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Abstract 

The beliefs of an agent should change due to actions and observations. In particular, actions 

cause an agent to perform belief update, and observations cause an agent to perform belief 

revision. However, the interaction between actions and observations can be non-elementary; 

there are simple examples where it is clear that simply updating and revising in succession 

does not lead to plausible results. In this dissertation, we consider the belief change that 

occurs due to an iterated sequence of actions and observations. 

We assume that the effects of actions are given by a transition system, which can be 

used to define a belief update operator. We introduce a set of basic postulates that should 

intuitively be satisfied when a revision is followed by an update, and we use these postulates 

to define a new belief change operator. The new operator provides a plausible model of 

iterated belief change in the presence of actions, and it can be characterized by a modified 

class of systems of spheres. One limitation of this approach to iterated belief change is that 

it assumes the agent has perfect knowledge of the history of actions executed. We relax this 

assumption by using ranking functions to represent uncertainty about the actions executed 

at each point in time. The resulting formalism is able to represent fallible knowledge, 

erroneous perception, exogenous actions, and failed actions. 

Our work is distinguished from related work in that we explicitly consider the manner 

in which action histories affect the interpretation of observations. Our formal tools are 

useful not only for the representation of simple action domains, but also for the evaluation 

of related formalisms involving iterated belief change due to action. 

iii 



"Why, sometimes I've believed as many as six impossible things before breakfast." 

- The White Queen, THROUGH THE LOOKING GLASS 
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Chapter 1 

Introduction 

1.1 Motivation 

1.1.1 The Basic Problem 

We are interested in modeling the belief change that is caused by executing a sequence of 

actions. Broadly speaking, our work falls under the umbrella of logical Artificial Intelli- 

gence(A1): we use the formal tools of mathematical logic to model reasoning. We begin 

with a description of the basic problem at an informal level. 

An agent typically does not have complete knowledge about the state of the world. 

Instead, an agent's beliefs may be both incorrect and incomplete. Informally, we can think 

of an agent's beliefs as a partial description of some hypothetical world. All other things 

being equal, an agent will behave as though this hypothetical model provides an accurate 

model of the real world. As new information about the world is acquired, the hypothetical 

model is changed in order to minimize the difference between the actual state of the world 

and the believed state of world. 

There are two natural situations when an agent's beliefs should change: 

1. The agent receives new information about a change in the state of the world. 

2. The agent receives new information about an unchanged world. 

The belief change that occurs is different in each case. In case (I), an agent basically wants 

the believed state of the world to keep up with the change that has occurred. As such, 

the change that occurred in the real world must also be made in the hypothetical model 



CHAPTER 1. INTRODUCTION 2 

of the world. In case (2), the hypothetical model needs to be revised and replaced with 

a new model. The new model should intuitively describe the most plausible world that is 

consistent with the new information. We describe a simple example where the distinction 

between (1) and (2) is clear. 

Example John and Mary always arrive together when there is a party, because they come 

in the same car. However, John tends to leave earlier than Mary because he works mornings. 

Now suppose that it is early in the evening at one particular party, and Bill believes that 

everyone is already there. When looking for John, consider two things that Bill could be 

told: 

1. "John just left." 

2. "John is not here yet." 

In both cases, Bill will come to believe that John is not at  the party. Bill's beliefs about 

Mary, however, are different in each case. In case (I), Bill has become aware of a change 

in the world. In this case, Bill should change his beliefs to incorporate that fact that John 

has left; none of Bill's beliefs about Mary should change. As such, Bill should still believe 

that Mary is at the party. In case (2), on the other hand, Bill has become aware of a 

mistaken belief: Bill mistakenly believed that John had already arrived. After Bill is told 

that John hasn't arrived, this belief should be retracted. Since Mary and John normally 

arrive together, the most plausible thing for Bill to believe is that Mary has not yet arrived 

either. Therefore, Bill's final beliefs in case (2) will not be the same as Bill's final beliefs in 

case (1). 

The belief change that occurs in response to a change in the world is called belief update. 

The belief change that occurs in response to new information about a static world is called 

belief revision. The party example illustrates that belief update and belief revision are 

distinct phenomena. Later in this chapter, we illustrate the standard formal approaches to 

update and revision; for now, we continue at an informal level. 

Thus far, we have discussed belief change in an idealized setting using the undefined 

notion of "acquiring information." In practice, agents acquire information by performing 

actions. We consider two distinct kinds of actions: ontic actions and epistemic actions. 

Ontic actions are actions that change the state of the world, such as moving a block or 
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turning on a lamp. Epistemic actions are actions that only affect the beliefs of an agent, 

such as looking out a window or listening to the radio. The prototypical example of an 

epistemic action is a sensing action, or an observation. 

In terms of belief change, ontic actions cause an agent to perform belief update and 

epistemic actions cause an agent to perform belief revision. However, in order to update 

and revise appropriately, an agent must reason about the effects of actions. Reasoning 

about the effects of actions is one of the oldest fields of logical AI, with formal approaches 

dating back to McCarthy's early work 1711. Many different formalisms have been proposed 

for the representation of action effects, because there are several fundamental problems that 

are difficult to solve in a completely satisfactory manner. Informally, the problem is the 

following. We typically think of action effects in terms of statements of this form: 

"Performing a jump action causes my feet to leave the ground." 

Note that some important features of jumping are left unstated in this simple description. 

For example, jumping causes my shoes to leave the ground but it does not cause my house 

to leave the ground. Although these inferences are easy for a human reasoner, it is non- 

trivial to efficiently formalize exactly which properties of the world change when an action 

is executed. 

Without introducing a specific formal representation of actions, we remark simply that 

actions normally have conditional effects. For example, toggling a lamp switch causes the 

lamp to turn on just in case the lamp is initially off. So reasoning about the belief change 

caused by an action involves two steps. First, an agent uses the current belief state to 

predict the effect of an action that has been executed. Second, the agent updates or revises 

the current belief state based on this predicted effect. Note that, if the current belief state 

is incorrect, then the predicted effect of an action may also be incorrect. 

As stated initially, we are interested in the belief change associated with sequences 

of actions and observations. New problems arise in this context that can not simply be 

dealt with by iteratively modifying an agent's beliefs as actions are executed. Suppose, 

for example, that John turns off the headlights on his car when he parks at  work, but then 

someone later tells him that his headlights are still on. In this case, either John failed to turn 

the lights off or he has received faulty information; we cannot determine the appropriate 

belief change based on a purely iterative approach. 

The basic problem that we address in this dissertation can be summarized as follows. 
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Given some initial beliefs followed by a sequence of ontic and epistemic actions, what should 

an agent believe? At an informal level, this problem arises in a wide range of situations. 

For example, this kind of reasoning is at  the heart of the typical scientific experiment: an 

agent has some hypothesis (initial beliefs), runs an experiment (ontic action), then observes 

the results (epistemic action). The interpretation of the results depends on the preceding 

ontic action. Clearly it would be valuable to have an accurate formal model of this kind of 

reasoning. We will see that existing approaches to belief change have not explicitly addressed 

problems of this form. 

To simplify the exposition in subsequent sections, we restrict the use of the term action 

to refer to only to ontic actions. We will use the terms epistemic action and observation 

interchangeably. 

1.1.2 Motivating Example 

In this section, we introduce a problem that will serve as a running example throughout 

the rest of the dissertation. In particular, we introduce Moore's litmus paper problem [74]. 

This problem is of interest not only because it involves ontic actions and observations, 

but also because it presents a challenge for the standard approach to belief update. In 

particular, Boutilier[ll] suggests that the usual approach to belief update does not provide 

an appropriate model of the belief change that occurs in this problem. We give an informal 

description of the problem. 

In the litmus paper problem, there is a beaker containing either an acid or a base, and 

there is an agent holding a piece of litmus paper that can be dipped into the beaker to 

determine the contents. The litmus paper will turn red if it is placed in an acid and it 

will turn blue if it is placed in a base. The problem is to provide a formal model of the 

belief change that occurs when an agent uses the litmus paper to test the contents of the 

beaker. We assume that the agent correctly believes that they are holding litmus paper, 

the agent correctly believes that the beaker contains either an acid or a base, and the agent 

only makes correct observations. 

Note that the litmus paper problem involves an ontic action with conditional effects 

followed by an observation. The agent dips the paper in the beaker, and this causes a 

change in the state the of the world. After dipping, the agent looks at  the paper to see 

what colour it is. We remark that, in isolation, looking at the paper should not indicate 

the contents of the beaker. Looking at the paper only gives the agent an indication of the 
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contents of the beaker because the agent is aware that the paper was previously dipped in 

the beaker. 

Intuitively, the litmus paper problem seems to require an agent to revise the initial 

beliefs in response to an observation at a later point in time. For example, suppose that 

the agent dips the paper and then sees that the paper turns red. This observation not only 

causes the agent to believe the beaker contains an acid now, but it also causes the agent to 

believe that the beaker contained an acid before dipping. We refer to this process as a prior 

revision, since the agent appears to revise their beliefs at a prior point in time. This kind 

of phenomenon is not explicitly discussed in many formalisms for reasoning about belief 

change caused by action. 

We will return to this problem periodically as we introduce our formal approach to belief 

change. 

1.1.3 Relation to Existing Work 

Our work is distinguished from existing work in that we explicitly formalize the high-level 

interaction between actions and observations in iterated belief change. The prototypical 

problem that we address has the following form. 

(InitialBeliefs) . (Action) . (Observation) (Action) . (Observation) (1.1) 

We are interested in determining how a rational agent's beliefs should change in response 

to such action sequences. The standard approach to representing this kind of problem is 

to start with a formalism for reasoning about action, and then add some formal approach 

to belief revision. We suggest that such an approach is a reasonable start, but it does not 

provide a complete representation. 

We say that action effects are Markovian if the outcome of an action depends only on 

the current state of the world. The fundamental observation underlying our work is that 

actions with Markovian effects may plausibly give rise to non-Markovian belief change. This 

is the case, for example, in the litmus paper problem: the result of dipping depends only on 

the current contents of the beaker, and the result of looking depends only on the current 

colour of the paper. In this case, the naive approach to solving a problem of the form 

(1.1) is to treat iterated sequences of actions and observations by successively determining 

the effects of each event. However, this iterative approach does not permit the agent in the 

litmus paper problem to revise their initial beliefs after dipping. This is not just a superficial 
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conflict with our intuitions; we will see that successively applying updates and revisions can 

lead to results that are plainly incorrect. 

This brief discussion illustrates that there is something missing from existing approaches 

to belief change caused by action. In order to understand problems of the form (1.1), we 

need to specify how iterated belief change can be compositionally defined in terms of the 

effects of individual actions and observations. That is the main problem that is addressed 

in this dissertation, and it is not explicitly addressed in existing work. In the most general 

case, our work is also distinguished from existing work in that we explicitly consider the 

reliability of an agent's perceived action history and perceived state of the world. 

Our results can be understood either prescriptively or descriptively. Prescriptively, our 

work can be seen as providing a recipe for combining an action formalism with a belief 

revision operator. Descriptively, we can use our results to evaluate existing formalisms for 

the representation of epistemic action effects. 

In the following sections, we present a summary of related work. Reasoning about 

epistemic action effects combines two established areas of enquiry: reasoning about action 

and belief change. As such, after presenting some logical preliminaries, we need to briefly 

introduce some of the most influential formal approaches to each of these areas. We then 

present some existing formalisms for reasoning about the epistemic effects of action. We 

conclude this chapter with an outline of the rest of the dissertation. 

1.2 Logical Preliminaries 

1.2.1 Propositional Logic and Predicate Logic 

We assume the reader is familiar with classical propositional logic and predicate logic. In 

this section, we quickly outline some of the terminology and notation that we will adopt. 

We assume an infinite set of atomic propositional symbols, and we define a propositional 

signature to be a set of atomic propositional symbols. We use the primitive propositional 

connectives (1, +), where 1 denotes classical negation and + denotes implication. Con- 

junction, disjunction and equivalence are defined in the usual manner, and they are denoted 

by A, V and -, respectively. A formula is a propositional combination of atomic symbols. A 

literal is either an atomic propositional symbol, or an atomic propositional symbol preceded 

by the negation symbol. Let Li t s  denote the set of all literals over a fixed signature. 

An interpretation of a propositional signature P is a function that assigns every atomic 
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symbol a truth value. We will normally identify an interpretation I with the subset of 

atomic symbols that are true in I. The set of all interpretations over P is denoted by 2'. 

The satisfaction relation I /= 4 is defined for formulas 4 by the usual recursive definition. 

For any formula 4, we define 141 to be the set of all interpretations I such that I /= 4, and 

we say that 4 is satisfiable if and only if 141 f 8. 

1.2.2 Modal Logic 

Propositional modal logic extends propositional logic by introducing an operator 0 on for- 

mulas. We restrict attention to modal logics with a single unary modal operator 0. Formulas 

are defined recursively just as they are defined in propositional logic, with the additional 

clause that O4 is a formula whenever 4 is a formula. Intuitively, we read O4 as "4 is nec- 

essarily true." For a detailed introduction to modal logic, the reader is referred to [17]. In 

this section, we sketch the key definitions. 

The usual semantics of modal logic is defined with respect to Kripke structures. A Kripke 

structure is a triple M = (M, R, n-), where M is a non-empty set of states (or worlds), R 

is a binary accessibility relation on M and n- associates a subset of M with every atomic 

formula. We remark that n- defines a propositional interpretation at each state m. We 

will let n-, denote the interpretation that n- defines at m. The satisfaction relation /= for 

modal logic indicates if a formula 4 is true at a state m in a Kripke structure M, written 

M, m /= 4. The relation is defined recursively, with modal formulas handled by a clause 

stating that M, m /= O4 if and only if M, m' /= 4 for each m' such that Rmm'. In other 

words, 0 4  holds at m if and only if 4 holds at every world accessible from m. We omit the 

mention of M if it is clear from the context. 

A system of modal logic is a set of modal formulas that is closed under propositional 

consequence. Many important systems of modal logic can be defined by placing natural 

restrictions on the accessibility relation. In particular, standard epistemic logic is defined by 

restricting attention to Kripke structures where the accessibility relation is an equivalence 

relation. This logic is known as KT5. Intuitively, we think of the accessibility relation as 

an indistinguishability relation; two states are indistinguishable if the underlying agent is 

unable to tell them apart. A formula is known to be true just in case it is true in every state 

that is indistinguishable from the actual state. The fact that the accessibility relation is 

reflexive ensures that everything that is known must be true in the actual state. So standard 

epistemic logic has the property that the formula O4 -+ 4 holds in every state, for every 
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formula 4. This axiom is known as T, and it captures the difference between logic and belief 

in modal logic. 

The modal approach to belief is captured by standard doxastic logic, which is the modal 

logic KD45 defined by restricting attention to Kripke structures where the accessibility 

relation is serial, transitive, and euclidean. Since the accessibility relation need not be 

reflexive, the formulas that are believed need not be true in the actual state. 

We remark that the term doxastic is not often used in the A1 literature; it is common 

to use the term epistemic to refer to both knowledge and belief. It is still useful to use the 

terms to distinguish between the modal logics described above. However, we will use terms 

like epistemic change or epistemic effects to refer to changes in both knowledge and belief. 

1.3 Reasoning about Action 

1.3.1 Overview 

Broadly speaking, reasoning about action is the branch of logic-based A1 which is concerned 

with modeling how agents draw conclusions after executing actions that modify the state 

of the world. Many formalisms have been proposed for representing and reasoning about 

different kinds of action effects. One of the main applications of an action formalism is 

to solve planning problems. A planning problem is a problem in which an agent is given 

some goal, and then the agent is asked to find a sequence of actions that will achieve the 

goal. In order to solve planning problems, an action formalism must efficiently specify which 

aspects of the world change when an action is executed. A large portion of work in reasoning 

about action has been guided by three classic problems: the frame problem, the ramification 

problem, and the qualification problem. We briefly describe each problem. 

Typically, an action will affect a specific property of the world, and it will leave everything 

else unchanged. For example, walking to the store in Vancouver does not change the weather 

in Halifax. The frame problem is the problem of providing an efficient mechanism for 

specifying all of the properties of the world that do not change when an action is executed. 

The most salient effects of an action are the direct effects. For example, walking to 

the store causes an agent to be located at the store; this is the direct effect of the act of 

walking. However, there are also numerous indirect effects associated with such an action. 

For example, walking to the store will also cause an agent's pants to be located at the store. 

The ramification problem is concerned with the efficient specification of the indirect effects 
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of actions. 

The qualification problem is the problem of specifying the preconditions for action exe- 

cution. Returning to the same example, in order to walk to the store, an agent must assure 

that the door is open and that the store is nearby. Giving a complete specification of all 

qualifications in an efficient manner can be difficult. 

Note that all of the classic problems are concerned with efficiently specifying some aspect 

of the effects of actions. Formalisms for reasoning about action vary greatly in the treatment 

of the classic problems. In the following sections, we briefly outline two popular approaches 

to reasoning about action. 

1.3.2 Act ion Description Languages and Transit ion Systems 

Action description languages are simple formal languages that are used to describe transi- 

tion systems. In this section, we introduce action description languages and we look at a 

prototypical example. First, we introduce some notation from 1341. 

An action signature is a triple (A, F, V )  where A, F, V are non-empty sets of symbols. 

We call A the set of action names, we call F the set of fluent names and we call V the set 

of values. Informally, the fluent symbols in F denote properties of the world that assume 

the values in V .  The action symbols in A denote the actions that an agent may perform. 

An action description language specifies how the state of the world changes when an 

action is executed. Formally, the semantics of an action description language relies on the 

notion of a transition system. 

Definition 1 A transition system T for an action signature a = (A, F, V )  is  a triple 

(S, V, R) where 

1. S is  a non-empty set, 

2. V :  F x S - V ,  and 

The set S is called the set of states, V is called the valuation function and R is the transition 

relation. If F E F and s E S, then V(F, s)  is the value of the fluent F in the state s. If 

(s, A, st) E R, then we think of the state st as a possible resulting state that could occur if 

the action A is executed in state s. 
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{Lamp, Door} {Lamp) 

toggle toggle I I toggle toggle I I 
{Door} 0 

Figure 1.1: A Transition System 

Action signatures where V is the set of propositional truth values { t ,  f}  are called 

propositional action signatures. Throughout this dissertation, we will only be concerned 

with propositional action signatures. As such, we will specify an action signature by a pair 

(A, F), and we leave the set of values {t, f}  implicit. Moreover, we refer to fluent symbols 

as being true or false if they are assigned the values t or f ,  respectively. 

Note that the effects of actions in a transition system are explicitly Markovian. As such, 

transition systems can be visualized as directed graphs, where each node is labeled with a 

state and each edge is labeled with an element of R. We illustrate with an example. 

Example Let aL = ({toggle}, {Lamp, Door}). Intuitively, the action signature aL is 

intended to describe a world with a lamp and a door, where the only available action is to 

toggle the switch on the lamp. The fluent symbol Lamp is true just in case the lamp is on, 

and the fluent symbol Door is true just in case the door is open. We will create a transition 

system for aL that represents the effects of actions in this simple world. 

Let S be the set of propositional interpretations of {Lamp, Door}. We identify each 

element of S with the set of propositions that are true in S. Given s E S and F E 

{Lamp, Door}, let s(F) be the truth value that s assigns to F. Define V : F x S --+ V such 

that V(F, s) = s (F) .  Finally, define R as follows: 

(s, toggle, st) E R a s(Lamp) # sl(Lamp). 

Hence, whenever the light switch is toggled, the value of the fluent symbol Lamp is changed. 

The graph representation of the transition system T = (S, V, R) is given in Figure 1.1. 

One important example of an action description language is the action description lan- 

guage A [33, 341, which we define presently. Let a = (A, F) be a propositional action 
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signature. 

Definition 2 A proposition of the language A is an expression of the form: 

A causes L if Fl A . . . A Fn 

where A E A, L E Li ts ,  and each Fi E Lits .  A set of propositions is called an action 

description. 

Definition 2 gives the syntax of the action description language A. The semantics is defined 

by associating a transition system with every action description. 

Definition 3 Let A D  be an action description in  A. The transition system (S, V, R) defined 

by A D  is given by the following conditions: 

1. S is the set of propositional interpretations of the symbols in  F 

2. V ( F ,  s )  is the value assigned to F by the interpretation s 

3. R is defined as follows: 

let E ( A , s )  be the set of literals such that L E E ( A , s )  i f  and only i f  

( A  causes L if Fl A . . . A Fn) E A D  

and every literal Fi holds i n  s 

R is  the set of all triples ( s ,  A ,  s') with 

Intuitively, R is the set of triples ( s ,  A ,  s') such that s' is obtained from s by applying all of 

the relevant propositions in A D ,  and making no other changes to the fluent values. 

Example Let aL be the action signature from the previous example. Let A D  be the 

following action description: 

{toggle causes Lamp if  lamp, 

toggle causes  lamp if Lamp) 
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The transition system associated with AD is the transition system given in Figure 1.1. 

The action description language A is a useful formalism for reasoning about the direct 

effects of actions. The syntax is extremely simple, and it allows us to describe any transition 

system where concurrent actions are not permitted. The frame problem for A is solved in 

the semantics by specifying that no fluents change value when an action is executed, except 

for those that are specifically mentioned in the proposition describing the action effect. 

The ramification problem is not addressed in A; actions can only have direct effects. The 

qualification problem is trivially solved by allowing all actions to be executable in all states. 

Some additional action description languages are provided in [34] and [64]. One action 

description language that has been particularly influential is C. There are several ways in 

which C is more expressive than A. For example, in C it is possible to represent concurrent 

action executions and static causal dependencies. More recently, the action language K: has 

been introduced to represent action domains where we do not have complete information 

about the state of the world [24]. The action language K: is reminiscent of C with the 

addition of negation as failure. 

In all cases, an action description language provides a formal definition of a proposition, 

and it associates a transition system with every set of propositions. We remark that, al- 

though many action description languages employ syntax that is superficially similar, there 

is no unifying formal structure. Each action description language defines a new set of 

propositions and a new semantics from scratch. 

The main advantage of an action description language like A is that it provides compact, 

transparent descriptions of action effects. Moreover, A can be used to solve simple planning 

problems. A planning problem in A can be given by a triple (AD, Finit, Fgoal) where AD is 

an action description and Finit, Fgoal are consistent conjunctions of literals. A solution to 

this planning problem is a sequence of actions A1,. . . ,An such that, for every state s such 

that s + Finit, the state st that results from starting at s and executing A1,. . . ,An has the 

property that st + Fgoal. Solutions to planning problems in A can be found by translating 

action descriptions into extended logic programs. We briefly sketch the idea. 

An extended logic program is a collection of rules, which are expressions of the form 

F + GI, .  . . , Gp, not Nl, . . . ,not Nq 

where F is a literal, each Gi is a literal and each Ni is a literal. The symbol not represents 

negation as failure, so not G is true just in case G can not be proved. The answer set 
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semantics for logic programming associates a collection of answer sets with every extended 

logic program [32]. Informally, an answer set for a program P is a minimal set of atoms 

that is closed and grounded with respect to P. Action descriptions in A can be translated 

into extended logic programs where the answer sets correspond to paths in the described 

transition system [33]. By using existing answer set solvers, such as smodels [77] or dlv[24], 

one can automate the planning process. We remark that A is not the only action description 

language where action descriptions can be translated into extended logic programs. Many 

action description languages have been defined primarily as intermediary formalisms to 

facilitate the representation of planning domains for answer set planning [65]. 

1.3.3 Situation Calculus 

For comparison, we introduce the Situation Calculus(SitCalc), another popular formalism 

for reasoning about action. This is a much more expressive formalism based on predicate 

logic. For a complete overview of the SitCalc, we refer the reader to [61]. 

The language of SitCalc is second-order logic with equality. It is a many sorted language 

with three sorts: action, situation and object. There is a distinguished constant symbol So 

that denotes the initial situation. There is a distinguished function symbol do that takes an 

action and a situation as arguments, and returns a new situation. The situation 

represents a world history in which the actions A1,. . . ,An are executed, starting from the 

initial situation So. As a shorthand notation, we will also use the notation 

to represent the same situation. 

A fluent is a predicate that takes a situation as one of its arguments. We remark that 

two distinct situations may satisfy the exact same set of fluents. However, two situations 

are equal just in case they represent the same sequence of actions. In this sense, there is 

an important distinction between the states in a transition system and the situations in a 

SitCalc representation. 

We describe two important kinds of formulas that are used in a SitCalc representation 

of an action domain: successor state axioms and action precondition axioms. A successor 
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state axiom for a fluent symbol F is a formula of the form 

F(3,  do(A, s)) = $(3, A, s) 

where 3 is a tuple of free variables and $ is a formula with free variables among 3, A, s. 

A successor state axiom gives a necessary and sufficient condition for a fluent symbol to be 

true after executing the action A in state s .  An action precondition axiom is a formula of 

the form 

Poss(A(z), s) = $(3, s) 

where 2 is again a tuple of free variables and $ is a formula with free variables among 3 and 

s. The predicate Poss  is a distinguished predicate that is intended to express the conditions 

under which an action is executable. So an action precondition axiom gives necessary and 

sufficient conditions for an action to be executable. 

A basic action theory in the SitCalc is axiomatized by the set of foundational axioms 

for situations, the set of unique names axioms for actions, a successor state axiom for each 

fluent symbol, and an action precondition axiom for each action symbol. We do not list the 

foundational axioms here, but we remark that it includes a second-order induction axiom 

which states that that any property that holds at  So and every desuccessor of So must hold 

at  every situation. Given a basic action theory T ,  we can prove various properties of action 

effects by reasoning in predicate logic. 

Note that it is easy to represent transition systems with basic action theories in the 

SitCalc, but the converse is not true. In particular, action effects in SitCalc are non- 

Markovian in the general case; the effects of an action depend on the current situation, 

which encodes the entire action history. 

1.4 Belief Change 

1.4.1 Belief Revision 

As noted previously, the term belief revision refers to the process in which an agent receives 

new information about the world, and must incorporate this information with some prior 

beliefs. The underlying assumption is that the world does not change, and the new infor- 

mation is "better" than the initial beliefs. In this section, we briefly sketch one of the most 

influential approaches to belief revision: the AGM approach of Alchourr6n, Giirdenfors and 

Makinson [3]. 
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Let F be a propositional signature. A belief set is a deductively closed set of formulas 

over F. In the AGM approach, belief revision is framed as the following problem. Given 

an initial belief set K along with a formula 4 representing new information about the 

world, how should the new belief set be determined? The main intuition is that the new 

information given by 4 must be incorporated, along with "as much of K"  as consistently 

possible. Clearly, if 4 is consistent with K ,  then the new belief set should be the deductive 

closure of K U (4). If 4 is not consistent with K ,  the problem is more difficult. 

Define a belief change operator to be any function that maps a belief set and a formula 

to a new belief set. We would like to determine which belief change operators capture our 

intuitions about the process of belief revision. First, we remark that most belief change 

operators are not suitable. For example, let + denote the so-called belief expansion operator 

+, which is defined by setting K + 4 to be the deductive closure of K U (4). In the case 

where K is consistent with 4, it seems that + provides a reasonable account of belief revision. 

However, if either K or 4 is inconsistent, then K + 4 is inconsistent. 

The AGM approach to belief revision does not provide a specific recipe for revising a 

belief set. Instead, a set of postulates is given, and any belief change operator that satisfies 

the postulates is called an AGM belief revision operator. Let L denote the set of all formulas 

over F and let * denote a belief change operator. We say that * is an AGM belief revision 

operator if it satisfies the following postulates, for every K and 4. 

[AGMl] K * 4 is deductively closed 

[AGM2] 4 E K * 4 
[AGM3] K * 4 C K + +  

[AGM4] If 14  @ K ,  then K + 4  G K * 4 
[AGM5] K * 4 = L i f f  + +  
[AGMG] If + 4 = ?I,, then K * 4 = K * ?I, 
[AGM71 K * ( ~ A ? I , )  G (K*4)+?I ,  

[AGM8] If + @  K * 4 ,  then (K*4)+?I ,  C K*(+A?I , )  

The AGM postulates provide a simple set of conditions that are intuitively plausible as 

restrictions on belief revision operators. Moreover, the postulates completely determine a 

specific semantics for revision in terms of Grove's systems of spheres [39]. We now sketch 

Grove's characterization of AGM revision. 
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In the following definition, M L  denotes the set of consistent, complete theories over L. 

Definition 4 A set of subsets S of Mr. is a system of spheres centered on X where X C Mc,  

i f  it satisfies the conditions: 

S l .  S is totally ordered by C 

S2. X is the minimum of S under c 

S4. For any formula 4 with 141 # 0 ,  there is a least sphere c ( 4 )  such that c ( 4 )  n 141 # 0 
and U n 141 # 0 implies that c (4 )  C U for every U E S 

We picture a system of spheres as a series of concentric circles, with innermost circle X. 

A system of spheres provides a representation of the plausibility of theories over L. The 

innermost theories are the most plausible, and they become successively less plausible as we 

move outwards. Under this ordering, the most natural way to incorporate a new formula 4 
is to try and determine the most plausible theory in which 4 holds. This process associates 

a belief change operator * with every system of spheres S as follows: 

Grove proves that this function is actually an AGM revision operator. 

Proposition 1 (Grove) If S is a system of spheres, then *s satisfies the AGM postulates. 

The converse also holds. For fixed K, every AGM revision operator is determined by some 

system of spheres. 

Proposition 2 (Grove) Let * be an AGM revision operator. For any belief set K ,  there 

is a system of spheres centered on K such that, for any 4, 

This result gives us an alternative perspective on AGM revision. In particular, it makes it 

clear that the process of AGM revision is always the same: every AGM revision operator 

relies on finding the most plausible theories satisfying the new information. Note that com- 

plete theories are essentially equivalent to propositional interpretations, so we can think of a 
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system of spheres as a total pre-order over interpretations. Informally, an agent performing 

AGM revision has some underlying notion of the plausibility of every possible world. When 

new information is encountered, the agent looks for the most plausible worlds in which the 

new information is true. 

Grove's results demonstrate that AGM revision operators implicitly rely on a total pre- 

order over interpretations in the input. However, the belief set that results from AGM 

revision does not come with an attached ordering. Without a new ordering over states, it is 

not clear how the results of a second revision should be determined. Hence, AGM revision 

says nothing about iterated revision. In order to address iterated revision, Darwiche and 

Pearl propose a reformulation of AGM revision in which the orderings are explicit [19]. We 

briefly summarize this reformulated approach, which we call DP revision. 

In DP revision, the beliefs of an agent are represented by an epistemic state. An epis- 

temic state E consists of a total pre-order -& over interpretations and a belief set B(E)  

with the property that JB(E)I = min(dE). A belief change operator in this context is a 

function that maps an epistemic state and a formula to a new epistemic state. Darwiche 

and Pearl reformulate the AGM postulates as follows. 

[AGMl*] B(E * 4) is the deductively closed 

[AGM2*] 4 E B(E * 4) 
[AGMS*] B(E * 4) C B(E)  + 4 
[AGM4*] If 14 @ B(E) ,  then B(E)  + 4 C B(E * 4) 
[AGM5*] I E B(E * 4) iff + 14 
[AGMG*] If + 4 = $I, then E * 4 = E * $I 
[AGM7*] B(E * (4 A $I)) C B(E * 4) + $I 
[AGM8*] If l $ I  @ B(E * 4) ,  then B(E * 4) + $I C B(E * (4 A $I)) 

For the most part, the reformulated postulates are obtained by replacing K with B(E).  

