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Abstract 

Let S = {al, az, . . . , ak} be a set of integers such that 0 < a1 < 

- . .  < ak < (n + 1)/2 and let the vertices of an n-vertex graph be 

labelled 0,1,2,. . . , n - 1. Then the circulant graph C(n, S) has i f 

a1 , i f az, . . . , i f ak (mod n) adjacent to each vertex i. 

In the design of networks, connectivity of the underlying graphs is 

of interest as a measure of network reliability and vulnerability, while 

diameter is a measure of transmission delay. We examine the connec- 

tivity properties of circulant graphs, and present some results on the 

diameter of these graphs. 
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Chapter 1 

Introduction 

In this thesis, we will examine the connectivity and diameter properties 

of circulant graphs. Definitions of graph theoretic terms and concepts 

not defined in this thesis can be found in Harary [20]. Our main interest 

in circulant graphs lies in the role they play in the design of networks. 

In this context, connectivity is of interest as a measure of reliability, 

while diameter is a measureaf transmission delay. Hence, given certain 

parameters for a circulant graph, we will be interested in maximizing 

connectivity and minimizing diameter. As well, from an expense and 

practicality point of view, we will want to keep the number of links of 

the network to a minimum. 

Let S = {al, az, . . . , ak)  be a set of integers such that 0 < a1 < 
. < ak < (n + 1)/2 and let the vertices of an n-vertex graph be 

labelled O,1,2,. . . , n - 1. Then the circulant graph C(n, S )  has i f 

al,  i f az, . . . , i f ak (mod n) adjacent to each vertex i. The set S is 



called the symbol of C(n, S). 

In the literature on circulant graphs, the following definition and 

notation are also commonly used. Let the vertices of a graph be labelled 

0,1,2,. . . , p - 1. Then the circulant graph Cp(nl, n2,. . . , nk) or briefly 

C,(n;) whereO<nl < . . a  <nk < ( p + 1 ) / 2 h a s i f n 1 7 i f n 2  , . . . ,  i f n k  

(mod p) adjacent to each vertex i. In this latter definition, the sequence 

(n;) is called the jump sequence and the n; are called jumps. 

If a,, # n/2 then C(n, S )  is regular of degree 2k. For n even, we 

allow ak = n/2, which gives diagonal jumps. When ak = n/2, C(n, S)  

is regular of degree 2k - 1. 

A circulant matrix is obtained by taking an arbitrary first row, 

and shifting it cyclically one position to the right in order to obtain 

successive rows. Formally, if the first row of an n-by-n circulant matrix 

is ag, al,  . . . , a,-1, then the (i, j)" element is a+;, where subscripts are 

taken modulo n. The term circulant graph arises from the fact that the 

adjacency matrix for such a graph is a circulant matrix. 

For example, Figure 1.1 shows the circulant graphs C(9, {1,2,3)) 

and C(12, {2,3)), while Figure 1.2 shows the adjacency matrix for 

C(9, {1,2,3)), which is clearly a circulant matrix. Note that in this 

thesis, when we say "circulantn we shall mean the graph as opposed to 

the matrix. 



Figure 1.1: The circulants C(9, {l, 2,3}) and C(12, {2,3}) 

Figure 1.2: The adjacency matrix for C(9, {l, 2,3)) 



Chapter 2 

Some Properties of 

Circulant Graphs 

In this chapter, we describe some of the properties of circulant graphs. 

Since the properties of connectivity and diameter are the main areas 

of interest in this thesis, they appear in chapters of their own, and are 

examined in greater depth. This chapter is, basically, a list of various 

properties. We will do little more than define or describe each property, 

and provide some general comments. 

Two vertices u and v of a graph G are said to be similar if there 

exists an automorphism a of G that maps one of the vertices onto the 

other; that is, a(u)  = v. Similarly, two edges el = ulvl and e2 = u2v2 

are called similar if there exists an automorphism a of G that maps one 

of the edges onto the other; that is, a({ul, vl)) = {u2, v2). A graph 

is vertex-transitive if every pair of vertices is similar, and it is edge- 



transitive if every pair of edges is similar. For circulants, the mapping 

fj which rotates vertex i into vertex i + j (mod n) is an automor- 

phism; hence, every circulant is vertex-transitive. As an aside, we note 

that very few circulants are edge-transitive. For example, the circulant 

C(9, {1,2,3))  shown in Figure 1.1 is not edge-transitive since the end- 

vertices of each edge corresponding to a* = 1 together are adjacent to 

6 other vertices, while the endvertices of each edge corresponding to 

a2 = 2 together are adjacent to 7 other vertices. Necessary and suf- 

ficient conditions for a circulant to be edge-transitive are not known; 

although the case where the number of vertices is prime has been solved 

(see Chao [15] and Berggren [2]). 

Proposition 2.1 If G is a circulant, then its complement is also a 

circulant. 

PROOF. Let C(n, S) be an arbitrary circulant with edge set E, and 

let F denote the edge set of C(n,  S), the complement of C(n, S). If 

( i , i  + aj)  4 E then by definition, ( i , i  + aj) E r. Now note by the 

definition of circulant, if (i, i + aj) $ E then (i f k, (i + aj) f k) 4 E, 

where the addition is done modulo n. But this means that (i, i+aj) E F 
implies (i f k, (i + a;) f k) E F, and thus C(n,  S) is a circulant. 

Proposition 2.2 An arbitrary graph G on n vertices is a circulant 

if and only if the automorphism group r (G)  of G contains a cycle of 

length n. 



PROOF. Note that if G is a circulant, then r (G)  contains an n-cycle. 

In fact, T(G) contains the dihedral group D,, the group of symmetries 

of the regular n-gon. 

Conversely, suppose for an arbitrary n-vertex graph G, F(G) con- 

tains an n-cycle a ,  where a = (vo vl . . - v,-~). Let vertex v; be 

labelled with i ,  0 5 i 5 n - 1. By definition, an automorphism pre- 

serves adjacency, thus (0, i )  E E implies (a(O), a(i)) E E for all vertices 

i adjacent to vertex 0. In particular, we have that (0, i) E E implies 

(1,l+ i )  E E, (2,2+i) E E, and so on. In other words, G is a circulant. 

The following result is due to Turner [31]. 

Theorem 2.1 Every vertex-transitive gra 

lant. 

ph of prime order is a circu- 

Proposition 2.3 The 3-cube (see Figure 2.1) is the smallest vertex- 

transitive graph that is not a circulant. 

PROOF. In Appendix 1 of [20], Harary provides a tabulation of 

all graphs on 6 or fewer vertices. A check of this tabulation shows 

that all vertex-transitive graphs of order 6 or less are circulants. By 

Theorem 2.1, any vertex-transitive graph on 7 vertices is a circulant. 

Finally, it is not difficult to check that the automorphism group of 

the 3-cube does not contain a cycle of length 8; hence, by Proposi- 

tion 2.2, the 3-cube is not a circulant. 



Figure 2.1: The 3-cube 

We note that the statement of Proposition 2.3 also appears in [4], 

in which Boesch and Tindell make use of the fact that the 3-cube is 

bipartite to show that it is not a circulant. 

As pointed out by Bermond, ~Favaron and Maheo 131, it is known 

that any connected Cayley graph (see Chapter 3 for a definition) on an 

abelian group is hamiltonian. Based on this fact we get the following. 

Proposition 2.4 All connected circulants are hamiltonian. 



Chapter 3 

Circulants In Other Classes 

of Graphs 

In this chapter we will give definitions and/or descriptions of various 

classes of graphs, and examine how they relate to circulant graphs. In 

particular, we will show some diffhent areas of graph theory in which 

circulant graphs occur. In some cases, a defined class of graphs will be 

a proper subset of circulant graphs (or vice versa), while in other cases 

there will simply be an overlap between circulants and the other class 

of graphs. 

If G is a group and S c G satisfies: 

(i) e 4 S, and 

(ii) s E S implies s-' E S, 

then the Cayley graph Cay(G; S) has the elements of G as its vertices 



and edges joining g and gs for all g E G and all s E S. As with circulant 

graphs, S is called the symbol. 

If we consider the case where the group G is the additive group 

2, of residue classes modulo n for some positive integer n, then the 

Cayley graph Cay(&; S') such that S' = {f al, f a z ,  . . . , f ak), where 

-a, = n - a;, is equivalent to the circulant graph C(n, S), for S = 

{al, . . . , ak). Thus the class of Cayley graphs properly contains the 

class of circulants. 

Another area of graph theory in which circulant graphs occur is 

Ramsey Theory. Let G = (V, E) be an arbitrary simple graph with 

vertex set V and edge set E. A subset S of V is called an independent 

set  of G if no two vertices of S are adjacent in G. A clique of G is a 

subset S of V such that the subgraph of G induced by S is complete. 

Ramsey's Theorem states that given positive integers k and I, there 

exists a smallest integer r(k, I) such that every graph on r(k, I) vertices 

contains either a clique of k vertices or an independent set of 1 vertices. 

A (k, 1)-Ramsey graph is a graph on r(k, I) - 1 vertices that contains 

neither a clique of k vertices nor an independent set of 1 vertices. It 

turns out that several such graphs are circulants (see Section 7.2 on 

page 103 of Bondy and Murty [14]). In Figure 3.1, we show some 

examples of (k, 1)-Ramsey graphs. In particular, Figure 3.la shows a 

(3,3)-Ramsey graph, which is equivalent to C(5, {I)). In Figure 3.lb 

we have a (3,4)-Ramsey graph, which is equivalent to C(8, {1,4)), and 

in Figure 3.lc we have a (4,4)-Ramsey graph, which is equivalent to 

q 1 7 ,  {I,  2,4781). 



