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Abstract 
In this thesis, we deal with the robot motion planning problem, i.e., planning 

collision-free motions for a manipulator arm in an environment filled with stationary 

obstacles. We have developed and implemented a motion planner that can plan 

collision-free motions for serial manipulator arms with many degrees of freedom 

among stationary obstacles. Our planner is based on a sequential search strategy 

that exploits the serial nature of manipulator arms. The basic idea behind this 

approach is to plan the motion of each link successively starting from the base link. 

Given that the motion of links until link i (including link i) has been planned, 

that is, the path of one end (the proximal end) of link i + 1 is determined, the 

motion of link i + 1 is now planned along this collision-free path by controlling the 

degree of freedom associated with it - a two-dimensional motion planning problem. 

Therefore, in the simplest case, our strategy results in one one-dimensional (the 

first link is degenerate) and n - 1 two-dimensional planning problems instead of 

one n-dimensional problem for an n-link manipulator arm. The search strategy 

leads to a fast and efficient algorithm, and is especially suited for manipulator arms 

with many degrees of freedom. Furthermore, a backtracking mechanism has been 

incorporated in our motion planner that makes it more effective (but slower) in 

cluttered environments. This mechanism provides a parameter which can be used 

to trade off completeness of the planner with its speed. Our motion planner runs 

on SUN Sparc stations and is written in C. The run times are in the order of a 

few minutes. We have demonstrated the effectiveness of our strategy with some 

interesting and difficult examples of motion planning for several arms with many 

degrees of freedom. 
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CHAPTER 1 

Introduction 

Future generations of robots will be considerably more autonomous than present 

robotic systems. A main objective of research in robotics is to endow robotic systems 

with basic capabilities they will need to operate in an intelligent and autonomous 

manner. These improved capabilities fall into three broad categories, (i) Sensing - 

The robot system should be able to gather information about its workspace through 

a variety of sensing devices (visual, tactile, or proximity sensing) and analyze and 

transform the raw sensory data into a model of the environment; (ii) Pl~nning - This 

model is then used to plan tasks the robot is commanded to execute; (iii) Control 

- The robot system will finally obtain a low-level control loop that monitors the 

actual execution of each planned substep of the task. 

The aim at the planning stage is to allow the robot's user to specify a desired 

activity at a very high level (called top-level planning, or task-level planning) and 

have the robot system fill in the missing low-level details [lo]. A task-level robot 

planning system is one that can be instructed in terms of task-level goal, such as 



"Grasp part A and place it inside box B." This type of specification contrasts 

sharply with that required for existing industrial robot systems, which insist on a 

complete specification of each motion of the robot and not simply a description of 

a desired goal. 

To automatically perform such tasks, the robot needs the capability to plan 

collision-free motions. The most basic version of the motion planning problem is to 

find a collision-free path for a manipulator arm in a three-dimensional environment 

filled with static obstacles. Note that there are a number of variations of the basic 

problem, e.g., the moving object may be arbitrary arms or collections of arms, as 

well as objects (e.g., mobile robot like spacecraft) moving freely in space [2], [3]. 

In this thesis, we focus on the static and purely geometric version of the motion 

planning problem for a manipulator arm. We have developed and implemented 

a motion planner that can plan collision-free motions for a manipulator arm with 

many degrees of freedom. In the next section, we formally define the motion planning 

problem, and briefly discuss some aspects of it, and then give a brief overview of 

our motion planner. 

1 .  The Problem 

In its simplest form, the motion planning problem considered in this thesis, is defined 

as follows [30]. Let A be a manipulator arm comprising a collection of rigid links 

which are attached to each other at certain joints. Suppose A has a total of n degrees 

of freedom, i.e., each placement of A can be specified by n real parameters, each 

representing a joint angle of the manipulator arm. Suppose further that A is free to 



move in a workspace amidst a collection of obstacles whose geometry is known to 

the robot system. 

The motion planning problem for A is 

Given an initial placement Pi and a desired target placement Pj of A, 

determine whether there exists a continuous obstacle-avoiding motion of 

A from Pi t o  Pi, and, if so, plan such a motion. 

We assume that the robot manipulator arms considered in this thesis, are artic- 

ulated devices made up of a series of rigid links connected by one-degree-of-freedom 

joints, the joint motions are either rotational or translational. Such manipulators 

are also called serial manipulators, however, for brevity we will use the term ma- 

nipulator through out the thesis. The position of all links of the rigid robot arm 

are completely specified by the values of the joint parameters, known collectively as 

the joint angles. Any set of parameters that uniquely specifies the position of every 

part of the arm is called a configuration, and the space defined by those parameters 

is the C-space. Also, we call the collection of configurations that produce collisions 

the C-space obstacles. It is clear that, for a manipulator arm with n degrees of free- 

dom, the robot's joint space is an n-dimensional C-space [9], [ll], [12]. Once such 

a representation has been obtained, the actual motion planning problem reduces to 

searching for a path from the initial configuration to the final configuration in the 

C-space. 

Most of the approaches to motion planning implicitly or explicitly compute the 

C-space of the manipulator and then search it for a path. There are two major 

problems with the configuration space based approaches: (i) the configuration space 



obstacles are highly complex to represent, and (ii) the dimensionality of the config- 

uration space is fairly high for most practical manipulators, mostly greater than six. 

An answer to the first problem is a discrete representation of the configuration space 

( [9], (141, [15], [16]). However, according to many complexity results, the "big bar- 

rier" is the high number of degrees of freedom. The complexity of the basic motion 

planning problem is exponential in the degrees of freedom of the manipulator [9]. 

For manipulator arms with a large number of degrees of freedom, the motion plan- 

ning problem becomes computationally intractable, and it isn't likely that efficient 

worst-case solutions will ever be found. Many approaches are hopelessly inefficient 

in the worst case, and although their development is significant from a theoretical 

point of view, their implementations do not exist. For example, Lozano-Pkrez [9] 

implemented only a three degrees of freedom example since he treated the last few 

degrees as one (using a bounding box to cover them); Kondo [16] mentioned that for 

a high number of degrees (more than six) of freedom arm and the worst cluttered en- 

vironment, it needs more memory and more computer time. Recently, Barraquand 

and Latombe ( [17], [18], [19]) have suggested a planner based on numerical potential 

fields and random search for manipulators with many degrees of freedom. Random 

search, however, has its problems. For instance, the run times may vary drastically 

even for the same example. From all the discussion above we conclude that to solve 

the motion planning problem fast and efficiently, one needs to devise general yet 

efficient search strategies. 

A deterministic approach to this problem of high dimensionality has recently 

been suggested by Gupta [I] - a sequential search strategy. The basic idea of this 

approach is to sequentially plan the motion of each link, starting from the base link. 

To briefly recapitulate, suppose that the motion of links until link i (including link i) 



has been planned. This already determines the path of one end (the proximal end) of 

link i + 1. The motion of link i + 1 is now planned along this path by controlling the 

degree of freedom associated with it - a single link motion planning problem. This 

strategy (without backtracking) results in n single link motion planning problems 

instead of one n-dimensional problem for an n link manipulator arm. If along the 

path (determined by the previous links) no motion exists for the current link, the 

planner backtracks and chooses another path for the previous link. Along this new 

path for the previous link, it searches for a path for the current link. This approach 

completely avoids the problem of representing and searching a high-dimensional C- 

space. However, in some situations the planner may fail to find a collision-free path 

in very cluttered situations even though such a path may exist, i.e., the algorithm 

is not complete. 

Based on this approach, we have developed and implemented a motion planner 

for several types of robot manipulator arms to plan collision-free motions in different 

kinds of cluttered robot working environments. The motion planner is written in C 

and its run time is in the order of a few minutes on a Sparc station. The asymptotic 

complexity of the motion planner with backtracking mechanism is given by 

where n is the number of degrees of freedom, m the number of nodes in the two- 

dimensional subspace for each robot link, and k the level of backtracking. Certainly, 

for a given k, the complexity will be polynomial in m. 

In summary, our planner has a number of advantages: (i) it completely avoids 

the difficulty of representing n-dimensional C-space obstacles, (ii) it is efficient and 

practical - runs at the most in the order of a few minutes, even for manipulators 



with large number of degrees of freedom, (iii) it is deterministic (in the sense that 

it does not use stochastic search techniques), and (iv) it provides a mechanism for 

trading off execution speed of the planner with its completeness. 

We emphasize that the main contribution of this thesis lies in implementing the 

sequential search approach of [Gupta 901 in 3-D. With this implementation, we have 

thoroughly tested the efficiency of the sequential approach. 

Organization Of The Thesis 

This thesis is organized as follows. We begin in chapter 2 by overviewing algorithms 

for robot motion planning in the recent years, and briefly give a basic catalogue of 

the algorithms. Chapter 3 contains the overview of our sequential search strategy 

approach. In chapter 4, we concentrate on the implementation of our algorithm, 

including how to construct the sub-spaces for each of the robot links; how to search 

for a collision-free path, how to parameterize the generated path and how to perform 

backtracking search. Chapter 5 will show the experimental results. Finally, chapter 

6 gives a summary and suggestions for the future research. 



CHAPTER 2 

Survey 

Techniques for automatic planning of robot motions have been extensively studied 

over the last several years as one of the central problems in task level robot pro- 

gramming, both from theoretical interests and from practical requirements. In this 

chapter, we will first give the basic catalogue, and then present a brief survey of 

recent developments in motion planning algorithms and their implementations. Our 

survey concentrates on practical approaches to motion planning for manipulator 

a r m .  

2.1 Complexity 

The complexity of motion planning problems has been studied quite extensively in 

past fifteen years or so ( [32], [30]). In a recent fundamental work, Canny [37] has 

improved upon the previous result of Schwartz and Sharir [28]. Canny shows that 



the motion planning problem for a manipulator arm with n degrees of freedom un- 

der m geometric constraints (usually the number of faces, edges, vertices etc. in the 

obstacles and manipulator arms), can be solved in time O(mn logm). Numerous 

other results [9] show that the complexity of motion planning is exponential in the 

degrees of freedom of the robot. Therefore, for a manipulator arm with an arbi- 

trarily large number of degrees of freedom, the problem becomes computationally 

intractable, and it isn't likely that efficient worst-case solutions will ever be found. 

Intuitively, this is because when n is large, the C-space is a high-dimensional space 

with irregular boundaries, making it hard to build and search efficiently. 

Clearly, to develop practical motion planning algorithms, one needs to devise 

efficient representations and search strategies to break this barrier of complexity. 

Following are several practical approaches to develop motion planners for manipu- 

lator arms. 

Practical Approaches 

Many planners for manipulator arms have been developed ( [12], [22], [31]). Some 

of the more recent ones are Lozano-PCrez's Configuration Space Approach ( [9], [13]), 

Faverjon and Tournassoud's Octree Approach ( [14], [15]), Barraquand and Latombe's 

Potential Field Approach ( [17], [IS], [lg]), and Kondo's Enumeration Approach [16]. 

The major differences among these approaches are in two aspects: (i) how to build 

and represent the configuration space, and (ii) how to search for a collision-free path. 

