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ABSTRACT

Ecological systems of 2n interacting populations (consumers, resources)
forming closed food-chain systems subjected to control are considered. The growth rate
of the first population involves a constant source term and terms representing the
decomposed biomass of some species which serve as a resource. The growth
restriction policies for the closed food-chain systems are established through the
utilization of a Lyapunov design methodology for controlled open food-chain systems,
and are based on the concept of avoidance control. They z;re targeted towards ensuring
population coexistence by restricting the fluctuations of the size of the populations in
the chain to an allowable level from point of view of the participating populations
(internal control) or the managers outside the system (external control). Numerical
simulations for the controlled closed food-chain systems are presented to illustrate the

growth restriction policies.
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INTRODUCTION

Studies, both experimental and theoretical, on the interaction between
biological populations have been a topic of continuing interest in mathematical ecology.
However, with the increasing threat to our environment, be it man-made or natural,
there has been insufficient focus on the use of control theory to interacting populations.

We note here the works by Albrecht, Gatzke, Haddad and Nelson [1}]
and Goh, Leitmann and Vincent [2] using optimal control theory. The aim of these
papers is to design optimal strategies for the control of prey-predator systems. The
optimal strategies are implemented by alternating the control variable from the zero level
to the maximum level. As a result, the response is steered from the initi&l state to the
stable equilibrium point of the uncontrolled models.

Bojadziev and Skowronski [3] took a different approach introducing
qualitative control policies for a predator-prey model (a particular case of a food-chain)
of the Lotka-Volterra type

Xy = xq(cty — Byxy),
(0.1)

. 2
X2 = Xz("‘az + ﬁle) + U2X2,

where is = dxg/dt, s = 1, 2, and the control u,(t) adjusts the number of predators so as
to maintain a reasonable level of both populations.

Bojadziev [4,5,6], generalizing [3], established qualitative control
policies for open food-chain systems of Lotka-Volterra type involving four or more
interacting populations. In [7], Bojadziev included harvesting efforts in the model (0.1)
and managed to obtain a similar type of control policy.

These growth restriction policies concerning control are discussed from

the point of view of qualitative control. The rational is that bioeconomicai systems



having behaviour based on some kind of policy of qualitative nature could respond
quickly to new changes of circumstances after a decision has been implemented.
Qualitative control ensures flexible behaviour which is compatible with the nature of the
evolutionary process.

The authors of [3 - 7] have adopted, with proper adjustments and
modifications, the usage of a Lyapunov design avoidance control methodology
developed by Leitmann and Skowronski [8]. The contfol policies in [3 - 7] have been
based on the existence of a Lyapunov function for uncontrolled food-chain models.

However, for some systems in population dynamics which are of a
more complicated nature than open food-chains, the Lyapunov functions are either
difficult to find or they might be non-existent. A particular example is a closed food-
chain sysiem. Bojadziev [9] deals with the utilization of a Lyapunov function for open
food-chains in cases where the system dynamics has a more general character in order
to establish a growth restriction policy.

The main objective of this thesis is to provide a qualitative study of the
effect of control on ecological systems of 2n interacting populations
(consumers,rescurces) forming closed food-chain systems. The qualitative behaviour

- of the interacting closed food-chain models with control is compared to that in the
absence of control. Since it is not known if closed food-chains possess a Lyapunov
function, their growth restriction policies, based on the concept of avoidance control,
are established using the methodology developed in Bojadziev [9]. The main target of
these policies (also cailed balanced zone stabilization policies) is directed towards
ensuring a desirable population coexistence by damping large fluctuations of population
sizes. This is achieved by restricting the population growth in the chain to an allowable
or manageable level from point of view of the participating populations (internal
control) or from managers outside the system (external control).

The material in this thesis is divided in the following manner:



It begins with a preliminary chapter discussing some material which
is necessary for the applications in later chapters. The chapter concludes with an
introduction into the basic dynamics of the models under study.

The second chapter deals with equilibria, a Lyapunov function and
its properties, and the stability conditions for equilibria.

Chapter three entitled Control Policies, begins with justification for
the need of control. Important definitions are introduced and a theorem is proved,
providing the bases for the design of the control policies.

The concluding Chapter Four is devoted to numerical simulations for
the closed food-chain models, in particular of length 2 and 4, for the case of
external control as well as for internal control.

At the end we present our concluding remarks and in 7 Appendices
present the program for the numerical simulation, 4 tables with data and 2 proofs.

The References contain 22 ttles.



CHAPTER ONE

PRELIMINARIES

This chapter discusses some of the material that is necessary for the
applications in later chapiers . Portions of Sections 1.2 and 1.3 have been adapted from
the bocks by Sanchez [10], Jordan and Smith [11] and Hahn {12]. The chapter
concludes with the introduction of the basic dynamics of the controlled closed food-

chain models under study.



Section 1.1 The method of Runge-Kutta

We begin with some preliminaries that will be used in the later sections
of this thesis. First, we will consider the numerical procedure or method used to obtain
a solution to a general system of non-linear differential equations.

Ames [13] has commented in his book that there is no single numerical
method that 1s applicable to every differential equation, much less to the smaller class of
ordinary linear differential equations.

The Runge-Kutta method is one of the widely used quadrature methods
for solving non-linear differential equations numerically.

Runge [14] developed this method as a means of avoiding the
complications of successive differentiations while simultaneously preserving the
increased accuracy furnished by the Taylor series. Later, Kutta [15] and Heun [16]
improved on it.

We remark that the Runge-Kutta method is a single-step or one-step

method in which the solution of the differential equation

dy -

ar = fey), y(to) = Yo,  t€ [to.tgl, (L)
1s approximated by calculating the solution of a related first order difference equation.
As aresult, as in any single-step method, we can approximate (1.1) in the form

Yn+1 = Yo + h®(tg,yp.h), n =0,1,2,. (1.2)

where @ is some reasonable function called the increment function and h is the step

size. The true value of y(t,) satisfies

¥(taey) = y(ty) + h®(tp,yp.h) + Ty, n=0,1.2, (1.3)



where T, is the truncation error. The order of the single-step method is given by the
largest integer p such that |h=1T,} = O(hP).

The general idea of the Runge-Kutta approach is to find the slope of the
given function at t;,; and at several other points; average these slopes, multiply by the

step size h and add the result to y,. Thus the Runge-Kutta method with m slopes can be

written as
1-1
K; = hf(t, +cih, yp + X 2;;K;), ¢, =0,i=12,...m (1.4)
=1
and
m
Yns1 =¥n + 2 Wi Kj, m=1.2,. (1.5)

1=1

where n € Z§ and the parameters ¢p,..., Cy, M 2 2, 2 ey Ay (m-1) and W; are
arbitrary with the sum of w; = 1, for i = 1,..., m. According to the suggestions by
Kutta [15], we may choose the increment function @ to be the linear combination of the
slopes at t;, and at several points between t; and t,, ;. The specific values for the
parameters are obtained by expanding yy,; in powers of the step size h and comparing
it with the Taylor series expansion of the solution of the differential equation to a
specified number of terms. These coefficients have been extensively calculated in
numerous texts on numerical analysis (see Ames [13], Hilderbrand [17]) and its
procedure will not be illustrated here.

Jain [18] has outlined the Runge-Kutta methods of different orders.
However, these different orders involve a similar general procedure in obtaining a
solution as outlined above. The main difference is that the low-order methods produce

less accurate results as compared to their high-order counterparts. Furthermore, a high-



order method as well as a diminishing step size resuits in an increase in accuracy of the
solution.

In Chapter four, we will make use of the fourth-order Runge-Kutta
method (this being the most common of all Runge-Kutta methods) to obtain numerical
solutions for our system of differential equation.

In concluding this section, we will use the fact that a system of m first
order initial value problems can be dealt with by a similar procedure as any mth order
initial value problem.

Consider a system of n differential equations of the form

).(1 = fl([,xl,...,xn),

iz = fZ(t’Xl 7--'1Xn) s

(1.6)
).(n = fn(tyxl ,“-,xn)w
with initial conditions
X(to) = (xol(to)yxoz(to), ...,Xon(to))T. (1.7)
Then, we can write (1.5) as
14 .
X, =Xj+g X ws Ky, (1.8)
s=1
with coefficients
wg =1, fors =1, 4,
w =2, fors=2,3, (1.9a)
and with



K, = (Ko Koo Ko T, fors=1,., 4, (1.9b)

1
where

Ky = hfj(4, X145 Xojrmrns Xpi)s

1 1 1 1
KJ2 = hf:](tl + '2— h, X11+ 5 K].].’ X21 + -2— K21"“’ Xni + 5 Kﬂl)’
(1.10)
1 1 1 1
Kj3 = hfj(ti +5 h, x¢;+ 3 Kz, X9i + > Kog,eo, X + 3 Kn2),
Kj4 = hf:](ti + h, X1i+ K13, X9i + K23,..., Xni + Kl'l3)‘-‘ j = 1,...,n.

As a final remark about the Runge-Kutta method, we observe that
the advantages of using the Runge-Kutta method are that

a) it is self-starting,

b) it provides approximations which converge to the solution as
h — 0, and
c) the method is iterative.

Its disadvantage is that the method involves far more computations per step than

other finite difference method.



Section 1.2 Classical investigation of an equilibrium point

In this section, we review the classical methods for the investigation of
the topological structure of an equilibrium point E(x7,x3) of the two-dimensional
system

dx dx
5 = P.x2) . = QX (1.11)

where P and Q are known scalar functions and together with their first partial

derivatives, are continnous in some domain G of the x;x,-plane.

Definition 1.1. An equilibrium point of (1.11) is any point (x‘l’,x‘z’) in
G at which P and Q both vanish. That is,

P(x%,x2) =0 and Q(xJ,x9) = 0. (1.12)

These are points where the motion described by (1.11) is in a state of rest.

Let us consider the case of an isolated simple equilibrium point E, that
1s, an equilibrium point having no other equilibrium points in its neighbourhood.
Withount loss of generality, it is assumed that the equilibrium under study is at the origin
O(0,0). The simple change of variables x, — x| + X;; X, —> X3 + X, ensures this.
System (1.11) can then be written as
%l— = a;X + 27X, + F(xq,X,) ,

(1.13)
dx

2
ar = C1X1+ X+ Glxgx,)
where agand cg, s = 1, 2, denotes the partial derivatives of P and Q with respect io xq,

s =1, 2, at the equilibrium point E{x°) respectively. The functions F and G are of
class Ck, k > 1, defined in some closed bounded region G*. At this point O(0,0), F

and G, together with their partial derivatives, vanish.



The Jacobian matrix, denoted by J, of the linear part of system (1.13) at

the equilibrium point O is given by

a; a
=l 2] (114)

a; az
¢ €

# 0. (1.15)

We make use of the characteristic equation of (1.14)

1J— ALl = A2 — (a;+c)A + (2,05 — ay¢i) =0, (1.16)

and the eigenvalues of (1.14) to investigate the nature of the stability of the equilibrium

point O(0,0). The roots of (1.16) are given by
M, 2=5E3\ 02 -4 | (1.17)

where ¢ = a;+ ¢, and A = a,c, — a,¢,. Depending on the sign of the discriminant D

where

D =02 - 44, (1.18)

several cases concemning the stability of the equilibrium point O(0,0) can be obtained

as 1llustrated in Table 1.

