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Abstract 

. . 
'Iyi!t- i -~ in ,~~i*at ionai  ray: 6 r  solving &posed problems can be extremely large: Z - L ~  2 ' 5  for 

A .  

t !I+* Tikhfiitri:- r r ~ c s ~ I i o d .  u-krc j is tke number of Yewton iteratims. and in2 for the Landwe- 

h w  it(-mtirtn. wfwrc- i i 5  :+ number of f,ar;.dweber iterations. Sex-erd fast techniques exist 

sarh ; is thr. QR rwthod  of E i d h  and tToevodin, and the generalized I>andweber iteration 

<if St,rari.irf. H u t  t h  former method first involves an expensive trzasformation process ap- 

piied to the operator. ar,d then a search for the regularization parameter. This expensive 
P 

t rarrsformatiorr car1 induce roundirg errors: v4ich would affect the parameter search. Also, 

r h  latter  met hod irtvotves pot:inomials of the operator, and hence may not be practically 

applicafd~. 1x1 this tfw& we present set-eral multilevel approaches which cart reduce the 

cornpzr~ticirraf roar, aramaticaifj-, \Ye present a rndtilevel Landis-eber iteration that resem- 

bbs t fw T w s m e y - ' i r  metftod: and a muftilevel Tikhorrov method zero'th-order 

artci first-order stabikzers. Using the mdtiievel Tikhonov method with a first-order stabi- 

lizer, w-e also present a muitiievei technique for a class of nonlinear first kind equations. 

C'enrrd to these muItilevel methods are the effects of the interpolation error- how does 

the intwpolation error belonging in the nuif space of the operator K affect the approxima- 

tion?: the  danipi~rg effect of the multile~ef process- can we interpret the methods in terms of 

b'srfertivc'' dampening of frequencies of the error on different grid levels?: and the parameter 

sidec;ion how can we choose a good parameter and how is the parameter of one grid related 

rcr tfrc parameter of the next grid'? It will be shown that the effects of the interpolation 

ttrnr can be controlled by the choice of interpolation operator. 1%-e also will give an intuitive 

vbn- of the damping effecr of the multigrid schemes, and we  ill describe some generalized 

diwrcpancy principIes and the quasi-optimal parameter selection procedures, Showing a 

rcfatiosship betxnwt the parameter of orre grid to the parameter of the next grid definitely 

requires more inl:es.i;t igation. 

Stxmericd experiments conducted demonstrate that the rndti le~el  methods can be very 

eEectivc. describc some of these experiments in the last chapter. 
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Chapter 1 

Introduction 

1.1 Inverse Problems in Gravimetry 

r -  , I ,  Consider the probkm BF deternlkr~irig $ h e  i.opogritpft:i' of i f i t :  ii;:t.t:: 5 ! j ; d t i s ,  ' i  ; t i 7  p r o i , ~ f ~ ~ ~ t  i ~ ,  

confronted in rnimral and rrii i':.;pi~rc?ri~ri silicr: miner;~! i r l id  ( $ 1  r i r - p r i i i  t n ;:I-(- r dr r.ra rr ' i ;~ r , r i i i  1 r z 

specific characteristic form of t i ie !rase ar~d irit;~sr(,rts. O F ~ P  i i j ~ l ~ r w i r h  !;,I- i_ jr* lr tr : i i j r i i~i ! l j  i 1 ~ 5  

. ,- . * r~pography is to evcratr ir;fosmtti~n 2roEi;im ,nr~~;lta~gr3rir-.f o&rr;21jrlsi; A$. t j r* .  ;;iirirtr rd l i f  ? 

. I earth. Since the  intensit:,. of the  gra : . l ;a~~c~n~ lir:fd at, tltrp f;Lrif1'1; ir~rf;?c.r~ ;I: ; i : f r . ( . ! c . r j  !,c t i i r *  

inhomogenities of the terrain 2nd of tile density r ~ f  rrta,ti*rIaj v;irhlri i t .  ;li?tE :.Gi;ci. t i a t*  i i : ~ ~  

and the intrusions x e  of higber derrsities ~Iaarr firat of t h r s  wiii ; irwt.  :I:(* r r j p ~ ; . ; ~ p h ; ;  r i f  : lv; 
. base and incrusiorts can be cr~nserut r rd  using t h e w  qravitatmiai i it iwr.- i~t .I i~:i~.  



f . f ,Z  Continttation of Static Fields 



Since equation (1.1) is eqriii-dent to the f irst kind integral ccjtlatiort 

which is the integral equation formulation uf the  Caucliy prcrfrltm fur ~ h c  Lap1;~cc t q ~ i ; t i  i o n ,  

the continuation problem redilces to  Nadarnard's problem. I:cir~at,iort 1 1 - 2 )  in ir r r  i l l -pc~*cl  

linear integral equation. 

1-12 Contact Surfaces and the Prediction of Gas- and Oil-hearing Struc- 

tures 

Another inverse problem in gravimetry ink-olves the st ucly of mu; tilaywed rrrrrfia, O n l y  t , h ~  

single-la~ered case will be discussed. 

Gas and oil deposits are often chzlracterized by domeshaped uplifts irk t,hc base's t,o- 

?ograpky+ These strrtctwal problems are simulated using the cont:ept of coxita.cf :iurfa,cr!i-: 

a t  which the medium's density abruptly changes. Let z = -h be a Irorizort~al planr:, and 

assame tha t  the  density Ilf a bounded region abutting this planc deviates from the der4ty 

of the plane. Denote the bounded region by D. Also, let Ap(s, y; 2 )  deriotrt t t i r a  wr~!fi~ivc 

density of D. Jet a j x ,  91-21 be  he potentiai of the anarriaious gravitatirtriai field, anti ici -1 

denote the gravitationat constant. Then 



2 F  -h + f(x,y) 1 
\ I 

con tact surface 

X 

Figure 1.2: Contact surface. 

Moreover, the vertical component of the intensity of the anomalous field H(x, y) is given by 

( 1 .-I) does not have a unique .iolution, 

Sow assume that Ap is a known constant, that D is bounded above by -h + f(x), and 

for  simplicity, consider only the %dimensional case, We hase 

This is an ill-posed nonlinear first kind integral equat.ion in f (x). 



1.2 Medical Tomography 

The procedures of this last example are not only applicable to ~nedical tolnograptiy, hut 

they also are applied in orher fields such as phsma physics, which frequenzly st urlics pliis- 

rnds that reach sever2 tens of millions of degrees- no measuring devirc ran withstand this 

temperature! 

To solve these inverse problems. the following stages are performtd : 

0 remove the instrumental disturbances. i.e. solve 

where B is an operator defined by the device; 

determine the attributes of the unknown function f frorrl the data g ,  i.e. solvv 

where K is the operator of the problem; 

display the attributes o f f  in stjme visual form, i.e. solve 

where D is an operator defined by the visual apparcztus and jtu is t f i r t  "hrightrmin 

fmction.'' 

Figure 1.3 illustrates these stages and the scanning process i n  medical tomography. f lcrc:, 

the rays are sent through the object (e-g. the head) at  different paths hy rotat,ing thc:  

detector and x-ray source together. Variables k and 6, are parameters of the  pai,h I, clrt 1,ltr: 

path Q:  and 

1 = xcos8 + ysin0. 

The three stages are given by 

-A 

1 - 1 1  8 d l  = v(1, B), 





equations. consider solvirig the 2-dimensional convolnt ion cqua t ion 

using Fourier transforms. Assume that 

where gT(s)  is the exact right-hand side and u ( s )  is an interf(wrtct1. Applyi~tg f'itrrrivr 

tramforms to (1.9) we have 

which implies that 

Hence: 

But the last integral can be arbitrarily large since in general, K(w)  and  .rt(wl apprmrh  m r r ~  

as \;.I - cm a t  different rates. In particular, if the random fiunction v(t i)  r:ont a.inr; high 

frequencies, the integral ma>- even diverge. 



CiearIy there is a need for solving ill-posed problems: and as illustrated in the last ex- 

a m  jde, there is a need for stable algorithms for solving them. Fortunately, stable algorithms 

for sdvirtg ill-posed problems exist. fn this thesis, we examine some of these "regularization 

algorithms" for solving first kind operator equations with emphasis on solving linear first 

kind I'i-edholrfi integral equations. We then examine the possibility of applying multilevel 

processing to these algorithms: in order t o  reduce the computational cost yet obtain the 

samc. convergence rates. 



Chapter 2 

Theoretical Foundat ions 

This section presents some of the fundamental theory and concepts ustd ti1 rorlghou I this 

thesis. Section 2.1 reviews some basic elements of funciional analysis, beginning with Ilil1)crt 

spaces and ending with some spectral theory on Hilbert spaces. Most of the tllcorelt~s ill 

this section are merely stated. Section 2.2 elaborates several of these conccpt.~ for J'rcdholrti 

integral equations. The emphasis here is on spectral theory, especi;tlly the Picard conditions 

for solvability of Fredholm integral equations of the first kind. 'S'lte final section prcscnts t h r  

rudiments of multigrid for problems with a continuous base. M 11 l ligrid for p ~ i  wl y d i~*wt , ( :  

models will not be presented. 

2.1 Hilbert Spaces and Linear Operators 

2.1.1 Hilbert Spaces 

Definition 2.1 A nonempty set 'H together with a real-onkued (mrrplex-oslucd) j~mrlion 

(a: -) from Fl @ ?t into 32 (C) is called a Hilbert space i f  7-1 is n real (complex) wclor spucc 

and f =, -) satisfies the following properties: 

1 .  (2, x) > 0: and (2, x) = O i f  artd only if x = 0; 

2. (x + y ,  z) = (2: t) + ( y ,  a )  for all x, y ,  t E 3-t; 

3. ( A x ,  y )  = X(z ,  y) for all x, y E 'H1 X E %; 



lim (2, - xi x, - x )  = 0. 
12--rm 

The Furiction (., .) is called an inner product, and without property (5j, 'H is called an inner 

product space. 

If the norm l/zj/ = (z; x); is defined on H then the following theorem holds: 

Theorem 2.1. (Schwarz Inequality) In a HiIbert space 'H, 

Tising this theorem, it can be shown that a Hilbert space is a Banach space with the 

previously defined norm. Property (53 states the completeness property of '?I. 

The familiar examples of Hilbert spaces are 

and 

with the respective inner products 

(a ,  b )  = oibi ,  a. = {a i )  and b = {bi} , 
i=f 

Hilbert spaces possess two properties that are fundamental in the theory of ill-posed 

problems. They concern the concepts of convexity and orthogonality: 



Definition 2.3 Let 2 . 3  be ttco points in  an  inner p d z ~ c f  P ~ ~ C C .  f':. Ij (J ' ,  == 0. /hen .I' 

and y are said to be orthogonal. This relation is u:rittcn as r L y. t i - l  S be m!y s u b w l  

of E .  If z is arthqrmal to ecch element of S :  then x is  said to bt orfFrogotrnf to S, and 

this is written as a: i S .  The set of el~rnents of E that nrrt orlltqonal to ?; is mild f l i ~  

orthogonal complement of S ,  and is denoted by SL - 

-5" = ( y E E : 2 L y for all s E S )  . 

The two properties are given in theorems 2.2 and 2.3 . 

Theorem 2.2 Let S frr a closed conuez set in  u Hilbert s p c e  7-1. For r-cier-y paid so E ?.t, 

them exists a uniqve pin$ 30 E F ssvch rhd 

j150 - goyOJj = inf ]lzo - ~ ~ 1 1 .  
yes' 

Theorem 2.3 (Projection Theorem) Let S be a closed linear subspace of (a ililh rl, .YJ)(l(X9 

31. Any so E ?i can be written in the form so = yo + q-,, where y, E S ,  l?r, E sI. 7'ltc 

elements yo, zo are uniquely determined by so. 

Proofs of these two theorems as well as most of the other ttieorcnts in t,his si~ctiort can 

be found in any book of modern arialysis. 1% note simply that ushg zo = 0 irt theorern 2.2, 

S contains a unique element of minimal norm. 

2.1.2 Linear Operators and Fhnctionals 

Lei X and 1" be two linear spaces, and let 7 be a function from a subset DT of X into Y .  

T is called an operator, and DT and T ( D T )  C Y are czlled resp~rtivcly thr. domain and 

rage of T .  Furthermore, if DT is a linear subspace of X ,  and if 



then 17' is called a !inear operator- Tow a s s u m i n g  that  LIT = S. the  set of h e a r  operators 

from X i n t o  Y ran h e  niade into a linear space by defining the operations 

T h i s  spec.  will bc denoted by LIX, Y'j. 

W h c + r ~  X and Y &re normed h e a r  spaces, and DT = X. the norm of T also can be 

defincd. First, 7' is said to be borunded if there esists a constant such that 

for all J: c X. T is said to be unbounded otherwise: and the subspace of all bounded 

operators in L { X 7  Y j  is denoted b? BfX, Y). The norm of T is 

Trivially then ,  for T E B ( S ,  Yf:  

Of course, borlnded linear operators pEay a larger role in applications. One reason for 

th is  is t ha t  a bounded linear operator implies a continuous linear operator- i.e., a linear 

operator that satisfies the condition tha t  if x, -- I, then T x ,  - Tx. The converse also 

holds. Another reason is that for an arbitrary T E B ( X ,  Y), a sequence of T, 's E B ( X :  Y) 

that '+approximate'' T may exists. The following definition clarifies this: 

Definition 2.4 -4 sequence IT,) of bounded linear operators from a normed linear space 

-1- into ct rmrmcd firt~ar space f r  is said to be uniformly conzrergent if there exists a bounded 

h c n r  operiztor "1 Iron S info 1- such that 

( I ; , )  is m i d  to  bc nrtifumdy concergent to T .  

{L) is said fa conaerge strongly or pointwise to T if 



501%- consider the case s-hen S i s  a nornrcd Iinear spacc and 1" - %'. 1.i1tt.ar. opt~-;ttors 

defined on 2r' into 3? fC) are called real (complex) linear functiortals. I'1ii.s~ operator:, will 1w 

denoted with lower-case Roman letters superscripted with ?tstcri&s !i..g. x'l, a i l t i  fi( S, 3:) 

will be denoted by -Y". S. 1s-hich is called the dual or conjugate spnrtX nT .Y. is also ;t Il;tr1:1s11 

space. Thus, the dual of -X-" is defined. Iforeowr. t o  each ~ l w t e r t t  .r E .I+, i i  r r t r r t~>~~of i ( f i r~  

element 2 in the dual of X' is givert by S(r') = x n ( x )  for all s" E .V*. This c o r r r ~ ~ p n ~ ~ i l t ~ ~ i w  

between X and X"' is called a natural imbedding of ,X into 4K"*. 

Linear functionals introduce another form of convcrgencca i l t  a rtctri;td l i n ~ r  s1t;rr.c .Y. 

Let (x,) be a sequence in  X. (2,) is said to be wcakly coilverg~rit if t t ~ w  mists ;trl rlt~r~tc~t~t 

z E X such tha t  

for any 2' E X*.  The element x is calhd the weak limit of ( .~ . , , j ,  a n t i  ( s f , ]  is said lm 

converge weakly t o  2. Furthermore, a sequence {x,) c X i s  callrtd a wc1;tk C'a~it'lry seqrrcnrc* 

if (xa(x,)) is a Cauchy sequence for ariy x m  E X' : t h e  space -Y is said to b~ wmkly corllplritc~ 

if every weak Cauchy sequence has a weak h i t ;  and a sd, S c X is sxid !,a tw wwrkly (Iosc*d 

if the  weak Limit of every weakly co~ivergent sequence in S i s  jrt S. 

There is also a connection between bounded linear functionals rirrfi~wd on a I f i l l m i ,  spac.cs 
, -  ?il and the space 0(X1.?f2), where ?fz is another TIilbert space. Ific ronncrtion is a, rrsull, 

of t he  Riesz reprent ation theorem: 

Theorem 2.4 (Riesz Representation Theorem) For e w q  continuous linear junrliorlal 

x" on 7t1 there exists a unique element 3 E XI, culled the rc.pru.s~nter oj r";  sirrlt. ltial 

Let T f L3jXl~X2) and  y E 1H2 : and define the linear functiortal z* tjy 



hcnce. there exists a mapping y - 2,. Moreover, this mapping is not only linear, but it is 

also rontinuot~s since by taking z = 2,; - z,,: 

If g1 - y,. then zyl - zY2 . 

