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The Neighbor Discovery Protocol (NDP) is a fundamental component of Internet 

Protocol version 6 (IPv6) networks. An IPv6 network is made up of a collection of 

nodes, each of which is either a router or a host, connected via a physical network. NDP 

serves as the foundation that allows IPv6 to run transparently over any physical network. 

On a given network node, NDP functions as a mechanism for discovering the existence 

and identity of neighboring hosts and routers, for determining a neighbor's data link layer 

address given its IPv6 address, and for producing a unique IPv6 address based on the 

node's data link layer address. 

Because of the importance of the role NDP plays in IPv6 networks, testers of 

IPv6 routers should include the verification of NDP in their test plan. This report 

discusses the steps a tester needs to perform in order to verify the operation of NDP on 

an IPv6 router. In addition, this report also outlines the ways in which NDP can be used 

to facilitate the configuration of both testers and routers in setting up test scenarios, such 

as traffic generation and real-time measurements, which are not focused on NDP. 
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1 INTRODUCTION 

The Neighbor Discovery Protocol (NDP) is one of the most popular data link layer 

protocols for Internet Protocol version 6 (IPv6) networks'. Data link layer protocols are 

used by network nodes on the same link to exchange information with each other, and, 

as such, play a fundamental role in maintaining the healthy operation of a network. 

Therefore, a router participating in NDP exchanges in a network is expected to adhere to 

standardized NDP operating procedures, and to not become a hindrance to the network 

as the utilization to both the network and the router itself increases. 

NDP is designed to be run over IPv6 networks of any link layer type. It provides 

the process for neighboring network nodes to resolve a neighbor's link layer address 

based on its IPv6 address, to discover neighboring routers that are willing to participate 

in packet forwarding, to automatically configure IPv6 addresses, to determine the 

reachability or availability of a neighbor, and to detect when duplicate addresses are 

configured on the link. 

This report examines the ways in which NDP can be used to test an IPv6 router. 

Chapter 2 provides an overview of NDP, including the addressing scheme that is used to 

transmit messages, the types of messages that are exchanged and the meaning of 

various fields within each message, the basic operations and the message handshake 

that is used to carry out each operation, and the current status of the protocol itself. 

Chapter 3 covers the fundamentals of protocol testing, including an explanation of 

1 The Internet Protocol (IP) is the network layer protocol used in the Internet. The existing 
versions of IP include version 4, which is widely deployed today, and version 6, which is rapidly 
gaining acceptance as the IP protocol of the choice for emerging networks. 



conformance and scalability testing. It also portrays the way in which the NDP 

implementation on a router can be tested, and presents a model of a NDP protocol 

tester. In addition, the chapter also outlines a list of basic NDP test scenarios, and 

applies the tester model to each scenario to illustrate how the testing can be executed. 

Possible future improvements to the model are listed at the end of the chapter. Chapter 

4 covers the fundamentals of performance testing, including the basics of traffic 

generation and real-time measurements. The chapter also describes the ways in which 

NDP can be used as a tool for setting up performance tests. Chapter 5 provides a 

conclusion of the report. 

The goal of this report is to provide the reader with a good understanding of the 

basics of NDP, and the requirements for performing protocol and performance tests on a 

router or a system of routers. 



This chapter provides an overview of the NDP, to serve as background 

information before examining the specifics of testing a NDP-capable IPv6 router. 

2.1 Goals of NDP 

NDP is a data link layer protocol2 used to define the interaction amongst IPv6 

network nodes connected by a single link. Specifically, NDP specifies the procedures 

for allowing a node to resolve a neighboring node's corresponding link layer address 

from its IPv6 address, to discover all routers residing on the same link, and to 

automatically configure the node's IPv6 address based on its link layer address. NDP 

also allows a node to detect the availability or reachability of a neighboring node, to 

determine the uniqueness of its IPv6 address within its connected link, and to be 

informed by a router of a better path for a particular traffic destination. 

NDP is intended to be run on networks whose network layer protocol is IPv6. 

NDP is designed such that it may be run over any data link layer types, including 

multicast links, point-to-point links and non-broadcast multiple access (NBMA) links3. 

NDP replaces, for IPv6 networks, the functionality of the Address Resolution 

Protocol (ARP) and various features of version 4 of the Internet Control Message 

Protocol (ICMPv4) in IPv4 networks. 

Data link layer protocols are protocols used to describe the interactions amongst network 
interfaces connected to the same physical link. 
3 Examples of multicast, point-to-point, and NBMA links include Ethernet, Packet Over SONET 
(POS), and Asynchronous Transfer Mode (ATM), respectively. For more information about the 
different data link layer types, refer to Chapter 11, "Neighbor Greeting and Autoconfiguration," in 



2.2 NDP Hosts and Routers 

Since NDP is a data link layer protocol, the only other nodes that a NDP node is 

aware of are those located on directly connected links. Each NDP node is either an 

IPv6-capable host or router. The difference between a host and a router is that a router 

has the ability to forward IPv6 packets onto different links and networks on behalf of 

other nodes, while a host can only act as a packet source and sink. In general, a given 

link usually contains at least one host and one router. 

Figure 2.1 shows a typical Ethernet link and its connected hosts and routers. 

When NDP is enabled, the hosts and router exchange NDP messages with one another, 

but not with the Internet or any other network. 

Host A Host B 

F F 
Host C Host D Host E 

Figure 2.1 : An Ethernet link with connected NDP hosts and routers 

2.3 NDP Messages and Addresses 

This section gives a description of the format of NDP messages, the types of 

addresses found in NDP messages, and the various types of NDP messages. This 



summary of NDP messages is provided to facilitate the explanation of the major 

functionalities of NDP and their corresponding operations in the next section. 

2.3.1 Message Format 

NDP-capable nodes operate by exchanging NDP messages via version 6 of the 

Internet Control Message Protocol (ICMPv6). A NDP packet is a specific type of 

ICMPv6 packet. Each NDP packet contains an ICMPv6 header plus NDP-specific fields 

and options, and is encapsulated by an IPv6 header. The resultant IPv6 packet is, in 

turn, encapsulated by a link-layer-specific header and trailer. Figure 2.2 shows this 

hierarchy of headers in a NDP packet. 

Figure 2.2: NDP packet protocol hierarchy 

ICMPv6 NDP-specific I header I fields 

2.3.2 Message Addresses 

Each NDP message contains at least two pairs of addresses: the source and 

destination IPv6 addresses and link layer addresses. These addresses allow NDP 

messages to be transmitted and received amongst nodes connected to the same link. 

NDP 
options 

Some NDP messages also contain a target IPv6 address, in addition to the source and 

5 



destination addresses. A target address is used to specify a node or an address in 

question when NDP nodes query each other about particular addresses or redirect 

packets to a specific node. 

A number of different types of addresses are used in the IPv6 source and 

destination address fields, including global unicast addresses, link-local addresses, and 

multicast addresses. 

2.3.2.1 Global Unicast Addresses 

A global unicast IPv6 address is used to label a single network interface, and has 

a scope that spans the whole Internet. Each global unicast address must be unique 

within the Internet, though more than one global unicast address can be associated with 

the same network interface. 

A special global unicast address is the unspecified address, which is basically an 

IPv6 address containing all zeroes. The unspecified address is used as the source IPv6 

address for certain types of NDP packets that do not require the source of the message 

to be known. 

2.3.2.2 Link-Local Addresses 

Link-local addresses are unicast IPv6 addresses that have significance only 

within a single link. Each network interface connected to a given link must have a link- 

local address, in addition to one or more global unicast addresses, and each link-local 

address must be unique to that link. 