The methods used in these approaches can be roughly classified into two categories, 

(i) Configuration Space based approaches, and (ii) Potential Field based approaches. 



Figure 2.1: C-space obstacles for a simple robot. (a) A robot with two rotational 

joints, and its obstacles. (b) The corresponding C-space obstacles (the hatched 

regions). The joint angles are also the labels on the axes of the C-space. A collision- 

free path in this C-space is shown, together with four configurations of the arm along 

the path. 

2.3 Configuration Space Based Approaches 

Planning a collision-free path for an n-degree of freedom manipulator arm is equiva- 

lent to calculating a continuous path within a collision-free region in an n-dimensional 

space defined in terms of the degrees of freedom. Figure 2.1 (this figure is presented 

in [9]. Author uses it to explain the configuration space) gives a two-dimensional 

example. 



Motion planning based on the C-space approach requires that the obstacles in 

the robot's workspace should be mapped into its C-space, called C-space obstacles, 

which represent the configurations of the manipulator arm that would cause colli- 

sions. Having formed the C-space obstacles, there are two main approaches to search 

for a collision-free path, (i) free-space based and (ii) V-graph based methods. 

For the free-space based ~ll'ethod, the free C-space, which is defined to be the 

complement of the C-space obstacles, should be characterized explicitly. Having 

found the free-space regions, a region graph is built where the nodes are regions 

and links indicate regions with a common boundary. Then, a collision-free path is 

searched in the region graph from the region containing the start point to the region 

containing the target point. For the V-graph based method, a visibility graph should 

be built, which is composed of nodes and edges. The set of nodes is the set of vertices 

of the C-space obstacles, including the source node (as the initial position) and the 

target node (as the final position), and each edge between two nodes represents that 

these two nodes can be visible to each other. Then the planner searches this V-graph 

for a collision-free path from the source node to the target node. 

Many planners have been developed using the C-space approach ( [9], [14], [15], [16]). 

We briefly review three important representative planners that have been developed 

and reported in the literature. 

2.3.1 A Simple Motion Planning Algorithm 

In [9], Lozano-Pkrez showed the simplicity of computing approximate characteri- 

zations of the free space for simple manipulators. A conservative approximation 



of a C-space obstacle was introduced, which was called a slice projection. For an 

n-dimensional case, a C-space obstacle is a n-dimensional volume, which is rep- 

resented by a union of (n-1)-dimensional slice projections. A slice projection of 

a one-dimensional C-space obstacle is defined by a range of values for one of the 

defining parameters of the C-space (the joint angles for a manipulator arm with 

rotary joints). The key step in this simple approach, therefore, is to compute one- 

dimensional slice projections of C-space obstacles, that is, to determine the range of 

forbidden values of one joint parameter, given ranges of values for all previous joint 

parameters. 

Using this approach, a planner has been implemented successfully. It has solved 

problems for manipulator arms with four degrees of freedom. For the case of manip- 

ulator arms with more degrees of freedom, Lozano-Pkrez suggested that the last few 

links and the end-effector be replaced by a simple bounding box [9]. For a simple 

two-link manipulator arm in two-dimensional space (see Figure 2.1), Lozano-P6rez 

mentioned that the run time is six seconds on a Symbolics 3600 Lisp Machine. 

Theoretically, the motion planning problems with n degrees of freedom can 

be solved. In practice, however, it is difficult to represent a free space in an n- 

dimensional C-space explicitly. His approach will fail to find a collision-free path in 

the more cluttered case, such as in the example of PUMA 560, simply because the 

bounding box covers quite a big free volume. 



2.3.2 Octree Approach 

Faverjon has used octrees to represent the C-space for a manipulator arm [14]. An 

octree is a tree of degree eight which describes hierarchically the space contained in a 

cube that forms the root. The sons of a node are the eight cubes obtained by cutting 

the father node by planes parallel to the faces and containing its center. The nodes 

can be labeled as Full, Empty, or Mixed depending on whether they lie entirely in 

an obstacle, out of all obstacles, or partly in an obstacle. Only the Mixed nodes will 

be cut again until the minimum size for a cube is reached. Using collision-detection 

type algorithms, physical obstacles in the robot workspace can be transformed into 

its joint space. Faverjon implemented this approach for the first three links of a 

manipulator arm. So the joint space is a three-dimensional C-space. He divided the 

whole space into 64 x 64 x 64, and then filled it up using the transforming algorithm. 

The scheme of searching a short collision-free path is also based on the well known 

A* algorithm [42]. Unfortunately, the approach can not be directly extended to 

planning a collision-free path for manipulator arms with large number of degrees 

of freedom, since the memory requirements grow exponentially with the degrees of 

freedom. 

In 1987, Faverjon and Tounassoud [15] implemented a two-level local-global plan- 

ner. The global planner is essentially a very coarse discretized representation of the 

full C-space. Transitions between the adjacent cells are weighted (and updated) by 

the probability for the local planner to succeed in moving the system from one cell to 

another. These probabilities are used by the global planner (a minimum cost finding 

algorithm) to generate sub-goals for the local planner. The local planner is based 

on a variant of the potential field technique. They have reported some good results 



for a full six degrees of freedom arm carrying a bulky load, and for a ten degrees 

of freedom manipulator among vertical obstacles. Although it is possible to apply 

this technique to manipulators with many degrees of freedom, the global planner 

resolution would be very coarse for a given memory size and the probabilities may 

not converge. For example, they use a resolution of 16 degrees for a six degree of 

freedom problem; in fact, for much larger number of degrees of freedom problems, 

the global planner discretization will be so coarse that it will be virtually useless. 

2.3.3 Enumeration Approach 

Kondo [16] has suggested another approach to motion planning for a robot manip- 

ulator arm. The basic idea in this approach is to restrict the free space concerning 

a free path and to avoid executing unnecessary collision detections. Kondo imple- 

mented this approach for a six-degree of freedom manipulator arm. In the approach, 

the six-dimensional C-space is, initially, equally quantized into cells by placing a reg- 

ular grid, and then, the free-space cells connecting the initial and final configurations 

are enumerated based on the heuristic graph search algorithm, which is similar to 

the A* algorithm [42]. These cells are categorized into three types: a free space cell 

belonging to a collision-free configuration, an obstacle cell which belongs to a con- 

figuration that causes collisions, and an unknown cell for which the collision status 

is not yet known. 

Not all cells are enumerated in this approach. Which cell will be enumerated 

depends on the evaluated strategy. There are different strategies of searching a 

collision-free path defined by heuristic functions. The efficiency of each strategy is 

evaluated during free-space enumeration, and the more promising one is automat- 



ically selected and executed. A collision detection procedure is independent of the 

search procedure and is called every time the necessity arises for checking whether 

the cell is collision-free or not. However, the total number of necessary collision 

detections for free-space enumeration mainly depends on the most efficient search 

strategy among the evaluated strategies, and therefore, the free-space cells are effi- 

ciently enumerated for an arbitrary moving object in all kinds of workspaces. 

Initially, all cells are unknown cells except for the free-space cells containing the 

initial and final configurations. These two free-space cells are expanded based on a 

bidirectional heuristic graph search algorithm using multiple search strategies, and 

the configurations of the expanded unknown cells are checked for collision. Free- 

space cells are expanded until the initial and final configurations are connected by 

free-space cells. Finally, the collision-free path can be planned. 

The approach is fast when only a few free-space cells are enumerated in the 

search process. But in the more cluttered workspace, the efficiency of this approach 

is drastically reduced. Furthermore, for an n degrees of freedom manipulator arm 

and the number of levels, m, the C-space will contain 2nXm cells. It needs a huge 

memory, especially for a larger n. Hence the approach can not be directly extended 

for a large number of degrees of freedom manipulator arm. 

2.4 Potential Field Based Approaches 

Khatib [20] first used the idea of an artificial potential field for obstacle avoidance. 

In this approach, the manipulator moves in a field of artificial forces. The obstacles 

exert a repulsive force and the goal position exerts an attractive force on the ma- 



nipulator. In this field of forces, the manipulator end-effector (treated as a point) 

moves to its goal position. This field is called the artificial potential field. The core 

of this approach is to set up artificial potential fields over the robot workspace, each 

applying to a specific point on the robot, and the robot moves along the gradient 

direction generated by this artificial potential field. Unfortunately, this approach 

eventually leads the search to local minima of the potential and mechanisms need to 

be devised to escape these minima. In the next section, we review a recent advance 

in the artificial potential field approach, called numerical potential field approach. 

2.4.1 Numerical Potential Field 

Barraquand and Latombe ( [17], [18], [19]) use a bitmap of the workspace and 

construct numerical potential fields over the workspace. Each of these potentials 

applies to a selected point on the robot, called a control point. The overall C-space 

potential field is a combination of these workspace potential fields. The C-space 

potential field generally has several local minima, and for a high-dimensional C- 

space, the Monte-Carlo procedure (which consists of generating random motions) 

is applied to escape a local minimum. The planner has been successfully applied 

to manipulators with many degrees of freedom; however, there are some intrinsic 

limitations in the stochastic approach. For example, the execution times may vary 

drastically even for the same example for different runs of the planner. Also, the 

success of probabilistic search seems to stem from the fact that for manipulators 

with many degrees of freedom, the solution space is also very large. However, this 

may not be the case in cluttered environments. 

From the brief survey given in the previous sections, it is apparent that no 



approach has yet satisfactorily overcome the difficulty of solving the motion planning 

problem for manipulator arms with a larger number of degrees of freedom (greater 

than 6). In the next chapter, a new approach, called Sequential Search Approach [I], 

will be introduced, which offers one way to develop practical motion planners for 

manipulator arms with large number of degrees of freedom. 



CHAPTER 3 

Sequential Search Algorithm 

Overview 

In this chapter, we give a brief overview of the sequential search approach to motion 

planning, a contribution of Gupta ( [I], [4]). Based on this approach, we have 

developed and implemented a motion planner for several types of robot manipulator 

arms to plan collision-free motions in different kinds of cluttered robot working 

environments. 

The idea behind the approach is to exploit the serial nature of manipulator 

arms. A manipulator arm has an inherent ordering of links, from the base link to 

the last link. The strategy of this approach is to plan, successively, the motion of 

each link staptiag from the base link, F Q ~  example, consider the threelink (planar 



manipulator) arm shown in Figure 3.1 (this figure1 is from [I]). The links have been 

labeled in increasing order from the base, i.e., the base link is 'labeled 1, the next 

link is labeled 2, and the last (free) link is labeled 3. Suppose that the motion of link 

1 has been planned. Now, as the first link moves the second link can be treated as 

a moving robot with another degree of freedom (pure rotation for revolute joints). 

