
Mot ion Planning For Serial Manipulators

With Many Degrees Of Freedom:

Implement at ion Of A Sequential Search Strategy

by

Zhenping Guo

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School

of

Engineering Science

@ Zhenping Guo 1992

Simon Fraser University

January, 1992

All rights reserved. This work may not be reproduced

in whole or in part, by photocopy or

other means, without permission of the author.

APPROVAL

NAME: Zhenping Guo

DEGREE: Master of Applied Science (Engineering Science)

TITLE OF THESIS: Motion Planning For Serial Manipulators
With Many Degrees Of Freedom:
Implementation Of A Sequential Search Strategy

EXAMINING COMMITTEE:

Chairman: Dr. John Dill

Dr. Kamal K. Gupta
Senior Supervisor

Dr. John Jones
Supervisor

Dr. Shahram Payandeh
Su~ervisor

Dr. Pilliam Havens
Examiner

DATE APPROVED: 2 1 January, 1992

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ib ra ry , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y of any o ther u n i v e r s i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l gain s h a l l not be allowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

MOTION PLANNING FOR SERIALS MANIPULATORS WITH MANY DEGREES OF FREEDOM:

IMPLEMENTATION OF A SEQUENTIAL SEARCH STRATEGY

Author:

(s ignature)

GUO , Zhenping

January 21, 1992

(date)

Abstract
In this thesis, we deal with the robot motion planning problem, i.e., planning

collision-free motions for a manipulator arm in an environment filled with stationary

obstacles. We have developed and implemented a motion planner that can plan

collision-free motions for serial manipulator arms with many degrees of freedom

among stationary obstacles. Our planner is based on a sequential search strategy

that exploits the serial nature of manipulator arms. The basic idea behind this

approach is to plan the motion of each link successively starting from the base link.

Given that the motion of links until link i (including link i) has been planned,

that is, the path of one end (the proximal end) of link i + 1 is determined, the

motion of link i + 1 is now planned along this collision-free path by controlling the

degree of freedom associated with it - a two-dimensional motion planning problem.

Therefore, in the simplest case, our strategy results in one one-dimensional (the

first link is degenerate) and n - 1 two-dimensional planning problems instead of

one n-dimensional problem for an n-link manipulator arm. The search strategy

leads to a fast and efficient algorithm, and is especially suited for manipulator arms

with many degrees of freedom. Furthermore, a backtracking mechanism has been

incorporated in our motion planner that makes it more effective (but slower) in

cluttered environments. This mechanism provides a parameter which can be used

to trade off completeness of the planner with its speed. Our motion planner runs

on SUN Sparc stations and is written in C. The run times are in the order of a

few minutes. We have demonstrated the effectiveness of our strategy with some

interesting and difficult examples of motion planning for several arms with many

degrees of freedom.

To My Family

Acknowledgements

My sincere thanks to my supervisor Dr. Kamal K. Gupta for providing me the

opportunity to work on this project, guiding and encouraging me to work in very

challenging research topics and also supporting me throughout the course of this re-

search. I am very grateful to my committee members, Dr. John Dill, Dr. John Jones,

Dr. Shahram Payandeh, and Dr. William Havens, for their assistance and helpful

hints. In addition, I was lucky enough to obtain useful help from other individuals.

Dr. Binnay Bhattacharya gave me guidance to solve the computational geometry

problems. Doug Girling helped me to transfer simulation results from the Sun sta-

tion to the PUMA controller. Edgar Velez gave me timely help to revise the thesis.

Also, many thanks to the graduate secretary, Brigitte Rabold, for her kind help.

Finally, I would like to express my appreciation to my colleagues, Zhu XinYu,

Zhu XiaoMing and Xu ZhuKang, for their valuable discussions during this research.

Special thanks to my friends for their encouragement and support during the prepa-

ration of my thesis.

CONTENTS

. Approval 11

... Abstract 111

. Acknowledgements v

. List Of Figures xi

. 1 Introduction 1

. 1.1 The Problem 2

. 1.2 Organization Of The Thesis 6

. 2 Survey 7

. 2.1 Complexity 7

. 2.2 Practical Approaches 8

. 2.3 Configuration Space Based Approaches 9

. 2.3.1 A Simple Motion Planning Algorithm 10

. 2.3.2 Octree Approach 12

. 2.3.3 Enumeration Approach 13

. 2.4 Potential Field Based Approaches 14

. 2.4.1 Numerical Potential Field 15

. 3 Sequential Search Algorithm Overview 17

. 3.1 Terminologies 19

. 4 Implementation 24

. 4.1 Geometric Representations 25

. 4.2 Solving The Single Link Problem 25

4.2.1 Calculating Forbidden Regions 27

4.2.2 Potential Contact Angle . 28

. 4.2.3 Constraints 29

. 4.3 Building Forbidden Regions in t i x 8; Space 33

. 4.3.1 Grouping Forbidden Ranges into Regions 33

4.3.2 Polygonal Approximation . 34

4.3.3 Piecewise Linear Function Approach 39

. 4.3.4 Growing Obstacles in t i x 0; Space 42

4.3.5 Joint Limits Treated As t i x 0; Space Obstacles 42

. 4.4 Searching For A Collision-Free Path 44

. 4.5 Extension Segments And Backup Movements 45

. 4.6 Parameterizing A Collision-Free Path 48

. 4.7 Backtracking Mechanism 50

. 4.8 Complexity Analysis 55

. 5 Experimental Results 58

. 6 Conclusions 75

. 6.1 Summary 75

. 6.2 Some Open Issues 76

. A Coordinate Systems and Geometric Represent ations 80

. A.l Link Coordinate Systems 80

vii

A.2 Geometric Models And Representations 81

A.2.1 Data Structures For A Robot Arm 83

A.2.2 Data Structures For Obstacles 86

A.3 Transformation Between Coordinate Systems 88

B Computing Potential Contact Angles In 3D 89

C Geometric Constraints . 96

References . 102

...
Vll l

LIST OF FIGURES

2.1 C-space obstacles for a simple robot 9

3.1 Decomposition of the motion planning problem 20

3.2 The structure of our motion planner with backtracking 21

4.1 Robot coordinate systems .

4.2 The diagram shows how to solve the single link problem

4.3 Three types of contacts . (a) type A or type B; (b) type C

4.4 The diagram shows the procedure of computing forbidden ranges . . .
4.5 Computing forbidden ranges for type A and B contacts
4.6 Computing forbidden ranges for type C contact
4.7 Diagram shows how to group contiguous and overlapping ranges

4.8 An example of grouping forbidden slices into forbidden regions

4.9 Convex polygon approach .
4.10 Two short edges have been removed by the pruning process
4.11 The advantage and disadvantage of the convex polygon approach . . .
4.12 Nonconvex polygon approach .

4.13 The advantage and disadvantage of the nonconvex polygon approach .

4.14 A piecewise linear function approach

4.15 A result of the piecewise linear function approach 44

4.16 A example of the backup motions for a three-link arm 46

4.17 The sampled path is used as the parameter t for the next link 49

4.18 The path is parameterized by "Equal Length" based approach 51

4.19 The V-graph for link 2 . 54

4.20 The V-graph for link 3 . 55

4.21 The pruned V-graph for link 2 after backtracking searches 56

5.1 An example of a six-link arm with three obstacles 61

5.2 A planned motion for a PUMA-560 arm 62

5.3 The planned motion for another six-link manipulator arm 63

5.4 The t i x Oi space for each link of the arm shown in Figure 5.3. 64

5.5 Another planned motion for a three-link arm 66

5.6 The t i x 0; space for each link of the arm shown in Figure 5.5. 67

5.7 The planned motions for a four-link space arm 69

5.8 The t i x Oi space for each link of the space arm shown in Figure 5.7. . 70

5.9 The planned motions in the case of "H" shaped obstacle 71

. . . 5.10 The t i x Oi space for each link in the case of "H" shaped obstacle 72

A. l An example of definitions of link parameters for PUMA 560 82

. C . l If cq + CYZ + QIQ + a4 = 27r. the vertex v is within the surface 97

C.2 Testing orientation constraint between vertex and surface 99

. C.3 Testing orientation constraint between two edges 100

. C.4 At parameter t ' . three forbidden ranges are merged into one 101

CHAPTER 1

Introduction

Future generations of robots will be considerably more autonomous than present

robotic systems. A main objective of research in robotics is to endow robotic systems

with basic capabilities they will need to operate in an intelligent and autonomous

manner. These improved capabilities fall into three broad categories, (i) Sensing -

The robot system should be able to gather information about its workspace through

a variety of sensing devices (visual, tactile, or proximity sensing) and analyze and

transform the raw sensory data into a model of the environment; (ii) Pl~nning - This

model is then used to plan tasks the robot is commanded to execute; (iii) Control

- The robot system will finally obtain a low-level control loop that monitors the

actual execution of each planned substep of the task.

The aim at the planning stage is to allow the robot's user to specify a desired

activity at a very high level (called top-level planning, or task-level planning) and

have the robot system fill in the missing low-level details [lo]. A task-level robot

planning system is one that can be instructed in terms of task-level goal, such as

"Grasp part A and place it inside box B." This type of specification contrasts

sharply with that required for existing industrial robot systems, which insist on a

complete specification of each motion of the robot and not simply a description of

a desired goal.

To automatically perform such tasks, the robot needs the capability to plan

collision-free motions. The most basic version of the motion planning problem is to

find a collision-free path for a manipulator arm in a three-dimensional environment

filled with static obstacles. Note that there are a number of variations of the basic

problem, e.g., the moving object may be arbitrary arms or collections of arms, as

well as objects (e.g., mobile robot like spacecraft) moving freely in space [2], [3].

In this thesis, we focus on the static and purely geometric version of the motion

planning problem for a manipulator arm. We have developed and implemented

a motion planner that can plan collision-free motions for a manipulator arm with

many degrees of freedom. In the next section, we formally define the motion planning

problem, and briefly discuss some aspects of it, and then give a brief overview of

our motion planner.

1 . The Problem

In its simplest form, the motion planning problem considered in this thesis, is defined

as follows [30]. Let A be a manipulator arm comprising a collection of rigid links

which are attached to each other at certain joints. Suppose A has a total of n degrees

of freedom, i.e., each placement of A can be specified by n real parameters, each

representing a joint angle of the manipulator arm. Suppose further that A is free to

move in a workspace amidst a collection of obstacles whose geometry is known to

the robot system.

The motion planning problem for A is

Given an initial placement Pi and a desired target placement Pj of A,

determine whether there exists a continuous obstacle-avoiding motion of

A from Pi t o Pi, and, if so, plan such a motion.

We assume that the robot manipulator arms considered in this thesis, are artic-

ulated devices made up of a series of rigid links connected by one-degree-of-freedom

joints, the joint motions are either rotational or translational. Such manipulators

are also called serial manipulators, however, for brevity we will use the term ma-

nipulator through out the thesis. The position of all links of the rigid robot arm

are completely specified by the values of the joint parameters, known collectively as

the joint angles. Any set of parameters that uniquely specifies the position of every

part of the arm is called a configuration, and the space defined by those parameters

is the C-space. Also, we call the collection of configurations that produce collisions

the C-space obstacles. It is clear that, for a manipulator arm with n degrees of free-

dom, the robot's joint space is an n-dimensional C-space [9], [ll], [12]. Once such

a representation has been obtained, the actual motion planning problem reduces to

searching for a path from the initial configuration to the final configuration in the

C-space.

Most of the approaches to motion planning implicitly or explicitly compute the

C-space of the manipulator and then search it for a path. There are two major

problems with the configuration space based approaches: (i) the configuration space

obstacles are highly complex to represent, and (ii) the dimensionality of the config-

uration space is fairly high for most practical manipulators, mostly greater than six.

An answer to the first problem is a discrete representation of the configuration space

([9], (141, [15], [16]). However, according to many complexity results, the "big bar-

rier" is the high number of degrees of freedom. The complexity of the basic motion

planning problem is exponential in the degrees of freedom of the manipulator [9].

For manipulator arms with a large number of degrees of freedom, the motion plan-

ning problem becomes computationally intractable, and it isn't likely that efficient

worst-case solutions will ever be found. Many approaches are hopelessly inefficient

in the worst case, and although their development is significant from a theoretical

point of view, their implementations do not exist. For example, Lozano-Pkrez [9]

implemented only a three degrees of freedom example since he treated the last few

degrees as one (using a bounding box to cover them); Kondo [16] mentioned that for

a high number of degrees (more than six) of freedom arm and the worst cluttered en-

vironment, it needs more memory and more computer time. Recently, Barraquand

and Latombe ([17], [18], [19]) have suggested a planner based on numerical potential

fields and random search for manipulators with many degrees of freedom. Random

search, however, has its problems. For instance, the run times may vary drastically

even for the same example. From all the discussion above we conclude that to solve

the motion planning problem fast and efficiently, one needs to devise general yet

efficient search strategies.

