] (see also [29] for a detailed look at perturbation methods), we 



seek a perturbed equilibrium E*(x*, y*) in the form 

The pair (x*, y*) must satisfy the perturbed system (2.39); therefore, we substitute (2.52) 

into (2.40) with superscript 0 replaced by c in (2.40). The coefficient of EO is zero since 

Ec(xc, yC) satisfies (2.2) (which is just (2.39) with E = 0), so we may divide the resulting 

expression by E p which leaves us with: 

Note that it is necessary to go to  higher order in the Taylor expansions than is shown 

in (2.40) to get (2.53). Also, we assume that we don't have @ = $' = 0 (otherwise 

E*(x*, y*) = EC(xC, yC) ), and that qt = a, + 6, # 0. As usual, W; and Wg appearing 

in the above formula are to  be found in (2.25). 

To solve (2.53) we set coefficients of successive powers of E equal to  zero. Since at least 

one of $C or @ is not zero, for some 1 = 1,2,3, .  . . we must have 1 - p = 1p. Therefore, 

only p = 1, 4, 5 , .  . . are possible values. 

We investigate two cases. 

Case 1 (xC, yC) ~1n tR ;  . 
Since xC, yC > 0, it turns out that a, ,PC ,r, ,6, # 0 (see (2.16) with (1.4) and (1.5) 

and use the fact that p; = a, 6, - PC 7, = 0). We have evaluated five subcases, making 



use of Al, A2 (given by (2.34), (2.35)) and the expressions: 

(i) A1 # 0, Dl = 0. Since A1 # 0 implies pi, # 0, we know that EC(xC, yC) is a double 

equilibrium. In this case p = 1 should be used in (2.52). 

Setting successive powers of E equal to zero in (2.53) gives us a series of systems of 

equations, of which only the fist two are needed in order to solve for ml and nl. These 

two systems are: 

a, m2 + PC n2 + i W; m: - g$mlnl+ 4: ml + 4; n1 = 0, 
(2.56) 

YC m2 + 6, n2 + ~bycg:,m: + bgimlnl+ $: ml + $$ nl = 0. 

The condition Dl = 0 guarantees that (2.55) has a solution (recall that a, 6, -PC 7, = 

0). Eliminating ml,  m2 and n2 from (2.55) and (2.561, we obtain the quadratic equation 

where: 

el = &(ac ac + 6, 13al, 
c2 = bycg:,@ &- - bg;@ - $: A + +; a, - W i  litC $- 

(2.58) 
- &litC + 4: 6c - 4; 7 c  , 

c3 = l b ~ ~ g f . ~ ( @  2~ )2 -I $: - &Wi JIC I +JIC & . 
If ci - 4c1c3 > 0, then there are two real solutions of (2.57). This, together with (2.55) 

gives two new equilibria, which are approximately E,*(xC + E ml,, yC + E nl,), s = 1,2, 

where 

If ci - 4c1c3 < 0, the double equilibrium disappears under the influence of perturbations. 

If ci - 4c1c3 = 0, higher order terms m2 and na should be calculated. 

(ii) A1 # 0, Dl # 0. Again EC(xC, yC) is a double equilibrium, but this time we use in 

(2.52) p = 4. Proceeding as before, the two systems of equations that we must solve are: 



a c m 2 + p c n 2 + i ~ ~ m : - g g m l n l + @  = 0 ,  
(2.60) 

rc m2 + 6, nn + qbycgg,m; + bggmlnl + $C = 0. 

From these systems we derive the quadratic equation 

where cl is found in (2.58) and Dl in (2.54). Provided clDl < 0 we again see that 

the double equilibrium EC(xC ,  yC) produces two perturbed equilibria given to O(E  ' I 2 )  by 

E;(xC + E lI2rnls, yC + E lI2nls), s = 1,2, where 

When clDl > 0 the double equilibrium disappears under the influence of perturbations. 

When cl Dl = 0 further study is required. 

(iii) Al = 0 ,  A2 # 0 ,  Dl # 0. Looking at (2.34) and (2.35), A1 = 0 ,  A2 # 0 implies 

EC(xC ,  yc) is a triple equilibrium. The choice for p in this case is p = 4. Here we must use 

the first three systems of equations that result from (2.53): (2.59) together with 

+ bg$mln2 + ibgi,m:nl + $C = 0. 

We eliminate m3 and n3 from (2.63), then use (2.62) to remove ma from the resulting 

equation; the term n2 also disappears due to A1 = 0. Finally, using (2.59), we arrive at 

the cubic equation 

~ m f  - Dl = 0 ,  (2.64) 

where 
QIc M = -(ac + 6, ) 4 ~ 2 .  
P C  



Since M # 0 (because A2 # 0) and Dl # 0, (2.64) has one real and two imaginary solu- 

tions. This case always results in one simple perturbed equilibrium which is approximately 

represented by E*(xC + E 'l3m1, yC + E ll3n1), with 

(iv) A1 = 0, A2 # 0, Dl = 0, D2 = 0. Again EC is a triple equilibrium and we should 

use p = 4 as in subcase (iii); thus, equation (2.64) will again result. Since Dl = 0 and 

M # 0, we find that ml = nl = 0. After substituting these values into (2.53) we make 

use of the first five systems of equations that result: 

Using elimination, the equation 

may be derived from (2.66)-(2.70). This is the same M as in (2.65) and the same c3 as 

in (2.58). With Dl = Dz = Al = 0, c3 simplifies to  c3 = E ( Y ,  4; - aC $; ). As in (iii) 

M # 0; provided c3 # 0 we have one perturbed simple equilibrium given to O(E 2/3) by 

E*(xC + E 2/3m2, yC + E 2/3n2) with 



If CQ = 0, then m2 = n2 = 0 and it is necessary to calculate higher order terms ms, n3. 

(v) A1 = 0, A2 # 0, Dl = 0, D2 # 0. Here EC is still a triple equilibrium, but now we 

use p = f ;  consequently, (2.59) and (2.60) are still valid. One more system: 

a, m3 + PC ns + i W ~ C  m: + W i  mlm2 - g:m2nl 

- gZmin2 - f gZ.m:nl+ 4; ml + 4; nl = 0, 
(2.72) 

YC ms + 6, ns + ibyCg&,m? + bycg:,mlm2 + bg:m2nl 

+ bgzmlnz + fbggxm:nl + +: ml + +; nl = 0, 

is required. From (2.59), (2.60) and (2.72) we may derive the following cubic equation: 

This equation always has ml = 0 as a solution. When ml = 0, nl = 0 also, so we go 

to the next higher order terms m2 and n2. It is not very difficult to find that provided 

If ~ 2 ~ 3  = 0, further study is required. If a, PC MD2 > 0, there are two additional real 

solutions of (2.73): 

Thus, if C ~ C Q  # 0 and a, PC MD2 > 0, the triple equilibrium EC(xC,yC) of the un- 

perturbed system bifurcates into three perturbed simple equilibria E,*(x:, y,*), s = 1,2,3, 

where: 

x i  = xC + E  m2 + O(e 3/2), y* - - yC + E n2 + O(E 3/2); 

If c2c3 # 0 and a, PC MD2 < 0, then El* is the only perturbed equilibrium. 

Case 2 (xC, yC) is on the boundary of 32: . 
First we consider multiple equilibria on the x-axis. In Section 2.3, Case 2, we saw 

that the only such possibility is for a double equilibrium at either EC(L1, 0) or EC(L2, 0). 



There are just two subcases to consider here which depend on whether or not Dl = 0, 

where Dl = a, +' (this is the same Dl as given by (2.54) because here a, ,PC # 0 and 

yc = 6, = 0). 

