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Abstract
. W3 ind
The ii(}!i’&pﬂl&;i()ﬂ&i cost for solving ill-posed problems can be extremely lar 32—-1—%"- for
the Tikhonov method, 7 is the number of Newton iteraticns, and in? for the Landwe-

ber iteration, where 7 is the number of Landweber iterations. Several fast techniques exist
such as the QR method of Eldén and Voevodin, and the generalized T.andweber iteration
of Strand. But the former method first involves an expensive transformation process ap-
plied to the operator, and then a search for the regularization parameter. This expensive
transformation can induce rounding errors, which would affect the parameter search. Also,
the latter method involves polynomials of the operator, and hence may not be practically
applicable. In this thesis, we present several multilevel approaches which can reduce the
computational cost dramaticaily. We present a multilevel Landweber iteration that resem-
bles the Twomey-Tikhonov method, and a multilevel Tikhonov method with zero’th-order
and first-order stabilizers. Using the multilevel Tikhonov method with a first-order stabi-
lizer, we also present a multilevel technique for a class of nonlinear first kind equations.

{Clentral to these multilevel methods are the effects of the interpolation error— how does
the interpolation error belonging in the null space of the operator K affect the approxima-
tiou?: the dan'lping effect of the multilevel process— can we interpret the methods in terms of
~selective” dampening of {requencies of the error on different grid levels?; and the parameter
selecilon- how can we choose a good parameter and how is the parameter of one grid related
to the parameter of the next grid? It will be shown that the effects of the interpolation
error can be controlled by the choice of interpolation operator. We also will give an intuitive
view of the damping effect of the multigrid schemes, and we will describe some generalized
discrepancy principles and the quasi-optimal parameter selection procedures. Showing a
relationship between the parameter of one grid to the parameter of the next grid definitely
requires more investigation.

Numerical experiments conducted demonsirate that the multilevel methods can be very

effective. We describe some of these experiments in the last chapter.
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Chapter 1

Introduction

The view of ill-posed problems has changed since the time of Hadamard, Tadeed, fl posed
problems arise in many of the natural sciences and will continue Lo arise in mwore problems
as technology advances. Seismology. mineral and oil exploration, computer tomography,

plasma diagnostics, radioastronomy, and image processing are some of the present diverse

fields which constantly encounter this branch of mathematics. Aud tronicallyv. Hadamard’s
classical exampl he Cauchy problem for the Laplace equation itsell deseribes many

physical models appearing in several of these fields, We give cxinples of this and of other

ill-posed problems below.

i.1 Inverse Problems in Gravimetry

Consider the problem of determining the topography of the earth’s base. This problem is
I3 = AP 1

confronted in mineral and oil exploration since nrmr*m? and oil deposits are often related 1o
specific characteristic forms of the base and iutrusions. One approach for determining the

topography is to extract information from gravitational observations at the surfuce of the

earth. Since the inteusity of the gravitationsi field at the carth’s surface is affected by the
inhomogenities of the terrain and of the density of material within it. and sigce the base
and the intrusions are of higher densities than that of the sediment, the topography of the

base and intrusions car be constructed using these gravitational chservations
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1.1.1 Continuation of Static Fields

aund the intensity compone

1. consider figure 1.1, If the distance between two

istance between the intrusions and the surface, then

iniensity

e

sediment

base

rtinuation of static felds.

ph of the gravitational field intensity. Otherwise,
usions is less than their distance from the surface,
number
determining the the surface. If the new graph maintains a
single local maximum at the interval of interest, then the reliability of the former graph is

streagthened. But if an additional local maximum appears. then it is possible that there

vl

are two intrustons beneath the interval. In mineral and oil drillings. it is desirable to drill
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between the bodies.
Now let the earth’s surface coincide with the z-axis, and let u{x.y) be the vertical
intensity component of the gravitational field generated by several bodies located at a depth

of y < —H. Then

Au = 0

u(z.0) = gla), (1.1)
where ¢g{x} is known. The unknown is the intensity function
flz)=u{z,—h}, 0<h< .
Since equation {1.1) is equivalent to the first kind integral equation

L i3 — (1.2)

e B2+ {2z — &)

which is the integral equation formulation of the Cauchy problem for the Laplace equation,
the continuation problem reduces to Hadamard’s problem. Equation (1.2} is an ill-posed

linear integral equation.

1.1.2 Contact Surfaces and the Prediction of Gas- and Oil-bearing Struc-

tures

Another inverse problem in gravimetry involves the study of multilayered media. Only the
single-layered case will be discussed.

Gas and oil deposits are often characterized by dome-shaped uplifts in the base’s to-
pography. These structural problems are simulated using the concept of contact surfaces
at which the medium’s density abruptly changes. Let z = —h be a horizontal plane, and
assume that the density of a bounded region abutting this plane deviates from the density
of the plane. Denote the bounded region by D. Also, let Ap(z,y,z) denote the excessive
density of D, let u{z,y. z) be the potential of the anomalous gravitational field, and let 7

denote the gravitational constant. Then

) ¥ Ap .
uz.y.zy == [[f —— dE dnd(. (13)
17 J S ID [z — €2 4 (y - )2 + (2 — ()]
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) -
/ ground surface/
z=-h + f(x,y)
\
: contact surface
1 z=-h
1
]
I
_\/7)- ----------- y
i /

Figure 1.2: Contact surface.

Moreover, the vertical component of the intensity of the anomalous field H(z,y) is given by

. d
H(z,y) = -5 u(z.9,2) =0

- /// D [(z - €)? +(ypn)2+§2]% d€ dn d¢. (1.4)

{1.4) does not have a unique solution.

Now assume that Ap is a known constant, that D is bounded above by —h + f(z), and

for simplicity. consider only the 2-dimensional case. We have

Ap‘ p ~—h+f(€) [ 1 :l }
H(z) = _ ~| ded
* 2r Jy {// [(z-62+ (y—n)?2 ! ly

_ _Apy b r=h+1(8) n

- -2 Pl

Y O N [l S A Gl ()

B __L:_/; In { (z—€)2+h2 dg. (1.5)

This is an ill-posed nonlinear first kind integral equation in f(z).
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1.2 Medical Tomography

The procedures of this last example are not only applicable to medical tomography, but
they also are applied in other fields such as plasma physics, which frequently studies plas-
mas that reach several tens of millions of degrees— no measuring device can withstand this
temperature!

' /e these inverse problems, ing es are performed :
To solve thes blems, the following stages are performed

e remove the instrumental disturbances, i.e. solve
Bg = v,
where B is an operator defined by the device;

e determine the attributes of the unknown function f from the data g, i.e. solve
Kf=y,
where K is the operator of the problem;

e display the attributes of f in some visual form, i.e. solve

where D is an operator defined by the visual apparatus and w is the “brightness

function.”

Figure 1.3 illustrates these stages and the scanning process in medical tomography. Here,
the rays are sent through the object {(e.g. the head) at different paths by rotating the
detector and z-ray source together. Variables [ and 8 are parameters of the path L on the
path @, and

l==zcosf+ysinb.

The three stages are given by

/% bl — g, 0)dl' = o(l,8), (1.6)

-0
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SCANNING
| ettt i
I Q
i |
i L{, 9 ;
| "N\
| . i
] i
§ < ¥
1 X-ray source device
f l
t !
i |
i 1
1 1
i I
i |
i i
! i
i i
¥ i
I i
! i
! 1
! i
. !
INSTRUMENTATION
COMPUTER —> DISPLAY

Figure 1.3: Medical tomography.

/L /”"’ ; ‘{(63_77) —dédn = S(z,y) :"—‘I.l'/ 4(1,6) dé, (1.7)
~o0d —oo {\1—5)‘+(y"77)'}5 e

Il

[ [z -ev-muendedn = fiz,), (18)

where G is the domain of support for w(z,y). Again ill-posed integral equations must be
solved.

As an example of how an algorithm will inherit the instability of any one of these
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equations, consider solving the 1-dimensional convolution equation

Kf = / k(s — Of(1) dt

—oG

= g(s), —oo<s< oo,

o

using Fourier transforms. Assume that

Lg(—OO, &’)) 5

m

9(s)
f(1)
k(‘}\) € Cg(—-O0,00),

m

El(—c/o, OO) y

and that
g(s) = gr(s) +v(s),

where gr(s) is the exact right-hand side and v(s) is an interference.

transforms to (1.9) we have
K(w)* f(w) = gr(w) + d(w),

which implies that

oo grlw) | B(w)
1) = Fo T ke
R b(w)

Hence,

0 = 5 [ fweas

1 oo o 1 W) .
= 5:/ fr{w)e“tdw + ———/ o )(:""’L dw

21 Jooo K(w)
1 o BT N )
_ fT(t)Jr——/ ) gt g
T Joc K(w)

Applying Tourier

But the last integral can be arbitrarily large since in general, K{w) and v(w) approach zero

as lw] — oc at different rates. In particular, if the random function »(w) contains high

H

frequencies, the integral may even diverge.
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Clearly there is a need for solving ill-posed problems, and as illustrated in the last ex-
ample, there is a need for stable algorithms for solving them. Fortunately, stable algorithms
for solving ill-posed problems exist. In this thesis, we examine some of these “regularization
algorithms” for solving first kind operator equations with emphasis on solving linear first
kind Fredholm integral equations. We then examine the possibility of applying multilevel
processing to these algorithms, in order to reduce the computational cost yet obtain the

same convergence rates.



Chapter 2

Theoretical Foundations

This section presents some of the fundamental theory and concepts used throughout this
thesis. Section 2.1 reviews some basic elements of funciional analysis, beginning with Hilbert
spaces and ending with some spectral theory on Hilbert spaces. Most of the theorems in
this section are merely stated. Section 2.2 elaborates several of these concepts for Fredholm
integral equations. The emphasis here is on spectral theory, especially the Picard conditions
for solvability of Fredholm integral equations of the first kind. The final section presents the
rudiments of multigrid for problems with a continuous base. Multigrid for purely discrete

models will not be presented.

2.1 Hilbert Spaces and Linear Operators

2.1.1 Hilbert Spaces

Definition 2.1 A nonempty set ‘H together with a real-valued (complez-valued) funclion
(-,-) from H @ H into R (C) is called a Hilbert space if H is a real (complez) vector space

and (-,-) satisfies the following properties:

. (z,2) >0, and (z,2) =0 f and only if z = 0;

ot

faay

(z+y,2)=(z,2)+ (y,2) forallz,y,2 € H;
. (Az,y) = Az,y) forallz,yc H,A e R;

o
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4. (z,y) = {y,z) (z.y) = (y,z}) for all z,y € H;
5. if {z,}) CH,

lim (2, ~ Tm,Tn — Zm) — 0,

n,M—00

then there exists an element € 'H such that

Jim (o 2,20~ 2) =0

The function (-,-) is called an inner product, and without property (5), H is called an inner

product space.
If the norm [|zf] = (=, z)% is defined on H then the following theorem holds:

Theorem 2.1 (Schwarz Inequality) In a Hilbert space H,

(. )] < ll=]l{l9ll -

Using this theorem, it can be shown that a Hilbert space is a Banach space with the
previously defined norm. Property (5) states the completeness property of H.

The familiar examples of Hilbert spaces are
I:= {{a;} : Z la;]* < oo} ,
=1
and

Ly:= {f(t) : /b (7 dt < oc}

with the respective inner products
o0
(a,b) = Za,-b,- ,  a={a;} and b= {b;},
=1
and
p [P s
(f.9)= | f(t)g(t)adt.
a
The latter example will appear frequently in this thesis.

Hilbert spaces possess two properties that are fundamental in the theory of ill-posed

problems. They concern the concepts of convexity and orthogonality:
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Definition 2.2 A subset C of a normed linear space is said to be convex if [tr +(1-)y] €
for all z,y € C and all t €]0,1}.

Definition 2.3 Let .,y be two points in an inner product space E. If (z,y) = 0, then @
and y are said to be orthogonal. This relation is written as = L y. Let 5 be any subset
of E. If z is orthogonal to each element of S, then x is said to be orthogonal to 5, and
this is written as * L 5. The set of elements of E that are orthogonal to S is called the

orthogonal complement of S, and is denoted by S+ -
St={yecE:zLyforalzecs§}. (2.1)

The two properties are given in theorems 2.2 and 2.3 .

Theorem 2.2 Let S be a closed convezx set in a Hilbert space H. For every poinl xy € H,

there erists a unique poini yy € 5 such that

Theorem 2.3 (Projection Theorem) Let S be a closed linear subspace of a Hilbert space
H. Any o € H can be written in the form zq = yo + 2o, where yo € 5, 2o € S+. The

elements yo, zo are uniquely determined by zg.

Proofs of these two theorems as well as most of the other theorems in this section can
be found in any book of modern analysis. We note simply that using zo = 0 in theorem 2.2,

S contains a unique element of minimal norm.

2.1.2 Linear Operators and Functionals

Let X and Y be two linear spaces, and let T be a function from a subset Dy of X into Y.
T is called an operator, and D1 and T(Dr) C Y are called respectively the domain and

range of T. Furthermore, if D7 is a linear subspace of X, and if

T(w1z1 + v222) = "Tz1 + 72Tx2, 71,72 scalars,
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then F is called a lincar operator. Now assuming that D7 = X, the set of linear operators

from X into Y can be made into a linear space by defining the operations

(T+S5)z = Tz+ Sz
(+T)z = ~T=x.

H s i

This space will be denoted by L(X,Y).
When X and Y are normed linear spaces, and Dy = X, the norm of T also can be

defined. First, T is said to be bounded if there exists a constant C' such that
ITzlly < Cllzllx

for all z € X. T is said to be unbounded otherwise, and the subspace of all bounded

operators in L(X,Y ) is denoted by B(X,Y ). The norm of T is

T} := sup M = sup [|Tzl|y .

; =0 Izllx =t
Trivially then, for T € B(X,Y),
iTzlly < ITlli=llx -

Of course, bounded linear operators play a larger role in applications. One reason for
this is that a bounded linear operator implies a continuous linear operator- i.e., a linear
operator that satisfies the condition that if z,, — z, then Tz, — Tz. The converse also
holds. Another reason is that for an arbitrary T € B(X,Y), a sequence of T, ’s € B(X,Y)

that “approximate” T" may exists. The following definition clarifies this:

Definition 2.4 A sequence {T,,} of bounded linear operators from a normed linear space
X into a normed linear space Y is said to be uniformly convergent if there exists a bounded

linear operator T from X into Y such that
T ~T}| — 0 asn— oco.

{T.} 1= said to be uniformly convergent to T.
{T.} is said to converge strongly or pointwise to T if

{Tor —Tzlly — 0 as n— oo for any z € X.
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Now consider the case when X is a normed linear space and Y = ¥. Linear operators
defined on X into R (C) are called real {complex) linear functionals. These operators will be
denoted with lower-case Roman letters superscripted with asterisks (e.g. &™), and B{.X.R)
will be denoted by X~*. X™, which is called the dual or conjugate space of X', is also a Banach
space. Thus, the dual of X~ is defined. Moreover, to each element r € X, a corresponding
element # in the dual of X~ is given by #(z™) = z*(2) for all = € X~. This correspondence

between X and X ™ is called a natural imbedding of X into X~=.

Definition 2.5 Let X be a Banach space. [f the natural tmbedding of X into X™* is equal
to X™=, then X 1s called reflerive.

Linear functionals introduce another form of convergence in a normed linear space X,
B |

Let {z,} be a sequence in X. {z,} is said to be weakly convergent if there exists an element

z € X such that

nli_{rgc 7 (x,) = 27 (2)

for any z* € X*. The element z is called the weak limit of {x,}, and {x,} is said to
converge weakly to z. Furthermore, a sequence {z,} C X is called a weak Cauchy sequence
if {*(z,)} is a Cauchy sequence for any ™ € X~ the space X is said to be weakly complete
if every weak Cauchy sequence has a weak limit; and a set 5 C X is said to be weakly closed
if the weak limit of every weakly convergent sequence in S is in S,

There is also a connection between bounded linear functionals defined on a Hilbert space
‘H, and the space B(H;,H2), where H> is another Hilbert space. The connection is a resalt

of the Riesz reprentation theorem:

Theorem 2.4 (Riesz Representation Theorem) For enery conlinuous lincar functional

z~ on H;, there exists a unique element z € Hy, called the representer of =7, such thal
z¥(z) = (z,2) for every = € H,

and

ol = =1
Let T € B(H1,Hz2) and y € H, , and define the linear functional z* by

t™(z) = (Tz,y)s.
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Clearly £~ is continuous hecause
1" (2)1 < (T fiylly) el -
Hence, by Riesz theorem, there exists a z, € H; such that
c*(z) = (2, 2y)1 3
hence, there exists a mapping y — 2,. Moreover, this mapping is not only linear, but it is

also continuous since by taking z = 2z, — 2zy,,

it

(2, — Zya h

I

(Tz,y1 — 42),
Nzl v — w2lls

IA

or

2y = 2ally < 1Ty = w2lls -
]f gy —* Yz, then Zy, — zyz .

Definition 2.6 The mapping y — z,, 18 called the adjoint operator of T, and is denoted
T=. It is the unique operator in B(H, H;) satisfying

(T"E: y)z = (27 T*y)l

for all x € Hy and y € Hs.
When Hy = Ha, T is said to be self-adjoint if T =T~ .

Example 1: Let A be the integral operator defined on the real L;]a, b] space given by
5
Kf(s)= [ k(s.05@dt,

where k(s,1) € £2({a,b] & [a,b]) . K is a bounded linear operator for if |{f|l, <1, then

2

K f(s)? = E/Jk(s,t)f(t')dt
! a

i
H
i

< [P [ 1w ar

b
< [ ks, 0Pt
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and so

1K flly < b = {// (s, O MJ

Now since the adjoint of K must satisfy

(Kf,g)y =/, K%),,

b b rb
/ U k(s,t)f(t)dt}g(s)ds U k(s Dg(s) d -]j(mu

]
/ FV TR g(s)]

b
f\""g(8)=/ k(s,t)g(s)ds .

Example 2: Let S be a closed subspace of a Hilbert space H . By the projection theorem,

Il

fl

for all f(t) € Lz[a,b]. Thus

any z € H can be written as

r=x1+z,€S5m 5.
Now consider the operator Ps € B(H,S) defined by
PSI =T.

Pg is called the orthogonal projection operator of H onto 5. It is sell-adjoint and satisfies

the properties

Ps = Ps?,
ipsll = 1,
llz — Psz|| = jé‘{« {llz — wli} .

