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ABSTRACT

The behaviour of certain population models in 2 and R2 is investigated. Involved in the
growth rate of the first species are both a carrying capacity and a lower critical density, and
we allow for the inclusion of harvesting or stocking of one of the species. The three-species
model represents a predator-predator-prey system, while the two-species model may, by
suitable selection of the sign of certain terms, portray three types of interaction: predator-
prey, competition, or cooperation. These features affect the nature and multiplicity of
the models’ equilibria, which are analyzed from the point of view of structural stability.
The locations of the simple and multiple equilibria of the unperturbed systems are found,
and the local natures and stability properties are determined. Of particular interest are
nonhyperbolic simple equilibria, and multiple equilibria (also nonhyperbolic), which are
structurally unstable and may change radically when perturbations are introduced. Under
the influence of perturbations, such a simple equilibrium of the unperturbed system may
change its nature and stability, while a multiple equilibrium of the unperturbed system
may disappear or may split (bifurcate) into several equilibria. These drastic changes are
studied; the new equilibria are located, and their nature and stability properties are found

and compared with those same properties of the corresponding unperturbed equilibria.



ACKNOWLEDGEMENT

Special thanks to my parents Robert and Judy McConill for their suppo’rt, to my supervisor
Dr. George Bojadziev for all his help in the creation of this thesis, and to Dr. H.I.
Freedman for his useful suggestions. Financial support, provided by the Natural Sciences

and Engineering Research Council of Canada and Simon Fraser University, was greatly

appreciated.

v



Table of Contents

13 03 31 ii
N 75379 Yo ii
Acknowledgement ............iiiiiitiiiii i e iv
Table Of CONtENtS . ..vuuutet e inrtiteei ittt esteneeasarsaisoseacaanansans v
List Of Tables ....euiniiuntiitntintiiuetieaateaeraneersanessennasaseeonsaesons viii
List of Figures .....coniiuiiiiiii i it ittt ix
Introduction ..........ooiiniiiiiiiiii i i e 1
1 PRELIMINARIES 6
3 T T 0 - 6

1.2 Models with Carrying Capacity, Critical Density ..............coooiiinnns 10

1.3 Models with Harvesting or Stocking ............cooiiiiiiiiiiiiiinient. 11

1.4 Perturbed Models ........coieinuiiiiiii ittt iaisi et 13

2 THE TWO-SPECIES MODEL 17
2.1 Simple Equilibria of the Unperturbed Model .........c..cooiiiiiiiiiin, 17

2.2 Stability Properties of the Simple Equilibria ...............ooooiiiiin 23
2.2.1 Example 1 ..oonuiiininiiiiiiiiiiiiii it 27



2.2.2 Example 2 ....oiiiiiii i e s 28
2.2.3 Example 3 ..ooiiiiniiii i e 29

2.3 Location and Nature of a Multiple Equilibrium of the Unperturbed System 30

2.3.1 Example 4 ..ooinininiiii i s 34
2.3.2 Example § ..ottt e 35

2.4 Perturbations of a Simple Equilibrium ...................ooinlL 36
2.4.1 Example 6 .......oiuiiiiiiiiiii i i e 40
2.4.2 Example 7 ...ttt i e e 45

2.5 Bifurcation of a Multiple Equilibrium ............. ..., 45
2.6 Nature of the Perturbed Multiple Equilibria ..............c.coovevvinin.... 52
2.8.1 Example 8 ... .ottt i e e 55
2.6.2 Example 9 ..ottt e e 57

2.7 Tables ....iiniiiiiii it e i i 59
3 THE THREE-SPECIES MODEL 61
3.1 Simple Equilibria of the Unperturbed Model ..............c..oocvviintn 61
3.2 Stability Properties of the Simple Equilibria ..................ooooi 63
3.2.1 Example 10 .. ..ottt ittt ittt 65
3.2.2 Example 11 ..ottt e 65

3.3 Existence of a Multiple Equilibrium of the Unperturbed System .......... 67
3.3.1 Example 12 ... ettt ittt 68
3.3.2 Example 13 .. .ottt i i i i 69

3.4 Perturbations of a Simple Equilibrium .............ccoiiiiiiiiiiiiiiiia, 70
3.4.1 Example 14 L. ettt e 73
3.4.2 Example 15 .. ..ottt et 73

3.5 Bifurcation of a Multiple Equilibrium .........cooiiiviiiiiiiiiiiiiin., 76

3.6 Nature of the Perturbed Multiple Equilibria ................ocoiiiiiiit, 79

vi



3.6.1 Example 16

.......................................................

3.6.2 Example 17

.......................................................

3.7 Tables

...................................................................

ConClUSION ..o e e e
A CLASSIFICATION OF EQUILIBRIA VIA EIGENVALUES
B AN ALTERNATIVE TWO-SPECIES MODEL

BIBLIOGRAPHY

vii

93

94




List of Tables

2.1 Perturbations of a Simple Equilibrium . ... .. ... ............ 59
2.2 Bifurcations of a Multiple Equilibrium . . . ... ............... 60
3.1 Perturbations of a Simple Equilibrium . ... .. ............... 87
3.2 Bifurcations of a Multiple Equilibrium . . .. .. ... ............ 87

viii



List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

Atypical F(Z) .. .. oo e 8
Atypical zF(Z) . .. . . . i e 8
Predator-Prey or Competition with No Harvesting or Stocking . ... ... 19
Predator-Prey with Harvesting or Competition with Stocking . . ... ... 20
Predator-Prey with Stocking or Competition with Harvesting . . ... ... 21
Cooperation with No Harvesting or Stocking . . ... ............ 22
Cooperation with Harvesting ... ... e e e 22
Example 1 . . . . . . . e 28
Example 2 . . . . . . . . .. e 29
Example 3 . . . . . . . . e e e 30
Example 4 . . . . .. . . e e 35
Example 5 . . . . . . . . . e e e e 36
Example 6 withe =0 . ... .. ... . @ ... 41
Example 6 with ¢ =0, expanded view ... ... .............. 41
Example 6 withn=1ande =05 ...................... 42
Example 6 with n = 1 and € = 0.5, expanded view .. ............ 42
Example 6 withn=2ande =05 ...................... 43
Example 6 with n = 2 and ¢ =‘0.5, expanded view . ... ......... 43
Example Twithe =0 ... ... ... . ... .. . . ..., 44
Example Twithe =0.1 ... ... ... . i, 44
Example 8withe =0 ... ... ... ... .. 56
Example 8withe =0.04 .. ... ... ... . ... nenn.. 56



221 Example 9 withe =0 ... ... . . . ... ... 58
2.22 Example 9withe =006 .. ... ...... .. ... ... ... ..... 58
3.1 Example 10 . . . . . . . .. e e e 66
3.2 Example 11 . . . . . . . . e e e 66
3.3 Example 12 . . . . . . . . e e e 68
34 Example 13 . . . . . . . e e 69
35 Example 14withe =0 . .. ... ... .. .. . ... . . .. ... 74
3.6 Example 14 withe =001 . ... . ... ... ... . ... .. ..., 74
3.7 Example 15 withe =0 . .. ... .. .. .. ... . . e e 75
3.8 Example 15withe =0.001 . ... ... ... ... ... ... ........ 75
39 Example 16 withe =0 . ... .. ... ... .. . .. 84
3.10 Example 16 withe =0.1 .. ... ... ... ... ... ... .. ...... 84
3.11 Example 17withe =0 . .. ... .. ... . .. . . . ... . 85
3.12 Example 17 withe =0.01 . ... ... .... ... ... ... ..... 85



Introduction

Population growth is a rich area of scientific interest. In viewing the world around us, it
is apparent that a single specie’s growth is not usually an isolated event; rather, there are
other populations which affect this growth. Such population interactions may occur in a
variety of ways, for example: they may compete with each other for needed resources, one
species may prey upon another as its food source, or they might cooperate with each other
improving their ability to survive. Mathematics is an important tool that can be employed
in modelling these relationships; particularly, an autonomous system of ordinary differ-
ential equations might be used. Insight into the dynamics of the species’ behaviour may
then be gained by studying the mathematical model. Usually the differential equations
are too complex to be solved analytically, and unless all constants and functions appearing
in the equations are specified, neither can the system be solved numerically. It is possi-
ble though, to find and study the equilibria, at least numerically. The equilibria, which
are steady-state solutions of the system of differential equations, can provide invaluable
information regarding the behaviour of solutions near these equilibria.

In attempting to model a complex natural phenomenon (such as the interaction of
populations) with a system of differential equations, it is necessary to make approximations
and simplifications to the actual situation. Accordingly, the addition of perturbational
terms characterised by a small positive parameter ¢ may provide for a more realistic
model, as they can be thought of as representing uncertainties and unknown errors in the
approximation. Freedman and Waltman [1, 2] and Freedman [3] have studied perturbed
population models. In [1, 2], the model

uy! = oauy — ,Buluz — € fl(ul,u2),
Ul = —vug+ 6ujus —¢€ f2(u1;u2)’

was considered, which represents a two-species perturbed predator-prey system. Here and

throughout this thesis, ()/ = %9. In [3], the perturbed Kolmogorov model
uw! = urFi(ug,ug¢),

ug! = ugFp(uy,ug,e€ ),



was investigated.
In addition to perturbations, harvesting or stocking of one or more of the species may

be considered. For example, Yodzis [4] studied

zr = X(z,y)- A,

yl = Y(xay)—Bv

where A, B represent the harvesting or stocking terms. Similarly, Brauer and Soudack

[5, 6, 7, 8] considered

! = :cf(:c,y)—F,
y = yg(z,y)-G;

F and G are the harvesting or stocking terms in this model. Harvesting of a population
indicates that the members of a population are being removed at a constant rate. Stocking
represents a constant rate of increase in a species. Harvesting or stocking can produce
significant changes in a model, affecting the number, location, nature and stability of the
equilibria; furthermore, multiple equilibria may appear or disappear.

Consider the perturbed two-species model with harvesting or stocking given by:

o = zF(z)-yg(z) + (2, y), 0.1)
y = —ay+byg(z)- R+ei(z,y).
By varying the sign of the function g(z) and the constants a and b, a predator-prey
(y “eats” z), cooperation, or competition relationship can be simulated. The function
F(z) tells us in what way the growth of z is proportional to its own size. How the two
populations affect each other is controlled by g(z). When R # 0, there is either harvesting
(R > 0) or stocking (R < 0) of the second species y. This model, but with R= 0 (no

harvesting or stocking) has been studied by Freedman [9], when he considered
o = zg(z)- ylp(z) + € ¢(2)],
y = yl—s+cp(z)+ € cq()].

Note that the perturbational terms in (0.1) are of a more general nature than those

considered in [9]. It should be mentioned that in [9], g(z) (which corresponds to the F(z)



term in (0.1)) satisfies g(0) = & > 0, g-(z) < 0 for z > 0, and IK > 0 such that g(K)=0.
Such a value K is called a carrying capacity. A carrying capacity is an upper limit on the
size a population may grow to. A special case of model (0.1) was studied by Bojadziev,

McConill and Yen [10]:

ot = z[loy(Ly—z)(z - L)+ By] + € fa(z,y),

y = ylaz+ Bz) ~ R+efo(z,y).

In this model L, is a carrying capacity, and L, is something called a critical density. If
the size of = falls below L; (in the absence of y at least), it will die out. Thus a critical
density represents the minimum size necessary for a species to survive.

Bojadziev and Wong [11] analyzed a predator-predator-prey model with harvesting
(R = H > 0) and perturbations of the form

I = zF(z) - yG(z) - R+ 5¢1(z,y,z),
y = -—ay+byG(z) - 2K(y) +eda(z,y, 2), (0.2)

2l = —cz+4 rzK(y) + ed3(z, y, Z)-

In Bojadziev and Wong’s model, F(z) satisfied F(0) = a > 0, F (z) < 0 for z > 0;
thus, there is no critical density, and a carrying capacity is allowed for, but not explicitly
assumed to exist. the same model as in [11] but with ¢ = 0 (no perturbations) has been
studied by Bojadziev and Gerogiannakis [12] and by Freedman and Waltman (with R = 0)
[13]. In these models as in (0.2), population z preys on y which is preying on z; this is
called a food chain.

In this thesis I will study (0.1) and (0.2) under the assumption that F(z) has both
a carrying capacity and a critical density. As already mentioned, in [9] (see also [14])
and [11, 12, 13], F(z) did not contain a lower critical density. A lower critical density
is an important and interesting /feature not often incorporated into population models;
however, authors such as Bazikin [15] have discussed systems containing a critical density
in addition to a carrying capacity. The harvesting or stocking term R will be allowed
to take on any value here, but in [9, 11, 12] only certain values of R were considered.

The cases of ¢ = 0 and ¢ > 0 will be analyzed. This thesis represents an extension of



(1, 3,9,10,11, 12, 13], and will focus primarily on studying the equilibria of the perturbed
and unperturbed models and comparing them.

An equilibrium of our systems of ordinary differential equations is a point satisfying
z/ = y/ = 0 in the case of (0.1), or z/ = y/ = 2/ = 0 in the case of (0.2) (it is a steady-state
solution). The nature and stability of an equilibrium may be determined by finding its

eigenvalues. The eigenvalues are the roots of the characteristic equation
det(J - AI)=0,

where J is the Jacobian of the system evaluated at the equilibrium, and I is the identity
matrix. If all eigenvalues have negative real part, the equilibrium is asymptotically stable.
Provided an orbit (solution) is sufficiently close to such‘a.n equilibrium, it will asymp-
totically approach the equilibrium as time tends to infinity. If one or more eigenvalues
have positive real part and none have real part equal to zero, the equilibrium is unstable.
Provided an orbit is near an unstable equilibrium, it will move away from the equilibrium
as time tends to infinity. Thus we see that in the case of a hyperbolic equilibrium (nb
eigenvalue has real part equal to zero), its nature and stability predict the behaviour of so-
lutions of the system near the equilibrium. This property does not hold for nonhyperbolic
(at least one eigenvalue is zero or purely imaginary) equilibria.

In studying the effect of perturbations on the models’ equilibria, we will see that
hyperbolic equilibria retain their local stability properties while nonhyperbolic equilibria
might not. In particular, multiple equilibria (which have one eigenvalue equal to zero and
are thus nonhyperbolic) may disappear or bifurcate into several new simple hyperbolic
equilibria. Hyperbolic equilibria are said to be structurally stable, while nonhyperbolic
equilibria are not. Models with certain qualitative properties that remain unchanged when
subjected to perturbations, such as the hyperbolic nature of an equilibrium, are seen as
being more credible than highly sensitive ones which might undergo significant changes.
It is therefore important to study such effects in a model.

The full conditions and assumptions imposed on the models (0.1) and (0.2) will be
described in the next Chapter. The possible values of constants a,b,c,r and R will be

given. We will specify the natures and biological interpretations of F(z), g(z), G(z) and



K(y), and the choices of a, b and g(z) = +G(z) which lead to predator-prey, competitive,
and cooperative interactions in (0.1) will be related. Furthermore, some research works
that form the framework for this study will be surveyed; specifically, works that involve a
carrying capacity or critical density, harvesting or stocking, and perturbations.

Chapter 2, “The Two-Species Model,” will contain the analysis of (0.1). First the
equilibria of the unperturbed model will be located. Equilibria will be classified as simple
or multiple according to a derived condition. The local nature and stability properties
of the simple equilibria shall then be determined. Perturbation’s effects on the simple
and multiple (double or triple) equilibria of the unperturbed system will be calculated.
Bifurcations of the multiple equilibria will be observed: a double equilibrium will either
split into two simple equilibria or disappear, a triple equilibrium will split into three simple
equilibria or will shift to a simple equilibrium.

Following a similar pattern, system (0.2) will be examined in Chapter 3, “The Three-
Species Model.” In this chapter, as in Chapter 2, specific examples of the models will be
presented. These examples are not derived from any real-world biological system, and in
that sense are artificial. Regardless, we study them to give numerical confirmation to our
analytic calculations, and because the phase diagrams produce visual descriptions of the
models which are readily comprehensible. These numerical studies will illustrate, among
other things, the perturbation of a simple equilibrium, and the bifurcation of a multiple
equilibrium.



Chapter 1

PRELIMINARIES

Thorough descriptions of the models are given. Important results related to this study

are presented.

1.1 The Models

In the introduction systems (0.1) and (0.2) were presented, but not all constraints were
given. First take into consideration the functions F(z), g(z),G(z), K(y), ¢(z,y), ¥(z,y),
#(z,y, 2), d2(z, y, 2) and ¢3(z,y, 2) which are assumed to be analytic in their arguments.
Given the constants ag, L1, Lz > 0 with L; < ag < L2, we further assume that F(z) and

g(z) = £G(z) satisfy the conditions

F(L) = F(L3) =0, @)
Fy(z) >0 Vz € [0,a0), (1.2)
Fi(z) <0 Vz € (ag,00), (1.3)

G(0) = 0, (1.4)

Gz(z) >0 Yz >0. (1.5)

Using g(z) = £G(z) allows us to model different interactions with system (0.1). Similarly

to G(z), the function K(y) is asummed to satisfy

K(0) =0, (1.6)




Ky(y)>0 Vy>0. (1.7)

The terms a,b,c,r and R are constants. Depending on model (0.1)’s interaction, a
and b may be positive or negative; in the case of model (0.2) however, a, b, c, and r are all
assumed to be greater than zero. For both models constant R represents a harvesting or
stocking term: R = 0 if there is no harvesting or stocking, R = H > 0 for harvesting, and
R = —§ < 0 for stocking. Harvesting or stocking in a system usually arises from the effort
of an external agent or manager (an agent other than one of the species present in the
system) to control either the system itself, or just the one species in that system. When
a population is harvested, members of that population are removed (culled) at a constant
rate; stocking represents an increase at a constant rate of a population. In models (0.1)
and (0.2), we subject one species only to harvesting or stocking. It is possible to have
harvesting or stocking of any one of the populations in these models, or to have harvesting
or stocking of two or more of the species. These cases may be studied in a way similar to
the study in this thesis, but we do not do this here.