Link-local addresses are formed by appending the well-known link-local prefix, 

Oxfe80 (in hexadecimal), to the lnterface Identifierfor each interface. The lnterface 



ldentifier must be 64 bits long, and must be constructed using the IEEE EUI-64 format4. 

The exact composition of the lnterface ldentifier is specific to each link type, but the link 

layer address is used in most cases. lnterface Identifiers have link-only scope, and each 

lnterface ldentifier must be unique on its connected link. 

2.3.2.3 Multicast Addresses 

Multicast addresses are used by the sender to send messages to multiple nodes 

simultaneously. NDP messages use a number of well-known multicast addresses with 

link-only scope, including the all-nodes multicast address, the all-routers multicast 

address, and the solicited-node multicast address. 

The all-nodes multicast address, with a value of FF02::1, is used to send packets 

from one node on a link to all other nodes on the same link. The all-nodes multicast 

address is used by NDP for advertisement messages (refer to section 2.3.3 on Message 

Types). 

On the other hand, the all-routers multicast address, with a value of FF02::2, is 

used to send packets from one node on a link to all other routers (but not hosts) on the 

same link. The all-routers multicast address is used for Router Solicitation (RS) 

messages. 

Unlike the aforementioned multicast addresses, the solicited-node multicast 

address does not have a fixed value, but is, instead, a function of a given unicast 

address5. The solicited-node multicast address is used to direct Neighbor Solicitation 

(NS) messages to specific neighbor targets. 

4 For more information on the IEEE EUI-64 format, refer to [ I  71. 
For a specification of this function, refer to section 2.7.1 in [lo]. 



2.3.3 Message Types 

There are five different types of NDP messages: 

1. Neighbor Solicitation (NS) messages are sent by a node to request 

information from a specific targeted neighbor. The source address of a NS 

message is either one of the sender node's global unicast addresses or the 

unspecified address, while the destination address is either the global unicast 

address of the targeted neighbor or the solicited-node multicast address 

derived from it. NS messages also contain the "Targeted Address" field, 

used to specify the IPv6 address of the targeted neighbor. 

NS messages are used for link layer address resolution (section 2.6), 

neighbor unreachability detection (section 2.8.1), and duplicate address 

detection (section 2.8.2). 

Neighbor Advertisement (NA) messages are sent by a node either in 

response to a NS message or unsolicited when the sender node wants to 

inform its neighbors of any changes to its link layer address. The source 

address of a NA message is one of the global unicast addresses of the 

sender node, while the destination address is either the source address of the 

corresponding NS message, or the all-nodes multicast address if the NS 

message source address is unspecified or if the NA message is unsolicited. 

NA messages contain the "Targeted Address" field, which stores the IPv6 

address of the sender node, and whose value should match that of the 

associated NS messages. NA messages also include the "Target Link layer 

Address" option. 



NA messages are used for link layer address resolution (section 2.6), 

neighbor unreachability detection (section 2.8.1), duplicate address detection 

(section 2.8.2), and for unsolicited information advertisements. 

3. Router Solicitation (RS) messages are sent by a host to request for 

information from routers on the link that are willing to forward packages on its 

behalf. Such routers are called advertising routers and their interfaces that 

are connected to the link are called on-link advertising interfaces. The source 

address of a RS message is either one of the sender node's unicast 

addresses or the unspecified address, while the destination address of the 

message is the all-routers multicast address. 

RS messages are used for router and prefix discovery (section 2.4) and 

stateless address autoconfiguration (section 2.6). 

4. Router Advertisement (RA) messages are sent by advertising routers to hosts 

in response to their RS messages. RA messages are also sent unsolicited 

by advertising routers to all hosts on the link when the advertised information 

has changed. The source address of a RA message is the link-local address 

of the router's advertising interface, while the destination address of the 

message is either the source address from the corresponding RS message, 

or the all-nodes multicast address if the RA message is unsolicited. RA 

messages also include a number of important options, including the "MTU" 

option, which specifies the Maximum Transmission Unit (ie. the size of the 

largest packet) allowable on the link, and the "Prefix" option, which specifies 

all the network prefixes6 configured on the link. 

6 A prefix refers to the network portion of an IP address. 
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RA messages, like RS messages, are used for both router and prefix 

discovery (section 2.4) and stateless address autoconfiguration (section 2.6). 

5. Redirect messages are sent by routers to hosts to redirect the hosts to use 

different routers for forwarding data packets destined for specific destinations. 

The source address of a Redirect message is the link-local address of the 

sender router's on-link interface, while its destination address is the source 

address of the data packet that triggered the redirect. Redirect messages 

also contain the "Targeted Address" field, which stores the IPv6 address of 

the router that is a more suitable next hop for the traffic, and the "Destination 

Address" field, which stores the destination IPv6 address of the data packets 

that should be redirected. 

Redirect messages are used solely for the router redirect functionality 

(section 2.8.3). 

2.4 Router and Prefix Discovery 

Router discovery is performed by each host to determine all the routers that are 

connected to the same link (i.e. are on-link), and are willing to forward traffic on its 

behalf. The IPv6 addresses of the discovered routers are used to populate the Default 

Router List, a data list present on each NDP host, needed for next-hop determination 

(see section 2.5). 

Prefix discovery is performed to determine the list of prefixes that are on-link or 

can be used for stateless address autoconfiguration (see section 2.7). These prefixes 

are used to populate the Prefix List (another data list present on each NDP host), which 

is also used for next-hop determination. 



To perform router and prefix discovery, a host broadcasts a RS message to all 

on-link routers. On receipt of the RS message, each on-link router responds with a RA 

message containing the list of prefixes known by the router to be on-link or may be used 

for address autoconfiguration in the "Prefix" option. When the sender host receives a 

RA message, it extracts the source address of the packet and inserts the address into its 

Default Router List. It also extracts the prefixes in the "Prefix" option, and inserts them 

into its Prefix List. 

Router and prefix discovery are usually performed when a host connects to a link 

and when NDP is first enabled on a host. In the case when the configuration on a router 

changes, the router broadcasts unsolicited RA messages to all its on-link neighbors so 

that the neighbors can update their caches and lists with the new information. 

2.5 Next-hop Determination 

Each NDP node maintains a Destination Cache that stores a mapping of the 

destination IPv6 addresses of recently sent packets to the IPv6 addresses of the next- 

hop neighbors best-suited for forwarding the packets to their respective destinations. 

Next-hop neighbors are either on-link routers or the actual destination hosts of on-link 

destinations. 

To perform next-hop determination for a destination IPv6 address, a node first 

checks the address against the list of on-link prefixes in its Prefix List to determine 

whether the destination is on-link. If the destination is on-link, then the destination 

address is the next-hop address. On the other hand, if the destination is not on-link, the 

sender node selects a router from its Default Router List to use as the next-hop 

neighbor. If the Default Router List is empty, the sender assumes that the destination is 

on-link. 



Next-hop determination is usually performed the first time traffic is sent to a given 

destination, and when a next-hop neighbor is determined to be unreachable (see section 

2.8.1). 

2.6 Link Layer Address Resolution 

In order to send or forward IP traffic to a next-hop neighbor, the sender node 

must know the link layer address of the next-hop neighbor before directing the packets. 

Each NDP node keeps track of the mapping of the IPv6 address to the link layer address 

for all neighboring nodes in its Neighbor Cache. 

To perform address resolution, a node sends a NS message with the "Target 

Address" field containing the IPv6 address of the on-link node whose link layer address 

is being queried (i.e. the target node). When the target node receives the NS message, 

it responds with a NA message containing its link layer address. Upon receipt of the NA 

message, the sender node extracts the target link layer address and stores it in its 

Neighbor Cache. 

