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Abstract

Empirical statistical sampling distributiéns of the estimates of
six number-of-factor indices were generated by Monte Carlo procedures
and were inspected for deviation from a known population number of
factors, The distributions were based on 100 samples (at each of 3
sample sizes) from Cattell and Sullivan's Cups of Coffee Problem -
Sample A (which has psychometric error comparable to that found in
7 the typical psychological study using factor analytic techniques).

Cattell's scree test and Linn's mean square ratio test were
implemented too unreliably to be included in the analysis of sampling
distributions. Horn's index (following smc and image analyses) and
Crawford's index failed to indicate any number of factors for some
samples prior to modifications made for the purpose of including them
in the analysis 6f sampling distributions. Sequential analyses of
variance indicated that Guttman's Stronger Lower Bound consistently
overestimated the population number of factors and that Guttman's
Weaker Lower Bound and the modified version of Crawford's index gave

the most accurate estimates of the population number of factors.
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Introduction

The Number of Factors Problem

Factor analytic procedures are designed to select a small number of
interpretable parameters which best describe a set of variables. Data
are collected on a set of observed variables which are thought to relate
to the conceptual domain under consideration and then are subjected to
procedures which result in the expression of the variables as linear
combinations of a smaller set of new hypothetical variables or common
factors. These factors represent the aspects of each variable which are
common to others in the set and, thus, give a more concise description
of the nature of the domain of interest as represented by the variables
initially selected.

Generally, the number of common factors influencing a set of variables
exceeds the number of variables included in the analysis. In practice,
however, it is impossible to extract more common factors than there are
variables without placing arbitrary restrictions on the factor matrix
(Joreskog, 1969). Thus, many factor analysts have expanded the concept of
common factors to include the following two types: (a) major common fac-
tors (which are separable from error-dominated factors in any particular
factor analysis), and (b) minor common factors (which are not distinguish-
éblenfrom errof—dominated factors inhanf pafticular factor analysis).

The experimenter must select the factors which best describe his data
(viz, the major common factors) while minimizing the inclusion of error
variance which is concentrated in the minor common factors.

The selection of the most appropriate factors should be made-when
the factors are in their most interpretable positions. A factor solution

following extraction is only one of an infinite number of mathematically




equivalent solutions. Some of these solutions are more psychologically
meaningful than others, and very seldom is it the case that the initial
solution is the most interpretable. The most ﬁeaningful solution can be
found by rotating the factors to a new position. The most widely
accepted criteria for such‘solutions (Harman, 1960) are based on
Thurstone's (1947) conditions of simple structure; If a simple struc-
ture solution exists for a set of data, the expectation of factor stabil-
ity is also maximized (Horst, 1965). However, most rotation procedures
require a prior, independent estimate of the number of factors to be
fotated since the rotated factor loadings are dependent on the number of
factors rotated (Cliff and Hamburger, 1967). The inclusion of too few
factors in the rotation results in a loss of potentially interpretable
factors. The inclusion of too many factors in oblique rotations often
causes a collapse in the factor space; whereas inclusion of too many fac-
tors in orthogonal rotations has the effect of splitting factors, result-
ing in pseudospecific factors (Cattell, 1966b).

Several general procedures have been developed to estimate the
number of factors on the basis of some criterion which is independent of
the psychological meaningfulness of the factors. Depending on the type
of extraction employed, different indices have been applied to the
unrotated factor matrix to exclude from the rotation factors which, on
the basis of either their psychometric or their statistical properties,

are considered likely to be error factors.

Statistical and Psychometric Approaches to the Problem
The statistical and psychometric approaches to the number-of-factors
problem each emphasizes a different source of error variance as the deter-

; minant of factor instability. The statistical approach involves the



problem of faulty estimation of factors due to the errors arising from
the random selection of a certain sample of persons from a total pop-
ulation. Factors derived from a population of variables should be
replicable when another sample from the same population of people is
used to obtain measures on the variables. Statistical indices of the
number of factors (k) actually test the equality of the last (n - k)
roots of an (n x n) covariance (or correlation) matrix on the assump-
tions: <(a) ihai ii ihe roois are very ciose to equality they may come
from a population in which the roots are equal; and (b) that if chis is
the case, then there is no point in attempting maximization of variation
in any particular direction, and k, then, represents a sufficient number
of factors. Statistical indices of the number of factors have been
developed by Lawley (1940), Rao (1955), Joreskog (1963, 1969), and others.