A deterministic approach to this problem of high dimensionality has recently

been suggested by Gupta [I] - a sequential search strategy. The basic idea of this

approach is to sequentially plan the motion of each link, starting from the base link.

To briefly recapitulate, suppose that the motion of links until link i (including link i)

has been planned. This already determines the path of one end (the proximal end) of

link i + 1. The motion of link i + 1 is now planned along this path by controlling the

degree of freedom associated with it - a single link motion planning problem. This

strategy (without backtracking) results in n single link motion planning problems

instead of one n-dimensional problem for an n link manipulator arm. If along the

path (determined by the previous links) no motion exists for the current link, the

planner backtracks and chooses another path for the previous link. Along this new

path for the previous link, it searches for a path for the current link. This approach

completely avoids the problem of representing and searching a high-dimensional C-

space. However, in some situations the planner may fail to find a collision-free path

in very cluttered situations even though such a path may exist, i.e., the algorithm

is not complete.

Based on this approach, we have developed and implemented a motion planner

for several types of robot manipulator arms to plan collision-free motions in different

kinds of cluttered robot working environments. The motion planner is written in C

and its run time is in the order of a few minutes on a Sparc station. The asymptotic

complexity of the motion planner with backtracking mechanism is given by

where n is the number of degrees of freedom, m the number of nodes in the two-

dimensional subspace for each robot link, and k the level of backtracking. Certainly,

for a given k, the complexity will be polynomial in m.

In summary, our planner has a number of advantages: (i) it completely avoids

the difficulty of representing n-dimensional C-space obstacles, (ii) it is efficient and

practical - runs at the most in the order of a few minutes, even for manipulators

with large number of degrees of freedom, (iii) it is deterministic (in the sense that

it does not use stochastic search techniques), and (iv) it provides a mechanism for

trading off execution speed of the planner with its completeness.

We emphasize that the main contribution of this thesis lies in implementing the

sequential search approach of [Gupta 901 in 3-D. With this implementation, we have

thoroughly tested the efficiency of the sequential approach.

Organization Of The Thesis

This thesis is organized as follows. We begin in chapter 2 by overviewing algorithms

for robot motion planning in the recent years, and briefly give a basic catalogue of

the algorithms. Chapter 3 contains the overview of our sequential search strategy

approach. In chapter 4, we concentrate on the implementation of our algorithm,

including how to construct the sub-spaces for each of the robot links; how to search

for a collision-free path, how to parameterize the generated path and how to perform

backtracking search. Chapter 5 will show the experimental results. Finally, chapter

6 gives a summary and suggestions for the future research.

CHAPTER 2

Survey

Techniques for automatic planning of robot motions have been extensively studied

over the last several years as one of the central problems in task level robot pro-

gramming, both from theoretical interests and from practical requirements. In this

chapter, we will first give the basic catalogue, and then present a brief survey of

recent developments in motion planning algorithms and their implementations. Our

survey concentrates on practical approaches to motion planning for manipulator

a r m .

2.1 Complexity

The complexity of motion planning problems has been studied quite extensively in

past fifteen years or so ([32], [30]). In a recent fundamental work, Canny [37] has

improved upon the previous result of Schwartz and Sharir [28]. Canny shows that

the motion planning problem for a manipulator arm with n degrees of freedom un-

der m geometric constraints (usually the number of faces, edges, vertices etc. in the

obstacles and manipulator arms), can be solved in time O(mn logm). Numerous

other results [9] show that the complexity of motion planning is exponential in the

degrees of freedom of the robot. Therefore, for a manipulator arm with an arbi-

trarily large number of degrees of freedom, the problem becomes computationally

intractable, and it isn't likely that efficient worst-case solutions will ever be found.

Intuitively, this is because when n is large, the C-space is a high-dimensional space

with irregular boundaries, making it hard to build and search efficiently.

Clearly, to develop practical motion planning algorithms, one needs to devise

efficient representations and search strategies to break this barrier of complexity.

Following are several practical approaches to develop motion planners for manipu-

lator arms.

Practical Approaches

Many planners for manipulator arms have been developed ([12], [22], [31]). Some

of the more recent ones are Lozano-PCrez's Configuration Space Approach ([9], [13]),

Faverjon and Tournassoud's Octree Approach ([14], [15]), Barraquand and Latombe's

Potential Field Approach ([17], [IS], [lg]), and Kondo's Enumeration Approach [16].

The major differences among these approaches are in two aspects: (i) how to build

and represent the configuration space, and (ii) how to search for a collision-free path.

The methods used in these approaches can be roughly classified into two categories,

(i) Configuration Space based approaches, and (ii) Potential Field based approaches.

Figure 2.1: C-space obstacles for a simple robot. (a) A robot with two rotational

joints, and its obstacles. (b) The corresponding C-space obstacles (the hatched

regions). The joint angles are also the labels on the axes of the C-space. A collision-

free path in this C-space is shown, together with four configurations of the arm along

the path.

2.3 Configuration Space Based Approaches

Planning a collision-free path for an n-degree of freedom manipulator arm is equiva-

lent to calculating a continuous path within a collision-free region in an n-dimensional

space defined in terms of the degrees of freedom. Figure 2.1 (this figure is presented

in [9]. Author uses it to explain the configuration space) gives a two-dimensional

example.

Motion planning based on the C-space approach requires that the obstacles in

the robot's workspace should be mapped into its C-space, called C-space obstacles,

which represent the configurations of the manipulator arm that would cause colli-

sions. Having formed the C-space obstacles, there are two main approaches to search

for a collision-free path, (i) free-space based and (ii) V-graph based methods.

For the free-space based ~ll'ethod, the free C-space, which is defined to be the

complement of the C-space obstacles, should be characterized explicitly. Having

found the free-space regions, a region graph is built where the nodes are regions

and links indicate regions with a common boundary. Then, a collision-free path is

searched in the region graph from the region containing the start point to the region

containing the target point. For the V-graph based method, a visibility graph should

be built, which is composed of nodes and edges. The set of nodes is the set of vertices

of the C-space obstacles, including the source node (as the initial position) and the

target node (as the final position), and each edge between two nodes represents that

these two nodes can be visible to each other. Then the planner searches this V-graph

for a collision-free path from the source node to the target node.

Many planners have been developed using the C-space approach ([9], [14], [15], [16]).

We briefly review three important representative planners that have been developed

and reported in the literature.

2.3.1 A Simple Motion Planning Algorithm

In [9], Lozano-Pkrez showed the simplicity of computing approximate characteri-

zations of the free space for simple manipulators. A conservative approximation

of a C-space obstacle was introduced, which was called a slice projection. For an

n-dimensional case, a C-space obstacle is a n-dimensional volume, which is rep-

resented by a union of (n-1)-dimensional slice projections. A slice projection of

a one-dimensional C-space obstacle is defined by a range of values for one of the

defining parameters of the C-space (the joint angles for a manipulator arm with

rotary joints). The key step in this simple approach, therefore, is to compute one-

dimensional slice projections of C-space obstacles, that is, to determine the range of

forbidden values of one joint parameter, given ranges of values for all previous joint

parameters.

Using this approach, a planner has been implemented successfully. It has solved

problems for manipulator arms with four degrees of freedom. For the case of manip-

ulator arms with more degrees of freedom, Lozano-Pkrez suggested that the last few

links and the end-effector be replaced by a simple bounding box [9]. For a simple

two-link manipulator arm in two-dimensional space (see Figure 2.1), Lozano-P6rez

mentioned that the run time is six seconds on a Symbolics 3600 Lisp Machine.

Theoretically, the motion planning problems with n degrees of freedom can

be solved. In practice, however, it is difficult to represent a free space in an n-

dimensional C-space explicitly. His approach will fail to find a collision-free path in

the more cluttered case, such as in the example of PUMA 560, simply because the

bounding box covers quite a big free volume.

2.3.2 Octree Approach

Faverjon has used octrees to represent the C-space for a manipulator arm [14]. An

octree is a tree of degree eight which describes hierarchically the space contained in a

cube that forms the root. The sons of a node are the eight cubes obtained by cutting

the father node by planes parallel to the faces and containing its center. The nodes

can be labeled as Full, Empty, or Mixed depending on whether they lie entirely in

an obstacle, out of all obstacles, or partly in an obstacle. Only the Mixed nodes will

be cut again until the minimum size for a cube is reached. Using collision-detection

type algorithms, physical obstacles in the robot workspace can be transformed into

its joint space. Faverjon implemented this approach for the first three links of a

manipulator arm. So the joint space is a three-dimensional C-space. He divided the

whole space into 64 x 64 x 64, and then filled it up using the transforming algorithm.

The scheme of searching a short collision-free path is also based on the well known

A* algorithm [42]. Unfortunately, the approach can not be directly extended to

planning a collision-free path for manipulator arms with large number of degrees

of freedom, since the memory requirements grow exponentially with the degrees of

freedom.

In 1987, Faverjon and Tounassoud [15] implemented a two-level local-global plan-

ner. The global planner is essentially a very coarse discretized representation of the

full C-space. Transitions between the adjacent cells are weighted (and updated) by

the probability for the local planner to succeed in moving the system from one cell to

another. These probabilities are used by the global planner (a minimum cost finding

algorithm) to generate sub-goals for the local planner. The local planner is based

on a variant of the potential field technique. They have reported some good results

for a full six degrees of freedom arm carrying a bulky load, and for a ten degrees

of freedom manipulator among vertical obstacles. Although it is possible to apply

this technique to manipulators with many degrees of freedom, the global planner

resolution would be very coarse for a given memory size and the probabilities may

not converge. For example, they use a resolution of 16 degrees for a six degree of

freedom problem; in fact, for much larger number of degrees of freedom problems,

the global planner discretization will be so coarse that it will be virtually useless.

2.3.3 Enumeration Approach

Kondo [16] has suggested another approach to motion planning for a robot manip-

ulator arm. The basic idea in this approach is to restrict the free space concerning

a free path and to avoid executing unnecessary collision detections. Kondo imple-

mented this approach for a six-degree of freedom manipulator arm. In the approach,

the six-dimensional C-space is, initially, equally quantized into cells by placing a reg-

ular grid, and then, the free-space cells connecting the initial and final configurations

are enumerated based on the heuristic graph search algorithm, which is similar to

the A* algorithm [42]. These cells are categorized into three types: a free space cell

belonging to a collision-free configuration, an obstacle cell which belongs to a con-

figuration that causes collisions, and an unknown cell for which the collision status

is not yet known.

Not all cells are enumerated in this approach. Which cell will be enumerated

depends on the evaluated strategy. There are different strategies of searching a

collision-free path defined by heuristic functions. The efficiency of each strategy is

evaluated during free-space enumeration, and the more promising one is automat-

ically selected and executed. A collision detection procedure is independent of the

search procedure and is called every time the necessity arises for checking whether

the cell is collision-free or not. However, the total number of necessary collision

detections for free-space enumeration mainly depends on the most efficient search

strategy among the evaluated strategies, and therefore, the free-space cells are effi-

ciently enumerated for an arbitrary moving object in all kinds of workspaces.

Initially, all cells are unknown cells except for the free-space cells containing the

initial and final configurations. These two free-space cells are expanded based on a

bidirectional heuristic graph search algorithm using multiple search strategies, and

the configurations of the expanded unknown cells are checked for collision. Free-

space cells are expanded until the initial and final configurations are connected by

free-space cells. Finally, the collision-free path can be planned.

The approach is fast when only a few free-space cells are enumerated in the

search process. But in the more cluttered workspace, the efficiency of this approach

is drastically reduced. Furthermore, for an n degrees of freedom manipulator arm

and the number of levels, m, the C-space will contain 2nXm cells. It needs a huge

memory, especially for a larger n. Hence the approach can not be directly extended

for a large number of degrees of freedom manipulator arm.

2.4 Potential Field Based Approaches

Khatib [20] first used the idea of an artificial potential field for obstacle avoidance.

In this approach, the manipulator moves in a field of artificial forces. The obstacles

exert a repulsive force and the goal position exerts an attractive force on the ma-

nipulator. In this field of forces, the manipulator end-effector (treated as a point)

moves to its goal position. This field is called the artificial potential field. The core

of this approach is to set up artificial potential fields over the robot workspace, each

applying to a specific point on the robot, and the robot moves along the gradient

direction generated by this artificial potential field. Unfortunately, this approach

eventually leads the search to local minima of the potential and mechanisms need to

be devised to escape these minima. In the next section, we review a recent advance

in the artificial potential field approach, called numerical potential field approach.