Thus, its motion (rotation) can be planned to avoid the obstacles. Once the motion 

of link 2 has been planned, the motion of link 3 can be planned, and so on. In 

general, suppose that the motion of links till link i (including link i) has been 

planned. This already determines the path of one end (the proximal end) of link 

i + 1. The motion of link i + 1 is now planned along this path by controlling the 

degree of freedom associated with it - a single-link motion planning problem. As 

a result, for a manipulator arm with n degrees of freedom (n revolute or prismatic 

joints), this strategy converts one n-dimensional motion planning problem into n 

single-link planning problems (planning for the first link is a degenerate case) 

In addition, Gupta and Guo [5] have also developed a backtracking search mech- 

anism for our motion planner to make it more effective in planning collision-free 

paths in cluttered situations, although the sequential planner described above does 

solve the difficult problems. In general, the planner must backtrack and re-plan the 

path for the previous link (say link i- 1) in case there is no collision-free path for link 

i. Furthermore, the planner may backtrack more than just the previous link, say k 

previous links and search again. The parameter k is called the level of backtracking. 

This backtracking mechanism has been incorporated in our motion planner and has 

remarkably improved the capabilities of our motion planner. Figure 3.2 shows the 

lThis figure courtesy of Dr. K.  K.  Gupta 
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complete structure of our motion planner with the backtracking search mechanism. 

Not only is the resulting planner efficient and fast, but we completely avoid the 

difficulty of representing n-dimensional t x 8 space obstacles. Our motion planner 

is, therefore, especially suited for highly redundant arms. The complexity of our 

planner is given by 

~ ( n m ~ ~ + ~ ) ,  

where n is the number of degrees of freedom, m the number of nodes in two- 

dimensional sub-space for link i and k the number of level of backtracking searches. 

Clearly, the run time is polynomial in m, for a given k. Thus, our approach provides 

a "tuning" parameter k, that can be used to trade off speed with completeness of 

the planner. 

3.1 Terminologies 

The definitions used throughout the thesis are given next. The manipulator joint 

parameters are represented by 8;, the corresponding links by l;, i = 1 ,2 , .  . . , n, II 

being the most proximal link, and I, the most distal link. The initial and goal 

configurations of the arm are given as Of, and 89, i = 1, . - , n. q; denotes the i- 

dimensional joint space vector (el, d2, s s, &). Thus qf denotes the vector of start 

configurations of the first i joints, i.e., qf = (8;, 8,", . . ., Of) ,  and q: denotes the 

vector of their goal configurations, i.e., q: = (Of,  8:, . ., 86). Let r; be the reference 

vertex (in three-dimensional Cartesian space) for link I;. The base of the first link 

is assumed to be fixed at rl  . Let ri(t) denote the trajectory of the reference vertex 

r;, however, we will never need to represent it explicitly. Instead, we will represent 



Figure 3.1: Decomposing the motion planning problem for an n link manipulator 

into n simpler single-link problems. The figure shows a three link example. The 

initial configuration is shown in (a), and the final configuration in (b). Planning 

proceeds from the base link (link 1) to the last link (link 3). First the motion of 

link 1 is planned (c) and (d). This motion determines the motion of a reference 

point ( the point where link 2 is attached to link 1) on link 2. The angle of link 2 

is now planned to avoid collisions with obstacles (e) and (f). This motion of link 2 

determines the motion of a reference point '(the point where link 3 is attached to link 

2) on link 3. The angle of link 3 is now planned (g) and (h). This process is repeated 

n times for an n-link arm, resulting in n single-link motion planning problems. 
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initialization: 
1 = 1; b-level = 1 u 

solve the single-link 

problem for link i 
cl 4 search for another path 

for link (i-blevel), 

b-level = b-level+ 1 w 

success e3 
Figure 3.2: The structure of our motion planner with the backtracking search mech- 

anism. In the figure, b-level represents the current level of backtracking; maxlevel ,  

the maximum allowed level of backtrackings. Note that i - b-level > 1 should be 

satisfied since the planner doesn't backtrack to the first link. 



the i-dimensional joint space trajectory as a vector valued function q;(t) = (O,(t), 

&(t), . . ., 0;(t)): [O, 11 + [qq, q:] . Note that given qi-l(t), ri(t) is easily computed 

using forward kinematics. Further, we will distinguish between the mapping q;(t) 

and the graph (trace) Q; of the mapping, where Qi = (q;(t), t). 

Now we concentrate on the motion planning scheme used in our approach for the 

single-link problem. Assume that the motion for the previous i - 1 links has already 

been planned and is specified as a function of a discretized parameter t; = [O, 11, i.e., 

Oi-l(&) is known for k = 0 , l . .  . M - 1. M is the total number of samples of the 

free path, and is given by user. Note that this completely determines the path of ri, 

and as it moves along this path, the problem now is to adjust the angle Oi of link i 

to avoid the obstacles in its way. In general, for a single link, the scheme adapted 

here includes four stages: (1) computing forbidden regions, (2) building a visibility 

graph, (3) searching a collision-free path, and (4) parameterizing the collision-free 

path for the next link. 

0 Stage 1: Computing ti x Oi space obstacles 

The physical obstacles give rise to constraints on the angle Oi of the link as a function 

of ti. These constraints appear as forbidden regions in ti x 8; space. Thus, the 

physical obstacles are transformed into forbidden regions in t; x 8; space, and the 

rigid solid link, link i, becomes a moving point in the ti x Oi space. Hence, we always 

build a two-dimensional t; x 9; space for each single link of a manipulator arm. The 

technique of computing t; x 8; space obstacles will be discussed in chapter 4, and is 

based on methods in [9]. 

Stage 2: Building a visibilitygraph 



The forbidden regions are approximated as polygons in t; x 8; space. A visibility 

graph (V-graph) is built in t i  x 6; space. Note that we could also use the free-space 

based methods. 

Stage 3: Searching for a collision-free path 

We use breadth-first search [44] as our V-graph searching algorithm. 

Stage 4: Discretizing the collision-free path 

The path obtained after the V-graph search is piece-wise linear. However, to plan 

the path for the next link, we need to parameterize the path, i.e., given Qi(ti), we 

compute Qi(t i+l) .  The parameterization of the collision-free path will be discussed 

in chapter 4. 

There is no doubt that our sequential search strategy leads to significant improve- 

ment in computation time simply because, for a manipulator arm with n degrees 

of freedom, it solves several single-link motion planning problems rather than one 

n-dimensional problem. The run time for the planner increases linearly with n (n is 

the number of joints of a manipulator arm) for a given level of backtracking. This 

explains the apparent success of our planner for a high number of degrees of freedom 

problem. Note that our planner is incomplete and may not find a collision-free path 

even if one exists. However, we believe that in most cases it will. 



CHAPTER 4 

Implement at ion 

In this chapter, we describe our detailed implementation of the sequentiG motion 

planner. In section 1, we briefly review the robot coordinate system and the geomet- 

ric models and the representations of robot links and obstacles. Section 2 overviews 

the method of calculating forbidden ranges (the range of angles in which the contact 

occurs). Section 3 will describe the method of forming t i  x 8; space obstacles. In 

section 4, it will be explained how to search for a collision-free path. In section 5, 

we explain how the extended segments work. In section 6, the parameterization of 

the free path will be discussed. Section 7 shows efficiency of the backtracking mech- 

anism. Section 8 gives a brief discussion of the complexity of our motion planner. 



4.1 Geometric Representations 

In this section, we briefly review the robot coordinate system, define the geometric 

models of the robot links and obstacles, and then give the basic representations of 

the robot links and obstacles. 

In order to describe the position and orientation of a robot link in the workspace, 

we attach a coordinate system, called a frame, rigidly to that link. Then we proceed 

to describe the position and orientation of this frame with respect to some reference 

coordinate system. In this thesis, we set the base frame of the robot coincident 

with its workspace coordinate system, the reference frame. Figure 4.1 shows the 

definition of various frames. Appendix A gives more details of the coordinate systems 

and the transformation between them. 

We define the geometric models of the robot links and obstacles as convex poly- 

hedra, which may have an arbitrary number of faces and vertices. For some other 

models of robot links and obstacles, such as cylinders and spheres, we may use a 

"bounding box" to cover those models. The models are represented by the list of 

faces and vertices as given in Appendix A. Note that more complicated polyhedral 

shapes can be described as union of these convex primitives. 

4.2 Solving The Single Link Problem 

To solve the motion planning problem for a manipulator arm, the sequential search 

strategy will first plan a collision-free path for the first link of the manipulator arm, 

and then the second link, and so on. The key step therefore is to solve the motion 



Figure 4.1: Robot coordinate systems 



planning problem for a single link. Now assume that the motion of the previous 

i - 1 links has already been planned and is specified as a function of a discretized 

parameter ti = (0, 11, i.e., BiVl(-&) is known for k = 0, I , . . .  , M - 1, and M is 

the total number of samples of the whole collision-free path given by user. Note 

that this process completely determines the path of ri, one end of link i which is 

connected with link i - 1, and as it moves along this path, the problem now is 

to plan a collision-free path for link i (or to adjust the values of 8;) to avoid the 

obstacles in its way. We call this the single link problem (please see Figure 3.1). To 

solve the single link problem, there are four major steps, as mentioned in chapter 3. 

Figure 4.2 shows the steps for the single link problem. The following sections give 

a detailed discussion of each step. 

Having planned the path for link i, we parameterize the path for link i with 

a new discrete parameter, ti+l. The motion for link i + 1 now can be planned in 

t;+l x 19;+~ space. This process can be iterated until the last link. Clearly, using 

the sequential search strategy, we always solve the single link problem in a simple 

two-dimensional t x 8 space until we find a path or fail to find it. 

4.2.1 Calculating Forbidden Regions 

The first step is to compute the joint angle values for a given link which result in 

collision with the obstacles, as one end of the link moves along a discretized path. At 

each discrete point of this path, the set of angle values that result in a collision with 

the obstacles are called forbidden angles. Since we assume that the obstacles and 

links are polyhedra, the fundamental and geometric problem is to determine the set 

of angles at which a rotating polyhedron intersects another static polyhedron. For 



C I compute ti x e space obstacles I 

I build visibility graph I 
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C 

) search V-graph for a free path I 

parameterize the generated path1 

Figure 4.2: The diagram shows the steps in solving the single link motion planning 

problem. 

the case of convex polyhedra, these angle values are interval sets, called forbidden 

ranges, bounded by values for which the two polyhedra are in contact. A forbidden 

range is therefore, an interval, composed of two angle values, start and end. start 

indicates that a change in rotation angle 8 will move further into the contact, and 

end away from the contact. There are two steps in computing these contact values. 

The first step is to compute all possible potential contact angles, and the second 

step is to see which ones satisfy certain constraints. 

4.2.2 Potential Contact Angle 

Lozano-PCrez [9] defined three basic contacts, called Type A: link-vertex with obstacle- 

face, Type B: link-face with obstacle-vertex and Type C:  link-edge with obstacle-edge. 



Figure 4.3: Three types of contacts. (a) type A or type B; (b) type C. 

The definitions of three types of contacts are shown in Figure 4.3. Here the detailed 

derivation is ignored (see Appendix B for detailed derivation), which essentially fol- 

lows [9]. As a summary, the complete algorithms are shown in Figures 4.4, 4.5 and 

4.6. 