Several useful properties of the adjoint operator are

(\T)y” = T"Tv"
FRs sk At . T
[ - 4
(i +T2) = T+ 1y
(/T = 417, 7eR
W= = 1Tl
T =

Fs at ¥u altl

| = 1T)*.
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A crucial theorem involving T~ is theorem 2.5.

Theorem 2.5 If T € B(H;,Hsz), then

Nt = R(T%) R(T)* = N(T™)
N(T)* R(T) R(T™Y = N(T).

ii

Here, N(T) is the null space of T defined by
N(T)={z:Tz =0},

and R(T') is the range of T .

2.1.3 Compact Operators

The importance of this class of operators warrants a separate subsection. Compact operators
play a central role in the theory of linear integral equations and the theory of ill-posed

problems. Before examining these operators, however, we define a compact set.

Definition 2.7 Let (X, p) be a metric space. X is said to be compact if every sequence in
X contains a convergent subsequence. Equivalently, X is compact if X is complete, and for

every ¢ > 0, X can be covered with a finite number of open spheres of radius €.

Definition 2.8 Let T € B(X,Y) where X and Y are normed linear spaces. If T(B) is

compact in'Y for each bounded set B C X, then T is called a compact operator.
Next, we give a collection of important facts concerning compact operators.
Definition 2.9 An operator is said to be finite rank if its range is finite-dimensional.
Trivially, a finite rank operator is compact.

Theorem 2.8 A compact linear operator maps weakly convergent sequences into convergent

sequences.,

Theorem 2.7 Let X be a normed linear space. If T\, T, € B(X,X) and T is compact,
then T1T5 and ToTy are compact.
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Theorem 2.8 Let X be a normed linear space, and let Y be a Banach space. An operater

T € B(X,Y) is compact if and only if its adjoint is compact.

Theorem 2.9 Let X be a normed linear space, let Y be a Banach space, and let I ¢
B(X,Y). If [T —T,|| — 0 as n — oo, where each T, € B(X,Y) is compact, then T is

compact.

Using the fact that every Hilbert space contains a complete orthonormal system, and

using thecrem 2.9, it can be shown that the integral operator of example (1) is compact.

2.1.4 Spectral Theory

Two of the most common operator equations are

Az — Kz

il

Yy A anonzero scalar, (2.2)

Kz = vy, (2.3)

of which the Fredholm integral equations of the second and first kinds are respective exam-
ples of. The setting is z,y € H, a Hilbert space, and K € B(H,H) and is compact. The
problem is to find z given y and K . Equivalently, assuming that (A/ — I,()“l and K ! exist,
the problem is to find expressible forms of these inverses.

Another problem is deriving conditions for the existence of a solution. Necessary and
sufficient conditions for the existence of a solution for arbitrary right-hand terms are a
crucial part of the theory of first and second kind operator equations. As a preparation
for the study of this and the previous problem for the more difficult first kind equation, we
consider these problems only for equation (2.2) in this subsection.

Define the sets Ny, N)*, Ry, and R)™ to be

Ny = {z:Az - Kz =0}, Ny ={z:2z- K"z =0},
Ry = {y:y=Xdx—FKz,z€H}, R ={w:w=Xrz—-K"z2z¢M}.

It can be shown that Ny and N,* are finite-dimensional, and that R, and K," are closed.

A simple application of theorem 2.5 then verifies that
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Theorem 2.10 (a) Ry = N)\** - i.e., the equation Az — Kz = y has a solution if and only
if y lies in the orthogonal complement of Ny*.
(b) Ry\* = Nyt - ie., the equation Az — K*z = w has a solution if and only if w lies in the

orthogonal cornplement of N.
In fact, the following stronger theorem holds:

Theorem 2.11 For any A # 0,

dim Nyj.xg = dim NKI*K* < 00,

Rax = Nypg.ts  Ryge=Na-r™.
Here, the notation of the subspaces has been changed to stress the variability of .

Theorem 2.11 is essentially the Fredholm alternative. It states that either

1. for any y € H, there exists a unique solution of (Al — K)z = y; or

2. there exists a nonzero solution of (Al — K*)z = 0.

Condition (1) holds if dim Ny_x = dim Ny_,. = 0. If (2) holds, then dim N)_x = dim
N _ g is finite, and the equation (A — K)z = y has a “general solution” if and only if y is
in the orthogonal complement of Ny_j. . Similar statements hold for the adjoint equation
(AT = K*)z=w.

Actually the Fredholm alternative emphasizes more on the parameter A.

Definition 2.10 The resolvent set p(K) of K consists of all complex numbers X for which
(Al — K7 is a bounded operator. For these values, the operator

RO\ K)=(\T-K)™!
is called the resolvent of K, and A is called a regular value of K .

One way to represent the resolvent of K is to take a geometric series expansion for

(AT~ K7,
N —1 d 1 n
(A= E) =3 g k™

n=
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However, this is valid only for

IAL> Jo(K)] = sup {]A}},
A€o(K)

where o( K) is defined below.

Definition 2.11 The spectrum o(K) of K consists of the complement of p(K') in C. These

values fall into three sets:

1. continuous spectrum~ the range of (A — K') is dense in H and (N — K" exists

but ts unbounded;
2. residual spectrum— (A — K)™! ezists, but its domain is not dense in 'H; and
3. eigenvalues- (Al — K) does not have an inverse; i.e., there caisls a nonzero

such that (A — K)z = 0.

The Fredholm alternative states that for nonzero A, A is either an eigenvalue or a regular

value of K. Note that in =au infinite-dimensional space, for A = 0, (Af — K)™' = —K~!
cannot be bounded si:ce otherwise KK ~! = I would be a compact operator. Hence,
0€o(K).

Theorem 2.12 Let K be a compact linear operator in an infinite-dimensional Banach
space. Then o(K) consists of 0 and either a finite number of eigenvalues or an infinite

sequence of eigenvalues that converges to 0.

2.1.5 Spectral Family of Self-Adjoint Operators

Now let K be a self-adjoint operator belonging to B(H,H) which need not be compact. The

spectrum of K simplifies, and an elegant spectral theory can be developed.

Definition 2.12 A self-adjoint operator K € B(H,H), where H is a Hilbert space is suid
to be positive if
(Kz,z)>0  for all z € H.

If K is positive, we write K > 0.

For two self-adjoint operators K and 7', the notation K > 7" will be used if (K —1') > 0.
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Theorem 2.13 The specirum of a seif-adjoint operator K is contained in the real line, and
if a and b are real numbers satisfying al < K < bl, then o(K) C [a,b]. In fact, with

m = ”inf (Kz,z) and M := sup (Kz,z),

==t lleti=1
o(K) C [m, M].
Theorem 2.14 If K € B(H,H) is self-adjoint, then
IE| = lo(K)] .
lo(K)| is called the spectral radius of K .

Now consider the linear operator T defined on R". Suppose that the matrix represen-
tation of 7' is real and symmetric, and has n distinct eigenvalues A; which are indexed
according to increasing magnitude: A; < Ajy1. Let {u;} be the orthonormal basis of eigen-
vectors corresponding to {\;}. The spectral familty of T is the family of projection-valued

functions {F)} that satisfies

Eyx = 0 A<X\
E,\ = PS,’ /\i</\§/\i+1
Ex = I A <A

where §; is the subspace spanned by {uj};-:l, and Ps, is the projection onto S;. Defining

the projection A;E by

AE = Pg
AiEx = (Ex—Ey_)z=(z,u)u; 1=2,...,n,

then

Tz = i/\i(z,ui)ui = Zn: /\iA,'EJ: .
1=1

=1
This concept can be generalized to include self-adjoint operators defined on infinite-
dimensional Hilbert spaces. A spectral family generated by a self-adjoint operator K is a

family of projections {E\} for A € R satisfying
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1. Ex<E, A<y

2. E, is strongly continuous from the left, i.e.
;\J}IL Eyz = E,x forany v € H;
3. Ex=0 ifA< m, Ey=1 if A> M.

Let f()) be a continuous complex-valued function for m < A < M. Assume that f(A)
can be extended to M < A < M + 1 so that the extended function, which we denote by f(A)

again, is continuous on [m,M+1). The integral

M+e
/ fINMdEy, (0<e< 1)

m

can be defined:
Let II be a partition of [m,M+ €]

m=X<A<...<A,= M+e¢.
That is, it is a partition of an interval containing o(K). Let
AiE = E)\‘ - EA,._1 and Ai = [/\1‘._1, /\2'] .

The integral is the limit of the sum
> F(u)AE
i=1

as || := max;(A; — A\j—1) approaches zero, where y; € A;.

Theorem 2.15 To every self-adjoint operator K there corresponds a unique famnily {1}
of projections, —o00 < A < oo, satisfying

1. any bounded linear operator that commutes with K comrnules with Iy,

2. Eyx< E, if A< py;

3. E, is strongly continuous form the left;

4o Ex=0ifA<m Ex=1ifA>M;
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M+e
K:—./ AEy (0<e<1).
m

Next,
Theorem 2.18 Let K be a self-adjoint operator, and let {Ey} satisfy (1)-(5) of theorem
(2.15). Then for any polynomial p(}),

pK) = [ ) dEs.

m

Theorem 2.17 For any polynomial p(A) and any z € H,

M+e
((K)a,5)= [ pN)d(Bre,2).

Moreover, if f()) is any continuous function for m < A <M, f(K) is defined to be

M4e
fKy= [ 50 dBy.

m

Theorems 2,16 and 2.17 also hold:
Mie

(K)e = [ ) dEx
M

+e
(f(K)z,2) = /m F(A) d(Exz, ).

The significance of this functional representation is illustrated in the analysis and con-
struction of linear iterative methods. For example, the inverse of an invertible positive
operator K can be approximated by a sequence of operators {f,(K)}, where each f, is
continuous in an interval containing o(K), and where {f,} converges uniformly to A~! on
this interval.

Finally, assume that K is a compact self-adjoint operator. From a previous discussion,
the spectrum of K consists of zero and a finite number of eigenvalues or an infinite sequence
of eigenvalues that converges to zero. Also, the eigenspace corresponding to each nonzero

eigenvalue is finite-dimensional. We have
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v

Theorem 2.18 Let A1, Aa,... be the eigenvalues of K which are repeated according to the
dimension of the associated eigenspace, and let uy,uq, ... be the corresponding orthonormal

eigenvectors. Then for any z € H ,
Kz = Z An(Z, Un )Un -
n
Furthermore, given any real-valued function f defined on o(K), f(A') is given by
f(K) = Z A&, un)tin
n

and the following theorems hold:

Theorem 2.19 Let K be a compact self-adjoint operator, and let f be a continuous real-
valued function defined on o(K ). Then

o(f(K)) = flo(K)).

Theorem 2.20 Let K be a compact self-adjoint operator, let [ be a continuous real-valued
function defined on o(K'), and let {f,} be a sequence of continuous rcal-valued functions

which converges to f uniformly on o(K). Then

N fn(E) — F(K)) — 0.

2.2 Integral Equations

Several examples of integral equations, and the crux of the theory of linear Fredholm integral
equations of the second kind have been given already. The objective of this section is to
develop the theory of Fredholm integral equations of the first kind.

Consider the following generic Fredholm integral equation of the first kind:

/b k(s,t)f(t)dt =g(s), a<s<h (2.4)

or
Kf=g, (2.5)
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where K is the integral operator defined on Lq[a,b] generated by the kernel k(s,t) €
Lq([a,b] @ [a,b]). The difficulty of this problem stems from the fact that N(K) may be
non-trivial, and more importantly, from the fact that K~! may not be continuous even
though K ~! exists. The latter difficulty implies that small changes in the data g(s) may
cause dramatic changes in the solution. For example, with @ = 0 and b = 7, using the

Riemann-Lebesgue lemmma, for sufficiently large n, the slight perturbation of
A/ k(s,t)sin(nt) dt
0

to ¢(s) will cause a change of A sin(nt) to the solution of the original problem. This change
to the solution can be quite large.

More insight into this instability problem is revealed through the singular value decom-
position of the operator. Since K is compact, K*K is compact, and since K™K is positive,

all the eigenvalues of A'™*K are nonnegative:
0<(K*Kz,z)= (er,z) =€,

where ¢ is an eigenvalue and r is the corresponding orthonormal eigenvector. Thus the

eigenvalues can be represented as

MEI< A<

Now if the associated orthonormal eigenvector system is denoted by {v,}, and if ., is defined
by

p = Ay
and u,, is defined by

Unp = UK vy,

then the set {u,,v,; pn} is called the singular system of K . The p,,’s! are called the singular

values of K, and the v,’s and u,’s, which form bases for R(K*) and R(K ) respectively, are
called the singular functions of K .
(Observe that the relation
in K Uy = vy (2.6)

holds.)

'Some authors denote the singular values with A,.
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Theorem 2.21 Fquation (2.5) has a solution if and only if

1. g€ N(K*)*, and
2

&

Z = Z ta (s un)P < 0

n=1

Z Anm2 l (g, un)
n=1

Under these conditions, the solution is

Theorem 2.21 states the Picard conditions for the solvability of first kind integral equa-
tions. Note that since H = N(K*)® N(K*)* = N(K™) @ R(K), the second conuition
“transfers” g from R(K) to R(K). Also note that if g is perturbed by ég, then (2.) for
§ = g+ ég may not hold, or even if it does, the series

o0

Z /J‘n(égv un)vn

n=1

may be noticeable. The first misfortune is elaborated in the next theorem.

Theorem 2.22 Suppose p, — 00 asn — o0o. Let g € R(K) and ¢ > 0 be arbilrary. Then

there exists a function g’ € Lo such that

9 ¢ R(K),
g € R(K),
lg—g'l < e

Proof: Since p, — 00, a sequence of real numbers {a,} can be constructed such that

T lan)? < € but 2%, pn2an,? diverges. The Riesz—Fischer theorem 2 shows that

n=1
oo
"o, _
¢ = anu,
n=1

2Riesz-Fischer Theorem: Given an enumberable orthonormal system {en} in L2, and a sequence of
- . 2, . le2e) - .
complex numbers {dn}, 2 necessary and sufficient condition for the series Zn:::l inen to be convergent in

the mean is that Zle [&,n[z < oo
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belongs in L, . Clearly g” does not satisfy condition (£.) and so by the Picard conditions,

9" € R(K), ¢" ¢ R(K). The Ly-function
g.' — g+g//
also belongs in R(K) but not in R(K). It satisfies ||g ~ ¢'|| < € by Parseval’s equality.

It is obvious that the existence of ¢’ is guaranteed by the divergence of u, . Hence, if
pn — 00, then R(K ) is not closed. Moreover, suppose R(K ) # R(K). Then since the range
of a compact operator is closed if and only the operator is of finite rank, R(K) must be
infinite-dimensional. Using relation (2.6), the set {v,} must be infinite, and so the set {\,*}
is infinite (recall that the eigenspace of each eigenvalue of a compact self-adjoint operator
is finite-dimensional). Since A% — 0, pn, — 00.

But whether R(&') is closed or not, solving first kind Fredholm integral equations numer-
ically is usually difficult. Even in the absence of data error, the unavoidable error created by
the discretization of the equation implies that a perturbed equation is always solved. Thus,
only the presence of some large singular values may cause a noticeable difference between
the solutions of the perturbed equation and the unperturbed equation. Hence, solving first
kind Fredholm integral equations using standard methods for solving second kind Fredholm

equations is not advised.

2.3 Multigrid

Multigrid is a fast iterative technique which has not only been extremely successful in
solving partial differential equations, but is also being used to solve second kind integral
equations. Presently multigrid— algebraic multigrid - is being applied to first kind equations
derived from tomography problems (Brandt (1989), Szeliski and Terzopoulus (1989)). The
difficulties in applying multigrid to first kind equations are however severe. One cannot
blindly apply multigrid to a standard iterative method for solving ill-posed equations since
the errors introduced by the multigrid scheme may not be in the range of the operator.
There is also the basic question of whether multilevel processing is more efficient than a
standard procedure in solving ill-posed equations. These are some of the severe difficulties

which shall be examined lightly later. Right now, we present the elements of multigrid.
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~1

The backbone of standard multigrid methods is the continuous base of the problem.
Working on several scales of discretization and exploiting the continucus base of the problem,
these methods damp out the error components of an approximate solution much faster than
a basic iterative scheme does. To illustrate this, consider the l-dimensional boundary-valued

problem

Au(z) = f In Q={z:0<x <1}
w0)=u(l) = 0, (2.7

e
-

where A = —25 .
dx
Let the interval  be divided into (n” 4 1) subintervals cach of length £ = mg‘jﬁj, and
let z = ih, i = 1,2,...,n", be the interior grid points. The set of grid points will be

denoted by Q*. Approximating the derivative using a centered difference scheme gives

‘“U(I?H) + 2u(z}) - u(zl )

Ay ]
h2 +rn= f(xib,)a (2.8)

2 . . .
where r; = %u(“)(f?), b | < T < xf‘H , is the local truncation error. Dropping the

truncation error, (2.8) converts into a set of difference equations

—Uip1 +2U; — u

= i < nh, (2.9)

1—~1 ::fia 1

IN

B . . o h S .
where the u;’s ani f;’s are components of the grid functions w*, /* € R*" . (2.9) in matrix
notation is

Apul = f. (2.10)

This systemn can be solved using, for example, the damped Jacobi or the Gaunss-Seidel
iteration.
The solution of (2.10) will not satisfy (2.8) exactly. Hence, we define the global error to

be

Eh:?h—-’wh,

=] — —

where w" is the vector with components u(z?).

Another quantity is the algebraic error. Note that an iterative process is performed to
“solve” (2.10), and hence all that is available is an approximation »" to u”. The algebraic
error is

el =t -y,
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A simple application of the triangle inequality confirms the intuition that the magnitude of

[k n‘

!;y — w" || depends on both the the number of iterations of the iterative procedure (algebraic

error) and the size of A (global error).

Now the quantity that is of interest to us is the algebraic error. To see the effect a linear

iterative method has on this error, let the iteration be written as
 hi Vi h
(") = Mp(x"y ™" + Npf*,
where M, is called the iteration matrix. The ¢’th iterate can be expressed also as

(") = (Ma) ()t + N

where N,(li) = S0ZU MJ N, . Obviously the solution of (2.10) must be a fixed point of the
iteration, and consequently
hat -1 Aot i, hAO
(€2) = Ma(ez) ~ or (&) =(Mn)(e&) -
Hence, the iteration will converge for all (v7)° if and only if the spectral radius of M) is less
than one.
But even when the spectral radius of M} is less than one, the convergence may be
slow due to the slow attentuation of some error components in the initial approximation.
For example, consider the damped Jacobi iteration. Decomposing Ap to (Dj — By) where

Dy, = 2h*I and By, := Dj, — Ay, the damped Jacobi iteration is
s i . - . 1
(") = @t - whf e - £ withwe (03] (2.11)
It has the iteration matrix
My, =1 - wh?4,

with eigenvalues
.o mh
Ajw) =1- 4wsmz(37—‘——l—

and corresponding eigenvectors

ew" = V2h[sin(kjrh)}n, 1<j<nl.