Figure 3.1 : Examples of (k, 1)-Ramsey graphs 



Let n and d be positive integers with d < n. Consider a graph G 

whose vertices are labelled with the integers modulo n, and such that 

two vertices are adjacent if and only if the difference between their 

labels (mod n) is less than or equal to d. Then G is the d'th power 

of a cycle on n vertices, which we denote cAd). Note that we can 

assume d < (n + 1)/2, and furthermore, we observe that such graphs 

are equivalent to the circulant graphs C(n, {1,2,. . . , d)). We note that 

these graphs are also equivalent to Harary graphs, which we define in 

Chapter 4. Thus the set of circulant graphs properly contains the set 

of powers of cycles. We shall see in a later chapter that such graphs 

have the property of super edge-connectivity. Based on this definition, 

we see that the circulant C(9, (1,2,3)) shown in Figure 1.1 is also a 

power of a cycle, and hence can be denoted cF). 
In [24], Leighton defines an extension of the notion of a circulant to 

a broader class of vertex-transitive graphs, which he calls multidimen- 

sional circulants. In particular, let 

Sn = {(a;, a:, . . . ,a:), (a;, a:, . . . ,a;), . . . , (a:, a;, . . . ,a;)} 

be a set of k-tuples of integers and let the vertices of an nln2. .-nk- 

vertex graph be labelled (il, il, . . . , ik) where 0 5 il < nl for 1 5 1 5 k. 

Then the k-dimensional circulant graph C((nl, . . . , nk), Sn) has (il f a;" 

(mod nl), i2 f ay  (mod n z ) ,  . . . , ik f a? (mod nk)), for 1 5 rn 5 n, 

adjacent to each vertex (il, . . . , ik). Under this definition, what we have 

defined as a circulant becomes a 1-dimensional circulant . 
In [16], Deo and Krishnamoorthy propose a class of graphs called 



Toeplitz networks, which they derive from Toeplitz matrices. Such 

graphs satisfy several properties that are desirable for the design of 

computer networks, and it turns out that they are equivalent to circu- 

lants of the form C(n, (1, w + 1,2w + 1,. . .)). Note that the symbol 

is an arithmetic progression with common difference w, where w is a 

parameter of the Toeplitz network. 

Let QR(q) be the set of quadratic residues for a prime power q r 1 

(mod 4). Then the Paley graph G(q) has F, as vertex set, and two 

vertices are adjacent whenever their difference is in QR(q). If q is a 

prime, then such a graph is equivalent to the circulant C(q, QR(q)). 

The Mobius ladder M, is equivalent to the circulant C(2s, (1, s)). 

The complement of the regular, complete, n-partite graph Kmlm,...,m is 

equivalent to the circulant C(nm, {n, 2n, 371, . . . , Lm/2J n)), hence by 

Proposition 2.1, Km,m,...,m itself is a circulant. The graphs resulting 

from the Cartesian products E f 2  x Kn and K2 x C, are sometimes 

called prisms. For n odd, K2 x Kn is equivalent to the circulant 

C(2n, {2,4,. . . , n - 1, n)), while K2 x Cn is equivalent to the circu- 

lant C(2n, (2,n)). For n even, neither K2 x Kn nor K2 x Cn is a 

circulant . 



Chapter 4 

Connectivity 

In the design of networks, the connectivity of the underlying graph G of 

a network is related to the reliability and vulnerability of the network. 

We note that there is a distinction between reliability and vulnerability. 

Network reliability is concerned with the model in which each link 

(or node) of the network is assigned a probability of failure. Usually, 

one supposes each link has the same probability p of failure, and that 

the links fail independently. This area of research is further divided 

into analysis versus synthesis. 

Letting Nk denote the number of edge-disconnecting sets of car- 

dinality k in a graph G, the analysis problem is to find the network 

reliability P(G, p) given G and p, where 

The synthesis problem is to find an n-vertex, e-edge graph G that mini- 

mizes P(G, p )  over the class of all graphs having e edges and n vertices. 



For this thesis, we have chosen not to examine network reliability. For 

information and results on this problem, we refer the reader to two 

papers by Boesch [6, 71 in the case of synthesis, and to a paper by 

Wilkov [37] for the analysis problem. 

Network vulnerability is concerned with a network's susceptibility 

to attack by adversaries; that is, the effect of removing links or nodes. 

Thus, in the vulnerability model, we do not work with probabilities. 

The connectivity of the underlying graph of the network is a measure 

of the network's vulnerability and is the topic of this chapter. We will 

be interested in determining the number of links or nodes that must 

fail for the network to become disconnected; that is, so that one set of 

remaining nodes can no longer communicate with another set. 

We first define several terms related to graphs. Let G = G(V, E) 

be an arbitrary simple graph with ,-- vertex set V and edge set E. The 

degree of a vertex v E V is the nimber of edges incident with v, and 

the minimum degree among all vertices in V is denoted by 6. A graph 

G is connected if every pair of vertices u, v E V is joined by a path; 

otherwise, G is disconnected. A cut-edge of G is an edge e E E such that 

removing e increases the number of components of G. Similarly, a cut- 

vertex of G is a vertex v E V such that removing v increases the number 

of components of G. In particular, a connected graph containing a cut- 

edge (cut-vertex) becomes disconnected upon removal of a cut-edge 

(cut-vertex). The connectivity K of a graph G is the minimum number 

of vertices whose removal results in a disconnected or trivial graph. 

This is also called vertex-connectivity. The edge-connectivity X of a 



graph G is the minimum number of edges whose removal results in a 

disconnected or trivial graph. 

We are now ready for the statement and proof of the following which, 

except for the first inequality, is due to Whitney [36]. 

Theorem 4.1 For an arbitrary graph G(V, E ) ,  

PROOF. We first show that 2)E)/IV) > 6. Since each edge con- 

tributes 2 to the sum, the sum of all the degrees of the vertices in V 

is equal to twice the number of edges, that is, 21EJ. Thus, 21ElllV) 

represents the average of the degrees of the vertices in V, and since S 

is the minimum degree, we have the result. 

If G is trivial or disconnected, we have X = K = 0, and thus S 2 

X > K .  Otherwise, let v E V be a vertex of minimum degree 6. If we 

remove all of the S edges incident with v, then v will be isolated and 

thus G will be disconnected. Hence, S 2 A. 

We now show the last inequality. If G is trivial or disconnected, we 

have X = K = 0, so that X > n in this case. If G contains a cut-edge e, 

then removing e disconnects the graph so that X = 1. Note that at least 

one of the endvertices of e, say v, will be a cut-vertex unless G = I(2. 

In either case, the graph obtained by removing v is either disconnected 

or trivial so that K = 1, and we have X 2 K .  Lastly, suppose G has no 

cut-edge, and let L be a minimum edge disconnecting set (so ILI = A). 

Now, removing X - 1 edges of L from G will leave a cut-edge e with 



endvertices u and v, and at least one of u or v, say v, will be a cut- 

vertex. For each of these X - 1 edges, choose an endvertex different 

from u or v. Removing this set of chosen vertices from G will remove 

the X - 1 edges of L - {e) and may in fact result in a disconnected 

graph, in which case we have X > K .  If the graph obtained by removing 

the chosen vertices from G is connected, removing the cut-vertex v will 

disconnect it, and we will have X > K .  In all cases, we get X 2 K .  

Equation ( 4.1) gives 6 as an upper bound for the connectivity of 

a graph, and Harary [19] was the first to define the following class of 

graphs, for which K = 6, and hence shows that this maximum connec- 

tivity can be achieved. Given two positive integers n and k with k 5 n, 

begin by drawing an n-gon and label its points O,1,2,. . . , n - 1. Join 

two points i and j if and only if li - jl m (mod n), where 1 < m < k. 
I - 

The resulting graph has been called an Harary graph, and we denote it 

H , ( k ) .  As noted in Chapter 3, the Harary graph H,(k) is equivalent 

to the circulant C(n, {1,2,. . . , k)). Thus the circulant C(9, {1,2,3)) 

shown in Figure 1.1 is the Harary graph H9 (3), and hence has maximum 

connectivity K = 6 = 6. 

Notice that if we show a graph G has maximum connectivity K = 6, 

then by Equation ( 4.1) we will have that X = S as well. Further- 

more, it has been shown by Mader [28] that X = S for connected 

vertex-transitive graphs (this fact also appears in the statement of up- 

coming Theorem 4.8). So for circulant graphs the question of edge- 

connectivity is simply answered, and it is just the characterization of 



vertex-connectivity that is of interest. 

From the viewpoint of network design, we are interested in deter- 

mining what other circulant graphs, if any, have maximum connectivity 

K = 6. As stated in the proof of Theorem4.1, K = 0 when a graph is 

disconnected, so we would first like to determine which circulants are 

connected. 

We first observe that, for a circulant C(n, S), if an element ai of 

S is relatively prime to n, then the edges corresponding to a; form 

a Hamilton cycle, and thus the circulant is connected. However, the 

existence of such an element isn't necessary for a circulant to be con- 

nected. For example, neither of the jumps in C(12, {2,3)) (see Fig- 

ure 1.1) is relatively prime to the number of vertices, yet this circu- 

lant has a Hamilton cycle, given by the following sequence of vertices: 

0,2,5,3,1,4,6,8,11,9,7,10,0. In general, we can show that a circulant 

is connected by identifying the existence of a path from 0 to i for each 

vertex i. That is, we need a combination of elements of S that sum to 

i: c:=, aja j  E i (modulo n). This leads to the following theorem. 

Theorem 4.2 The circulant C(n,S), where S = {al,. . . ,ak), is con- 

nected if and only if gcd(al, a2, . . . , ak, n) = 1. 