4-2-3 Constraints 

A potential contact does not necessarily imply a real contact. It must satisfy cer- 

tain constraints. Based on Lozano-Pkrez's definition (see Figure 4.3), there are 

three constraints in general: (1) in-surface constraint, (2) orientation constraint 

and (3) reachability constraints. The precise mechanisms for computing these con- 

straints differ for type A, B and type C contacts. Lozano-Pkrez presented a detailed 

derivation of the constraint detections for a two-dimensional case (see [9]). For the 

three-dimensional case, we give a more detailed discussion in Appendix C. 

We make use of these constraints to determine whether a potential contact angle 

is a real contact angle. These computations are used at each discrete point of 
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Figure 4.4: The diagram shows the procedure of computing forbidden ranges. 
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Figure 4.5: The diagram shows how to compute forbidden ranges for type A and B 

contact. 
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Figure 4.6: The diagram shows the procedure of computing type C contact. Please 

see Figure C.3 for explanation of symbols used in this diagram. 



the path to compute the forbidden ranges. These forbidden ranges, in ti x Oi space, 

appear as regions. Note that for each discrete parameter value a number of forbidden 

ranges may exist. The set of ranges at a given discrete point is called a forbidden 

slice. 

Building Forbidden Regions in ti x Oi Space 

Having obtained forbidden ranges in ti x 19; space, the next step is to group those 

ranges into regions in ti x 8; space. A forbidden region is made up of linear ranges 

from a set of adjacent slices such that all the ranges in the region overlap. These 

regions are then approximated by simple polygons, however, these polygons may 

have too many vertices. Hence we further approximate the polygons to reduce the 

number of vertices of a forbidden region to an acceptable number. 

4.3.1 Grouping Forbidden Ranges into Regions 

The regions are formed by iterating over the forbidden slices from left to right, that 

is, from time-parameter t = 0 to t = 1. The basic idea is to group contiguous and 

overlapping forbidden ranges in one region. We have used a very conservative scheme 

as follows: each forbidden range in the first slice starts a new region (obstacle). We 

keep the current range into a bounding range and update it every time after a new 

range is added to the region. As each slice is considered, the range overlapping the 

bounding range of a given region is added to that region. A region is terminated 

when no range in a slice overlaps the bounding range of this region. The grouping 



procedure is outlined in Figure 4.7 . Figure 4.8 shows a grouping example in our 

implementation. Note that this simple procedure will always yield regions that 

increase monotonically in parameter t ,  albeit the regions may overlap. 

4.3.2 Polygonal Approximation 

Having grouped the overlapping ranges in a region, our next step is to further sim- 

plify the representation of a region by approximating each region with a polygon. 

Note that by tracing the end points of each range in the region, we immediately have 

a simple polygon. However, there are too many vertices on this polygon, two for 

each range. This would make the subsequent V-graph computations computation- 

ally intensive. We would like to have fewer vertices in the approximating polygon. 

We have implemented two approaches to it. The first approach is a straightfor- 

ward intuitive approach, and the second is a more systematic and better approach. 

However, we discuss both approaches here. 

The first approach is based on obtaining the convex hull, i.e., removing the 

concave vertices from the original polygon until all such vertices are removed and 

a convex polygon is obtained. This is easily achieved as shown in Figure 4.9. The 

process is illustrated on the upper boundary of the original polygon. Tracing the 

boundary from left to right, we compute the internal angle at the vertex. If the 

internal angle is greater than 180 degrees, the vertex is removed from the polygon, 

and a new edge connecting the previous and the next vertex is added. This process 

is repeated iteratively until there is no concave vertex left. A similar process is 

carried out for the lower boundary of the polygon. 
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Figure 4.7: Diagram shows how to group contiguous and overlapping ranges into 

forbidden regions. 



Figure 4.8: An example of grouping forbidden slices into forbidden regions in our 

implementation. 

There may still be too many vertices on the boundary of the polygon. To further 

reduce the number of vertices, we can prune short edges of the polygon. Figure 4.10 

shows the pruning process. This process stops when the number of vertices of the 

polygon meets the desired number. 

It is easily seen that the convex polygon approach does reduce the number of 

vertices, however, it may waste much of the free-space, which is treated as obstacles 

and a collision-free path may not exist, For example, the initial, or final, or both 

positions, may be trapped in the forbidden region (Figure 4.11 shows an example 

for this undesired case). 

A variation of the above approach is to reduce the number of vertices merging 

adjacent edges if the difference of their slope values is small. Note that with this 

approach the resulting polygon may not be convex. The process is iterated until 



Figure 4.9: Convex polygon approach works recursively: a vertex is removed at  a 

time according to  the updated internal angle value. 



Figure 4.10: Two short edges have been removed by the pruning process, and two 

new vertices, vl and v2 are added. Note that the number of edges in the resulting 

polygon is less than that in the original polygon. 



Figure 4.11: The advantage: total number of vertices is eight; disadvantage: final 

position is trapped in the approximated region, but not in the exact forbidden area. 

the number of vertices of the polygon is below a pre-specified limit. Figure 4.12 

gives an example of this approach, and Figure 4.13 shows a perfect result obtained 

by this approach, which is much better than that generated by the convex polygon 

approach. However, this approach may also, in some cases, waste much of the 

free-space. The fundamental problem is that we are arbitrarily specifying number 

of vertices rather than specifying a limit on how much free-space we can afford to 

waste. In the next section, we describe an approach based on the latter strategy. 

4.3.3 Piecewise Linear Function Approach 

This approach is based on polygonal approximation, a sub-area in computational 

geometry that deals with the problem of approximating a piecewise linear curve 

by another coarser one. In general, there are two types of optimization problems 



Figure 4.12: Nonconvex polygon approach: vertex i will be removed since the dif- 

ference between slope s;-1 and s; has a small value. 



Figure 4.13: There is not much free space lost, but the number of vertices is not 

smaller than in the convex polygon approach. 

related to polygonal approximation: (1) minimizing the number of vertices of an 

approximate curve with the error within a given bound; (2) minimizing the error of 

an approximate curve consisting of a given number of vertices [36]. For our purpose, 

we make use of type (1) to coarsely approximate forbidden regions by polygons with 

a smaller number of vertices within a reasonable error E. 

The details of the algorithm are given in [36]. We briefly discuss the basic idea 

behind the algorithm. Suppose that the lower boundary of a forbidden region is 

considered. Based on the polygonal line with seven vertices, plp2 p7, and a given 

error e, polygon P(E) is formed by sliding this polygonal line downwards by E ,  shown 

in Figure 4.14. First of all, edge el is selected to be a window (the definition is given 

in [36]). Then we detect whether an edge can be seen from the window. If the last 

edge, edge e7, can be seen from the window, edge el, the approximate polygonal line 

can be a straight line connecting edge el and el, that is, a polygonal line with seven 



vertices becomes a straight line with only two vertices. But in practice, the case 

is not that simple. In the example of Figure 4.14, edge e4 is not visible from the 

window. Therefore, the window (el at this moment) is updated. After updating, the 

window is w2 (see Figure 4.14), and then we continue the visibility detection from 

the updated window until the last edge becomes visible from the window. Finally, 

a new polygonal line with four vertices, ~ 1 ~ 2 ~ 3 ~ 4 ,  is generated by this approach. In 

our implementation, we use discretized windows and edges. 

4.3.4 Growing Obstacles in ti x Bi Space 

Since we are using V-graph based approaches to search for a path, the path consists 

of several nodes which are vertices of t i  x 9; space obstacles. From this point of view, 

when the robot manipulator moves to any node along the free path it means that the 

robot has touched an obstacle in its workspace. In order to overcome this problem, 

we grow them. For the upper boundary of the region, the vertical coordinate value 

of each vertex is grown upwards by a given resolution r ,  and for the lower boundary, 

it is grown downwards by r (usually we set r = lo). For two vertical boundaries, the 

left one moves one interval to left side and the right one interval to the right side. 

In Figure 4.9, the thick solid line shows the grown forbidden region based on this 

met hod. 

4.3.5 Joint LimitsTreated As t i x B i  Space Obstacles 

In practice, a revolute joint can not rotate a full circle due to joint limits. For each 

joint, the limit values form a forbidden range in which the link can not move. For 



Figure 4.14: Reducing the number of vertices with a piecewise linear function ap- 

proach. After this procedure the number of vertices becomes four. 



Figure 4.15: A result of the piecewise linear function approach (a) compared to that 

of the convex polygon approach (b). 

link i, a joint angle limit is treated as a rectangular obstacle in its ti x 0; space. The 

horizontal extent of the rectangle spans the whole parameter interval [0, I]. 

4.4 Searching For A Collision-Free Path 

Having obtained the polygonal approximations of the obstacles in ti x Oi space, the 

next step is to find a collision-free path from the initial position (tf, 0:) to the final 

position (tt, 09) in ti x 0; space. We have used V-graph based techniques [12]. The 

V-graph is formally defined as VG = (N, E), where N = (I, N l ,  Nz,  . . . , N,,,, F), 

is the set of nodes of the V-graph, I, the source node corresponding to the initial 

position of the robot link, F, the target node corresponding to the final position of 

the robot link, and Ni, the vertices of the polygonal obstacles for i = 1,2,. . , m, 



m is the total number of vertices in t; x 8; space. Any two nodes that can "see" 

each other, i.e., the line segment joining the two nodes does not intersect any of the 

obstacles, are connected by an edge with weight equal to the length of the edge. E 

is the set of these edges. 

Efficient techniques for building the V-graph are well documented in the litera- 

ture and we omit details here [12]. 

A main reason for choosing the V-graph approach is that in a two-dimensional 

space, a necessary condition for a shortest collision-free path length is that it is com- 

posed of straight line segments connecting a subset of the vertices of the polygonal 

obstacles. The shortest collision-free path from the initial position to the final po- 

sition is thus given by the minimum weight path from I to F. We then use breadth 

first search to find the shortest collision-free path in ti x 8; space [44]. 

4.5 Extension Segments And Backup Movements 

In many situations (we will illustrate them in chapter 5), it may be crucial for a 

given link to back up away from the start or the goal position and then come back 

to it, in order for the next link to maneuver. We call such motions backup motions 

and they may be crucial in finding a collision-free path. Consider the example in 

Figure 4.16. Suppose that the robot links are not allowed to cross over. With this 

constraint, the only way for the arm to reach the final configuration is to allow the 

first two links to move beyond their final position so that link 3 can move and then 

allow the first two links to move back to the final position again. 



( b )  
Figure 4.16: A three-link example illustrates the backup motions for link 1 and link 

2 beyond their start to goal intervals, (a) shows the motion of the arm. It is clear 

that the backup movements beyond the start to goal interval happen on the first 

two links. (b) shows the ti x 8; spaces for each link. For the first two links, the 

initial and the find are located at  the same position in their t; x 0; space. When link 

3 moves forward along the generated path from the initial node I in t3 x O3 space, 

the first two links will move beyond their final positions and then move back to the 

find positions again. Note that I = [ti ,  O;] and F = Itj, O f ]  



A straightforward modification, as shown in Figure 4.16, leads to such a mech- 

anism. In the initial parameterization for link 1, the algorithm considers the sub- 

interval from the initial value 9; to the goal value O f ,  i.e., @, 8: for the first link. In 

general, this sub-interval will be a subset of a whole free interval. We parameter- 

ize the whole interval (instead of only the sub-interval from initial position to final 

position) and then plan the path for the second link. Note that the beginning and 

the end of motion of link 1 now do not correspond to t = 0 and t = 1, but to some 

intermediate values, t =t; and t =t!. The beginning and goal points for link 2 are 

also not at t = 0 and t = 1, but at t =ti and t =ti. 