10



Case

Roots
xls A,

Equilibnam

Stability

Ag<0;2ge R
s=1,2

Ag>0;Age R
s=1,2

Node

Stable if o<0

Unstableif o> 0

D<0

Complex roots with
Re(Ag) <0
s=1,2.

Complex roots with
Re(Ag) >0
s =1,2.

Ag pure imaginary
s=1,2

Focusif o= 0

Centreif =0

Stable ifo <0

Unstableif 6> 0

D>0

As<0;Age R
s=1,2
Distinct

Asg>0;A5e R
s=1,2
Distinct

Ase R
s=1,2
Distinct and of
opposite signs.

Node
ifA>0

Saddle
ifA<O

Stable ifo<0

Unstable if o> 0

Table 1.

11




Section 1.3. The Lyapunov function

In this section we will inttoduce the Lyapunov Direct Method also
called the 2@ method of Lyapunov.

The Lyapunov Direct Method is one of the most powerful tools in
the study of dynamical systems. It makes statements on the stability of the
equilibrium without any knowledge of the solutions of the differential equation. The
stability statements are made directly by using, in addition to the differential
equation, suitable functions defined in the phase space. Such functions are known
as Lyapunov functions and in general, the sign of the Liapunov function and its
time derivative for the differential equation have to be taken into consideration.

We recall the definition and two important theorems of a Lyapunov

function (see Jordan and Smith {11], Hahn [12] and Huang and Morowitz [19D).

Definition 1.2 A Lyapunov function V(x,,...,Xy) is a scalar function

which satisfies the following conditions:
(1) V(xy,...,X,) together with its first partial derivatives are continuous

in a certain open domain £2 around the origin x; =x5 = ... =X, =0.

(i1)  V is non-negative in the domain €2 and vanishes only at the origin.

Lyapunov formulated two stability theorems on equilibria whose
proofs are not presented here but can be found in Jordan and Smith [11] (Chapter

10).

Theorem 1.1 (Weak Lyapunov function) [11] Let x*({t) = 0,

t 2 t,, be the zero solution or equilibrium of the regular system x(t) = X (x), where
X(0) = 0. Then x*(t) is uniformly stable for t > t, if there exist V(x) with the
following properties in some neighbourhood 9* of x = 0:

(1) V(x) and its partial derivatives are continuous,

12
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(i1) V(@) =0and V(x) >0 forall x = 0 in 3 in a neighbourhood I of the
origin,
(iil) V(@) =0and dV(x)/dt < Oforallx*01in S in a neighbourhood S of

the origin.

Theorem 1.2 (Strong Lyapunov function) [11] Let all the
conditions of Theorem 1.1 apply, except that (iii) is replaced by
(iii)) V(@) =0and dV(x)/dt <0 for all x # 0 in 3 in a neighbourhood 3 of
the origin.

Then the zero solution or equilibrium is asymptotically stable.

Theorems 1.1 and 1.2 can be viewed from a geometrical perspective.
Suppose that the Lyapunov function V(x) is positive definite, that is, V(x) > O for
all x # 0 in a neighbourhood 3, and V(0) = 0. Then the level curves, V(x) = ¢, a
constant parameter, form a topological system consisting of a family of simple
élosed curves enclosing the neighbourhood of the origin. As ¢ — o, the further the
curves are from the origin and as ¢ — 0, the origin is approached.

The geometrical interpretations of the level curves cannot be
visualized in higher dimensions, however, when given a positive definite function
V(x) with continuous partial derivatives, then for all small enough positive ¢ and
for x in some sufficiently small neighbourhood of the origin, a similar result is
achieved.

Figures 1 and 2 show a positive definite function V in R3 and the

family of level curves V(x,y) = ¢ in R? respectively.

13
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Section 1.4 Dynamics of the model

The dynamics of the general class of closed food-chain models of length
2n, the number of interacting populations, with control is modelled by the following
equations

2n
).(l(t) = Q —‘[3—1' X1Xg + z (asasxs) + (PI(U,X),
Y1 S=2

. - B2s1 Bos

Xps(t) = Xpg(—0lpg + Xos.1 7" Xos+1) + Ps(0X), (1.19)
2s 28

Y _ BZS . B2s+1 -

Xos+1(1) = Xogy (—0pgy1 + X2 — X2542) + Pos41(1,X),

Y2s+l Y2s+1

. _ B2n-1 / =1 1

Xon(t) = Xop(—0sp + —= Xop.1) + Pop(u,x), s=1,.,n-1.
2n

Here t is the time variable and x(t) = (Xy,....Xpp)T is the population vector. The
parameters g, ag, S = 2,..., 2n, Bg, s = 1,..,, 2n—1, Y5, s = 1,..., 2n, and Q are
positive constants. They have the following biological meaning: 0 is the growth rate
constant representing the growth when the sth species is isolated in an environment free
from other species; P4 is the interaction coefficient which measures the intensity or

strength of the interaction between species; 7Y, is the trophic weight factor where

Yas+1/Y2s represents the gain-loss ratio when population 2s+1 interacts with population

2s (a predator-prey type interaction), and Q is the supply rate of an external resource.

The term ogagXg, S = 2,..., 2n represents the dead biom ss of the sth species which
serves as a resource for the first species x,; hence 0 < ag < 1. The function
@s(u(),x(t)) € R?" is a known continuous function. The control in vector form is

denoted by u(t) = (uy,...,u,,)T where the vector u(t) € U < R21, U is a constraint set

to be determined later. It is assumed that u(t) is piecewise constant on [ty,te), teo < +o00.

Each choice of control, say u(t,), a constant on some interval [t,,t¢l, a subset of [tg,t.),

15



generates a solution or a response of (1.19) which is denoted by x(t) = x(t,x(ty),u(t,))
where x(t,) is the initial state. We note that by solutions, we mean absolutely

continuous functions that satisfy (1.19) almost everywhere on [t,,t..) (see for example

Roxin [20] and Fillipov [21]).

Each type of control presents a different meaning for the scalar function
¢(u,x) in (1.19). Consider the sth component of ¢ in (1.19). If ¢ > 0, then the growth
of the sth population (consumer) with population density X¢ 18 enhanced (increasing
returns). For ¢g < 0, its growth is damped (diminishing returns). That is, we have a
situation where the growth of the s species becomes so large that it begins to hinder
its own growth, for example by competing with each other for limited rescurces. The
specific way in which we select ¢ determines the nature of the control of our system.

For the case of an externally controlled system, for example managers

outside the system, we have chosen
o(t),x(t)) = (ug,...,u5)T = u(t), n=12.. (1.20)
and for the internally controlled system, we have selected

OD,XD) = O1pXar.. Upgxa)T,  n=12,.. (1.21)

Here, the stP population, considered as a consumer (predator) by controlling its own

growth, affects the growth of the populations in the closed food-chain. This control is

exhibited by all members of the chain with the exception of the first with density x,,

which is considered as a resource.

For ug = 0, s = 1,.,, 2n, @4(u,x) = 0, hence (1.19) reduces to an
uncontrolled food-chain model of closed type, a particular case of uncontrolled models

investigated by Svirezhev and Logofet [22].
Following Bojadziev [9], we add and subtract the term o;x, to Q in the

first equation of (1.19) which gives

16



where

. 1
x1() =x(0; ——x) + W + 9,(ux),
1

y N E’25~1 E’2S - -
Xos(D) = Xps(—0os 4+ Xgs.1 — = Xpgpp) T P2s(ux),  (1.22)
2s 28
. BZS B28+l X
X254+1(1) = Xpg41(—0Qlogy] + Xog— X25+2) T P54y (1,X),
25+1 Y2S+1
. 2n-1
Xon() = Xop(=0gn +—— Xon.1) + Pop(u,X), s = 1., n-1,
2n
2n
W=Q - oyX) + 2 aligXs. (1.23)
S=2

We remark that the coefficient oty > 0 in (1.22) and (1.23) represents the growth rate of

the first population in the open food-chain.

The model (1.22) with W = 0 represents the controlled open food-chain

investigated in [5]. If we consider ¢ = 0 and W = 0 in (1.22), we obtain the

uncontrolled open food-chain

. 1
x(()  =x(0 —— Xp),
T
: _ 325-1 525
XZS(t) - X25(-—-(l2$ + Xog.1 ™ T X25+1)’ (1'24)
Yas 2s
. . BZS B25+1
X25+1() = X541 (- g4y + ~ X25 — - x25+2)7
i2s+1 12s5+1
- B?_nal
Xon() = Xop(—0g +——— Xon.1), s=1,..,n-1.
2n
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In Chapter Two, we will review some properties of the open
food-chain model (1.24), as discussed in [5,6], concerning the equilibria and the

Lyapunov function.
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CHAPTER TWO

EQUILIBRIA AND LYAPUNOV FUNCTION OF THE CLOSED FOOD-
CHAIN MODEL

Chapter two studies the equilibria and a Lyapunov function of the
uncontrolled open food-chain model in addition to the equilibria of the uncontrolied
closed food-chain model. It studies the properties of the Lyapunov function and
investigates the nature and stability of the equilibria using the techniques of Sections

1.2 and Sections 1.3.
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Section 2.1. Equilibrium of the open food-chain in R?" n > 1

In Section 1.2, we provided the definition of an equiiibrinm point and
showed how this point could be found in R2

In a similar manner, we can generalize this definition to the case of

R2 forn = 1.
Consider our open food-chain system (1.24). By setting x(t) = 0 in

(1.24) and solving the equations obtained, we find the coordinates of the nontrivial

equilibrium E(x°) € R21 as given below:

o 91V, 0 ®onY2n
%= B, ’ Xon-1 = Bony
2.1)
0 0
OysYas + BasXas+i o 0541 Yose1 t B2SXZS
x23—1 = BZS—] ’ x25+2 = st.(.l y S= 1,..., n—l.

We note that populations are never negative. Therefore, in order to
have biological meaning, we require that E(x°) € Int R%". From (2.1) we make the
following observations:

(a) Clearly, x; >0 since E(x°) € Int R%",

(b) Since xgn_-i > 0, therefore xgs_l >0 fors =1,...,, n—1.