The most important change occurs in AGMG*, which asserts that revision by equivalent 

formulas results not only in the same belief set, but in the same epistemic state. Dar- 

wiche and Pearl prove that belief change operators satisfying the reformulated postulates 

have the property that IB(E * 4)I must be equal to the set of dE-minimal models of 4. 
However, the reformulated AGM postulates do not fix the ordering over the non-minimal 

interpretations in E*+. For this purpose, Darwiche and Pearl introduce four new postulates. 
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[DPl] If 4 /= $, then B(E * $  * 4) = B(E * 4 )  

[DP2] If 4 /= -$, then B(E * $ * 4) = B(E * 4) 
[DP3] If $ E B(E * 4), then $ E B(E * $ * 4) 
[DP4] If l$ $ B(E * 4), then l$ $ B(E * $ * 4) 

A DP revision operator is a belief change operator that satisfies AGMl*-AGM8* as well as 

DP1-DP4. 

We remark that DP revision is just one proposal for the treatment of iterated revision. 

We have presented the DP approach here as an illustrative example, primarily because it 

builds directly on the AGM model. An alternative approach, based on a different set of 

postulates, is presented by Lehmann[59]. For our purposes, we will primarily be interested 

in action domains that have been supplemented with an AGM revision operator. However, 

we will be interested in ensuring that the postulates for iterated revision are satisfied where 

appropriate. 

1.4.2 Belief Update 

Belief update is the belief change that occurs when new information is acquired regarding 

a change in the state of the world. It  is clear that our intuitions regarding belief change in 

this context differ from our intuitions in the context of belief revision. Informally, an agent 

performing belief revision is looking for a new belief set that describes the most plausible 

worlds supporting some new information. By contrast, an agent performing belief update 

is looking for a new belief set that captures the most plausible manner in which the world 

may have changed. 

The standard approach to belief update is given by Katsuno and Mendelzon [51]. Fol- 

lowing the AGM approach, Katsuno and Mendelzon give a set of postulates characterizing 

belief update. A belief change operator that satisfies all of the postulates is called a KM 

belief update operator. We remark that, in this case, we are assuming that 4 represents 

some new information about the world that has just become true as the result of a change. 

The following reformulation of the KM postulates originally appeared in [85]. 

FM1.1 K o 4 is deductively closed 

[KMZ.] 4 E K o 4 
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[KM3.] I f + €  K ,  then K o 4 =  K 

[KM4.] K o 4 = L i f f K + I o r 4 + I  

[KM5.] If + 4 ~ $ ,  then K O + =  K O $  

[KM6.1 K o ( 4 A $ )  c ( K O + ) + $  

[KM7.] If K is complete and l$ @' K o 4, then ( K  o 4) + $ E K o (4 A $) 

[KM8.] If 1 K 1 # 0, then K o 4 = nWElKl~ o 4 

The key postulate is KM8, which states that the updated belief set can equivalently be 

obtained by updating each model of K individually. Hence, an agent presented with the 

information 4 proceeds by minimally modifying every possible initial state of the world to 

ensure that 4 is true. 

We have suggested that belief update and belief revision are distinct operations, but 

we have only provided informal arguments to support the claim. A formal distinction is 

established in [81], where it is shown that neither operation can be captured by the other. It 

is possible, however, to define a more general framework that incorporates both revision and 

update. One general framework that subsumes revision and update is Boutilier's generalized 

belief update framework [ll]. Boutilier argues that a realistic characterization of belief 

change must combine elements of both revision and update. Briefly, the generalized update 

framework assumes that there is some fixed set E of events, and each event e is associated 

with a ranked set of possible outcomes. Moreover, there is a function /I that ranks the 

likelihood of each event occurring in any given state. When an agent finds out that some 

formula 4 is true, then the agent tries to find a plausible state s, where there is a plausible 

event e with a plausible outcome o that explains 4. Boutilier proves that KM update and 

AGM revision can both be modeled in the generalized update framework. Although some 

of our methods will be informed by Boutilier's work, we will maintain an explicit distinction 

between revision and update in the remainder of this dissertation. 

1.4.3 Belief Extrapolation 

Dupin de Saint-Cyr and Lang argue that KM belief update is primarily suitable for appli- 

cations where an agent is able to predict the manner in which the world changes over time. 

However, they suggest that KM update is not suitable for applications where the world 

changes in an unpredictable manner [23]. To capture belief change in domains where there 

can be unpredictable changes in the world, they introduce belief extrapolation operators. 
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In this section, we give a very brief introduction to belief extrapolation. We remark that 

belief extrapolation is a comparatively recent development, and it is not a standard tool like 

AGM revision or KM update. However, belief extrapolation provides a useful alternative 

approach to iterated belief change that is relevant to the fundamental problems addressed 

in this dissertation. 

A belief extrapolation operator f takes a sequence of formulas, called a scenario as input, 

and it outputs another scenario. The intuition is that the output gives the most general 

sequence of formulas that can possibly be true, given the input and the assumption that 

fluents tend to be inertial. We give the basic construction. 

A trajectory is a sequence T of interpretations over some fixed signature. Let ~ ( i )  denote 

the ith interpretation in the trajectory T .  Given a scenario C, let f i a j (C)  denote the set of 

trajectories that satisfy each formula in C on a point-by-point basis. Every ordering 5 on 

the class of trajectories defines an extrapolation operator f as follows: 

Hence, C f picks out the minimal trajectories satisfying C. 

The most interesting belief extrapolation operators are given by orderings that are in- 

ertial. Informally, an ordering is inertial if static trajectories are always strictly less than 

non-static trajectories. Natural examples of inertial orderings can be given by ordering tra- 

jectories based on the number of fluents that change, or the number of elementary switches 

in fluent values. 

1.5 Combining Reasoning about Action and Belief Change 

We have introduced reasoning about action and belief change as two separate topics. How- 

ever, it is clear that reasoning about the epistemic effects of actions involves a combination 

of both. There are four basic features that must be incorporated in a formalism for reasoning 

about the epistemic effects of actions [44]. 

1. Agents can perform ontic actions and epistemic actions. 

2. Agents can perform belief update. 

3. Agents can perform belief revision. 
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4. Perception and beliefs may be incorrect. 

Existing approaches to modeling belief change often fall short with respect to one or more 

of these points. For example, [95] does not consider erroneous perception; [4] does not 

consider epistemic actions; and [35] does not consider belief revision. The problem is even 

more difficult if we consider action domains involving multiple agents, as done in both [95] 

and [44]. However, throughout this dissertation, we will restrict attention to the beliefs of 

a single agent. 

As noted previously, one common approach to the representation of epistemic action 

effects is to -start with an existing action formalism, and then add some mechanism for 

performing belief revision. In this section, we illustrate this approach by presenting epistemic 

extensions of d and the SitCalc. 

1.5.1 Extensions of A 

Two epistemic extensions of d have been proposed in the literature [68, 861. Originally, 

each of them was named dK. In order to reduce ambiguity, we refer to the extension of [68] 

as dL and we refer to the extension of [86] as dB. 

Assume that the action symbols in A are partitioned into sensing actions and non- 

sensing actions. In dL, there are two kinds of propositions. First, if A is a non-sensing 

action, L E Lits and each Fi E Lits, then standard d propositions of the form 

A causes L if Fl A - . A Fn 

are propositions of dL. If A is a sensing action, then 

A causes to know L if Fl A . . . A Fn 

is a proposition. Non-deterministic action effects are also introduced through a third propo- 

sition, but we will not concern ourselves with non-deterministic effects for the moment. 

The semantics of dL is defined with respect to situations, which are sets of states. The 

truth of a fluent symbol F with respect to a situation C is defined as follows. 

0 F is true in C if s F for every s E C. 

F is false in C if s 1 F  for every s E C. 

F is unknown otherwise. 
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Truth or falsity in AL is understood to reflect the knowledge of an agent, and knowledge is 

understood to be correct but not necessarily complete. 

The semantics of AL associates a transition relation QAD with every action description 

AD. We give an informal definition. Let C be a situation and let A be an action symbol. 

The triple (C, A, C*) is in QAD if and only if C* can be obtained from C as follows. 

1. If A is non-sensing, then update each world in C in accordance with the A propositions 

in AD. 

2. If A is sensing and L is unknown, then for each rule of the form 

A causes to know L if Fl A . . A Fn 

C* satisfies one of the following three conditions 

(a) C* is the set of situations in C where Fl A . . . A Fn and L hold 

(b) C* is the set of situations in C where Fl A .  A Fn and 1 L  hold 

(c) C* is the set of situations in C where l(Fl A . . . A Fn) holds 

We illustrate the intuition behind the the effects of sensing actions with an example. 

Consider the proposition 

Listen causes to know MusicOn if 1 EarPlugs. 

If an agent executes the action Listen, there are 3 possible outcomes: 1) the agent could 

learn that the music is on, 2) the agent could learn that the music is not on, or 3) the agent 

could learn neither. We assume that the only way the third possibility could arise is if the 

agent is wearing ear plugs. Hence, if the agent listens and still does not know if the music 

is on, then the agent still learns something. In particular, the agent learns the fact that the 

agent is wearing earplugs. 

We remark that, given a pair (C, A), there will generally be several possible successor 

situations. A set of situations is called an epistemic state. Hence, the semantics of AL 

actually maps an epistemic state and an action to a new epistemic state. 

Our summary of dB will be brief, due to the similarity with AL. The syntax of dB 

introduces a new set of propositions of the form 

A determines F 
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where A E A and F E F. The intended interpretation of such a proposition is that an agent 

will know the value of F after executing A. 

The semantics of dB is based on pairs (s, C), where s is a state and C is a set of states 

containing s. The state s represents the actual world, and C represents those worlds that 

are believed to be possible. Let AD be an action description. If A is a non-sensing action, 

aAD((s,  C), A) is obtained by updating each world in C in accordance with the semantics 

of A. If A is a sensing action, and 

A determines F 

is in AD, then aAD((s,  C), A) is obtained by removing from C each world that differs from 

s in the interpretation of F .  

1.5.2 The Situation Calculus Approach 

The SitCalc has been extended to reason about knowledge by adding an accessibility relation 

K over situations [82]. The relation K is actually added to the syntax of the SitCalc, 

as opposed to being introduced as a modal operator in the logic. We think of K as an 

indistinguishability relation, so the underlying agent considers a situation to be possible 

just in case it is K-accessible from the actual situation. By convention, we read Ks's as "st 

is accessible from s." Note that this is the reverse of the usual reading in modal logic. For 

an atomic fluent formula F(Z, s), we write Knows(F(3, s))  as a shorthand for the formula 

Incomplete initial information is represented by introducing hypothetical alternatives to the 

initial situation. These alternatives can never occur, but they may be considered possible 

by an agent. The relation K is specified explicitly on the set of initial situations. However, 

in order to reason about belief change, we need to define a successor state axiom for K .  

The epistemic SitCalc features two kinds of actions: sensing and non-sensing. Following 

[60], sensing actions are binary-valued, with effects given by a predicate SF(A, s). To 

simplify the exposition, we assume that every sensing action A has a unique corresponding 

sensed fluent FA. The effects of the sensing action A are given by an axiom of the form 
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For non-sensing actions, the axiom is always SF(A, s) = T. Given this new machinery, the 

successor state axiom for K is defined as follows. 

K(s", do(A, s)) (3s' s" =  do(^, st) 

A K (sf, s) A Poss(A, sf) 

SF(A, s)  r SF(A, sf)) 

This axiom states that s" is accessible from do(A, s)  if and only if there is some state s' 

that is indistinguishable from s, and the sensing effects of A are identical in s and sf. If A 

is non-sensing, this means that K is copied from s to do(A, s). If A is sensing, this means 

that performing A allows an agent to distinguish between states that differ in the sensing 

result associated with A. 

The epistemic extension of the SitCalc that we have presented thus far is intended 

for action domains where the initial beliefs are necessarily correct. In the terminology of 

belief change, the semantics of epistemic actions is given by belief expansion rather than 

belief revision. However, the epistemic extension has been further modified to allow fallible 

beliefs and belief revision [85]. In the remainder of this chapter, we sketch the reformulated 

extension. 

The main addition to the formalism is a function pl that assigns a natural number to 

each situation; we refer to the value pl(s) as the plausibility of the situation s. The lower the 

plausibility assigned to a situation, the more plausible that situation is considered by the 

agent. The beliefs of an agent are represented by the set of maximally plausible situations 

among those that are accessible from the current situation. More precisely, belief is defined 

as follows: 

The set of formulas believed in situation s is defined to be the set of formulas 4 for which 

Bel(4, s). Plausibility is defined for the set of initial situations, and then plausibility is 

restricted to persist after every action. As such, the plausibility of any situation is simply 

the plausibility of the corresponding initial situation. 

Given a situation s ,  let rc, denote the set of formulas that are true at every maximally 

plausible world accessible from s. Skipping over the details, if A is a sensing action that 

causes an agent to believe 4, we can define an operator * A  as follows: 
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In the original presentation of the extension [85], this is called a revision operator, and it is 

proved that it satisfies 5 of the AGM postulates. 

The introduction of plausibility values makes it possible for an agent to have erroneous 

beliefs about fluent values. One limitation of this variation of the SitCalc is the fact that 

agents still have perfect knowledge of the actions that have been executed. We remark 

that this limitation has been lifted in a more recent reformulation of the SitCalc in which 

exogenous actions may occur [84]. 

1.6 Our Approach 

1.6.1 Overview 

We are interested in iterated belief change that is caused by an alternating sequence of ontic 

actions and epistemic actions. As noted previously, the prototypical problem of interest has 

the following form. 

(InitialBeliefs) . (Action) (Observation) . . -  (Action) . (Observation) 

In the standard approach to belief change, this corresponds to an expression of the form 

where K is a belief set , o is an update operator and * is a revision operator. From the 

perspective of reasoning about action, this representation is too simple; actions may have 

conditional effects that are not easily representable by a formula. It is straightforward to 

address conditional effects by reformulating the definition of belief update with respect to 

a particular action formalism. There is another problem with this approach, however, that 

has not been addressed to date. In particular, the interaction between ontic actions and 

epistemic actions is not explicitly considered; one is left to assume that each operator is 

applied successively. Our goal in this dissertation is to explicitly formalize, at a high level, 

the manner in which alternating sequences of actions and observations should be interpreted 

by a rational agent. 

We make two underlying assumptions. First, we assume that the state of the world 

can be captured by a propositional interpretation over some fixed set F of fluent symbols. 

Second, we assume that the effects of the ontic actions A are given by a transition system. 

In this general setting, we consider iterated belief change caused by actions. We remark that 
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many existing action formalisms could be used to give the effects of ontic actions; we use 

transition systems primarily because they are conceptually simple, and they can easily be 

represented in a wide range of formalisms. Hence, using a transition system framework will 

make it possible to evaluate the treatment of iterated belief change in related formalisms. 

We reformulate (1.2) in a form that is more appropriate for reasoning about actions in 

a transition system framework. In particular, we adopt the following conventions. 

1. The beliefs of an agent are represented by a set of states K.  

2. The update operator o is a function o : 2' x A -+ 2S. 

3. The revision operator * is a function * : 2' x 2' -+ 2S. 

Note that new information for revision is represented by a set of states rather than a formula; 

it is easy to reformulate the AGM postulates to deal with sets of states. Note also that 

update is defined with respect to actions that have conditional effects given by the underlying 

transition system. Our prototypical problem can now be written as follows. 

where each Ai is an action and each ai is a set of states. There are natural examples of 

this form where it is clear that successively applying the updates and revisions leads to 

unintuitive results. 

As an aside, we remark that an alternative to our approach would be to represent actions 

by their direct effects. In this manner, actions could be associated with sets of states just 

as we associate observations with sets of states. We have not taken this approach, because 

we want to explicitly reason about actions with conditional effects. For this purpose, a 

transition system provides a more natural representation. 

In the body of this dissertation, we introduce a set of so-called interaction properties 

that should intuitively hold whenever an update is followed by a revision. We state the 

properties in the style of the AGM postulates, and we argue that the properties should hold 

in any action domain involving a single agent with perfect knowledge of the actions executed. 

We then define a new class of belief change operators, called belief evolution operators. A 

belief evolution operator takes two arguments: a set of states and an alternating sequence of 

actions and observations. Each belief evolution operator o is defined with respect to a fixed 
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update operator o and a fixed AGM revision operator *. Informally, we have the following 

correspondence 

Under this interpretation, we will see that belief evolution satisfies our interaction properties. 

Moreover, we will prove that belief evolution can be formally characterized by a natural 

"shifting" on the underlying AGM revision operator. Relationships with existing formalisms 

will be discussed, and we will use belief evolution to define a new epistemic extension of A. 
We consider belief evolution in some detail, because it provides a straightforward mech- 

anism for combining a given update operator with a given revision operator. The problem 

with belief evolution is that it requires the relatively strong assumption that the history of 

ontic actions is infallible. If an agent can be mistaken about the actions that have occurred, 

then our interaction postulates no longer hold. In order to address action histories that may 

be incorrect, we suggest that we need some additional information regarding the relative 

likelihood of each event in an alternating sequence of actions and observations. 

Suppose that, at  each point in time, the underlying agent has some beliefs about the 

action that has occurred, but these beliefs may be incorrect. In this case, we propose that 

Spohn-style ranking functions can be used to represent the agent's beliefs about the state of 

the world, as well as the agent's beliefs about the actions that occur at each point in time. 

The transition system T still gives the effects of the ontic actions, but a ranking function 

is used to capture the plausibility of a given action occurring at a given point in time. The 

most plausible world histories are determined by an aggregate function that combines the 

agent's beliefs about the actions that occur at each point in time. The resulting formalism 

provably subsumes belief evolution, and it is suitable for representing action domains where 

actions, beliefs, and observations are all fallible. 

Note that, throughout the entire dissertation, we use an underlying transition system 

to give the effects of actions. The transition system could be replaced by some alternative 

description of action effects; the key point is that we need an action formalism to provide 

the set of admissible world histories. However, the action formalism does not play any 

role in determining which histories are the most plausible. The plausibility of a history is 

determined by formal machinery that is independent of the action formalism. 
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1.6.2 Contributions to Existing Research 

As noted previously, there are plausible examples in which agents appear to revise a prior 

belief state in response to a new observation. In order to represent such problems, we need 

to explicitly consider belief change in the context of iterated actions and observations. To 

the best of our knowledge, our work is the first attempt at formally specifying any high-level 

interaction between belief update and belief revision caused by actions. In this section, we 

briefly discuss the contributions that we make in the general area of belief change caused 

by actions. 

1. Specifying Properties of Iterated Belief Change 

We specify precise properties that should hold whenever an ontic action is followed 

by an epistemic action. The properties that we specify are a natural generalization of 

the AGM postulates; as such, they can easily be justified for action domains involving 

an a priori AGM operator. However, even if one disagrees with the given properties, 

explicitly considering iterated belief change is still valuable. It is clear in examples like 

the litmus paper problem that the action history can play a role in the interpretation 

of an observation. Therefore, it is useful to formalize the role of the action history 

in determining the appropriate belief change. However, this problem has not been 

explicitly addressed in related work. 

2. Evaluating Existing Formalisms 

We evaluate the performance of some existing epistemic action formalisms with regards 

to iterated belief change. In particular, we consider the existing epistemic extensions of 

A as well as the epistemic extension of the SitCalc. It is easy to see that the extensions 

of A fail to satisfy our interaction properties, and they do not provide an accurate 

model of reasoning in litmus-type problems. On the other hand, we prove that the 

epistemic SitCalc satisfies our interaction properties. This result illustrates that it 

is possible for a formalism to handle iterated action effects appropriately, without 

explicitly considering our properties. 

In general, we illustrate that simply extending an existing action formalism with an 

AGM revision operator is not sufficient. We illustrate that such formalisms are either 

lacking the formal machinery required for reasoning about iterated belief change, or 

they are making substantive assumptions implicitly. Hence, we provide a tool that can 
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be used to determine if a given epistemic action formalism is suitable for reasoning 

about litmus-type problems. 

Our work explicitly illustrates the role that an action formalism plays in the repre- 

sentation of belief change. The precise role of the transition system is clear and it 

is also clear which additional assumptions must be made in order to reason about 

iterated belief change. By making the role of the action formalism explicit, we can 

better evaluate the suitability of existing formalisms for particular applications. 

3. Combining Update and Revision 

We give a specific methodology for combining an update operator and a revision oper- 

ator in a single formalism. Informally, the idea is simply to translate all observations 

into conditions on the initial beliefs. In this manner, we can define an iterated be- 

lief change operator that respects our interaction properties and handles litmus-paper 

problems appropriately. Formally, our so-called belief evolution operators are appro- 

priate because they can easily be characterized in terms of systems of spheres. In this 

sense, we can view iterated belief change as a modified form of revision. 

The belief evolution methodology is presented for action domains given by a transi- 

tion system and an a priori AGM revision operator. To facilitate the introduction of 

examples, we present an extended class of transition systems with a distance function 

on states that defines an AGM revision operator. From a more general perspective, 

the belief evolution methodology is useful for combining any action formalism with an 

AGM revision operator. Hence, we can view belief evolution as an improved methodol- 

ogy for adding a revision operator to an action formalism. By using this methodology, 

we can avoid the problems that arise when ontic action effects and epistemic action 

effects are naively determined in succession. 

4. Applications 

As an application of belief evolution, we define a new extension of A. The new 

extension provably subsumes the existing epistemic extensions of A when we consider 

a single action, but it also satisfies our properties for iterated action effects. The 

extension itself improves upon existing epistemic action languages. It  is particularly 

notable in that we illustrate how to implement a solver. 

In order to implement a solver, we define a belief revision operator based on path length 
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in a transition system. This operator is useful for reasoning about belief change in 

action domains where there is no underlying similarity relation on states. Under this 

revision operator, we can solve belief evolution problems by finding shortest paths. 

We illustrate that shortest paths can be found by translating action descriptions into 

extended logic programs, then finding answer sets. This approach is of interest because 

it can be implemented using existing answer set solvers, and there are relatively few 

existing implementations of belief change formalisms. 

One new application that we consider is the use of our formal tools for the verifi- 

cation of cryptographic protocols. It is our hope that this application could benefit 

researchers in the belief change community by providing an interesting class of exam- 

ples, and it could also benefit researchers in the security community by providing a 

more accurate model of belief change in cryptographic protocols. 

5. Reasoning with Fallible Action Histories 

Existing epistemic action formalisms specify the effects of actions, but there is often 

no mechanism for dealing with uncertainty about the actions that have occurred. By 

using ranking functions to represent actions and observations, we illustrate a plau- 

sible representation of this kind of uncertainty. The resulting formalism is suitable 

for the representation of fallible beliefs, erroneous perception, exogenous actions and 

failed actions. Moreover, we explicitly address the manner in which prior action oc- 

currences can be postulated or retracted in response to new observations. We are not 

aware of another action formalism that is able to simultaneously represent all of these 

phenomena. 

The use of ranking functions leads to a formalism that is superficially very different 

from belief evolution. However, we show that belief evolution can actually be seen as a 

special case of the more general formalism. The unifying feature of both approaches is 

a transition system giving the effects of ontic actions. This correspondence illustrates 

once again the role that is played by an action formalism in belief change; exter- 

nal notions of plausibility can be manipulated independently while keeping a fixed 

representation of action effects. 



CHAPTER 1. INTRODUCTION 

1.6.3 Outline 

In chapter 2, we introduce the basic foundations of our formalism, and we fix our notation 

and terminology. We define a belief update operator based on transition systems, and 

demonstrate by example that this approach to belief update is superior to KM update for 

some interesting action domains. We also introduce an extended class of transition systems 

which is supplemented with a distance function on states. It is easy to define a belief revision 

operator given such a function; so this extended class of transition systems provides a simple 

formal tool in which both belief update and belief revision are possible. This provides a 

starting point for considering the interaction between belief revision and belief update. 

In chapter 3, we look in detail at the interaction between revision and update. We 

restrict attention to action domains involving a single agent with perfect knowledge of the 

actions that have been executed, and we illustrate that there are action domains in which 

revising and updating iteratively does not provide intuitive results. The interaction between 

revision and update is discussed in the context of several desirable properties for iterated 

belief change. A new belief evolution operator is introduced based on some new rationality 

postulates, along with a representation result based on translated systems of spheres. 

In chapter 4, we consider some applications of our formal tools for representing belief 

change. First, we introduce a flexible modal extension of the action language A with a 

semantics based on belief evolution. We demonstrate that existing epistemic extensions of 

A are subsumed by this approach. Second, we give some preliminary considerations on 

the implementation of a belief evolution solver. We illustrate that, in principle, existing 

answer set solvers may be used to determine the result of belief evolution under a fixed 

revision operator. The third application that we consider is the verification of cryptographic 

protocols. The idea is to encode the goals of the protocol as epistemic formulas, and prove 

that they must be true if certain conditions hold. We suggest that our formal approach is 

able to capture some subtle problems in protocol verification in a straightforward manner. 

In chapter 5, we look at the more general problem in which an agent does not have perfect 

knowledge about the action history. This is the case, for example, in action domains where 

exogenous actions may occur. We present a new formalism that is based on Spohn-style 

ranking functions over actions and states. The new formalism requires ranking functions 

over actions and observations at  each point in time, and it is expressive enough to represent 

fallible beliefs, erroneous perception, exogenous actions and failed actions. We prove that 
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the new formalism actually subsumes belief revision and belief evolution. A comparison 

with belief extrapolation concludes that each formalism has advantages and disadvantages. 

In chapter 6, we offer some concluding remarks and ideas for future work. 



Chapter 2 

Transition Systems for Belief 

Change 

In this chapter, we present a transition system framework for reasoning about belief change 

in the presence of actions. We focus on the effects of a single action or a single observation, 

leaving iterated actions for consideration in subsequent chapters. The effects of actions 

are given by a transition system that is known by the agent. We address two general 

problems. Given a transition system, how should the beliefs of an agent change following 

a single action? Similarly, how should the beliefs of an agent change following a single 

observation? As noted previously, the first problem basically involves belief update and 

the second problem involves belief revision. We define update and revision operators in a 

transition system framework. 

First, we illustrate that every transition system defines a natural belief update operator 

where an agent's beliefs are updated by an action with conditional effects. Next, we define 

an epistemic transition system to be a transition system together with a similarity relation 

on states that defines an AGM revision operator. Hence, every epistemic transition system 

defines a belief update operator and a belief revision operator. We present a natural class 

of epistemic transition systems defined by extending a standard transition system with a 

distance function on states. The result is a single, graphically-motivated formalism for 

reasoning about epistemic action effects. 

We remark that our goal in this chapter is not to present a sophisticated new formalism 

for reasoning about belief change. The update and revision operators presented are not 
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new, nor are they intended to capture a wide range of phenomena beyond that captured by 

traditional approaches to belief change. Instead, we are primarily interested in laying the 

groundwork for subsequent chapters. An epistemic transition system is a simple formalism 

for representing belief change in an action domain allowing both ontic actions and epistemic 

actions. We will use this basic framework to illustrate the problems that can arise if iterated 

sequences of actions and observations are handled in a naive manner. 

2.1 Preliminaries 

2.1.1 Notation and Terminology 

Let (A, F) be an action signature. We assume that the action symbols in A represent ontic 

actions, with effects given by a transition system. A belief state is a set of states over F. 

Informally, an agent with belief state K believes that the actual world is represented by 

one of the interpretations in n. We can think of a belief state as expressing a proposition. 

In addition to the ontic actions in A,  we also allow an agent to make obsemations. An 

observation is an epistemic action that provides the agent with new information about a 

static world. Formally, we define an observation to be a set of states. The intuition is 

that the observation a provides evidence that the actual world is in the set a. In terms 

of notation, the uppercase letter A, possibly with subscripts, will range over actions. The 

Greek letter a will range over observations and the Greek letter n will range over belief 

states, again with possible subscripts in each case. We use the notation A to denote a finite 

sequence of action symbols of indeterminate length. 

Note that we have defined the beliefs of an agent to be a set of states, rather than a 

set of formulas. Similarly, observed information is represented in terms of sets of states. 

As such, the revision operators that we have in mind differ superficially from AGM or 

DP revision operators. However, it is easy to translate the AGM and DP postulates into 

equivalent conditions on sets of states, and we will provide such translations when required. 

We remark that we will diverge further from the KM approach to belief update in that we 

will update belief states by actions rather than formulas. This is not an equivalent approach, 

but we will illustrate that it is still an acceptable approach from the perspective of the KM 

postulates. 
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2.1.2 Background Assumptions 

We make two explicit assumptions about the action domains of interest. 

1. The transition system describing action effects is both correct and complete. 

2. The world is unchanging except for the changes caused by actions. 

In addition, we place a closure condition on the transition systems that we will consider. 

Definition 5 A closed transition system is a transition system i n  which, for all s E S ,  

A E A, there exists some s' E S such that ( s ,  A, s t )  E R. 

Intuitively, closed transition systems represent action domains in which every action is 

always executable. 

Given an arbitrary transition system T = (S, R),  we define the closure T' = (S, R') 

where 

R' = R u { ( s ,  A, s )  I (s, A, s t )  $ R for any st) .  

Hence, the closure of T is obtained by replacing all non-executable actions with actions that 

do nothing. Graphically, for each action, this amounts to adding a self-loop at every node 

with no outgoing edge. Clearly, the closure of a transition system is a closed transition 

system. 

Throughout this dissertation, we assume that all transition systems are closed. When 

presenting examples, we typically present a simplified transition system without self-loops. 

However, for formal results, we implicitly move to the closure. By considering only closed 

transition systems, we avoid the qualification problem. 

2.2 Ontic Action Effects 

2.2.1 Belief Update 

In this section, we define belief update with respect to a transition system T .  As noted 

earlier, we will define belief update operators that take a belief state and an action as 

arguments. So, to be more precise, the notion of belief update that we consider is actually 

a form of action progression. It has been argued elsewhere that the standard account of 

belief update can be understood to be a special case of this kind of progression [58]. The 
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advantage of our approach is that it provides a simple representation of the belief change 

that occurs following an action with conditional effects. 

Intuitively, after executing an action A, an agent updates the belief state by projecting 

every state s to the state st that would result if the action A was executed in the state s.  

Definition 6 Let T = (S, R) be a transition system. The update function o : 2' x A -+ 2' 

is defined as follows 

K o A = {s t  I ( s ,  A, s t )  E R for some s E K ) .  

In order to compare our approach with the Katsuno and Mendelzon approach, we need 

to restrict attention to actions with constant effects. In the remainder of this section, we 

demonstrate that our belief update operators satisfy the Katsuno and Mendelzon postulates 

in this restricted case. 

Let 4 be a consistent conjunction of literals over a propositional language F. Given a 

state s ,  there is a unique state s ( 4 )  such that 

if f is a fluent symbol not in 4, then s ( 4 )  k f iff s f. 

Informally, the state s ( 4 )  is obtained by minimally modifying s to ensure that 4 is true. 

We define a transition system T where every consistent conjunction of literals is the 

effect of some action. Let I' be the set of all consistent conjunctions of literals over F ,  and 

let (I', F) be the underlying action signature; note that conjunctions of literals are both 

formulas and action symbols in this context. Define T as follows: 

R = { ( s ,  4, ~ ( 4 ) )  I s E S, 4 a consistent conjunction of literals ). 

The transition system T is able to represent belief update by formulas, similar to the belief 

update operators of Katsuno and Mendelzon. The following proposition indicates that the 

associated update operator satisfies the appropriate rationality postulates. 