Function F(z) is the specific growth rate of the first species; it describes how the
members of population z affect their own growth. This function is a kind of generalized
quadratic function with roots at L; and L,. For example, F(z) might typically be F(z) =
(z — Ly)(Ly — z). We show such a typical F(z) in Fig.1.1, and in Fig.1.2 we show a typical
zF(z). Constants L; and Ly that satisfy (1.1) respectively represent a lower critical
density and an upper carrying capacity. In the absence of interspecies interactions, when
the initial population of the first species is below L;, that population will die out; while,
if it is initially above L; it will asymptotically approach Ls. Functions G(z) and K(y)
are the response functions for the second and third species respectively. Through G(z),
the interaction of z and y is achieved; while, K (y) allows y and 2 to affect each other.
Since G(z) is an increasing function with G(0) = 0, we are indicating that the strength
of interaction between z and y increases as = or y increases, and (obviously) that there is
no interaction should either z or y die out. A similar relationship between the members y
and z of (0.2) is expressed by K(y).

System (0.2) describes a predator-predator-prey interaction. The lowest trophic level

population, the prey, is represented by z. Population y is the second species (middle



Figure 1.1: A typical F(z)
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Figure 1.2: A typical z F(z)




trophic level) which preys upon z and is in turn preyed upon by z, the highest trophic
level. The first and third populations do not directly interact with each other. In this
system, as in [11, 12], R appears in the growth relationship of the first species z. With
harvesting, we decrease the rate of growth of z. Since y feeds on z, this will tend to slow
the growth of y; and as 2 in turn feeds on y, we expect the growth of z to also be slowed.
Stocking has the opposite effect, tending to increase the growth of y and z in addition to
directly speeding the growth of z. Thus harvesting or stocking of the first species z makes
its effects felt up to the last species z of the food chain.

Three types of interaction are allowed in (0.1), these are achieved by suitable selection
of the sign of a,b and g(z):
(i) Predator-Prey

a>0,b>0, g(z) = G(z) (1.8)
(ii) Competition

a<0,b<0, g(z)=G(z) (1.9)
(iii) Cooperation

a<0, b<0, g(z) = -G(z) (1.10)

In the case of predator-prey, y preys on z, and we have either harvesting or stocking of
the predator y. Harvesting y should tend to increase the growth of z because y eats z;
while, stocking y would slow the growth of z. When z and y are competing, harvesting y
would again tend to increase z; stocking y would tend to decrease z. On the other hand,
if z and y are cooperating, the growth rate of z should be increased when y is subjected to
stocking, and the growth rate of z should be diminished when y is subjected to harvesting.
Note that it is possible to study (0.1) with R on the first species. We are interested in
multiple equilibria in the interior of the first quadrant though, and with R on the first
species we only have the less interesting case of multiple equilibria on the boundary of the

first quadrant (see Appendix B).



1.2 Models with Carrying Capacity, Critical Density

An upper carrying capacity represents the natural upper bound on the size of a population.
This feature has appeared in many popi]lation models; for example, Freedman [9] (see also

[14]) has studied the system

e = zg(z) - yp(),

(1.11
¥y = yl—s+ep(z)], :

where g(z) satisfies g(0) = a > 0, g.(z) < 0 for z > 0 and 3K > 0 such that g(K) =0
(K is a simple root of g(z) = 0); thus, K is the carrying capacity of population z. Simple
equilibria were found and studied. For the equilibrium in the interior of the first quadrant,
Freedman determined that it was either asymptotically stable, or had a periodic solution
(stable from the outside) surrounding it. Next, this model was considered subject to
enrichment of the environment; i.e., g(z) was replaced by g(z, K) satisfying ¢(0, K) =
a>0,9(K,K)=0, g-(2,K) <0, gk(z,K) > 0 and g.x(z,K) > 0for z > 0. It
was assumed there was an equilibrium in the interior of the first quadrant that was a
centre of the linearized system for some particular value Ky of K. Utilizing the conditions
on g(z, K), a criterion for the existence of small amplitude periodic solutions about this
equilibrium was derived.

In a series of papers, Brauer and Soudack [5, 6, 7, 8] studied predator-prey models of

the form
o = zf(z,y)-F, (112)
y = yg(z,y)-G.
In these papers, the main interest was to investigate the role F and G played; however, it
is important to note that a carrying capacity and critical density appeared in this system.
The equation f(z,y) = 0 defined y as a single-valued function of z (under the given
condition fy(z,y)# 0), which was assumed non-negative in the interval a < z < K, with
f(K,0) = 0; K is the carrying capacity of the first species. The possibility of o > 0 with

f(a,0) = 0 was allowed, in which case a is a lower critical density for population z.

The feature of both a carrying capacity and a critical density has been discussed by

10



Bazikin [15]). Indeed, Bazikin analyzed the model

zt = z[lay(L:—z)(z— L)+ ,

[ 1( 2 X 1) + by (1.13)
y = ylaz+ f2z).

Other such models have been presented by Bazikin, some with critical density and satu-

ration level (carrying capacity) for more than one species. In %3, Bazikin looked at the

system

zr = ax(z - L)(Ly—2z) - bizy,
y = —ay+dizy - byz, (1.14)

2! = —coz +dyyz.

Note that (1.13) is a special case of (0.1) with R = £ = 0, and (1.14) is a special case of
(0.2) with R=¢ = 0.
Bojadziev, McConill and Yen [10] have discussed (1.13) with harvesting or stocking

and perturbations added, giving

zr = z[ay(L2 - z)(z — L)+ Byl + efi(z,9),

(1.15)
y = yloz + B2z) — R+efa(z,y).

This too is a special case of (0.1) where in particular, F(z) = a;(L2 — z)(z — Ly).

1.3 Models with Harvesting or Stocking

Harvesting effects on competing species modelled by

o = X(z,y)- A,
y = Y(zay)_Ba

were studied by Yodzis [4]. The harvesting terms A and B were not constants; rather,
A was assumed to be a C! function (of z alone) such that A(0) = 0, A monotonically
increasing on 0 < z < ¢ ( ¢ a small parameter), and A = a =constant for z > ¢. There were
analogous conditions imposed on B. The harvested and unharvested (A = B = 0) systems

were compared. More precisely, for the unharvested system with at most one simple (not

11



multiple) equilibrium in the interior of the population quadrant, Yodzis tried to determine
whether or not harvesting would produce or destroy stable equilibrium points.

System (1.12) was probed by Brauer and Sanchez [16] as a predator-prey system with
harvesting of the population x only (G = 0, F > 0). First the case F = 0 was considered:
an equilibrium in the interior of the first quadrant was assumed to exist and a condition
for the asymptotic stability of this point was given. Under the same assumptions for the
case F' > 0, the condition for the equilibrium to be asymptotically stable led to an upper
bound on the harvesting rate, which the authors called a critical harvesting rate. Beyond
this rate, the equilibrium would be unstable.

Brauer, Soudack and Jarosch [17], examined model (1.12) with harvesting of population
yonly (F =0, G > 0). Conditions for which detJ(G) = 0 and trJ(G) = 0 (J(G) is the
Jacobian of system (1.12) evaluated at an equilibrium satisfying z > 0, y > 0) were
derived, which led to two “critical” harvesting rates. For a specific case of this model,
computer simulations were run for various values of G (and for different values of K, a
carrying capacity of the specified model).

In [5], Brauer and Soudack studied (1.12) with F = 0 and G > 0. This time they
developed techniques for determining the regions of asymptotic stability (that portion of
the z-y plane having the property that any orbit of the system with initial point in that
region remains in that region for all time), and instability (that portion of the z-y plane
such that for an orbit with initial point in that region, at least one of the species will die
out). For a class of examples, by using computer simulations, they observed how these
regions would change as G was varied. For the same model, but with G =0 and F > 0 in
(6], and with F,G < 0 in [7], a similar analysis was undertaken by Brauer and Soudack.
Finally, in [8], these authors divided the F-G plane into different regions corresponding
to different cases of behaviour of the model. Again using a numerical study of a specified
system, they showed how to explicitly determine these regions in the F-G plane.

Freedman [9] (see also [14]) has added a source term (stocking) r > 0 to (1.11)

ot = zg(z)-yp(z) +,
y = yl-s+cp(z)].
He found that the equilibrium in the interior of the first quadrant would always be asymp-
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totically stable for sufficiently large . In that sense, stocking had a stabilizing effect on
the model.

The predator-predator-prey model with harvesting

o = zf(z)-yg(c) - H,
yr = —ay+byg(z) - 2p(y), (1.16)
2t = —cz+rzp(y),

has been investigated by Bojadziev and Gerogiannakis [12] (note that f(z) had a carrying
capacity, but no lower critical density). Harvesting effects oﬁ the location, nature and
stability of the equilibria of the system were determined and a boundedness theorem was
presented. The case H = 0 was earlier studied by Freedman [13].

As previously stated, Bojadziev, McConill and Yen [10] have examined the model
(1.15). For ¢ = 0, the equilibria of the model were studied under either harvesting or
stocking. Using graphical and analytical techniques, they showed what effect changing
R had on the equilibria; they also showed how a double equilibrium could result for a
certain critical harvesting or stocking value. Note that predator-prey, competition a.nd
cooperation interactions were allowed.

A qualitative discussion of the role harvesting or stocking can play in changing the
structural stability of populations, illustrated by certain examples, was given by Bojadziev

[18, 19].

1.4 Perturbed Models

Hausrath [20] proposed

E' = gE-aHE +¢EF,(E,H,P),
H' = yHE-oaH - fHP +cHF,(E, H,P),
P’ bP — cP? + kHP + ¢PFs(E, H, P),

as a model for the interaction between wolves (P), moose (H) and the food supply (F)
of the moose in Isle Royale National Park (Isle Royale is an island in Lake Superior). For
the case P = 0, the equilibrium in the interior of the first quadrant of the E-H plane was
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studied when ¢ = 0 and when £ > 0. This further was done for the case P > 0 with £ = 0
and ¢ > 0. Basically, for ¢ = 0 the equilibrium was asymptotically stable; the resulting
perturbed equilibrium arising when ¢ > 0 remained asymptotically stable. Interestingly,
the observed situation on Isle Royale compared favourably with the qualitative properties
of this model.

Equilibrium E(Z, §) was shown to be a centre (all solutions about the point are closed

periodic orbits) for the unperturbed (¢ = 0) version of the model

w! = auy — Puyug — € fi(ug, ug),

U = —yuz+ dujug — €f2(’lL1,’lL2),

in Freedman and Waltman [1]. Then for ¢ > 0, under the assumption that the equilibrium
changes position (either fi(3,§) # 0or f(3,§) # 0), Freedman and Waltman determined
that the local nature of the perturbed equilibrium would be either a spiral or a centre
(stable or unstable), and gave conditions for this. Further, conditions were derived under
which there would be a stable limit cycle about this perturbed equilibrium. For the same
system, the authors [2] considered the case ¢ > 0 such that fi(%,%) = fo(%, %) = 0 (the
equilibrium does not move when ¢ > 0). Using implicit function techniques, conditions for
the existence of periodic solutions and the stability or instability of such solutions, were
calculated.

The perturbed two-species Kolmogorov model

uy/ = ulFl(uhu?,e),

uy! = upFy(ug,ug,€),

was investigated in [3] by Freedman. He assumed there was an equilibrium E(ay,a2) with
aj,az > 0 when ¢ = 0. The associated perturbed equilibrium of the perturbed model was
then located. These equilibria were studied as to their nature and stability and compared,
for E a simple or a multiple equilibrium.

Perturbations to (1.11) were considered in Freedman [9], resulting in

gt = zg(z) - ylp(z) + eq(z)],
y! y[=s + cp(z) + ccq(z)].
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Here it was assumed that p(z) was such that for ¢ = 0, there was an equilibrium in the
interior of the first quadrant which was a centre (of the linearized system). The perturbed
equilibrium was located (for ¢ > 0) and a theorem for the existence of stable small am-
plitude periodic solutions (or a limit cycle) surrounding this perturbed equilibrium was
proved.

A Lotka-Volterra competition model with perturbations has been studied by Bojadziev
and Kim [21]. They examined the equilibria for ¢ = 0 and ¢ > 0, determining the local
nature and stability. A condition for the existence of a double equilibrium was given, and
the splitting of this double equilibrium under the influence of perturbations was calculated.

The system under scrutiny was

N{i = Ni(on — §N1 = BiN2) — H + ¢ fi(Ny1, Ny),
N3 = Na(az — B2N1— 2 N2) + € fo( N1, N2).

Following Freedman and Waltman (3], Bojadziev and Sattar [22, 23] made an investi-

gation of the perturbed three-species Kolmogorov model
N/ = N;F;(Ny, N2, N3,¢); i = 1,2,3. (1.17)

First for ¢ = 0 in [22, 23], it was assumed an equilibrium existed in the interior of the first
octant. This equilibrium was assumed to be a simple equilibrium in [22], and a multiple
equilibrium in [23]. For the simple equilibrium, the resulting perturbed equilibrium was
located. A comparison of the possible nature and stability of the two equilibria was given.
As to the multiple equilibrium, its possible bifurcation was investigated. In the case of the
simple equilibrium, it was determined that the local stability of a hyperbolic equilibrium
was unaffected by perturbations, while the stability of a nonhyperbolic equilibrium was
affected. It is worth mentioning that system (1.17) has been studied from the point of
view of persistence by Freedman and Waltman [24].

As discussed earlier, (1.15) was investigated by Bojadziev McConill and Yen [10]. The
nature of this study for ¢ = 0 has been described in the previous section. When ¢ > 0, the

authors calculated the bifurcation of a double equilibrium. A similar study of the model
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(1.16) with perturbations,

o = zf(z)-yg(z)— H+ehi(z,y,2),
y = —ay+byg(z)—2p(y) + eda(z,y, 2),
2 = —cz+rzp(y) + eda(z,y,2),

has been undertaken by Bojadziev and Wong [11], wherein they gave a condition for the
existence of a multiple equilibrium then calculated its bifurcation (only for a double).

Bojadziev [25] has considered models of the form

i + f(z)zt + g(z) = ez, z1),
which can be transformed to the differential system

o =y,
y = ~—g(z)- f(2)y+ed(z,y).

Of interest is that for £ = 0, this system has a triple equilibrium (under given assumptions

on f and g). Bojadziev studied the bifurcation of this triple equilibrium.
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Chapter 2

THE TWO-SPECIES MODEL

This chapter contains a study of system (0.1) under conditions (1.1)—(1.5), for the three
cases of interaction determined by (1.8), (1.9) and (1.10). For the unperturbed model we
locate and then determine the nature of the simple equilibria and the multiple equilibria.
From these simple and multiple equilibria of the unperturbed system (¢ = 0), new equi-
libria may arise as perturbations (¢ > 0) are introduced. The location and nature of any

such new equilibria are determined.

2.1 Simple Equilibria of the Unperturbed Model

When € = 0 in model (0.1), we are left with the unperturbed model

e = zF(z)-yg(z),

(2.1)
y = —ay+byg(z)- R.

An equilibrium point (sometimes called a critical point) of the system is one for which the
right-hand-side of (2.1) is zero; consequently, we must look for solutions of the system of
nonlinear equations
zF(z) - z) = 0,
(z) - yg(=) 2.2)
—ay+byg(z)-R = 0.

Since we are modelling populations we only concern ourselves with the first quadrant Rﬁ_

(population quadrant z,y > 0). When z > 0, g(z) > 0 (see (1.4), (1.5)) and y can be
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eliminated from (2.2). The resulting equation is

p(z) =0, (2.3)

where
p(z) = zF(z)[bg(z) — a] — Rg(z). ‘ (2.4)

If z is a root of (2.3), then we find the corresponding y-value from the first equation of
(2.2):
zF(z
i)
9(z)

When z = 0 (which satisfies the first equation of (2.2)) the corresponding y-value is

(2.5)

y=-=. (2.6)

Since z = 0 is also a root of (2.3), we see that E(z,y), with z,y > 0, is an equilibrium
provided (z,y) satisfies either (2.3) and (2.5), or (2.3) and (2.6).

In this section we are concerned with simple equilibria, which we label E°(z°,3%); an
equilibrium E%(z0,y°) is called simple when z° is a simple (not multiple) root of (2.3),
which occurs when '

pz(z°) # 0. (2.7)

Here the subscript z represents differentiation with respect to z.

We now study the different interactions case by case.

(i) Predator-Prey :  Model (2.1) with condition (1.8).

(A) R=0; No harvesting or stocking.

We must find the roots of (2.3) which reduces to zF(z)[bg(z) — a] = 0. Obviously
2% = 0 is a solution and from (1.1), 2% = L., L, are also solutions. The corresponding
y-values from (2.6) and (2.5) are all y° = 0. Thus we always have the equilibria EJ(0,0),
E{(L,,0) and E9(L2,0) . There is one more possibility: an equilibrium point in Int®2

(interior of ®2 ). If ¢ €RangeG(z), which guarantees there exists an & such that

bg(3) —a = 0, (2.8)

18



L. X:%

Figure 2.1: Predator-Prey or Competition with No Harvesting or Stocking

and if
Li<#< Lz, (2.9)

which by (1.1)-(1.5) guarantees that the corresponding y-value defined by (2.5) satisfies
§ > 0; then, EJ(%,7) is an equilibrium point. The equilibria are shown by asterisks in
Fig.2.1; the curve and the y-axis represent the first equation of system (2.2), while the
z-axis and the line ¢ = & represent the second equation of this system.