. . o
(c) In order to secure the species density, X,5,0 >0, s = 1,..., n—1, for

. 0
the food-chain system we must have that BygXos > ®oc,1Y2s41-

: o %Y1 _03Y3 . o_ ~93Y3P; + 01 Y1B>
For example, since x., = > , 1t follows that x, = > 0.
27 B 7 By B1Bs
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Section 2.2. Lyapunov function and iis properties

In Section 1.3 we defined and stated two general theorems on the
Lyapunov function.
It is well-known that (see for example Huang and Morowitz [19])
the Volterra-integral or V-function for a predator-prey system is indeed also a
Lyapunov function and is everywhere concave upward.
The open food-chain model (1.24) has the Lyapunov function (sce [6])
V(x)=:)='f1 Yex° (-Eg— R @2.2)

S xS

with the following properties.
® V(x) is minimum when x(t) = x°(t). That is, min V(x) = V(x°) = 0,
where x0 is the equilibrium position.
@) V(x) is monotonically increasing about the equilibrium point;

V(x) = oo as lIxgll — oo and as lixl — 0, s = 1,..., 2n.

in
(1) d\gg") = Sgl% f(x) = 0. 2.3)

where f represents the right-hand side of the sth equation on (1.24). The proof of
property (iii) is presented in Appendix 6.

From (2.3), using Theorem 1.1 in Scction 1.3, we can conclude that
the equilibrium point E(x°) (obtained in Section 2.1) is stable.

Consider the first integral

V(x) =h, h constant > 0 (2.4)

of the model (1.24); it represents the family of level surfaces 9y in R2n+1, The
orthogonal projection of ¥y, onto R?" generates 2n dimensional hypersurfaces Ry, in

R2n which are closed, do not intersect, enclose the equilibrium E(x°), and
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accommodate orbits of (1.24). In addition, if hy <h,, the hypersurface Xy, is inside
the hypersurface Xp,,. The proof of (2.4) is given in Appendix 7.

As an illustration, consider the open food-chain system (1.24) of length

two with parameters o, = o, = 3 =¥; =", = 1, whose modelling equations are

x() = x(1—xy), (2.5)

%) = X(=1+x).

Using Section 2.1 with n = 1, we obtain that the equilibrium point of the
open food-chain model (2.5) is E(x1-x2) = (1,1)T. Then the Lyapunov function (2.2)

for the system (2.5) with Y, s = 1, 2, given above can be written as

2
V(xp:Xp) = 2 xg — 1 = Inx,. (2.6)
s=1

We present the hypersurfaces of the Lyapunov function (2.6), a particular case
of (2.2) in Figure 3. Here, h; = V(0.8,0.8) = 0.046287, h, = V(0.7,0.7) = 0.113350,

hs = V(0.5,0.5) = 0.436370 and h, = V(0.4,0.4) = 1.075884.
3 Y v T T —

X2
25

151

051

0 05 1 15 2 25 3

Figure 3. Hypersurfaces of the Lyapunov function in R2.
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Section 2.3. Existence of Simple Equilibria

Using the methodology in Section 1.2, we will investigate the nature of
the stability of the equilibrium point of the closed food-chain (1.19) in RZ, a particular
case of (1.19) with ¢ = 0. For a chain of length two, (1.19) is given by

i

hd H 1
xq(t) Q- 7 X1Xg + 0pagXy,

1
2.7

;(2(t) = xz("az*'%‘xﬂ-

The equilibrium positions of the system (2.7) are solutions of the
equations

1
Q — == X1Xg T UpdgXy = 0,
i

(2.8)
Xo(—0, + 5—; x1) =0.
From (2.8), the non-trivial equilibrium E(£°) Rf has coordinates
go_ 22¥2 oo 29

By ’ 2" o(Y2 — agYy)

provided that Y, — oyY; > 0 (since populations are never negative).
Hence, we note that (2.7) has only one nontrivial solution £O satisfying
(2.8), where £2 >0, s=1, 2.

The Jacobian matrix J, of the linearized system of (2.7) enables us to

E:
2]
3
Q
s
~—t
tr
=
o
p —
-
-
b
oy
£
<
(¢

study the nature and stability of the equilibri
7
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B B 7
—&f‘ﬁg - f§?+320‘2
L= g, I Bryo 2.10)
Y, 2 Yo

The eigenvalues of (2.10) are

Aa=5 + Vo2-4A, (2.11)

where
-QB,
= , 2.12
® s — a7 2.12)
and
QB
A=—, (2.13
Y2 )

Since the parameters in (2.12) and (2.13) are positive and
Y2 — a5Y; > 0, we have that 6 <0 and A > 0. Depending on the choice of numerical
values of these parameters, we have several cases to consider, either the
discriminant D = g2 - 4A, is greater than 0, is less than 0 or is equal to 0. In any
case, since ¢ < 0, we can conclude that the equilibrium point is stable and is not a
centre. Therefore the equilibrium point E(E) of the uncontrolled food-chain model
(2.7) is cither a stable spiral or a stable node (see Table 1, Section 1.2).

In Chapter 3, with the appropriate choice of the numerical values for
the parameters, we can ascertain the nature of the stability of the point E(£°) of

(2.7).

24



CHAPTER THREE

CONTROL POLICIES

In this chapter, we consider first the reasons as to why a control is
needed. We wil! then introduce important definitions and a theorem concerning the

concept of avoidance control and establish control policies.
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Section 3.1 Justification for a Control

In this section we discuss the justification for introducing control terms
into the closed food-chain systems.
Consider a closed food-chain medel in R2, a particular case of (1.19)
without control, given by the equations
x;=Q _'—YQL X1Xp + 0oarXy,

1
(3.1)

).(2 = LY X1Xq — X9
2

7 We recall that in Section 2.3 of Chapter 2, we showed that the
equilibrium E(E?, g) for the uncontrolled closed food-chain system (3.1) given by
(2.7) is stable, and made the assumption that for E(§°) € Int Rf, Y, > Yias.

The solution of (3.1) with initial state X,(tg) € Ri, describes the
behaviour of the interacting populations in the chain with initial sizes xq;(t,) and
Xg2(to). Depending on the values of the parameters Q, Y, Yo, By, @, and a,, the
solution may move on an orbit of (3.1) which winds away from x,. This may endanger
the existence of an acceptable size of the population which may result in an extinction or
'explosion’ of a species.

We will illustrate this by the following numerical simulation. Let us set

the parameters in (3.1) to
Q=025v=Y%=B=0,=1.0,a,=0.5 3.2)

Then (3.1) is simplified to
. 1 X2
XI:Z - X1X2+ -:,Z—,
3.3)

).(2 = Xy1Xp — X3
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Solving (3.3) for its equilibrium (using Section 2.3), we obtain that
E(&?, £9) = (1.0,0.5)T. We select the initial point X, to be x,(0) = (1.2,1.0)T. The
solution of (3.3), starting from the initial point x,(0) on the time interval [0,10] in the
phase plane is presented in Figure 4 by the curve /. From this figure, we observe that as
time progresses, that is, for t > 10, the solution will approach the equilibrium

(1.0,0.3)T of the system (3.3). We note here that with the choice of these parameters

(3.2), the equilibrium E(&3, £3) (as obtained in Section 2.3) is an asymptotically stable

focus. The fluctuations of the population densities x; and x, with time are illustrated in

Figure 5.

1.6 T T T T T

X2
1.4

1.2+

0.8

0.6

+(1.0,0.5)

04 0.6 0.8 1 12 14 1.6

Figure 4. Solution curve [ in the phase plane.
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1‘2 r‘ L 4 T H T - T H L L T
X 1 ,X2 \XI

0.7 4

0.6} _
05} Tt -
0.4 3 J. 1 1 A ' 1

o 1 2 3 4 5 6 g8 9 10

Figure 5. Fluctuations of x; and x, in R2 without control.

The prey-population x, decreases fast and we have a stabilization of x
around E(£0) which may not be desirable from the managerial point of view or it may
not be in the interest of the population itself. Such a situation or situations where the
population x; becomes small, or the sizes of both populations become small could be
avoided if the manager opts to introduce control and to stabilize the populations in a
desirable zone not necessarily close to E(£°).

Having justified our reason for a control, we will in the next section use

the Lyapunov function (2.2) for the open food-chain (1.24) to define an avoidance

region A € R?", and a safety zone S € R?", between the boundaries oS and dA which
guards the solution of the system (1.19) in R";“, from entering A through the boundary
JA. (Figure 4 illustrates A, S, dA and dS$ for the model (3.3) with (3.2) in R?).

As an additional illustration, we present the fluctuations of the

population densities in a closed food-chain of length four against time in the absence of
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control (see Figure 6) with initial point x(0) = (1.8,1.2,1.0,1.0)T; the modelling

equations are

J-(1(0

?.12(0

3.‘:3(1)

;<4(t)

4
1
= Xl (al — Xz) + Q -— alxl + Z aSOLSXS,
1 S=2
By B,
= Xp(—0y +— X| —— X3),
2 Y2
B, B3
= X3(—0t3 +— X9 — — X4),
3 3
B3
= X4(—a4 + — X3),
4

with parameters chosen to have values

Q=150;=2,0;=a;=1,5s=2,.4,B=1,5=1,.3, Y= L, s = 1,.,4.

pop. sizes

Figure 6. Fluctuations of x in R4 without control.

29

(3.4)

3.5)



Section 3.2 Avoidance Control

In the designing of an avoidance control policy, it is essential that the
following definitions and theorem concerning the closed food-chain model (1.19) be
introduced. We acknowledge that the papers by Bojadziev and Skowronski [3] and

Bojadziev [9] play an important role.

Consider the constant vectors € € Ri“ and d € Ri", having components
0<eg<ds<xl, s=1,., 2n, (3.6)

where xg is given by (2.1). We know that V(x) is monotonically increasing about the
equilibrium point (property (ii) of V(x), Section 2.2), therefore with (3.6), we can

conclude that
V(g) = hg > V(8) = hg. (3.7)
We refer to g as the avoidance parameter and O as the security parameter. The choices

of &5 and O are arbitrary as long as (3.6) is observed.

Now, making use of (3.7), we introduce the following basic

definitions.
Definition 3.1. Avoidance region A.

A2 {xeR¥™:VX)2hg). (3.8)
Definition 3.2. Safety zone S

S2{xe R™:h5< V(x) <hg). 3.9)
Definition 3.3. Admissible region 52

Q 28 {xe R™:V(x)<hg}. (3.10)
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Definition 3.4. Desirable zone D

DA {xe R™:V(x)<hg). (3.11)

Definition 3.5. Boundaries 0A and 9S, of the avoidance region A and the

safety zone S respectively are defined correspondingly as
a) 0A =Ry & {xe R¥: V(x) =hg}, (3.12)

b)  3S =Np, 2 (xe R%: V(x) = hg) and 9A. (3.13)

We note that the admissible region 2 is enclosed by 0A, the desirable zone D, is

enclosed by oS and 2 =S U D.

Definition 3.6. The region A as defined in (3.8) is avoidable for the response

x(t) of (1.19) if there is a control u(t) € U such that for all states x(t;) € S, S as defined

in (3.9), the response x(t) cannot enter A. That is,

x(t, x(t), vy NnA=0 Vit (3.14)
Sufficient condigons for the avoidance of A are established below.