Proposition 3 Let F be a propositional signature, and let T be the transition system defined 

above. For consistent conjunctions of literals, the update operator obtained from T satisfies 

all of Katsuno and Mendelzon's postulates. 
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Proof We rephrase the Katsuno and Mendelzon postulates in terms of belief states. Let rc 

denote a belief state and let 4, $ denote consistent conjunctions of literals. If we translate 

the postulates to make the same assertions for sets of states rather than sets of formulas, 

we get the following. 

[KM2*1 r c o 4 l = 4  

[KM3*] If rc k 4, then rco 4 = rc 

[KM4*] ~ 0 4 = 8 i f f r c = 8  

[KM5*] If k4r$ ,  then r c o + = n o $  

[KM6*] If 4 A $ is consistent, then (rc o 4) n [$ I  rc o (4 A $) 
[KMg*] If 6 # 8, then rc o 4 = nWE,w o 4 
Note that no translation of [KMI] is required, since every belief state corresponds to a 

deductively closed set of formulas. Moreover, since we are restricting attention to consistent 

formulas, we have collapsed [KM6] and [KM7] into a single postulate. Let o denote the 

update operator obtained from T. We demonstrate that o satisfies each postulate. 

[KM2*]. Every state in rc o 4 is of the form s(4)  for some 4, and 44) k 4 by definition. 

[KM3*]. If rc k 4, then 44)  = s for all s E rc. In this case, it follows that K o 4 = rc. 

[KM4*]. If rc = 0, then rc o 4 = 8 by definition. If rc # 0, then there exists some s E rc 

and it follows that s(4) E rc o 4. 
[KM5*]. For conjunctions of literals, + 4 = $ holds just in case 4 and $ contain the 

same positive and negative literals. It follows that s(4)  = s($) for every state s, and hence 

K O ~ = K O $ .  

[KM6*]. Suppose s' E (KO 4) f l  I $ [ .  So s' = s(4)  for some s E rc and s(4)  $. But then 

~ ( 4 )  = s ( ~ A $ ) ) ,  SO S' E rco ( 4 A $ ) .  

[KMg*]. Follows immediately from Definition 6. 0 

Hence, if we restrict attention to non-conditional updates, then our notion of belief 

update defines a Katsuno-Mendelzon operator. 

2.2.2 The Litmus Paper Problem Revisited 

Defining update with respect to a transition system allows us to provide a better repre- 

sentation of the litmus paper problem. Before illustrating our approach, we briefly discuss 

Boutilier's objection to the Katsuno-Mendelzon representation of the litmus paper problem 

[Ill. 



CHAPTER 2. TRANSITION SYSTEMS FOR BELIEF CHANGE 

dip 

T 

{Blue) 

{Acid) 

dip 

I 

{Red, Acid) 

Figure 2.1: Litmus Test 

Suppose that dipping the litmus paper indicates that the beaker actually contains an 

acid. The Katsuno-Mendelzon approach requires us to update each possible state of the 

world to reflect the change; this is essentially the content of postulate [KM8]. Note that 

the agent's initial belief state contains worlds where the liquid is a base. In such worlds, 

the contents of the beaker appear to be magically altered after dipping the litmus paper. 

Note that Boutilier's objection is not a formal objection to the end result obtained by a 

Katsuno-Mendelzon update operator; the objection is that the process in which each state 

is updated by a single formula is not appropriate. 

Boutilier's objection is avoided if we define belief update with respect to a transition 

system and we separate the dipping action from the observation of the colour change. The 

litmus paper problem can be represented with the action signature 

({dip), {Red, Blue, Acid)) 

Intuitively, the fluent symbols Red and Blue represent the colour of the litmus paper, and 

the fluent symbol Acid indicates whether the beaker contains an acid or not. The only 

action available is to dip the litmus paper in the beaker; the effects of dipping are given by 

the transition system in Figure 2.1. 

Initially, the agent believes the litmus paper is white, but it is not known whether the 

beaker contains an acid or a base. Hence, the initial belief state rc is the following: 

rc = (0, {Acid)). 
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After executing the d i p  action, the belief state is updated as follows: 

rc o d i p  = { { B l u e ) ,  { R e d ,  A c i d ) ) .  

The set rc o d i p  consists of all possible outcomes of the d i p  action. To determine which 

outcome has occurred, the agent must perform an epistemic action. In particular, the agent 

must look at the paper to see what colour it is. We will consider the effects of epistemic 

actions in the next section. 

Note that Boutilier's objection no longer applies: the contents of the beaker do not 

magically change after dipping the litmus paper. Instead, belief update simply projects 

every world forward, suitably modified by the effects of the dipping action. The change that 

occurs in each state is conditional on the fluents that are true. There is no uniform change 

that is made on a state by state basis following the dipping action. In fact, after dipping, 

the agent still does not know the contents of the beaker. 

2.3 Epistemic Action Effects 

2.3.1 Belief Revision 

A standard transition system does not indicate how an agent should incorporate observed 

information. In some action domains, it may be reasonable to use a form of abductive 

reasoning in which an agent tries to find a sequence of exogenous actions that provides a 

justification for a new observation. However, this is not always appropriate: consider an 

observation which is not the effect of any action. In general, we need a similarity relation 

on states in order to reason about the effects of epistemic actions. 

In subsequent chapters, we will normally assume that we have a fixed transition system 

T and a fixed AGM revision operator *. We remark, however, that it is not easy to give a 

compact representation of * in terms of a similarity relation on states. In the general case, 

we need the following definition. 

Definition 7 An epistemic transition system T i s  a triple (S, R, G)  where 

3. G i s  a function that maps  every X G S to  a sys tem of spheres centered o n  X 
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By Grove's representation results, epistemic transition systems are precisely what we need 

if we want to capture every AGM revision operator in an extended transition system frame- 

work. However, we remark that this definition is not particularly insightful; it basically says 

that an epistemic transition system is a transition system together with an AGM revision 

operator. 

One interesting class of epistemic transition systems can be defined by simply extending 

standard transition systems with a distance function on states. The notion of distance 

has a natural graphical interpretation and it provides a compact encoding of the function 

G. In the remainder of this section, we introduce distance-based revision in the context of 

transition systems. 

A metric over F is a function that maps each pair of F-states to a non-negative real 

number, and satisfies the following properties: 

1. d(wl, w2) = 0 iff wl = w2 

An integral metric is a metric that always takes integer values. We will only be concerned 

with integral metrics, so from here on we will use the term metric to refer only to integer 

valued metrics. 

A metric transition system is simply a transition system along with a metric that defines 

a distance on states. 

Definition 8 A metric transition system T is a triple (S, R, d )  where 

3. d is a metric on S 

Informally, if wl is close to w2, then an agent will consider w2 to be a plausible alternative 

to W l .  

As indicated previously, we identify observations with sets of states. With each metric 

transition system T, we associate a revision function. The revision function associated with 

T is the distance-based revision from [20]. 
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Definition 9 Let T = (S ,  R, d) be a metric transition system. The revision function * : 

2' x 2' + 2' is defined as follows 

K * a = {w E a I 3vl E K such that for all 212 E a, v3 E K 

we have d(w, vl) 5 d(v2, v3)). 

Hence, if an agent is in belief state K, then K * 4 is the set of all worlds in a that are 

minimally distant from some world in K. We remark that the function d defines a system of 

spheres over every subset of states, so this revision function satisfies the AGM postulates. 

We give some examples of metrics. 

Example The Hamming distance dham is the metric defined such that dham(wl, w2) is the 

number of fluent symbols assigned different truth values by wl and w2. In this case, two 

states are similar to the degree that they assign the same values to fluent symbols. This 

metric provides a natural notion of similarity for action domains in which each fluent is given 

equal credence in determining plausible alternative worlds. Revision based on the Hamming 

distance metric has been explored previously by Dalal[l8]; as a result, this particular revision 

operator is sometimes referred to as the Dalal operator. We remark also that the Hamming 

distance has been used in connection with belief update in [29]. 

Example Let W : F + Z+. The weighted Hamming distance dhW,, is defined such that 

dhW,,(wl, w2) is the sum of the weights W(  f )  for all fluent symbols f assigned different 

truth values by wl and w2. Clearly, the Hamming distance is a special case of the weighted 

Hamming distance. However, the weighted version is convenient for action domains in which 

certain fluents are seen as more significant than others. For example, alternative worlds in 

which the weather is different may be more plausible than alternative worlds in which pigs 

can fly. 

Example The topological distance function dtgp is the metric defined such that dtop(wl, w2) 

is the length of the shortest path from wl to w2 in the underlying transition system. Note 

that this metric is only well defined for transition systems that are connected. The main 

advantage of the topological distance function is that the transition system itself defines the 

notion of similarity; no additional distance function is required. The notion of similarity 
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captured by the topological distance function is appropriate for action domains in which 

an agent is uncertain about the actions that have been executed previously. A state wl is 

understood to be similar to w2 if a small number of actions can lead from wl to w2. 

We stress that our formal methods will not be limited to distance-based revision func- 

tions. We are primarily interested in adding a distance function because it provides a 

concrete formalism which defines both an update operator and a revision operator, and this 

is useful for describing simple examples. Hence, our interest in distancebased revision is 

largely pragmatic. Nevertheless, one could argue that the distancebased approach is par- 

ticularly appropriate for our purposes. A function G mapping belief states to systems of 

spheres can be cumbersome to describe, and such functions may not have a natural graph- 

ical representation. By contrast, distance functions can be described succinctly, and the 

notion of distance has a natural graphical interpretation. Therefore, distance functions pro- 

vide sufficient information to define a revision operator and they do so in a straightforward 

manner at the same level of abstraction of a standard transition system. 

2.3.2 The Litmus Paper Problem Concluded 

In order to complete the representation of the litmus paper problem, we need to consider the 

observation that the agent makes following the dipping action. For the moment, we simply 

revise the belief state that was obtained from the belief update. We will see in the next 

chapter that simply applying the action effects iteratively in this manner does not always 

lead to a desirable result. 

Let d be a metric on the states in Figure 2.1. Recall that 

K o dip = {{Blue), {Red, Acid)) 

and assume that the beaker actually contains an acid, so the litmus paper turns red after 

dipping. Hence, looking at the litmus paper causes the agent to revise the current belief 

state by the set of states where Red is true. More precisely, we need to revise by the 

observation a defined as follows 

a = {{Red, Acid), {Red), {Red, Blue, Acid), {Red, Blue)). 

Note that the state {Red, Acid) is in a and it is also in the prior belief state. It follows 
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immediately that the revised belief state is 

{{Red, Acid)). 

We make some brief remarks about this example. First of all, note that this is clearly 

a case of belief expansion rather than true belief revision. As a result, we have not needed 

to specify a definite metric. We were able to determine the outcome of the revision for 

any metric, because a distance of zero is never obtained between distinct states. This 

is a general property of AGM revision: if we revise by consistent information, then the 

underlying ordering over states or formulas does not come into play. 



Chapter 3 

Iterated Epistemic Action Effects 

In this chapter, we consider iterated belief change in the context of epistemic transition 

systems. We illustrate that there is a problem with the naive approach in which updates 

and revisions are applied successively. Roughly, if an agent has access to the history of 

actions that have been executed, then there are examples where it is plausible for an agent 

to revise the initial belief state rather than the current belief state. We introduce a new 

belief change operator for the representation of this kind of reasoning. The new operator 

intuitively captures the evolution of an agent's beliefs following a sequence of ontic actions 

and observations. 

We briefly outline the rest of the chapter. In $3.1, we give a schematic view of a typical 

problem and we introduce an illustrative running example where the interaction between 

revision and update is non-elementary. In $3.2, we formally specify a set of properties 

describing the belief change that occurs when an update is followed by a revision. We 

introduce some simple notation for the representation of action histories in $3.3, and we 

introduce a new belief change operator in $3.4. Our new belief change operator implicitly 

defines an approach to iterated revision, so in $3.5 we consider the defined approach with 

respect to two well-known sets of postulates. In $3.6, we compare our approach to belief 

change with some existing approaches. We conclude in $3.7 by demonstrating that our new 

belief change operator can be characterized by a pair of rationality postulates, and we prove 

a representation result based on systems of spheres. 

A preliminary version of the material in this chapter previously appeared in [46]. 
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3.1 Motivation 

3.1.1 The Basic Problem 

Let o be an update operator and let * be a revision operator. We are interested in giving a 

reasonable interpretation to sequences of the form 

There are intuitively plausible examples in which applying the operators iteratively results 

in an unsatisfactory result. The essential point is that an observation at time n can lead an 

agent to revise the initial belief state, rather than the current belief state. This is particularly 

common in single-agent action domains in which the agent has complete knowledge of the 

action history. 

The simplest interesting case is given by an expression of the form 

In this case, since there is only a single observation, we can focus entirely on the interaction 

between revision and update. The general case represented by (3.1) is complicated by the 

fact that it implicitly requires some form of iterated revision. Our formalism handles the 

general case, but our initial focus will be on problems of the form in (3.2). In the next 

section, we consider an example of such a problem and we illustrate that the most natural 

solution requires the initial state to be revised at a later point in time. 

3.1.2 An Illustrative Example 

We extend the litmus paper problem. The extended problem is just like the original, except 

that we allow for the possibility that the paper is not litmus paper; it might simply be a 

piece of plain white paper. In order to represent this possibility, we introduce a new fluent 

symbol Litmus. Hence, we now have the fluent symbols F = {Red, Blue, Acid, Litmus). 

The set of action symbols still contains the single action dip. 

Define the metric transition system T = (S, R, d) as follows. 

2. R is obtained by taking the closure of the transition system in Figure 3.1. 
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{Litmus) 

{Litmus, Blue) 

{Litmus, Acid) 8 

{Litmus, Red, Acid) 8 

{Acid) 

{Acid) 

Figure 3.1: Extended Litmus Test 

3. d is the Hamming distance. 

This transition system implicitly makes the simplifying assumption that dipping does not 

do anything if the paper is already red or blue. 

We describe a sequence of events informally. Initially, the agent believes that the paper 

is a piece of litmus paper, but the agent is unsure about the contents of the beaker. To test 

the contents, the agent dips the paper in the beaker. After dipping, the agent looks at the 

paper and observes that it is still white. We are interested in determining a plausible final 

belief state. 

We now give a more formal representation of the problem. The initial belief state is 

r; = {{Litmus), {Litmus, Acid)). 

After dipping the paper in the beaker, we update the belief state as follows: 

r; o dip = {{Litmus, Blue), {Litmus, Red, Acid)). 

At this point, the agent looks at the paper and sees that it is neither blue nor red. This 

observation is represented by the following set of worlds: 

a = (0, {Litmus), {Acid), {Litmus, Acid)). 

The naive suggestion is to simply revise r; o dip by a, which gives 

r;' = {{Litmus), {Litmus, Acid)). 

We claim that this is not a plausible final belief state. 
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Informally, if the paper is litmus paper, then it must be either red or blue after a 

dipping action is performed. Hence, neither {Litmus} nor {Litmus, Acid} is a plausible 

state after dipping; simply revising by the observation gives a belief state that is guaranteed 

to be incorrect. The final belief state should consist entirely of states that are possible 

consequences of dipping. 

We suggest that a rational agent should reason as follows. After dipping the paper and 

seeing that it does not change colour, an agent should conclude that the paper was never 

litmus paper to begin with. The initial belief state should be modified to reflect this new 

belief before calculating the effects of the dipping action. This approach ensures that we will 

have a final belief state that is a possible outcome of dipping. At the end of the experiment, 

the agent should believe that the paper is not litmus paper and the agent should have 

no definite beliefs regarding the contents of the beaker. Hence, we propose that the most 

plausible final belief state is the set 

10, {Acid}}. 

This simple example serves to illustrate the fact that it is sometimes useful for an agent to 

revise prior belief states in the face of new knowledge. In order to formalize this intuition 

in greater generality, we need to introduce some new formal machinery. 

3.2 Interaction Between Revision and Update 

In this section, we give a set of formal properties that we expect to hold when an update is 

followed by a revision. The properties are not overly restrictive and they do not provide a 

basis for a categorical semantics; they simply provide a point for discussion and comparison. 

Our underlying assumption is that ontic action histories are infallible. The most recent 

observation is always incorporated, provided that it is consistent with the history of actions 

that have been executed. Hence, the properties we discuss are only expected to hold in 

action domains in which there are no failed actions and no exogenous actions. 

We briefly present some of our underlying intuitions. Let n be a belief state, let A be a 

sequence of actions, and let a be an observation. We are interested in the situation where 

an agent has initial belief state n, then 2 is executed, and then it is observed that the 

actual state must be in a. We adopt the shorthand notation n o A as an abbreviation for 

the sequential update of K, by each element of A. There are three distinct cases to consider. 
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1. There are some a-states in K o A. 

2. There are no a-states are in K o A, but some a-states are possible after executing A. 

3. No a-states are possible after executing A. 

We discuss each case separately. 

Case (1) is the situation in which the observation a allows the agent to refine their 

knowledge of the world. After the observation a, the agent should believe that the most 

plausible states are the states in K that are also in a. In other words, we propose that the 

agent should adopt the belief state ( n o  A) n a. 

In case (2), the agent should conclude that the actual state was not initially in K. This 

conclusion is based on our underlying assumption that the action sequence A cannot fail, 

and the additional assumption that a new observation should be incorporated whenever 

possible. Both of these assumptions can be satisfied by modifying the initial belief state 

before performing the update. Informally, we would like to modify the initial belief state 

minimally in a manner that ensures that a will be true after executing A. This is the case 

that occurs in the extended litmus paper problem. 

Case (3) is problematic, because it suggests that the agent has some incorrect informa- 

tion: either the observation a is incorrect or the sequence A is incorrect. For the moment, we 

are assuming that action histories are infallible, so the agent must abandon the observation 

a to remain consistent with A. 
Assume a fixed finite propositional signature F. Let K and a be sets of worlds, let A 

be a sequence of actions, let o be an update operator, and let * be a revision operator. We 

formalize our intuitions by suggesting that the following conditions should be satisfied when 

an update is followed by a revision. 

Interaction Properties 

PI .  1f ( 2 F o A ) n a # 0 ,  then ~ o A * a C a  

P2. I f ( 2 F o A ) n a = 0 ,  t h e n n o A * a = ~ o A  

~ 3 .  ( n o A ) n a c _  K O A * ~  

P4. 1f ( ~ o A ) n a # 0 ,  t h e n ~ o A * a c  ( K o A ) ~ ~  

~ 5 .  ~ o A * a ~ 2 ~ o A  
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We give some motivation for each property. PI is a straightforward AGM-type assertion 

that a must hold after revising by a, provided a is possible after executing A. P2 handles 

the situation where it is impossible to be in an a-world after executing A. In this case, we 

simply discard the observation a .  Together, P1 and P2 formalize the underlying assumption 

that there are no failed actions. 

P3 and P4 assert that revising by a is equivalent to taking the intersection with a, 

provided the intersection is non-empty. These are similar to the AGM postulates asserting 

that revisions correspond to expansions, provided the observation is consistent with the 

knowledge base. 

P5 provides the justification for revising prior belief states in the face of new knowledge. 

It  asserts that, after revising by a, we must still have a belief state that is a possible 

consequence of executing A. In some cases, the only way to ensure that a holds after 

executing A is to modify the initial belief state. We remark that P5 does not indicate how 

the initial belief state should be modified. 

3.3 Representing Histories 

Transition systems are only suitable for representing Markovian action effects. However, in 

the extended litmus paper problem, we saw that the outcome of a sensing action may depend 

on prior belief states. Even if ontic action effects are Markovian, it does not follow that 

changes in belief are Markovian. As such, we need to introduce some formal machinery for 

representing histories. We will be interested in the historical evolution of an agent's beliefs, 

along with all of the actions executed. Representing belief histories is straightforward. 

Definition 10 A belief trajectory of length n is  a n  n-tuple 

of belief states. 

Intuitively, a belief trajectory is an agent's subjective view of how the world has changed. 

We remark that a belief trajectory represents the agent's current beliefs about the world 

history, not a historical account of what an agent believed at each point in time. For 

example, in the extended litmus paper problem, at the end of the experiment the agent 

believes that they were never holding a piece of litmus paper. The fact that the agent once 
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believed that they were holding litmus paper is a different issue, one that is not represented 

in our formal conception of a belief trajectory. 

We will also be interested in observation trajectories and action trajectories, each of 

which is simply another n-tuple. 

Definition 11 An observation trajectory of length n i s  an  n-tuple Ci = ( a l , .  . . ,a,) where 

each ai E 2'. 

Each set ai is interpreted to be evidence that the actual world is in ai at time i. 

Definition 12 An action trajectory of length n i s  an  n-tuple A = (A1,. . . ,A,) where each 

Ai E A .  

An action trajectory is a history of the actions an agent has executed. Note that, as a 

matter of convention, we start the indices at 0 for belief trajectories and we start the indices 

at 1 for observation and action trajectories. The rationale for this convention will be clear 

later. We also adopt the convention hinted at in the definitions, whereby the ith component 

of an observation trajectory Ci will be denoted by ail and the ith component of an action 

trajectory A will be denoted by Ai. 

We define a notion of consistency between observation trajectories and action trajecto- 

ries. The intuition is that an observation trajectory h is consistent with an action trajectory 

A if and only if each observation ai is possible, given that the actions (Aj)j<i have been 

executed. 

Definition 13 Let h = (a l ,  . . . , a,) be an  observation trajectory and let A = (A1, . . . , A,) 

be a n  action trajectory. W e  say that A is consistent with Ci if and only if there i s  a belief 

tmjectory (no,. . . , n,) such that, for all i with 1 5 i 5 n, 

If A is consistent with Ci, we write All&. 
A pair consisting of an action trajectory and an observation trajectory gives a complete 

picture of an agent's view of the history of the world. As such, it is useful to introduce some 

terminology. 

Definition 14 A world view of length n i s  a pair W = (A ,  Ci), where Ci is an  observation 

trajectory and A is an  action tmjectory, each of length n. W e  say W is  consistent if All&. 
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3.4 Belief Evolution 

3.4.1 A New Belief Change Operator 

We introduce a new operator o that takes two arguments: a belief state and a world view. 

Roughly speaking, we would like u; o (A,  a) to be the belief trajectory that results from the 

initial belief state u; and the alternating action-observation sequence 

We call o a belief evolution operator because it takes a sequence of actions and returns the 

most plausible evolution of the world. 

The formal definition of o is presented in the following sections. The definition relies on a 

fixed revision operator * and a fixed update operator o. As such, it might be more accurate 

to adopt notation of the form o,,,, but we opt for the less cumbersome o and assume that 

the underlying operators are clear from the context. It is worth noting that the definition 

of o does not rely on any specific approach to revision. Given a transition system, any 

AGM revision operator can be used to define a belief evolution operator. Metric transition 

systems provide an important class of examples, because every finite metric transition system 

generates a unique belief evolution operator. However, in the interest of generality, we do 

not tie ourselves to a specific approach. We remark that we could actually define o with 

respect to an arbitrary binary function on belief states; but for the applications that we 

consider, it is better to restrict * to be an AGM revision operator. 

The action domains of interest for belief evolution will be those in which it is reasonable 

to assume that action trajectories are correct and actions are successful. This is intuitively 

plausible in a single agent environment, because it simply amounts to assuming that an 

agent has complete knowledge about the actions that have been executed. Hence, in the 

definition of o, the belief trajectory returned will always be consistent with the actions that 

have been executed. 

3.4.2 Infallible Observations 

In this section, we assume that observations are always correct. Formally, this amounts to 

a restriction on the class of admissible world views. In particular, we need not consider 

inconsistent world views. It is easy to see that an inconsistent world view is not possible 

under the assumption that action histories and observations are both infallible. 
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We need to introduce some notation. In particular, let s-'(A) denote the set of all 

states s' such that (sf, A, s) E R. We call s-'(A) the pre-image of s with respect to A. The 

following definition generalizes this idea to give the pre-image of a set of states with respect 

to a sequence of actions. In the definition, given any sequence of actions A = (A1,. . . ,A,), 

we write s - - t ~  S' to indicate that there is a path from s to s' that follows the edges labeled 

by the actions A l l . .  . , A,. 

Definition 15 Let T be a deterministic transition system, let A = (A1,. . . ,A,) and let a 

be an observation. Define a-l(A) = { s  I s * A  S' for some s' E a}. 

Hence, if the actual world is an element of a following the action sequence A, then the initial 

state of the world must be in a-'(A). 

For illustrative purposes, it is useful to consider world views of length 1. Suppose we have 

an initial belief state n, an ontic action A and an observation a. Without formally defining 

the belief evolution operator o, we can give an intuitive interpretation of an expression of 

the form 

0 ((A), (4) = (no1 ~ 1 ) .  

The agent knows that the actual world is in a at the final point in time, so we must have 

nl c a. Moreover, the agent should believe that nl is a possible result of executing A from 

no. In other words, we must have no C a-'(A). All other things being equal, the agent 

would like to keep as much of n as possible. In order to incorporate a-'(A) while keeping 

as much of n as possible, the agent should revise n by a-'(A). This suggests the following 

solution. 

This procedure can be applied to world views of length greater than 1. The idea is to 

trace every observation back to a precondition on the initial belief state. After revising the 

initial belief state by all preconditions, each subsequent belief state can be determined by a 

standard update operation. 

We have the following formal definition for o. In the definition, if i 5 n then we let Ai 
denote the subsequence of actions (A1, . . . , Ai). 
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Definition 16 Let K be a belief state, let A be an  action trajectory of length n and let d be 

an  observation trajectory of length n such that A \  16. Define 

K 0 (A, 5) = (KO, . . . , K,) 

where 

We remark that the intersection of observation preconditions in the definition of KO is non- 

empty, because A[ la. 
The following propositions are immediate, and they demonstrate that for some action 

sequences of length 1, o reduces to either revision or update. In each proposition, we assume 

that A1 16. 

Proposition 4 Let /E be a belief state, let A = (A) and let 6 = (2F). Then 

Proof Recall that we only allow closed transition systems, so every action is executable 

in every state. It follows that (2F)-1 ( A )  = 2F. Therefore 

0 

In the following, we assume that X is a null action that never changes the state of the world. 

Proposition 5 Let K be a belief state, let A = (A) and let = (a). Then  

Proof Since X does not change the state, it follows that a-l(X) = a. Therefore 
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0 

Hence, the original revision and update operators can be retrieved through the o operator. 

As such, it is reasonable to define iterated action effects in terms of belief evolution as well. 

In particular, given * and o, we define the iterated belief change 

to be the final belief state in the belief trajectory 

Note that, under this convention, updates and revisions are not simply applied in succession. 

Proposition 6 If (A) 1 1  (a), the iterated belief change K o A * a defined as above satisfies the  

in temct ion  properties PI-P5. 

Proof Let n be a belief state. By the convention outlined above, 

We demonstrate that this definition satisfies PI-P5. 

PI .  1f ( 2 F o A ) n a #  0, then ( n o A )  * a  G a. 

Note that the antecedent is true because A and a are consistent. We have the following 

inclusions: 

(n * a-'(A)) o A a - I  (A) o A a. 

The first inclusion holds by [AGM2], and the second holds by definition of the preimage. 

Hence, the consequent is true. 

P2. 1f ( 2 F ~ A ) n a = 0 ,  then ( n o A ) * a = n o A  

The antecedent is false, since A and a are consistent. 

P3. ( ~ o A ) n a c _  ( n o A ) * a  

Suppose s E (no  A) n a. SO s E a and there is some st E n such that A maps st to s. Hence, 

st E a - l ( ~ ) .  It follows from [AGM2] that st E n * a-'(A). Since A maps st to s, we have 

s E (n * a-'(A)) o A. 
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P4. If ( r c o A ) n a # 0 ,  then ( r c o A ) * a  G ( 6 o A ) n a  

Suppose that (rc o A) n a # 0. So there is a state in rc that is mapped to a by the action A. 

Hence rc n aP'(A) # 0. By [AGMS] and [AGM4], it follows that rc * a-'(A) = rc n &-'(A). 

Now suppose that s E (rc * a - I  (A)) o A. So there exists sf E rc * a-' (A) such that A maps 

sf to s.  But then sf E rc n a-'(A). But this implies that s E rc o A and s E a .  

P5. ( r c o A ) * a ~ 2 ~ o A  

This is immediate, because (rc * a-'(A)) C 2F and the update operator acts on a state by 

state basis. 

The three preceding propositions demonstrate the suitability of o as a natural operator 

for reasoning about the interaction between revision and update. We remark that Proposi- 

tion 6 can easily be generalized to the case where a sequence A of ontic actions is followed 

by a single observation. 

3.4.3 Fallible Observations 

We address fallible observations by allowing inconsistent world views. Recall that the world 

does not change except in response to ontic actions. As such, the goal of the underlying 

agent is to determine the most plausible initial belief state, given all observations that occur 

over time. In this section, we give a simple procedure for combining all observations in an 

inconsistent world view. 

For consistent world views, we could simply take the intersection of the pre-image of all 

observations because it was guaranteed to be non-empty. For inconsistent world views, the 

intersection is empty; the observations and actions are not mutually satisfiable. The basic 

idea behind our approach is to keep the most reliable observations, and discard the least 

reliable observations. In order to proceed, we need to assume that we are given a reliability 

ordering over all observations. Given such an ordering, we can extract a maximally consis- 

tent sub-view that incorporates the most reliable observations and resolves inconsistency by 

discarding unreliable observations. 

We start by defining belief evolution in the most general case, with respect to an arbitrary 

ordering. After presenting the general case, we restate the main definitions for the concrete 

example where reliability is determined by the recency of an observation. 
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In the general case, we define a belief evolution operator with respect to a total ordering 

+ over natural numbers. Informally, if j 3 i, then inconsistency caused by ai and aj is 

handled by discarding ai . 

Definition 17 Let W = (A, 6) be a world view of length n and let + be a total ordering 

over 1,.  . . , n. Define r(W, +) = (A, &I), where &I = (a:, . . . , a;) is defined by the following 

recursion. 

If a,:,, (Amin,) # 0 then akin, = amin,, 

otherwise akin+ = 

For i # min+, i f  

fir1(&) n n ( a ; ) - ' ( h )  # 0 
j 4  

then a: = ai, 

otherwise a!, = 2F. 

The observations in r(W, +) are determined by starting with the most reliable observation, 

then working progressively through the +-ordering of observations. At each point, we keep 

an observation if it is consistent with the observations that are more reliable; otherwise, we 

discard the observation as incorrect. We remark that 3 is restricted to be a total ordering 

in order to avoid inconsistent observations that are equally reliable. 

The following properties are immediate for any W and +. 

r(W, +) is consistent. 

If W is a consistent, then r(W, +) = W. 

Recall that the original definition of o applied only to consistent world views. By passing 

through 7, we can extend the definition to apply to arbitrary world views. In the general 

case, this requires o to be parameterized by an ordering. 

Definition 18 Let r; be a belief state, let W be a world view of length n, and let + be a 

total ordering over 1,. . . , n. If W is inconsistent, then r; o+ W = r; o r(W, +). 

We could equivalently have stated a single definition for o+ by passing all world views 

through 7. We have presented the definition in two cases in order to highlight the distinct 

treatment of fallible observations. Note that, if there is just a single observation, then the 
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definition of o+ is equivalent to the original definition and it does not rely on 4. As such, 

Proposition 6 still holds, so the operators * and o obtained from o+ satisfy the interaction 

properties P1-P5. 

Introducing an ordering over observations is cumbersome in many examples, so we would 

like to choose a default ordering. One natural choice is to prefer recent observations over 

older observations; this convention has previously been explored in [75] and [80]. In our 

framework, a preference for recent information is represented by taking 4 to be the inverse 

of the usual ordering < on the natural numbers. We let <in, denote this ordering, and we 

restate Definition 17 for the case in which the unstated ordering is <in,. 