=]
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T - - 3 3 S 1
Next, classify the subspaces span {g‘_u_?’l‘j : % <jh< 1} and span {gﬁ; 0 < gh <« i‘;" as the
high frequency set and low frequency set respectively. Then fixing w to L, since A, (ﬂ) ~
- A
252 2 . . e
1- _21'; and Ay, (%) ~ -1+ __2"1_. , given the initial error
0 o
(&) = ojew®;, (2.12)
3=1

the error after v iterations is

~h
Ly n 1 v ‘
(e =3 a (f\k (§>> euwh;, (2.13)

=1

implying that the highest and lowest frequency components ol the initial error have not

been damped down dramatically. Fixing w to }—1, although the spectral radius of My, now is

larger than the spectral radius of My when w = 1, the high frequencies are damped down

L

strongly after v iterations. Thus, the new error is smooth.

2.3.1 Two Grid Method

The last statement hints on another iterative approach to solving (2.10). From (2.11), it is
clear that the correction of (,)'"! is obtained from the defect d, := [Au(n,)"" ~ f,]. A

rearrangement of the defect together with (2.10) gives the defect equation
Apel = d" (2.14)

which has a smooth solution. (2.14) is of the same form as (2.10). (2.14) also can be

considered as a discretization of the differential equation
Ae, =d,  €(0)=¢€(1)=0 inQ={z:0<z<l} (2.15)

where ¢, and d are the functions ¢ and d" approximate. This can be seen by considering

v}, as the approximation to ¢(z), the solution of the boundary-valued problem

Av f+d
’U(O)::v(l) = 0. (2.1(5}

I
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Sabtracting (2.7) from (2.16) gives
Alv—u) = Ae,=4d

€,(0) = e, (1) = 0. (2.17)

The impertant fact is that e, is smooth. Thus (2.15) can be discretized on a coarser

grid, which we conveniently take to be Qf with H = 2h :
Agel = df . (2.18)

But since only d" is available, the right-hand side of (2.18) poses a problem. To define
gl,”, a restriction operator Iy which maps grid functions defined on Q" onto grid functions

defined on Q¥ is needed. Assuming that I, has been defined and (2.18) has been solved,
a new approximation is
() — (w,)' = In"ell (2.19)

where [g® is an interpolation operator from £ into R . (2.19) is called a coarse-grid

correction. It may also be written as
(Qh)l — (yh)l _ IHhAH—IIhH [Ah(gh)z _ ih} . (220)
Turning to the operators I, and Iz" , note that since (gﬁ)" is simooth, d" is also smooth:

dh — Ah(ﬂh)y“ih

42 1\ irh
= = Yo <~> sin? (%-)@_hj (2.21)

which is smooth because for high frequencies, (x\j (%))U & 1 for v sufficiently large. An

appropriate restriction operator is then

[17a*] (2) = % [d*(z — W) +2d" (&) + dz +h)]  forzeQt.  (222)

]
]
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The trivial injection
(117 d") () = d(z)  forall z € Q7 c (2.23)

is another good choice. As for the operator Iy”, note that the smoothness of e implies

i1
that

if Iy is taken to be the interpolant

ef(zy ifzef

I heﬂ )=
[ H &g (z) [gf(:c —h)+efl(z+ h)] /2 otherwise.

But even with the correct choices of operators I, and Iy, it is still unclear how the
coarse-grid correction helps in obtaining an accurate solution. Iteration (2.20) by itself is in

fact non-convergent; for take a nonzero element gh eEN (IhH ) and let

(yh)o = A, (ih +Qh>

so that d* = A,(vh)° -—ih = gh, df = 1,%gh = 0, and

ISR Y W A\ —i rh
() = (") £ A"
It is the combination of smoothing iteration and coarse-grid correction that results in a

rapidly convergent scheme. Its steps are

pre-smooth vy times on the fine grid;
restrict the defect onto the coarse grid;

solve the defect equation;

W (%) o -

interpolate the solution of the defect equation;

[

post-smooth v, times with the new approximation.

Here, 11,9 > 0 but both cannot be zero.

Theorem 2.23 The iteration matriz of a two-grid method using a smoother Sy, und pre-

smoothing v times is

My = My(v) = (I — IHhAHq[hHAh) ShY.
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Proof: In the linear iteration
(") = (Mp)' (") + N £
choose J:h = (), replace M} with S;, and ¢ with v, and apply the coarse-grid correction (2.20).
The success of the two-grid method is accredited to the good approximation of the low
frequencies on the coarse scale. First, observe how the smooth frequencies are transformed

onto the coarser grid. The following diagram illustrate that smooth modes on the fine grid

appear more oscillatory on the coarse grid. This also can be shown mathematically by

VAV

Figure 2.1: Frequency representation on two grids. The left diagram shows a low frequency
on a fine grid, while the right diagram shows a high frequency on a coarse grid.

comparing the components of the eigenvectors of Sy, and Sy at common points:

ew; = V2H [sin(pjr B

J p=1

= V2V2h [sin(2pj7rh)]7(f_l_hl"1)/2 J=12,...,
and

ew’ = V2h[sin(kjrh)[le,  j=1,2,...,n",

so that at the common points of Q" and Q¥ (i.e. k = 2p),
El-QHj =2 [gwhj] .

For 1 < j < 1‘%1‘-1 the 7’th mode on the fine grid transforms into the j'th mode of the

. . b . . .
coarse grid, or since there are only ™- L coarse-grid modes, half being oscillatory, some

of the smooth fine grid modes transform into oscillatory coarse-grid modes. Now solving
the defect equation exactly and interpolating the result, the smooth error components on
the fine grid are effectively reduced, although some of the oscillatory fine-scale modes are
excited by the interpolation. Additional two-grid iterations will resolve this latter problem,

and will further diminish the smooth error components.
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2.3.2 Multigrid Method

Another approach to solving (2.10) is created by solving the defect equation iteratively: why
not apply a two-grid scheme to the defect equation, or why not apply the two-grid recursively
until some lower level is reached where the defect equation there is solved exactly? Let !
denote the grid level with step-size h; = 271~%, Solving the original defect equation with a
smoother which effectively damps down the high frequency components, since ouly some of
the smooth modes on the finest level transform to oscillatory modes on level (n — 1), only
some of the smooth fine-grid modes will be effectively damped down. However, some of
these other smooth modes can be approximated by solving the new defect equation on level
(n — 2) and interpolating the result into Q™~!. The strategy should be obvious now. Modes

that cannot be approximated well on one level will be approximated via solving the new

defect equations on descending coarser levels.



Chapter 3

Regularization Algorithms

With the preliminary concepts developed, we now set up the stage for a discussion of
numerical procedures for solving ill-posed problems. This chapter presents regularization
rethods, and develops some of the vital theory which will be used in the next chapter.
Section 3.1 introduces the concept of generalized inverses for both operators with closed
range and operators with non-closed range. Section 3.2 introduces the general regularization
method and develops some theory for the case when the forcing term is known exactly, while
section 3.3 develops some theory for the case when the forcing term is perturbed. Lastly,

section 3.4 gives some important examples of regularization methods.

3.1 Generalized Inverses

As poted earlier, the problem K f = g is ill-posed if K~ does not exists or if it does, it is
nct continuous. A generalization of the inverse operator is then needed.

The first step in defining such an operator is to modify the concept of a solution. Rather
than having a solution satisfy the equation exactly, a solution is required only to satisfy the

equation in the least square sense:

Definition 3.1 An element f € H; is called a least squares solution of K f = g if

|EF =gl = inf 12— g]|.

34
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If f is a least squares solution and ilf” < fll for all other least squares solution f, then f

is called a least squares solution of minimal norm.
Now a fundamental theorem characterizing least squares solutions is

Theorermn 3.1 Let K be a bounded linear operator from a Hilbert space Hy into a Hilbert

space Ho . The following conditions are equivalent:

1. f 1is a least squares solution of K f = g;
2. K*K f = K*g;

3. Kf = Pg, where P is the orthogonal projection of Hs onto -lf(l\)

From (3.), it is clear that K f = g may not have a least squares solution if A" does not have
a closed range. But if there does exist a least squares solution f, and if N(K) # {0}, then
the least squares solution is not unique since f+ f; , where f; is a nonzero element of N(K'),
is another least squares solution. Also, from (2.) and the continuity and linearity of K, the
set of least squares solution forms a closed convex set:

Let f1, fo be least squares solutions. Then

K*K[tfi + (1—1t)f)

i

tK*Kfi+(1-O)K*K [,
= tK*¢g+(1—t)K"yg
= K'g.

Let {f,} be sequence of least squares solutions which converges to f. Then ¢ =

Kf, — Kf.
Hence, if R(K) is closed, there exists a unique least squares solution of minimal norm.

For the case R(K) # R(K),if g € R(K)® R(K )", then there exist a set of least squares
solutions, and using the same reasoning as above, there exists a unique least squares solution
of minimal norm.

We now can define the generalized inverse of K .

Definition 3.2 Let K € B(H,H2), and let D(K') = R(K) % R(K)*. The operator Kt -
D(K1) — Hy which assigns to each g € D(K?1) the unique least squares solution of miniral

norm is called the generalized inverse of K .
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Theorem 3.2 K1 is a linear operator.
Theorem 3.3 K1 is bounded if and only if R(K) is closed.

In particular, because a compact operator has a closed range if and only if it is of finite
rank, KT for a compact operator K is bounded if and only if R(K) is finite-dimensional.
This fact forecasts possible stability problems in solving the first kind equation K f = g
even in the least squares sense.

We conclude this section with the following useful theorem:

Theorem 3.4 Let K : H1 — Hy be a compact operator with singular system {un, Vn; in},

and let g € D(KT). Then
K'g = > un(Pg,un)vn
n=1
= Z /‘n(g-: un)vn 3
n=1

where P is the orthogonal projector onto R(K).

3.2 Regularization Methods

Most of the discussion so far has created the view that ill-posed equations cannot be solved
effectively. But now we present an effective method which has been investigated thoroughly
in Soviet literature. The basic idea behind this method is simple: rather than solving the
equation using the original operator, an approximating operator having a bounded inverse
is used. To justify this method however is not simple.

Let X and Y be two metric spaces, and let G : X — Y be a mapping defined on
D(G) ¢ X . The task is to find the image of G(z) given z. In terms of the first kind
equation

Kf=g9, f€H, g€H,

G=K"1 X="H, Y ="M, D(G)= KH,,and the problem is to find K~'g. Now if only
s satisfving px(zs,z) < 6 is available, and if the problem is well-posed, then G(zs) can be

taken as an approximation to G(z), and G(zs) — G(z) as § — 0. But if the equation is
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ill-posed, s may not beiong to D(G), and even if does, (G(z5) need not eonverge to /()

as 6§ — 0. To circumvent this difficulty, regularizing algorithms are employed.

Definition 3.3 (Goncharsky, 1987) Let Rs be an eperator defined on the pair (x5,8), x5 €
X and 0 < & < ég, and with range in 'Y . Consider the error

A(Rs,6,2) = sup py (Rs(xs), G(x)) .
{zs€X: px(zs,x)<E}
If lims_.o A(Rs,6,z) = 0 for any x € D(G), then G is said to be regularizable on D((),

and Rs is called a regularizing operator.

In other words, if ' is regularizable, then there exists a family operators {Rs} such that
Rs(zs) — G(z) aséd—10

for any z € D(G).

Of course, the regularizing operators should be chosen so that they are more tractable to
computation than G is. Referring back to tire initial discussion, the approximating operators
having bounded inverses are regularizing operators.

Note that the error A(Rs,6,z) requires the knowledge of the exact value z, which
is not known. This obstacle raises the question of how much information is needed Lo
obtain an approximate solution of an ill-posed problem. Specifically, can an approximate
solution be constructed using only zs under the condition that px{zs,z) — 0 as é — 07
The next theorem shows that the minimum amount of information needed to construct

an approximate solution of a first kind equation involving a compact operator is the pair

(z5,6).

Theorem 3.5 (Goncharsky, 1987) G is reqularizable on D(() by the family Ry = R(-)
(i.e., R is independent of 6 ) if and only if G can be continued to all of X , the continualion

being continuous on D(G) in X .

Now although (z5,8) is the minimal amount of information required to regularize a first
kind equation, still not all first kind equations can be regularized using only (z4,6). The
next two theorems illustrate some necessary and sufficient conditions for the regularizability

of G.
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Theorem 3.6 (Goncharsky, 1987) Let G : X — Y be the limit point on D(G) of the

functions G, which are continuous all over X . Then G is regularizable on D(G) .

Theorem 3.7 (Goncharsky, 1987) Suppose e separable space Y is a convez subset of a
linear normed space, and G is regularizable on D(G). Then G is a limit point on D(G) of

a sequence of functions G, which are continuous on X .

Theorems 3.6 and 3.7 suggest choosing G, where G, € {G,} and where o is a weight
function compromising between the fidelity of the approximate solution and the stability of
the regularized equation.

Henceforth, we consider only the regularization of the equation
Kf=g, K compact.
Recall that for a self-adjoint operator A, A may be expressed as

A= AdE),
a{A)

£\ being its spectral family. Also, if h is a continuous function for A € o(A), then
h(A) = / h(\) dE; .
a{A)

Formally then,

f = Klg
= h(K)g
_ / dEy\g
 Joy A

where h(A) = l\ , assuming that K is self-adjoint and a solution exists.
The obvious problem is that K has a limiting spectral value of zero, and so any regu-
larization algorithm must eliminate this difficulty. Such an algorithm can be constructed in

the following way (Bakushinskii (1967), Groetsch (1984)):

i) Create a uniformly bounded real-valued function ¢(A, ) defined on A € o(K) and

a > 0, and satisfyving
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wA,o -
a. SUPreo(K) !—%—)—I = kK, < 0,
b. ©(0,a)=0, a#0,
¢. limg—o®(A,a) =1, uniformly for all A € (c,0)Na(A), 0 < ¢ < 1.

(A, @) in a sense approximates the constant function 1.
ii) Define h(A, @) to be

w(/\»Q) pY 0
Maa)={ * 0 A
I L] < Koy A=0.

Then h(K,a) is a regularizing operator of the equation provided that o as a continuous
k)

nonnegative function of é satisfies a(6) — 0, and provided that K6 — 0 as 6 — 0.

Proof:  Note that ||h(K,a)]| = K, since K is self-adjoint and compact. Hence,

A

T S VAT S VA
< o= Sl + [1B(K, )l llg - 5]
< o= fll + Kab s

where f, = h(K,a)g and f& = h(K, a)gs. Using the singular function expansions of [,
and f, it can be shown that ||fo — f|]l — O as a — 0, or as § — 0 (eg. Bakushinskii
(1965), Groetsche (1984)). It follows that

. 5 T - _etall =

fim |2 1] = ki a0, ) 05 = £ = 0
if ]jmg__-,o KO,(S = 0.

A similar procedure can be used to construct an r.a. (regularization algorithm) when
K is an arbitrary compact operator, except that the equation to be regularized is now
K™K f = K*g, and except that (), &) must now satisfy

sup

2 K, < oo, o#0.
reo(K*K) VA : .

Defining

p(A,a)
B\, o) = P A#D
L ILj<oc, A=0,
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the regularization operator is h(K*K,a)K~.

Before making any examination of this r.a., some modifications will be made. Instead
of the function (A, @), the function R,(t) which is continuous on o(K*K) and which
approximates h(t) = 1 will be used. R,(t) will be continuous for each & > 0, and will
converge to ; as a — 0, and |tR,(¢)| will be uniformly bounded.

Given these changes, since K*K f = K*g is the equation to be regularized, R,(K*K)K™*g

must approximate K Tg. This is indeed the case.

Theorem 3.8 Suppose that {Ry}a>0 is a family of continuous real-valued functions on

[0,[|K[I"] 2 o(K*K) satisfying
R, (t) = % asa — 0, (3.1)
[tRo(t)] < M forall >0, t€[0,]||K|*], and M finite. (3.2)

Then R (K*K)K*g — K'g as o — 0 for each g € D(KT).

Proof:  The identity p(K*K)K* = K*p(K K*) for any polynomial p, and the Weierstrass
approximation theorem imply that R,(K*K)K™ = K*R,(KK*). Hence, R, (K*K)K*g €

R(K*). Next, using the singular system {un, v,; n} of K,

Ro(K*K)K*g = > Ra(pn 2)(K*g,va)vs

n=1

= Y Rl (g, Kvalvs

n=1

= Z Ra(/‘n——2)/‘n—l(gs Un)Vn

n=1
00

= Z :u'n:u“n_QRa(/‘n_z)(gy un)vn .

n=1
Considering each term of the sum as a function of o and using (3.2) and theorem 3.4, the

partial sums Sp(a) form a Cauchy sequence independent of « :

2

q
l|5p(a) ~ S,;(C!)HQ Z /‘n/‘n‘2Ra(/‘n~2)(g»un)vn

n=p+1

q
= Y

n=p+1

il

7 R )| N9, )P
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q
< M? Z (g, un)|* — 0 for sufticiently large p and q.

n=p+1
Thus, the series converges uniformly in «. The result follows trivially.

The requirement that ¢ € D(K1) is crucial to the convergence of Ro(K*K)K"g for it
can be shown that if ¢ ¢ D(K'), then for any sequence a, — 0, {Rq, (K*K)AK*g} is not
weakly convergent (Groetsch (1984)). Moreover, to ensure good convergence rates, further
requirements are needed. For example, consider the case when g is known exactly. Now
because R(K) = R(KPN(K)L) where Ps denotes the projection operator onto Lhe subspace
S, and because PN(K)“: = PN(K.K)LI = lim,_g+ (K"K )"z !, a reasonable requirement is
Pg € R(K(K™K)"). This change enforces the new condition

11 = tRo (1) < w(env)  te[0,]IK])?, (3.3)

where w(a, v) satisfies w(a,rv) — 0 as & — 0 for each v > 0.

