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ABSTRACT 

Linear modulation methods possess good spectral efficiency. However, their fluctuating 

envelopes, in conjunction with typically nonlinear power amplifiers, lead to spectral spreading 

and adjacent channel emissions. A method used to achieve high power efficiency and low 

adjacent channel emissions is to linearize the power amplifier using predistortion. 

This thesis presents the &sign and implementation of an analog adaptive polynomial 

predistorter linearizer. The adaptive predistortion approach is to minimize the transmitter output 

power in spectral regions occupied only by intermodulation distortion products, which for a 

single channel data signal is the adjacent channel. By monitoring the out-of-band power, an 

estimate for the distortion introduced by the power amplifier is obtained. The optimization 

methods adjust the predistorter parameters so as to minimize the intermodulation distortion 

power value. 

Direct search and gradient optimization methods are first simulated and compared for 

speed of convergence using a 16 QAM input signal. A simulated 15 dB reduction in the power 

amplifier's intermodulation distortion skirts was obtained as a result of optimization. The 

adaptive analog predistorter was then implemented and a 10-12 dB reduction in the power 

amplifier's intermodulation distortion skirts was obtained with a 16 QAM input signal. 
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1 INTRODUCTION 

Constant envelope modulation such as FM allows the power amplifiers to be operated close to 

saturation for high power efficiency. However, due to the limited spectrum allotted for mobile 

communication applications, higher spectrum efficient modulation techniques like QPSK and 16 

QAM are required. The varying envelope of the QAM signals generate intermodulation 

distortion (IMD) products from the nonlinear power amplifier. In mobile communication 

systems, the adjacent channel interference has to be 60 dB lower than the in-band carrier level 

[I]. One way to reduce the adjacent channel interference is to back off the power amplifier to a 

linear operating region, decreasing the efficiency of the power amplifier. In order to achieve 

both spectrum and power efficiency, the power amplifier has to be linearized. 

There are several types of linearization techniques used to reduce the power amplifier's 

out-of-band emission. The five categories of linearization techniques are active biasing, 

feed-forward, LINC, negative feedback, and predistortion. 

Active biasing linearization [2] uses the envelope of the input signal to alter the operating 

bias point of the transistor. The envelope of the input signal is applied to a nonlinear function 

that interpolates the inverse nonlinearities of the transistor. The output of the nonlinear function 

is applied to the base of the transistor and the bias point of the transistor is varied as a function of 

the envelope input signal. Due to filtering requirements in the bias network, active biasing 

linearization is restricted to narrow bandwidths. Also, since the system operates as an open loop, 

some form of adaptation is required to compensate for transistor drift. 

Feed-forward linearization [3] uses the vector error signal between the power amplifier's 

output signal and a time-delayed version of the input signal to correct for the distortion 

introduced by the power amplifier. This technique has demonstrated good IMD cancellation and 

is capable of achieving good power efficiency, however, it tends to be sensitive and expensive, 

since the up-converter hardware is doubled. 



LINC is an acronym for LInear Amplification using Non-linear Components. The concept 

of the LINC technique is to convert the input bandpass signal having amplitude and phase 

nonlinearities into two constant envelope signals that are combined before transmission [4]. The 

LINC technique can be used with power efficient amplifiers. On the other hand, the LINC 

technique needs components with very stable characteris tics and possesses an increased level of 

complexity. 

The negative feedback or Cartesian feedback technique [5,6] is one of the simplest 

linearization techniques. Although this technique is simple, it has several shortcomings. 

Stability is a serious problem since it depends on precise adjustment of the phase shifter and 

feedback gain. 

Predistortion [7]-[ll] is the most commonly used technique for linearizing an amplifier. 

The concept of predistomon is to insert a nonlinear module between the input signal and the 

power amplifier. The nonlinear module generates IMD products that are in anti-phase with the 

IMD products generated by the power amplifier, hence, reducing the power amplifier's 

out-of-band emission. A basic predistortion block diagram is presented in Figure 1.1. 

Figure 1.1. Basic Predistorter Block Diagram 

b 

Several predistortion linearizers have been developed during the past decade. IN general, 

there are three basic predistorter techniques. The baseband predistorter predistorts each vector of 

the baseband signal using DSP hardware [12]. The cuber predistorter [8], uses an anti-parallel 

pair of diodes as the nonlinear module and it reduces strictly the third order IMD products. The 

third predistortion technique uses the envelope of the modulating signal to generate two second 

order nonlinear functions that interpolate the inverse AM-AM and AM-PM nonlinearities of the 

power amplifier. These two second order nonlinear functions are used to predistort the power 

Predistorter 



amplifier. 

A robust predistorter should incorporate some form of adaptation, since the power 

amplifier's characteristics tend to drift with time. These drifts are caused by changes in 

temperature, supply voltage variations, aging of devices and switching between channels. A 

simplified block diagram of the adaptive analog predistorter &signed and implemented for this 

thesis is shown in Figure 1.2. 

Figure 1.2. Adaptive Analog Predistorter 

The linearizer creates a predistorted version V,(t) of the desired modulation V,(t). The 

predistorter block is made up of a complex phasor modulator which controls both the amplitude 

and phase of the input RF signal. The amount of predistortion is controlled by two nonlinear 

second order functions F, and F2 that interpolate the inverse AM-AM and AM-PM nonlinearities 

of the power amplifier. Note that F, and F, are functions of the complex envelope of the 

modulating signal. 

The feedback path, couples a portion of the input bandpass signal and power amplifier 

output signal, V,(t) and V,(t) respectively, to the IMD quadrature demodulator and power 

detector circuit. Here, the IMD products are down-converted to baseband, and the contribution 

of the 3d and 5& order IMD products is filtered out of the spectrum. The power in the undesired 

spectrum is then detected and averaged to obtain a magnitude IM, which will be used to adjust 

the linearizer. The adaptation algorithm adjusts the F, and F2 coefficient values so as to 



minimize the out-of-band power magnitude I&. Note that the micro-controller is a very 

important part of the linearizer, since it controls the flow of infomation between the F, and F, 

polynomial generator circuit, IMD quadrature demodulator and power detector circuit and 

adaptation algorithm. 

This thesis describes the design and implementation of an adaptive predistorter linearizer. 

Chapter 2 of the thesis presents the mathematical system analysis and shows how predistortion 

reduces the 3d and 5" order IMD products generated by the power amplifier. Chapter 3 

describes various optimization methods that can be used to adaptively minimize the out-of-band 

power generated by the power amplifier. Next, chapter 4 outlines the simulation model used to 

simulate the performance of the adaptive predistorter and shows the simulation results obtained 

Chapter 5 describes the hardware implementation of the adaptive predistorter while Chapter 6 

presents the results obtained with the implemented adaptive predistorter. 



2 SYSTEM ANALYSIS 

This chapter presents a detailed analysis of the adaptive predistorter. The first section describes 

the analysis of the system using a real bandpass model. The second section describes the 

composite model analysis. Third section uses an amplitude modulated (AM) signal to show how 

predistortion can reduce the 3d and order IMD products. Finally, the last section of this 

chapter describes mathematically how the IMD products of the power amplifier are separated 

from the spectrum. 

2.1 Analysis of the System Using a Bandpass Model 

A detailed block diagram of a transmitter with an adaptive predistorter is illustrated in Figure 

quad mod predistorter 

data 
stream 

Figure 2.1. Detailed Diagram of Adaptive Prediitorter 

The modulator converts the input data stream into the &sired modulation scheme (i.e. 16 

QAM, QPSK, OQPSK). The complex baseband signal V,(t) is expressed as 

The complex baseband signal VJt) is then up-converted into a real bandpass signal v,(t) 

using a quadrature modulator. The real bandpass signal Y,(t) can be written as 



vm(t) = i (t) COS(O,~) - q (t) sin(qt) = %e{~~(t)e '"~} (2.2) 

Vm(t) in equation (2.2) is commonly referred to as the complex envelope. The predistorter 

modelled by a quadrature structure, creates a predistorted real bandpass signal vd(t). This is 

accomplished as a result of the multiplication of the in-phase and quadrature components of the 

bandpass input signal vm(t) by the in-phase and quadrature nonlinearities of the predistorter. The 

predistorter's nonlinearities are modelled by two 2* order nonlinear functions denoted by F, and 

F,. The two functions interpolate the inverse AM-AM and AM-PM nonlinearities of the power 

amplifier and are represented by 

F,[xm(t)l= a,, + a,+m(t) + al$:(t) (2.3) 

4[xm(t)j = %I + ~ m ( t )  + ~ : ( t )  (2.4) 

when x,,,(t)=l~,(t)l~ since F, and F2 are amplitude dependent. Using the F, and F2 functions, the 

predistorter's complex gain, F[xm(t)], can be expressed as 

F[x,(t)l= Fl[xm(t)l + j  . F2[xm(t)l = a, + + a&t) (2.5) 

where cc,=a,,+j% are complex coefficients that model the power amplifier's inverse AM-AM 

and AM-PM nonlinearities. The predistorted real bandpass signal vd(t) can now be written as 

Vd(t) = %e (~~(t)ej" '} = %e (v,(~)F [~~(f le ' "~} (2.6) 

Note that the vd(t) expression ignores the even order terms, since they generate distortion outside 

the frequency band of interest. Next, to model the power amplifier, the quadrature structure of 

Figure 2.2 is used [3]. 



Figure 2.2. Quadrature Model of Power Amplifwr 

As illustrated in Figure 2.2, the quadrature structure is made up of a 90' power splitter, two 

memoryless nonlinearities and a summation block. The nonlinearities are functions of the 

magnitude of the input signal and they are represented using power series. The quadrature model 

can be drawn in real bandpass form as illustrated in Figure 2.3 

Figure 23. Real Bandpass Form of the Quadrature Structure 

The G1 and G2 functions model the power amplifier's AM-AM and AM-PM nonlinearities, 

respectively. The two nonlinearities are represented by power series of the form 

where x,,(t)=W,(t)12. Using complex notation, the power amplifier's complex gain is expressed as 



where Pi=Pli+jL are complex coefficients that model the power amplifier's AM-AM and 

AM-PM characteristics and can be obtained in practice by characterizing the power amplifier. 