PROOF. Suppose C(n, {al,. . . , ak)) is connected. Then there exists 

a path from 0 to i for each vertex i (1 5 i 5 n - 1). That is, there 

exist integers aj (1 j j 5 k)  such that x:=, a ja j  G i (mod n) for each 

i E 2,. In particular, we have 

alal  + ~ 2 ~ x 2  +. - + akak E 1 (mod n) for some integers cwj (1 5 j 5 k). 



This implies 

Thus 

n(-m) + a l a l +  a2az + . . + akak = 1 

which implies gcd(al, . . . , ak, n) = 1. 

Conversely, if gcd(a1,. . . , ak, n) = 1 then 

nxo + a l x l +  . . . + akxk = 1 for some integers xj (0 5 j 5 k) 

from which it follows that the equation 

is solvable for all i ,  0 5 i 5 n - 1. Thus there exist integers aj such 

that alcyl+ - . + akak E i (modulb cn) for each i, 0 5 i 5 n - 1. Hence 

C(n, S) is connected. 0 

Having established the conditions under which a circulant is con- 

nected, we now consider the problem of determining which circulants 

achieve maximum connectivity. It turns out that there are some simple 

sufficient conditions for a circulant to have rc = 6. Although none of 

these conditions is necessary, we state them here as they provide for 

several ways to easily construct a circulant having maximum connec- 

tivity. 

The following is a variation of a result due to Watkins (see [34], 

Corollary 3B). 



Theorem 4.3 If G = C(n,  S) is a connected circulant of degree 4 or 

6, then n = 6. 

The next result is due to Wang [32]. 

Theorem 4.4 The circulant C(n, {a, l+a ,2+a , . .  . , k+a)) has n = 6. 

The following result is a consequence of some of Watkins' work in 

[35], the details of which we provide later in this chapter. 

Theorem 4.5 Let G be a circulant with symbol S = {al,.  . . , ak) .  If 

a j  is relatively prime to n whenever aj 1 4, then n = 6. 

A property of sequences that has been used to obtain results on 

maximum ccnnectivity for circulant graphs is that of convexity. In 

particular, the sequence (al, a2, . . . , ak) is convex if ai+l-ai 5 ai+p - ai+l 

for 1 5 i < k - 2. The following result makes use of this property, and 

is due to Boesch and Felzer [S]. 

Theorem 4.6 The circulant C(n, {al,. . . , ak)) has n = S if a1 = 1 

and (al, . . . , ak) is convex. 

The following improvement of the above result is due to Wang [32]. 

Theorem 4.7 The connected circulant C(n, {al,. . . , ak) )  has n = 6 if 

the sequence (0, al, a2,. . . , ak) is convex. 

Note that the above theorem is an improvement of Theorem 4.6 

as it allows a1 2 1. We have already seen that C(9, {1,2,3)) has 



maximum connectivity, since it is an Harary graph, but another way 

to demonstrate this fact is to observe that the sequence (0,1,2,3) is 

convex. 

A structural property of graphs used in some connectivity results is 

that of atomic part and atomic number. An atomic part (also called 

an atom) of a graph G is a smallest order component (with respect to 

number of vertices) of G - T over all vertex-disconnecting sets T of 

cardinality K .  The atomic number cr(G) of a graph G is the number of 

vertices in an atomic part. 

In [5], Boesch and Tindell give the following theorem, which is a 

combination of results due to Watkins [33, 341 and, independently, 

Mader [25, 26, 27, 281. 

Theorem 4.8 

( A )  For a connected vertex-transitive graph G with n vertices: 

1. K = S i f  and only if cr(G) = 1, 

2. a(G) divides n, 

3. S = X 2 K > 2613, and 

4. i f  G doesn't contain K4,  then IC = 6. 

( B )  For connected edge-transitive graphs, K: = 6. 

We have seen that the circulant C(9, {1,2,3)) has IC = S ,  but note 

that it contains K4 (for example, the subgraph induced on the vertices 



0,1,2,3), and furthermore we have shown that C(9, {1,2,3)) is not 

edge-symmetric. Thus, points (A) (4) and (B) of Theorem 4.8 are not 

necessary to have K = 6 in circulants. 

The preceding has given us several classes of circulants that achieve 

maximum connectivity. We now consider the problem of determining 

the connectivity of an arbitrary circulant. We first provide some perti- 

nent definitions. 

Let G = G(V, E) be an arbitrary graph and let F C V(G). Then 

the neighborhood of F is defined as 

N ( F )  = {v E V(G)\F : v is adjacent to an element of F). 

The complement of F, denoted F, is V(G)\(F U N ( F ) ) .  For a finite 

regular graph G of degree 6, if K <, S then G is called hypoconnected. 

Since the results for determining the connectivity of an arbitrary 

circulant make use of several results concerning atomic parts, we give 

some of the basic properties of atomic parts, as derived by Tindell [30] 

and Watkins [34]. (Recall that Theorem 4.8 also contains results on 

atomic parts.) 

Theorem 4.9 Let G be an n-vertex connected circulant with atomic 

number cr and n = mck. If A is an atomic part of G, then i E A implies 

(i + m) E A, where the addition is done modulo n. 

Note that Theorem 4.9 tells us that if A is the atomic part con- 

taining 0, then A will be made up of multiples of m. That is, A = 

(0, m, 2m,. . . , n - m). 



Lemma 4.1 In a connected graph, distinct atomic parts are disjoint. 

Lemma 4.2 If F is the vertex set of a union of atomic parts, then 

each of N ( F )  and F is also the vertex set of a union of atomic parts. 

Lemma 4.3 If G is vertex-transitive, then V ( G )  admits a partition 

into vertex sets of atomic parts, and all of these parts are pairwise 

isomorphic. 

Boesch and Tindell [4] obtained the following result, which gives 

necessary and sufficient conditions for a circulant to be hypoconnected. 

The discussion and example following the theorem show how an algo- 

rithm for determining the connectivity of a circulant comes out of this 

result. 

Theorem 4.10 The circulant C(n, S ) ,  where S  = { a l , .  . . , a k ) ,  satis- 

fies K. < 6 i f  and only i f  for some proper divisor m  of n, the number r ,  

of distinct positive residues (modulo m) of the numbers al ,  . . . , ak, n - 

ak, . . . , n - al is less than the minimum of m - 1 and 6mln. 

Rather than giving the proof for Theorem 4.10, we provide the 

following discussion given by Boesch and Tindell in 151. 

Let A be an atomic part of a graph G and consider the determination 

of N ( A ) ,  the neighborhood of A. By Theorem 4.9, i E A implies 

(i + a j )  E N ( A ) ,  modulo n, if and only if aj f 0 (mod m ) .  Let J be a 

set of r ,  jumps having distinct positive residues modulo m. Then each 

vertex (i + a j ) ,  modulo n, with i E A and aj E J is in N ( A ) .  



Figure 4.1: The circulant C(12, {1,3,4,5)) 

The sets of vertices in N(A) obtained from vertices i, j E A by 

adding the jumps in J are pairwise-disjoint. Moreover, these sets cover 

N(A). Hence IN(A)I = IAl. T,. 

As mentioned after Theorem 4.9, in an n-vertex circulant, there 

exists an atomic part that will have as vertices all multiples of some 

divisor m of n. The above argument shows the neighborhood of any 

such set will have r ,  . a! elements, where a! = nlm. 

For any nonempty set A, N(A) disconnects the graph if and only if 

there is at least one vertex not in A U N(A). Moreover, we will have 

tc < S if and only if for some such set IN(A)I < S. 

These two conditions translate into the conditions of the theorem. 

By considering all the possible divisors of n, one obtains the actual 

connectivity. 

We now give an example making use of Theorem 4.10. Consider the 



circulant C(12, {1,3,4,5)) shown in Figure 4.1 which has minimum de- 

gree 6 = 8. The proper divisors of 12 are 2,3,4 and 6, and for this exam- 

ple, the numbers (al,.  . . ,ak,n-ak,. . . ,n -a l )  are (1,3,4,5,7,8,9,11). 

We first consider m = 2. The numbers (1,3,4,5,7,8,9,11) become 

(0, l )  modulo 2, so r2 = 1. Now, minim-1, Smln) = min{1,8(2)/12) = 

1, which is not greater than r2 and thus does not satisfy the statement 

of the theorem. 

Now consider m = 3. The numbers (1,3,4,5,7,8,9,11) become 

(0,1,2) modulo 3, so r3 = 2, and min{2,8(3)/12) = 2, which is not 

greater than 7-3 and thus does not satisfy the statement of the theorem. 

For m = 6, the numbers (1,3,4,5,7,8,9,11) become (1,2,3,4,5) 

modulo 6, so rc = 5, and min{5,8(6)/12) = 4, which is less than rs 

and thus does not satisfy the statement of the theorem. 

For m = 4, the numbers (1,3,4,5,7,8,9,11) become (0,1,3) modulo 

4, so r4 = 2. Now, min{3,8(4)/12) = 813, which is greater than r4, 

so by the theorem, K < 8. Continuing along the lines of the above 

discussion, if a(G) = nlm for m = 4, then by Theorem 4.9, an atomic 

part of C(12, {1,3,4,5)) would be defined by A = {O,4,8). Now let 

J = {1,3) be the set of jumps discussed above. Then N(A) = {0 + 
1,O + 3 )  U { 4 +  1,4 + 3 )  U {8+  1,8 + 3). Thus S = 8 , ~  = 6, and 

{1,3,5,7,9,11) is a vertex-disconnecting set. 

Boesch and Tindell [4] have shown that this circulant is the smallest 

example of K < 6 for 6 even. For the case where S is odd, the smallest 

circulant having K < 6 is C(8, {1,3,4)), which has S = 5, K = 4, and 

{1,3,5,7) as a vertex-disconnecting set. 