(B) R=H >0; Harvesting.

When z° = 0, (2.6) gives y° = —% < 05 this point is not in the population quadrant
and is of no interest to us. The other possible simple equilibria, which we shall label
E°(%,9), are in IntR%; & must satisfy (2.3) and (2.7) and § satisfies (2.5) with z = %
There may be none, or there may be many such points; let us assume there is at least one.
As in (i)(A) above, we must have L; < £ < L so that § > 0. From (2.3) with (2.4),
R=H >0,(1.1)-(1.5),(1.8) and L, < & < L2, we see that we must have bg(£) — a > 0.
Since (1.4) implies 5g(0) — a < 0, there will be an % satisfying (2.8) when E%(%,9) exists.
With (1.5) we can place a tighter bound on # and say

max(Ly,&) <& < La. (2.10)

A necessary condition for the existence of E°(Z,§) in Int®? is that 3% satisfying (2.8) and
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Figure 2.2: Predator-Prey with Harvesting or Competition with Stocking

that
% < L. (2.11)

The equilibrium points are shown in Fig.2.2. The first equation of (2.2) is represented in
the same manner as in 2.1; the second equation describes a decreasing curve with vertical
asymptote at £ = Z# and horizontal asymptote along the z-axis. In Fig.2.2 we show the
curves crossing twice, but of course there may be more than two equilibria (even numbers),
or there may be none. In this figure one can see why (2.10) and (2.11) hold.

(C) R=-5<0; Stocking.

We obtain an equilibrium EJ(0,2) from (2.6). If there exist £, satisfying (2.3)-(2.5)
and (2.7), then EO(£,9) is an equilibrium in IntR2. An argument similar to that of
(i)(B) above gives that if 3& satisfying (2.8), then a necessary condition for the existence
of E%(%,9) is

&> L. (2.12)
When such an x exists,

Lici< mjn(a':,Lg) . (2.13)

Note that if there is no & satisfying (2.8), then Z satisfies (2.9) with Z replaced by Z. The
equilibria are shown in Fig.2.3 which is similar to Fig.2.2 with the difference being that the
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Figure 2.3: Predator-Prey with Stocking or Competition with Harvesting

second equation of (2.2) now represents an increasing curve (it has the same asymptotes

as before).

(ii) Competition :  System (2.1) with conditions (1.9).
(A) R =0; No harvesting or stocking.

Similarly to (i)(A) we get three equilibria: E3(0,0) , EY(L,,0) and E9(L,,0) . Pro-
vided 3% satisfying (2.8) and (2.9), E(%, §) is also an equilibrium with § given by (2.5).
The appropriate geometric interpretations are given by Fig.2.1.

(B) R=H >0; Harvesting.

This is equivalent to case (i)(C) above. The only difference is that now we have
E{(0, %) instead of EQ(0, f—) . View Fig.2.3 to get a sense of the geometry.

(C) R=-5<0; Stocking.

This case is equivalent to (i)(B), hence Fig.2.2 applies.

(iii) Cooperation :  Model (2.1) with (1.10).
(A) R=0; No harvesting or stocking.

Like (i)(A) and (ii)(A) we again have ES(0,0) , E(L1,0) and EZ(L,0) as equilibria.
This time R contains no other equilibria. We show the equilibria in Fig.2.4. The first
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Figure 2.4: Cooperation with No Harvesting or Stocking

Figure 2.5: Cooperation with Harvesting
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equation of (2.2) represents the y-axis and the curve, while the second equation represents
only the z-axis (in ®2 ).
(B) R=H >0; Harvesting.

EQ(0, ) is an equilibrium point, and if (2.3), (2.5) and (2.7) are satisfied, then E%(%, §)
is also an equilibrium. Since we must have § > 0, (2.5), (1.1)-(1.5) and (1.10) reveal that

% € (0, L1) U (L3, ). (2.14)

The equilibria are shown in Fig.2.5 where now the first equation of (2.2) is as in (iii)(A)
above, but the decreasing curve represents the second equation of (2.2). As always there
may be more or less equilibria in Int®2 than the two shown. |
(C) R=-5<0; Stocking.

The left-hand-side of the second equation of (2.2) is —ay — byG(z) + § > 0 in RZ
(recall that a,b < 0); it represents a curve which is below the z-axis (for values of z > 0),

thus there are no equilibria in ®2.

2.2 Stability Properties of the Simple Equilibria

We now look at the simple equilibria of (2.1), each of which we have denoted by E°(z?, 4°).
In order to determine their local nature and stability, we first find the Jacobian matrix

J(z,y) and evaluate it at E°(z°, y°). For system (2.1), this matrix is

ap Bo

Yo bo

JO = J(2%4%) = , (2.15)

where:
a0 = F(z°) + z0F,(z°) — y°g,(2),

= -_ ZO
To = by'9:(c"),
fo = bg(z%) —a.
The eigenvalues of (2.15), which are the roots of the characteristic equation
det(JO = AI) =A% - g]A +¢3 =0, (2.17)
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are
1
Mz = 5@ £/(e)? - 4¢9), (2.18)

where
0
g7 = 0o+ o,
! (2.19)
@ = detJO = apds - BoYo.
The eigenvalues determine the local nature and stability properties of the equilibria (see
Appendix A for classification of equilibria via eigenvalues). It is known ( see [26]) that for
a simple equilibrium E°,
detJ =¢9 #0. (2.20)
Cases (1), (ii) and (iii) (defined in the previous section) will be studied separately.

First we derive some results involving p(z) (as defined in (2.4)) that will help us investigate

the equilibria.

Lemma The terms p(z) and ¢ satisfy the relationship

g = p=(2°). (2.21)

Proof If we substitute the expressions (2.16) into ¢J given by (2.19) and use the fact
that
ay® = by°g(z°) - R = b2°F(2°) - R

(from(2.2)), we get
¢ = [F(2°) + 2°F(2°)][bg(2°) - a] + b2°F(2°)gz(2°) — Rga(z°)

= L{zF(z)[bg(z)— a] — Rg(z)} o=
= p,_.(zo) .

Note that (2.21) implies that condition (2.20) for simple equilibria is equivalent to
condition (2.7).

Theorem 1 I p,(z°) > 0, then E°(z°,°) is either a node, a focus, or a centre; being

asymptotically stable if ¢) < 0, and unstable if @ > 0. ¥ py(2°) < 0, E%2%,4%) is a
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saddle point.
Proof By substituting the expression for ¢J as given in (2.21) into (2.18), the theorem

follows immediately Wl

Theorem 2  Assume that the following two conditions hold:
1. EY(29,4?) and E2(z9,?) with 29 < zJ are simple equilibria of (2.1), and
2. p(z) #0 7z € (29,29).

Then either EY is a saddle point and EY is not a saddle point, or EJ is a saddle point and
EY? is not a saddle point.

Proof Conditions 1 and 2 imply z9 and 29 are two simple roots of p(z), and that there
are no other roots of p(z) between z9 and z9. Thus p,(29)p-(z3) < 0. This, together with

(2.21) and (2.18) prove the theorem ll

Keeping these results in mind, we look at the individual cases.

(i) Predator-Prey

(A) R=0; No harvesting or stocking.

We assume (2.8) and (2.9) hold. There are exactly four equilibria to study: E3(0,0),
EY(L1,0) , E3(L2,0) and E3(,9) - .
Equilibrium EJ. Using (2% 4°) = (0,0) in (2.16) and (2.19), we see that the eigenvalues
(2.18) are: A\; = —a < 0 and A\; = F(0). From (1.1) and (1.2) A; < 0. Thus EJ is an
asymptotically stable node.

Equilibrium E?. This time the eigenvalues are Ay = L, F;(L;) and A\; = —a + bG(L,). By
(1.2), A1 > 0; by (2.8),(2.9) and (1.5) A2 < 0. This tells us that EY is a saddle point.
Equilibrium Eg. From the characteristic equation, we calculate that A\; = LoF(L2) and
A2 = —a + bG(L3). From (1.3) A\; < 0; (2.8), (2.9) and (1.5) give A2 > 0. Like E?, EJ is
a saddle point.

Equilibrium EY. Now ¢ = F(2) + #F,(&) — §G(%), and we don’t know whether this is
positive, negative or zero. Since # satisfies (2.8), o = 0, which leaves us with a simple
expression for ¢J (see (2.19)): ¢9 = byG(£)G(Z) > 0 by (1.4) and (1.5). From (2.18) we

see that if \; and ), are real, they have the same sign, hence EY is not a saddle point.
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Now writing these points in the order EJ, E?, EJ and EJ, it is easily checked that the
pairs E, EQ; E9, ES; and EY, E2 satisfy the conditions for Theorem 2. Corresponding to
the above specified order, the nature of the equilibria goes: E§—not a saddle, E9—saddle,
E9—not a saddle and E9— saddle. This result agrees completely with Theorem 2.

Note that ES, E? and EY are hyperbolic equilibria (see [26]) since none of their eigen-
values have real part equal to zero; EY is nonhyperbolic if ¢0 = 0, or hyperbolic if ¢? # 0.
(B) R=H >0; Harvesting.

The only equilibria are of the type E°(%,§) (see Section 2.1, case (i)(B)) which are in
IntR2 . We cannot say anything about their stability other than what Theorems 1 and
2 tell us.

(C) R=-5<0; Stocking.

There is one equilibrium on the axis, EJ(0, -f-) , whose eigenvalues (2.18) are \; = —a,
and Ay = F(0) — £G,(0). Now A; < 0 and from (L.1), (1.2) and (1.5) we find A; < 0.
Thus EJ is an asymptotically stable node. Any other equilibria that may exist are of the
form E°(%,§) € IntR2 ; again, we can only apply Theorems 1 and 2 to these points.
(ii) Competition

The derivation of the eigenvalues and of the signs of the real part of those values is
straightforward and similar to the case of Predator-Prey just discussed; therefore, we
simply present the results without elaboration.

(A) R=0; No harvesting or stocking.

We assume that (2.8) and (2.9) are satisfied so that E9(%,%) is an equilibrium point.

EQ(0,0) is a saddle point;

EQ(L,,0) is an unstable node;

E(L,,0) is an asymptotically stable node;
EY(%,7) is a saddle point.

Writing these in the order ES, E?, EJ and E2, the nature of these points follows the
pattern: E§—saddle, E?—not a saddle, E9—saddle, and EJ—not a saddle. Theorem 2
gives us precisely this result.

(B) R=H >0; Harvesting.

E3(0,2) is a saddle point.
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E°%(%,4) ; here we resort to Theorems 1 and 2.
(C) R=-5<0; Stocking. ,
E%(%,9) ; similarly, we apply Theorems 1 and 2.
(iii) Cooperation
Once again we simply present the results.
(A) R=0; No harvesting or stocking.
EJ(0,0) is a saddle point;
EY(L,,0) is an unstable node;
EY(L,,0) is a saddle point.
Here also Theorem 2 is in accordance with these results.
(B) R=H >0; Harvesting.
E3(0, ) is an unstable nodeif F(0)+£G,(0) > 0, or a saddle pointif F(0)+£G,(0) <
0. For E°(£,§) we refer to Theorems 1 and 2.
(C) R=-S5<0; Stocking.

There are no equilibria in 2 .

Now we present three examples in which the functions and constants in model (2.1)
are specified; hence, we are able to locate equilibria of the type E°(2,§) and determine
their nature and stability properties. To obtain the figures, the system of differential
equations has been solved numerically using a Runge-Kutta-Fehlberg method (see Danby

[27]) starting from various initial points.

2.2.1 Example 1

Consider the predator-prey system without harvesting or stocking

z = z[l-(z-3)* -2y,

y = —5y+2zy.
We see from (2.1) that F(z) = 1 — (z — 3)%, G(2) = z, a = 5 and b = 2. Furthermore,
it is easily checked that Ly = 2, ag = 3 and L2 = 4. Thus from (i)(A) of Section 2.1,
we automatically know that ES(0,0), E9(2,0) and E2(4,0) are equilibria. Equation (2.8)

for this model reads 2z — 5 = 0, which is satisfied by Z = 3. Since 2 < 2 < 4 (ie
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Figure 2.6: Example 1

(2.9) is satisfied), we find from (2.5) that § = 2. Then E3(3,18) is an equilibrium in
Int®R?%. From Section 2.2 we know that EJ is an asymptotically stable node, EY is a saddle
point, and EY is also a saddle point, but all we know about EJ is that it is not a saddle
point. Evaluating (2.16) and (2.19) at EJ, the eigenvalues (2.18) are Ay 2 = $(1 + iv/11).
Hence EY? is an unstable focus. The phase portrait is shown on Fig.2.6. The orbits are the

curves with arrows (which point in the direction of flow as time increases), the dashed lines

indicate the curves where z/ = 0 or y7 = 0, and the equilibria are indicated by asterisks.
2.2.2 Example 2

Now we study a competition model with harvesting:

gt = 1z(z-2)(9-z)-zy,

yl = Ty—-zy-—8.
We have from (2.1), F(z) = 3(z - 2)(9-2),G(z) =z,a=7,b=1and R= H = 8.
In addition, L, = 2, ao = 4 and L, = 9. From (ii)(B), E3(0,8) is a saddle point.

Now we must see if there are any more equilibria. Equation (2.3) (with z # 0) can be
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Figure 2.7: Example 2

written in the form -15:03 — 6z + 9—35::: — 50 = 0; its roots are 3,5 and 10. Note that £ = 7
satisfies (2.8), so according to (2.13) we must have 2 < # < 7. Thus only 3 and 5 give
equilibria in R?*_ . From (2.5), we calculate the corresponding y-values, giving the equilibria
E{(3,2) and EJ(5,4). Further, we find p,(z) = 32 — 182% + 1907 - 50; p(3) = 14> 0
and p,(5) = ——5—:,? < 0; hence, by Theorem 1, EY is a saddle point and E? is not a
saddle point. We must calculate the eigenvalues for E? in order to completely detemine
its stability; these are Ay = 7 and A; = 2, indicating this equilibrium is an unstable node.
The phase portrait for this example is shown on Fig.2.7.

2.2.3 Example 3

Finally we look at a model wherein the populations are cooperating:

g = jz(z—4)(Tz - 23) + zy,
y = 4y+ zy-—18.

Comparing this system with (2.1), we see that we have R = H = 18 > 0 (harvesting),
F(z) = {(z - 4)(7z — 23), —g(z) = G(z) =z, a =4, b=1,a0 = §}, L; = %, and
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Figure 2.8: Example 3

Ly = 4. According to (iii)(B) of Section 2.2, equilibrium EJ(0,2) is a saddle point
since F(0) + £G,(0) = —& < 0. For this model p(z) = 1ot + B8 4 652 _ 10,
(see (2.4)), which has non-zero roots at —22, 2 and 5. Only 2 and 5 give equilibria in
the population quadrant: E?(2,3) and EJ(5,2); which, according to Theorems 1 and
2 must respectively be not a saddle and a saddle point. Since the eigenvalues of E? are
A12 = 3(41£+/241) > 0, ED(2,3) is an unstable node. The phase portrait for this example
is given on Fig.2.8.

2.3 Location and Nature of a Multiple Equilibrium of the
Unperturbed System

In Sections 2.1 and 2.2 we only looked at simple equilibria of the unperturbed system
(2.1). A multiple (critical) equilibrium of (2.1), which we label E°(z¢,y°) , occurs when

condition (2.7) is not satisfied; that is, when

py = (F° + z°F;)(—a + bg®) + bz°F°gS — R°gS = 0, (2.22)
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which is equivalent to detJ® = 0, J° is the Jacobian of (2.1) at E%(z°,y°) . Here p¢ =
pz(z°), F§ = Fi(z°), g5 = gz(z°), F° = F(z°) and ¢° = g(z°). We call R the critical
harvesting or stocking value. This number R is not necessarily unique as there may be
more than one critical harvesting or stocking value. A further possibility is that for one
value of R¢, there are several multiple equilibria.

The multiplicity of a multiple equilibrium may be of any order (see Andronov et al [28]).
Later in this Section we will study a multiple equilibrium in more detail, concentrating on

the cases of a double or triple equilibrium which occur respectively when

p°=pz=0, pz, #0, (2.23)

or,

C c __

p = pz: - p:‘z = 0’ pg:z:z: # 0 (224)

We seek to determine the local nature of a multiple equilibrium E°(z°, y¢) of the unper-
turbed model (2.1), which lies in 2. First, we suppose that such a multiple equilibrium
exists; i.e., we assume 3z°, y° > 0 satisfying (2.3), either (2.5) or (2.6), and (2.23) or (2.24).
Then following Andronov et al [28], and the papers [10, 21, 25], we shift E°(z°, y°) to the
origin via the substitution z = z°+ u, y = y°+ v, after F(z) and g(z) have been expanded

in Taylor series about z°. The resulting differential system in (u,v) space is

w = a.ut+pf.v+ %Wz‘: uz—gguv+%W§ ud
- %ggzuzv + O(u?) + O(u3v),
v = 7 u+ 8 v+ 3byei u’ + bgfuv + gby°es,, vl
+ 3bgc,u?v + O(ut) + O(ulv);
Wi = z°F5 +2F; - y°gz,,
W5 = z°Fp +3F;, — y°9%,.

(2.25)

Here a; , B: , 7. and §. are nothing but ag, B, 70 and & (see (2.16)) with z° and 3°
replaced by z° and y° correspondingly. As usual, subscripts on F and g represent the order

of differentiation with respect to z, and superscript ¢ indicates evaluation of the function

at (z°,9°).
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We investigate two cases.
Case 1 (z°y°) € IntR? .
In (2.25) we make the substitution:

§=—-b.u+PBcv, n=0ccu+pcv, T=(a +6 ), (2.26)

where we must assume that a. + 6. # 0. This substitution produces the new system

where:

Ql(fﬂl) =

Q2(£3 7’) =

£ = Q& ), (2.27)
2 = 9+ Q&)

- g {36 & W5 — 162 burgs, — 6. (80 + 6. )aZln?