(i) Dl = 0. The results are exactly as in Case l ( i )  above, but now 

C l  = - bPc g:, 

C2 = - bg:@ - PC +: + a, +; , (2.74) 

c3 = - @ %  

instead of those values given in (2.58). 

(ii) Dl # 0. The results are as in Case l( i i)  above, but with cl as in (2.74). Note 

that here Ei (zc  + mlla 1 / 2 , n l l ~  'I2) is not in 82; as rill = -E < 0. 

Now consider a multiple equilibrium on the y-axis; which, according to  Case 2 of 

Section 2.3, is located at EC(O, !) and may be a double or triple (or more) equilibrium. 

We study five subcases which depend on A1 and A2 specified by (2.36) and (2.37), and on 

Dl = -rc 4' and D2 = yc 4; - Jc 4: - g:@ (note that a, = PC = 0 and 7, ,Sc # 0 

here). The results in subcases (i)-(v) below, are the same as in subcases (i)-(v), Case 

1 above, with the following exceptions: 

(i) Al # 0, Dl = 0. Here we have that 

~1 = - 6:A1, 

C2 = -L (2~ : -~c&x)$c  7 c  -g:?bc +&4: - 7 ~ & ,  (2.75) 

c3 = - -(F: - tycg:,) + 4; +' . 7 c 

A ~ S O  mls = - *c [-c2 + (-1)" JCl-4qe3 1 - * 
2c1 CYc 7 c  ' 

(ii) Al # 0, Dl # 0. Now we should use cl given by (2.75) rather than (2.58) and in 

the expression for ml, we must replace & by $. In addition, Ez(m12a 'I2, +n12e 'I2) 

is not in 82: since ml2 = -$e < 0. 

(iii) A1 = 0, A2 # 0, Dl  # 0. Instead of (2.65), M is found to be 

Use rather than 2 in nl. If D I M  < 0, then ml = @ < 0 and E*(mle lI3, f + 
nle 'I3) is no longer in 8: . 



(iv) A1 = 0 ,  A2 # 0 ,  Dl = 0 ,  D2 = 0. The quantity c3 is found in (2.75), M in (2.76), 

and now n2 = - ~. If Mc3 < 0,  then it is easily seen that E*(m2c 2 /3 ,  + nla 2 / 3 )  

is not in R: . 

(v) Al = 0 ,  A2 # 0 ,  Dl = 0,  0 2  # 0. Observe that equation (2.73) now reads 

m l ( M m :  - D Z )  = 0 ,  with M as in (2.76). With these changes, we calculate that 

m2 = --Lc and n2 = -Q; where of course, c2 and c3 are found in (2.75). Finally, 
Y c  c2 Yc c2 

ml, = (-1) 'dP c M '  nl ,  = (-l)s+le,/p c M '  s = 2.3; E3 is no longer in 8: as 

2.6 Nature of the Perturbed Multiple Equilibria 

The equilibria bifurcatinq, under the influence of perturbations, from a double or triple 

equilibrium of the unperturbed system have been located. We now determine the nature 

of these perturbed equilibria. Looking at the cases considered in Section 2.5, only values 

of p = 1, !j, and were needed for (2.52); thus, we study here these three cases. 

(i) p = 1 Perturbed equilibria given to O(E ) by E*(xC + ml& , yC + nl& ) arose from a 

double equilibrium in Case l ( i )  and Case 2(i) of Section 2.5. The Jacobian J* at such 

a point is similar to (2.43): 

where a, , PC , rc , 6, , 4 , PC , 0, and 7, are respectively QO , PO , YO , 60 , 00 , PO , 
oo and TO with superscript 0 repaced by superscript c in (2.16) and (2.44). Taking into 

consideration that detJC = a, 6, - PC yc = 0,  the eigenvalues for EC(xC,  yC) are Xf = 0 

= qi = a, + 6, ; therefore, the eigenvalues for E* are 

(0, is R0 (2.46) evaluated at ( x C ,  yC) instead of ( xO ,  yo)). Recall that we assumed qf # 0 

for a multiple equilibrium, so X i  is well defined. Provided that 0, # 0,  E* must be a 

saddle or a node. If R, = 0,  X i  must be calculated to higher order. When EC is a double 



equilibrium, it was found (Section 2.3) to be a saddle-node, which under the influence of 

perturbations splits into a saddle and a node according to [28]. 

(ii) p = . Subcase (ii) of Cases 1 and 2 in the preceding section saw equilibria of 

the form E*(xc + ml& 'I2, yc + nla 'I2) arise from the double equilibrium EC(xC, yC) when 

perturbations were introduced. At E* the Jacobian is 

Matrix JC is given in (2.77) and 

To O(E lI2) the characteristic equation is 

We seek in the form 

Substitiuting Xz into the characteristic equation and setting the coefficient of E to zero, 

we solve for 1;. With this we find 

Utilizing the fact that ml , nl satisfy (2.59) and (2.60), we have established that Rd = 

mlpzx. Thus, for the double equilibrium Od # 0 and E* is a saddle or a node. In fact, 

we know fom Section 2.3 that the double equilibrium, when it does not disappear under 

the influence of perturbations, produces two equilibria: one saddle and one node. 

When EC(xC, yC) is a triple equilibrium as in subcase (v) of Cases 1 and 2 of the 

previous Section, we now see that f l d  = 0 since p;, = 0. It will be necessary to go to 

higher order in the evaluation of A:, and to do this requires knowing E* to order O(E ). 



Let us assume we have E*(xC + ml& ' I 2  + m2c , yC + nl& ' I 2  + n2c ) with m2 and n2 

explicitly calculated. The Jacobian at E* is 

Reminder: W i  and W$ are given in (2.25). The characteristic equation to O ( E  ) is 

where Re = a, re + 6, 8, - PC a, - 7 ,  p, , and detJd = Od ~d - a d  pd . The eigenvalues 

are therefore 

1 
A; = ,(Re + det Jd )E + O(E 3 / 2 ) 7  A* 2 - - Q; + O ( E  l12). 

q1 

Assuming Re + detJd # 0, E* must be a saddle or a node. If this term is zero, it is 

necessary to calculate to higher order; we do not consider this here. 

(iii) p = i. This value for p was used in Case l(iii) and Case 2(iii) of Section 2.5, 

where E* was calculated to O ( E  'I3) .  AS EC is a triple equilibrium, it is necessary to know 

E* to O ( E  2 / 3 )  in order to  determine its stability. We assume we have E*(xC + mle ' I 3  + 
m2.5 2 / 3 7  yc + nlc  113 + n 2 ~  2 / 3 )  with m2 and n2 known. Such a point has Jacobian 

Expressions JC and Jd are found in (2.77) and (2.78) respectively. In addition: 



Calculations give the eigenvalues: 

where Qf = a, rj + 6, Of - pc uf - yC pf . As usual, E* is a saddle or a node provided 

Q j  + det J~ # 0. 

Finally, E*(xc + m 2 ~  2/3 + mgE , yC + n 2 ~  2/3 + n 3 ~  ) is the type of perturbed equilibrium 

that appeared in Case l(iv) and Case 2(iv) of Section 2.5. Coefficients m2 and n2 have 

been explicitly calculated, and now we assume that m3 and n3 are known. We find the 

eigenvalues to  be: 

Q9 A; = -6 + O(E 4/3), A; = q; + O(& 213); 
q1C 

Next we will study an example of a double equilibrium, and one of a triple equilibrium. 

Let's look at the system studied in Example 4, but we add the perturbational terms 

b(x, y) = x, $(x, y) = y to the model: 

We already know that EC(6, 4) is a double equilibrium (a saddle node) of the unperturbed 

(E = 0) model, now we study the bifurcation of EC under the influence of perturbations. 