Definition 2.6 The mapping y - zYl is called the adjoint operator of T ,  and is denoted 

T'. It is the unique operator in L?['H2; ?il) satisfying 

for all x E 3fl and y E X 2 .  

When 'HI = ?i2, T is said to k self-adjoint if T = T" . 

Example 11: Lct be the integral operator defined on the real C2[a, bj space given by 

b 

I( f (s) = k ( s ;  t )  f ( t )  dt , 

wlterc k(s.  t )  E C2( [a ,  bj g [ a .  b l j .  K is a bounded linear operator for if jl f 11, 5 1 , then 



and so 

Kow since the adjoint of h7 must satisfy 

for all f ( t j  E .&[a, b] . Thus 

any x E 7-& can be written as 

Now consider the operator Ps E B(%, S )  defined by 

Ps is called the orthogonal projection operator of 'H or~to S' . It is scllf iz t l . jo i r11  a r id  a t  idim 

the properties 

Several useful properties of the adjoint operator arc 



A crucial theorem involving T" is theorem 2.5. 

Theorem 2.5 If T E B(?fl ,  ?tz) , then 

! V ( T ) ~  = R(T*) R ( T ) ~  = N(T*) 

~ ( 7 ' ~ ) '  = R(T) R(T' ji = N ( I )  . 

Ifere, N(T j  is the ndE sjmce of T defined by 

and R(7'j is the range of T . 

2.1.3 Compact Operators 

The importance of this class of operators warrants a separate subsection. Compact operators 

play a central role in the theory of linear integral equat.ions and the theory of ill-posed 

problems. Before examining these operators, however, we define a compact set. 

Definition 2.7 Let (X,p) be a metric space. X is said to be compact i f  every sequence in 

X contains a conuergerzt subsequence. Equivalently, X is compact if X is complete, and for 

c,-l?ery c > 0, X cun be coziered with a finite number of open spheres of radius r .  

Definition 2.8 Let T E B(X,Y)  where X and Y are normed linear spaces. If T ( B )  is 

compact in I.' for each bounded set B c X: then T is called a compact operator. 

Nest, we give a collection of important facts concerning compact operators. 

Definition 2.9 An operutor is said to be finite rank if its range is finite-dimensional. 

Triviaily, a. finite rank operator is compact. 

Theorem 2.8 -4 conzpac! h e a r  operator m ~ p s  weakly convergent sequences into convergent 

squences. 

Theorem 2.7 Let X be a normed linear space. If T I ,  T2 E B ( X ,  X )  and T I  is compact, 

then TIT2 nnd T2Tl arc compact. 
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Theorem 2.8 Let X be a normed linear space, and let 1' be a Baizarh sp~t't.~. =It? oy~rntar- 

T E B(X, Y >  is  compact if and only if its adjoint i s  compnct. 

Theorem 2.9 Let X be a normed linear space, let I' be a t3ctnnc.h space, c z n d  k t  '1' E 

B(X, Y) . If I[T - T,lI - 0 as n -+ m, where each T,  E BCX, 5 ' )  is comyncl, th i l i i  7 '  i.4 

compact. 

Using the fact that every Hilbert space contains a complete orlltnrtnr~t~al :;ystcm, a l ~ d  

using theorem 2.9, it can be shown that the integral operator of exatnplc (1 ) is cwn~pa.ct.. 

2.1.4 Spectral Theory 

b~O~ls  are Two of the most common operator equa*' 

Xx - K x  = y X a nonzero scalar, 

Kx = y ,  

of which the Fredholm integral equations of the second and first kirlds are rcspcvtivcl cxmr- 

ples of. The setting is s,  y E 'H, a Hilbert space, and li E B('H,/H) and i s  rompact,. ' l ' h ~  

problem is to  find s given y and K . Equivalently, assuming that (XI - K)- '  and li" exist, 

the problem is to find expressible forms of these inverses. 

Another problem is deriving conditions far the existence of a solution. Necrwary a n d  

sufficient conditions for the existence of a solution for arbitrary right-hand term arc! iL 

crucial part of the theory of first and second kind operator equations. As a prc~pa,rat,iorr 

a  on, wcx for the study of this and the previous problem for the more difficult first kinif cqu ,t '  

consider these problems only for equation (2.2) in this subsection. 

Define the sets Nx, NA*, Rx, and RAW to be 

It can be shown that  Nx and Nx' are finite-dimensional, and that Rx and HA" are clowd. 

A simple application of theorem 2.5 then verifies that 



Theorern 2.10 (a) Rx = Nx"' - i.e., the equation Ax - K s  = y has a solution i f  and only 

i f  y lies in  the orthogonal complement o/ Nx'. 

(fi) It,[* - ATx" i .e. ,  the equation x z  - K*s = w has a solution if and only if w lies in the 

orthopnal corr1ylernen.t of N x  . 

In fi~ct, the following stronger theorem holds: 

Theorem 2.11 For any A # 0, 

Iferr, the notation of the subspaces has been changed to stress the variability of A. 

Theorcm 2.11 is essentially the Fredholm alternative. It states that either 

1 .  f c ~ r  any y E %, there exists a unique sohltion of (XI  - di)x = y; or 

2. t, here exists a nonzero solution of ( X I  - K")z  = 0 . 

Condition (1) holds if dim = dim Nx-K. = 0 .  If (2) holds, then dim N X - ~  = dim 

N I \ . - h ' L  is finite, and the equation (XI  - K ) x  = y has a "general solution" if and only if y is 

i r r  the orthogonal complement of NXdK. . Similar statements hold for the adjoint equation 

( X r  - = f l ) .  

Actudly the Fredholm alternative emphasizes more on the parameter A .  

Definition 2.10 The resolvent set p (K)  of K consists of all complex numbers X for which 

(XI - K)-' is a bounded operator. Far these values, the operator 

R(X; K )  = (XI - K ) - I  

Is called the r~esolvent of K ?  and X is called a regular value of K . 

OIW way to represent the resolvent of K is to take a geometric series expansion for 
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However, this is valid only for 

1x1 > 1ajA")I := sup ( /X I )  , 
X E U ~  K )  

where a ( K )  is defined below. 

Definition 2.11 The spectrum o ( K )  of K consists o j  the cornyleltrr'nt 4 p ( l i  )  it^ C . 7'ht  .st 

values fall into three sets: 

1. continuous spectrum- the range of (X I  - hr) is dense i r z  'N c r r d  ( A  I - h')-' t .rids 

but is unbounded; 

2. residual spectrum- ( X I  - K)-' exists, but its domair~ i s  rmt rlrlrsi m "H ; rmd 

3. eigenvalues- (XI - K )  does not have an inverse; i.e., thc:w r:riis/,s a r m r z i w  :c 

such that (XI - h f ) z  = 0 .  

The Fredholm alternative states that for nonzero A, X is cithcr a,n eigcrrvi~luc or a wgular. 

value of K  . Note that in all infinite-dimensional space, for X = 0, (XI - I<) " '  A - I < -  I 

cannot be bounded skce  otherwise KK-' = I would b~ a compacl, o ~ ~ c ~ l . i ~ L ~ ~ .  Ilt~iccl ,  

0 E a ( K )  . 

Theorem 2.12 Let li be a compact linear operator in an infinite-rl.imesr.sir1r~a1 Ih~rrtrch 

space. Then a ( K )  consists of 0 and either a finite number o j  eigmvalues or. cm iuJinile 

sequence of eigenvalues that converges to 0 .  

2.1.5 Spectral Family sf Self-Adjoint Operators 

Now let K be a self-adjoint operator belonging to B(E, X) which nced nnl, tw cornpact. T h e  

spectrum of K simplifies, and an elegant spectral theory can he clcvc!lopt:d. 

Definition 2.12 A self-ctdjoint sperdor K E B(R, N f ,  where 'H is il f l i lkr t  s p ~ w  is s i d  

to be positive i f  

( K z ,  x) 2 0 for all z  E %t. 

If K is positive, we write X > 0.  

For two self-adjoint operators K  and T ,  the notatiori K 2 7' will he used if ( K -  '1') 2 0. 



Theorem 2.13 The .spectrum of a self-adjoint operator hr is  eon.tained i n  the real line, and 

i j  a u71d b ore real numbers satisfying a 1  < K 5 b I ,  then a(K) c [a,  b] . In  fact, with 

rn := inf (Kx, x )  and M := sup (Kx, x), 
114=1 114 1 =I 

Theorem 2.14 If K E B ( X ,  7-11 is  self-adjoint, then 

la(K)I is crdled the spectral radius of K 

Now consider the linear operator T defined on gn. Suppose that the matrix represen- 

t,ation of 2' is real and symmetric, and has n distinct eigenvalues Xi which are indexed 

according to increasing rriagnitude: A; < A;+l . Let {u i )  be the orthonormal basis of eigen- 

vet:t-ors corresponding to  { X i }  . The spectral familty of T is the family of projection-valued 

functions { E x }  that satisfies 

wherr S ,  is the subspsce spanned by {u ,} ;=~,  and Ps, is the projection oilto Si. Defining 

the projection A, E: by 

then 

This concept can be generalized to  include self-adjoint operators defined on infinite- 

dirncnsional EIilOert spaces. A spectral family generated by a self-adjoint operator K is a 

f ~ m i l y  of projections { E x )  for X E %I satisfying 
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1. Ex 5 E p  if X < p; 

2. Ex is strongly continuous from the left, i.e. 

lirn Exx = E,x for any s E 31; 

Let f ( A )  be a continuous complex-valued function for m < X < M. Assunle t ha t  j(X) 

can be extended t o  M < X < M + 1 so that the extended function, which WP tlenotr hy !(A) 

again, is continuous on [m,M+l). The integral 

can be defined: 

Let II be a partition of [m,ivl+ el: 

That is, it is a partition of an interval containing a ( K ) .  Let 

The integral is the limit of the sum 

as I T /  := maxi(Xa - approaches zero, where pi E A;. 

Theorem 2.15 To every sel;f-cadjoint operator K there cor~esponds (I unicpr: Jaruilg { E x )  

of projections, -co < X < CQ , satisfying 

1. any bounded linear operator that commutes with K cornrnzllrs wilh Ex; 

2. E A S E ,  i f X < p ;  

3. Ex is strongly continuous form the left; 

4.  EA=O i f X <  rn, E x = I  i f X >  M; 



Next, 

Theorem 2.16 Let K be a seu-addjoint operator, and let ( E x )  satisfy (1)-(5) of theorem 

('2.15). Then for any polynomial p(X) , 

Theorem 2.17 For any polynomial p(X) and any x E 'FI, 

Morcover, if f ( X )  is any continuous function for m 5 X 5 M ,  f(K) is defined to  be 

'I'heorcms 2.16 and 2.17 also hold: 

The significance of this functional representation is illustrated in the analysis and con- 

struction of linear iterative methods. For example, the inverse of an invertible positive 

operator I< can be approximated by a sequence of operators { f , (K) ) ,  where each f, is 

~ont~inuous in an interval ~ont~aining a(Kj,  and where {A) converges uniformly to  X-' on 

this intervd. 

Finally, assume that K is rt compact self-adjoint operator, From a previous discussion, 

t,tw spectrum of K consists of zero and a finite number of eigenvalues or an infinite sequence 

of eigenvalues ttha,t converges t o  zero. Also, the eigenspace corresponding to each nonzero 

cigcnvaluc is finite-dimensional. We have 
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Theorem 2.18 Let XI, X P , .  . . be the eigenudues of K uihich arc rcpcatcd cmwrdin~g to thc 

dimension of the associated eigenspace, and let u r ,  113,. . . k the cwr.w.s~~,i~tiitq cjr.thtbttctr.trttr1 

eigenvectors. Then for any s E 3t ,  

Furthermore, given any real-valued function f defined on a(l<ti), f ( K )  is givcn by 

and the following theorems hold: 

Theorem 2.19 Let h' be a compact self-adjoint operator, nncl lel j Irt. cr cor~tirtuous ruol- 

valued function defined on  a ( K ) .  Then 

Theorem 2.20 Let h7 be a compact self-adjoint operator, let $ be n r o ~ ~ l i r ~ u o r ~ s  17 (11- ~ralur~tl 

function defined on cr(K), and let {f,) be a sequence of c o n t i r ~ u o ~ ~ ~  ~ ' ~ c I I - I I c ~ ~ ~ L ~ J ~  fu7~rttoas 

which converges to f uniformly on a ( K ) .  Thetz 

2.2 Integral Equations 

Several examples of integral equations, and the crux of the theory of linca,r F ' r~d  holm i r i t r y p l  

equations of the second kind have been given already. The objcctiw of t,tris wc'ticjri is to 

develop the theory of Fredholm integral equations of the first kind. 

Consider the following generic Fredholnt integral equation of the first kind: 



where K is the integral operator defined on ,Ca[a,b] generated by the kernel k(s,t) E 

.Cz([a,b] [ a ,h ] j .  The difficulty of this problem stems from the fact that N ( H 7 )  may be 

nor;-trivial, a,nd more importantly, from the fact that K-I may not be continuous even 

though K-' exists. The latter difficulty implies that small changes in the data g (s )  may 

cause dramatic changes in the solution. For example, with a = 0 and b = T, using the 

Riernann--1,ebesgue lernnrra, for sufficiently large n, the slight perturbation of 

to !/(a) will came a cha.nge of A sin(nt) to the solution of the original problem. This change 

t,o the solution can be quite large. 

More insight into this instability problem is revealed through the singular value decorn- 

position of the operator. Since X is compact, K'K is compact, and since K V K  is positive, 

ail the eiger~values of hl* K are nonnegative: 

whcrc c. i s  an cigenvalue and x is the corresponding orthonormal eigenvector. Thus the 

eigenva.lt~es can be represented as 

Now if the associated orthonormal eigenvector system is denoted by {v,), and if p, is defined 

by 

p, = A,-l 

a.ud t ~ , ,  is defined by 

t hcn the set ( u,, , v,,; pn)  is called the singular system of K . The pn'sl arc called the singular 

values of li, and the v,'s and u, '~,  which form bases for R(K*) and R(K)  respectively, are 

called the singtilar functions of K . 

(Obst~rve that the relation 

pnKfun  = vn 

holds.) 

'Some authors denote the singular values with A,. 



CHAPTER 2. THEORETICA J; FO LThrDATIOSS 

Theorem 2.21 Equation (2.5) has a solution if and only if 

1. g E ~(h" ) ' ,  and 
2. 

Under these con&itions, the solution .is 

Theorem 2.21 states the Picard conditions for the solvability of first, kind int,egra! c>qrla,- 
-- 

tions. Note that since ?i = N(K*J  $ hr(K*)' = IV(K*) @ RjK),  thc sccorld mrrctit,iori 

"transfers" g from R ( K )  to R ( K )  . Also note that if g is perturbed by 6g, thcll (2 . )  for  

3 = g + Sg may not hold, or even if it does, the series 

mGy be noticeable. The first misfortune is elaborated in the next thcorcm. 

Theorem 2.22 Suppose pn - m as n --. m . Let y E R ( K )  and c > 0 be ar6ilrory. Yhcn 

there exists a function g' E Lz such that 

Proof: Since p, - ca; a sequence of real numbers (a,) can be constructed h t l c h  that, 

'Riesz-Fischer Tneorem: Given an enumberable orthonormal system { e , }  i n  C q ,  and a bcqumcr: of 
complex numbers {r i , ) ,  a necessary and sufficient condition for the series ~~~, &,e,, to  hc cortvcrgcrlt, i o  

the mean is that Cz=, lii,12 < 0 3 .  



tielongs i n  C 2 .  Clearly g" does not satisfy condition (2.) and so by the Picard conditions, 

9'' E R( h-), y" $ R ( K )  . The C2-function 

also belongs in R ( K )  but not in R ( K )  . It satisfies lfg - 9/11 < E by Parseval's equality. 