3.3 The Perturbed Equation

For the perturbed data case, the regularization parameter must be described more specif-
ically. It is a continuous nonnegative function a : [0,00) — [0,00) with «(0) = 0, and
satisfying some condition which ensures the convergence of Ros(K"K)K"g to Kty as

§ — 0. Letting r(a) := max, e x)2) [ Ra(t)] , we delve into finding this condition.

Lemma 3.9 l

K(fa= 15| < 6M.

Proof: A simple application of the bound (3.2) gives the ahove fact:

I

|£Ga= 2| = (KKUa~ ), 1a 12)

(K"K (Ra(K™K)K*g — Ral K™ K)K" 03], (fu — 1))

i

= (K[Ru(K"K)K"g ~ Ra(K"K)K"gs] , E(fo~ f2))

1Use the spectral theorem for compact self-adjoint operators:
(K*K)'z = 2 A2 (Z, v )Vn

where An? and v, is an eigenvalue-eigenvector pair of K*K .
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_ ([KK*RQ(KK')] (9—95), K(fo — fg))
M6 | K (fa = 2 -

| < 6/ Mria).

|

AN

Lemma 3.10 ”fa - ft

Proof:  Use lemma 3.9 and the definition of r(a) :
o = 27 = (fo= 12 RalEE)K (g~ 05)
(fu = 1o K" Ral KK™)(g ~ g5))

(K (Ja = 72), Bo(KE™)(g — g5))
< EMr(a).

il

l

Theorem 3.11 Let g € D(KT), a(6) — 0 and 6%r(a(6)) — 0 as 6 — 0. Then
R.(K*K)K*gs — Klg as§—0.

Proof:

|Kto =l < | Ko~ St + | fater = 9]
< || Kt~ fue)| + 8/ Mr(a).

By theorem 3.8 and the hypothesis that §?r(a(6)) — 0 as 6 — 0,

fis) = Ra(K™K)K*gs — K'g.

Hence, the condition is, a(8) — 0 and 6%r(a(6)) — 0as 6§ — 0.
But this condition is not sufficient for practical purposes since usually all that is available
is an operator K satisfying [|K — K, || < n. We leave the investigation of this problem until

the discussion of each particular regularization algorithm.

3.4 Examples

Example 1. Landweber—Fridman Iteration
¥ ) _ 2
IE=K]l K|

=i+ uKgs-KKf)), fl=00<u<




CHAPTER 3. REGULARIZATION ALGORITHMS 13

The generating function of this iteration is

T
Rn(t):;tZ(l—yijk“l, te 0 A Ji .

Defining the regularization parameter to be a(é) = 3‘(%5 L3(&)] = n(d), there is a natural

correspondence between the generating functions £, 5)(?) and #,(f). Now since

Ro()[(1— pt) =1 = p[(1 - put)" 1],

oT
—tR,(t) = [(1 — ut)" - 1],
M=1. r\ISO,
n) = ax Rt
r(n) teg(lh’}]\’)‘ (0]
« b1
= — ul
N g,l t) |
= un.

Thus choosing n(é) such that 62un(é) — Das § — 0, fﬁ(é) — kg,

Example 2: Tikhonov Regularization
foy = [K"K +a(8)] ' K7gs

This is the classical regularization algorithm. Its generating function is R,{t) = (£ + o)™ '.

Hence, M =1, r(a) = 1, and fg(ﬁ) — K'gif ;%—) —0aséd— 0.

These two examples are also part of another class of regularization methods deseribed

by the equation
fr( ) pe i K,A’Ra(gi{f( A’ﬂ g + é(l(&g([‘f-h’)‘[i"gé B

where ug is an initial approximation, and Ra(g)( t) satisfies

sup %R ! S 1 N
€0, 1\, 1 o(8)

te(0IK if”
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%+ Tps Po constants { Vainikko (1982 and 1983)).

Example 3: Landweber~Fridman Iteration

Again b} = 3 . 13{8}} = n{é). Or more simply, a{é) = -{—5 Hence,
n(§)
Loy == pBK KO fo 4 p 3 (T~ pK™ K K"gs
k=1
where fo need not be zero. Now using the identity (1 — pK=K)* =T —uY t_ K*K(I -
phRREL
. n
Roey(t) = py (1= pt)*
k=1
Example 4: Iterative Tikhonov Method
fg,aié} = la(é)+ K*K]7! (a(é\)f;f—l,a(é) + K‘g.g) n=1,2,...,m.

Let fr;, = fy be an initial approximation, and let f2 = f,fl!a . Then the above iteration

generates

Py = [al®] o) + K K™ fo+ S la(@F [o(8)] + K*K]? Kgs
=1
= O [ 4 KET™ o4 S — 14 K"K}-jK"‘
= i Jioas el 0 = O’é)l_ T a(é) g5
implying that
- ] 1 m i -7
) a(é) i a(é)/

- 1]i- ( +W)"’“} |

Choosing m =1 and fy = 0. the classical Tikhcnov method reappears.

Example 5: Implicit Iterative Method
f‘:i; I\"‘K:"I f“ . + K™ 05)! n=1,2,...and 7 > 0.

The regularization parameter here is also —= ) This gives

Aty R i g ox
Jasy =7 7T+ K7K] e+ TJ][TI-T—I\ K™ K~gs,
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-
oy}

and .
Rusy() =3 17 r+ 477

i=1
Notice that for the last two examples, no condition on a(d) to guarantee the convergence

of f§(5) to K1g has been specified in this section.



Chapter 4

Discrepancy Principles and

Multilevel Procedures

Several questions concerning r.a.’s remain to be discussed. They concern the numerical re-
alization of these algorithms: how should the regularization parameter be chosen systemati-
cally without considerably impairing the convergence rate, and how do the the discretization
errors and the unavoidable random errors affect the effectiveness of the r.a., and what mod-
ifications must be made to retain its effectiveness? Some of these questions will be answered
for several methods in this chapter. Section 4.1 will investigate the discrepancy principle,
which is an indispensable component in the choosing of the regularization parameter. This
principle is then applied to the Landweber iteration in section 4.2, where we make a thor-
ough investigation of the realization of this iteration and describe a multilevel adaption to it.
In section 4.3, the discrepancy principle will be applied to the classical Tikhonov method,
and a multilevel process will be described. Also in this section, we will introduce the concept
of stabilizers and look at the quasi-optimal parameter choice, and with these two, we will

propose a multilevel Tikhonov procedure for solving nonlinear first kind equations.

46
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4.1 Discrepancy Principle

A fitting way to start this section is to quote Morozov: “the magnitude of the residual
[ “angi - 95“ ] must be commensurate with the inconsistency measure [inf.ey, || K2 ~ gi]]
and the accuracy of specification of input information of the problem.”!

Recall that the regularization parameter is a weight function compromising belween the
fidelity of the approximate solution and the stability of the regularized equation. QOne would
like an o that results in good fidelty and good stability. A systematic way of choosing such an
« is to apply the discrepancy principle which chooses the parameter satisfying the criterion
that the magnitude of the residual formed by the resulting solution be commensurate with
the inconsistency measure and the data error. We establish the validity of this principle for
the classical Tikhonov method first.

Assume that

lgsll® > 6% + uy®, (4.1)

where p,? is the inconsistency measure
pol = inf ||Kyz — gs||®  with K, satisfying ||K — K,|| < 7.
.’L‘EHl ’
The decomposition
gs =y +wy, vy € N(K}), wy € R(Ky),

and the inequality .
losl” . _losll
62 T 62+ gt

show that (4.1) is sort of a natural condition for one would desire both that g, has some

component in R(K,)?, and that the signal-to-noise ratio is greater than one. Indeed, if (4.1)

be too corrupted to permit any useful mathematical analysis.

Also assume that the operator is known exactly, and take the view that g € R(K),
absorbing any N(K*) component of g into the error in g;. Hence, (4.1) modifies into the
form

2 2 ~, £33
llgsll” > cé ¢z 1, (1.2)

*Morozov (1984), p.32. ]
*Note that |[ug|f° = pn? and |jgsll* = |jvg]]® + llwsl|® . Hence, (4.1) implies that, [jwy||* > 8%,



CHAPTER 4. DISCREPANCY PRINCIPLES AND MULTILEVEL PROCEDURES 48

> 8

Figure 4.1: Limiting size of § : § < H%L'.

which we shall take as

llgsll* > 82 (4.3)
(Note that since g € R(K), (4.3) does not liave the problem that fg(g) = 0 may be taken
as an approximate solution.)

Now the discrepancy principle chooses the unique a(6) that satisfies
() = | K fi5) 95| = 6. (4.4)
The uniqueness follows from the next theorem.
Theorem 4.1 Suppose that g € R(K ), and that g and gs satisfy
llg = gsll* < &2 < llgsl|” -
Then p(a) is continuous, increasing, and contains § in its range.
Proof: Because the approximate solution produced by Tikhonov’s method is

fg(g) = [}{*K + a(é)]"l K*gg,

Kfusy—95s = KKK +a(8)]]7 K gs - gs

KK*[KK* a(6))7 g5 = (I = Prigeyr) 95 = Prygeyrgs

il

g§7 n n_Z(gﬁgun)un_PR(K)J.g(S
n

i

gba un)un - PR(K)J-gé

2

il

D) (gb un)un - PR(K)J-QS

Yt
?
2T

+a,u
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where {Up, vn; pin} is the singular system of K . Hence,
20 = 5 (20 ) Vs + [P
P ;= ~ 1 + aunz (957 k2 R([\')J—gu k]

which is continuous and increasing. The continuity and monotonicity of p(a) clearly follows.

Next, taking the limit of p*(a) as @ — o0 and @ — 0, we have

lim_p?(a) = || (7 = Prry2) ool + | Preyras]) = sl > ¢

and
. . i 2 ) i .
33}}30’)2(“) = HPR(K')WS“ <flg—gsll® <623
Thus, the range of p(«) contains 6.

Further insight into the discrepancy principle is revealed through an examination of a

particular error bound on the approximate solution. Let r(a;gs) := g5 — l\"fg(&) . Then
K*r(a;g5) = K7gs— K"‘Kf;,S
= K*gs— K*K[K*K +al]™ K*gs
= a[K*K +al]” K"gs

= off, (1.5)
and so
I 22" = e -2 (ns) + |5
= AP - 2 (e s, ) + |12
= A - 2 (gm0, 00) + 2 (rlesgodsgo = )+ |15
< E(eigs),
where E(a; g5) = [If]* = 2 (r(ai 95), 96) + Zpla) + | 72| - This error bound is minimized

when « satisfies (4.4).

SPR(K)J-gﬁ € N(K‘): (g _95) € ‘N(K-)@N(K‘)_L: ie,g—gs =9 — (g +b.’/) = “'&!} = ""6_’IN(K-)J. -
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Theorem 4.2 (Groetsch, 1984) Suppose that g € R(K), and that g and gs satisfy
lg — gsl1* < 8 < llgsll”.

Then E(a; gs) is minimized if and only if p(8) = 6.

The proof of this theorem involves taking the Fréchet derivative of an operator. Also, it

uses the fact that a positive operator has a square root.

Definition 4.1 Let Ey, E5 be normed linear spaces, and suppose that Z is an open subset
of Ey. A function F : Z — Ey is said to be Fréchet differentable at xo € Z if there is an
operator F'(zq) € B(Ey, E3) such that

Lo (0 + b) = F(so) = F'(s)h] _

0.
1Al —0 i

F'(xq) is called the Fréchet derivative of F at zq.

Proof: First, if
[K*K + o(8)I] fi5y = K™ 95,

then 5
rw T dfa )
(K™K + a(8)I] == = = fas)
or
i _ _ [K*K + ()11 figy = ——= [K*K + a(8)I] ™ K*r(a; 65)
do = “) = 7 5®) e

Next, p(a) is positive for @ > 0. This follows from the fact that if p(a) = 0 for some
positive o, then r(a;gs) = 0, or equivalently, using (4.5), fj(s) = [K*K + o(8)I] 7' K*g5 =
0. But then g5 € N(K~) = R(K)*, and consequently the contradiction 62 > ||g — gs||° =
llg1* + llgsll” > llgll* + &% arises.

Now taking the derivative of E(a; gs), we have

d . A S\ 2 . 2/4d s 26
E‘&b(a,gts) = 2 ('d;’fa) + (r(a; gs),95) — = (3‘&(95— Kfcx)aQb) - Eg/’(a)

20 (d s\ g
ap(a) (da(Kfa—gé)vAfa—g5>
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2 (dfS . 2 2 .dff
= 2 Ha femr(agg) ) + 2 (r(eigs)05) + = [ KD g
o Qa do

b
a\ do

r§

2 - e — ok kL \ 2 £
= - ([K*I; + al] g r{a;gs), K -r(a;gg)) + a;(rmf;gg),g(g)
2 x g 1 ey :
- (K[Ii K +ol]'K 7‘(a;ga),go~)
26
a?p(a)

[(r(a; gs),m(a;95)) + (K[K*I\" + af]7 R (e gs), w'r(_(r;g@))]

2 _ .
= -7 {(KK*[KK* + al) 1r(a;g5),?‘(a;g5)) ~ (7(; gs), 95)
+ (KK [KE™ + o] r(as g5),95) }

26 . o |
) (T(a;!]&)——KK*[KK + ol 17‘({!;[]5),7'(();95))
2 Tk - —~1 .
= - (KA [KK* + ol T(a;g(g),‘r(a{’g(s))

+ (KK [KK* + ad) ™ r(a; g5) = (05 05), 95 ) |
26
a?p(a)
2 - X -
= - (KA [KK™ + od] lr(a;gs),r(a,gs))
+ ((KK* — KK*—al)[ KK™ + al]“l'r(a;gg),g,s)}
26
ap(a)
2 \ . -
= -5 (KK*[KK*+aI]*1r(a;g5)~a[l(K + o] "r(a;.qa),!/b)
- (KK*[KK* + al) ™ r(a; gs), Kféi)}
26
ap(a)
2 * 7 L hed
= - ([KK —all[KK" + ol 17‘(62;!16)7%)

- (KK*[KK* +al] 'r(a; g5), K 2)}

((KK* +al - KK*[KK* + ol]™'r(a; gs), r(a;gg)‘))

([KK* + ad] ™ r(es; g6), (s g))

(IK K™+ al] ™ r(a3 g5), (e, 95))
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26
ap(a)
2

o’

([KK’“ + ol 'r(a; gs), T(a,gS))

(KK + el r(e, 0), [K K™ ~ allgs — KKK )
26
ap(a)

((& K= + ad) (s 96), (2, 99))

2 . all- y K f
= = (KK + al]'r(a,95), K (K795~ K Kfz) - egs)
26
ap(a)

([KK* + al] 'r(a; g5),7(a, 96))

2 . -1 §
= [KK* + al] T(a;gs),aKfa‘a-‘”)
26
ap(a)

([KK* + al] ' (a; g5), (@, 95))

- f{ (K K* + a7 r(a; g5), (@3 95)) — aj(éa) (IKE" + al) ™ r(a; gs), (e 96))

; 6 )
- g. (1 - ;(—&5) ([KK* +al] r(a;gs),T(a;gs))

2/ 6 . 1 2

= E (] - ;‘(&5) ”[KK + aI] 2r(a,g5)” s

where the factor [I(K*+aI]‘% follows from the positivity of [K K*+al]~!. Since r(e; gs) #
2

0, “[KK"‘ + CEI}—%T(CY; gg)” > 0. Hence, from the monotonicity of p(a),

d
- (E(aigs)) >0 when p(a) >4,

and

d
I (E(a;g5)) <0  when p(a) < 6.

Hence, -& E(a;g5) = 0 if and only if p(e) = 6.

But the minimization of this bound is relevant only if the minimum is not too large. Con-
sider ims_o E{c; gs) . A consequence of applying the discrepancy principle is that a(é) — 0
as § — 0. This follows from the contradiction that if « — C > 0 as 6, — 0, then g = 0 and
therefore,

195,11 > bn 2 llg — 951l = llgsall -
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0= lim & = lim p(a(dn)) = lim |K [ ) — o

n—00 Lg )

= |K[K"K+CN7 R g - ]l

i

” [KK™ +CI]“ I\'I\"g——g” ,

giving the equation KK*g + Cg = KK*g. The terms —2 (r(a gs), 9s) and “‘I)((k) ‘é
thus will pose problems on the limiting upper bound unless 2 "& is bounded as & — 0.1 W h:xt

is required is the regularity of Tikhonov’s method with the discrepancy principle.’

Theorem 4.3 (Groetsch, 1984) Let g and gs satisfy the hypotheses of theorem 4.2. Then
Tikhonov’s method with the discrepancy principle is a regularizing algorithm; i.c. fi(&) —~
Klgasé—0.

Three results of functional analysis will be used in this proof. They are

1. the weak compactness property of a Hilbert space- i.e., every bounded sequence

in a Hilbert space contains a weakly convergent subsequence;

*Note that
[(r(a; g6), 98)] < lir(e; g6) || Hgsll < b6p(a) = &7

;Reca.ll that % — 0 as § — 0 is only a sufficient condition for fz(ﬁ) — K'g as § — 0. But if
QL(,,—) — ¢ > 0, then it can be shown that f£?5n) — K'g weakly for any sequence {6n) with b, — 0. In this
case, {f(i?én)} is said to be weakly regular.

Other possibilities of the limiting process are

. 2
1. lims—o % =00}
2. ]jmg_.oi_nfa%zb>0 and ]jmg_.osup;%%::a<oo, a#b;
3. lims—oinf —‘EE— =90 and lims—q sup ;%% =a < oo, and

4. limsoinf s =d >0 and lim s—q sup :Z) = 00 .

The divergence of % is a sufficient condition for the existence of a sequence of {6y} with 6, — 0 and
elements gs, with [jg — gs,]| < én such that {fi?ts,.)} is not weakly convergent (Groetsch, 1984, p.25); and
although the finite superior limit is a sufficient condition for the weak regularity of { fi?‘é, )} (Groetsch, 1384,
Pp. 23-24), the nonzero inferior limit is a sufficient condition for the existence of a sequence {6, } with b, — 0
and {gs, } with {lg — gs,|| < 6n such that {fi?s )} is not strongly convergent to K'y (Groetsch, 19%4, p.26).

The fourth condition is sufficient for {fa(6 )} not to be strongly ronvcrgcnt to K'y. We can conclude that

if Tikhonov’s method with the discrepancy principle is an r.a., then —(— —Dash—0.
Note that the weak regularity of {fa(é)} will also guarantee that E(6;a) will be bounded.
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2. the H-property of a Hilbert space- i.e., if 2z, — z weakly and ||z,|| — ||z]| in a

Hilbert space, then z, — z strongly; and

3. the weak lower semi-continuity of a convex functional- i.e., if z* is a continuous

convex functional, and if z, — 2z weakly, then lim,,_, inf 2*(2,) > 2*(z2).