The psychometric approach involves the problem of error in the
estimation of factors arising from the selection of only some variables
from the total domain of variables defined by a set of factors. Thurstone
(1947) describes this type of invariance as the invariance of the fac-
torial description of a variable when it is moved from one battery of
variables to another which involves the same common factors. The condi-
tions of simple structure are associated with this type of invariance.
Many indices have been devised to indicate the number of factors which
will most likely satisfy some criterion of this type of invariarce, e.g.,
Guttman (1954), and Kaiser (1960, Kaiser and Caffrey, 1965). These
indices assume, however, th#t thgvdata are based on a population of
people.

Any particular factor analysis includes both psychometric and statis-
tical error.‘ Neither the statistical nor the psychometric tests, however,

% checks for both types of error. Such tests must either (a) assume that



the analysis includes a population of variables, and test for errors
resulting from thé sampling of subjects from a total population of sub-
jects (viz, statistical indices); or (b) assume that the analysis is
based on a population of people, and test for error resulting from the
gsampling of variables from a total domain of variables (viz, psycho-
metric indices). Thus, it is of interest to anyone using one type of
test to know how it will behave under conditions in which its assumptions
are not met.

It has been found that when the psychometric assumption is met,
statistical indices tend to improve their estimation of the number of
major common factors as statistical error is reduced; but that when the
psychometric assumption is not met, they are apt to indicate increasing
numbers of factors (up ton - 1, wvhere n is the number of variables
included in the analysis) as statistical error is reduced (Browne, 1969).
This tendency indicates that statistical tests are apt to take advantage
of psychometric sampling error when it is present in the data.

When there is no étatistical error in the data, psychometric tests
tend to indicate an appropriate number of factors. However, in the pres-
ence of statistical sampling error, the effect of sample size on the
statistical sampling distribution of psychometric indices is not clear.

Besides the purely statistical and purely psychometric indices of
the number of factors, several others have been developed which estimate
the number of factors on the basis of some criterion of identifiability
of major common as opposed to minor common factors. These tests, which
- will be termed composite tests, do not include explicit assumptions about
the psychometric or statistical properties of the data.

The procedures of several of these composite tests are similar to



ﬁhe statistical tests' procedure of rejecting factors on the basis of
the equality of their roots. Cattell's (1966a) scree test and Linn's
(1964, 1968) mean square ratio test are of this‘type. They depart from
the statistical tests in their lack of imposition of a statistical test
of equality on the latent roots of the minor common factors. Instead,
they implement a visual test on the plot of some iﬁdex of factor size
which discriminates between the major and minor common factors. The
scree test assumes (a) that the error factors should have an eigenvalue
plot which can be described by a straight line, even if this line has
# non-zero slope; and (b) that the eigenvalues of the major common factors
should not lie on this straight line. The Linn test, described in detail
later, involves a plot in which the mean square ratios (indices of factor
gize) of the minor common factors are assumed to be described by a curve
which does not describe similar indices of the major common factors.
This differential description is manifest in a break in the mean square
ratio plot between the major and minor common factors. Thus, these tests
are like statistical tests in their assumption of similarity between error
factors, but are unlike the statistical tests in that they are not based
on the sampling distribution of the hypothetical error factors.
Another semi-statistical test, Horn's (1965) test, also involves

plots of eigenvalues. In thié-tQSt, however, the eigenvalues of the

- observed correlation matrix are compared with those of a correlation
matrix based on an equal amount of random normal data. The eigenvalues
of each matrix are sequenced in descending order and equivalently posi-

. tioned eigénvalues are compared. Minor common factors are considered to
be those factors in the observed data whose eigenvalues are smallef than

' corresponding eigenvalues of factors in the random matrix.