Using the quadrature structure model, the power amplifier's real bandpass output signal 

becomes 

As illustrated by equation (2.10)' the complex envelope of the power amplifier's output 

signal is a function of the complex envelopes of the input signal, predistorter and power 

amplifier. This indicates that an analysis having the signals in complex envelope farm is more 

suitable. Next section demonstrates how the predistorter and power amplifier can be modelled 

by a composite model using the complex gains of the predistorter and power amplifier. 

2.2 Analysis of the System Using a Composite Model 

This section shows mathematically how the 3* and 5" order IMD products of the power 

ampiifier can be reduced by the 3* and 5' order components generated by the predistorter. Start 

by modelling the predistorter and power amplifier using a composite model in complex gain 

form as shown in Figure 2.3. 

F[xAt)l G[%(t)l 

Figure 2.4. Block Diagram of Complex Predistorter and Power Amplifier 

Using Figure 2.4's notation, the power amplifier's output signal, V,(t) is 



where G[%(t)] is the power amplifier's complex gain and can be approximated by a truncated 

power series of the form 

As mentioned previously, P,, and PS are complex coefficients that account for the power 

amplifier's AM-AM and AM-PM nonlinearities. By expressing the predistorted signal V,(t) in 

terms of its complex gain, the overall complex gain expression of the predistorter and power 

amplifier becomes 

where F[%(t)] is the predistorter's complex gain and can be approximated by a truncated power 

series of the form 

a,, a, and as are complex coefficients that interpolate the power amplifier's inverse 

AM-AM and AM-PM nonlinearities. 

Equation (2.14) indicates that the input and output complex envelopes, V,(t) and V,(t) 

respectively, are related by a composite complex gain F[x,(t)]- G[xd(t)]. B y  defining the 

composite complex gain K[&(t)] as 

the concatenated predistorter and power amplifier complex gain can be modelled by the 

composite complex model illustrated in Figure 2.5. 



Composite 

Figure 2.5. Block diagram of Composite Complex Model 

Furthermore, the composite complex gain can be approximated by a truncated power series 

of the form 

where Kl[xJt)] and K2[xJt)] are the composite in-phase and quadrature nonlinearities and can 

be expressed as 

The composite complex gain coefficients y are functions of the predistorter's a and power 

amplifier's f3 coefficients. By combining equations (2.12)' (2.14)' (2.15) and (2.16), the 

relationship between the a ,  P and y coefficients can be found. The complete mathematical 

derivation is presented in Appendix A. The expressions for the y coefficients as found in 

Appendix A are 



Furthermore, the 3d and 5" order composite coefficients can be expressed in terms of the 

real and imaginary parts of the a and P coefficients as 

In order to reduce the magnitude of the 3d and 5" order IMD products, magnitude of the 

yI3, yz3, ylS and y, has to be reduced. Since the power amplifier's P coefficients can-not be 

controlled, the only way to reduce the magnitudes of the four y coefficients is by proper 

adjustment of the predistorter's a coefficients. 

2.3 Analysis of the System with an AM Signal 

Using an AM input signal, this section shows how predistortion can reduce the 3" and 5" order 

IMD products generated by the power amplifier. Start with a modulating signal of the form 

where A is the amplitude of the modulating signal. Using the modulating signal Vm(t), a real 

bandpass AM signal vm(t) can be generated as 



where B is the amplitude of the carrier. Next, the composite predistorter and power ampmer 

model from F i p  2.5 is represented in real bandpass signal form as illustrated in Figure 2.6. 

$[x,Xt)l 

Figure 2.6. Composite Model in Real Bandpass Signal Form 

The real bandpass signal vm(t) is now the input to the composite model in real bandpass 

form of Figure 2.6. Using the notation of Figure 2.6, the real bandpass output signal of the 

composite model becomes 

A 

where v is the real bandpass input signal vm(t) phase shifted by 90'. Using equations (2.17) and 

(2.18) for K,[xJt)] and K2[%(t)] respectively, it can be shown that the real bandpass output 

signal can be expressed as 



The first and second terms of equation (2.29) denote the carrier and sidebands at the output 

of the power amplifier, respectively. The third and fourth terms of equation (2.29) represents the 

3"" and 5" order IMD products of the power amplifier. Note that the 3d and 5" order IMD 

products are functions of the y,,, y,,, y,, and y, coefficients. In order to reduce the magnitude of 

the 3d and 5"' order IMD products, the magnitude of the last two terms of equation (2.29) has to 

be minimized, meaning that the magnitude of the y coefficients has to be minimized. However, 

as shown in the previous section, the y coefficients are functions of the a and p coefficients. 

Therefore, by selecting optimum a coefficients the magnitudes of the 3"" and 5" order IMD 

products can be reduced 

2.4 IMD Quadrature Demodulation Technique 

This section describes the technique used to separate the 3d and 5"' order IMD products from the 

power amplifier's output spectrum so that the power in the out-of-band spillover generated by 

the power amplifier can be measured. Again, an AM signal is used to illustrate the separation 

process. The spectrum of the real bandpass input AM signal and the spectnun of the real 

bandpass AM signal generated by the power amplifier is shown in Figure 2.7. 

- a m  -a, 4, +fm +r, +3f, -1, +'m 

Figure 2.7. Spectra of Original and Amplied AM Signals 



By performing a complex convolution on the two AM signals from Figure 2.7, one obtains 

the spectrum shown in Figure 2.8. Note that the 3" order IMD product contributes to the signals 

at f,, 2fm and 3fm Hz, while the 5"' order IMD product contributes to the signals at 2fm, 36, and 

46, Hz. However, at f, Hz, the A',B and B'Al amplitudes dominate over the c',A, amplitude. 

Also, at 2fm Hz the C'.B amplitude dominates over the A',,A, and D'.A. amplitudes. Similarly, at 

36, Hz, D',B dominates over c',A,. 

Figure 2.8. Spectrum of Complex Convolution 

Therefore, by bandpass filtering the 2fm and 3fm signals and detecting the resulting power, 

one obtains the relative 3" and 5' order IMD power generated by the power amplifier. 

Next, let's examine the complex convolution result using the results of section 2.3. Start 

by rewriting equations (2.27) and (2.29) in a simpler form, respectively as, 

where the 6 coefficients in equation (2.31) denote the power amplifier's in-phase and quadrature 

components. Recall that the four terms of equation (2.31) represent the carrier, sideband 

modulation, 3" order IMD product and 5"' order IMD product, respectively. Multiplying the real 

bandpass AM input signal, equation (2.30), with the carrier term of equation (2.31) produces 



In equation (2.32), the components at higher frequencies are ignored for ease of 

representation. Note that there is no contribution from the quadrature component of the power 

amplifier. In order to obtain the contribution of the quadrature component of the power 

amplifier, the real bandpass input signal has to be passed through a 90' phase shifter. 

Multiplying the real bandpass AM input signal phase shifted by 90', g,(t), with the carrier term 

of equation (2.31) produces 

The higher frequency components are ignored in equation (2.33) for ease of representation. 

Observe that the result of equation (2.33) contains solely the contributions of the quadrature 

component of the power amplifier. Similarly, multiplication of the real bandpass AM input 

signal phase shifted by 90' with the last three terms of equation (2.31) generates the remaining 

quadrature component contributions. 

Therefore, this analysis has shown that both the in-phase and quadrature contributions of 

the power amplifier can be produced by a quadrature demodulation process. A block diagram of 

the quadrature demodulation process is illustrated in Figure 2.8. 



Figure 2.9. Block Diagram of IMD Quadrature Demodulator 

In Figure 2.9, VOi(t) and V,(t) denote the in-phase and quadrature demodulated signals, 

respectively. 



3 OPTIMIZATION METHODS 

There are two general categories for classification of optimization methods, direct search 

methods and gradient methods. This chapter presents an in-depth analysis of optimization 

techniques from both categories. Specifically, Hooke and Jeeves' method, steepest &scent 

technique, Newton's method, and Davidon-Fletcher-Powell method are examined. 

3.1 Direct Search Methods 

Direct search methods are used in unconstrained minimization problems. The direct search 

methods are in general robust methods and they only require the evaluation of the function that is 

to be minimized. 

3.1.1 Hooke and Jeeves Method 

Hooke and Jeeves method is a pattern search method that falls in the group of direct search 

methods. Hooke and Jeeves method consists of exploratory steps and pattern moves about a base 

point. Given an initial starting point, exploratory steps are performed, one coordinate at a time, 

in order to acquire information about the local behavior of the function that is to be minimized. 

It is obvious that explorations can be performed until the minimum is found, but this approach 

would be very inefficient. Instead, Hooke and Jeeves suggested that the exploratory steps be 

followed by pattern moves along the approximate gradient direction [13]. 

Consider the function F(x) where x = (x,,x,, . . .,x,). Given a starting point 2 ,  explorations 

are performed in all coordinates of d until a temporary point d+' is obtained such that 

~ ( 2 " )  < ~ ( 2 ) .  A pattern move is now performed along the approximate gradient direction 

d = 2'' - 2. Taken the direction sk into account, the pattern point 1'2 is given by 

x k + 2 = x k + 1  +sk 



The process continues with alternating exploration steps and pattern moves until the 

function minimum is found. The Hooke and Jeeves iteration process is as follows [14]: 

set k = 0; given initial base point xO, evaluate F(xO) 

perform an exploration about 2 and obtain a temporary $+' 

if F (2") c F (2) accept d+  ' as the new base point; else if (I is a predetermined u, 
the function minimum is2  ; else decrease X and retum to step ii) 

calculate pattern point d +' = + ' + sk = 22 + ' - 2 and evaluate F (2 +2) 

explore pattem point x"Z and obtain a temporary point 2" 
if ~ ( 2 ' ~ )  < ~ ( 2 " )  accept #+3 as the new base point; else if b ~ ,  the function minimum is 
2'' ; else decrease h, set k = k + 1, and retum to step ii) 

As mentioned earlier, Hooke and Jeeves' method has a slow convergence rate, but at the 

same time it is a robust method and it eventually converges to the function minimum. 