2.4.1 Numerical Potential Field

Barraquand and Latombe ([17], [18], [19]) use a bitmap of the workspace and

construct numerical potential fields over the workspace. Each of these potentials

applies to a selected point on the robot, called a control point. The overall C-space

potential field is a combination of these workspace potential fields. The C-space

potential field generally has several local minima, and for a high-dimensional C-

space, the Monte-Carlo procedure (which consists of generating random motions)

is applied to escape a local minimum. The planner has been successfully applied

to manipulators with many degrees of freedom; however, there are some intrinsic

limitations in the stochastic approach. For example, the execution times may vary

drastically even for the same example for different runs of the planner. Also, the

success of probabilistic search seems to stem from the fact that for manipulators

with many degrees of freedom, the solution space is also very large. However, this

may not be the case in cluttered environments.

From the brief survey given in the previous sections, it is apparent that no

approach has yet satisfactorily overcome the difficulty of solving the motion planning

problem for manipulator arms with a larger number of degrees of freedom (greater

than 6). In the next chapter, a new approach, called Sequential Search Approach [I],

will be introduced, which offers one way to develop practical motion planners for

manipulator arms with large number of degrees of freedom.

CHAPTER 3

Sequential Search Algorithm

Overview

In this chapter, we give a brief overview of the sequential search approach to motion

planning, a contribution of Gupta ([I], [4]). Based on this approach, we have

developed and implemented a motion planner for several types of robot manipulator

arms to plan collision-free motions in different kinds of cluttered robot working

environments.

The idea behind the approach is to exploit the serial nature of manipulator

arms. A manipulator arm has an inherent ordering of links, from the base link to

the last link. The strategy of this approach is to plan, successively, the motion of

each link staptiag from the base link, F Q ~ example, consider the threelink (planar

manipulator) arm shown in Figure 3.1 (this figure1 is from [I]). The links have been

labeled in increasing order from the base, i.e., the base link is 'labeled 1, the next

link is labeled 2, and the last (free) link is labeled 3. Suppose that the motion of link

1 has been planned. Now, as the first link moves the second link can be treated as

a moving robot with another degree of freedom (pure rotation for revolute joints).

Thus, its motion (rotation) can be planned to avoid the obstacles. Once the motion

of link 2 has been planned, the motion of link 3 can be planned, and so on. In

general, suppose that the motion of links till link i (including link i) has been

planned. This already determines the path of one end (the proximal end) of link

i + 1. The motion of link i + 1 is now planned along this path by controlling the

degree of freedom associated with it - a single-link motion planning problem. As

a result, for a manipulator arm with n degrees of freedom (n revolute or prismatic

joints), this strategy converts one n-dimensional motion planning problem into n

single-link planning problems (planning for the first link is a degenerate case)

In addition, Gupta and Guo [5] have also developed a backtracking search mech-

anism for our motion planner to make it more effective in planning collision-free

paths in cluttered situations, although the sequential planner described above does

solve the difficult problems. In general, the planner must backtrack and re-plan the

path for the previous link (say link i- 1) in case there is no collision-free path for link

i. Furthermore, the planner may backtrack more than just the previous link, say k

previous links and search again. The parameter k is called the level of backtracking.

This backtracking mechanism has been incorporated in our motion planner and has

remarkably improved the capabilities of our motion planner. Figure 3.2 shows the

lThis figure courtesy of Dr. K. K. Gupta

18

complete structure of our motion planner with the backtracking search mechanism.

Not only is the resulting planner efficient and fast, but we completely avoid the

difficulty of representing n-dimensional t x 8 space obstacles. Our motion planner

is, therefore, especially suited for highly redundant arms. The complexity of our

planner is given by

~ (n m ~ ~ + ~) ,

where n is the number of degrees of freedom, m the number of nodes in two-

dimensional sub-space for link i and k the number of level of backtracking searches.

Clearly, the run time is polynomial in m, for a given k. Thus, our approach provides

a "tuning" parameter k, that can be used to trade off speed with completeness of

the planner.

3.1 Terminologies

The definitions used throughout the thesis are given next. The manipulator joint

parameters are represented by 8;, the corresponding links by l;, i = 1 ,2 , . . . , n, II

being the most proximal link, and I, the most distal link. The initial and goal

configurations of the arm are given as Of, and 89, i = 1, . - , n. q; denotes the i-

dimensional joint space vector (el, d2, s s, &). Thus qf denotes the vector of start

configurations of the first i joints, i.e., qf = (8;, 8,", . . ., Of) , and q: denotes the

vector of their goal configurations, i.e., q: = (Of, 8:, . ., 86). Let r; be the reference

vertex (in three-dimensional Cartesian space) for link I;. The base of the first link

is assumed to be fixed at rl . Let ri(t) denote the trajectory of the reference vertex

r;, however, we will never need to represent it explicitly. Instead, we will represent

Figure 3.1: Decomposing the motion planning problem for an n link manipulator

into n simpler single-link problems. The figure shows a three link example. The

initial configuration is shown in (a), and the final configuration in (b). Planning

proceeds from the base link (link 1) to the last link (link 3). First the motion of

link 1 is planned (c) and (d). This motion determines the motion of a reference

point (the point where link 2 is attached to link 1) on link 2. The angle of link 2

is now planned to avoid collisions with obstacles (e) and (f). This motion of link 2

determines the motion of a reference point '(the point where link 3 is attached to link

2) on link 3. The angle of link 3 is now planned (g) and (h). This process is repeated

n times for an n-link arm, resulting in n single-link motion planning problems.

20

initialization:
1 = 1; b-level = 1 u

solve the single-link

problem for link i
cl 4 search for another path

for link (i-blevel),

b-level = b-level+ 1 w

success e3
Figure 3.2: The structure of our motion planner with the backtracking search mech-

anism. In the figure, b-level represents the current level of backtracking; maxlevel ,

the maximum allowed level of backtrackings. Note that i - b-level > 1 should be

satisfied since the planner doesn't backtrack to the first link.

the i-dimensional joint space trajectory as a vector valued function q;(t) = (O,(t),

&(t), . . ., 0;(t)): [O, 11 + [qq, q:] . Note that given qi-l(t), ri(t) is easily computed

using forward kinematics. Further, we will distinguish between the mapping q;(t)

and the graph (trace) Q; of the mapping, where Qi = (q;(t), t).

Now we concentrate on the motion planning scheme used in our approach for the

single-link problem. Assume that the motion for the previous i - 1 links has already

been planned and is specified as a function of a discretized parameter t; = [O, 11, i.e.,

Oi-l(&) is known for k = 0 , l . . . M - 1. M is the total number of samples of the

free path, and is given by user. Note that this completely determines the path of ri,

and as it moves along this path, the problem now is to adjust the angle Oi of link i

to avoid the obstacles in its way. In general, for a single link, the scheme adapted

here includes four stages: (1) computing forbidden regions, (2) building a visibility

graph, (3) searching a collision-free path, and (4) parameterizing the collision-free

path for the next link.

0 Stage 1: Computing ti x Oi space obstacles

The physical obstacles give rise to constraints on the angle Oi of the link as a function

of ti. These constraints appear as forbidden regions in ti x 8; space. Thus, the

physical obstacles are transformed into forbidden regions in t; x 8; space, and the

rigid solid link, link i, becomes a moving point in the ti x Oi space. Hence, we always

build a two-dimensional t; x 9; space for each single link of a manipulator arm. The

technique of computing t; x 8; space obstacles will be discussed in chapter 4, and is

based on methods in [9].

Stage 2: Building a visibilitygraph

The forbidden regions are approximated as polygons in t; x 8; space. A visibility

graph (V-graph) is built in t i x 6; space. Note that we could also use the free-space

based methods.

Stage 3: Searching for a collision-free path

We use breadth-first search [44] as our V-graph searching algorithm.

Stage 4: Discretizing the collision-free path

The path obtained after the V-graph search is piece-wise linear. However, to plan

the path for the next link, we need to parameterize the path, i.e., given Qi(ti), we

compute Qi(t i+l) . The parameterization of the collision-free path will be discussed

in chapter 4.

There is no doubt that our sequential search strategy leads to significant improve-

ment in computation time simply because, for a manipulator arm with n degrees

of freedom, it solves several single-link motion planning problems rather than one

n-dimensional problem. The run time for the planner increases linearly with n (n is

the number of joints of a manipulator arm) for a given level of backtracking. This

explains the apparent success of our planner for a high number of degrees of freedom

problem. Note that our planner is incomplete and may not find a collision-free path

even if one exists. However, we believe that in most cases it will.

CHAPTER 4

Implement at ion

In this chapter, we describe our detailed implementation of the sequentiG motion

planner. In section 1, we briefly review the robot coordinate system and the geomet-

ric models and the representations of robot links and obstacles. Section 2 overviews

the method of calculating forbidden ranges (the range of angles in which the contact

occurs). Section 3 will describe the method of forming t i x 8; space obstacles. In

section 4, it will be explained how to search for a collision-free path. In section 5,

we explain how the extended segments work. In section 6, the parameterization of

the free path will be discussed. Section 7 shows efficiency of the backtracking mech-

anism. Section 8 gives a brief discussion of the complexity of our motion planner.

4.1 Geometric Representations

In this section, we briefly review the robot coordinate system, define the geometric

models of the robot links and obstacles, and then give the basic representations of

the robot links and obstacles.

In order to describe the position and orientation of a robot link in the workspace,

we attach a coordinate system, called a frame, rigidly to that link. Then we proceed

to describe the position and orientation of this frame with respect to some reference

coordinate system. In this thesis, we set the base frame of the robot coincident

with its workspace coordinate system, the reference frame. Figure 4.1 shows the

definition of various frames. Appendix A gives more details of the coordinate systems

and the transformation between them.

We define the geometric models of the robot links and obstacles as convex poly-

hedra, which may have an arbitrary number of faces and vertices. For some other

models of robot links and obstacles, such as cylinders and spheres, we may use a

"bounding box" to cover those models. The models are represented by the list of

faces and vertices as given in Appendix A. Note that more complicated polyhedral

shapes can be described as union of these convex primitives.

4.2 Solving The Single Link Problem

To solve the motion planning problem for a manipulator arm, the sequential search

strategy will first plan a collision-free path for the first link of the manipulator arm,

and then the second link, and so on. The key step therefore is to solve the motion

Figure 4.1: Robot coordinate systems

planning problem for a single link. Now assume that the motion of the previous

i - 1 links has already been planned and is specified as a function of a discretized

parameter ti = (0, 11, i.e., BiVl(-&) is known for k = 0, I , . . . , M - 1, and M is

the total number of samples of the whole collision-free path given by user. Note

that this process completely determines the path of ri, one end of link i which is

connected with link i - 1, and as it moves along this path, the problem now is

to plan a collision-free path for link i (or to adjust the values of 8;) to avoid the

obstacles in its way. We call this the single link problem (please see Figure 3.1). To

solve the single link problem, there are four major steps, as mentioned in chapter 3.

Figure 4.2 shows the steps for the single link problem. The following sections give

a detailed discussion of each step.

Having planned the path for link i, we parameterize the path for link i with

a new discrete parameter, ti+l. The motion for link i + 1 now can be planned in

t;+l x 19;+~ space. This process can be iterated until the last link. Clearly, using

the sequential search strategy, we always solve the single link problem in a simple

two-dimensional t x 8 space until we find a path or fail to find it.

4.2.1 Calculating Forbidden Regions

The first step is to compute the joint angle values for a given link which result in

collision with the obstacles, as one end of the link moves along a discretized path. At

each discrete point of this path, the set of angle values that result in a collision with

the obstacles are called forbidden angles. Since we assume that the obstacles and

links are polyhedra, the fundamental and geometric problem is to determine the set

of angles at which a rotating polyhedron intersects another static polyhedron. For

C I compute ti x e space obstacles I

I build visibility graph I
I
C

) search V-graph for a free path I

parameterize the generated path1

Figure 4.2: The diagram shows the steps in solving the single link motion planning

problem.

the case of convex polyhedra, these angle values are interval sets, called forbidden

ranges, bounded by values for which the two polyhedra are in contact. A forbidden

range is therefore, an interval, composed of two angle values, start and end. start

indicates that a change in rotation angle 8 will move further into the contact, and

end away from the contact. There are two steps in computing these contact values.

The first step is to compute all possible potential contact angles, and the second

step is to see which ones satisfy certain constraints.