We now give a pseudo-code version of an algorithm for computing 

the connectivity of a circulant, based on Theorem 4.10. Comments 

appearing within the algorithm are delimited by a pair of double slashes 

("//"), and the notation ''ISI" is used to denote the cardinality of the 

set S. 



4.1 Boesch and Tindell's Algorithm for 

Computing Connectivity 

S T E P  1: Input circulant C(n, S) where S = {al, aa, . . . , ak). 

Go to STEP 2. 

S T E P  2: Initialization. 

Let S-I = {n - ak, . . . , n - a l l ;  

DELTA = 2k if a k  # n/2, otherwise DELTA = 2k - 1; 

Let KAPPA = DELTA; 

Let NFACTORS be the set of proper divisors of n; 

i = 0. 

Go to STEP 3. 

STEP 3: Let i = i + 1. 

If i > INFACTORS(, go to STEP 6. 

Let m = ith element of NFACTORS. 

Go to STEP 4. 

S T E P  4: Let R, = {j (mod m) : j E S U S-', j f 0 (mod m)); 

Let M = min{m - 1, DELTA-(m/n)); 

If 1 R, 1 2 M return to STEP 3 

/ /  i.e. m is rejected //, 
otherwise go to  STEP 5. 

S T E P  5: Let NU = (n/m) 

// note that NU gives the size of the neighborhood of the atomic 



part A = (0, m, 2m,.. . , n - m )  // 
If NU < KAPPA then let KAPPA = NU. 

/ /  i.e. choose minimum NU / /  
Return to STEP 3. 

STEP 6: Terminate. 

KAPPA gives the connectivity of C(n,  S). 



Independently from Boesch and Tindell, Watkins [35] developed an 

algorithm for computing the connectivity of a circulant from its symbol. 

We point out here that in his paper, Watkins' use of the term symbol 

includes n, the number of vertices. Also, Watkins obtains results for 

infinite circulants, but since we are interested in circulants as they apply 

to the design of networks, we choose not to include those results here. 

Watkins makes use of the following definition due to Sabidussi [29]. 

The lexicographic product Hl[H2] of a graph HI by a graph H2 has 

vertex set V(H1) x V(H2), and [(xl, x2), (yl, y2)] is an edge of H1[H2] 

if and only if either 

The next definition, due to Watkins [35], defines a subgraph of the 

lexicographic product, and provides the basis for his algorithm for com- 

puting the connectivity of a circulant. 

Let O and A be finite circulants having nl and n2 vertices, respec- 

tively, and let G be a connected spanning subgraph of the lexicographic 

product @[A]. For each x E V(O), let A, be the subgraph of G with 

vertex set V(A,) = {(x, y) : y E V(A)). We call G a circulant product, 

or simply c-product, of O by A if the automorphism group of G contains 

an automorphism u satisfying: 

(a) the sets V(A,) for x E V(O) are the orbits of anl; 



(b) the automorphism group of O contains an nl-cycle T 

such that a[A,] = A,(,). 

The notation G = OcA means that G is a c-product of O by A. In 

developing his algorithm, Wat kins makes use of the following properties 

of the c-product . 

Lemma 4.4 Let O and A be circulants. If G = OcA, then G is a 

circulant. 

Lemma 4.5 Let G be a circulant and let A be an atomic part of G .  

Then there exists a unique circulant O (up to isomorphism) such that 

G = OcA. 

Lemma 4.6 Let G be a graph and let A be an atomic part of G .  Then 

G is a circulant if and only if G = OcA for some circulant O .  

Watkins also uses the following adaptation of a result by Hamidoune [la]. 

Lemma 4.7 Let G be a finite abelian group and let A be the atomic part 

of Cay(G; S )  containing the identity of G .  Then V ( A )  is the subgroup 

of G generated by V ( A )  n S.  The vertex sets of the atomic parts of 

Cay(G; S )  are the cosets of G with respect to V ( A ) .  

If G is a vertex-transitive graph, let O be the graph whose vertex set 

is the set of atomic parts of G. For distinct atomic parts A1, A2 E V ( O ) ,  

define [Al, A2] E E ( O )  if and only if some vertex of Al is adjacent to 

some vertex of A2. The resulting graph is called the atomic graph of G. 



Note that if G is not complete, then its atomic graph will not be. By 

Lemma 4.2, if Al is an atomic part of G, then N(A1) is the union of 

those atomic parts of G which, as vertices of the atomic graph 0, are 

all the neighbors of the vertex Al E V(O). We also have by Lemma 4.2 

that a minimum vertex-disconnecting set is always a union of atomic 

parts. 

The connectivity of a circulant G = OcA is equal to the least degree 

of regularity of O times the number of vertices in A, where the minimum 

is taken over all c-products G = OcA wherein O is not complete. In 

other words, the connectivity of a circulant is given by the cardinality 

of the neighborhood of an atomic part; that is, rc = IN(A)I for atomic 

part A. 

The approach of Watkins' algorithlm is to run through the c-products 

G = OcA of a given circulant G with symbol S, seeking a c-product in 

which A is isomorphic to an atomic part of G. For each proper divisor d 

of n (the number of vertices in G), Watkins considers the (n/d)-element 

subgroup 

A(d) = (0, d, 2d,. . . , n - d) 

of V(G) = 2,. The subgraph A(d) induced by A(&) is then a candidate 

to be an atomic part of G. We subject such a candidate to five tests. 

If no candidate passes all these tests, then G has only trivial atomic 

parts, and hence K. = 6. The tests are the following: 

TEST 2: The greatest common divisor of (A(&) n S) U {n} is d. 



TEST 3: d 2 4. 

TEST 4: S(@(d)) 5 d - 2. 

TEST 5: IN(A(d))l < S(G). 

Note that the goal of these tests is to identify a nontrivial atomic 

part. The validity of Tests 1 and 2 follows from Lemma 4.7. That is, 

the conditions in Tests 1 and 2 will be satisfied if A(d) is a nontrivial 

atomic part. In particular, if A(d) is a trivial atomic part, then A(d) 

will simply consist of the element 0, and by definition, 0 4 S, hence we 

get Test 1. If Test 1 is passed, Test 2 then checks if A(d) is generated 

by A(d) n S. If the greatest common divisor of (A(d) n S )  U {n) is 

greater than d, then A(d) could not be generated as we could not get, 

for example, the element d. 

Let 0(d)  be the circulant such that G = O(d)cA(d) (the existence 

of 0(d)  is guaranteed by Lemma 4.5). Note that IV(O(d)) 1 = d. By an 

earlier discussion, we have that O(d) must not be complete, from which 

we get the validity of Tests 3 and 4. Of those values d which survive all 

of the tests, we only consider those for which 1 N(A(d))J is minimum. 

This minimum value gives us the connectivity of G (and hence Test 5 

is valid by Theorem 4.1). 

In his paper, Watkins includes an APL function based on his al- 

gorithm. The input to the function is the symbol for a circulant G. 

The output from the function is the connectivity of G and the atomic 

number of G, as well as the symbol for the atomic part A of G, and the 

symbol for 0, the first factor of the c-product G = 0cA. 



We now give a pseudo-code version of Watkins' algorithm. As be- 

fore, comments appearing within the algorithm are delimited by a pair 

of double slashes. Note that we only include that part of the algorithm 

which gives the connectivity, and we have left out the determination 

of the atomic parts and first factor of the c-product that make up the 

input circulant . 



4.2 Watkins' Algorithm for Computing 

Connectivity 

STEP 1: Input circulant C ( n ,  S )  where S = { a l ,  az, . . . , a k ) .  

Go to STEP 2. 

STEP 2: Initialization. 

Let S-' = {n - ak, . . . , n  - a'}; 
DELTA = 2k if ak # n/2, otherwise DELTA = 2k - 1; 

Let KAPPA = DELTA; 

Let NFACTORS be the set of proper divisors of n; 

Go to STEP 3. 

STEP 3: Let i = i + 1. 

If i > INFACTORSI, go to STEP 10. 

Let d = ith element of NFACTORS. 

Go to STEP 4. 

STEP 4: If d < 4 return to STEP 3 

// i.e. d is rejected - Test 3 //, 
otherwise go to STEP 5. 

STEP 5: Let Sd = {S E S : s = md for some m E Z+). 

// i.e. Sd is the subset of S made up of those elements which are 

multiples of d. Note that Sd = A(d) n S // 
If Sd = 4 return to STEP 3 



/ /  i.e. d is rejected - Test 1 //, 
otherwise go to STEP 6. 

STEP 6: If gcd{Sd U {n)) # d return to STEP 3 

// i.e. d is rejected - Test 2 //, 
otherwise go to STEP 7. 

STEP 7: // The candidate's neighborhood is the union of all nonzero 

congruence classes (modulo d) represented in S, together with 

their inverses (modulo d) // 
Let NBD = {s (mod d) : s E S u S-',s f 0 (mod d)). 

/ /  Reject candidate if it is adjacent to all other atomic parts 

because first f~c to r  of c-product must not be a complete graph // 
If INBD( > d - 2 return to STEP 3 

// i.e. d is rejected - Test 4 //, 
otherwise go to STEP 8. 

STEP 8: Let NU = [NBDl. (nld) 

// note that NU = IN(A(d))l // 
If NU > DELTA return to STEP 3 

/ /  i.e. d is rejected - Test 5 //, 
otherwise go to STEP 9. 

STEP 9: If NU < KAPPA then let KAPPA = NU. 

// i.e. choose minimum NU // 
Return to STEP 3. 



STEP 10: Terminate. 

KAPPA gives the connectivity of C(n, S). 

