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ABSTRACT 

Ecological sysfems of 2n interacting ppuIations (consumers, resources) 

forming ciosed food-chain systems subjected to control are considered. The growth rate 

of the first population involves a constant source term and terns representing the 

decomposed biomass of some species which serve as a resource. The growth 

restriction policies for the closed food-chain systems are established through the 

utilization of a Lyapunov design methodology for controlled open food-chain systems, 

and are based on the concept of avoidance control. They are targeted towards ensuring 

population coexistence by restricting the fluctuations of the size of the populations in 

the chain to an allowable level from point of view of the participating populations 

(internal control) or the managers outside the system (external control). Numerical 

simulations for the controlled closed food-chain systems are presented to illustrate the 

growth restriction policies. 
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Studies, both experimental and theoretical, on the interaction between 

biological populations have been a topic of continuing interest in mathematical ecology. 

However, with the increasing threat to our enviionment, be it man-made ox naturai, 

there has been insufficient focus on the use of control theory to interacting populations. 

We note here the works by Albrecht, Gatzke, Haddad 2nd Nelson [ l ]  

and Goh, Eeitmann and Vincent [Z] using optimal control theory. The aim of these 

papers is to design optimal strategies for the control of prey-predator systems. The 

optimal strategies are implemented by alternating the control variable from the zero level 

to the maximum level. As a result, the response is steered from the initia state to the 

stable equilibrium point of the uncontrolled models. 

Bojadziev and Skowronski 131 took a different approach introducing 

qudi~tive control policies for a predator-prey model (a particular case of a food-chain) 

of the Lotka-Voltem type 

where 2, = dxJdt, s = 1,2, and the control u2(t) adjusts the number of predators so as 

to maintain a reasonable level of both populations. 

Bojadziev [4,5,6], generalizing [?I, established quali!ative control 

policies for open food-chain systems of Lotka-Volterra type involving four or more 

interacting populations, In [7], Bojadziev included harvesting efforts in the model (0.3) 

and managed to obtain a similar type of control policy. 

These growth restriction policies concerning control are discussed from 

the point of view of qualitative control. The rational is that biocconomicai systems 



Raving behaviour based on some kind of policy of qualitative nature could respond 

quickly to new changes of circumstances after a decision has been implemented. 

Qualitative control ensures flexible behaviour which is compatible with the name of the 

evoIutionay process. 

The authors of [3 - 71 have adopted, with proper adjustments and 

modifications, the usage of a Lyapunov design avoidance control methodology 

developed by Leitmann and Skowronski [S]. The control policies in [3 - 71 have been 

based on the existence of a Lyapunov function for uncontrolled fd-chain  models. 

However, for some systems in population dynamics which are of a 

more complicated nature than open food-chains, the Lyapunov functions are either 

difficult to find or they might be non-existent. A particular example is a closed food- 

chain sysiem. Bojadziev [93 deals with the utilization of a Lyapunov function for open 

fod-chains in cases where the system ciynamics has a more general character in order 

to establish a growth restriction policy. 

The main objective of this thesis is to provide a qualitative study of the 

effect of control on ecological systems of 2n interacting populations 

(consumers,rescurces) forming closed food-chain systems. The qualitative behaviour 

of the interacting closed fwd-chain models with control is compared to that in the 

absence of control. Since it is not known if closed food-chains possess a Lyapunov 

function, their growth restfiction policies, based on the concept of avoidance control, 

are established using the methodology developed in Bojadziev [9]. The main target of 

these policies (also cailed balanced zone stabilization policies) is directed towards 

ensuring a desirable population cuexistence by damping large fluctuations of population 

sizes. This is achieved by restricting the population growth in the chain to an allowable 

or manageable level from point of view of the participating populations (internal 

control) or from managers outside the system (external c~rltrol). 

The marwid in this thesis is divided in the following manner: 



It begins with a preliminq chapter discussing some material which 

is necessary for rhe applications in iater chapters. The chapter concludes with an 

introduction into the basic dynamics cf the models under study. 

The second chapter deals with equilibria, a Lyapunov function and 

its properties, and tire stability conditions for equilibfia. 

Chapter three entitled Con~o l  Policies, begins with justification for 

the need of control. Important definitions are introduced and a theorem is proved, 

providing the bases for the design of the control policies. 

The concluding Chapter Four is devoted to numerical simulations for 

the closed food-chain rnodek, in particular of length 2 and 4, for the case of 

external control as well as for internal control. 

At the end we present ollr concluding remarks and in 7 Appendices 

present the program far the numerical simulation, 4 tables with data and 2 proofs. 

The References contain 22 titles. 



CHAPTER ONE 

This chapter discusses some of the material that is necessary for the 

appfica-tions in later &apie~  . Portions of Sections 1.2 md 1.3 have ken adapted from 

the b k s  by Sanchez [!Of, Jordan m d  Smith 111) and Hitb [G!]. The chapter 

concludes with the in~oduction of the basic dynamics of the controlled closed food- 

chain models under study. 



We begin with some preliminaries that will be used in the later sections 

of this thesis. First, we will consider the numerical procedure or method u s d  to obtain 

a solution to a general system of non-linear differential equations. 

Ames f 131 has commented in his b k  that there is no single numerical 

method that is applicable to every differential equation, much less to the smaller class of 

ordinary linear difXerenrial equations. 

The Runge-Kum methcd is one of the widely used quadrature methods 

for solving non-linear differential equations numerically. 

Runge 1141 developed this method as a means of avoiding the 

compfications of successive differentiations while simultaneously preserving the 

increased accuracy furnished by the Taylor series. Later, Kutta /15] and Neun [lii] 

improved on it. 

We remark that the Runge-Kutta method is a single-step or one-step 

method in which the solution of the differential equation 

is approximated by calculating the solution of a related first order difference equation. 

As a result, as in any single-step method, we can approximate (1A) in the form 

where Qi is some reasonable function called the increment function and h is the step 

size. The m e  vdiiz of ji(i.i.) satisfies 



where T, is the nuncation error. The order of the single-step method is given by the 

largest integer p such that lh-IT,/ = 0(h4. 

The general idea of the Runge-Kutta approach is to find the slope of the 

given function at t, and at several other points; average these slopes, multiply by the 

step size h and add the result to y,. Thus the Runge-Kutta method with m slopes can be 

written as 

and 

where n E 2; and the parameters cz ,..., c,, m 2 2, a2,, ,..., and wi are 

arbitrary with the sum of wi = 1, for i = 1, ..., m. According to the suggestions by 

Kutta 1153, we may choose the increment function Q, to be the linear combination of the 

slopes at t, and at several points between t, and t,+l. The specific values for the 

parameters are obrained by expanding yn+~ in powers of the step size h and comparing 

it with the Taylor series expansion of the solution of the differential equation to a 

specified number of terms. These coefficients have been extensively calculated in 

numerous texts on numerical analysis (see Ames [13], Hilderbrand 1171) and its 

procedure will not be illustrated here. 