In the case when the link layer address of a node changes, the node sends 

unsolicited NA messages to all of its on-link neighbors to inform them of the new 

address so that their Neighbor Caches can be updated. 

2.7 IP Address Autoconfiguration 

Since IPv6 addresses are 128 bits long, they are much more time-consuming 

and error-prone to enter manually in a host's or router's network configuration, when 

compared to 32-bit IPv4 addresses. NDP offers a mechanism to automatically generate 

and configure unique IPv6 addresses for each interface on a link. 



Before IPv6 addresses can be generated, prefix and router discovery must be 

performed (see section 2.4). On receipt of the RA messages generated by routers 

during prefix and router discovery, for each prefix extracted by the sender host in the 

"Prefix" option of the RA messages, if the "Autonomous Address-ConfigurationJJ flag is 

set in the RA message, then the prefix is used to generate a unique IPv6 address for the 

receiving interface. Given a specific prefix, a unique IPv6 address can be generated by 

appending the interface's Interface Identifier. Each interface can have multiple I Pv6 

addresses associated with it. 

This method of generating IPv6 addresses using NDP, as mentioned in the 

previous paragraph, is called stateless address autoconfiguration. There is another 

method of generating unique IPv6 addresses, called stateful address autoconfiguration, 

In reply to: which an external protocol such as the Dynamic Host Configuration Protocol 

for IPv6 (DHCPv6) is used7. The decision of whether to stateless or stateful address 

autoconfiguration is determined by the "Managed Address Configuration" flag in the 

received RA messages, where a set flag indicates that stateful autoconfiguration should 

be used, and an unset flag indicates that stateless autoconfiguration should be used. 

However, regardless of whether stateless or stateful address autoconfiguration is used, 

the resultant address should always be verified for uniqueness on the link using 

duplicate address detection (see section 2.8.2). 

2.8 Other Features of NDP 

2.8.1 Neighbor Unreachability Detection 

Neighbor Unreachability Detection is a mechanism in NDP for a node to verify 

the reachability status of each of its neighbors. Each neighbor in a node's Neighbor 

The specifics of DHCPv6 is out of the scope of this report, but may be obtained from [9]. 
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Cache has a reachability state associated with it. There are five reachability states, 

including INCOMPLETE, REACHABLE, STALE, DELAY, and PROBE. Table 2.1 

provides a summary of the meaning of each state. 

REACHABLE The neighbor has been confirmed to be reachable I 
STALE A predetermined duration has expired without any reachability I 

confirmation for the neighbor 

DELAY A data packet has just been forwarded to the STALE neighbor 

PROBE A NS message has just been sent to verify the reachability of the 

neighbor, and a response has not yet been received 

Table 2.1 : Summary of reachability states for on-link neighbors 

When link layer address resolution is invoked by a node (see section 2.6) for an 

on-link IPv6 address, a new neighbor entry is added to the Neighbor Cache, with the 

reachability state set to INCOMPLETE. Once the solicited NA messages for link layer 

address resolution is received by the sender node, the state for the new neighbor entry 

becomes REACHABLE. When a period of time, equal to a randomized multiple of the 

"Reachable Time" field in received RA messages, has elapsed with no reachability 

confirmation from upper layer protocols or from received solicited NA messages, the 

state for the neighbor entry becomes STALE. The neighbor entry remains in the STALE 

state until a data packet is forwarded to the neighbor, at which time the entry goes into 

the DELAY state. After a fixed durationa, if no reachability confirmation is received, the 

entry goes into the PROBE state and a NS message is sent to seek a direct response 

from the neighbor. If a corresponding NA message is received, then the neighbor entry 

goes back to the REACHABLE state; otherwise, the entry is removed from the Neighbor 

a For the specification that quantifies "a fixed duration," see section 10 in [12]. 

14 



Cache. Reachability confirmations generally come from upper layer protocols, and the 

reception of such confirmations will change the neighbor entry back to the REACHABLE 

state, with its timeout timer reset. Figure 2.3 shows the state transition diagram for a 

neighbor's reachability status. 

invoked for the 

chability confirmation from 

Reachability 
confirmation from 
upper protocol layers 

layer address received 

r address is rece 

ata packet is forwarded 

\ I Delay timer 

message is rec'eived for a transmitted 
NS message 

Figure 2.3: State transition diagram for neighbor reachability states 



2.8.2 Duplicate Address Detection 

Duplicate address detection is the mechanism in NDP by which a node 

determines if one of its newly created IPv6 addresses is unique on its connected link. 

Duplicate addresses are not allowed on a link. 

To perform duplicate address detection for a new address, a node sends a NS 

message with the unspecified address as the IPv6 source address, and the new address 

as the target address. If no valid corresponding solicited NA messages are received, 

then the new address is deemed unique and can be assigned to the node's interface. 

On the other hand, if a valid corresponding solicited NA message is received from a 

neighbor, indicating that the new address is already used by that neighbor, then the new 

address is not unique; in such a case, the new address is discarded, and manual 

intervention is usually required to configure another new address (which must also go 

through the duplicate address detection process). 

Duplicate address detection is performed for newly formed link-local addresses 

when a link becomes enabled, and for all new global unicast IPv6 addresses created 

using stateless or stateful address autoconfiguration, or using manual configuration. 

2.8.3 Router Redirect 

The router redirect scenario usually occurs when a host uses a default router as 

its next-hop router (see section 2.4). If a shorter path through a different router on the 

link exists for a given destination, or if the destination of the packets is actually another 

host on the same link, the default router will attempt to redirect the sender host's traffic 

by sending a Redirect message with the "Target Address" field set to the IPv6 address of 

the preferred router. 



On receipt of the Redirect message, the sender host will update its Destination 

Cache with the new next-hop address for the given destination. 

2.9 Current Status of NDP 

Even though NDP was designed to support all data link layer types, due to its 

requirement of a link layer broadcast or multicast mechanism, non-broadcast-based link 

layer types like Packet Over SONET (POS), Asynchronous Transfer Mode (ATM), or 

frame relay mostly use other mechanisms to perform the functionality offered by NDP. 

Nonetheless, NDP is the neighbor discovery protocol of choice for IPv6-over-Ethernet- 

type networks. As of the writing time of this report, NDP is fully implemented on most 

network equipment manufacturers' devices, and is commonly deployed by service 

providers in IPv6 networks containing Ethernet interfaces, most prominently in Europe 

and Asia. 



This chapter examines the specifics of testing the NDP implementation of an 

IPv6 router. In particular, the chapter begins with an overview of the fundamentals of 

protocol testing, including an explanation of what constitute conformance and scalability 

testing. Next, a proposed architectural model of a NDP tester is presented, followed by 

a listing of various basic NDP test scenarios and an illustration of how this tester model 

can be applied in these tests. 

3.1 Fundamentals of Protocol Testing 

In general, a protocol is a specification of the procedures and the messages 

exchanged amongst one or more communicating network entities or nodes. There are 

two important basic components to testing an implementation of a network protocol such 

as NDP: conformance testing and scalability testing9. 

3.1.1 ConformanceTesting 

In essence, conformance testing is the verification of a protocol implementation's 

adherence to the published standards. Conformance to standards is the only way to 

guarantee that one implementation of a protocol can interoperate with other 

implementations, or that one company's network equipment can work together with its 

customer's or competitor's equipment. Such interoperability capabilities are important in 

9 Conformance and scalability testing are the most common types of protocol testing requested 
by test engineers. Other types of protocol testing include functional testing, interoperability 
testing, and negative testing. Since these types of tests are not as common, they will not be 
covered by this report. More details on all types of protocol testing can be found in 141. 



today's large global networks, which are made up of different types of equipment from 

companies all over the world. 