We now discuss the computational complexity of the two algorithms 

we have presented. The measure of complexity we will use is that of 

estimating an upper bound on the number of operations each algorithm . 

will perform. Clearly, the two algorithms are very similar. First of all, 

they each process the divisors of n, the number of vertices. For an 

arbitrary positive integer n, note that its divisors occur in pairs. That 

is, if d is a divisor, then so too is nld. The product of such a pair is 

equal to n, thus one divisor in each pair (d, nld) must be less than or 

equal to n1I2. Thus, an upper bound on the number of divisors of n is 

2n1I2. 

Therefore, in Boesch and Tindell's algorithm, the number of times 

the loop initiated by STEP 3 will be executed is of order n1I2. This is 

also true of the loop initiated by STEP 3 in Watkins' algorithm. We 

now consider the steps contained within each of these loops. 

In Boesch and Tindell's algorithm, STEP 5 has a constant number 

of operations: the calculation of NU, comparing NU to KAPPA, and 

possibly assigning NU to KAPPA. In STEP 4, we have the calculation 

of M, which requires a constant number of operations, and the com- 

parison of M to the cardinality of R,. We also have the determination 

of the set R,, which is a subset of S U S-l. Thus the complexity of 

STEP 4 depends on the cardinality of S U S-'. In particular, for each 

element j in S U S-', we must check that j f 0 (mod m), and we must 



check whether or not j (mod rn) already appears in R,. Note that by 

definition, we have IS( < (n + 1)/2, or equivalently, IS1 5 ln/2j1 so it 

follows that IS U S-' 1 5 n - 1. Hence, the complexity of STEP 4 is of 

order n. Therefore, the number of operations in Boesch and Tindell's 

algorithm is of order n3I2. 

In Watkins' algorithm, STEP 4 just has the single operation of 

comparing d to 4. In STEP 5, we have the comparison of Sd to the 

empty set, and the determination of the set Sd, for which the number 

of operations depends on the cardinality of S. That is, for each element 

s E S,  we must check if s = md for some m E Z+. Since by definition 

1st 5 Ln/2J, we have that the number of operations in STEP 5 is of 

order n. 

In STEP 6, we need to determine the greatest common divisor 

of Sd U {n} and compare it to d. If we view the calculation of the 

greatest common divisor of two integers as a single operation, then the 

complexity of STEP 6 depends on the cardinality of Sd U {n}. Since 

ISd/ 5 [n/2dJ, we have that STEP 6 is of order n. 

Note that STEP 7 is basically equivalent to STEP 4 of Boesch and 

Tindell's algorithm, which we have shown is of order n, while STEP 8 

and STEP 9 combined are basically equivalent to STEP 5 of Boesch 

and Tindell's algorithm, which has a fixed number of operations. So in 

total, the number of operations performed in STEP 4 through STEP 9 

is of order n, since each of them is of order no greater than n. Therefore, 

the number of operations in Watkins' algorithm is of order n3/2. 

From the point of view of simply computing the connectivity of 



a circulant, STEP 4, STEP 5 and STEP 6 in Watkins' algorithm 

aren't really necessary. They appear in the algorithm because more 

is being determined than just the connectivity. As explained earlier, 

Watkins' APL version of his algorithm also gives as output the symbols 

for A and 0, the two circulants whose c-product is the input circulant 

to which the algorithm is being applied. 



4.3 Superconnectivity 

In this section, we examine a concept that can be thought of as a 

higher order measure of connectivity relevant to the design of reliable 

networks. As we have seen previously in this chapter (see Theorem 4.8), 

all circulants have maximum edge-connectivity. So given a circulant, 

we know that at least S edges must be removed in order to disconnect it. 

Let Nx(G) denote the number of edge-disconnecting sets of cardinality 

A in the graph G. Now, consider the two graphs G1 and G2 shown 

in Figure 4.2. Both G1 and G2 are circulants (GI = C(6, (2,3)) and 

G2 = C(6, {1,3))) thus X = S = 3 in both cases, by point (A) (3) of 

Theorem 4.8. For these graphs, we have Nx(Gl) = 7 and Nx(G2) = 6, 

so in a sense, we may consider G2 to be less vulnerable than GI. 

In a regular graph G with X = 6, the set of edges incident to a 

vertex forms a minimum edge-disconnecting set. If these are the only 

minimum size edge-disconnecting sets for G, we refer to G as a super-A 

graph. Note that since the incidence sets of the vertices of G are all 

distinct, Nx(G) 2 n, and if G is super-A, then Nx(G) = n. Thus a 

regular graph with X = S is super-X if each minimum size disconnecting 

set of edges isolates a vertex. Referring again to Figure 4.2, we see 

that G2 is super-A, but GI is not super-X since removing the set of 

edges corresponding to a2 = 3 disconnects the graph without isolating 

a vertex. 

Our interest in super edge-connectivity lies in determining which 

circulants have this property. Bauer, Boesch, Suffel and Tindell [I] 



Figure 4.2: An example demonstrating the super-X property 

obtained the following result. 

Theorem 4.11 If k 2 2, then C(n, (1, a2,. . . , ak)) is super-A. 

Boesch and Wang j12] improved on the above result by obtaining 

the following, which characterizes all super-A circulants. 

Theorem 4.12 The only connected circulants which are not super-X 

are the cycles C(n,  S) where S = {al), and the graphs C(2n, S) where 

S = {2,4,. . . , n - 1, n) with n 2 3 an odd integer. 

One can define an analogous concept for vertices. We have seen 

in an earlier section of this chapter that certain classes of circulants 

attain maximum connectivity, so given such a circulant, we know that 

at least K. = 6 vertices must be removed in order to disconnect it. In 

a regular graph G with rc = 6, the neighborhood of each vertex will be 

a minimum size disconnecting set of vertices for G. If each minimum 

size vertex-disconnecting set isolates a vertex, then G is called super-#. 



Figure 4.3: An example of a graph that is not super-& 

To help demonstrate this concept, we consider an example of a 

graph that does not have this superconnectivity property. Figure 4.3 

shows the circulant C(8, {1,2)), which has 6 = 4 and, since this graph 

is equivalent to the Harary graph H8(2), it has rc = 6 = 4. Now, 

removing the set of vertices {0,3,4,7) disconnects the graph without 

isolating a vertex; thus, the graph is not super-&. 

As pointed out by Boesch [6], this definition is just one of several 

possible choices. Note that a minimum vertex-disconnecting set could 

isolate several vertices, as for example in the case for complete bipartite 

graphs So one possible alternative definition could be to require 

that each minimum vertex-disconnecting set creates exactly two compo- 

nents, one of which is an isolated vertex. Boesch uses the term hyper-& 

for this definition. Another alternative would be to let M,(G) denote 



the total number of distinct vertex-disconnecting sets of cardinality K 

in the graph G, and determine which graphs minimize M,(G). 

Unlike the case for super-A, there are no results that fully char- 

acterize which circulants have the super-K or hyper-K properties, nor 

which circulants minimize Mk(G). Some partial results can be found in 

Boesch and Thomas [lo], Boesch and Felzer [9], Boesch and Tindell [4], 

and Boesch and Wang [I 11. 



Chapter 5 

Diameter 

In designing reliable networks, several authors have noted that con- 

sidering just the connectivity of the underlying graph is not sufficient. 

One should also take into account the transmission delays inherent in 

the design of the network. This corresponds to the diameter of the un- 

derlying graph. Bollobk [13] initiated work in the area of considering 

both connectivity and diameter as measures of reliability. 

As we have seen in the preceding chapter, there are several classes 

of circulant graphs which have maximum connectivity; however, their 

diameters can vary greatly. Hence, we are interested in determin- 

ing which circulants maximize connectivity while minimizing diameter. 

The graph theoretic terms relevant to this chapter are the following. 

The length of a path in a graph G is the number of edges the path 

contains. The distance d(u, v) between two vertices u and v in a graph 

G is the length of a shortest path joining them. If no path joins u 



and v,  then we say d(u ,v )  = oo. The diameter d(G) of a graph G is 

the greatest distance between any pair of vertices. Due to symmetry, 

the diameter of a circulant graph can be determined by considering the 

greatest distance from 0 to any other vertex. 

Several different approaches have been used to obtain diameter re- 

sults for circulant graphs, and in this chapter we shall present some of 

them. One of the objectives of the diameter results we will discuss is to 

determine a lower bound for the diameter of a circulant. That is, given 

the parameters of a circulant (number of vertices, number of elements 

in the symbol) we would like to know what is the smallest diameter 

that can be obtained. Then, having established this bound, we exam- 

ine results that determine some classes of circulants that achieve the 

lower bound. Before going into the details of the various results, we 

wish to comment on the distinctions between their two different types 

of backgrounds. In particular, there is the distinction between a graph 

theoretic approach and a computer science approach. In the area of 

computer networks, the standard topology is that of a ring network; 

that is, a cycle in graph theoretic terms. Cycles have relatively large 

diameter, and in an attempt to reduce the diameter by adding edges, 

we wish to retain certain properties. In particular, we would like to 

retain maximum connectivity and vertex-transitivity. As we have seen, 

certain circulants achieve this. 

Most computer science work with circulants begins with a cycle, to 

which edges are added. Hence, most results in this area have a1 = 1. 

In contrast, graph theoretic results tend not to have such a restriction 



on the first element of the symbol. We point out though that fixing 

a1 = 1 is not a serious restriction, as the following proposition makes 

clear. 

Proposition 5.1 If the circulant G1 = C(n, {al,. . . , ak))  is such that 

for some i, 1 5 i 5 k, gcd(n,a;) = 1, then there exists a circulant 

G2 = C(n, {bj)), 1 5 j 5 k isomorphic to GI, with b; = 1. 