3.2 Gradient Methods 

The gradient methods are different from the direct search methods, in that descent directions are 

generated at each step. To evaluate the descent directions, the first and for some methods the 

second krivatives have to be computed at each step. The evaluation of the hrivatives &notes 

an increase in the computation performed to find the &scent directions, but at the same time it 

&notes a faster convergence. Some gradient techniques make use of previous information in 

finding the direction of descent which further improves the accuracy of the descent steps. 

Every &scent technique is made up of three general parts. First step is to find a direction 

of &scent d.  Second, a descent steplength Xk is calculated. Finally, using the direction of 

&scent and the descent steplength, the &scent step 2" = 2 + kkd can be calculated [13]. The 

descent techniques vary in the way the direction of descent is computed. The following 

subsections examine three different descent techniques. 



3.2.1 Steepest Descent Technique 

In order to select the descent direction, the gradient of the function has to be evaluated. One 

important property of the gradient is that if F(x) is a differentiable function, then for any point 

2 ,  the vector -VF (xk) will point in the direction of most rapid decrease of F (2) [IS]. Using this 

gradient property, the french mathematician Cauchy suggested that the descent direction be 

Having the value of the descent direction, the next step is to find a descent steplength hk. 

There are two alternatives for the computation of the descent steplength. One could use the 

optimal step alternative which finds a hL such that F(# + hkd) = min F(xk + hLd). The second 
X 

choice is to use the non-optimal step alternative which finds a hk such that F(# + hkd) s ~ ( 2 ) .  

In order to speed the rate of convergence, the non-optimal step alternative will be used. The 

iteration steps for finding hk are [13]: 

i) set hk = hSM 

ii) evaluate F (# + hkd) 

iii) if F (# + hkd) < F (d )  set hSM = hk; otherwise reduce li' by lR and repeat from step ii) 

Note that by keeping track of the current hk value, memory is added to the steepest descent 

technique, since the starting value for hk" will be hk. 

The iteration steps for the steepest descent technique are [13]: 

i) start with k = 0; given x0 calculate F (xO) 

ii) calculate the gradient VF (#) 

iii) calculate the current descent vector sk = -VF(~). Normalize sk such that 11 sk1l = 1. 

iv) find the descent step length hk such that F (xk + hksk) < F (xk) 

v) perform the current descent step d" = # + hkd 

vi) evaluate F (xk + ') 

vii) if F (2") - F (#) < el (where E, is a predetermined tolerance) terminate the process; 
otherwise, proceed to step viii). 



viii) accept the new point 2' l ,  set k = k + 1, and repeat from step ii). 

The steepest descent technique is a relatively simple technique, but it possesses a few 

disadvantages. First, the rate of convergence is slow due to the fact that each iteration step is 

locally optimal and thus the global properties of the function are not exploited. Also, 

perturbations resulting from round-off error in the computer can cause incorrect descent 

directions to be computed [14]. 

Since consecutive descent direction are orthogonal, the rate of convergence can be 

increased by setting sk = # - #-2 for k 2 2. This acceleration technique was developed by 

Forsythe and Motzkin [ 1 31. 

3.2.2 Newton's Method 

Newton's method was developed on the assumption that the function F(x) to be minimized can 

be approximated by a quadratic function. Start by assuming that the function F(x) to be 

minimized is a twice continuously differentiable function. Then, the function F(x) can be 

approximated by a quadratic function, Fk(x), obtained by writing a second order Taylor series 

expansion about # as [13] 

where ~ ( d )  is the Hessian matrix at the point #. Note that the Hessian matrix is symmetric and 

positive defite. The definition of positive definiteness states that if a mamx H is an n x n 

symmetric matrix, then it is positive definite if x Hx > 0 for all x E R", x # 0. 

Having the approximate function Fk(x), the next step is to select #" which minimizes the 

approximate function Fk(x). In doing this, the following expression is obtained 



Rearranging equation (3.4) the recurrence formula for Newton's method becomes 

xk + = xk - [H (xk)]-'v~ (xk) 

From equation (3.5) it can be seen that the descent direction sk is given by 

sk = -[H (x')]"vF (xk) (3.6) 

Indeed, $ is a &scent direction since the directional &rivative ( d ) T ~ ~ ( f )  is negative. as 

shown by the relation 

The iteration process for Newton's method is as follows [13]: 

start with k = 0; given x0 calculate F(xO) 

calculate the gradient VF (2)  

calculate the Hessian matrix H(#) 

evaluate sk by solving H (f)$ = -VF (xk) and normalize sk such that 11 sk1l = 1 

compute the directional derivative; if (sk)'vF (2) 2 0 set sk = -sk 

find the &scent step length hk such that F (xk + hksk) c F (xk) 

perform the current &scent step f +' = f + hksk 

evaluate F (? + ') 

if ~(9")-F(#) <el (where el is a predetermined tolerance) terminate the process; 
otherwise, p e e d  to step x). 

accept the new point xC", set k = k + 1, and repeat from step ii). 

Just like Newton's method for univariate functions, Newton's method applied to 

multivariate functions has a fast convergence rate as long as the initial starting point is close to 

the global minimum and the function F(x) to be minimized is close to the form of a quadratic. 

The drawback of Newton's method is the large amount of computation power needed for the 



evaluation of the second order derivatives [15]. The computation power is greatly increased in 

cases where analytical expressions are not available and numerical differentiation has to be 

performed. 

3.2.3 Davidon-Fletcher-Powell (DFP) Method 

As discussed in the previous two gradient methods, the main computational power is used to 

evaluate function, gradient, and Hessian matrix values. Out of these three values, the evaluation 

of the Hessian matrix values is the most costly. The method developed to avoid the repeated 

computation of the Hessian matrix is Broyden's method. Again, the assumption is that the 

function F(x) to be minimized is a twice continuously differentiable function. Broyden's method 

defines a linear function 

which approximates the function F(x). Note that equation (3.7) is comparable with equation 

(3.3, the difference being that the Hessian matrix of equation (3.5) is replaced by the matrix D, 

in equation (3.7). D, is a positive definite n x n matrix that approximates the Hessian matrix. 

To obtain x(~"', the linear system lk(x) = 0 is solved and the following recurrence formula 

is obtained. 

Let me now explain how the matrix D, is evaluated. In practice, the identity matrix I, is 

usually chosen as the initial Do matrix. At every subsequent step k, the initial identity matrix is 

updated in a fashion so that the matrix D, approximates the Hessian matrix. The derivation of 

the formula used to update the D, matrix starts by making use of the Secant method. 



Consider the function g ( x )  = V F ( x )  (i.e. function of one variable case). Knowing two 

~ts A = (xk- ', g (xk ' I ) )  and B = (xk, g (xk)) ,  the linear approximation of g ( x )  passing through 

the points A and B is 

Point C = (xk+' ,g(xk+l))  can be found by solving lk(x) = 0.  Now, the linear approximation 

of g ( x )  passing through the points B and C is 

lk+,(x)  = ~ ( x ~ " ) + D ~ + ~ ( x  - x k + l )  (3.10) 

Equation (3.10) can be applied to the n dimensional space, yielding 

I , + ~ ( X ) = ~ ( X ~ + ' ) + D ~ + ~ ( X - X ~ + ~ )  (3.1 1 )  

Note that D,+, is selected such that I&+,(#) = g(#). Applying this to equation (3.1 1 )  

generates the Secant condition 

D , + ~ ( X ~ + ' - X ~ )  =g(xk") -g(xk)  

which has to be satisfied by the proper selection of D,+,. To compu 

Dk+1=Dc+(Dk+i-Dk)=Dk+uk 

(3.12) 

~te D,,, we start by writing 

(3.13) 

where Uk is the update matrix. Let Uk = a k .  @k)T (where ak and bk are column vectors). 

Substituting equation (3.13) into (3.12) produces 



Equation (3.15) shows that in order to compute the update matrix Uk, all is left to do is to 

find the value of bk. To find bk, start by examining the difference 

~ + l ( x ) - l k ( x )  = ~ ( x ~ " ) - ~ ( x ~ ) - D ~ + ~ ( x ~ "  -xk )+  u,(x-x') 

The Secant condition of equation (3.12) states that 

g ( ~ k ' l ) - g ( ~ k ) - ~ k + l ( x k ' l - x k )  = O  

hence, 

lk + - lk(x) = @f (X - xk)ak (3.17) 

Broyden's method requires that the two linear approximation equations lk(x) and k + l ( ~ )  be 

equal. This requirement applied to equation (3.17) generates 

Equation (3.18) is satisfied when bk is orthogonal to x - x'. The selection of bk = x'+' - x' 

satisfies equation (3.18) since (x"' - x') . (x - 9) = 0 as a result of the lk(x) = C+'(x) requirement. 

Finally, the value of the update matrix Uk can be evaluated since both ak and bk values are 

known 



As shown by equation (3.13), knowing the value of the update matrix, implies that the 

value of the Dk+,  matrix is also known. Broyden's method can now be applied (i.e. the 

recurrence formula of equation (3.8)) to minimize the function F(x). 

One disadvantage of Broyden's method lies in the computation needed to evaluate D;'. A 

second disadvantage of Broyden's method is that if Dk+,  is positive &finite, the Secant condition 

can't be satisfied [15]. The DFP method avoids the computational disadvantage by satisfying the 

inverse Secant condition 

where y' = g ( d + ' )  - g (d) and dk = #" - d.  Hence, the DFP method updates the inverse of the 

Dk matrix. The recurrence formula for the DFP method becomes 

To get around the second disadvantage of Broyden's method, the DFP method uses 

for update of the Dk+,  matrix. To find the a, and Pk coefficients, apply the inverse Secant 

condition (3.19) to (3.21) to obtain 

k T  k dk = ~ , j  + ak(ak . (akf))y" + pk(bk - ( b  ) )y 

Setting ak = dk and bk = Dkyk yields 



Therefore, the Dk +, update equation for the DFP method becomes 

The iteration process for the DFP method is as follows [13]: 

i) start with k = 0; given x0 calculate F (xO) 

ii) calculate the gradient VF (#) 

iii) compute the approximating Hessian matrix D,; start with Do = I, (where I, is the n x n 
identity mamx). For subsequent steps update the D, mamx using 

where dk-' =$-$-I and$-' =VF(d)-VF(xk-') 

iv) evaluate sk by solving sk = -D,VF(#) and normalize sk such that 11 sk1l = 1 

V) compute the directional derivative; if (sklTvF(d) 2 0 set sk = 4. Also set the Dk =I,, since 
the Dk is no longer positive definite. 

vi) find the descent step length hk such that F (d + hksk) c F (d)  

vii) perform the current descent step d" = xk + hksk 

viii) evaluate F (2 + ') 

ix) if ~ ( 2 " )  - F(#) c E, (where el is a predetermined tolerance) terminate the process; 
otherwise, proceed to step x). 

x) accept the new point d", set k = k + 1, and repeat from step ii). 