[ Crawford's (1966) index, which is described in detail later, is an

# o




example of a psychometrically oriented composite test. This test, which
is applied after rotation, estimates the number of major common factors
to be that number which best satisfies an analjtic criterion of simple
structure. This test is a psychometric test only insofar as (a) the
criterion used is a complete index of Thurstone's (1947) requirements

of simple structure, and (b) simple structure proQides psychometric in-
variance.

As with the pure psychometric tests, the behaviour of these composite
tests under conditions where different amounts of statistical error are
ﬁresent is not clear. Their behaviour under conditions where varying
amounts of psychometric error is present is likewise unclear and is, at
least, of equal interest. However, due to problems in realistically
sampling degrees of psychometric error, the present study is limited to
an examination of the empirical statistical sampling distributions of some
purely psychometric indices and some of the composite indices of the

number of factors.

The Scope of the Study

The main purpose of the present study is to examine empirical sta-
tistical sampling distributions of several commonly used and recently
developed non-statistical indices of the number of factors. These tests
will be observed as they afe applied to 3 sets of 100 random samples of
subjects (as generated by standard Monte Carlo procedures) from a given
population correlation matrix for which the number of major common
factors is known. The study will examine the behaviour of these indices
under simulated typical rather than ideal sampling conditions; e.g., the
three sets of samples will differ in sample size and the sample sizes

will be typical rather than ideal, and the population matrix will include
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a reasonable amount of psychometric error. (Since the statistical
gampling distributions of factor matrices which include psychometric
error are not readily calculable, the Monte Carlo procedures were used
to generate empirical statistical sampling distributions,) The study
will emphasize aspects important to the application of these indices by
most psychologists engaging in exploratory factor analysis.

The sampling distributions of the indices will be considered with
respect to their deviation from the population number of faciois. The
extent to which the indices deviate from this population value provides
evidence on their usefulness whenever statistical inference is included
explicitly or implicitly in the analysis.

A secondary purpose, which developed from the main purpose, is an
examination of the inter-rater reliability of the two visual tests, the
_scree test and the mean square ratio test, mentioned above. 1In order to
find typical results of these tests for each sample, they will be imple-
mented by five raters. Inter-rater reliabilities will be found and if
the indices prove to be significantly unreliable, their sampling dis~
tributions will not be analysed since reliable measures of central
tendency would be required for the examination of the statistical sam-
pling distributions of these two indices. Results of unreliability provide
evidence on the utility of these tests to the relatively unsophisticated

psychologist who uses factor analytic techniques.




Procedure

Indices Considered in the Study

one hundred samples at each of three sample-size levels were gen-
erated by Monte Carlo procedures (which are described in detail later)
and the number of factors estimated by each index for each sample was
recorded as the basis for the indices' sampling distributions. The
specific indices considered and the specific estimate of the number of

Fod 2 ——— e 1T nmntnd A
factors CO.LAETLEG TN

Guttman's Stronger Lower Bound

Guttman (1954) shows that the minimum number of common factors which
can exactly account for the off-diagonal elements of a population correla-
tion matrix, R, equals the minimum rank of a reduced Gramian correlation

matrix,

where U2 is a diagonal matrix with 0 X u§ 21l; (j =1,2,...,n; where n is the

number of variables). He goes on to show that if squared multiple
correlations (smc's) are used as estimates of the communalities in the
analysis, since each smc, r2, is the lower bound for the communality of its

corresponding variable, i.e.,
2
=1 - uj 3 (j = l,2,...,n); (2)

then a criterion for the minimum rank of the correlation matrix is the

number of factors whose eigenvalues are greater than zero.