PROOF. As gcd(n, a;) = 1, there exists an integer r ,  relatively prime 

to n, such that ra; r 1 (mod n). Now, multiply each element in GI's 

symbol by r ,  to get rG1 = C(n, {ral, raz, . . . , ra;, . . . , rak)). Letting 

bj = raj, 1 5 j 5 k, gives us rG1 = GZ = C(n, {bj)) ,  with bi = 1. It 

remains to show that each bj is distinct. Suppose bj = bm for j # m. 

Then ra j  = ra,, implying a j  = a,, which is a contradiction. Thus GI 

and G2 are isomorphic. 0 

5.1 Diameter Results by Wong and Cop- 

persmit h 

Of the results we wish to discuss, those achieved by Wong and Cop- 

persmith [38] were obtained first. Although some of their results were 

later improved upon, their method is quite accessible. As we shall see, 

it is only their final, most general result that applies to circulants. 

Let the vertices of an n-vertex digraph be labelled O,1,. . . , n - 1. 

Pick any integer s, 1 < s < n, and draw an arc from vertex i to vertex 



i + 1 (mod n), and from vertex i to vertex i + s (mod n). This defines 

a circulant digraph, which we denote 5 (n, { l , ~ ) ) .  Note that at this 

point we are only considering a symbol of cardinality 2, with al = 1. 

By the number of steps from a fixed vertex i to a fixed vertex j ,  we 

shall mean the smallest possible number of arcs in a directed path. Let 

dn(s) denote the maximum number of steps from any i to any j. By 

symmetry we can assume i = 0. We wish to find a value of s which 
-+ 

minimizes the diameter dn(s) of C (n, (1, s)). 

Instead of computing the number of steps needed to travel from 0 to 

j, we will calculate the vertices which can be reached from 0 in a given 

number of steps. In the first quadrant (x 2 0, y 2 0) of the Euclidean 

plane, we fill the lattice points with the vertices reachable from 0 in 

0 steps, 1 step, 2 steps, and so on. Note that to reach a vertex, only 

the total number of 1's and total number of s's are material, not their 

ordering. At lattice point (x, y) we fill in the value k determined by 

x l  + y s  r k (mod n) meaning that in a total of x + y steps, the vertex 

k can be reached. We proceed in the following manner: 

Start from the origin (0, 0), then go along the line (1, O), (0, I), then 

the line (2, O), (1, I), (0,2), and so on. At each point (x, y), if the value 

k has not appeared so far, we write it down; otherwise we leave a blank. 

We stop when all values of k (k = 0,1,. . . , n - 1) are accounted for. 

As an example of this procedure, consider the case n = 16 and 

s = 7, shown in Figure 5.1. Here, k is determined by x l  + y7 r k (mod 

16). 



Figure 5.1: Sample pattern with n = 16 and s = 7 



Figure 5.2: Filled pattern of Lemma 5.1 

Lemma 5.1 The filled pattern is always of the form shown in Fig- 

ure 5.2, where u 2 0, v 2 0,p > 0, and q > 0. 

PROOF. Notice that if the point (30, yo) is blank, then all lattice 

points {(x, y) : x 2 xo, y > yo) will also be blank. For example, in 

Figure 5.1 the point (2,2) is blank because it represents (2)l + (2)7 = 

16 0 (mod 16)) which is already represented by the point (0,O). Now, 

the point (2,3), which is one unit above (2,2), will represent the same 

value as the point one unit above (0,O); that is, the point (0,l). So it 

follows that (2,3) will be blank, and so on. Therefore, at the least, we 

will get the pattern shown in Figure 5.3. 

Let A = (0, a) be the first point on the y-axis to be blank. This 



implies the integer 0.1 + a .  s (mod n) has already appeared previously. 

Thus, there exist integers f 2 0 and g 2 0 such that f + g 5 a and 

0 . 1  + a s f - 1 + g . s (mod n). Now consider the point (0, a - I) ,  

for which we have 0 - 1 + (a - 1) . s r f - 1 + (g - 1) - s (mod n), and 

f + ( g - 1 )  I a - 1 .  

By the definition of f and g, we know the point (f, g) was visited 

before (0, a), which implies (f, g - 1) must have been visited before 

(0, a - 1) if (f, g - 1) is in the first quadrant. But then (0, a - 1) would 

be blank, and hence (f, g - 1) cannot be in the first quadrant. Thus 

g - 1 < 0, implying g = 0. Therefore, the integer 0 . 1 + a . s (mod n )  

appears at a point on the x-axis. 

A similar argument shows that the first blank point on the x axis 

corresponds to an integer that appears previously on the y-axis. Apply- 

ing this argument to points like B, B' or B", we find that these points 

represent an integer that appears in a previously visited point that lies 

on both axes; in other words, the origin. But this implies that the 

points immediately to the left of B, B' and B" all represent the value 

n - 1, which is a contradiction. Thus there can be at most one point 

like B, B' or B", and the result follows. 0 

Lemma 5.2 Given n and s ,  if the resulting pattern has sides u,  v,p, q 

as in Lemma 5.1, then d,(s) = u + q + max{v, p) - 2. 

PROOF. In x + y steps, vertex k can be reached. The way we've 

drawn the pattern, where k appears gives us the fewest number of steps 



Figure 5.3: Pattern from proof of Lemma 5.1 



Figure 5.4: Diagram for proof of Lemma 5.2 

to that vertex. So we want to know what is the maximum x + y can 

be. Consider the diagram shown in Figure 5.4. 

The total area of the diagram is: u(v + q) + pq = n. Furthermore, 

we have the following table: 

I BLOCK I AREA I MAXIMUM OF (I + y)  

Therefore, d,(s) = u + q + max{v,p) - 2. 

As an application of Lemma 5.2, consider again the example shown 
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in Figure 5.1. From the Lemma, we have dI6(7) = 2 + 2 + 3 - 2 = 5 

and an exhaustive check confirms this is correct. 

Based on Lemmas 5.1 and 5.2, Wong and Coppersmith obtained 

the following result. 

Theorem 5.1 For 2 (n, {1, s)), we have d,(s) 2 (3n)'12 - 2. 

PROOF. Viewing d, as a function of u, v, q and p (from Lemma 5.2), 

we shall minimize d, subject to the constraints 

where u, v, p and q are real numbers. 

Let us assume that (u,v,p, q) is a minimization point of d, and 

suppose v > p. Define the constant 

D =  [ (u" + uq + PQ) 
(uv + uq + vq) 

and let u' = uD, q' = q D, and v' = p' = v D. Now, u1(v' + q') + p'q' = 

D2(uv+uq+vq) = uv+uq+pq = n. Thus the point (u', vl,p', q') satisfies 

the constraints (5.1). Furthermore, u'+ql + max{vl, PI) = ul+ql +v' = 

D(u +q +v) = D(u + q + max{v, P)), and since p < v implies D < 1, we 

have that dn(ul, v', p', q') < d,(u, v, p, q) contradicting our assumption 

that (u, v, p, q) was a minimization point. Therefore v 5 p. By a similar 

argument we get that p 5 v,  and hence v = p. 

So now our problem is to minimize u+q+v subject to uv+uq+vq = 

n. By Lagrange's method of multipliers, we form the function g defined 



Taking partial derivatives, we get 

dgldu = 1 + Xv + Xq 

dgldq = l+Xu+Xv,  and 

dg/dv = 1 + Xu + Xq. 

This gives us the following system of equations: 

From the first 3 equations we get ('v + q) = (u + v) = (u + q) = - 1 /A, 

or u = v = q. From the fourth equation, the equation of constraint, it 

follows that u = v = q = (n/3)l12. Thus by Lemma 5.2, the minimum 

value of d,(s) is (3n)'I2 - 2. 0 

Wong and Coppersmith then let the cardinality of the symbol be ar- 

bitrary, therefore the subsequent results apply to circulant digraphs of 
-+ 

the form C (n, (1, a2, . . . , ak)). The final generalization made by Wong 

and Coppersmith is to allow both the positive and negative of each ele- 

ment in the symbol, which gives us the circulants C(n, (1, a2, . . . , ak)). 
-* 

For both the cases C (n, (1,a2,. . . ,ak)) and C(n, (1,a2,. . . ,ak)), 

we mark off the lattice points of k-dimensional Euclidean space. In the 

first case, only the first "quadrantn (that is, xl L 0, x2 L 0, . . . , xk 2 0) 



is considered, while in the second case, the xi are not restricted to 

nonnegative values. In order to establish the required marking scheme, 

Wong and Coppersmith first partition the lattice points (xl , . . . , xk) 

into specially defined classes. They then recursively define the order 

in which the lattice points are to be visited. That is, they specify the 

order in which we visit the classes, as well as the order in which we visit 

the lattice points within each class. On each visit to a lattice point in a 

fixed class, we write an integer at that lattice point, based upon which 

class the lattice point appears in. The procedure stops once n lattice 

points have been visited. 

It turns out that by performing the above marking scheme for the 
+ 

case C (n, (1, a2,. . . , ak)),  the pattern one marks off is effectively a 

"triangle", in the first "quadrant". For the case C(n,{l,a2,. . . ,ak)) ,  

one effectively marks off a "quadrilateral" rather than a "triangle". 

Based on the cardinality of the above described classes, Wong and 

Coppersmith obtain lower bounds for the diameter of these circulants. 

In particular, they obtained the following result. 

Theorem 5.2 For a circuIant G = C(n, {1,a2,. . . , ak)), 

We note that this result has a1 = 1, but as pointed out earlier, this 

isn't a serious restriction. 