Theorem 3.1. (Avoidance Control Theorem) The response x(t) of the closed
food-chain model (1.19) is controllable in the zone £2 for the avoidance of A if there is

a control u(t) € U for which

dv(x) 2n 5
dt E

S=1 Xs

!<

xs <0, (3.15)

Ul

where 5(5 1s given by (1.22) and V(x) is the Lyapunov function (2.2) for the open food-

chain.
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Proof (by contradiction):
Let us assume that the region A is not avoidable. That is, (3.14) is violated.
Hence the response x(t) = x(t, x(t;), u(t;)) originating from x(t;) € S enters
A, for some t > t;. As a result, there is a time t, > t; for which
X(ty) = x(t,x(t;),u(ty)) € JA.

However, from property (ii) of V(x) in Section 2.2, we observe that

V() < V(x(i) (3.16)

Therefore, the function V(x) is increasing hence dV(x)/dt > 0.
On the other hand, we have from (3.15) that V(x) is a non-increasing function
along the responses of (1.19). Therefore, we have arrived at a

contradiction. ¢

This theorem plays an important role in the designing of an avoidance

control policy for the region A by the response of (1.19) which will be discussed in the

next secton.
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Section 3.3. Avoidance Control Policy

With the use of Theorem 3.1 (Avoidance Control Theorem) in the last
section, we will design a growth restriction or avoidance control policy.
Incorporating our model (1.22) into the inequality (3.15) of the

Avoidance Control Theorem, we rewrite (3.15) as

av() av . 2n 5y .,
Tdr 8x1 > axs < 0. (3.17)

Using (1.23) and (2.3) we get that

\ n gy
%{—I-(W + ¢;(u,x)) + Zzg?; ¢s(ux) < 0. (3.18)
S=

By differentiating (2.2), the elaboration of (3.18) reads

11 7 SN
YlX?(E — ) W) + gzvsx‘s’(;g - 3D 05X <0, (3.19)

where @ 1s defined in Section 1.4.

With (3.19), we have established an inequality relationship between the
control vector u(t) and the population vector x(t). All vectors u for which (3.19) is
satisfied form the set U. We will consider (3.19) as a control law of qualitative nature
in its implicit form.

Having established the qualitative control law for the closed food-chain
system, we are now able to formulate an Avoidance Control Policy with the aid of the

Avoidance Control Theorem.

Avoidance Control Policy. Our aim is io assure that the response
x(1) = x(5,x(t,),u(t,)) of the closed food-chain model (1.19) with inital state x(t,) € D

and a fixed control u(t,) (which may or may not be zero) does not go beyond the safety

zone S, or in other words, does not enter the avoidance region A.
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In order to achieve this, we monitor the value of the Lyapunov function
V(x(1)). Suppose that for some time t; > t,, we obtain that hg < V(x(t;)) < hg, which
indicates that the response x(t;) has crossed through the boundary ¢S and has entered
into the safety zone §. At this stage, in order to prevent the response x(t;) from
crossing the boundary dA and entering into the avoidance region A, we introduce a new
control u(t;) at the switching point x(t;) € S which obeys the control law (3.19). The
new response X(t) to u(ty) is steered "down" through decreasing levels of the Lyapunov
function V(x(t)) = h < hg into the desirable region D.

If for any future time, say t* > t;, the response x(t*) under the control

u(t,) enters the safety zone S again, the same control policy is applied with a new

control u(t*) which should satisfy (3.19).

Growth restriction policy. The avoidance control policy is essentially
a growth restriction policy (also known as the Balanced zone stabilization policy,
see [6]) since the response vector x(t) of the closed food-chain system (1.19) represents
the change of the population sizes xg, s = 1,..., 2n. The avoidance control policy
ensures that a response of (1.19) that originates in D cannot enter A and as a resuit, the
population sizes are restricted in the region D which can be made small if so desired by
proper selection of the boundary parameters € and &

In the last chapter, by the means of numerical simulations, we will

illustrate the growth restriction policy for the closed food-chain systems.



CHAPTER FOUR

NUMERICAL SIMULATIONS OF THE CLOSED FOOD-CHAIN MODELS

We have studied in the previous chapters the growth restriction policy or
avoidance control policy for a general controlled closed food-chain system with 2n
interacting populations.

In this last chapter, particular cases of the general controlled food-chain
model (1.19) are studied using numerical simulations in order to illustrate the growth
restriction policies. A fourth-order Runge-Kutta numerical method (explained in
Chapter 1, Section 1) with step-size h = 0.1 is used to integrate the modelling equations

so as to find the response of the closed food-chain system.
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Section 4.1. Closed food-chain model with external control of
length two
In discussing the dynamics of the model in Section 1.4, we remarked

that the meaning of the known functon @(u,x) depends on the kind of control involved.

Consider the model (1.19) of length two with @(n,x) = (u;,u,)T as

given in (1.20). That is,

i =Q —,Y—llx1xz + 0azxy + Uy,
4.1)

. B
Xz(t) Xz(—’az + —Xl) + u,.
Y2
This is the case of an externally controlled closed food-chain system where the control
comes from outside the system such as external environmental influences.

The presentation of (4.1) in the form of (1.22) is

).(l(t) = xl(al - ‘F'YB"I'Xz) + W + ul,
1
4.2)
Xo(t) = Xp(—0y+ P-lxl) + u,,
2
where
W= Q - alxl + 0ya5Xo. (4.3)
For a numerical simulation, we select the parameters as foilows:

Q = 0.25, 'Yl = FYz = Bl =0y = 1, a = 0.5. (4.4)
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With these values, we obtain that the equilibrium point for the corresponding open

food-chain to (4.2) (W =0, (u;,u)T = 0) as illustrated in Section 2.1, is given by

(x‘f,xg)T = (1.0,1.0)T. Also, the Lyapunov function (2.2) reduces to

2
V)= 3 (x — 1 - Inxy. 4.5)
S$=1

We perform the numerical simulations with initial state
Xo(0) = (1.2,1.0)T, the same initial state that was used in Section 3.1 in justifying the

need for a control.

The qualitative control law (3.19) can be expressed as

1 1 1 1
O — _ O — . —
Wi T 5, YW +uy) + x5 5 ) s (4.6)

where W is given by (4.3) and ¥ = 1, s = 1, 2. This is implied by the validity of the

following inequalities
W+u;>0 ifx1<x‘1’=1,
W+u; <0 ifx; >x7 =1,
4.7)
u, >0 ifx2<xg=1,
u, <0 if x,>x) = 1.

Now the constant vectors € € R.% and 6 € Ri are appropriately chosen
to have values €5 = 0.7 and d¢ = 0.8, s = 1,2, satisfying (3.6). Using these values
together with (3.7) and (4.5), we obtain that hs = 0.046287 and hg = 0.113350. Thus
for this externally controlled closed food-chain model (4.2) , we have determined
the boundaries of A and S respectively with (3.12) and (3.13). The controlled

behaviour of the response in the phase plane is illustrated in Figure 7.

37



1.6 Y T L3 ~T T

0.6}

0.4
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Figure 7. Controlled behaviour of the response in the phase plane.

Consider the response of (4.2) starting at the initial point
x,(0) = (1.2,1.0)T with zero initial control, that is u(0) = 0. The situation at this stage is
identical to the response described in Section 3.1 (Justification for a control). We
compare Figure 7 with Figure 4 (Section 3.1) and observe that initially the response
moves along the curve ! (Figure 4). According to the Avoidance Control Policy

(Section 3.3), we monitor the level of the Lyapunov function (4.5) and note that at time

t; = 2.6, the Lyapunov function (4.5) has the value V(x(2.6)) = 0.046567 {see
Appendix 2) which exceeds hs= 0.046287. Hence the response of (4.2) has entered
into the safety zone S. Now, since x; < 1.0 and x, < 1.0 (see Appendix 2), then with
the implementation of the control law (4.7), we select at time t;, a control (using lines 1
and 3 of (4.7)) u(t,) = (0.41585,0.25000)T. As a result, the response changes abruptly

and re-enters the desirable region D. The Lyapunov function is monitored continuously
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and for each time, say t: >t;,s € R, that V(x(t: }) > hg, we introduce a new control
vector u(t: ) satisfying (4.7) at the switching point x(t: ) € §, thus ensuring that the
response returns to the desirable region D. On the time interval [0,10], the control has
been changed four times, hence restricting the growth of the closed food-chain (4.2) to
D. The fluctuations of the population densities x; and x, against time are given in
Figure 8 and the levels of the Lyapunov function in Figure 9.
14

Xl,X'_), 13

0.7

th
-

~

10

time
Figure 8. Fluctuations of the species densities in R2.
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Figure 9. Changes of the levels of V(x;,x,).

Numerical data for the externally controlled closed food-chain model in

R2 are presented in the table in Appendix 2.
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Section 4.2 The closed food-chain of length four with external
control

Here, we consider the same closed food-chain system with external

control (1.22) of length four.

. 1
xl(t) = Xl((ll "?‘_ Xz) + W+ (pl(u,X),
1

. BZs-l B?.S
Xps() = Xog(—0ps + X251 = T Xog41) + Pog(0,X), (4.8)
2s 2s
. st B2s+1
X9s+1(1) = Xpg41(—00g41 + X2s — " X2542) t Prg4 (U,X),
28+1 YZS+1
. 2n-1
Xon(t) = Xon(=0Oon + " Xn.1) + P2p(U,X), s = 1,., n—1,
2n

Our model (1.22) with (3.20) and parameters

Q=150,=2,a,=a3=1,5=2,.4,B,=1,s=1.3,Y=1,s=1,.4, (4.9)

gives us
() = x;2-x)+W+u,,
XM = Xp(=1+x;—x3) + u,, (4.10)
X3(1) = Xg(=1+Xy—X4) + 13,

).(4(1) = X4("‘1 + X3) + 1y,

where W = Q — 2x; + x, + X3 + X, (a particular case of (1.23)).