4.2.2 Potential Contact Angle

Lozano-PCrez [9] defined three basic contacts, called Type A: link-vertex with obstacle-

face, Type B: link-face with obstacle-vertex and Type C: link-edge with obstacle-edge.

Figure 4.3: Three types of contacts. (a) type A or type B; (b) type C.

The definitions of three types of contacts are shown in Figure 4.3. Here the detailed

derivation is ignored (see Appendix B for detailed derivation), which essentially fol-

lows [9]. As a summary, the complete algorithms are shown in Figures 4.4, 4.5 and

4.6.

4-2-3 Constraints

A potential contact does not necessarily imply a real contact. It must satisfy cer-

tain constraints. Based on Lozano-Pkrez's definition (see Figure 4.3), there are

three constraints in general: (1) in-surface constraint, (2) orientation constraint

and (3) reachability constraints. The precise mechanisms for computing these con-

straints differ for type A, B and type C contacts. Lozano-Pkrez presented a detailed

derivation of the constraint detections for a two-dimensional case (see [9]). For the

three-dimensional case, we give a more detailed discussion in Appendix C.

We make use of these constraints to determine whether a potential contact angle

is a real contact angle. These computations are used at each discrete point of

(computing forbidden ranges)
I

I get link face list I

I get link vertex list 1

I get face list for obstacle 4
I

1 get vertex list for obstacle i I
I

compute forbidden ranges (type A) I

compute forbidden ranges (type B) fl
I compute forbidden ranges (type C) I

I

Figure 4.4: The diagram shows the procedure of computing forbidden ranges.

I compute AB-type ranges 1
((type, vertex list, face listg

w

bmpute face normal and distance to origin (fdisg
w

i=i+ 1
next face

I compute distance fmm vertex to origin (vdist)
rn 0 dist 17 fdi , No {-1

next vertex
- -

I compute potential contact angle I
w

I rotate the current vertex I
by a potential contact angle

I

end value of rang

I start value of range I

Figure 4.5: The diagram shows how to compute forbidden ranges for type A and B

contact.

I compute t1[2] and to[2]
I = t lm+v; o = t o n + w I

I compute potential contact angld
I

I rotate m, el, e2
by the potential contact angle 1

end value of the rmg1

I start value of the rangi

Figure 4.6: The diagram shows the procedure of computing type C contact. Please

see Figure C.3 for explanation of symbols used in this diagram.

the path to compute the forbidden ranges. These forbidden ranges, in ti x Oi space,

appear as regions. Note that for each discrete parameter value a number of forbidden

ranges may exist. The set of ranges at a given discrete point is called a forbidden

slice.

Building Forbidden Regions in ti x Oi Space

Having obtained forbidden ranges in ti x 19; space, the next step is to group those

ranges into regions in ti x 8; space. A forbidden region is made up of linear ranges

from a set of adjacent slices such that all the ranges in the region overlap. These

regions are then approximated by simple polygons, however, these polygons may

have too many vertices. Hence we further approximate the polygons to reduce the

number of vertices of a forbidden region to an acceptable number.

4.3.1 Grouping Forbidden Ranges into Regions

The regions are formed by iterating over the forbidden slices from left to right, that

is, from time-parameter t = 0 to t = 1. The basic idea is to group contiguous and

overlapping forbidden ranges in one region. We have used a very conservative scheme

as follows: each forbidden range in the first slice starts a new region (obstacle). We

keep the current range into a bounding range and update it every time after a new

range is added to the region. As each slice is considered, the range overlapping the

bounding range of a given region is added to that region. A region is terminated

when no range in a slice overlaps the bounding range of this region. The grouping

procedure is outlined in Figure 4.7 . Figure 4.8 shows a grouping example in our

implementation. Note that this simple procedure will always yield regions that

increase monotonically in parameter t , albeit the regions may overlap.

4.3.2 Polygonal Approximation

Having grouped the overlapping ranges in a region, our next step is to further sim-

plify the representation of a region by approximating each region with a polygon.

Note that by tracing the end points of each range in the region, we immediately have

a simple polygon. However, there are too many vertices on this polygon, two for

each range. This would make the subsequent V-graph computations computation-

ally intensive. We would like to have fewer vertices in the approximating polygon.

We have implemented two approaches to it. The first approach is a straightfor-

ward intuitive approach, and the second is a more systematic and better approach.

However, we discuss both approaches here.

The first approach is based on obtaining the convex hull, i.e., removing the

concave vertices from the original polygon until all such vertices are removed and

a convex polygon is obtained. This is easily achieved as shown in Figure 4.9. The

process is illustrated on the upper boundary of the original polygon. Tracing the

boundary from left to right, we compute the internal angle at the vertex. If the

internal angle is greater than 180 degrees, the vertex is removed from the polygon,

and a new edge connecting the previous and the next vertex is added. This process

is repeated iteratively until there is no concave vertex left. A similar process is

carried out for the lower boundary of the polygon.

initialize a region

Yes

rn . initializing
a new region

1 Yes

add the range to the region r I update the bounding range I

Figure 4.7: Diagram shows how to group contiguous and overlapping ranges into

forbidden regions.

Figure 4.8: An example of grouping forbidden slices into forbidden regions in our

implementation.

There may still be too many vertices on the boundary of the polygon. To further

reduce the number of vertices, we can prune short edges of the polygon. Figure 4.10

shows the pruning process. This process stops when the number of vertices of the

polygon meets the desired number.

It is easily seen that the convex polygon approach does reduce the number of

vertices, however, it may waste much of the free-space, which is treated as obstacles

and a collision-free path may not exist, For example, the initial, or final, or both

positions, may be trapped in the forbidden region (Figure 4.11 shows an example

for this undesired case).

A variation of the above approach is to reduce the number of vertices merging

adjacent edges if the difference of their slope values is small. Note that with this

approach the resulting polygon may not be convex. The process is iterated until

Figure 4.9: Convex polygon approach works recursively: a vertex is removed at a

time according to the updated internal angle value.

Figure 4.10: Two short edges have been removed by the pruning process, and two

new vertices, vl and v2 are added. Note that the number of edges in the resulting

polygon is less than that in the original polygon.

Figure 4.11: The advantage: total number of vertices is eight; disadvantage: final

position is trapped in the approximated region, but not in the exact forbidden area.

the number of vertices of the polygon is below a pre-specified limit. Figure 4.12

gives an example of this approach, and Figure 4.13 shows a perfect result obtained

by this approach, which is much better than that generated by the convex polygon

approach. However, this approach may also, in some cases, waste much of the

free-space. The fundamental problem is that we are arbitrarily specifying number

of vertices rather than specifying a limit on how much free-space we can afford to

waste. In the next section, we describe an approach based on the latter strategy.

4.3.3 Piecewise Linear Function Approach

This approach is based on polygonal approximation, a sub-area in computational

geometry that deals with the problem of approximating a piecewise linear curve

by another coarser one. In general, there are two types of optimization problems

Figure 4.12: Nonconvex polygon approach: vertex i will be removed since the dif-

ference between slope s;-1 and s; has a small value.

Figure 4.13: There is not much free space lost, but the number of vertices is not

smaller than in the convex polygon approach.

related to polygonal approximation: (1) minimizing the number of vertices of an

approximate curve with the error within a given bound; (2) minimizing the error of

an approximate curve consisting of a given number of vertices [36]. For our purpose,

we make use of type (1) to coarsely approximate forbidden regions by polygons with

a smaller number of vertices within a reasonable error E.

The details of the algorithm are given in [36]. We briefly discuss the basic idea

behind the algorithm. Suppose that the lower boundary of a forbidden region is

considered. Based on the polygonal line with seven vertices, plp2 p7, and a given

error e, polygon P(E) is formed by sliding this polygonal line downwards by E , shown

in Figure 4.14. First of all, edge el is selected to be a window (the definition is given

in [36]). Then we detect whether an edge can be seen from the window. If the last

edge, edge e7, can be seen from the window, edge el, the approximate polygonal line

can be a straight line connecting edge el and el, that is, a polygonal line with seven

vertices becomes a straight line with only two vertices. But in practice, the case

is not that simple. In the example of Figure 4.14, edge e4 is not visible from the

window. Therefore, the window (el at this moment) is updated. After updating, the

window is w2 (see Figure 4.14), and then we continue the visibility detection from

the updated window until the last edge becomes visible from the window. Finally,

a new polygonal line with four vertices, ~ 1 ~ 2 ~ 3 ~ 4 , is generated by this approach. In

our implementation, we use discretized windows and edges.

4.3.4 Growing Obstacles in ti x Bi Space

Since we are using V-graph based approaches to search for a path, the path consists

of several nodes which are vertices of t i x 9; space obstacles. From this point of view,

when the robot manipulator moves to any node along the free path it means that the

robot has touched an obstacle in its workspace. In order to overcome this problem,

we grow them. For the upper boundary of the region, the vertical coordinate value

of each vertex is grown upwards by a given resolution r , and for the lower boundary,

it is grown downwards by r (usually we set r = lo). For two vertical boundaries, the

left one moves one interval to left side and the right one interval to the right side.

In Figure 4.9, the thick solid line shows the grown forbidden region based on this

met hod.

4.3.5 Joint LimitsTreated As t i x B i Space Obstacles

In practice, a revolute joint can not rotate a full circle due to joint limits. For each

joint, the limit values form a forbidden range in which the link can not move. For

Figure 4.14: Reducing the number of vertices with a piecewise linear function ap-

proach. After this procedure the number of vertices becomes four.

Figure 4.15: A result of the piecewise linear function approach (a) compared to that

of the convex polygon approach (b).

link i, a joint angle limit is treated as a rectangular obstacle in its ti x 0; space. The

horizontal extent of the rectangle spans the whole parameter interval [0, I].

4.4 Searching For A Collision-Free Path

Having obtained the polygonal approximations of the obstacles in ti x Oi space, the

next step is to find a collision-free path from the initial position (tf, 0:) to the final

position (tt, 09) in ti x 0; space. We have used V-graph based techniques [12]. The

V-graph is formally defined as VG = (N, E), where N = (I, N l , Nz, . . . , N,,,, F),

is the set of nodes of the V-graph, I, the source node corresponding to the initial

position of the robot link, F, the target node corresponding to the final position of

the robot link, and Ni, the vertices of the polygonal obstacles for i = 1,2,. . , m,

m is the total number of vertices in t; x 8; space. Any two nodes that can "see"

each other, i.e., the line segment joining the two nodes does not intersect any of the

obstacles, are connected by an edge with weight equal to the length of the edge. E

is the set of these edges.

Efficient techniques for building the V-graph are well documented in the litera-

ture and we omit details here [12].

A main reason for choosing the V-graph approach is that in a two-dimensional

space, a necessary condition for a shortest collision-free path length is that it is com-

posed of straight line segments connecting a subset of the vertices of the polygonal

obstacles. The shortest collision-free path from the initial position to the final po-

sition is thus given by the minimum weight path from I to F. We then use breadth

first search to find the shortest collision-free path in ti x 8; space [44].

4.5 Extension Segments And Backup Movements

In many situations (we will illustrate them in chapter 5), it may be crucial for a

given link to back up away from the start or the goal position and then come back

to it, in order for the next link to maneuver. We call such motions backup motions

and they may be crucial in finding a collision-free path. Consider the example in

Figure 4.16. Suppose that the robot links are not allowed to cross over. With this

constraint, the only way for the arm to reach the final configuration is to allow the

first two links to move beyond their final position so that link 3 can move and then

allow the first two links to move back to the final position again.

(b)
Figure 4.16: A three-link example illustrates the backup motions for link 1 and link

2 beyond their start to goal intervals, (a) shows the motion of the arm. It is clear

that the backup movements beyond the start to goal interval happen on the first

two links. (b) shows the ti x 8; spaces for each link. For the first two links, the

initial and the find are located at the same position in their t; x 0; space. When link

3 moves forward along the generated path from the initial node I in t3 x O3 space,

the first two links will move beyond their final positions and then move back to the

find positions again. Note that I = [ti , O;] and F = Itj, O f]

A straightforward modification, as shown in Figure 4.16, leads to such a mech-

anism. In the initial parameterization for link 1, the algorithm considers the sub-

interval from the initial value 9; to the goal value O f , i.e., @, 8: for the first link. In

general, this sub-interval will be a subset of a whole free interval. We parameter-

ize the whole interval (instead of only the sub-interval from initial position to final

position) and then plan the path for the second link. Note that the beginning and

the end of motion of link 1 now do not correspond to t = 0 and t = 1, but to some

intermediate values, t =t; and t =t!. The beginning and goal points for link 2 are

also not at t = 0 and t = 1, but at t =ti and t =ti.