It  is obvious that the cxistence of gr is guaranteed by the divergence of p,. Hence, if 

p, - OCJ , then R ( K )  is not closed. Moreover, suppose R ( K )  # R ( K ) .  Then since the range 

of a compact operator is closed if and only the operator is of finite rank, R ( K )  must be 

infinite-dimensional. Using relation (2.6), the set (v,} must be infinite, and so the set {Xn2} 

is infinite (recall t,hat the eigenspace of each eigenvalue of a compact self-adjoint operator 

is finite-dirncnsional). Since X n 2  - 0 ,  p, - ~o . 
Nut, whether R ( K )  is closed or not, solving first kind Fredholm integral equations numer- 

ically is usually dilhcult. Even in the absence of data error, the unavoidable error created by 

the discretization of the equation implies that a perturbed equation is always solved. Thus, 

only t,he presence of some large singular values may cause a noticeable difference between 

t t r  e solti tions of the perturbed equation and the unperturbed equation. Hence, solving first 

kind Frcdholm integral equations using standard methods for solving second kind Fredholm 

cquat,ioas is not advised. 

2.3 Multigrid 

Multigrid is a fast iterative technique which has not only been extremely successful in 

solvills par t id  different,ial equations, but is also being used to  solve second kind integral 

equations. Presently multigrid- algebraic multigrid - is being applied to  first kind equations 

derived from tomography problems (Brandt (1989), Szeliski and Terzopoulus (1989)). The 

difficuities i n  applying rnultigrid to first kind equations are however severe. One cannot 

blindly apply multigrid to  a standard iterative method for solvhg ill-posed equations since 

thc errors introduced by the multigrid scheme may not be in the range of the operator. 

Thrrc is also the basic question of whether nlultilevel processing is more efficient than a 

standard procedure in solving ill-posed equations. These are some of the severe difficulties 

which shall be esamincd Lightly later. Right now, we present the elements of multigrid. 
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The backbone of standard multigrid ~ m t t l ~ d s  is the contiuuous base of thr i ) r t ) l l l~nt .  

Working on several scales oidiscretization and exploiting t tlc continac>us hasp of thtx ptoblc~~ti, 

these methods damp out the error components of an approsimittc so111tiori nlurl~ fasr,c.r r ha11 

a basic iterative scheme does. To illustrate this, considcr t tlc 1 -tliincnsiorml t)ou ntla ry vat wet 

problem 

d2 where A = -2 - 
Let the interval R be divided into (nh + 1) subintervals cart, of 1riigt.h li = j-$T-ij , it.fl'I 

let z t  = ih, i = 1,2,. . . ,nh, be the interior grid paints, T i ~ o  wt ctf gr id  lmirit.s will t ) c *  

denoted by Rh . Approximating the derivative wing a ccwtcrctl c1ilfiwnc.c suliwit~ givw 

h where TI = $u(*)(?$), 5:-1 < ?i$ < I ~ + ~ ,  is the l~ci t l  trunc;~,tion rtrror*. llroppi~~p; t h ~  

truncation error, (2.8) converts into a set of difference eyuatioris 

where the ui3s and fi's are components of the grid functiolls ?Ih,  - 1'' t $"* . (2.9) i r k  r r ~ a  t,rix 

notation is 

nhZh = - / .  (Z.I( f )  

This system can be solved using, for example, the damped Jat:oI)i o r  the! C~I,IISS~ Sctid4 

iteration. 

The solution of (2.10) will not satisfy (2.8) exactly. IIence, WP tlriirtcl t h c ~  glrjtd error  lo 

be 

where wh is the vector with components u(z$) .  

Another quantity is the algebraic error. Note that an iterative procwrj is performed 1'0 

"solve" (2.10), and hence all that is avdable is an approximatiorr -oh to gl ' .  'I'hcb a1gc:t)ra.i~ 

error is 



A s i ~ n p l r  applicaljor~ of the triangle inequality confirms the intuition that the magnitude of 

lid1 - I,;'' I/ rh~prnds  on both the the number of iterations of the iterative procedure (algebraic I!- - 
wrvr) a r ~ d  the* sin. rii' h (global error f .  

Now t hi>  quantity that is of interest to us is the algebraic error. To see the effect a linear 

item tive r r t~ t t~c - td  has on this error, let the iteration be written as 

whcrr Ailh is called t hc iteration matrix. The i'th iterate can be expressed also as 

w b c ~ r r  N:;') = 23;:; ~ i .4 '~  . 0 bviously the solution of (2.10) must be a fixed point of the 

i ttwaliort, arld co~tsccjuer~tly 

Hcncci, the itreration will converge for all (vh)* if and only if the spectral radius of Mh is less 

than one. 

But ever1 when the spectral radius of Mi, is less than one, the convergence may be 

slow dduc to the slow attentuation of some error components in the initial approximation. 

k'or example, consider the damped Jacobi iteration. Decomposing Ah t o  ( D h  - Bh) where 

I),, := 2h"  and Bh := D1, - A h ,  the damped Jacobi iteration is 

kh)' = (:l!h)z-' - ~ h ~ [ i l ~ ( , ~  - - fh] with w E (2.11) 

I t  has thc iteration matrix 

k fh  = I - wh2Ah 

with eincnvalnes 

a n d  corresponding cigenvec t.ors 



Next, classify the subspaces 

high frequency set and low 
9 7 1 r-h- 
2 and Anla (i) GZ -1 

I r span : 4 5 j h  < I} and s p / j  i~e.f : 0 < jh s:: ! 1 ii:: t h c ,  
-' 1 

1 \ 1 frequency set respectively. rI 'hw fkirig u5 t o  , sinw A1 ( ,, ,J .= 
\ "  

-2 h" 
f y, given the initial twor 

the error after a/ iterations is 

implying that the highest and lowest frecluertcy eorilpollcrr t s oI I hi* i r ~ i ~  ial tbrrc t r  h a v v  r t o i  

been damped down dramatically. Fixing w to  a ,  although thc spc~t  r id r;hdius of Mi, I ~ V  i s  

larger than the spectral radius of Adh when LL: = 2 the high fr~t-~licn~icls art) t l ; ~ t i i p c t t l  r i o ~ v r i  

strongly after v iterations. Thus, the new error is smooth. 

2.3.1 Two Grid Method 

The last statement hints on another iterative approach to solving (2.10). t ram (2.1 I ), i t  is 

clear that the correction of (lih)a-l is obtained from the defiil-t dh  := [ ,4i ,(e,L)'-  - j,, + A 
rea,rrangement of the defect together with (2.10) gives the tirfec.1 ctyriat ion 

which has a smooth solution. (2.14) is of the same fix-rn as (2.11)). ('L.1:il ;t,lt.o r a n  tw 

considered as a discretization of the differential equation 
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Sillitracthg (2.7) from (2.16) gives 

Tlic impcrtant fact is that e, is smooth. Thus (2.15) can be discretized on a coarser 

grid, which we conveniently take to be flH with H = 2h : 

R u t  since only dh is available: the right-hand side of (2.18) poses a problem. To define 

d"? a restriction operator ihH which maps grid functions defined on Oh onto grid functions - 
d~finet l  on OH is needed. Assuming that rhH has been defined and (2.18) has been solved, 

s ncw approximation is 

(~h)' - h H 
(2di - IH ga 3 (2.19) 

where lHh is an interpolation operator from gns into xnh . (2.19) is called a coarse-grid 

correction. It may also be written as 

Turning t,o the operators ihH and I H ~ ,  note that since ($)u is smooth, dh is also smooth: 

which is smooth because for high frequencies, (A, ( a ) )  << 1 for v sufficiently large. An 

appropriate restriction operator is then 
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The trivia,l injection 

is another good choice. As for the operator lHh, note that thc smoothrwss of Lk i~i i l l I i ( \s  

that 
h h  ek 25 IH f& 

if is taken to  be the interpolant 

But even with the correct choices of operators l h H  and lWh, i l  is still urit.lctar how t , h  

coarse-grid correction helps in obtaining an accurate solution. It(m.tion (2.20) t)y itsclf i h  i r i  

fact non-convergent; for take a nonzero element g h  E ~ ( 1 ~ " )  and let - 

It is the combination of smoothing iteration and coarse-grid correction t,hil,t, I Y ~ S I I  l t s  i r ~  a. 

rapidly convergent scheme. Its steps are 

1. pre-smooth y times on the fine grid; 

2. restrict the defect onto the coarse grid; 

3. solve the defect equation; 

4. interpolate the solution of the defect equation; 

5 .  post-smooth vz times with the new approximation. 

Xere, Y ,  v2 > 0 but both cannot be zero. 

Theorem 2.23 The iteration matrix of a two-grid mc-lhorl using a srri,,oof,hcr- ,Yr, r t r d  pw- 

smoothing v times is 



CHAPrZ'f;'R 2. 'I'IIEORETICAL FOUNDATIONS 

Proofi 111 the linear iteration 

i ( i )  h (ghj' = ( ~ h ) ' ( 2 ~ ) *  + Ah  L 7 

choose - jh .I 0, replace Mh with Sh and i with v, and apply the coarse-grid correction (2.20j. 

T ~ c  SIICCWS of the two-grid method is accredited to  the good approximation of the low 

frcq ucn rics on the coarse scale. First, observe how the smooth frequencies are transformed 

ot~to the coarser grid. The following diagram illustrate that smooth modes on the fine grid 

appear more oscillatory on the coarse grid. This also can be shown mathematically by 

Figure 2.1 : Frequency representation on two grids. The left diagram shows a low frequency 
on a fine grid, while the right diagram shows a high frequency on a coarse grid. 

con~paring the components of the eigenvectors of Sh and SH at common points: 

arid 

h rnhJ = 6 [sin(lijrh)];ll j = 1,2,  . . . , n . 
so that at the common points of Oh and O H  (i.e. k = 2p) ,  

H em , = h [ a h j ] .  - 

For 1 j 5 q, the j ' th  mode on the fine grid transforms into the j ' th  mode of the 

coarse grid, or since thcre are only coarse-grid modes, half being oscillatory, some 

of the smootbh fine grid modes transform into oscillatory coarse-grid modes. Now solving 

tht. defect equation exactly and interpolating the result, the smooth error components on 

the fine grid are effectively reduced, although some of the oscillatory fine-scale modes are 

escitcd by the interpolation. Additional two-grid iterations will resolve this latter problem, 

and will further diminish the smooth error components. 



2.3.2 Multigrid Method 

Another approach t o  solving (2.10) is created by solving the dcfcc t cqi~a t i o n  i t i w  t ivclly: why 

not apply a two-grid scheme to the defect equation, or why not apply tlzc two-grid rc~cr~r.sivi~ly 

until some lower level is reached where the defect equation thcrc is solvcd maci ly? Ilrt 1 

denote the grid level with step-size hl = 2-I-'. Solving the origi~~al  d ~ f ~ c t  c y u ; ~ t  ioa with a 

smoother which effectively damps down the high frequency components, s i ~ ~ c t l  only s o ~ l w  of 

the smooth modes on the finest level transform to  oscillatory rnodcs on l c v c d  ( 1 1  - I ), otily 

some of the smooth fine-grid modes will be effectively dampeil tlown, Howwcr,  sorticb oS 

these other smooth modes can be approximated by solving thc now dcfcst c y u a t i o t r  011 l o v i ~ l  

(n - 2) and interpolating the result into Qn-'. The strategy sl~oultl hc o h v i o ~ h  r~cjw. Modcs 

that cannot be approximated well on one level will be ; tppro~ir~~i~tc t l  via soivitig I hc nc3w 

defect equations on descending coarser levels. 



Chapter 3 

Regularization Algorithms 

With the preliminary concepts developed, we now set up the stage for a discussion of 

~~urnerical procedures for solving ill-posed problems. This chapter presents regularization 

riicthods, and develops some of the vital theory which will be used in the next chapter. 

Section 3.1 introduces the concept of generalized inverses for both operators with closed 

range and operators with non-clcsed range. Section 3.2 introduces the general regularization 

method a d  devclops some theory for the case when the forcing term is known exactly, while 

section 3.3 ctevelops some theory for the case when the forcing term is perturbed. Lastly, 

section 3.4 gives some important examples of regularization methods. 

3.1 Generalized Inverses 

As rrot.ed earlier, the problem K f = g is ill-posed if K-' does not exists or if it does, it is 

tict C O I I ~ ~ I ~ U O I ~ S .  A generalization of the inverse operator is then needed. 

The first step in defining such an operator is to  modify the concept of a solution. Rather 

than having a solution satisfy the equation exactly, a solution is required only to satisfy the 

cquation i r ~  the least square sense: 

Definition 3.1 -4n element f E is called a least squares solution of Kf = g if 



I f f  is a least squares solution and 4 ! I f  1 1  for all other least squrarrs solution f, t h m  f I! f!l 
is called a least squares solution of minimal n o r m  

Now a fundamental theorem characterizing lea.st squares solutions is 

Theorem 3.1 Let h7 be a bounded linear operator from a Hilkrt space 'HI into (I I l i lb~r- t  

space X 2  . The following conditions are equivalent: 

1 ,  f is a least squares solution of h ' f  = g ;  

2, h"K f = K'g; 
-- 

3. K f = Pg, where P is the orthogonal projection of X 2  onto I{( I < ) .  

From (3.), it is clear that  K  f = g may not have a least squares solution i f  Ii clocs ~ ~ o t ,  have 

a closed range. But if there does exist a least squares solution f ,  arid i f  A'( k') # (0)  , t her\ 

the least squares solution is not unique since f +jI , where fi is a nonzcro eler~lcril, of N (  A') , 
is another least squares solution. Also, from (2.) and the continuity and linc1;tri ty  of li , t , 1 1 ~  

set of least squares solution forms a closed conves set: 

Let f17 f2 be least squares solutions. Then 

Let i f n )  be sequence of least squares solutions which converges to J . ' l ' h r ~  1'9 -- 
K f n  - K f  - 

Hence, if R ( K )  is closed, there exists a unique least squares solution of rninirr~a,) Llosrrl. 

For the case R ( K )  # R ( K )  , if g E R ( K )  8 R(K jL, then there rxist a set of least, S ~ I J ~ I S C S  

solutions, and using the same reasoning as above, there exists a t s n i q u c ~  least s q n a r c ! b  m l ~ ~ t i o n  

of minimal norm. 

We now can define the generalized inverse of fi' . 

Denition 3.2 Let E B(IH1, X 2 ) ,  and let D ( K t )  = R ( K )  l;j' R( K)' .  The oy~:ral,or Kt  : 

D ( K ~ )  - El which assigns to each g E D ( K t )  the unique least squares solution o j  min2'mal 

norm is called the generalized inverse of K .  



Theorem 3.2 A'S i s  a linear operator. 

Theorem 3.3 h't is bounded i f  and only if R ( K )  is closed. 

Irr j>a,ri,icular, because a compact operator has a closed range if and only if it is of finite 

rank, I<t for a compact operator K is bounded if and only if R ( K )  is finite-dimensional. 

This fact forecasts possible stability problems in solving the first kind equation Kf = g 

even in the Irtast squares sense. 

NJe conclude this section with the following useful theorem: 

Theorem 3.4 Let fi' : 'HI - ?-Iz be a compact operator with singular system {u,, v,; pn} , 
and let g E 13(h7t). Then 

where f3 is the orthogonal projector onto R(h') .  

3.2 Regularization Methods 

Most of the discussion so far has created the view that ill-posed equations cannot be solved 

efTcc-tively. R u t  now we present an effective method which has been investigated thoroughly 

in Soviet literature. The basic idea behind this method is simple: rather than solving the 

cquation using the original operator, an approximating operator having a bounded inverse 

is used. To justify this rnethod however is not simple. 

Let S and 1' be two metric spaces, and let G : X - Y be a mapping defined on 

D(G)  i -Y. The task is to find the image of G(x) given x .  In terms of the first kind 

equation 

K f  = g ,  f Er7i1: g E 3 t 3 ,  

(: = K-1 , X = X 2 ,  1- = 'HI. D(G) = KR1 , and the problem is t o  find K-lg. Now if only 

.rb sarisfying ps(x6, x) 5 6 is available, and if the problem is well-posed, then G(xs) can be 

taken as an approsinlation t o  G(z), and G(ss) - G(s) as 6 -+ 0 .  But if the equation is 



ill-posed, xs may not belong to  D(G)  , and even if does, C:(.r,$) ntcd riot convergr to ( : ( . r )  

as S  - 0 .  TLI circumvent this difficulty, regularizing algarithms arc rrnployctf. 