+ (=B & W5 + B2 by°gs, — (ac — & )(bB. + 6c )gEné

+ (38 8. W5 — 362 by°gs, + ac (bB: + 6. )gcl€?}

~ B Ushe & WS — 382 by, — 36 (bBe +6c )ggcln®
+[—38c 8c W5 + 3082 by°gse, — 3(@e —26: )(bB: + 6. )gi,In¢
+[38c 6 WS — 382 by°g5., — 3(8c — 20 )(bBe + 6. )gS,In€?

+ (=38 8 W5 + 582 by°gz,, — 3o (b8 + 6. )95, 6%}

+0(1*) + O(73€) + O(n*€?) + O(n€3) + O(£Y),

- el b B W5 — 362 byfes, + 6. (ac — b. Jacln?

+ [ac B W5 + B2 by°gs, + (ac — 6 )ae — b )gSnt

+[-3ac B W§ — 182 by°gS, — ac (. — bB. )gllé?}

~ Brae 78 -0 Be W§ — 562 by°gZ,, + 36 (ac — bBc gl In®
+[3ac B W5 + 182 by°gS,, + 3o — 26. Yo — bBc )giIn*€
+[—gac B W§ ~ 382 by°g5,. + 3(8: — 20 )(ae — BB, )gS,Ing?

+ (30 Be W§ + 382 by°ei,, + 3ac (o — bB. )gl,1€%}

+0(n*) + O(n*€) + O(n*€*) + O(n€?) + O(£*).

We seek a solution to

in the vicinity of (0,0), of the form

(2.28)
n+ Q2(£a 7’) = 0’ (229)
n(€) = ME+ NE* 4+ 0(8°). (2.30)
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Substitution of (2.30) in (2.29) and solving for M, N gives

M = 0,
. e dm c (2.31)
N = Bc (0 +3c )3 [—fac 'BC W2 - fﬂc by Grx — ¢ (ac el bﬂc )gz].

Now we use (2.30) in @1(&,n) given by (2.28) and find that in the vicinity of (0,0)

Q1(6,(8)) = A1€? + A2£° + 0(Y), (2.32)
with
A = - gt lhse b Wi — 162 btz +ac (8. + 6 )gg)
A, = By + B;N;
1 1 c 1232 p,.c.c 1 ¢ (2'33)
Bi = - ggtogyl—46 6. Ws + 382 byqs,, - dac (B + 6 )gg.),
By = - gradopl=Be 6 W5 + B2 byg, — (ac —bc )(bBe + 6 )gZ);
N is given in (2.31).
We have calculated, using formulas (2.3), (2.2), (2.16), (2.22) and (2.33) that
A = 1 ¢ (2.34)
i 2(ac + 6‘: )3pII7 *
and if pS, = 0, then
42 = o + 6. )il (2'35).

Making use of (2.34) and (2.35), we conclude that:
(a) If (2.23) is satisfied so that E° is a double equilibrium, then A; # 0; and according
to [28], since the lowest power of £ in Q1(&, n(£))is 2, an even number, E° is a saddle-node
which bifurcates into a saddle point and a node.
(b) If (2.24) is satisfied so that E° is a triple equilibrium and A; = 0 while Ay # 0;
then according to [28], since the lowest power of £ in Q1(&,7n(£))is 3, an odd number, E°
is a topological node when A; > 0 (pS,, > 0), or a topological saddle point when A; < 0

(PSer < 0).

Case 2 (2% y°) € the boundary of 2 .

Here we are able to find the coordinates of the possible multiple equilibria.
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If (z°,y°) € z-axis and z¢ > 0, which is only possible for the case of predator-prey and
competition with R = 0, then the analysis in Case 1 above holds. Using formulas (2.8),
(2.5), (2.22) and (1.1), we find that such a multiple equilibrium must be located at either
the point (L,,0) or (L2,0) and that it will always be a double equilibrium.

If (z°,¥°) € y-axis, which is only possible in the case of cooperation with R = H > 0,
then the one possible multiple equilibrium is located at the point (0,—};1). This critical
equilibrium may be a double or triple (or greater) equilibrium. Since in this case o, =
Bc = 0, we cannot use substitution (2.26). If we instead use £ = 7. u, n = 7. u + 6, v,

T = §. t, we obtain for £ and 7 a system of the form (2.27). Following the same procedure,

we get for ; expression (2.32), but now we calculate that

1
Ay = =15 :
1 263 e Przs (2 36)

and when pS, = 0, then
1
Az = 67"’—621);"' (2.37)

The conclusions drawn in Case 1 (a) and (b) remain valid.

We investigate two examples.

2.3.1 Example 4

Let us look at the predator-prey model with harvesting

x!

z(z — 2)(7T-z) — zy,

y = —14y+ 3zy — 16.
Equation (2.3) for this model reduces to p(z) = —3z* + 4123 — 16822 + 180z = 0. The
roots are z = 0, 3, 6. It is easily checked that only z = 6 satisfies (2.10); thus, by (i)(B) of

Section 2.1, E(6,4) is the only equilibrium in ®2. As p,(6) = 0, and p,,(6) = —156 # 0,
E(6,4)is a double equilibrium; a saddle-node. The phase portrait is presented on Fig.2.9.
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Figure 2.9: Example 4

2.3.2 Example 5

Consider the model

4031 , N 2935 8105

= p(—mt 3_ _ _
o = z(-z*+22¢ 52~ 5 % 24) zy,

v = —-y+zy-9.

This is again a predator-prey rﬁodel with harvesting. Equation (2.3) reads —z% + 2325 —
4559 gt + 1771 15771 73— 19845 22+ 7 8894 = 0, which has solutions z = 0,7,1+ %, 1- £ Only
z=T7andz =1+ % sa,tlsfy (2.10) (recall that z = 0 does not give an equilibrium in
®? for a predator-prey system with harvesting). Now pz(7) = pzz(7) = 0, but pyo(7) =
—5—044—1 #0, and p(1+ 51@) ~ 95.7. Thus E°(1 + & o & 18v/6) is a simple equilibrium, while
E*(7,3) is a triple equilibrium. Moreover, according to (2.35) and Case 1 (b), E%(7,2)
is a topological saddle point since p;;»(7) < 0. We show the phase portrait in Fig.2.10 for

a neighbourhood of the triple equilibrium; observe how it resembles a saddle point.
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Figure 2.10: Example 5
2.4 Perturbations of a Simple Equilibrium

Suppose E°%(z%,4°) is a simple equilibrium in ®2 of (2.1) (recall: z° satisfies (2.3) and
(2.7)). We seek the associated perturbed equilibrium EP(z?,y?) of system (0.1) in the

form of an asymptotic expansion (see Kevorkian and Cole [29]):

7 = z94¢my+ O0(e ?),
1+0(7) (2.38)
¥ = yP®+en+0(e?).
For ¢ =0, model (0.1) reduces to model (2.1) and E? to E°.
The expressions for z? and y? given in (2.38) must satisfy the equations
zF(z) — yg(z) + € o(z, = 0,
(2) - y9(z) + € ¢(2,9) (2.39)

~ay+byg(z) - R+ ¢(z,y) = 0.

In (2.39) we expand F(z), g(z), ¢(z,y) and 9¥(z,y) in Taylor series about (z°,y°%) and

36



obtain the system

a[F? + F(z — 2°) + O((z — 2°)%)] - y[¢° + ¢3(z — °) + O((z - 2°)?)]
+e[¢° +0((z - 29) + O((y - ¥°))]

—ay +bylg° + g2(z — 2°) + O((z — 2°)*)]| - R

+e[¥° +0((z-29)+0((y-y"))] = 0

0,

(2.40)
We substitute (2.38) into (2.40), noting that (z°,y°) satisfies (2.2), and divide the result
by ¢ , giving
apmi+fonmi+¢® +0() = 0, (2.41)
Yomi+ém+9° +0(e) = 0,
where ag , Bo , Y0 and 6p are given in (2.16). In (2.40), subscript z indicates differentiation
with respect to z. Superscript 0in (2.40) and (2.41) indicates evaluation of the functions at
(2°,4%). We assume here that we do not have ¢° = ¢° = 0; otherwise, (z?,%?) = (2°, 4°),
and the unperturbed equilibrium is not shifted by the addition of perturbational terms.
This is a special case not considered here.
Since E°(z°,4°) is a simple equilibrium, ¢ = ag 6o — Bo 70 # 0 according to (2.20)
with (2.19). Neglecting the terms of order O(¢ ) in (2.41) produces

my = &(Bo ¥° — 6o ¢°),
o ‘112( o o (2.42)
1 = g% ¢ —ap ¥°).

Thus (2.38) with (2.42) represents the approximate location of the perturbed equilibrium
EP(zP, yP) .

To study the local nature and stability of EP?, first we find the Jacobian matrix for
system (0.1) and evaluate it at E?:

6
=sge| 0 P |toe?), (2.43)
g0 To
where JO is given in (2.15),
o = maW2 —nyg® +¢° , = —mig® + ¢,
0 miW, nig; + ¢1: Po 19z + ¢y (244)

oo = miby’gg, + nibgd + 92, 10 = mybgd+ Y,
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and W3 is W§ given in (2.25) with superscript ¢ replaced by superscript 0.
The characteristic equation, det(J? — AI') = 0 (I is the 2 x 2 identity matrix), reduces

to

M-gd+gg+e[—(6o +70)A+Q ]+ 0(c?) =0, (2.45)
where ¢? and ¢ are to be found in (2.19) and
Qo =ag10 +6060 —Booo — 70 po - (2.46)

Suppose that A, are the eigenvalues of E°(z9,40) ; then, we search for the perturbed

eigenvalues in the form
X=X1el,+0(?), s=1,2, (2.47)

with A2 as given in (2.18). Substituting (2.47) into (2.45), then setting the coefficient of ¢
to zero (the term without ¢ , that is £ 2, is already zero since (A0)% — ¢?)A9 + ¢§ = 0) allows

us to solve for I,:
/\2(00 + To ) — Qo

Iy =(-1) , $=1,2. (2.48)
V(@92 - 4¢3
Equation (2.48) is only valid provided
(61)” — 4¢3 # 0. (2.49)

Now we study the eigenvalues (2.47) using (2.18) and (2.48).
(i) Suppose E°(z% y°) has eigenvalues (2.18) that have non-zero real part and are not
repeated (in such a case E° is a hyperbolic equilibrium). Then E° is a saddle if the
eigenvalues A9, \J are real and of opposite sign; a proper node if A9, A9 are real, distinct
and of the same sign; or a focus if A?, A9 are complex (with nonzero real part). Since ¢ is
sufficiently small, from (2.47) with (2.18) and (2.48) we see that A¥, A} are close to A9, A9.
This implies EP(z?,y?) has the same local nature and stability as E%(z°, 3°) .

(ii) Suppose E°(2°,4°) is a centre of the linearized model (2.1) (it may be a centre or
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a weak focus for the nonlinearized model (2.1)); it is nonhyperbolic. In this case ¢¥ = 0

and ¢ > 0. Using (2.18) and (2.48) we observe that (2.47) becomes

1 / .Q
3= (1B + 5e o +70 + (-] +0(?), s=1,2. (2:50)

Va8

Soif &g + 1 # 0, then /\’1’72 are complex with non-zero real part; EP(2P,yP) is a focus
and it may be asymptotically stable if g + 79 < 0, or unstable if g + 79 > 0. We do
not consider the case where 8y + 79 = 0; it requires investigation to O(e 2). Under the
influence of perturbations, we observe that the nonhyperbolic equilibrium E° may change

its nature and stability.

(iii) Suppose E%(z°3°) is a node-star; A , = 140, (¢9)% — 4¢3 = 0; condition (2.49) is

not satisfied. In this case (2.47) is not appropriate; instead we try to find /\’1’,2 in the form
1
AP = qu +ePl 4 e 24037, s=1,2.

Substituting this last expression into (2.45), we determine that the coefficients of ¢ © and
¢ 1/2 are identically zero. Setting the coefficient of ¢ to zero allows us to solve for I1. The

result is:

1
Iy = (-—1)"\/549(00 +70)—Q, $=1,2. (2.51)

So I! may be real or complex. Assuming I} # 0 we have that A? may be real and distinct
but of the same sign, or complex with nonzero real part. Equilibrium EP(z?,y?) may
thus be a proper node or a focus; in either case though, it has the same stability property
as E%(z%,¢0) , since for sufficiently small ¢ the real part of AZ is of the same sign as as
the term ¢f. In this case, the stability of the hyperbolic equilibrium E°(z°,y°) does not

change when perturbations are introduced even though its nature may change.

Two examples are now investigated.
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2.4.1 Example 6

For this example, we look at the perturbed predator-prey model without harvesting or
stocking: v

gt = z(z-1)(9-z) - =y,

y = —-3y+zy+e(-1)"y, n=12.
So we see that F(z) = (- 1)(9—-12),G(zg)=2,a=3,b=1,L; =1, Ly =9, ap = 5,
#(z,y) =0 and ¢¥(z,y) = —y for n = 1, ¥(z,y) = y for n = 2. When ¢ = 0 the system
has equilibria: EJ(0,0) an asymptotically stable node, E(1,0) a saddle point, E9(9,0) a
saddle point, and EJ(3,12) an unstable node-star as (¢{)? — 4¢3 = (12)2 - (4)(36) = 0. In
Fig.2.11 we show the phase portrait of the unperturbed system. In Fig.2.12 we show an
expanded view of EY.

From the discussion in this Section, under the influence of perturbations (¢ > 0) E}
will be an asymptotically stable node, E} will be a saddle point, and E} will be a saddle
ppint. Equilibrium E% may be either a proper node or a focus, but will remain unstable.
We now determine what EJ is.

Equation (2.16) gives g = 12, B9 = -3, 0 = 12 and § = 0; furthermore,
¢° =0 and ¢° = (-1)*12. Thus (2.42) gives m; = (—1)"*!, n; = (-1)"*'4. From
(2.44) we obtain: 8 = (-1)"2, pg = (-1)", 00 = (-1)**'4 and 79 = 0. Then
(2.51) takes the form I! = (-1)*6y/(—=1)*. Thus Ef which is given approximately by
E§(3+(-1)"*1e ,124(—-1)"*+14¢ ) has eigenvalues given by A} , = 6£6,/(—1)"¢ 1210(¢).
For n = 1, E§(3 + € ,12 + 4¢ ) has eigenvalues A}, = 6 + 6ic 1/2+ O(e ). This means
that Ef is an unstable focus for n = 1. The case n = 1, ¢ = % is drawn on Fig.2.13,
and on Fig.2.14 where we show a close up view of E%. On the other hand, when n = 2,
E%(3—¢,12 - 4¢ ) has eigenvalues A}, = 6+ 6¢ 1/2 4 O(¢ ), making it an unstable proper
node. This case is shown on Fig.2.15 and on Fig.2.16 (neighbourhood of E}), where again

we use the value ¢ =

o=
.
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Figure 2.11: Example 6 with ¢ =0
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Figure 2.12: Example 6 with ¢ =0
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Figure 2.16: Example 6 with n
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2.4.2 Example 7

The model

x/

z(z-3)(7T—2)—zy+e¢z,
y = —dytzytey,

is an example of a perturbed predator-prey system without harvesting or stocking. When
g =0, the equilibria are: EJ(0,0) an asymptotically stable proper node, E9(3,0) a saddle
point, E9(7,0) a saddle point, and EJ(5,4) a centre of the linearized unperturbed model
(the eigenvalues at this point are /\(1),2 = 42iv/5). In fact, from Fig.2.17, wich shows the
phase portrait of the system with ¢ = 0, we see that E appears to be an asymptotically
stable (weak) focus for the unperturbed model.

If we now consider the model with ¢ > 0, we know that E} will be an asymptotically
stable node, and EY and E} will be saddle points. Calculations give that to O(e ), Ef is
E%(5—¢,4+¢ ), and at this point the Jacobian (2.43) is

g = 10e -54¢
4+¢ 0
Thus, we find that to order O(¢ ) the eigenvalues (2.50) are A, = +2iv5+¢ (5+ i%‘%).
Equilibrium F% is an unstable focus. The results for the perturbed model are displayed in
Fig.2.18 were we have used the value ¢ = 0.1. Under the influence of perturbations, the

nonhyperbolic equilibrium EJ has gone from being asymptotically stable, to unstable.

2.5 Bifurcation of a Multiple Equilibrium

In this Section we examine the effect of perturbations on a multiple equilibrium E°(z¢,y°)
of the unperturbed system, determining the conditions under which E° splits (bifurcates)
into several new equilibria.

We assume that either a double or triple equilibrium exists in R?,,; hence, we assume
there is an E°(z°,y°) with z°,y° > 0 satisfying (2.3)-(2.5) and either (2.23) (double) or
(2.24) (triple). Following the method of [25], which is a slight generalization of the method
used in [10], [11] and [21] (see also [29] for a detailed look at perturbation methods), we
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seek a perturbed equilibrium E*(z*,y") in the form

¥ = z°+ePmy+e PmeteFmg4 0> W),

L ) (2.52)
y* = y°4e#n+eny+e Fng + 0(e ).