Definition 19 Let W = (A, f i )  be a world view of length n. Define T(W) = (A, f i t ) ,  where 

fit = (a', , . . . , a;) is defined by the following recursion. 

~f &;'(A) # 0 then a; = a,, 

otherwise a; = 2F. 

0 For i < n, if 

then a: = ai7 

othemise a! = zF. 

Hence, the observations in T(W) are determined by starting with the most recent observa- 

tion, then working backwards through the observations from most recent until the initial 

observation. At each point, we keep an observation if it is consistent with the observa- 

tions that followed. Throughout the remainder of this thesis, we use o to denote the belief 

evolution operator o<~,,~ obtained by giving greater credence to recent observations. The 

following definition makes this convention precise. 

Definition 20 Let K be a belief state, and let W be a world view of length n. If W is 

inconsistent, then K o W = K o T(W). 

We stress that the preference for recent information is just a convention that we adopt 

because it simplifies the exposition. We are not making any substantive claim about the 

relative importance of observations. However, we will demonstrate in $3.5 that our default 
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ordering can be formally justified by illustrating that, if we restrict attention to null actions, 

then o defines a reasonable approach to iterated revision. 

We conclude this section with one final result. Thus far, applying the o operator requires 

tracing action preconditions back to the initial state for revision, then applying action effects 

to get a complete history. If we are only concerned with the final belief state, then there 

are many cases in which we do not need to go to so much effort. 

Proposition 7 Let u; be a belief state, let A be an action trajectory of length n and let a 

be a belief state such that a u; o A. If a! is the observation trajectory with n - 1 null 

observations followed by a, then the final belief state in u; o (A, 6) is (u; o A) * a. 

Proof By definition, the final belief state of u; o (A, 6) is 

Since a u; o A, the intersection u; n a-'(A) is non-empty. By [AGMS] and [AGM4], it 

follows that 

u; * a-'(A) = u; n a-'(A) 

and therefore 

(u; * a-' (A)) o A = (u; n a-' (A)) o A. 

Clearly, the right hand side of this equality is equal to (u; o A) n a. Again, since a C u; o A, 
it follows from [AGM3] and [AGM4] that this is (u; o A) * a. 

The proposition indicates that, given a single observation that is consistent with the 

actions that have been executed, we can simply revise the outcome of the actions and we 

get the correct final belief state. 

3.4.4 Extended Litmus Paper Concluded 

We conclude the litmus paper example by giving a plausible treatment based on a belief 

evolution operator. The world view W = ((dip), (a))  represents a dipping action followed 

by the observation that the paper is still white. If o is obtained from the metric transition 

system defined by the Hamming distance and the transitions in Figure 3.1, the final belief 

state in u; o W is given by 

u; * a-'(dip) o dip = u; * (0, {Acid)) o dip 

= (0, {Acid)). 
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This calculation is consistent with our original intuitions, in that the agent revises the initial 

belief state before updating by the dip action. This ensures that we will have a final belief 

state that is a possible outcome of dipping. Moreover, the initial belief state is revised by 

the pre-image of the final observation, which means it is modified as little as possible while 

still guaranteeing that the final observation will be feasible. Note also that the final belief 

state given by this calculation is intuitively plausible. It simply indicates that the contents 

of the beaker are still unknown, but the agent now believes the paper is not litmus paper. 

Hence, a belief evolution operator employs a plausible procedure and returns a desirable 

result. 

3.5 Relationship with Iterated Revision 

3.5.1 Darwiche-Pearl Revision 

If the null action is the only action permitted, then belief evolution is closely related to 

iterated revision. In this section, we consider the suitability of belief evolution operators for 

reasoning about iterated revision, from the perspective of the Darwiche-Pearl approach. 

In the following observation, let denote a sequence of null actions of indeterminate 

length. 

Observation 1 For any n and 6 ,  there is  a unique belief state n' such that 

This observation is consistent with the view that belief evolution operators return a trajec- 

tory representing an agent's current beliefs about the evolution of the world. We remark 

that, in general, n' is not obtained by successively revising by the elements of a. More- 

over, we claim that this is appropriate because we have only assumed an underlying AGM 

revision operator. It is well known that many AGM revision operators do not satisfy the 

Darwiche-Pearl postulates for iterated revision; for example, the Hamming distance based 

revision operator does not satisfy the postulates. We will prove that belief evolution opera- 

tors satisfy the Darwiche-Pearl postulates, even when the underlying revision operators do 

not. 

We restate the Darwiche-Pearl postulates in terms of possible worlds. Let n, a, and /3 be 

sets of possible worlds. Let P denote the complement of /3. The Darwiche-Pearl postulates 

are as follows. 
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Darwiche-Pearl Postulates 

[DPl] If a c P,  then (n * P )  * a = n * a. 

[DP2] If a C_ 6, then (n * P )  * a = n * a. 

[DP3] If n * a  C P ,  then (n*P) * a  c P. 
[DP4] If n * a g 6, then (n * P )  * a g 6. 

If we define the iterated revision n * a1 * * a, to be the unique belief state in n o (1, b),  

then we get the following result. 

Proposition 8 Let o be a belief evolution operator. For non-empty observations, the iter- 

ated revision operator obtained from o satisfies the Darwiche-Pearl postulates. 

Proof We abuse notation and let n o (A ,  (a)) denote the unique belief state n' from 

Observation 1. Similarly, we identify n o (A,  (P, a))  with the corresponding belief state, 

rather than the complete belief trajectory. Under this convention, the iterated revision 

n * ,G' * a is equal to n o (A ,  (P,  a) ) .  Note that a-l(A) = a and P- l (A )  = P. Since a # 8, it 
follows that 

n* (pna )  i f p n a # 0  
n * P * a =  

n * a  otherwise 

For [DPl], suppose that a C P. Since a # 0, it follows that ,G' n a # 0 and hence 

n * ,B * a = n * (P n a). But ,G'n a = a, so the right hand side is equal to n * a. 

For [DP2], suppose that a c 6. Hence, a n ,O = 0 and the desired conclusion follows 

immediately. 

For [DP3], suppose that n * a P. Since a # 8, it follows from [AGM5] that n * a # 8. 
So there exists some s E n * a. But then s E a since n * a C_ a, and s E ,G' since n * a c P. 
Hence a n ,G' # 0, and therefore 

For [DP4], suppose that n * a g 6. So there exists some s E n * a such that s E P. 
It follows that s E a n P, so a f l  ,G' # 8. Translating to possible worlds, [AGM8] says the 

following: 

if n * a g p, then (n * a) n p  c n * (a np).  

Since s E (n * a) fl p, this implies that s E n * ( a  n P).  But then, since a n P # 8 it follows 

by definition that s E n*P*a.  Hences E P and s E n*P*a.    here fore s E n * ~ * a  gp. 
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0 

Hence, belief evolution always defines a Darwiche-Pearl operator, even if the underlying 

revision operator fails to satisfy the postulates. 

It is easy to demonstrate that belief evolution satisfies the so-called recalcitrance postu- 

late introduced in [76]. Rephrased in terms of possible worlds and belief evolution, recalci- 

trance is the following property: 

(Recalcitrance) If P fl a # 0, then ( K  o (X, (P, a ) )  C P. 

It is known that DP1, DP2, and (Recalcitrance) characterize Nayak's lexicographic iterated 

revision operator on epistemic states [lo]. Hence, although we have defined belief evolution 

strictly in terms of an underlying AGM operator, it turns out that it is essentially equivalent 

to a well-known approach to DarwichePearl revision. 

Rather than assuming an underlying AGM revision operator in the definition of be- 

lief evolution, we could have assumed an underlying Darwiche-Pearl operator. Of course, 

Darwiche-Pearl operators are still AGM operators. The main difference for our purposes 

is that Darwiche and Pearl define revision with respect to epistemic states which explicitly 

define an ordering on the set of possible states. In the remainder of this section, we briefly 

summarize how to define belief evolution in this context. 

Recall that Darwiche-Pearl revision is based on so-called epistemic states. In order to 

define belief evolution in terms of epistemic states, we need to first define belief update in 

terms of epistemic states. Let E be an epistemic state with the corresponding ordering 5 ~ .  
The epistemic state E o A can be obtained by defining the new ordering + o ~  as follows: 

In order to complete the definition of the new ordering, we need to consider states w such 

that w # v o A for any v. For such states, we simply specify that 

for every u. Extending update to epistemic states in this manner allows us to extend the 

definition of belief evolution for iterated revision operators. In particular, given a Darwiche- 

Pearl operator * and an update operator o, we can define o as follows. 
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Definition 21 (DP version) Let E be an epistemic state, let A be an  action trajectory of 

length n and let ii be an observation trajectory of length n such that Allti. Define 

where 

2. f o r i  > 1, Ei = Ei-loA1 o . . . o A  i .  

This is the same definition that was used for infallible observations, rephrased in terms of 

epistemic states. In the new definition, no observation is discarded. Instead, the definition 

of * will determine how conflicting observations should be treated. We remark that this new 

definition is only appropriate for action domains where the reliability of an observation is 

determined by recency. In the general case, where there is an arbitrary reliability ordering 

over observations, we need to perform the iterated revision in the order dictated by this 

ordering. 

Definition 21 illustrates how belief evolution can be defined with respect to an underlying 

Darwiche-Pearl operator. The definition is marginally simpler than our original definition, 

and it allows for a more flexible approach to iterated revision. As such, we suggest that this 

approach is preferable for action domains where a Darwiche-Pearl operator is available. We 

have formulated the original definition in terms of AGM revision in the interest of generality, 

so that we can address iterated epistemic action effects given only an AGM operator. For 

example, we are interested in belief change in the context of metric transition systems, where 

the only available revision operator is AGM. 

3.5.2 Lehmann Postulates 

Another important set of postulates for iterated revision is proposed by Lehmann [59]. In 

this section, we consider belief evolution from the perspective of Lehmann's postulates. 

We introduce some shorthand notation to simplify the statement of Lehmann's postu- 

lates. Given observation trajectories 0 and O', let 0 . 0' denote the concatenation of the 

two sequences. Similarly, if a is an observation, we write 0 a as a shorthand for 0 - (a). 

Finally, since we are only interested in null actions, for the remainder of this section we 

write K o 0 as an abbreviation for the final belief state in K o (X, 0). 
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Let 0, 0' denote observation trajectories, let K, Q, ,O denote sets of states, and let p 
denote the complement of p. Translated into our notation, the Lehmann postulates are as 

follows. 

Lehmann Postulates 

[Ll] K O  0 = 0 iff K = 0. 
[L2] K o  (0 .  a) E a .  

[L3] If K 0 (0 - a )  O P and K 0 0 O a ,  then K o  0 O P. 
[L4] If K O  0 a, then K O  (0 0') = K O  (0 . Q  0'). 

[L5] IfPs a ,  then K O  ( 0 . a . P - 0 ' )  = K O  ( O . P . 0 ' ) .  

[L6] If K o  (0 - a )  6, then K o  (0 - a  - P .  0') = K o  (0 Q Q ~ I P  0'). 

[L7] K o ( 0 . Q )  c / € o ( O . & a ) .  

Belief evolution does not satisfy all of the Lehmann postulates. In particular, we present a 

counterexample illustrating that [L4]-[L6] all fail. 

Example Let sl, s 2 ,  SQ be states over some action signature. Define K, a, 0 and 0' as 

follows: 

We will demonstrate that [L4]-[L6] all fail for this example. 

Let o  be a belief evolution operator obtained from some update operator o and some 

AGM revision operator *. Note that 

However, 
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Hence K o  (0 0') # K o  (0 a 0'), which violates [L4]. Since P = K o  0, this also violates 

[L5l 
Let y = {sl, s3). The following equalities refute [L6]. 

Lehmann views [L4]-[L6] as dealing with "superfluous revisions" [59]. For example, in 

postulate [L4], the observation cr is superfluous because revising by the observations in 0 

already leads an agent to believe that the actual state is in a. As such, observing a after 0 

does not provide any new information. The postulate [L4] suggests that such observations 

may be discarded. This kind of reasoning is not supported in belief evolution, because the 

observation a may take on new meaning following future observations. Postulates [L5] and 

[L6] fail for similar reasons. 

Although [L4]-[L6] do not hold, we can construct weaker versions that do hold. We 

have claimed that the reason these postulates fail is because future observations may affect 

the interpretation of observations that are initially superfluous. To avoid this problem, we 

modify the postulates by removing the observations that follow a superfluous observation. 

Weakening gives the following postulates: 

Weak Lehmann Postulates 

[L4*] If K o  0 E a and 0 # 0, then K o  0 = K o  (0 a). 

[L5*] If ,B a, then K O  (0 .  a - P )  = K o  (0 P) .  
[L6*] I f ~ o ( 0 - a )  P ,  then K O ( O - a . ~ )  = ~ o ( ~ . a . a n P ) .  

If [L4]-[L6] are replaced with [L4*]-[L6*], then belief evolution satisfies the resulting set of 

postulates. 

Proposition 9 Let o  be a belief evolution operator, obtained from * and o. If a and P are 

non-empty, then o  satisfies [Ll],[L2],[L3],[L4*],[L5*l,[L6*], and [L7]. 
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Proof Clearly, if n  = 0 then n  0 0 = 0. For the converse, suppose that 0 contains only 

empty observations. In this case, n  0 0 = n  and the result holds. If 0 contains some non- 

empty observations, then n  0 0 = n  * y  for some non-empty intersection of observations y. 

But then n  * y  = 0 just in case n  is empty. This completes the proof of [Ll]. 

Sincea # 0, n o ( 0 . a )  = n * y  for some y  E a .  Hence n o ( 0 . a )  C y  E a, which proves 

[L21- 
For [L3], suppose that n  0 ( 0  . a )  C ,Ll and n  o 0 a .  Now suppose that s E n  o 0 .  By 

definition, this means that s E n  * ~ ( 0 ) .  By [AGM7], we have (n * ~ ( 0 ) )  n a LI E * ( ~ ( 0 )  n a. 

But n  * ( ~ ( 0 )  n a = n  o ( 0  a) ,  so it follows that s E P. Therefore n  o 0 C P. 

Suppose that n  0 0 E a and 0 # 0. By definition, n  o 0 = n  * n ~ ( 0 ) .  Since 0 # 0, 
it follows that n  0 ( 0  . a )  = n  * ( 0  ~ ( 0 )  n a). With these equalities in mind, the following 

results prove that [L4*] holds: 

It is clear that [L5*] holds, simply because the assumption that P a implies that 

P = a n P .  
For [L6*], suppose that n  o ( 0  a )  ,8. It follows that a n ,f3 # 0. By definition, this 

means that n  o (0 . a . p) = IE o ( 0  . a . a n p), which is the desired result. 

Since & n a = 0, it follows by definition that n  o ( 0  a )  = n  o ( 0  . & ="; a) .  Clearly this 

entails [L7]. 

Hence, if we do not consider the influence of observations that will occur in the future, 

then belief evolution defines an approach to iterated revision that satisfies the Lehmann 

postulates. 

We conclude with a brief remark about the assumption that a and ,Ll are non-empty in 

Propositions 8 and 9. In both cases, the postulates would not hold if empty observations 

were permitted. In our framework, the empty set represents an inconsistent observation 

and the reason we need to restrict the postulates to non-empty observations is because 

we treat inconsistency in a non-standard manner. The AGM approach, the Darwiche- 

Pearl approach, and the Lehmann approach all allow inconsistent observations to lead to 

inconsistent belief states. By contrast, we discard inconsistent observations and keep the 
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original belief state. The rationale behind our choice has little to do with any underlying 

assumption about inconsistent observations. Instead, the rationale behind our choice is 

based on the assumption that action histories are infallible. This assumption leads us 

to reason as follows. If a sequence of actions A has been executed, then we discard any 

observations that are inconsistent with the effects of A. The motivation behind this approach 

is simply to ensure that action histories take precedence over observation histories. Since 

inconsistent observations are clearly inconsistent with every sequence of actions, it follows 

that inconsistent observations should always be discarded. If A is a sequence of null actions, 

we treat empty observations in the same manner. We accept this treatment of inconsistent 

observations, because it allows inconsistency to be treated in a uniform manner. 

3.6 Comparison with Related Formalisms 

3.6.1 The Scope of Belief Evolution 

The litmus paper problem illustrates that agents sometimes need to revise prior belief states. 

We have described the problem as a belief update followed by a belief revision, and we have 

demonstrated that belief evolution provides a reasonable representation for this particular 

example. However, belief evolution is not necessarily suitable for all problems involving 

update and revision. In order to compare belief evolution with related formalisms, we must 

first delineate the class of problems that are appropriate for belief evolution. 

The class of problems that are appropriate for belief evolution can be described by an 

ordering over action histories. Let All cq,  . . . , A,, a, be an alternating sequence of actions 

and observations. Let + denote a total pre-order over the elements of this sequence. Given 

4, we are interested in giving a natural interpretation to 

The idea is to incorporate as many actions and observations as possible, giving preference 

to events that are ranked low in the +-ordering. Belief evolution is suitable for problems 

in which the underlying ordering is given as follows, for some permutation pl, . . . ,p, of 
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Note that every Ai is minimal, so all ontic actions must be incorporated. This is possible 

since we assume all actions are always executable. After incorporating every ontic action, 

the observations are incorporated as much as possible. 

There are two natural classes of problems that can not be represented by the ordering 

given above. First, there are problems in which observations should be given equal weight. 

Consider, for example, an agent that is trying to determine the temperature by checking n 

digital thermometers. At each time i, the agent takes a reading from one thermometer. In 

this context, belief evolution is not appropriate; the different readings should be combined 

in a manner that gives equal credence to all readings. The second natural class of problems 

that is not representable is the class of problems where observations can be more reliable 

than actions. This is a plausible situation if we think of observations as infallible sensing 

actions. For belief evolution, it is more plausible to think of observations as reports that 

the agent receives from an external source. The external source may represent sensory 

information, but it must be understood that the sensing information is less reliable than the 

action history. 

In Chapter 5, we consider a generalization of belief evolution that makes it possible to 

address both of these classes of problems. However, for the moment, we are interested in the 

relationship between belief evolution and related formalisms for reasoning about epistemic 

action effects. We focus on formalisms where the reliability of actions and observations can 

reasonably be described in the manner outlined above. 

3.6.2 Markovian Formalisms 

Given a belief update operator and a belief revision operator, we tend to associate iterated 

belief change operations as follows: 

This is the implicit approach to iterated belief change caused by actions in Markovian 

action formalisms, such as the epistemic extensions of A. This approach does not capture a 

reasonable preference ordering for litmus-type problems. The belief evolution methodology 
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basically gives a more justifiable way to combine existing belief change operators for this 

kind of problem. 

It  is important to note that belief evolution should not be seen as a formalism in com- 

petition with Markovian formalisms; it should be seen as a methodology for extending 

Markovian formalisms to address iterated belief change. If the revision and update oper- 

ators are given explicitly, the definition of the corresponding belief evolution operator is 

straightforward. This is true even in formalisms where the basic operators are relatively 

sophisticated, such as those defined in the multi-agent belief structures of Herzig, Lang and 

Marquis [44]. In Chapter 4, we illustrate how belief evolution can be applied in the action 

language framework by defining an epistemic extension of A that extends both [68] and [86]. 

3.6.3 The Situation Calculus 

The SitCalc is one action formalism that considers the action history when determining the 

epistemic effects of actions. In this section, we demonstrate that the epistemic extension of 

the SitCalc implicitly defines a belief evolution operator. 

Recall that the epistemic extension of the SitCalc introduces an accessibility relation 

K ,  together with a numerical function pl over situations. Belief is defined by the following 

formula. 

Revision by a sensing action A is defined by the operator * A ,  given by 

We noted previously that this operator satisfies 5 of the AGM postulates [85]. The fact that 

* A  does not satisfy all of the AGM postulates may be seen as a weakness of the approach. 

However, this is only a weakness if we believe that * A  should be a revision operator. We 

suggest instead that it should not be a revision operator. The belief change that occurs 

in this context is the result of an observation that follows a sequence of actions; as such, 

the belief change should be defined by belief evolution. Although * A  is called a revision 

operator, in the remainder of this section we demonstrate that the semantics of * A  is better 

understood through belief evolution. 

First, we demonstrate that * A  is not even a function on belief states. The following 

example demonstrates that computing the result of the sensing action A sometimes requires 
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Figure 3.2: A Transition System 

an agent to consider the action history. 

Example Let Fl and F2 be the only fluent symbols in the language, let A be a sensing 

action for F2, and let B, C be ontic action symbols. Suppose that we have a SitCalc theory 

in which action effects are given by the transition system in Figure 3.2. Suppose further that 

there are 4 initial situations corresponding to each interpretation of {Fl, Fz). In particular, 

define s l ,  s2, s3, s4 as follows: 

The accessibility relation K is an equivalence relation with equivalence classes {sl, s2) and 

is3, s4). The plausibility function pl is defined as follows: 

0 if s = s2 or s = s3 
PW = 

1 otherwise 

We focus on the initial situations s l  and s4. In the situation s l ,  the agent believes that the 

actual situation is s2. As a result, in s l ,  the agent correctly believes that F2 is false and 

erroneously believes that Fl is true. Similarly, in s4, the agent correctly believes that F 2  is 

true and erroneously believes that Fl is false. 

By definition, K,, = {Fl), and K,,  = {F2). It follows that 
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To see this, simply project the beliefs according to the effects of B and C given in the 

transition system. Since n d o ( ~ , s l )  and ndO(cls,) denote the same belief state, given any 

formula q5 and any AGM revision operator *, it follows that 

We will now demonstrate that the revision actions of the SitCalc do not have this property. 

Consider the effects of the sensing action A. Since (sl, so) E K ,  it follows that 

However, note that do(B, sl)  F2 whereas do(B, s2) F2. As a result, according to the 

successor state axiom for A, 

The only state accessible from do([B, A], s l )  is do([B, A], sl) .  It follows that 

By a similar argument, it is easy to see that 

Hence, *A is not a function on belief states; it maps the same belief state to different 

outcomes, depending on the situation that induces the belief state. 

The preceding example illustrates that the so-called revision operators of the SitCalc 

are not revision operators in the AGM sense. The outcome of a sensing action depends not 

only on the fluents that are initially believed, but also on the history of ontic actions that 

have been executed. We propose that it is more natural to view belief change in the SitCalc 

as belief evolution. 

Before proceeding, we need to restrict the class of permissible SitCalc theories. One 

important difference between situations and states is that two distinct situations can satisfy 

the exact same set of fluents. For the purpose of comparison with belief evolution, we would 

like to push this difference aside. In the remainder of this section, we restrict attention to 

SitCalc theories in which the initial situations all correspond to distinct states. 



CHAPTER 3. ITERATED EPISTEMIC ACTION EFFECTS 71 

Let F denote a finite set of fluent symbols and let A = A. U As, where A. is a set of 

ontic action symbols and As is a set of sensing action symbols. Each 0 E As denotes a 

sensing action for some literal Fo. Let 7 be a SitCalc theory for F and A with the property 

that there are 2F initial situations, each of which satisfies a distinct interpretation of F. It 

is clear that this condition can be axiomatized in 7. 

Every situation s can be written in the form 

where A is a sequence of actions and s~ is an initial situation. The state Is is defined to be 

the interpretation satisfying 

Is + F F(s) .  

For any sequence of actions A, define A' to be the minimal alternating sequence of ontic 

actions and sensing actions obtained by inserting null actions into A. Observe that, for any 

s = do(A, sI), we have the following property 

Recall that each sensing action 0 is associated with some sensed fluent Fo. It is con- 

venient for our purposes to also allow the null sensing action A, which is not associated 

with any fluent. We want to translate SitCalc sensing actions into the observations of belief 

evolution. Given a situation s ,  define the observation O(s) as follows: 

The following definition associates a particular world view with the situation do(A, sI). 

Definition 22 Let s = do(A, sI) and let A' be the associated alternating sequence 

Define wv(s) to be the world view (A, 6 )  where 
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Intuitively, wv(s) is obtained by keeping the same sequence of ontic actions and replacing 

each sensing action with the outcome that the action will produce given the initial state sr 

and the action sequence A. 
For any situation s,  let Ks denote the set {x I Ksx}. If sr  is an initial situation, then 

KsI is the set of all initial situations, and we let Kinit denote the set of pl-minimal elements 

of K,,. Recall that we have assumed that the set of initial situations consists of 2F distinct 

situations, each corresponding to a unique state. As such, we can think of Kinit as a set of 

states and we can think of pl as a ranking function on initial states. 

For A E Ao, define o as follows: 

Note that the plausibility function pl induces a system of spheres over the set of states. Given 

a fixed initial situation sr, let S denote the system of spheres over K,, that is centered on 

Kinit. Let * denote the revision operator obtained from S and define o to be the belief 

evolution operator obtained from o and +. We have the following result. 

Proposition 10 Let A be a sequence of actions, let q5 be a formula, and let s = do(A, sr). If 

wv(s) is consistent, then Bel(q5, s) if and only if q5 holds in the final element of Kinit owv(s). 

Proof Let wv(s) = (A, 6 ) .  The final element of Kinit o wv(s) is 

BFinal = Kinit * n arl(Ai) o A. 

Hence BFinal is the set of states s" such that there is some initial state s' satisfying 

2. for all i, s loAi  + ai 

3. pl(sl) is minimal among states satisfying 1 and 2. 

So BFinal + q5 just in case q5 is true in all such states s". Note that, by the successor 

state axiom for K ,  the set Kdo(l,sI) can be obtained from K,, by applying A on a pointwise 

basis, then removing all situations that disagree on some sensing result, and then keep- 

ing only the pl-minimal elements. Since pl values persist following actions, it follows that 

the pl-minimal elements of Rdo(A,sI) are precisely the situations t such that It E BFinal. Cl 
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In the following corollary, if s is a situation with w v ( s )  = (A, &) and 1 is a literal, we let 

w v ( s )  . (A, 1 )  denote the world view (A . A, & 1 ) .  

Corollary 1 Let s be a situation, let q5 be a formula, let 1 be a literal, and let A be a revision 

action for 1 .  If s + 1,  then 

Ks * A  1 I= q5 

i f  and only i f  q5 is t m e  i n  the final belief state of 

Proof Immediate. 

Corollary 1 indicates that the so-called revision operator of the SitCalc actually returns the 

final belief state given by a natural belief evolution operator. 

Viewing * A  as an evolution operator has several advantages. First of all, it makes it clear 

that the history of actions plays a role in the operation. Second, as a revision operator, 

there were plausible arguments against * A  based on the fact that it did not satisfy the AGM 

postulates. However, when viewed as an evolution operator, this is no longer a problem. 

The fact that plausibility values persist following the execution of actions is equivalent to 

restricting belief change by always revising the initial belief state, then determining the 

final belief state by simply computing ontic action effects. Hence, the semantics of revision 

actions is based on the same underlying intuition as the semantics of belief evolution. 

We conclude this section by remarking that belief evolution operators do have one ex- 

pressive advantage over the epistemic extension of the SitCalc. The epistemic extension 

that we have considered makes three important assumptions: ( 1 )  actions and sensing are 

correct, (2) no exogenous actions occur, and ( 3 )  the actual initial situation is considered 

possible. As a result, revising by F followed by 1 F  leads to inconsistency. By contrast, 

in belief evolution, this is simply handled by keeping the more reliable observation. Hence, 

belief evolution is able to deal with unreliable perception in a straightforward manner that 

is not possible in the SitCalc. We remark however, that inconsistent observations have been 

treated in a later extension of the SitCalc postulating exogenous actions to account for 

the inconsistent sensing information [84]. In the generalization of belief evolution that we 

present in chapter 5, it will be possible to resolve inconsistent observations in both ways: 

by eliminating unreliable observations or by postulating exogenous actions. 
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3.7 A Representation Result 

3.7.1 Interact ion Post dates 

We conclude this chapter with a representation result for belief evolution. In this section, 

we demonstrate that belief evolution operators can be characterized by a pair of rationality 

postulates. In the next section, we give an equivalent semantic characterization in terms of 

systems of spheres. 

To simplify the problem, we restrict attention to world views of length 1. In this context, 

there is no need to provide an axiomatic treatment of conflicting observations. Instead we 

can focus on providing a rigorous treatment of the interaction between a single update and 

a single revision. First, we need to delineate a general class of belief change functions, which 

we will then restrict through a pair of rationality postulates. 

Definition 23 A combined belief change opemtor is  a function 

Hence, a combined belief change operator takes a belief state, an action symbol, and an 

observation as input and it returns a new belief state. We are interested in providing a 

characterization of all combined belief change operators that correspond to belief evolution 

operators. 

In the remainder of this section, we abuse our notation as follows. Given a belief evolution 

operator 0, we let 6 o (A, a)  denote the belief state 61 where 

Hence, we take the outcome of belief evolution to be the final belief state in the corresponding 

belief trajectory. Under this new notation, it is reasonable to ask if a particular combined 

belief change operator 6 is a belief evolution operator. This change in notation is justified 

by the fact that, for deterministic actions, o is completely determined by specifying the final 

belief state. 

Note that the definition of a combined belief change operator does not mention any 

particular update operator or any particular revision operator; in the general case, combined 

belief change operators are just arbitrary functions. However, if we are given an update 

operator o and a revision operator *, then it is possible to specify some simple postulates. 

In particular, we have the following. 
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I1 If (2F o A) n a # 0, then ,&(A, a )  = K * a-l(A) o A. 

I2  1f (2F o A) n a = 0, then K ~ ( A ,  a) = K o A. 

We now illustrate that these postulates characterize belief evolution on trajectories of length 

1. 

Proposition 11 Let o be a belief update operator and let * be a belief revision opemtor. 

Then 6 is  the belief evolution opemtor corresponding to o, * zf and only if 6 satisfies I1 and 

12. 

Proof Let 6 be the belief evolution operator corresponding to o and *. If (2= o A) n a # 0, 
then K ~ ( A ,  a) = K * a-l(A) o A by definition. Hence 6 satisfies 11. Suppose, on the other 

hand, that (2FoA)na = 0. In this case &-'(A) = 0. Therefore, K ~ ( A ,  a )  = ~ * 2 ~ o A  = KOA. 

So 6 satisfies 12. 

To prove the converse, suppose that 6 satisfies I1 and 12. Let o be the belief evolution 

operator defined by o and *. Suppose that (2F o A) n a # 0. If follows that 

~ o ( A , a (  = n * a - ' o ~  (since A and a are consistent) 

= ~ o ( A , a )  (by 11) 

Now suppose that (2F o A) n a = 0. 

~ o ( A , a (  = K * ~ ~ O A  (since A and a are not consistent) 

= ~ 6 ( A , a )  (by 12) 

This completes the proof. 

We are interested in fixing a particular transition system T, then characterizing all belief 

evolution operators for T. Proposition 11 gives one simple characterization. Let o be the 

belief update operator corresponding to T. A combined belief change operator 6 is a belief 

evolution operator for o if and only if there is a belief revision operator * such that 6 satisfies 

I1 and 12. In the next section, we give a semantic characterization for the same class of 

operators. 
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3.7.2 Translated Systems of Spheres 

In 91.4.1, we described the Grove characterization of AGM revision operators in terms of 

systems of spheres. In this section, we prove a representation result for belief evolution 

in terms of translated systems of spheres. Throughout this section, we assume a fixed 

transition system T defining an update operator o. 

