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Abstract 

A wireless sensor network is composed of a large number of sensor nodes embedded in 

the physical world to perform monitoring and surveillance tasks. The primary operation 

on sensor networks is extracting aggregated information from the networks, which can be 

time-consuming due to the environmental dynamics and the large number of sensor nodes 

involved. In this thesis, we present a fast data aggregation technique for wireless sensor 

networks which uses a randomized architecture. The architecture is composed of layers 

which are constructed in a distributed, localized fashion. The key property of our technique 

is that data are collected from one layer containing a subset of sensor nodes, resulting in 

fewer hops and thus lower delay in data aggregation. We provide theoretical guarantees for 

the delay incurred and the accuracy level of the results. In addition, we explore ways to 

further speed up the data aggregation process by using history information. 
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Chapter 1 

Introduction 

1.1 Wireless Sensor Networks 

Recent advances in hardware technology and engineering design have allowed the integration 

of sensing, data processing, and wireless communication capabilities into a small, inexpen- 

sive, self-contained, battery-powered device called a sensor node. Depending on their sensing 

components, sensor nodes can be used to monitor temperature, light, humidity, pressure, 

sound, radiation, or vibration. 

In most settings, sensor nodes are spatially distributed throughout a region of interest, 

self-organize into a network through wireless communication, and collaborate with each 

other to accomplish a common task. Such a network is called a wireless sensor network. 

As sensor nodes become smaller, cheaper and more powerful, the deployment of large scale 

wireless sensor networks is changing from a technological vision to reality. 

The strength of wireless sensor networks lies in their flexibility and scalability. The 

characteristic of being self-contained, and the capacity of wireless communication allow 

sensor nodes to be deployed in an ad-hoc fashion, in remote and/or hazardous locations 

without any existing infrastructure. This will enable scientists to observe the physical world 

in much more detail and reveal many previously unobservable phenomena. In experimental 

sensor networks, sensor nodes are being deployed on the ground, under the water [41], on 

bridges or buildings [45], where the deployment of traditional wired or wireless networks are 

not possible or too costly. Wireless sensor nodes usually only communicate directly with 

other nodes in their vicinity and reach far-away nodes through multi-hop communication. 

This allows new sensor nodes to be easily added to a wireless sensor network to expand the 
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area covered by the network. In theory, the coverage range of a wireless sensor network can 

be extended indefinitely. 

The popular vision for wireless sensor networks is to create "smart environments" 

through ad-hoc deployment of a large number of sensor nodes, which will not only be able 

to acquire information, but also be able to act on the information to improve the environ- 

ments. Such a vision opens up numerous opportunities. For example, tiny wireless sensor 

nodes can be scattered over an uninhabited island to observe how sea birds respond to 

environment changes without human disturbance [31]. In disaster response, sensor network- 

ing allows real-time, wireless monitoring and tracking of multiple patients and emergency 

response teams, and directs resources to patients who require immediate attention [27]. 

Smart kindergartens will allow parents and teachers to investigate children's learning pro- 

cesses, and develop individualized education processes for each child [40]. These are just 

a few motivating usage scenarios. We will look into sensor network applications in more 

detail later. 

1.1.1 Sensor Network Challenges 

While wireless sensor networks promise a wide range of applications, they also present a 

new collection of challenges. Realization of the vision of wireless sensor networks demands 

new protocols, algorithms and network architectures that address these challenges: 

Physical resource constraints: The most severe constraint imposed on sensor net- 

works is the limited power supply of sensor nodes. The effective lifetime of a sensor 

node will be determined by its power supply. Sensor nodes are battery-powered, and 

batteries of sensor nodes are not rechargeable in most cases. Hence energy conserva- 

tion is one of the main system design issues. Limited computation power and memory 

size of sensor nodes also restrict the types of processing algorithms that can be used 

and the amount of information that can be stored in individual sensor nodes. Commu- 

nication delay in sensor networks can be rather high due to the limited communication 

capacity shared by sensor nodes within each other's transmission range, and multi-hop 

networking necessitated by short transmission ranges of sensor nodes. 

Ad hoc deployment: In many applications, sensor nodes are deployed in regions 
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without any infrastructure. For example, for forest fire detection, sensor nodes typi- 

cally would be dropped into a forest from a plane. For deep-sea phenomenon obser- 

vation, sensor nodes would be thrown from submarines. It is often difficult to control 

the exact distribution of sensor nodes. In such situations, it is up to the sensor nodes 

to communicate with their neighbors to identify their connectivity and distribution. 

Unattended operation in dynamic environments: Given the large number of 

sensor nodes and their generally inaccessible deployment locations, in most cases, 

sensor networks have to operate for long periods of time without human intervention. 

Sensor nodes may expire due to exhausted batteries or malfunction due to accidents. 

Communication links may break down frequently due to environmental interference 

and noise. Thus, such networks have to be able to adapt to any changes in the 

connectivity and environment stimuli. The failure of individual sensor nodes should 

not affect the functionalities of the whole network. 

1.1.2 Sensor Networks vs. Traditional Wireless Networks 

While many existing techniques and concepts from traditional wireless networks, such as 

cellular networks, wireless local area networks and Bluetooth, are applicable to sensor net- 

works, there are also a number of fundamental differences. Some of the most important 

defining characteristics of sensor networks are outlined as follows: 

Sensor networks have much larger number of nodes than traditional wireless networks. 

Potentially, the number of sensor nodes of a sensor network has to scale to thousands, 

even hundreds of thousands. Moreover a sensor network might need to be extended 

from time to time, which makes it difficult to predict the number of nodes at its initial 

deployment. This calls for highly scalable solutions to ensure a sensor network is 

operational regardless of the number of nodes. 

Data centricity is the feature of sensor networks which distinguishes them from other 

wireless networks. Individual nodes in sensor networks possess limited processing 

speed, storage capacity, and communication bandwidth. Thus applications require 

collaborative effort from the sensor nodes. As a result, operations in sensor networks 

are centered around data instead of individual sensor nodes. This calls for data-centric 

network architectures and communication protocols. 
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Sensor networks are environment-driven. While traffic in most traditional wireless 

networks is generated by humans, most data of sensor networks are generated a u t e  

matically in response to changes in the environment. As a result, sensor networks are 

expected to exhibit entirely new traffic patterns, which can vary dramatically from 

time to time. This calls for adaptive topology schemes to extend the useful lifetime of 

networks. 

Sensor networks require a new set of performance metrics. Traditional wireless net- 

works are general traffic transport networks; they aim to deliver payload bits from 

sources to destinations efficiently. By contrast, sensor networks are data collection 

networks. Here the focus is not on original bits; rather, it is on the amount and quality 

of the information that can be obtained about the objects and areas being monitored. 

In many application scenarios, the large number of sensor nodes involved, coupled 

with the uncertainty of sensor readings rules out exact and deterministic approaches; 

approximate and randomized computations have to be used. These features call for 

more complicated metrics such as probability of correct detection and approximation 

accuracy. 

Another issue unique to sensor networks is the correlated data problem. Data col- 

lected by neighboring sensor nodes are often quite similar, which makes possible the 

development of techniques that combine routing structure and in-network data p r e  

cessing to reduce data redundancy and improve energy efficiency. Meanwhile, many 

environment quantities change only slowly over time. Thus, consecutive sensor read- 

ings are temporally correlated to a certain extent. This advantageous feature can be 

exploited to develop efficient data collection techniques. 

1.1.3 Sensor Network Applications 

Application areas for sensor networks include military, environment, civil, health, and indus- 

try. Today, more and more pilot sensor network applications are being deployed in academia 

and industry. 

In the following paragraphs, we discuss some of the emerging applications that have 

attracted many research efforts. We also discuss how these applications can vary significantly 

in latency requirements. 
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Military Applications: 

Wireless sensor networks can be rapidly deployed in an ad hoc fashion and self-organize 

to operate in highly dynamic environments, making them ideal candidates for many 

military applications. For instance, sensor networks can be deployed in open ter- 

rains for detecting intruders. Another potential application is battlefield situation 

awareness: soldiers, vehicles and weapons equipped with wireless sensor nodes can be 

monitored in real time; sensor networking techniques will lead to better collaboration 

among soldiers in the battlefield. In military applications, it is essential that the net- 

works are robust and fault-tolerant. Most importantly, military applications usually 

have strict latency requirements. 

0 Security and Surveillance: 

Critical infrastructures such as airports, subways, water supply systems and energy 

systems can be subjected to terrorist attacks. Networked sensor nodes can be deployed 

throughout these facilities to provide ubiquitous protection. For example, sensor nodes 

can be used as air quality monitors in airports and subways, and as water monitors in 

water supply systems to provide early detection of chemical and biological substances 

in the air and water. In security applications, the tasks of sensor nodes are collecting 

and immediately reporting anomalies. Here low latency is the most important con- 

sideration. Stringent delay requirements are usually met at the cost of higher energy 

consumption. 

Environmental Monitoring: 

Many scientific researches in biology and life science require taking observations in 

unattended environments over a long period of time. Sensor nodes can be unobtru- 

sively embedded in uninhabited areas to perform such monitoring tasks where tradi- 

tional human-centric methods are difficult, impractical or too disturbing. For instance, 

researchers have deployed a sensor network on Great Duck Island [31] to study how 

micro-climatic factors influence the habitat selection of the sea birds. A prototype 

sensor network for meteorological and hydrological observations has been deployed in 

Yosemite National Park, California [28]. Prolonging network lifetime is of paramount 

importance for this kind of applications, while delay usually can be tolerated, since 

real-time data analysis is usually not required. 
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Disaster Response: 

Networked sensor nodes are envisioned to play a variety of roles at disaster scenes: em- 

bedded into emergency personnel's uniforms, sensor nodes can not only track locations 

and status of emergency personnel, but also expand emergency personnel's awareness, 

helping to locate victims and warning of dangerous situations; sensor nodes can be 

used to capture realtime vital signs from a large number of patients, directing emer- 

gency personnel to the patients who need immediate attention. In general, sensor 

network technology will ensure reliable and prioritized information flow at disaster 

scenes, and substantially improve disaster response efficiency. In disaster response 

applications, latency is a critical performance measure. 

Traffic Control: 

Wireless sensor networks have the potential to revolutionize transportation systems in 

many ways. Recently researchers have proposed "sensors on wheels" [13], a solution 

that turns vehicles themselves into sensor nodes. As vehicles travel around, they collect 

information on traffic conditions, air quality or any other events from their immediate 

environment. They either relay this information to nearby vehicles or report it upon 

receiving queries. Informed of realtime traffic information, drivers will be able to avoid 

traffic jams and optimize their routes. In such systems, the latency requirement is of 

high priority due to the realtime nature of the information. 