The pair (z*,y*) must satisfy the perturbed system (2.39); therefore, we substitute (2.52)
into (2.40) with superscript 0 replaced by c in (2.40). The coefficient of €° is zero since
E°(z°,y°) satisfies (2.2) (which is just (2.39) with ¢ = 0), so we may divide the resulting

expression by € # which leaves us with:

ac my + Be n1 + € #(ac ma + Be na + W5 mi — gimyny) + € #(ac ms
+ B n3 + W5 mi + W5 mamg — gSmany — gimyng — 395,min;)
+0(e %)+ 17#¢° e (65 m1+ ¢ 1) + € 1HH(45 ma + ¢ g

+ 305 mi + 65, many + 345, nf) + O(e 1) = 0,
Ve M1 + b ny + € #(c M2 + b na + 3y g5.mi + bgiminy) + € (v ma
+ 6c n3 + $bygs,.m3 + by°gS,mima + bgimany + bgimans + 3bgS,miny)
+O0(e3) 4 & 1749 4 (Y5 my + %5 my) + € (P ma + S g

+ 1yg, md 4+ 92, mim + 3yg, nd) + 0@ ) = 0.
(2.53)

Note that it is necessary to go to higher order in the Taylor expansions than is shown
in (2.40) to get (2.53). Also, we assume that we don’t have ¢¢ = ¢ = 0 (otherwise
E*(z*,y*) = E%(z%¥°) ), and that ¢§ = a. + 6. # 0. As usual, W5 and WS appearing
in the above formula are to be found in (2.25).

To solve (2.53) we set coefficients of successive powers of ¢ equal to zero. Since at least
one of ¥° or ¢° is not zero, for some [ = 1,2,3,... we must have 1 — y = lu. Therefore,
only u =1, %,%, ... are possible values.

We investigate two cases.

Casel (z°y°) €lntRl .

Since z¢,y° > 0, it turns out that a. ,B. ,7: ,0. # 0 (see (2.16) with (1.4) and (1.5)

and use the fact that pS = a. 6. — B: 7. = 0). We have evaluated five subcases, making
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use of A;, Az (given by (2.34), (2.35)) and the expressions:

D, = acy¢® -7 9%,

Dy = e ¢y —acy —bc 9% +B: 7 —bgie® — gsv° .
(i) A1 #0, D; =0. Since A; # 0 implies pS, # 0, we know that E°(z°, y°) is a double
equilibrium. In this case 4 = 1 should be used in (2.52).

(2.54)

Setting successive powers of € equal to zero in (2.53) gives us a series of systems of
equations, of which only the fist two are needed in order to solve for m; and n;. These

two systems are:

acmi+B.n+¢° =0, yomi+é ni+y° =0 (2.55)

ac my + fBe ng + 3WE mi — giming + ¢S my+ 45 0y = 0, (2.56)
Ye M2 + 6. ng + 3by°gS,mi +bgiming + S my+ S ny = 0.
The condition D; = 0 guarantees that (2.55) has a solution (recall that a, §; — 8. 7. =

0). Eliminating m,, my and ng from (2.55) and (2.56), we obtain the quadratic equation
cand 4 ecany +e3 =0, (2.57)

where:

a = Be(a +6. 4,

- Be _ — _ 6
c2 = by‘gz.¢° g —bgz¢° — YL Be +9y e — Wi ¢ = (2.58)
=gz + % 8 — by e s

s = byel.(9°) — ¢° s — 2WE ¢ 6 + g ¢S

If ¢2 ~ 4cic3 > 0, then there are two real solutions of (2.57). This, together with (2.55)

gives two new equilibria, which are approximately E}(z°+ € mys,y° + € n15), s = 1,2,

where

B #° 1
mis = —261;: [—e2 + (—1)°y/c2 — 4ere3]) — o s = Ea[—q + (—=1)*y/c% — 4ercs).

If ¢2 — 4cyc3 < 0, the double equilibrium disappears under the influence of perturbations.

If ¢4 — 4cyc3 = 0, higher order terms m, and n, should be calculated.
(ii) A1 #0, D1 #0.  Again E°(z¢ y°) is a double equilibrium, but this time we use in

2.52) 4 = 1. Proceeding as before, the two systems of equations that we must solve are:
2 g

Q, my + ,Bc ny = 0, Ye T + 6c n = 0; (2.59)

47



ac. ma + fc nz + %Wf m% - gzmung + ¢ = 0,

. (2.60)
Ve ma + 8 ng + 3by°gs,mi + bgimyng +9° =
From these systems we derive the quadratic equation
cain? + Dy =0, (2.61)

where ¢; is found in (2.58) and D; in (2.54). Provided ¢;D; < 0 we again see that
the double equilibrium E¢(z¢,y¢) produces two perturbed equilibria given to O(e 1/2) by

E*(z° 4 ¢ YV?my,,y° 4+ € Vny,), s = 1,2, where

_(_ s-Hﬂ_C ’_Dl =(—1)% -Dy
mls—( 1) a. 1 y MNis ( 1) 1 .

When ¢;D; > 0 the double equilibrium disappears under the influence of perturbations.
When ¢; Dy = 0 further study is required.

(iii) Ay =0, A2 # 0, D; # 0.  Looking at (2.34) and (2.35), A1 = 0, A2 # 0 implies
E¢(z°,y°) is a triple equilibrium. The choice for p in this caseis p = 313- Here we must use

the first three systems of equations that result from (2.53): (2.59) together with

ac mg + Be nz + 3W5 mi — gtminy = 0, (2.62)
Ve Mg + 8¢ na + LbycgS,mi + bgimyny = O
a. m3z + B n3 + %W; m:l3 + W3 mimy — gzmam
— ggmang — §gi,ming +4° = 0, (2.6

Te m3 + &c n3 + §by°gS.,m3 + by°g,mamg + bgimany
+ bgimyng + 3bgs,ming +y° = 0.
We eliminate m3 and n3 from (2.63), then use (2.62) to remove m; from the resulting
equation; the term n, also disappears due to A; = 0. Finally, using (2.59), we arrive at
the cubic equation

Mm? - Dy =0, (2.64)

where

M= %C—-(ac +6, ) A, (2.65)
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Since M # 0 (because A; # 0) and D; # 0, (2.64) has one real and two imaginary solu-
tions. This case always results in one simple perturbed equilibrium which is approximately

represented by E*(z¢ 4 £ 1/3my, y° + £ /3n;), with

m=3-D—1 n:—acs_l.).l
1 M, 1 ,Bc M

(iv) Ay =0, A, #0, D, =0, D, =0. Again E° is a triple equilibrium and we should

use y =  as in subcase (iii); thus, equation (2.64) will again result. Since D; = 0 and
M # 0, we find that m; = n; = 0. After substituting these values into (2.53) we make

use of the first five systems of equations that result:

a: my+ fBcn2 =0, Y. m2+6. ny =05 (2.66)
a.ma+B.n3+¢¢ =0, y.m3+6. nzg+¢° =0; (2.67)
ac My + fe ng + §W5 mi — giman, = 0, (2.68)
Ve My + 6c ny + 2by°gS,m3 + bgimany = 0;
ac ms + B¢ ns + W3 mama — gzmans — gimany + 5 ma + ¢ n2 = 0, (2.69)

Ye ms5 + 6c ns + by°gz,mams + bgzmang + bgzmang + Y ma 4+ Yy n2 = 0;

1
a, mg + ,Bc ne + %Wf m:23 + Wf maomy + §WI§ m% - %gizm%n2
— gzM3ng — gzMaNg — gzmyny + 97 M3+ ¢y n3g = 0,
1 2 1 3,1 2
Ye me + 6 ne + 5bY°gz,m3 + by gz,mamyg + 5by°gz,,m5 + 3bgz,min,

+ bgzmans + bgzmang + bgzmyny + Y ma + 95 ny = 0.
(2.70)

Using elimination, the equation

Mm3 - ¢3 =0, (2.71)
may be derived from (2.66)—(2.70). This is the same M as in (2.65) and the same ¢3 as
in (2.58). With Dy = Dy = 41 = 0, ¢ simplifies to es = §—(v 6§ — a. ¥§ ). As in (i)
M # 0; provided c3 # 0 we have one perturbed simple equilibrium given to O(e %/3) by
E*(z° 4 € 2/3mg, y° + € 2/3n,) with

Mo = 3 C3 o = ac 3 C3
2= M= 7\
M 8. VM
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If c3 = 0, then m2 = ny = 0 and it is necessary to calculate higher order terms ms, ns.
(v) A1 =0,A2#0, D, =0, D; #0. Here E°is still a triple equilibrium, but now we
use p = 3; consequently, (2.59) and (2.60) are still valid. One more system:

o, m3 + fc n3 + tW§ m} + W§ mymg — gSmany
- g::man - %ggzm%nl + ¢g' my + ¢; np = 0, (2 72)
Yo m3 + 6. n3 + %bycgg:c:cm? + bycggzm1m2 + bggm?nl

+bggming + 3bgs,ming + 9L my+ Y m = 0,
is required. From (2.59), (2.60) and (2.72) we may derive the following cubic equation:

‘;° D3) = 0. (2.73)

c

my(Mm? -

This equation always has m; = 0 as a solution. When m; = 0, n; = 0 also, so we go
to the next higher order terms my and n2. It is not very difficult to find that provided

cac3 # 0:
_Pees ¢ &

9 2
Q; C2 Q. C2

ma

If c2e3 = 0, further study is required. If o, 8. M D; > 0, there are two additional real
solutions of (2.73):

s |Qc -D2 s+1%c Q. -D2
M. = ’ Nye = 1 — 2, .
1s ( 1) ,Bc M’ 1s ( ) ,Bc ,Bc M » 8 3

Thus, if coc3 # 0 and a, 8. M D; > 0, the triple equilibrium E°(z¢,y°) of the un-

perturbed system bifurcates into three perturbed simple equilibria E}(z%,v3), s = 1,2,3,

where:
2} =24+ my+0(3?), yi =y +eny+ 0 ¥?);
and

i =24+e Y m, +0(), Yi=9v+en,+0(), s=23.

If c3c3 # 0 and o B M D, < 0, then E} is the only perturbed equilibrium.

Case 2 (2% y°) is on the boundary of R? .
First we consider multiple equilibria on the z-axis. In Section 2.3, Case 2, we saw

that the only such possibility is for a double equilibrium at either E°(Ly,0) or E°(L,,0).
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There are just two subcases to consider here which depend on whether or not D; = 0,
where Dy = a, ¥° (this is the same D; as given by (2.54) because here a, ,3, # 0 and
Y. =6, =0).

(i) Dy =0.  The results are exactly as in Case 1(i) above, but now

T = - bﬂc g;')
cg = —bgzot — B tea. 1/)5 ’ (2.74)
3 = - ¢C ‘/’; )

instead of those values given in (2.58).
(i) D, # 0. The results are as in Case 1(ii) above, but with ¢; as in (2.74). Note

that here Ef(z¢ + myie /2 nye 1/2) is not in R} asny =~ _c? <o.

Now consider a multiple equilibrium on the y-axis; which, according to Case 2 of
Section 2.3, is located at E¢(0, %) and may be a double or triple (or more) equilibrium.
We study five subcases which depend on A; and A; specified by (2.36) and (2.37), and on
Dy = 7. ¢° and D3 = v, ¢ — 6. ¢ — g59¥° (note that a. = . =0and 7. ,6. #0
here). The results in subcases (i)—(v) below, are the same as in subcases (i)—(v), Case
1 above, with the following exceptions:

(i) A; #0, D; = 0. Here we have that

G = —'62‘41’
e = - ﬁc-(2F° —YoEIY — gSU° + e &S . 8, (2.75)
& = @—L(F 10°05.) + 65 9° .

Also my, = —z—cf,ch[—cz +(-1)°/c2 —4ecre3] -

(ii) A; #£0, D; #0.  Now we should use ¢; given by (2.75) rather than (2.58) and in

the expression for m,, we must replace & by %’ In addition, E3(mq¢ 1/2, % +ni19€ 1/2)
is not in SE since myy = —%— < 0
(iii) Ay =0, A2 #0, D, #0. Instead of (2.65), M is found to be

M = ’)’266 Az. (2.76)

Use %c— rather than %‘— in ny. ¥ D1M < 0, then m; = \3/% < 0 and E*(m¢ 1/3,% +
[+ [+

nie /3) is no longer in R .
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(iv) A1 =0, A2 #0, Dy =0, D2 =0.  The quantity ¢3 is found in (2.75), M in (2.76),
and now np = -—%Z— \3/% If Mc3 < 0, then it is easily seen that E*(mqe 2/3, -fli + nae 2/3)
is not in R2 .

(v) A1 =0, A, # 0, D, = 0, D, # 0. Observe that equation (2.73) now reads
my(Mm? — %z—ch) = 0, with M as in (2.76). With these changes, we calculate that

me = ,670 22 - 3% and ny = —&; where of course, ¢; and ¢3 are found in (2.75). Finally,
My, = (—1)’,/%2%, s = (—1)’*’1%2—‘/%2—;)41, s = 2,3; Ej is no longer in % as
my3 < 0. ‘

2.6 Nature of the Perturbed Multiple Equilibria

The equilibria bifurcating, under the influence of perturbations, from a double or triple
equilibrium of the unperturbed system have been located. We now determine the nature
of these perturbed equilibria. Looking at the cases considered in Section 2.5, only values

of u=1, %, and % were needed for (2.52); thus, we study here these three cases.

(i) p=1. Perturbed equilibria given to O(¢ ) by E*(2°+ mye ,y° + ni€ ) arose from a
double equilibrium in Case 1(i) and Case 2(i) of Section 2.5. The Jacobian J* at such
a point is similar to (2.43):

+0(?), =] ™ e , (2.77)

o, T Yo O

[/
J* = J L c  Pc
where a; , B¢ 5 Yo 5 6c , 0: , pc , 0c and T, are respectively ao , Bo , Yo , 60 , 90 , po ,
oo and 1y with superscript 0 repaced by superscript ¢ in (2.16) and (2.44). Taking into
consideration that detJ® = a; 6, — B. 7. = 0, the eigenvalues for E¢(z¢,y°) are A = 0

A5 = ¢ = a. + 4. ; therefore, the eigenvalues for E* are

QC ® c
qc€+0(€2)’ )‘2=q1+0(5); Qr:=ar:"-c +6¢:0c —I@CO'C — Y Pc
1

A=

(R is Qo (2.46) evaluated at (z¢,y°) instead of (z°,4°)). Recall that we assumed ¢§ # 0
for a multiple equilibrium, so A} is well defined. Provided that Q. # 0, E* must be a
saddle or a node. If 2, = 0, A] must be calculated to higher order. When E° is a double
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equilibrium, it was found (Section 2.3) to be a saddle-node, which under the influence of

perturbations splits into a saddle and a node according to [28].

(ii) p = 3.  Subcase (ii) of Cases 1 and 2 in the preceding section saw equilibria of
the form E*(z¢ + mye /2, y° 4 nie 1/2) arise from the double equilibrium E°(z°,y°) when

perturbations were introduced. At E* the Jacobian is

0
J=Jlte 24 06E), A=t . (2.78)
04 T4
Matrix J¢ is given in (2.77) and
0y = miW35 —mg;, pd = —mags,

(2.79)
oq = miby°g, + mbgl, T4 = mbgt.

To O(e 1/2) the characteristic equation is
N+ e —(6s + A+ Q] =0; Qi =ac7a +6:04 —Pc0a =7 pa -
We seek A] ; in the form
N=X4+eVU 4 0@); s=1,2.

Substitiuting A* into the characteristic equation and setting the coefficient of £ 1/2 to zero,

we solve for I1. With this we find

=orio6), X3=q+06 ).

¢
1

Utilizing the fact that m;, n; satisfy (2.59) and (2.60), we have established that Q4 =
m1pS,. Thus, for the double equilibrium 4 # 0 and E* is a saddle or a node. In fact,
we know fom Section 2.3 that the double equilibrium, when it does not disappear under
the influence of perturbations, produces two equilibria: one saddle and one node.

When E°(z¢,y°) is a triple equilibrium as in subcase (v) of Cases 1 and 2 of the
previous Section, we now see that ; = 0 since pS, = 0. It will be necessary to go to '

higher order in the evaluation of A], and to do this requires knowing E* to order O(¢ ).
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Let us assume we have E*(z° 4+ mie /2 4+ mae ,y° + nye V2 + nge ) with m, and ny

explicitly calculated. The Jacobian at E* is

/ 9
Jr=Jc +e 1/2Jd +e Je + O(E 3/2), Je = e Pe :
O Te
where:

b = moW§ —nogl+ 3miWs — minigs, + 45,

pe = —ma2g;— %mgg;z + ¢z s

Oe = m2bycg;z + n2bg:~ + %m%bycg;zz +m nlbg;z + w; )
Te = m2bg:i' + %m%bg;z + ¢; .

Reminder: W5 and W§ are given in (2.25). The characteristic equation to O(e ) is
A gEA—e M0y +ra)A+e[—(8e +7 )N+ Q. +detJ? ] =0,

where Q. =a. 7. +6. 6. —B: 0. —7c pe , and detJ? = 6; T4 — 04 pa . The eigenvalues

are therefore
A= Elc-(ne +detJ? )e +0(e %2), A3 =g +0( V).
1

Assuming Q, + detJ? #£ 0, E* must be a saddle or a node. If this term is zero, it is

necessary to calculate to higher order; we do not consider this here.

(ii)) g = 3. This value for u was used in Case 1(iii) and Case 2(iii) of Section 2.5,
where E* was calculated to O(e 1/3). As E°is a triple equilibrium, it is necessary to know
E* to O(e ?/3) in order to determine its stability. We assume we have E*(z° + mye /3 +

mae 23, 4° + nie V3 4 nye #/3) with my and ny known. Such a point has Jacobian

0 ps
of Tf

J =J e M3gd 4 23 +0(e).