5.2 Further Diameter Results 

To obtain results on a lower bound for the diameter of circulants, the 

method used by Boesch and Wang in [ll] makes use of a tree structure 

like that shown in Figure 5.5. The example shown in Figure 5.5 is for 

the case where the symbol S has cardinality 3; that is, for the circulant 

C(n ,  {al, a2, as)); however, the method can be applied in general. Each 

edge in the tree represents an element of S, either positive or negative. 

The root of the tree corresponds to the vertex 0 of the circulant. A 

vertex v in the tree gets labelled with the vertex of the circulant that 

is reached from 0 by using the elements of S that lie on the path in the 

tree from 0 to v. For example, vertex a1 - a2 is reached from 0 by first 

using al ,  then using -a2. Of course, ,all calculations are done modulo 

n. 

Note that vertices in the circulant can be reached from 0 in several 

ways. For example, a1 + a2 can be reached by using al, then a2, or by 

first using a2 and then al. In the tree structure, only one path will be 

represented; hence, a2 followed by a1 does not appear. Also, we only 

want to represent the shortest possible path, so when the element a; 

appears, the element -a; will never appear in the same path, as then 

we will get to a vertex already reached by 0. Thus, for example, in 

Figure 5.5, there is no edge labelled -a* from vertex a1 to any vertex 

in Level 2. 

Note that it is possible for vertices in different levels to be the same. 

For example, a2 could equal 2al. Similarly, vertices in the same level 



Level: 0 

Figure 5.5: Tree structure for the case C(n, {at ,  a2, a3))  
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could be equal, such as al + a3 and 2a2. 

To make vertex 0 reach a maximum number of vertices, we need to 

choose al,a2 and a3 such that the vertices in the same and different 

levels are distinct as many times as possible. 

Let Xm denote the upper bound on the number of vertices 0 can 

reach by using at most m jump sizes. Then assume the number of 

vertices n in G satisfies 

If vertex 0 reaches all other vertices in G, then at least m jump sizes 

should be utilized by vertex 0. This is equivalent to saying d(G) 2 m. 

Thus m is the lower bound for the diameter of circulant graphs. Based 

on this, Boesch and Wang [ll] obtained the following result. 

Theorem 5.3 Let G = C(n, S) where S = {al, a2, . . . , ak) and ak < 

n/2. 

If Xm(k) 2 n > Xm-l(k) then d(G) 1 m, where 

m 

X,(k) = 1 +Ex and 
i=l 

The table shown in Figure 5.6 lists Xm(k) for 1 < m 5 7, and 

1 5 k 5 6. As an example of how to use the table, consider the class of 



Figure 5.6: Table of values for X ,  ( b )  

all 29-vertex circulants with a symbol of cardinality 3. From the table, 

if follows that d(G) 2 3. 

For the case where ak = n/2, Boesch and Wang obtained the following 

result. 

m 

Zm = c(Y, + Y,-1) with y0 = 1, 
i=l 

and for i > 1, E; is defined a s  in Theorem 5.3. 

Boesch and Wang then further consider the case for circulants which 

have a symbol of cardinality 2. In particular, they determine suit- 



able values of a1 and a2 so that the lower bound diameter is actually 

achieved. First, the following lemma is needed. 

Lemma 5.3 Let r and p be two positive integers such that 1 < r 5 

p(p + 1). Then there exist integers a and b such that la1 + Ibl 5 p and 

a(p + 1) + bp = r .  

PROOF. Clearly, a(p + 1) + bp = T is solvable for a and b since 

gcd(p,p + 1) = 1. It remains to show that there exists such an a and b 

so that la1 + (bl < p. Note that we can write r as r = kp + a for k 2 0 

a n d O < a < p - 1 .  Nowlet 

a = P, b = O  if k = p +  1, 

a = a - p ,  b = k + l - a + p  i f 2 a ? p + l + k ,  and 

a = a, b = k - a  otherwise. 

It is not difficult to check that this solution satisfies the conditions. 0 

We are now ready to prove the following result. 

Theorem 5.5 Let G = C(n, S) where S = {m, m + 1) be a circulant 

graph on n vertices with n > 6 and m = [(-I + J-)/21. Then 

d(G) = m. Moreover, rn is the minimum diameter over the class of all 

circulant graphs C(n, S )  with S = {a l ,  a2)  where n is fixed, a1 < a2 < 

n/2 but a1 and a2 are otherwise arbitrary. 

PROOF. Since m = [(-I + d m ) / 2 1 ,  we have rn 2 (-1 + 
J m ' ) / 2 ,  from which it follows that n < 2m(m+l)+l. Furthermore, 



from m < 1 + (-1 + d n ) / 2  we get n > 2m(m - 1) + 1. Therefore, 

2m(m + 1) + 1 2 n > 2m(m - 1) + 1. Note that substituting k = 2 

into the definition of Xm (k)  in Theorem 5.3 yields 

Thus we have Xm(2) 2 n > Xm-1(2). In order to apply Theorem 5.3, 

we need a2 = m + 1 < 7112. This is the case for n > 6, which we have 

by the statement of this theorem. Therefore, by Theorem 5.3, we have 

By Lemma 5.3, if 1 5 r L: m(m + 1) then there exist integers a and b 

so that a(m + 1) + bm = r and la 1 + I bl 5 m. This is equivalent to saying 

that vertex 0 can reach vertex 7,) for 1 5 i 5 m(m + I), by using at most 

m steps. We have that 2m(m + 1) / n - 1, and since m(m + 1) is an 

integer, it follows that m(m + 1) 2 LnI2J. Thus vertex 0 can reach half 

of the n vertices. By the symmetry of circulants, vertex 0 can also reach 

the other half of the n vertices. Since vertex 0 can reach all of the other 

vertices of G in m or fewer steps, we have that d(G) 5 m. Combining 

this with (5.2), we have d(G) = m. It follows from Theorem 5.3 that 

m is also the minimum diameter over all circulants C(n, {al, az)) with 

a1 < a2 < n/2. 

Note that the result of Theorem 5.5 is optimal, and that it is an 

improvement upon the result of Wong and Coppersmith for circulants 

with symbols of cardinality 2. (Theorem 5.2 due to Wong and Copper- 

smith gives (6 - 3)/2 as the lower bound.) 



Other authors have obtained the above result, using various different 

methods. In [39], Yebra, Fiol, Morillo and Alegre obtain diameter 

results for general circulants with a symbol of cardinality 2, and for 

particular circulants with a symbol of cardinality 3. Their objective 

is to determine the maximum possible number of vertices that such 

circulants can have for a given diameter. The approach used by Yebra 

et al. is to associate the adjacency pattern of the vertices of a circulant 

with a tessellation of the plane. 

As circulants are vertex-transitive, when studying their diameter 

one need only consider the distances from the vertex 0 to each of the 

other vertices. Let C(n, {al, a2}) be the circulant under consideration, 

and let d be a given diameter. We wish to determine the maximum 

possible value for n. 

Note that the 4 vertices f al, f a2 are at distance one from vertex 

0, the 8 vertices f 2al, f al f a2, f 2a2 are at distance at most two, the 

12 vertices f 3al, f 2al f a2, f al f 2a2, f 3a2 are at distance at most 

three, and so on, where all calculations are done modulo n. If all the 

numbers xal + ya2 (modulo n), where 1x1 + (yl 5 d, were different, we 

would then get the maximum possible number of vertices nd, for which 

we thus have nd = 1 + c$, 4i = 2d2 + 2d + 1. So we have n 5 nd, and 

Yebra et al. show that this bound can be achieved. 

Let the integers which represent the vertices that can be reached 

from vertex 0 in a specific number of steps be arranged in the pattern 

shown in Figure 5.7. That is, each step along an indicated edge is a one 



unit step in either positive or negative a1 or a2. As alluded to above, the 

situation we seek is one in which each of the nd numbers in the pattern 

is distinct. That is, we want each of the numbers O,1,. . . , nd - 1 to 

appear exactly once in the pattern. Clearly, the size of the pattern 

depends on d. 

Note that in order to have each of the numbers O , 1 , .  . . , nd-1 appear 

in the pattern, vertex 0 must be able to reach each of the other vertices 

in the circulant. This is only possible if the circulant is connected, 

which by Theorem 4.10 is the case if and only if gcd(n, al ,  a2) = 1. 

Now, suppose we position this pattern on the Euclidean plane so 

that the integer 0 in the pattern corresponds to the lattice point (0, O), 

and the integer obtained by taking x steps in the a1 direction and y steps 

in the a2 direction corresponds to the lattice point (x, y). Note that 

since all calculations are done modulo n, the pattern will repeat itself. 

In particular, suppose at lattice point (xo, yo) we have the integer i. 

Then all lattice points (($0 + x, yo + y) : xal + ya2 0 (mod n)) will 

also contain the integer i. Thus we get a periodic repetition of the 

pattern on the plane. This fact is shown in Figure 5.8 where we have 

used the example n = n3 = 25, a1 = 3 and a2 = 4. 

If we view the pattern as a tile, then as Figure 5.8 demonstrates, 

these tiles will tessellate the plane. Thus, we must show that for an 

arbitrary diameter d and for n = 2d2 + 2d + 1, there exist suitable 

values of a1 and a2 that result in such a tessellation. Note that the 

tessellation is characterized by the positions of the 0's throughout the 

plane, as they appear in each tile. This leads to the following system 



Figure 5.7: Pattern of vertices reachable from 0 



Figure 5.8: Tessellation of the plane (n = 25, a1 = 3, a2 = 4). 



of equations: 

(d + 1)al - da2 = 0 (mod n) 

dal + (d + l )a2 0 (mod n). 

In matrix form we get: 

~ h e r e A = ( ~ + l  d d + l  -d ) .  