1.2 Background and Motivation 

In order to take advantage of the aggregated power of the large number of sensor nodes 

and overcome the limited capacities of individual sensor nodes, sensor networks are usually 

considered as a distributed data collection and storage scheme. The primary function of 

sensor networks is then to collect data from the physical environment and to answer queries 

from users [4]. 

In many sensor network applications, individual sensor readings are inherently unreliable 

due to environmental dynamics and severe resource constraints placed on individual sensor 

nodes. Focusing on the overall picture rather than individual sensor readings provides a 

more accurate description of the physical environment. In a canonical usage scenario of 
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sensor networks, each sensor node would collect a small piece of information such as tem- 

perature, density of gases, or radiation of nuclear signals from its immediate environment. 

An overall picture can be obtained by aggregating many small pieces of information col- 

lected by individual sensor nodes. Some of the most common queries over sensor networks 

are aggregation queries such as MAX, MIN, AVERAGE, COUNT, SUM, QUANTILE, the 

most frequent data values, and range queries. 

In-network aggregation is a technique that aggregates data e n  route from sources to 

destinations to reduce data redundancy. Since communication consumes more energy than 

computation [38], significant energy gain is obtained by carrying out local computation to 

reduce the amount of data that need to be transported. In-network aggregation is the key 

to improving scalability and prolonging the lifetime of sensor networks as it significantly 

increases the energy efficiency of the networks. 

While in-network aggregation improves energy efficiency, it also introduces significant 

aggregation delay. On the path from the sources to the destination, data from nearer 

sources have to wait for data from farther sources at intermediate nodes before they can 

be aggregated. The aggregation delay is a function of the number of hops between the 

destination and the farthest sources [22]. In addition, to maximize the degree of aggregation 

within the network, data tend to be routed through the paths that promote aggregation 

rather than the shortest path, which contributes additional delay. 

The multi-hop nature of sensor networks also contributes to the overall delay of sen- 

sor networks. Multi-hop communication is the norm in sensor networks due to the short 

transmission ranges of sensor nodes. Moreover short links are preferred over longer links in 

sensor networks for the sake of energy efficiency, resulting in non-optimal routes in terms of 

delay. 

In many applications, sensor nodes are redundantly deployed to compensate for their 

low reliability and harsh environments. Therefore, sensor networks usually have high node 

density. Sensor nodes will interfere with their neighbors by congesting the channels. Hence 

the channel access delay of sensor networks is more severe than that of traditional wireless 

networks. 

As we elaborated in the last section, sensor networks promise a wide range of applications 

which have very different delay requirements. It is important that sensor networks provide 

a delay differentiation facility that permits applications to exploit desired tradeoffs between 

delay and other performance metrics. While there has been increasing interest in the delay 
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problem in sensor networks [I, 5, 501, such delay differentiation schemes are missing. 

Collecting exact data from sensor networks can be challenging if not impossible due to 

the large number of sensor nodes involved, environmental noise, interference between sensor 

nodes, and the like. In many situations an approximate answer obtained immediately is 

more useful than an exact answer that comes after a long delay. As an example, consider 

a sensor network monitoring toxic chemical gases in an airport: an approximate density 

of some toxic gases reported within seconds is desired instead of an exact density reported 

later. While various techniques for answering approximate queries have been developed, 

most of them lack provable guarantees for the accuracy of the answers. 

Many applications require sensor nodes to periodically collect data from the environment. 

Consider the query "For the next 10 days, report the average temperature on the summit of 

the Blackcomb Mountain every two hours". Environmental quantities usually change slowly 

over time; thus consecutive sensor readings are temporally correlated to a certain extent. 

How to exploit this feature of sensor readings to develop efficient communication scheme is 

an important research topic for sensor networks. 

1.3 Contributions of this Thesis 

In this thesis, we study fast data aggregation techniques for large wireless sensor networks. 

Data aggregation in sensor networks has been extensively studied in the past few years. 

While most of the existing work on data aggregation focuses on energy efficiency, this 

thesis concentrates on time-efficiency: the main goal is to provide techniques to speed up 

aggregation queries over large wireless sensor networks. 

To this end, we develop a simple distributed architecture for a sensor network with 

densely and uniformly deployed sensor nodes. We organize the sensor network into a number 

of layers, where each layer consists of a random subset of the sensor nodes, in decreasing 

order of its size as one goes from a lower layer to a higher layer. In this model, any 

aggregation query will be addressed to a particular layer, which produces an estimate of the 

aggregate of the whole network. Different layers of the network represent different accuracy 

levels and different delays. Since only a subset of sensor nodes participate in answering each 

query, the data aggregation process involves fewer hops, and the aggregation delay at the 

intermediate nodes is decreased. Thus the data aggregation process is sped up. 

The data aggregation scheme proposed in this thesis is fully distributed. The layers of 
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the network are constructed in a distributed, localized fashion. Each sensor node decides 

locally on which layer(s) it will exist without any communication with the outside world. 

Sensor nodes do not need to keep information about other sensor nodes. 

The layered architecture proposed in this thesis differs from existing hierarchical ar- 

chitectures in the following way. Most existing hierarchical architectures, such as those 

proposed in [17, 26, 33, 491, aim at clustering the sensor nodes so that cluster heads can 

aggregate data from cluster members to reduce data redundancy for saving energy. By 

contrast, there are no clusters nor cluster heads in our layered architecture. Each sensor 

node in our network only represents itself and submits its own data if it is involved in a 

particular query. 

In our layered architecture, the reduction in delay comes with a price tag: since only a 

subset of the sensor nodes submit their data, the accuracy of the aggregates of the network 

is compromised. We study the tradeoff between the delay and the accuracy in the context of 

five aggregates of the network: MAX, MIN, QUANTILE, AVERAGE and SUM. Given user- 

specified accuracy requirements, we analyze which layer of the network should be queried 

to obtain answers with theoretically guaranteed accuracy. This provides applications with 

the ability to effect desired tradeoffs between accuracy and delay. We show that different 

queries exhibit distinct characteristics which affect the delay-accuracy tradeoff. 

We then improve our scheme to further speed up the data aggregation process by ex- 

ploiting the statistical properties of the data. Given statistical information obtained from 

the history of the environment, our improved scheme further reduces the number of sensor 

nodes involved in answering certain types of queries such as AVERAGE and SUM. We then 

investigate the new tradeoffs between delay and accuracy given the additional information. 

We also consider how to balance the power consumption at each sensor node to extend 

the overall lifetime of the network. The layered structure of the network needs to be recon- 

structed periodically for the sensor nodes to serve evenly on different layers. This leads to 

relatively uniform energy consumption across all sensor nodes in the network, thus resulting 

in an increase in the life expectancy of the whole network. 

1.4 Organization of this Thesis 

The material covered in Chapters 3, 4, 5 and 6 is adapted from the conference paper [43] 

by Wang, Ergun and myself. The rest of this thesis is organized as follows. 
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Chapter 2 is a review of related work on sensor networks. We focus on three areas 

pertaining to this thesis: in-network aggregation, delay in sensor networks, and periodic 

queries for temporally correlated data. 

In Chapter 3, we present a randomized layered architecture for wireless sensor networks. 

We first discuss the network model with which we will be working. We then describe the 

construction process and the properties of the layered network. Finally we discuss how data 

is collected and aggregated in the layered network. 

In Chapter 4, we analyze the tradeoffs between the accuracy of the query answers and 

the latency of the query response in the layered network. 

In Chapter 5, we use numerical simulations to evaluate the theoretical expressions for 

the tradeoffs between the accuracy and the latency, and to observe the effects of various 

parameters on the performance of the layered network. 

In Chapter 6, we address the energy consumption issues of the layered network. 

In Chapter 7, we summarize this thesis and discuss some open problems and future work. 
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Related Work 

Early visionary works on wireless sensor networks appeared around the year 2000 [21,12,38]; 

these works envisioned an unusual range of applications promised by large scale wireless 

sensor networks, and motivated the challenges presented by such networks. Since then, 

there has been a growing body of research work that addresses many aspects involved in 

realizing the vision of such networks. A comprehensive overview of wireless sensor networks 

can be found in the survey paper [2] by Akyildiz et al. In this chapter, we review important 

research efforts on three areas related to this thesis: in-network aggregation, delay in sensor 

networks and periodic queries for temporally correlated data. 

2.1 In-Network Aggregation 

Almost all techniques for in-network aggregation require the construction of routing trees 

from multiple sources to a single destination. There is a body of work that investigates 

various schemes for building aggregation trees for spatially correlated data [37, 11, 9, 421. 

For a wide range of spatial correlations, Pattem et al. [37] evaluate the energy consump- 

tion of three routing schemes: distributed source coding, routing driven compression, and 

compression driven routing, and propose a cluster-based tree building scheme that achieves 

near-optimal energy saving. Building on the work of Pattem et al. [37], Enachescu et al. 

[ll] present a randomized opportunistic aggregation scheme for the grid topology, which is 

a constant factor approximation to the optimal aggregation tree. 

Data-centric routing is one of the key techniques that support in-network aggregation. 
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The intuition behind data-centric routing is that applications usually need to access ag- 

gregated data rather than individual nodes. Based on data rather than the identities of 

data sources and destinations, data-centric routing aims to find paths from multiple sources 

to a single destination that promote data aggregation. One of the most cited techniques 

for data-centric routing is directed diffusion [20]: data instead of the nodes generating the 

data are named; if nodes express their interest for named data, data matching the inter- 

est are sent to them; data from multiple sources are aggregated whenever appropriate at 

intermediate nodes e n  route to the destination. A more general look at data-centric rout- 

ing is provided in the work of Krishnamachari et  al. [23] where data-centric routing is 

compared with address-centric routing in terms of energy savings, delay and robustness. 

Here address-centric routing refers to traditional end-to-end routing where multiple sources 

send data independently to the destination along the shortest path. Several variations with 

similar concepts can be found in the literature [16, 15, 241. 

In-network aggregation has been studied in the database context. Viewing sensor net- 

works as a distributed database, researchers at UC Berkeley [30, 291 and Cornell University 

[47,48] have developed query processing architectures for sensor networks. To reduce energy 

consumption, they explore in-network aggregation techniques for a variety of database ag- 

gregate operators including MIN, MAX, COUNT, SUM, and AVERAGE. These four papers, 

however, do not provide in-network aggregation techniques for optimizing complex queries 

such as MEDIAN. For simple aggregates MIN, MAX, COUNT, SUM, and AVERAGE, in- 

termediate nodes can aggregate all the data they receive to a single message of constant 

size before sending it to their parents. On the other hand, to compute exact answers to 

aggregation queries such as MEDIAN, all distinct sensor values have to be forwarded to the 

destination. Thus for such complex queries, the required message size increases with the 

size of the network. 