Proof: Introduce the functional

Fugo(z:08) = [ KoL) =, + @) o,

which has a minimum if and only if
[K*K + a(6)I]zi(5) = K*gs.

Clearly then,

Ir(e(8); 96)ll3¢, + a(ﬁ)“féf(a)“;{1 Futo) (fa5)795)

S Fa(&) (f;g5)
= |lg— gsllz, + (8) If1l3,
< 8+ a(8)|IfI, -

Now because the discrepancy principle is applied, ||r ((1(5);95)]]2 = 6% and consequently,

i i (4.6)

for any 6 > 0. This last inequality together with the weak compactness property imply that

for any sequence {§,} with 6, — 0, there exists a subsequence {6,, } such that
o Kl
fa(énk) — 2z € Hy weakly.

gs - g,

— Kz, (compactness of K),

6,, — 0  (discrepancy principle).




1

1
on

CHAPTER 4. DISCREPANCY PRINCIPLES AND MULTILEVEL PROCEDURES

Using the fact that fi’{é ) € R(K™), z € R(K~™) = N{RK)*.% and hence
Tk

z=f=Klg.

But every subsequence of {fi'(&n)} must itself satisfy (4.6) elementwise. Hence, every
subsequence itself contains a subsequence which converges weakly to f. Hence, every subse-
. 8n
quence {fg'(‘g )} must converge weakly to f for otherwise for some subsequence { ,y(ﬁ )} .
n RUn g

for some functional f*,

. * 5ﬂk * 7

lim £ (fogk ) # £

N —+00O

However, letting
« [ obn . N
bu, = f (fa(gnk)) eR  and b= f1(f)ER,

the last limit is equivalent to the existence of an open sphere about b containing no points of
{bn, }-i.e., {bn, } cannot contain a subsequence which converges weakly to b, or equivalently,
{fi?gﬂk)} does not contain a subsequence which weakly converges to f.

We now have fi'(’gn) — f weakly. We also have by the weak lower semi-continuity of ||-||

and by (4.6) that

A < dimind £
< Jlim sup | £,

IA

A1}
Thus, ”fg'(‘gn)“ — || f]| , and resorting to the H-property of H,,
fosy—f asé—0.
For the case when f € R(K™), a convergence rate for this strategy exists:

Theorem 4.4 (Groetsch, 1984) If f € R(K~), then !lf - f(f(g) =0 (\/5) .

®Take the functional (-, y) where y € N(K). Then

. bn
0= lim (fu(;nk),y>::(z,y)v

Ny —+ 0
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In fact, this convergence rate cannot be improved if K is of infinite rank, although it can

be improved to O(4) if K is of finite rank (Groetsch, 1984).

The major difficulty with the discrepancy principle is that the exact operator is usually

not accessible for computation. To treat this deficiency, the principle is modified to the

choosing of the parameter that satisfies
) 5 2
Plasy (@(n ) = (60| £ ) + 2

(Goncharsky et al (1973), Goncharsky (1987) ). Several aspects of this generalized discrep-

ancy principle are given below.

Theorem 4.5 (Goncharsky et al, 1973) For all n and § such that 0 < n <, 0 < ¢ <
bo for some constants ng, by, let (4.1) be satisfy. Then for every pair (n,6), there ezists a

unique number a(n, §) which satisfies

Py (e(m) = (640 £72 )" + 2

Theorem 4.6 (Goncharsky et al, 1973) Let {(19,,6,)}, 0 < 7y < 10, 0 < 6, < &y, be
any sequence convergent to zero such that (4.1) is satisfied. Then Tikhonov’s method with

the generalized discrepancy principle is an r.a..

”

Moreover, this modified scheme is “order-optimal” on some subset of H;.

Definition 4.2 (Goncharsky, 1987) A mapping Rs+ is optimal on E at a fived § = 6 if

sup A (Rs+,6",z) = inf sup A(R,6%,z).
xeg (A, ) R=X—*Yabveg ( )

The algorithm Rg is called the optimal one on E if it is optimal for any 6 > 0.

Definition 4.3 An algorithm Rg is order-optimal in E if for any § > 0,

sup A (Rs,6,z)=C _inf sup A(R,6,z),
TE% ( 6 ) R:X_’YIEE‘ ( )

C>1and independent of é.
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Theorem 4.7 (Goncharskii, 1987) For linear first kind equations, Tikhonov's method
with the generalized discrepancy principle is order-optimal on sets of the type BS(0, k).
Here, B is a compact operator from a reflezive space Z into Hy. and 5(0,r) C 7 is a sphere

of sufficiently large radius r.

Of course, defining a suitable operator B and a sphere S{0.r) is quite a task in itself
information about the solution need to be known. But it is not necessary to know the .ot

BS(0,7) to obtain this order-optimal convergence rate.
Turning to the iterative methods, analogues of the discrepancy principle will be consid-

ered. These principles will be applied to iterative methods of the class

£ - gj— KK, R, (K"Kn)] fo+ Ra(KIK K gy . (1.7)

)

where R, (1) satisfies

sup  [Ra(1)] < 2, (4.8)
0<t<|IKy | “
sup P ll—tR,(1)] < v07,  0<p<po (1.9)
O<t<|K gl ’
and where v, 7,, po are positive constants, and fy is an initial approximation.
Using (4.7), we have

(”J:U) N —_— A r] K’K Pt B RN [" ;‘ LI Ry - - R

fc,(ng) g5 = r;i a(hn["‘n) fO—" I - \'qffn(h ]‘7;)[‘ (/')

= |1 - KoK R, K5)] Ko fo - [/ = KB R UK K] g0
I- Ed = - ‘ >y - N N
= [ = K K;R(K,K3)| (Ko fo — g5). (4.10)

Also, using (4.9) with the assumption that pg > % (see theorem 4.10), for any K, w,

|/ - Ko KRB, K] Kol

&

!

- ﬁ K, ][ I = KK, R(KK )| w)

1y ; oy
< sup 1z |1 — R (1)]] [jwi
o<t Kalf? ‘
I
< oz fjwl] — 0 as o - .
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An application of the Banach-Steinhaus theorem? then shows that

rI—A’ K‘B{KK'}Q z— 0 asa— Oforall 2 € R(K,). (4.11)
Now with results {4.10) and {4.11) and the decomposition of g5, we have
éﬁ’,,.ﬂi?;;) - (laié = gf Ky K5 ﬁ) fﬁn}f;) (ano —gu}§
< |- K.K; EQLKWKfj(ﬁgﬂ)-u%}§+§[1-.KUK;RQQKWK;ﬂu4t
= |- KK Ra(K, M(mh~%ﬂﬁ%—xmgmmmmﬁ
= 1= K KRR K] (Ko fo = wi)]| + vl
— jcrﬁf HA L,z —gsl] asa— 0. (4.12)
Two other central facts ' are
K ‘/A f(rrfz) - gg)” —0 asa-—0, (4.13)
and
inf [Kyz — sl < 6+ 1l (414)

These two results and (4.12) are the bases for the following stopping criteria for (4.7)

(Vainikko (1982.1983}):

I. Choose numbers &y, b > by and 6 € (0,1). If for o™(n,6) > 1,

f’y
i

B fT) s = g < b2 (64 11 £llm). (4.15)

{
i
‘o

,:j

where . is the exact least squares solution closest to fg, then take o = a*. Else

choose an a{n, &) such that both {4.15) is satisfied, and for some 7 € [e, §],

{7.8)
VBl = g5 > ba (64 Y0 m) (4.16)
is satisfied.
"Banach-Steinhans Theorem Tne {ollowing conditions are together necessary and sufficient for a se-

guence of continucus linear operaters mapping a Banach space X into a Banach space Y, to converge
q PP

on X to a haear operator:

BTai< M a=1,2..;

2. {7T.r} is a Caucky sequence for each r in some dense subset £ of X,
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2. Similar to (1.} above, but with (4.15) and (4.16) replaced by
o Am6) . (m8) # -
1 EnSarna) 2 (6 + [l ) (L17)
and
;i e "75) { [n“\:} % ~ 3
10z 05y — 98| 2 0 (‘c ll sy ”) (4.18)
respectively.
3. Also similar to {1.), but now with the replacements being
e fm.8) Ie | ) ,
V10 s = as]| < b [+ (|70, = fol + 1Aull) ] (4.19)
and
L () i (ﬂ 0 ] .
Vol iy = g 2 00 o+ (L2505~ o + 1l o] a2
4. Choose numbers 67 > 0, b2 > b; and 8 € (0,1). Il for a™(n,8) > 1,
K (Ko di) sy = 9s)| < 264, (4.21)
then take o = ™. Otherwise, choose any o that satisfies both {4.21) and
VB (K £ = gs) | 2 b6+ ), (4.22)
for some 7 € {a, al
& .

Criteria {2.) and {3.} are further stipulated with the condition that

a>;w+72,
23 1)
and if these a’s do not

T s

tisfy the appropriate stopping condition, then « is choosen Lo be
: 12
ARG/ I

Here, 3 > 0 is a fixed constant

Indeed, iteration (4.7} together with any of these stopping criteria is an r.a

This is
elaborated in the concluding theorems of this section

=1

Theorem 4.8 (Vamlkko. 1982) Let g € R(K), and let ({.8)-(4.9) hold. Then iteration
(4.7} with R.(1): ED HK i “-55 — C, and with o{n, é) chosen such thal

i ] 6+ 32

e — as &, 7 — 0,
ai7,0)
18 an r.d..
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Theorem 4.9 (Vainikko, 1982) Let Pﬁ(-:,—{jg € R(K), and let (4.8)-(4.9) hold. Then

iteration ({.7) with R.(t): [0, HKWHZ} — C, and with o(n,8) chosen such that

62
“+n) _

as 6, n — 0,
a(n,6)

a(n,6) — 0,

18 an r.q..

Theorem 4.10 (Vainikko, 1982) Let ¢ € R(K), and let (4.8)-(4.9) hold with py >

2, 70 = 1. Let the parameter o7, 8) be chosen according to any of the criteria (1.)—(3.)

with the assumption that N{K) =0 or else

1 K
by [1 — (77'8)2 max {u, 1}] > 1
lg]]
where
+'i=  sup t f?,o,(t)i <1+
o<t<|IK]?

for criterion (2.). Then

(6 4+ n)* [
0+ 1) > 0, if{i’z;?g)—fffg”ﬂ() as 6, n — 0.

o(n,6)

Theorem 4.11 (Vainikko, 1982) Let Pﬁa;)‘g € R(K), and let (4.8)-(4.9) hold with py >
L. Let the parameter a(n, &) be chosen according to criterion (4.) with by > o “g - ng!l .

Then B
(8+m)

a(n,8)

— 0, iff(g?f?s) — K*g” —0 aséd,n—0. |

4.2 Landweber Iteration

We now take a closer look at the Landweber iteration and propose a multilevel adaption to
it.
This iteration is essentially the successive arproximation procedure applied to the least

squares equation
K Kf=K"g.
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It is known that this iteration produces approximations which converge te A'tg + fON(m
if g € D(K') (Strand (1972 and 1973)). In particular, the approximations converge to
Ktg if fo € R(K™). However, it is also true that ||fx]] — oo when g ¢ D{AT). Lo. ill-
posed problems then, the Landweber iteration cannot be applied without employing some
sophisticated stopping criterion which logically should depend on the magnitude of the data
error. What really is required is a stopping criterion which together with the Landweber
iteration forms an r.a..

Having employed such a stopping condition, this r.a. filters out the error-source high
frequency components; that is, n is automatically chosen to allow only a compromising
amount of high frequency components to enter into the approximation. To see this for he

exact operator case, recall that

o0
Klg=3"pui(g,ui)v;,

=1

and

K=gs =Y ui ™ (96, u5)v;.
i=1

Now if f§ € R(K™), say

fo=Kw= Zuj’l(w,uj)vj,,

3=1
then
o= K (s~ K5
n-1 )
= (I-KKf§+> (I-KK)K"gs
1=0
o0 n—1 =
= (I- KKy p H(wougos+ D (1= K"K) ) ™" (g5, m5)v;
=1 i=0 g=1
[o'e) n n—-1 oo . L 3
= Ey.j—l(w,uj) (1 - )\_,,-2) v; + Z Zﬂ.{l (1 — Aj‘)‘) {gs,u)v;
=1 1=0 y=1

oo n—1

= Z)\j (1 - )\j2)n (w,u}-)vj + Z Z /\3‘ (] - /\jzji (g,;,,uj)vj.

=1 7=1 1=0
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Taking fg =0,
o n-—1 .
=332 (1= 22) (9505,
7=1 1=0

and a further iteration adds the term
(o) 2 n
32 (1=22) (g5, us)0;
J=1

to f. Now since

n(n‘— 1)/\j4 _ n(n — 1)(” - 2)/\j6 + 4 (——1)”/\]‘277']
9 6

= A — 'n,)\ja +0 (/\js)

& A

M

N(1=-a2)" = {1 ~ A2+

(4.23)

for large j's, f¢ +1 contains an additional multiple of about Aj(gs,uj) of each high frequency
v;. Furthermore, because 377} A; (1 - /\j2>1 is the product of A; and the (n — 1)’st Taylor

polynomial of;l; expanded about 1 and evaluated at /\j2,
o0
1
fn— Z/J'j(g’ uj)vj'
J=1

An r.a. producing stopping criterion hence would produce a good approximation by limiting
the growth of high frequency components.

For first kind Fredholm integral equations, the iteration is

. ) b b
£ = )+ [ b(w,9) [gm - [ k0w dt} . (42
Equation (4.24) is solved numerically after being discretized into the matrix-vector iteration
Son= ii—m + hKG [25.& - hKhh_f.i«l,h] ’ (4.25)

where h is the stepsize of the discretization, and K3 is the discrete version of the kernel
with stepsize h in both variables. The question that naturally arises is how well the solutions
of (4.24) and (4.25) agree. Equivalently, the question is how well the singular system of the
integral operator K is approximated. One noticeable problem is that if K is of infinite rank,

then its infinite singular system must be approximated by the finite singular system of K.
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We will not delve into this or any other problems arising from the discretization of (4.24).
But we will require the discretization to be dependent on the quadrature error which will

be arranged to be O(4).

In passing, ii , and f8(s) do agree to an extent determined by the quadrature crror.

Since the generating function of the Landweber iteration is

1

Bty =S [1=(1- 07,

and assuming that ||K]|*> < 1 and ||Kp)|* < 1 (conditions which always can be fulfilled by

some scaling),

sup tP tl ~ tf?,n(t)l = sup tP|(1—-1)"]
0<t<1 0<t<1

3 l=r forp=90
- (;—%ﬁ)p (p—_’;‘-_;;)n <pPnTP = qn7P for p > 0.

Hence, theorem 4.10 is applicable, and so both
| 7i(s)— Ktg| —0 ass—o0,

and
”f_i BT KTg“ —— 0  as the quadrature error and § — 0.

Returning to equations (4.24) and (4.25) with the assumption that g € D(KT), note

that the errors after k£ iterations are respectively

ei(s) = Klg(s)— fi(s)

o e} k-1 ; v

= Y _ouilguvi = { Aj (1 - Af) } (g6, u5)v;
1=1 7=1 \i=0
o0 oo (k-1 \il

= > pilg,usvi - {Z Aj (1 = X;%) g+ bg,uj)v;
1=1 j=1 1i=0 j
o 4 oo‘ Ry

= >_ui(guihvi = )k {1 - (1 - A7) } (g + bg,us)v;
1=1 71=1

i

00 & oC k
= > U (1 - f\jz) (g,u5)v; — 1 [1 - (1 - /\j2) ] (bg,us)v;,
i ot
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and

s = Kt 6
Cn = Kpgy, =L,

= Lujh (1— Jh) (g, Wn)2jn — D Wit [1* (1—/\jh2)k} (89, uin)2sn -
j=1

Regularization enforces some weighting between the two sums of each of the above expres-
sions. With this view in mind, another approach to the iteration can be derived.

Suppose the Landweber iteration is applied to the first kind equation Ké§ = dj :=

g~ K f{. After m iterations, we have the approximation

é = Z{ZA (1- -z)i}(ci&uj')vj

g=1

[1~—(1——/\-)m](g,uj)vj Z/‘J [1——(1— ) ](ka,uj)v]

1 [1= (1-37)"] (g0,

- o Em - (3wt
_ iuj 1= (1=22)"] (g u)0;
S O o - i
= Sl (-3 T 14 (-39

) G

|
=
—

!
TN
—

I
>

L)

[\~
N—
prn——
N

= You(1- Ajz)k - (1- 3" (g, 05y
S () [ (1) e
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As m — oo, this expression tends to ei , and if regularization is performed, then }:‘ + é‘;m
should be a good approximation to the regularized solution of A f = g5.
pPp o gs

However, ds is usually not available, but rather
— - 8
ds := gs — K f{

is. Applying the Landweber iteration with this forcing term produces

e, = i“j (1 - Ajz)k [1 - (1 - Ajz)m] (g,u;)v,
=1
+ iuj 1-(1-2%)"] (- ,\ﬁ)k (69, u;)0;
7=1

j=1

which does not approach ei, and in fact, may diverge because the sum may diverge. This
infers a quicker halting of the r.a. for the present equation than the previous defect equa-
tion. Nevertheless, for regularized values of m, ff -+ e{  should not be too poor of an

approximation to the regularized solution of K fs = gs.

With the difference of the regularizations of the two defect equations stated, it is ques-
tionable whether this approach to the Landweber iteration is practically helpful. But it is.
First, two ideas that may alleviate the difference are to apply a different r.a. to the defect
equation, and to have a different f,f -i.e., f,f is not the £’th iteration of the Landweber pro-
cedure with starting approximation f§ = 0. The first idea is actually required in a multigrid
procedure, while the second idea will always be the case if an original equation-defect equa-
tion cycle is performed. Second, this approach opens up the realm of multilevel processing

to some ill-posed problems, which we investigate next.