Expressions J° and J? are found in (2.77) and (2.78) respectively. In addition:

— 1, .2v17¢ _ 1.2
05 = mW3 —nagz + 3miW5 — minigz,, pf = —Mag; — 3Migzs,

o = maby°gs, + nabgg + 3mibyes., + mimbgs,, T = mabgg + Fmibgs,.
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Calculations give the eigenvalues:

Al = Elz(gf +detd? )e 22+ 0(), A=q5+0( 3,
: .

where Qy =a. 74 +6.05 — B 05 — 7. ps . As usual, E* is a saddle or a node provided
Q; +detJ? #0.

Finally, E*(2°+maqe 2/3+mae ,y°+nge ?/3 4 nae ) is the type of perturbed equilibrium
that appeared in Case 1(iv) and Case 2(iv) of Section 2.5. Coefficients my and n, have
been explicitly calculated, and now we assume that m3 and ns are known. We find the
eigenvalues to be:

N = e +0(: ), 3= 4+ O ¥
1

Qy =a. 79 +6.0, —Bc0og —7:pg,
8, = msW; —nsg; + ¢3 , pg = —mag; + &
oy = m3by°g§z + n3bg§ + @b_.i 5 Tg = m;;bgi + qb; .

Once again E* is a saddle or node when , # 0.

Next we will study an example of a double equilibrium, and one of a triple equilibrium.

2.6.1 Example 8

Let’s look at the system studied in Example 4, but we add the perturbational terms
dz,y) = z, ¥(z,y) = y to the model:

z!/

z(z-2)(T—2z)—2zy+ez,
y = —-14y+3zy—16+¢y.
We already know that £°(6,4)is a double equilibrium (a saddle node) of the unperturbed
(¢ = 0) model, now we study the bifurcation of E° under the influence of perturbations.
From (2.16) o, = —18,8. = —6,7, = 12,and . = 4. From (2.54) we calculate that D, =
—144 # 0; thus, we are dealing with Case 1(ii) of Section 2.5. Next, from (2.58), ¢; = 26.
- Therefore, my, = (—1)"+12\/% and ny, = (—1)“’6\/1&—3, 8 =1,2. To O(e 1/2) the perturbed
equilibria are E3(6+2,/Fe /2,4~ 6,/Z¢ /?) and E3(6 - 2\/%e 1/2,4+6,/%e 1/2).

55



.00

.00

Figure 2.19:

Example 8 with e =0

Figure 2.20:

Example 8 with ¢ = 0.04
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To find the nature of these equilibria, we go to case (ii) of Section 2.6 (double equilibrium

with p = %) After some elaborations we find the eigenvalues for E} are

156
A= eV240(), Aj=-14+40( /2,
T 13
and for E3 are
156
M= -y e 4 0(), M= 1440 V).

Just as expected, one (E7) is a saddle and the other (E3) is a node. For ¢ = 0, we show
a neighbourhood of the double equilibrium in Fig.2.19 (this is the same as Fig.2.9). In
Fig.2.20, we show the two perturbed equilibria E} and E3, where we have chosen the value
¢ = 0.04 with which to carry out the calculations.

2.6.2 Example 9

Now we consider the model

o = z(—z+222° - 4031 2? + 2935 8;25 —zy—¢ %z,

Yy = —-y+zy—9+¢ (10:1:—69).
This model has perturbational terms ¢(z,y) = ——:c and ¥(z,y) = 10z — 69. With¢ =0
the system reduces to the model of Example 5; therefore, for convenience, we present
Fig.2.10 again in Fig.2.21, which shows the triple equilibrium FE*(7, g) Since D; = 0
and Dy = —413 (see (2.54)), we are in Case 1(v) of Section 2.5. As a. 8. MD; =
(-H(-7)(- 6041)( 413) > 0, we should look to case (ii) of Section 2.6. Because E° is a
triple equilibrium, we need Ej, s = 1,2,3, to order O(¢ ) to determine the stability of
the perturbed equilibria. Note that EY is already known to the required order from Case
1(v) of Section 2.5, while a little extra work is required to find EJ and E3 to O(e ). The

result is

3 1 59 3 59 134
* °_ -2 *(7 1)* 1/2 2 ¢ 1/2 _ 9% , =2,3.
Ei(T,5—5¢ h E(T+(=1)2y/ggze 5 = ( '3 2V 863° R3¢ » $=23

The eigenvalues for Ef according to case (ii) of Section 2.6 are:

826

A= T 51 ¢

e+ 0(6 3/2) /\* + 0(6 1/2)
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1535

1520

1505

1490

1475

1460

1445

1430

Figure 2.22: Example 9 with ¢ = 0.06
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and, for £}, s = 2,3, are

*

_ 4810418
17 88026

e +0(e*?), X= % +0(e /%),

Thus ET is an unstable node, while E5 and E3 are saddle points (recall: E° is a topological
saddle point). We show these three equilibria in Fig.2.22 in which we have used the value
¢ = 0.06.

2.7 Tables

We present two tables that summarize the effect of perturbations on simple and multiple
equilibria of the unperturbed system. A simple equilibrium that is of the type proper
node, focus or node-star is hyperbolic. A simple equilibrium of the type centre or a
multiple equilibrium is nonhyperbolic. Note how the local stability properties of hyperbolic

equilibria are not affected by perturbations.

E%(z0°,40) E?(z?,y?) Changes in Nature, Stability
Proper Node Proper Node No Changes
Focus Focus No Changes
Node-Star Focus or Proper Node Only Nature Changes
Centre of Focus Nature and Stability
Linearized System May Change

Table 2.1: Perturbations of a Simple Equilibrium
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Multiplicity of 4 Numiber of Nature of
E°(z°,y°) Perturbed Equilibria E*(z*,y*)
Double 1 0
2 One Saddle, One Node
3 0
2 One Saddle, One Node
Triple % 1 May be a
3 Saddle or
% 1 a Node

Table 2.2: Bifurcations of a Multiple Equilibrium
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Chapter 3

THE THREE-SPECIES MODEL

We analyze the three-species food chain model (0.2) under the assumptions (1.1)—(1.7).
The pattern of Chapter 2 will be followed here: First we study the simple equilibria, then
the multiple equilibria, of the unperturbed system. We end by investigating the effect of
perturbations on these simple and multiple equilibria. As much of the results and their

derivation are similar to those of the two-species model, we will be concise.

3.1 Simple Equilibria of the Unperturbed Model

The unperturbed case of model (0.2) results when we set ¢ = 0:

¢t = zF(z)-yG(z)- R,
y = —ay+byG(z)-2K(y), (3.1)
2 = —cz+rzK(y).

We seek the simple (not multiple) equilibria E%(2%,4°,2°) in ®2 (z,y,z > 0, the popula-

tion octant); (29, %, 2%) must satisfy

zF(z)-yG(z)- R = 0, _ (3.2)
—ay+byG(z)-2K(y) = O, (3.3)

—cz+r2K(y) = 0. (3.4)
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Three different types of simple equilibria are considered: E9(z,0,0) ,E9(%,9,0) , and
EY(%,§,%) . '

For EQ(%,0,0) , (3.3) and (3.4) are automatically satisfied, while  must satisy the
equation zF(z) — R = 0. There may be more than one such equilibrium; each is simple
provided F(z) + ZF(z) # 0.

Now, E9(%,9,0) is an equilibrium when & satisfies 5G(Z) —a = 0 (in which case # > 0)
and £F(2) — R > 0; § is given by § = uFG%f}—z (so y > 0). Since bG(&) — a = 0 can have
at most one solution, and since corresponding to each Z there is only one §, EY is simple.

Finally, EJ(Z, §, Z) is found in the following way: first we find § satisfying the equation
~c+7K(§) =0 ((3.4) with z # 0); there is at most one such solution and it satisfies § > 0
by (1.6), (1.7). With § known, we find Z from (3.2). We introduce the notation

Q(z,y) = zF(z) — yG(z) - R; (3.5)

i satisfies § = 0, where Q = Q(&,y). For a given §, there may be more than one

satisfying @ = 0, and thus more than one such equilibrium of the form EJ(Z,,%) (but

each has the same §-value). Equilibrium E(Z,§, ?) is simple when |
Q: = Q(%,9) = F(%)+ £F2(%) — §G(%) # 0. (3.6)

With Z and § known, # is found from (3.3): Z = _—'”77';76%?(@ Of course, we must have

—a+ bG(Z) > 0 so that 2 > 0.

We investigate the following cases which depend on R.

(A) R=0; No harvesting or stocking.

We can explicitly say that E7, (0,0,0), E,(L1,0,0) and E} (L2,0,0) are equilibria by
(1.1). In addition, for E(#,7,0) we know that # satisfies (2.9); otherwise, § < 0. If E?
and EJ both exist as equilibria in ®3, then > Z.

(B) R=H >0; Harvesting.

We must have Iy < Z < Ly, Ly < # < Lz and Ly < & < L. If EY and EY are both
equilibria in R‘i, <2z
(C) R=-5<0; Stocking.

Now we require 0 < # < Ly or L; < Z, and it is no longer necessary that Ly < & < Lg

and Ly < £ < L.
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3.2 Stability Properties of the Simple Equilibria

Similarly to the two-species case, we have found the eigenvalues from the Jacobian of (3.1)
for each equilibrium; these determine aﬁ equilibrium’s stability properties. See Appendix
A for classification of an equilibrium according to its eigenvalues. Keeping in mind that
a,b,c,r > 0, the results are as follows:
(A) R=0; No harvesting or stocking.

We assume all five equilibria exist.
Equilibrium E? (0,0,0) . The eigenvalues are A} = F(0) < 0, A\J = —a < 0 and
A} = —¢ < 0. Equilibrium E?l (0,0,0) is an asymptotically stable node.
Eguilibrium E (L1,0,0) ; A} = L1F(L1) > 0, A} = —a+bG(L;) < 0,and A} = —¢ < 0;
E% is a saddle node (do not confuse this type of saddle node with that type corresponding
to a double equilibrium of the two djmensional model).
Equilibrium E{,(L3,0,0); A} = LyF;(L2) < 0, A} = —a+bG(L3) > 0,and AJ = —c < 0;
E (L2,0,0) is a saddle node.
Equilibrium E9(%,§,0); X = —c+rK(§), X = 3[@z +(~=1)*\/Q2 - 4a§G.(2)], s = 2,3;
Q: = F(3)+£F,(2) — §G(2). ¥ —c+rK(§) < 0 and @, < 0 then EJ is asymptotically

stable. If in addition Q2 — 4ajG(#) < 0, ESis an asymptotically stable node focus; or if
Q2 —4ajG4(2) > 0, E? is an asymptotically stable node; while if Q2 — 4ajG.(%) = 0,
A9 =3 and the equilibrium is an asymptotically stable node star. If none of the above
holds, E9(%,§,0) is unstable.

Equilibrium E(Z, §, ?) ; the characteristic equation is
2+ 2122 + pad + p3 = 0, (3.7)

where,
p=H-Q;, pp=H— HQs, p3=-cZK,(§)Q:, (3.8)
H, = a - bG(%) + 2K,(§), H = bjG(3)Go(Z) + c2K,(§).
Of course, Q, is found in (3.6). According to the Routh-Hurwitz criteria, EY is asymp-
totically stable provided

n > O, p3 > Oa mp2 > p3.
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Note that p3 > 0 when Q. < 0. According to a theorem by Bojadziev and Gerogiannakis

[12], the Routh-Hurwitz criteria are satisfied when

K, (3) > =, Q: <0.

410

If there are several different equilibria of this type, since Q. alternates in sign among
these points, so will p3; therefore, not all of these equilibria can satisfy the Routh-Hurwitz
criteria.

(B) R=H >0; Harvesting.

Equilibrium E9(%,0,0); A} = @z (@7 = Q(%,0)),A] = —a+bG(Z) and A = —c < 0.
IfQ, <0and —a+ bG(z) < 0 then E? is asymptotically stable; otherwise it is unstable.
Note that if < ag (see (1.2), (1.3)) then @, > 0; and we must have Z < & to make
—a 4+ bG(Z) < 0. If there are several equilibria of this type, @, alternates sign among
them; not all can be asymptotically stable.

Equilibrium EJ(%,3,0) . The eigenvalues are the same as for EJ of case (A) above. The
same comments apply.

Equilibrium ES(%,§,7) . The situation is equivalent to that of ES in (A) above.

(C) R=-5<0; Stocking.

Equilibrium E9(Z,0,0) . The eigenvalues have the same form as in the case of equilib-
rium E? of (B), so this equilibrium is asymptotically stable if @, < 0 and —a+bG(Z) < 0.
We know that either 0 < Z < L, or Ly < #; Q; < 0 when L; < %, and —a + bG(z) <0
only if Z < &. '

Equilibrium E9(%,9,0) . The results are the same as in (A), equilibrium E, but we add
that it is now possible to have Ly < &, guaranteeing that @, < 0.
Equilibrium E3(%,%,%) . We obtain the same results as for E of (A). Furthermore, it

may be that L, < &, in which case Q~z < 0.

Now we look at two case studies.
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3.2.1 Example 10

The model without harvesting or stocking

T = %z(z - 1)(7 - z) - 2zy,
y = -3y+2zy-yz

zl = —4z+4+ yz,

has P(z) = 8(z - 1)(7-2),G(z) =2z, K(y)=¥y,a=3,b=1,c=4,7=1,L; =1 and
Ly = 7. According to Section 3.1, case (A), the equilibria are EY (0,0,0), E{ (1,0,0),

EQ.(7,0,0), E(3,4,0), E9 (2,4,1) and EJ,(6,4,9). From Section 3.2, (A), we find that
E? is an asymptotically stable node, E‘l is a saddle node, and E is also a saddle node.
The eigenvalues for E are X9 = —g, N0 = 117 o +(-1)° lozm s = 2, 3; this equilibrium
is a saddle focus. The characteristic equation for E31 is A3 — 64)«2 + 36\ — 256 = 0, so
the eigenvalues are A) = 9.61, and A0 ~ 1[3.19 + (~1)%/11.13], s = 2,3; making ES,
an unstable node focus. Equilibrium Eg2 has eigenvalues aproximately given by: A\? =
—35.79, and A0 = 2[ —2.61 + (—1)%i/147.69), s = 2, 3; therefore, Eg2 is an asymptotically
stable node focus. We show the phase plot in Fig.3.1. The positive z-axis is into the paper
in this perspective projection, as it is for all other plots in this chapter. The lines with
arrows are selected orbits and the equilibria are marked by asterisks. Note that in all plots

in this chapter, the arrow heads reside in a plane perpendicular to the z-z plane.
3.2.2 Example 11
Consider the system
3.,13
ot = z(z - 5)(—2— —z)— 5zy — 20,

7
¥ = -gytay-vz

2l = —z+4yz.

The equilibria for this model are E? (—-“AE’cos[21 +(-1)6] + £,0,0), s = 1,2, 60 =

3 arccos(-—i%g), Eg(%, 525,0), E? (4, 1, ;) and E32(5, e 2) Approximately, the first two

equilibria are: E (3.3974,0,0) and EY,(5.6454,0,0). Calculations give the eigenvalues
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A =~ 998, A =~ —0.10 and A = -1 for EQ ; thus, this point is an unstable saddle
node. Equilibrium EY, is a saddle node because Ay ~ —15.03, A3 ~ 2.15and A = 1.
We find A\ =~ —0.77, A =~ 9.10 and A =~ 0.11 are the eigenvalues corresponding to
the equilibrium EJ; hence, this is a.lsola. saddle node. The equilibrium Egl is an unstable
node focus since A = 3.694, and AJ ~ [1.306 + (-1)%+/0.997], s = 2,3. Lastly, ES
has eigenvalues A} =~ —4.771, A\? =~ %[—1.229 + (—1)%+/6.035], s = 2,3; making it an
asymptotically stable node focus. In Fig.3.2 we show the phase diagram.

3.3 Existence of a Multiple Equilibrium of the Unper-
turbed System

We are interested in discovering a multiple equilibrium E¢(z¢,y¢, 2¢) of the unperturbed
model (3.1) in Intﬁ. Multiple equilibria on the boundary of 33‘1 may exist, but they are
of less interest and we do not study them here. This point may be located in the same
way we found equilibria of the type EJ(Z,§, ?) in Section 3.1. The (unique) y-value, y©, is

determined by solving (3.4) with z > 0. The term z° is then a root of the equation
Q(z,4%) = 0, (3.9)

where Q(z,y) is given in (3.5). Since (3.3) then gives z° when z°, y° are known, and since it
gives a unique z for each pair z, y, it is equation (3.9) which controls the multiplicity of the
equilibrium. Here, we assume Q% = Q.(z°,y°) = 0 in order to have a multiple equilibrium.
Two types of multiple equilibria will be studied in more detail in later sections: a double

equilibrium, which occurs when

Q° =0, Q: =0, Q5. #0, (3.10)

and a triple equilibrium, which occurs when

Q° =0, Q; =0, Qz; =0, Qz, #0. (3.11)

As usual, superscript ¢ indicates evaluation of the function at z¢, y° and subscript = repre-

sents the order of differentiation with respect to z. Again we call R the critical harvesting
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or stocking value; unlike the two-species case, a multiple equilibrium may occur in Int???,'_
when there is no harvesting or stocking (R° = 0). The characteristic equation (3.7) is stiﬂ
valid, but now all function evaluations are at (z°, y°, z¢) rather than (&, g, Z) in (3.8), and
we replace Q by Q2 = 0. Thus, (3.7) reduces to A(A2 + HSA + HE) = 0. The terms HS
and Hf are Hy and Hj respectively, given in (3.8), but evaluated at z°, y°, z°. Note that

H3 > 0, so there is only one eigenvalue equal to zero.

Below, we examine two models; one with a double equilibrium, and the other with a

triple equilibrium.