Jain [18] has outlined the Runge-Kutta methods of different orders. 

However; these different orders involve a c i ~ i ! ~  generd procedure ir, obtminig a 

solution as outlined above. The main difference is that the low-order net!!ods produce 

less accurate results as compared to their high-order counterparts. Furthermore, a high- 



order method as well as a diminishing step size resuits in an increase in accuracy of the 

sotudon. 

In Chapter four, we will make use of the fourth-order Runge-Kutta 

method (this being the most common of all Runge-Kutta methods) to obtain numerical 

solutions for our system of differential equation. 

In concluding this section, we will use the fact that a system of m first 

order initial value problems can be dealt with by a similar procedure as any mth order 

Consider a system of n differential equations of the form 

with initial conditions 

Then, we can write (15) as 

with coefficients 

for s =  l , 4 ,  

for s = 2, 3, (2.9a) 

and with 



E(, = (K;syXzs•÷-..,Kns)T•÷ for s = 1, ..., 4, 

As a final remark about the Runge-Kutta method, we observe that 

the advantages of using the Runge-Kutta method are that 

a )  it is self-starting, 

b) it provides approximations which converge to the solution as 

h-+O,and 

c )  the method is iterative, 

Its disadvantage is that the methcd involves far more computations per step than 

other finite difference method. 



Section 1.2 Classical investigation of an equilibrium point 

In this section,  re review the cclassicd methods for the investigation of 

the topological structure of an equilibrium point ~(xy,s;) of the two-dimensional 

system 

dxl 
= P(q.x2) dx2 -- 

1 dt - Q(q , ~ 2 )  (1.11) 

where P and Q are known scalar functions and together with their first partial 

derivatives, are continuous in some domain G of the xlx2-plane. 

Definition 1.1. An equilibrium point of (1.11) is any point (xy,x:) in 

G at which P and Q both vanish. That is, 

P(X:,X$ = O and Q(x1,x2) o o = 0. (1.12) 

These are points where the motion described by (1.11) is in a state of rest. 

Let us consider the case of an isolated simple equilibrium point E, that 

is, an equilibrium point having no other equilibrium points i n  its neighbourhood. 

Without loss of generality, it is assumed that the equilibrium under study is at the origin 

O(0,O). The simple change of variables xl -+ xy + XI; x2 -+ x; + xl ensures this. 

System (1.11) can then be written as 

where a, md c,, s = 1,2, denotes the partial derivatives of P and Q with respect to x,, 

s = 1, 2, at the equilibrium point E(x0) respectively. The functions F and G are of 

elass Ck, k 2 1, defined in some closed bounded region G*. At this point 0(0,0), F 

and G, together with their partial derivatives, vanish. 



The Jacobian mamx, denoted by J, of the linear part of system (1.13) at 

the equili'briurn point O is given by 

Since 0(0,0) is a simple equilibrium point, 

We make use of the characteristic equation of (1.14) 

and the eigenvalues of (1.14) to investigate the nature of the stability of the equilibrium 

point O(0,O). The roots of (1.16) are given by 

where o = al+ c2 and A = alez - a2cl. Depending on the sign of the discriminant D 

where 

several cases concerning the stability of the equilibrium point 0(0,0) can be obtained 

as illustrated in Table 1. 



Stable if a < O 

Node 
Unstable if o > 0 

Complex roots with 
Re@,) < 0 

s = 1,2. 
Focus if cr +- 0 

Stable i f c r < O  

Complex roots with 
Re&) > 0 

s = 1,2. 

Unstable if cr > O 

hs pure imaginary 
s = 1 , 2  Centre if o = 0 

Stable ifcr<0 

Node 

Xs 2 O; h, E R ifA>O 
D>O Unstable if cr 0 

s = 1 , 2  
Distinct 

hs E R. 
s = l , 2  

Distinct and of 
opposite signs. 

Saddle 
i f B < O  

Table 1. 



Section 1.3. The Lyapunov functwn 

In this section we will introduce the Lyapunov Direct Method also 

called the 2 r ~ d  method of Lyapunov. 

The Lyapunov Direct Method is one of the most powerful tools in 

the study of dynamical systems. It makes statements on the stability of the 

equilibrium without any knowledge of the solutions of the differential equation. The 

stability statements are made directly by using, in addition to the differential 

equation, suitable functions defined in the phase space. Such functions are known 

as Lyapunov functions and in general, the sign of the Liapunov function and its 

rime derivative for the differential equation have to be taken into consideration. 

We recall the definition and two important theorems of a Lyapunov 

function (see Jordan and Smith [1 11, Hahn [12] and Huang and Morowitz [19]). 

Definition 1.2 A Lyapunov function V(xl ,..., x,) is a scalar function 

which satisfies the following conditions: 

(i) V(xl, ..., x,) together with its first partial derivatives are continuous 

in a certain open domain i2 around the origin xl = x2 = ... = x, = 0. 

(ii) V is non-negative in the domain i2 and vanishes only at the origin. 

Lyapunov formulated two stability theorems on equilibria whose 

proofs are not presented here but can be found in Jordan and Smith [ll] (Chapter 

1 0). 

Theorem 1.1 (Weak Lyapunov function) Il l]  Let x*(t) = 0,  

t 2 b, be the zero solution or equilibrium of the regular system i( t )  = X (x), where 

X (0) = 0. Then x*(t) is uniformly stable for t 2 t, if there exist V(x) with the 

following properties in some neighbowhood 6* of x = 0: 

(i) V(x) and its partial derivatives are continuous, 



(ii) V(0) = 0 and V(x) > 0 for all x ;t 0 in 3 in a neighbowhood 3 of the 

or&+, 

(iii) V(O) = 0 and dV(x)/dt 5 0 for all x # 0 On 3 in a neighbouritood 3 of 

the origin. 

Theorem 1.2 (Strong Lyapunov function) [ I l f  Let all the 

conditions of Theorem 1.1 apply, except that (iii) is replaced by 

(iii) V(O) = 0 and dV(x)/dt < 0 for all x # 0 in 3 in a neighbourhood 3 of 

the origin, 

Then the zero solution or equilibrium is asymptotically stable. 

Theorems 1.1 and 1.2 can be viewed from a geornen-ical perspective, 

Suppose that the Lyapunov function V(x) is positive definite, that is, V(x) > 0 for 

all x # 0 in a neighbourhood 3 ,  and V(O) = 0. Then the level curves, V(x) = c, a 

constant parameter, form a topological system consisting of a family of simple 

closed curves enclosing the neighbourhd of the origin. As c -+ -, the further the 

curves are from the origin and as c + 0, the origin is approached. 