The basis of conformance testing is to provide a pre-determined inputs or stimuli 

to an implementation, and then verify that its output is as expected according to the 

standards. For NDP, the main standard was published by the Internet Engineering Task 

Force (IETF) as Request For Comments (RFC) 2461, "Neighbor Discovery for IPv6" 

[ I  21. As evident from the overview of NDP in chapter 2 of this report, NDP mostly 

involves the exchange and processing of messages. Therefore, a test for the 

conformance of a NDP implementation can be performed by sending various NDP 

messages (i.e. the input) to the implementation, and then verifying the subsequent 

messages received (i.e. the output) from the implementation. 

3.1.2 Scalability Testing 

As today's networks are made up of hundreds of thousands of nodes and links, it 

is essential that a router, including all of its protocol implementations, is able to handle a 

large volume of input, to store the millions of sets of network information it needs to 

properly forward traffic, and to process and generate the corresponding amount of 

output. Scalability testing involves simulating a real network environment with hundreds 

of thousands of nodes, and testing a router's ability to function normally in such an 

environment. Scalability testing also verifies that a router's performance does not 

deteriorate significantly as the volume of protocol traffic, and, hence, the amount 

processing required of the router, increases. 

To test a NDP router for scalability, the router can be placed in a simulated 

environment containing a large number of neighbors, and then its performance in 

sending and processing all necessary NDP messages can be measured. 



3.2 A Model of a NDP Tester 

In this section, the general goals of a protocol tester are outlined, followed by a 

detailed explanation of a proposed model of a NDP protocol tester. 

3.2.1 Goals of a Protocol Tester 

A protocol tester's job is to simulate the operation of one or more network nodes 

against the router or the system under test, and to verify that the protocol 

implementation in the system under test is functioning as expected. A protocol tester 

should also make it easy to determine when a system under test is behaving correctly or 

incorrectly, and to trace through the series of procedures being performed or messages 

being exchanged to determine the cause of any problems that occur. 

In theory, a router's protocol implementation can be tested using other routers or 

hosts. However, routers or hosts are normally designed for performance and efficiency, 

and, thus, do not have extra resources left over to support the tracing, logging, and 

general flexibility needed in a dedicated tester. In addition, to simulate the high-density 

environment for scalability testing, hundreds of thousands of routers and hosts would be 

required; such a large test bed is too expensive to maintain, and is not feasible. 

For dedicated testers to be able to provide a realistic test environment that is 

easy to set up and to use for testing against real routers, the protocol implementation 

within a tester should vary from that within a real router or host in several ways: 

1 . A tester should provide a way to create and store a large number of instances 

of a protocol simulation quickly and easily. This capability is necessary in 

order to perform scalability tests with as little test equipment as possible. For 

example, instead of requiring five hundred routers, all with NDP enabled and 

hooked up onto the same data link, one tester port simulating five hundred 



NDP routers can be used. Also, the test protocol simulations should be 

designed in a way such that all or large portions of the simulations can be 

created and configured all at once. 

2. A tester should provide a way to simulate large surrounding networks and 

topologies on a single port. Because today's Internet consists of large 

networks and topologies, in order for router tests to be as realistic and 

relevant as possible, they should be operating under such an environment. 

For any router that is to be deployed within the Internet, it not only has to 

conform to the standards for any protocols that it runs, but it also has to be 

able to handle all the protocol operations correctly while forwarding traffic for 

large networks at close to its full bandwidth capability. Ideally, one tester port 

should be able to simulate as many hosts, routers and networks as possible 

in order to be relevant and efficient at the same time. 

A tester's protocol implementation does not need to perform all the 

processing and store all the data required of a protocol implementation in a 

real router or host. A tester should be able to simulate many protocol 

instances in large networks and topologies using a small number of test 

ports, which are necessary for realistic and scalable tests. Since a tester is 

not a real router, and is not expected to forward traffic, it doesn't need to 

process and store all the routing information that a real router uses to make 

forwarding decisions; as a result, a tester should be able to use fewer 

resources than a real router. 

4. Multiple protocol simulations on a tester should pretend to have done all the 

required protocol interactions with each other, without actually doing them. 

When simulating more than one protocol instance on a port, a tester should 



allow its protocol instances to share data with one another without the need 

for protocol packets to be sent over any physical links. In this manner, the 

protocol instances can be assumed to have performed all protocol 

operations, exchanged all the necessary messages, and be completely up-to- 

date with one another without actually having performed the work. This 

capability also allows protocol implementations on a tester to be more 

resource-efficient than that on a real router. 

5. Protocol simulations should allow protocol operations to be explicitly triggered 

and controlled. In a real router, once a protocol instance is configured and 

enabled, all protocol operations should be carried out by the router 

automatically with little or no intervention needed by the router operator. On 

the other hand, a protocol implementation within a tester should provide 

explicit control of the protocol operations, in addition to the automatic control 

of a real router. When testing a real router using a tester, a test engineer can 

start by having the protocol instances on the tester operate automatically, 

while monitoring the logs and trace messages for anything out of the 

ordinary. When the test engineer wishes to test or to trace through a problem 

in a particular part of the protocol on the router, such as the reception of an 

unexpected or a malformed protocol message, the test engineer can explicitly 

trigger various operations on the tester to gauge the reaction of the router. 

A dedicated tester offers its value by allowing a test engineer to create as large 

and complicated a setup and using as little equipment and as little configuration time as 

possible, all the while being adequately thorough in testing every aspect of the operation 

of a router or a system of routers. 



3.2.2 Static Representation of the Model 

With the goals of a tester listed in the previous section in mind, a model of a NDP 

protocol tester is presented in this section. The model is illustrated using the Unified 

Modelling Language (UML)". 

Figure 3.1 shows a UML class diagram, or static representation, of the NDP 

protocol tester model. The main component within the model is the NdpHostPool class, 

which is a representation of a group of simulated NDP hosts within the same link. Each 

NdpHostPool object is uniquely identified within the system by an integer handle. The 

number of simulated NDP hosts contained within a NdpHostPool object is a user- 

configurable value. Also, to allow fast set-up of the simulated NDP hosts, all NDP- 

related properties, like whether NDP is enabled, are shared by all hosts and specified 

only once per host pool, regardless of the number of hosts in each pool. In addition, all 

addresses, including link layer addresses (L2 addresses in the diagram), and interface 

Identifiers, which must be unique to each NDP host, are specified as a patterned range 

of addresses using a "first address" and a modifier (i.e. a value to be added or 

subtracted from the current address to obtain the next address); for example, for a host 

pool containing 10 simulated hosts, if the "first address" value is 1 and the modifier is 

positive 3, then the addresses for the 10 simulated hosts are 1, 4, 7, 10, 13, 16, 19, 22, 

25, and 28. As for the link-local and global unicast addresses for the simulated hosts 

within a pool, they can be obtained by appending each simulated host's Interface 

identifierto the link-local prefix or the global prefixes listed in the PrefixList object. 