Guttman's Weaker lLower Bound

If variables are standardized and a factor analysis is implemented




with unities in the diagonal of the correlation matrix (i.e., a principal
component analysis), since unity is an upper bound estimate of the
communalities, Guttman (1954) shows that the lower bound for the rank of

a reduced Gramian correlation matrix,

2

C=R-U ' (3)
where
2 2
lfhj=1—‘uj (4)
and
< 2 . '
03ujs1j; (3=1,2,...,n), (5)

is the number of eigenvalues of R which are greater than unity. Kaiser
(1960; Kaiser and Caffrey, 1965) proved that any factor whose eigenvalue

is less than one (following a principal components extraction) has negative
Kuder—Richardson-ZQ internal consistency (or alpha reliability) and argued
that it should, therefore, be eliminated from the analysis. He also

noted that in a great many cases, this criterion specifies the same number

of factors as experimenters have found to be interpretable.

Cattell's Scree Test

4¢%ﬂis géééwkbégféii;“igééé)hfbilbﬁéTfﬁé"faétdring of“a:correlat;§h_
matrix with unities in the diagonal and involves the extraction of as many
factors as there are variables. Rejection of factors is based on the
assumption that any factors with proportionally small eigenvalues are error
factors and account only for trivial variance. Error factors with large

eigenvalues before rotation, which this test would not exclude from the
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rotation procedures, are assumed to become apparent after the rotation
since the error variance may be separated from the non-error variance by

the rotation procedure. Plots of the eigenvalues of principal components

typically show an initial curvature and a later linearity of slope.

Cattell (1966a, 1966b) notes that when the ratio of the number of people

to the number of variables is small, the latter part of the slope may be
resolved into two or three straight lines, none of which describes the
eigenvaiues of the 1nitial factors. Tlhe scree test rejects those factors
which lie on the scree, or linear part (or parts, in the cases of double or
triple screes) of the slope.

As the determination of the scree is a subjective operation, five
raters (two undergraduate and three graduate students) who had no knowledge
of the number of factors in the population, inspected the sample plots of
the principal component eigenvalues for the scree. Following a test of
inter-rater reliability, if the results proved to be significantly reliable,
the modal number of factors for each sample was taken to be the tvpical
estimate of the number of factors using the scree test. If the curve was
bimodal, the smaller number of factors was to be taken under the assump-
tion that it represented the top of a double scree missed by the raters
who gave the larger estimate. In cases where all five raters responded
differently, the index was considered to have failed to indicate the

number of factors.

Horn's Test

Horn (1965) proposes comparing the eigenvalues of an observed correla-
tion matrix to the averaged eigenvalues of a large number of random
correlation mafrices. The random correlation matrices are derived from

random normal data matrices of the same sample size as the observed data

§
@
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matrix and are of the same order as the observed correlation matrix.

The point at which the plots of the two sets of eigenvalues cross is

taken to be the cutting point for the number of factors. Horn (1965)

used this procedure following a complete component analysis but used only

a single random correlation matrix. Humphreys and Ilgen (1969) empirically
showed that this test tends to indicate too few factors following principal
components extraction; but that results closer to the maximum likelihood
estimates may be obtained following principal axis extraction with smc's
rather than unities, as communality estimates.

Comparison with one random sample. For each sample generated, a

sample corresponding in sample size but from an identity population matrix
was also generated. Each pair of correlation matrices was subjected to
principal components, smc, image covariance (Harris, 1962; Kaiser, 1963),
and Harris (Harris, 1962) extractions; and each of the plots of the four
sets of eigenvalue-pairs was inspected for crosses. The number of eigen-
values preceding the first cross of each plot was considered to equal the
number of factors indicated for that particular extraction method for that
sample. In cases where the plots did not cross, the index was considered
to indicate the number of factors to equal the number of variables.

Comparison with 100 random samples. Corresponding eigenvalues for

the 100 samples from the identity matrix for each extraction procedure and
sample size were averaged. The eigenvalues of the 100 samples from the
structured population matrix (whose selection is described in detail later)
of the same sample size and type of extraction were compared with the
averaged eigenvalues for crosses. As above, the first cross was taken to
indicate the number of factors for that particular extraction method for
that sample; and where the plots did not cross, the index was considered to

indicate the number of factors to be equal to the number of variables.
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Linn's Test