The geometrical interpretations of the level curves cannot be 

visualized in higher dimensions, however, when given a positive definite function 

V(x) with continuous partial derivatives, then for all small enough positive c and 

for x in some sufficiently small neighbourhood of the origin, a similar result is 

achieved. 

Figures 1 and 2 show a positive definite function V in R3 and the 

family of level curves V(x,y) = c in R2 respectively. 



Figure 1. A positive definite Lyapunov fknction ih R3. 

Figure 2. Family of level curves in R2. 



Section 1.4 Dynamics of the model 

The dynamics of the general class of closed fd-chain models of length 

2n, the number of interacting populations, with control is modelled by the foIlowing 

equations 

Here t is the time variable and x(t) = (X~, . . . ,X~,)~ is the population vector. The 

parameters a,, a,, s = 2 ,..., 2n, p,, s = 1 ,.,., 2n-1, Ys, s = 1 ,..., 2m, and Q are 

positive constants. They have the following biological meaning: a, is the growth rate 

constant representing the growth when the sfi species is isolated in an environment fkee 

from other species; Fs is the interaction coefficient which measures the intensity or 

strength of the interaction between species; ys is the trophic weight factor where 

%s+i&s represents the gain-loss ratio when population 2s+1 interacts with population 

2s (a predator-prey type interaction), and Q is the supply rate of an external resource. 

The term a,a,x,, s = 2, ..., 2n represents the dead biom ss of the sth species which 

serves as a resource for the first species X I ;  hence 0 I a, 5 1. The function 

cp,(u(t),x(t)) E R2n is a known continuous function. The control in vector form is 

denoted by u(t) = (ul, ..., u2,)T where the vector u(t) E U c RZn, U is a constraint set 

to be determined later. It is assumed that u(t) is piecewise constant on [b,~), t, < -I-. 

Each choice of control, say u(t,), a constant on some interval [t&], a subset of [to&,), 



generates a solution or a response of (1.19) which is denoted by x(t) = x(t,x(t&u(tJ) 

where x(t,) is the initial state. We note that by solutions, we mean absolutely 

continuous functions that satisfy (1.19) almost everywhere on [ b , ~ )  (see for example 

Roxin f20] and FiIlipov [21]). 

Each type of control presents a different meaning for the scalar function 

p(u,x) in (1.19). Consider the s& component of cp in (1.19). If cp, > 0, then the growth 

of the sth population (consumer) with population density x, is enhanced (increasing 

r e w s j .  For cp, < 0, its growth is damped (diminishing returns). That is, we have a 

situation where the growth of the sh species becomes so large that it begins to hinder 

its own growth, for example by competing with each other for limited resources. The 

specific way in which we select q~ determines the nature of the control of our system. 

For the case of an externally controlled system, for example managers 

outside the system, we have chosen 

and for the internally connolled sysrem, we have selected 

Here, the sth population, considered as a consumer (predator) by controlling its own 

growth, affects the growth of the populations in the closed food-chain. This control is 

exhibited by all members of the chain with the exception of the first with density x,, 

which is considered as a resource. 

For us = 0, s = 1 ,.., 2n, cp,(u,x) = 0, hence (1.19) reduces to an 

uncontrolled food-chain node1 of closed type, a particular case of uncontrolled models 

investigated by Svirezhev and Logofet [22]. 

Following Bojadziev [9], we add and subtract the term alxl to Q in the 

fmt equation of (1-19) which gives 



where 

We remark that the coe=cient at > O in (1.22) and (1.23) represents the growth rate of 

the fmt populxion in the open food-chain. 

The model (1.22) with W = 0 represents the controlled open food-chain 

investigated in 153. If we consider cp = 0 and W = 0 in (1.22), we obtain the 

uncontrolled open food-chain 



In Chapter Two, we will review some properties of the open 

firnit-chain model if .Mi,  as discussed in [5,6], concerning the equiii'bria and the 

Lppunov frtnctiofi. 



CHAPTER TWO 

EQUILIBRIA AND LYAPUNOV FUNCTION OF THE CLOSED FOOD- 

CHAIN MODEL 

Chapter two studies the equilibria and a Lyapunov function of the 

uncontrolled open food-chain model in addition to the equilibria of the uncontrolled 

closed food-chain model. It studies the properties of the Lyapunov function and 

investigates the nature and stability of the equilibria using the techniques of Sections 

1.2 Sections 1.3. 



Section 2.2. Equililirium of the open food-chain in IPn, n _> 1 

In Section 1.2, we provided the definition of an equiiibrium point and 

showed how this point could be found in R2. 

In a similar manner, we can generalize this definition to the case of 

Rhforn 2 1. 

Consider our open food-chain system (1.24). By setting i(t) = 0 in 

(1.24) and solving the equations obtained, we find the coordinates of the nontrivial 

equilibrium E(x0) E R2" as given below: 

We note that populations are never negative. Therefore, in order to 

have biological meaning, we require that E(xO) E Int R!,!". From (2.1) we make the 

following observations: 

(a) Cleariy, x; > 0 since E(x0) E Int R?. 

0 0 
(b) Since xzn-: > 0, therefore x2s-l > 0 for s = 1 ,..., n-1. 

0 
(c) In order to secure the species density, ~ ~ ~ + 2  > 0, s = 1, ..., n-1, for 

0 
the food-chain system we must have that P2,x2, 7 a2s+ly2s+l. 

alY1 a3Y3 
For example, since = - > - o -a3y3P1 + alylP2 

P3 
, it follows th2! X4 = - PI 81 P3 

> 0. 



Ln Section 1.3 we defined and stated two general thcorcms on the 

Lyapunov function. 

It is well-known that (see for exam@ Huang and Morowitz 1191) 

the Voltcna-integral or V-function for a predator-prey system is indeed also n 

Lyapunov function and is everywhere concave upward. 

The open food-chain model (1.24) has the Lyapunov function (scc [GI) 

with the following properties. 

(i) V(x) is minimum when x(t) = xo(t). That is, min V(x) = V(x0) = 0, 

where XO is the equilibrium position. 

(ii) V(x) is'monotonically increasing about the equilibrium point; 

V(x) -+ ..J as Ilx,ll -+ = and as Ilx,ll -4 0, s = 1 ,..., 2n. 

where f, represents the right-hand side of the sth equation on (1.24). The proof of 

property (iii) is presented in Appendix 6. 