For the first link there is a natural mechanism for the link to move beyond its 

final (or initial) configuration - by considering the whole free-interval in which the 

initial and the final configuration values for the first joint lie. There seems to be no 

natural way of extending such "beyond the final (or initial) configuration motion" 

for subsequent links. 

The mechanism of backup movements beyond the beginning to goal interval 

is realized by searching two extension segments of a collision-free path. Clearly, 

these two extension segments have to be in the free ti x 9; space for each of the 

robot links. In our approach, we first select two nodes, one node with parameter 

value t = 0 and denoted by F;, and the other node with parameter value t = 1, 

denoted by F;. We then search for a collision-free path from F; to I, called the 

backward extension segment; and a collision-free path from F to F;, called the 

forward extension segment. To perform an effective backup movement, so that the 

robot link can move beyond the initial to final interval within a big enough range of 

the joint angle, F; (or F;) is selected such that the difference between 19; and 8; (or 



6; and B1) is as large as possible. The same graph search technique is used to search 

for the extension segments as for the main path from I to F. 'See Figure 4.18 as 

an example. Segment F;I is the backward extension segment and FF; the forward 

extension segment. 

Thus the path for link 2 can go beyond the [t;, ti] interval. Similarly, the path 

for link 3 also can go beyond the [ti, t!] interval. Such motions correspond to backup 

movements beyond the start to goal interval. Hence the first two links can now back 

up away from their final position and then move back to their final position. With 

this modification, this three-link example is easily solved. The motion is shown in 

(a) of Figure 4.16. 

4.6 Parameterizing A Collision-F'ree Path 

Having planned a collision-free path, the next step is to reparameterize this path. 

The new parameters will form the horizontal axis of the two-dimensional t x 0 space 

for the next robot link. For example, suppose we have planned a collision-free path 

and discretized it for link i - 1. The discretized path is then reparameterized with 

the parameter t i . Figure 4.17 shows this procedure. 

The method adopted in our motion planner is called equal-length parameteriza- 

tion, and uses discrete normalized arclength along the path as the new parameter. 

The collision-free path for every robot link is sampled in the same number of sam- 

ples, M. Suppose that the motion of the previous i - 1 links has already been 

planned and is specified as a function of a discretized parameter ti = [O, 11, i.e., 

1 3 ; - ~ ( & )  is known for k = 0,1,.  . . , M  - 1. Further, suppose that the length of the 



Figure 4.17: The path for link i - 1 is shown as a piecewise linear path in its 

ti-l x 8i-1 space. This path is parameterized (along its length) with the parameter 

t i .  The parameter ti is then drawn as the horizontal axis in (b) as if the path in (a) 

has been "straightened out". The path for the next link (link i) is then computed 

a,s a piecewise linear path in the ti x 8i space for link 2 .  



path equals L. The path is then divided into M samples of equal length, the length of 

each sample being AT;+l = &. The joint angle corresponding to kth sampled point 

is then easily determined by linear interpolation and represents 8;(&). Note that 

for each discrete value &, k = 0,1,. . , M - 1, we can calculate the corresponding 

q;. Figure 4.18 shows this method. 

A main drawback of constant number of samples is that a "jump" may happen 

when the robot arm moves along the vertical segments (see Figure 4.18). To over- 

come this, we may choose a larger M, but this results in spending a longer time to 

build the t; x 8; space. Therefore, a more adaptive sampling scheme that guarantees 

a minimum resolution for every joint angle is more desirable. 

4.7 Backtracking Mechanism 

The main intention of backtracking search mechanism is to make the motion plan- 

ner more powerful so that it becomes closer to a complete planner. Although the 

sequential planner described above does solve difficult problems such as the one il- 

lustrated in the previous section, nevertheless, there are situations where (say, while 

planning for link i )  no collision-free path is found in the ti x 8; space. In such 

situations, the planner must backtrack and re-plan the path for the previous links. 

i.e., a backtracking search mechanism is required. The planner may go back to the 

previous link, link i - 1, and search for another free path, in the ti-1 x 8i-l 

space (which has already been built previously). Along the new path, Q:-,, the 

planner should reconstruct the t i  x 8; space and search for a collision-free path Q: 

for link i again. This is repeated till either (i) a path is found for link i, or (ii) all 



Figure 4.18: The path is parameterized by "Equal Length" based approach. 



the paths are exhausted in ti-1 x 8;-l space. In case (i), the planner goes on to the 

next link, link i + 1. In case (ii), the planner has exhausted all the paths for link 

i - 1 and still does not find a path for link i. Therefore, the planner backtracks 

another level, i.e., to link i - 2, and searches for another path, Q:-~, for link i - 2 

in ti-2 x 8;-2 space (which has been built previously). Along this new path Q:-2, 

the planner builds and searches the ti-l x 8;-1 space for a new path 9:-, for link 

i - 1. Along this path, the planner will try to find a path for link i. In general, 

the planner may backtrack more than just the previous link, say k previous links 

and search again. The parameter k is the backtracking level, and it is an adjustable 

parameter. Indeed, with greater k, the planner will be more complete but slower as 

is shown in the worst case complexity analysis of the planner in section 4.8. 

In the following paragraphs, we present a precise backtracking mechanism based 

on the above approach. 

Suppose that while planning for link i, there is no collision-free path found in 

the corresponding ti x 8; space, a main question is how to modify or re-plan a new 

path for link i - 1, and how many such paths should be tried during backtracking. 

Since our methodology to find a path in ti x 8; is V-graph based, our approach is 

to first determine the node with the maximum parameter value that is reachable 

from the start node, i.e., the maximum parameter value of t i  at which the "block" 

occurs for link i in ti x 8; space. A portion of the path Qi-1 in ti-1 x 8;-1 space, 

that corresponds to this maximum value, is then deleted. Since our representation 

is V-graph based, we remove that edge segment from the V-graph that is on the 



~ a t h  and corresponds to the blocked parameter value '. This pruned V-graph is 

then searched again for a new path QI-, . Along this new path' for link i - 1, the 

single-link problem is solved again for link i, i.e., forbidden regions are constructed 

and approximated by polygons, and a V-graph search is carried out for a path, Q: 

in ti x 6; space. 

The structure of the new planner with the backtracking mechanism is shown in 

Figure 3.2 in chapter 3. Several examples have been implemented and the experi- 

mental results are shown in chapter 5. 

To clarify our discussion, we would like to illustrate the backtracking mechanism 

with an example shown in Figure 5.5 in chapter 5. We redraw the t2 x 62 space for 

link 2 in Figure 4.19, and it shows the V-graph for link 2. The first path chosen by 

the planner (the shortest path in the V-graph) is segment IF. Along this path IF, 

there is no free path for link 3 - the initial position is trapped in a forbidden region 

as shown in the t3  x 63 space for link 3 in Figure 4.20. Physically, it implies that 

link 3 can not move out of its initial position if links 1 and 2 move as chosen by the 

planner. 

Without the backtracking mechanism, the planner would have failed to find a 

path in this situation. With the backtracking mechanism, the planner determines 

'We may consider a range of the parameter values (instead of a single "blocking" parameter 

value) over which the current link is blocked. This range could be determined by a forward 

search from the start node to the node with the maximum reachable parameter value of t i ,  and 

a backward search from the goal node to the minimum reachable parameter value of t i .  Then 

the edge segments on the path, which correspond to this range of the parameter t i ,  are deleted 

from the V-graph. 



Figure 4.19: The V-graph for link 2. The shortest path is IF; the planner chooses 

it, but does not find a free path for link 3 (See Figure 4.20). 

the parameter value where the "block" takes place, and goes back to the t2 x 02 space 

for link 2. It deletes the edge segment that correspond to the blocked parameter, 

in this case, the edge segment IF. In the pruned V-graph, the planner searches 

for another path for link 2. Along this new path for link 2, the planner builds and 

searches the tg x 03 space for a path for link 3 again. This process repeats until a 

path is found for link 3. In this particular example, a collision-free path for link 3 is 

generated after 15 backtracking searches. Figure 4.21 shows that edge segments IF, 

INl, IN2, N3F and N4F have been removed before the planner finds a path along 

which a collision-free path exists for link 3. 



Figure 4.20: The V-graph for link 3. The initial position, I, and final position, F, 

are trapped in the forbidden region since link 2 moves along the path IF shown in 

Figure 4.19. 

4.8 Complexity Analysis 

A full complexity analysis is beyond the scope of this thesis. We briefly present 

results from Gupta and Guo [5] where a more detailed analysis is given. Since 

we compute discretized approximations in t i  x 6; space, there is no straightforward 

correspondence between the polygonal forbidden regions in t ;  x 8; space, and the 

obstacle and the robot geometry. Hence, we present a fairly abstract analysis of the 

planner. Let fi be the complexity of building the 2-dimensional sub-space t ;  x Oi, 

gi is the complexity of searching this 2-dimensional sub-space and p; is the number 

of paths explored in this sub-space. fi, g; and pi are all functions of the number 

of vertices, faces and edges in each of obstacles and robot links. Assume that the 

upper bounding values of fi, gi and pi are given as f ,  g and p, respectively. The 



Figure 4.21: The pruned V-graph for link 2 after 15 backtracking searches is shown. 

Along the new path IN3N2F, the planner successfully finds a free path for link 3 

(See column (d) in Figure 5.6). 



overall complexity of the planner with level k backtracking is [5]: 

Furthermore, our representation is based on visibility graph in the ti x Oi space. 

Suppose there are a maximum of m vertices in the ti x 0; space. Since an edge 

is deleted every time the planner backtracks, at most 0(m2)  paths are possible in 

t i  x 8; space for any i, i.e., p is 0(m2)  [31]. Building and searching a visibility graph 

is then in time 0(m2) .  Note that the major part of the time complexity in 0(m2)  

is the time spent on computing the t i  x 8; space obstacles (this can be seen from 

our experimental result in chapter 5). Hence, the time complexity of our motion 

planner with the backtracking mechanism is 

for a backtracking level k. Thus, the planner complexity is exponential in k, however, 

for a given k, the planner complexity will be polynomial in m. In practice, k will 

be a small integer (1, 2, or 3). 



CHAPTER 5 

Experiment a1 Results 

We have applied our motion planner to several examples. In this chapter, we report 

our results on six examples. In Figure 5.1, (a) shows the motion of a six-link 

manipulator arm and (b) shows the corresponding t i  x Oi spaces for each link. In 

Figure 5.2, (a) shows motions of a PUMA 560 arm and (b) shows the ti x Oi space for 

each of robot links. Figure 5.3 shows the motions of another six-link manipulator 

arm (this example is similar to the one used by Barraquand and Latombe and has 

been chosen for comparison purposes), and Figure 5.4 shows the t i  x 0; space for 

this arm. Figure 5.5 show the motions of a three-link manipulator arm along the 

collision-free path found by our motion planner with the backtracking mechanism, 

and Figure 5.6 show the t i  x 8; space for Figure 5.5. In Figure 5.7 and 5.8, the 

collision-free motion was generated for a space arm. Figure 5.9 shows the motion 

planned for the same manipulator, but in a more complex environment ("H" shaped 

obstacle) for the space arm. Figure 5.10 shows the t i  x 0; space for it. The run times 

given in the Tables are with the planner running on a SUN Sparc station I. 