For the first link there is a natural mechanism for the link to move beyond its

final (or initial) configuration - by considering the whole free-interval in which the

initial and the final configuration values for the first joint lie. There seems to be no

natural way of extending such "beyond the final (or initial) configuration motion"

for subsequent links.

The mechanism of backup movements beyond the beginning to goal interval

is realized by searching two extension segments of a collision-free path. Clearly,

these two extension segments have to be in the free ti x 9; space for each of the

robot links. In our approach, we first select two nodes, one node with parameter

value t = 0 and denoted by F;, and the other node with parameter value t = 1,

denoted by F;. We then search for a collision-free path from F; to I, called the

backward extension segment; and a collision-free path from F to F;, called the

forward extension segment. To perform an effective backup movement, so that the

robot link can move beyond the initial to final interval within a big enough range of

the joint angle, F; (or F;) is selected such that the difference between 19; and 8; (or

6; and B1) is as large as possible. The same graph search technique is used to search

for the extension segments as for the main path from I to F. 'See Figure 4.18 as

an example. Segment F;I is the backward extension segment and FF; the forward

extension segment.

Thus the path for link 2 can go beyond the [t;, ti] interval. Similarly, the path

for link 3 also can go beyond the [ti, t!] interval. Such motions correspond to backup

movements beyond the start to goal interval. Hence the first two links can now back

up away from their final position and then move back to their final position. With

this modification, this three-link example is easily solved. The motion is shown in

(a) of Figure 4.16.

4.6 Parameterizing A Collision-F'ree Path

Having planned a collision-free path, the next step is to reparameterize this path.

The new parameters will form the horizontal axis of the two-dimensional t x 0 space

for the next robot link. For example, suppose we have planned a collision-free path

and discretized it for link i - 1. The discretized path is then reparameterized with

the parameter t i . Figure 4.17 shows this procedure.

The method adopted in our motion planner is called equal-length parameteriza-

tion, and uses discrete normalized arclength along the path as the new parameter.

The collision-free path for every robot link is sampled in the same number of sam-

ples, M. Suppose that the motion of the previous i - 1 links has already been

planned and is specified as a function of a discretized parameter ti = [O, 11, i.e.,

1 3 ; - ~ (&) is known for k = 0,1,. . . , M - 1. Further, suppose that the length of the

Figure 4.17: The path for link i - 1 is shown as a piecewise linear path in its

ti-l x 8i-1 space. This path is parameterized (along its length) with the parameter

t i . The parameter ti is then drawn as the horizontal axis in (b) as if the path in (a)

has been "straightened out". The path for the next link (link i) is then computed

a,s a piecewise linear path in the ti x 8i space for link 2 .

path equals L. The path is then divided into M samples of equal length, the length of

each sample being AT;+l = &. The joint angle corresponding to kth sampled point

is then easily determined by linear interpolation and represents 8;(&). Note that

for each discrete value &, k = 0,1,. . , M - 1, we can calculate the corresponding

q;. Figure 4.18 shows this method.

A main drawback of constant number of samples is that a "jump" may happen

when the robot arm moves along the vertical segments (see Figure 4.18). To over-

come this, we may choose a larger M, but this results in spending a longer time to

build the t; x 8; space. Therefore, a more adaptive sampling scheme that guarantees

a minimum resolution for every joint angle is more desirable.

4.7 Backtracking Mechanism

The main intention of backtracking search mechanism is to make the motion plan-

ner more powerful so that it becomes closer to a complete planner. Although the

sequential planner described above does solve difficult problems such as the one il-

lustrated in the previous section, nevertheless, there are situations where (say, while

planning for link i) no collision-free path is found in the ti x 8; space. In such

situations, the planner must backtrack and re-plan the path for the previous links.

i.e., a backtracking search mechanism is required. The planner may go back to the

previous link, link i - 1, and search for another free path, in the ti-1 x 8i-l

space (which has already been built previously). Along the new path, Q:-,, the

planner should reconstruct the t i x 8; space and search for a collision-free path Q:

for link i again. This is repeated till either (i) a path is found for link i, or (ii) all

Figure 4.18: The path is parameterized by "Equal Length" based approach.

the paths are exhausted in ti-1 x 8;-l space. In case (i), the planner goes on to the

next link, link i + 1. In case (ii), the planner has exhausted all the paths for link

i - 1 and still does not find a path for link i. Therefore, the planner backtracks

another level, i.e., to link i - 2, and searches for another path, Q:-~, for link i - 2

in ti-2 x 8;-2 space (which has been built previously). Along this new path Q:-2,

the planner builds and searches the ti-l x 8;-1 space for a new path 9:-, for link

i - 1. Along this path, the planner will try to find a path for link i. In general,

the planner may backtrack more than just the previous link, say k previous links

and search again. The parameter k is the backtracking level, and it is an adjustable

parameter. Indeed, with greater k, the planner will be more complete but slower as

is shown in the worst case complexity analysis of the planner in section 4.8.

In the following paragraphs, we present a precise backtracking mechanism based

on the above approach.

Suppose that while planning for link i, there is no collision-free path found in

the corresponding ti x 8; space, a main question is how to modify or re-plan a new

path for link i - 1, and how many such paths should be tried during backtracking.

Since our methodology to find a path in ti x 8; is V-graph based, our approach is

to first determine the node with the maximum parameter value that is reachable

from the start node, i.e., the maximum parameter value of t i at which the "block"

occurs for link i in ti x 8; space. A portion of the path Qi-1 in ti-1 x 8;-1 space,

that corresponds to this maximum value, is then deleted. Since our representation

is V-graph based, we remove that edge segment from the V-graph that is on the

~ a t h and corresponds to the blocked parameter value '. This pruned V-graph is

then searched again for a new path QI-, . Along this new path' for link i - 1, the

single-link problem is solved again for link i, i.e., forbidden regions are constructed

and approximated by polygons, and a V-graph search is carried out for a path, Q:

in ti x 6; space.

The structure of the new planner with the backtracking mechanism is shown in

Figure 3.2 in chapter 3. Several examples have been implemented and the experi-

mental results are shown in chapter 5.

To clarify our discussion, we would like to illustrate the backtracking mechanism

with an example shown in Figure 5.5 in chapter 5. We redraw the t2 x 62 space for

link 2 in Figure 4.19, and it shows the V-graph for link 2. The first path chosen by

the planner (the shortest path in the V-graph) is segment IF. Along this path IF,

there is no free path for link 3 - the initial position is trapped in a forbidden region

as shown in the t3 x 63 space for link 3 in Figure 4.20. Physically, it implies that

link 3 can not move out of its initial position if links 1 and 2 move as chosen by the

planner.

Without the backtracking mechanism, the planner would have failed to find a

path in this situation. With the backtracking mechanism, the planner determines

'We may consider a range of the parameter values (instead of a single "blocking" parameter

value) over which the current link is blocked. This range could be determined by a forward

search from the start node to the node with the maximum reachable parameter value of t i , and

a backward search from the goal node to the minimum reachable parameter value of t i . Then

the edge segments on the path, which correspond to this range of the parameter t i , are deleted

from the V-graph.

Figure 4.19: The V-graph for link 2. The shortest path is IF; the planner chooses

it, but does not find a free path for link 3 (See Figure 4.20).

the parameter value where the "block" takes place, and goes back to the t2 x 02 space

for link 2. It deletes the edge segment that correspond to the blocked parameter,

in this case, the edge segment IF. In the pruned V-graph, the planner searches

for another path for link 2. Along this new path for link 2, the planner builds and

searches the tg x 03 space for a path for link 3 again. This process repeats until a

path is found for link 3. In this particular example, a collision-free path for link 3 is

generated after 15 backtracking searches. Figure 4.21 shows that edge segments IF,

INl, IN2, N3F and N4F have been removed before the planner finds a path along

which a collision-free path exists for link 3.

Figure 4.20: The V-graph for link 3. The initial position, I, and final position, F,

are trapped in the forbidden region since link 2 moves along the path IF shown in

Figure 4.19.

4.8 Complexity Analysis

A full complexity analysis is beyond the scope of this thesis. We briefly present

results from Gupta and Guo [5] where a more detailed analysis is given. Since

we compute discretized approximations in t i x 6; space, there is no straightforward

correspondence between the polygonal forbidden regions in t ; x 8; space, and the

obstacle and the robot geometry. Hence, we present a fairly abstract analysis of the

planner. Let fi be the complexity of building the 2-dimensional sub-space t ; x Oi,

gi is the complexity of searching this 2-dimensional sub-space and p; is the number

of paths explored in this sub-space. fi, g; and pi are all functions of the number

of vertices, faces and edges in each of obstacles and robot links. Assume that the

upper bounding values of fi, gi and pi are given as f , g and p, respectively. The

Figure 4.21: The pruned V-graph for link 2 after 15 backtracking searches is shown.

Along the new path IN3N2F, the planner successfully finds a free path for link 3

(See column (d) in Figure 5.6).

overall complexity of the planner with level k backtracking is [5]:

Furthermore, our representation is based on visibility graph in the ti x Oi space.

Suppose there are a maximum of m vertices in the ti x 0; space. Since an edge

is deleted every time the planner backtracks, at most 0(m2) paths are possible in

t i x 8; space for any i, i.e., p is 0(m2) [31]. Building and searching a visibility graph

is then in time 0(m2) . Note that the major part of the time complexity in 0(m2)

is the time spent on computing the t i x 8; space obstacles (this can be seen from

our experimental result in chapter 5). Hence, the time complexity of our motion

planner with the backtracking mechanism is

for a backtracking level k. Thus, the planner complexity is exponential in k, however,

for a given k, the planner complexity will be polynomial in m. In practice, k will

be a small integer (1, 2, or 3).

CHAPTER 5

Experiment a1 Results

We have applied our motion planner to several examples. In this chapter, we report

our results on six examples. In Figure 5.1, (a) shows the motion of a six-link

manipulator arm and (b) shows the corresponding t i x Oi spaces for each link. In

Figure 5.2, (a) shows motions of a PUMA 560 arm and (b) shows the ti x Oi space for

each of robot links. Figure 5.3 shows the motions of another six-link manipulator

arm (this example is similar to the one used by Barraquand and Latombe and has

been chosen for comparison purposes), and Figure 5.4 shows the t i x 0; space for

this arm. Figure 5.5 show the motions of a three-link manipulator arm along the

collision-free path found by our motion planner with the backtracking mechanism,

and Figure 5.6 show the t i x 8; space for Figure 5.5. In Figure 5.7 and 5.8, the

collision-free motion was generated for a space arm. Figure 5.9 shows the motion

planned for the same manipulator, but in a more complex environment ("H" shaped

obstacle) for the space arm. Figure 5.10 shows the t i x 0; space for it. The run times

given in the Tables are with the planner running on a SUN Sparc station I.

The first example shown in Figure 5.1 has been chosen to show how our sequential

planner works for manipulators with many degrees of freedom and to illustrate the

role of backup movements in our planner. The planned collision-free motion is shown

in Figure 5.1 (a). Note that the initial (top left corner) and the final positions

(bottom right corner) are the same for the first five links. The corresponding ti x Bi

spaces are shown in Figure 5.1 (b). For link 1, there are four intervals that are

forbidden. The horizontal axis represents the parameter tl E [O,1] and the vertical

axis represents the angle 81. Note that the whole free interval in which the initial and

the final angle values Of and 8: lie, is parametrized, and the parameter values tf and

t f , which correspond to the start and the final angle values Of and 8!, respectively,

is determined. The line segment joining (ti, Of) and (ti, 8;) determines the collision

free path for link 1. This path is discretized and parameterized using the equal-

length parametrization. This associates a discrete value O1 with each parameter

value t2. The forbidden ranges at each of these discrete parameter values are then

determined, and the corresponding t2 x O2 space is shown in Figure 5.1 (b). Since the

initial and the final positions are the same for link 2, the path is trivial. However,

note the additional extension segments from the start node to a node with minimum

parameter value (in this case, 0.0) and from the final node to a node with maximum

parameter value (in this case, 1.0). The t3 x e3 space is then built along this extended

path. This process repeats for links 3, 4 and 5. For the final link, this need not

be done. Were these extension parts not chosen, the path for link 6 would not

have been found. With the extension parts, however, a path is found as shown in

t6 x 86 space in Figure 5.1 (b). In order to avoid obstacles, the path for link 6 goes

around an obstacle (in the middle) in the t6 x 86 space. In the first segments of

this path, the parameter value decreases to less than the value corresponding to the

initial configuration, which implies that the previous links move beyond their initial

position. The same applies to the final configuration. Thus the manipulator arm

"shrinks" first and then "stretches" again to its final configuration.