4 PREDISTORTER SIMULATION 

So far, Chapter 2 of this thesis provided the mathematical background on the reduction of the 3* 

and 5* order IMD products of a power amplifier. Also, Chapter 3 described several optimization 

techniques that can be used to adaptively minimize the power amplifier's out-of-band power. 

Next step is to simulate the performance of the adaptive predistorter. This chapter describes the 

simulation model used and it discusses the simulation results obtained for various optimization 

techniques. 

4.1 Power ~mpli'fier Characterization 

As mentioned in Chapter 1, high power efficiency is desirable for mobile communication 

applications. Class AB power amplifiers offer a high power efficiency at the expense of a 

decrease in linearity. One could generate higher IMD products by operating the power amplifier 

in the nonlinear region, hence being able to show a reduction in the IMD products as a result of 

adaptive predistortion. The AM-AM and AM-PM nonlinearities of an 800 MHz, 5 Watt, class 

AB power amplifier were measured and are shown in Figure 4.1. 
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Figure 4.1. AM-AM and AM-PM Characteristics of a Class AB Power Amplitier 

The complex gain of the class AB power amplifier was derived from the AM-AM and 

AM-PM measurements and is shown in Figure 4.2. 

Figure 4.2. Complex Gain of the Class AB Power Amplifier 



Next, the complex gain of the predistorter, corresponding to the characteristics of the class 

AB power amplifier, were found using the composite complex gain model described in section 

2.2. Based on Figure 2.4, the composite gain is 

F[x,(t)l - G [x,(t) . I F[x,(t)l l21 = K, (4.1) 

where x,,,(t)=l~.(t)l~, and K1 is the desired constant magnitude of the composite gain. The 

complex gain of the predistorter is found by solving equation (4.1) for discrete values of the 

complex gain. Then, to obtain the F, and F2 functions, the real and imaginary parts of the 

predistorter's complex gain were interpolated by two 2"'' order polynomials using a least squares 

approximation. For a K1 of 0.9, the measured and interpolated F, and F2 functions are illustrated 

in Figures 4.3 and 4.4. 
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Figure 4.3. Measured and Interpolated F, Function 
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Figure 4.4. Measured and Interpolated F, Function 

The interpolating equations for the F1 and F2 functions are 

F1[xm(t)] = 0.58315 - 0.08498 xm(t)  + 0.05 169 . x:(t) 

F2[xm(t)] = 4.00395 + 0.0214 xJr) - 0.01887 . x:(t) 

Note that the F1 and F2 functions of equation (4.2) were obtained so as to find the gain 

coefficients, all and ql. The remaining four a coefficients will only be used as initial estimates. 

The adaptation algorithms will find the optimum values for the nonlinear coefficients. 

4.2 Simulation Model 

The model used to simulate the adaptive predistorter linearizer is shown in Figure 4.5. 



Figure 4.5. Simulation Model 

The simulation was performed using a 16 QAM input signal. A raised cosine pulse with a 

roll-off of 0.5, Hamming windowed to seven symbols, was used for the pulse shape of the 

transmit filter. Using a, as the symbol sequence, T as the symbol rate and g(t) as the pulse shape 

of the transmit filter, the complex envelope of the 16 QAM bandpass input signal can be 

expressed as 

As illustrated in Figure 4.5, the predistorter is implemented using the complex gain model. 

The predistorted signal V,(t) is the result of the complex multiplication between the complex 16 

QAM vectors and the complex gain of the predistorter F [x,(t)]. 

The power amplifier is represented by a look-up-table (LUT). The LUT contains 1000 

entries of the power amplifier's complex gain (magnitude and phase) as a function of input 

power. As described in the previous section, the power amplifier's complex gain was &rived 

from the AM-AM and AM-PM measurements. Based on the magnitude of each predistorted 

vector, the comsponding complex gain of the power amplifier is extracted from the LUT. Note 

that if the corresponding entry is not found in the LUT, the simulation interpolates between two 

adjacent entries to find the power amplifier's complex gain. 



Each predistorted complex vector is multiplied by its matching complex gain vector 

G[x,,(t)], generating the power amplifier's output complex vector. Next, the PSD of the power 

amplifier's output signal is evaluated. Having found the PSD, all the points above a reference 

level of -65 dBc in the bandwidth I fH -fL I are averaged to obtain the average power of the IMD 

products, I&. The low frequency cut-off fL is equal to the bandwidth of the 16 QAM signal and 

the high frequency cut-off fH is selected to ensure that the 3d and 5" order IMD products are 

included. The PSD and power evaluator module was written by Kandola [16]. The adaptation 

algorithm adjusts the coefficients of the predistorter's complex gain so as to minimize the UI, 

power value. 

4.2.1 Uncertainty in the IM, Evaluation 

The optimization methods will minimize the power amplifier's out-of-band power based on the 

IM,, power value, meaning that no analytic function is available. Therefore, the accuracy of the 

In& power value is crucial to the convergence of the adaptation algorithms especially for the 

gradient techniques where the gradients will be calculated using numerical methods (i.e. secant 

method). An experiment was performed to find the uncertainty in the evaluation of the IM, 

power value. The 1% power value was evaluated 100 times for a particular set of a coefficients. 

This procedure was repeated for different number of symbols ranging from 5,000 to 30,000. The 

results of this experiment are shown in Figure 4.6. 
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Figure 4.6. IMo Measurements for 5000 to 30000 Symbols 



The minimum, maximum, mean and variance for each set of measurements were 

calculated and the results are summarized in Table 4.1. 

Table 4.1. Statistic Results of IM, Evaluation 

# of 5000 10000 
symbols 

# of trials 100 100 

Minimum 5.977 6.39 15 

Mean 6.5484 6.8 122 

Maximum 7.02 1 7 .046 1 

As shown in Table 4.1, the higher the number of symbols the higher the accuracy of the 

IM, power value. A trade-off has to be made between the desired accuracy and the convergence 

rate, since the higher the number of symbols, the longer it takes to evaluate the IM, power 

values, hence, the longer it takes the adaptation algorithm to converge to the optimum 

coefficients for minimum IMD products. 

4.2.2 Relationship Between the a Coefficients and IM, Power Value 

It was shown by Kandola [16] that the 1% power value has a quadratic dependence on the a, 

and a, coefficients. It is desirable for the IM, power value to have a quadratic dependence on 

the a coefficients, since the adaptation algorithms can find the optimum coefficients (i.e. lowest 

1% power value) with ease. 

To examine the relationship between the a, coefficients and the IM, power value, the a, 

coefficients were set to their optimum values and the a,, and R, are varied, evaluating the IM,, 

value every time a coefficient was altered. Similarly, by keeping the a, coefficients constants 

and varying a,, and a, the relationship between the IM, power value and the a, coefficients was 

found. For every IM,, power value evaluation 10,000 symbols were processed. The surface and 

corresponding contour plots for the g and a, planes are shown in Figures 4.7 to 4.10. 



Figure 4.7. Simulated Surface Plot of a, Plane 



Figure 4.9, Simulated Surface Plot of a, Plane 
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Figure 4.10. Simulated Contour Plot of oc, Plane 



The surface plots, Figures 4.7 and 4.9, reflect a quadratic behavior of the 1% power value 

as a function of the a, and a, coefficients. This agrees with the theoretical results derived by 

Kandola [16], which showed the quadratic dependence of the a coefficients on the IM, power 

value. 

4.3 Simulation Results 

This section presents the simulation results obtained for Hooke and Jeeves method, steepest 

descent technique, Newton's method and DFP method. The results to be presented were 

obtained performing four variable optimization. This is referred to as optimization in four 

dimensions (4D). It is possible to perform the optimization in two dimensions (2D). In this case, 

the a, coefficients are optimized while the a, coefficients are kept constant. Then the a, 

coefficients are kept at their newly found temporary optimum values, and the a, coefficients are 

optimized. This process is repeated until the global minimum IM, power value is found. It was 

found by experimentation that the alternating 2D optimization has to process considerably more 

symbols than the 4D optimization, hence its convergence time is greatly increased. 

I 

43.1 Hooke and Jeeves Method 

Hooke and Jeeves' algorithm was implemented as described by the pseudocode of section 3.1.1. 

Three stopping conditions were used to stop Hooke and Jeeves optimization. First, if the 

exploration step sizes were decreased below preset limits, k-, the optimization stops. Second, 

if no 2" is found such that F (2") S F (#) the optimization stops. As shown in section 4.2.1 

the uncertainty in the 1% power value could affect the rate of convergence. Since 10,000 

symbols were processed for evaluating each 1% power value, I ~ ( 2 "  - ~ ( 2 )  I< &, where E is a 

preset tolerance that takes the variance for 10,000 symbols into account, was used as the third 

stopping condition. 



At the start of the optimization, all the a, and as coefficients were initialized to zero (i.e. 

no predistortion). Figures 4.1 1 and 4.12 show the convergence of the four a coefficients and the 

convergence of the IM, power value, respectively. 
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Figure 4.11. Coefficient Convergence for Hooke and Jeeves' Method 
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Figure 4.12. IMo Power Value Convergence for Hooke and Jeeves' Method 

The total number of symbols that have to be processed by Hooke and Jeeves method 

before the optimum coefficients yielding the lowest 1% power value are found is 1,010,000 

symbols. To show the reduction in the power amplifier's out-of-band emissions, the PSD of the 

power amplifier's output without predistortion and with the optimum coefficients found by 

Hooke and Jeeves' optimization are illustrated in Figure 4.13. 
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Figure 4.13. PSD for 16 QAM Input Signal Before and After Hooke and Jeeves Optimization 

The optimum predistorter nonlinear functions found by the Hooke and Jeeves' method are 

43.2 Steepest Descent Technique 

The gradients needed by the steepest descent technique were calculated using the secant method 

approximation. Therefore, the value of the step size, h, used by the secant method to 

approximate the gradient has to be large enough to ensure that the uncertainty in the IM,, power 

value does not affect the accuracy of the gradient. 