10 For a specification of UML, refer to [13]. 





The public member operations in the NdpHostPool class include methods like 

InitiateRouterDiscovery and InitiateAddressResolution, which allow the user to explicitly 

trigger NDP protocol operations for specific tests, and Getlnterfaceldentifiers and 

Setlnterfaceldentifiers, which allow the user and other system components to access the 

host pool's parameters in a controlled manner. Each of these operations is applied to 

every simulated NDP host in the host pool. For instance, a call to 

InitiateRouterDiscovery will start the router discovery process on all the simulated hosts 

in the pool, such that one RS message is sent and one RA message is expected to be 

received on behalf of each simulated host. While the host pool is waiting for all the RA 

messages, the NumberOfPendingMessages member variable will indicate the number of 

simulated hosts yet to receive a RA message, and the TypeOfPendingMessages 

member variable will indicate that the host pool is currently expecting RA messages. A 

new NDP operation should not be allowed to start on the host pool until the current 

operation is complete, which is denoted by the NumberOfPendingMessages variable 

having a value of zero. If the user determines that a fault has occurred in the router 

being tested, such that the expected NDP messages will not be received by the 

NdpHostPool, then he can explicitly reset the NumberOfPendingMessages and 

TypeOfPendingMessages variables using the ResetPendingState member operation. 

After the reset has been triggered, the user will be free to start any new NDP operations 

on the NDP host pool. 

Each NdpHostPool object also contains a NdpMessageStatistics object, which is 

used to store the counts of the number of each type of NDP message transmitted and 

received by the NdpHostPool object since the NdpHostPool object was enabled. The 

message counts can also be reset to zero by calling the StatisticsReset member 



operation within the NdpMessageStatistics object. Other member operations include 

methods to update and query the message counts. 

NdpHostPool objects are created by and stored within NdpTestPort objects. 

Each NdpTestPort object may contain zero or more NdpHostPools, all of which are 

assumed to be residing on the same data link. Each NdpTestPort object also contains a 

NeighborCache object, a PrefixList object, a DestinationCache object, and a 

DefaultRouterList object. These four cache and list objects store the data obtained by 

the simulated hosts when exchanging NDP messages with and performing NDP 

operations against a router. To save on the amount of resources needed to store these 

objects, these caches and lists only contain data with regards to the router under test, 

and not that with regards to the simulated hosts themselves. The information contained 

within these four objects is common to and is shared by each NdpHostPool object within 

the same NdpTestPort object. 

The public member operations for the NeighborCache, PrefixList, 

Destinationcache, and DefaultRouterList classes mainly consist of methods to add, 

modify, remove, and query for the information contained within each class. 

The TestSystem class represents all the other components in the tester that are 

not related to NDP. Also, the TestSystem class provides the interface between the user 

and the NDP-related objects. Each TestSystem object may contain zero or more 

NdpTestPorts, and is responsible for relaying the commands and messages between 

the NDP-related objects and the user or other parts of the tester. 



3.2.3 Dynamic Representation of the Model 

The previous section examined the static representation of the NDP protocol 

tester model. In this section, the dynamic representation of the model is presented and 

analyzed. 

Figure 3.2 shows a UML sequence diagram for the NDP protocol tester model. 

Specifically, the diagram illustrates the operations amongst instances of classes like 

NdpTestPort and NdpHostPool, and external actors such as the user or the router. The 

diagram also shows when each class is activated via the vertical bars underneath the 

class name, the synchronous commands issued by each class via the solid arrows, and 

the asynchronous messages passed amongst the classes and the external actors via 

the stick arrows. 

The sequence diagram in Figure 3.2 illustrates the sequence of messages and 

events that occur when the user initiates a command to start the router discovery and 

IPv6 address autoconfiguration operation on a particular NDP host pool. In the diagram, 

the "User" actor triggers the start of the sequence by initiating the command to the test 

system, which acts as the interface between the user and the rest of the NDP-related 

components. The test system then finds and invokes the InitateRouterDiscovery 

command in the NdpHostPool object that the user specifies using the pool object's 

unique handle. 





Next, the NdpHostPool object builds and sends a RS message for each 

simulated NDP host in the pool, with the source address of the message being one of 

the simulated host's global unicast addresses, and the destination address being the all- 

routers multicast address. The NdpHostPost object should also update its 

NdpMessageStatistics object with the number of RS messages that was sent. At this 

point, the NdpHostPool object is in a pending state, waiting for the RA message for each 

corresponding RS message to be sent by the router under test. When the RA message 

corresponding to the RS message that was sent on behalf of the first simulated host in 

the pool is received" (i.e. the destination address of the received RA message equals 

the "first address" of the host pool's address range), the NdpHostPool object invokes its 

own ProcessNdpMessage method. The ProcessNdpMessage method will, in turn, 

update the NeighborCache object with the source IPv6 and link layer addresses of the 

router, the DefaultRouterList object with the source IPv6 address of the router, and the 

PrefixList object with the advertised prefixes, all of which are extracted from the received 

RA message. The NeighborCache, DefaultRouterList, and PrefixList objects that are 

updated should be the ones belonging to the same NdpTestPort as the NdpHostPool 

object. Since all the simulated NDP hosts within the host pool are assumed to reside on 

the same data link, the information advertised by the router under test in its RA 

messages must be the same for each RS message that was sent''; as a result, only one 

of the RA messages needs to be processed and used to update the associated caches 

and lists, thereby allowing the tester to save on the amount of processing resources 

needed, and also allowing the tester's performance to remain relatively similar 

regardless of the number of hosts being simulated within the pool object. 

1 1  An alternative method of implementing this functionality is to process the first RA message that 
was received by the NdpHostPool object instead of the RA message whose address matches the 
"first address" of the NdpHostPool object. 
l 2  This fact can be tested using a large number of host pools, each with only one simulated host. 



In addition to the procedures for processing the received RA messages, each 

received RA message must also be counted in the NdpHostPool's 

NdpMessageStatistics object, regardless of which simulated host within the pool the RA 

message was destined. However, since the amount of processing needed to increment 

a statistics count is almost negligible, the requirement to process every RA message in 

this case should not be a detriment to the tester's performance. 

Figure 3.2 illustrates a typical usage scenario for the NDP protocol tester model. 

The chain of events is often started by the user invoking a command to perform a 

specific test. A NdpHostPool object is generally the recipient of the command, at which 

point it often builds and sends the required NDP messages to the router under test. If 

and when the corresponding NDP messages sent by the router are received, the 

corresponding test port's NDP-related caches and lists are updated with the new data 

from the messages, and the message statistics counts are incremented accordingly. 

Though not indicated in the sequence diagram, if, at any point, the chain of events is 

interrupted by unexpected behaviour from the router, the proper error information should 

be displayed to the user so that the user can use the information to pinpoint the problem. 

3.3 Test Scenarios 

In the previous section, a model for a NDP protocol tester was presented. A 

static representation, in the form of a UML class diagram, outlined the basic components 

of the model. A dynamic representation, in the form of a sequence diagram, examined 

the interactions amongst those components. 

In this section, the NDP protocol tester model is applied to various test scenarios 

to demonstrate how the tester can be used to perform protocol conformance and 

scalability testing on a router or a system of routers. This application of the model is 



illustrated using a series of sequence diagrams similar to that in Figure 3.2. The test 

scenarios include the following: 

1. initial connection, router discovery, prefix discovery, and address 

autoconfiguration 

2. address resolution, neighbor unreachability detection and duplicate address 

detection 

3. next-hop determination, and 

4. router redirect 

Each scenario focuses on the interaction of one NdpHostPool object with the rest 

of the system and with the router being tested. Together, these scenarios make up the 

fundamental protocol operations of NDP, and target many of the NDP-related 

functionality of a router that needs to be tested. 

3.3.1 Initial Connection, Router Discovery, Prefix Discovery and Address 
Autoconfiguration 

The test scenario presented in the sequence diagram in Figure 3.3 shows the 

series of events and interactions during the initial connection phase of a NdpHostPool 

object. It is similar to the scenario presented in Figure 3.2 in the previous section, which 

illustrates the events and interactions during router discovery. Prefix discovery and 

address autoconfiguration are performed as a result of both scenarios. 