To address the issue of large message size for complex queries such as MEDIAN, Shri- 

vastava et al. [39] propose an aggregation scheme that provides approximate answers with 

bounded errors using fixed message size. Greenwald and Khanna [14] develop a distributed 

algorithm to compute approximate quantiles within a given error E using message size of 

0(log2 n / ~ )  per sensor node, where n  is the number of sensor nodes in the network. 

A recent result [7] classifies aggregation queries into fully-aggregated query, unaggre- 

gated query and partially aggregated query based on the level of aggregation that can be 

employed at the intermediate nodes. It considers power-aware routing and aggregation 
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query processing together, building energy-efficient routing trees explicitly for each type of 

aggregation queries. 

Another approach to in-network aggregation is the use of hierarchies, where sensor nodes 

are usually organized into clusters. Within each cluster, cluster members send their data 

to a node designated as "cluster head", which will perform data aggregation to reduce the 

amount of data being transmitted to the destination or an upper level cluster head. In 

LEACH [17], the role of cluster head is rotated randomly among various sensor nodes to 

avoid draining the batteries of a few sensor nodes; each cluster head periodically collects 

data from its members and aggregates the data before sending them to the destination. In 

HEED [49], cluster heads are selected based on the residual energy of the sensor nodes; a 

secondary parameter such as node proximity to neighbors or node degree is used to "break 

ties". In TEEN [32], each sensor node collects data from the environment continuously, but 

only sends the data to its cluster head when the data value is greater than a hard threshold 

and the data value differs from the previous-sensed data value by more than a soft threshold. 

Here the hard threshold specifies the range of interest where data will be reported, and the 

soft threshold controls the tradeoff between energy efficiency and data accuracy. 

2.2 Delay in Sensor Networks 

As sensor networks are being deployed for more and more missions of critical nature, delay 

issues have drawn increasing research attention. Researchers have studied delay problems 

in sensor networks from different perspectives. Krishnamachari et  al. [22] empirically show 

that greater delay is a tradeoff of energy gains achieved by in-network aggregation. Kun- 

niyur and Narasimhan [25] derive a model to study the effect of channel access probability, 

transmission radius, network load and network density on delay in wireless sensor networks. 

Intanagonwiwat et  al. [19] propose a variant of directed diffusion, in which intermediate 

nodes send data to their parents after waiting a period of time or receiving a sufficient 

amount of data for aggregation. The accuracy of the aggregation will depend on the delay 

allowed at the intermediate nodes, which is specified by the application. 

Yu et  al. [50] explore the energy-latency tradeoffs in a scenario where the data gathering 

must be performed within a latency constraint. They present algorithms to minimize the 

overall energy consumption in the aggregation tree subject to the latency constraint. 

In the work [36] by Narasimhan and Kunniyur, each data packet is assigned a power 
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budget, which is the total excess energy that can be used by any intermediate nodes to send 

this packet through any low latency route instead of the energy efficient route. Hence the 

delay of a packet can be controlled by adjusting its power budget. 

Boukerche e t  al. [5]  propose a fault tolerant and low latency protocol for critical condition 

monitoring applications, where response time assumes primary importance. 

2.3 Periodic Queries for Temporally Correlated Data 

Consecutive sensor observations of many physical phenomena are usually temporally cor- 

related. Recently there have been several research efforts that exploit temporal correlation 

between sensor data to develop efficient communication protocols for sensor networks. 

Akyildiz e t  al. [3]  consider an event signal, which is a Gaussian random process in 

time. Sensor nodes periodically report their data to a destination that wants to find the 

expectation of the signal over a decision interval. Under the assumption that all sensor 

nodes in the event area will report the same data during the decision interval, the data 

reporting frequency is determined so that the estimate expectation of the signal achieves a 

desired accuracy. 

In another interesting study [lo], Cristescu and Vetterli show that there is an optimal 

node density for gathering spatietemporally correlated data in sensor networks. They 

consider a scenario where data will be distorted by delay. Given the data measured at 

the sensor nodes, and the knowledge of the spatietemporal correlation of the data, the 

destination needs to reconstruct the data at all points at the measured area. A high node 

density gives a good spatial approximation, while a low node density gives a good temporal 

approximation. They aim to find an optimal node density such that the quality of the 

overall approximation is optimal. 



Chapter 3 

A Layered Architecture for Data 

Aggregation 

In this chapter, we present a randomized layered architecture for retrieving aggregated 

information efficiently from a large wireless sensor network. The following is the network 

scenario considered in this thesis. The task of each sensor node is to measure some quantities 

such as temperature, humidity and particle concentrations from its immediate environment. 

The sensor network will provide users with aggregated information which summarizes the 

data collected by individual sensor nodes over the entire sensor field. Aggregation queries 

are the primary operation on sensor networks, as they are robust to individual node failures 

and allow in-network processing to reduce communication cost. Due to the large number of 

sensor nodes involved, extracting exact aggregated information from sensor networks can be 

very challenging in terms of response time and energy consumption. In most sensor network 

applications, aggregated information with 100% accuracy is not necessary; a good estimate 

of it is sufficient. The randomized layered architecture developed in this chapter provides 

users with the ability to quickly obtain approximate aggregated information with desired 

accuracy. 

We start this chapter with the network model and the assumptions under which this 

research is conducted. We then describe how the layered architecture of our network is con- 

structed and maintained. Following a discussion of the properties of the layered architecture, 

we expound on the data collection and aggregation process in the layered network. 
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3.1 Network Model 

We consider a large wireless sensor network where sensor nodes are densely deployed. We 

describe the network model with which we will be working as follows. 

1) The sensor network has N sensor nodes denoted by s l ,  sz, . . . , s ~ .  

2) The sensor nodes are deployed uniformly at random in a square area with side length 

D. More specifically, let (X, Y) be the coordinates of a sensor node in the two- 

dimensional plane, then X, Y are independent random variables uniformly distributed 

in the integer interval [0, D). 

3) There exists a base station which serves as the gateway for extracting data from the 

sensor network. 

4) The number of queries received by the sensor network is a Poisson process with rate 

A. 

5) Each sensor node can adjust its transmission range, not to exceed maximum value R. 

6) The energy consumed by a sensor node for a transmission, denoted by e, is proportional 

to r", where r is the transmission range used for the transmission, and a is the path- 

loss exponent experienced by radio transmission. The value of a varies in the interval 

[2, 41 depending on the communication medium [44]. Without loss of generality, we 

normalize the energy coefficient to 1, hence e = r". 

7) With the exception of the base station, all the sensor nodes are assumed to be homo- 

geneous and begin with the same initial energy, denoted by B. 

3.2 Layered Network Construction 

We will embed a layered structure on the network. There are L layers on the network which 

are numbered O,1,2, . . . , L - 1, with layer 0 as the base layer and layer L - 1 as the top layer. 

Each layer will be assigned a transmission range. The method of determining the value of 

L will be discussed in later sections. We use r(1) to denote the transmission range used on 

layer 1: during a query taking place on layer 1, the sensor nodes on layer 1 communicate 

using transmission range r(l) ,  and can reach each other in one or more hops. 
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Procedure SelfPromoting 
Input: L: the number of layers of the network, p: the promotion probability 
Output: the highest layer where sensor node si exists 
begin 

1. 1 := 0; 
2. if 1 = L - 1 then 
3. return 1; 
4. else 
5. si promotes itself to layer 1 + 1 with probability p; 
6. if si fails to promote itself then 
7. return 1; 
8. else 
9. 1 := 1 + 1; 
10. Goto step 2; 

end 

Figure 3.1: The decision process for a generic sensor node si 

Given that data communication is the dominant reason for energy consumption in sensor 

networks and communication links in sensor networks are unreliable, it is desirable that the 

layered structure be constructed and maintained locally to provide network scalability and 

robustness. We now expound on how the layered structure is constructed locally. The 

base station initiates the network construction by sending out a broadcast message, which 

specifies a value L, the number of layers of the network, and a value 0 < p < 1, the 

promotion probability. The layers in the network are constructed as follows. Once a sensor 

node si receives the broadcast message, it decides, without any communication with any 

other sensor nodes or the base station, to which layer(s) it will belong. By default, all sensor 

nodes, including si, exist on the base layer, which is layer 0. Inductively, if si exists on some 

layer 1, it will, with probability p, promote itself to layer 1 + 1, which means that si will 

exist on layer 1 + 1 in addition to all the lower layers 1,l - 1, .  . . , O .  If on some layer l', si 

makes the decision not to promote itself to layer 1' + 1, si stops the randomized procedure 

and will not exist on any higher layers. If si promotes itself to the highest layer L - 1, it 

stops the promotion procedure since no sensor node is allowed to exist beyond layer L - 1. 

Figure 3.1 gives a formal description of the above decision process for a generic sensor 

node si. For a sensor network with N sensor nodes, there will be N copies of the procedure 

running in parallel independently during the layered network construction. 
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layer 0 

Figure 3.2: A layered sensor network with three layers 

The network construction does not assume the existence of any synchronization mecha- 

nism. Each sensor node starts its own promotion procedure upon receiving the construction 

request from the base station. Those sensor nodes in the lower part of the broadcast tree 

will be late in starting their promotion procedures. Since the construction scheme works 

in a distributed fashion, this is not a problem - the late sensor nodes can simply promote 

themselves using probability p and join their related layers in their own time. Nevertheless, 

the base station needs to make sure the network construction is finished before it starts 

accepting queries from the users. 

Figure 3.2 shows the layered structure of a sensor network with three layers. On each 

layer, there is a link connecting two nodes if they are within each other's transmission range 

on that layer. 

3.3 Analysis of the Layered Architecture 

In this section, we first analyze the fundamental properties of the randomized layered archi- 

tecture. The key parameters of the layered network are the number of layers of the network, 

the promotion probability and the transmission range used by the sensor nodes on a specific 

layer. We discuss how to determine these key parameters of the layered network, and how 

the choices of these parameters affect the layered network. 
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3.3.1 Properties of the Layered Architecture 

A natural question that arises at this point would be how many sensor nodes one will see on 

a particular layer. Since the layered network construction is a random process, the number 

of sensor nodes on each layer is a random variable. To be able to exist on a high layer, 

a sensor node needs to succeed continuously in promoting itself. One would expect to see 

fewer sensor nodes going from a lower layer to a higher layer. The following lemma shows 

how many sensor nodes are expected to exist on a specific layer. 