The first example shown in Figure 5.1 has been chosen to show how our sequential 

planner works for manipulators with many degrees of freedom and to illustrate the 

role of backup movements in our planner. The planned collision-free motion is shown 

in Figure 5.1 (a). Note that the initial (top left corner) and the final positions 

(bottom right corner) are the same for the first five links. The corresponding ti x Bi 

spaces are shown in Figure 5.1 (b). For link 1, there are four intervals that are 

forbidden. The horizontal axis represents the parameter tl E [O,1]  and the vertical 

axis represents the angle 81. Note that the whole free interval in which the initial and 

the final angle values Of and 8: lie, is parametrized, and the parameter values tf and 

t f ,  which correspond to the start and the final angle values Of and 8!, respectively, 

is determined. The line segment joining (ti,  Of) and (ti,  8;) determines the collision 

free path for link 1. This path is discretized and parameterized using the equal- 

length parametrization. This associates a discrete value O1 with each parameter 

value t2. The forbidden ranges at each of these discrete parameter values are then 

determined, and the corresponding t2 x O2 space is shown in Figure 5.1 (b). Since the 

initial and the final positions are the same for link 2, the path is trivial. However, 

note the additional extension segments from the start node to a node with minimum 

parameter value (in this case, 0.0) and from the final node to a node with maximum 

parameter value (in this case, 1.0). The t3 x e3 space is then built along this extended 

path. This process repeats for links 3, 4 and 5. For the final link, this need not 

be done. Were these extension parts not chosen, the path for link 6 would not 

have been found. With the extension parts, however, a path is found as shown in 

t6 x 86 space in Figure 5.1 (b). In order to avoid obstacles, the path for link 6 goes 

around an obstacle (in the middle) in the t6 x 86 space. In the first segments of 

this path, the parameter value decreases to less than the value corresponding to the 



initial configuration, which implies that the previous links move beyond their initial 

position. The same applies to the final configuration. Thus the manipulator arm 

"shrinks" first and then "stretches" again to its final configuration. 

The next example is for the first three links of a PUMA-560 arm. In this example, 

there are five polyhedral obstacles in PUMA'S workspace (including the bottom table 

which is also treated as an obstacle). The initial position of the forearm (link 3) 

is in between two vertical polyhedra, and the final position of the forearm is under 

the horizontal polyhedron [see Figure 5.2 (a)]. There is no collision when it moves 

along the path generated by our motion planner. Figure 5.2 (a) shows the motions 

and (b) the t i  x 0; space for the first three links. The blank rectangular regions 

represent the joint limits for each of the joint. This example was also implemented 

on a real PUMA 560 manipulator. The PUMA 560 is connected to a SUN 3/50. 

The obstacle dimensions were measured and manually entered in the machine. The 

PUMA 560 dimensions were taken from the user's manual. The output of the 

planner was downloaded to the PUMA controller which moved the PUMA along 

the collision-free path. 

The example shown in Figure 5.3 is similar to that used by Barraquand and 

Latombe. They have planned the motion for this example with their numerical 

potential field approach with random search. This example has been deliberately 

chosen for comparison purposes and shows that our motion planner can find collision- 

free paths even in fairly tight situations. 

The next example has been chosen to illustrate the backtracking mechanism in 

our planner. This has made our motion planner more powerful, especially in more 

cluttered environments. Consider the example shown in Figure 5.5. The initial 



Figure 5.1: An example of a six-link arm with three obstacles. The path was found 

by our motion planner with the backup movement consideration. (a) the planned 

motions. The initial and final configurations are located at the top left corner and 

at  the bottom right corner respectively. (b) the ti x Oi space for each link. 



Figure 5.2: A planned motion for a PUMA-560 arm when several polyhedra exist. 

Along this path, the PUMA-560 arm moves without any collision. (a) illustrates 

the motion and (b) shows the ti x Oi space for each link. 



Figure 5.3: The planned motion for another six-link manipulator arm. This example 

is similar to that used by Barraquand and Latombe. The motion for this kind of 

mmipulator arm has also been planned with their potential field approach. 



Figure 5.4: The ti x Bi space for each link of the arm shown in Figure 5.3. 



position of link 3 is illustrated at the top left corner. In this case, link 3 is blocked 

by two obstacles quite tightly. It can not move out from between obstacles 3 and 

4 when the first two links move counterclockwise. A similar situation exists at the 

final position of link 3. Figure 5.6 shows the procedure of backtracking searches. In 

(a), both initial and final nodes are trapped in the forbidden regions. It implies that 

when link 1 rotates counterclockwise and link 2 rotates clockwise but not far enough, 

the initial node for link 3 is trapped in the forbidden area. A similar explanation 

holds for the final link. In (b), the initial node is in the forbidden region, and in 

(c) the final node is in the forbidden region. Our motion planner with backtracking 

mechanism has planned a free path after 15 backtracking searches, and (c) shows 

the final result after these 15 backtracking searches. 

We have also applied our motion planner to the first four links of the pro- 

posed special purpose dextrous manipulator (SPDM) to be used in the space station 

project. For brevity, we will call this the space arm. Figure 5.7 shows the planned 

motion of the space arm, and Figure 5.8 shows the t i  x Bi spaces for each link. 

Since the path for link 2 is a straight line (generated at the first search, but not 

shown in the figure), no path exists for link 3 along this path. This brings out one 

shortcoming in the backtracking mechanism based on edge deletion, i.e., the set of 

paths considered is a proper subset of the paths in the V-graph. However, if the 

V-graph is very sparse, i.e., the number of nodes is very small in the V-graph, the 

number of paths explored is very small. For an extreme case (such as link 2 of this 

example), there is no obstacle in the corresponding t 2  x 02 space, and the only path 

is the straight line connecting the source and target nodes. Our approach is to add a 

predetermined small number of nodes in the V-graph, for instance, we have inserted 

two nodes in the middle arbitrarily. Then the planner backtracks and searches for 



Figure 5.5: Another planned motion for a three-link arm. In this case, the environ- 

ment is filled with six obstacles. The third link is blocked by obstacle 3 and 4 at its 

initial, and by obstacles 5 and 6 at its final position, respectively. 



Figure 5.6: The t i  x Bi space for each link of the arm shown in Figure 5.5. In (a), 

the initial and final nodes are trapped in the forbidden area for link 3. In (b) and 

(c), the initial and final nodes are surrounded respectively. After 15 backtracking 

searches, a free path is found, as shown in (d). 



another ~ a t h  in t2  x O2 space. Along this new path, it plans the motion for link 3 

again. Note that the planned motion was finally generated after one backtracking 

search to the second link (the t i  x Oi space for the backtracking search procedure is 

ignored here). 

Finally, another example for the space arm with an "H" shaped obstacle is shown: 

the planned motion in Figure 5.9 and the t i  x 8; spaces in Figure 5.10. 

Next we present and discuss the run times for a few examples. In general, there 

are four major components of our planner for each manipulator link: (i) computing 

forbidden angles, (ii) building V-graph, (iii) searching for a collision-free path, and 

(iv) parameterizing the generated path. Recall that the worst case complexity of the 

planner is exponential in the backtracking level, k, but polynomial in n, the degrees 

of freedom, for a given k. The approximate run time for the planner can be obtained 

by multiplying the average run time for a single link by the number of single link 

problems solved (including the backtracking searches). For the example shown in 

Figure 5.5, the planner should backtrack one level (only one level for this particular 

example) to link 2 because of no path found for link 3. In this case, the backtracking 

level, k = 1. For this example, the planner backtracks to link 2 fifteen times, and 

the total run time is roughly 15 x (62.941 + 50.242 - 48.987) = 962.940 seconds (the 

run time shown in the second table is for solving one single link problem). 

The run times (in seconds) given below are obtained by executing the planner 

on Sparc station I in a time-shared environment. Note that the run times for a 

dedicated machine will be faster. 



Figure 5.7: The planned motions for a four-link space arm. In this case, the environ- 

ment is filled with two simple polyhedral obstacles, and the sequence of intermediate 

motions is shown from the top left corner to the bottom right corner. 



Figure 5.8: The ti x 8; space for each link of the space arm shown in Figure 5.7. 



Figure 5.9: The planned motions for a four-link space arm in the environment filled 

with a 'H" shaped obstacle. The sequence of intermediate motions is shown from 

the top left corner to the bottom right corner. 



Figure 5.10: The ti x Oi space for each link of the space arm in the case of "H" 

shaped obstacle. 



Tables of Run Time 

(in second) 

(1) A six-link arm with three obstacles (Figure 5.1) 

I forbidden angles I V-graph I searching I sampling I subtotal 

Link 2 

Link 3 

Link 4 

Link 5 

(2) A three-link arm with six obstacles (Figure 5.5) 

Link 6 

Tot a1 

38.047 

24.667 

25.656 

31.171 

The total run time is 962.940 = 15 x (62.941 + 50.242 - 48.987), because of 15 

backtracking searches to link 2. 

, 25.492 

145.033 

- 

5.877 

2.260 

3.005 

2.643 

6.659 

20.444 

Link 2 

Link 3 

0.879 

0.716 

0.778 

0.804 

0.399 

3.576 

forbidden angles 

48.987 

53.524 

0,043 

0.024 

0.018 

0.024 

44.846 

27.667 

29.457 

34.642 

0.030 

0.139 

V-graph 

0.757 

8.333 

32.580 

169.192 

searching 

0.495 

1.078 

sampling 

0.003 

0.006 

subtotal 

50.242 

62.941 



(3) A four-link space arm with two obstacles (Figure 5.7) 

The total run time is 72.047 = 2 x (26.033 + 16.671 - 16.007) + 18.653, because of 

one backtracking search to link 2. 

Link 2 

Link 3 

Link 4 

(4) A four-link space arm with "H" obstacle (Figure 5.9) 

forbidden angles 

16.007 

17.586 

16.895 

i 

searching 

0.509 

0.712 

0.208 

V-graph 

0.151 

7.729 

1.530 

Link 2 

Link 3 

Link 4 

Total 

sampling 

0.004 

0.006 

0.008 

forbidden angles 

49.034 

48.554 

55.170 

152.758 

subtotal 

16.671 

26.033 

18.653 
L 

V-graph 

0.248 

5.292 

7.780 

13.320 

searching 

1.923 

2.458 

1.059 

5.440 

sampling 

0.003 

0.005 

0.011 

0.019 

subtotal 

51.208 

56.309 

64.020 

171.537 



CHAPTER 6 

Conclusions 

6.1 Summary 

In this thesis, a new motion planner for planning collision-free paths for a manipula- 

tor arm with many degrees of freedom among known stationary obstacles has been 

developed and implemented. This planner, which is based on a sequential search 

strategy, is efficient and applicable for many-degree-of-freedom manipulators simply 

because the n-dimensional motion planning problem is decomposed and simplified 

into simpler single link problems which are solved sequentially. A backtracking strat- 

egy is incorporated into the planner. The complexity of the planner is polynomial 

in n for a given level of backtracking, k. The core of the planner is the single link 

problem - plan a motion for one degree of freedom link (angle for a revolute joint) to 

avoid collisions as one end of the link moves along a given path. The path generated 

after solving the single link problem is then parameterized. Along this path, the 

planner solves the single link problem for next link until the last single link problem 



(for the last link of the manipulator arm) is solved. 