Definition 24 If S is a system of spheres centered on n and A is an action, then define 

Note that S o A is not generally a system of spheres: condition S3 may fail because S o A 

need not contain 2F.  However, it is easy to verify that S o A satisfies conditions Sl, S2 

and S4 with minimum element n o A. We remark that we could modify the definition of 

S o A by adding an additional sphere containing all states, thereby guaranteeing the truth 

of condition S3. We do not take this step, however, because we want S o A to explicitly 

exclude states that are not possible outcomes of the action A. 

Let S be a system of spheres 

function fSoA as follows: 

centered on n and let A be an action symbol. Define the 

n s 0  if ( 2 F ~ A ) n a f 0  

n o A  otherwise. 

As in the case of true systems of spheres, csOA(a) is the least sphere in S o A intersecting 

a. We can associate an operator 6 with S as follows: 

We will prove that the class of functions definable in this manner coincides exactly with 

the class of belief evolution operators. The following lemma is a useful tool. Informally, it 

states that the least sphere intersecting a in S o A can be determined by finding the least 

sphere intersecting &-'(A) in S, and then applying A. 

Lemma 1 Let S be a system of spheres centered on n. For any action A and any observa- 

tion a,  zf (2F o A) n a f 0 then 
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Proof Suppose that s E cSOA(a), so s = t o A for some state t .  Towards a contradiction, 

suppose that t $! cs(a-l (A)). Then there is some sphere S E S such that S fl a - I  (A) # 0 
and t $! S. But then S o A n cu # 0 and t o A $! S o A. This contradicts the fact that 

s E cSoA(a), because csOA(a) is the least sphere in S o A intersecting a. The converse is 

similar. 

We now prove that every translated system of spheres defines a belief evolution operator. 

Proposition 12 Let S be a system of spheres centered on K and let 6 be the combined belief 

change operator defined by S .  Then there is an AGM revision operator * such that o satisfies 

I1 and I2 for * and o. 

Proof Let A be an action and let a be an observation. We need to define a revision 

operator. For any observation p, define * as follows 

By Grove's representation result [39], * is an AGM revision operator. We will prove that 6 

satisfies I1 and I2 with respect to *. 
Suppose that (2F o A) n a # 0, so 

n6 (A, a )  = cu n cSoA (a) .  

We remark that, by definition, 

a = a-'(A) O A .  

By Lemma 1, 

c s o ~  (a)  = cs (a-I ( A ) )  0 A. 

Therefore 

n6 (A, a )  = [ a - ' ( ~ )  o A] n [cs (a-' (A)) o A] 

= [ a - l ( A ) n ~ ~ ( a - l ( ~ ) ) ] ~ A  

By definition of *, we have lc * a-'(A) = a-'(A) n cs (a-I (A)). I t  follows that 

lc6(A, a )  = (K * a - I  (A)) o A 
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which proves that I1 holds. 

If (2F o A) n a = 0, then by definition: 

Hence I2 is satisfied. 

We now prove the converse. 

Proposition 13 Let b be an operator satisfying I1 and I2 for some AGM revision function 

*. Then for any fixed belief state K ,  there is a system of spheres S centered on r; such that 

r;6(A, a)  = fSoA(a) for all A and a. 

Proof By Grove's representation result, there is a system of spheres S centered on K such 

that 

r; * a = fs(a) 

for all a. Fix a particular a and let A be an action symbol. Suppose that (2F o A) fl a # 0. 
So, by 12: 

r;6(A, a )  = K * &-'(A) o A. 

By definition of *, this is equal to 

Replacing the f s  term by its value, we get 

Distributing the update by A, we get 

[a-' (A)  o A] n [cs (a-' (A) )  o A]. 

By simplifying and applying Lemma 1, this gives 

which is what we wanted to show. 
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Now suppose that a (2F o A) n a = 0 then, 

~ b ( A , a )  = K O A  (by 11) 

= fsoA(a) (by definition) 

This completes the proof. 0 

Hence, the class of belief evolution operators corresponds exactly with the class of func- 

tions defined by translated systems of spheres. We remark that our representation result 

is essentially a corollary of Grove's representation result for AGM revision. It would be 

straightforward to modify the representation result to allow multiple updates followed by a 

single revision: the initial system of spheres would simply be translated by several actions 

successively. 

3.7.3 Non-Determinist ic Action Effects 

To this point, we have restricted attention to transition systems defining actions with de- 

terministic effects. In this section, we look briefly at non-deterministic action effects and 

illustrate that translated systems of spheres can inform our treatment of belief change in 

this setting. 

Note that the definition of o is not restricted to deterministic transition systems. If an 

action A has non-deterministic effects in a transition system T ,  then K o A is still the set of 

all s' such that (s, A, s') is in T. As such, the set K o A may be strictly larger than K. We 

introduce a problematic example. 

Example Consider an action domain involving a single action toggle and two fluents 

LampOn, FuseBroken. The effects of the toggle action are given by the transition system 

in Figure 3.3. Note that the effects are non-deterministic, because toggling the switch from 

the empty interpretation may either cause the lamp to turn on, or it may cause the fuse to 

break. 

Now suppose that an agent believes the lamp is off and the fuse is unbroken. After 

toggling the switch, the agent observes that the lamp is still off. Formally, we need to 

determine K o (A, a) where 
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{Lamp On) 

toggle toggle 1 I 
0 a {FuseBroken) 

Figure 3.3: The Lamp Domain 

A = toggle 

a = (0, {FuseBroken)). 

The final belief state is given by 

fi c.* &-'(A) o (A) = 0 oA. 

According to the non-deterministic effects of the toggle action, the final belief state is 

{ {LampOn), {FuseBroken)). 

Clearly the preceding example does not give the appropriate result. The agent observes 

that the lamp is still off, yet {LampOn) is in the belief state. The problem is that the action 

effects are carried out after the revision, despite the fact that the observation a has given 

the agent information about which effect to choose. However, this problem only arises if we 

use the syntactic definition of belief evolution. If we consider the same example, and we let 

6 denote the combined belief change operator obtained from o and a system of spheres S ,  

then we get the following result: 

fi6(A, a) = fSoA(a) = {FuseBroken). 

This example illustrates that the systems of spheres approach actually provides a better 

model of belief evolution in action domains involving non-deterministic actions. The problem 

with the syntactic definition of belief evolution is the following: observations are simply 

treated as new information about the initial belief state. If action effects are deterministic, 

this is a fair treatment of observations. However, if action effects are non-deterministic, 

then observations can serve a second purpose. In particular, observations help an agent 
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determine which effect has occurred after an action is executed. The systems of spheres 

approach to belief evolution is able to capture both interpretations of an observation. 



Chapter 4 

Applications of Belief Evolution 

In this chapter, we look at some applications of belief evolution. First, we introduce a 

modal extension of the action language A and we define a semantics for the new action 

language in terms of belief evolution. We prove that the resulting action language is strictly 

more expressive than existing epistemic extensions of A, and that it is able to give compact 

representations of action domains involving sensing actions. Since the effects of actions are 

given by belief evolution, the interaction between sensing actions and non-sensing actions is 

satisfactory from the perspective of the properties PI-P5. 

The second application that we consider is the development of a solver for belief evolution 

based on the techniques of answer set planning. Towards this end, we introduce a topological 

revision operator in which revision can be reduced to path finding in a transition system. 

We illustrate that belief evolution under this revision operator can be computed by finding 

minimal length paths in a transition system. As such, if the underlying transition system is 

given by an action description in the action language A, then we can use existing translations 

into answer set programming to compute the result of belief evolution. We describe a high- 

level procedure that can be used to determine the final belief state when an action is followed 

by an observation. This procedure can be applied to solve simple projection problems in 

the epistemic extension of A. 

The final application that we consider is the verification of cryptographic protocols. The 

general verification problem is beyond the scope of our formalism, because it involves the 

beliefs of multiple agents. However, we can use belief evolution operators to formalize how 

agents reason about so-called authentication tests, which are a common component of many 

authentication protocols. 
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4.1 A Modal Action Language 

4.1.1 Motivation 

The action language A is a simple high-level language for reasoning about the effects of 

actions. The basic language is suitable only for simple action domains, but it has been 

extended several times to address a wide range of problems [5, 61. In this section, we 

illustrate that it is possible to increase the representational power of A without changing 

the action language itself. Instead, we look at extending the underlying propositional logic 

by adding modal operators. We consider the expressive power of the modal extension, and 

compare the framework with related work on epistemic extensions of A. 

As indicated in Chapter 1, there have been previous extensions of A that address knowl- 

edge by introducing new propositions for representing the effects of sensing actions [68, 861. 

Basically these approaches focus on modeling dynamic knowledge about atomic facts. Lobo 

et. al. acknowledge that there are some situations in which a modal approach would be ad- 

vantageous. For example, they suggest that a modal approach may provide a more natural 

framework for modeling situations in which introspective agents need to perform checks on 

the current knowledge state. 

We suggest that adding a modal operator to A has some practical advantages over alter- 

native approaches to the representation of knowledge or belief. In particular, by adding a 

modal operator, we obtain an action language that is immediately familiar and comprehen- 

sible to those with an elementary knowledge of modal logic. Moreover, using a modal oper- 

ator is a natural way to represent nested beliefs in a multi-agent environment. Representing 

nested beliefs is important for some important application domains, such as cryptographic 

protocol verification [13]. 

For the present purpose, the most important feature of our epistemic extension of A 

is that the semantics respects the non-elementary interaction of revision and update. By 

contrast, existing epistemic extensions of A do not consider the influence that action histories 

may have on the epistemic effects of sensing actions. 

4.1.2 Syntax 

Let A be a fixed set of action symbols, let F be a fixed set of fluent symbols, and let C be 

the language of propositional modal logic over F with a single unary modal operator 0. In 
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this section, we give the syntax of a new action language An. To be precise, A g  is actually 

an action description language in the terminology of Lifschitz [64]. 

We want to extend A minimally to allow modal action effects. We remark that action 

effects in A are always literals; this restriction allows us to avoid dealing with disjunctive 

effects in the semantics. We will ensure that disjunctive modal effects are also prevented. 

Definition 25 A proposition of Ag is an expression of the form 

A causes q5 i f  Fl A . . . A Fp 

where A E A, each Fi is a literal, and q5 is either a literal or a formula of the f o r n  O$ for 

some non-modal formula $. 

Notice that $ need not be a literal; any non-modal formula can appear under the scope of 

a single Cl. 

It is convenient to make the simplifying restriction that actions have either modal ef- 

fects or non-modal effects, but not both. As such, we only allow action descriptions with the 

property that no action symbol occurs with both modal and non-modal effects. Restrict- 

ing action descriptions in this manner simplifies the discussion without severely limiting 

expressive power. Since we are interested in an epistemic modality, it is natural to think of 

propositions of the form 

0 causes Oq5 if Fl A . , A Fp 

as descriptions of sensing action effects. We use the terms sensing action and non-sensing 

action to refer to actions with modal and non-modal effects, respectively. The symbol 0 

will range over sensing actions and the symbol A will range over non-sensing actions. 

4.1.3 Epistemic Semantics 

The semantics of An is defined by associating a transition function QAD with every action 

description AD. We have previously proposed a generic modal semantics for An [45], but 

that approach is not appropriate for belief change. The problem with the generic semantics 

is that there is no underlying similarity relation on states, so the treatment of fallible initial 

beliefs is unsatisfactory. In this section, we present a new semantics for A g  that is intended 

specifically for belief change with respect to a fixed AGM revision operator. We define the 

new semantics in terms of belief evolution in order to ensure that the interaction between 

revision and update is handled appropriately. 
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Intuitively, we would like aAD to take a belief state and an action sequence as arguments, 

and we would like it to return a new belief state. However, the effects of actions in do may 

have preconditions that depend on some distinguished "actual world." As such, we need to 

define @ A D  with respect to pointed belief states. 

Definition 26 A pointed belief state is a pair (s, K) where s is a state and K is a non-empty 

belief state. If s E K, then (s, K) is a pointed knowledge state. 

In the pointed belief state (s, K), s represents the actual state of the world and K represents 

the set of states that the underlying agent believes to be possible. Pointed belief states 

define an entailment relation for modal logic through a standard recursive definition. The 

key points of the definition are as follows. 

For any fluent symbol F, (s, K) F s F .  

For any formula 4, (s, K) 'F 0 4  e (s', K) + 4 for every s' E 6. 

Negations and conjunctions are defined in the usual way. We remark that this semantics 

is equivalent to the modal logic KD45, which is the standard modal logic of belief. If we 

restrict attention to pointed knowledge states then we have KT5, which is the standard 

modal logic of knowledge. 

We need to introduce some notation. Let 0 be a sensing action and let s be a state. 

Define EFF(0 ,  s) to be the conjunction of every formula 4 that occurs in a proposition of 

the form 

0 causes 04 if Fl A . - . A Fp 

where s Fl A A Fp. Define O[s] to be the set of all models of EFF(0 ,  s). Using this 

notation, we can associate world views with sequences of action symbols. 

Definition 27 Let s be a state and let Acts = (A1, O1,. . . ,A,, 0,) be an alternating se- 

quence of non-sensing and sensing actions. Define view(s, Acts) = (A,  6) where 

1. A =  (Al, . . .  A,) 

So view(s, Acts) is obtained by computing the sensing action effects at each time i, given 

that s is the initial world and the actions Al, . . . , Ai have been executed. We remark that 
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view(s, Acts) can be extended to non-alternating action sequences as well. Basically, if Acts 

is a non-alternating sequence of actions, then we let Actsf denote the shortest alternating 

sequence that can be obtained from Acts by inserting null actions. Given this extended 

sequence, we define view(s, Acts) = view(s, Acts'). The details are straightforward. 

We are now in a position to  define the semantics of do. Note that, for any action 

description AD, the non-modal portion of AD describes a transition system T which in 

turn defines an update operator o. We refer to  o as the update operator defined by AD. 

The following definition assumes a fixed underlying revision operator *. 

Definition 28 Let AD be an action description, let o be the update operator defined by AD 

and let o be the belief evolution operator obtained from o and *. For every pointed belief 

state (s, n) and every sequence Acts = (A1, 01,. . . ,An, On), define 

GAD((s, n), Acts) = (s', 6') 

where 

2. nf is the final belief state in n o view(s, Acts). 

Hence, the transition relation associated with AD returns a new pointed belief state. The 

new actual world is obtained by updating s by the non-sensing actions in Acts. The new 

belief state is obtained by belief evolution. 

Again, the definition of QAD can be extended to arbitrary action sequences by inserting 

a minimal number of null actions. Under this convention, the content of Definition 28 for 

action sequences of length 1 is as follows. 

1. For a non-sensing action A: GAD ((st n) , A) = (s o A, n o A). 

2. For asensingaction 0: GAD((s,n),O) = (s ,n*O[s]) .  

The following example illustrates how to apply the definition in the context of a single 

action. 

Example We represent a domain with a single agent inside a room with a window. Looking 

out the window allows the agent to determine if it is raining or not. This can be represented 
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by the action description AD containing the following propositions. 

Lookout Window causes U(Rain)  if Rain 

LookOutWindow causes U(7Rain)  if -.Rain. 

Suppose that s is a state with s + Rain and let WT denote the set of states in which Rain 

is true. 

By definition, Lookout Window [s] = WT. Given any belief state K, we have 

QAD((s ,  K),  Lookout Window) = ( s ,  6 * WT). 

If K 5 Wr, then we have belief expansion and we simply take the intersection. If KT) WT = 0, 
then the agent erroneously believed it was not raining initially, so we have belief revision. 

Note that the preceding example only involves propositions of a particular form: 

0 causes Uq5 if q5. 

Observations of this form can be understood to represent reliable observations. More gen- 

erally, we have the following definition. 

Definition 29 A n  action description AD is reliable i f  Fl A - - . A F !  4 for every modal 

effect proposition in AD with the form 

0 causes 174 if Fl A . . A Fp. 

Reliable action descriptions have the following property: if a sensing action A causes an 

agent to believe 4, then 4 must hold in the actual state. 

Clearly, the action description in the rain example is reliable. By contrast, the action 

description would not be reliable if it contained the proposition 

Lookout Window causes U(Rain) .  

This proposition asserts that looking out the window causes the agent to believe it is raining, 

whether or not it is actually raining. 

The following proposition formalizes the fact that reliable observations lead to reasonable 

conclusions. 
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Proposition 14 Let AD be a reliable action description and let (s, K) be a pointed knowl- 

edge state. For any action sequence Acts, it follows that GAD((s, ~ ) , A c t s )  is a pointed 

knowledge state. 

Proof Assume without loss of generality that Acts = (A1, 01, . . . , A,, 0,). Let 

view(s, Acts) = (A, s), 

and let 

aAD((s, K) ,  Acts) = (st, 6') 

We need to show that s' E K!. Equivalently, we need to show that s o Al o . o A, is in the 

final belief state in n o (A,  5) .  

Since AD is reliable, it follows that t E O[t] for any state t and any sensing action 0. 

Hence, for all i, we have s o  Ai E ai. But then 

Since s E n, it follows that 

s E n * ncx~'(~~) 
i 

is the initial belief state in the belief evolution n o (A, &). Therefore, s o Al o . . . o A, is in 

the final state. 

Hence, if an agent has correct knowledge of the world, then the conclusions drawn from 

reliable observations must also be correct. Reliable action descriptions can be understood 

to describe infallible sensing actions. 

4.1.4 Representing Existing Epistemic Act ion Languages 

In Chapter 1, we briefly outlined two epistemic extensions of d that have been proposed in 

the literature[68,86]. In this section, we demonstrate that do subsumes both of these exten- 

sions. In the next section, we will show that An is able to represent some problems that are 

not representable in these existing action languages, which indicates that the subsumption 

is strict. 

Let 0 be a sensing action. Recall from Chapter 1 that dB is the language obtained by 

extending A with propositions of the form 

0 determines F. 
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The semantics is defined in terms of pointed belief states. In particular, for sensing actions, 

is defined such that 

@:D((S, 4 1 0 )  = (6 4 
if and only if s' = s and K' is the subset of n that agrees with s on the truth value assigned 

to F. 

We define a translation G from dB to do. Given AD, we construct a(AD) by replacing 

each proposition of the form 

0 determines F 

with two propositions 

0 causes OF if F  

0 causes O l F  if 1F 

We have the following result. 

Proposition 15 Let AD be a set of dB propositions, let 0 be a sensing action and let 

{s, 6) be a pointed knowledge state. Then @zD((s, K), 0 )  = ((s, n), 0 ) .  

Proof Let F be a fluent symbol that occurs in AD in a proposition of the form 

0 determines F  

If s + F, then it follows that O[s] is the set of interpretations I such that I F.  Hence, 

By the symmetry of a(AD), we get t 

(s, f-l Obi) 

(s, K * 0 [s]) [since n n 0 [s] # 01 

 AD) ((s, K), O) 

;he same result if s 1 F .  0 

We remark that Proposition 15 does not hold for pointed belief states in general. The 

underlying assumption in dB is that the agent's knowledge is correct, but incomplete. This 

assumption is captured by restricting attention to pointed knowledge states. 
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The translation from AL to An is similar. The main difference is that AL allows sensing 

actions with conditional effects. Let 0 be a sensing action that occurs in a proposition of 

the form 

0 causes to know F if P. 

The semantics of AL specifies that @iD(tc, 0, K') just in case K' is non-empty and is defined 

by one of the following conditions: 

1. { s € n ) s k F ~ P )  

2. { s € n I s k l F ~ P )  

3. { s  E K I S k 1P) .  

Again, there is an underlying assumption that knowledge is correct in AL representations. 

This is embodied in the semantics by restricting the outcome of a sensing action to be a 1 
non-empty subset of the initial belief state. Note that we have simplified the discussion 

by defining the semantics in terms of belief states, whereas the original semantics involves 

sets of belief states. This is not a significant simplification; the translation that we provide / 
below could easily be reformulated to deal with sets of belief states. We remark also that 

we have only considered the deterministic portion of AL. Ontic action effects in Ag  are 

given by standard A propositions, so we are not able to represent non-deterministic effects. 

We now give the translation from AL to An. Let AD be an action description in AL. The 

An action description T(AD)  is obtained from AD by replacing every sensing proposition 

with potential sensing effect F and knowledge precondition P by the following propositions: 

0 causes U(F A P )  if F A P  

0 causes O(1F A P )  if 1 F  A P  I 
0 causes U l P  if 1P. 

The following proposition illustrates the correspondence with d o .  

Proposition 16 Let AD be an AL action description, let 0 be a sensing action i n  AD 

and let K be a belief state. Then @iD(6, 0, K!) if and only if there i s  some s E K, such that 

@ T ( A D )  ( ( ~ 7  4 , 0) = (s, 4. 
Proof Let q5 be an arbitrary formula. With respect to T(AD) ,  we make the following 

observations. 
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1. If s )= F A  P then O[s] = IF A PI. 

2. I f s  k 1 F A P  thenO[s] = ITFAPI. 

3. If s k 1P then O[s] = ITPI. 

Suppose that @iD(u;, 0, K'), so there are three possible definitions for K'. Consider the case 

where K' = {s E K I s k F A P). Since K' # 0, it follows that there is some s E K such that 

s + F A  P. But then 

The same argument holds for the other two possibilities for r;'. 

The converse holds because every s E K must satisfy exactly one of the formulas F A P, 

1F A P, and 1P. 0 

Note that AL differs from dB and An in that there is no distinguished state representing 

the actual world. Proposition 16 illustrates that AL action descriptions are interpreted 

disjunctively, by determining all possible outcomes K' under the assumption that the actual 

world is in r;. 

4.1.5 Increased Expressive Power 

We have illustrated that dB and the deterministic portion of AL can be naturally embedded 

in the language An. In this section, we revisit two previous examples to illustrate that An 
is actually more expressive. 

Both dB and AL are intended to be used for action domains where the initial belief 

state is correct and every observation is reliable. By definition, for any sensing action 0 

and any action description AD, it is the case that @iD((s ,  K ) ,  0) = (s, 6') implies K' C r;. 

This property states that the belief state following a sensing action is always a subset of the 

initial belief state. The same property holds for @iD. 
By contrast, consider the earlier example in which an agent may look out the window 

to determine if it is raining or not. Suppose that the initial belief state is the set of all 

non-raining worlds, but the actual state s is in the set W, of raining worlds. Intuitively, 
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after looking out the window, the new belief state should be a non-empty subset of W,. 

However, due to the property mentioned above, this can not be the case in dB or dL. We 

have already seen that this problem can be represented in do. 
It would be relatively straightforward to modify dB or AL to allow incorrect beliefs. For 

example, AB could be extended by allowing pointed belief states (s, K) where s @ K, and 

propositions of the form 

0 determines F 

could be replaced by propositions of the form 

0 determines F is (true/ f alse). 

However, if the effects of sensing and non-sensing actions are simply performed succes- 

sively, then the resulting language will still give an unsatisfactory treatment of litmus-type 

problems. The advantage of do is that the semantics is based on belief evolution, so the 

interaction between update and revision can be non-elementary. We illustrate by revisiting 

the litmus paper problem. We have already seen that the belief change that occurs in the 

litmus paper problem can not be captured by determining the effects of dipping and looking 

at the paper in succession. Hence, neither dB nor AL provides a suitable representation of 

this problem. 

Example (revisited) Consider the extended litmus paper example. This domain can be 

represented by the action description AD containing the following propositions. 

dip causes Red if Litmus A Acid 

dip causes Blue if Litmus A  acid 

look causes ORed if Red 

look causes OBlue if Blue 

Suppose that the actual state is s = 0, so the paper is not litmus paper and the beaker 

contains a base. As previously, the initial belief state is 

K = {{Litmus), {Litmus, Acid)). 

If the agent dips the paper and then observes that it is still white, then the new belief state 

is given by 

 AD((^, K), (dip, look)) = (0, K') 
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where IS' is the final belief state in K o (dip, look). If we use the Hamming distance to define 

the underlying revision operator then we get the final belief state (0, {Acid)), which we 

have previously suggested is the intuitively correct solution. 

The litmus paper example is just one natural action domain in which the interaction 

between sensing effects and non-sensing effects must be considered. Of the three epistemic 

action languages we have considered, An is the only one that respects the interaction prop- 

erties PI-P5. 

4.2 Implementing a Belief Evolution Solver 

In this section, we are interested in illustrating how we can implement a belief evolution 

solver by translating into answer set programming. Rather than assuming an underlying 

transition system T, we assume an underlying action description in A. Starting with an 

action description is convenient, since it allows us to base our work on existing translations 

into logic programming. 

We proceed as follows. First, we define a revision operator based on path length. Next, 

we introduce an informal procedure that can be used to solve belief evolution problems 

with respect to this operator. We then present a translation from A action descriptions 

to extended logic programs, where answer sets correspond to solutions to belief evolution 

problems. The results in this section are intended as a simple proof of concept, and we do 

not focus on the details of the proposed implementation. 

4.2.1 Topological Revision Operators 

We introduce a new class of AGM revision operators that is defined in terms of path length 

in a transition system. Let T = (S, R) be a transition system, and let rc S. Assume that 

every state in S is accessible by a finite path from K .  Let Si be the set of all states in S 

that are reachable from rc by a path of length at most i. Let ST = {Si I 0 5 i) .  It is easy 

to demonstrate that ST is a system of spheres centered on K.  Let *T denote the revision 

operator defined by ST; we refer to this as the topological revision operator defined by T .  

Example Suppose that an agent has 10 marbles labeled with the digits 0-9 along with 

a bag that may hold any number of marbles. Marbles may be added or removed from the 
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bag, one at a time. Initially, the agent believes that the bag contains marbles 0 4 .  However, 

after weighing the bag, the agent comes to believe that the bag contains 7 marbles. We can 

represent the appropriate belief change in this context in terms of a transition system and 

a topological revision operator. 

For each marble i, there are two actions: Add(i) and Remove(i). There are 10 fluent 

symbols InBag(i) indicating if marble i is in the bag or not. The transition system T giving 

the action effects is the transition system described by the action description containing the 

following propositions for each i 5 9: 

Add ( i )  causes InBag ( i )  

Remove ( i )  causes 4nBag ( i )  . 

The initial belief state n is the singleton set {so) where so is the state satisfying the following 

condition: 

so + InBag(i) a 0 5 i 5 4. 

The observation that the bag contains 7 marbles is represented by the set of worlds a where 

s E a if and only if s + InBag(i) for exactly 7 distinct values of i .  

To determine n *T a,  we need to identify which worlds in cu are reachable from n by a 

minimal length path. It is clear that the shortest path from n to cr is obtained by performing 

2 adding actions. Hence n *T a is the set of states s such that s InBag(i) for every i <_ 4 

and for exactly 2 values of i > 4. 

Under the topological revision operator *T, the degree of similarity between two states 

is given by the number of actions required to get from one to the other. Revision by 

cu essentially involves postulating a minimal sequence of initial actions that explain the 

observation a. As such, topological revision operators are useful for action domains in 

which an agent cannot be certain about the exogenous actions that have occurred at an 

earlier point in time. One nice feature of this approach is that the revision operator is 

defined by the transition system; we do not require any independent notion of similarity. 

Also, there is a straightforward extension of topological revision in which we can represent 

the plausibility of actions by assigning weights to edges in the transition system. We do not 

require such an extension for our present purposes. 



CHAPTER 4. APPLICATIONS O F  BELIEF EVOLUTION 

shortest path 
C-- ... t- 

Figure 4.1: Visualizing Topological Evolution 

4.2.2 Belief Evolution Under Topological Revision 

In this section, we illustrate that belief evolution under topological revision can be reduced 

to finding shortest paths in the underlying transition system. We start by considering 

trajectories of length 1. Let 6 denote a belief state, let A denote an action symbol, and let 

cr denote an observation. We are interested in determining 

Recall that, informally, this corresponds to the iterated belief change noA*a  and it is given 

by the following belief trajectory 

Figure 4.1 illustrates how this is calculated with the topological revision function. The 

figure shows a large box representing a-'(A); these are the states that can reach a by 

executing the action A. The circle inside cu-l(A) represents the subset that is minimally 

distant from n, which in this context means the elements that can be reached from n by a 

minimal length path. In other words, the circle inside a-'(A) represents K * a-'(A). This 

gives a simple procedure for computing n o ((A), (a ) ) .  
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1. Determine a-'(A). 

2. Let PATH denote the set of shortest paths from K to a-'(A). 

3. Let KO be the set of terminal nodes on paths in PATH.  

4. Let nl = no o A. 

Clearly K o ((A), (a ) )  = (no, nl). Hence, this procedure allows us to  compute the outcome 

of belief evolution for trajectories of length 1. 

If we consider action trajectories and observation trajectories of fixed finite length, the 

procedure can be generalized as follows. Let A be an action trajectory of length n and let 

Ci be an observation trajectory of length n. 

1. Determine CXPRE = ni a ~ ' ( ~ 1 ,  . . . , Ai)- 

2. Let P A T H  denote the set of shortest paths from n to apRE.  

3. Let r;o be the set of terminal nodes on paths in PATH. 

4. For i 1 1, ni = K O O A ~  o .. . Ai. 

Steps 1, 3 and 4 are straightforward. In order to  implement a solver for belief evolution 

under topological revision, we need some mechanism for determining the set of shortest 

paths from n to CYPRE. 

4.2.3 Translation to Answer Set Programming 

We have seen that solving belief evolution problems under topological revision involves path- 

finding in the underlying transition system. We illustrate how this process can be automated 

by using the techniques of answer set planning. Answer set planning refers to the approach 

to planning in which a problem is translated into a logic program where the answer sets 

correspond to plans [66]. Many action languages have been translated into extended logic 

programs for answer set planning. We demonstrate how one existing translation can be 

modified for our purposes. 

We need a translation from A-descriptions to extended logic programs. Our translation 

from A is obtained by modifying a well known translation from C [66]. Let AD be an action 

description in the action language A. For any natural number n, we define an associated 
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logic program rn(AD) with the property that answer sets for r,(AD) correspond to paths 

of length n in the transition system T described by AD. The language of rn(AD)  consists 

of two disjoint classes of atoms, defined as follows. For each i 5 n and each F E F, the 

language of rn(AD) contains an atom F(i ) .  For each i < n and each A E A, the language of 

rn(AD) contains an atom A(i) .  The logic program rn(AD)  consists of the following rules: 

1. for every proposition of the form 

A causes F if Fl A - - A Fp 

in AD, the rules 

F ( i  + 1) + A(z), Fl( i ) ,  . . . , Fp(i) 

for every i < n 

2. the rules 

1 B  + not B 

B t not 1 B  

where B is either an action atom or B is F(0) for some fluent F 

3. the rules 

F ( i  + 1) + not l F ( i  + I ) ,  F ( i )  

l F ( i  + 1) + not F ( i  + I ) ,  l F ( i )  

for every fluent symbol F and i < n 

4. the rules 

l A l  (i) +- A2( i )  

for every i < n and every pair of distinct action symbols Al ,  A2. 

The first two sets of rules are taken directly from Lifschitz and Turner's translation of C[66]. 

The set of rules given by (1) encodes the effects of actions and the set of rules given by (2) 

forces exactly one of each complementary pair B ,  1 B  to be true. The rules given by (3) 

and (4)  have been added to capture the distinct features of A. In particular, (3) states that 

all fluents are inertial, and (4) states that at  most one action occurs at each point in time. 

The following proposition restates Lifschitz and Turner's main result for our translation. 
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Proposition 17 A complete set X i s  an answer set for T,(AD) i f  and only if it has the 

for some path (so, Ao, sl, . . . , An-1, s,) i n  the transition system described by AD. 

Proof It is sufficient to note that d is equivalent to the restriction of C in which there 

are no static laws, every fluent is inertial, and actions are non-concurrent. The result then 

follows from the main result of [66]. 

Hence every answer set for T,(AD) corresponds to a path in the transition system. 