From (2.16) a, = -18, PC = - 6 , 7 ~  = 12, and 6, = 4. Rom (2.54) we calculate that Dl = 

- 144 # 0; thus, we are dealing with Case l(ii) of Section 2.5. Next, from (2.58), cl = 26. 

Therefore, mls = ( - 1 ) ' + ' 2 6  and nls = (-1)'6&, s = 1,2. To O(E 'I2) the perturbed 

equilibria are E;(6 + 2 & ~  'I2, 4 - 6&& 'I2) and Ez(6 - 2 & ~  'I2, 4 + 6 f i ~  'I2). 
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Figure 2.19: Example 8 with E = 0 

5 . 5 0  5.75 6 .00  6 . 2 5  6 . 5 0  

Figure 2.20: Example 8 with e = 0.04 



To find the nature of these equilibria, we go to case (ii) of Section 2.6 (double equilibrium 

with p = $). After some elaborations we find the eigenvalues for E; are 

and for E2f are 

Just as expected, one (E;) is a saddle and the other ( E ; )  is a node. For E = 0, we show 

a neighbourhood of the double equilibrium in Fig.2.19 (this is the same as Fig.2.9). In 

Fig.2.20, we show the two perturbed equilibria E; and E;, where we have chosen the value 

E = 0.04 with which to carry out the calculations. 

2.6.2 Example 9 

Now we consider the model 

4031 2 2935x - 8105 XI = X ( - X ~ + ~ ~ X ~ - ~ ~  +T -) - XY - & p, 1 

yl = - y + X y - g + &  (102-69). 

This model has perturbational terms b(x, y) = -9s and $(x, y) = 10s - 69. With E = 0 

the system reduces to the model of Example 5; therefore, for convenience, we present 

Fig.2.10 again in Fig.2.21, which shows the triple equilibrium EC(7, z ) .  Since Dl = 0 

and D2 = -? (see (2.54)), we are in Case l(v) of Section 2.5. As a, /Ic MD2 = 

( - f ) ( - 7 ) ( - w ) ( - y )  > 0, we should look to case (ii) of Section 2.6. Because EC is a 

triple equilibrium, we need E,*, s = 1,2,3, to order O(E ) to determine the stability of 

the perturbed equilibria. Note that E; is already known to the required order from Case 

1 (v) of Section 2.5, while a little extra work is required to find E,* and E: to O(E ). The 

result is 

The eigenvalues for E; according to case (ii) of Section 2.6 are: 



Figure 2.21: Example 9 with E = 0 

Figure 2.22: Example 9 with E = 0.06 



and, for E,*, s = 2,3, are 

Thus E; is an unstable node, while Ez and E: are saddle points (recall: EC is a topological 

saddle point). We show these three equilibria in Fig.2.22 in which we have used the value 

E = 0.06. 

2.7 Tables 

We present two tables that summarize the effect of perturbations on simple and multiple 

equilibria of the unperturbed system. A simple equilibrium that is of the type proper 

node, focus or node-star is hyperbolic. A simple equilibrium of the type centre or a 

multiple equilibrium is nonhyperbolic. Note how the local stability properties of hyperbolic 

equilibria are not affected by perturbations. 

EO(zO, YO) 

Proper Node 

Focus 

Centre of 
Linearized System 

Node- S tar 

Focus 

EP(xP, yp) 

Proper Node 

Focus 

Nature and Stability 
May Change 

Changes in Nature, Stability 

No Changes 

No Changes 

I Focus or Proper Node 

Table 2.1: Perturbations of a Simple Equilibrium 

Only Nature Changes 



Multiplicity of 

2 One Saddle, One Node 
I I I 

EC(xC, yC) 

Double 

Triple 1 1 ; 1 May be a 

Saddle or 

P 

1 

Table 2.2: Bifurcations of a Multiple Equilibrium 

Numaer of 

1 - 
3 

Nature of 

Perturbed Equilibria 

0 

2 

E*b*, Y*) 

One Saddle, One Node 

1 a Node 



Chapter 3 

THE THREE-SPECIES MODEL 

We analyze the three-species food chain model (0.2) under the assumptions (1 .I)-(1.7). 

The pattern of Chapter 2 will be followed here: First we study the simple equilibria, then 

the multiple equilibria, of the unperturbed system. We end by investigating the effect of 

perturbations on these simple and multiple equilibria. As much of the results and their 

derivation are similar to  those of the two-species model, we will be concise. 

3.1 Simple Equilibria of the Unperturbed Model 

The unperturbed case of model (0.2) results when we set E = 0: 

We seek the simple (not multiple) equilibria EO(XO, yo, zO) in @+ (x, y, z 1 0, the popula- 

tion octant); (xO, zO) must satisfy 



Three different types of simple equilibria are considered: E:(~,O, 0) ,E;(j., 3,O) , and 

E!(f, j, Z) . 
For E:(f,0,0) , (3.3) and (3.4) are automatically satisfied, while 3 must satisy the 

equation xF(x) - R = 0. There may be more than one such equilibrium; each is simple 

provided F(3) + 3F,(3) # 0. 

Now, EzD(5, 3, 0) is an equilibrium when 5 satisfies bG(5) - a = 0 (in which case i > 0) 
1FFi . -R  and bF(5) - R > 0; g is given by g = (so y > 0). Since bG(Z) - a = 0 can have 

at most one solution, and since corresponding to each b there is only one 3, E; is simple. 

Findy, Eg(f, j, i) is found in the following way: first we find j satisfying the equation 

-c+ r K ( j )  = 0 ((3.4) with z jL 0); there is at most one such solution and it satisfies @ > 0 

by (1.6), (1.7). With j known, we find f from (3.2). We introduce the notation 

E satisfies Q = 0, where Q r Q(f, 8). For a given j, there may be more than one f 

satisfying Q = 0, and thus more than one such equilibrium of the form ~ : ( f ,  j, 2) (but 

each has the same @-value). Equilibrium E!(f, j, 2) is simple when 

With f and j known, i is found from (3.3): i = -. Of course, we must have 

-a + bG(f) > 0 so that 2 > 0. 

We investigate the following cases which depend on R. 

(A) R = 0; No harvesting or stocking. 

We can explicitly say that EE (0, 0,0) , Ek(L1, 0,O) and E:(L2, 0,O) are equilibria by 

(1.1). In addition, for E;(Z,@,O) we know that 5 satisfies (2.9); otherwise, 3 5 0. If Eg 

and E; both exist as equilibria in @+, then f > 5. 

(B) R = A > 0; Harvesting. 

We must have L1 < 5 < La, L1 < 5 < L2 and L1 < 5 < L2. If Eg and Eg are both 

equilibria in @+, b < f .  

(C) R = -5' < 0; Stocking. 

Now we require 0 < f < L1 or L2 < 5, and it is no longer necessary that L1 < 5 < Lg 

and L1 < f < L2. 



3.2 Stability Properties of the Simple Equilibria 

Similarly to the two-species case, we have found the eigenvalues from the Jacobian of (3.1) 

for each equilibrium; these determine an equilibrium's stability properties. See Appendix 

A for classification of an equilibrium according to its eigenvalues. Keeping in mind that 

a, b, c, r > 0, the results are as follows: 

(A) R = 0; No harvesting or stocking. 

We assume all five equilibria exist. 

Equilibrium EE(O,O,O) . The eigenvalues are A: = F(0) < 0, A; = -a < 0 and 

A{ = -c < 0. Equilibrium Et(O,O, 0) is an asymptotically stable node. 

Equilibrium EL(L1,0,0) ; A: = LIFz(L1) > 0, A; = -a+bG(L1) < 0, and A: = -c < 0; 

EE is a saddle node (do not confuse this type of saddle node with that type corresponding 

to a double equilibrium of the two dimensional model). 