To obtain an estimate of the amount of error in an observed correla-
tion matrix, this test (Linn, 1964, 1968) uses a correlation matrix based
on a random normal data matrix of the same sample size as the observed data
matrix. In this test, however, the random matrix is used to augment the
observed matrix before factoring. The augmented matrix includes the

observed intercorrelations, the appended intercorrelations, and the cross-

¢
C
-
"
a
-
[+{]
cr
e
C
[}
c

€iween theé ovbserved and appended variables. The extent to
which the appended matrix deviates from an identity matrix provides an
estimate of the error variance in the factor loading matrix. Linn (1968)
did principal axis factoring of (a) the augmented correlation matrix,

Raug’ with unities in the diagonal, (b) the augmented correlation matrix,
-1

R , with'sme's in the diagonal, and (¢) B -~ I, where B = S "R S—l, where
aug aug
52 = (diag(Ra;;))—l, i.e., Harris (1962) rescaled factoring. He then

computed a mean square ratio for each factor in the factor loading matrix,

A » such that for each factor, the
aug

Mean Square Ratio = n__ - (6)

o At s e

‘where n is the number of observed variables, m is the number of appended

variables, and a . is the principal axis factor loading of the ith variable
of the augmented correlation matrix of order (n + m) on the kth factor. The
mean square ratios are then plotted and rejection of factors is made on the
basis of a break in the curve of the plot. Linn (1964) found that the best

choice for m was n/2 since (a) the inclusion of too many appended variables
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obscures the break in the mean square ratio plot; and (b) the inclusion of
too few appended variables tends to give unstable results.

| The mean square ratios were found for eachkof four extractions
(principal components, smc, image covariance, and Harris) of each of the
one hundred samples from the three sample sizes. Since this index, like the
scree test, requires subjective operations, five new raters (two undergraduate
and three graduate students), without knowledge of the population value of the
number of factors, inspected plots of the mean square ratios for breaks.
They had the aid of plots of the first order differences between the mean
square ratios of successive factors to assist in making their decisions.
Before plotting the ratios, the factors were reordered according to the
numerators of the ratios. The number of factors was indicated by the number
of mean square ratios before the break. As with the scree test, following
a test of inter-rater reliability, if the results proved to be significantly
reliable, the modal number of factors was considered to be the typical number
indicated by this index. If the curve was bimodal, the larger number was
considered to be the more conservative estimate (since the effects of under-
factoring are generally considered worse than those of overfactoring) and
thus, was taken to be the number of factors indicated. In cases where all
five raters responded differently, the index was deemed to have failed to

indicate the number of factors.

Crawford's Test

This test has been devised (Crawford, 1966) to provide an index of the
interpretability of factors rather than of their significance, It is applied
to the row-normalized factor loading matrix following any adequate method of
orthogonal rotation and provides an index of combined test and factor parsimony

(or simplicity of structure). If
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Tm) = (n - 1) T T I a2 a® )
ipgq P iq
p#q
and
F(m) = (m - 1) % % % ai a2 (8)
pij o
i¥j

where p and q refer to factors, 1 and j refer to variables, and a is a

factor loading, then when the sequence of sums
I(m) = T(m) + Fm); (m = 2,3,...,k; k X n) 9)

reaches a definite minimum, maximum parsimony and interpretability are
reached.

Crawford's index of interpretability function was found following
quartimax (Carroll, 1953), varimax (Kaiser, 1958), and equamax (Saunders,
1962) rotations of each of 2 to n/2 smec factors. The rotation procedure
used required that at least 2 factors be rotated and since there are seldom
more than n /2 interpretable common factors for any set of n variables,
that particular rénge was selected for the rotations to the three criteria.
For each sample, the three sets of (n/2 ~ 1) indices were inspected for
minima. The number of factors rotated to generate the minimum value of the
index for each type of rotation was considered to be the number of factors

indicated by this index for each rotation of each sample.

Table 1 indicates the types of extraction and rotation which preceded

the application of the number-of-factor indices under consideratioh.
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Monte Carlo Methods

Procedures are available by which correlation matrices can be
generated from a population matrix. These procedures eliminate the
necessity of generating random normal sample data matrices which are

then correlated, thereby reducing computation time to a small fraction

of that required by the longer procedure.