The number of symbols to be processed for each IM, power value evaluation is set to 

10,000 at the beginning of the optimization. The value of the step size h, is reduced and the 

number of symbols is doubled once the IM, power value is less than 4 dB. This is done so as to 



reduce the uncertainty in the iM, power value and to increase the accuracy of the gradient 

evaluations. The stopping criteria are similar to the Hooke and Jeeves' stopping criteria with the 

exception that a lower limit is now set on the descent steplength ht. 

Again the a coefficients were initialized to zero (i.e. no predistortion) at the start of the 

optimization. Figures 4.14 and 4.15 show the convergence of the four a coefficients and the 

convergence of the M, power value, respectively. 
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Figure 4.14. Coeff'iieat convergence for Steepest Descent Technique 
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Figure 4.15. IMo Power Value Convergence for Steepest Descent Technique 

The total number of symbols that have to be processed by the steepest &scent technique 

before the optimum coefficients yielding the lowest IM, power value are found is 740,000 

symbols. To show the reduction in the power amplifier's out-of-band emissions, the PSD of the 

power amplifier's output without predistortion and with the optimum coefficients found by 

steepest &scent optimization are illustrated in Figure 4.16. 
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Figure 4.16. PSD for 16 QAM Input Signal Before and After Steepest Descent Optimization 

The optimum predistorter nonlinear functions found by the steepest &scent method are 

43.3 Newton's Method 

As described in section 3.2.2, Newton's method requires the computation of second order 

derivatives. Using the secant method to approximate the derivatives proved to be inadequate in 

this case since the uncertainty of the IM,, power value made it impossible to obtain accurate 

approximations. As a result of this, results showing the convergence of the four a coefficients 

and the convergence of the 1% power value could not be obtained. 

However, one could still use Newton's method to reduce the IM,, power value. By 

collecting data in the g and q planes, a relationship between the a coefficients and the IM, 

power level can be found. Hence, two functions of the foxm 

P(X,Y) = A X ~ + B Y ~ + C X  +DY + EV +F 



can be fitted to the ol, and a, plane data, respectively, using a least squares fit. Newton's method 

can now be applied to the two analytic functions. The two functions fitted to the data collected 

for the a, and ol, planes are 

P(cz,,,%) = 1.066.10'af3 + 2.486. lo5& -92q3 - 1.734. lo3% -7.515 104~30(,  + 12 

P(%,,%) =4.865. I$$, + 5.281 . lo"& +4.275 lo4q,+7.236. 1% -8.042 lo3%,%+ 12 

The relationship between the a coefficients and the 1% power level can be used to obtain 

a more accurate starting approximation of the Hessian matrix used by the DFP method, hence, 

increasing the rate of convergence. Recall that the identity matrix is used as the starting 

approximation of the Hessian matrix in the DFP method. 

43.4 Davidon-Fletcher-Powell @FP) Method 

The secant method was used again to approximate the needed gradient values. The value of the 

step size, h, proved to be critical, just like for the case of the steepest descent technique. The 

feature that was added to the DFP method, was to make the step size, h, dependent on the current 

a coefficient (i.e. h = 20%. a). The stopping criteria are exactly the same as the stopping 

criteria for the steepest descent technique. Also, the optimization was initialized to process 

10,000 symbols for each 1% power evaluation. The step size, h, is reduced by a factor of 112 E 

and the number of symbols is doubled when the IM,, power values becomes less than 4 dB. 

Just like for the previous two optimization methods, the a coefficients were initialized to 

zero (i.e. no predistortion) at the start of the optimization. Figures 4.17 and 4.18 show the 

convergence of the four a coefficients and the convergence of the IM, power value, respectively. 
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Figure 4.17. Coefficient Convergence for the DFP Optimization 
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Figure 4.18. IMo Power Value Convergence for the DFP Optimization 



The total number of symbols that have to be processed by the DFP method before the 

optimum coefficients yielding the lowest 1% power value are found is 290,000 symbols. To 

show the reduction in the power amplifier's out-of-band emissions, the PSD of the power 

amplifier's output without predistortion and with the optimum coefficients found by the DFP 

optimization are illustrated in Figure 4.19. 

FREQUENCY flfs (fs=sampling fnq.) 

Figure 4.19. PSD for 16 QAM Input Signal Before and After the DFP Optimization 

The optimum predistorter nonlinear functions found by the DFP method are 

F,[xm(t)J = 0.58315 - 0.02279744xm(t) + 0.02026443x:(t) 

F2[x,,,(t)] = -0.00395 - 0.00024035~~(t) - 0.00991707x~(t) 

4.4 Comparison of Simulation Results 

To compare the performance of the Hooke and Jeeves, steepest descent and DFP optimization 

methods, a graph of the IM, power value convergence versus the number of symbols processed 

was plotted. This time, only the IM,, power values after pattern moves were indicated, not 

showing the exploration steps. The plot comparing the convergence of the Hooke and Jeeves, 



steepest descent and DFP optimization methods is presented in Figwe 4.20. Note that all the 

results were obtained having the power amplifier operate at a 6 dB output back-off, OBO, power. 

The OBO power is evaluated using OBO=lOlog(Ps~~v), where Pa, is the average amplifier 

output power for the entire simulation. 
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Figure 4.20. Convergence Comparison Plot 

As illustrated in Figure 4.20, the DFP technique possesses the fastest convergence rate, 

fmding the minimum 1% power value after processing 290,000 symbols. Steepest descent 

technique has the second fastest convergence rate needing to process 740,000 symbols before the 

minimum 1% power value was found. Hooke and Jeeves' method has the slowest convergence, 

needing to process 1,010,000 symbols in order to find the minimum IM,, power value. 

Recall that in order to use Newton's method analytical functions for the ol, and a, planes 

have to be found. For a rough approximation of the two functions, at least 100 IM, power values 

have to be computed in each plane. At 20,000 symbols processed per IM, power value 



evaluation, 2,000,000 symbols have to be processed in total. Since Hooke and Jeeves' method 

has the slowest convergence rate (i.e. needs 1,010,000 symbols) out of the other three 

optimization methods, it is obvious that fitting functions to the a, and a5 planes so that Newton's 

method could be used is not a good approach, unless prior knowledge of the approximate 

coefficients is known. 

To further show the increased convergence rate of the DFP method over the Hooke and 

Jeeves' and steepest descent methods, a plot showing the PSD at the power amplifier's output 

after 120,000 processed symbols is illustrated in Figure 4.21. As seen from Figure 4.21, the 

Hooke and Jeeves and steepest descent optimization methods reduce the out-of-band power 

skirts by 8 dB, while the DFP method reduces the out-of-band power skins by almost 13 dB. 

This clearly indicates the increased convergence rate of the DFP method. , 

Figure 4.21. PSD After 120,000 Symbols 



The difference between the power amplifier's output PSD obtained by using Hooke and 

Jeeves', steepest descent and DFP optimization methods is almost unnoticeable as shown by 

Figure 4.22. 
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Figure 4.22. PSD at Beginning and End of Optimizations 

A plot showing the spectra at the input of the power amplifier and at the output of the 

power amplifier without and with predistortion is illustrated in Figure 4.23. 



FREQUENCY f/fs (fs=sampling f q . )  

Figure 4.23. PSD at the Input and Output of the Power Amplifier 

Note that as a result of the optimizations, a reduction of 15 dB in the power amplifier's 

IMD skirts was obtained. Overall, the simulated optimization results show that Hooke and 

Jeeves, steepest descent and DFP methods converge to the minimum IM, power value and that 

adaptive predistortion could lower the power amplifier's IMD skirts. 



5 HARDWARE IMPLEMENTATION 

Having presented the simulation results for the adaptive predistorter in the previous chapter, this 

chapter outlines the design and implementation of the adaptive analog predistorter. A TMS320 

digital signal processing @SP) board was already being used as an OQPSK modulator. An 

additional software routine enabled the DSP board to generate the 16 QAM signal needed for the 

testing of the adaptive predistorter. A raised cosine pulse with a roll-off of 0.33, Kaiser 

windowed to 7 symbols, was used for the pulse shape of the transmit filter. The achievable data 

rate for the 16 QAM signal with the TMS320 is 62.5 kbit/second. 

5.1 Predistorter 

The predistorter module is made up of a quadrature modulator and two second order nonlinear 

functions. The block diagram is illustrated in Figure 5.1. 

Figure 5.1. Block Diagram of Predistorter 

A quadrature modulator operating in the 55-90 MHz frequency range was used. The 

manufacturer's specifications for the quadrature modulator are shown in Table 5.1. 



Table 5.1. Manufacturer's Specifications for the Quadrature Modulator 

Insertion Loss max. 

VSWR nominal 

Impedance nominal 

The F, and F2 functions were implemented using operational amplifiers (op amps) and 

10 dB 

1.8 : 1 

50 Q 
- 

Null Depth min. 

Bias Voltages 

Control Range 
Linear Range 

linear four-quadrant multipliers. Given an input signal x, F(x) is implemented using nested 

50 dB 

f15 V DCf1%,8 mA max. 

f10V@ 10mA 
S V  

multiplication as F(x)=a,+x(~+~x) .  Nested multiplication, reduces the number of components 

needed to implement the F, and F2 functions. Figure 5.2 shows a block diagram of the circuit 

configuration for the F, and F2 functions. Note that the input signal, denoted by x in the above 

equation, is actually the magnitude squared of the I and Q channels (i.e I?*) and is generated 

on a separate output line by DSP modem board. 

Figure 5.2. Block Diagram of the F1 or F2 Function Using Nested Multiplication 

Using Motorola LF357J op amps and Motorola MC1494 linear four-quadrant multipliers 

[17], the F, and F, circuits were implemented as illustrated by the circuit schematic of Figure C. 1 

(Appendix C). 