Lemma 3.1. For a sensor network with N sensor nodes and promotion probability p, the 

expected number of sensor nodes on layer 1 is N . pZ. 

Proof: For i = 1,.  . . , N, define indicator random variable Yi as follows. 

1 if sensor node si is promoted to layer 1; 
Yi = 

0 otherwise. 

Let Y be the random variable describing the number of sensor nodes on layer 1. Then 

During the network construction, the decision process for each sensor node consists of a 

certain number of Bernoulli trials, each of which determines whether or not a sensor node 

will promote itself one layer up. Let a sensor node's decision for self-promoting from layer 

j - 1 to layer j be the j th trial. Since a sensor node stops its promotion procedure once 

it fails to promote itself to a higher layer, for a sensor node to exist on layer 1, it needs to 

succeed in all of the first 1 trials. Clearly, these 1 trials are mutually independent, and each 

has the same probability p for success. Hence P r  [Y, = 11 = pZ, and P r  [Y, = 01 = 1 - pz. 

The expected number of sensor nodes on layer 1 can be computed as follows: 

The properties of the randomized layered architecture can be summarized as follows: 

1) The base layer contains all sensor nodes s l ,  . . . , s ~ .  
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2) Any sensor node will exist on layers 0 '1, .  . . , k for some 0 < k < L - 1. 

3) The sensor nodes on layer 1 form a subset of those on layer 1 - 1 for 1 5 1 5 L - 1. 

4) The expected number of sensor nodes on layer 1 drops exponentially with f as 1 in- 

creases. 

3.3.2 Specifying the Structure of the Layers 

We now discuss how to determine the number of layers of the network, the promotion 

probability and the transmission range used by the sensor nodes on a specific layer. These 

three parameters need to be specified before the layered network construction. 

We first introduce a definition for the network density due to Bulusu et al. [6 ] .  In this 

definition, network density is expressed in terms of the number of sensor nodes within the 

transmission radius around each sensor node. 

Definition 3.2. (Network Density) Consider a sensor network with N sensor nodes 

scattered in a region of area A, let r be the transmission range of each sensor node, the 

network density p ( r )  is defined as 
~ . r r r ~  

~ ( ~ 1  = 7 

Since there is a small probability that a sensor node might promote itself indefinitely, 

the number of layers in the network must be upper-bounded for the construction process 

to terminate. Another reason for "cutting off' the top of the layered structure is that, if 

a layer is populated with too few sensor nodes, the inter-sensor distance on that layer will 

exceed the maximum transmission range R. To keep the sensor nodes on the high layers 

connected, we do not allow more than L layers in the network, where L = Q logl -& , ( P ( E )  ) 
which is determined so that with high probability the inter-sensor distance on the top layer 

does not exceed the maximum transmission range R. The maximum number of layers in the 

network is thus picked as a function of the promotion probability and the network density 

which is calculated with all sensor nodes operating at the maximum transmission range. 

We now determine the transmission range used on each layer. The transmission range 

used during a communication taking place on layer 1 ,  where 1 = 0,.  . . , L - 1, is determined 
D by the expected distance between two neighboring sensor nodes on layer 1 ,  i.e. r(1) = - &7' 

and can be enlarged a little further to ensure a higher chance of connectivity. 
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Figure 3.3: Expected number of sensor nodes vs. layer number for various values of promo- 
tion probability p for a sensor network with N = 10000 sensor nodes 

The promotion probability determines how quickly the number of sensor nodes decreases 

as the layer number increases. Figure 3.3 shows the impact of the promotion probability on 

the expected number of sensor nodes on different layers. Since there must be enough sensor 

nodes on the top layer to maintain the network connectivity, the promotion probability also 

has a direct impact on the maximum number of layers that the sensor network can have. 

3.4 Data Collection and Aggregation in a Layered Network 

Given a layered sensor network, we now focus on how a query is disseminated across the 

network and how data are collected and aggregated in the network. We simplify the situation 

by assuming the same as [39] that the base station is a special node where a query will be 

initiated and the aggregated data will be converged. Thus the base station acts as an 

interface between the sensor network and the external users. 

When the base station receives a query from the users, it first determines which layer is to  

be used for this query (the method for which will be discussed in detail in the next chapter). 
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Let this layer be 1. The base station then initiates the query by sending out a message whose 

recipients are all the sensor nodes on layer 1. This can be achieved by reserving a small field 

(of loglog N bits) in the transmission packet for the layer number. In this message, the 

base station also specifies the query type (such as MAX, MIN, QUANTILE, AVERAGE or 

SUM). Any sensor node on layer 1 that hears this message will relay it using communication 

range r(1); those sensor nodes not on layer 1 will simply ignore this message. 

After the query message is received by all of the sensor nodes on layer 1, a routing tree 

rooted at the base station is formed. Each leaf node then collects its data and sends the data 

to its parent, which then aggregates its own data with the data from its children, relaying 

the aggregated data up to its own parent. The data collected by the sensor nodes on layer 

1 will be propagated in this fashion all the way up the tree and will converge at the root. 

Once the root has the aggregated information, it can compute the answer to the query. 

The schemes proposed in this thesis are independent of the algorithms for building rout- 

inglaggregation trees. Once the layer to be used for a particular query has been identified, 

the particular algorithm used for building the routinglaggregation tree is transparent to our 

schemes. Any existing techniques, such as those proposed in the literature [20, 19, 37, 71, can 

be applied to the distribution of the query and the collection of the data from the network. 



Chapter 4 

Querying the Layered Network: 

Accuracy vs. Latency 

In this chapter, we show how the layered architecture presented in Chapter 3 can be used 

to  support fast data aggregation in large wireless sensor networks. 

The core idea behind the layered architecture is to trade off the accuracy of query answers 

for low query latency. As we describe in Chapter 3, any query on the layered network will 

be addressed to a specific layer. When a query utilizes data from all the sensor nodes, the 

answer is accurate; however, when data from only a subset of the sensor nodes are used, 

errors are introduced. The more sensor nodes participate in a query, the more accurate 

is the answer. In the mean time, the delay incurred in obtaining the query answer is also 

longer. 

In sensor network applications such as critical condition monitoring and real-time target 

tracking in battle fields, the latency of query response has a critical impact on application 

performance. It is desirable that sensor networks be able to  respond quickly to queries from 

their users and the accuracy of the answers be guaranteed to be above a certain threshold. 

The latency of a query response is a function of the number of sensor nodes whose data are 

being utilized for a particular query. Thus, in the layered network the latency of a query 

response is reflected by the layer to which the query is sent. In this chapter, we investigate, 

given a query with an accuracy requirement, which layer of the network should be queried 

to  obtain an answer with a theoretically guaranteed level of accuracy. 
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As any queries on the layered network will be addressed to a specific layer which con- 

tains a subset of the sensor nodes, we expect approximate rather than exact answers from 

the layered network. We start our discussion by determining how to relax the accuracy 

requirement of a query. 

4.1 Relaxing the Accuracy Requirement 

Consider some aggregation function f over the set S of all sensor values in the network. 

Example aggregation functions are MAX, MIN, QUANTILE, AVERAGE and SUM. Let f 
be the output of our approximate aggregation scheme. We would like, with high probability, 

the deviation of f ( ~ )  from f (S) not to exceed a certain threshold, for any input S. We 

define the accuracy requirement formally as follows. 

Definition 4.1. (Accuracy requirement) Let S be the set of all sensor values in the 

network. Let f be a n  aggregation function over S. Let f(S) be a n  approximation o f f  (S) 

produced by some approximate aggregation scheme. The accuracy requirement of a n  aggre- 

gation query for f (S) is, for E > 0 and 0 < b < 1, 

In the rest of this thesis, we will refer to E as the error bound and b as the error probability. 

These two parameters will be specified by query users. 

4.2 Analysis of the Accuracy and the Latency 

In this section, we investigate the accuracy and the latency tradeoff in the context of certain 

aggregation functions. Given an aggregation query with an accuracy requirement, we per- 

form formal analysis to determine which layer should be queried to obtain an approximation 

with desired accuracy. 

The accuracy of a query answer directly relates to the number of sensor nodes whose 

data are utilized for the query. Due to the random nature of the construction process of 

the layered network, the number of sensor nodes on each layer is a random variable. In the 

following lemma, we investigate which layer must be queried if one would like to have input 

from at least k sensor nodes with a high probability. 
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Lemma 4.2. Consider a sensor network with N sensor nodes and promotion probability 

p ,  let p be the expected number of sensor nodes on layer 1 .  For k 5 p,  if 1 < logl N - 
P 

logl ( k  + l n i  + ,/-), then the probability that there are fewer than k sensor 
P 

nodes on layer 1 is smaller than b. 

Proof: For i = 1, .  . . , N,  let Yi be the indicator random variable for whether sensor node si 

is promoted to layer 1. Clearly, Yl, . . . , YN are independent. On layer 1 there are Y = xL1 Y ,  

sensor nodes. By Lemma 3.1, p = E[Y] = N . p l .  

by Chernoff's inequality (see Lemma A. 1 in Appendix A). 
1 

- E+ (1- 4 1 2  

Solving e N T  < b for 1 ,  we have 

1 < log1 l\r - log1 p (  k + ln -  i + n) In-(2k + l n - )  . 

In general, exact answers to MAX or MIN queries cannot be obtained unless all sensor 

nodes in the network contribute to the answers, since any missed sensor node might have 

an arbitrarily high or low data value. The following theorem is immediate. 

Theorem 4.3. The queries for MAX and MIN must be sent to the base layer to avoid 

arbitrarily high error. 

Since we assume the number of sensor nodes in the network is given, once the AVERAGE 

is obtained, the SUM is just the AVERAGE times the number of sensor nodes. We thus 

will not explicitly explain the SUM queries. 

In what follows, we will focus on two aggregation functions: QUANTILE and AVER- 

AGE. We consider two types of aggregations: snapshot aggregation and periodic aggregation. 

Snapshot aggregation refers to an aggregation of certain quantity such as temperature, pres- 

sure, or humidity of the network at a point in time. In many application scenarios, users 

need to periodically query the network for some aggregated quantity. This kind of ag- 

gregation is usually called periodic aggregation. We first analyze QUANTILE queries and 

AVERAGE queries in the context of snapshot aggregation. We then refine our scheme to 
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further speed up AVERAGE queries for periodic aggregation, exploiting statistical informa- 

tion about the sensor readings over time. Finally we investigate the new tradeoffs between 

delay and accuracy under this improved scheme. 