3.3.1 Example 12

The model
o = z(z-2)(7T-2)-zy+27,
y = —y+zy-yz,
21 = —13z+yz,
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has only one equilibrium in Int®3 located at (3,13,2). From (3.9), @(z,13) = —z% +
922 — 27z + 27; thus, @4(3,13) = 0, @+(3,13) = 0 and Q;,(3,13) = —6 # 0. We have
a triple equilibrium at £°(3,13,2) and R° = ~27 is the critical stocking value. In Fig.3.3
we show a neighbourhood of E°. We have calculated a number of different orbits starting
“near” the equilibrium, and they were all qualitatively similar to the two orbits shown.
These orbits (numerically at least) are very nearly (but not) closed. The smaller orbit
starts at (3.25,13,2) and the larger at (2.75,13,2). Although it is not readily apparent

from the figure, these orbits do pass through a range of z values.

3.3.2 Example 13

For this example we look at the system

) = z(z—l)(3-—z)—zy+%9,
y = -3y+3zy- ¢’z
2l = ~4z+4 y22.



Utilising the results of Section 3.1, the only equilibrium in the population octant’s interior
is at the point (3,2,1). We calculate Q(z,2) = —z° + 42% - 5z + 52, Q.(5,2) = 0, and
Q::(3,2) = —2 # 0. Equilibrium E°(%,2,1) is a double equilibrium, which is shown on
Fig.3.4. The orbit to the right of the ’equilibrium begins at (1.889,1.501,0.8187) and stops
at approximately (1.742,2.002,1.102). The orther orbit starts at (1.5,2.3,1.0) and ends at
a point near (1.537,1.989,0.8011).

3.4 Perturbations of a Simple Equilibrium

We assume E%(z9, 40, 20) is a simple equilibrium of system (3.1) in IntR3 . Simple equilibria
on the boundary of Rﬁ_ can be handled in a way analogous to that described below; we do
not do this here. The corresponding perturbed equilibrium EP(z?,y?, 2P) of system (0.2)

must satisfy the equations

Z'F(l') - yG(z) -R +é ¢1(£L‘, Y, Z) = 01
—ay+ byG(z) - ZK(y) 4 £ ¢2(£L‘, Y, Z) = 0, (312)
—cz+rzK(y)+¢ ¢3(z,9,2) = 0.

Similarly to (2.38) we seek the solution in the form

2 = 2%4emy+0(e?),

¥ = ¢®+en +0(?), (3.13)

N
S
|

L 4es+0(?).

Proceeding in the usual fashion, we may solve for my, n;, 8; by substituting (3.13) into

(3.12). This produces the following:

m _ _ TZOK0¢°+GO¢°
1= rzngQz ’
0
mo= - —O_a_o-rz¢Ky’ - (3.14)
s = WGEAKHHEH)-(catb- *K)QY 3+ K300 43

rzngQE K°
The notation is as usual and of course, Q2 = Q.(z°,4°) (see (3.5)). Note that (1.6) and
(1.7) imply K°,K2 # 0 since 3° > 0. “Also, Q% # 0 because we assumed E%(z°, 0, 2°)
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is a simple equilibrium; therefore, m;, n; and s; are well defined. A further assumption
we make is that at least one of ¢, ¢3, #3 is non-zero. If this does not hold, E? = E° and
there is no need to use (3.13) to solve (3.12).

With the equilibrium E? located up to the order of ¢ , we find the characteristic

equation at this point to be

MB+pdAZ+pI+p3+e (B AT+ A+ )+ 0( ?) =0, (3.15)
where:
b(1) = - B?l - ng - Bgs,
b = QI (B + B3s)+ G°BY) — by°G2BY, — HY(BY, + BY;)
+ K°BY, — rz°K) B3, (3.16)
b3 = Q% (H)B3 - K°Bg, + TZOKSBgs) - G°(by°G2BY; + K°B3,)
— r2° KJ(by° G BY; + K°BY, ),
with
B} = Q%.m1 — Gny + 4%, BY, = -Gomi1 + 43,
B?S = ¢(1)z1 Bgl = byOngml + ngnl + ¢gz’
B, = bGamy — 2°K{yn1 — K9s, + 43, BY = —KOny + 43, (3.17)
Bgl = ¢gz’ Bg2 = rzngynl + TKSSI + ¢gy’

The terms p?, p3, p3 and H? are py, p2, ps and Hy, (see (3.8)) calculated at z°, y°, 2°
rather than £, 7, Z; mq, n1, s; are specified by (3.14).

Suppose we have distinct eigenvalues /\? , 3 = 1,2,3, for the unperturbed simple
equilibrium E°. Then 3(/\? )2+ 2902 +pY # 0 for j = 1,2,3. The eigenvalues for the
associated perturbed equilibrium EP? are

g o O o
3 P1A; + D3

e +0(?), j=1,2,3. (3.18)

Immediately we observe that if /\2 » J = 1,2,3, are real and distinct, or if A{ is real and

/\?, J = 2,3 are complex with nonzero real part, then so are /\;’ , 7 =1,2,3. Additionally,
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since ¢ is sufficiently small, the real part of ,\_’1-’ is of the same sign as the real part of ,\? ,
j =1,2,3. In these cases, E%(z°,3°, 2°) and EP(zP,yP, 2P) are of the same (local) nature
and stability. However, if A is real and /\? , J = 2,3 are purely imaginary; then, A} is real
and of the same sign as A{ , but /\? » J = 2,3, are in general complex with nonzero real
part. In this case, the nature and stability of E° and EP are not the same.

What if we have repeated eigenvalues of the form A} # AJ = AJ ? The eigenvalues of
E° satisfy 3(A? )% +2p92% +p% = 0, 5 = 2,3, but 3(A] )? + 297 + p} # 0. Equation

(3.18) holds for A}, but for z\;? , J = 2,3, we get a new expression:

. b9 (A9)2 + 69 A9 + 89 . '
A=A +(—1)J\F L 23’,,\:;4?1,02 25 124 0(), j=2,3. (3.19)
2 1

Since A3 = A} is a double root of the characteristic equation, 3\ + p} # 0, and A%,
7 =2,3, are well defined. Clearly ’\.11" ,J = 2,3, may be real or complex, but will have real
part of the same sign as A9 . Since A} is of the same sign as A , E? and E° have the same
stability, but not necessarily the same nature.

Finally we look at the case when A9 = A3 = AJ. Since (A9 2 +p3(29 )2 +p329 +p3 =
3(A?)Z + 20929 + pd =3X9 +p? =0, we find

¥ o= R+ {ROIP-8 -8 M40 W),
Moo= 00 Y8 (O9)2+ 8309 +148 (3.20)
+ (=160 (A3 )2+ 8329 + 88 Je 3 +0(e /3), j=2,3.

The real part of /\? , 7 =1,2,3, is of the same sign as A9 ; however, we get one real and
two complex eigenvalues. The nature of E? and of E° are different, but the stability is
the same.

The above results are based on the assumption that b9 (A2 )2 + 63 A9 + 83 # 0 for
the appropriate values of j in (3.18), (3.19) and (3.20). When this last quantity is zero,

higher order calculations must be carried out; we do not consider this here.

Let us consider a couple of examples.
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3.4.1 Example 14
When ¢ =0 in the perturbed system

gt = z(z—-2)(8-z)—2zy+6+¢ 72,

y = -—y+zy-yiz+tenr,
1
2l = ‘_Z+Z‘9‘y2+5y7

there are two equilibria in Int®3: E9(I + @,7,% + 5@) and E9(3,7,%). For E? the
eigenvalues are A9 =~ —1.92, AJ =~ —6.80 and AJ =~ —20.68. Equilibrium E? is an
asymptotically stable node. For EJ, the eigenvalues are A9 = 8 and A9 = (~1)iv/5,

= 2,3. We know that E} will be an asymptotically stable node, like E9; but we
expect E} to have different stability properties than EP. To order O(¢ ), we discover
E}(3-193¢ ,7-383¢ 2_ 279.¢ ). The eigenvalues are then A} = 8+ %828 1 O(¢ ?), and
AP = (=1)7iv/B+[— 31121818361+( 1)J+11311§36240%1\/—]6 +0(e %),j = 2,3. For sufficiently small ¢,
E? is a saddle focus. We show the phase portrait (when ¢ = 0) for a neighbourhood of E
in Fig.3.5, and in Fig.3.6 we show the phase portrait (when ¢ = 0.01) in a neighbourhood

of Ef.

3.4.2 Example 15
Consider this system:

g = z(z—2)(10-2)—zy+ 45+ ¢ 768z,

o 1,3 ye L
Y= T96Y T 1280°Y T YA T 160Y
2t = —24z+4yz—c¢ —1—z

768

There is an equilibrium E°(5,24, 5) with eigenvalues A\? = 1, and /\? =1,7=23,
when ¢ = 0. This equilibrium is an unstable node star, and we show a neighbourhood
of this point in Fig.3.7. With ¢ > 0, since we have repeated eigenvalues for E°, we
expect that while E? will be unstable, it will not be a node star. Indeed this is what
we find: EP(5 + 24¢ ,24 + 5¢ , 5% + ¢ ) has eigenvalues A} = 1 — 228 4 O(e 2),
Ao=14 (—l)ji-g\/ge Y21 0(e ), j = 2,3; hence, EP is an unstable node focus. With
the value ¢ = 0.001, we show a neighbourhood of E? in Fig.3.8.
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3.5 Bifurcation of a Multiple Equilibrium

We assume E°(z°,y°, 2°) € IntR3 is a double or triple equilibrium of the unperturbed sys-

tem (3.1). Proceeding as in Section 2.5 by searching for perturbed equilibria E*(z*,y*, z*)

that may be generated by E°(z° y°, z°) under the influence of perturbations, we assume
g y

z*, y*, and z* are in the form

¥ = 2 +efmy +emy +e¥mg +0(e ),
¥ = ¥ +ebng +eny, +e3ng +0(e ),
2 = 22 +etsy +e sy +e3s3 +0(e ).

Substitution of (3.21) into (3.12) gives us three equations:

—n1 G° +e*(—ny G° —myny G5 +3mi QS ) +e #(—n3 G°
+my mg Q5 —m my G5 —my ny GS + imd Q2
- 5"1 ml Gsr )+ 0(e )+ e 1_“¢1 + ¢ (m1 45,
P g, 4o 9, ) 4 0(e 1) =
by Gz my + (—a+bG° —2° K )mp — K€ 81 +¢ #[by° G5, my
+ (—a+bG° ~2° Kg )ng — K°® sy +bGg my m - K n 8
+ 3by° G, mi — 32° KS, nl]+ ¢ 2[by° G m3 + (—a + bG*
—2° K )ng — K° s3 +by° G, my my + bGS ny my
+bGE myn2 —2° Kpy my ng — K; ng 81 — K ny 82
+3bG5, mp mi — L1KS, 81 n? + 1by° Gy m
—§72° Kgyy n§]+0(e ) + e 17405 +e (m 65,
£ g5, o165, )+0( ) = 0,
r2° KSmy +e*(r2° K{ng +rKSny sy +372° K, nd)
+ & 2H(r2° Kyn3 +r2° K;, ny ng +7K; ny 5
+rK;n1 s2 + %rK 8 n? + rz° K;,, n n3)
+0(e ) +e 1745 +e (m1 95,
+m 85, + 8165, )+0( )

|
i
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With u known, we set successive coefficients of powers of ¢ to zero, producing a series of

systems of equations which we use to solve for m; , n; , s, . Using the terms

Dy = r2° K¢ +G° 85,
D2 = KC (GC ¢3 +GC¢31. +TZ KC C )

+by° GS (TKS ¢§ + G° ¢5, +r2° K¢ ¢5, ), (3.23)
an = z° F:,_- + 2FC y° Ga:a: y
g:a:a: = z° F:::::z:z + 3Fc - y G:z:a:a: ’

we have evaluated five cases.

(i) @z # 0, Dy = 0. Equilibrium E° is a double equilibrium since Q, # 0 (see
(3.10)). We use = 1 in (3.21). From the equations resulting from (3.22), we derive

" eam? +camy +¢3 =0, (3.24)
where
¢ = 21‘2 K° A
2 = Gi ¢ +72° K 6§, +G° ¢5, +£3LKE-‘L(1'K° &5
+r2° K 6§, +G° ¢3z ), (3.25)

r2° KC ¢
o = 60 950, 4 CLY B (rK 65 +72° K

+G° g5, N Eh-(-a+ b6+ — 2 K3) + 85 |
If 3 —4c1c5 > 0, there are two perturbed equilibria given to O(e ) by EX(z° +emy;,y° +

eny,2° +¢€ 815 ),7=1,2, where

my; =2ITI —C2+(_1)jv c3 40103:i n = %jr,
81; =ch—{¢§ +%¥—(—a+bG° - 2° K°)+ [ ez + (- 1)"\/02 deres]}.

If ¢3 — 4cyc3 < 0, the double equilibrium vanishes under the influence of perturbations.

For ¢Z — 4¢y¢3 = 0, it is necessary to go to higher order terms.

(i) Q2. #0, D1 #0. Asin (i) above, E° is a double equilibrium, but now we should

use § = — ; with this we obtain the equation

clmf + D, =0.
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Constant ¢; is given in (3.25) and D is defined in (3.23). Two equilibria result when
c1D1 < 0: Ej(z° +myje M2,y .2 +515€1/2),5=1,2

' - [ Dy by® G¢ D
mi; = (=1 [=h sy = (1 -

Note that we have only given E to O(e /2) and n; = 0. When ¢,D; > 0, the double

equilibrium disappears. The conditions for this case guarantee that ¢; D1 # 0.

(iil) @5, =0, Q5. #0, D1 #0. Now we must use y = % for the triple equilibrium

E¢. The equation which determines m; is found to be
Mm? + D, =0. (3.26)
Of course, D, is as usual, and M is
M= L e K¢ Q¢ 3.27
= 67‘2 ¥ zTT * ( . )

Orly one equilibrium results in this case, which to O(e /3) is E*(z° +my e Y3,y ,2° +
s1 € 1/3), with '
me = & D, 8 = by G 21_
1 = M ’ 1 = K° M

(iv) Q¢, =0,Q%,, #0, D =0, D, =0. We again use u = %, so (3.26) holds; but,
since M # 0 and D; =0, m; = 0. We also find n; = 8; = 0. The equation for m, is

Mmj + ¢c3 =0,

with M and c3 respectively found in (3.27) and (3.25). Thus similarly to case (iii) above,
there is one and only one perturbed equilibrium resulting from E°. To O(e %/3), this

equilibrium is E*(z° + mg € /3,y° ,2° + 83 ¢ 2/3), where

C c
my = ¢ -%, S2 =9%£'L\3/‘%-
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(v) Qs =0, anz #0, Dy =0, D #0.  Once again we are dealing with a triple

equilibrium, but now we use u = % This value of y yields the equation
m1 (K¢ Mm? + D3) =0, (3.28)

where M is specified by (3.27), and D, is defined in (3.23). Note that K¢ M # 0 and
Dy # 0. The value m; = 0 is always one real root of (3.28). With m; = 0, we find that
ny = 81 = 0, so we try to find the next higher order terms. Calculations give us equation

(3.24) with my in place of my . Since ¢; = 0 due to the assumption Q¢, = 0, we have
CaMy + ¢3 = 0.
Provided we do not have ¢, = 0, ¢3 # 0, this case always gives rise to at least one perturbed

equilibrium: Ej(z° + mge ,y° +ng € ,2° + 32 € ), with

c (o4
— 3 = 1 -
m2 = -, n2 = = 32 =

C2 G

1 - PN s S
Kc[ by Gz‘ 02+( a+bG 2 Ky)Gc +¢2]

Reexamining (3.28), two more perturbed equilibria arise when K¢ M D; < 0: to O(e 1/2)

these are Ef(z° + my; € V2 40 2 4815 € Y?), § = 2,3, where

. D2 ~by° G_,‘;:. D2
my; =(“1)‘7V“m, s1; = (=1) 7o V—KC iR

These two equilibria disappear if K¢ M Dy > 0, leaving only Ef. Further study is required

if CoC3 = 0.

3.6 Nature of the Perturbed Multiple Equilibria

In Section 3.5, we only needed the values p = 1, u = —é— and p = % for (3.21). In this

section, we consider only these three cases.

(i) p=1. In case (i) of the previous Section, we found perturbed equilibria given to
order O(e ) by E*(z° +my € ,4° +1ny € ,2° +8; € ). Such an equilibrium has characteristic
equation

A3+ HEAZ 4+ HSA + € (BSA% 4+ b5A + bS) = 0,
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where b§, b5 and b5 are b?, b3 and b3 (see (3.16) and (3.17)) with superscript 0 replaced by

superscript ¢, and H{ and H§ are H; and H; (see (3.8)) evaluated at (z°,y°,2¢ ) rather

than at (7.3, 2). Note that the term QS appearing in b§ and b is identically zero.
Suppose the eigenvalues for E€ are A{f = 0 and A§ , A§ . If A§ # A§, the eigenvalues

for E* are

1 ="‘I§'€ +0(?, X =X b3(A% )% 4+ 555 + bg
[

- 2 - R

while, if A = A§, they are

bi(A3 )2 + 6525 + b5

1/2 ;.
33 F A5 e “4+0(), 7=2,3.

bg ;
P = g HO(N, X =X +(_1),\/_

Of course, if 6§ = 0 or bS(AS )%+ b5A5 + b§ = 0 it is necessary to study higher order terms;

we do not do this here.

(ii) p = 3.  Perturbed equilibria to O(e 1/2) of the type E*(2° + my € /2,94 ,2° +
81 € 1/2) arose from a double equilibrium in case (ii) of Section 3.5. We calculate the

characteristic equation at such a point to be
A3+ HON 4+ HSA + e Y2802 4 03X 4+ b9) + O(e ) = 0.