5.2 IMD Quadrature Demodulator and Power Detector 

Having shown, in section 2.3, that by first, convolving the power amplifier's output with the real 

bandpass input signal, and then by bandpass filtering the 3d and 5' order IMD contributions one 

could measure the power amplifier's relative out-of-band power, this section provides the 

implementation details of the IMD quadrature demodulator and power detector circuits. 

5.2.1 IMD Quadrature Demodulator Circuit 

Mathematically the IMD quadrature demodulation was performed as a complex convolution in 

the frequency domain between two signals, the real bandpass input signal and the real bandpass 

power amplifier's output signal. In the time domain this is achieved by quadram mixing the 

two signals. The complete mathematical derivation of the quadrature mixing process showing 

the same resulting spectrum as the convolution technique is presented in Appendix B. 

The block diagram of the implemented IMD quadrature demodulator circuit is drawn in 

Figure 5.3. Note that an in-phase and a quadrature path is needed to account for the in-phase and 

quadrature nonlinearities generated by the power amplifier. 

Figure 5.3. Block Diagram of IMD Quadrature Demodulator Circuit 
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The IMD quadrature demodulator was implemented using Mini-Circuits (181 components. 

As shown in Figure 5.3, two level 10 mixers (TFM-150), a 90' power splitter (PSCQ-2-70) and a 

O' power splitter (PSC-2-4) were utilized. Next, the power contributed by the 3"' and 5"' order 

IMD products in both the I and the Q channels had to be evaluated. To minimize the complexity 

of the circuitry, an analog multiplexer HCF4066 [19] was used to multiplex the information 

going to the power detector circuitry. The block diagram of the I and Q channel multiplexer 

circuit is illustrated in Figure 5.4. 

I '1~ to power detector 

+ 5v 

HCF4066 

Figure 5.4. Block Diagram of I and Q Multiplexer Circuit 

As shown in Figure 5.4, the micro-controller determines whether the I or the Q channel 

l channel 1 

output is to be fed to the power detector circuit. 

- CTRU 

68HCll - 
pin PD5 

- - - - 

' 

IN1 Vcc 
OUT CTFtL1- 

Q channel 

5.2.2 Power Detector 

- r - 

Having quadrature demodulated the power amplifier's spectrum to baseband, the power 

contained at the 3" and 5"' order IMD frequencies has to be measured. The IMD signals 

contained in the quadrature demodulated spectrum were quite weak, in the -70 dBm range, 

hence, they had to be amplified prior to any power measurements. 

 IN^ 



Initially, a circuit made up of op-amps and a peak detector was used to amplify the 

baseband signal and detect the IMD power. However, since the signal had to be amplified by at 

least 70 dB before the power could be detected, the op-amps were operating close to saturation, 

making the power measurements unreliable. 

The alternate solution was to use the IF amplifiers and received signal strength indicator 

incorporated in a Signetics NE604 [20] low power FM IF system. The NE604 has two 

independent limiting amplifiers capable of 90 dB total gain. Also, the received signal strength 

indicator is usable over a 90 dB range and has a 1.5 dB accuracy. The frequency components 

corresponding to the 3d and 5" order IMD products are filtered out of the baseband signal and 

the NE604 is used to generate a voltage proportional to the power contained in the 3d and 5* 

order IMD product band. A basic diagram of the power detector system is shown in Figure 5.5. 

t NE604 
output 

Figure 5.5. Basic Diagram of Power Detector System 

The two blocks denoted BPI and BP2 in Figure 5.5, are bandpass filters designed to pass 

the 3d and 5* order IMD products. The bandpass filters not only separate the IMD products 

from the baseband signal spectrum, but they also ensure that the two limiting amplifiers will not 

saturate. The complete schematic of the implemented power detector circuit is presented in 

Figure C.2 (Appendix C). 



5.2.2.1 Bandpass Filter 

As shown earlier, the baseband signal contains 3d or 5m order IMD components that have to be 

bandpass filtered. The baseband signal frequencies up to twice the symbol rate do not contain 

any usable IMD contributions, hence they have to be rejected. The first bandpass filter, labelled 

BPI in Figure 5.5, was designed [21] to have cutoff frequencies fL=29 & and fp54 &. 
Since one of the reasons for using this filter was to ensure that the first NE604 amplifier does not 

saturate, the requirements for the high frequency attenuation were not too stringent. The BPI 

filter was implemented with a 14& order passive filter (i.e. a loa order high pass followed by a 4& 

order low pass). The simulated and measured frequency response plots of the BPI filter are 

shown in Figures 5.6 and 5.7. 
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Figure 5.6. Simulated Frequency Response of BPI Filter 



Frequency (kHz) 

Figure 5.7. Measured Frequency Response of BPI Filter 

Note that the low frequency rejection is in excess of 50 dB at 112 f,. Also, in order to 

match to the impedance of the I and Q separator circuit, the filter was designed for 50 Q input 

and output impedances. The schematic of the passive BPI filter is drawn in Figure 5.8. 

NOTE: capacitor values in nF 
inductor values in mH 

Figure 5.8. Schematic of BPI Filter 

The second bandpass filter, labelled BP2 in Figure 5.5, is connected between the two 

amplifiers of the NE604. Apart from ensuring that the second amplifier does not saturate, the 

BP2 filter has tight rejection requirements. The cutoff frequencies are fL=29 kHz and fH=5 1 kHz. 

The simulated and measured frequency response of the BP2 filter are presented in Figures 5.9 

and 5.10. 



Frequency (kHz) 

Figure 5.9. Simulated Frequency Response of BPZ Filter 

Frequency (kHz) 

Figure 5.10. Measured Frequency Response of the BP2 Filter 

The response shown in Figures 5.9 and 5.10 was obtained with a passive 2om order 

bandpass filter (a lom order high pass followed by a lom order low pass). Since the input and 

output impedances of the NE604's amplifiers were approximately 1500 R, the BP2 filter was 

&signed to have 1500 R impedance. The schematic of the BP2 filter is drawn in Figure 5.1 1. 



NOTE: capacitor values in nF 
inductor values in mH 

Figure 5.11. Schematic of BP2 Filter 

5.3 Micro-controller and Interface Circuitry 

Recall that the micro-controller is a very important part of the linearizer, since it controls the 

infomation flow between the nonlinear function generator circuit, IMD quadrature demodulator, 

power detector circuit and adaptation algorithm. This section describes the design and 

implementation of the analog to digital converter (ADC) circuit, digital to analog converter 

PAC) circuit and the necessary circuits for micro-controller interface. 

The Motorola MC68HCll EVB [22] was the micro-controller used for the adaptive 

predistorter implementation. The MC68HCll is run by a 2.1MHz clock, giving a 476 ns 

instruction cycle. The following sub-sections present the design and implementation of the 

DAC, ADC and interface circuits. 

53.1 Design of DAC Interface Circuit 

The DAC circuit allows the adaptation algorithm to alter the a, and q coefficients of the F, and 

F, functions. Since the MC68HC11 is an 8 bit micro-controller, an 8 bit DAC had to be selected. 

The Texas Instruments TLC7528C [23] 8 bit dual DAC was chosen. The TLC7528C has a 100 

ns settling time, fast enough to be used with the MC68HC11 EVB. Also, each TLC7528C is a 

dual DAC, meaning that only two integrated circuits are needed to control the four a 

coefficients. 



A control logic circuit was designed to allow individual adjustment of the a, and or, 

coefficients. Port C of the MC68HCll EVB was designated as the data bus, while the 8 bits of 

port B were used as control bits and were encoded as shown in Table 5.2. Note that A1 and B1 

refer to the A or B DAC on the first TLC7528C, while A2 and B2 refer to the A or B DAC on 

the second TLC7528C. 

Table 5.2. Control Logic for the DAC Interface Circuit 

I BITS I DAC #1 I DAC #2 1 

Using a -1.28 V reference for the DACs, allows the variation of the a, and or, coefficients 

in 0.005 V steps from 0 to 1.28 V. Since the q and a, coefficients had to be altered through 

both positive and negative values, a -0.64 V offset was incorporated into each a coefficient 

output line, meaning that each a coefficient could be changed from -0.64 V to 0.64 V in 0.005 V 

increments. Note that if a larger control range for the a coefficients is &sired, the DACs 

reference and the offset voltage can be easily changed. The complete schematic of the DAC 

circuits is presented in Figure C.3 (Appendix C). 

53.2 Design of ADC Interface Circuit 

The power detector circuit generates a voltage level, IM, power level, proportional to the power 

in the 3d and order IMD products. The optimization algorithm adjusts the a coefficients so as 

to minimize this voltage level. The micro-controller has to relay the voltage level to the 

optimization algorithm, hence an ADC is needed to convert the analog voltage level to a digital 

level. 



The National Semiconductor ADC0841 [24] was chosen since it has micro-controller 

interface control lines. The ADC0841 is an 8 bit successive approximation ADC. The original 

design used two ADC, one for the I channel IM, power value and one for the Q channel IM, 

power value. The final design uses a single power detector and an analog multiplexer to select 

the I or the Q channel IM, power value, hence only one ADC is needed. 

The ADC was connected in the continuous conversion configuration meaning that the most 

up-to-date 1% power value is always available at the micro-controller's input. Note that port E 

of the MC68HCll was used as the input data bus transferring information from the ADC. The 

complete schematic of the ADC interface circuit is illustrated C.4 (Appendix C). 

5.4 Adaptation Control Interface 

The simulations outlined in Chapter 4, used C routines for the various optimization methods. 

Since the optimization methods were already implemented in C, a main control program was 

written using TurboC. The main control program is interfaced with the 68HC11 micro-controller 

@a the RS232 port and it allows the user complete control over the operation of the predistorter 

linearizer. 

The control program allows the user to select either static or adaptive operation of the 

predistorter. For adaptive operation, the user can select either one of the three optimization 

techniques discussed earlier, Hooke and Jeeves', steepest descent or DFP. For static 

predistortion, the user can adjust any of the a coefficients manually. The value of the power 

amplifier's out-of-band power is displayed on the monitor to guide the user in reducing its value. 