The ideas of multilevel processing start with the construction of the defect equation. Let

fr be the k’th iteration of the Landweber procedure applied to the exact equation
Kf=g, g¢€R(K"). (4.26)
frx may be considered to be the least squares solution of

Kf=g~-d, deR(KT). (4.27)
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Also let f¢ be the k’th iteration corresponding to

Kf = gs. (4.28)
We have
ld—dsll = |o—Kfe—gs+KSL
< llg—gsll + HK (fk - f}f) “
< 6§4+4é6M  (lemma 3.9)

2,

fl

which enables the r.a. to stop sooner.
The same analysis and results hold for the discretized versions of (4.26)—(4.28). But now

the defect equation can be solved on a coarser grid where the singular system of K can be ap-
proximated almost as well as on the fine grid. However, if we denote the elements of the fine
grid equation with subscript h and those of the coarse grid equation with subscript H, then
a major problem with this multilevel procedure is that any component of the interpolated
coarse grid solution belonging in N(Kp;) will always remain in the regularized solution of
Kinf, = gs, - The interpolated solution therefore must be in R(Kpi*), a requirement that
cannot be easily satisfied if the Landweber iteration is performed on the defect equation.

Suppose that instead of solving the least squares equation
Kuu"Kuneiy = Kun'dsy

the equation

[Kyy*Kun + algn) ey = Kyu“dsy

with suitably chosen parameter « is solved. Then

¢ 1 .
5 « 5
€l = [KHH dsi — KHH*KHH_Q]:H} ,

which suggests the interpolation

1 - * - *
Intely = p. [Khh dsp, — Ky KhHEiH] . (4.29)
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Now using (4.29), a two-grid iteration matrix describing the new procedure is
My = { I = In" [Knn" Kng + elnn) ™ K I Knn} Smn™ (4.30)

where 1,, is the identity matrix on grid ¢ = A, H, Iy"™ is the projection operator between
grids H and h,and Sp™ := [Inn — Kpp" Krr)™ is the m’th iterate of the Landweber iteration

matrix. The full iteration is

kh-Shhmfk 1h+IH [KHH AHH+aIHH] II\HH (qéh I‘h.h ‘)hh fk J))
(4.31)

The braced part of (4.30) can be viewed as an approximation to the iteration matrix
Ty := {Ihh — [Knn™Kpp + adpn] ™! Khh*Khh} ; (4.32)
which corresponds to the iterated Twomey-Tikhonov scheme

Son = Fyy g+ B K+ o] Ky (25h - Khh_f_i--l,h) : (4.33)

(4.33) captures the high frequency components more rapidly than the Landweber iteration

does as can be seen in its k’th iterate with _gh =0:

k
1
=Y uin {1 - (1 - W) jl (_.Qgh’ﬂjh) Yjn

7=1
Hence, if an appropriate « is chosen and if an r.a. producing stopping criterion is used, then
the Twomey—-Tikhonov scheme should require only a few iterations.
Of course, this quicker capturing of relevant components is what we want (4.31) to

achieve. A look at the Landweber residual shows that this is quite possible:

“K_flih ’Qahn = Z (1 - ’\j2)k (_g_'ghal@.jh) jp,

7=1

After each iteration, very little is reduced for A;’s= 0, but a moderate reduction is possible
for moderately sized A;’s. So, to attain the stopping criterion bound, it is the slow captur-
ing of medium frequency components that creates the problem- frequencies that may be
approximated well on the coarse grid since

H Zl—}—u;:;y (Ih dé}h’ ]H) Y| -
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But the two-grid scheme is ineffective if the solution is composed mainly of high frequency
components. This is true even for an ideal multigrid which consists of a restriction operator
that projects the defect closely onto the space spanned by the low-medium frequencies of
K i, and an interpolation operator that interpolates the regularized error close.ly into the
corresponding space of Kpj . Little is achieved because the coarse grid procedure cannot
capture the high frequencies well. In this case, the coarse grid step should be stopped,
and further Landweber iterations should be performed on the fine grid. To recognize such
a switch, the residual can be monitored: if the residual does not change much after a
coarse-grid correction, then only additional Landweber iterations on the fine grid should be
performed.

Turning to the parameter choice and the computational costs, @ should not be too small
to permit magnification of rounding errors. A good choice can be obtained cheaply on a

grid coarser than H . Letting this grid be 4h and letting H = 2h, the cost breakdown is

2n? per Landweber iteration,

=
w

for the formation and Cholesky decomposition of [Kyg‘Kyy + olgn]

for the adjustment Kyy*dsy ,
2

NG

for the interpolation, and

|

% for the refinement of «.

X

(The cost of the restriction has been omitted since only the trivial injection has been applied

in the numerical examples.)

4.3 Tikhonov Regularization

The realization of the Tikhonov procedure with the discrepancy principle is slightly more
involved than the Landweber iteration. It may consists of solving two linear equations which
are nested in a Newton iteration:

given ao(7, é), both

[y Ky + co(n, I f70) o = Kn*gs (4.34)
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and
(wﬂ)
ay 1,8 {n.8)
[K," Ky + ao(n, 6)I] ——— Ao Jeo(ns) fao(w)

are solved, and then ap(n,d) is updated according to

Y Caet L

e N

ak(n,6) = ak-1(n,8)—

= [p?mg) (a(n,6)) - 6 +7

= O‘k—l("h&)
n P(na (ex-1(7,6)) — (‘5+TI” zoz(qa)’)‘”'/n
f(”l ,8)
2 n () (71,8}
2 (ak-l("], 6)’*'77 + (m.8) ‘) ( da oo (1,8)? e (1, 5))
ak-—l(n‘d)i

69

(4.36)

Note that equations (4.34) and (4.35) must be solved for each Newton iteration. Note also

that some simplification is achieved if

Un2 — 0’ (‘137)
for then the recurrence reduces to
(11,
P(ns( 1c1(777‘5))~~ 6+77 o 7,5) ‘)
ar(n,8) = ap-1(n,6)— 4 5 ‘ n,ll) T 1() ”
o {P(n 5)( ("77 )) n lf (n,6) ]|ak-—1(7i»5)
= ak—-l("%&)
(.6}
P(n, O '17,(5 - 5’*‘77 fa y
N (1,8 (@k-1(n, 8)) ( LSt wﬂn) — . (4.38)

ap_.1(n.6)

We henceforth assume that (4.37) holds.

One of the major problems of (4.38) is that the function

hi (7, 8)) := pen.s) (a7, 6)) ~ ” (’('%Gf)s}

f("'l ,6)
ag—1{m5) . 7 ) amb) {(n.¢)
(n,8)(k—1(n,6)) lf(n 8) do |og_1(n,6)7 7/ og—1{né)
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is not necessarily convex. Thus, Newton’s method may be sensitive to the initial approxi-

mation. However, for the exact operator case, the modified equation

ha ((6)) =M (a-(ly)) = ps (;égj) -6

is convex (Gordonova and Morovoz(1973), Morovoz(1984)), and so Newton’s method will

converge for any starting o > 0. The recurrence becomes

s (Gm) — 8 #s () 4 O

dfi(&! f§
do | 1 2 1
ax—1(8)  ox_1(8)

Turning to operation counts, the count for this algorithm can be very large. For example,

(4.39)

ok (6) = ap-1(6) —

for first kind Fredholm integral equations, it is

3 .
- _ formation of Kpp! Ky , and

2

J ’—g? — Cholesky factorizations after (j — 1) Newton iterations.
This large value reveals the problem of the standard approach: a direct solver is used for each
iteration even though the solution of the previous iteration may be of sufficient accuracy for
use. Applying a standard iterative method which does use the previous solution may not
resolve this problem either, because of the ill-conditioned systems. A suggestion is to apply
a multilevel process.

Let N = 3, and assume that Tikhonov’s method with the discrepancy principle obtains
a solution after k Newton iterations. This coarse level procedure does not only derive a
good approximate ¢, but it also derives a solution that may be interpolated into the fine
grid to be used as an initial approximation for some iterative linear system sclver. Now
since the Newton scheme requires two systems to be solved and since a good « is available,
a switch over to a generalized discrepancy principle which requires solving only one system
should be performed. The created system can be solved iteratively, and as a new parameter
is obtained using
ar = [Gg-1, O<pu<i,

the solution of this system can be used as an initial approximation for the next system.
Moreover, because the parameter changes only slightly, this initial approximation is accurate

enough to prevent slow convergence of the linear system solver.
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Concerning the interpolation operator, the expensive operator used in the Landweber
scheme need not be used. The systems created here are non-singular, and so any suitable
polynomial interpolation can be used; i.e., interpolation errors belonging i N( A1) pose
no problem here. One fact that should be exploited is that the regularized solutiou should
be smooth. Hence, higher-order polynomial interpolation should be used.

Choosing a smoother requires more investigation. Recall that multigrid applied to dif-
ferential equations has the effect of damping out certain error components ai certain levels.
The damping effect is controlled by the smoother. But this effect may not occur when multi-
grid is applied to a system derived from an integral equation. For example, Gauss-Scidel
can be applied to

{hzﬁ'hhiﬁ'hh +al ii S Khhtg‘,; )
but what does this smoothing do to the error components? Selective components need not

be damped out rapidly. To see this, let
B = ghQKhhtI(hh + al'] ,
and
B=D+L+1L",

where D and L are respectively the diagonal and strictly lower triangular parts of B. After

k iterations, the error is

k
~(D+ L)L €

Iy
Il
oy ey

k.
~(D+ LB~ L-D)| &

i

k
I~6D+Lrﬂﬂ§9

ll

Now consider the effect of the relaxation on an eigenvalue—eigenvector pair of B, which we
denote by {;\tgi

1 !

} . Also let {:\i,ﬁi} denote the eigenvalue-eigenvector pair of [ + L]™'.

Then if "
;= Z ¢85,
J=1
r B n R n » k{k — }-, . Tt ~ o y _
g—(D+mﬂBfg = > c;i;— kX QM@+~;TJM§:QM“U+Lr”ﬂ%

=1 3=1 7=1
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Nothing about the damping effect of the 3; frequency can be determined from the last
expression except that the frequencies can mix. Hence, in general, the damping effect of

the Gauss-Seidel relaxation is unknown. This is rather unfortunate because the spectral
properties of the systems derived from the regularized first kind equations are roughly
known.

One smoother that is suitable for the regularized equations is the (preconditioned) con-
jugate gradient iteration. The eigenvalue—eigenvector systems of interest are those of the
original systems. But the problem now is that there is a cluster of Plgenvalues near o, and
since the polynomial curve fit of the conjugate gradient method must equal one at zero,
the convergence may be slow {Jennings {1977)). Preconditioning may relieve some of this
problern. But then this problem may not be too serious for the high frequency components
do not contribute too much to the solution anyways. Elaborating, if the residual vector r is

expressed as

@ = ZS§O)_71{ )

=1

then after j conjugate gradient iterations,
{4} 5 0
147 .
s = 0,

where p/ (A} is the polynomial fit of degree ;. Assuming that the interpolation introduces only

a small amount of high frequency error, the ( Vs corresponding to high frequencies would
be small already. Hence, although the SE"? s for large 4’s may not decrease too dramatically,

they are small enough to allow only a small contribution of high frequency components to

20 1
enter into rvs,

-

Another way to see a possible rapid convergence of the conjugate gradient iteration is to
view the large eigenvalues of B as outliers. This view is reasonable for regularized first kind
equations since the eigenvalues usually converge rapidly to zero. Now using the analysis of
Jennings. a smaller estimate of the number of conjugate gradient iterations required can be

obtained.

Two other things concerning the conjugate gradient must be emphasized. First, the

o
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above problem of the smoother occurs only in the first system created on the fine grid.
Subsequent systems should not pose much problem because good initial approximations are
available. Second, the conjugate gradient iteration must have a stopping condition that

relates to the regularization procedure. This is given in the following theorem:

Theorem 4.12 If the magnitude of the residual of the iterative solver is O[(6 + 1)?], where

7 18 the quadrature error in approrimating K with a semi-discrete operator K, , then

) -
fgn 5) — K%y asb, n—0

provided that one of the generalized principles (1.)-(3.) is used. Here, fc(jg’ ) is the solution

obtained by the iterative solver.

Y )
Proof: By theorem 4.10, using any one of the three rules, we have % — 0 as 6,7 ~ 0

and
g!f:?ézg} - ngli —0 asé, n—0.
Thus,
V-] < - 0 -
= ig[](n*fg{ + a(n, §) N + }i C("TZT;))&) _ A’Tg“

.__”_ﬂ,'_ iif(’znsl)s) - ngu — 0 aséd, n—20.

The result of the theorem is a bit discouraging since (& + )% may be rather small. [u
practice, what can be done is to stop the iterative solver earlier, but to progress to this
value as a7, §) is processed For example, the iteration may be stopped at (6 + r/)‘I for the
first system, at p(6 + 17) for the next system, etc..

Summarizing, the two-grid method obtains good estimates of o and the regularized
solution on the coarse grid using the discrepancy principle. Interpolating this solution to
the fine grid and using this o , by switching over to a generalized discrepancy principle which
requires solving only ome system, an iterative system solver can be used on the fine grid.

Now this procedure can be applied to more than two grid levels. Using p levels, the

coarsest level is solved using the discrepancy principle with Cholesky decomposition, and
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then the higher levels are solved using a generalized discrepancy principle with an iterative
system solver. This may reduce the operation count substantially. For example, for p = 3
with grid sizes h,2h,4h, the breakdown is

-7-‘,} ~ formation of K, Knp ,

j ;%;;1 - Cholesky factorization at the coarsest grid,

0 (ﬂ;—) - jterative solver for all the systems on the middle grid, and

O (n?) — iterative solver for all the systems on the fine grid.

This multilevel method also can be applied to some nonlinear first kind integral equations
after a change in the parameter selection procedure. To see why such a modification is
required, we take an excursion to examine the stabilization of the least squares problem.

So far the exact operator case of (4.34) has been viewed as a perturbation of the least
squares equation. A better way to justify the use of (4.34) is to view it as the Euler equation
of

M2z, go] := p? (a(6)) + a(8)2(2) (4.40)
where 2 is a nonnegative stabilization functional defined on a dense subset Fy of D(K} and

satisfying

1. the exact solution belongs in Fj, and

2. for arbitrary positive M,
Far:i=4{z:Q(z) < M}
is compact in Fj.

The solution of the Euler equation of (4.40) minimizes M °|z, gs], and if the parameter is
chosen such that p(a{d)) = 6, then with Fy = {z:||Kz— gs|| < 6}, the solution also
satisfies

min (z).8
FinFs

*Here, we are assuming that My N Fs = @, where
Mp =< 2:Q(2)= inf Q(2)
o { () zlélpl (z)}

{ Tikhonov and Arsenin (1977)).
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For
(K™K + a(6)1] fogs) = K705
the corresponding stabilizer is Q(z) = ||z||>. A general form is the n’th-order stabilizer
defined by

b2 diz]?
2= [ 3 ato 5] o
@ =0
where the a;(s)’s are nonnegative functions. Applying this stabilizer to a first kind Fredholn
equation produces a corresponding integro-differential equation with a set of boundary
conditions (the Euler equation). For example, using a first-order stabilizer, the integro

differential equation is ,

b b (4 dfs ‘
/ / k(v, $)k(v, ) fo5)(t) dvdt — a(6) {E? [al(s) dié)] - flo(t‘f')fﬁ(a)} =

b
/ k(v,s)gs(v)dv (4.41)

with boundary conditions fz(é)(a) = f1, fg(g){b) = fo.
Returning to the previous discussion, a modification is required hecause the stabilizer
corresponding to the usual regularization equation will be changed. With this change, the

regularization equation converts into the form
(K™K +a(8)L) f5, = K*g5. (1.42)

Clearly the generalized discrepancy rules (1.)-(3.) cannot be applied now.
One remedy to this drawback is the quasi-optimal selection method. Consider the case

L =1. A “smooth” regularized solution is

Fys)

4.43)
dey ( )

fosy = Fosy — o)

which is obtained by solving
[K™K + o(6)1] f:g& = K7gs + Ot(é)fi(é) .
Naturally a desired property of a good parameter is that

I
foey = fats)



CHAPTER 4. DISCREPANCY PRINCIPLES AND MULTILEVEL PROCEDURES 76

i.e., the solution is already smooth. Thus, choosing the parameter thal minimizes

; a(5

provides us a solution with this property. In practice, if the parameter is processed according

to the formula

Cf = k7, 0<,U,<1.,

then since

Wate) fae) = Fuats)
o)~ = old) #Jlno a(ﬁ)(l»——,u,)
p—+1-0 1-— 7] ’

a good parameter is one that minimizes ifgﬂw) - fgnq(g) “ . Such an «a is called the quasi-
cptimal parameter.

Now the good news is that the transition of the quasi-optimal method for L # I poses
no problem. In relation to multigrid, for first kind equations with non-trivial stabilizers,
the parameter selection method on the fine grids of the previous multigrid procedure can be
replaced with this selection method. Using the discrepancy principle on the coarsest grid to

obtain a good initial parameter, the quasi-optimal procedure may not be too burdensome.

Turning to nonlinear Fredholm equations, consider

K[s, (1)) - / k(s,t, f(1)) dt = g(s), c<s<d. (4.44)

/

We will assume that

L K[s, f1(1)] # K[s, ()] if f1(2) # f2(2),

s, f(t)] is a continuous operator from [e,d] ® C{a, b] into La]e,d],

]
g
g

3. kg(s,t, f(t)) and kss(s,t, f(¢)) are continuous in f in a neighborhood of the exact
solution, and
4. ff ke(s.t, f(1))w(t)dt = 0, where f(t) is the exact solution, has in the Sobolev

space W, only the trivial solution
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-1

1
-

(Tikhonov (1964)). Linearizing (4.44) about some function f§ we have by Newton’s method
K [ r6]f6 = K:ls £6 fé+ . I'[ 5] 4.45)
F18 Jolh fls, folfo + g5 vls, fols (4.5

where K is the Fréchet derivative of K. Then with the functional

. d .
“[£5,K s, S5 + 05 - K5, £3]] = / (K11, S8V sy — B 5ls, SIS = 0o

jo} ds+aé)/ (f](;:(“) dt

we obtain the Fuler equation

72 £
r

are ' \d f afd
[ Rt (0 58050) i (o, 7800 5 a0 ot — ) 80

d ]
/ kg (v,s,fg(s)) he(v) dv, (4.46)
c

where

] b .

hs(s) = gs(s)+ [ Br (st £8(0) B ai— [k (50, 15(0)

a a
Equation (4.46) is linear, and hence can be solved easily. However, the cost of obtlaining
an accurate approximation is prohibitively large since for each «, several Newton iterations
are performed and each Newton iteration requires a matrix formation and a matrix-matrix
product. Some savings are made if the matrix is kept fixed once a good approximation
is available, but the cost is still high. In contrast, a multilevel procedure will reduce the
cost noticeably. This reduction is not only achieved through the use of an iterative sys-
tem solver, but it is mainly achieved by a reduction in the number of matrix formations
and matrix products. Sclving (4.46) on the coarse grid via the Cholesky-quasi-optimal pa-
rameter method, a good o and approximate solution are obtained. Oun this grid, matrix
formations and matrix products are performed per Newton itzration. Interpolating into
a finer grid, if the solution is accurate enough, only the initial Newton iteration requires
matrix formations and matrix products. Subsequent Newton iterations on this grid will not
involve matrix formations and products, only system solving using the conjugate gradient

iteration.