We need the equilibrium point of the uncontrolled open food-chain of
(4.10), that is, with W = 0 and @, = 0. Following Section 2.1, by setting x(t) = 0 in
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(1.24) with (4.9) and n = 2, we obtain the equilibrium of the open food-chain system in

R4 1o be
E(x,,Xq,X5,Xg) = (2,2,1,1)T. (4.11)

Therefore, the Lyapunov function (2.2) of the system (4.10) with (4.9) and (4.11) is

given by
2n o, Xs Xs
Vx)= ¥ ‘sts(—a -1- ln—g)
§=1 X X
S S
2 X X 4
= V®=X2(5 -1-In5)+2 (- 1= Inxg)
S=1 $=3
3 X1Xg
= V= 2Z(x9 — 6~ 2ln—— - Inxsx, (4.12)
s=1
We express the qualitative control law (3.19) with (4.9) and (4.12) as
1 1 1 1 4 1
27 —)Wuy) + 25 —(u) + S)_:3(1--)(—8)11S < 0. (4.13)

This inequality (4.13) is satisfied if the following inequalities hold

Q-2x) +xy+X3+X4+1u; >0 ifx1<x(1),
. o

Q—2X; + X9+ X3+ X4 +1u; <0 if x) >x, 4.14)
. (]

ug >0 if xg <x,
. (o]

ug <0 ifxg>x,, s=2,.,4

We consider (4.14) as the control law for the system (4.10). In order
that (3.6) is satisfied, we have selected €5 = 1.2, ;= 1.7 fors = 1, 2, and & = 0.4,
ds = 0.5 for s = 3, 4, as our appropriate boundary parameters. Thus with (3.7) and
(4.12), we determine that the boundary 9S has value hg = 0.436370 and the avoidance
boundary 0A is given by h, = 1.075884.
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The fluctuations of population densities x,, X;, X3 and x4 with initial
size densities x,(0) = 1.8, x,(0) = 1.2, x,(0) = 1.0, s = 3, 4, arc presented in Figure
10. et us compare Figure 10 with Figure 6 (Section 3.1) where the fluctuations of the

uncontrolled model of (4.10) (u = 0) have been given. We observe that the difference

occurs at time t; = 2.100 (see Appendix 3). At this time t;, the Lyapunov function for
the controlled system (4.10) is V(x(t;)) = 0.443317, which exceeds hg = (0.436370.
This indicates that the response has entered the safety region S. The response x at t; is
x(t;) = (2.535087,2.386631,2.057807,1.170476)T. From this, we observe that
x¢(t]) > xg(ty), s = 1,..., 4, the corresponding equilibrium value. By applying our
control law (4.14), we select at this time t, the control (using lines 2 and 4 of (4.14))
uy(ty) = —3.04474, uy(t,) =-1.00000, s = 2,..., 4, which as a result steers the
response back into the desirable region D. On the time interval [0,10], we have

changed the control a total of nine times so as to secure the presence of the response in

D.

In contrast, after time t; = 2.100, the corresponding uncontrolled model

(Figure 6, Section 3.1) appears to diverge to the extreme situations.
We present the levels of the Lyapunov function V(x) in Figure 11. The

numerical output for this uncontrolled model in R4 is given in Appendix 3.
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Section 4.3 Closed food-chain system with internal control in R?

In the next two sections we will study numerically the internally
controlled closed food-chain system of length two and four whose dynamics are a
particular case of the general model (1.19).

We recall from Section 1.4 that the function ¢(u,x) for an internally

controlled system has been chosen to be of the form @(u,x) = (O,uzx%,...,uznx 22n)T.

For a chain of length 2, we have that ¢(u,x) = (O,uzx%). That is, ¢; =0
which implies that the prey population with size x; can neither exercise control nor can
1t control its own growth directly. Hence the prey population is considered as a
resource. Setting ¢, = uzx%, suggests that the predator population with size x,
indirectly controls the growth of the resource by controlling its own growth (self
control). Thus the predator population is referred to as a consumer.

Consider the model (1.22) with (1.21), (4.4) and n = 1; we obtain that

)'(l(t) = X(1-x)+W,
4.15)
)-(2(0 = Xz(—l + Xl) + U2X§,
where
X2
W=Q—X1+’T. (4'16)

Similar to the closed food-chain with external control in R2, the
equilibrium of the corresponding uncontrolled open food-chain model (W = 0,

¢ =0) in (4.15) has been found to be E(1,1)T & Int Ri and its Lyapunov function (2.2)

is given by

2
V(x1,x5) = Zl()(S - 1 - Inxg). (4.17)
S=
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The control law (3.19) together with (4.16) and ¢(u,x) = (O,uzxg) after

expansion appears as

11, 11
Yix$ =W+ o5 i x—z)u2x§ < 0. (4.18)
1 2

By substituting ¥; =Y, = 1 and (x] x3) = (1,1)7, (4.18) simplifies to

(1 =3W + (1= upd < 0. @.19)

This inequality (4.19) is satisfied if the following set of inequalities, which we will

consider as our control law for the internally controlled closed food-chain in R2, holds.

That 1s,
-23W + Q-2 jux? <0 ifx,>1and (1 -~ )W >0
=AW + (1= yux® > 0 ifx,<1and (1——-)W>0
(-3 (1=, Ju2xg fxy<land(1-37) ,
(4.20)
U, <0 ifx2>1and(1-—%-)W<0,
1
u, >0 ifx2<land(1——i1?)W<0.

The avoidance and safety parameters € and &g, s = 1, 2, respectively,
satisfy (3.6) and are chosen to take the values €, =€, = 0.7 and §; = 3, = 0.8. These
values with (3.7), (3.12), (3.13) and (4.17) gives us hg = 0.046287 and

hg = 0.113350 which defines the boundaries of the security zone and the avoidance

zones respectively (see Figure 12).
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Figure 12. Controlled behaviour of the response in the phase plane.

We begin by considering the response of (4.15) with initial populations
x;(0) = 1.2, x,(0) = 1.0 and fixed control u, = 0. Following the control policy
established in Section 3.3, for each time t, t € [0.10], we calculate the components X,
s =1, 2, of the response x(t) and the value of the Lyapunov function V(x(t)). In so far
as V(x(1)) < hg, we continue the calculations of the response x(t) in the desirable region
D with the same control u,, each time monitoring the value of the Lyapunov function.
If for any time, for example t = t*, t¥ > t, where V(x(t*)) > hg, we implement our
control policy using the control law (4.20). We observe that at time t; = 2.6,

V(x(t;)) = 0.046567 > hg = 0.046287, hence the response x(t) has crossed the safety

boundary dS and entered into the safety zone S. At this stage, we prevent the response

from advancing into the avoidance region A by imposing our control law (4.20). We

select at time ty, the control u,(t;) = 0.33316 making use of the fourth line of (4.20)

with x; = 0.810432 and x, = 0.789158. This change in control from u; = 0 to
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u, = 0.33316 at the switching point x(t;) with components x;(t;) = 0.810432 and

x,(t;) = 0.789158 (see Appendix 4), results in an abrupt change in the response

steering it "downwards" towards the desirable region D. The Lyapunov function

V(x(t)) is monitored continunously for each t ensuring that the function is less than hg,

otherwise the control law is introduced at each switching point x(t*).
The avoidance control policy for t € [0,10] is illustrated in Figure 12

and a graphical representation of the fluctuations of the species densities, x; and x;
against time is shown in Figure 13. The levels of the Lyapunov function V(x(t)) are

presented in Figure 14.

1.4 T T T T T T T T 3

XI’XZ 13l |

b
b

0.6
0

Figure 13. Fluctuations of x; and x, in R%.
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Figure 14. Changes of the levels of V(x;,x,).

From Figure 14, we observe that on the time interval [0,10], the control

has been changed three times thus restraining of the growth of the internally controlled

closed food-chain (4.15) into the desirable region D. This yields a manageable

population level in R2.

Appendix 4 provides the numerical results obtained in the monitoring

process pertaining to this internally controlled closed food-chain in R2.

49



Section 4.4 An internally controlled closed food chain system of
length four

For the closed food-chain system of length four with internal control,

we consider the model (1.22) with (1.21) and (4.9) setting n = 2. Thus we have that

x1(2-x,) + W,

X () =

K1) = Xp(=14x; —x3) + upxs, (4.21)
X3() = x3(-1+xXp—xg)+ u3x§,

X4(t) = x4(-1+x3)+ u4xZ,

where W =% ~2%x; + X9 + X3 + x4 ((1.23) with n = 2).

Similar to Section 4.2, the equilibrium of the corresponding
uncontrolled open food-chain (W =0, ¢ =0) in (4.21) is given by E(x°) = (2,2,1,1)T,
and its Lyapunov function (after simplification) by

V)= 3 x - 6 - 2In A2 inxx, @.22)
s=1

The implicit form of the control law (3.19) for this system (4.21) with
W given above reduces to

3
o 1 1 2 o 1 1 2
S'i:,zxs(;g - —X—S:)usxS + x4(5 - ;Z)u4x4 < 0. (4.23)

(= - Lyw +
xp X4

Substituting the equilibrium points E(x°), (4.23) simplifies to
1 1 1 2 1 1 2 1 2
2(2 - X—T—)W + (1 - ;{;)u4x4 + 2(5 - g)uzx2 + (1 — ;;)u3x3 <0, 4249

which can be written as
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(x, = 2)

X1

W o+ (xg— Dmgxy + (X3~ 2)usxy + (X3~ Duzxz < 0. (4.25)

This qualitative control law holds if the following set of equalities and inequalities are

satisfied.
2-x)PDW
u4=————-—-————1 ifxl#x(fandm#xg.
XIX4(X4 - 1)

. (o] Q

uy =0 if x; =X or X4 =X, {4.26)
. o

ug >0 if xg < Xq,

ug <0 ifxs>x:, s=2,3.

Our selection of 8 = (1.7,1.7,0.5,0.5)T and £ = (1.2,1.2,0.4,0.4)T
(satisfying (3.6)) along with (3.7) and (4.22) defines dS, the boundary of the safety
zone with value hg = 0.436370 and dA, the boundary of the avoidance region
calculated to be hg = 1.075884.

We commence our numerical simulation for the system (4.21) at time
t =-0 with initial population size densities x;(0) = 1.8, x,(0) = 1.2, x4(0) = 1.0,
s =3, 4, and with no control. Reading from the table in Appendix 5, we observe that

the response remains in the desirable zone between times t = 0.000 and t = 2.000.

However, at time t = t; = 2.100, the Lyapunov function is V(x(t;)) = 0.443317 which
exceeds hg = 0.435370. This shows that the response x(t) has moved through the
boundary dS and has entered the safety zone §. In order to restrict the growth of our
response to the desirable region D, we introduce the control law (4.26) at this time t;.
Since each component of x(t;) (see Appendix 5) is greater than its corresponding
equilibrium value xg(tl), s = 1,..., 4, we make use of lines 1 and 4 of the control law
(4.26) to select at time t;, a control u(t;) = (0,-0.25000,—0.25000,~2.16294)T.

The choice of the control u(t;) alters the behaviour of the population growth of
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the system from x(t;) = (2.535087,2.386631,2.057807,1.170476)T to
x(1;) = (2.637427,2.158512,1.990413,1.023744)T where t, = 2.200. At time t,, the
Lyapunov function (4.22) due to the implementation of the control law (4.26) has been
reduced to V(x(t;)) = 0.392430, which is less than hg = 0.436370. This indicates that
the response has been driven back into the desirable region D. Hence the control

growth policy has been effective in restraining the fluctuations of the population sizes to

a manageable level.

As time progresses from t = 0 to t = 10 with a 0.1 unit interval, we

continuously monitor the value of the Lyapunov function (4.22), ensuring that V(x)

does not override hg. Should this happen, the control law (4.26) is implemented in
order to reduce the value of the Lyapunov function and also to attract or pull the

population sizes to a desirable level.

Figure 15. Fluctuations of the species densities in R4,
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The fluctuations of the population sizes Xy, X,, X5 and X4 against time

are shown in Figure 15. The changes of the levels of the Liapunov function V(x(t)) are
represented in Figure 16. From these figures, in particular in Figure 16, we observe
that the control has been changed eight times in the time interval [0,10], in order to

secure the presence of the response in D.

T T T T BE T T Y ¥

Ve =1.075884

0.8f -
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D
\J

02} .