A routine is available to disable the predistorter, by setting the a, and q coefficients to 

zero. Also, routines to characterize the a, or a5 planes for any power amplifier have been 

included in the main control routine. These routines vary the a coefficients measuring the IM, 



power value every time a coefficient is varied. From the contour plot obtained as a result of this 

process, the user can find the optimum value of the a coefficients for a minimum IM, power 

value. A flow chart of the main control program is shown in Figure 5.12. 

Main Polling Loop 

Figure 5.12. Flow Chart for Main Control Routine 



6 PERFORMANCE OF IMPLEMENTED ADAPTIVE PREDISTORTER 

This chapter presents the results obtained with the implemented analog adaptive predistarter, 

using a 16 QAM input signal. First, the experimental set-up is presented and some of the 

problems encountered in getting the adaptive analog predistorter operational are discussed. This 

is followed by the results obtained with the Hooke and Jeeves, steepest &scent and DFP 

optimization methods. The chapter is ended with a comparison of the three optimization 

methods for rate of convergence and IMD skirts reduction. 

6.1 Experimental Set-up 

The experimental set-up used to test the performance of the adaptive analog predistorter is 

illustrated in Figure 6.1. 

Figure 6.1. Experimental Set-up 

The DSP modem generates the I and Q channel data for the 16 QAM signal. Since the 

predistorter module is made up of a quadrature modulator operating in the 55-90 MHz frequency 

range, an identical quadrature modulator was used to up-convert the complex baseband 16 QAM 

signal into the real bandpass 16 QAM signal. 60 MHz was selected to be the testing carrier 



frequency. The real bandpass 16 QAM signal is amplified by two Mini-Circuits ampMers 

(ZFL-1000H and ZHL42W) to provide the mixers in the IMD quadrature demodulator circuit 

with the required power level. 

The power amplifier used to test the adaptive analog predistorter was built using a 

Mini-Circuits MAR-6 amplifier that operates in the DC-2 GHz frequency range. The MAR-6 

amplifier has a gain of 20 dB and a 1 dB compression point of 0 dBm. The power amplifier's 

output is connected to the IMD quadrature demodulator. A spectrum analyzer is comeckd in 

the experimental set-up via a coupler at the output of the power amplifier. The spectrum 

analyzer is used to visually monitor the reduction of the power amplifier's IMD skirts as a result 

of optimizing the a coefficient values. Also, the spectrum analyzer is used to down-load the data 

corresponding to the spectra at the power amplifier's output before and after each adaptation 

routine. 

6.1.1 Experimental Set-up Dificu1tie.s 

Several difficulties were encountered in the process of getting the adaptive analog predistorter 

operational. This subsection outlines some of the critical ones and how they were solved. First, 

since the proper operation of the F, and F2 function generating circuits is crucial to the 

performance of the predistorter, the F, and F2 function generating circuits need to be calibrated. 

The four quadrant multipliers are not perfect devices, hence any offset on either of the two inputs 

generates harmonics that affect the operation of the predistorter. These offsets can be nulled out 

by adjusting the input offset trimmers incorporated into the circuits. A calibration procedure has 

been adopted, in which a sinusoid is used as input to the F, and F2 function generating circuits 

and all the multiplier input offsets are nulled out. 

A second problem that is also related to the predistorter's operation is the stability of the 

voltage references needed by the DAC circuits and a, and ol, coefficient DC offsets. Since the 

stability of the voltage reference governs the accuracy of the ac, and as coefficient values, 

precision voltage references were utilized to obtain the needed reference voltages. 



Initially, the operation of the IMD quadrature demodulator and power detector circuit 

proved to be puzzling. It was found that a reduction in the IM,, power value produced by the 

power detector corresponded to a reduction in the power amplifier's UIIZD skirts. However, the 

minimum 1% power value found by the optimization routines did not cornspond to the greatest 

reduction of the power amplifier's IMD skirts. It was first thought that an error in the ADC 

circuit's operation combined with a software bug were the cause of this discrepancy. 

The problem was found to be caused by the operation of the IMD quadrature demodulator. 

The operation of the IMD quadrature demodulator proved to be sensitive to the VJt)  and v,(t )  

signal power levels. The vm(t )  signal power level is critical to the operation of the mixers of the 

IMD quadrature demodulator. Since level 10 mixers were utilized, two Mini Circuits amplifiers, 

as shown in Figure 6.1, were needed to ensure that the Vm(t)  signal power level at the input to the 

IMD quadrature demodulator was roughly 10 dBm. Finding the necessary V,(t) signal power 

level at the input of the IMD quadrature demodulator needed some experimentation. It was 

found that a 6 dB attenuator was needed between the power amplifier's output and the IMI) 

quadrature demodulator circuit in order for the minimum IM,, power value to correspond to the 

maximum reduction in the power amplifier's IMD skirts. 

Just like for the case of the simulations, the accuracy of the IM, power value is critical to 

the convergence of the adaptation algorithms. To find the uncertainty in the IM, power value, 

the number of samples per IM,, power value evaluation were varied from 5 to 30 samples. The 

results of the measurements are shown in Figure 6.2. 
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Figure 6.2. IMo Measurements for 5 to 30 Samples 

3.05 
h m 
3 

3 e 
2 

2.95 rr 
0 
CI a Y '  y111 

0 
2.9 

50 100 0 50 100 
trial number mal number 



These measurements showed that the higher the number of samples, the more accurate the 

IM,, power value. The statistical summary of the IM, power value measurements are presented 

in Table 6.1. 

Table 6.1. Uncertainty in lM, Power Value Evaluation 

# of 5 10 
samples 

# of trials 100 100 

Minimum 2.8002 2.8373 

As shown by Table 6.1, the higher the number of samples, the more accurate the IM, 

power value. However, it was found that the optimization algorithms converged to the minimum 

IM,, power value faster when the number of samples was kept relatively small, 5 samples. 

6.2 Implemented Predistorter Results 

This sub-section presents the results obtained for Hooke .and Jeeves method, steepest &scent 

technique and DFP method with the implemented analog predistorter. The normalized spectra of 

the 16 QAM signal at the input and output of the power amplifier are illustrated in Figure 6.3. 



Figure 6.3. Power Amplifk Input and Output Spectra 

As shown in Figure 6.3, the 16 QAM input signal has a 60 dB signal to noise ratio and the 

power amplifier raises the IMD skirts by 15 dB. At the start of each optimization technique, the 

a, and a5 coefficients were set to zero. This corresponds to having no predistortion. In order to 

evaluate the IM, power value, 5 samples of the I and Q down-converted signals were taken by 

the microcontroller. Delays were incorporated into the micro-controller code to ensure that 

enough symbols were processed for each IM, power evaluation. Taking the symbol data rate and 

the delay into account, it was calculated that one IM, power value evaluation takes 9375 symbols 

to process. 

6.2.1 Hooke and Jeeves Method 

The Hooke and Jeeves algorithm was implemented as described in Chapter 3.1.1 and similar 

stopping criteria were used. The convergence of the four a coefficients and the convergence of 

the IM, power value is shown in the plots of Figures 6.4 and 6.5, respectively. 
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Figure 6.4. Coefficient Convergence for Hooke and Jeeves Optimization 
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Figure 6.5. IM, Power Value Convergence for Hooke and Jeeves Optimization 



In order to find the minimum IM,, power value, the I and Q outputs of the IMD quadrature 

&modulator circuit were sampled 64 times. This cornsponds to processing 600,000 symbols 

before the minimum IM, power value was found. With a 62.5 kbidsecond data rate, this 

amounts to a 38.4 seconds for Hooke and Jeeves' rate of convergence. To show the reduction in 

the power amplifier's IMD skirts, the PSD seen by the spectrum analyzer shown in Figure 6.1 is 

plotted before and after the Hooke and Jeeves optimization in Figure 6.6. 

Figure 6.6. PSD of 16 QAM Signal Before and After Hooke and Jeeves Optimization 

The optimum predistorter nonlinear functions found by the Hooke and Jeeves method are 

6.2.2 Steepest Descent Technique 

The same code used in the steepest descent simulation section was used by the implemented 

predistorter. However, different gradient evaluation step size h and descent steplength hk had to 

be used. Also, the gradient evaluation step size h was being reduced by one half after each 



complete loop of the algorithm in order to obtain a more accurate IM, power value. Figures 6.7 

and 6.8 show the convergence of the four a coefficients and the convergence of the IM, power 

value, respectively. 
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Figure 6.7. Coefficient Convergence for Steepest Descent Optimization 
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Figure 6.8. IM, Power Value Convergence for Steepest Descent Optimization 

As seen from the convergence plots, the steepest descent optimization technique has to 

perform 16 IM, power value evaluations before the minimum IM, power value is found. This 

amounts to 150,000 symbols or a rate of convergence of 9.6 seconds. To show the reduction in 

the power amplifier's IMD skirts, the PSD at the power amplifier's output before and after the 

steepest &scent optimization is plotted in Figure 6.9. 



Figure 6.9. PSD of 16 QAM Signal Before and After Steepest Descent Optimization 

The optimum predistorter nonlinear functions found by the steepest descent method are 

6.2.3 DFP Method 

The plots showing the convergence of the four a coefficients and the convergence of the IM, 

power value are illustrated in Figures 6.10 and 6.1 1, respectively. 
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Figure 6.10. Coefficient Convergence for DFP Optimization 
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Figure 6.11. IM, Power Value Convergence for DFP Optimization 



Just like for the steepest descent optimization method, 16 IMo power value evaluations had 

to be performed before the IMo power value was minimized. Again this means that 150,000 

symbols had to be processed, which is equivalent to a 9.6 second rate of convergence. The PSD 

at the power amplifier's output before and after the DFP optimization is shown in Figure 6.12. 

Figure 6.12. PSD of 16 QAM Signal Before and After DFP Optimization 

The optimum predistorter nonlinear functions found by the DFP method are 

6.3 Comparison of Results 

As shown in Figures 6.6, 6.9 and 6.12, the PSD at the end of the three optimizations is not 

symmetric. It was first thought that quadrature modulator and quadrature demodulator gain and 

phase imbalances and DC offsets were the cause of the asymmemc spectra. However, it was 

showed by Derek Hilborn [25] that quadrature modulator and demodulator imbalances and 

offsets do not cause the spectrum asymmetry. 