4.2.1 QUANTILE Queries 

Consider a sensor network with N sensor nodes deployed for detecting some chemical agent 

in a physical environment. Let a l ,  . . . , aN be the sensor readings of the N sensor nodes. 

Consider the following query "Which sensor reading is  greater than 80% of all the sensor 

readings?". Queries of this type are called QUANTILE queries. Since quantiles are less 

sensitive to outliers than average and sum, QUANTILE queries are useful in rough envi- 

ronments where sensor readings can be very unreliable. Formally, quantile is defined as 

follows: 

Definition 4.4. (Quantile) Let S be a data set. Let s denote the ordered sequence obtained 

by sorting the elements i n  S i n  non-decreasing order. For ai E S ,  denote by r ( a i )  the rank 

of ai in S .  For 0 < 4 5 1, if r ( a i )  = c$ISI, then ai is the 4-quantile of S .  

As we can see, the minimum element is the &-quantile, and the maximum element is 

the 1-quantile. MAX and MIN queries are special cases of QUANTILE queries. Due to 

similar reasons as the MAX and MIN queries, we cannot obtain exact quantiles by querying 

a proper subset of the sensor nodes in the network. We relax our requirement to obtain a 

sensor value whose rank is close to the exact quantile: 

Definition 4.5. (6-approximation Quantile) Let S be a data set. Let s denote the 

ordered sequence obtained by sorting the elements in S i n  non-decreasing order. For ai E 

S ,  denote by r (a i )  the rank of ai in S .  For 0 < 6 < 4 < 1, and 4 + 6 < 1, i f  ai E 

{ x  E S I ( 4  - E)ISI < r ( x )  < (4  + E)ISI) ,  then ai is an 6-approximation 4-quantile of S .  

From now on, for ease of exposition, whenever we mention a rank in a set, we mean this 

rank is over a sequence obtained by sorting the elements of the set. 

We can observe, the difference in rank between the q5-quantile and eapprorimation q5- 

quantile is at most 6 fraction of the size of the input set. To satisfy a query for q5-quantile 

with error bound 6 and error probability 6, our scheme should return an 6-approrimation 

bquantile with probability at least 1 - 6. 
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Figure 4.1: The +quantile of Q falls outside the rank between (4 - €)IS1 and (4 + E)(SI in 
S. 

To meet an accuracy requirement, we need to identify the sources contributing to the 

error of a query. First, since the layers are constructed in a randomized fashion, the number 

of sensor nodes on a given layer cannot be known exactly. In Lemma 4.2, we solve this 

problem by showing which layer should be queried if we would like to have input from at 

least a certain number of sensor nodes with at least a given probability. The second source 

of error is the fact that a query is always addressed to a subset of the sensor nodes. How 

big should the size of this subset be to achieve the desired accuracy? The following lemma 

provides an answer to this question. 

Lemma 4.6. Let S be a data set. Let 2 = {Sk I Sk G S,  ISk] = k). Let Q be picked at 

random from 2. If k 2 g, then, with probability greater than 1 - 6,  the 4-quantile of Q i s  

a n  E-approximation 4-quantile of S. 

Proof: We will bound the probability that the +quantile of Q falls outside the rank between 

(4 - E)ISJ and (4 + €)IS1 in S. 

Claim: the element with rank 4IQ( in Q does not have rank between (4 - E)ISJ and 

(4  + E)IS( in S if and only if one of the following holds: 1) More than 4lQl elements in Q 

have rank less than (4 - E)ISI in S;  or 2) more than (1 - 4)lQl elements in Q have rank 

greater than (4 + €)IS1 in S. 

The above claim is obvious from Figure 4.1. Since IQI = k, the distribution of Q 

is identical to the distribution where k elements are picked uniformly at random without 

replacement from S. This is due to the fact that any element of S is as likely to be included 

in Q as any other element in either scheme, and both schemes include k elements in Q. 

Note that the distributions of the elements in Q are not independent. 
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Since the two distributions mentioned above are identical, we can think of the construc- 

tion of Q as k random draws without replacement from a 0-1 box that contains IS1 items, 

of which those with rank less than (4 - €)IS1 are labeled "1" and the rest are labeled "0". 

For i = 1, .  . . , k, let Xi be the random variable for the label of the ith element in &, 
then Pr[Xi = 11 = 4 - 6, and X = ~ i k , ~  Xi is the number of elements in & that have rank 

less than (+ - €)IS1 in S .  By the linearity of expectation, 

Therefore, by Hoeffding7s inequality (see Lemma A.3 in Appendix A), 

Now the above notations remain unchanged except that the elements with rank greater 

than (++E) IS1 are labeled "1" and the rest are labeled "0". Then X = ~ f = ~  Xi is the number 

of elements in & that have rank greater than (+ + E)ISJ in S .  Clearly, E[X] = (1 - + - ~ ) k .  

Applying Hoeffding's inequality again, 

Hence the probability that the q5-quantile of & is an 6-approximation q5-quantile of S is 

greater than 1 - 2e-2'2k. Setting 1 - 2e-2'2k 2 1 - 6, we have k 2 g. 0 

Lemma 4.6 indicates that, if a k-subset of set S is chosen at random from all the k-subsets 

of S, and k is large enough, then this k-subset has similar quantiles to S .  We observe that 

' ~ o t e  that Hoeffding's inequality applies to random samples chosen without replacement from a finite 
population, as shown in Section 6 of Hoeffding's original paper [18], without the need for independence of 
the samples. 
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k is determined by the error bound E and the error probability 6, and is independent of the 

size of S. 

Combining Lemmas 4.2 and 4.6, we now show which layer should be queried for a given 

error bound and error probability. 

Theorem 4.7. Let p be the promotion probability of a sensor network with N sensor nodes. 

If  a 6-quantile query i s  sent to layer 1 < logl N - 
P 

greater than 1 - 6. 

then the answer will be an  E-approximation 6-quantile of the whole network with probability 

Proof: Denote by B the event that the answer returned by layer 1 is not an E-approximation 

4-quantile of the whole network. Denote by A  the event that layer 1 has fewer than k sensor 

nodes. Denote by 2 the complement of event A, the event that layer 1 has at least k sensor 

nodes. 

Now consider the case k = 3: 
1) By Lemma 4.2, if 1 < logl N - , then P r [  A ]  < $. 

P 

2) Since the sensor nodes on layer I forms a random subset of the sensor nodes of the 

sensor network, by Lemma 4.6, if the number of sensor nodes on layer 1 is at least g, the 

probability that the +quantile of layer 1 is not an E-approximation +quantile of the sensor 

network is less than 9. Namely P r  [ B 1 2 ] < 9. 
By theorem of total probability [34], 

Hence the answer returned by layer 1 < logl N - logl 3 + l n a  + \ / h a  ( 2 3  + h a ) )  is 
p ( 

an E-approximation 4-quantile of the whole network witi probability greater than 1 - 6.' 

4.2.2 AVERAGE Queries 

In this section, we analyze the accuracy and the latency tradeoff for AVERAGE queries. 

We now consider approximating the average data value over the whole sensor network by 

querying a particular layer. Here the goal is to obtain a value that is close to the true average 
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almost all the time. How can we know a value is close to the true average without knowing 

what the true average is? We know from sampling theory [46] that the expectation of the 

average of random samples without replacement is equal to the average of the population. 

We can think of the sensor nodes on each layer as random samples without replacement 

from the sensor nodes of the whole network. Hence the following lemma is immediate. 

Lemma 4.8. For a sensor network with N sensor nodes, let a l ,  a2,. . . , a ~  be the data 

values collected by the N sensor nodes. Let k be the number of sensor nodes on layer 1. Let 

XI, X2,. . . , Xk be the random variables describing the data values collected by the k sensor 

nodes on layer 1 .  Let x = ~ f = ~  x i .  Then E[X] = zE1 ai.  

We thus propose that the average returned by the queried layer be output as the average 

of the whole network. It remains to investigate the relationship between the accuracy 

requirement and the layer to be queried. As with QUANTILE queries, the error is due to 

the uncertainty of the number of sensor nodes on a specific layer and the utilization of data 

from only one layer instead of the whole network. The following lemma indicates at least 

how many sensor nodes we must query, given error bound E and error probability 6. 

Lemma 4.9. Let S be a data set whose elements are bounded within the interval [a, b].  Let 
(b-a)21nz 

Z = {Sk 1 Sk C S, ISk\ = k). Let & be picked at random from 2. If k 2 +,, then, 

with probability less than 6,  the average value of Q deviates from the average value o f S  by 

more than E .  

Proof: The k elements in & can be considered to be random samples without replacement 

from S .  Let X1, X2,.  . . , Xk be the random variables describing the k data values in Q. 

Then a 5 Xi 5 b for i = 1,2,. . . , k. Let = ~ f = ~  Xi. By Lemma 4.8, E[Y] is the 

average value of S .  By Hoeffding's inequality, for any E > 0, 

-2kr2 (b-a)21nz 
Setting 2e(b-.,2 5 6, we have k >. +. 

Combining Lemmas 4.2 and 4.9, we now show that the average of an appropriate layer 

constitutes an E-approximation to the true average of the whole network with probability 

greater than 1 - 6. The proof of the following theorem is similar to that of Theorem 4.7. 
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Theorem 4.10. Consider a sensor network with N sensor nodes whose data values are i n  

the range [a,  b]. Let p be the promotion probability, and let 1 be such that 1 < logl N - 
,, 

( b - ~ ) ~ l n $  ( b - ~ ) ~ l n i  + + 1 ( 2  + n )  . Then the probability that the average of 

layer i deviates from the true average of the while network by more than c is less than 6 .  

Proof: Denote by B the event that the average of layer 1 deviates the true average of the 

whole network by more than c. Denote by A the event that layer 1 has fewer than k sensor 

nodes. Denote by x the complement of event A, the event that layer 1 has at least k sensor 

nodes. 
( b - ~ ) ~ l n i  

Consider the case k = -+: 

( b - ~ ) ~ l n i  ( b - ~ ) ~ l n S  
1)  BY Lemma 4.2, if 1 < 10gr N - log1 (+ + i n ;  + Jln:(2.+ + I n $ ) ) ,  

then P r [ A ]  < $. 
( b - ~ ) ~ l n i  

2)  By Lemma 4.9, if the number of sensor nodes on layer 1 is at least +, the probability 

that the average of layer 1 deviates the true average of the whole network by more than c is 

less than i, that is, P r [  B I A ]  < $. 
By the theorem of total probability [34], 

( b - c ~ ) ~ l n $  ( b - ~ ) ~ l n $  
Thus,ifl < ++In$ + \lln$(2+ + l n f )  , theprobabilitythat 

the average of layer 1 deviites from the true average of the whole nitwork by more than c 

is less than 6. 0 

4.2.3 Utilizing Statistical Information for Periodic Queries 

Up to this point, the queries we consider have been snapshot queries. Sensor networks have 

been thought of as dynamic data repositories over which continuous queries can be run. 