Equilibrdum E:(L~, 0,O) ; A(: = L2F,(L2) < 0, A; = -a+bG(L2) > 0, and A: = -c < 0; 

Ey3(L2, 0,O) is a saddle node. 

~quilibrium ~ i ( 2 ,  @,0) ; A: = -c+rK(@), A: = f [Q, +(-1)' Jml, s = 2,3; 

Q,  = F(Z)+ZF,(Z) -yG,(Z). If -c+rK(@) < 0 and Q, < 0 then Eg is asymptotically 

stable. If in addition @ - 4ayG,(Z) < 0, ~ g i s  an asymptotically stable node focus; or if 

Q: - 4a@G,(Z) > 0, Eg is an asymptotically stable node; while if Q: - 4ayG,(Z) = 0, 

A; = A: and the equilibrium is an asymptotically stable node star. If none of the above 

holds, Eg(l,jj, 0) is unstable. 

Equilibrium Eg(5, g, Z) ; the characteristic equation is 

where, 

pi = Hi - Qx , p2 = ~2 - ~ 1 Q x  , p3 = -CZK~($)Q, , 
HI = a - bG(5) + ZKy($), H2 = b$G(Z)G,(Z) + cZK,($). 

(3.8) 

Of course, 9, is found in (3.6). According to the Routh-Hurwitz criteria, E: is asymp- 

totically stable provided 

Pl > 0, P3 > 0, P1P2 > P3. 



Note that p3 > 0 when Q, < 0. According to a theorem by Bojadziev and Gerogiannakis 

[12], the Routh-Hurwitz criteria are satisfied when 

If there are several different equilibria of this type, since G, alternates in sign among 

these points, so will p3; therefore, not all of these equilibria can satisfy the Routh-Hurwitz 

criteria. 

(B)  R = H > 0; Harvesting. 

Equilibrium E:(z, 0,0) ; A: = Qx (Qx G Q,(z, 0)), A! = -a+bG(f) and A: = -c  < 0. 

If Q, < 0 and -a + bG(2) < 0 then Ef is asymptotically stable; otherwise it is unstable. 

Note that if 5 < a0 (see (1.2), (1.3)) then Q, > 0; and we must have 3 < 5 to make 

-a + bG(3) < 0. If there are several equilibria of this type, Q, alternates sign among 

them; not all can be asymptotically stable. 

Equilibn'um E:(5, y, 0) . The eigenvalues are the same as for E: of case (A) above. The 

same comments apply. 

Equilibrium E ~ ( z ,  g, Z )  . The situation is equivalent to that of E$ in (A) above. 

(C) R = -S < 0; Stocking. 

Equilibrium E:(Z,O, 0) . The eigenvalues have the same form as in the case of equilib- 

rium Ef of (B), so this equilibrium is asymptotically stable if Q x  < 0 and -a+ bG(2) < 0. 

We know that either 0 < a: < L1,  or L2 < 3; Q1: < 0 when La < 5, and -a + bG(3) < 0 

only if Z < 5. 

Equilibrium E ~ ( z ,  fj, 0) . The results are the same as in (A), equilibrium E:, but we add 

that it is now possible to  have L2 < 5, guaranteeing that Q, < 0. 

Equilibrium E$(f, 8,Z) . We obtain the same results as for E$ of (A). Furthermore, it 

may be that L2 < Z, in which case Q X  < 0. 

Now we look at two case studies. 



3.2.1 Example 10 

The model without harvesting or stocking 

has F(x) = g(x - 1)(7 - x), G(x) = 22, K(y) = y, a = 3, b = 1, c = 4, T = 1, L1 = 1 and 

L2 = 7. According to Section 3.1, case (A), the equilibria are E,4(0,0,0), E&(l,O,O), 

E:(7,0, 0), E:($, v, 0), Ex (2,4,1) and ~ : ~ ( 6 , 4 , 9 ) .  From Section 3.2, (A), we find that 

E t  is an asymptotically stable node, Ey2 is a saddle node, and E& is also a saddle node. 

The eigenvalues for E: are Xy = -9 57 X t  = + ( - l ) * & i m ,  s = 2,3; this equilibrium 

is a saddle focus. The characteristic equation for E:l is X3 - ?A2 f 36X - = 0, so 

the eigenvalues are Xy x 9.61, and X t  x 4[3.19 + (-I)% J11.131, s = 2,3; making E:l 

an unstable node focus. Equilibrium Eg has eigenvalues aproximately given by: X i  = 

-35.79, and X: = f 1-2.61 f ( - l ) s i d m 9 ] ,  s = 2,3; therefore, Ej2 is an asymptotically 

stable node focus. We show the phase plot in Fig.3.1. The positive z-axis is into the paper 

in this perspective projection, as it is for all other plots in this chapter. The lines with 

arrows are selected orbits and the equilibria are marked by asterisks. Note that in all plots 

in this chapter, the arrow heads reside in a plane perpendicular to the x-z plane. 

3.2.2 Example 11 

Consider the system 

yt = 
7 

- -y+ xy- yz, 
2 

The equilibria for this model are ~ y , ( - q  cos[F + (-1)*8] + $,0, o), s = 1,2, B = 

1 arccos(&); 872 139 ~ : ( f ,  9, O), E&(4, f , f )  and Eg2(5, f , q) .  Approximately, the first two 

equilibria are: EE (3.3974, 0,O) and ~10,(5.6454,0,0). Calculations give the eigenvalues 
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Figure 3.1: Example 10 
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Figure 3.2: Example 11 



A: x 9.98, A: x -0.10 and A; = -1 for Ef,; thus, this point is an unstable saddle 

node. Equilibrium E& is a saddle node because A: x -15.03, A; x 2.15 and = -1. 

We find A: x -0.77, A; x 9.10 and A; x 0.11 are the eigenvalues corresponding to 

the equilibrium E:; hence, this is also a saddle node. The equilibrium E!l is an unstable 

node focus since A: x 3.694, and A: x f [l.306 f (-l)siJKW7], s = 2,3. Lastly, E& 

has eigenvalues A: x -4.771, A: x f[-1.229 + (-1)SiJ6.035], s = 2,3; making it an 

asymptotically stable node focus. In Fig.3.2 we show the phase diagram. 

3,3 Existence of a Multiple Equilibrium of the Unper- 

turbed System 

We are interested in discovering a multiple equilibrium EC(xc, yC, zC) of the unperturbed 

model (3.1) in 1nt@+. Multiple equilibria on the boundary of @+ may exist, but they are 

of less interest and we do not study them here. This point may be located in the same 

way we found equilibria of the type E~(z, #, 2)  in Section 3.1. The (unique) y-value, yC, is 

determined by solving (3.4) with z > 0. The term xC is then a root of the equation 

where Q(x, y) is given in (3.5). Since (3.3) then gives zC when xC, yC are known, and since it 

gives a unique z for each pair x, y, it is equation (3.9) which controls the multiplicity of the 

equilibrium. Here, we assume Qz = &,(xC, yC) = 0 in order to  have a multiple equilibrium. 

Two types of multiple equilibria will be studied in more detail in later sections: a double 

equilibrium, which occurs when 

and a triple equilibrium, which occurs when 

As usual, superscript c indicates evaluation of the function at xC, yC and subscript x repre- 

sents the order of differentiation with respect to  x. Again we call RC the critical harvesting 
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Figure 3.3: Example 12 

or stocking value; unlike the two-species case, a multiple equilibrium may occur in Int@+ 

when there is no harvesting or stocking (RC = 0). The characteristic equation (3.7) is still 

valid, but now all function evaluations are at (xC, yC, aC) rather than (E,& 2) in (3.8), and 

we replace Q, by Q: = 0. Thus, (3.7) reduces to X(X2 + H Z X  + Hg) = 0. The terms HE 

and H i  are HI and H2 respectively, given in (3.8), but evaluated at xC, yC, zC. Note that 

H i  > 0, SO there is only one eigenvalue equal to zero. 