V5= 0.436370

0.4

T

K}

°c 1 2 3 4 s 6 1 8 9 10
time

(=]

Figure 16. Changes of the levels of the Lyapunov function.

The numerical data obtained in the monitoring process concerning t, u,

x(t) and V(x) are presented in the table in Appendix 5.
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CONCLUSIONS

We began this thesis with a discussion on the material necessary for the
applications in our topic of interest and have progressed to the introduction of the
dynamics of the different models to be studied. We have differentiated between the
open and closed food-chains and have analyzed the equilibrium for the open food-chain
(in particular) and its Lyapunov function. In addition, we have also compared the
response of the systems with and without the presence of a control.

We have remarked that the dynamics of the closed food-chain system
are of a more complicated nature than their open system counterparts. However, we
have managed to use the Lyapunov function for the latter system in analyzing the

‘response and behaviour of the former.

Further, using the concept of avoidance control, we have proved an
avoidance control theorem for the controlled closed food-chain system and have
established a growth restricion policy (balanced zone stabilization policy). We have
provided numerical simulations to support our growth policies and theory and have
shown how the control involved in each of our systems has been selected according to
a control law capable of restraining the growth behaviour of the populations to a
manageabie level.

We have illustrated how the growth restriction policy dampens the large
fluctuations of population sizes and restricts the population growth to an allowable
region. We have also seen that this growth policy could be achieved not only by the
managers outside the system (external control) but also by the participating populations
in the chain (internal conirol). Hence by the introduction of a control and by stabilizing
the pepulation in a desirable region not necessarily close to the equilibrium of the
system, 1t is possible to avoid the situation or similar situations where the populations

exhibit extreme fluctuations.
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I believe that this topic of controlled food-chain systems with emphasis
on the concept of growth control and zone stabilization is of importance and may have
valuable applications in the fields of ecology, economics, epidemiology, and pest

management.
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APPENDICES
AND REFERENCES

In the 7 Appendices that follow, we present the program for the

numerical simulations, 4 tables with data and 2 proofs.
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APPENDIX 1

The numerical simulations for the Runge-Kutta fourth order method was
written using Fortran although a software package, ODE could have been used instead.
We present here the written program for the closed food-chain with external control of
length two and note that the programs for the other food-chain systems are

generalizations of this.

Program Foodchain
c

Implicit double precision(a-h, 0-z)

dimension w(10), rk(10,10)
c

open(8,file='fd1")
c
¢ STEP 1: INITIALIZATION
c

n =100

neqn =2

delta = 0.8d0

eps = 0.7d0

tin = 0.0

tout = 10.0

q=0.25

h = (tout - tin)/n

w(l)=12
w(2) =1.0
write(8,2)
do 5i=1, neqn
u(i) = 0.0d0
5 continue
c
¢ STEP 2: VALUES FOR THE BOUNDARY PARAMETERS
c
hiiap = hl{w(1),w(2))
hdelta = nl(delta,delta)
heps = hl{eps,eps)

STEP 3: FINDS RESPONSES USING THE RUNGE-KUTTA METHOD

G OO

do6i=1,n
rk(1,1) = h*f1(t,w(1),w(2),u(1))
1k(1,2) = h*f2(t,w(1),w(2),u(2))
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1k(2,1) = h*f1(t+h/2,w(1)+0.5d0*rk(1,1),w(2)+0.5d0*rk(1,2),u(1))
1k(2,2) = h*f1(t+h/2,w(1)+0.3d0*rk(1,1),w(2)+0.5d0*rk(1,2),u(2))
rk(3,1) = h*f1(t+h/2, w(1)+0.5d0*1k(Z,1),w(2)+0.5d0*k(2,2),u(1))
1k(3,2) = h*f1(t+h/2,w(1)+0.5d0*rk(2,1),w(2)+0.5d0*rk(2,2),u(2))
tk(4,1) = h*f1(t+h/2,w(1)+0.5d0%rk(3,1),w(2)+0.5d0*1k (3,2),u(1))
rk(4,2) = h*f1(t+h/2,w(1)+0.5d0%*rk(3,1),w(2)+0.5d0*1k (3.2),u(2))
do7j=1, negn
w(j) = w(j) + (rk(1,)) + 2*(rk(2,j)+rk(3,j)) + 1k(4,3))/6.0d0
7 continue
c
¢ STEP 4: CALCULATES THE LYAPUNOV FUNCTION
c
v =(0.0d0
do9j=1, neqgn
v =v + (w(j) - dlogw(j)) - 1.0d0)
9 continue
c
¢ STEP 5: CHECKS IF V(X) IS IN THE SAFETY REGION (< HDELTA)
c
p =-(q - w(1) + 0.5d0*w(2))
if (v .gt. hdelta) then
if (w(1) .1t. 1.0d0) then
u(l) =p +0.25d0
else
u(l) =p - 0.25d0
endif
if (w(2) .1t. 1.0d0) then
u(2) =0.25d0
else
u(2) =-0.25d0
endif
endif

write (8,3) a+i*h, u(1),u(2),w(1),w(2),v

t =a+i*h
6 continue
2 format (4x, 't', 10x, 'ul’, 11x, 'w2’, 9x, 'x1', 10x, 'x2', 7x, 'v(x1,x2)")
3 format (2x, 6.3, 2(4x,f8.5), 2(4x, £8.6), 4x, £8.6)

end

c
STEP 6: SUBPROGRAMS FOR SYS. OF EQNS AND LYAP. FUNCTION

¢]

c
function hi(x,y)
implicit double precision(a-h, 0-z)

hl = x — dlog(x) — 2.0d0 + y — dlog(y)

end
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function f1(t,x,y,u}
implicit double precision(a-h,0-z)

q =0.25d0
f1 =x*(1.0d0 - y) + (0.5d0*y —x + @) + u

end

function £2(t,x,y,u)
implicit double precision{(a-h,o-z)

f2=y*-1.0d0+x)+u

end

For the internally controlled closed food-chain system, we modify the

program above slightly by
®» setting u{1) = 0 throughout the program,
(11) rewriting step 5 to read as follows:

p = (w(1) - 1.0d0)*(0.5d0*w(2) - w(1) + q)
prod = w(1)*w(2)(w(2) - 1.0d0)
if (v .gt. hdelta) then
if (w(2) .1t. 1.0d0) then
if (p .gt. 0.0d0) then
u(2) = (p/prod) + 0.1d0
else
u(2) = -(-p/-prd) + 0.1d0
endif
else
if (p .gt. 0.0d0) then
u(2) = -(p/prod) - (.1d0
else
u(2) = (-p/prod) - 0.1d0
endif
endif

(i)  Making the necessary change of control components in step 6 in the

runction subprograms f1 and 2.



APPENDIX 2

~Numerical data for the closed food-chain model of length two with external control.

Inins’ conditions:

(x1(0),x2(0)) = (1.2,0.9)T

(0,(0):1,(0)) = (0.0,0.0)T
V(0)) = (0.017678), V(8) = 0.046287 and V(e) = 0.113350.

time u,; U, X1 X5 v(Xx)

0.000 0.00000 0.00000 1.200000 1.00000C  0.017678
0.100 0.00000 0.00000 1.156572 1.017962  0.011271
0.200 0.00000 0.00000 1.116350 1.031920  0.006784
0.300 0.00000 0.00000 1.079366 1.042040  0.003852
0.400 0.00600 0.00000 1.045584 1.048543  0.002150
0.500 0.00600 0.00000 1.014915 1.051693  0.001402
0.600 0.00000 0.00000 0.987229 1.051780  0.001378
0.700 0.00000 0.00000 0.962367 1.049109  0.001894
0.800 0.00000 0.60000 0.940153 1.043985  0.002806
0.900 0.00000 0.00000 0.920402 1.036711  0.004005
1.000 0.00000 0.00000 0.902924 1.027575  0.005414
1.100 0.60000 0.00000 0.887534 1.016848  0.006983
1.200 0.00000 0.00000 0.874053 1.004783  0.008679
1.300 0.00000 0.60000 0.862310 0991612  0.010486
1.400 0.00000 0.00000 0.852147 0.977543  0.012399
1.500 0.60000 0.00000 0.843415 0962674  0.014422
1.600 0.00000 0.00000 0.835978 0947444  0.016562
1.700 0.00000 0.00000 0.829711 0931730  0.018831
1.800 0.00000 0.00000 0.824502 0915752  0.021239
1.900 0.00000 0.00000 0.820246 0.899623  0.023799
2.000 0.00000 0.00000 0.816852 0.883440  0.026521
2.100 0.00000 0.00000 0.814236 0.867289  0.029413
2.200 0.00000 0.60000 0.812322 0.851240  0.032432
2.300 0.00060 0.66000 0.811042 0.835355  0.035731
2.400 0.00000 0.60000 0.810336 0.819686  0.039162
2.500 0.00000 0.00000 0.810149 0.804275  0.042775
2.600 0.41585 0.25000 0.810432 0.789158  0.046567
2.700 0.41585 0.25000 0.850719 0.800722  0.035356
2.800 0.41585 0.25000 0.887464 0.815176  0.026378
2.900 0.41585 0.25000 0.920742 0.832307  0.019178
3.000 0.41585 0.25000 0.950618 0.851921  0.013444
3.100 0.41585 0.25000 0.977156 0.873834  0.008964
3.200 0.41585 0.25000 1.000421 0.897869  0.005600
3.300 0.41585 0.25000 1.020491 0.923850  0.003263
3.400 0.41585 0.25000 1.037453 0.951594  0.001895
3.500 0.41585 0.25000 1.051412 0.980914  0.001462
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3.600
3.700
3.800
3.900
4.000
4.100
4.200
4.300
4.400
4.500
4.600
4.700
4.800
4.900
5.000
5.100
5.200
5.300
5.400
5.500
5.600
5.700
5.800
5.900
6.000
6.100
6.200
6.300
6.400
6.500
6.600
6.700
6.800
6.900
7.000
7.100
7.200
7.300
7.400
7.500
7.600
7.700
7.800
7.900
8.000
8.100
8.200
8.300
8.400

0.41585
0.41585
0.41585
0.41585
0.41585
0.41585
0.41585
0.41585
0.41585
0.41585
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
-0.12000
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29320
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.29340
0.27002
0.27002

0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
0.25000
-0.25000
-0.25000

1.062490
1.070828
1.076586
1.079942
1.081088
1.080231
1.077585
1.073373
1.067816
1.061135
1.053541
0.996466
0.947613
0.906049
0.870815
0.841061
0.816029
0.795056
0.777572
0.763087
0.751189
0.741527
0.772763
0.801191
0.826956
0.850184
0.870989
0.889477
0.905751
0.919914
0.932068
0.942318
0.950772
0.957542
0.962744
0.966494
0.968913
0.970122
0.970242
0.969394
0.967696
0.965262
0.962202
0.958621
0.954616
0.950278
0.945691
0.940930
0.934920
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1.011613
1.043487
1.076322
1.109899
1.143993
1.178377
1.212827
1.247125
1.281060
1.314437
1.347074
1.325328
1.296587
1.262162
1.223244
1.180883
1.135985
1.089320
1.041530
0.993146
0.944601
0.896244
0.899467
0.905271
0.913389
0.923585
0.935648
0.949381
0.964603
0.981142
0.998834
1.017520
1.037045
1.057260
1.078019
1.099181
1.120609
1.142171
1.163743
1.185207
1.206453
1.227380
1.247897
1.267921
1.287381
1.306217
1.324377
1.341820
1.308570