From (2.3), using Tircorem 1.1 in Section 1.3, wc can conclude that 

the equilibrium point E(x0) (obtained in Section 2.1) is stable, 

Consider the first integral 

V(x) = h, h constant 0 (2.4) 

of the model (1.24); it represents the family of level surfaces Oh in R2"+I. The 

orthogonal projection of onto R2n generates 2n dimensional hypersurfaces K h in 

RZn which are dosed, do not intersect, cnclose the equilibrium E(xO), and 



accommodate orbits of (1.24). In addition, if hl < h2, the hypersurface Hhl  is inside 

the hypersurface K h Z .  The prmf of (2.4) is given in Appendix - - 7. 

As an illustration, consider the open food-chain system (1.24) of length 

two with parameters al = g = pl = = y2 = 1, whose modelling equations are 

Using Section 2.1 with n = 1, we obtain that the equilibrium point of the 

open food-chain model ( 2 5 )  is ~(x;),x;) = Then the Lyapunov function (2.2) 

for the system (2.5) with Y', s = 1,2, given above can be written as 

2 

V(xl,x2) = x, - 1 - In x,. 
s=l 

We present the hypersurfaces of the Lyapunov function (2.6), a particular case 

of (2.2) in Figure 3. Here, hl = V(0.8,0.8) = 0.046287, h2 = V(0.7,0.7) = 0.113350, 

h3 = V(0.5,0.5) = 0.436370 and h4 = V(0.4,0.4) = 1.075884. 

x2 

9 

0 05 1 IS 2 25 3 
x1 

Figure 3. Hypersurfaces of the Lyapunov function in R2. 



Secf;ion 2.3. Existence of Simple Equilibnh 

Using &e methdoiogy in Secuon 1.2, we will investigate the nature of 

the stability of the equilibrium point of the closed food-chain (1.19) in R2, a particular 

case of (1.19) with 9 = 0. For a chain of length two, (1.19) is given by 

The equilibrium positions of the system (2.7) are solutions of the 

equations 

From (2.8), the non-trivial equilibrium E(50) E has coordinates 

provided that Y2 - a2yl > 0 (since populations are never negative). 

Hence, we note that (2.7) has only one nontrivial solution 50 satisfying 

(2.8), where 5; > 0, s = 1, 2. 

The Jacobian matrix J, of the linearized system of (2.7) enables us to 

study the azt*xe md s';if:il&y ~f t!!e qdi?xkm @iit E(5Q). We have 



The eigenvalues of (2.10) are 

where 

and 

Since the parameters in (2.12) and (2.23) are positive and 

Yz - a2?.; > 0, we have that o < 0 and A > 0. Depending on the choice of numerical 

values of these parameters, we have several cases to consider, either the 

3 discriminant D = o- - 4A, is greater than 0, is less than 0 or is equal to 0. In any 

case, since o < 0, we can conclude that the equilibrium point is stable and is not a 

centre. Therefore the equilibrium point E(c0) of the uncontrolled food-chain model 

(2.7) is either a stable spiral or a stable node (see Table 1, Section 1.2). 

In Chapter 3, with the appropriate choice of the numerical values for 

the parameters, we can ascertain the nature of the stability s f  the point E(50) of 

(2.7). 



CHAPTER THREE 

CONTROL POLICES 

In this chapter, we consider first the reasons as to why a control is 

needed. We will then introduce important definitions and a theorem concerning the 

concept of avoidance control and establish control policies. 



In this section we discuss the justification for introducing control terms 

into the closed food-chain systems. 

Consider a closed food-chain mcdel in R2, a particular case of (1.99) 

without control, given by the equations 

We recall that in Section 2.3 of Chapter 2, we showed that the 

equilibrium ~(l$', 5;) for the uncontrolled closed food-chain system (3.1) given by 

(2.7) is stable, and made the assumption that for E(6O) E Int R:, Y2 > Y1a2. 

The solution of (3.1) with initial state xo(to) E R:, describes the 

behaviour of the interacting populations in the chain with initial sizes xol(t,) and 

xo2(to). Depending on the values of the parameters Q, Yl, Y2, P I ,  a2 and a2, the 

solution may move on an orbit of (3.1) which winds away from x,. This may endanger 

the existence of an acceptable size of the population which may result in an extinction or 

'explosion' of a species. 

We will illustrate this by the following numerical simulation. Let us set 

the parameters in (3.1) to 

Then (3.1) is simplified to 



Solving (3.3) for its equilibrium (using Section 2.3),  we obtain that 

E(57, 60,) = (1.0,OS)T. We select the initial point x, io be x,(O) = (1.2,l.O)T. The 

solution of (3.3), starting from the initid point x,(O) on the time intend [0,10] in the 

phase plane is presented in Figure 4 by the curve I. From this figure, we observe that as 

time progresses, that is, for t > 10, the solution will approach the equilibrium 

(1.0,0.5)T of the system (3.3). We note here that with the choice of these parameters 

(3.2), the equilibrium E(SY, 6% A (as obtained in Section 2.3) is an asymptoticaiiy stable 

focus. The fluctuations of the populati~n densities xl x;? with time are illustrated in 

Figure 5. 

Figure 4. Solution curve 1 in the phase plane. 



time 

Figure 5. Fluctuations of xl and x2 in R2 without control. 

The prey-population x2 decreases fast and we have a stabilization of x 

around E(@ which may not be desirable from the managerial point of view or it may 

not be in the interest of the population itself. Such a situation or situations where the 

population xl becomes small, or the sizes of both populations become small could be 

avoided if the manager opts to introduce control and to stabilize the populations in a 

desirable zone not necessarily close to E(E0). 

Having justified our reason for a control, we will in the next section use 

the Lyapunov function (2.2) for the open food-chain (1.24) to define an avoidance 

region A E R?, and a safety zone S E R:, between the boundaries 3.5 and aA which 

guards the solution of the system (1.19) in R:, from entering A through the boundary 

aA. (Figure 4 illustrates A, S, aA and aS for the model (3.3) with (3.2) in R2). 

As an additional illustration, we present the fluctuations of the 

population densities in a closed food-chain of length four against time in the absence of 



control (see Figure 6) with initial point s(0) = (1,S,1.2,1,0,1,0)T: the modelling 

equations are 

with parameters chosen to have values 

Q = 1 . 5 , u , = 2 , a , = a s = I , s = 2  ,.., 4 , P S = 1 , s = 1  ,.., 3 , Y s =  I , s = l , . . ,  4. (3.5) 

pop. sizes 

Figure 6. Fluctuations of x in R4 without control, 



Section 3.2 Avoidance Control 

In the designing of an avoidance control policy, it is essential that the 

following definitions and theorem concerning the closed food-chain model (1.19) be 

introduced. We acknowledge that the papers by Bojadziev and Skowronski [3] and 

Bojdziev [93 play an important role. 