For the purpose of planning, it is useful to add a few rules to rn(AD) that restrict the 

admissible answer sets. In particular, we would like to introduce a formula K representing 

the initial beliefs of an agent. In order to simplify the discussion, we restrict 

conjunction of literals. Let K be the following conjunction of literals: 

K = K1 A ... A K p  

We can now extend the translation rn SO that it takes two arguments: an action 

AD and a formula K. Define T,(AD, K)  to be the logic program obtained by 

following rules to rn(AD): 

Kl(O), - - .  , KP(0) 

K to be a 

description 

adding the 

It is easy to see that the answer sets for T,(AD, K )  correspond to all paths of length n 

which start in a state where K is true. 

We need to make two assumptions about the underlying action signature AD. First, we 

assume that the associated transition system T has the property that every state in T is 

reachable from every other state. Second, for any literal L, we assume that there is at most 

one proposition in AD of the form 

A causes L if Fl A .. . A Fp. 

This assumption rules out the so-called similar propositions defined in [33] and it facilitates 

the specification of effect preconditions. 

Let o denote the update operator defined by AD, let * denote the corresponding topo- 

logical revision operator, and let o denote the corresponding belief evolution operator. Let 
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K be a conjunction of literals representing the initial belief state, let A be an action symbol 

and let L be a literal representing an observation. We are interested in using answer sets to 

determine the final belief state in the following belief evolution: 

Note that, as a special case, we also get a solver for topological belief revision. 

We need to introduce some notation. For any literal L ,  if L occurs in a proposition of 

the form 

A causes L if Fl A .  - A Fp, 

then define PRE(A, L)  = Fl A . . -  A Fp, and define PRE(A, L )  = I otherwise. Hence 

PRE(A, L)  is a formula with the property that, if PRE(A, L) is true then L will be true 

after executing A. Let denote the complementary literal to L. It follows that PRE (A, z) 
is a formula with the property that, if PRE(A, z) is true then L will be false after executing 

A. 

Proposition 18 Let AD be an A action description with corresponding update operator o. 

If s is a state in the transition system defined by  AD, L is a literal, and A is an action 

symbol, then 

s o A  + L * s + PRE(A, L) v (LA PRE(A, z)). 
Proof Follows from the semantics of A, since every fluent is inertial. 0 

Using the notation introduced in the definition of belief evolution, Proposition 18 states 

that 

l~ l - l (A)  = JPRE(A, L) V ( L A  PRE(A, L))] .  

We are now in a position to give a basic procedure for the implementation of a belief 

evolution solver. We define the procedure informally. 

evol(K,A,f) 

Inputs:  K E A Lits, A E A, L E Lits 

Output :  (KO, K1) E 2' X 2F 

Procedure: 

1. Set n = 1. 

2. Determine all answer sets for r,(AD, K ) .  

3. Let PATH be the corresponding set of paths. 
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4. Remove all paths where the final state fails to satisfy PRE(A, L) V (LA PRE(A, x)). 

(a) If P A T H  = 0, set n = n + 1 and goto 2. 

(b) If P A T H  # 0, then continue. 

5. Let r ; ~  denote the set of final states in PATH. 

6. Let 61 = {so A I s E KO). 

7. Return (Q, K ~ ) .  

We prove a correctness result. 

Proposition 19 If K i s  a conjunction of literals, A E A, and L E Lits, then evol(K, A, L) = 

IKI (A1 ILI). 

Proof  It is sufficient to show that KO = J K J  * I ~ 1 - I  (A). 

The answer sets of r,(AD, K )  correspond to paths of length n starting at K-states. Let 

n be the smallest natural number such that PATH is non-empty. So n is the length of 

the shortest path from (KI to IPRE(A, L) V (L A PRE(A, L)I. Therefore, PATH is the 

collection of minimal length paths from I K )  to JLI-I (A). This means that the elements of 

KO are precisely the states in JLJ-'(A) that can be reached from IKI by a minimal length 

path. Equivalently, r;o = JKI * ILJ-I(A). 

Hence, we have given a procedure that returns the result of belief evolution under some 

restrictive conditions. There are two computational problems that need to be addressed in 

the procedure. First, we need to find all answer sets for a given logic program at step 2; this 

can be accomplished by using an existing answer set solver such as smodels [77] or DLV [26]. 

The second computational task involves checking if each final state entails ILI-~(A). We 

remark that the second task could be avoided by moving to disjunctive logic programming, 

because PRE(A, E )  can be expressed by employing a disjunctive rule. The main limitation 

of our approach is that it fixes a specific revision operator based on path length. 

We have only considered the case where the observation is given by a literal L. This 

restriction allows us to use the propositions in AD to give a relatively simple characterization 

of (LI-'(A). However, in principle, our procedure will work for observations given by any 

formula. In particular, given a state s and a formula 4, let 4(s) denote the conjunction of 

every fluent that is true in s together with the negation of every fluent that is false in s. It 
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is easy to see that (4I-'(A) can be defined as follows: 

However, unless the underlying transition system is very small, this approach will not be 

useful for practical examples. 

A projection problem is a problem in which a series of actions Acts is given, and we are 

asked to determine which fluents will be true after executing Acts. An epistemic projection 

problem is similar, except that it asks which fluents will be believed after Acts. Using 

our basic approach to solving belief evolution problems, we can solve epistemic projection 

problems for do. Let AD be an action description in do satisfying the following conditions: 

1. the effect of every modal proposition has the form U L  for some literal L  

2. the precondition of every modal proposition is empty. 

In this case, if U L  is the modal effect of the sensing action 0, then 

The actual state can be computed by the standard translation from d into logic program- 

ming, and the belief state can be computed as above. 

4.3 Cryptographic Protocol Verification 

4.3.1 Motivation 

Cryptographic protocols are structured sequences of messages used with cryptographic al- 

gorithms to relay secure messages in a hostile environment. Even if we assume that our 

cryptosystem is perfect, communication may be compromised if the protocol is poorly de- 

signed. Checking a protocol for potential breeches is very difficult by hand, so formal 

methods are employed for verification [73]. Logical methods have proven to be very useful 

in the design and analysis of cryptographic protocols, starting with the pioneering work on 

BAN logic [13]. The basic idea behind BAN is to use a modal logic to represent the beliefs of 

each principle, and then formalize security goals as statements about the beliefs of protocol 

participants. In this framework, protocol goals can be established by proving that they are 

logical consequences of some underlying set of assumptions. 



CHAPTER 4. APPLICATIONS OF BELIEF EVOLUTION 102 

One serious problem with BAN logic is the fact that there is no agreed upon semantics[2]. 

Without a formal semantics, the logical stature of BAN is dubious. Several different seman- 

tics have been proposed [I, 9, 911, and new protocol logics have been introduced based 

on the standard semantics for epistemic logic [92]. We remark that such logics have typ- 

ically focused on the representation of belief, with comparatively little emphasis on belief 

change. Belief change is normally addressed by introducing some ad hoc axioms or rules of 

inference describing specific instances of belief change. However, since changing beliefs are 

a fundamental problem in protocol logics, we suggest that a more principled approach to 

belief change would be beneficial. Belief evolution operators provide a natural framework 

for reasoning about protocol goals, because protocols involve belief change in the context of 

both ontic and epistemic actions. 

4.3.2 Authentication Tests 

An authentication protocol is used to ensure that all parties in a communication session 

know with whom they are communicating. Authentication protocols may have additional 

goals as well, such as establishing a shared key for communication [91]. Typically, an authen- 

tication protocol is composed of several authentication tests. Using the vocabulary of [40], 

an outgoing authentication test is an exchange where a message M is sent in encrypted form, 

and then a future message is received indicating comprehension of M. We will illustrate 

with an example, but first we need to introduce some notation. 

If P and Q denote principals in a communication session, then 

means that principal P sends the message X to principal Q. A symmetric key that is shared 

by principals P and Q will be denoted by Kpq. If the message X is encrypted with the key 

K, then we write { X I K .  Finally, we let Np denote a nonce generated by the principal P. A 

nonce is simply a random number that is generated by a principal during a communication 

session. 

The standard model for cryptographic protocol analysis assumes that an intruder can 

read every message that is sent, and the intruder may choose to prevent messages from 

reaching the desired recipient. Moreover, when a message is received, it is assumed that 

the sender is always unknown. The only way that P can be certain Q sent a particular 

message is if the message contains information that is only available to Q. It is assumed 
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that cryptography is strong in that encrypted messages can not be unencrypted during a 

protocol run without the proper key. 

The following simple protocol is executed by agent P in order to determine if agent Q is 

alive in the communication session. The protocol involves a single outgoing authentication 

test. 

The Challenge-Response Protocol 

1. p -' Q : {Np)Kpq 

2. Q - + P : N p  

In this protocol, P generates a random number and encrypts it with the shared key Kpq 

before sending it to Q. Informally, if this message is intercepted by an intruder, it will not 

be possible for the intruder to determine the value Np. SO if P receives the message Np, then 

it is natural to conclude that Q must have decrypted the original message. This establishes 

that Q is alive on the network. 

Establishing the correctness of this protocol requires a model of belief change. At the 

time that the first message is sent, P need not believe that Q is alive. In order to prove 

that the protocol is correct, we need to establish that P's beliefs change by the end of the 

protocol. In BAN logic, changing beliefs are modeled by introducing new rules of inference. 

For example, BAN logic handles authentication tests by introducing the following rule of 

inference: 
P believes P A Q P received {X)K 

P believes Q said X 

The notation P A Q is used to state that K is a key shared only by P and Q. So, if P 

believes that K is a key shared with Q and P receives the a message encrypted with K, 

then P concludes that Q sent the message. 

The following attack illustrates that there is a problem with the ChallengeResponse 

protocol. 

An Attack on the Challenge-Response Protocol 

1. --' IQ : {Np)K,, 
1'. IQ -+ P : {Np)Kpq 

2'. P -+ IQ : Np 

2. I Q - + P : N p  
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In this attack, IQ intercepts the original message and then initiates a new protocol run by 

sending it back to P. After P receives the message encrypted with Kpq, then P follows the 

protocol and returns the decrypted nonce. At the last step, IQ sends the same decrypted 

nonce to P. Note that, at  the conclusion of the protocol, Q has not sent any messages. 

Hence P has no assurance that Q is actually alive on the network, which was the stated 

goal of the protocol. 

Problems of this sort are handled in an ad hoc manner in BAN logic. In particular, it 

is simply assumed that an agent can recognize the messages that they have sent. Under 

this assumption, the preceding attack can not occur. However, in real world applications, 

this assumption is often unjustified. We propose that a more flexible approach to proto- 

col verification can be defined by introducing belief change operators rather than ad hoc 

assumptions and rules of inference. 

4.3.3 Incorporating Belief Change 

The intuition behind an outgoing authentication test is that the interpretation of a received 

message is dependent upon the messages that have been sent previously. In particular, if an 

agent P receives a message X, then P should believe that the actual history of the world 

is one in which it is possible to receive the message X. In the challenge response protocol, 

when P receives the response Np, it is not reasonable to conclude that Q decrypted {Np)Kp,. 

The strongest conclusion that P should draw is that either Q decrypted {Np)Kp, or else P 

decrypted it. In this section, we illustrate how this kind of reasoning can be made explicit 

using belief evolution. 

In order to give a precise treatment of belief change in a cryptographic protocol, one 

would need to consider multiple agents with nested beliefs. Such a detailed treatment is 

beyond the scope of this dissertation, but we can still illustrate the basic idea. 

We identify sent messages with actions and we identify received messages with observa- 

tions. From the perspective of a single agent, cryptographic protocols generally have the 

following form, where each Ai is an action and each ai is an observation. 

Generic Protocol 

1. Al 

2. a1 
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In protocol verification, we typically assume that the principle agent has some initial belief 

state n, and we are interested in proving that some property holds after every protocol run. 

If the desired property can be given by a set of states PROP,  then protocol verification 

consists in answering the following question. If W is a world view containing the subsequence 

does it always follow that the final belief state in K. o W is a subset of PROP? 

Note that this approach to protocol verification does not require any ad hoc rules de- 

scribing belief change, instead we have framed the problem as a simple application of belief 

evolution. We illustrate how this procedure can be applied in the case of the Challenge- 

Response protocol. 

Example Let F be the set containing the fluent symbols 

where X ranges over the agent names P, Q, and .IQ. Let A contain the action symbols 

where X again ranges over P, Q, and IQ. Let T be the non-deterministic transition sys- 

tem where SendDecryptedMessage(X) makes HasDecryptedMessage(Y) become true for 

some Y # X .  Similarly, SendEncryptedMessage(X) makes HasEncryptedMessage(Y) 

true for some Y # X, and also makes HasDecryptedMessage(Y) true if HasKey(Y) .  I t  

is straightforward to define a transition system satisfying these conditions, with every other 

fluent being inertial. We remark that we interpret HasDecryptedMessage(X) to mean that 

the agent X has received the decrypted nonce during the protocol run. 

We consider the belief change that occurs in a run of the Challenge-Response protocol. 

Let the initial belief state n be the set of states s such that 

1. s + HasKey(X)  iff X = P or X = Q 

2. s + HasEncryptedMessage(X) iff X = P 
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3. s /= HasDecryptedMessage(X) iff X = P. 

The final message received by P is identified with the observation a defined as follows: 

So a! consists of all states where either P or Q has received the first message. The goal of 

the protocol is to establish that Q received the first message, so we define the goal to be the 

set I HasDecryptedMessage(Q) I. 
According to our approach, proving that the protocol is correct amounts to proving that, 

for all world views (A, h) containing the subsequence 

if R o (A, d )  = (R~J,.  . . , Rn) then f i n  C IHasDecryptedMessage(Q)I. 

The attack on the Challenge-Response protocol is given by the world view (A, i5) where 

Regardless of the underlying revision operator, the final belief state in R o (A,  6 )  contains 

the state 

{HasEncryptedMessage(P), HasDecryptedMessage(P)). 

Clearly this is not an element of lHasDecryptedMessage(Q)l, so the protocol fails to es- 

tablish the goal. 

We have framed protocol verification as a problem in belief evolution. One major ad- 

vantage of this approach is that it allows us to model non-monotonic belief change. By 

contrast, existing protocol logics tend to model belief change through monotonic rules of 

inference. Using a general purpose belief change framework for reasoning about protocol 

goals is also useful because it allows us to easily apply the same methods to more complex 

protocol goals, such as non-repudiation and anonymity. However, using belief evolution 

operators as the underlying approach is somewhat limited in that agents can not explicitly 

reason about failed or exogenous actions. For example, we might be interested in agents 
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that are able to make inferences of the form: if a is believed at time 2, then it is believed 

that a message was intercepted at time 1. In the next chapter, we present a generalization 

of belief evolution that is suitable for reasoning about problems of this kind. 



Chapter 5 

Extending the Framework 

In Chapter 1, we stated that our primary motivation was to formalize the belief change that 

occurs in problems of the following form: 

(InitialBeliefs) . (Act ion)  (Observation). . . (Act ion)  . (Obseruation). 

However, thus far we have only considered problems of this form in which an agent has 

perfect knowledge about the history of ontic actions. This is essentially the content of prop- 

erty P2, which states that an observation is discarded if it is not a possible consequence of 

the preceding action. However, this is not always a reasonable approach. For instance, in 

action domains where exogenous actions may occur, it may be more reasonable to explain 

an inconsistent observation by assuming that an exogenous action occurred. More generally, 

if an agent is uncertain about the history of ontic actions, then it may not be reasonable 

to simply discard observations that conflict with the perceived history of actions. In this 

chapter, we introduce a new kind of world view that is suitable for reasoning about iterated 

belief change in action domains where the history of ontic actions may be incorrect. Al- 

though the formal methods employed in this chapter differ superficially from the previous 

chapters, we will prove that the new class of world views is in fact a generalization of the 

original definition. 

We give a schematic example illustrating the kind of problem with which we will be 

concerned. Suppose that an agent believes that the action trajectory A gives the sequence 

of actions that have been executed. Now suppose that the agent observes a, where a consists 

entirely of states that cannot possibly occur following the action sequence A. The agent has 

two options. 
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1. Reject a. 

2. Accept a, and modify A accordingly. 

The first option is the case considered in Chapter 3, where the action trajectory A is 

deemed to represent more reliable information than the observation a. The second option 

corresponds to the situation where the agent believes that the observation a is more likely 

to be correct than the action trajectory A. In order to resolve conflicts of this nature, an 

agent needs some mechanism for comparing the plausibility of an action occurrence with 

the plausibility of an observation. 

We use Spohn-style ranking functions to reason about belief change following an alter- 

nating sequence of actions and observations. At each instant, an agent assigns a plausibility 

value to every action and every state; the most plausible world histories are obtained by 

combining these values through a suitable aggregate function. Since plausibility is given a 

quantitative rank, an agent is able to compare the plausibility of actions and observations. 

This allows action occurrences to be postulated or refuted in response to new observations. 

By allowing action histories and observation histories both to be incorrect, we are able to 

reason about iterated epistemic action effects in the context of fallible beliefs, erroneous 

perception, exogenous actions and failed actions. 

In the remainder of this chapter, we proceed as follows. In $5.1, we introduce an il- 

lustrative running example. In $5.2, we define graded world views, which are sequences of 

Spohn-style ranking functions. We illustrate how graded world views can be used to repre- 

sent a wide range of epistemic action domains in $5.3. In $5.4, we illustrate the generality 

of graded world views by proving subsumption results for AGM revision, belief evolution, 

and Spohn's conditionalization. We conclude in 55.5 by introducing constraints on graded 

world views, and using the notion of a constrained world view to prove a non-subsumption 

result for belief extrapolation. 

A preliminary version of the work presented in this chapter previously appeared in [47]. 

5.1 Motivating Example 

We introduce a common-sense example in which an agent needs to compare the plausibility 

of certain actions with the plausibility of observations. We will return to this example 

periodically as we introduce our formal machinery. 
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We consider a simple action domain involving four agents: Bob, Alice, Eve, and Trent. 

Bob places a chocolate chip cookie on his desk and then leaves the room; he believes that 

no one is likely to eat his cookie while he is gone. At time 1, Bob knows that Alice is at his 

desk. At time 2, Bob knows that Eve is at his desk. After Eve leaves his desk, Trent comes 

and tells Bob that a bite has been taken from the cookie on his desk. 

Given the preceding information, Bob can draw three reasonable conclusions: Alice bit 

the cookie, Eve bit the cookie, or Trent gave him poor information. If Bob has no additional 

information about the world, then each conclusion is equally plausible. However, we suppose 

that Bob does have some additional information. In particular, suppose that Alice is a close 

friend of Bob and they have shared cookies in the past. Moreover, suppose that Bob believes 

that Trent is always honest. Bob's additional information about Alice and Trent provides a 

sufficient basis for determining which of the three possible conclusions is the most plausible. 

Informally, prior to Trent's report, Bob believes that his cookie was unbitten at all earlier 

points in time. After Trent tells him the cookie is bitten, he must determine the most 

plausible world history consistent with this information. In this case, the most plausible 

solution is to conclude that Alice bit the cookie. Note that this conclusion requires Bob to 

alter his subjective view of the action history. There is a non-monotonic character to belief 

change in this context, because Bob may be forced to postulate and retract actions over 

time in response to new observations. The ramifications of changing the action history are 

determined by the underlying transition system. 

We remark that this example does not admit a reasonable representation in terms of 

belief evolution because Bob does not have certain knowledge about which actions have 

occurred. In order to represent this kind of reasoning, we need to be able to compare the 

plausibility of action occurrences at different points in time. 

5.2 Ranking Functions over Actions and States 

5.2.1 Plausibility Functions 

We are interested in action domains where action histories may be incorrect. In this context, 

the action that is executed at any given point in time can be represented by a pre-order over 

all possible actions. The minimal elements of such a pre-order represent the actions that 

were most likely executed, and moving higher in the ordering gives increasingly implausible 

possibilities. Representing actions in this manner allows an agent to determine plausible 
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alternative actions in the face of conflicting evidence. Similarly, an agent needs a mechanism 

for ordering states in order to represent fallible observations and fallible beliefs. Moreover, 

we would like to be able to compare orderings over actions with orderings over states. One 

natural way to create mutually comparable orderings is by assigning quantitative plausi- 

bility values to every action and state at every point in time. Towards this end, we define 

plausibility functions. 

Definition 30 Let X be a non-empty set. A plausibility function over X is a function 

r : X - t N .  

If r is a plausibility function and r ( x )  < r(y) ,  then we say that x is at least as plausible as 

y. We will only be interested in plausibility functions over finite sets, where there is always 

a non-empty set of minimally ranked elements. 

Plausibility functions are inspired by Spohn's ordinal conditional functions [BB], but there 

are some important differences. First, we allow plausibility functions over an arbitrary set 

X ,  rather than restricting attention to propositional interpretations. This allows us to treat 

actions in the same manner that we treat observations. Another important difference is that 

ordinal conditional functions must always assign rank 0 to a non-empty subset of elements 

of the domain. Plausibility functions are not restricted in this manner; the minimal rank for 

a given plausibility function may be greater than 0. We have defined plausibility functions 

in this manner because we will be interested in taking sums over plausibility functions, and 

we need to ensure that such sums also define plausibility functions. 

We remark that Darwiche and Pearl also consider ranking functions that do not neces- 

sarily assign rank 0 to any states [19]. However, Darwiche and Pearl define the belief state 

associated with r to be the set of states that are assigned rank 0. Under this convention, 

ranking functions that never assign rank 0 are associated with the empty belief state. By 

contrast, we associate a non-empty belief state with every plausibility function. 

We introduce some useful terminology and notation. Let r be a plausibility function 

over X .  The minimum and maximum values obtained by r are denoted by min, and max,, 

respectively. We define Bel(r) to be the set {w I r(w) = min,}. This notation is intended 

to suggest that Bel(r) is the set of actions or states that are believed. For a C X, we define 

r (a )  to be the minimum value obtained by r for some w E a. The degree of strength of a 

plausibility function r is the least n such that min, +n = r(v)  for some v $2 Bel(r). Hence, 

the degree of strength of r is the span between the plausibility of the minimally ranked 
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elements and the non-minimally ranked elements. The degree of strength in r indicates how 

much the plausibility rank increases if we choose some v @ Bel(r). There are two natural 

interpretations of the degree of strength of a plausibility function r over a set of states. If we 

think of r as an initial epistemic state, then the degree of strength is an indication of how 

strongly it is believed that the actual state is in Bel(r). If we think of r as an observation, 

then the degree of strength is a measure of reliability. In the case where X is a set of states, 

we use the terms degree of strength and degree of belief interchangeably. 

Note that Spohn defines the degree of strength of a subset of X ,  rather than the degree of 

strength of a ranking function. Our definition coincides with Spohn's definition if we identify 

the degree of strength of r with Spohn's degree of strength of the set Bel(r). Hence, we 

use the same conception of degree of strength, but we are only interested in the strength of 

belief in the minimally ranked elements. 

In order to illustrate the application of plausibility functions over different domains, we 

continue our simple example. 

Example (cont'd) We describe how the cookie problem can be represented with plausibility 

functions. 

Let F = {BiteTaken) and let A = {BiteAlice, BiteEve). Both actions have the same 

effect, namely they both make the fluent BiteTaken become true. We represent the problem 

with 3 plausibility functions: a l ,  a2, and 02. 

1. a1 is a plausibility function over actions at Time 1 

2. a 2  is a plausibility function over actions at Time 2 

3. 0 2  is a plausibility function over states at Time 2 

Informally, each function should obtain a minimum value at the event that Bob considers 

the most plausible at the given point in time. Since Bob initially believes that no one will 

eat his cookie, both a1 and a2 should obtain a minimum value at the null action A. Trent's 

report that the cookie has been bitten at Time 2 is represented as a plausibility function 

over states, by defining 0 2  with a minimum at the set of worlds where the cookie has a 

bite out of it. Note that we will generally treat reported information in this manner; the 

degree of strength of a report is an indication of trust in the agent providing the report. The 

additional soft constraints about Bob's relationships are used to determine the magnitude 

of the values for each event. Define a1 and a2 by the values in the following table. 
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The fact that Alice is more likely to bite the cookie is represented by assigning a low 

plausibility value to BiteAlice at time 1. Define 02 as follows. 

a1 
a2 

0 {B i t eTaken}  F l  
Hence, the observation {B i t eTaken}  is assigned the minimum plausibility value, and 

the only alternative observation is assigned a very high plausibility value. This reflects the 

fact that Trent's report is understood to supersede the assumption that Alice and Eve do 

not bite the cookie. 

Note that the degree of strength of a1 is less than the degree of strength of a2 and 02. 

This gives an indication that Bob has comparatively less confidence in his beliefs about the 

action at Time 1. 

X 
0 
0 

5.2.2 Graded World Views 

In Chapter 3, we essentially defined a world view to be an alternating sequence of actions 

and observations. We have now suggested that, in the context of imperfect action histories, 

actions and observations can both be represented by plausibility functions. This leads to 

a natural extension of the definition of a world view. In particular, we can define a graded 

world view to be an alternating sequence of plausibility functions over A and plausibility 

functions over 2F. We have the following formal definition. 

BiteAlice 
1 

10 

Definition 31 A graded world view of length n is  a ( 2 n  + 1)-tuple 

B i t eEve  
10 
3 

where each OBSi is  a plausibility function over 2F and each ACTi is a plausibility function 

over A. 

At time i ,  the most plausible actions are the minimally ranked actions of ACTi and the 

most plausible states are the minimally ranked states of OBSi. We take OBSo to repre- 

sent the initial belief state, and each subsequent OBSi to represent a new observation. If 
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ACT = (ACTl,. . . ,ACT,) and OBS = (OBSo, . . . , OBS,), then we write (ACT,OBS) as 

a shorthand for the graded world view (OBSo, ACTl, OBS1,. . . , ACT,, OBS,). We use the 

notation (ACT, OBS) to emphasize the similarity with a world view (A, 6 ) .  In both cases, 

we are representing an agent's view of the history of actions and observations. 

We remark briefly on the intuition behind graded world views. We are interested in 

action domains involving actions that are both partially observable and fallible. However, 

for the moment we do not consider failed actions. The plausibility of an action A repre- 

sents the likelihood that A was successfully executed at a given instant. Hence, the lowest 

plausibility values will be assigned to actions that an agent has executed, or actions that 

an agent has observed directly. Higher plausibility values will be assigned to exogenous 

actions that are assumed to be unlikely, or action occurrences that are only believed based 

on external reports. In 55.2.4, we provide some additional motivation for plausibility values 

by illustrating a correspondence with subjective probability functions. 

Note that graded world views differ from the world views of Chapter 3 in that a graded 

world view includes the initial belief state. Our original notion of a world view was framed 

in the context of AGM revision functions, where initial beliefs are always abandoned in 

favour of a new observation. By contrast, the underlying assumption in a graded world 

view is that the initial belief state is no different than any subsequent observation; there is 

no reason to automatically prefer the initial beliefs over new information, nor is there any 

reason to automatically disregard the initial beliefs given new information. In order to make 

this assumption salient, we represent the initial belief state as an observation at time 0. 

5.2.3 Aggregate Plausibility Functions 

Given a graded world view (ACT, OBS), we would like to be able to determine the most 

plausible history of the world. We formally define the notion of a history over a transition 

system. 

Definition 32 Let T = (S, R) be a transition system. A history of length n is a tuple 

(w0, Al, . . . , A,, wn) where for each i: 

2. Ai E A, and 
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Let HIST, denote the set of histories of length n. 

Ideally, we would like to use graded world views to assign plausibility values to histories. 

However, a graded world view does not provide sufficient information to define a unique 

plausibility function over histories. For example, a graded world view does not indicate the 

relative weight of recent information versus initial information. In order to determine the 

most plausible history, we need some mechanism for combining a sequence of plausibility 

functions. 

Although a graded world view does not define a unique plausibility function over histo- 

ries, we can define a general notion of consistency between graded world views and plau- 

sibility functions on histories. Let ro, . . . , rn be plausibility functions over Xo, . . . , Xn, re- 

spectively. Let r be a plausibility function over Xo x . . . x Xn. We say that r is consistent 

with (ro, . . . , rn) if, for every i and every xil xi E Xi 

So r is consistent with (ACT, OBS) just in case r increases monotonically with respect 

to each component of (ACT, OBS). Any plausibility function r that is consistent with 

(ACT, OBS) provides a potential candidate ranking over histories. 

Define an aggregate plausibility function to be a function that maps every graded world 

view of length n to a plausibility function over HIST,. We are interested in aggregate 

plausibility functions in which the output is always consistent with the input. Hence, we 

say that an aggregate plausibility function agg is admissible if, for every (ACT, OBS), the 

function agg((ACT, OBS)) is consistent (ACT, OBS). 

We provide some examples. Note that aggregate plausibility functions return a function 

as a value; we can specify the behaviour of an aggregate by specifying a plausibility value 

for each pair consisting of a graded world view and a history. Let h = (wo, All . . . ,An, w,). 

One admissible aggregate is obtained by taking the sum of plausibility values. 
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A weighted sum can be used to reflect the relative importance of different time points. For 

each i, let bi be a positive integer. 

sum, ((ACT, OBS)) (h)  = ACT, (Ai) + bi . OBSi(wi) 
i=l i = O  

By setting bi = 2i, the aggregate function sum, can be used to represent a strict preference 

for recent information. The functions sum and sum, are just two simple examples; many 

more examples can be defined by specifying aggregate functions that increase monotonically 

with each component. 

We return to the cookie example to illustrate how the reasoning involved can be captured 

with graded world views and aggregate plausibility functions. 

Example (cont7d) We have already defined plausibility functions al ,  a2 and 02. In order 

to give a complete graded world view, we need to define two more plausibility functions over 

states. In particular, we need to give a plausibility function 00 representing Bob's initial 

beliefs and we need to give a plausibility function 01 representing the null observation that 

Bob makes at Time 1. 

First, we reiterate the description of a1 and a2 in the following table. 

The fact that Alice is more likely to bite the cookie is represented by assigning a lower 

plausibility value to BiteAlice at Time 1. 

The plausibility function 00 should assign a minimum value to the state where the cookie 

is unbitten. The plausibility function 01 should assign the same value to every state. The 

plausibility function 0 2  (given previously) represents Trent's report that the cookie has been 

bitten. As noted previously, we treat reported information as an observation, and we use 

the degree of strength of the reported information as an indication of the reliability of the 

source. In this case, the degree of strength of 02 is an indication of trust in Trent. We define 

oo,o17 02  in the next table. 

Note that the degree of strength of 02  is higher than the degree of strength of a1 or aa. 

This reflects the fact that Trent's report is understood to supersede the assumption that 

Alice and Eve do not bite the cookie. Graded world views have been defined precisely for 

I X I BiteAlice I BiteEve 
a , I O I  1 10 
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1 I 0 1 {Biteraken) I 

this kind of comparison between action plausibilities and state plausibilities. 

If we use the aggregate function sum, then we are interested in finding the minimal sum 

of plausibilities over (oo, al ,  01, aa, 02). By inspection, we find that the minimum plausibility 

is obtained by the following history: 

h = (0, BiteAEice, BiteTaken, A, BiteTaken). 

This history represents the sequence of events in which Alice bites the cookie at time 1. 

Intuitively, this is the correct solution: given the choice between Alice and Eve, Bob believes 

that Alice is the more plausible culprit. 

We remark that graded world views bear a resemblance to the generalized belief change 

framework proposed by Liberatore and Schaerf [62].  However, the Liberatore-Schaerf ap- 

proach associates a "penalty" with state change, which is minimized when determining 

plausible models. As such, it is difficult to represent problems where non-null actions are 

strictly more plausible than null actions. By contrast, graded world views have no implicit 

preference for null actions. Moreover, our approach differs in that we allow actions with 

conditional effects given by a transition system. 