0.001942
0.003315
0.005563
0.008665
0.012588
0.017295
0.022736
0.028851
0.035573
0.042824
0.050523
0.043674
0.038274
0.034047
0.030878
0.028773
0.027819
0.028165
0.029990
0.033494
0.038881
0.046357
0.035966
0.027639
0.020942
0.015564
0.011279
0.007925
0.005383
0.003569
0.002418
0.001882
0.001923
0.002507
0.003606
0.005190
0.007230
0.009696
0.012553
0.015768
0.019302
0.023116
0.027170
0.031423
0.035833
0.040361
0.044965
0.049610
0.041849



8.500
8.600
8.700
8.800
8.900
5.000
9.100
G.200
9.300
9.400
9.500
9.600
9.700
5.800
9.900
10.000

0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002
0.27002

-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000
-0.25000

0.931013
0.928942
0.928478
0.929424
0.931615
0.934507
0.939181
0.944333
0.950274
0.956928
0.964231
0.972127
0.980566
0.989508
0.998916
1.008758
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1.274891
1.241065
1.207323
1.173850
1.140798
1.108282
1.076396
1.045209
1.014774
0.985127
0.956294
0.928290
0.901120
0.874786
0.849282
0.824598

0.034525
0.027746
0.021604
0.016175
0.011521
0.007686
0.004706
0.002602
0.001387
0.001067
0.001639
0.003097
0.005428
0.008617
0.012647
0.017495



APPENDIX 3
Numerical data for the closed food-chain with external control of length four.
x(0) = (1.8,1.2,1.0,1.0)T

u(0) = (0,0,0,0)T
V(x(0)) = 0.232372, V() = 0.435870 and V(g) = 1.075884.

Initial conditions:
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time Uy U, Uz u,
0.000 - 2.000  0.00000 0.00000 0.00000 0.00000
2.100- 2.900 -3.04474 -1.00000 -1.00000 -1.00000
3.000- 3.800 0.68194 1.00000 1.00000 1.00000
3.900- 4900 -2.75065 -1.00000 -1.00000 -1.00000
5.000 - 6.000 -0.37880 1.00000 1.00000 1.00000
6.100- 6.800 -3.55897 -1.00000 -1.00000 -1.00000
- 6900- 7.500 -0.87148 1.00000 1.00000 -1.00000
7.600 - 8.500 -0.59446 -1.00000 -1.00000 1.00000
8.600 - 9.100 -0.48917 1.00000 1.00000 -1.00000
9.200 - 10.000  -2.96006 -1.00000 -1.00000 1.00000
fime X3 X2 X3 X4 v(x)
0.000 1.800000 1.200000 1.000000 1.000000 0.232372
0.100 2.035959 1.195219 0.992729 0.996094 0.228330
0.200 2.236175 1.225698 0.853202 0.984922 0.229984
0.300 2.400279 2.400279 1.288369 0.793751 0.967601
0.400 2.527284 1.381531 0.745704 0.945481 0.221402
0.500 2.616318 1.503828 0.709859 0.919995 0.209101
0.600 2.667306 1.653315 0.686820 0.892560 0.194232
0.700 2.681665 1.826562 0.677247 0.864526 0.180135
0.800 2.662869 2.017941 0.682026 0.837165 0.170048
0.900 2.616698 2.219250 0.702372 0.811680 0.166365
1.000 2.551020 2.419884 0.739859 0.789238 0.170147
1.100 2.475058 2.607590 0.796335 0.771017 0.180988
1.200 2.398325 2.769714 0.873696 0.758265 0.197304
1.300 2.329538 2.894675 0.973438 0.752349 0.216979
1.400 2.275829 2.973409 1.095939 0.754824 0.238142
1.500 2.242377 3.000630 1.239524 0.767469 0.259801
1.600 2.232425 2.975807 1.399467 0.792301 0.282104
1.700 2.247475 2.903687 1.567313 0.831525 0.306143
1.800 2.287479 2.794118 1.731026 0.887377 0.333426
1.900 2.350940 2.660922 1.896297 0.961841 0.365219
2.000 2.434928 2.519919 1.988952 1.056200 0.402015



2.100
2200
2.300
2.400
2.500
2.600
2.700
2.800
2.900
3.000
3.100
3.200
3.300
3.400
3.500
3.600
3.700
3.800
3.900
4.000
4.100
4.200
4.300
4.400
4.500
4.600
4.700
4.800
4.900
5.000
5.100
5.200
5.300
5.400
5.500
5.600
5.700
5.800
5.900
6.000
6.100
6.200
6.300
6.400
6.500
6.600
6.700
6.800
6.900

2.535087
2.371583
2.259937
2.178952
2.113184
2.051946
1.988208
1.917613
1.837689
1.747224
2.011600
2.247230
2.448143
2.609107
2.726756
2.800885
2.835529
2.839256
2.824276
2.505512
2.265151
2.085772
1.950450
1.844963
1.758262
1.682155
1.610760
1.539949
1.466889
1.389653
1.541432
1.681566
1.809711
1.925998
2.031082
2.126121
2.212684
2.292554
2.367474
2.438834
2.507370
2.287555
2.115558
1.973707
1.849156
1.733076
1.619659
1.505220
1.387474

2.386631
2.156527
1.933312
1.732577
1.559154
1.411648
1.285795
1.176487
1.078799
0.988432
1.112619
1.263099
1.442382
1.651482
1.888669
2.148138
2419124
2.686178
2.931215
2917769
2.837128
2.713171
2.566141
2.410675
2.256018
2.107152
1.966101
1.833041
1.707125
1.587036
1.673225
1.766234
1.864437
1.965795
2.067954
2.168464
2265114
2.356375
2.441852
2.522670
2.601670
2.471635
2.334485
2201435
2.076978
1.961486
1.853220
1.749636
1.648130

2.057807
1.976297
1.847130
1.682439
1.497405
1.305905
1.118250
0.940733
0.776252
0.625302
0.680441
0.736165
0.794996
0.859880
0.934155
1.021375
1.124874
1.246930
1.387386
1.337978
1.286619
1.227375
1.157800
1.078107
0.990106
0.896231
0.798830
0.699757
0.600238
0.500905
0.602192
0.704710
0.808900
0.914970
1.022693
1.131167
1.238602
1.342142
1.437852
1.520946
1.586342
1.433856
1.271125
1.105796
0.944507
0.791639
0.649213
0.517391
0.395143
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1.170476
1.191120
1.200673
1.192610
1.162361
1.108132
1.030904
0.933850
0.821470
0.698776
0.773269
0.849628
0.928796
1.012041
1.101124
1.198500
1.307565
1.432921
1.580602
1.537155
1.484452
1.421967
1.348829
1.264409
1.168704
1.062485
0.947268
0.825146
0.698576
0.570169
0.643033
0.719493
0.801075
0.889478
0.986634
1.094730
1.216200
1.353648
1.509662
1.686510
1.885698
1.882137
1.848117
1.782451
1.686851
1.565394
1.423605
1.267552
1.103156

0.443317
0.347883
0.267983
0.205870
0.165827
0.153555
0.176323
0.243579
0.368023
0.567482
0.381366
0.251435
0.166939
0.122730
0.117104
0.150193
0.222575
0.334152
0.483503
0.371285
0.278008
0.197440
0.129123
0.076199
0.043872
0.038732
0.068811
0.144248
0.278648
0.491669
0.286279
0.146619
0.058340
0.612132
0.001712
0.022676
0.071812
0.146656
0.245232
0.365879
0.507164
0.390270
0.293584
0.219377
0.173023
0.162496
0.198807
0.297563
0.482572



7.000
7.100
7.200
7.300
7.400
7.500
7.600
7.700
7.800
7.900
8.000
8.100
8.200
8.300
8.400
8.500
8.600
8.700
8.900
9.000
9.100
9.200
9.300
9.400
9.500
9.600
9.700
9.800
9.900
10.000

1.518770
1.618644
1.692827
1.747487
1.789141
1.824428
1.859803
1.932574
2.016683
2.106700
2.197628
2.284850
2364113
2.431538
2.483631
2.517328
2.530079
2.516092
2.369930
2.270915
2.178647
2.108616
1.865501
1.716553
1.631738
1.588136
1.569104
1.562832
1.561101
1.558349

1.751319
1.859029
1.963914
2.057714
2.131669
2.177269
2.187293
1.988787
1.817092
1.676367
1.567979
1.491616
1.446220
1.430652
1.444080
1.486133
1.556896
1.851636
2.442391
2.689956
2.869361
2.956965
2.744014
2.471212
2.185167
1.916431
1.680489
1.481773
1.318105
1.184192

0.481164
0.577743
0.6883861
0.818706
0.971515
1.151229
1.360942
1.365443
1.328382
1.253529
1.148121
1.021247
0.882224
0.739309
0.598889
0.465174
0.340277
0.426669
0.663388
0.832628
1.050149
1.325827
1.418837
1.468818
1.460635
1.390939
1.267621
1.105943
0.923579
0.736510

0.945501
0.804191
0.676857
0.561404
0.455837
0.358090
0.265829
0.377616
0.492818
0.608934
0.722355
0.828925
0.924635
1.006247
1.071701
1.120220
1.152157
0.986095
0.706949
0.590241
0.486667
0.394497
0.511548
0.637311
0.770348
0.906377
1.038664
1.159324
1.261081
1.338808

0.3003%0
0.195454
0.155380
0.175696
0.257987
0.411071
0.656911
0.406651
0.253835
0.164698
0.121451
0.113507
0.134734
0.182838
0.259934
0.374511
0.546467
0.341277
0.200763
0.247306
0.363069
0.546210
0.367062
0.242469
0.159843
0.116741
0.114210
0.154448
0.240811
1.379125



APPENDIX 4

Numerical results for the internally controlled closed food-chain of length two.