The only difference between the scenarios in Figure 3.2 and Figure 3.3 is the 

way in which the user triggers the start of the events. For the scenario in Figure 3.2, the 

user explicitly invokes the command to start the router discovery process. For the 

scenario in Figure 3.3, the user initiates the connection either by adding a new NDP host 

pool, or by enabling an existing one. When adding a new host pool, the test system 

executes the AddHostPool command in the corresponding NdpTestPort object, which 

then creates the new NdpHostPool object and stores it internally. On the other hand, 

when enabling an existing host pool, the test system finds and directly sends the 

command to the correct NdpHostPool object itself. 

Once the command reaches the NdpHostPool object, the rest of the events and 

interactions in the initial connection scenario are identical to that in the router discovery 

scenario. The NdpHostPool object sends a RS message on behalf of each simulated 

NDP host, and waits for the corresponding RA messages to be sent by the router. Only 

one received RA message is processed and is used to update the Neighborcache, 

DefaultRouterList, and PrefixList objects on the associated NdpTestPort, while all RS 

messages transmitted and all RA messages received are updated in the NdpHostPoolls 

NdpMessageStatistics object. 

The expected behaviour from the router under test in both scenarios is that for 

every RS message sent by the NdpHostPool object, the router responds with a 

corresponding RA message in a timely mannet3. The RA message that is processed 

should pass the message validation procedures described in section 6.1.2 in [12].Also, 

the RA message should contain the correct information reflecting the source IPv6 and 

link layer addresses of the router, and the prefixes that are on-link or may be used for 

13 The specifications for quantifying "a timely manner" can be found in [12]. 
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address autoconfiguration. The tester is responsible for verifying that the router has 

performed all of the above, and for reporting any discrepancies that occur. 

3.3.2 Address Resolution, Neighbor Unreachability Detection and 
Duplicate Address Detection 

Figure 3.4 shows the sequence diagram for address resolution, neighbor 

unreachability detection, and duplicate address detection. The chain of events that 

occurs for each of these three scenarios is similar, but not identical. Also, for each of 

these three operations, different source and destination addresses are used in the NS 

messages that are sent to the router under test. 

The sequence begins when the user triggers the address resolution, neighbor 

unreachability or duplicate address detection command in the test system, specifying 

both the unique handle of the host pool and the target address for the operation. The 

target address for both address resolution and neighbor unreachability detection should 

be one of the addresses in the NeighborCache. On the other hand, the target address 

for duplicate address detection may be an address in the NeighborCache or any address 

that the user wishes to test. 
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Upon receipt of the user command, the test system finds and relays the 

command to the specified NdpHostPool object. For each NDP host that it simulates, the 

NdpHostPool object builds a NS message and sends it to the router. For address 

resolution, the source address of the NS message is one of the simulated host's global 

u nicast addresses, and the destination address is the solicited-node multicast address of 

the target address. For neighbor unreachability detection, the source address of the 

message is one of the simulated host's global unicast addresses, and the destination 

address is the target address. For duplicate address detection, the source address of 

the message is the unspecified address, while the destination address is the solicited- 

node multicast address of the target address. Upon successful transmission of the NS 

messages, the associated count in the NdpMessageStatistics object is updated. 

At this point, the NdpHostPool object goes into a pending state, and waits for the 

corresponding NA messages to be sent by the router. The TypeOfPendingMessages 

member variable is set to the NS message type, and the NumberOfPendingMessages is 

set to the number of expected NA messages yet to be received. If address resolution is 

being performed, all NA messages are expected to be sent by the router, and the 

NdpHostPool object will remain pending until either all messages are received, or the 

user explicitly resets the pending state. 

On the other hand, if either neighbor unreachability detection or duplicate 

address detection is being performed, NA messages are expected to be received only if 

the target address matches one of the router's own addresses; otherwise, they should 

not be received. For this scenario, like that for address resolution, the NdpHostPool 

object can still exit out of the pending state if either all messages are received, or the 

user explicitly resets the pending state. Unlike address resolution, if after a fixed 

duration of time, the NdpHostPool object is still in the pending state, it will automatically 



exit out of the pending state. The exact amount of time in this fixed duration may be a 

predetermined constant in the system, or it may be configurable by the useri4. 

Regardless of the cause, as the NdpHostPool exits the pending state, it will post the 

outcome of the neighbor unreachability detection or the duplicate address detection 

process to the user. An affirmative or a negative result may be desired, depending on 

the target address that was supplied. 

The expected behaviour for the router in this test scenario is that it responds to 

the NS messages with corresponding NA messages in a timely manner, provided that it 

is the neighbor being targeted in the test. If it is not the targeted neighbor, it is expected 

to not respond with any NA messages. Also, any NA messages sent by the router 

should pass the message validation procedures as described in section 7.1.2 in [ I  21, 

and contain the router's link layer address in the "Target link-layer address" option. 

3.3.3 Next-hop Determination 

Under normal circumstances, the scenario for next-hop determination does not 

directly involve any interactions with the router under test. Instead, the tester relies on 

the existing information that was gathered in previous NDP operations in the 

Destinationcache, PrefixList, DefaultRouterList, and Neighborcache objects. Message 

exchange and interaction with the router only comes into play when the information 

needed by the tester cannot be found in the existing data in the cache and list objects. 

14 This fixed duration of time for the NdpHostPool object to automatically exit out of the pending 
state should be longer than the timeout for a pending NA message, as defined in [12]. 





The scenario diagram for next-hop determination is shown in Figure 3.5. Like 

previous scenarios, the chain of events starts off with a command from the user. In this 

case, the command is to add a new destination for sending traffic. Upon receipt of the 

user command, the test system finds and invokes the InitiateNextHopDetermination 

command in the specified NdpHostPool object. 

The NdpHostPool object first checks with the DestinationCache object to see if 

the new destination indicated by the user has already been cached in the object, and, if 

so, to retrieve the corresponding next-hop address. If the new destination cannot be 

found within the Destinationcache, the NdpHostPool object queries the PrefixList object 

to see if the new destination is on-link. If the new destination is on-link, then the next- 

hop address is set to the address of the new destination. If the new destination is off- 

link, then the NdpHostPool object retrieves the address of a default router from the 

DefaultRouterList object, and sets it as the next-hop address. If no default routers are 

found in the DefaultRouterList object, then the new destination is assumed to be on-link. 

Once the next-hop address is obtained, the NdpHostPool object queries the 

Neighborcache to retrieve the link layer address corresponding to the next-hop address. 

When the query is successful, and a link layer address is found, the new destination is 

ready to be used for sending traffic. However, if the query is unsuccessful, the 

NdpHostPool object will have to invoke the address resolution procedure, as described 

in section 3.3.2. The only difference between the subsequent series of interactions that 

occur and the interactions shown in the address resolution sequence diagram in Figure 

3.4 is the fact that there should be no command being triggered by the user and the test 

system. Instead, the chain of events starts at the NdpHostPool object. 

Assuming that the address resolution step is not needed, there is no real 

expected behaviour for the router under test in this next-hop determination scenario. 



However, the router is expected to have kept the NeighborCache, DefaultRouterList and 

PrefixList objects up-to-date via solicited or unsolicited NA and RA messages, such that 

the link layer address retrieved at the end of the scenario actually corresponds to the 

new destination and can be used to send traffic without any errors. 

3.3.4 Router Redirect 

Figure 3.6 shows the sequence diagram for the router redirect test scenario. 