Chapter 5

Numerical Results

Numerical experimnents will be reported in this chapter. All the examples involve integral
equations which have been discretized using the composite trapezoid rule. The multilevel
methods of course are not restricted to this equally-spaced quadrature, since the major
obstacle is to construct Kpz Ky, and its coarse grid versions in ﬂ; operations, or if Kpp
is decomposed as Appw, , where App is the matrix of kernel evaluations at the nodes and
wy, is the vector of quadrature weights, the task is to construct Az, Apy and its coarse grid
versions in 11;— operations. This obstacle does not even arise in the multilevel Landweber

iteration since Ap,'Kpy need not be constructed. In the Tikhonov schemes, the task can

be achieved by building the finer matrices using the previously formed coarser ones.

5.1 Multilevel Landweber Iteration

Several standard procedures shall be performed for all the examples of this scheme. First,

the stepsize of the quadrature rule will be set to

124
h = V/—;s:.

where b3 is some upper bound on ||Ky|| . Second, the discrete equations

hKhhf_}i =Gns

78
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will be “normalized” by dividing each through with the trace of A2 K),* Ky, . Third, the pa-
rameter « is chosen using the Morozov discrepancy principle on the coarsest grid (stepsize=
4h) with the restriction that @ > 0.0005 in order to prevent large magnification of rounding
errors in the interpolation procedure. And fourth, the parameters by, by in stopping crite-

rion (2.) will be set to 1.1.

Example 1. Antenna design theory (Bakushinskii and Sizikov (1982))

IA

/7r cos(st) f(t) dt = 27 {Si[(1 + s)x] + Si[(1 = s)n]} -7 <st<r.

-7

Here, S1[s] is the sine integral

Sils] = / S0 g
0

)
and the solution is

o Sin(t)
)= 27r———£—-— .

We transform this equation so that the limits of integration are zero and one:
1
/ cos [7r2(2w —1)(2v — 1)] f@2rv—m)dv = Si2rw—n+1]4+Si[1 -2rw+7], 0<w,v<1.
0

After discretizing this latter equation and normalizing the result, the right-hand side is
perturbed by trace [thhhtKhh] 6. Using the upper bound [|K|| < I and [|K,,]| < #*, we

obtain the results given in tables 5.1 and 5.2.

I 6/h | time (real) | iterations | [Jerror]], |
0.001/0.0078125 3.44 18 0.0324145
0.0005/0.0078125 4.01 21 0.0313566
0.0001/0.0019531 | 1079.81 348 £.0103711

Table 5.1: Antenna design theory using a standard Landweber method.

For the multigrid method, ten Landweber iterations were performed before each restric-
tion. It is clear that this method is more efficient once a sufficient number of Landweber

iterations are required for the standard method.
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{ 5/h | time (real) | alpha | [lerror|, |
0.001/0.0078125 5.34 0.02300 | 0.0256249

0.0005/0.0078125 5.33 0.02293 | 0.0254669
0.0001/0.0019531 201.21 0.00250 | 0.00739896

Table 5.2: Antenna design theory using a multigrid Landweber scheme.

7 T T T T

exact =
6 approx —— -

] ]

0 : :
0 0.2 0.4 0.6 0.8 1

Figure 5.1: Antenna design theory for é = 0.0005.

Example 2. (Delves and Mohamed (1985))

S2.75+1' _ 1

1 52734 €

The exact solution is

IA

»
o
IA
p—t

HOETS
Perturbing the forcing term as in example 1, we obtain the results summarized in ta-
bles 5.3 and 5.4.
Ten Landweber iterations also were performed before each restriction.
This example illustrates a problem associated with the Landweber iteration and the
Tikhonov method with a zero’th-order stabilizer. From figure 5.3, we see that the approxi-

mation is good away from the endpoints, although it is not very good near the endpoints.
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[ 6/h | time (real) | iterations | [lerror]], |
0.001/0.125 0.25 235 0.457333
0.0005/0.0625 1.09 325 0.344821
0.0001/0.03125 6.76 560 0.251526
0.00005/0.015625 31.84 687 0.180891

Table 5.3: Example 2 using a standard Landweber method.

|

6/h | time (real) | alpha | [lerror|], |
0.001/0.125 0.39 0.630119 | 0.457326
0.0005/0.0625 1.28 0.282816 | 0.344790
0.0001/0.03125 5.85 0.127290 | 0.251518
0.00005/0.015625 19.00 0.0623390 | 0.180885

Table 5.4: Exaraple 2 using a multigrid Landweber scheme.

2.5

3 T

exact =
approx ——

0.8 1

Figure 5.2: Example 2 for 4 = 0.00005.
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Figure 5.3: Example 2 error for 4 = 0.0005.

Providing boundary values may improve the accuracy near these points.

Example 3. Green’s function for a vibrating string with fixed endpoints (Strand
(1972,1974))
r 8
k(s,t)f(t)dt = — (3 - 5s* + 3s* — 35) . 0<st<1
0 ’ 30 \

where

k.(s,t):{ (1‘—s)t 0<t

The forcing term was chosen such that the exact solution
fy=t-2t3+¢*

is approximated well by the first singular function of K.

Again we perturb the forcing term by trace[thhhtKhh]é, and relax ten times before
restricting the defect onto grid 2h . Results are summarized in tables 5.5 and 5.6.

The results should not be too surprising. Because the solution is composed mainly of a

low harmonic, very few Landweber iterations are required to obtain a good approximation.
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{ é/h | time (real) | iterations | |lerror], l
0.001/0.015625 0.12 2 0.000915895
0.0005/0.0078125 0.66 3 0.000906966
0.0001/0.00390625 3.37 4 0.000864410

Table 5.5: Green’s function using a standard Landweber method.

} 6/h | time (real) | alpha | [lerrorll, |
0.001/0.015625 0.56 0.0561587 | 0.000670274
0.0005/0.0078125 3.17 0.0200675 | 0.000658018
0.0001/0.00390625 22.55 0.00740150 | 0.000210933

Table 5.6: Green’s function using a multigrid Landweber scheme.

0.35 T T T i

exact -~
03 - APPrOX e

0.25 - . -
0.2 - .
8.16 - -

0.1 - -

0 i I j |
0 0.2 0.4 0.6 (.8 ]

Figure 5.4: Green’s function for § = 0.0005.
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Hence, the multilevel scheme should be less efficient.

Example 4.

1 5
-71;/_] f::fiﬁ)%)‘ﬁ dt = —;lr- {2 + (8% — 5 — 1) [arctan(s + 1) — arctan(s — 1)]
1 (s+1)2+1]
- — T —1<s,t<
+(2 S>m{(s+l)’~’—lJ ’ sers
with the exact solution
f&) =t1-1).

The usual perturbation of trace[h? K, K516 - nd the usual ten relaxation cycle produce

the next two tables.

j 6/h | time (real) | iterations | [error||, |
0.005/0.03125 0.99 82 0.312120
0.001/0.015625 32.18 700 0.179916
0.0005/0.0015625 106.14 2310 0.162019

Table 5.7: Example 4 using a standard Landweber method.

l &/h | time (real) | alpha | |lerror|, |
0.005/0.03125 1.04 0.0486373 0.266286
0.001/0.015625 4.98 0.0105314 0.177603

0.0005/0.0015625 14.49 0.0102397 | 0.161406
0.0001/0.0015625 229.20 0.000786000 | 0.0788235

Table 5.8: Example 4 using a multigrid Landweber scheme.

5.2 Tikhonov Method with Zero’th-order Stabilizer

The exarmples for this scheme are of more practical interest than those examined in the
Landweber method. Omne of them is a first kind Volterra integral equation which will be
converted into a Fredholm equation. Another involves discrete data which will be interpo-

lated using cubic splines. And for some of them, it is known that higher-order stabilizers
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Figure 5.5: Example 4 for § = 0.0001.

are more appropriate. We examine these examples again using first-order stabilizers with
known boundary values in the next section.

Common procedures in all of these examples include an initial parameter choice of one,
a preconditioning using the diagonal of [R2K ;' Kps + al], a piecewise lincar interpolation

operator between two consecutive grids, and a generalized discrepancy principle with the

function
1 ) &
hala) = pn.6) (g) - (‘5 +7 fil z’ i)
where

k- ad=o) {, ' }oﬂ ‘

(Goncharskii, Leonov, and Yagola (1973)), and where a, b are the Iimits‘ of integration, and

- 2
¢,d are the bounds on s. Only approximations of || K| and max, ’“i‘ ; are used.

Example 1. Harmonic continuation {(Franklin (1874), Varah (1973))

1 /2" 1 — T2 f{t dt ( ) 0 o / < 271’ o
T —_ $ s, < 27, r < 1.
2 1—2rcos(s—t)+r ) AR S50 LT, i
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The equation is the Poisson integral formula in the unit circle for fixed radius 7. This

formula gives the solution of the Dirichlet problem

L2 (ru)+ Buw =0  r<l,0<s<2n
u{l,g):f(s) 0<s<2r
u(r,0) = u(r, 2m) r<l

us(r,(]) = us(T,Qﬂ’) r< .

But for our problem, g(s) = u(r, s) is given approximately and f(s) = ¢(1,s) must be found.

Another way to relate f(s) to g(s) is, if f(s) has the Fourier series
fo+z os(ks) + fg -in(ks)) ,

then g(s) has the Fourier series

o0

Z frcos(ks) + fisin(ks)) .

Clearly, small changes in high-order Fourier cocflicients of g(s) may cause large changes in

f(s).

In the numerical experiment, r =

[N

1 1
g(s) = —1 4+ = cos(s) + = sin(3s),
2 8
and [a,b] and [¢,d] are transformed into [0, 1]. The exact solution is
f(t) = ~1 4 cos(t) + sin(31) .

Perturbing ¢ to
gs(s) = g(s)[1 + 4],

where # is a random number chosen from a uniform distribution an [~1, 1], we obtained
tables 5.9 and 5.10.

The cg iterations column of table 5.10 gives the number of preconditioned conjugate
gradient iterations required for each updated a on grids 1 and 2 . For example, for 4 = 0.001,
three and seven conjugate gradient iterations were required on the systems of grid 2, and

six and ten iterations on systems formed on grid 1.
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| 6/h | time (real) | alpha | [lerror|], |
0.001/0.03125 1.02 0.01505 | 0.344369
0.0002/0.015625 6.84 0.005145 | 0.174514
0.0001/0.0078125 50.51 0.002187 | 0.0868148
0.00002/0.00390625 411.54 0.001008 | 0.0428558

Table 5.9: Harmonic continuation using a standard Tikhonov method with zero’th-order

stabilizer.

[ é/tol | time (real) | alpha | cg iterations | [lerror|, |

0.001/107° 0.57 0.001895 3/7 0.0793932
6/10

0.0002/10-° 545 | 0.0005496 478 0.0239888
7/11

0.0001/10~¢ 13.77 0.0001465 4/8 0.00732991
7/10

0.00002/107® 93.88 0.0005098 6/10 0.00264081
7/10

Table 5.10: Harmonic continuation using a multigrid scheme with p = 0.1.

] §/tol | time (real) | alpha | cg iterations | |lerror]], |
0.001/10-° 0.60 0.001247 3/3/4 0.311197
4/4/4
0.0002/10¢ 2.43 0.003435 4/4/4 0.126922
4/6/4
0.0001/10-° 12.96 | 0.001816 4/4/4 | 0.0742827
4/4
0.00002/10~5| 93.10 | 0.0006372 |  6/7/4 | 0.0277327
77

Table 5.11: Harmonic continuation using a multigrid scheme with x = 0.5.
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Figure 5.6: Harmonic continuation for g = .1, & = 0.00002.

i
i

0.8 l

Table 5.10 was obtained using g = 0.1. Different values of j give different results as

illustrated in table 5.11. Determining an optimal g is a problem in itself.

Example 2. (Phillips (1962), Kryanev (1974))

/Bk(hs)fmdt:g(s)j —6<s<6
-3

where

and i
() (6= s) [1+ Lcos(%)] + Lsin(5) 0<s<6
g‘S = b 3 C . . .
(6+s) [1+%005(f§ ] - ga;sm(%i —6 <5 <0.
The exact solution is

f(t):{ Heos(5) <3
0 It > 3.

We also transform the intervals [—3, 3] and [—6, 6] into [0, 1], and perturb the data by g(s)06 .
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| é/h | time (real) | alpha | |lerror|l, |

1 0.001/0.03125 0.95 0.03832 | 0.181006
0.0002/0.015625 5.95 0.01785 | 0.104504
0.0001/0.0078125 44.43 0.008562 | 0.0627038
0.00002/0.00390625 364.13 0.004087 | 0.0404601

Table 5.12: “Phillip’s” equation using a standard Tikhonov method with zero’th-order sta-

bilizer.

| §/t0l [ time (real) | alpha | cg iterationsT llerror||, ]

0.001/1073 0.48 0.02380 2/3/3 0.128577
4/3

0.0002/107° 2.14 0.01041 3/4/4 0.0709945
4/4

0.0001/107° 12.88 0.004729 4/3/4 0.0438212
5/5

0.00002/103 89.95 0.002203 5/5/5 0.0299022
5/6

Table 5.13: “Phillip’s” equation using a multigrid scheme with u = 0.5.

2 I I T T
exact —
approx —
1.5 _
1+ -
0.5 -
0 = -
_05 i i H i
0 0.2 04 0.6 0.8 1

Figure 5.7: “Phillip’s” equation for p = 0.5, § = 0.00002.
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Example 3. Numerical differentiation (Tikhonov and Arsenin (1977), Marti

(1980), Trummer (1984))

/ -——1————(£ — "L f() dt = g(s).
0

(n —1)!

This equation first is converted into the Fredholm equation
A
[ ks 05wt =g(s).
0

1 o _ 4yn—1 . -
K(s.1) = (s t) b>s>12>0
’ 0 0<s<t<)h.
Now choosing n = 3, b = 4, provided that g € W?[0,4] ard ¢(0) = ¢'(0) = ¢"(0) = 0, the
solution of this equation is ¢"(¢). In particular, with the choice

g(s) = / e~ =2 gy — e718(5 4 1657,
0

and with the perturbation of g(s)8é, we have tables 5.14 and 5.15.

I 6/h | time (real) | alpha | [[erv*-o’rﬁlj
0.01/0.125 0.82 0.2183 | 1.858310
0.005/0.0625 4.95 0.09010 | 1.853227
0.001/0.03125 40.89 0.02372 | 1.810004
0.0002/0.015625 338.35 0.005029 | 1.711513

Table 5.14: Numerical differentiation using a standard Tikhonov method with zero’th-order
stabilizer.

The unusually large number of conjugate gradient iterations is due to the inaccuracy of
the approximations. In turn, the approximations are inaccurate due to the bad choice of
stabilizer— the zero’th-order stabilizer simply minimizes the mean value of the approxima-

tions.
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% 6/tol i time (real) l alpha 1 cg iterat—ionsj {]error”ﬂ

0.01/10—3 0.73 0.01209 7/14 1.771946
18/28

0.005/1074 3.47 0.004780 8/19 1.701079
19/45

0.001/107> 21.56 0.001996 12/32 1.624848
22/76

0.(}00'2/10_6 139.19 0.0007767 14/48 1.522646
29/106

Table 5.15: Numerical differentiation using a multigrid scheme with g = 0.1.

exact ———

approx ——

! i i !

0.5 1

Figure 5.8: Numerical differentiation for = 0.1, § = 0.0002.

91



CHAPTER 5. NUMERICAL RESULTS 92

Example 4. Spectral composition of radiation (Tikhonov and Arsenin (1977))

11 { o
/ <l*g>h(s—t)f(t)dt:g(8), I <s,t <1,
1

where h(s — t) is a unit step function. Here, the unknown f{unction characterizes the dis-
tribution of the particles, and the kernel, which may be obtained by passing a delta pulse
through an experimental measuring device, describes such a device.

The exact solution was given at 41 points and then interpolated using cubic splines.
Next, the experimental spectrum was obtained by numerically integrating this interpolated
solution using a composite Simpson rule. After perturbing this spectrum by g¢(s)8é, the

following results were obtained:

| &/h | time (real) | alpha | [lerror|, |
0.01/0.078125 41.90 0.05687 | 0.186767
0.001/0.0390625 339.92 0.02174 | 0.183865
0.0005 /0.01953125 | 2907.32 | 0.009660 | 0.181290 |

Table 5.16: Spectral composition of radiation using a standard Tikhonov method with
zero’th-order stabilizer.

{ 6/tol i time (real) | alpha [ cg iterations ( llerror||, J]

0.01/10% 13.70 0.004141 3/7 0.0997999
5/15

0.001/10> 98.89 0.001233 3/12 0.0724816
9/29

0.0005/107> |  729.57 | 0.0004835 5/15 0.0567522
10/25

Table 5.17: Spectral composition of radiation using a multigrid scheme with p = 0.1.
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Figure 5.9: Spectral composition of radiation for 4 = 0.1, § = 0.0005.

Example 5. Backward heat equation (Tikhonov and Arsenin (1977), Varah
(1973), King and Neubauer (1988) )

1
/ k(s.,t)f(t)dt:g(s):h(s———l«>~h(s-—§> 0<s,t<1
Jo 4 4
where
_ 0 s<t
k(s,t) = e'ml:ﬁ ,
v r(s—t) s>,
and

2/s

2 et — -2 [ g~w?
h(s) = ﬁ\/ge i ﬁfl e dw s$>0
’ 0 §<0.

Solving this equation is equivalent to solving the ill-posed problem

Uy = Ugpy z €(0,00), t € (0,1]
u(1,t) = g(i) t € (0,1]

lu(z, )] <M - o0

w(z,0)=0 € (0,00)
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for —u,(0,1).