Below, we examine two models; one with a double equilibrium, and the other with a 

triple equilibrium. 

3.3.1 Example 12 

The model 

XI = x(x - 2)(7 - x) - xy + 27, 

Yf = - y + x y - y z ,  

af = - 132 + yz, 
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Figure 3.4: Example 13 

has only one equilibrium in Int@+ located at (3,13,2). From (3.9), Q ( x ,  13) = -x3 + 
9 x 2  - 272 + 27; thus, 9,(3,13) = 0, Q,,(3,13) = 0 and Q,,,(3, 13) = -6 # 0. We have 

a triple equilibrium at EC(3, 13,2) and Rc = -27 is the critical stocking value. In Fig.3.3 

we show a neighbourhood of EC. We have calculated a number of different orbits starting 

"near" the equilibrium, and they were all qualitatively similar to the two orbits shown. 

These orbits (numerically at least) are very nearly (but not) closed. The smaller orbit 

starts at (3.25,13,2) and the larger at (2.75,13,2). Although it is not readily apparent 

from the figure, these orbits do pass through a range of a values. 

3.3.2 Example 13 

For this example we look at the system 



Utilising the results of Section 3.1, the only equilibrium in the population octant's interior 

is at  the point (9,2,1). We calculate Q(x, 2) = -x3 + 4x2 - 52 + 9, Q,(g,2) = 0, and 

Q,,(:, 2) = -2 # 0. Equilibrium EC(2,  2 , l )  is a double equilibrium, which is shown on 

Fig.3.4. The orbit t o  the right of the equilibrium begins at  (1.889,1.501,0.8187) and stops 

at  approximately (1.742,2.002,1.102). The orther orbit starts at  (1.5,2.3,1.0) and ends at 

a point near (1.537,1.989,0.8011). 

3.4 Perturbat ions of a Simple Equilibrium 

We assume EO(xO, yo, zO) is a simple equilibrium of system (3.1) in Int@+. Simple equilibria 

on the boundary of @+ can be handled in a way analogous to that described below; we do 

not do this here. The corresponding perturbed equilibrium Ep(xP, yp, zp) of system (0.2) 

must satisfy the equations 

Similarly to  (2.38) we seek the solution in the form 

Proceeding in the usual fashion, we may solve for ml,  nl ,  sl by substituting (3.13) into 

(3.12). This produces the following: 

The notation is as usual and of course, Qg = Q,(xO,yO) (see (3.5)). Note that (1.6) and 

(1.7) imply KO, K t  # 0 since yo > 0. Also, Qg # 0 because we assumed EO(xO, yo, zO) 



is a simple equilibrium; therefore, ml, nl and sl are well defined. A further assumption 

we make is that at least one of @, 4', 4: is non-zero. If this does not hold, E P  = E0 and 

there is no need to use (3.13) to solve (3.12). 

With the equilibrium E P  located up to the order of E , we find the characteristic 

equation at this point to be 

X3 + p:X2 +p;X + p: + E (by X2 + b$ X + b: ) + O(E 2, = 0, (3.15) 

where: 

with 

The terms py, pi,  p: and H: are pl, p2, p3 and HI, (see (3.8)) calculated at xO, yo, z0 

rather than Z, #, 8; ml, nl,  sl are specified by (3.14). 

Suppose we have distinct eigenvalues XQ , j = 1,2,3, for the unperturbed simple 

equilibrium EO. Then 3(X? )2 + 2~yXy + p: # 0 for j = 1,2,3. The eigenvalues for the 

associated perturbed equilibrium EP are 

Immediately we observe that if Xy , j = 1,2,3, are real and distinct, or if X! is real and 

A?, j = 2,3 are complex with nonzero real part, then so are X,P , j = 1,2,3. Additionally, 



since E is sufficiently small, the real part of A; is of the same sign as the real part of A! , 
j = 1,2,3. In these cases, EO(xO, yo, zO) and Ep(xp, yp, zp) are of the same (local) nature 

and stability. However, if A t  is real and AT , j = 2,3 are purely imaginary; then, A: is real 

and of the same sign as A: , but A; , j = 2,3, are in general complex with nonzero real 

part. In this case, the nature and stability of E0 and E P  are not the same. 

What if we have repeated eigenvalues of the form A: # X i  = A: ? The eigenvalues of 

E0 satisfy 3(Ag )2 + 2p:A; + = 0, j = 2,3, but 3(Ay )2 + 2pyAy + p i  # 0. Equation 

(3.18) holds for A:, but for AT , j = 2,3, we get a new expression: 

Since A: = A: is a double mot of the characteristic equation, 3A; + p: # 0, and A; , 
j = 2,3, are well defined. Clearly A; , j = 2,3, may be real or complex, but will have real 

part of the same sign as A! . Since A: is of the same sign as A: , EP and E0 have the same 

stability, but not necessarily the same nature. 

Finally we look at the case when A: = A: = A: . Since (A: )3 +p:(Ay )2 +p;A: +p! = 

3(A; )2 + 2pyA: + pi = 3At + py = 0, we find 

The real part of A; , j = 1,2,3, is of the same sign as Af ; however, we get one real and 

two complex eigenvalues. The nature of E P  and of E0 are different, but the stability is 

the same. 

The above results are based on the assumption that b: (A? )2 + b; A? + b$ # 0 for 

the appropriate values of j in (3.18), (3.19) and (3.20). When this last quantity is zero, 

higher order calculations must be carried out; we do not consider this here. 

Let us consider a couple of examples. 



3.4.1 Example 14 

When E = 0 in the perturbed system 

yt = - y + z y - y 2 z + ~  2, 

zt = 1 2  - z + - y  z + E y ,  
49 

there are two equilibria in Int.R$: E:($ + 9 , 7 ,  A + 9) and E;(3,7,$). For E: the 

eigenvalues are A: x - 1.92, A: x -6.80 and A! x -20.68. Equilibrium Ef is an 

asymptotically stable node. For E;, the eigenvalues are A: = 8 and A: = (-l)ji&, 

j = 2,3. We know that Ef will be an asymptotically stable node, like E:; but we 

expect Eg to have different stability properties than E;. TO order O(E ), we discover 

Eg(3 - ZE , 7  - YE ,$ - %E ). The eigenvalues are then A: = 8 + *FE + O(E 2), and 

A,P = ( - l ) j i \ / 3 + [ - ~ + ( - 1 ) j + l / ~ \ / 3 ] ~  12880 193200 +O(E '), j = 2,3. FOT sufficiently small E, 

Eg is a saddle focus. We show the phase portrait (when E = 0) for a neighbourhood of E; 

in Fig.3.5, and in Fig.3.6 we show the phase portrait (when E = 0.01) in a neighbourhood 

of E;. 

3.4.2 Example 15 

Consider this system: 

There is an equilibrium E0(5, 24, &) with eigenvalues A: = 1, and A7 = f , j = 2,3, 

when E = 0. This equilibrium is an unstable node star, and we show a neighbourhood 

of this point in Fig.3.7. With E > 0, since we have repeated eigenvalues for EO, we 

expect that while E P  will be unstable, it will not be a node star. Indeed this is what 

we find: EP(5 + 2 4 ~  ,24 + 58 , + E ) has eigenvalues A: = 1 - VE + O(E 2), 

A? = 4 + (-1)ji:fiE 'I2 + O(E ), j = 2,3; hence, EP is an unstable node focus. With 

the value E = 0.001, we show a neighbourhood of E P  in Fig.3.8. 