Expressions b‘}, j=1,2,3 are:

b{ = —Bf, ~ Bj,, b§ = —H{Bf; — by° G5 Bf, + G° B3, + K° B,
b = —rz¢ K°© K, B; B¢, =QS, m1, (3.29)
Bf, = -G m1, B3 = by° Gg, ma
B, = bG.my — K¢ 51, B, =K 81 .

Similarly to the discussion in case (i) above, there are two possibilities for the characteristic
values:

bi(A] V2 +bAT +b
"~ 3(A% 2+2H;AS +HS

x bg x [ b3(AS )24+b3AS 4bd
M o= -gke Y24 0(@), A =25 + (—1)1\/—-1-(_25;\?35?—15 1/4 4 O(e 1/2),
where j = 2,3. The first are for when A§ # A§, the second for when A§ = A§ . Since we

are dealing with a double equilibrium, Q¢, # 0 and thus 4% # 0.

d
r = —%3255 V21 0(), A} =X e+ 0(), or
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When we have a triple equilibrium (case (v) of Section 3.6) we do have b3 = 0 because
QS, = 0. It is therefore necessary to know E* to O(c ): E*(z° +m1e Y24 mye ,y° +
ng € ,2° + 51 € Y24 55 ¢). In case (v) of Section 3.6, we have done this explicitly
for Ef; for E5 and E3 we now assume that my , n2 , and s; have been calculated. The

characteristic equation to O(¢ ) is then
X3 HENE 4 HGA + e V2(b9A2 4 bIX) + & (B5A2 + b5 + bS) = 0.

The terms b¢ and b¢ are given in (3.29), but now @S, = 0, so B¢, = 0 also. We give b,

Jj=1,2,3 below:

bi = —-Bi, - B3 - B33,
b5 = ~— Hi(Bf, + BS) - by Gg Bi, +G° B, — r2° K; B3+ K° B3, — By, By,
by = —rz° K° KS Bf) — bry® 2 G5 K By ~ G° K° B, — by® G° GS B;

By = 3Q%. mf —GSmp +¢5,, Bfy=-3Gi, m} —-GSmy +45,,

Bfy = ¢f., B = 3by° Goo mi +by° G ma +5GE 2 + 5,
BS, = %bG;z m? +bGs my — 2° Ki, ny — K¢ sy + #5,, Bss=—-K;ny +45,,
B3, =¢5,, Bia=rz*K; ny +rK;s2 + #5y > B3z =rK;ny +¢5,.
Note that Bf, and B, are found in (3.29).
If A5 # A5, the eigenvalues for E* are
RS )+ b
3(A5 )2+ 2H{AS + Hj
On the other hand, if A§ = A§ , the eigenvalues are

be
N o=-22e +0(€¥?), A =X

1/2 _93.
S e’*+0(e), j=2,3

b{(25 )% + b3Xs
3) + H

N =22 +0(E¥), X =X +(—1)j\/- eVit0(eV?), j=12,3.

H3

(jii) o= 1.  Suppose E*(z° + mq € Y3+ mg e 2/3,4° ,2¢ + 51 ¢ /34 55 € 2/3) is the
perturbed equilibrium we are studying. Coefficients m; and s; have been calculated for

this point in case (iii) of Section3.5. Assuming we know m, and s; ,

A HiNE 4+ HSA + 6 Y302+ 080) + ¢ 230N + b0+ b0) + O(e ) =0
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is the characteristic equation with terms 5¢ and b4 given in (3.29) (of course, Q5. = B?

n=
0 here), and:

b = -B{, - Bf,, b} = —H{B], - by° G Bf, + G° B, + k* B}, - B4, B,,
) = —rz¢ K° K¢ Bf,; B{, =1Qc,, m?,

T
Bf, = -Gt my — 1G5 mb, Bf =by* G, my + Jby Gl mi
B, = bGS my — K¢ sy +16GS, m}, Bi=rKSs,.
The eigenvalues may be given by one of two expressions:

_BAT PPHe2AS
3(Aj )*+2H; A7 +H;

b b - ¢ ; b3S Y2452 XS

where j = 2,3. The first set of eigenvalues is for the case A§ # A§ , the second for the

e 134+ 0(e ¥3), or

x b .
1 =—ﬁ3§E 23 L 0(e), AT = A§

case A5 = A3 .
Finally, case (iv) of Section 3.5 gave rise to a perturbed equilibrium to O(¢ ) given by
E*z° +mae P4+ mae ,y¢ +n3e,2° 435 €23+ 53¢ ). With the expressions:
= Bl 8= b G Bly+ G° B + K° By
Bi;=-G; my, Bj =by° Gi, ma, Bj, =bG;my —KCs;, BS,=rK:s;;
by = —rz¢ K° K¢ By — bry® 2° GS K¢ By — G° K Bly — by° G° GS Bl;
Bl =-Ging +¢5,, Bz=¢5,, Bh=¢5, Bl= Ky n3 +¢5; ;

we find that either the eigenvalue are

bk bI(A% )2 + biAs
X = —ge +0(e %), A5 =X AN s 0ge), =23,
2

i 3(AS ) +2H{A + HS

when A§ # A§, or

bk . BI(XE )2 4+ BINS )
X =g +0(E ), X5 =5 +(_1),\/_ Gt o0, =23,

when A\ = A§.

We will now illustrate some of the results of the last two sections with a couple of

examples.
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3.6.1 Example 16

To the model given in Example 12, let us add the perturbational terms ¢1(z,y, 2) = 122,
é2(z,y,2) =1 and ¢3(z,y,2) = —z, which gives us the system

2t = z(z-2)(T—z)—zy+27+¢ %zz,

y = —yt+zry—yz+te,

2 = —1324yz—¢€2.
For ¢ = 0 there is a triple equilibrium E<¢(3,13,2). For convenience, we show a neigh-

bourhood of this triple equilibrium in Fig.3.9, which is the same as Fig.3.3. Considering
now ¢ > 0, we calculate that Dy = 0, D2 = 26 and K¢ M D, = —676; thus we are in case
(v) of Section 3.5 and we expect to get three perturbed equilibria since K¢ M D, < 0.
Giving the calculations only to O(e ), we find: The equilibria are Ef(3,13+¢ ,2+ 35¢ ),
E3(3+e24+1e,134+¢,24+¢ 2+ 18 )and E3(3-¢ Y2+ 1e ,134¢,2- /24 18¢),
For E}, the characteristic equation is A 4+ 65X + ¢ (—Bz\2 + 6X ~ 26) = 0, which has
eigenvalues A\} = 2¢, A} = (—1)iv65 + ¢ [gf + (~1)iZV65], j = 2,3. Equilib-
rium FEj is an unstable node focus. For E}, s = 2,3, the characteristic equation is
A3 46504 (—1)% /2267 + ¢ (EXN2+ 30+ 52) = 0; thus, E3 has eigenvalues A} = —%¢,

= (—1)iv65 + (~1)yil/65c /2 + -8 + (-1)7ig&\/65le , j = 2,3, and E3 has
elgenva.lues A} = —2e , A} = (-1)7iv65+ (—1)7t1i1/65c V2 4 [- 8 4 (- 1)7i38.\/65e
J =2,3. We conclude that £ and EJ are asymptotically stable node foci. In Fig.3.10 we
show the phase portrait about the three perturbed equilibria resulting when we use the
value ¢ =0.1

3.6.2 Example 17

Consider the system

zl = x(z—l)(3—z)—zy+gg+e2y,
w = —-3y+3zy—ylzteaz,
2 = —4z+ylz4e 12z
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This is" just the system given in Example 13 with additional perturbed terms
- $1(z,9,2) = 2y, ¢2(2,y,2) = z and ¢3(z,y,2) = 122. When ¢ = 0, we know from
Example 13 that there is a double equilibrium at E°(%,2,1); this is shown in Fig.3.11,
which is the same as Fig.3.4. Since this is a double equilibrium, and since D; = 36, we are
in case (ii) of Section 3.5. We calculate that E° bifurcates into the perturbed equilibria
Er(§ -3¢ 1/2,2,1 - 3¢ Y/2) and E3(3 + 3¢ Y/2,2,1+ 2¢ 1/2), which have characteristic
equation A3 + 2X2 4+ 26X + (—1)% Y/2(15X2 + 102X + 96) = 0, s = 1,2. The eigenvalues of
this equation, for Ef, are A} = 8¢ /2, A7 = —1 + (~1)75i + [L] 4 (-1)7+11083;)c 1/2)
j = 2,3. The eigenvalues for E arein turn A} = —28¢ /2, Ay = -1 4 (-1)5i + [~ +
( —1)j-111):;8§i]£ /2 j = 2,3. Equilibrium £} is a saddle focus while E3 is an asymptotically
stable node focus. We show a neighbourhood of these two perturbed equilibria in Fig.3.12,

the calculations for which have been carried out using the value ¢ = 0.01.

3.7 Tables

We present two tables that summarize the effect of perturbations on simple and multiple
equilibria of the unperturbed system. As for the two-species model, the local stability
properties of hyperbolic equilibria (nodes, saddle nodes, node foci, saddle foci, node stars,
saddle stars, and stars) are unaffected by perturbations. Nonhyperbolic equilibria (vortex
foci, double and triple equilibria) may experience a change in stability properties when

subjected to perturbations.
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E°(2°,4°,2°)

EP(z, y®, 2?)

Changes in Nature, Stability

Node ‘Node No Changes
Saddle Node Saddle Node No Changes
Node Focus Node Focus No Changes
Saddle Focus Saddle Focus No Changes

Node Star Node or Node Focus Only Nature Changes

Saddle Star Saddle Node or Saddle Focus

Only Nature Changes

Star

Node Focus

Only Nature Changes

Vortex Focus of
Linearized System

Node Focus or
Saddle Focus

Nature and Stability
May Change

Table 3.1:

Perturbations of a Simple Equilibrium

Multiplicity of u Number of Nature of
Ec(z°,y°, 2% Perturbed Equilibria E*(z*,y*, z*)
Double 1 0
2 May be a
3 0 Node,
2 a Saddle Node,
Triple ] 1 a Node Focus,
3 or a Saddle Focus
3 1
Table 3.2: Bifurcations of a Multiple Equilibrium
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Conclusion

We have studied the two perturbed population models (0.1) and (0.2). In each model,
one species’ growth rate was subject to an upper carrying capacity L, and a lower critical
density L;. There was also a term R representing harvesting, stocking, or no harvesting
or stocking of one of the populations. With regard to the three dimensional model (0.2), a
predator-predator-prey interaction was simulated; while, the two dimensional model (0.1)
accommodated predator-prey, competition or cooperation between the species. Pertur-
bations were investigated by studying their effect on the equilibria of the unperturbed
models. To this end we located the equilibria of the unperturbed models, making a dis-
‘tinction between simple and multiple equilibria; then, we considered the perturbation of
a simple equilibrium, and the bifurcation of a multiple equilibrium.

In seeking the equilibria of the unperturbed two dimensional model, we introduced
p(z). Expression p(z) played an important role throughout our investigation of (0.1).
An equilibrium E%(z°,y°) was simple when p(z°) = 0 and p.(z°) # 0. An equilibrium
E¢(z¢, y°) was multiple provided p(z°) = py(z°) = 0: being double if p,.(z°) # 0, or triple
if prz(2¢) = 0 and przz(z°) # 0.

Once the simple equilibria were located, we examined their local natures and stability
properties. Here p(z) appeared. In Theorem 1, we proved that if p,(z°) > 0, then E°
was not a saddle point; while if p,(z°) < 0, then E° was a saddle point. Theorem 2
showed how “successive” equilibria must alternate in nature between that of a saddle point
and that of a non-saddle point.

Using the theory of Andronov et al [28], we were able to determine the local natures of
double and triple equilibria of the unperturbed model. A double equilibrium was a saddle
node, and a triple equilibrium was a topological node when p...(z°) > 0, or a topological
saddle point when pyz.(z¢) < 0.
| Starting with a simple equilibrium E° of the unperturbed model and allowing per-
turbations to be introduced, we located the associated perturbed equilibrium EP(z?,yP).
We compared the possible local stability properties of the two, the results of which are
given in Table 2.1. We found that hyperbolic equilibria (nodes, foci and saddle points)
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retain their local stability properties (but not necessarily their local natures in the case of
node stars), while nonhyperbolic equilibria (centres) might experience changes in stability
properties.

For E° a double or triple equilibrium, we evaluated five cases in studying its bifurcation.
The number and location of perturbed simple equilibria E*(z*,y*) arising from E° were
found. Zero or two simple equilibria were produced by a double equilibrium. A triple
equilibrium gave one or three simple equilibria. From [28] we knew that of the two simple
equilibria coming from a double equilibrium, one must be a saddle and the other a node.
In the case of a triple equilibrium, we were only able to say that the perturbed simple
equilibria could be saddle points or nodes. We presented these results in Table 2.2.

Our investigation of the three species model followed a similar pattern to that of the
two species model. We found the expression Q(z,y) which occupied a position like that of
p(z). An equilibrium E%(z°,4°, 2°) was simple provided Q(z°,3°) = 0 and Q,(z°, y°) # 0;
E°(z°,y° 2°) was a double if @(z°,¥°) = Qz(z°¥°) = 0, Qz-(z%y°) # 0, or a triple if
Q2% ¥°) = Qz2(2°% ¥°) = Qz2(2%, ¥°) = 0, Quzz(2°,¥°) # 0.

We determined the locations and natures of the simple equilibria of the unperturbed
model and found that part of the Routh-Hurwitz criteria for asymptotic stability was
Q:(z% 4% < 0. The associated perturbed equilibrium EP(z?,y?, 2P) of the perturbed
system was found. In Table 3.1 we gave the results of the comparison between the stability
properties of E° and EP. Once again it was determined that hyperbolic equilibria would
not lose their local stability properties, but that nonhyperbolic equilibria might do so.

Finally, we studied the bifurcation of E° into perturbed simple equilibria E*(z*, y*, 2*).
As shown in Table 3.2, a double equilibrium could give rise to two or zero simple equilibria,
and a triple to one or three simple equilibria.

These theoretical results have been illustrated for both the two and three dimensional
models with specific examples. We have numerically solved the systems of ordinary dif-
ferential equations and plotted the resulting orbits. It was hoped that this would give

greater insight into the changes induced by perturbations.
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Appendix A

CLASSIFICATION OF
EQUILIBRIA VIA
EIGENVALUES

For the two dimensional model, the nature and stability of a simple equilibrium E%(z?, %)

of the unperturbed system is classified (see [26]) according to its eigenvalues A? , and A9 :
A Real and Distinct Eigenvalues

1. If A9 <0, s=1,2, E®is an asymptotically stable node
2. If A9 <0,2) >0, E%is a saddle point

3. f X% >0, s=1,2, E%is an unstable node
B Repeated Eigenvalues

4. If A9 = AJ <0, E®is an asymptotically stable node-star

5. f Ay =9 >0, E°is an unstable node-star
C Complex Eigenvalues with Nonzero Real Part

6. If ReA? < 0, s = 1,2, E® is an asymptotically stable focus

7. If ReA? > 0, s = 1,2, E0 is an unstable focus
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D Purely Imaginary Eigenvalues

8. E° is a centre of the linearized system; it may be a centre or a focus of the

nonlinearized system

For a simple equilibrium E%(z%,y°, 20) of the unperturbed three species model, with

eigenvalues A9 , A3 , A3 , we use the system of classification found in [22]:
A Real and Distinct Eigenvalues

1. If A9 <0, s=1,2,3, E®is an asymptotically stable node
2. If A9 <0,X9 >0,5s=2,3,0rif A >0,1% <0,s=2,3, E%is a saddle node
3. If X% >0,s=1,2,3, E® is an unstable node
B Double Eigenvalues
4. A9 <0,)9 =219 <0, E%is an asymptoically stable node star
5. If A <0,A =23 >0,0rif Ay >0,A] =13 <0, ECis a saddle star
8. If A9 >0, =213 >0, E%is an unstable node star

C Triple Eigenvalues

7. If A = A = A9 <0, E° is an asymptotically stable star

8. If A =1 =23 >0, E° is an unstable star
D One Real and Two Complex Eigenvalues with Nonzero Real Part

9. If \Y <0, ReXd <0, s=2,3, E? is an asymptotically stable node focus

10. f A9 < 0,ReXd >0,5=2,3,0rif A >0,ReX <0, s=2,3, E? is a saddle

focus

11. If Ay > 0, ReX? > 0, s = 2,3, E° is an unstable node focus
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E One Real and Two Purely Imaginary Eigenvalues

12. If A9 < 0, E°is a convergent vortex focus of the linearized system; it may be a

convergent vortex focus, a saddle focus, or an asymptotically stable node focus

of the nonlinearized system

13. If A9 > 0, E° is a divergent vortex focus of the linearized system; it may
be a divergent vortex focus, a saddle focus, or an unstable node focus of the

nonlinearized system
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Appendix B

AN ALTERNATIVE
TWO-SPECIES MODEL

We take a brief look at model (2.1) with harvesting or stocking of the first species z rather
than y:

g = zF(z)-yg(z)- R,

y = -—ay+byg(z).
Equilibria of this model must satisfy

zF(z) - yg(z)- R = 0,

—ay+byg(z) = 0.

Here, if y # 0, z must be a root of —a + bg(z) = 0; if such an z exists, it is unique.
Provided zF(z) — R > 0, y is given by y = z—i‘f—;@. We get only one y-value for a given
z-value. For y = 0, we find z from the equation zF(z) — R = 0; there may be more than

one solution of this equation, or there may be multiple solutions. We are thus led to the

conclusion that if a multiple equilibrium exists, it must be on the z-axis.
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