Definition 3.3 (Goncharslry, 1987) Let RE be an op fmtnr  dc%Jnl-'iI on ihr p c l r r j ~ ~ ,  A ) ,  .rs < 
X and 0 < 6 5 S o ,  an& with range i n  Y .  Consider the Error 

A( R6, 6, x) := SUP pt; jRo(sb). G( r ) f  . 
{xaEX: P X ( X S , X ) ~ ~ )  

If E m s - 0  A(Rs, 6, x) = 0 for any x E D ( C ) ,  then G is said to bc r~cycdnrixblr o,, I ) ( ( : ) ,  

and R6 is called a regularizing operator. 

In other words, if G is regularizable, then there exists a fanlily opc~rators if?*') such  t 1131 

for any x E D(G)  . 
Of course, the regularizing operators should be chosen so that they artk mow t.rac.hl)lv t,o 

computation than G is. Referring back to  tiye initial discussion, t,he apprtjxirnating npc~at,ors 

having bounded inverses are regularizing operators. 

Note thzt the error A(Rs, 6, x) requires the k~iowlerlge of the exact, valiw z , w1iic.h 

is not known. This obstacle raises the question of how much infor.rr~;lt,iorl is n c v t l ( d  t o  

obtain an approximate solution of an ill-posed problem. Specifically, can a n  q~proxirnatc. 

solution be constructed using only xs under the condition that p X ( z b , x )  --? 0 as  D -- 0'; 

The next theorem shows that the minimum amount of inforrnatio~i ne4etl t,o cori.st,r~lr*l~ 

an approximate solation of a first kind equation involving a compact opwa. tor  is tho p;t.ir 

(xs7 6) .  

Theorem 3.5 (Goncharsky, 1987) G i5 regularizatrle on D(Gj by the Jmnily Ith = IT?(-j 

(i.e., R is independent of 6 j  if and only if G can be continued to all of X , dhe condinuabion 

being continuous o n  D(G)  . , i n  X . 

Now although (xh: 6) is the minimal amount of information I eqilireci to regrtfarize a. first, 

kiad equation, still not all first kind equations can be regi~larizcd  sing only ( x b ,  6 ) .  '1 'hc:  

next two theorems illustrate some necessary and sufficient conditions far t h e  regularjzahiiity 

of G . 



Theorem 3.6 (Goncharsky, 1987) Let G : X -- Y be the limit point on D(G) of the 

fill-tction.5 (Jln which are continuous all over X .  Then G is regula-rizable on  D(G) . 

Theorem 3.7 (Goncharsky, 1987) Suppose a separable space Y is a convex subset of a 

linear. norrr~ed spacenet and G is reguEarizabEe on  D(G) . Then G is a limit point on  D(G) of 

a sequence ojf inction.s G, which are continuous on X .  

Theorems 3.6 and 3.7 suggest choosing G, where G', E {G,) and where cr is a weight 

function cornpromising between the fidelity of the approximate solution and the stability of 

t h e  regularized equation. 

Ilrncrfort,h, we consider only the regularization of the equation 

K f = g ,  Kcompact.  

Itccall that for a self-adjoint operator A, -4 may be expressed as 

b,'x bcilig its spcctral family. Also, if h is a continuous function for X E a(A) , then 

where h(X)  = $ , assuming that K is self-adjoint and a solution exists. 

'rile obvious problem is that has a Limiting spectral value of zero, and so any regu- 

hi-izrttian algorithm must eliminate this difficulty. Such an algorithm can be constructed in 

i f i ~  foUowing way (Bakushinskii (1967), Groetsch (1984)): 

i) Create a uniformly bounded real-valued function y ( X ,  a) defined on X E a(K) and 

a > 0 and satisfying 



a. supi,,(^-) = hw, < co . 
b. ~ ( 0 ,  a )  = 0, a f 0 ,  
c. Lim,,~ p(X, a )  = I ,  uniformly for ail X E ( c ,  w f  rl rr(li), 0 < c < I . 

p(X, a )  in a sense approximates the constant funrt.ioc 1. 

ii) Define h(X, a )  to  be 

Then h ( K ,  a )  is a regularizing operator of the equation provided that ct- a.s a c o n t i ~ i t l o u s  

nonnegative function of S satisfies 4 6 )  4 0 ,  and provided that. l<,d - 0 as  6 -+ 0 .  

Proof: Note that Ijh(K, a>/ /  = K, since K is self-adjoint and compact. IItxric.e, 

f - f  5 l l f a - f l l + l l f a - f : l j  

where fa = h(K,  a )  g and f: = h(K+) g&.  Using the singular function cxparisions of Iu 
and f  , it can be shown that 1 1  f ,  - f l l  - 0 as a  - 0 ,  or as 6 0 ( ~ g .  13atk~ishirtsl<ii 

(1965): Groetsche (1984)). It follows that 

A similar procedure can be used to  construct an r.a. (regularization algorithm) whclrt 

K is an arbitrary compact operator, except that the equation to hrt rcgularizcd ix  now 

K"Kf = K'g , and except that y(X, a )  must now satisfy 



the regularization operator is h(K*K,  a)K' . 
Jlefore making any examination of this r.a., some modifications will be made. Instead 

of the furtc.tion p{X, c r j ,  the function R,(t) which is continuous on a ( K * K )  and which 

approxiniatcs hjtj = will be used. R,(t) will be continuous for each cr > 0 ,  and will 

convergc to $ as a -- 0 , and 1 tR,(t) 1 will be uniformly bounded. 

Givcn these changes: since h"K f = K*g is the equation to  be regularized, R,(h7*K)K*g 

rntlst approximate ~ t g .  This is indeed the case. 

Theorem 3.8 Suppose that {R,},>o is a family of continuous real-valued functions on 

10, jliil12] 2 a(K'Kj satisfying 

1 
Ra(t)  = - as cx - 0 ,  

t (3.1) 
/t&,(tj] 5 M for all a > 0, t E [o, ] ~ K I / ~ ] ,  and M finite. (3.2) 

Then R,(K*K)K*g - h'tg as a i 0 for each g E D ( K ~ ) .  

Proof: The identity P ( ~ " K ) K *  = K*p(KK*) for any polynomial p ,  and the Weierstrass 

a.pproxima.t,ion theorem imply that R,(K*K)KF = K*R,(KK*) . Hence, R,(K*K)KVg E 

R ( K * )  . Next, using the singular system {u,, v,; p,) of K , 

Considering each term of the sum as a function of cr and using (3.2) and theorem 3.4, the 

partid sums $,(a) form a Cauchy sequence independent of a : 



Thus, the series converges uniforxnly in a: . The result follows trivially, 

The requirement that  g E D ( K + )  is crr~cial to the couvergmce of  R,( h'" / < ) l i W g  for i t  

can be shown that if g # ~ ( h ' t ) ,  then for any sequence ct, -- 0 ,  ( R a n (  I\'* l<)I i^~g} is no! 

weakly convergent (Groetsch (1984)). Moreover, to ensure good co~~vc~rgtwco rittcs, fust 1 1 ~ 1 '  

requirements are needed. For example, consider the case when g is known csatrly. Row 

because R ( K )  = R ( P P A w ( K l ~  ) where Ps denotes the projection oprrator o~ l to  i l i ~  su l i spnw  

S, and because PN(K1l~ = PN(K.K)lx = l imu-o+(K*l i )Y~ ', a rcasonablc r q u i s ~ ~ a ~ r n t  ir. 

Pg E R(K(K"K)Y) .  This change enforces the Jiew condition 

t" 11 - tRa(t)/  < w(a, Y) 2 E [0, llh1/2], ( 3 . 3 )  

where ~ ( a ,  V )  satisfies w(a, Y) - O as cr -- O for each v > 0 .  

3.3 The Perturbed Equation 

For the perturbed data case, the regularization parameter must be clesctibed more spesif- 

ically. It  is a continuous nonnegative function a : LO, m) -- [O, m) with ~ ( 0 )  -- 0 ,  a,nd 

satisfying some condition which ensures the convergence of Il,(6)(K*f<)I<'g to t i ty ii,E 

6 - 0 .  Letting r (u)  := maxtEio,,,Xilzl jR,(t)l , we delve into finding this r.ondit.icm. 

Proof: A simple application of the bound (3.2) gives the ahovc fact,: 

'Use the spectral theorem for compact self-adjoint operators: 

(K*K) 'z  = A , ~ ~ ( Z ,  vn)v, , 

where x , ~  and vn is an eigenvalue-eigenvector pair of K'h' 



= ( [ K K ~ K K ~ ~ I  ( g  - g s ) ,  K ( f ,  - f:)) 

< A46 p(fa - fq . 
Lemma 3.10 11 f ,  - f:// < 6Jiwr(cr>. 

Proof: Use lemma 3.9 and the definition of r(aj : 

if* - f = (fa - f'!. Ra(K'K,K'(g - g s ) )  

= ( f a  - f:, K'R,IKK*)(S - 9s) )  

=  fa - R C Y ( K K * ) ( ~  - 96)) 

< E ~ M T ( ~ ) .  

Theorem 3.11 Let g E D ( I c ~ ) ,  a(6)  -+ 0 and S2r(a(6)) - 0 as 6 - 0 .  Then 

R,jKsK)Zi"gs - Ktg as S - 0 .  

Proof: 

By thcorern 3.8 and the hypothesis that S2r(a(S)) - 0 as 6 - 0 : 

Hcncc, the  conditior, is, a(6)  - 0 and S2r(a(S)) 7 0 as 6 - 0 .  

But this condition is not sufficient for practical purposes since usually all that is available 

is an operator K,, satisfying Ilh" - K,lj < 7 .  We leave the investigation of this problem until 

t hc discussion of each particular regularization algorithm. 

3.4 Examples 

Example 1. Landweber-Ridman Iteration 



The generating function of this iteration is 

or 

144 = 1 . Also, 

Thus choosing 4 6 )  such that hZpn(6) - 0 as d - 0 ,  j$,) - 1<trl. 

Example 2: Tikhonov Regularization 

This is the classical regularization algorithm. Its generating fi~ric.1 i o ~ ~  is I ( , , ( !  j -- t i c r )  . 

s2 Hence, 41 = 1, r ( a )  = and f:(,l - Aftg if 7 -- 0 as 6 -- 0 . 4 

These two examples are also part of another class of regt~iarization rrriat itrids tlcsrrit)d 

by the equation 



w h w :  fo 11cr:d no: be zero. Kow using the identity ( I  - plilXZi:-)" = I - p Kxh'(I - 

Example 4: Iterative Tikhonov ALlethod 

I.rt m,;, = fu be an  initiai approximation, and let ff = f:,, . Then the above iteration 

g;rXcrat (2s 

C'liuclsing I n  = 1 and = 0 .  the classical Tikhcnov method reappears. 

Example 5: f mpiicit Iterative Method 

T h e  regulaiizatioa parameter here is dso &J . This gives 



and 

Kotice that for the last two esamples, no condition an  n(6) ro g ~ i a r i i ~ ~ t t ~ e  t AP rol\vtbrgc.nrts 

of f&6) t o  has been specified in this section. 



Chapter 4 

Discrepancy Principles and 

Multilevel Procedures 

Scverd questions concerning r.a.'s remain to  be discussed. They concern the numerical re- 

alization of these algorithms: how should the regularization parameter be chosen systemati- 

cally without considerably impairing the convergence rate, and how do the the discretization 

errors and the unavoidable random errors affect the effectiveness of the r.a., and what mod- 

ifications must he made to retain its effectiveness? Some of these questions will be answered 

for several rnethods in this chapter. Section 4.1 will investigate the discrepancy principle, 

which is art indispensable component in the choosing of the regularization parameter. This 

principle is then applied to  the Landweber iteration in section 4.2, where we make a thor- 

ough investigation of the realization of this iteration and describe a multilevel adaption to it. 

1x1 scction 4.3, the discrepancy principle will be applied to  the classical Tikhonov method, 

and a rnt~ltilesel process will be described. Also in this section, we will introduce the concept 

of stabilizers and look at the quasi-optimal parameter choice, and with these two, we will 

propose a multilevel Tikhonov procedure for solving nonlinear first kind equations. 



4.1 Discrepancy Principle 

A fitting way to  start this section is to quote Morozov: "ilte mi t~n i tndc  of thc rcsidual 

[ l I & f ~ ;  - 
] must be commensurate with the inconsist,eecy rneasurc [infXen, 1 1  6.1. - g l l ]  

and the accuracy of specification of input information of the probl(~ru,"' 

Recall that the regularization parameter is a weight function cornpsoruisiny,; b c t w t w  t hr. 

fidelity of the approximate solution and the stability of the regularizctl cquat ion. Onc would 

like an a that results in good fidelty and good stability. -4 systimatic- way of rhoosil~g ,such it11 

cu is t o  apply the discrepancy principle which chooses the parameter snt,isfying the critttrio~i 

that the magnitude of the residual forrncd by the resulting solution bc comrncns~r sa t (1 wit t~ 

the inconsistency measure and the data error. 1"ic establish t h c  validity uf [,itis prillsiplc~ for 

the classical Tikhonov method first. 

Assume that 

11ga112 > J2 t pV2, 

where pT2 is the inconsistency measure 

pV2 := inf j /KVz - ys l /2  with II, satisfying I/ h' - l<,i/I 5 r l .  
xEX1 

The decomposition 

and the inequality 

show that  (4.1) is sort of a natural condition for one would tlesire I)ot,h thai, ha.b somcZ 

component in R(K,) 2 7  and that the signal-to-noise ratio is grcatcr* than onc. Indct:d, i f  (4.1 / 
is not satisfied then f(q'6) = 0 may be taken as an approxirnatr s o l s h n ,  a n d  i . 1 ~  da.t,a may ff(rl:S) 
be too corrupted t o  permit any useful mathematjcal analysis. 

Also assume that the operator is knjwn exactly, and take the vjcw t h a t  E R ( K ) ,  
absorbing any component of g into the error in 9s.  Ifence, (4.1 j rriodificts into t h r ~  

form 

l jg61[2>c62 ~ 2 1 ,  (1.2 j 
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Figure 4.1: Limiting size of 6 : 6 < y. 
which we shall ta,ke as 

1196112 =. b2 (4.3) 

(Note that since 9 t R ( K )  , (4.3) does not have the problem that f,$&) = 0 may be taken 

as an approximate solution.) 

Now the discrepancy principle chooses the unique 4 6 )  that satisfies 

The uniqueness follows from the next theorem. 

Theorem 4.1 Suppose that g E R ( K ) ,  and that g and gs satisfy 

' I ' h~n  p (a )  is continuous, increasing, and contains S in its range. 

Proof: Because the approximate solution produced by Tikhonov's method is 



where {u,, v,; p,) is the singular system a-f K .  Hence, 

which is continuous and increasing. The continuity and monotonicity of p(&)  c l t ~ ~ r l y  follows. 

Next, taking the limit of p3(cu) as a i w and cr A 0 ,  we have 

and 
2 (2  < 6""" 

h l  p 2 ( 4  = lI~,(,)Lgs\l < Il.9 - 1i6I 2 
a d 0  

Thus, the range of p ( a )  contains S . 

Further insight into the discrepancy principle is n?vealcd through an rxsrnir~ation of a 

particular error bound on the approximate solution. Lct r ( n ;  ga) := I/n - I < / $ ~ )  . 'l'hcti 

and so 



Theorem 4.2 (Groetsch, 1984) Suppose that g E R ( K )  , and that g and gs satisfy 

Then E ( a ;  g6)  is minimized if and only i f  p ( 6 )  = 6 . 

The proof of this theorem involves taking the Fre'chet derivative of an operator. Also, it 

uses the fact that a positive operator has a square root. 