2 .  9 0  2 . 9 5  3 . 0 0  3 . 0 5  3 . 1 0  

Figure 3.5: Example 14 with E = 0 

2.67 2 .  7 1  2 . 7 5  2 . 7 9  2 .  8 3  2 .  8 7  

Figure 3.6: Example 14 with E = 0.01 
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Figure 3.7: Example 15 with E = 0 

q .  9 2 4  4 .  9 5 9  4 . 9 9 4  5 .  0 2 9  5 . 0 6 4  5 .  0 9 9  

Figure 3.8: Example 15 with E = 0.001 



3.5 Bifurcation of a Multiple Equilibrium 

We assume EC(xc, yc, tC)  E Int@+ is a double or triple equilibrium of the unperturbed sys- 

tem (3.1). Proceeding as in Section 2.5 by searching for perturbed equilibria E*(x*,  y*, z*) 

that may be generated by Ec(xC, yC, zc) under the influence of perturbations, we assume 

x*, y*, and z* are in the form 

Substitution of (3.21) into (3.12) gives us three equations: 



With p known, we set successive coefficients of powers of E to zero, producing a series of 

systems of equations which we use to solve for ml , nl , sl . Using the terms 

Dl = rzC KyC 4; + GC 45 , 
D2 = K C  (Gz 4: + GC 4gx + rzC KyC $fX ) 

+ byC Gg ( rKi  4; + GC 45, + rzC K i  4;, ), 

Q:, = xc F i x + 2 F i -  y c G i x ,  

Q ~ X X  = xC Fzxx + 3Fix - yC Gzxx , 
we have evaluated five cases. 

(i) Q # 0, Dl = 0. Equilibrium EC is a double equilibrium since Qz, # 0 (see 

(3.10)). We use p = 1 in (3.21). From the equations resulting from (3.22), we derive 

where 

c1 = +rzC KyC Qz, , 
byC GC 

c, = G i  45 + rzc K," 4:, + Gc 45, + - e ( r K y C  4; 

I f  ci -4clc3 > 0, there are two perturbed equilibria given to O(E ) by E;(xc + E  mG , yc + 
E n1 ,zC + E S l j  ), j = 1,2, where 

I f  C;  - 4c1c3 < 0 ,  the double equilibrium vanishes under the influence of perturbations. 

For c; - 4c1c3 = 0, it is necessary to go to higher order terms. 

(ii) Q;, # 0, Dl # 0. As in (i) above, E C  is a double equilibrium, but now we should 

use p = 1- 2' with this we obtain the equation 



Constant cl is given in (3.25) and Dl is defined in (3.23). Two equilibria result when 

clDl < 0: E;(zc + mlj  E 1/2,yc ,zC + S l j  E 'I2), j = 1,2; 

Note that we have only given E; to O(E 'I2) and n1 = 0. When cl Dl > 0, the double 

equilibrium disappears. The conditions for this case guarantee that cl Dl # 0. 

(iii) Qg, = 0, Qg,, # 0, Dl # 0. Now we must use p = for the triple equilibrium 

EC. The equation which determines ml is found to be 

Of course, Dl is as usual, and M is 

Only one equilibrium results in this case, which to O(E 'I3) is E*(xC + ml E 'I3, yC , zC + 
sl E lI3), with 

r 

(iv) Q:, = 0, Q:,, # 0, Dl = 0, D2 = 0. We again use p = 4, SO (3.26) holds; but, 

since M # 0 and Dl = 0, ml = 0. We also find nl = sl = 0. The equation for rnz is 

with M and cg respectively found in (3.27) and (3.25). Thus similarly to  case (iii) above, 

there is one and only one perturbed equilibrium resulting from EC. To O(E 'I3), this 

equilibrium is E*(zC + ma E 2/3, yc , zC + s 2  E 2/3), where 



(v) = 0, Qixx # 0, Dl = 0, D2 # 0. Once again we are dealing with a triple 

equilibrium, but now we use p = 3. This value of p yields the equation 

where M is specified by (3.27), and D2 is defined in (3.23). Note that KC M  # 0 and 

Dz # 0. The value ml = 0 is always one real root of (3.28). With ml = 0, we find that 

nl = sl = 0, so we try to find the next higher order terms. Calculations give us equation 

(3.24) with m2 in place of ml . Since cl = 0 due to the assumption Q:, = 0, we have 

Provided we do not have c2 = 0, c3 # 0, this case always gives rise to at least one perturbed 

equilibrium: E,*(xC + m2 E , yC + n2 E ,zC + s2 E ), with 

Reexamining (3.28), two more perturbed equilibria arise when K C  MD2 < 0: to O(E ' I 2 )  

these are E;(xC + mlj E ' I 2 ,  yc , zc + S l j  E ' I 2 ) ,  j = 2,3, where 

These two equilibria disappear if K C  MD2 > 0, leaving only Ei. Further study is required 

if ~ 2 ~ 3  = 0. 

3.6 Nature of the Perturbed Multiple Equilibria 

In Section 3.5, we only needed the values p = 1, p = and p = !J for (3.21). In this 

section, we consider only these three cases. 

(i) p = 1 In case (i) of the previous Section, we found perturbed equilibria given to 

order O(E ) by E*(xC + ml s , yC + nl E , zC + sl E: ). Such an equilibrium has characteristic 

equation 

X 3  + H ~ A ~  + HgX + E  EX^ + bgX + b:) = 0, 



where b i ,  b; and bs are by, b: and bg (see (3.16) and (3.17)) with superscript 0 replaced by 

superscript c, and H,C and H i  are H1 and H2 (see (3.8)) evaluated at (xC , yC , zC ) rather 

than at (?. @, 5 ) .  Note that the term Q: appearing in bs and bs is identically zero. 

Suppose the eigenvalues for EC are A: = 0 and A s  , A s  . If AC, # A: , the eigenvalues 

for E* are 

bs bi(Ajc + b y ;  + bZ A; = --& + O(& 2), A* = Ac: - 
Hi 3 3(A5 )2 + 2HfA5 + H," E + O(E 2), j = 2,3; 

while, if A$ = A $ ,  they are 

Of course, if btj = 0 or bE(Ai )2 + b;X; + b: = 0 it is necessary to study higher order terms; 

we do not do this here. 

(ii) p = 1 .  Perturbed equilibria to O(E 'I2) of the type E*(xC + ml E 'I2, yc , zc + 
sl E 'I2) arose from a double equilibrium in case (ii) of Section 3.5. We calculate the 

characteristic equation at such a point to be 

Expressions b,d, j = 1,2,3 are: 

bf = - B& - b i  = -H,"B& - byc Gz Bf2+GC B& + KC Bi2, 

b i  = -rzC K~ K: B&; BB = Qix  ml (3.29) 

BL = -Gg ml , B& = byC GzX ml , 
B& = b ~ i  ml - K,C SI , Bg2 = rKyC 81 . 

Similarly to  the discussion in case (i) above, there are two possibilities for the characteristic 

values: 

where j = 2,3. The first are for when As # X i  , the second for when A; = A s  . Since we 

are dealing with a double equilibrium, Qi, # 0 and thus b i  # 0. 