Many sensor network applications need to periodically obtain some aggregate quantity of 

the environment such as temperature, pressure and particle concentrations. In most practi- 

cal settings, these values observed by sensor nodes change slowly over time. The correlation 
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between consecutive observations of a sensor node is usually referred to as temporal corre- 

lation. The characteristics of the correlation vary depending on the environmental quantity 

being monitored. 

The correlation between consecutive sensor observations provide potential opportunities 

for developing efficient data gathering schemes tailored for sensor networks. If data values 

observed by sensor nodes are related to their previous observations, it is possible to use 

history information to help estimate current data values. In this section, we explore ways 

to further speed up the data gathering process, by leveraging the statistical information 

regarding the environmental quantity the sensor network is monitoring. For the case in 

which the change in data values over time follows the normal distribution, we are able to 

improve our scheme to reduce the latency even further for AVERAGE queries. 

We now refine our scheme under the assumption that the change of each sensor value 

in one unit of time has the normal distribution. Since the sum of independent normal 

distributions is a normal distribution with mean equal to the sum of the individual means 

and variance equal to the sum of individual variances, the change in the average value also 

follows a normal distribution. To illustrate our assumption, consider the scenarios shown 

in Figures 4.2 and 4.3. The statistics of the history information about an area indicate 

that, the average temperature of the area is likely to rise around 10 degrees from 2 am to 

12 pm, and fall around 6 degrees from 12 pm to 8 pm; small variations might happen but 

substantial changes are less likely. 

To convey the intuition of our proposed strategy, consider the case in which the distri- 

bution of the change of the environment is known to be a normal distribution with mean 

p. First we use the scheme proposed in Chapter 3 to obtain an initial estimate avg of the 

average data value in the network. By our analysis in the last section, avg is likely to be 

close to the true average. The change of the average in one unit of time, by our assumption, 

is expected to be p. SO the true average after one unit of time is likely to change by some 

value close to p. Thus, avg + p is likely to be a good estimate for the average for that point 

in time. However, new error has been added into our estimate. Since the scheme we use 

to obtain the initial avg queries only a subset of the sensor nodes, there is an error in avg. 

The new contribution to the error is our inability to know the exact change in the average 

value. Since the quantity of the error, as well as its likelihood increases, we need to make 

sure that the error of our estimate and the error probability remain at acceptable levels. 

We now explain the main idea of our improved scheme for AVERAGE queries. We adopt 
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change in average temperature 

Figure 4.2: Probability distribution of change in average temperature from 2am to 12pm 

change in average temperature 

Figure 4.3: Probability distribution of change in average temperature from 12pm to 8pm 
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a multi-stage approach to our estimation of the average. In the first stage, which we call 

QueryAverage, we obtain an average value which is more accurate than the user-specified 

requirement, by querying a relatively large subset of the sensor nodes - more precisely, we 

query a layer which is lower than required to obtain an answer with error €1 < 6 and error 

probability dl < 6. The purpose of doing this is to leave some room for extra error to be 

incurred in later stages. 

In the following stage (after one time unit has elapsed), which we call TestAverage, and 

subsequent ones, we will query higher layers, thus involving a smaller number of sensor 

nodes, to see whether the expected change pattern is followed. The result of doing this is 

that either (a) we will boost the confidence to an acceptable level or (b) we will observe an 

"anomaly", that is, a deviation from expected behavior, which we will attempt to resolve 

by querying a lower layer with a larger number of sensor nodes. In case of (a), we will have 

obtained an answer with acceptable accuracy quickly by querying only a very small number 

of sensor nodes. Case (b) on the other hand is, by definition of the normal distribution, 

an anomaly that will not happen often. In the unlikely event of an "accident" near one of 

the sensor nodes, in the form of an atypical value, we first get informed quickly. Then our 

network will experience a longer query time for the sake of accuracy. In the long run, we 

will see more "expected" cases and will observe a lower average query time. 

Before we formally present the algorithm, we use the example shown in Figure 4.4 

to explain the major steps of the algorithm. In this scenario, the change of the average 

temperature has the normal distribution with mean p = 10 and standard deviation a = 3.2. 

Now suppose the network receives a periodic query "report the average temperature every 

unit of time with accuracy requirement 6 = 6 and 6 = 0.2". In the first stage, we obtain the 

average data value avgl = 60•‹F by querying the layer corresponding to € 1  = 2, and 61 = 0.1. 

After one unit of time, we expect that the average temperature changes to avgl + p = 70•‹F. 

However, to ensure that the error of this estimate is bounded by the user-specified bound 

E = 6, the error contributed by the normal distribution must be bounded by 4 (i.e. the 

one-sided confidence interval 6, = 4). As shown in Figure 4.4, with probability 78.86%, the 

expected change p = 10 does not deviate from the true change by more than 4. In summary, 

if the error of the initial estimate avgl for the average is bounded by €1 = 2, and the error of 

the estimate p for the change is bounded by en = 4, then the error of the estimate avgl + p 

for the average after one unit of time will be bounded by 6. Therefore, after one unit of 

time, with probability 0.7886 x 0.90 = 0.7097, i.e. confidence level 70.97%, the error of the 
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5 10 15 20 

change in average temperature 

Figure 4.4: The change of average temperature in one unit of time follows a normal distri- 
bution with p = 10 and 0 = 3.2. To ensure the ultimate error bound of 6 = 6, the error 
bound (one-sided confidence interval) 6 ,  = 4. 

estimate is bounded by 6. The error probability is 1 - 0.7097 = 0.2903, which is larger than 

the user-specified error probability b = 0.2. To boost the confidence level to 80%, we query 

a few more sensor nodes with an error bound of € 2  = 6 and a much looser error probability 

of bz = & = 0.689. If the returned value of TestAverage is 70•‹F, we return this value. 

Otherwise, if the returned value falls outside of 70 * 6"F, an anomaly might have occurred ' .  
In this case, we perform QueryAverage to determine the new average value. If the returned 

value falls within 70 * 6"F, to ensure the error bound, we perform TestAvemge with a more 

stringent error bound i until an anomaly is found or the average value obtained by using 

the initial estimate and the normal distribution is confirmed. 

We are now ready to present our improved scheme for AVERAGE queries, which is 

composed of algorithms QueqAverage and TestAverage. First the complete list of the 

parameters and notations used in the algorithms are given in Table 4.1. Figure 4.5 shows 

Algorithm QueryAverage. It takes as input the error bound 6 and the error probability b. 

Here we denote by Query(1) the average data value obtained by querying the sensor nodes on 

2Here we use the word anomaly to  indicate a situation whose likelihood is small according to the given 
normal distribution. 
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1 u I mean of the normal distribution I 

N 
p 
E 

6 

I I a I standard deviation of the normal distribution 

number of sensor nodes in the network 
promotion probability 
user-specified error bound 
user-s~ecified error ~robabilitv 

avgl I average value output by QueryAverage 
E ,  I one-sided confidence interval of the normal distribution 

€ 1  error bound used for QueyAverage 
error probability used for QueryAverage 

Table 4.1: Parameter table for QueryAverage and TestAverage 

X 

qi 
s 

avgi 

Algorithm Query Average ( ~ , 6 )  

random variable for the change in the average value 
confidence level for the interval [p - E,, p + en] of the normal distribution 
factor to make the confidence interval stringent 
average value output by TestAverage 

I 1. Select € 1  < E and 61 < 6. 

I 3. avgl = Query(l1).  
4. return avo1 

Figure 4.5: Algorithm QueyAverage 

layer 1.  Figure 4.6 shows the algorithm TestAverage. It takes as input the error bound E and 

the error probability 6,  as well as the mean p and standard deviation a of the distribution 

of the change in the average data value. The other input parameters of TestAverage are the 

round number i, and avgl , the average obtained from QueryAverage. 

In Line 2 of algorithm TestAverage, the probability that the change will fall within the 

interval [p - E,, p+ E,] is obtained by using the probability distribution of the change. From 

Line 1 to Line 5,  TestAverage tests if the average obtained by combining QueyAverage and 

the normal distribution satisfies the user-specified accuracy requirement. If this is the case, 

TestAverage will not perform any further operations. This might occur when the number 

of sensor nodes queried in QueryAverage is large enough. In Lines 17 and 18, an anomaly 
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Algorithm TestAverage ( i ,  E ,  6, p, a ,  a v g l )  

1. € , = € - E l .  

2. qi = P r [ p  - En < X < p + E n ] .  

3. if l - q i ~ ( 1 - 6 ~ ) < 6  
4.  avgi = avgl + p. 
5. return avgi. 
6.  else 

9. repeat 
10. E i = E - S .  

11. li = logl N-logL 
P 

12. if (Query(1i)  I avgi + p + s and Query( l i )  > avgl + p - s )  
13. avgi = avgl + p. 
14. return avgi. 
15. else 
16. increase s .  
17. i f s > ~  
18. Goto QueryAverage. 

Figure 4.6: Algorithm TestAverage 

is detected and thus QueryAverage will be performed again to obtain an initial estimate. 

In what follows, we show that the above improved scheme does return an average value 

which meets the user-specified accuracy requirement. 

Theorem 4.11. Consider a sensor network with N sensor nodes and promotion probability 

p. Assume the data value collected by each sensor node i s  in the range [a ,  b] and the change 

in the average value of the sensor nodes follows a normal distribution with mean p and stan- 

dard deviation a. The probability that the average value returned by algorithm TestAverage 

deviates from the true average by more than c i s  less than 6 .  

Proof: First consider QueryAverage. Choose any € 1 ,  such that € 1  < E and < 6. By 

Theorem 4.10, if we send an AVERAGE query to layer 

we can obtain an average value avgl which deviates from the true average by less than € 1  

with probability greater than 1 - hl.  
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For TestAverage, let Pi denote the average value over all the sensor nodes at round i. 

Define Ai = Bi - P1. We know a priori that Ai has the normal distribution with mean p 

and standard deviation a. 