Definition 4.1 Let E l ,  E2 be normed linear spaces, and suppose that Z is an open subset 

of El . A junction F : Z ---t. E2 is said to be Fre'chet diflerentable at so E Z if there is an 

operator F t ( x 0 )  E B ( E I ,  E2) s w h  that 

I ; " ( q )  is called the Fre'chet derivative of F at xo 

or 

- 1 6  1 d f  = - [ K * ~  t ( I  = -- [h"K + a(6)1]-I K*r(a; g s )  . 
da 4 6 )  

%est, p(a) is positive for a > 0 .  This follows from the fact that if p(a) = 0 for some 

positive a .  then r (a ;  96) = 0 ,  or equivalently, using (4.51, f$6) = [K*K t a(( i)~]- '  ~ * g s  = 
2 0 - But then g6 E N ( K " )  = R(K)' , and consequently the contradiction S 2  > llg - 9611 = 

~ j ~ i / ~  t illrs]12 > llgl/" 6' arises. 

Kow taking the derivative of E(a;  gs)  , we have 



2 d f 2  

) - - ; ( g 6  + a : ;  + n y ii-.gi :: ) 

- - 2 -- { ( K K * [ x K *  + a l l - ' ~ ( a ;  g 6 ) ,  r (a ,  g 6 ) )  
a2 

+ ( ( K K *  - KK' - aI j [KK* + all-',.(a; g 6 ) , g a ) )  



- - 2 
-- a2 ([KK' + a l l - ' ~ ( a ,  ge) ,  [KK* - aK]g6 - KK*K fi) 

26 
KK* + all-'r(a; g s ) ,  ria, gs) )  

26 
-- 

ap ( a )  
( [ K K *  + a l ] - ' ~ ( a ;  gs ) ,  r (a ,  gs)) 

- - 2 6 
- a (1 - -) ( [ K K *  + al]-'T(a; gs ) ,  ~ ( a ;  g s ) )  

PW 

whcre the factor [ ~ l i ' + a l ] - +  follows from the positivity of [KK*+ all-'. Since r (a ;  gs)  # 
2 

0, !I[h.li* + a ~ ] - i ~ ( a ;  g a ) l l  > 0 .  Hence, from the monotonicity of p(cr ) ,  

it 
- ( E ( a ;  g 6 ) )  > 0 when p(a) > 6 ,  
d o  

a31 d 
d 
- @(a;  g s ) )  < 0 when p(a) < 6 .  
d a  

Hence, $$(a; g a )  = O if and only if p(a) = 6 .  

But the minimization of this bound is relevant only if the minimum is not too large. Con- 

sider lirnsdo E(a ;  gs )  . A consequence of applying the discrepancy principle is that a(S) -+ 0 

as 6 0 .  This follows from the contradiction that if a -t > 0 as S, - (i , then g = 0 and 

t hcrcfore, 

IIgsnII > 6n L 119 - gsnI/ = IliJ~nIl : 



n $2  
giving the equation KKxg + Cg = KK*g . The terms -; ( r ( n ;  gs)* gs) and zp((r) - :T 
thus will pose problems on the limiting upper bound anless $ is bounded as h - 0 ." Wh;~t  

is required is the regularity of Tikhonov's method with the discrepa,ucy pri~lc.i~lc." 

Theorem 4.3 (Groetsch, 1984) Let g and gs satisfy the hypolheses of theorem 4.2. 7 'hm 

Tikhonov's method with the discrepancy principle i s  a regulariziny algurithrra; i c .  f:(csl --b 

~t~ a s S - t O .  

Three results of functional analysis will be used in this proof. 'I'hey are 

1. the weak compactness property of a Hilbert s p a c e  i.e., every bounded scaqrlertc.c 

in a Hilbert space contains a weakly convergent subseqnence; 

4Note that 

I ( T ( ( Y ; ~ ~ I , ~ ~ ) I  < I I r ( a ; g a ) i I  IigaII < h p ( a )  = b 2 .  

' ~ eca l l  that 61 - 0  as 6 -+ 0  is only a sufficient condition for fz(,) - K ' ~  as h --* 0 .  llul if 
4 a )  - c > 0 ,  then it can be shown that f;ihn) -- ~ ' g  weakly for any sequence (h..} with h. -- 0 .  11, lliir 4 6 )  

case, {f:i6n)) is said to  be weakly regular. 

Other possibilities of the limiting process are 

The divergence of -& is a sufficient c~nditior, for the exjatence of a sequerice of {&,I with h ,  - O arid 
4 6 )  

elements g6, with I]g - g a n  11 5 6,, such that { f , ! ~ ~ ~ ) )  is not weakly convergent ( G r o e t d ~ ,  1984, p.25); and 

although the finite superior h i t  is a sufficient condition for the weak regularity of (Grvcis&, 1984, 

pp. 23-24), the nonzero inferior limit is a sufficient condition for the existence of a sequence 16,) with h,, -- ii 
and ( 9 6 , )  with lig - gd,, 11 < 5, such that {f:ibn1} is not strongly convergent to K ' ~  (C,roPt~c6, 1984, p.26). 

The fourth condition is sufficient for {fi;6m)} not to be strongly convergent to K T g .  We car, conclurlc l h t  
-2  

if Tikhonov's method with the discrepancy principle is an r.a., then -. 0 as 6 -. 0 .  = 61  
Note that the weak regularity of { f , $ 6 ) )  will alSO guarantee that E ( D ;  r u )  will be bounded. 



2. the H-property of a Ililbert space- i.e., if 2, -+ z weakly and flznll -+ llzil in a 

Ililbert space, then z, - z strongly; and 

3. the weak lower semi-continuity of a convex functional- i-e., if z* is a continuous 

convex functional, and if z, z weakly, then Limn,, inf z*(zn) 2 zz(z) . 

Proof; Introduce the functional 

which tias a minimum if and only if 

Clearly then, 

Now because the discrepancy principle is applied, llr (46); g 6 ) 1 ] 2  = b2 and consequently, 

for a n y  6 > 0 . This last inequality together with the weak compactness property imply that 

for any sequmce (6,) with 6, -- 0 ,  there exists a subsequence {6,,) such that 

Moreover, K z  = g since 

gSnk 97 

n f :~ ,  I --+ K z :  (compactness of K ) ,  

bk 
j/h fn(snk - gbnk I/ = 6nk 4 O (discrepancy principle). 



But every subsequence of f:y6,) must itself satisfy (4.6) elmieniwisc. II<>iirc>, cvrry { } 
subsequence itself contains a subsequence which converges wcakly to /. H c n w ,  cwry srihsc- 

{ } 
j' quence f:i6,) must converge weakly to f for otherwise for sonrc S U ~ S N ~ ~ ~ P I I C P  l fLV(h , , * )  1 

for some functional f *, 

lh f* (f:;! )) # f*[fj- 
n k  -+OO k 

However, letting 

bnk := f *  (f:;:nk)) E 32 and b := f * ( f )  E %, 

the last limit is equivalent t o  the existence of an open sphere about b c.ontiinirig n o  poi~il,s of 

{bnk ) -  i.e., { b n k )  cannot contain a subsequence which converges weakly I,o b,  or (~quiv;~.lmI,ly, 

{ f : $ k ) )  does not contain a subsequence which weakly converges t,o j. 

We now have f i is , )  -+ f weakly. We also have by the weak lower semi-mntin ui1.y of / / . [ I  
and by (4.6) that 

Thus, fLi6,) i 1 1  f 1 1  . and resorting t o  the H-property of XI ,  I /  II 

For the case when f E R(K*) ,  a convergence rate for this strategy exists: 

Theorem 4.4 (Groetsch, 1984) I f f  E R(KV) ,  then I/ f - ji(5)I/ = 0 (4) . 

"ake the functional (-, Y) where y E N ( K ) .  Then 



In  fact, this convergence rate cannot be improved if K is of infinite rank, although it can 

he irrtprovcd to Of6j  if K is of finite rank (Groetsch, 1984). 

'The ma,jor difficulty with the discrepancy principle is that the exact operator is usually 

not accessible for computation. To treat this deficiency, the principle is modified to  the 

choosing of the parameter that satisfies 

(Goncharsky et ul(19733, Goncharsky (1987) ). Several aspects of this generalized discrep- 

ancy principle are given below. 

Theorem 4.5 (Goncharsky et al, 1973) For all 77 and 6 such that 0 < q 5 70, 0 < b _< 

6" ,for some constants qy,, 60, let (4.1) be satisfy. Then for every pair (7,6), there exists a 

unique number a(qi  6) which satisfies 

Theorem 4.45 (Goncharsky et al, 1973) Let {(%, S,)), 0 < q, < m, 0 < Sn 5 So, be 

any sequence convergent to zero such that (4.1) is  satisfied. Then Tikhonov's method with. 

the generalized discrepancy principle is an  r.a.. 

Moreover, this modified scheme is "order-optimal" on some subset of XI. 

Definition 4.2 (Goncharsky, 1987) -4 mapping R p  is  optimal on  E at a fixed S = S" i f  

sup A (R6+ ? 6*, x)  = inf sup A (R, S*, x) . 
xEE R:X+Y x ~ E  

The algorithm Rs is cnlled the optimal one on E if it is  optimal for any 6 > 0 .  

Definition 4.3 An atgoriihn Rs i s  order-optimal i n  E i f f o r  any S > 0 ,  

sup A (Es, 6, x) = 6' inf sup A (R, 6, z) , 
ZEE R:X-+Y z ~ E  



t-l a 



Ar: application or' t h e  Banacit -Steinhaus theorem7 then shows that 

[ I - K , K ~ I ? , ( K , K ; ~ ] z - O  a s a - D f o r d l i z E R ( i i , ) .  
i 

Xow ssitil I - P > I ~ ~ ' S  j 4 . i O  j and  (4.1 1) and the decomposition of gs. we have 

wlrere j* is the  esacr feast squares solution closest to fo: then take a = a*. Else 

cimose an ~ ( q .  81 such that both (4.15) is satisfied, and for some r E [a,  $1 , 



Criteria (2.) and (3.3 are further stipulated with the corlditiort t ha t  

and if these a's do not satisfy the appropriate stopping roriditiorr, I htvr n i \  c - h r ~ o v n  to tw 
% 2 6 ., ( 6  + q , ~  . Here, 3 > 0 is a Gsed constant. 

hdeed. iteration (4.7) together with any of these stoppirig crjtr~ria is arb r.a.. '1'hi:s is 

elaborated in the concluding theorems of this section. 

is art r.a.. 



Theorem 4.9 (Vainikko, 1982) Let Pmg t R ( K ) ,  and let (4.8)-(4.9) hold. Then 

ikralion (4.7) with &l )  : [o, 11 K, I/'] -+ C , and with a(q,6) chosen such that 

Theorem 4.10 (Vainikko, 1982) Let g E R ( K ) ,  and let (4.8)-(4.9) hold with po > 
-1. 2 :  "0 = I . Let the parameter a(?, 6 )  be chosen according to any of the criteria (1.)-(3.) 

wilh Ihe assumption that IVjh') = O sr  eke 

for crilerion (2.1. Then 

Theorem 4.11 (Vainikko, 1982) Let Pjg E R ( K ) ,  and let (4.8)-(4.9) hold with po > 
1 . Let fhc parameter a(p, 6 )  be chosen according to criterion (4.1 with bl > 70 l l g  - P- 

R(KPlI - 
Thrrt 

4.2 Landweber Iteration 

tYe R a w  take a closer look at the Landweber iteration and propose a multilevel adaption to 

it .  

This iteration is essentia&- the successive ayproximation procedure applied to the least 

squares equation 

Kh"h' j = K*g. 



It  is known that this iteration produces approximations which ronvergr i c .  i\tg -1- jtlfo,,,i 

if g E D ( K ~ )  (Strand (1972 and 1973)). In particular, the approxima.tious converge to 

Ktg if fo E R ( K X ) .  However, i t  is d s o  true that I j f k l j  -- cv whcn g $! I l ~ l ~ t ) ,  ?.r,; ill- 

posed problems then, the Landweber iteration cannot be applied wit,hout ewployix~g sonic 

sophisticated stopping criterion which logically should depend on the rtiagliitudc of t l : ~  (lala 

error. What really is required is a stopping criterion which ~oget~her witll t h e  l , a ~ t c l d ~ i ~ r  

iteration forms an r.a.. 

Having employed such a stopping condition, this r.a, filtcrs out the error-sourcc high 

frequency components; that is, n is automatically chose11 to allow only a conrpro~nising 

amount of high frequency components t o  enter into the appmxiinat.ion. I t  see tlr is f o r  l l r l  

exact operator case, recall that 

and 

Now if ft E R(K*) ,  say 
05 

fi = K*w = ,L~-'(TU, uJ)zrJ; 
j= 1 

then 

co n-l m 
n i 

= C pj-l(~, Z L ~ )  (1 - X ~ Z )  vj + c c pj- l  (1 \ - ~ ~ 2 )  ( g b r  nj jvi 
j=1 i = O  j = l  
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and a fil rther iteration adds the term 

for large j's, hi+, contains an additional multiple of about Xj(gs, uj) of each high frequency 
i 

G,. Furthermore, because 'j-::; A j  (1 - Xi2) is the product of A, and the (n  - I)'st Taylor 

polynornid of f expanded about 1 and evaluated at Xj2,  

A n  r.a. producing stopping criterion hence would produce a good approximation by limiting 

the growth of high frequency components. 

For first kind Fred holm integral equations, the iteration is 

Equation (4.24) is solved numerically after being discretized into the matrix-vector iteration 

where h is the stepsize of the discretization, and Khh is the discrete version of the kernel 

with stepsize h in both variables. The question that naturally arises is how well the solutions 

of (4.24) and (1.25) agree. Equivalently, the question is how well the singular system of the 

integral operator K is approximated. One noticeable problem is that if K is of infinite rank, 

then its infinite singular system must be approximated by the finite singular system of Khh. 



We will not delve into this or any other problems arising from the disrri.tizatio11 uf (-1.21). 

But we will require the discretization to be dependent on the quadrature error which will 

be arranged to be U(6).  

In passing, f 6  and f,6js) do agree to an extent determined by thc quaciraturc crror. 
-n,h 

Since the generating function of the Landweber iteration is 

and assuming that 1 1 ~ 1 1 ~  < 1 and llKhh/12 < I (conditions which always can be fulfilled by 

some scaling), 

Hence, theorem 4.10 is applicable, and so both 

and 

/ I $ , h  - ~ ~ ~ l l  -- 0 as the quadrature error a n d  6 -- 0 .  

Returning to equations (4.24) and (4.25) with the assumption that g E ll(fi'tj, nr,t~i: 

that the errors after k iterations are respectively 
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and 

Regularization enforces some weighting between the two sums of each of the above expres- 

sions. With this view in mind, another approach to  the iteration can be derived. 

Suppose the Landweber iteration is applied to the first kind equation KG; = & := 

g - K f j .  After m iterations, we have the approximation 



As m i 3 , this expression tends to ef , and if regularization is pesSorrncti, t 1 1 w  j'i 4- 
should be a good approximation to the regularized solutiotl of I < j  = gs . 

However, ds is usually not available, but rather 

is. Applying the Landweber iteration with this forcing term produces 

which does not approach e i ,  and in fact, may diverge because the sum may divc'rgo. 'I'liis 

infers a quicker halting of the r.a. for the present equation than the previous tlefwt cqu;r.- 

tion. Nevertheless, for regularized values of m, f[ -I- ef, should not btx too poor. of' arl 

approximation to the regularized solution of K f s  = gs . 

With the difference of the regularizations of the two defect cyuatiorts stJa,l,c4, il, is qi~ch-  

tionable whether this approach to the Landweber iteratior: is practically hclpfill, Hat i t  i h .  

First, two ideas that may alleviate the difference are to apply a differc.nt r.a. to t,/w tlrf~cl, 

equation, and to  have a different f; - i.e., fi is not the k'th iteration of ttlc I,;~ndwcbi.r. pro 

cedure with starting approximation f,$ = 0.  The first idea is actually rcquirod in a rrtnltigrid 

procedure, while the second idea will always be the case if an original equatior~ tlefwt ( q u a -  

tion cycle is performed. Second, this approach opens up t hc realm of mu l tilcvcl procwsiog 

to  some ill-posed problems, which we investigate next. 

The ideas of multilevel processing start with the construction of t h e  defect, cqnat,iorr. I,c!t 

fk be the k7th iteration of the Landweber procedure applied to th:: exact cquaticirt 

fk may be considered to be the least squares solution of 
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Also let J[ bc the k'th iteration corresponding to 

Kf = $ 6 .  