The next example is for the first three links of a PUMA-560 arm. In this example,

there are five polyhedral obstacles in PUMA'S workspace (including the bottom table

which is also treated as an obstacle). The initial position of the forearm (link 3)

is in between two vertical polyhedra, and the final position of the forearm is under

the horizontal polyhedron [see Figure 5.2 (a)]. There is no collision when it moves

along the path generated by our motion planner. Figure 5.2 (a) shows the motions

and (b) the t i x 0; space for the first three links. The blank rectangular regions

represent the joint limits for each of the joint. This example was also implemented

on a real PUMA 560 manipulator. The PUMA 560 is connected to a SUN 3/50.

The obstacle dimensions were measured and manually entered in the machine. The

PUMA 560 dimensions were taken from the user's manual. The output of the

planner was downloaded to the PUMA controller which moved the PUMA along

the collision-free path.

The example shown in Figure 5.3 is similar to that used by Barraquand and

Latombe. They have planned the motion for this example with their numerical

potential field approach with random search. This example has been deliberately

chosen for comparison purposes and shows that our motion planner can find collision-

free paths even in fairly tight situations.

The next example has been chosen to illustrate the backtracking mechanism in

our planner. This has made our motion planner more powerful, especially in more

cluttered environments. Consider the example shown in Figure 5.5. The initial

Figure 5.1: An example of a six-link arm with three obstacles. The path was found

by our motion planner with the backup movement consideration. (a) the planned

motions. The initial and final configurations are located at the top left corner and

at the bottom right corner respectively. (b) the ti x Oi space for each link.

Figure 5.2: A planned motion for a PUMA-560 arm when several polyhedra exist.

Along this path, the PUMA-560 arm moves without any collision. (a) illustrates

the motion and (b) shows the ti x Oi space for each link.

Figure 5.3: The planned motion for another six-link manipulator arm. This example

is similar to that used by Barraquand and Latombe. The motion for this kind of

mmipulator arm has also been planned with their potential field approach.

Figure 5.4: The ti x Bi space for each link of the arm shown in Figure 5.3.

position of link 3 is illustrated at the top left corner. In this case, link 3 is blocked

by two obstacles quite tightly. It can not move out from between obstacles 3 and

4 when the first two links move counterclockwise. A similar situation exists at the

final position of link 3. Figure 5.6 shows the procedure of backtracking searches. In

(a), both initial and final nodes are trapped in the forbidden regions. It implies that

when link 1 rotates counterclockwise and link 2 rotates clockwise but not far enough,

the initial node for link 3 is trapped in the forbidden area. A similar explanation

holds for the final link. In (b), the initial node is in the forbidden region, and in

(c) the final node is in the forbidden region. Our motion planner with backtracking

mechanism has planned a free path after 15 backtracking searches, and (c) shows

the final result after these 15 backtracking searches.

We have also applied our motion planner to the first four links of the pro-

posed special purpose dextrous manipulator (SPDM) to be used in the space station

project. For brevity, we will call this the space arm. Figure 5.7 shows the planned

motion of the space arm, and Figure 5.8 shows the t i x Bi spaces for each link.

Since the path for link 2 is a straight line (generated at the first search, but not

shown in the figure), no path exists for link 3 along this path. This brings out one

shortcoming in the backtracking mechanism based on edge deletion, i.e., the set of

paths considered is a proper subset of the paths in the V-graph. However, if the

V-graph is very sparse, i.e., the number of nodes is very small in the V-graph, the

number of paths explored is very small. For an extreme case (such as link 2 of this

example), there is no obstacle in the corresponding t 2 x 02 space, and the only path

is the straight line connecting the source and target nodes. Our approach is to add a

predetermined small number of nodes in the V-graph, for instance, we have inserted

two nodes in the middle arbitrarily. Then the planner backtracks and searches for

Figure 5.5: Another planned motion for a three-link arm. In this case, the environ-

ment is filled with six obstacles. The third link is blocked by obstacle 3 and 4 at its

initial, and by obstacles 5 and 6 at its final position, respectively.

Figure 5.6: The t i x Bi space for each link of the arm shown in Figure 5.5. In (a),

the initial and final nodes are trapped in the forbidden area for link 3. In (b) and

(c), the initial and final nodes are surrounded respectively. After 15 backtracking

searches, a free path is found, as shown in (d).

another ~ a t h in t2 x O2 space. Along this new path, it plans the motion for link 3

again. Note that the planned motion was finally generated after one backtracking

search to the second link (the t i x Oi space for the backtracking search procedure is

ignored here).

Finally, another example for the space arm with an "H" shaped obstacle is shown:

the planned motion in Figure 5.9 and the t i x 8; spaces in Figure 5.10.

Next we present and discuss the run times for a few examples. In general, there

are four major components of our planner for each manipulator link: (i) computing

forbidden angles, (ii) building V-graph, (iii) searching for a collision-free path, and

(iv) parameterizing the generated path. Recall that the worst case complexity of the

planner is exponential in the backtracking level, k, but polynomial in n, the degrees

of freedom, for a given k. The approximate run time for the planner can be obtained

by multiplying the average run time for a single link by the number of single link

problems solved (including the backtracking searches). For the example shown in

Figure 5.5, the planner should backtrack one level (only one level for this particular

example) to link 2 because of no path found for link 3. In this case, the backtracking

level, k = 1. For this example, the planner backtracks to link 2 fifteen times, and

the total run time is roughly 15 x (62.941 + 50.242 - 48.987) = 962.940 seconds (the

run time shown in the second table is for solving one single link problem).

The run times (in seconds) given below are obtained by executing the planner

on Sparc station I in a time-shared environment. Note that the run times for a

dedicated machine will be faster.

Figure 5.7: The planned motions for a four-link space arm. In this case, the environ-

ment is filled with two simple polyhedral obstacles, and the sequence of intermediate

motions is shown from the top left corner to the bottom right corner.

Figure 5.8: The ti x 8; space for each link of the space arm shown in Figure 5.7.

Figure 5.9: The planned motions for a four-link space arm in the environment filled

with a 'H" shaped obstacle. The sequence of intermediate motions is shown from

the top left corner to the bottom right corner.

Figure 5.10: The ti x Oi space for each link of the space arm in the case of "H"

shaped obstacle.

Tables of Run Time

(in second)

(1) A six-link arm with three obstacles (Figure 5.1)

I forbidden angles I V-graph I searching I sampling I subtotal

Link 2

Link 3

Link 4

Link 5

(2) A three-link arm with six obstacles (Figure 5.5)

Link 6

Tot a1

38.047

24.667

25.656

31.171

The total run time is 962.940 = 15 x (62.941 + 50.242 - 48.987), because of 15

backtracking searches to link 2.

, 25.492

145.033

-

5.877

2.260

3.005

2.643

6.659

20.444

Link 2

Link 3

0.879

0.716

0.778

0.804

0.399

3.576

forbidden angles

48.987

53.524

0,043

0.024

0.018

0.024

44.846

27.667

29.457

34.642

0.030

0.139

V-graph

0.757

8.333

32.580

169.192

searching

0.495

1.078

sampling

0.003

0.006

subtotal

50.242

62.941

(3) A four-link space arm with two obstacles (Figure 5.7)

The total run time is 72.047 = 2 x (26.033 + 16.671 - 16.007) + 18.653, because of

one backtracking search to link 2.

Link 2

Link 3

Link 4

(4) A four-link space arm with "H" obstacle (Figure 5.9)

forbidden angles

16.007

17.586

16.895

i

searching

0.509

0.712

0.208

V-graph

0.151

7.729

1.530

Link 2

Link 3

Link 4

Total

sampling

0.004

0.006

0.008

forbidden angles

49.034

48.554

55.170

152.758

subtotal

16.671

26.033

18.653
L

V-graph

0.248

5.292

7.780

13.320

searching

1.923

2.458

1.059

5.440

sampling

0.003

0.005

0.011

0.019

subtotal

51.208

56.309

64.020

171.537

CHAPTER 6

Conclusions

6.1 Summary

In this thesis, a new motion planner for planning collision-free paths for a manipula-

tor arm with many degrees of freedom among known stationary obstacles has been

developed and implemented. This planner, which is based on a sequential search

strategy, is efficient and applicable for many-degree-of-freedom manipulators simply

because the n-dimensional motion planning problem is decomposed and simplified

into simpler single link problems which are solved sequentially. A backtracking strat-

egy is incorporated into the planner. The complexity of the planner is polynomial

in n for a given level of backtracking, k. The core of the planner is the single link

problem - plan a motion for one degree of freedom link (angle for a revolute joint) to

avoid collisions as one end of the link moves along a given path. The path generated

after solving the single link problem is then parameterized. Along this path, the

planner solves the single link problem for next link until the last single link problem

(for the last link of the manipulator arm) is solved.

Although the planner is not complete, in most situations, it does find a collision-

free path. However, it is well known that the complexity of the motion planning

problem is exponential in n. Our planner, therefore, represents one way of developing

practical motion planners for many-degree-of-freedom manipulator arms. We have

demonstrated the effectiveness of the planner for a variety of manipulators up to

six degrees of freedom in the order of a few minutes on a SUN Sparc station I.

We can easily envisage the planner solving problems for manipulators with much

larger number of degrees of freedom. In summary, our planner has a number of

advantages: (i) it completely avoids the difficulty of representing n-dimensional C-

space obstacles, (ii) it is efficient and practical - runs at the most in the order of a

few minutes, even for manipulators with high number of degrees of freedom, (iii) it

is deterministic (in the sense that it does not use stochastic search techniques), and

(iv) it provides a mechanism for trading off execution speed of the planner with its

completeness.

Some Open Issues

Developing and implementing a motion planner involves dealing with many areas

- object modeling and representation, computational geometry, and search tech-

niques. However, the treatment of these topics was far from exhaustive, even though

some approaches have been suggested and experimented with. Next we discuss the

author's selection of some possible extensions and some interesting and unsolved

issues.

1. Motion planning problems with multi-degree of freedom at one joint

Our implementation assumes that each joint has one degree of freedom. This

is a very basic structure and most industrial manipulators fall under this cat-

egory. There exist manipulators in which there is more than one degree of

freedom at one joint, say three degrees of freedom at a spherical joint, such

that a robot link can rotate around three Cartesian axes called "yaw", "pitch"

and "roll". How do we extend our approach to such manipulators? There are

two possibilities. First is that we could solve a higher dimensional problem, in

this case, a four degree of freedom problem, i.e., as the base of the joint moves

along a certain path, plan for all three degrees of freedom simultaneously. An-

other possibility would be to arbitrarily prioritize the degrees of freedom and

plan the motion sequentially. However, there is no natural way to prioritize.

In fact, the prioritizing may depend on the workspace and the manipulator

structure.

2. Motion planning problems with moving obstacles

Another problem is how to plan the motion of a manipulator when some of

the obstacles in the robot's workspace are assumed to be moving along known

trajectories with known velocity and acceleration. There are some approaches

to solve some simple problems for moving obstacles 12, 31. We believe that

our approach can be combined with these approaches to plan the motions of

a manipulator among moving obstacles.

3. Motion planning problems with constraints on the robot hand

There are other versions of motion planning problem, for instance, the robot

hand may be constrained to move on a planar surface. Extension of our planner

to solve such constrained motion planning problems is an interesting problem.

4. Eficient motions

The consideration comes from the unnecessary movements of some robot links.

See Figure 5.5. Link 2 rotates too far away from a "reasonable path". In fact,

it is not necessary for link 2 to rotate further down when link 3 moves out from

the "gap" between obstacles 3 and 4. The reason is that the motion planner

only searches several nodes in the free ti x 0; space. Definitely, a free-space

based approach will give better and safer paths. We would recommend using a

free-space based approach instead of the visibility graph based approach that

we have used to solve the two-dimensional planning problem.

5. Geometric reasoning and dynamic prioritizing

The success of our sequential planner lies in that it decomposes motion plan-

ning for an n-link into a sequence of simpler single-link problems, starting from

the base link and finishing at the last link. Currently, we rely on the back-

tracking strategy to find another path for the previous link, if no path exists

for the current link. However, the backtracking strategy is completely based

on selecting paths in the ti x 8; spaces. One way to improve it would be to use

geometric reasoning in the Cartesian space to guide which path to select in the

ti x Bi spaces. In fact, in many situations, it may be better to use some other

ordering (than the base link to last link ordering we use in our planner) or

prioritizing of the links, i.e., solve the single link problems in a different order.

In fact, this prioritizing of links will, in general, depend on the manipulator

and obstacle configuration. We could, for example, use a geometric reasoning

system to dynamically assign the link priorities, and then sequential planner

would then plan a path based on the link priorities.