In round i, E, = E - €1 is the maximum error we allow to be contributed by the normal 

distribution, and qi is the probability that the change in the average value will fall within 

the interval [p - E,, p + E,] . 
Therefore with probability qi x (1 - bl), we can guarantee an error bound of €1 + E, < E. 

If 1 - qi x (1 - 61) < 6, then the average value obtained using the initial estimate and the 

expected change satisfies both the error bound E and the error probability 6. We will return 
' which ensures that the error probability this value. Otherwise, we choose hi = l-qix 

will be bounded by 6 in the ith round. For error bound ~i in the ith round, since we 

do not know the returned value, we use all ~i from E to 0 as long as the returned value 

avgi f (ei) is bounded within the interval (avgl + p) f E. If that happens, the change is 

confirmed. Otherwise, an anomaly might have occurred and thus QueryAverage must be 

performed again. In our algorithm, we reduce ~i iteratively from E to 0, and use ~i and to 

P P 

(b-a)'ln$ (b-a)'ln$ 
query layer li < logi N - logi 

2r: 
+ lnf + d m # ) )  so that the 

\ / 

number of sensor nodes involved in TestAverage will increase gradually and stop as early as 

possible. 0 



Chapter 5 

Numerical Simulations 

In this chapter, we use numerical simulations to evaluate the theoretical expressions derived 

in the previous chapter for the tradeoffs between the accuracy and the latency. In particular, 

we show the effects of the accuracy requirement of a query on the layer to be queried, and 

also observe the effects of various parameters on the performance of the layered network. 

5.1 QUANTILE Queries 

We now show the relationship between the latency and the accuracy for QUANTILE queries 

in a snapshot query setting. In our simulations, we assume the sensor network has N = 

10000 sensor nodes. We first set the promotion probability p = 0.7 and explore the effects 

of varying p later. Figure 5.1 is a general picture of the relationship among error bound E, 

error probability 6 and the layer to be queried. Clearly, as E and 6 increase, which means 

the accuracy requirement is relaxed, the layer to be queried also increases, as confirmed by 

our formal analysis. 

Figure 5.2 shows the relationship between 6 and the layer to be queried. Given a QUAN- 

TILE query with E = 0.13 and 6 = 0.05, by Figure 5.2, we should query layer 11. For the 

same value of E,  if 6 increases to 0.25, we only need to query layer 12, which contains fewer 

sensor nodes, resulting in lower query delay. The relationship between E and the layer to 

be queried is demonstrated in Figure 5.3. For the same value 6 = 0.15, we need to query 

layer 8 if E = 0.06, while we only need to query layer 14 if E = 0.18. We can observe that 

the layer number monotonically increases with both E and 6. However, the layer number 

increases faster with E. Hence E has greater impact on the layer to be queried than 6. This is 
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QUANTILE Queries 

layer 1 

26 r 
24 
22 
20 
18 
16 
14 
12 
10 
8 
6 
4 
2 

.2 

error probabilty 6 error bound E 

Figure 5.1: QUANTILE queries: the impact of 6 ,  b on the layer to be queried for the number 
of sensor nodes N = 10000 and promotion probability p = 0.7 

QUANTILE Queries: 6 vs. 1 
1 ~ ' ~ ' I ~ ~ ' ~ I " " I ' ' ' ~ I ' ' ~ '  

E =  0.18 --+- 
I . . . . l . . . . l . . . . l . . . . I . . . .  

0.05 0.1 0.15 0.2 0.25 0.3 

error probabilty 6 

Figure 5.2: QUANTILE queries: error probability b vs. layer I for N = 10000 and p = 0.7 
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QUANTILE Queries: E vs. I 
I ~ L . , . , . , . , . , . , . , . , .  - 

*I  

eo 
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/ 

" - 
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

error bound E 

Figure 5.3: QUANTILE queries: error bound 6 vs. layer 1 for N = 10000 and p = 0.7 

due to the fact that the error probability 6 can easily be reduced using standard techniques 

from probability theory and randomized algorithms. Running the algorithm O(1og k) times 

and returning the median answer will reduce 6 to 6/k, as can be shown using the Chernoff 

bound. On the other hand, to reduce 6, we need to query a lower layer, which contains more 

sensor nodes. 

In Figure 5.4, we set the error probability 6 = 0.2, and observe how the layer number 

increases with the error bound 6 for various values of promotion probability p. We can see, 

as 6 increases from 0.02 to 0.14, the layer number increases from 1 to 6 for p = 0.5, while the 

layer number increases from 3 to 16 for p = 0.75. In summary, as p increases, the variation 

in the layer number is more obvious as we vary 6. This is because there are fewer layers 

in a network with smaller p and the choice of layers in a network with smaller p is more 

coarse-grained than that in a network with larger p. For a query with the same 6 and 6, 

a higher layer will be queried in a network with larger p, since a layer 1 in a network with 

larger p contains more sensor nodes than a layer 1 in a network with smaller p. 
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QUANTILE Queries: The impact of promotion probability 
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error bound E 

Figure 5.4: QUANTILE queries, the effect of promotion probability p for N = 10000 and 
6 = 0.2 

5.2 AVERAGE Queries 

For AVERAGE queries, we first show the relationship between the latency and the accuracy 

in a snapshot query setting. We set the number of sensor nodes N = 10000, and the 

promotion probability p = 0.7, which is the same as those for the QUANTILE queries 

reported above. 

The relationship between error probability 6 and the layer to be queried is shown in 

Figure 5.5. From Figure 5.6, we can observe how the layer number increases with the error 

bound E .  As in QUANTILE queries, and for the same reason as in that case, E has greater 

impact on the layer number than 6. This gives us a hint for improving our scheme for 

AVERAGE queries as we have additional statistical information. 

5.3 Utilizing Statistical Information for Periodic Queries 

We now investigate how to choose appropriate values for the parameters introduced in our 

improved scheme, which utilizes statistical information for periodic queries. Our goal is to 
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Figure 5.5: AVERAGE queries, error probability 6 vs. layer 1 for 
N = 10000, p = 0.7, a = 20, and b = 100 
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Figure 5.6: AVERAGE queries, error bound E vs. layer 1 for N = 
10000, p = 0.7, a = 20, and b = 100 
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find out how to split the error between QueryAverage and TestAverage, and which parameter 

has greater impact on the layer to be queried. Table 5.1 lists the values of the parameters 

we fix for the simulation. We will vary other parameters and observe the effects of these 

variables. A complete list of the parameters are given in Table 4.1. 

P 1 10 I mean of the normal distribution 
a 1 2  I standard deviation of the normal distribution 

N 
p 

6 
a 
b 

Table 5.1: The values for the fixed parameters 

Figure 5.7 shows the effect of €1 and b1 on the layer to be queried for QueryAverage. 

Figure 5.8 shows the effect of €1 and b1 on the layer to be queried for TestAverage. In our 

simulations, we observe that regardless of the choice of the values for €1 and hl ,  QueryAverage 

queries a larger number of sensor nodes than TestAvemge. However, in QueryAverage, the 

layer number increases moderately as €1 increases whereas in TestAverage the layer number 

changes drastically as €1 varies. This implies a smaller value for €1 in QueryAvemge will 

lead to fewer sensor nodes queried in QueryAverage and TestAverage. 

We now study the effect of a, the standard deviation of the distribution of the change in 

the average value. a measures the average distance of the changes from the expected change 

p. We vary the value of a, and fix the rest of the parameters in Table 5.1. We observe 

from Figure 5.9 that a has a big influence on efficiency. The improved scheme performs 

well when a is small, which means in general the changes are close to the expected change. 

The discontinuity of the lines when a = 2 and a = 3 indicates that QueryAverage has 

tested more sensor nodes than required, making some of the following rounds of TestAvemge 

unnecessary. 

Note that, when p = 0.5, the expected number of sensor nodes doubles as we go down 

each layer. To reduce energy consumption, every query performed in QueryAverage on some 

layer i - 1 rather than layer i must be compensated by two or more runs of TestAverage 

performed on layer i + 1 rather than layer i, or four or more on layer i + 2 rather than layer 

i + 1, etc. Thus, the combination of QueryAverage and TestAverage is more profitable when 

10000 
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20 
100 
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Figure 5.7: AVERAGE queries, Algorithm QueryAverage 
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AVERAGE Queries: Test Stage, the effect of E~ 

Figure 5.10: AVERAGE queries, the effect of the readings from TestAverage 

the change in the data is highly predictable. Thus, QueryAverage and TestAvemge can 

be used for critical monitoring applications in stable environments whereas QueryAverage 

alone can be used in applications of data acquisition in dynamic environments. 

Finally, we investigate the effect of ~i in TestAverage on the query latency of our improved 

scheme. Let Query(li) denote the average value returned by layer li which is determined 

by ~i and 6i. In algorithm TestAverage, if Query(li) f ~i is out of the range avgl + p f E,  

then we will decrease . ~ i  to query a lower layer. This will lead to involving a larger number 

of sensor nodes for this query. Algorithm TestAverage stops at  ~i = 0. However, in our 

simulation, we observe that when ~i decreases to some value, stopping TestAverage and 

moving to QueryAverage will lead to lower query latency. We observe this effect in Figure 

5.10 where the same data values as those in Table 5.1 are used, setting €1 = 6 and = 15%, 

which are reasonable choices. In Figure 5.10 we see that when ~i > 6.5, using TestAverage 

will involve fewer sensor nodes. However, when ~i < 6.5, moving to QueryAverage will lead 

to fewer sensor nodes being queried. 



Chapter 6 

Energy Consumption Issues 

In this chapter, we discuss the energy consumption issues of the randomized layered network 

and estimate the overall lifetime of the network. 

6.1 Energy Consumption 

In our randomized layered network, higher layer sensor nodes transmit over longer ranges 

than their lower layer counterparts. The energy consumed for a transmission is proportional 

to ra,  where r is the transmission range, and a varies in the interval [2, 41 depending on 

the communication medium. Given that any sensor node on a layer is also present on all 

the layers below this layer, if the sensor nodes are fixed on certain layers after the layered 

network is constructed, the sensor nodes on higher layers will run out of energy much faster 

than those on lower layers. To balance out the energy consumption among all the sensor 

nodes in the network, we need to reconstruct the layered network periodically by reassigning 

each node's layer, so that the sensor nodes on the high layers change over time. 