Wc have 

which enables the r.a. to stop sooner. 

The same analysis and results hold for the discretized versions of (4.26)-(4.28). But now 

the defect equation can be solved on a coarser grid where the singular system of K can be ap- 

proximated almost as well as on the fine grid. However, if we denote the elements of the fine 

grid equation with subscript h and those of the coarse grid equation with subscript H, then 

a major problem with this multilevel procedure is that any component of the interpolated 

coarse grid solution belonging in N ( K h h )  will always remain in the regularized solution of 

Khh f,, = g,, . The interpolated solution therefore must be in R(Khh*), a requirement that 

cannot be easily satisfied if the Landweber iteration is performed on the defect equation. 

Suppose that instead of solving the least squares equation 

with suitably chosen parameter a is solved. Then 

which suggests the interpolation 
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Now using (4.291, a two-grid iteration matrix describing the new procedure is 

where la, is the identity matrix on grid a = h, R ,  INh  is the projection operator bdwi~cn 

grids H and h , and Shhm := [Ihh - Khh*Khhjm is the m7th iterate o l t h ~  Landweber it,cra,lion 

matrix. The full iteration is 

m 6 n:, f S  f6 = Shh fk - l ,h  -kh + I H ~  [KHH*IC~H + a 1 ~ ~ 1 - l  K ~ ~ * ~ h H  (qSh - K ~ t i h s h h  Lk-j,,L 

(4.31) 

The braced part of (4.30) can be viewed as an approximation to the itera.tiorr niatxix 

which corresponds to the iterated Twomey-Tikhonov scheme 

(4.33) captures the high frequency components more rapidly than the Landweber itcratiort 

does as can be seen in its k7th iterate with Gh = 0 : 

Hence, if an appropriate a is chosen and if an r.a. producing st,opping criterion is used, t , h m  

the Twomey-Tikhonov scheme should require only a few iterations. 

Of course, this quicker capturing of relevant components is what we want (4.33 j to 

achieve. A look at  the Landweber residual shows that this is quite possible: 

After each iteration, 

for moderately sized 

very Little is reduced for X3 'sz  0 ,  but a rnoderate reduction is possihlr. 

Xi's. So, to attain the stopping criterion bound, it, is thc slow captur- 

ing of medium frequency components that creates the problem- frequencks that rnsy be 

approximated well on the coarse grid since 
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But the two-grid scheme is ineffective if the solution is composed mainly of high frequency 

components. This is true even for an ideal multigrid which consists of a restriction operator 

t,hat projects the defect closely onto the space spanned by the low-medium frequencies of 

K H H ,  and an interpolation operator that interpolates the reg~la~rized error closely into the 
a 

corresponding space of Khh . Little is achieved because the coarse grid procedure cannot 

capture the high frequencies well. In this case, the coarse grid step should be stopped, 

and further Landweber iterations should be performed on the fine grid. To recognize such 

a switch, the residual can be monitored: if the residual does not change much after a 

coarse-grid correction, then only additional Landweber iterations on the fine grid should be 

performed. 

Turning to the pamrneter choice and the computational costs, cr should not be too small 

to permit magnification of rounding errors. A good choice can be obtained cheaply on a 

grid coarser than H . Letting this grid be 4h and letting = 2h, the cost breakdown is 

2n2 per Landweber iteration, 

2 12 for the formation and Cholesky decomposition of [KHHIKHH + alHH] 
n2 -;i- for the adjustment KHH+d6H, 

%$ for the interpolation, and - 2 
" 64 for the refinement of a. 

(The cost of the restriction has been omitted since only the trivial injection has been applied 

in the numerical examples .) 

4.3 Tikhonov Regularization 

The realization of the Tikhonov procedure with the discrepancy principle is slightly more 

involved than the Landweber iteration. It ;nay consists of solving two linear equations which 

are nested in a Newtcs Iteratim: 



are solved: and then ao(q, 6) is updated accordi~lg to 

Note that equations (4.34) and (4.35) must be solved for each Newton iteration. Notc: a.lw 

that some simplification is achieved if 

for then the recurrence reduces to 

We henceforth assume that (4.37) holds. 

One of the major proMerns of (4.38) is that the function 
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is riot necessarily convex. Thus, Newton's method may be sensitive 

ma-tjon. However, for the exact operator case, the modified equation 

to the initial approxi- 

js convex (Gordonova and Morovoz(l973), Morovoz(l984)): and so Newton's method will 

converge for any starting a > 0 .  The recurrence becomes 

Turning to operation counts, the count for this algorithm can be very large. For example, 

for first kind Fredholm integral equations, it is 

"3 2 - formation of KhhtKhh , and 

j$ - Cholesky factorizations after ( j  - 1) Newton iterations. 

'f his luge  value ~eveals the problem of the standard approach: a direct solver is used for each 

iteration even though the solution of the previous iteration may be of sufficient accuracy for 

use. Applying a standard iterative method which does use the previous solution may not 

resolve this problem either, because of the ill-conditioned systems. A suggestion is to  apply 

a niultilevel process. 

Let LV = 2' and assume that Tikhonov's method with the discrepancy principle obtains 

a solution after k Newton iterations. This coarse level procedure does not only derive a 

good approximate a ,  but it also derives a solution that may be interpolated into the fine 

grid to be used as an initial approximation for some iterative linear system solver. Now 

since the Yewton scheme requires two systems to  be solved and since a good a is available, 

a switch over to a generalized discrepancy principle which requires solving only one system 

should be performed. The created system can be solved iteratively, and as a new parameter 

is obtained using 

f ik  = pa&-1 , 0 < p < 1, 

the solution of this system can be used as an initial approximation for the next system. 

Moreover, because the parameter changes on!y slightly, this initial approximation is accurate 

enough to prevent siow convergence of the linear system solver. 



Concerning the interpolation operator, the expensive operatar used in rfw I,andwcbcr 

scheme need not be used. The systems created here are non-singular, and so a n y  suitablc 

polynomial interpolation can be used: i.e., interpolation errors belmging in 3\'(h'.i,) p o w  

no problem here. One fact that should be exploited is that the rcg~tlar i~rd solution should 

be smooth. Hence. higher-order polynomial interpolation should 1~ wed.  

Choosing a smoother requires more investigation. Recall that rnultigrici applied to clif- 

ferential equations has the effect of damping out certain error cntmponcnts at ccr t ain Icvcls. 

The damping effect is controlled by the smoother. But this effect islay trot occur wlir~i mult i  

grid is applied t o  a system derived from an integral equation. For  esamplc, C ; i l l l ~ h  S ~ i d ~ l  

can be applied to  

h Z ~ h h z ~ h h  I + a11 -4% f6 = ~ h h ' ~ .  L~ 

but what does this smoothing do to the error components? Selective cornpont*nl.s ~ ~ t ! c . t l  mrt. 

be damped out rapidly. To see this, let 

and 

B = D s L + L ~ ,  

where D and L are respectively the diagonal and strictly 1owc:r triarlgnlar parts ol' H . A f k r  

b iterations: the error is 

Sow consider the efkct of the relaxation sa an eigenvalue-eigenvector pair <if f 3 ,  whid i  we 

denote by { i i -z i!  . rUso let {xi,&) denote the ejgenvalne- rigenvector pair of [li t I d ] - ' .  

Then if 



Sar tiiag alttrnt the damping effect of  he 2, frequency can be determined from the last 

/=xpsessinn cxccpt that rhe Frequencies can mix. Hence, in general, the damping effect of 

~ h r .  Gauss Soidei reizsatkm is unkaonm. This is rather unfortunate because the spectral 

prupmtjes of the systems derived from the regularized first kind equations are roughly 

kiiown. 

One smoor hrr that Is suit,able for the regularized equations is the (preconditioned) con- 

jitga: $= gradient iteratimi. The eigen~alae-eigen-~~ector system of interest are those of the 

origna! spterns, Bur the prublierr: now is that there is a cluster of eigenvalues aear a ,  and 

since the poiynornial curve fit of the conjugate gradient method must equal one at zero, 

the cocvergence ma:.' be slow (Jennings (1977)). Preconditioning may relieve some of this 

pro bier:^. But then th45 jxublern may sot be too serious for the high frequency components 

do not contribute too much to the solution anyways. Elaborating, if the residual vector r is 
expressed as 

where ]$[A 1 is t h ~  ?olynomia.l Ri. crf degree J, Assuming that the interpolation introduces only 

n small amount of high S~equenr~ error. rhe s!"'s corresponding to high frequencies would 
( 7 ; -  bc smaii already. Hertce, although the s; s for large i's may not decrease too dramatically, 

the? zrt. s r i d  enough ro aUow ,vdy a small contribution of liigh frequency components to 
.; rn;rr iz-iro _ r t ~ ~ .  

 AGO:!;^^. wax to see a possible rapid convergence of the conjugate gradient iteration is to 

r-iCw the large eigcnsafucs of B as outliers. This view is reasonable for regularized first kind 

cc;.irscinns ~~I:CP the eigenvaiues u s u d ~  converge sapidly to zero. Xow using the analysis of 

Jennings. a srnstfl~r estimate of the number of conjugate gradient iterations required can be 

o bt alncci. 

Two or her t hkgs coricerning the conjcgate gradient must be emphasized. First, the 



above problem of the smoother occurs 01114. in the  first system ~reat~cf  0x1 the fine grid. 

Subsequent systems should not pose much problem because good initial apyrosim;tlior~s n r r  

available. Second, the corijjugate gradient iteration must h a w  a stopping rendition t h a t  

relates to  the regularization procedure. This is given in the following thwrmn:  

Theorem 4.12 If the magnitude o,f the residual of the itemiiuc solver I S  O [ \ h  -b rl)'ll, a!ht~rt 

7 is the quadrature error in approximating K with a semi-discrete oprator I<, , theta 

-("" is the solulion provided that one qf the genemlized princqdes (1.)-(3.) is a s d  H c  re, 

obtained by the iterative soher. 

Proof: By theorem 4.10, using any one of the three rules, we have ( ~ + f , y  - 0 ash6, 11 --* I) 

and 

The result of the theorem is a bit discouraging since (6 $ r f j z  rriay h~ r a t h  srnall. 11, 

practi~e,  what can be done is t o  stop the iterative solver earlier, but to prugrc'ss to this 
? 

value as ajq, 6 )  is processed. For example, the iteration may be stripped at (6 + q)z  for the 

first system, at  p(6 + 0)5 for the next system, etc.. 

Summarizing, the two-grid method obtains good estimates of cr and t f io  rr~g111arjzr:d 

solution on the coarse grid using the discrepancy principle, irtterj~olatirlg this w I u l , i m  to 

the fine @,and using this cr by switching over to a generalized discrepancy principI(2 which 

requires solving o d y  one system, ar? iterative system solver car1 be used 011 the fin(: grid. 

Sow this procedure can be applied to more than two grid ievels. Using p levels, t1.w 

coarsest level is solved acirig the discrepancy principle with Cl~oIesky decorrtpositior~, and 



t h e n  the higher. levels are solved using a generalized discrepancy principle with an iterative 

wy~tcrrr solver. ?'his may reduce the operation count substantially. For example, for p = 3 

with grid sizes h, 213,4h; the breakdown is 

- formation of KhhtKhh , 

j& - Cholesky factorization a t  the coarsest grid, 

O (5) - iterative solver for all the systems on the middle grid, and 

0 (n2)  - iterative solver for all the systems on the fine grid. 

This multilevcl method also can be applied to  some nonlinear first kind integral equations 

after a change in the parameter selection procedure. To see why such a modification is 

rcqtiired, we take an  excursion to  examine the stabilization of the least squares problem. 

So far the exact operator case of (4.34) has been viewed as a perturbation of the least 

squares cqtiation. A bett~er way to  justify the use of (4.34) is t o  view it  as the Euler equation 

rr f 

ltf4&~ p1 gs] := p2 (a(&)) + a(6)fl(z j (4.40) 

where Q is a rmmegative stabilization functional defined on a dense subset Fl of D ( K )  and 

satisfying 

1. the esact. solution belongs in Fl,  and 

2. for arbitrary positive i\f7 

is compact in Fi :i. 

The solution of the E d e r  equation of (4.40) minimizes ~ M " [ z , ~ ~ ] ,  and if the parameter is 

c1iost.n such that p(a (S) )  = 6. then with F5 := ( z  : jjKz - gsj/ 5 6) , the solutiorl also 

sdisfies 

"Were, we are assuming that Jfo C F'c = B ,  where 

: a(?) = inf Q{zj  
zEFi 

{Tikhonev and Arsenin ( 1 9 3 ) .  



the corresponding stabilizer is Q ( z )  = j/zf12 . general form is tlw n'th-order stahi1izi.r 

defined by 

where the a;(s)'s are nonnegative functions. Applying this stabilizer t,o s first ki ttd F'rc~rlholrrl 

equation produces a corresponding integro-differential equation with a s ~ t ,  of boundazy 

conditions (the Euler equation) For example, using a first-order stabilizer, t l ~ c  ir!t,ogro 

differential equation is > 

with boundary conditions f$,(a) = x, j;(,)(b) = f; . 
Returning t o  the previous discussion, a modification is required t i i~causc t t l t h  s tA i l i z tv  

corresponding t o  the usual regularization equation will be sclianged. With t,?lis c.trar~gcv, t tw 

regularization equation converts into the form 

Clearly the generalized discrepancy rules (1.j-(3.) canrlot be applied now. 

One remedy t o  this drawback is the quasi-optimal selection rnc*t t icd.  (lonsider t,hc c.asc= 

= I. A "smooth" regularized solution is 

mELich is obtained by solving 

Xaturally a desired property of a good parameter is that 
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i.e., tire solutjon is already smooth. Thus, choosing the parameter that minimizes 

provides us a solution with this property. In practice, if the parameter is processpd according 

to the formula 

a k  = pat-1, 0 < p < 1 

then since 

a good parameter is one that minimizes - f f fn -1(6)  /I / /  . Such an a is called the quasi- 

cgtirrial parameter, 

Now the good news is that the transition of the quasi-optimal method for L + 1 poses 

no prot~lem. in  relation to multigrid, for first kind equations with non-trivial stabilizers, 

the parameter selection method on the fine grids of the previous multigrid procedure can be 

replaced with this selection method. Using the discrepancy principle on the coarsest grid to 

obtain a good initial parameter, the quasi-optimal procedure may not be too burdensome. 

Turning to nonlinear Fredholm equations, consider 

We wilt assume that 

1. Kist f&)] + Kjs, f2(t)] if f~ (t) 1 f&) , 

2. JL[s. f j t )  j is a contimious operator from [c, d] @I Cia, bj into L2 [c,  dj , 

3. kf js, t .  f(f)) and kfJ(s, t ,  f (f)) are continuous in f in a neighborhood of the exact 

solution, and 

4. J: ki(~.r. f(f))m(t) dt = 0 ,  where f(t) is the exact solution, has in the Sobolev 

space ti:: only the trivial solution 



(Tikhofiov (1964)). Linearizing (4.44) about some function j$ wc h a w  by Neivtor~'~ tncthod 

where Kf is the Frkchet derivative of li. Then with the functional 

we obt& the Euler equation 

Equation (4.46) is Linear, and hence can be solved easily. flowevm, 1,he rest of o!)la.irtirig 

an accurate approximation is prohibitively large since for each cr , sc~v~ral Ntaw~.on itvratitrrrh 

are performed and each Xewton iteration requires a matrix formation arid a matrix matrix 

product. Some savings are made if the matrix is kepi, fixrtl OIIW a good approxirr~athn 

is available, but the cost is still high. h contrast, a multilr3vc*l yrocdurc. wili rr*duce t h t *  

cost noticeably. This reduction is not only achieved through the use of arr itcr-;lt.ivc* sys  

tem solver, but it is mainly achieved by a reduction in the nurinhcr of mat,rix fi)rrnai,icirih 

and matrix products. Solving (4.46) on the coarse grid via the Choiesky quasi-optirrla.! pa- 

rameter method; a good a aod approximate solution are obtained. On this grirl, rnatrix 

formations and matrix products are performed per Newton it3ration. fnter~iolii.titig into 

a finer grid, if the solution is accurate enough, only the initial . & ~ u r t o r r  i t rwt inn  rc.quirc:s 

matrix formations and matrix products. Subsequent Xewton itrratjons Qn this grid will not, 

involve matrix formation; and products, only system solving ii~irlg thc c~itjugil,tr gradirrit 

iteration. 