Now, det(A) = (d + + 8 = 2 8  + 2d + 1 0 (mod n), thus 

the homogeneous system ( 5.3) has non-trivial solutions. Solving for a1 

and a2 gives us the following: 

By setting values to a and p, we obtain particular solutions. For 

example, letting cu = 0 and P = 1, we obtain the solution a1 = d and 

a2 = d +  1. Since gcd(n, d, d +  1) = 1 for all d, this solution satisfies the 

connected condition and hence is admissible. Note that this solution 

was used to obtain the example in Figure 5.8. 

Another solution that is valid for all d is the following. Let a = 

p = 1, which gives a1 = 2d + 1 and a2 = 1. This solution trivially 

satisfies the connected condition. Solutions obtained by setting other 

values to a and p may lead to previously obtained solutions, or may not 



even be admissible, depending on the value of d. For example, letting 

a = 1 and p = 2 gives us the solution a1 = 3d + 1 and a2 = d + 2. 

For d = 3, this leads to n = 25,al = 10 and a2 = 5 for which we get 

gcd(25,10,5) = 5 # 1. 

So we have for values of n which satisfy 

d is the smallest possible diameter for a circulant with n vertices. Fur- 

thermore, in [39], Yebra et al. state that for such values of n, the cir- 

culant C(n, {d, d + 1)) achieves this minimum diameter. Note that if 

we solve the inequality n 5 2 8  + 2d + 1 for d, we get 

which agrees with Boesch and Wang's result in Theorem 5.5. 

The results that Yebra et al. obtained for circulants with a symbol 

of cardinality 3 apply only to circulants of the form C(n, {al, a2, a1 + 
a2)). Letting a3 -(al + a2) modulo n, we get the pattern shown in 

Figure 5.9, where each edge represents a one unit step in either positive 

or negative al, a2 or a3. In this case, the maximum possible number of 

vertices is nd = 1 + zfZ1 6i = 3 8  + 3d + 1. As before, the situation we 

seek is one in which each of the nd numbers in the pattern is distinct. 

Let the infinite plane be divided into equal hexagons which we num- 

ber as in the pattern. We will then get a periodic repetition of the 

pattern on the plane, and if we view the pattern as a tile, we get a 

tessellation of the plane as shown in Figure 5.10. The tessellation is 



Figure 5.9: Pattern for symbol of cardinality 3. 



Figure 5.10: Tessellation of the plane with hexagonal tiles. 



characterized by the positions of the O's, from which we get the follow- 

ing system of equations: 

( d  + 1)al - daz E 0 (mod n) 

(d + l )a2 - da3 0 (mod n) (5.4) 

a 1 + a2 + a3 0 (mod n). 

Note that the third equation in (5.4) follows from the definition of as. 

Letting A denote the coefficient matrix of system (5.4), we have 

that det(A) = (d + 1)(2d + 1) + d2 = 3 8  + 3d + 1 z 0 (mod n). Hence 

the homogeneous system has non-trivial solutions. 

Solving for al ,  a2 and a3 we get: 

d2 2 d + 1  d [.!I=[ d(d + 1) -d , for a, p,  y E 2. 

(d+  -d - 1 -2d - 1 

As an example of a particular solution, let a = 0, ,O = 1 and 7 = 1, 

for which we get 

Furthermore, we note that this solution is admissible since gcd(n, 3d + 
1,1, -3d - 2 )  = 1. Solving the inequality n 5 3 8  + 3d + 1 gives us the 

lower bound 

for the diameter of a circulant of the form C(n, {al, a2, a1 + a2)). 



5.3 Results for Distributed Loop Networks 

As stated at the beginning of this chapter, the ring network is a very 

popular network topology. However, it has relatively large diameter. 

One way to decrease the diameter of such a network is to add links to 

the nodes. The resulting networks are called loop networks. A specific 

example of these are double loop networks, which in terms of our circu- 

lant definitions, are equivalent to the circulants C(n, (1, s)), for some 

integer s < n/2. Note that in this section, we are dealing with loop 

networks in which the underlying graph is undirected. For the directed 

case, several results on lower and upper bounds for the minimum di- 

ameter and on upper bounds for the maximum number of nodes can 

be found in Hsu and Jia [21]. 

In [17], Du, Hsu, Li and Xu obtain results for double loop networks. 

In particular, they determine several infinite classes of values of n, the 

number of nodes, for which there exists a network that achieves the 

lower bound given by Theorem 5.5. 

Let LB(n) denote the lower bound for the diameter of a circulant 

with n vertices, and symbol of cardinality 2. That is, LB(n) = [(-I + 
J m ) / 2 ] .  By optimal diameter, which we shall denote as d(n), 

we mean the smallest possible diameter for a fixed n, over all valid 

values of s. That is, d(n)  = min{d(C(n, (1, s))) : 1 < s < (n + 1)/2). 

Furthermore, let [0, i] denote the set of integers from 0 to i, inclusive. 

A circulant G = C(n, (1,s)) is said to be optimal if it has the 

optimal diameter, and it is said to be tight if its diameter equals LB(n). 



It is clear that tightness implies optimality, but the converse does not 

hold. 

The approach of Du et al. is to establish a suitable upper bound 

on the diameter, then determine for which values of n, if any, this 

upper bound equals the lower bound. In particular, they obtained the 

following result. 

Theorem 5.6 Given n and s, let G = C(n, (1, s}), b = LnIsJ and 

m = n - b s .  Thend(G) < m a x { b + l , m - 2 , s - m - 1 ) .  

The technique used by Du et al. to prove this theorem involves plac- 

ing the nodes of the network on a line, and labelling them 0 to n, where 

n is understood to be the same node as 0. By suitably partitioning the 

integers [0, n] based on the value of s, Du et al. then determine the 

maximum number of steps required to travel from node 0 or n to each 

of the other nodes, using steps of size f 1 and f s. The problem of 

optimization is thus reduced to selecting the number s so that b, m and 

s - m are as small as possible. 

In seeking values of n for which there exist networks with the lower 

bound diameter, Du et al. make use of a form of the following result. 

Lemma 5.4 Every positive integer n can be uniquely represented as 

either n = 2t2 + 2t + 1 or n = 2t2 + kt - h where 0 5 t ,  -1 5 k 5 2, 

and0 5 h < t ,  and e i t h e r h # t - 1  o r k #  -1. 

A proof of Lemma 5.4 appears in Hsu and Shapiro [23]. 



By using appropriate values of n and s in Theorem 5.6, Du et al. 

obtained the following result. 

Theorem 5.7 Forn = 2t2+kt+h, where 1 5 h 5 3 and 2 5 k 5 h+3, 

let G = C(n, {1,2t + (k - 1))). Then d(G) = t + 1 = EB(n). Moreover, 

for G = C(2t2 + 3t, {1,2t + 2}), d(G) = t + 1 = LB(2t2 + 3t). 

Theorem 5.7 gives us 13 infinite classes of n for which the lower 

bound can be achieved. Specifically, for n = 2t2 + kt + h, we get the 

classes where 

(k, h) = (271)) (2, 2)) (293)) (37 0)) (3,1), (3, 2)) (3, 3), 

(4,1), (4, 2), (473)) (5, 2)) (5,3), (6, 3). 

Du et al. then define closed segments of integers in [0, n - 11 in 

a certain way, and obtain some results based on properties of these 

segments. In particular, they derive the following. 

Theorem 5.8 Let n = 2t2 + kt + h, where 1 5 h 5 t and 2 5 k 5 6, 

and let G = C(n, (1,2t + (k - 3))). Then d(G) = t + 1 = LB(n) for 

the following circulants: C(n, {1,2t + (k - 3)) with 

, = ( 3  - and 

(6, 5). 

Note that the infinite classes of n with (k, h) = (3, -1)) (5,4), and 

(6,5) were not picked up by Theorem 5.7. 

In [17], Du et al. also determine some infinite classes of n for which 

the lower bound diameter cannot be achieved. In particular, they ob- 

t ained the following result. 



Theorem 5.9 Let n = 2t2+6t+4. Then the circulant G = C(n ,  {1,2t+ 

3 ) )  has the optimal diameter d(G) = t + 2 = d(n).  

Note that for values of n satisfying the statement of Theorem 5.9, 

LB(n) = t + 1,  so we have d(n) = LB(n) + 1. 

In [23], Hsu and Shapiro introduce the concept of one-optimality, 

which is defined as follows. Given two positive integers n and s, s < n,  

there exists a unique pair q and r of non-negative integers such that 

n = qs +r and 0 <_ r < s. Now for any vertex labelled v in C(n ,  (1, s ) ) ,  

define 

( a )  d(v) = min{lil+ Ijl : v = is  s + j 1 (mod n ) ) ,  and 

(b) dl(v)  = min(/if $ I j [  : v = 2 ' .  s + j  1 (mod n) and [if I q) .  

For G = C(n ,  { l , s ) ) ,  we have d(G) = max{d(v) : v E V ( G ) ) .  Let 

dl(G) = max{dl(v) : v E V ( G ) ) .  Then the circulant G = C(n,  (1,  s ) )  

is said to be one-optimal if dl(G) = d(n), the optimal diameter. It 

turns out that d(n) < d(G) 5 dl(G), hence one-optimality is a stronger 

concept than that of optimality. 

Hsu and Shapiro [22] make use of the concept of one-optimality 

to obtain the following result, which gives an upper bound for the 

minimum diameter. 

Theorem 5.10 For any positive integer n ,  let d(G) be the diameter of 

the circulant G = C(n ,  (1,  s } ) ,  where 1 < s < ( n  + 1)/2. Let d(n) = 

min{d(G) : 1 < s < ( n  + 1)/2).  Then d(n) 5 (n/2)'I2 + (n/8)'I4 + 2. 
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