6. Completeness

Our planner is not complete, i.e., it may not find a collision-free path even if one

exists. With the backtracking strategy, we have provided one way of trading

off efficiency of the planner with completeness. However, even with full back-

tracking, the planner is not complete. An open issue is to consider variations

of paths different than the one suggested in our backtracking methodology.

7. Integrating the planner with a vision module

The planner requires a full geometric model of the obstacles in its environ-

ment. Currently, we manually enter this. Often it is assumed that these

models will be derived from a CAD database. However, these are cumber-

some processes. A better way would be to automatically acquire these models

from sensed data, e.g., intensity or range images [6] . Such motion planners

integrated with sensing modules would go a long way toward making future

robots autonomous.

Appendix A

Coordinate Systems and

Geometric Represent at ions

A. l Link Coordinate Systems

To describe each link of a manipulator arm, we use the standard notations as in

[44]. The base frame of the robot coincides with its workspace coordinate system,

which is usually called a world frame, or universal frame, and is denoted by W. The

obstacle frame, 0, is related to the world frame by a position vector p,. The link

frames are named by number according to the link to which they are attached. That

is, frame Li is attached rigidly to link i. The convention we use to locate frames on

the links is as follows: the Z axis of frame Li, called Zi, is coincident with joint i,

The origin of frame L; is located where the a; perpendicular intersects the joint i

axis. Xi points along a; in the direction from joint i to joint i + 1. Yi is formed by

the right-hand rule to complete frame Li. Figure 4.1 shows the whole coordinate

systems.

If the link frames have been attached to each link according to our convention,

the following definitions of the link parameters are valid:

a;: the distance from axis z; to axis z;+l measured along axis xi;

di: the distance from axis to axis x; measured along axis z;;

a;: the angle between axis z; and axis z;+l measured about axis x;;

8;: the angle between axis x ; , ~ and axis xi measured about axis zi;

Hence a robot manipulator arm can be represented kinematically by giving the

values of four quantities for each link. In Figure A. 1, we give an example of the

definitions of link parameters (the example shows the first three links of PUMA 560,

and the values of quantities given in the figure have been used in our implementa-

tion). We would like to mention again that there is only one degree of freedom on

each joint. The purpose of our motion planner is to generate the value of 8; at which

no collision happens between a robot link and obstacles.

A.2 Geometric Models And Representations

In our implementation, robot links and obstacles are both represented by convex

polyhedra which may have an arbitrary number of surfaces and vertices. We limit

our computer representation to convex polyhedra because they greatly simplify cal-

culations of configuration space f& each robot link. For a nonconvex polyhedron,

Link Parameters

Link 1: aO= 0.0
a0 = 0.0
dl= 26.45
81 (variable)

Link 2: a1 = 0.0
a1 = -90.0
d2 = 9.2

82 (variable)

Link 3: a2= 17.0
a2 = 0.0
d3 = -4.0
83 (variable)

Figure A.1: An example of definitions of link parameters for PUMA 560

it can be decomposed into several convex polyhedra. For other kinds of models,

like cylinders and spheres, we can use bounding convex polyhedra. The following

sections give the data structures to describe the geometric models.

A.2.1 Data Structures For A Robot Arm

Usually, a robot arm is composed of several links, and one link is modeled as a

cylinder or square bar. We described any robot link as a square bar which has six

faces and eight vertices. Therefore, in our implementation, it is the basic structure of

the robot link. The following are defined for implementation of our motion planner.

(1) The Data Structure: Arm

typedef struct arm {

int numlinks;

Link-state link-state[MAXLINKS];

Link-style link-style[MAXLINKS];

) Arm;

In this structure,

a numlinks: the number of links of the given robot arm.

link-state: a data structure which describes the state of the specified robot

link.

a link-style: a data structure which describes the solid of the given robot link.

(2) The Data Structure: Link-state

The Link-state structure is defined as below,

typedef struct link-state{

float a;

float d;

float a;

float 0;

) Link-state;

(3) The Data Structure: Link-style

The Link-style structure is defined as below,

typedef struct link-style{

int numfaces;

Face face[M AXFACES] ;

) Link-style;

In this structure,

numfaces: the number of faces os a robot link. The limit is MAXFACES

which is defined as SIX because a robot link is described as a square bar

which has at most six faces.

face: a data structure which represents one planar surface of the robot link.

(4) The Data Structure: Face

The definition of Face is

typedef struct face{

int num-vertices;

Normal normal;

Vertex vertex[MAXVERTICES];

) Face;

where

num-vertices: the number of vertices of the surface. the maximum number is

four according to square bar description of the robot link.

normal: a data structure which describes the unit normal vector of the given

surface.

vertex: a data structure which represents the position of the vertex and the

positions of its neighbors.

(5) The Data Structure: Vertex

The definition of Vertex is

typedef struct vertex{

int numneighbors;

Vector point;

Vector neighbor[MAXNEIGHBOURS];

) Vertex;

where

numneighbors: how mahy neighbors the specified vertex has. In our case, the

maximum number is three(square bar definition).

point: a data structure which is the position vector of the given vertex.

0 neighbor: a data structure describing the positions of vertex neighbors.

A.2.2 Data Structures For Obstacles

Obstacles in a robot workspace are represented as convex polyhedra. The simplest

model is a cube, a square bar, or a pyramid. We describe a group of obstacles by a

obstacle list data structure, which definition is

typedef struct obstacle-list {

int num-obstacles;

Obstacle obstacle[MAXOBSTACLES];

) Obstacle-list;

where

r num-obstacles: how many obstacles there are in the robot workspace. The

maximum number depends on how many obstacles you want to simulate a

workspace.

r obstacle: a data structure to describe an obstacle.

Here is the obstacle data structure.

typedef struct obstacle{

int numfaces;

float 8,;

float 8, ;

float 62 ;

Vector position;

Face face[MAXFACES];

) Obstacle;

where

r numfaces: same as in Link-style structure;

8,: the rotation angle around the x-axis;

8,: the rotation angle around the y-axis;

a 0,: the rotation angle around the z-axis;

r position: the position vector of thk obstacle in the robot workspace.

face: same as in Link-style structure.

87

Transformation Between Coordinate Systems

As we know, the robot coordinate system is a multi-coordinate system. The robot

workspace is defined with respect to a reference coordinate system which is called

a world system in our approach. Therefore, a coordinate transformation is needed

when a potential contact between a manipulator link and an obstacle is calculated,

because manipulator links and obstacles are described in their own coordinate sys-

tems, respectively. There are two ways to do the coordinate transformation. One is

to transform manipulator links and obstacles from their own systems to the reference

system(wor1d coordinate system). Another is to transform obstacles from their own

systems to the current link coordinate system which is called a link coordinate sys-

tem. In our implementation, the second has been selected since the final results are

the joint angles in our motion planner. The transformation between link coordinate

system has been given in [45].

Appendix B

Computing Potential Contact

Angles In 3D

A potential contact angle is a value of any possible contact between a vertex and a

surface or between two edges (we only discuss the case where the joints are rotary

ones so that the configuration parameters are the joint angles). Suppose link k

will be planned in the three-dimensional space, and also the models of link k and

obstacles are convex polyhedra. We have defined the coordinate frame so that the

origin corresponds to the position of revolute joint k and the z axis is aligned with

the joint axis. The coordinate representation of all vectors (i.e. vertex vectors and

surface normal vectors) is relative to this coordinate frame. When link k rotates

around the z axis (the joint k axis), each of its vectors rotates the same value of

the joint angle, and each point on the vector moves along a circle whose center is

at a different level (different z value) along the z axis. We assume that the initial

position of the link k corresponds to Bk= 0. The derivation in this chapter is based

on [9], but it is more detailed. Now let's compute the potential contact angle for

three different types of contact.

(1) Type A contact: Vertex of a link with face of an obstacle

We are given a vertex of link k whose position vector is v and an obstacle surface

whose plane equation is n . p + d = 0 (here n is the outward pointing unit normal

of the plane, p is a vector of any point on the surface and d is the distance between

the origin and the surface). In order to determine the value of Bk, we obtain the

equation for Ok by substituting the vertex position vector, rotated by ek, into the

plane equation and then solving for Ok. Let v' denote the rotated vertex vector,

then the coordinates of v' are

v: = v, cos Or - v, sin Os

Substituting v' into the plane equation yields a simple trigonometric equation

(nxvs + n,vy) cos + (n v, - n,v,) sin Bk = - d - n,v,

whose solution is

where

Now let's determine whether increasing or decreasing flk causes a collision, i.e.,

whether a contact angle is a start or an end of the forbidden range. See equation

B.1. The left side represents the perpendicular distance of the rotated vertex from

the obstacle surface. Therefore, the derivative of the left side of B.l will determine

whether the contact angle is a start of the forbidden range or an end of it. For

type A contact, if sign(dir) = - 1, the increasing of Bk will cause a collision, i.e.,

this contact angle is the start, or if sign(dir) = 1, the decreasing of Ok will cause a

collision, i.e., it is the end. Here dir equals

dir = (nyv, - nxvy) cos Bk - (nxvx + nyvy) sin Bk

The orientation constraint simply tests whether the other endpoints of all the

edges meeting at the contact vertex are outside of the obstacle surface. This is done

by substituting the edge vectors into the left side of the plane equation and then if

all the values are positive, the orientation constraint is satisfied.

(2) Type B contact: vertex of obstacle with surface of link

Similarly, we are given an obstacle vertex and a link surface. The procedure of

computing Ok is almost identical to. the type A case. Here we mention that the only

difference is the sign of the first argument to the arctangent, and the dir will also

be different from equation B.3. They are shown in following equations,

4 = arctan(-nyv, + nxvy, nxv, + nyvy)

dir = (-nyvX + n,v,) cos 9 k - (n,v, + n,v,) sin Ok

(3) Type C contact: edge of link with edge of obstacle

There is no doubt that this case is substantially more difficult. We make use of

the results derived in [9], but we discuss it briefly. The basic idea is that the points

on the edge can be represented by a parametric equation. Let 1 be the position

vector of the intersection point on the link edge and o the position vector of the

intersection point on the obstacle edge. Then the parametric equations for 1 and o

are as follows:

where v is the position vector of one of the endpoints of the link edge and m

is the difference vector between the endpoints of the link edge, w is the position

vector of one of the endpoints of the obstacle edge and n is the difference vector of

the endpoints of the obstacle edge. The parameter tl E [O, 11 parameterizes along

the link edge, and and to E [O,1] along the obstacle edge.

As the edge rotates around the Z axis, points on the edge trace out circles. The

92

equation for points on those circles are

We assume m, # 0, then combine these two equations above by solving the

second equation for ti = (z - v ,) /m , and then substituting into the first equation

to obtain

Equation (B.6) is an implicit equation for points on the rotation surface.

Remember that when intersection happens, the intersection point on the obstacle

edge must also satisfy equation (B.6). Consider the parametric form of this point as

x = nxto + wX y = nyto + w, z = n,to + w,.

Then substituting into (B.6) gives a quadratic equation in to, which is

where

p = (nf + n:)m: - (mf + mi)nf

93

Having two roots of to we can solve for two values of tl since we know that the

z values at contact must be equal. Therefore, the two values of tl can be obtained

by the following equation:

For those values of to and tI, only to E [O, 11 and tl E [O, 11 are acceptable

(satisfying the in-edge constraint). Having obtained the position vectors 1 and o,

the potential contact angle can be easily calculated, i.e.,

For the case where m, = 0, we solve for to simply by to = (v, - w,)/n, in terms

of equal z values. Then we solve quadratic equation (B.7) for tl. We must note that

the coefficients p, q and r are different from those used in (B.7). These coefkients

are given by

In what follows we need to determine whether increasing or decreasing Ok will

cause a collision if the Ok satisfies the orientation constraint. We have to make sure

that the vector c(Ok) is the outward-pointing by a factor k, where k = sign(c. (el +
ez)). Then we obtain the type-C C-surface equation.

If the derivative of the left side of the equation is positive, increasing Ok will

cause a collision.

Note that when we have already obtained a start value and an end value of the

forbidden range, it is not necessary to compute the potential contact angle again

since we consider that the robot links and obstacles are both convex polyhedra.

Appendix C

Geometric Constraints

We consider only the case where robot links and obstacles are convex polyhedra.

Lozano-Pkrez first defined three basic contacts in space, called Type A, B and C (see

Appendix B for more details). The definitions of three types of contacts are shown

in Figure 4.3. Lozano-PBrez then defined constraints in terms of those three types

of contact [9]. In our implementation, we make use of his ideas and techniques.