Namerical experiments will be reported in this chapter. All the examples involve integral 

rcpations which have been discretized using the composite trapezoid rule. The multilevel 

methods of course are not restricted t o  this equally-spaced quadrature, since the major 

obstacle is to  construct Khhthhh and its coarse grid versions in $- operations, or if Khh 

is decomposed as rlhhxh, where Ahh is the matrix of kernel evaluations at the nodes and 

W A  is the vector of quadrature weights, the task is to  construct AhhtAhh and its coarse grid 

vrrsions in $ operations. This obstacle does not even arise in the multilevel Landweber 

iteration since f<hhth-hh need not be constructed. In the Tilihonov schemes, the task can 

be achieved hf building the finer matrices using the previously formed coarser ones. 

5.1 Multilevel. Landweber Iteration 

Scveral standard procedures shall be performed for all the examples of this scheme, First, 

the stepsize of the quadrature rule will be set to  

- 

\litierc bg  is some upper bound on j)Kttjl . Second, the discrete equations 



will be "normalized" by dividing each through with the t,tace of h L  Eiftht Ii i l l l  . Third, t t rv  pa- 

rameter c-r is chosen using the Morozov discrepancy principle on i hr ctx~rscst grid jsttqxizc= 

4n) with the restriction that a > 0.0005 in order to prevent large n~sgrtifiraeior~ of rourttlittg 

errors in the interpolation procedure. And fourth, the paxameters bl , b2 in st,oppirig c-rit P- 

rion (2.) will be set t o  1.1. 

Example 1. Antenna design theory (Bakushinskli and Sizikov (1982)) 

'ir 

cos(st) f ( t)  dt = 2n {Si [(l + s ) ~ ]  + Si [(I - s ) s ] )  - s < 3 ,  t j T . 

Here, Sijs] is the sine integral 

and the solution is 

We transform this equation so that the limits of integration a.rc zero a,nd olw: 

After discretizing this latter equation and normalizing the rc:sult,, t h t !  rigI11,-himd sitlc is 

perturbed by trace [h2Khh%hh] 6 . Using the upper bouxld 11 < 1 a n d  11 [\',,,, 1 1  < 7r4 , bvo 

obtain the results given in tables 5.1 and 5.2. 

b/h / time (real) I iterations / l l e r ; G , m  

Table 5.1: Antenna design theory using a standard I,antlwchr!r rnrtPf.iod. 

For the multigrid method, ten Landweber iterations wctrt? perforrncd hcaforct c w h  r.{&ht,ric 

tion. It is clear that this method is more efficient once a sufficienl. nurnbr:r o f  f,antlwc+r:r 

iterations are required for the standard method. 



Table 5.2: Antenna design theory using a multigrid Landweber scheme. 

Figure 5.1: Antenna design theory for 6 = 0.0005. 

Example 2, (Delves and Mohamed (1985)) 

Tllc exact solution is 

j ( t )  = e? 

Perturbing the forcing term as in example 1, we obtain the results summarized in ta- 

bles 5.3 and 5.4. 

Ten 1,andwber iterations also were performed before each restriction. 

This cxmlple illtistrates a problem associated with the Landweber iteration and the 

Tikhunov method with a zero'th-order stabilizer. From figure 5.3,  we see that the approxi- 

runtion is good away from the endpoints. although it is not very good near the endpoints. 



I S /h  I time (red) I iterations / I / ~ I ~ T O T ~ / ~  j 
0.001/0.125 0.25 0.357333 
0.0005/0.0625 325 0.34482 1 
0.0001/0.03125 6.76 0.2515264 
0.00005/0.015625 , 31.84 687 

Table 5.3: Example 2 using a standard T,arndwebw nlet.hot1. 

Table 5.4: Example 2 using a multigrid P,aritlwct)er scficrric.. 

exact - 

0 0.2 0.4 0.6 0.8 1 

Figure 5.2: Example 2 for 6 = O.OOliU.5. 



Figure 5.3: Example 2 error for S = 0.0005. 

Providing boundaxy values may improve the accuracy near these points. 

Example 3. Green's function for a vibrating string with fixed endpoints (Strand 

(1972,1974)) 

where 

'rhe forcing term was chosen such that the exact solution 

is ayprnsimatcd well by the first singular function of A'. 

Again we perturb the forcing term by t ~ a c e [ h ~ ~ ~ ~ ~ h ' ~ ~ ] 6 ,  and relax ten times before 

restricting the defect onto grid 2 h .  Results are summarized in tables 5.5 and 5.6. 

The results should not be too surprising. Because the solution is composed mainly of a 

low harmonic, very few Landweber iterations are required to  obtain a good approximation. 
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Table 5.5: Green's function using a s tandad Landweber met, h t d .  

S/h 1 time (real) 

1 0.001/0.015625 1 0.12 

I Slh time (real) 1 alpha 1 i i e ~ ~ r l  

iterations I 1je:-ror/l, 1 
-- 

2 ! 0.0009 15895l 

Table 5.6: Green's function using a multigrid Laritlwebcr schcmc. 

o 0.2 0.4 8.6 0 ~ 8  

Figure 5.4: Green's function for 6 = 0.000.5. 



ffcnu:,  the multilevel scheme should be less efficient. 

Example 4. 

f ( t )  = t(1 - t )  " 

The usual perturbation of trace[h2KhhtKhh]6 - nd the usual ten relaxation cycle produce 

thc next two tables. 

Table 5.7: Example 4 using a standard Landweber method. 

/ / e r ror / /2  
0.312120 
0*179916 

I 6/h 
0.005/0.03125 

Table 5.8: Example 4 using a multigrjd Landweber scheme. 

5.2 Tikhonov Method with Zerosth-order Stabilizer 

I 0.001/0.015625 1 32.18 700 

time (real) 1 iterations 

6/h  1 time (real) 

?'he csamplcs for this scheme are of more practicd interest than those examined in the 

I-andwetter method. One of them is a first kind Volterra integral equation which will be 

converted into a Fredhotrn eqmrion. Another involves discrete data which will be interpo- 

lated uairrg cubic splines. And for some of them, it is known that higher-order stabilizers 

0.99 

alpha 

0.0486373 
0.0105314 
0.0102397 

0.000786000 

0.005/0.03125 

82 

I ~ T T O T / ~ Z  - 

0.266286 
0.177603 
0.161406 
0.0788235 1 

1 .04 
0.001/0.015625 1 4.98 
0.0005/0.0015625 1 14.49 / 0.0001/0.0015625 / 229.20 



Figure 5.5: Example 4 for S = 0.000 I .  

are more appropriate. We examine these examples again using. first-ordcr st.a,tiilizcm wi th  

known boundary values in the next section. 

Common procedures in all of these examples include a n  initial paramc-tttr shoiw of' ow, 

a preconditioning using the diagonal of [h?KhhtKhh $ a!] , a pieccwiscr lirie;tr intrrpo!a,tion 

operator between two consecutive grids, and a generalized discrepancy pririciplt~ wit,ti t,hv 

function 

where 

Example 1. Harmonic continuation (Frankiin (i974 j, f i r a h  (1973) j 



The equation is the Poisson integral formula in the u n i t  c.irc.h Sttr fisivl r d i u s  r. 'l'his 

formula gives the solut i~n of the Dirichlet problem 

But for our problem, g(s) = u(r, s) is given approximately a.nd f (s) - ~ ( 1 ,  s) tilust Iw f o ~ n r ~ d .  

Another way to relate f (s) to g(s) is, if f (s) has the Ihuri~11. s~rirts 

then g f s )  has the Fourier series 

Clearly, small changes in high-order Fourier coefficients of y(s) may ceusr f a r # ( $  ctla.~~gcis i t 1  

f ( 4  . 
In the numerical experiment, r = $ , 

and [a, b] and [c ,d ]  are transformed into [O, I ] .  The exact solution is 

f (t) = -1 + cos(t) + sin(3t) 

Perturbing g to 

g d s )  = g(s)[l + 061, 

where 0 is a random number chosen from a uniform distribution on [- I ,  I ] ,  WP o t ~ t a i n c ~ i l  

tab!es 5.9 arid 5.10. 

The cg iterations column of table 5.10 gives the number  of prr~r.ortrjii,ii~ri~:~J utrrjugat,t: 

gradient iterations required for each updated a on grids 1 and 2 . Ebr exarriple, f o r  6 = 0.0111, 

three and seven conjugate gradient iterations were required on the systcrnb of grid 2, ar~tl 

six and ten iterations on systems formed on grid 1. 



'I'al)lP 5.9: fIa,rmonic. continuation using a standard Tikhonov method with zero7th-order 
s1,ahilixt~. 

t_ 6/h 1 time (real) 

Table 5.10: Harmonic continuation using a rnultigrid scheme with p = 0.1. 

alpha 

0.01505 rf).001 i0.03125 

.- 
b /to1 

~ ~ / l ~ - ~  

0.0002/ 1 0-6 

&/to1 I time (realj / alpha / cg iterations / l l e r r o ~ l l ~  1 

ljerrorl12 
0.344369 1.02 

Table 5.11: Harmonic continuation using a multigrid scheme with p = 0.5. 

time (real) 

0..57 

2.45 

alpha 

0.001995 

0.0005496 

cg iterations 

3/7 
6/10 

4/8 

l lerrorl lz 
0.0793932 

0.0239888 



Figure 5.6: Xarmonic continuation for jr = . I ,  6 -- 0.00002. 

Table 5.10 was obtained using p = 0.1. 19iffere1lt ~ i t l ~ t c ' ~  of / I  giw c l i f f c w ~ t ~  ri>sults as 

illustrated in table 5.11. Determining an optimal p is a psoblcrn i n  i t w l f .  

Example 2. (Phillips (1962), Kryanev (1974)) 

where 

and 

The exact solution is 

We also transform the intervals [-3,3] and [-6,6] into [O, I] ,  and perturb t h  da.ta by !~(.9)196 . 



'fitblc 5-12: "Phillip's" equation using a standard Tikhonov method with zero'th-order sta- 
bi1izr.r. 

1 6 /h  I time (real) 

1 0.001 /0.03125 1 0.95 
alpha 1 l i e r r o ~ / l ~  1 

0.03832 f 0.181006 1 

- -- - - -- - - 

Table .5.13: '-Phillip's" equation using a multigrid scheme with p = 0.5. 

exact - 
approx - 

d/tol f time (real) 1 alpha 

0 0.2 0.4 0.6 0.8 1 

Figure 5.7: "Phillip's" equation for p = 0.5, 6 = 0.00002. 

cg iterations 

2/3/3 
413 

0.001/10-" 1 0.48 
I 

llerrorl12 
0.128577 0.02380 



Example 3. Numerical differentiation (Tikhonov and Arsenin (1977), Marti 

(1980)~ Trurnrner (1984)) 

This equation first is converted into the Fredholrn equation 

ii k( s ,  t )  f ( t )  d l  = g ( s )  . 

Sow choosing n = 3, b = 4 ,  provided that g E w3[0, 41 arid g(0) = g l ( 0 )  -. ! j l ' (0 )  = 0 ,  t h r a  

solution of this equation is g"'(t)  . In particular, with the choicc 

and with the perturbation of g ( s ) G ,  we have tables 5.14 and 5.15. 

I Slh 1 time (real) I alpha 1 l l e~r .o~/ i . ,  1 

Table 5.14: Yumerical differentiation using a standard Tikhortov method with zcro'th-oirlw 
stabilizer 

The untlsually large number of conjugate gradient iterations is clce to t h c  i r r  accurary of' 

the apprnximations. In turn: the approximations are inaccuratc dur to t h ~  i ; id  chojccx o f  

stabilizer- the zero'th-order stabilizer simply mir~imizes t hc mean value of t tic a.ppn,xirir a- 

tions. 



- 
[ 6/tol 1 time (real) 1 alpha cg iteratiom 1 jlerrori12 

7/14 1.771946 
18/28 , 

Figure 5.8: Sumericd differentiation for p = 0.1, S = 0.0002. 



Example 4. Spectral composition of radiation (Tikhonov and 

where h(s - t) is a unit step function. Here, the unknown functio~t cfta.raclclrizcs t,hc clis- 

tribution of the particles, and the kernel, which may be obtained by passing a t i r h  p111sc. 

through an experimental measuring device, describes such a device. 

The exact solution was given at 41 points aud then interpolated using cr~hic. spliltc~s, 

Next, the experimental spectrum was obtai~led by numerically intcpxting this intcrpolatoil 

solution using a composite Simpson rule. After perturbing this spect rl~rrt  by g ( . s  )Oh , t . h  

following results were obtained: 

& / h  / time (real) / alpha 1 I / C I T O T ~ I ~  -- ] 

Table 5.16: Spectral composition of radiation using a sthndard 'I'ikhonov ~rit~l,llurl wi1.h 
zero'th-order stabilizer. 

Table 5.17: Spectral composition of radiation using a multigrid scheme with 11, = 0.1. 

1 &/to1 ' time (real) 1 alpha cg iterations 

317 
5/  15 
3/ 12 
9/29 
5/15 

0.01/10-* 

0.001/10-" 

! / ~ T T o T / ~ ~  -- A 

0.07248 l f j  

l0/25 I 

13.70 

98.89 

0.004141 

0.001233 

0.0005/10-" 729.57 

L 

0.0004835 



Figure 5.9: Spectral composition of radiation for p = 0.1, S = 0.0005. 

Example 5. Backward heat equation (Tikhonov and Arsenin (1977), Varah 

(1973), King and Neubauer (1988) ) 

and 

Solving this equation is equivalent to  solving the ill-posed problem 

ut = u,x 5 E (0, a)), t E (O,l] 

u f l ,  t )  = gf i )  t E (O,l] 

iu(z. t) i  < nil- x -+ 03 

n ( x ,  0) = 0  a: E ( 0 , ~ )  



for -u,(O. t )  . 

The exact solution is 

Using the perturbation gjs jSB again, we have t abies 5.18 and 5.19. 

1 6 / h  7 time (real) / alpha 1 licmorllr, 1 

Table 5.18: Backward heat equation using a. st? dard Tikhonov mcttlctd with zcro't,h-or.tit.1- 
stabilizer . 

Table 5.19: Backward heat equation using a mdtigrid schernc? with p = 0 . - 5 .  

S/tol 

0.01/10-3 

5.3 Quasi-optimal Schemes 

Examples 1, 3-5 of the previous section will be re-examined now wit.11 a first-ortler sli~hilizclr 

using the quasi-optimal parameter choice. 

For the standard method, the initial a will always be one, and (,he para.rrtet,er 11 will 

be 0.1. Thirteen iterates of the geometric progression for 0, each requiring a (:hoirl&y 

decomposition, will be performed. The solution that locally rninimisr:~ 

time (real) 

0.1 1 

alpha 

0.005697 

cg iteralions 1 jlcrrorl12 - 
1 I 0.327268 



I'igure 5.10: Backward heat equation for y = 0.5, 6 = 0.00001. 

then is chosen to be the regulariwd solution. It  must be emphasized tllat a local minimum 

is searched for rather than the extreme minimum because it  is possible for two strongly 

"smoothed" solutions corresponding to  a region of relatively large a 's  to  differ minimally. 

rl'ht~ solution corresponding to  the second minimum will always be rhosen. 

The parameter choosing procedure of the three-grid scheme is slightly better. Rather 

than using the same p for all three grids, three different y's xi th their values increasing as 

t hc grid is refined are used. We always will set y3 = 0.1 on the coarsest grid, p2 = 0.25 on the 

middle grid, and = 0.75 on the finest grid, unless otherwise specified. With y3 = 0.1, ten 

iteratvs of the geometric refinement for a: is performed, ana then the regularized solution is 

choscn from the resulting set of solutions as in the standard procedure. Denoting the quasi- 

optimal parameter on the coarsest grid by a&, , the initial a on the middle grid is taken 

to be . Xow on this refined grid, only five iterates of the geometric progression for a is 
P 

performed. and the quasi-optimal solution is chosen from &he resulting five approximations. 