I believe that spectrum asymmetry is related to an isolation problem in the IMD quadrature 

demodulator circuit and also to feedback due to signal pick-up. As a result of pick-up, a 

feedback path between the power amplifier's input ad output is created. The mixers used in the 

IMD quadrature demodulator have a 25-32 dB LO-RF isolation. Since the power level of the LO 

signal is higher than the power level of the RF signal, some of the LO signal will leak into the 

RF path which is connected to the power amplifier's output. This leakage mixes with the 

amplifier's output signal and can cause the asymmetric spectrum. Also, since most of the 

circuits were implemented on prototype boards, pick-up of signals from adjacent circuits could 

also contribute to the asymmetric spectrum. 

Next, to compare the achieved IMD skirt reduction of the three optimization methods, the 

PSD at the output of the power amplifier before and after optimization were plotted as shown in 
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Figure 6.13. PSD Before and After Optimization for Implemented Predistorter 



The Hook and Jeeves optimization method reduced the power amplifier's IMD skirts by 5 

dB and by 9 dB on the left and right hand side of the spectrum, respectively. The steepest 

descent optimization method reduced the power amplifier's IMD skirts by 8 dB and by 12 dB on 

the left and right hand side of the spectrum, respectively, while the DFP optimization method 

reduced the power amplifier's IMD skirts by almost 10 dB and by 13 dB on the left and right 

hand sides of the spectrum, respectively. 

Figure 6.14 compares the convergence rate of the three optimization methods. 
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Figure 6.14. Convergence Comparison Plot for Implemented Adaptive Predistorter 

As shown in Figure 6.14, Hooke and Jeeves method needed 38.4 seconds to converge to 

the minimum IM,, power value. The steepest descent and DFP methods reduced the IMD skirts 

almost by the same amount and both took 9.6 seconds to converge to the minimum 1% power 

value. From the simulation performed, the DFP method should have converged faster than the 

steepest descent. This discrepancy is caused by the uncertainty in the IM,, power value 

evaluations. Since both steepest descent and DFP methods start with the Hessian matrix equal to 

the identity matrix, both methods found the minimum IM,, power value after the first loop 

through the optimization code. The uncertainty in the IM, power value due to noise, as outlined 



in section 6.1.1, does not allow the optimization algorithms to find a lower 1% power value. 

Therefore, the update of the perturbations performed on the Hessian matrix by the DFP method 

were done in vain since the uncertainty of the 1% power value did not allow the DFP method to 

find a smaller IM, power value. 



7 CONCLUSIONS AND RECOMMENDATIONS 

This thesis presented an adaptive analog polynomial predistorter that can be used to compensate 

for a power amplifier's AM-AM and AM-PM nonlinearities. The adaptation allows the 

predistorter to monitor the power amplifier's out-of-band power and iteratively adjust the 

predistorter parameters to minimize the IM,, power value. A technique to measure the power 

amplifier's 1% power value was introduced by which the power amplifier's distorted signal is 

mixed with a "clean" input signal to quadrature demodulate the I and Q channel out-of-band 

power contributions to baseband, where the power content can be easily measured. 

The IMD quadrature demodulator circuit can be improved for future applications either by 

using mixers that possess higher isolations, or in-line isolators can be used at the LO and RF 

inputs. Also, a way to eliminate the feedback effects is needed, if feedback does prove to be one 

of the reasons for the asymmetry of the output spectrum. An alternate method for measuring the 

power amplifier's IM,, power value would be to directly down-convert the power amplifier's 

output signal to baseband, then filter out the contribution of the 3d and 5' order IMD products. 

The noise pick-up can be greatly reduced by making printed circuit boards for all the 

separate circuits that make up the analog predistorter. Also each sub-circuit has to be well 

shielded to prevent the pick-up of the stronger signals. 

As a result of the simulations of the adaptive predistorter with a 16 QAM input signal a 15 

dB reduction of the power amplifier's IMD skirts was achieved. The IMD skirt reduction was 

further confinned when the adaptive analog polynomial predistorter was implemented and tested 

with a 16 QAM input signal. A 10-13 dB reduction of the IMD skirts was obtained by 

optimizing the a coefficients. The fastest achieved convergence was 9.6 seconds for a 62.5 

kbit/second data rate. Since the convergence rate is quite small, the optimization algorithm can 

be made to continuously monitor the IMo power value and adapt to drifts in the performance of 

the amplifier caused by transistor degradation, temperature changes and channel switches. 
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APPENDIX A 
Mathematical Derivation of Composite Complex Gain Coefficients 

Start by substituting the truncated complex power series approximations of the predistorter and 

power amplifier's complex gain 

F[xm(t)l= a1 + %(t) + a;cM (A.1) 

G [x,(t)l= Pl + b d 0  + P+d(t) (A.2) 

into the truncated complex power series approximation for the composite complex gain to obtain 

Next, expand the terms of equation (A.3) in order to express the composite complex gain as a 

function of xm(t) only. The last three terms of equation (A.3) are ignored since their expansion 

yields higher order terms than required. The following relationships are used in simplifying the 

terms of equation (A.3) 

Using equations (A.4), (AS) and (A.6) the 4m, 5" and 6& terms of equation (A.3) are expanded to 



Y3= %Pl+al&l %12 (A. 1 1) 

(A. 12) 
Ys = 0481 + %&I all + a1PSl a11 + 2 % W e  (~141 

The derivation can be taken one step further, by writing the complex a and P coefficients into 

their real and imaginary f o m ,  meaning that the expressions for the complex y coefficients from 

equations (A.10), (A. l l )  and (A.12) become 





APPENDIX B 

Mathematical Derivation of IMD Quadrature Demodirlator Circuit Output 

Using an A M  signal as input to a power amplifier, its input and output signals have the foxm 

RF signal = B ' cos act + A, cos(o, + w,)t + C, C O S ( ~  + 2w,)t + D, cos(o, + 30,)t 

+ ~ ; c o s ( ~  - o,)t + C; cos(q - 20,)t + D; cos(q - 30,)t 

LO signal = B cos act +A, cos(o, - om)t +A, cos(oc + om)t 
The mixer's output signal is 

mixer output = B'B cos(oc)t . cos(oC)t +A$ cos(wc + om)t . cos(oc)t 

+ C;B COS(W, + 2om)t . cos(oc)t + D;B COS(U, + 3o.p . cos(oC)t 

+A,B cos(w, - w,)t . cos(q)t + C1B cos(q - 2%)t . cos(o,)t 

+ D,'B cos(oc - 3om)r + cos(o,)t + B'A, cos(oc)t . cos(o, - wm)t 

+A>, cos(oc + om)t cos(o, - om)t + c)& cos(oc + 2 a ) t  . cos(oc - q,)t 

+ D&, cos(oC + 3 a ) t  . cos(oc - om)t + A,A, cos(oc - om)t . cos(o, - om)t 

+ c1'A, cos(oc - 2oJt - cos(oc - om)t + D,'A, cos(oC - 3qJt  cos(oc - om)t 

+ B A, cos(o,)t cos(o, + o,)t + A ~ A ,  cos(o, + o,)t . cos(o, + o , ) r  

+ C~A, cos(o, + 2om)t . cos(o, + om)t + D;A, cos(o, + 3om)t . cos(q + om)t 

+ A;A, COS(U, - om)t . COS(U~ + om)t + C;A, C O S ( ~ ,  - 2 ~ 0 ~  C O S ( ~ ,  + q t  

+ D,A, cos(q - 3o,)t cos(q + o,)t 

Using trigonometric identities, all the terms of equation (B.2) can be rewritten as 



0 C$ cos(oc + 2o,,,)t c o s ( ~ ) t  = -cos(2o, + 2o,,,)t +-cos(20m)t 
2 2 

D$B 
D$ COS(R + 3~, , , ) t  . cos(oc)t = - D$B 

2 cos(2o, + 3 y )t + -cos(3o,)t 
2 

A$ A,B 
cos(oc - o.)t . cos(o,)t = -cos(20c - q")t +-cos(-o,)t 

2 2 

C1'B 
C,B cos(oC - 20,)t . cos(oc)t = - C 1 2  

2 cos(20c - 2o,,,)t + - cos(-2o,,,)t 
2 

D,B D,B 
D,B cos(oc - 3om)t . cos(oc)t = -cos(20c - 3om)r +-cos(-3om)r 

2 2 

B 'A, B 'A, 
B A, cos(oc)t . cos(oc - wm)t = -cos(20c - om)t + -cos(o,,,)t 

2 2 

A A I  &A, A C ,  cos(oc + o.)t . cos(wc - om)t = - cos(2oCt) + - COS(~OI,,,)~ 
2 2 

CtAI c;A, cos(oc + 26)",)tS cos(oc - om)t = - C A  
2 two, + om)t + - cos(30m)t 

2 

DAl DA, cos(oc + 3o,,,)t . cos(q - om)t = - D A 
2 cos(20c + 2o,,,)t + - cos(40m)t 

2 

AI'A, Al'A, AI'A, cos(oc - om)r cos(oc - o,)t = -cos(20c - 2wm)t + - 
2 2 

C;AI CI'A, C,A, cos(% - 20.)t cos(oc - o,)t = - cos(2oC - 3o,)t + - cos(-o,,,)t 
2 2 

D;Al Q'A, D,A, cos(oc - 3om)r cos(oc - om)t = - cos(2wc - 4o,,,)t + - cos(-2o,)t 
2 2 

B 'A, B 'A, 
B 'A, cos(q)t . cos(q + om)t = - cos(20c + o,)r + - cos(-com)r 

2 2 



(B. 18) 

Collecting the amplitudes of the signals at DC, fm, 2fm, 3fm and 4fm the spectrum shown in 

Figure B. 1 is obtained. Note that the spectrum of Figure B. 1 agrees with the positive side of the 

spectrum of Figure 2.8, which was the spectrum obtained by complex convolution. 

Figure B.1. Spectra of Down-converted Signal 



APPENDIX C 

Schematics of Implemented Predistorter 
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