There are different constraints for different types of contacts. For the contact

between vertex and surface, there are two constraints: (1) in-surface constraint and

(2) orientation constraint. For the contact between two edges, there is an orientation

constraint. We will discuss them respectively.

(1) in-surface constraint

When we obtained a potential contact angle in between the link and an obstacle,

we need to prove if it is the real one or not by checking the two constraints. The in-

surface constraint means that the vertex must be within the surface of the obstacle

Figure C.l: If c q + a2 + as + a4 = 2w, the vertex v is within the surface.

after rotating it by the value of the potential contact angle. In some cases, the

rotated vertex may not be within the surface even though it satisfies the surface

function, because a surface function can describe an infinite surface in the three-

dimensional space. Since we know that the contact vertex is on the surface, all that

remains to be determined is whether it lies within the surface. This can be done by

computing the sum of angles which are formed by the vertex with each two vertices

of the surface as shown in Figure C.1. The constraint is satisfied if the sum of the

angles is equal to 2w. Note that for type A contact, the vertex has to be rotated by

the value of the potential angle in the positive direction, and for type B, the rotation

direction must be opposite to that for type A.

(2) orientation constraint

For orientation constraint, the orientation of the edges at the potential contact

point must be compatible, that is, the edges that define the contact vertex must be

outside of the touched surface of the polyhedron. Therefore, the detection of the

orientation constraint can be simple. All that is required is that the edges forming

the contact vertex be outside of the contact surface. Practically, the way of testing

this constraint is by ensuring that the polyhedron edges that intersect at the contact

vertex point outward from the contact surface. This can be done by first rotating

the contact vertex by the potential angle value, then checking the direction which

the edges of the polyhedron point to. For the example shown in Figure (2.2, if e l , e2

and e3 are the edge vectors pointing away from the vertex, and n is the unit normal

vector of the contact surface, then the orientation constraint boils down to

sign (n el) 2 0 sign(n . e2) > 0 sign(n e3) 2 0

where sign(x) = x / l x l for x # 0 and 0 otherwise.

It is more difficult to detect the orientation constraint for type C contact. The-

oretically, when the two edges are in contact (Figure C.3)) any motion component

perpendicular to both of them will cause a collision while a component of motion

along either edge will not cause a collision. The direction perpendicular to both

edges is simply the cross product of the two edge vectors (don't forget that the

link edge must be rotated to the contact angle). The cross product generates a

new vector, called vector c, which makes the orientation constraint checking more

convenient. From Figure C.3, m is an edge vector on the link, e l and e2 are the

other two edge vectors meeting at one end of edge rn; n corresponds to an edge

vector on the obstacle; also e3 and e4 are the other two edge vectors meeting at one

Figure C.2: Testing orientation constraint for polyhedral contact between vertex

and surface. (a) the orientation constraint has been satisfied so that 8 is a "real"

contact angle; (b) the constraint is not satisfied.

link

Figure C .3: Testing orientation constraint for polyhedral contact between two edges.

end of edge n. Then the followings are necessary and sufficient conditions for the

orientation constraint for type C contact:

whenever s # sf is satisfied.

If the obstacle is a nonconvex polyhedron, there may be another constraint, called

reachability constraint. This constraint, however, requires examining all the contacts

100

Figure C.4: At parameter t', three forbidden ranges are merged into one.

of the link with a given obstacle that satisfy the first two constraints. The idea is

that for each contact angle 6' we determine whether values of Bk greater than 6' cause

collision or whether values of less than 6' cause collision. According to the collision

directions, the contact angles can be merged to form the ranges of forbidden values

for Ok. We restrict the model of obstacles to be convex polyhedra so that we don't

need reachability checking in our motion planner. However, a nonconvex polyhedron

can be decomposed into several convex polyhedra, but we still need to merge the

overlapped values of Bk just because the two obstacles are too close to each other.

After the "merging" procedure, the reachability constraint is satisfied automatically.

Figure C.4 shows the procedure of merging the overlapped ranges.

REFERENCES

[l] Gupta, Kamal Kant, 1990, "Fast collision avoidance for manipulator arms: a
sequential search strategy", IEEE Transactions on Robotics and Automation.
6(5).

[2] Kant (Gupta), Kamal, and Zucker, S.W., 1986, "Toward efficient trajectory
planning: the path-velocity decomposition", International Journal of Robotics
Research. 5(3).

[3] Kant (Gupta), Kamal, and Zucker, S. W., 1988, "Planning smooth collision-free
trajectories: path, velocity, and splines in free-space", International Journal of
Robotics and Automation. 2(3).

[4] Gupta, Kamal Kant and Guo, Zhenping, June, 1991, "Toward practical motion
planners: experiments with a sequential search strategy", '91 ICAR Fifth Inter.
Conf. on Advanced Robotics. Pisa, Italy, pp. 1006-101 1.

[5] Gupta, Kamal Kant and Guo, Zhenping, Oct., 1991, "Motion Planning for
Many Degrees of Freedom: Sequential Search With Backtrackingn, CSS-IS TR
91-11.

[6] Gupta, Kamal Kant and Zhu, Xiao Ming, Oct., 1991, " Extracting Polyhedral
Models From A Range Image: A Hybrid Approach", CSS-IS TR 91-10.

[7] Lozano-PQez, Tomas and O'Donnell, P. A., April, 1991, "Parallel Robot Mo-
tion Planning", IEEE Conference on Robotics and Automation, Sacramento,
CA., pp. 1000-1007.

[8] Lozano-Pkrez, Tomas, March, 1989, "Task-Level Planning of Pick-and-Place
Robot Motion," IEEE Journal of Computer.

[9] Lozano-PBrez, Tomas, June 1987, "A Simple Motion-Planning Algorithm for
General Robot Manipulators," IEEE Journal of Robotics Automation, vol. RA-
3, No.3.

[lo] Lozano-PCrez, Tomas, October, 1981, LLAutomatic Planning of Manipulator
Transfer Movements," IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-11, N0.10.

[Ill Lozano-PCrez, Tomas, Feb., 1983, "Spacial planning: A configuration space
approach," IEEE Trans. on Comput., vol. C-32, pp. 108-120.

[12] Lozano-PCrez, Tomas and Wesley, M. A., October, 1979, "An Algorithm for
Planning Collision-Free Paths Among Polyhedral Obstacles" Communications
of the ACM, vol. 22, No. 10.

[13] Lozano-Pkrez, Tomas and O'Donnell, P. A., April, 1991, "Parallel Robot Mo-
tion Planning", IEEE Conference on Robotics and Automation, Sacramento,
CA., pp. 1000-1007.

[14] Faverjon, B., 1984, "Obstacle avoidance using an octree in the configuration
space of a manipulator", IEEE Conference on Robotics and Automation, pp.
504-512.

[15] Faverjon, B. and Tounassoud, P., 1987, "A local based approach for path plan-
ning of manipulators with a high number of degrees of freedom", IEEE Con-
ference on Robotics and Automation, pp. 1152-1159.

[16] Kodno, Koichi, June 1991, "Motion Planning with Six Degrees of Freedom by
Multistrategic Bidirectional Heuristic Free-Space Enumeration", IEEE Trans-
actions on Robotics and Automation. vol. 7, no. 3.

[17] Barraquand, J., Langlois, B. and Latombe, J.C., 1989. "Robot Motion Plan-
ning with Many Degrees of Freedom and Dynamic Constraints", International
Symposium of Robotics Research, Tokyo, Japan.

[18] Barraquand, J., Langlois, B. and Latombe, J.C., 1989. "Numerical Potential
Field Techniques for Robot Path Planning", Report No. STAN-CS-89, Depart-
ment of Computer Science, Stanford University, CA.

[19] Barraquand, J., and Latombe, J.C., 1990. "A Monte-Carlo Algorithm for Path
Planning With Many Degrees of Freedom", IEEE Int. Conf. Proc. on Robotics
and Automation, Cincinnati, Ohio, pp. 1712-1717.

[20] Khatib, Oussama, 1986, "Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots", The International Journal of Robotics Research, vol. 5, no. 1.

[21] Boyse, John W., January, 1979, "Interference Detection Among Solids and
Surfaces" Communications of the ACM, vol. 22, No. 1.

[22] Donald, B., 1984. "Motion Planning with Six Degrees of Freedom", MIT AI
Tech. Rep., 791, pp. 504-512.

[23] Donald, B., 1987. "A Search Algorithm for Motion Planning with Six Degrees
of Freedom", MIT AI Tech. Rep., 791, pp. 504-512.

[24] Gouzenes, Laurent, 1984, "Strategies for solving collision-free trajectories for
mobile and manipulator robots", Int. Journal of Robotics Research, 3(4). MIT
Press.

[25] Hopcroft, Joseph, and Whitesides, S., 1985, "On the movement of robot arms
in 2-dimensional bounded regions", SIAM Journal of Computing, 14(2).

[26] Korein, J., 1985, "A geometric investigation of reach", MIT Press.

[27] Schwartz, J. T. and Sharir, M., 1981, "On the 'Piano Movers' problem I. The
case of a two-dimensional rigid polygonal body moving amidst polygonal barri-
ers", Report No. 41. Dept. of Comp. Sc., Courant Institute of Math. Sc., New
York.

[28] Schwartz, J. T. and Sharir, M., Oct. 1982, "On the 'Piano Movers' problem
11. General techniques for computing topological properties of real algebraic
manifolds", Report No. 41. Dept. of Comp. Sc., Courant Institute of Math. Sc.,
New York.

[29] Schwartz, J. T. and Sharir, M., 1988, "A Survey of Motion Planning and Re-
lated Geometric Algorithms", Artificial Intelligence, North Holland, vol. 37,
pp. 157-169.

[30] Sharir, Micha, March 1989, "Algorithmic Motion Planning in Robotics", Com-
puter, IEEE Trans.

[31] Udupa, S., 1977, "Collision detection and avoidance in computer controlled
manipulators", Proc. 5th Int. Joint Conf. Artificial Intell, Cambridge, MA.

[32] Whitesides, S., 1985, "Computational geometry and motion planning", Com-
putational Geometry, Machine Vision and Pattern Recognition, G. Tous-
saint (Ed.). Amsterdam, North Holland.

[33] Xing, D. M., 1987, "Collision-free trajectory generation for a general robot
manipulator", Tech. Rep. CRIIF, Laboratoire de Robtique. Paris.

[34] Brooks, R. A,, 1983, "Planning collision-free motions for pick and place opera-
tions", Int. J. Robotics Res.; vol. 2, no. 4.

[35] Brooks, R. A. and Lozano-P&ez T., Aug. 1983, "A subdivision algorithm in
configuration space for findpath with rotation", Proc. 8th Int. Joint Conf. on
AI, MIT A1 Memo 684; (also IEEE Trans. Syst., Man, Cybern., vol. SMC-15,
pp. 224-233, Mar./Apr. 1985).

[36] Hiroshi, Imai and Masao, Iri, 1986, "An Optimal Algorithm for Approximating
a Piecewise Linear Function", Journal of Information Processing, vol. 9, no. 3,
pp. 159-162.

[37] Canny, J.F., 1987. "The Complexity of Robot Motion Planning", Ph.D. Dis-
sertation, Department of Electrical Engineering and Computer Science, MIT.

[38] Jun, Sungtaeg and Shin, Kang G., June 1991, "Shortest Path Planning in
Discretized Workspaces Using Dominance Relation", IEEE Transactions on
Robotics and Automation. vol. 7, no. 3.

[39] O'Dunlaing, C. and Yap, C. K., 1985, "The Voronoi diagram method motion-
planning: I. The case of a disc", J. Algorithm. vol. 6, pp. 104-111.

[40] Suh, S. H. and Shin, K. G., 1987, "Robot path planning with a weighed
distance-safety", in Proc. 26th Conf. Decision and Control, pp. 634-641.

[41] Glavina, Bernhard, June 1991, "A Fast Motion Planner for 6-DOF Manipula-
tors in 3-D Environments", '91 ICAR Fifth Inter. Conf. on Advanced Robotics,
Pisa, Italy, pp. 1176-1181.

[42] Hart, P. E., Nilsson, N. J., Raphael, B., 1968, "A formal basis for the heuristic
determination of minimum cost paths", Trans. Syst. Sci. Cybern., vol. SSC-4,
No. 2.

[43] Brady, Michael 1989, "Robotics science," chapter 2, LLPlanning" The MIT
Press, Cambridge, Massachusetts, London, England.

[44] Horowitz, Ellis and Sahni, Sartaj , 1976, "Fundamentals of Data Structures,"
chapter 6, "Graphs," Computer Science Press, Potomac, Maryland.

[45] Craig, John J., 1986 "Introduction to Robotics," chapter 3, Stanford University,
California.