Lastly, this process is repeated on the finest grid. 

Turning to the linear systcni solver of the multilevel scheme, a preconditioned conjugate 

gradient ~llctbod using the preconditioner diag[h2KhhtKhh + dhh + dhh] is applied on the 



finer grids with stepsize h .  The initial approximation of [he firat svstrx~n on n firicr grid is 

taken t o  be some interpolated version of the ccarsc grid quasi-optimal solution. 

AS for the effectiveness of the type of interpolation used, the  picwivisc litrcar , ~ n d  p i w .  

wise quadratic types appear t o  be the most effective. The intcy:oiatior~ sctwtrlt~ of t110 

muitilevel Landweber iteration was totally ineffective- thc srnallcr (1's of t t ~ t '  first-ortlcr s ta  

bilker permitted large rounding errors to creep into the jnkrpoiated sniuiioit, and h t ~ i ~ c i ~ ,  a 

large number of conjugate gradient iterations was required to so!vc. thc  first s\;s!cn~. 

But no matter what interpolation was used, the number of conjugatt. grailicnt i t r r a t io :~~  

was a bit larger than expected. This was true even for the "intc~rpoiatiorr" which irivolvctt 

solving the initial system using a Cholesky decomposition. Thc rcason for this j ) ~ w t ) k ~ ~ r i  i s  

that the change to  [dhh + aIhh] as a is refined is not minor. One way to corrrct t his 

is to  obtain a very good cu on the coarse grid, which then would pilrr~~it iargctr 11'5 to iw 

used on the finer grids. But this approach was not fully invrstigatcd, an(* reason bcir~g 1 i r i ~  t 

it may a bit unreasonable since the coarse grid parameter need not 1~ a u  cstrct~mly good 

approximation of the fine grid parameter. 

Another more basic problem with this multilevel approach is tiiat if rclir~s t.oo 11mvil.y 
4 " on the intuitive quasi-optimal parameter choice. And noting t h a t  isapproxirrratcvl orrly 

numerically, we definitely should take some precautionary r n c m u  rc3s tvhc~rt appi yi ~ i g  1 hi" 

scheme. 

Anyhow, all the examples were perturbed by g(s)60. Some of the rcsi~lt 5 a rct giwn i r r  

the tables below. 

Example 1, Harmonic continuation 

Exact solution: f ( t )  = -1 + cos(t) + sin(3t) . 



Table 5.20: Harmonic continuation using a standard Tikhonov method with first-order 
stat~iIizcr. 

f D/h 1 time (real) 
1 0.001/0.03125 1 1.07 

alpha / o r  1 
lo-' 1 0.0122705 1 

Table 5.21: Harmonic continuation using a multigrid scheme with piecewise linear interpo- 
lation. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.1 1: Bwmonic continuation for S = 0.00002 using piecewise Linear interpolation. 

t /to1 1 time (real) / alpha cg iterations 

3/7/10/3/2 
9/10/5/6/2 

14 /6/20/29/3 
25/3/1/1/1 

12/13/16/17/17 
21/13/12/9/11 
15/16/26/34/27 
36/21/21/20/18 

0.001/10-~ 
llerrorllg 

0.0655329 

0.0182970 
I 

0.00105723 

0.000180559 

0.67 i 9.7656 x 10-12 

9.7656 x 10-l2 

6.2500 x lo-' 

2.5000 x lo-g 

0.0002 / 

1 

3.09 

0.0001/10-6 19.76 

0.00002/10-X I 139.36 



Example 2. Numerical differentiatio~ 

Exactsolution: f j t ) = g f f ' ( t ) .  

Table 522:  Numerical differentiation using a standard 'T'ikhonov n l c ~ ~ h o r t  wil,h first o r i l ~ r -  
stabilizer. 

S/tol 1 time (real) I alpha 

Table 5.23: Xumerical differentiation using a multigrid scheme with "Cho1r:sky" intc~pola,. 
tion. 

Example 3. Spectral composition of radiation 



exact - 
quasi - 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Figiirc. 5.12: Nu~nerical differentiation for 6 = 0.00002 using "Cholesky" interpolation. 

Table 5.24: Spectral composition of radiation using a standard Tikhonov method with first- 
order stabilizer. 

i 6 / h  / time (red) / alpha 

/ o.oljo.oieiz5 1 47.59 j 
1 0.001/0.0390623 / 373.95 1 

~ ~ e r r o ~ / / ~  
0.100298 

0.0366996 

. , tahle 5.2.5: Spectrd composition of radiation using a multigrid scheme with piecewise 
qmdratic interpolation. 

/ li/tol / time (real) / alpha 

O O -  i 20.77 i 5 x 
cg iterations / l l e r ~ o ~ l l ~  i 
15/11/7/6/6 1 0.100395 f 



Figure 5.13: Spectral composition of radiation for 6 = 0.001 usir~g picwwiscb clna.tlra,t,ir 
interpolation. 

Example 4. Backward heat equation 

where 

and 

Exact solution: 
0 elsewhere 

2 The parameters chosen for the multigrid method herc arc a0 = 0.001, p" = 0.1,  /A  - 

0.5, p' = 0.9. These parameters were chosen so that the minimum of  n is a.pproxi~natAy 

10-12; the minimum value for the standard approach. 



'1'al.h 5-26: Ehckward heat equation using a standard Tikhonov method with first-order 
stabilizer. 

L 6/h  
~0.01/0.125 

alpha 

10-l2 

time (real) 

0.12 

Table 5.27: Backward heat equation using a multigrid scheme with piecewise linear 
polation. 

/lerrorl12 
0.350225 1 

inter- 

G/toi 

0.01/10-~ 

0.001/10-~ 

0.0001 / 1W6 

0.00001/10-8 

-- 

5.4 Nonlinear First Kind Equations 

cg iterations 

l/l/l/l/l 
3/1/V1/1 
9/6/1/2/1 
6/1/3/3/2 

611 3/14/21/27 
15/6/5/5/3 

15/17/31/41/52 

P 

115/30/6/58/31 
-- 

The last example involves nonlinear Fredholm integral equations. We will investigate the 

contact surface problem 

I ~ ~ T T O T ~ / ~  
0.275375 

0.230515 

0.0965745 

0.0798144 

time (real) 

0.11 

0.57 

16.85 

189.66 

P 

for fised bedrock level h using the quasi-optimal parameter choice. As mentioned earlier, 

the Euler equation for the linearized form of the perturbed equation is 

alpha 

8.2013 x 

8.2013 x l0-I3 

8.2013 x 10-l3 

8.2013 x 10-13 

- .-- 



Figure 5.14: Backward heat equation for S = 0.00001 using piecewise linear inl,erpola,t,iotr. 

where k and kt respectively denote the nonlinear kernel and its partial deriva,tivtt wilt1 

respect t o  f . We will iterate this equation for a given initial f&x, ur~til 

6 I l f P ; a ,  - fi+l,a, 11 < tol. 
1 1  fP;% I 1  

For the standard method, we again will perform thirteen iterates of the geomclic pro- 

gression for a using a particular p. The initial approximation for thc irrit,ial ck will be 

f 6  = 0 ,  and the initial approximation for aj will be the f that, hakjsfics t , t rcx  
4 , f f o  -2+J  , a J - ]  

above tolerance condition. Now for each a,, a sequence of Kf ,h /L '~  and I{I,lLIL1 /if J ~ / ,  's will tw 

constructed, and a sequence of linear systems will be solved, After obtaining t h  t,hir~,r!cn 

solutions, the quasi-optimal solution will then be chosen as in the previous secihn hu t  with 

the additiond conditior. that the difference between the rmrrn of t,hh solut,ion artti a samplt: 

mean of the norms of the thirteen solutions be less than some sampic dcviatjon. 

The three-grid method again will involve three different p ' s :  p'', p2,  and  pi . rl'h' 

coarse grid processing will be exactly the same as the standard pmccdure h u t  with only t m  

iterates of the geometric progression. Its quasi-optimal approximation wi l l  be intWpOlatf:d 

into the next grid using piecewise linear interpolation, and its q uasi-optirnal paramf!tcr 



will he modified by a factor of 3 and then used as the initial a on the next grid. On 

this  refinpd grid, five iterates of the geometric progression for a will be performed with 

t h e  initial iteration equation being processed as in the standard method; i.e., a sequence 

of Kf,hh's and Kj,hhtKj,hh's will be constructed, and a sequence of linear systems will be 

solvcd using Cholesky decomposition. The next four iteration equations however will not 

involve the construction of a sequence of K j , h h 7 ~  and Kf,hhtKf.t,t,'s, dthough a sequence of 

linear systems will be solved using the preconditioned conjugate gradient scheme for each of 

these four iteration equations. These two matrices will be constructed only once using the 

sol~ltion of the initial iteration equation on this grid. Next, after obtaining the quasi-optimal 

solution, the whole procedure is repeated on the finest grid. 

It may appear tha.t the construction of a sequence of Kf,hh7s and KflhhtKflhh's for the 

standard method js a bit unfair. But this is precisely the disadvantage of the single-grid 

procedure. Linearization of the nonlinear operator permits an error of order o ( l l f  - fL 11) , 
which may be large if f6 is a bad approximation to  f .  Hence, Kf,hh and Kj,hhtKj,hh should 

- 2 ,C* j  - 
be reconstructed for each iterate of the iteration equation. The finer grid of the multigrid 

schcnlc, on the other hand, has a good approximation after the first iteration equation has 

berm solvcd. Elaborating, the quadrature and linearization errors are possibly balanced 

(~rmugh to ornit the continual formation of Kf,hh and Kf,hhtKj,hh. 

Example 1. Contact surface problem 

We use a set of discrete data and take a = c = 14.8; b = d = 27.0. 

One-fifth of the components of the right-hand side were randomly chosen from a uniform 

distribution and perturbed by (0.4 + 0.60)6, where 8 is a random variable on [-I, 11 . The 

rc~nai~l i~lg  components were perturbed by 0.48. 

'Table 5.28: Contact surface equation using a standard Tikhonov method with first-order 
s tabilizcr. 

1 6 
I OA1 

0.001 
r o . 0 0 0 ~  - 

I h 4 1 2  

0.00512749 
0.000807030 
0.000410676 

time (real) 
327.07 

22701.70 
20477.30 

alpha 
3.9063 x 
6.1035 x 1W5 
1.5259 x 1 0 4  

Newton iterations 
2 
3 
3 

2 
2 
2 

- .  - 
... 
. . .  

2 
2 
2 

1 
2 
2 

1 
3 
2 



Table 5.29: Contact surface equation usilig a multigrid scheme wi th  = 0.75, /rc: 
0.5, p3 = 0.25. 

14 16 18 20 22 24 26 28 

Figure 5.15: Contact surface for 6 = 0.001. 

l l ~ r r o r / / . ,  7 
0 . 0 0 7 4 6 5 ~  

Newton/cg iterations 
3 i 1 1 I 1 1 1 1 

5 / time (real) 
0.01 1 74.64 

alpha 
1.7166 x 0 



Chapter 6 

Conclusion 

We have seen through some analysis and numerical experiment, that multilevel techniques 

can reduce the computational costs yet obtain the same convergence rates of several other 

sbar~darti techniques. Indeed, we have seen the complementary property that high fre- 

quencies, frequencies that are slov~ly captured by both the Landweber scheme and the c.g. 

itwatiou, arc damped out by the r.a., and medium frequencies, frequencies that can be cap- 

tured slowly on the fine grid, can be damped out on the coarser grids. This complementary 

property provides the necessary structure of a multilevel method; i.e., the property that 

components lying approsinmtely in the nnll space of the smoother can be eliminated on the 

line grid, and components lying near the orthogonal complement of the null space of the 

smoother can be eliminated by the coarse grid correction. Hence, we have seen that the 

srnootlw consists not only of an iterative method, but also of a discrepancy principle. 

As for the discrepancy principles themselves, we have seen through a survey of the 

principle how indespensible they are. They are not only part of the smoothing process, but 

they also have an in~pact on the stopping criterion of the iterative linear system solver of a 

zero't h order Tikhonov met hod, as described in theorem 4.12. Moreover, taking advantage 

of the Fact that several grids are used, by using several discrepancy principles, we have been 

ablc to obtain a parameter both accurately (Morozov discrepancy principle on the coarse 

grid) yet cheaply (generalized discrepancy principle on the finer grids) for the multilevel 

zero'th order Tikhonov scheme. 



CHAPTER 6. COSCL GSIOLX 

Many questions still need to  be investigated though. For the 1nu1 tigrid 1,antlwc~bcr 

scheme. it still must be shown whether this "pure" multigrid docs form an r.a.. Altltougl~ 

we have shown that this scheme approximates the Twomey-Tikhonov t n r t  i d ,  ;u~d alt h0119h 

we have empirical evidence that the scheme does work i t  still must bc showri that t11c 

approximations do converge to  ~t~ as 6 -+ 0 .  This will rnost likely irivolw an ir1vrstig;ltion 

of the generating function of this multigrid scheme, and this may involve a, gclltwlization of 

the R,(t) function since restriction, interpolation, and coarse grid operators arc involvcvl, 

The multilevel zero'th order Tikhonov method requires even lnort. future invt~stigatiori. 
r \ So far, all that has been created is a multilevel extrapolation tech~~iqur.  1 hror~gh all anal 

ysis of the c.g. iteration and the decomposition of the rcgularizcd solutioil, only firw grid 

systems were solved after an extrapolation of a coarse grid solution and its corrpspu~icling 

parameter. Although this method proved very effective i n  rnost of the cxarr~plcs, it, wvulcl 

be worthwhile to  investigate a multilevel system solver. Such an ir~rplc~nclttittion sitoultl 

not be too difficult for the zero'th order Tikhonov method since an unti~~rlying svc-onrl k ind  

integral equation exists. This modification also can be a starting point fo r  credrig :1 "purv'' 

rnultigrid Tikhonov method, for each coarse grid defect equation ran hc vit~wctl 21s ;I r c y y  

larized first kind equation with a specific parameter. What should I)(. cxarnincd C;LU tiously, 

however, is the interpola,tion error introduced by the rnultilcvel soivcir. 

Of course, creating a "pure" multigrii Tikhonov method is a future goal. ' 1 ' 1 t ~  n~ajor 

problem with such a schl2me is the solution and parameter updating on the f i n r t  grid. I f  it first 

kind defect equation is regularized using Tikhonov's rnet hod, how shoirld t h c l  i nteu pola.tcv1 

regularized solution be added to the fine grid approximation, and trow shou Id 1, lic j)nrarnc*l,c,r 

be modified (remember, the regularized defect equation most likely will have a diff(xclnt, 

parameter)? Note that this problem did not arise in the multjlevcl 1,andwc~twr itcra.tion 

since In there, the coarse grid "parameter" a! indirectly modified thc fin(. grid yara~ric}t,c>r 

n-l. A possible remedy to this problem is to  apply a weighted parameter upda.ting srhcrnc:. 

The extrapolation analysis of King and Chillingworth (i979 j,  and Grortxfi a n d  KErig ( 1979) 

may be helpful here. 

Turning t o  the multilevel first order Tikhonov method, clearly a rr urn ber of changes must, 

be made to  this scheme. Although it was more efficient tharl a standard Tikhonov met,hod irr 

the examples, its efficiency was not too impressive due to  the large number of c.g. i fxra t ionb 



required. The first change that should be made is to apply the Morozov discrepancy principle 

on the coarsest grid, and then with larger p's in the parameter progression formula 

WP can apply the quasi-optimal parameter choice on the finer grids. Now with the larger p's, 

the smaller changes in the regularizaticn parameter mzy imply less c.g, iterations required 

to solve the updated regularized systems. Furthermore, multilevel system solvers can be 

applied to these systems. 

And as for the nonlinear multigrid scheme, the field of investigation is enormous. One 

task is to try the multilevel scheme on other nonlinear first kind equations in order to 

dcterrnine any possible difficulties with the scheme. Two other tasks are t o  investigate other 

parameter choosing procedures, and to  explore FAS-type methods, which would probably 

involvc delicate nonlinear discrepancy principles. Now these goals r~iay be ambitious, but 

the success of the multigrid method to  the contact surface probli3m should be an impetus 

far such future research. 
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