The basic equation in factor analysis,

Z = AP, (10)

can be converted to
1 ] 1 L} 1
R = 22' = SAPP'A (11)

where Z is the standardized score matrix, A 1is the common factor loading
matrix, P is the common factor score matrix, R is the correlation matrix,
N is the number of people, and ' denotes a matrix transpose. Since, for i
orthogonal factors, the expected value of %PP' is an identity matrix, !

the latter equation can be reduced to its more familiar form
R = AA", (12)

When each sample correlation matrix, R*, is generated, deviations from

this identity provide sampling deviations in the sample correlation and

factor ﬁatrices such that
R* = DAFA'D (13)

where F is the saﬁple factor covariance matrix and D is the diagonal matrix

used to standardize the variances of the sample variables.
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Application of the Indices to Their Respective Types of

Extraction and Rotation*

TYPE OF TYPE OF
EXTRACTION ROTATION INDEX
Principal Components none Cattell
none Cuttman's W, L. B.
none Horn
none Linn
SMC Analysis none Guttman's S. L. B.
none Horn
none Linn
Quartimax Crawford .
Varimax Crawford i
Equamax Crawford w
Image Analysis none Horn
none Linn
Harris Analysis none Horn
none Linn

* This procedure was followed for each of the 100 samples at each of
the 3 sample size levels.

L
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Such sampling procedures have been used by Hamburger (1965),
Browne (1968), Cliff and Pennell (1967), Linn (1968), and others in
studying such sampling problems as rotational stability and appropriate-
ness, criteria for the number of factors, methods of factor extraction,
stability of factor loadings, etc.

Browne's (1968) method of generating sample cofrelation matrices
was used in the present study. The procedure involves the square root
factoring of the population correlation matrix, R, into AA' where A
is lower triangular. A random matrix, T, is generated where

tij = random glements distributed as N(0,1), i > j;

ty = random elements distributed as Chi with (N - i)

degrees of freedom; and
tij=0,i<j.

The sample covariance matrix, C, is then produced such that
C = ATT'A’ (14)
which is then rescaled to a sample correlation matrix, R*, such that
- -4
R* = (diag C) “C(diag C) . (15)

In the present study this method was also employed to generate the random
matrices needed for Horn's and Linn's indices.

| The required normal and Chi elements of the T matrix were obtained
as follows. Uniform random numbers on the interval 0 < u < 1 were gener-
ated by means of the Tausworthe pseudorandom number generator which
whittlesey (1968) has shown to be appropriate for the IBM 360 computer
used in this study. Each uniform random number was then normalized>by the

function,

L
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(16)

which is approximately distributed N(0,1). The square root of squares
of k such random normal elements was then used to generate the Chi

elements with k degrees of freedom.

Selection of a Population Correlation Matrix

The population correlation matrix selected for the present study is
that from Cattell and Sullivan's (1962) Cups of Coffee Problem - Sample
A (N =280, n=15). The correlation matrix is presented in Table 2. In
selecting a population correlation matrix for the present study, it was
necessary to choose one for which the number of major common factors was
known and in which there was psychometric error comparable with that found
in typical exploratory psychological factor analyses. The investigators
in the above study hypothesized a factor matrix and selected variables with
hypothesized factor loadings on the factor matrix. The resulting factor
loading matrix (based on 80 measures of each of 15 variables) closely
approximated the hypothesized matrix but displayed error comparable to that
found in factor analvses of psychological data. This matrix is well suited
to orthogonal transformations (which is of importance in the study of
Crawford's index) and has a rather large ratio of the number of major
common factors (5) to the number of variables (15) (which provides a wider
opportunity for a large number of factor comparisons with a minimum of

computation time).

Selection of Sample Sizes

To test the effects of sample size on the statistical sampling dis-
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tributions of the six indices under consideration, sample sizes of 2n,

4n, and 8n (n = 15) were chosen to generate sample matrices by means of
Browne's (1968) procedure. These sample sizes were chosen because they
approximate those used in most factor analyses of psychological data.