When we have a triple equilibrium (case (v) of Section 3.6) we do have b$ = 0 because 

Q;, = 0. It is therefore necessary to know E* to O(E ): E*(zC + ml E + m2 E , yC + 
n2 E , zC + s1 E + s2 E ). In case (v) of Section 3.6, we have done this explicitly 

for E;; for Es and E$ we now assume that m2 , n2 , and s2 have been calculated. The 

characteristic equation to O(E ) is then 

The terms bf and 61 are given in (3.29), but now Q:, = 0, so Bfl = 0 also. We give b:, 

j = 1,2,3 below: 

b; = - B e  11 - BZ2 - G 3 7  

d d  
b; = - HE(BEl + Bg3) - byC Gg BE2 + Gc Bgl - rzc K," Bg3 + Kc Bg2 - B12B2,, 

bz = - rzC Kc  K," BE1 - bryC zC G: K,C BT3 - GC KC B& - byC GC G: B&; 

2 e - B L  = qQ:,, ml - Gg n2 + # E x  , B12 - -;G:, m: - Gg m2 + &, , 
BT3 = 4iz , BI1 = $byC G:,, m: + byC G:, m2 + bG: n2 t 45, , 

BZ2 = ibG:, m: + bG: m2 - zC K&, n2 - K,C 52 + &, , B13 = -K,C 0 2  + &jZ , 
B = 4 , BS2 = rzC K& n2 + TK," s2 + 4$, , B& = TK," n2 + q5Zz . 

Note that ~f~ and B& are found in (3.29). 

If A: # X g  , the eigenvalues for E* are 

4 A; = --E + O(& 3 9 ,  A; = A; - bf  ( A f  )' + b$Xf 

Hi 3(X; )2 + 2H,CXS + H,C E ' I 2  + O(E ), j = 2,3. 

On the other hand, if A; = A: , the eigenvalues are 

( i )  p = . Suppose E*(xc + ml E + ma E 2/3,  yc , zc + sl E + S2 E 2 /3 )  is the 

perturbed equilibrium we are studying. Coefficients ml and sl have been calculated for 

this point in case (iii) of Section3.5. Assuming we know ma and 52 , 



is the characteristic equation with terms b f  and b$ given in (3.29) (of course, Q;, = B,d1 = 

0 here), and: 

The eigenvalues may be given by one of two expressions: 

where j = 2,3. The first set of eigenvalues is for the case A; # As , the second for the 

case A; = As . 
Finally, case (iv) of Section 3.5 gave rise to a perturbed equilibrium to O(E ) given by 

E*(zC + mz E 2 / 3  + m 3  E , yC + n3 E , zc + $2 E 2 / 3  + 33 E ). With the expressions: 

we find that either the eigenvalue are 

when A; # As , or 

when A; = A$ . 

We will now illustrate some of the results of the last two sections with a couple of 

examples. 



3.6.1 Example 16 

To the model given in Example 12, let us add the perturbational terms C#~(X, y, 2) = ix2 ,  

42(x, y, t )  = 1 and (b3(x, y, 2) = -2, which gives us the system 

For E = 0 there is a triple equilibrium EC(3, 13,2). For convenience, we show a neigh- 

bourhood of this triple equilibrium in Fig.3.9, which is the same as Fig.3.3. Considering 

now E > 0, we calculate that Dl = 0, D2 = 26 and KC MD2 = -676; thus we are in case 

(v) of Section 3.5 and we expect to get three perturbed equilibria since KC MD2 < 0. 

Giving the calculations only to O(E ), we find: The equilibria are E;(3,13 + E , 2  + AE ), 
E ; ( ~ + E  ' / '+fs  , 1 3 + ~  , 2 + e  ' i 2 + % & )  and E ; ( ~ - E  ' I 2 + f &  , 1 3 + ~  ,2 -E  1 1 2 + g ~ ) .  

For Ei, the characteristic equation is X3 + 65X + E (-gX2 + 6X - 26) = 0, which has 

eigenvalues A; = $E , A; = (-l)ji& + E [g + (-l)ji&&], j = 2,3. Equilib- 

rium El* is an unstable node focus. For Ef, s = 2,3, the characteristic equation is 

A3 + 65X + (-1)O.c lI226X + E (%X2 + Q X  + 52) = 0; thus, E i  has eigendues X i  = -28 , 
A; = (-l)ji@ + (-l)ji$/& '1' + [-% + (-l)ji&-]E , j = 2,3, and E j  has 

eigenvalues XI = -QE , A; = (-1)jifi+ ( - l ) j + l i i & ~  'I2 + [-B 130 + (-1)jiJB-IE 975 , 
j = 2,3. We conclude that Ei and EZ are asymptotically stable node foci. In Fig.3.10 we 

show the phase portrait about the three perturbed equilibria resulting when we use the 

value E = 0.1 

3.6.2 Example 17 

Consider the system 



Figure 3.9: Example 16 with E = 0 

Figure 3.10: Example 16 with E = 0.1 



1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2  

Figure 3.11: Example 17 with E = 0 

Figure 3.12: Example 17 with E = 0.01 



This is just the system given in Example 13 with additional perturbed terms 

g51(x,y,~) = 2y, 42(x, y,z) = x and 43(x,y,z) = 12z. When E = 0, we know from 

Example 13 that there is a double equilibrium at E C ( i ,  2, l ) ;  this is shown in Fig.3.11, 

which is the same as Fig.3.4. Since this is a double equilibrium, and since Dl = 36, we are 

in case (ii) of Section 3.5. We calculate that EC bifurcates into the perturbed equilibria 

E;(: - 3~ 'I2, 2 , l  - f~ 'I2) and E;(: + 3~ 'I2, 2 , 1 +  qr 'I2), which have characteristic 

equation X3 + 2X2 + 26X + (-1) '~ 'f2(15X2 + 102X + 96) = 0, s = 1,2. The eigenvalues of 

this equation, for E;, are X i  = %E 'I2, X; = -1 + (-l)j5i + [g7 + ( - l ) j+ l=i ]~  130 lI2, 

j = 2,3. The eigenvalues for E; are in turn X i  = -%E 'I2, A; = - 1 + (-l)j5i + [-$f + 
( - l ) j m i ] ~  130 ' I 2 ,  j = 2,3. Equilibrium E; is a saddle focus while E; is an asymptotically 

stable node focus. We show a neighbourhood of these two perturbed equilibria in Fig.3.12, 

the calculations for which have been carried out using the value E = 0.01. 

3.7 Tables 

We present two tables that summarize the effect of perturbations on simple and multiple 

equilibria of the unperturbed system. As for the two-species model, the local stability 

properties of hyperbolic equilibria (nodes, saddle nodes, node foci, saddle foci, node stars, 

saddle stars, and stars) are unaffected by perturbations. Nonhyperbolic equilibria (vortex 

foci, double and triple equilibria) may experience a change in stability properties when 

subjected to perturbations. 



0 0 0 0  E (X ,Y , z  ) 

Node 

Saddle Node 

-- 

Node Star I Node or Node Focus I Only Nature Changes 

Node Focus 

Saddle Focus 

EP(xP, yp, zp) 

Node 

Saddle Node 

- - 

Table 3.1: Perturbations of a Simple Equilibrium 

- 

Changes in Nature, Stability 

No Changes 

No Changes 

Node Focus 

Saddle Focus 

Saddle Star 

Star 

Vortex Focus of 
Linearized System 

No Changes 

No Changes 

Number of 

Perturbed Equilibria 

Saddle Node or Saddle Focus 

Node Focus 

Node Focus or 
Saddle Focus 

Multiplicity of 

EC(xC, yC, zC) 

Nature of 

E*(x*, y*, z*) 

Only Nature Changes 

Only Nature Changes 

Nature and Stability 
May Change 

Double 

Triple 

May be a 

Node, 

a Saddle Node, 

a Node Focus, 

or a Saddle Focus 

1 

- 
1 - 
2 

Z 1 

Table 3.2: Bifurcations of a Multiple Equilibrium 



Conclusion 

We have studied the two perturbed population models (0.1) and (0.2). In each model, 

one species' growth rate was subject to an upper carrying capacity L2 and a lower critical 

density L1. There was also a term R representing harvesting, stocking, or no harvesting 

or stocking of one of the populations. With regard to the three dimensional model (0.2), a 

predator-predator-prey interaction was simulated; while, the two dimensional model (0.1) 

accommodated predator-prey, competition or cooperation between the species. Pertur- 

bations were investigated by studying their effect on the equilibria of the unperturbed 

models. To this end we located the equilibria of the unperturbed models, making a dis- 

tinction between simple and multiple equilibria; then, we considered the perturbation of 

a simple equilibrium, and the bifurcation of a multiple equilibrium. 