Although the planner is not complete, in most situations, it does find a collision- 

free path. However, it is well known that the complexity of the motion planning 

problem is exponential in n. Our planner, therefore, represents one way of developing 

practical motion planners for many-degree-of-freedom manipulator arms. We have 

demonstrated the effectiveness of the planner for a variety of manipulators up to 

six degrees of freedom in the order of a few minutes on a SUN Sparc station I. 

We can easily envisage the planner solving problems for manipulators with much 

larger number of degrees of freedom. In summary, our planner has a number of 

advantages: (i) it completely avoids the difficulty of representing n-dimensional C- 

space obstacles, (ii) it is efficient and practical - runs at the most in the order of a 

few minutes, even for manipulators with high number of degrees of freedom, (iii) it 

is deterministic (in the sense that it does not use stochastic search techniques), and 

(iv) it provides a mechanism for trading off execution speed of the planner with its 

completeness. 

Some Open Issues 

Developing and implementing a motion planner involves dealing with many areas 

- object modeling and representation, computational geometry, and search tech- 

niques. However, the treatment of these topics was far from exhaustive, even though 

some approaches have been suggested and experimented with. Next we discuss the 

author's selection of some possible extensions and some interesting and unsolved 

issues. 



1. Motion planning problems with multi-degree of freedom at one joint 

Our implementation assumes that each joint has one degree of freedom. This 

is a very basic structure and most industrial manipulators fall under this cat- 

egory. There exist manipulators in which there is more than one degree of 

freedom at one joint, say three degrees of freedom at a spherical joint, such 

that a robot link can rotate around three Cartesian axes called "yaw", "pitch" 

and "roll". How do we extend our approach to such manipulators? There are 

two possibilities. First is that we could solve a higher dimensional problem, in 

this case, a four degree of freedom problem, i.e., as the base of the joint moves 

along a certain path, plan for all three degrees of freedom simultaneously. An- 

other possibility would be to arbitrarily prioritize the degrees of freedom and 

plan the motion sequentially. However, there is no natural way to prioritize. 

In fact, the prioritizing may depend on the workspace and the manipulator 

structure. 

2. Motion planning problems with moving obstacles 

Another problem is how to plan the motion of a manipulator when some of 

the obstacles in the robot's workspace are assumed to be moving along known 

trajectories with known velocity and acceleration. There are some approaches 

to solve some simple problems for moving obstacles 12, 31. We believe that 

our approach can be combined with these approaches to plan the motions of 

a manipulator among moving obstacles. 

3. Motion planning problems with constraints on the robot hand 

There are other versions of motion planning problem, for instance, the robot 

hand may be constrained to move on a planar surface. Extension of our planner 



to solve such constrained motion planning problems is an interesting problem. 

4. Eficient motions 

The consideration comes from the unnecessary movements of some robot links. 

See Figure 5.5. Link 2 rotates too far away from a "reasonable path". In fact, 

it is not necessary for link 2 to rotate further down when link 3 moves out from 

the "gap" between obstacles 3 and 4. The reason is that the motion planner 

only searches several nodes in the free ti x 0; space. Definitely, a free-space 

based approach will give better and safer paths. We would recommend using a 

free-space based approach instead of the visibility graph based approach that 

we have used to solve the two-dimensional planning problem. 

5. Geometric reasoning and dynamic prioritizing 

The success of our sequential planner lies in that it decomposes motion plan- 

ning for an n-link into a sequence of simpler single-link problems, starting from 

the base link and finishing at the last link. Currently, we rely on the back- 

tracking strategy to find another path for the previous link, if no path exists 

for the current link. However, the backtracking strategy is completely based 

on selecting paths in the ti x 8; spaces. One way to improve it would be to use 

geometric reasoning in the Cartesian space to guide which path to select in the 

ti x Bi spaces. In fact, in many situations, it may be better to use some other 

ordering (than the base link to last link ordering we use in our planner) or 

prioritizing of the links, i.e., solve the single link problems in a different order. 

In fact, this prioritizing of links will, in general, depend on the manipulator 

and obstacle configuration. We could, for example, use a geometric reasoning 

system to dynamically assign the link priorities, and then sequential planner 



would then plan a path based on the link priorities. 

6.  Completeness 

Our planner is not complete, i.e., it may not find a collision-free path even if one 

exists. With the backtracking strategy, we have provided one way of trading 

off efficiency of the planner with completeness. However, even with full back- 

tracking, the planner is not complete. An open issue is to consider variations 

of paths different than the one suggested in our backtracking methodology. 

7.  Integrating the planner with a vision module 

The planner requires a full geometric model of the obstacles in its environ- 

ment. Currently, we manually enter this. Often it is assumed that these 

models will be derived from a CAD database. However, these are cumber- 

some processes. A better way would be to automatically acquire these models 

from sensed data, e.g., intensity or range images [6 ] .  Such motion planners 

integrated with sensing modules would go a long way toward making future 

robots autonomous. 



Appendix A 

Coordinate Systems and 

Geometric Represent at ions 

A. l  Link Coordinate Systems 

To describe each link of a manipulator arm, we use the standard notations as in 

[44]. The base frame of the robot coincides with its workspace coordinate system, 

which is usually called a world frame, or universal frame, and is denoted by W. The 

obstacle frame, 0, is related to the world frame by a position vector p,. The link 

frames are named by number according to the link to which they are attached. That 

is, frame Li is attached rigidly to link i. The convention we use to locate frames on 

the links is as follows: the Z axis of frame Li, called Zi, is coincident with joint i, 

The origin of frame L; is located where the a; perpendicular intersects the joint i 

axis. Xi points along a; in the direction from joint i to joint i + 1. Yi is formed by 



the right-hand rule to complete frame Li. Figure 4.1 shows the whole coordinate 

systems. 

If the link frames have been attached to each link according to our convention, 

the following definitions of the link parameters are valid: 

a;: the distance from axis z; to axis z;+l measured along axis xi; 

di:  the distance from axis to axis x; measured along axis z;; 

a;: the angle between axis z; and axis z;+l measured about axis x;; 

8;: the angle between axis x ; , ~  and axis xi measured about axis zi; 

Hence a robot manipulator arm can be represented kinematically by giving the 

values of four quantities for each link. In Figure A. 1, we give an example of the 

definitions of link parameters (the example shows the first three links of PUMA 560, 

and the values of quantities given in the figure have been used in our implementa- 

tion). We would like to mention again that there is only one degree of freedom on 

each joint. The purpose of our motion planner is to generate the value of 8; at which 

no collision happens between a robot link and obstacles. 

A.2 Geometric Models And Representations 

In our implementation, robot links and obstacles are both represented by convex 

polyhedra which may have an arbitrary number of surfaces and vertices. We limit 

our computer representation to convex polyhedra because they greatly simplify cal- 

culations of configuration space f& each robot link. For a nonconvex polyhedron, 



Link Parameters 

Link 1: aO= 0.0 
a0 = 0.0 
dl= 26.45 
81 (variable) 

Link 2: a1 = 0.0 
a1 = -90.0 
d2 = 9.2 

82 (variable) 

Link 3: a2= 17.0 
a2 = 0.0 
d3 = -4.0 
83 (variable) 

Figure A.1: An example of definitions of link parameters for PUMA 560 



it can be decomposed into several convex polyhedra. For other kinds of models, 

like cylinders and spheres, we can use bounding convex polyhedra. The following 

sections give the data structures to describe the geometric models. 

A.2.1 Data Structures For A Robot Arm 

Usually, a robot arm is composed of several links, and one link is modeled as a 

cylinder or square bar. We described any robot link as a square bar which has six 

faces and eight vertices. Therefore, in our implementation, it is the basic structure of 

the robot link. The following are defined for implementation of our motion planner. 

(1) The Data Structure: Arm 

typedef struct arm { 

int numlinks; 

Link-state link-state[MAXLINKS]; 

Link-style link-style[MAXLINKS]; 

) Arm; 

In this structure, 

a numlinks: the number of links of the given robot arm. 

link-state: a data structure which describes the state of the specified robot 

link. 

a link-style: a data structure which describes the solid of the given robot link. 



(2) The Data Structure: Link-state 

The Link-state structure is defined as below, 

typedef struct link-state{ 

float a; 

float d; 

float a; 

float 0; 

) Link-state; 

(3) The Data Structure: Link-style 

The Link-style structure is defined as below, 

typedef struct link-style{ 

int numfaces; 

Face face[M AXFACES] ; 

) Link-style; 

In this structure, 

numfaces: the number of faces os a robot link. The limit is MAXFACES 

which is defined as SIX because a robot link is described as a square bar 

which has at most six faces. 

face: a data structure which represents one planar surface of the robot link. 



(4) The Data Structure: Face 

The definition of Face is 

typedef struct face{ 

int num-vertices; 

Normal normal; 

Vertex vertex[MAXVERTICES]; 

) Face; 

where 

num-vertices: the number of vertices of the surface. the maximum number is 

four according to square bar description of the robot link. 

normal: a data structure which describes the unit normal vector of the given 

surface. 

vertex: a data structure which represents the position of the vertex and the 

positions of its neighbors. 

(5) The Data Structure: Vertex 

The definition of Vertex is 



typedef struct vertex{ 

int numneighbors; 

Vector point; 

Vector neighbor[MAXNEIGHBOURS]; 

) Vertex; 

where 

numneighbors: how mahy neighbors the specified vertex has. In our case, the 

maximum number is three(square bar definition). 

point: a data structure which is the position vector of the given vertex. 

0 neighbor: a data structure describing the positions of vertex neighbors. 

A.2.2 Data Structures For Obstacles 

Obstacles in a robot workspace are represented as convex polyhedra. The simplest 

model is a cube, a square bar, or a pyramid. We describe a group of obstacles by a 

obstacle list data structure, which definition is 

typedef struct obstacle-list { 

int num-obstacles; 

Obstacle obstacle[MAXOBSTACLES]; 

) Obstacle-list; 

where 



r num-obstacles: how many obstacles there are in the robot workspace. The 

maximum number depends on how many obstacles you want to simulate a 

workspace. 

r obstacle: a data structure to describe an obstacle. 