Consider the constant vectors E E R? and 6 E R:, having components 

where xy is given by (2.1). We know that V(x) is monotonically increasing about the 

equilibrium point (property (ii) of V(x), Section 2.2), therefore with (3.61, we can 

conclude that 

We refer to E, as the avoidance parameter and as as the security parameter. The choices 

of E, and 6, a .  arbitrary as long as (3.6) is observed. 

Now, making use of (3.7), we introduce the following basic 

definitions. 

Definition 3.1. A voidance region A.  

Definition 32. Safety zone S 

~4 ( X E  R:: hg<v(x) <hE). 



Definition 3.4. Desirable zone D 

D 2 (X  E R: : V(X) s h s ) .  

Definition 3.5. Boundaries a A  and aS, of the avoidance region A and the 

safety zone S respectively are defined correspondingly as 

A a) a A  = xh,= { X E  R: : ~ ( x )  =h,), (3. f 2) 

We note that the admissible region Q is enclosed by aA, the desirable zone D ,  is 

enclosed by aS and A2 =. S w D. 

Definition 3.6. The region A as defined in (3.8) is avoidable for the response 

x(t) of (1.19) if there is a control u(t) E U such that for all states x(tl) E S, S as defined 

in ( 3 3 ,  the response x(t) cannot enter A. That is, 

Sufficient conditions for the avoidance of A are established below. 

Theorem 3.1. (Avoidance Confrol Theorem) The response x(t) of the closed 

food-chain model (1.19) is controllable in the zone 92 for the avoidance of A if there is 

a control u(t) E U for which 

where is is given by f 1.22) and V(x) is the Lyapunov function (2.2) fur the open fd- 

chain, 



Proof (by contradiction): 

Let us assume &as the region A is not a~oidable. That is, (3.14) is violated. 

Hence the response x(tj = x(t, x(tl), u(tij) originating from x(tl) E S enters 

A ,  for some t > ti. As a result, there is a time t2 > tl for which 

x(t2) = x(t2,x(t,1,u(t,>) E - 

However, from property (ii) of V(x) in Section 2.2, we observe that 

Therefore, the function V(x) is increasing hence dV(x)/dt > 0. 

On the other hand, we have ~ o r n  (3.15) that V(x) is a non-increasing function 

along the responses of (1.19). Therefore, we have arrived at a 

contradiction. + 

This theorem plays an important role in the designing of an avoidance 

control policy for the region A by the response of (1.19) which will be discussed in the 

next section. 



With the use of Theorem 3.1 (Avoidance Control Theorem) in the last 

section, we will design a growth restriction or avoidance connol policy. 

Incorporating our model (1.22) into the inequality (3.15) of the 

Avoidance Control Theorem, we rewhite (3.15) as 

Using (1.23) and (2.3) we get that 

By differentiating (2.2), the elaboration of (3.18) reads 

where rp, is defined in Section 1.4. 

With (3.19), we have established an inequality relationship between the 

control vector u(t) and the population vector x(t). All vectors u for which (3.19) is 

satisfied form the set U. We will consider (3.19) as a control law of qualitative nature 

in its implicit form. 

Having established the qualitative control law for the closed food-chain 

system, we are now able to formulate an Avoidance Conbol Policy with the aid of the 

A voidance Control Theorem. 

Avaihrtm Coafrof Policy, Our aim is to assure that the response 

x(r) = x(~x(t&uffoj) of the closed food-chain model (1.19) with initial state x(t,) E D 

and a fixed control u(Q (which may or may not be zero) does not go beyond the safety 

zone S, or in other words, does not enter the avoidance region A. 



In order to achieve this, we monitor the value of the Lyapunov function 

V(~( t ) j .  Suppose t h t  for some time t l  > 6, we obtain that hg < V(x(tl)j < h,, which 

indicates that the response x(tl) has crossed through the boundary aS and has entered 

into the safety zone S. At this stage, in order to prevent the response x(tl) from 

crossing the boundary aA a& entering into the avoidance region A, we introduce a new 

control u(tl) at the switching point x(tl) E S which obeys the control law (3.19). The 

new response x(tj to u(tI) is steer& "down" through decreasing levels of the Lyapunov 

function V(x(t)) = h < hg into the desirable region 0. 

If for any future time, say t* > tl, the response ~ ( t * )  under the control 

u(tl) enters the safety zone S again, the same control policy is applied with a new 

control u(t*j which should satisfy (3.19). 

Growth restriction policy. The avoidance control policy is essentially 

a growth restriction policy (also known as the Balanced zone stabilization policy, 

see [6] )  since the response vector x(t) of the closed food-chain system (1.19) represents 

the change of the population sizes x,, s = 1, ..., 2n. The avoidance control policy 

ensures that a response of (1.19) that originates in D cannot enter A and as a result, the 

population sizes are restricted in the region D which can be made small if so desired by 

proper selection of the bounday parameters E, and 6,. 

In the last chapter, by the means of numerical simulations, we will 

illustrate the growth restriction policy for the closed food-chain systems. 



CHAPTER FOUR 

NUMERICAL SIMULATIQNS OF THE CLOSED FOOD-CHAIN MODELS 

We have studied in the previous chapters the growth restriction policy or 

avoidance control policy for a general controlled closed food-chain system with 2x1 

interacting populations. 

In this last chapter, particular cases of the general controlled food-chain 

model (1.19) are studied using numerical simulations in order to illustrate the growth 

restriction policies. A fourth-order Runge-Kutta numerical method (explained in 

Chapter 1, Section 1) with step-size h = 0.1 is used to integrate the modelling equations 

so as to find the response of the closed food-chain system. 



Section 4.1. C fosed food-chain model with external contro E of 

length two 

In discussing the dynamics of the model in Section 1.4, we remarked 

that the meaning of the known function cp(u,x) depznds on the kind of control involved. 

Consider the model (1.19) of length two with q(u,x) = (ul,u2)T as 

given in (1.20). That is, 

This is the case of an externally controlled closed food-chain system where the control 

comes from outside the system such as external environmental influences. 

The presentation of (4.1) in the form of (1.22) is 

where 

W = Q - alxl + 3a2x2. (4.3) 

For a numerical simulation, we select the parameters as follows: 

Q = 0.25, Y1 =Y2 = Pr =a2 = 1,  a2 = 0.5. (4.4) 



With these values, we obtain that the equilibrium point for the corresponding open 

fwd-chain to (4.2) (FY = 0, ('il,ii2jT = 0 )  2s illustrated in Section 2.1, is given by 

(x;,xq)T = (1 .0,1.O)T. Also, the Lyapunov function (2.2) reduces to 

U7e perform the numerical simulations with initial state 

x,(O) = (1.2,1.O)~, the same initial state that was used in Section 3.1 in justifying the 

need for a control. 