Initial conditions: (x,(0),x,(0)) = (1.2,1.0)T
(1,(0),ux(0)) = (0,0)T
V(D)) =0.017678, V(&) = 0.046287 and V(¢) = 0.113350

time u X X V(X).X0)

0.100 0.00000 1.156572 1.017962 0.011271
0.200 0.00000 1.116350 1.031920 0.006784
0.300 0.00000 1.079366 1.042040 0.003852
0.400 0.00000 1.045584 1.048543 0.002150
0.500 0.00000 1.014915 1.051693 0.001402
0.600 0.00000 0.987229 1.051780 0.001378
0.700 0.00000 0.962367 1.049109 0.001894
0.800 0.00000 0.940153 1.043985 0.002806
0.900 0.00000 0.920402 1.036711 0.004005
1.000 0.00000 0.902924 1.027575 0.005414
1.100 0.00000 0.887534 1.016848 0.006983
1.200 0.00000 0.874053 1.004783 0.008679
1.300 0.00000 0.862310 0.991612 0.010486
1.400 0.00000 0.852147 0.977543 0.012399
1.500 0.00000 0.843415 0.962764 0.014422
1.600 0.00000 0.835978 0.947444 0.016562
1.700 0.00000 0.829711 0.931730 0.018831
1.800 0.00000 0.824502 0.915752 0.021239
1.900 0.00000 0.820246 0.899623 0.023799
2.000 0.00000 0.816852 0.883440 0.026521
2.100 0.00000 0.814236 0.867289 0.029413
2.200 0.00000 0.812322 0.851240 0.032482
2.300 0.00000 0.811042 0.835355 0.035731
2.400 0.00000 0.810336 0.819686 0.039162
2.500 0.00000 0.810149 0.804275 0.042775
2.600 0.33316 0.810432 0.789158 0.046567
2.700 0.33316 0.810826 0.795063 0.044925
2.800 0.33316 0.811010 0.801195 0.043331
2.900 0.33316 0.810993 0.807549 0.041789
3.000 0.33316 0.810784 0.814119 0.040305
3.100 0.33316 0.810393 0.820901 0.038883
3.200 0.33316 0.809827 0.827890 G.037527
3.300 0.33316 0.809095 0.835081 0.036242
3.400 0.33316 0.808206 0.842471 0.035032
3.500 0.33316 0.807167 0.850056 0.033901
3.600 0.33316 0.805986 0.857834 0.032854
3.700 0.33316 0.804672 0.865802 0.031894
3.800 0.33316 0.803232 0.873958 0.031025
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0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.33316
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.05911
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511

0.801672
0.800001
0.798225
0.796350
0.794383
0.792330
0.790198
0.787991
0.785716
0.783376
0.780978
0.778525
0.776022
0.773473
0.770882
0.768251
0.765586
0.762887
0.760158
0.757402
0.754619
0.751813
0.748985
0.746136
0.743682
0.741975
0.740928
0.740465
0.740521
0.741038
0.741966
0.743261
0.744885
0.746802
0.748984
0.751404
0.754037
0.756863
0.759636
0.762131
0.764364
0.766350
0.768100
0.769629
0.770947
0.772066
0.772997
0.773750
0.774334
0.774758
0.775031
0.775162
0.775159
0.775028
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0.882301
0.890831
0.899546
0.908447
0.917534
0.926810
0.936276
0.945935
0.955790
0.965845
0.976104
0.986574
0.997261
1.008171
1.019313
1.030695
1.042329
1.054224
1.066393
1.078848
1.091606
1.104681
1.118090
1.131854
1.110676
1.089532
1.068511
1.047688
1.027124
1.006872
0.986974
0.967464
0.948370
0.929714
0.911513
0.893779
0.876521
0.859745
0.861540
0.863617
0.865962
0.868562
0.871405
0.874479
0.877775
0.881281
0.884990
0.888892
0.892986
0.897246
0.901684
0.506287
0.911049
0.915966

0.030251
0.029575
0.029001
0.028532
0.028172
0.027924
0.027791
0.027776
0.027883
0.028115
0.028477
0.028970
0.029600
0.030371
0.031286
0.032351
0.033571
0.034951
0.036498
0.038217
0.040117
0.042205
0.044489
0.046980
0.045531
0.044199
0.043025
0.042044
0.041284
0.040765
0.040503
0.040510
0.040791
0.041349
0.042184
0.043292
0.044666
0.046300
0.045126
0.044011
0.042951
0.041945
0.040989
0.040082
0.039223
0.038411
0.037646
0.036928
0.036257
0.035634
0.035058
0.034531
0.034054
0.033626



S1010 1010V OV
882228588

oy

0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511
0.30511

0.774778
0.774415
0.773945
0.77337

0.772712
0.771960
0.771125
0.770213

0.921031
0.926241
0.931592
0.93708

0.942703
0.948456
0.954338
0.960347

0.033249
0.032924
0.032652
0.032433
0.032268
0.032158
0.032105
0.032109



Numerical data for the closed food-chain model with internal control in R4,

Initial conditions:

APPENDIX 5

(x1(0),%5(0),x5(0),%4(0)) = (1,8,1.2,1.0,1.0)T

(ul(O),UZ(O),U3(O),U4(O)) = (O,O,O,O)T
V(x(0)) = 0.232372, V(8) =0.436370 and V(&) = 1.075884.

Note: u; has been set to zero throughout this simulation.

time Uy u3 Uy
0.000 - 2.000 0.00000 0.00000 0.00000
2.100 - 2.700 -0.25000 -0.25000 -2.16294
2.800 - 3.100 0.25000 -0.25000 -0.84316
3.200 - 4.000 -0.25000 -0.25000 0.66484
4.100 -0.25000 -0.25000 -0.09956
4.200 -0.25000 0.25000 -0.09173
4.300 -0.25000 0.25000 -0.11047
4.400 -0.25000 0.25000 -0.14275
4.500 - 10.000 -0.25000 0.25000 -0.18683
time X1 Xy \'46.9]
0.100 2.035959 1.195219 0.922729 0.996094 0.228330
0.200 2.236178 1.225698 0.853202 0.984922 0.229984
0.300 2.400279 1.288369 0.793751 0.967601 0.228536
0.400 2.527284 1.381531 0.745704 0.945481 0.221402
0.500 2.616318 1.503828 0.709859 0.919995 0.209101
0.600 2.667306 1.653315 0.686820 0.892560 0.194232
0.700 2.681665 1.826562 0.677247 0.864526 0.180135
0.8C0 2.662869 2.017941 0.682026 0.837165 0.170048
0.900 2.616698 2.219250 0.702372 0.811680 0.166365
1.000 2.551020 2.419884 0.739859 0.789238 0.170147
1.100 2.475058 2.607590 0.796335 0.771018 0.180988
1.200 2.398325 2.769714 0.873696 0.758265 0.197304
1.300 2.329538 2.894675 0.973438 0.752349 0.216979
1.400 2.275829 2.973409 1.095939 0.754824 0.238142
1.500 2.242377 3.000630 1.239524 0.767469 0.259801
1.600 2.232425 2.975807 1.399467 0.792301 0.282104
1.700 2.247475 2.903687 1.567313 0.831525 0.306143
1.800 2.287479 2.794118 1.731026 0.887377 0.333426
1.900 2.350940 2.660922 1.876297 0.961841 0.365219
2.000 2.434928 2.519919 1.988952 1.056200 0.402015
2.100 2.535087 2.386631 2.057807 1.170476 0.443317
2.200 2.637427 2.158512 1.990413 1.023744 0.392430

70



2.300

o
LN
S

53838388

WOoo -1 B LI k= &0 00~ BN = OO 00 -

e SR B8R e 88585338828888528282334582382888388538

NNNNNNNOOONORRNN AN NN NN NN NN EERARRRR AR ALOWLWWW

2.730410
2.812255
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1.644645
1.703281
1.727968
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1.670252
1.594534
1.495418
1.379381
1.252298
1.118953
0.999274
0.952968
0.923274
0.909804
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0.994817
1.040066
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1.141866
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1.241913
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1.323229
1.353386
1.375762
1.390455
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1.399472
1.395959
1.388842
1.379471
1.369105
1.358837
1.349543
1.341855
1.336161
1.332615
1.331167
1.331598
1.333562
1.336630
1.340337
1.344219
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0.755161
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0.643157
0.598345
0.602646
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0.609358
0.615311
0.687460
0.775416
0.880832
1.005312
1.150623
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1.514072
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1.566744
1.524749
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1.468264
1.452922
1.445286
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1.488563
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1.556534
1.570938
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1.616329

1.621468
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1.644917
1.650592

0.377382
0.381490
0.395429
0.413893
0.433945
0.454091
0.423904
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0.412666
0.439487
0.388194
0.345985
0.313754
0.293358
0.287689
0.300973
0.339285
0.411350
0.529864
0.520334
0.507611
0.487240
0.458874
0.422980
0.387391
0.352923
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0.237333
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0.251483
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0.299892
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2.937870
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2.932991
2.933726
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2.344864
2.344980
2.343973
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2.340968
2.339937
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2.340353
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2.348193
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1.347852
1.350878
1.353031
1.354139
1.354132
1.353032
1.350938
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1.336328
1.332184
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1.321428
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1.316564
1.314897
1.313697
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1.656732
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0.396723
0.399128
0.401761
0.404516
0.407273
0.409908
0.412307
0.414374
0.416037
0.417250
0.417995
0.418280
0.418134
0.417606
0.416755
0.415647
0.414351
0.412935
0.411460
0.409980
0.408539
0.407173
0.405905
0.404749



APPENDIX 6

We will prove property (iii) of the Lyapunov function (2.2) for the

open food-chain system (1.24) in R2.

Proof:
dV(x(t)) 29V
Sa = 5550
oV oV
= ggl‘fl(x)+ 3 £,(x)
o1 1 B, 0,1 1 1
= X1(T5 — 0% = T7x0) + YVxp(g — T)Xp(-0g + T xy)
YllXI x0T X Yzzxz xp) (%2 T

= (X = xp(ayYy — Bixg) + (g — x9)(—0 Yy + Brx;)

Now, the equilibrium points for the open food-chain system (1.24) is given (in

Section 2.1) by

0 O a o
E(x}x)) = (—%—2 , %)T.

Therefore,
dv Y2 o
T = R - B + (g = oY, + Bix)

1

=B, {(x1B1 — oY) (o Y; — Bixa) + (XoB1 — oy Y (—apYs + Byxy) )
1

=B, (x1By — oY) loy Yy — Bixa + x4 + o]

=0. ¢
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APPENDIX 7

We will illustrate the proof of the first integral (Section 2.2)
V(x)=h, h constant > 0. (2.4)

for an uncontrolled open food-chain in R2.

Consider the uncontrolled open food-chain model (1.24) of length 2;

the modelling equations are

. 1
Y1

L d

Xy = Xp(-0lp — 77 Xq).

Y2

dx,
The solution to this system can be obtained by solving == dx, . This

gives us that

B
Xo(-0ty — —x
dXz ’)( 2 ,\‘, ])
dx,; ( 1 )
Xl al - “XZ
Y1
B, B,
(X (&1 =" X3) ; CCa =T xg)
= J N 2 i
X3 Xz 27 0x9 X !
X By o, X1 )
= oln0 = ~Hxy~-xp) = —oyln— + —(x;—x;) — h
x, N X, 2
X2 X3 By 2 B 1
= oyln—0 +opln— - =x(5 - D= x(— -1) = h
Xq X4 Yl Xa 2 X4
‘11"!"}’" Xz BV Y2, X o X o X1
= - + In— + Voxp(—5 = 1) - Yix; (5 - =h
B p
Xg 1 Xl X2 1
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