Here is the obstacle data structure. 

typedef struct obstacle{ 

int numfaces; 

float 8,; 

float 8, ; 

float 62 ; 

Vector position; 

Face face[MAXFACES]; 

) Obstacle; 

where 

r numfaces: same as in Link-style structure; 

8,: the rotation angle around the x-axis; 

8,: the rotation angle around the y-axis; 

a 0,: the rotation angle around the z-axis; 

r position: the position vector of thk obstacle in the robot workspace. 

face: same as in Link-style structure. 
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Transformation Between Coordinate Systems 

As we know, the robot coordinate system is a multi-coordinate system. The robot 

workspace is defined with respect to a reference coordinate system which is called 

a world system in our approach. Therefore, a coordinate transformation is needed 

when a potential contact between a manipulator link and an obstacle is calculated, 

because manipulator links and obstacles are described in their own coordinate sys- 

tems, respectively. There are two ways to do the coordinate transformation. One is 

to transform manipulator links and obstacles from their own systems to the reference 

system(wor1d coordinate system). Another is to transform obstacles from their own 

systems to the current link coordinate system which is called a link coordinate sys- 

tem. In our implementation, the second has been selected since the final results are 

the joint angles in our motion planner. The transformation between link coordinate 

system has been given in [45]. 



Appendix B 

Computing Potential Contact 

Angles In 3D 

A potential contact angle is a value of any possible contact between a vertex and a 

surface or between two edges (we only discuss the case where the joints are rotary 

ones so that the configuration parameters are the joint angles). Suppose link k 

will be planned in the three-dimensional space, and also the models of link k and 

obstacles are convex polyhedra. We have defined the coordinate frame so that the 

origin corresponds to the position of revolute joint k and the z axis is aligned with 

the joint axis. The coordinate representation of all vectors (i.e. vertex vectors and 

surface normal vectors) is relative to this coordinate frame. When link k rotates 

around the z axis (the joint k axis), each of its vectors rotates the same value of 

the joint angle, and each point on the vector moves along a circle whose center is 

at a different level (different z value) along the z axis. We assume that the initial 

position of the link k corresponds to  Bk= 0. The derivation in this chapter is based 



on [9], but it is more detailed. Now let's compute the potential contact angle for 

three different types of contact. 

(1) Type A contact: Vertex of a link with face of an obstacle 

We are given a vertex of link k whose position vector is v and an obstacle surface 

whose plane equation is n . p + d = 0 (here n is the outward pointing unit normal 

of the plane, p is a vector of any point on the surface and d is the distance between 

the origin and the surface). In order to determine the value of Bk, we obtain the 

equation for Ok by substituting the vertex position vector, rotated by ek, into the 

plane equation and then solving for Ok. Let v' denote the rotated vertex vector, 

then the coordinates of v' are 

v: = v, cos Or - v, sin Os 

Substituting v' into the plane equation yields a simple trigonometric equation 

(nxvs + n,vy) cos + (n v, - n,v,) sin Bk = - d - n,v, 

whose solution is 



where 

Now let's determine whether increasing or decreasing flk causes a collision, i.e., 

whether a contact angle is a start or an end of the forbidden range. See equation 

B.1. The left side represents the perpendicular distance of the rotated vertex from 

the obstacle surface. Therefore, the derivative of the left side of B.l will determine 

whether the contact angle is a start of the forbidden range or an end of it. For 

type A contact, if sign(dir) = - 1, the increasing of Bk will cause a collision, i.e., 

this contact angle is the start, or if sign(dir) = 1, the decreasing of Ok will cause a 

collision, i.e., it is the end. Here dir equals 

dir = (nyv,  - nxvy)  cos Bk - (nxvx + nyvy)  sin Bk 

The orientation constraint simply tests whether the other endpoints of all the 

edges meeting at the contact vertex are outside of the obstacle surface. This is done 

by substituting the edge vectors into the left side of the plane equation and then if 

all the values are positive, the orientation constraint is satisfied. 

(2) Type B contact: vertex of obstacle with surface of link 

Similarly, we are given an obstacle vertex and a link surface. The procedure of 

computing Ok is almost identical to. the type A case. Here we mention that the only 



difference is the sign of the first argument to the arctangent, and the dir will also 

be different from equation B.3. They are shown in following equations, 

4 = arctan(-nyv, + nxvy, nxv, + nyvy) 

dir = (-nyvX + n,v,) cos 9 k  - (n,v, + n,v,) sin Ok 

(3) Type C contact: edge of link with edge of obstacle 

There is no doubt that this case is substantially more difficult. We make use of 

the results derived in [9], but we discuss it briefly. The basic idea is that the points 

on the edge can be represented by a parametric equation. Let 1 be the position 

vector of the intersection point on the link edge and o the position vector of the 

intersection point on the obstacle edge. Then the parametric equations for 1 and o 

are as follows: 

where v is the position vector of one of the endpoints of the link edge and m 

is the difference vector between the endpoints of the link edge, w is the position 

vector of one of the endpoints of the obstacle edge and n is the difference vector of 

the endpoints of the obstacle edge. The parameter tl E [O, 11 parameterizes along 

the link edge, and and to E [O,1] along the obstacle edge. 

As the edge rotates around the Z axis, points on the edge trace out circles. The 
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equation for points on those circles are 

We assume m, # 0, then combine these two equations above by solving the 

second equation for ti = ( z  - v , ) /m ,  and then substituting into the first equation 

to obtain 

Equation (B.6) is an implicit equation for points on the rotation surface. 

Remember that when intersection happens, the intersection point on the obstacle 

edge must also satisfy equation (B.6). Consider the parametric form of this point as 

x = nxto + wX y = nyto  + w, z = n,to + w,. 

Then substituting into (B.6) gives a quadratic equation in to, which is 

where 

p = (nf + n:)m: - (mf  + mi)nf 
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Having two roots of to we can solve for two values of tl  since we know that the 

z values at contact must be equal. Therefore, the two values of tl can be obtained 

by the following equation: 

For those values of to and tI, only to E [O, 11 and tl E [O, 11 are acceptable 

(satisfying the in-edge constraint). Having obtained the position vectors 1 and o, 

the potential contact angle can be easily calculated, i.e., 

For the case where m, = 0, we solve for to simply by to = (v, - w,)/n, in terms 

of equal z values. Then we solve quadratic equation (B.7) for tl. We must note that 

the coefficients p, q and r are different from those used in (B.7). These coefkients 

are given by 



In what follows we need to determine whether increasing or decreasing Ok will 

cause a collision if the Ok satisfies the orientation constraint. We have to make sure 

that the vector c(Ok) is the outward-pointing by a factor k, where k = sign(c. (el + 
ez)). Then we obtain the type-C C-surface equation. 

If the derivative of the left side of the equation is positive, increasing Ok will 

cause a collision. 

Note that when we have already obtained a start value and an end value of the 

forbidden range, it is not necessary to compute the potential contact angle again 

since we consider that the robot links and obstacles are both convex polyhedra. 



Appendix C 

Geometric Constraints 

We consider only the case where robot links and obstacles are convex polyhedra. 

Lozano-Pkrez first defined three basic contacts in space, called Type A, B and C (see 

Appendix B for more details). The definitions of three types of contacts are shown 

in Figure 4.3. Lozano-PBrez then defined constraints in terms of those three types 

of contact [9]. In our implementation, we make use of his ideas and techniques. 

There are different constraints for different types of contacts. For the contact 

between vertex and surface, there are two constraints: (1) in-surface constraint and 

(2) orientation constraint. For the contact between two edges, there is an orientation 

constraint. We will discuss them respectively. 

( 1 )  in-surface constraint 

When we obtained a potential contact angle in between the link and an obstacle, 

we need to prove if it is the real one or not by checking the two constraints. The in- 

surface constraint means that the vertex must be within the surface of the obstacle 



Figure C.l: If c q  + a2 + as + a4 = 2w, the vertex v is within the surface. 

after rotating it by the value of the potential contact angle. In some cases, the 

rotated vertex may not be within the surface even though it satisfies the surface 

function, because a surface function can describe an infinite surface in the three- 

dimensional space. Since we know that the contact vertex is on the surface, all that 

remains to be determined is whether it lies within the surface. This can be done by 

computing the sum of angles which are formed by the vertex with each two vertices 

of the surface as shown in Figure C.1. The constraint is satisfied if the sum of the 

angles is equal to 2w. Note that for type A contact, the vertex has to be rotated by 

the value of the potential angle in the positive direction, and for type B, the rotation 

direction must be opposite to that for type A. 

(2) orientation constraint 

For orientation constraint, the orientation of the edges at the potential contact 



point must be compatible, that is, the edges that define the contact vertex must be 

outside of the touched surface of the polyhedron. Therefore, the detection of the 

orientation constraint can be simple. All that is required is that the edges forming 

the contact vertex be outside of the contact surface. Practically, the way of testing 

this constraint is by ensuring that the polyhedron edges that intersect at the contact 

vertex point outward from the contact surface. This can be done by first rotating 

the contact vertex by the potential angle value, then checking the direction which 

the edges of the polyhedron point to. For the example shown in Figure (2.2, if e l ,  e2 

and e3 are the edge vectors pointing away from the vertex, and n is the unit normal 

vector of the contact surface, then the orientation constraint boils down to 

sign (n  el) 2 0 sign(n . e2) > 0 sign(n e3) 2 0 

where sign(x) = x / l x l  for x # 0 and 0 otherwise. 

It is more difficult to detect the orientation constraint for type C contact. The- 

oretically, when the two edges are in contact (Figure C.3)) any motion component 

perpendicular to both of them will cause a collision while a component of motion 

along either edge will not cause a collision. The direction perpendicular to both 

edges is simply the cross product of the two edge vectors (don't forget that the 

link edge must be rotated to the contact angle). The cross product generates a 

new vector, called vector c, which makes the orientation constraint checking more 

convenient. From Figure C.3, m is an edge vector on the link, e l  and e2 are the 

other two edge vectors meeting at one end of edge rn; n corresponds to an edge 

vector on the obstacle; also e3 and e4 are the other two edge vectors meeting at one 



Figure C.2: Testing orientation constraint for polyhedral contact between vertex 

and surface. (a) the orientation constraint has been satisfied so that 8 is a "real" 

contact angle; (b) the constraint is not satisfied. 



link 

Figure C .3: Testing orientation constraint for polyhedral contact between two edges. 

end of edge n. Then the followings are necessary and sufficient conditions for the 

orientation constraint for type C contact: 

whenever s # sf is satisfied. 

If the obstacle is a nonconvex polyhedron, there may be another constraint, called 

reachability constraint. This constraint, however, requires examining all the contacts 
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Figure C.4: At parameter t', three forbidden ranges are merged into one. 

of the link with a given obstacle that satisfy the first two constraints. The idea is 

that for each contact angle 6' we determine whether values of Bk greater than 6' cause 

collision or whether values of less than 6' cause collision. According to the collision 

directions, the contact angles can be merged to form the ranges of forbidden values 

for Ok. We restrict the model of obstacles to be convex polyhedra so that we don't 

need reachability checking in our motion planner. However, a nonconvex polyhedron 

can be decomposed into several convex polyhedra, but we still need to merge the 

overlapped values of Bk just because the two obstacles are too close to each other. 

After the "merging" procedure, the reachability constraint is satisfied automatically. 

Figure C.4 shows the procedure of merging the overlapped ranges. 
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