The qualitative control law (3.19) can be expressed as 

where W is given by (4.3) and Y, = 1, s = 1,2. This is implied by the validity of the 

following inequalities 

Now the constant vectors E E and 6 E R: are appropriately chosen 

to have values E, = 0.7 and 6, = 0.8, s = 1,2, satisfying (3.6). Using these values 

t~gethcr wit5 (3.?) (4.51, we obtixin that hs = 0.046257 mb hE = 0.1 13350. Thus 

for .this externally co~osEed c!osd f d - c h i =  model (4.2) in R2, we have determined 

the boundaries of A and S respectively with (3.12) and (3.13). The controlled 

behaviour of the response in the phase plane is illustrated in Figure 7. 



Figure 7. Controlled behaviour of the response in the phase plane. 

Consider the response of (4.2) starting at the initial point 

x,(O) = (1.2,l.O)T with zero initial control, that is u(0) = 0. The situation at this stsge is 

identical to the response described in Section 3.1 (Justification for a control). We 

cornpare Figure 7 with Figure 4 (Section 3.1) and observe that initially the response 

moves along the curve I (Figure 4). According to the Avoidance Control Policy 

(Section 3.3), we monitor the level of the Lyapunov function (4.5) and note that at time 

t l  = 2.6, the Lyapunov function (4.5) has the value V(x(2.6)) = 0.046567 (see 

Appendix 2) which exceeds hs = 0.046287. Hence the response of (4.2) has entered 

into the safety zone S .  Now, since xl < 1.0 and x2 < 1.0 (see Appendix 2), then with 

the irnpiemeniation of the conuoi law j4.7), we select at time tl, a controi (using lines i 

and 3 of (4.7)) u(tl) = (0.41585,0.25000)T. As a result, the response changes abruptly 

and re-enters the desirable region D. The Lyapunov function is monitored continuously 



* 
and for each time, say t, > t,, s E R, that ~(x( t :  )) > hg , we introduce a new control 

vector u(t: ) satisfying (4.7) at the switching point x(ti ) E S, thus ensuring that the 

response returns to the desirable region D. On the time interval [O,TO], the control has 

been changed four times, hence restricting the growth of the closed fd-cha in  (4.2) to 

D. The fluctuations of the population densities xl and xz against time are given in 

Figure 8 and the 1eveIs of the Lyapunov function in Figure 9. 

time 

Figure 8. Fluctuations of the species densities in R2. 



time 

Figure 9. Changes of the levels of V(xl,x2). 

Numerical data for the externally controlled closed food-chain model in 

R* are presented in the table in Appendix 2. 



Here, we considzr the same closed food-chain system with external 

control (1.22) of length four. 

Our model (1.22) with (1.20) and parameters 

gives us 

where W = Q - 2xi + x2 + x3 + x4 (a particular case of (1.23)). 

We need the equilibrium point of the uncontrolled open food-chain of 

(4.10), that is, with W = 0 and qS = 0. Following Section 2.1, by setting i(t) = 0 in 



(1.24) with (4.9) and n = 2, we obtain the equilibrium of the open food-chain system in 

Therefore, the Lyapunov function (2.2) ~f the system (4.10) with (4.9) and (4.11) is 

given by 

xs xs 4 
~ ( x ) = C 2 ( ~  - 1 - I ~ T ) + Z ( X , -  1 - l n x , )  

S= 1 S=3 

4 x1x2 
V(x) = (x,) - 6 - 2 1n 7 - In x3x4. (4.12) 

S= 1 

We express the qualitative control law (3.19) with (4.9) and (4.12) as 

This inequality (4.13) is satisfied if rhe following inequalities hold 

0 Q- 2x1 + x2 + x3 + xq + u1 > 0 if xl e xl, 

0 Q-2x l+x2+x3+X~+U1 < O  if xl > x,, (4.14) 

We consider (4.14) as the control law for the system (4.10). In order 

that ( 3 4  is satisfied, we hme se!arP.1 E S - - 1 .-, 3 V ss = 1.7 f ~ r  s = 1, 2, and Es = 0.4, 

6, = 0.5 for s = 3, 4, as our appropriate boundw parameters. Thus with (3.7) and 

(4.12), we determine that the boundary aS has value hg = 0.436370 and the avoidance 

boundary aA is given by h, = 1.075884. 



The fluctuations of population densities xl, x2, x3 and x4 with initid 

size Oe~sities xl(0) = 1.8, xs(0) = 1.2, x,@) = 1.0, s = 3 ,4 ,  are. presented in Figlire 

10. Let us compare Figure 10 with R a p e  6 (Section 3.1) where the fluctuations of the 

uncontrolled model of (4.10) (u = 0) have been given. We observe that the difference 

occurs at time t1 = 2.100 (see Appendix 3). At this time tl, the Lyapunov function for 

the controlled system (4.10) is V(x(tl)) = 0.443317, which exceeds hg = 0.436370. 

This indicates that the response has entered the safety region S. The response x at tl is 

x(t,) = (2.535087,2,38663 1,2.057807,1.170476)T. From this, we observe that 

x,(tl) > x:(tl), s = 1, ..., 4, the corresponding equilibrium value. By applying our 

control law (4.14), we select at this time tl the control (using lines 2 and 4 of (4.14)) 

ul(tl) = -3.04474, u,(tl) = -1.00000, s = 2, ..., 4, which as a result steers the 

response back into the desirable region D. On the time interval [0,101, we have 

changed the control a total of nine times so as to secure the presence of the response in 

D. 

In contrast, after time tl = 2.100, the corresponding uncontrolled model 

(Figure 6, Section 3.1) appears to diverge to the extreme situations. 

We present the levels of the Lyapunov function V(x) in Figure 1 1. The 

numerical output for this uncontrolled model in R4 is given in Appendix 3. 
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time 

Figure 10. Flucimtions of XI, x2., x3 and x4. 

time 

Figtire 1 1. Levels of the Lyapunov function in R4. 



Section 4.3 Closed food-chain system with internal control in R2 

In the next two sections we will study numerically Ehe internally 

controlled closed food-chain system of length two and four whose dynamics are a 

particular case of the general model (1.19). 

We recall from Section 1.4 that the function rp(u,x) for an internally 
2 contro~led system has been chosen to be of the fom p(u,x) = (0,u2x:, ..., uznxzn)T. 

2 For a chain of Iengeh 2, we have that rp(u,x) = (0,u2x2). That is, cpl = 0 

which implies that the prey population with size xl can neither exercise cuntrol nor can 

it control its own growth directly. Hence the prey population is considered as a 
2 resource. Setting rpz = u2x2, suggests that the predator population with size x2 

indirectly controls the growth of the resource by controlli~lg its own growth (self 

control). Thus the predator population is referred to as a consumer. 