The exact sclution is

A

A 1 tctc?
HOE e
0 elsewhere

Using the perturbation g{s)é# again, we have tables 5.18 and 5.19.

i 6/h | time (real) | alpha | [lerror], ][
0.01/0.125 0.12 0.008677 | 0.360942
0.001/0.03125 1.21 0.0007986 | 0.214249
0.0001/0.0078125 97.27 0.00009595 | 0.166551
0.00001/0.00390625 461.74 0.00003047 | 0.146234

Table 5.18: Backward heat equation using a stz dard Tikhonov method with zero’th-order
stabilizer.

| 6/tol | time (real) | alpha | cgiterations | ||error]|, J
0.01/1073 0.11 0.005697 1 0.327268
1/1/1/1/2

0.001/10-° 0.57 0.0006529 2/2/2 | 0.230515
3/3

0.0001/10-° 13.04 | 0.00007873 |  3/3/3 | 0.170211
4/4

0.00001/10% 96.07 0.00001470 5/5/4 0.142153
6/6/6

Table 5.19: Backward heat equation using a multigrid scheme with p = 0.5.

5.3 Quasi-optimal Schemes

Examples 1, 3-5 of the previous section will be re-examined now with a first-order stabilizer
using the quasi-optimal parameter choice.

For the standard method, the initial a will always be one, and the parameter o will
be 0.1. Thirteen iterates of the geometric progression for «, each requiring a Cholesky

decomposition, will be performed. The solution f¢

that locally minimizes
L h,o;

ﬁ—[fhai N —jjhf‘wl»l H
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Figure 5.10: Backward heat equation for x = 0.5, § = 0.00001.

then is chosen to be the regularized solution. It must be emphasized that a local minimum
is searched for rather than the extreme minimum because it is possible for two strongly
“smoothed” solutions corresponding to a region of relatively large a’s to differ minimally.
The solution corresponding to the second minimum will always be chosen.

The parameter choosing procedure of the three-grid scheme is slightly better. Rather
than using the same p for all three grids, three different p’s with their values increasing as
the grid is refined are used. We always will set > = 0.1 on the coarsest grid, u? = 0.25 on the
middle grid, and p! = 0.75 on the finest grid, unless otherwise specified. With u2 = 0.1, ten
iterates of the geometric refinement for « is performed, and then the regularized solution is
chosen from the resulting set of solutions as in the standard procedure. Denoting the quasi-
optimal parameter on the coarsest grid by a*'jpt , the initial & on the middle grid is taken
to be 3}?— . Now on this refined grid, only five iterates of the geometric progression for « is
performed, and the quasi-optimal solution is chosen from the resulting five approximations.
Lastly, this process is repeated on the finest grid.

Turning to the linear system solver of the multilevel scheme, a preconditioned conjugate

gradient method using the preconditioner diag{h?K 1 Kpp + aLpy, + alpy] is applied on the
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finer grids with stepsize 2. The initial approximation of the first system on a finer grid is
taken to be some interpolated version of the ccarse grid quasi-optimal solution.

As for the effectiveness of the type of interpolation used, the piecewise lincar and picce-
wise quadratic types appear to be the most effective. The intercolation scheme of the
multilevel Landweber iteration was totally ineffective—~ the smaller o’s of the first-order sta-
bilizer permitted large rounding errors to creep into the interpolated solution, and hence, a
large number of conjugate gradient iterations was required to solve the first system.

But no matter what interpolation was used, the number of conjugate gradient iteratiouns
was a bit larger than expected. This was true even for the “interpolation” which involved
solving the initial system using a Cholesky decomposition. The reason for this problem is
that the change to [aLpy + alpy] as a is refined is not minor. One way to correct this
is to obtain a very good « on the coarse grid, which then would permit larger p’s to be
used on the finer grids. But this approach was not fully investigated, one reason being that
it may a bit unreasonable since the coarse grid parameter need not be an extremely good
approximation of the fine grid parameter.

Another more basic problem with this multilevel approach is that it relies too heavily
on the intuitive quasi-optimal parameter choice. And noting that %‘f‘ is approximated only
numerically, we definitely should take some precautionary measures when appiying this
scheme.

Anyhow, all the examples were perturbed by g¢(s)éf. Some of the results are given in
the tables below.

Example 1. Harmonic continuation

1 2 0.75 ; |
— t)dt = =1 .5 cos A255in(3s 0<s,t<2r.
271—/0 1—C08(S—t)+0,25f( ) + 0.5 cos(s) + 0.1255in(3s), < g0 < 2

Exact solution:  f(t) = —1 + cos(t) + sin(3t).
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| é/h | time (real) | alpha | [lerror]l, |

[0.001/0.03125 1.07 10~% | 0.0122705

l 0.0002/0.015625 6.46 10~% | 0.00194001
0.0001/0.0078125 4752 | 107% | 0.00177101

[ 0.00002/0.00390625 | 375.14 | 10~° | 0.000197044

97

Table 5.20: Harmonic continuation using a standard Tikhonov method with first-order
stabilizer.

[ 6 [tol | time (real) | alpha | cgiterations | |lerror]l, |
0.001/107° 0.67 9.7656 x 10~*% | 9/7/10/3/2 0.0655329
9/10/5/6/2
0.0002/108 3.09 9.7656 x 10712 | 14/6/20/29/3 | 0.0182970
25/3/1/1/1
0.0001/107° 19.76 6.2500 x 10~° | 12/13/16/17/17 | 0.00105723
21/13/12/9/11
0.00002/10-3 | 139.36 | 2.5000 x 10~° | 15/16/26/34/27 | 0.000180559
36/21/21/20/18

Table 5.21: Harmonic continuation using a multigrid scheme with piecewise linear interpo-
lation.

1 1 T T i T T T T T

o5 . g
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Figure 5.11: Harmonic continuation for § = 0.00002 using piecewise linear interpolation.
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Example 2. Numerical differentiation

rd E . o
~/ k(s,8) () dt = jf e =D gy 8 1647,
¢] 0

1 2
k(s,t) = (s =87 42s>120
0 0<s<t <4.
Exact solution:  f(t) = ¢"'(¢).
| 5/h | time (real) | alpha | |lerror]], |
0.01/0.125 0.98 1072 | 1.823796
0.005/0.0625 6.28 1078 | 0.659337
0.001/0.03125 46.66 1079 | 0.328415
0.0002/0.015625 | 372.38 | 10710 [ 0.147929

Table 5.22: Numerical differentiation using a standard Tikhonov method with first-order
stabilizer.

; é§/tol | time (real) | alpha | cgiterations | [lerrorf], ]
0.01/10~° 0.54 9.7656 x 1071 1/1/1/1 27.284139
5/4/1/1

0.005/10~* 7.26 3.9063 x 10~° | 27/27/31/31 | 1.569780
48/42/45/51

0.001/107° 19.48 3.1250 x 107% | 4/15/10/13 | 0.323278

27/10/4/4

0.0002/107° | 184.24 | 1.5625x 107'% | 5/8/33/28 | (0.148473

115/26/40/10

Table 5.23: Numerical differentiation using a multigrid scheme with “Cholesky” interpola-
tion.

Example 3. Spectral composition of radiation

11
/1 (1—%)h(.s——t)f(l)dt:g(.S), 1<s,t <11,
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Figure 5.12: Numerical differentiation for § = 0.00002 using “Cholesky” interpolation.

L é/h

| time (real) | alpha | |lerror]], |

0.01/0.078125

47.59

107° | 0.100298

0.001/0.0390625

373.95

10~% | 0.0355995

Table 5.24: Spectral composition of radiation using a standard Tikhonov method with first-

ordet stabilizer.

| 6/tol | time (real) | alpha | cgiterations | |lerror]|, |
0.01/1071 20.77 5% 107° 15/11/7/6/6 | 0.100395 '
20/20/19/14/11
0.001/107° | 160.99 | 3.125 x 107% | 27/38/45/42/35 | 0.0315379
27/36/34/34/26

Table 5.25: Spectral composition of radiation using a multigrid scheme with piecewise

quadratic interpolation.
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Figure 5.13: Spectral composition of radiation for § = 0.001 using piccewise quadratic
interpolation.

Example 4. Backward heat equation

/01 k(s,t)f(t)dt =g(s)=h (5 - —}I) —h (3 - %) 0<s,1< ]

where
0 s <t
k(s,1) = -
&) £ @ s> t,
m(s—t)
and

2y/3

) %\/56“21? — ——‘/27 jf{?_ e dw s> 0
10 s<0.

—
[y

bt
IA
o~
IA

Wl

0.5, u! = 0.9. These parameters were chosen so that the minimum of o is approximately

107!2, the minimum value for the standard approach.
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[ 6/h | time (real) | alpha | |lerror|l, |
0.01/0.125 0.12 1012 | 0.350225
0.001/0.03125 1.04 101 | 0.132364
0.0001/0.0078125 47.37 1012 | 0.0907106
0.00001/0.00390625 |  374.90 | 1072 | 0.08831142

Table 5.26: Backward heat equation using a standard Tikhonov method with first-order

stabilizer.

[ §/tol | time (real) | alpha | cgiterations | [lerror|, |
0.01/107° 0.11 8.2013 x 1071 1/1/1/1/1 0.275375
3/1/1/1/1
0.001/107° 0.57 8.2013 x 1071° 9/6/1/2/1 0.230515
6/1/3/3/2
0.0001/107° 16.85 8.2013 x 10713 | 6/13/14/21/27 | 0.0965745
15/6/5/5/3
0.00001/10~% | 189.66 | 8.2013 x 10~13 | 15/17/31/41/52 | 0.0798144
115/30/6/58/31

Table 5.27: Backward heat equation using a multigrid scheme with piecewise linear inter-

polation.

5.4 Nonlinear First Kind Equations

The last example involves nonlinear Fredholm integral equations. We will investigate the

contact surface problem

"—1- b (S—t)2+h2
A Jo (s = 1)+ (f(1) — h)?

for fixed bedrock level h using the quasi-optimal parameter choice. As mentioned earlier,

}ﬁ=g@% c<s<d,

the Euler equation for the linearized form of the perturbed equation is
d rb dfiﬁ-l o, (3)
/./-kf(ms,ﬁ%(ﬂ)kf(mthﬁqxﬂ)ﬁ&L%(ﬂdvdt—cy——~if__::
4 6 ’ § 6
[k (0,5, 10, 5) [gs(v) + [ ks (0,8 50, (0) £y (1) 0

_‘/bk(mthﬁaxﬂ)tﬁ]dv,
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Figure 5.14: Backward heat equation for é = 0.00001 using piecewise linear interpolation.

where k£ and k; respectively denote the nonlinear kernel and its partial derivative with

respect to f. We will iterate this equation for a given initial fg,(,J until

5 6 '
Lo, ~ fi+1,ajl

lf"ﬁ’a] i

For the standard method, we again will perform thirteen iterates of the geometric pro-

< tol.

gression for a using a particular p. The initial approximation for the initial « will be
L‘;’ao = 0, and the initial approximation for a; will be the i?-‘%l.a,,l that satisfies the
above tolerance condition. Now for each «;, a sequence of Ky 4’s and Kyl K s will be
constructed, and a sequence of linear systems will be solved. After obtaining the thirteen
solutions, the quasi-optimal solution will then be chosen as in the previous section but with
the additional condition that the difference between the norm of this solution and a sample
mean of the norms of the thirteen solutions be less than some sample deviation.

The three-grid method again will involve three different u’s: p*, p?, and p'. The
coarse grid processing will be exactly the same as the standard procedure but with only ten

iterates of the geometric progression. Its quasi-optimal approximation will be interpolated

into the next grid using piecewise linear interpolation, and its quasi-optimal parameter
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will be modified by a factor of ;13 and then used as the initial a on the next grid. On
this refined grid, five iterates of the geometric progression for o will be performed with
the initial iteration equation being processed as in the standard method; i.e., a sequence
of K¢pp's and K¢ ni'K g pp's will be constructed, and a sequence of linear systems will be
solved using Cholesky decomposition. The next four iteration equations however will not
involve the construction of a sequence of K n’s and Kf p, K s, although a sequence of
linear systems will be solved using the preconditioned conjugate gradient scheme for each of
these four iteration equations. These two matrices will be constructed only once using the
solution of the initial iteration equation on this grid. Next, after obtaining the quasi-optimal
solution, the whole procedure is repeated on the finest grid.

[t may appear that the construction of a sequence of Ky p,’s and Kf,hhin,hh’S for the
standard method is a bit unfair. But this is precisely the disadvantage of the single-grid
procedure. Linearization of the nonlinear operator permits an error of order o (”I - _]if’aj “) ,
which may be large if f_f,aj is a bad approximation to f. Hence, Ky xx and K¢ pi' K g ph should
be reconstructed for each iterate of the iteration equation. The finer grid of the multigrid
scheme, on the other hand, has a good approximation after the first iteration equation has

been solved. FElaborating, the quadrature and linearization errors are possibly balanced

enough to omit the continual formation of Ky py and Ky pn' Ky ph.

Example 1. Contact surface problem

We use a set of discrete data and take a = ¢ = 14.8; b=d = 27.0.
One-fifth of the components of the right-hand side were randomly chosen from a uniform
distribution and perturbed by (0.4 + 0.66)6, where ¢ is a random variable on [~1,1]. The

remaining components were perturbed by 0.46.

& time (real) alpha Newton iterations llerror||,
0.01 327.07 3.9063x 1073 2121.---]2|1]1]| 0.00512749
0.001 | 22701.70 | 6.1035x10~> ({3 (2| ---12|2] 31 0.000807030
0.0005 | 20477.30 | 1.5259x 10> ][ 3|2 | ---12]2]2| 0.000410676

Table 5.28: Contact surface equation using a standard Tikhonov method with first-order
stabilizer.
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) time (real) alpha Newton/cg iterations lerror|],
0.01 74.64 | 1.7166 x 105 | 3/- [ 1/1] 1/1] i/1 | 1/1 | 0.00746543
0.001 | 3079.93 | 2.5749x 10-° || 2/- | 1/2 | 1/2 | 1/2 | 1/2 || 0.000834885

0.0005 | 3090.10 | 3.4332x 107° || 2/- | 1/3 | 1/3 [ 1/2 | 1/3 || 0.0004 (5502

Table 5.29: Contact surface equation using a multigrid scheme with pu! = 0.75, u® =
0.5, u® = 0.25.

0.04 T T T T T
0.02 - \'\\\ |
0 exact e
approx ——
002 force —— 7]
-0.04 +
-0.06 —
-0.08 -
-0.1 1 1 i | i i
14 16 18 20 22 24 26 28

Figure 5.15: Contact surface for é = 0.001.
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Conclusion

We have seen through some analysis and numerical experiment- that multilevel techniques
can reduce the computational costs yet obtain the same convergence rates of several other
standard techniques. Indeed, we have seen the complementary property that high fre-
quencies, frequencies that are slowly captured by both the Landweber scheme and the c.g.
iteration, are damped out by the r.a., and medium frequencies, frequencies that can be cap-
tured slowly on the fine grid, can be damped out on the coarser grids. This complementary
property provides the necessary structure of a multilevel method; i.e., the property that
components lying approximately in the null space of the smoother can be eliminated on the
fine grid, and components lying near the orthogonal complement of the null space of the
smoother can be eliminated by the coarse grid correction. Hence, we have seen that the
smoother consists not only of an iterative method, but also of a discrepancy principle.

As for the discrepancy principles themselves, we have seen through a survey of the
principle how indespensible they are. They are not only part of the smoothing process, but
they also have an impact on the stopping criterion of the iterative linear system solver of a
zero’th order Tikhonov method, as described in theorem 4.12. Moreover, taking advantage
of the fact that several grids are used, by using several discrepancy principles, we have been
able to obtain a parameter both accurately (Morozov discrepancy principle on the coarse
grid) yet cheaply (generalized discrepancy principle on the finer grids) for the multilevel

zero'th order Tikhonov scheme.

105
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Many questions still need to be investigated though. For the multigrid Landweber
scheme, it still must be shown whether this “pure” multigrid does form an r.a.. Although
we have shown that this scheme approximates the Twomey-Tikhonov method, and although
we have empirical evidence that the scheme does work. it still must be shown that the
approximations do converge to K'g as § — 0. This will most likely involve an investigation
of the generating function of this multigrid scheme, and this may involve a generalization of
the R4(t) function since restriction, interpolation, and coarse grid operators are involved.

The multilevel zero’th order Tikhonov method requires ever more future investigation.
So far, all that has been created is a multilevel extrapolation technique. Through an anal-
ysis of the c.g. iteration and the decomposition of the regularized solution, only fine grid
systems were solved after an extrapolation of a coarse grid solution and its corresponding
parameter. Although this method proved very effective in most of the examples, it would
be worthwhile to investigate a multilevel system solver. Such an implementation should
not be too difficult for the zero’th order Tikhonov method since an underlying sccond kind
integral equation exists. This modification also can be a starting point for creating a “pure”
multigrid Tikhonov method, for each coarse grid defect equation can be viewed as a regu-
larized first kind equation with a specific parameter. What should be examined cautiously,
however, is the interpolation error introduced by the multilevel solver.

Of course, creating a “pure” multigrid Tikhonov method is a future goal. The major
problem with such a sch2me is the solution and parameter updating on the fine grid. If a first
kind defect equation is regularized using Tikhonov’s method, how should the interpolated
regularized solution be added to the fine grid approximation, and how should the parameter
be modified (remember, the regularized defect equation most likely will have a different
parameter)? Note that this problem did not arise in the multilevel Landweber iteration
since in there, the coarse grid “parameter” « indirectly modified the fine grid parameter
n~1. A possible remedy to this problem is to apply a weighted parameter updating scheme,
The extrapolation analysis of King and Chillingworth (1979), and Groetsch and King (1979)
may be helpful here.

Turning to the multilevel first order Tikhonov method, clearly a number of changes must
be made to this scheme. Although it was more efficient than a standard Tikhonov method in

the examples, its efficiency was not too impressive due to the large number of c.g. iterations
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required. The first change that should be made is to apply the Morozov discrepancy principle

on the coarsest grid, and then with larger u’s in the parameter progression formula
Qp = HOk—1,

we can apply the quasi-optimal parameter choice on the finer grids. Now with the larger u’s,
the smaller changes in the regularization parameter may imply less c.g. iterations required
to solve the updated regularized systems. Furthermore, multilevel system solvers can be
applied to these systems.

And as for the nonlinear multigrid scheme, the field of investigation is enormous. One
task is to try the multilevel scheme on other nonlinear first kind equations in order to
determine any possible difficulties with the scheme. Two other tasks are to investigate other
parameter choosing procedures, and to explore FAS-type methods, which would probably
involve delicate nonlinear discrepancy principles. Now these goals maay be ambitious, but

the success of the multigrid method to the contact surface problam should be an impetus

for such future research.
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