Unlike the previous scenarios, the router redirect scenario does not start with an explicit 

user command. Instead, it is generally triggered as a result of the user sending data 

packets from the tester to the router under test when the router is not the ideal next-hop 

neighbor for the destination of the traffic. This condition is true when another router that 

is closer to the destination reside on the same link, or when the destination is actually a 

neighboring node on the link. 

If the user does not explicitly provide a destination link layer address for the data 

packets, the tester may ask the NdpTestPort object to extract a valid next-hop address 

for the traffic destination from its Destinationcache, and the corresponding link layer 

address from its NeighborCache. If a valid next-hop cannot be found, then the next-hop 

determination process (as described in the previous section) is invoked. 

If the user does not explicitly provide a source link layer address for the data 

packets, the tester will use the link layer address of the NDP simulated host whose 

global unicast IPv6 address matches the data packets' source IPv6 address. 

Once the link layer addresses are determined, the user can start transmitting the 

data packets to the router via the test port. Since, in this scenario, the router is not the 

ideal next-hop for the given destination, it should send a Redirect message to the 

simulated host acting as the source of the packets. 





When the Redirect message is received, the NdpHostPool object containing the 

source simulated host updates the Destinationcache object associated with its parent 

NdpTestPort object with the new next-hop address for the destination. The 

NdpHostPool object also increments the received Redirect message count in its 

NdpMessageCount member object. 

Assuming that a better next-hop neighbor exists, the router under test is 

expected send a Redirect message in a timely manner after it receives the data packets. 

The NdpHostPool object does not go into a pending state since it is not aware of the 

need to redirect the traffic until it actually receives the Redirect message. The Redirect 

message sent by the router should pass the message validation procedures listed in 

section 8.1 of [12]. Also, the tester should verify that the Redirect message contains the 

address of the better next-hop neighbor in its "Target AddressJJ field, and the destination 

address of the data packets that triggered the redirect in its "Destination Address" field. 

3.4 Application of the Test Scenarios 

The test scenarios presented in the previous section can be applied to perform 

both conformance tests and scalability tests. 

3.4.1 Conformance Tests 

To perform conformance tests on the router under test for verification of 

adherence to the protocol standards, the test scenarios can be run using one test port 

and one NdpHostPool object containing only one simulated NDP host. Using this 

minimal setup, the router's basic protocol functionality is tested without any extra 

complications like requiring the router to process and send multiple NDP messages at 

once. As long as the router provides the expected behaviour in servicing the simulated 



host, the router's protocol implementation and processing algorithm can be deemed to 

adequately follow the published standards. 

At any point during a test scenario, if anything unexpected occurs in the tester's 

interaction with the router, the number of contributing factors is reduced in this simple 

configuration, making it easier for the user to locate the source of and the reason behind 

the unexpected behaviour. 

3.4.2 Scalability Tests 

To perform scalability tests on the router under test for the test scenarios, 

multiple test ports, each with multiple NdpHostPool objects containing many simulated 

NDP hosts should be used. Ideally, before starting any scalability tests, the 

corresponding conformance test should have already been performed with the expected 

behaviour verified. Otherwise, should an error occur during the test scenario, the large 

number of simulated hosts involved and messages being sent and received will only 

serve to complicate the situation, making it harder to analyze the problem. 

When executing the test scenarios using multiple simulated hosts, the tests 

should start with a small number of test ports and simulated host pools (each with a 

small number of simulated hosts) such that success is expected. Then, the tests should 

be repeated with a gradually increasing number of ports and simulated hosts until an 

error or any unexpected behaviour occurs. Examples of errors include expected NDP 

messages not being sent by the router, or are not sent within the message timeout 

periodi5. The resulting number of simulated hosts used can be considered to be beyond 

the scalability limit for the particular router under test. Variations of the scalability tests 

can be created by increasing only one or two of the parameters (i.e. fixing the number of 

l5 Default NDP message timeout periods are defined in [12]. 



ports and increasing the number of NdpHostPool objects per port, or just increasing the 

number of simulated hosts per host pool) to gauge the router's reaction under different 

circumstances. 

Further scalability tests can be performed by blasting the router with non-NDP- 

related traffic while the NDP test scenarios are being executed. These types of tests are 

relevant since routers are expected to handle traffic and protocol messages sent by 

multiple sources simultaneously. 

In all of the aforementioned scalability test scenarios, the tester is expected to be 

able to handle much higher scalability numbers than the router under test, as the amount 

of processing that it is required to do is significantly less that for the router. 

3.5 Future Extensions to the Model 

The NDP protocol tester model presented in this chapter is designed to perform 

the most basic functionality needed to test the NDP-related behaviour of a router. As 

such, the model can be extended to cover more details in each test scenario or to cover 

other test scenarios. 

The following list contains features that can be added to the existing tester model 

in order to widen the scope of the tests that can be performed: 

a timing module and event scheduler can be introduced to handle the 

message timeouts, retransmissions, and list entry expirations as described in 

[I 21 and [I 81 

more details can be added to the model to describe how events and 

interactions are traced, and how logs, error messages, and statistics are 

displayed to the user 



more capability can be added to the model in testing a system of routers, as 

the model is currently designed to handle only one router on the data link 

connected to the test ports (for example, the pending state within a 

NdpHostPool object only expects advertisements from one router, since 

having more than one router would increase the number of pending 

messages by a factor of n, with n being the number of real routers on the link) 

the ability to simulate NDP routers (in NdpRouterPool objects), in addition to 

NDP hosts, can be included to allow the model to test real hosts as well as 

real routers 



USING NDP AS A TEST CONFIGURATION TOOL 

The previous chapter explored the ways in which the NDP implementation on a 

tester can be used for testing a router's conformance to the NDP protocol standards and 

its scalability in the presence of large NDP-enabled IPv6 networks. In this chapter, the 

ways in which a tester's NDP implementation can be used to facilitate the configuration 

of performance tests involving traffic generation and real-time measurements are 

examined. 

In addition, this chapter shows how the model of a NDP tester presented in the 

previous chapter can be expanded to include the components of performance testing. 

The resulting model presents a more complete picture of the elements essential to a 

dedicated tester of a router. 

4.1 Fundamentals of Performance Testing 

The performance of a router placed in the large and high-traffic networks of 

today's Internet is of particular concern to router manufacturers and Internet Service 

Providers (ISP's). Accordingly, a router's performance should be thoroughly tested and 

validated before the router can be deployed in a live network. 

The two basic components of performance testing include traffic generation and 

real-time measurements. In essence, traffic generation is the process of blasting a 

router or system under test with packets at one end, and real-time measurements is the 

process of collecting and analyzing the packets forwarded by the router at the other end. 



4.1.1 Traffic Generation 

To fully test the capability of a router, different types of traffic should be sent to 

the router to gauge the router's ability to handle various traffic scenarios. For a 

dedicated tester, a number of parameters should be considered when generating test 

traffic, including the number of different flows of traffic to be generated16, the size of the 

packets being generated, the rate and distribution at which the packets are sent, and the 

contents of the packets being generated. 

Each of these parameters may be affected by the result of protocol exchanges 

between the tester and the router. In terms of NDP, since NDP is primarily used for 

exchanging neighbor addresses and address-related information, the data gathered by 

NDP can be used to automatically populate the address fields of generated traffic such 

that the resultant packets would be forwarded by the router. The automatic setup of 

valid protocol-negotiated addresses in data packets is very important for tests involving 

large networks, plenty of nodes, and a constantly fluctuating environment. 

4.1.2 Real-time Measurements 

Real-time measurements involve gathering the packets forwarded by the router, 

tracking various statistics on the received packets, and making analysis on the packets 

and the statistics based on previous knowledge of the nature of the traffic that was sent 

to the router. The most common types of statistics gathered on traffic forwarded by a 

router include packet and octet counts, packet loss, traffic throughput, latency, and jitter. 