5.2.4 Subjective Probabilities 

One issue that arises from our definition of a graded world view is the fact that it is not clear 

how plausibility values should be assigned in practical problems. We address this problem 

by illustrating a correspondence between plausibility functions and probability functions. 

We simplify the discussion by restricting attention to rational-valued probability functions 

as follows. 

Definition 33 Let X be a non-empty set. A probability function over X is a function 

P r  : X -+ Q such that 

for all x E X, 0 5  Pr(x)  5 1 
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CzEX Pr(x )  = 1. 

We do not need any other axioms of probability theory for our present purposes. At a 

common-sense level, it is clear what it means to say that "action A occurred at time t with 

probability p." By contrast, the problem with plausibility values is that there is no obvious 

sense of scale; it is difficult to assign numerical plausibility values, because the numbers have 

no clear meaning. We illustrate how probability functions can be translated uniformly into 

plausibility functions, thereby giving a sense of scale and meaning to plausibility values. 

Let Pr be a probability function over a finite set X. Let Q denote the least common 

denominator of all rational numbers such that Pr(x)  = for some x  E X. Define the 

plausibility function r  as follows. 

1. If Pr(x)  is minimal, set r ( x )  = Q. 

2. Otherwise, if Pr(x )  = 9, then set r (x )  = Q - p. 

Hence, every probability function can be translated into a plausibility function. 

Example (cont'd) Consider the following probability functions for the cookie example. 

I I X 1 BiteAlice I BiteEve I 

The corresponding plausibility functions are 

Pr,, 
Pr,, 

I X I BiteAlice I BiteEve I 

given in the following tables. 

.05 

.35 

I 

a; 
a!, 

.5 

.5 

It is easy to see that these plausibility functions are obtained from the plausibility 

functions given earlier by adding a constant to each value. In 55.3.2, we illustrate that 

adding a constant in this manner does not affect the class of minimally ranked histories. 

.45 

.15 

0; 

0; 

0; 

Connecting plausibility functions with subjective probabilities provides some justifica- 

tion for the use of the aggregate function sum. In particular, if we assume that the subjective 

probability functions are independent, then the probability of a given sequence of events is 

20 
13 

I 

0 
1 
2 
10 

10 
10 

{BiteTaken) 
10 
2 
1 

11 
20 
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determined by taking a product. In the cookie example, we can compare the probability of 

Alice biting the cookie versus Eve biting the cookie: 

1. Pr((0, BiteAlice, BiteTaken, A, BiteTaken)) 

= .9 x .45 x .5 x .5 x .9 = .091125 

2. Pr((0, A, 8, BiteEve, BiteTaken)) 

= .9 x .5 x .5 x .35 x .9 = .070875 

It  is easy to check that the history where Alice bites the cookie is actually the most prob- 

able history. So, in this example, the minimally ranked history according to the aggregate 

function sum is also the most probable history according to the sequence of probability 

functions. This is a general property of our translation: maximizing probability over inde- 

pendent probability functions corresponds to minimizing the sum over plausibility values. 

5.2.5 The Summation Convention 

In order to ground the discussion, it is useful to choose a fixed aggregate function for as- 

signing plausibility values to histories. As such, unless otherwise indicated, we will assume 

that plausibility values are assigned to histories by the aggregate function sum. Although 

this is not the only approach to combining plausibility functions, it provides a simple ad- 

missible aggregate function that is appropriate in many cases. In particular, we saw in the 

previous section that sum is appropriate for domains where the plausibility functions have 

been obtained from subjective probabilities. 

We introduce some notation that will simplify the results in the next few sections. 

Recall that sum({ACT, OBS)) is a plausibility function on histories. When the underlying 

graded world view is clear from the context, we will write plaus(h) as a shorthand for 

sum((ACT, OBS))(h). 

It is useful to introduce an operator that maps a graded world view to the most plausible 

histories. 

Definition 34 Let WV denote the set of graded world views of length n for a fixed action 

signature. Define @ : WV 4 2H'STn as follows: 

@((ACT, OBS)) = {h I plaus(h) 5 plaus(g) for all g E HIST,). 
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We have the following obvious equivalence 

@((ACT, OBS)) = Bel(sum((ACT, OBS))) .  

It  is also useful to use plaus to define a plausibility function over states. 

Definition 35 Let (ACT, OBS) be a graded world view. For any state w, define 

plaus-state((ACT, OBS)) (w) 

to be the least n such that plaus((ACT, OBS))(h) = n for some history h with final state 

W .  

So the plausibility of the state w is the rank of the most plausible history ending with w. 

When the underlying graded world view is clear from context, we simply write plaus-state(w) 

for the plausibility of the state w. We extend the operator Bel(.) to graded world views 

by defining Bel((ACT, OBS)) to be Bel(p1aus-state((ACT, OBS))).  Hence, Be1 takes a 

graded world view as an argument and returns the most plausible set of terminal states. 

5.3 Using Graded World Views 

5.3.1 Pointwise Minima 

Suppose that the underlying set F of fluent symbols and the underlying set A of action 

symbols are both finite. Let W = (ACT, OBS) be a graded world view where 

ACT = (ACTl, . . . ,ACTn) 

and 

OBS = (OBS0,. . . , OBS,). 

The easiest way to determine a minimally ranked history is to simply take the most plausible 

actions and the most plausible worlds at each point in time. The following definition makes 

this notion more precise. 

Definition 36 Given a history h = (wO, A l l . .  . ,An, w,), we say h is a pointwise minimum 

for (ACT, OBS) if, for all i, 

I .  for all A E A, ACTi(Ai) 5 ACTi(A), and 



( 2. for a11 w E 2F, OBS,(W,) < OBS,(W). 

The following proposition states that, if a graded world view has any pointwise minima, 

Ithen those will be the most plausible histories. 

Proposition 20 Let W = (ACT, OBS) be a graded world view and let M be the set of 

pointwise minima for W .  If M # 0, then @(W)  = M .  

Proof It is sufficient to note that, for h E M, plaus(h) < plaus(g) for all histories g. 0 

Note, however, that histories are restricted in that each world must be the outcome of the 

preceding action. As such, it is possible that a graded world view will have no pointwise 

minimum. 

1 5.3.2 Equivalence 

Clearly it is possible for two distinct graded world views to have the same set of minimally 

ranked world histories. In fact, it is possible for two distinct graded world views to induce 

the same preference ordering over histories. In this section, we define a natural equivalence 

relation over graded world views with an eye towards categorical representations. We start 

by defining a relation on plausibility functions. 

Definition 37 Let rl  and r2 be plausibility functions over a set X .  We  say that rl  r2 iJ 
for every x, y E X, 

4 4  - T ~ ( Y )  = r2(x) - 7 - 2 ( ~ 0 .  

It is clear that r is an equivalence relation. 

Let r be a plausibility function. For any integer z ,  the translation of r by z is the 

plausibility function x H r ( x )  + z.  It is easy to prove that r S r' if and only if r' is a 

translation of r .  We define the normalization of r to be the translation by - min,. The 

normalization of r is the unique plausibility function equivalent to r that obtains a minimum 

of 0. 

( We can extend the notion of equivalence to graded world views. 

Definition 38 Let W V l  and W V 2  be graded world views over histories for a fixed action 

signature. We  say that WVl % W V 2  ih for every pair of histories g and h ,  
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Unlike plausibility functions, it is possible to construct equivalent pairs of graded world 

views that are not obtained by translations. 

The following proposition illustrates that every graded world view is equivalent to a 

graded world view consisting of normalized plausibility functions. 

Proposition 21 Let (ACT, OBS) be a graded world view. If (ACT', OBS') is obtained by 

normalizing each component of ACT and OBS, then 

(ACT, OBS) 2 (ACTf, OBSf). 

Proof Let g, h be histories. For ease of readability, let plausl and plaus2 denote 

sum((ACT, OBS)) and sum((ACTf, OBS')), respectively. Then the following equalities 

are immediate: 

0 

Hence, although we allow plausibility functions with minimum values larger than 0 in a 

graded world view, we can always pass to an equivalent graded world view consisting of 

normalized plausibility functions. We remark, however, that a graded world view defined 

by a sequence of normalized plausibility functions need not obtain a minimum of 0. In this 

case, the minimum will be 0 if and only if the graded world view has a pointwise minimum. 

It is also important to note that Proposition 21 only holds under the aggregate plausibility 

function sum. 

5.3.3 Representing Belief States 

Graded world views can be defined that simply pick out a distinguished set of elements of 

the domain. If a C X and c is an integer, let a f c denote the function defined as follows: 

0 i f w E a  
a f c  (w) = 

c otherwise 

If c is a positive integer, then a! f c denotes a plausibility function in which the elements of a! 

are the most plausible, and everything else is equally implausible. Plausibility functions of 

the form a f c will be called simple. If X is a set of states, then simple plausibility functions 
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correspond to belief states; if X is a set of actions, then simple plausibility functions pick 

out the actions that are believed to have occurred. Using the terminology introduced earlier, 

we say that a is held with degree of belief c. 

If c > 0, then a t  -c does not actually define a plausibility function. However, allowing 

negative values leads to a simple symmetry in our notation. In the following proposition, & 

denotes the complement of a .  

Proposition 22 For any set cr and positive integer c 

Proof Let w, v be states. By definition, we have 

c i f w € a , v @ a  

a r c ( w ) - a f c ( v ) =  -C i f w $ a , v ~ a  

0 otherwise. 

and 

( c )  i f w @ & , v ~ &  

Gf-c (w) - Gf-c (v) = { iC 
i f w € & , v @ &  

otherwise. 

Clearly, the right hand sides of each equality are the same. El 

Suppose that 

ACT = (ACTl . . . , ACTn) 

and 

OBS = (OBSo,. . . , OBSn) 

where each ACTi and OBSi is simple, with maximum plausibility c. Hence, we essentially 

have belief states with no plausibility ordering. In this case, it is easy to show that 

if and only if the cardinality of 

{Ai ) Ai € ACTi) U {wi I wi € OBSi) 

is maximal among all histories. In other words, the most plausible histories are those that 

agree with (ACT, OBS) at the highest number of components. This is a reasonable approach 

to take in the trivial case where we have no prior ranking over states or actions. 
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5.3.4 Graded World Views as Epistemic States 

Recall that an epistemic state is a representation of an agent's beliefs that defines a total 

pre-order 3 over all states [19]. If w 5 v, then the underlying agent believes that it is more 

likely that the actual state of the world is w than v. The current belief state is given by the 

set of 3-minimal states. Recall also that a graded world view defines a plausibility function 

plaus-state over states. So a graded world view clearly defines an ordering over states, and 

we can think of a graded world view as defining an epistemic state. The worlds that receive 

minimal rank in a graded world view are the worlds that are supported by the most reliable 

observations and actions. Using this ranking to define a plausibility ordering is tantamount 

to assuming that the plausibility of w is completely determined by the reliability of the 

source reporting that w occurs. 

By viewing graded world views as epistemic states, we can define belief change operations 

in a more familiar manner. In particular, we can define belief change through a simple 

concatenation operator on graded world views. Given a sequence of plausibility functions 

F = (rl, . . . , r,) and a plausibility function r, we let F .  r denote the sequence (rl, . . . , r,, r). 

Let (ACT, OBS) be a graded world view, let rA be a plausibility function over actions and 

let rs be a plausibility function over states. Define as follows: 

(ACT, OBS) ( r ~ ,  rs) = (ACT . r ~ ,  OBS . rs).  

In this context the initial epistemic state is given by (ACT, OBS), which represents an 

agent's a priori beliefs about the history of observed actions and states. New actions and 

observations are incorporated by simply concatenating the new plausibility functions on 

to the initial graded world view. The new graded world view defines a new ordering over 

histories, but it also includes all historical information required for future belief change. As 

a special case of this simple concatenation operation, we get a new approach to update. For 

any set X, let 0 denote the plausibility function that uniformly assigns 0 to every element 

of X. We can identify the update (ACT, OBS) o rA with the following operation: 

(ACT, OBS) (TA, 0). 

We can also define a natural approach to revision in this manner. Let null denote a plau- 

sibility function that assigns plausibility 0 to the null action A, and assigns everything else 

a plausibility larger than the maximum value obtained by sum((ACT, OBS)). We identify 
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the revision (ACT, O B S )  * rs with the following operation: 

(ACT, OBS) (null, rs) .  

Using plausibility functions to represent observations allows us to represent some nat- 

ural problem domains that can not be easily represented if we restrict observations to sets 

of possible worlds. In particular, consider an action domain in which observations have 

varying degrees of reliability. In such domains, when an agent makes an observation that is 

inconsistent with the current belief state, there are two factors that should be considered: 

the strength of belief in the current belief state and the reliability of the observation. There 

is an obvious conflict that arises if we attempt to address both factors simultaneously. For 

example, suppose that the underlying agent strongly believes that w is a possible state of 

the world. Now suppose that the agent makes two observations. 

1. One observation suggests that w is possible, but comes from an unreliable source. 

2. Another observation suggests that w is not possible, and it comes from a very reliable 

source. 

It can be difficult to determine the appropriate belief change in this scenario, particularly 

if strength of belief and observational reliability are treated independently. By quantifying 

the reliability of every observation, graded world views make it easy to resolve this kind of 

issue. We remark that problems of this form have also been addressed recently through the 

use of prioritized merging operators [21]. 

There is an interesting asymmetry in the definition of revision and update through the 

0 operator. In the case of update, we assume that the final observation assigns the same 

plausibility to every state. The symmetric definition for a single observation would be 

defined as follows: 

(ACT, O B S )  (0, rs). 

However, this definition allows an arbitrary action to occur immediately before the observa- 

tion. If we want to assume that the graded world view (ACT, O B S )  gives a complete picture 

of the world at the time of the observation, then we need to assume that any intermediary 

action is null. Hence, the asymmetry is not due to any significant difference between actions 

and observations; the asymmetry is simply due to the fact that graded world views involve 

alternating sequences of actions and observations, with actions occurring first by default. 
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In this section we have illustrated that a graded world view defines an epistemic state. If 

we take an epistemic state to be a pre-order on states, then the converse is clearly false: an 

ordering on states does not provide enough information to define numerical ranking functions 

over states. The move from epistemic states to graded world views is motivated by the same 

kind of concern that motivates the move from belief states to epistemic states. In particular, 

belief states in AGM revision can be understood to represent the minimal elements in some 

ordering of states. Hence, a belief state can provide a partial description of an ordering, and 

an ordering can in turn provide a partial description of a graded world view. A belief state 

is sufficient for single-shot revision, provided that an ordering is implicit in the revision 

operator. However, a belief state is not sufficient if we need to explicitly reason about 

the way plausibility orderings are modified. Similarly, orderings on states are sufficient for 

reasoning about preferences over states, but they are not sufficient if we need to explicitly 

reason about action histories. 

5.3.5 Representing Natural Action Domains 

In this section, we illustrate how some interesting phenomena can be represented by graded 

world views. The simplest examples involve graded world views of length 1. In particular, 

we initially focus on graded world views of the form 

In this context, I N I T  represents the initial beliefs of an agent, rA represents an agent's 

beliefs about the action that has been executed, and rS represents the observed state of 

the world. To be clear, I N I T ,  r ~ ,  and rs are all plausibility functions. As such, we can 

define the degree of strength of each. To facilitate the exposition, we denote the degrees 

of strength by deg(INIT), deg(rA), and deg(rs) respectively. Varying the magnitudes of 

these values allows us to capture several different underlying assumptions. 

1. Fallible initial beliefs: deg(INIT) < d e g ( r ~ )  and deg(INIT) < deg(rs). 

3. Fallible action history: deg(rA) < deg(INIT) and deg(rA) < deg(rs). 

As a simple example, suppose that an agent believes a certain lamp is initially on, then 

the power switch is toggled, and then the agent observes that the lamp is actually still 
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on. Clearly this sequence of events can not consistently be believed by a rational agent. 

Manipulating the degrees of strength of I N I T ,  r~ and ro gives an agent some mechanism 

for resolving such conflicts. In case (I),  the agent is not completely certain that the lamp 

was initially on. As such, the easiest way to incorporate the new information is to change 

the initial belief state. By contrast, in case (2), the agent is not completely certain that 

the lamp is still on after toggling the switch. In this case, since the agent is confident the 

lamp was initially on and the switch was toggled, it is natural to reject the observation 

and believe that the lamp is now off. The distinction between these two cases cannot be 

captured without some notion of reliability. 

The special case in which the degree of strength is 0 also captures some important 

phenomena. Note that a plausibility function r has degree of strength 0 just in case there 

is some constant c such that r(x) = c for all x. As such, a degree of 0 indicates that every 

element of the domain receives minimal rank. We consider the informal interpretation of a 

degree 0 for each plausibility function in our schematic example. 

1. If deg(INIT) = 0, then every initial state is equally plausible. The agent has no a 

priori beliefs about the state of the world. 

2. If deg(ro) = 0, then ro represents a null observation. The observation OBS does not 

provide evidence for any particular state. 

3. If deg(rA) = 0, then every action is equally likely. So the agent is completely ignorant 

about the action that has occurred, and we can think of TA as an exogenous action 

beyond the agent's control. 

These are relatively crude distinctions, but they still capture important classes of problems. 

Roughly speaking, the problems that we have addressed thus far can be captured by a 

plausibility ordering over sequences of the form 

where K is a belief state, each Ai is an action symbol, and each ai is an observation. 

Recall from Chapter 3 that belief evolution operators are only useful for problems in which 

the underlying plausibility ordering is given as follows, for some permutation p l ,  . . . , p ,  of 
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l , . . . , n .  

By contrast, graded world views are suitable for any total pre-order over A1, a l l . .  . , A,, a,. 

But this is not the entire class of problems representable by graded world views. By using a 

ranking function for each event, we are able to draw two additional distinctions that can not 

be represented by a simple ordering. First, we are able to represent changes in plausibility 

that do not affect the ordering of states. This is useful for representing action domains 

where an 'agent must observe a single piece of evidence multiple times before believing it is 

correct. Second, we are able to represent graded evidence that supports several conclusions 

with different degrees of confidence. We conclude this section with two examples illustrating 

action domains that are hard to represent if we only have an ordering over the plausibility 

of events. 

Example (Additive Evidence) Bob believes that he turned the lamp off in his office, but 

he is not completely certain. As he is leaving the building, he talks first to Alice and then 

to Eve. If only Alice tells him his lamp is still on, then he will believe that she is mistaken. 

Similarly, if only Eve tells him his lamp is still on, then he will believe that she is mistaken. 

However, if both Alice and Eve tell Bob that his lamp is still on, then he will believe that 

it is in fact still on. 

This example can easily be represented by a graded world view as follows. We assume 

that the underlying action signature contains, among others, a fluent symbol LampOn and 

an action symbol TurnLampO f  f . The underlying transition system defines the effects of 

turning the lamp off in the obvious manner. Let O N  denote the set of states in which 

LampOn is true. The following plausibility functions define a graded world view that 

represents this action domain. 

2. ACTl = {TurnLampO f  f ) t 3  
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Note that @((OBSo, ACTl, OBSl)) consists of all histories where the lamp is turned off at 

time 1. However, @((OBSo, ACTl, OBS1, ACT2, 0BS2))  consists of all histories where the 

lamp is not turned off at time 1. Two observations of O N  are required to make Bob believe 

that he did not turn the lamp off. 

Example (Graded Evidence) Bob receives a gift that he estimates to be worth approxi- 

mately $7. He is curious about the price, so he tries to glance quickly at the receipt without 

anyone noticing. He believes that the receipt says the price is $3. This is far too low to be 

believable, so Bob concludes that he must have mis-read the receipt. Since a LL3" looks very 

similar to an "8", he concludes that the price on the receipt must actually have been $8. 

To represent this example, we first define ACTl = X T 10 because Bob believes that no on- 

tic actions have occurred. We assume that there are fluent symbols Costl, Cost2,. . . , Cost9 

interpreted to represent the cost of the gift. We define a plausibility function OBSo repre- 

senting Bob's initial beliefs. 

0 if w = (Cost7) 

1 if w = {CostG) or w = (Cost8) 

3 otherwise 

Note that Bob initially believes that the cost is $7, but it is comparatively plausible that this 

cost is one dollar more or less. Finally, we define a plausibility function OBSl representing 

the observation of the receipt. 

0 if w = (Cost3) 

1 if w = (Cost8) 

3 otherwise 

Bob believes that the observed digit was most likely a "3", with the most plausible alterna- 

tive being the visually similar digit "8". 

Given these plausibility functions, the most plausible state of the world is the state in 

which the price is $8. In order to draw this conclusion, Bob needs observations that provide 

graded evidence about states of the world and he needs to be able to weight this information 
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against his initial beliefs. 

The preceding examples illustrate that there are natural common-sense reasoning prob- 

lems in which an agent needs to consider aggregate plausibilities over a sequence of actions 

and observations. Graded world views are well-suited for reasoning about such problems. 

5.3.6 Non-Deterministic and Failed Actions 

In this section, we consider actions with non-deterministic effects. Note that actions that 

may fail can be represented as actions with non-deterministic effects, so we address fallible 

actions in this section as well. Our basic approach is the following. We introduce some new 

machinery for the representation of non-deterministic actions, and then we demonstrate that 

the new machinery is unnecessary when we use summation to determine the plausibility of 

histories. As such, we can reasonably restrict attention to deterministic actions when proving 

formal expressibility results for graded world views. 

Given a non-deterministic transition system T = (S, V, R) and a graded world view W, 

it is not clear how we should choose the effects of each action in the most plausible world 

histories. This problem can be solved by following [ll], and attaching a plausibility value 

to the possible effects of each action. For each action A and state s ,  let EFF(A,  s )  denote 

the set of states s' such that (s, A, s f )  E R. Hence EFF(A, s )  is the set of states that may 

result, given that action A is executed in state s .  

Definition 39 An effect ranking function is a function 6 that maps every action-state pair 

(A ,  s )  to a plausibility function over EFF(A, s ) .  

Informally, an effect ranking function gives the likelihood of each possible effect for each 

action. 

A non-deterministic graded world view is a pair (W, 6) where W is a graded world view 

and 6 is an effect ranking function. We illustrate with an example. 

Example Consider an action domain involving a single fluent symbol LampOn indicating 

whether or not a certain lamp is turned on. There are two action symbols Press and 

Throwpaper respectively representing the acts of pressing on the light switch, or throwing 

a ball of paper at the light switch. Informally, throwing a ball of paper at the light switch is 

not likely to turn on the lamp. But suppose that an agent has reason to believe that a piece 
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of paper was thrown at the lamp and, moreover, the lamp has been turned on. We illustrate 

how non-deterministic graded world views can provide a representation of this problem. 

Both actions have non-deterministic effects in that both may cause LampOn to become 

true, but both may also fail to do so. We define a graded world view (ACT, O B S )  of length 

1. First, we define ACT so that ThrowPaper is the most likely action at time 1. 

Next we define O B S  so that initially the light is off, and then the light is on. 

ACT1 

Finally, we define an effect ranking function 6 that represents the fact that pressing is more 

likely to turn the light on. 

In the preceding example, there are two possible solutions: either a plausible event 

occurs with an unlikely outcome, or a less plausible event occurs with an expected outcome. 

There is no a priori preference given to occurrence plausibilities or to effect plausibilities; 

the framework is flexible enough to represent either possibility. 

Introducing effect ranking functions makes the distinction between action occurrences 

and action effects explicit, which in turn gives a straightforward treatment of failed ac- 

tions. However, we need to introduce some extra machinery in order to determine the 

most plausible action history. The most general approach is to extend the definition of an 

aggregate plausibility function: a non-deterministic aggregate plausibility function takes a 

non-deterministic graded world view as an argument, and it returns a plausibility function 

over histories. An admissible non-deterministic aggregate plausibility function is one that 

increases monotonically with respect to the given graded world view, as well as the given 

effect ranking function. 

X 
10 

Press 
2 

ThrowPaper 
1 
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We have been using the function sum as our standard aggregate plausibility function. 

The natural extension of sum to non-deterministic graded world views is the following. For 

any history h = wo, Al,  . . . , A,, Wn, define 

S U ~ ( ( A C T ,  OBS), 6)(h) = C OBSi(wi) + ACTi(Ai) + &(Ai1 W ~ - ~ ) ( W ~ ) .  
i 

It is easy to see that this is an admissible non-deterministic aggregate function. Returning 

to the lamp example, there are two minimally ranked histories under this function: one in 

which the lamp was turned on by pressing on the switch and one in which the lamp was 

turned on by throwing a piece of paper at the switch. 

In the remainder of this section, we will assume that sum is the default aggregate func- 

tion for non-deterministic world views. Under this assumption, we demonstrate that non- 

deterministic graded world views can be translated into graded world views in an extended 

action signature. 

Let T = (S, V, R) be a non-deterministic transition system over the action signature 

(A, I?). Let ((ACT, OBS), 6) be a non-deterministic graded world view. We extend the 

action signature to a new action signature A' where every edge in T corresponds to an 

action symbol. In particular, let A' = {A(s,A,t) I (s, A, t) E R). Let TI = (S, T( R1) where 

R' is the closure of the set {s, A(9,A,t), t 1 s ,  t E S). Suppose that ACT = ACTl,. . . , ACT,. 

Define ACT' = ACT;, . . . , ACT; where, for each i, ACql(A(,,A,t,) = ACT(A) + S(A, s)(t). 

Proposition 23 For any non-deterministic transition system T, a history 

obtains the minimum rank in ((ACT, OBS), S) zf and only if 

obtains the minimum rank in (ACT1, OBS). 

Proof The plausibility of h is obtained by taking the sum 

C OBS~(W,) + ACZ(Ai) + 6(Ai7 wi-~)(wi), 
i 

which is clearly the same sum taken to to determine the plausibility of h'. 0 

Hence non-deterministic actions and failed actions can be represented in a graded world 

view, simply by setting up the plausibility functions carefully. 
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We remark that there is a conceptually interesting distinction that is lost in this trans- 

lation. Informally, there is a distinction between an action that fails to occur and an action 

that occurs, but fails to produce an expected effect. This distinction is clear if we consider 

the difference between failing to drop a glass on the ground, and dropping a glass that fails 

to break when it hits the ground. In the first case, the agent executes the drop action 

but it fails to occur; perhaps the glass sticks to the agent's hand. In the second case, the 

glass is successfully dropped without breaking. In our framework, both of these events are 

represented by a dropping action with the null effect. We suggest that this is an acceptable 

treatment, because in both cases the sequence of actions and states is identical. As such, we 

can not distinguish between these scenarios based on our definition of a history. However, 

we may be able to distinguish indirectly based on the values of other fluents. For instance, 

the location of the glass is only going to change in the case where it is successfully dropped. 

5.4 Comparison with Related Formalisms 

5.4.1 Representing Single-Shot Belief Change 

In this section, we consider graded world views from the perspective of single-shot belief 

change; that is, belief change that occurs following a single ontic or epistemic action. Recall 

that we defined * and o on graded world views as shorthand notation for the associated 

concatenation operations. Based on the results in this section, it will be clear that this 

shorthand is natural and appropriate. 

We first consider the case of a single ontic action. 

Proposition 24 Let (ACT, OBS) be a graded world view. For any plausibility function r 

over A, 

Bel((ACT, OBS) (T, 0)) = Bel((ACT, OBS)) o Bel(r). 

Proof Follows immediately from the assumption that every action is always executable. 

0 

Proposition 24 is important if we are primarily interested in belief states and ontic actions. 

Basically, in this case, graded world views are unnecessary. The most plausible final belief 

state can be determined by simply looking at the belief state associated with the initial 

graded world view. 
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We now consider the case of a single observation. In the present section, we are primarily 

interested in comparing the expressive power of graded world views with AGM revision 

operators. There is one sense in which graded world views are clearly more expressive 

than AGM operators. In particular, a new observation need not be incorporated into an 

agent's beliefs if the observation does not come from a reliable source. We will demonstrate 

that, in the context of a single observation, this is essentially the only difference between a 

graded world view and an AGM revision operator. More specifically, we will see that the 

belief change defined by concatenating a single observation onto a graded world view can be 

captured by an AGM operator, provided that the observation has degree of strength higher 

than some fixed threshold. 

First, we prove that every plausibility function defines a system of spheres. Let r be a 

plausibility function over X with minimum value min,. For any n, let r[n] denote the set 

of complete, consistent theories that are satisfied by some I with r ( I )  5 n. 

Proposition 25 Let r be a plausible function over a finite action signature. The collection 

R = {r[n] ( n > min,) is a system of spheres centered on ~[min,]. 

Proof Clearly, for each n, r(n) C r (n  + 1). Hence R is totally ordered by c. 
If T E r[min,], then T is satisfied by some I with r(I) 5 rnin,. But then, for any n, T 

is satisfied by some I with r ( I )  5 n. Hence r [rnin,] 5 r [n] for all r [n]. 

Since the action signature is finite, there are only finitely many states. Hence there is 

a state that is assigned a maximum plausibility, say max,. Therefore, r[max.,.] is the set of 

complete, consistent theories. 

Let 4 be a consistent formula. Since there are only finitely many states, there must be 

a state w E K such that r(w) 5 r(v) for all v E K .  Let n = r(w). Clearly r(n) n K f 0. 
Now suppose that U E S and U n K # 0. Suppose that U = r(m), so U is the set of com- 

plete, consistent theories satisfied by some I with r ( I )  5 m. Since some elements of U are 

also in K, it follows m > n. Therefore r[n] U ,  and r[n] is the least sphere intersecting K. 

Using this result, we can show that single-shot revision under graded world views can be 

captured by AGM revision operators. We make this claim precise in the next proposition. 

Proposition 26 Let (ACT, OBS) be a graded world view. There is an AGM revision 

function * and a natural number n such that, for any plausibility function r over states with 
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degree of strength larger than n, 

Be1 ((ACT, OBS) (A Tn, r ) )  = Bel((ACT, OBS)) * Bel(a). 

Proof Recall that plaus is a plausibility function over histories that is defined by mini- 

mizing sums over (ACT, OBS), and plaus-state is the corresponding plausibility function 

over final states. 

Let n be a natural number such that n > plaus(h) for every history h. Let r be a 

plausibility function with rank n. It follows that w E Be1 ((ACT, OBS) (A Tn, r ) )  if and only 

if the following conditions hold: 

2. plaus-state(w) is minimal among all states satisfying 1. 

By Proposition 25, plaus-state defines a system of spheres centered on Bel(p1aus-state). 

I t  follows from Grove's representation result [39] that there is an AGM revision function 

* such that, for any observation a, w E Bel(p1aus-state) * a if and only if the following 

conditions hold: 

2. plausAate(w) is minimal among all states satisfying 1. 

Setting a = Be1 (r) gives the desired result. 

Proposition 26 illustrates that, for a single observation, the most plausible worlds can be 

determined without considering the history of actions and observations. We can determine 

the most plausible worlds following an observation by simply abstracting a belief state from 

a graded world view, then performing AGM revision. I t  is easy to show that the converse is 

also true: every AGM revision operator can be represented by a graded world view. More 

precisely, we have the following result. 

Proposition 27 Let * be an AGM revision operator and let K be a belief state. There is a 

graded world view (ACT, OBS) with Bel((ACT, OBS)) = K and a natural number n such 

that, for every non-empty observation a, 

K * a = Bel((ACT, OBS) (ATn,r)) 
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where r is any plausibility function over states where the minimal ranked elements a have 

degree larger than n. 

Proof By Grove's representation result, * can be captured by a system of spheres S. 