An appropriate timing scheme for the reconstructions will lead to relatively uniform 

energy consumption across the sensor nodes in the network. Note that reconstruction has 

no expected effect on accuracy, since we are as likely to be stuck with a "good1' sample of 

sensor nodes (in which case reconstruction is likely to give us a worse sample) as with a 

"bad" one. This argument is demonstrated in Figure 6.1. Here, we denote the event that 

a construction obtains a good sample by "1" , and denote the event that a construction 

obtains a bad sample by "0". In Figure 6.1, the network is constructed twice. The second 

construction is beneficial only for the case "01" in which we switch from a "bad" sample 
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1 : good sample 

0: bad sample 

Reconstruction is good 
only for the case "01 ". 

Figure 6.1: The effect of reconstruction on the quality of the sample 

to a "good" sample. Given the above and the overhead of building a new aggregation 

tree for each new construction, it is not energy-efficient to reconstruct the network too 

frequently. However, the reconstruction time that maximizes the network lifetime depends 

on the energy consumption for building the specific new aggregation tree. The goal of our 

randomized scheme is to reduce the number of sensor nodes, hence the query latency. Once 

the layer to be used is determined, the particular algorithm for building the aggregation tree 

is transparent to our scheme. Hence the optimal reconstruction time is beyond the scope of 

this thesis. Nevertheless, we will use simulations to provide a rough picture of the effect of 

reconstructions on the lifetime of the network in Section 6.3, without taking into account 

the overhead of building new aggregation trees. 

6.2 Overall Lifetime of the Layered Network 

In this section, we analyze the lifetime of the layered network assuming that each sensor node 

has sufficient energy to let it undergo many reconstructions, and that we run sufficiently 

many reconstructions. Ideally, we have a totally symmetric scenario where the service that 

each sensor node has performed on each layer is identical across sensor nodes. Since the 

queried layers are chosen independently by users in a random fashion, given a large enough 

number of reconstructions, what one expects to see is that most sensor nodes will have 

served on most layers. 

We define the lifetime of the network to be the expected lifetime of an arbitrary sensor 

node. The energy consumed by a sensor node for a query directly depends on the distance 

between the sensor node and its neighbors on the chosen layer. Since the expected number 
D of sensor nodes on layer 1 is N . p l ,  the transmission range on layer 1 is set to be r(1) = - ,hq' 
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The energy spent by a sensor node for a query on layer 1 is e(1) = (&) - a, which is what 

we will use below to estimate the overall lifetime of the layered network. 

Under the assumption that the queries are uniformly distributed across all of the layers 

due to the error bounds and the error probabilities coming independently from the users, 

the following theorem estimates the expected lifetime of the layered network. 

Theorem 6.1. Consider a sensor network with N sensor nodes, where the initial battery 

power of each sensor node is  B ,  and the number of incoming queries i s  a Poisson process 

with rate A. I n  a setting where each layer is  equally likely to  be queried, the expected lifetime 
BL fl a 1-p'-"/2) of the layered network is  E[t] = A&(l)JLo-a,2,) 

Proof: First consider the expected energy consumption of a sensor node for each query. 

For 1 = 0, . . ., L - 1, when a query occurs, a sensor node consumes energy only if the 

query is addressed to layer 1 and the sensor node exists on layer 1. Since each layer has the 

same probability of being queried, and the probability that a sensor node exists on layer 

1 is pl, the energy consumption of a sensor node for each query is e(1) with probability $. 
Therefore the expected energy consumption of a sensor node for each query is zkil g e ( 1 ) .  

Let the life expectancy of a sensor node be t .  Then zkll g e ( l ) X ~ [ t ]  = B. Since e(1) = 

(&)a, the expected lifetime of the layered network is 

6.3 The Effect of Reconstruction on the Lifetime of the Lay- 

ered Network 

In this section we use simulations to show the effect of reconstruction on the lifetime of 

the network. We assume that the sensor network occupies an area of 100 x 100, where 

the sensor nodes are uniformly distributed, and each sensor node has 5000 units of energy. 

We also assume that the queries are generated according to a Poisson distribution with 

mean value X = 20. The type of aggregation queries are generated uniformly from the set 

{MAX, MIN, QUANTILE, AVERAGE). For QUANTILE queries, the error bound and 

the error probability are assumed to be uniformly generated at random within the intervals 

0 < E < 0.5 and 0 < b < 0.5 respectively. For AVERAGE queries, the range [a,  b] of the 

sensor values is set to be [20,100], and E is set to be proportional to a and b. In the energy 
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Figure 6.2: The effect of reconstruction on the lifetime of the network 

consumption calculations, we use a = 2, where a is the path-loss exponent experienced by 

radio transmission. The promotion probability is set to be p = 0.5. We do not consider the 

overhead of building a new aggregation tree for each network construction. 

In our simulations, we use the simplest routing tree building technique, naive tree build- 

ing [24]. Once the layer to be queried is determined, the base station and all the intermediate 

nodes on that layer broadcast the query using the transmission range of that layer and col- 

lect data in a reverse fashion. Every data point presented in the figure is the average of 

100 random experiments. Figure 6.2 shows the effect of reconstruction on the lifetime of 

the network. Clearly, without reconstruction, the sensor network depletes much faster. As 

the number of sensor nodes increases, the lifetime of the network also increases, since the 

distances between the sensor nodes are shorter, leading to less energy consumption. 



Chapter 7 

Conclusion and Future Work 

We have presented a fast data collection technique for approximate aggregation queries over 

large wireless sensor networks, which utilizes a randomized layered architecture. The layered 

architecture of our network is constructed and maintained locally and thus provides scalabil- 

ity and robustness for sensor networks where communication dominates energy consumption 

and communication links are unreliable. 

In our layered network, each layer contains a random subset of the sensor nodes. A query 

is always addressed to a specific layer, and only the sensor nodes on this layer respond to 

the query. The data collected by this layer will be used to approximate the data collected 

by the whole network. This results in fewer sensor nodes being queried and thus lower query 

latency. 

In our approximate aggregation scheme, the accuracy requirement of a query determines 

to which layer this query is addressed, hence the query latency. We perform formal analysis 

on the relationship between the accuracy of an answer and the latency of obtaining this 

answer. Given a query with an accuracy requirement, our scheme selects the appropriate 

layer which, with the lowest delay, returns an answer with the desired accuracy. 

We present a scheme that permits applications to choose desired tradeoffs between accu- 

racy and latency. Our scheme is useful in the context where users are interested in obtaining 

aggregated information with low latency, and are satisfied with a good estimation of it. 

Many environmental quantities measured by sensor nodes vary only slowly over time. 

We exploit this advantageous feature to efficiently collect data from sensor networks. Given 

statistical information obtained from the history of the environment, we improve our scheme 

to further reduce the latency incurred in answering AVERAGE queries in a periodic query 
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setting. 

We have made our first attempt to attack the delay problem in sensor networks. There 

are still various open challenges and directions for future work: 

0 We would like to explore data aggregation techniques for other types of approximate 

queries over sensor networks such as majority, the most frequent item, and range 

queries. 

We want to investigate the optimal reconstruction time of the layered network. To 

prolong the lifetime of the network, we need to reconstruct the layered network peri- 

odically. Since the optimal reconstruction time is aggregation-tree specific, we have 

not addressed this issue. It would be interesting to study the optimal reconstruction 

time under various schemes for building aggregation trees. 

We want to develop a reconstruction scheme based on the residual energy of the sensor 

nodes. In terms of balancing the energy consumption among all the sensor nodes, 

a better way to reconstruct the layered network would be relating the promotion 

probability of a sensor node to its residual energy, so that the sensor nodes with larger 

residual energy will have better chances to exist on high layers. 

When we refine our scheme to utilize statistical information for periodic queries, we 

make the assumption that the change in the environmental quantity has the normal 

distribution. In general, the statistics of the environmental quantity being monitored 

might not be known, or its distribution might not follow the normal distribution. It 

would be interesting to investigate the problem in a more general setting. 

The enormous amounts of data generated by large sensor networks necessitate the devel- 

opment of efficient data collection techniques to extract general characteristics of the data 

from sensor networks. Due to the constantly changing environments of sensor networks and 

the large number of sensor nodes involved, approximate and randomized computation over 

sensor networks is a promising approach. We envision that approximate and randomized 

computation will become very common in many sensor network applications. 



Appendix A 

The Chernoff and Hoeffding 

Bounds 

In the design and analysis of randomized algorithms, it is essential to show that the al- 

gorithms behave well with high probability. The Chernoff and Hoeffding bounds are fun- 

damental tools for analyses of this type. The probability that a random variable deviates 

from its expectation by a given amount is often called the tail probability of the random 

variable. The Chernoff and Hoeffding bounds are used for bounding the tail probabilities 

of the sums of independent random variables. The Hoeffding bound can be extended to the 

case of certain sums of dependent random variables. 

A . l  The Chernoff Bound 

In our analysis in Chapter 4, we require the following inequality [35], a simplified version 

of the Chernoff bound. This inequality bounds the lower tail probability of the sums of 

independent indicator random variables. A general version of the Chernoff bound can be 

found in [8]. 

Lemma A.1. (Chernoff's Inequality) Let X I ,  X z ,  . . . , Xn be independent random vari- 

ables such that, for 1 5 i 5 n, X i  E (0, I ) ,  Pr[Xi  = 11 = pi and P r [ X i  = 01 = 1 -pi ,  where 
n n 

0 < p i  < 1. Then, forX = Exi , p = E [ X ]  =Epi  and 0 < E 5 1, 
i=l i=l 
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Random variables such as XI , .  . . , X, in Lemma A.l, whose values are in the range 

{0,1) are often referred to as indicator random variables. The sum of independent indicator 

random variables is said to have the binomial distribution. 

A.2 The Hoeffding Bound 

The following inequality, due to Hoeffding [18], applies to a more general class of random 

variables. It bounds the tail probabilities of the sums of independent random variables 

whose ranges are bounded. 

Lemma A.2. (Hoeffding's Inequality) Let X1, X2, .  . . , X, be independent random vari- 

ables such that, for 1 5 i 5 n, a 5 Xi < b. Then,  for X = Cr=l Xi and E > 0, 

Random variables XI ,  Xz, . . . , X, in Lemma A.2 can be considered as n random samples 

chosen with replacement from the sample space [a, b]. 

In section 6 of the paper [18], Hoeffding showed that the same bound as described in 

lemma A.2 applies to the tail probability of the sum of random samples without replacement 

from a finite population. This result is summarized in the following lemma. 

Lemma A.3. Let C = {cl, c2,. . . , cN), where a < ci 5 b for 1 5 i < N .  Let XI ,  X2,. . . , Xn 

be random samples chosen from C without replacement. Then,  for X = Cr=l Xi and 

E > 0, 
-2nt2 

P r  [x- E [ X ]  2 c] 5 e m .  
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