In general, protocol implementations on testers do not directly affect the process 

of making real-time measurements on router traffic. Nevertheless, for NDP, running 

NDP operations and, in particular, scalability test scenarios against a router while 

16 a flow of traffic is generally distinguished by the source of the traffic, the destination of the 
traffic, and a set of service agreements or handling procedures from the network carrying the 
traffic 



generating and measuring large volumes of traffic may affect the results of the real-time 

measurements. In fact, such a test scenario of sending both control (i.e. protocol) and 

data packets simultaneously to a router may be closer to the actual types of traffic the 

router is expected to handle in real network. Also, the address information gathered by 

NDP may be used to identify the flows of traffic that are sent to the router, and for which 

statistics should be tracked. 

4.2 Configuration Scenarios 

As mentioned, the ways in which NDP can be used to aid performance testing 

mostly involve using the information gathered by NDP to set the content of generated 

traffic. This section presents two ways in which the address information learned by NDP 

can be used to automatically fill in the address fields of data packets. 

4.2.1 Automatic Interface Discovery 

In order for a router to forward any packets, the packets themselves should 

contain valid link layer and IPv6 addresses that allow the router to recognize and 

process the packets. In particular, for most link layer types, the packets forwarded to the 

router should contain the router's link layer address, or some derivation of it, as the link 

layer destination address. 

NDP router discovery and address resolution procedures allow a tester to 

automatically learn the router's unicast IPv6 and link layer addresses. Thus, once these 

operations have been executed, and the test port has been updated with the most 

current address information, the port's Destination Cache, Default Router List, and 

Neighbor Cache can be queried to retrieve the applicable next-hop (i.e. the router's) link 

layer address for a given packet destination. The next-hop determination and router 

redirect scenario diagrams, in Figure 3.5 and Figure 3.6 respectively, illustrate the way 



the test system retrieves the relevant information from the NDP caches and lists that can 

be used to fill in the link layer destination address of the data packets. 

4.2.2 Automatic Address Setup 

A different test configuration problem that can be solved by NDP involves the 

address autoconfiguration process. In particular, since IPv6 addresses are long and 

hard to set up, using the automatically generated unicast addresses for simulated NDP 

hosts as the source or destination IPv6 addresses in data packets saves the user the 

trouble of manually editing the addresses. Having the packets addressed as such 

emulates traffic being sent from one simulated host through the router to another 

simulated host. 

To perform automatic address setup, the address autoconfiguration procedures 

should be carried out first so that valid and unique IPv6 addresses can be automatically 

assigned to each simulated host. The IPv6 addresses for a simulated host can be 

produced by appending its Interface Identifier to all the prefixes marked for 

autoconfiguration in the associated test port's Prefix List. After address 

autoconfiguration is done, traffic can be generated using the simulated hosts' new IPv6 

addresses as either the source or destination address, depending on the intended path 

of the traffic. 

4.3 Extensions to the Protocol Tester Model for Performance 
Testing 

In the previous chapter, a model for testing the NDP implementation on a router 

was examined. However, the associated test scenarios that were presented mostly 

focussed on protocol conformance and scalability testing. 



The NDP protocol tester model can be extended to provide for the automatic 

interface discovery and automatic address setup scenarios. Figure 4.1 shows a 

collaboration diagram with an extended version of the tester model, and the interactions 

amongst the components of the model, the user, and the router under test. 

A - 
User - 

2: query 
for addresses 7 1 f addresses addresses f 1 7 6: query 

for addresses 

3: build packets 

7: analyze packets 
and track statistics 

Figure 4.1 : Collaboration diagram for performance testing scenarios 

The new extended model of the tester contains two new components (or 

classes): the traffic generator component and the packet capture and analysis 

component. The third component, the NDP protocol tester, basically consists of all the 

elements of the protocol tester model presented in the previous chapter (see Figure 3.1); 

it is illustrated as a black box that can be used by the other tester components to query 

for NDP-negotiated address information. Together, the traffic generator, the packet 

capture and analysis, and the NDP protocol tester make up the more complete model of 

a router tester. 



The operations listed in Figure 4.1 are focussed on the two scenarios, automatic 

interface discovery and automatic address configuration, in which the tester's NDP 

implementation is used as a configuration tool. Before the sequence of events begins, 

the NDP protocol tester is expected to have fully communicated with the router and 

stored all the necessary information in its data caches and lists. The process begins 

when the user indicates a desire to generate traffic for testing and analyzing the 

performance of the router. When the traffic generator receives the command, it queries 

the NDP protocol tester for the addresses of the simulated hosts and their next-hops. 

Then, it builds the data packets using the returned information (and possibly other 

configuration values from the user), and sends the packets out to the router. 

Assuming that the router's NDP operations had proceeded as expected and that 

the information it gave to the NDP protocol tester is correct, the router is expected to 

forward the packets to the tester's receiving ports. When the packets are received, the 

packet capture and analysis module at the receiving port queries the NDP protocol tester 

to make sure the packet addresses are expected, and then performs statistics tracking 

and analysis on the packets. The results of the analysis should be presented back to 

the user to paint a picture of the performance of the router. 



In this report, the ways in which an IPv6 router's NDP capabilities can be tested 

are explored. 

NDP is a data link layer protocol used in IPv6 networks for dynamically 

exchanging address information amongst neighbors connected on the same link. NDP 

runs on top of both ICMPv6 and IPv6, and makes use of both multicast and unicast 

transmissions for message exchange. The primary operations of NDP include router 

and prefix discovery, traffic next-hop determination, link layer address resolution, IP 

address autoconfiguration, neighbor unreachability detection, duplicate address 

detection, and router redirect. All of these operations are performed by the exchange of 

NS, NA, RS, RA, and Redirect messages amongst neighbors. 

Protocol testing on a router involves checking for the router's conformance to 

published protocol standards, and for the router's ability to scale as the number of 

neighbors and the size of the surrounding networks increase. Ideally, a dedicated tester 

is used to perform the testing on the router. Dedicated testers are designed to provide 

simulations of different network environments and network entities for various test 

scenarios, and to implement detailed monitoring and reporting of the router's behaviour 

during the tests. 

To test a router's conformance to the NDP standards, a dedicated tester can be 

used to simulate neighboring NDP hosts and to perform each of the primary NDP 

operations with the router. Most of the NDP operations expect the router to respond with 

a specific NDP message in a timely manner when given a particular stimulus such as the 



receipt of another NDP message. The message sent by the router should pass the 

message validation procedures as defined in the standards, and contain the information 

sought by the tester. To test the router's scalability, the same conformance tests can be 

performed, but with the number of simulated hosts and the size of the surrounding 

networks gradually increasing. 

When testing the performance of a router by sending it data packets and by 

capturing the packets forwarded by the router, the NDP capabilities of a tester can be 

used as an address configuration tool. In particular, the address information gathered 

during the router discovery, address resolution and address autoconfiguration 

processes, including the link layer address of the router and the generated IPv6 

addresses of the simulated hosts, can be used to set the address fields of the data 

packets such that they would be forwarded by the router. These methods of automatic 

neighbor discovery and automatic address configuration allow the user of the tester to 

avoid having to search for and enter the IPv6 addresses into the traffic configuration 

manually. 

A model is used in this report to illustrate one approach to the design of a 

dedicated tester. The model is also used to demonstrate the series of events and 

interactions that can occur when a tester performs the typical NDP operations against a 

router, and the way the router's behaviour can be verified. As the protocol standards 

and the nature of the Internet evolve, the model can be extended to support future NDP 

testing requirements. 
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