Consider the model (1.22) with (1.21), (4.4) and n = 1; we obtain that 

where 

Similar to the closed food-chain with external control in R2, the 

equilibrium of the corresponding uncontrolled open food-chain model (W = 0, 

q = 0) in (4.15) has been found to be E(l,l)T E Int $ and its Lyapunov function (2.2) 

is given by 



The conml law (3.19) together with (4.16) and cp(u,x) = (0,u2x;) after 

expansion appears as 

By subsdruting = = 1 and ( x ; , x g  = (l,l)T, (4.18) simplifies to 

This inequality (4.191 is satisfied if the following set of inequalities, which we will 

consider as our control law for the internally controlled closed food-chain in R2, holds. 

Thaf is, 

The avoidance and safety parameters E, and 6,, s = 1, 2, respectively, 

satisfy (3.6) and are chosen to rake the values E~ = ~2 = 0.7 and = 62 = 0.8. These 

values with (3.71, (3.12), (3.13) and (4.17) gives us hg = 0.046287 and 

h, = 0.113350 which defines the bundaries of the security zone and the avoidance 

mnes resgectivel y (see FiCprs f 2). 
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Figure 12. Controlled behaviour of the response in the phase plane. 

We begin by considering the response of (4.15) with initial populations 

~ ~ ( 0 )  = 1.2, ~ ~ ( 0 )  = 1.0 and fixed control u2 = 0. Following the control policy 

established in Section 3.3, for each time t, t E [0.10], we calculate the components x,, 

s = 1,2, of fie response x(t) and the value of the Lyapunov function V(x(t)), In so far 

as V(x(t)) < hg, we continue the calcuIations of the response x(t) in the desirable region 

D with the same control u2, each dme monitoring the value of the Lyapunov function. 

If for any time, for example t = t*, t* > to where V(x(t*)) > hg, we implement our 

control policy using the control law (4.20). We observe that at time t, = 2.6, 

V(x(tl)) = 0.046567 > hg = 0.046287, hence the response x(t) has crossed the safety 

banday aS and entenxi into the safety zone S. At this stage, we prevent the response 

fiam advancing inro the avoidance region A by imposing our control law (4.20)- We 

select at time rl, the conml u2(tl) = 0.33316 making use of the fourth line of (4.20) 

with xl = 0.810432 and x2 = 0.789158, This change in control from u2 = 0 to 



u2 = 0.33316 at the switching point x(tl) with components xl(tl) = 0.810432 and 

x2(t,) = 0.789158 (see Appendix 41, results in  an abrupt change in the response 

steering i t  "downwards" towards the desirable region D. The Lyapunov function 

V(x(t)) is monitored continunorrsfy for each t ensuring that the function is less than hl;, 

otherwise the control law is introduced at each switching point x(t*). 

The avoidance control policy for t E [0,10] is illustrated in Figure 12 

and a graphical representation of the fluctuations of the species densities, xl and x2 

against time is shown in Figure 13. The levels of the Lyapunov function V(x(t)) are 

presented in Figure 14. 

time 

Figure 13. Fluctuations of xl and x2 in R2. 



time 

Figure 14. Changes of the levels of V(x1,x2). 

From Figure 14, we observe that on the time interval [0,10], the control 

has been changed three times thus restraining of the growth of the internally coatrolied 

closed food-chain (4.15) into the desirable region D. This yields a manageable 

population level in R2. 

Appendix 4 provides the numerical results obtained in the monitoring 

pmess pertaining to this internally controlled closed food-chain in R2. 



For the closed food-chain system of length four with internal control, 

we consider the model (1.22) with (1.21) and (4.9) setting n = 2, Thus we have that 

3 where W = 2 - 2x1 + x2 + x3 + x4 ((1.23) with n = 2). 

Similar to Section 4.2, the equilibrium of the corresponding 

uncontrolled open food-chain (W = 0, y, = 0) in (4.21) is given by E(x0) = (2,2,1,1)T, 

and its Lyapunov function (after simplification) by 

4 ''1x2 
V(x) = C x, - 6 - 2 In - - In x3x4. 4 (4.22) 

S=l 

The implicit form of the control law (3.19) for this system (4.21) with 

W given above reduces to 

Substituting the equilibAum points E(xO), (4.23) simplifies to 

I I 1 2  1 1 2  1 7 
2 ( ~  - - -)w xi + (1 - ;-)u4x4 + 2 ( 2  - ;;;)uzx2 + (1 - ;;;)u3x; S 0, (4.24) 

-4 

which can be written as 



This qualitative control law holds if the following set of equalities and inequalities are 

satisfied. 

if x1 # xy and x4 f x:. 

Our selection of 6 = (1.7,1.7,0.5,0.5)T and E = (1.2,1.2,0.4,0.4)T 

(satisfying (3.6)) along with (3.7) and (4.22) defines aS, the boundary of the safety 

zone with value hg = 0.436370 and aA, the boundary of the avoidance region 

calculated to be h, = 1.075884. 

We commence our numerical simulation for the system (4.21.) at time 

t = . O  with initial population size densities xl(0) = 1.8, ~ ~ ( 0 )  = 1.2, ~ ~ ( 0 )  = 1.0, 

s = 3,4, and with no control, Reading from the table in Appendix 5, we observe that 

the response remains in the desirable zone between times t = 0.000 and t = 2.000. 

However, at time t = tl = 2.100, the Lyapunov function is V(x(tl)) = 0.443317 which 

exceeds hg = 0.435370. This shows that the response x(t) has moved through the 

boundary aS and has entered the safety zone S. In order to restrict the growth of our 

response to the desirable region D, we introduce the control law (4.26) at this time tl. 

Since each component of x(tl) (see Appendix 5 j  is greater than its corresponding 

eqdbriumvalue xa,), s = 1, ..., 4, we make use of lines 1 and 4 of the control law 

(4.26) to select at time t,, a control u(tl) = (0,-0.25000,-0.25000,-2.162')4fT. 

The choice of the control u(tl) alters the behaviour of the population growth of 



Lyapunov function (4.22) due to the implementation of the control law (4.26) has been 

reduced to V(x(t2)) = 0.392430, which is less than h ~ j  = 0.436370. This indicates that 

the response has been driven back info the desirable region D. Hence the control 

growth policy has been effective in restraining the fluctuations of the population sizes to 

a manageable level. 

As time progresses h r n  t = 0 to e = i U  with a 8.1 unit interval, we 

continuously monitor the value of the Lyapunov function (4.22), ensuring that V(x) 

does not override hg. Should this happen, the control law (4.26) is implemented in 

order to reduce the value of the Lyapunov function and also to attract or pull the 

population sizes to a desirable level. 