In seeking the equilibria of the unperturbed two dimensional model, we introduced 

p(x). Expression p(x) played an important role throughout our investigation of (0.1). 

An equilibrium EO(xO,yO) was simple when p(xO) = 0 and px(xO) # 0. An equilibrium 

EC(xC, yC) was multiple provided p(xC) = px(xC) = 0: being double if pxx(xc) # 0, or triple 

if pxx(xC) = 0 and pxxx(xC) # 0. 

Once the simple equilibria were located, we examined their local natures and stability 

properties. Here p(x) appeared. In Theorem 1, we proved that if px(xO) > 0, then E0 

was not a saddle point; while if px(xO) < 0, then E0 was a saddle point. Theorem 2 

showed how "successive" equilibria must alternate in nature between that of a saddle point 

and that of a non-saddle point. 

Using the theory of Andronov et al [28], we were able to determine the local natures of 

double and triple equilibria of the unperturbed model. A double equilibrium was a saddle 

node, and a triple equilibrium was a topological node when p,,,(xC) > 0, or a topological 

saddle point when pxxx(xC) < 0. 

Starting with a simple equilibrium E0 of the unperturbed model and allowing per- 

turbations to be introduced, we located the associated perturbed equilibrium EP(xp, yp). 

We compared the possible local stability properties of the two, the results of which are 

given in Table 2.1. We found that hyperbolic equilibria (nodes, foci and saddle points) 



retain their local stability properties (but not necessarily their local natures in the case of 

node stars), while nonhyperbolic equilibria (centres) might experience changes in stability 

properties. 

For Ec  a double or triple equilibrium, we evaluated five cases in studying its bifurcation. 

The number and location of perturbed simple equilibria E*(x*, y*) arising from Ec were 

found. Zero or two simple equilibria were produced by a double equilibrium. A triple 

equilibrium gave one or three simple equilibria. From [28] we knew that of the two simple 

equilibria coming from a double equilibrium, one must be a saddle and the other a node. 

In the case of a triple equilibrium, we were only able to say that the perturbed simple 

equilibria could be saddle points or nodes. We presented these results in Table 2.2. 

Our investigation of the three species model followed a similar pattern to that of the 

two species model. We found the expression Q(x, y) which occupied a position like that of 

p(x). An equilibrium EO(XO, zO) was simple provided Q(xO, = 0 and Qx(xO, # 0; 

EC(xC, yc, zC) was a double if Q(xC, yC) = Qx(xC, yC) = 0, Qxx(xC, yC) # 0, or a triple if 

Q(xC, yC) = Qx(xC, yC) = Qxx(xC, yC) = 0, Qxxx(xC, yC) # 0. 

We determined the locations and natures of the simple equilibria of the unperturbed 

model and found that part of the Routh-Hurwitz criteria for asymptotic stability was 

Qx(xO, yo) < 0. The associated perturbed equilibrium Ep(xp, yp,zp) of the perturbed 

system was found. In Table 3.1 we gave the results of the comparison between the stability 

properties of E0 and E P .  Once again it was determined that hyperbolic equilibria would 

not lose their local stability properties, but that nonhyperbolic equilibria might do so. 

Finally, we studied the bifurcation of EC into perturbed simple equilibria E*(x*, y*, z*). 

As shown in Table 3.2, a double equilibrium could give rise to  two or zero simple equilibria, 

and a triple to one or three simple equilibria. 

These theoretical results have been illustrated for both the two and three dimensional 

models with specific examples. We have numerically solved the systems of ordinary dif- 

ferential equations and plotted the resulting orbits. It was hoped that this would give 

greater insight into the changes induced by perturbations. 



Appendix A 

CLASSIFICATION OF 

EQUILIBRIA VIA 

EIGENVALUES 

For the two dimensional model, the nature and stability of a simple equilibrium EO(ZO, 

of the unperturbed system is classified (see [26]) according to its eigenvalues A: , and A: : 

A Real and Distinct Eigenvalues 

1. If A t  < 0, s = 1,2, E0 is an asymptotically stable node 

2. If A; < 0, A: > 0, E0 is a saddle point 

3. If A t  > 0, s = 1,2, E0 is an unstable node 

B Repeated Eigenvalues 

4. If A? = A; < 0, E0 is an asymptotically stable node-star 

5. If A! = A: > 0, E0 is an unstable node-star 

C Complex Eigenvalues with Nonzero Real Part 

6. If R ~ X :  < 0, s = 1,2, E0 is an asymptotically stable focus 

7. If R~X:  > 0, s = 1,2, E0 is an unstable focus 



D Purely Imaginary Eigenvalues 

8.  EO is a centre of the linearized system; it may be a centre or a focus of the 

nonlinearized system 

For a simple equilibrium EO(xO, yo, zO)  of the unperturbed three species model, with 

eigenvalues , A: , A: , we use the system of classification found in [22]: 

A Real and Distinct Eigenvalues 

1. If A t  < 0 ,  s = 1 ,2 ,3 ,  E0 is an asymptotically stable node 

2. If A: < 0 ,  A; > 0 ,  s = 2 ,3 ,  or if A: > 0 ,  X'J < 0 ,  s = 2 ,3 ,  E0 is a saddle node 

3. If A t  > 0 ,  s = 1 , 2 , 3 ,  E0 is an unstable node 

B Double Eigenvalues 

4. If A: < 0 ,  A: = A; < 0 ,  E0 is an asymptoically stable node star 

5. If A: < 0 ,  X i  = A: > 0 ,  or if A: > 0 ,  A: = A: < 0, E0 is a saddle star 

6. If A: > 0 ,  A: = A: > 0 ,  E0 is an unstable node star 

C Triple Eigenvalues 

7. If A: = A: = A: < 0, E0 is an asymptotically stable star 

8. If A: = A: = A: > 0 ,  E0 is an unstable star 

D One Real and Two Complex Eigenvalues with Nonzero Real Part 

9. If A! < 0, ReAt < 0 ,  s = 2 ,3 ,  E0 is an asymptotically stable node focus 

10. If A: < 0 ,  ReA: > 0 ,  s = 2 , 3 ,  or if A: > 0 ,  ReAt < 0 ,  s = 2 ,3 ,  E0 is a saddle 

focus 

11. If A: > 0 ,  ReAt > 0 ,  s = 2,3, E0 is an unstable node focus 



E One Real and Two Purely Imaginary Eigenvalues 

12. If A: < 0, EO is a convergent vortex focus of the linearized system; it may be a 

convergent vortex focus, a saddle focus, or an asymptotically stable node focus 

of the nonlinearized system 

13. If A: > 0, E0 is a divergent vortex focus of the linearized system; it may 

be a divergent vortex focus, a saddle focus, or an unstable node focus of the 

nonlinearized system 



Appendix B 

AN ALTERNATIVE 

TWO-SPECIES MODEL 

We take a brief look at model (2.1) with harvesting or stocking of the first species x rather 

than y: 

Equilibria of this model must satisfy 

Here, if y # 0, x must be a root of -a + bg(x) = 0; if such an x exists, it is unique. 
IF x Provided xF(x) - R > 0, y is given by y = *. We get only one y-value for a given 

x-value. For y = 0, we find x from the equation xF(x) - R = 0; there may be more than 

one solution of this equation, or there may be multiple solutions. We are thus led to the 

conclusion that if a multiple equilibrium exists, it must be on the x-axis. 
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