It is straightforward to define (ACT, OBS) such that S is the system of spheres given by 

Proposition 25. Set n such that n > plaus(h) for every history h. The result is immediate. 

0 

Taken together, Propositions 26 and 27 illustrate that graded world views are equivalent to 

AGM revision if we restrict attention to a single observation with a sufficiently high degree 

of reliability. Hence, for single-shot belief change, the full expressive power of graded world 

views is unnecessary. For both ontic actions and observations, we can define the same belief 

change operations if we start with just a belief state. Again, there is a correspondence here 

with Nayak's work on iterated revision [75]; if an observation is sufficiently plausible, then 

every state in that observation ends up being strictly more plausible then every other state. 

5.4.2 Representing Belief Evolution Operators 

There are two underlying assumptions in the definition of belief evolution. 

1. The plausibility of an observation is determined by some ordering, recency by default. 

2. The action history is assumed to be correct. 

Both of these assumptions can be represented in a graded world view by setting up the 

plausibility functions appropriately. Assume that we have a fixed initial belief state nr, 

along with a metric transition system defining a revision operator * and an update operator 

o. Let o be the belief evolution operator obtained from * and o. Let 

A = (A1,. . ., A,) 

be an action trajectory, and let 

6 = (a1, ... ,an) 

be an observation trajectory. We want to construct a graded world view We, that assigns 

minimal plausibility value to all histories corresponding to n~ o (A, ti). 
We define We, = (ACT, OBS) presently. By combining nr with the underlying metric 

d, we can define a plausibility function BASE that represents the initial ordering of states 
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implicit in *. In particular, for any w, set 

Using this plausibility function, we can define the observation trajectory OBS. Let max 

denote the maximum value obtained by BASE. 

i f i = O  
OBSi = 

ai T ('2 + max) otherwise 

By incrementing the plausibility of false observations exponentially, we can assure that 

recent observations will be given greater credence. 

Informally, each action symbol Ai is translated into a plausibility function that obtains 

the minimum value on the set {Ai). Formally, we have the following, for 1 5 i _< n: 

Proposition 28 If 61 o (A, 6 )  = (KO, . . . , fin), then 

h E @(We,) 

e 

h = (wo, A1,. . . , A,, w,) where wi E Ei for each i. 

Proof Assume for the moment that (A, 6 )  is consistent. Let h = (vo, B1,. . . , B,, v,). By 

definition h E @(We,) if and only if the sum 

is minimal. Since (A, 6) is consistent, there exist histories (wo, A1,. . . , A,, w,) where each 

wi E ai. For such histories, the sum (5.1) becomes 

We remark that this sum is less than any sum that can be obtained by a history where 

there is some i such that either Bi E Ai or Wi 6 a i .  Therefore h E @(We,) if and only if the 

following three conditions hold: 

1. Bi = A i  for each i > 0 
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2. vi E ai for each i > 0 

3. OBSo(vo) is minimal among states satisfying 1 and 2. 

In order to satisfy condition 2, it must be the case that vo is in the set 

In order to simultaneously satisfy condition 3, it must also be the case that vo is minimally 

distant from r c ~  according to the metric d. In other words, vo E rcI*V. Therefore, h E @(We,) 

if and only if each Bi = Ai and the following conditions hold: 

This is the definition of rcl o (A, b) ,  so this completes the proof. 

The case where (A, b)  is inconsistent is similar. The only difference is that we need to 

notice that the degree of strength of each observation increases by a power of 2. We use the 

fact that, for any natural number p, 2P is larger than every sum of terms 2i with i < p. As 

such, in order to minimize the sum (5.1), we need to work backwards through the observa- 

tions, keeping each observation if it is consistent with the observations that followed. This 

is just an equivalent specification of 7(Wev), as given in Definition 19 - increasing powers 

exponentially forces a strict preference for recent observations. The details of the proof in 

this case are tedious, but not difficult. 

Proposition 28 demonstrates that graded world views can represent any belief evolution 

operator defined with respect to a distance function. From the perspective of graded world 

views, the assumption that action histories are infallible is essentially just a restriction on 

the admissible plausibility functions. 

We conclude this section with some brief remarks about the use of orderings to resolve 

inconsistency in iterated belief change. The Darwiche-Pearl postulates are only satisfied 

when we assume that the most recent observation takes precedence over previous observa- 

tions. By contrast, Papini illustrates an alternative approach to iterated revision in which 

earlier observations take precedence over later observations[80]. More generally, we defined 

belief evolution operators with respect to an arbitrary total ordering over the observations. 
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The most natural extension of belief evolution would extend the ordering to include all 

observations and actions. Using the techniques in this section, it is easy to see that this ex- 

tended conception of belief evolution corresponds to the class of graded world views with an 

arbitrary initial observation followed by plausibility functions of the form a f 2i, where each 

i is distinct. Hence, even the most general extension of belief evolution can be represented 

by a relatively restricted class of graded world views. 

5.4.3 Representing Condit ionalizat ion 

Spohn uses ranking functions to define a form of belief change called conditionalization [88]. 

The idea is that new evidence is presented as a pair (a ,  m), where a is a set of states and 

m 1 0; the value of m is an indication of the strength of the observation a .  Informally, 

the conditionalization of r is a new function where the minimally ranked a-worlds receive 

rank 0 and the non-a worlds are all "shifted up" by m. In this section, we illustrate how 

conditionalization can be defined in terms of graded world views. 

First, we define conditionalization formally. Let r be a plausibility function with min, = 

0 and let a be a subset of the domain of r. Let min(a) denote the minimum value r(w) for 

w E a .  Spohn defines the the plausibility function r(.(a) over a as follows: 

We call r(w1a) the a-part of r. The conditionalization of r, written r(,,,), is the following 

plausibility function. 

So the conditionalization of r is the a-part of R together with the &-part shifted appropri- 

ately. 

We illustrate that conditionalization can easily be represented by taking minimal sums 

over plausibility functions. 

Definition 40 Let r be a plausibility function over 2F, let a be a non-empty subset of 2F, 

and let m be a natural number. Define rc(a,  m) as follows: 
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We refer to rC(a,m) as the conditionalizer of r with respect to a and m. The following 

proposition illustrates how we can define the conditionalization of a plausibility function by 

taking an appropriate sum. 

Proposition 29 Let r be a plausibility function with min, = 0. For any a, m, the nonnal- 

ization of r + rc(a, m) is the conditionalization r(,,,). 

Proof If w E a, then 

r (w) + rC (a,  m) (w) = r (w) + 0 = r (w ) . 

If w @ a ,  then 

r(w) + rC(a, m)(w) = r(w) + m + min(a). 

Since r(w) > 0 and m 2 0, it follows that the minimum value obtained by r + rc(a, m) is 

min(a). Hence, the normalization of r + rc(a, m) is the plausibility function r' defined as 

follows. 

rl(w) = r(w) + rC(a, m)(w) - min(a) 

It is easy to verify that this is equal to r(,,,). 

Proposition 29 illustrates that the conditionalization of r by (a ,  m) can be defined by 

taking a minimal sum over two plausibility functions. We have restricted attention to 

plausibility functions with minimum 0 because this class coincides more closely with Spohn's 

ranking functions. However, we can define the conditionalizer in the same manner for 

plausibility functions with non-zero minimums. We can also define the conditionalization 

of a graded world view. Informally, we simply conditionalize the associated plausibility 

function on states. Hence, we identify the conditionalization with respect to (a, m) with 

the following operation: 

(ACT, OBS) (null, plaus-statec(a, m)). 

It is straightforward to show that this gives the desired result. 

5.5 Limitations and Advantages 

5.5.1 Constrained World Views 

Our focus in previous sections has been on establishing the expressive power of graded world 

views, as compared with existing frameworks for reasoning about belief change. As a result, 
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we have focused on problems involving an a priori graded world view, along with some 

"new" information. However, the restriction to new information is artificial. In the general 

case, there is no reason to restrict attention to problems in which an agent only receives 

information about actions and observations occurring at the most recent point in time. An 

agent could certainly receive new information about earlier events and actions. Hence, a 

more general problem involves an agent with an underlying graded world view, together 

with a set of constraints on the most plausible histories. In this section, we consider the 

representation of problems that have this more general form. 

Suppose that (ACT, O B S )  is a graded world view of length n. An action constraint 

is a pair (A, i )  where A is an action symbol and i 5 n. Define @((ACT, O B S ) )  1 (A, i )  

to be the set of histories with minimal plausibility, subject to the restriction that the ith 

action executed is A. We define observation constraints in the analogous manner, and we 

let @((ACT, O B S ) )  1 (a, i )  be the set of minimally ranked histories where the ith state 

is in a. If R is a set of constraints, then we define @((ACT, O B S ) )  1 R to be the set of 

minimally ranked histories satisfying every constraint in R. We will refer to such histories 

as constrained histories and we will refer to a graded world view together with a set of 

constraints as a constrained world view. 

We have presented constrained world views to illustrate that graded world views are 

useful for many problems beyond those that are normally considered to be in the realm of 

a standard "belief change operator." For example, suppose that Bob sends an encrypted 

email message to Alice, inviting her to a party at his house. Bob is aware that Eve is 

the system administrator, and that she could potentially manipulate the message before 

delivering it. When Alice does not show up, Bob concludes that Eve did not deliver the 

message. Bob is concerned that Eve read the message and had hurt feelings that she was 

not invited. However, looking at every possible action Eve could take, Bob concludes that 

Eve could not have decrypted the message. 

In the preceding example, Bob needs to consider all possible actions that Eve could have 

executed. The conclusion that Bob draws is that Eve's knowledge of the party is invariant 

with respect to her actions. We can formally define invariance as follows. 

Definition 41 Let (ACT, O B S )  be a graded world view. W e  say that a set of worlds a is an 

i-invariant of (ACT, O B S )  i f  and only iJ for every A E A, Bel((ACT, O B S )  1 (A, i)) C a. 

The intuition behind i-invariance is that, regardless of the action at time i,  the underlying 
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agent will always believe that the actual world is in a. Reasoning about invariant properties 

is essential if an agent is trying to ensure some property must hold in an action domain 

involving exogenous actions. This is required, for example, in reasoning about cryptographic 

protocols. 

Reasoning about invariance is just one new kind of problem that can be addressed by 

constrained world views. We suggest that constraints can also be used to provide natural 

representations of hypothetical reasoning and abductive reasoning. In the next section, we 

use constraints to compare graded world views with belief extrapolation operators. 

5.5.2 Comparison with Belief Extrapolation 

Constrained world views are similar to belief extrapolation operators. We briefly introduced 

belief extrapolation in Chapter 1, and we refer the reader to [23] for a complete introduction. 

For the present purposes, it is sufficient to recall that a belief extrapolation operator is 

defined with respect to an ordering over histories. Given an ordering over histories together 

with a sequence of formulas, a belief extrapolation operator returns the most plausible 

sequences of states. In the case of constrained world views, we essentially do the same 

thing. The given graded world view defines an ordering over states, and the constraints 

give a sequence of conditions that need to be satisfied. The difference is that the mapping 

from graded world views to orderings on histories is not surjective; there are orderings on 

histories that can not be described by a graded world view. For example, a graded world 

view can not capture plausibilities of the form "if A1 occurs at time i,  then A2 is likely to 

occur at time i + 1." Informally, a graded world view can only represent domains where the 

ordering on histories is built up in a pointwise manner by the plausibilities at each point 

in time. In this section, we use this limitation to establish a difference in expressive power 

between constrained world views and belief extrapolation operators. 

First, we need to formalize the problem that we would like to address more precisely. 

Given a belief extrapolation operator, we would like to be able to find a graded world view 

that captures the same information. 

Definition 42 Let 1 be a belief extrapolation operator. W e  say that 1 is representable i f  

there is a graded world view (ACT, O B S )  such that, for evemJ scenario C of length n, 

Traj(C 1) = @((ACT, O B S ) )  f C .  
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If I is representable, then the behaviour of I can be simulated with a graded world view. 

We remark that we have abused notation in the definition in that P a j ( C  I) is a collection 

of sequences of states, whereas @((ACT, OBS)) C is a collection of histories. We interpret 

the equality to mean that the two collections are equal if we ignore the action symbols in 

the latter. 

The following proposition indicates that belief extrapolation operators have an expressive 

advantage. 

Proposition 30 There is a belief extrapolation operator I that is not representable. 

Proof Let 5 be an ordering in which the following trajectories are minimal. 

Let 1 be the associated belief extrapolation operator. We will show that 1 is not repre- 

sentable. 

Let C = (a, a A b, b). Note that C is satisfied by all three minimal trajectories. Therefore 

Traj(C 1) is precisely the set of minimal trajectories. 

Now suppose that (ACT, OBS) is a graded world view such that 

(ACT, OBS) t C 

assigns minimal plausibility to 1, 2, and 3. Hence, there exist actions All A2, A3, B1, B2, B3 

such that the following sums all obtain the minimum possible rank: 

1- oBso({a, b)) + ACTi(A1) + OBSl({a, b)) + ACT2(Bl) + 0BS2({-a, b)) 

2. OBSo({a, b)) + ACTl(A2) + OBSl({a, b)) + ACT2(B2) + 0BS2({a, b)) 

3. OBSo({a, 4 ) )  + ACTl(A3) + OBSl({a, b)) + ACG(B3) + OBS2({ia, b)) 

It must be the case that ACTl(A1) = ACTl(A2), because otherwise either 1 or 2 could 

be reduced by changing the first action. Similarly, it must be the case that ACT2(B1) = 

ACT2(B3), because otherwise either 1 or 3 would not be minimal. So, we can rewrite the 

sums as follows: 
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1. OBso({a, b)) + ACTi(A1) + OBSl({a, b)) + ACT2(B1) + 0BS2({la ,  b)) 

2. OBSo({a, b)) + ACT1 (AI) + OBSl ({a, b)) + ACTz(B2) + 0BS2({a, b)) 

3. OBSo({a, ib))  + ACTi(A3) + OBSl({a, b)) + ACT2(B1) + 0BS2({la ,  b)) 

From 1 and 2, it follows from basic algebra that 

A c T 2 ( ~ 1 )  + OBS2({ia, b)) = ACTz(B2) + 0BS2({a, b)). 

Substituting this in 3 gives another minimal sum: 

This corresponds to the trajectory 

Hence, any graded world view assigning minimum plausibility to 1-3, must also assign 

minimum plausibility to this fourth trajectory. Informally, if 1-3 are preferred trajectories 

according to a graded world view, then we are forced to accept another preferred trajectory. 

But we already saw that Tra j (C 1) consists only of 1-3. Therefore 1 is not representable. 

17 

Note that the proof of Proposition 30 is constructive and it demonstrates that there is a 

simple, concrete, extrapolation operator that is not representable. 

Informally, Proposition 30 follows from the fact that some orderings on histories can not 

be defined by a graded world view. This is particularly important in applications where 

an agent has preferences over the order in which events occur. In such applications, it can 

be useful to assign plausibilities to certain sequences of actions. We suggest, however, that 

the class of orderings definable by graded world views is a natural class of orderings. In 

particular, there are many action domains where an agent has no preconceived assumptions 

about the order that exogenous actions will occur. Graded world views provide a reasonable 

tool for the representation of such action domains. However, if an agent has some informa- 

tion about the order in which actions tend to occur, then we need arbitrary orderings over 

histories. 
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5.5.3 Expressive Advantages of Graded World Views 

In the previous section, we saw that constrained world views can not capture every belief 

extrapolation operator. However, it would be a mistake to conclude that belief extrapolation 

provides a more expressive framework for reasoning about belief change. In this section, we 

discuss some of the advantages of graded world views. 

First of all, note that belief extrapolation operators are defined for a fixed history length. 

Given an ordering over histories of length n, it is not clear how to incorporate a new action 

followed by a new observation; there is no fixed method for extending orderings over n-tuples 

to orderings over n + 1 tuples. In the case of a graded world view, however, it is clear how 

the new ordering is defined when more actions are performed. As such, graded world views 

are more appropriate for the representation of epistemic action domains where we expect 

new observations and actions to occur. 

The main advantage of graded world views over all of the related formalisms that we 

have discussed is that graded world views provide a mechanism for dealing with imperfect 

information. For example, one of the main assumptions underlying belief extrapolation is 

that every observation should be incorporated in the new scenario. Graded world views 

allow observations that need not be incorporated. There are two kinds of problems where 

an observation should not be incorporated immediately. First, there are problems where 

the observation comes from an unreliable source that may not be trusted. For example, the 

cookie example can easily be modified to represent the situation where Trent is known to 

be dishonest, and his report will tend to be ignored. Second, there are problems where an 

observation comes from a reliable source, but does not provide enough evidence to overthrow 

the current beliefs. Recall the example where Bob waits for 2 reports before concluding 

that he left his lamp on. The first report is not ignored; it simply doesn't provide sufficient 

information to immediately change Bob's beliefs. Graded world views provide a tool for the 

representation of both of these classes of problems. 

We conclude with a brief remark about the overall approach taken in our framework. In 

Chapter 1, we saw that belief change caused by actions is often represented by starting with 

an action formalism and then adding revision operators. One problem with this approach 

is that it does not allow beliefs about action occurrences. In a sense, graded world views 

take the opposite approach. We start with ranking functions, which were originally defined 

for reasoning about belief change, and then we plug in actions. An agent's beliefs about 
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the actions that occur are independent of the formal representation of action effects. As 

such, although we have presented graded world views in terms of transition systems, it 

would certainly be possible to use a different action formalism. The key point is that, by 

using ranking functions to represent uncertainty about states and actions, we can define 

a framework for reasoning about epistemic action effects in which primary importance is 

placed on the evolution of an agent's beliefs. 



Chapter 6 

Conclusion 

We have considered iterated belief change in the presence of ontic actions and epistemic 

actions. Our approach has been based on a simple action formalism in which action effects 

are given by a transition system. In this final chapter, we offer some concluding remarks. 

6.1 Summary 

We briefly summarize the results presented in the body of this dissertation. Our goal has 

been to formalize the belief change that occurs in problems of the following form: 

(InitialBeliefs) . (Action) (Observation) . . . (Action) (Observation). 

We assume that the state of the world can be represented by an interpretation over a 

fixed propositional signature F, and we assume that the effects of actions are given by an 

underlying transition system T. Under these assumptions, we consider the manner in which 

an agent's beliefs should change due to a sequence of actions and observations. 

We define a belief state to be a set of states, informally the states that are considered 

possible. An observation is also a set of states, informally the states that are observed to be 

possible. We define update and revision operators such that our prototypical problem can 

be restated as follows 

K O A ~  *ale..-oAn*an. 

Our notion of belief update is actually a form of action progression in which an agent 

predicts the outcome of an action with conditional effects. We illustrate that successively 
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applying update and revision operations leads to unintuitive results. We present a set of 

formal properties that we expect to be satisfied in problems involving alternating updates 

and revisions, and we introduce a new belief change operator that satisfies our properties. 

The new operator is called a belief evolution operator, and it is defined with respect to a 

given pair (0, *) consisting of an update operator o and a revision operator *. We compare 

belief evolution operators with some existing approaches for reasoning about belief change 

caused by action, and we prove a representation result in terms of systems of spheres. 

We consider several applications of belief evolution. In particular, we use belief evolution 

operators to define the semantics of a new epistemic extension of A. We illustrate how to 

implement a solver for projection problems in the new language though answer set planning. 

Also, as a somewhat speculative application, we illustrate that belief evolution operators 

can be used to model the reasoning involved in the verification of authentication protocols. 

One limitation of belief evolution operators is that they can not represent uncertainty 

about the action history. In order to address this problem, we use Spohn-like ranking 

functions to represent actions and observations. In this case, our prototypical problem 

consists of a sequence of ranking functions of the form 

where r~ represents the initial belief state, each r A ,  is a ranking function representing an 

action, and each r o i  is a ranking function representing an observation. This is a natural 

extension of the class of problems addressed by belief evolution operators. Framing the 

problem in terms of ranking functions allows us to represent uncertainty about the actions 

that have occurred, as well as observational reliability. We illustrate how to use sequences 

of ranking functions of this form to  represent a wide range of phenomena, and we prove that 

this approach subsumes several related approaches to belief change. 

6.2 Contributions to Existing Research 

6.2.1 The Fundamental Contribution 

Many different formal approaches have been proposed for reasoning about belief change 

caused by action [4, 11, 24, 35, 44, 48, 60, 68, 84, 85, 86, 951. Often, the problem has 

been treated in a modular fashion by adding revision operators to existing formalisms for 

reasoning about action effects. As a result, existing work either ignores the interaction 
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between actions and observations, or else the interaction is treated implicitly. We have 

illustrated that the interpretation of an observation may depend on the preceding sequence 

of actions, and it may also depend on the reliability of the observation. Hence, our work 

makes it clear that a complete treatment of belief change caused by action involves more 

than simply adding a revision operator to an existing action formalism. 

The fact that sequences of actions and observations can not be treated iteratively is the 

key insight motivating this dissertation. The problems that we have addressed involve an 

agent that has a formal mechanism for determining the belief change that follows an action, 

along with a formal mechanism for determining the belief change that follows an observation. 

As noted above, this is the situation in many existing epistemic action formalisms. Our 

goal has been to specify and formalize, at a high-level, the manner in which the effects of 

individual actions and observations should be combined to compositionally determine the 

belief change following a sequence of actions and observations. Hence, the fundamental 

contribution of this dissertation is an explicit treatment of iterated belief change caused by 

actions and observations. To the best of our knowledge, there has been no other formal 

work that explicitly treats this problem. 

In the next few sections, we review some of the specific contributions of this work. 

6.2.2 Interaction Between Update and Revision 

In terms of belief change, every transition system defines a belief update operator. We 

define an epistemic transition system to be a transition system together with an AGM 

revision operator. We introduce several natural approaches to revision in a transition system 

framework, based on notions of distance and path length. Under these revision operators, 

epistemic transition systems provide a simple, graphically-motivated formalism for reasoning 

about belief change due to actions and observations. 

Reasoning about iterated belief change in an epistemic transition system involves rea- 

soning about alternating sequences of updates and revisions. We present a set of so-called 

interaction properties PI-P5 that should intuitively be satisfied whenever an update is fol- 

lowed by a revision. There has been no previous work on explicitly specifying the manner in 

which alternating updates and revisions should be treated. The properties PI-P5 are based 

on the AGM postulates, suitably translated by the effects of an action. As such, if one is 

inclined to support the AGM postulates for a single revision, then PI-P5 are easily justified 

as natural properties for iterated belief change. 
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Although we have used transition systems to represent the effects of actions, our work 

makes it clear that the only role played by the transition system is to allow the underlying 

agent to project the current state to an outcome state that will result due to an action. As 

such, we could easily frame our results in any action formalism defining action progression 

and belief revision. 

6.2.3 Evaluating Existing Formalisms 

Interpreted descriptively, the interaction properties allow us to discern between reasonable 

approaches to iterated belief change, and naive approaches that do not satisfy the intuitions 

of the AGM framework. As noted previously, formalisms that determine the effects of 

actions and observations successively do not satisfy the properties. The existing epistemic 

extensions of A are examples of such formalisms. As such, the existing extensions of A are 

not appropriate for reasoning about the iterated belief change that occurs in problems like 

the litmus paper problem. Hence, our work in this dissertation can be used to provide limits 

on the range of application of certain epistemic action formalisms. 

We have illustrated that the epistemic extension of the SitCalc is well suited for the 

representation of iterated belief change. This result is important for two reasons. First, it 

provides an interesting and useful epistemic action formalism that satisfies our interaction 

properties. Second, our work provides some formal justification for the treatment of obser- 

vations in the SitCalc. From a naive point of view, the fact that "revision actions" do not 

satisfy the AGM postulates may be seen as a negative. However, our evaluation illustrates 

that the SitCalc approach is appropriate for iterated belief change; the AGM postulates 

need not be satisfied when an observation follows a sequence of actions. 

6.2.4 Belief Evolution 

Belief evolution operators give a prescriptive approach to iterated belief change that respects 

the interaction between update and revision. The underlying assumption in belief evolution 

is that action histories are infallible. Under this assumption, belief evolution operators give 

a reasonable solution to the litmus paper problem. We have demonstrated that the naive 

combination of update and revision is inappropriate for this problem. As such, one of the 

contributions of our work is a general solution to litmus-type problems in terms of given 

update and revision operators. More generally, belief evolution operators intuitively capture 
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"experimental reasoning" where an agent explores the world by performing state-changing 

actions, then observing the effects. This kind of reasoning requires an agent to explicitly 

consider the sequence of actions preceding an observation. 

We prove that belief evolution operators can be characterized in terms of modified sys- 

tems of spheres. This result illustrates that ontic actions can be understood to apply a 

shifting operation on a system of spheres. This is a simple operation that corresponds 

closely with our intuitions about the effects of actions, given an a priori plausibility or- 

dering on states of the world. By providing a representation result in terms of systems of 

spheres, we illustrate that belief evolution is a natural operation in the traditional AGM 

framework. 

Another distinguishing feature of our approach is that, given a sequence of actions and 

observations, the result of belief evolution is a complete belief trajectory. This makes it 

salient that agents can not simply focus on determining the new belief state when dealing 

with both actions and observations. The fact that a complete belief trajectory is returned 

ensures that an agent's beliefs will be consistent over time. This extends the notion of 

consistency required for AGM revision. In particular, in the AGM framework, an agent's 

beliefs must be consistent following an observation. However, if an agent is aware that 

actions have been performed, then this notion of consistency is too weak. An agent should 

also believe that the history of states of the world is consistent with the actions that have 

been executed. 

6.2.5 Applications Involving Act ions and Observations 

This dissertation has made several contributions in terms of applications involving actions 

and observations. First of all, we have introduced an epistemic extension of A that provably 

subsumes two prominent existing extensions of A. Moreover, our extension differs in that 

we allow erroneous initial beliefs, and it is the only extension that allows non-Markovian 

belief change respecting the properties PI-P5. 

There are relatively few implemented solvers for standard belief change operators. As 

such, the proposed solver for belief evolution represents a useful contribution because it 

suggests a novel approach to automating the solution of belief change problems. To the 

best of our knowledge, answer set planning has not previously been used to implement a 

solver for belief revision or related belief change operators. We remark that a prototype of 

our solver has actually been implemented, and it is presently undergoing testing. 



CHAPTER 6. CONCLUSION 152 

The treatment of cryptographic protocols in terms of belief evolution operators is ad- 

mittedly superficial, but it still makes a contribution to existing research. Protocol logics 

use monotonic rules of inference to represent changing beliefs, and this is clearly not ap- 

propriate in many applications. However, to date there has been no work on the use of 

non-monotonic belief change operators in reasoning about cryptographic protocols. Since 

cryptographic protocols involve alternating sequences of actions and observations, belief evo- 

lution operators provide a useful model of the belief change that is involved. Hence, using 

belief evolution operators for protocol verification is useful for two communities. For the 

security community, belief evolution provides a more accurate model of belief change than 

that embodied by existing protocol logics. For the belief change community, cryptographic 

protocols provide an interesting and important class of examples. 

6.2.6 Reasoning with Fallible Action Histories 

Belief evolution operators provide a complete picture of iterated epistemic action effects 

under the relatively strict assumption that action histories are infallible. If this restriction 

is lifted, then it becomes much more difficult to say anything definite based solely on the 

effects of individual actions. Our work on graded world views makes it clear that the 

plausibility of actions and observations plays a central role in iterated belief change. Note 

that the plausibility of an action occurrence is completely independent of the effects of the 

action. As such, our work illustrates that reasoning about iterated epistemic action effects 

requires more than an action formalism and an ordering over states. In the general case, we 

need to have some definite assumptions about the likelihood that an action actually occurs 

at a given point in time. 

Graded world views provide a single formalism that is suitable for reasoning about 

epistemic action effects involving fallible beliefs, fallible perception, exogenous actions, and 

failed actions. We are not aware of any other existing action formalism that is able to 

represent all of these phenomena. 

We have precisely delineated a large class of problems that can be captured by graded 

world views. In particular, graded world views are well-suited for reasoning about problems 

where each action and observation comes with an attached plausibility, and these plau- 

sibilities are mutually independent. We have proved that this class of problems includes 

the problems addressed by subjective probability functions, AGM revision operators, and 

Spohn's conditionalization. As such, graded world views are a natural extension of existing 
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work in belief change. h r t h e r ,  we have illustrated by example that graded world views can 

also capture interesting new classes of problems, such as those involving graded evidence. 

Such problems are not typically captured in formal approaches to representing belief change 

due to actions. 

We see two main applications for graded world views. First, as suggested above, graded 

world views provide a flexible framework that can be used to capture a variety of phenomena 

that may not be captured in existing formalisms. Second, graded world views can serve as 

a unifying tool that can be used to compare and contrast the expressive power of related 

formalisms. 

6.3 Future Work 

There are several interesting directions for future work. One obvious direction would be 

to work towards a syntactic treatment of iterated belief change in the presence of multiple 

observations. We have only provided postulates for a single action followed by a single 

observation. Belief evolution operators and graded world views both provide semantic tools 

for resolving conflicting observations at different points in time, but we have not attempted 

to syntactically capture this phenomenon. Existing work in this area includes [21], in which 

properties of iterated sequences of observations are described through a set of postulates 

for prioritized merging. The postulates do not characterize a specific approach to iterated 

belief change, and they do not incorporate ontic actions. However, axiomatizing prioritized 

merging may be a reasonable first step towards characterizing belief evolution operators for 

multiple observations. 

Another direction for future research would address iterated belief change caused by 

actions in a multi-agent environment. We remark that even defining update and revision 

operators in this context can be difficult, because a single action can affect the beliefs of 

each agent in a different way. However, the multi-agent belief structures of [44] provide a 

reasonable tool for the representation of a single update or a single revision. By employing 

the methodology of belief evolution, it should be possible to extend multi-agent belief struc- 

tures to represent iterated belief change in a manner that respects our interaction properties. 

Alternatively, one could also extend the formalism with plausibility functions for each agent 

to represent imperfect information. 

On the practical side, we would like to work towards a more complete treatment of 
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cryptographic protocol verification. Since cryptographic protocols typically involve several 

agents, this project would necessarily have to follow the aforementioned multi-agent exten- 

sion of our work. However, there are real advantages to be gained by framing protocol 

verification in terms of a general approach to belief change. First of all, we have sug- 

gested that there are obvious problems with the use of monotonic logics to reason about 

belief change in a protocol run. Moreover, existing protocol logics have often been defined 

specifically for authentication protocols. Related protocol goals, such as anonymity and 

non-repudiation, often require the introduction of new forms of reasoning. Using a general 

approach to belief change may facilitate the representation of a wide range of protocol goals 

in a single framework. 

6.4 Final Remarks 

Iterated belief change due to actions and observations occurs in many natural problem 

domains. Despite this fact, there has been very little work on the formalization of this kind of 

reasoning. We suggest that, in this respect, there is a close parallel between iterated revision 

and iterated epistemic action effects. In particular, AGM revision operators were originally 

defined for a single revision. Over time, it became clear that iterated revision introduces 

new complications that must be explicitly addressed. Similarly, belief change caused by 

actions has typically been addressed for a single ontic action or a single epistemic action. 

Just as iterated revisions introduce new complications, we have illustrated that iterated 

actions and observations also introduce new complications. We suggest that the epistemic 

effects of iterated actions and observations should be discussed and addressed as a distinct 

problem, just as iterated revision has been discussed and addressed as a distinct problem. 

We view this dissertation as the initial formal treatment of a natural phenomenon in belief 

change, and we hope that the formal tools introduced will provide a useful foundation for 

future work. 
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