Figure IS. Fluctuations of the species densities in R4. 



The fluctuations of the population sizes xl, s2, x3 and x4 against time 

are shown in Figure 15. The changes of the levels of the Liapunov function V(s(t)) are 

represented in Figure 16. From these figures, in particular in Figure 16, we observe 

that the control has been changed eight times in the time interval [0,10], in order to 

secure the presence of the response in D. 

I I I , , I 
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Figure 16. Changes of the levels of the Lyapunov function. 

The numerical data obtained in the monitoring process concerning t, u, 

x(t) and V(x) are presented in the table in Appendix 5. 





We began this thesis with a discussion on the material necessary for the 

applications in our topic of interest and have progressed to the introduction of the 

dynamics of the different models to 'be studied. We have differentiated beiween the 

open and closed fd-chains and have analyzed the equilibrium for the open food-chain 

(in particular) and its Lyapunov function. In addition, we have also compared the 

response of the systems with and without the presence of a control. 

We have remarked that the dynamics of the closed food-chain system 

are of a more complicated nature than their open system counterparts. However, we 

have managed to use the Lyapunov function for the latter system in analyzing the 

response and behaviour of the former. 

Further, using the concept of avoidance control, we have proved an 

avoidance control theorem for the controlled closed food-chain system and have 

established a growth restricion policy (balanced zone stabilization policy). We have 

provided numeric21 simulations to support our growth policies and theory and have 

shown how the control involved in each of our systems has been selected according to 

a control law capable of restraining the growth behaviour of the populations to a 

manageable level. 

We have illustrated how the growth restriction policy dampens the large 

fluctuations of population sizes and resmcts the population growth to an allowable 

region. We have also seen that this growth policy could be achieved not only by the 

managers outside the system (external control) but also by the participating populations 

in the chain (internal control). Hence by the introduction of a control and by stabilizing 

the pcpuiation in a desirable region nor necessarily cisse to the equiiibrium of the 

system, it is possible to avoid the situation or similar situations where the populations 

exhibit extreme fluctuations. 



I believe that this topic of controlled food-chain systems with emphasis 

on the concept of gowth control and mne stabilization is of importance and may have 

valuable applications in the fields of ecology, economics, epidemiology, and pest 

management. 



APPENDICES 

AND REFERENCES 

In the 7 Appendices that follow, we present the program for the 

numerical simulations, 4 tables with data and 2 proofs. 



APPENDIX I 

The numerical simulations for the Runge-Kutta fourth order method was 

written using Fortran although a software package, ODE could have been used instead. 

We present here the written program for the closed food-chain with external control of 

length two and note that the programs for the other food-chain systems are 

generalizations of this. 

Progrm Foodchain 
C 

Implicit double precision(a-h, 0-2) 

dimension w(1 O), rk(10,iO) 
C 

open@,file='fdl3 
C 

c STEP 1: LNITIALIZATION 
C 

n=100 
neqn = 2 
delta = 0.8d0 
eps = 0.7d0 
tin = 0.0 
tout = 10-0 
q = 0.25 
h = (tout - tin)/n 

C 

w(1) = 1.2 
w(2) = 1.0 
wrire(8,2) 
do 5 i = 1, neqn 

u(i) = 0.OdO 
5 continue 
C 

c STEP 2: VALUES FOR THE BOUNDARY PARAMETERS 
C 

hliap = hI(w(l),w(2)) 
hdelta = hl(delta,delta) 
heps = hl(eps,eps) 

c. 
c STEP 3: FINDS RESPONSES USING THE RUNGE-KUTTA METHOD 
C 

d 0 6 i =  1,n 
rk(2,l) = h*fl (t,w(l),w(2),u(l)) 
rk(l,2) = h*EZ(t,w(l),w(2),u(2)) 





function f!(r,x,y,u] 
implicit doubie precision(a-h,o-z) 

end 
C 

function Q(t,x,y,tt j 
implicit double precision(a-hpz) 

end 

For the internally controlled closed fwd-chain system, we modify the 

program above slighdy by 

(i) setring uf 1) = 0 rhroughout the program, 

(6) rewriting step 5 to read as follows: 

p = ( ~ ( 1 )  - 1.0d0)*(0.5d0"~(2) - ~ ( 1 )  + q) 
prod = w(l)*w(2)(w(2) - 1.0d0) 
if (v .gt. hddta) &en 

if (w(2) .It. 1 -0d0) then 
if (p .gt. 0.W) then 

u(2) = @/prod) + O.ld0 
else 

else 
if (p g. O.OdO) &en 

~ ( 2 )  = -(p/prod) - O.ld0 
else 

~ ( 2 )  = (-p/pr&) - O.ld0 
endif 

endif 

(iii) -Making the necesw change of control components in step 6 in the 









APPENDIX 3 

Numerical data for the closed food-chain with external control of length four. 

Initial conditions: x(0) = (1.8,1.2,1 .O, 1 .O)T 

u(0) = (0,0,0,0)T 
V(x(0)) = 0.232372, V(6) = 0.435870 and V(E) = 1.075884. 

time UI u9 UQ - UA 

0.000 - 2.000 0.00000 0.00000 0.00000 0.00000 
2.100 - 2.900 -3.04474 -1.00000 -1.00000 -1.00000 
3.000 - 3.800 0.68194 1.00000 1.00000 1.00000 
3.900 - 4.900 -2.75055 -1.00000 -1.00000 -1.00000 
5.000 - 6,000 -0.37880 1.00000 1 .Woo0 1.00000 
6,100 - 6.800 -3.55897 -1 .00OOO -1.00000 -1.00000 
6.900- 7.500 -0.87148 1.00000 1,00000 -1.00000 
7.600 - 8.500 -0.59446 -1.00000 -1.00000 1.00000 
8.600 - 9.100 -0.48917 1.00000 1.00000 - 1 .00000 
9.200 - 10.000 -2.96006 -1.0000 -1.00000 1 .004#)0 







APPENDIX 4 

Numerical results for the internally controlled closed fwd-c.hain of length two. 

time u XI  x., vC3+s2)- 







APPENDIX 5 

Numerical data for the closed food-chain model with internal conuol in R4. 

Note: ul has been set to zero throughout this simulation. - 







We will prove property (iii) of the Lyapunov function (2.2) for rhe 

open food-chain system (I .M) in R2. 

Proof: 

Now, the equilibrium points for the open food-chain system (1.24) is given (in 

Section 2.1) by 

Therefore, 



APPENDIX 7 

for an uncor?brollcd open f d - c h i n  In R2. 

Consider the unconootIed open food-chain model (1.24) of lengtfi 2; 

the moddling equations are 

dx2 The so!nrion to this system can be obtained by solving ;i--. This 
1 

gives us that 
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