They represent typical, rather than ideal, sampling conditions. Most
experimenters have used very large sample sizes to investigate the psycho-
metric stability of number of factors indices (e.g., Humphreys, 1969; Linn
1964, 1968). Browne's (1968) study of the statistical sampling distribu-
tions of several indices of the number of factors also used large sample
sizes (viz, 6n, 12.5n, and 125n). The sample sizes in these studies are
closer to the ideal than the typical factor analysis conditions.

As statistical error variance is proportional to the reciprocal of
sample size, the selection of 2n, 4n, and 8nfallows a linear comparison of
expected error variances; i.e., the expectea'error variance of the 2n group
is twice that of the 4n and four times that of the 8n groups, etc. Use of
a sample size of 2n presents severe problems for replication, while use of

8n gives reasonably stable results -in the replication situation.
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Data Analysis and Results

Reliability of the Scree Test and Mean Square Ratio Test

As both the scree test and mean square ratio test involve some degree
of subjective interpretation of plots, these indices were checked for their
inter-rater reliability prior to inspection of their sampling distributions

on the assumption that if these results were significantly unreliable,

there was no justification for choosing the modal value for cach sampie

[{H]

above any other value. Inter-rater reliability can be described by either

the specific or generic reliability statistic (Lord and Novick, Chapter 9).

When the raters are only nominally, rather than strictly, parallel, however,
the generic reliability statistic is more appropriate. 1In the present case,
strict parallelism implies that in the statistical population being rated
(of which the sets of 100 samples are, themselves, samples), each rater would
give the same average estimate of the number of factors:; whereas nominal
parallelism implies that in the population being tested each rater may give
a different average estimate. Both types of parallelism also imply that
the within-rater variances and inter-rater covariances are equal. As in most
inter-rater reliability situations which appear in the psychological
literature, the raters in the present studv could be considered only nom~
inally parallel,

The generic rei?gpilipies fqr the threg cases of Cattell's scree test

and twelve cases of Linn's mean square ratio test are presented in Table 3.

In all cases the generic reliabilities are extremely low.
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TABLE 3
Generic Reliabilities of the Scree Test and Mean

Square Ratio Test

SAMPLE SIZE

INDEX 30 60 120

LINN:
Principal

Components .087 .113 .167

SMC .064 .115 .308

Image .070 « 395 222

Harris .139 .111 .069

CATTELL .071 .054 .054

Since significance tests of generic reliability are not readily avail-
able, the significance test of specific reliability (Gulliksen, 1950, Ch.14)
was made. The significance test of generic reliability would be more :
stringent than that of specific reliability. Thus, a finding of significant
specific unreliability guarantees significant generic unreliability, but a
finding of significant specific reliability does not guarantee significant
generic reliability. 1In all 15 cases of these subjective methods of selec-
ting a numbér of factors, the specific reliability hypothesis was rejected
at the .05 level. Thus, on the basis of their unreliability, the results

of the scree test and mean square ratio test were not included in the inves-

tigation of sampling distributions.
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The Sampling Distributions

Frequency Distributions of the Raw Data

Table 4 (a-i) gives the frequency distributions of the number of
factors indicated by each case of the indices at the three sample-size
levels. It should be noted at this point that modifications were made to
two of the indices for purposes of analysis. The analytic procedures used
in the studv would not admit missing darta.

Thus, Horn's test, which relies on crosses in the plots of eigenvalue-
pairs to give results, was modified to indicate 15 factors when this cross
did not occur. As is indicated in parts (b) and (c) of Table 4, this
happened in several samples of the smc and image analyses. Although some
of the frequency distributions took on a peculiar shape due to this modifi-
cation (particularly in the smc distributions), and although, in the later
analyses, the deviation from the population of the number of factors (or
the bias) of the sampling distributions was increased (as is illustrated in’
Figure 1), it was thought that this bias might be an appropriate quantifi-
cation of the tendency of the test to fail to indicate any number of factors
at all.

As 1s illustrated in Figure 2, the tendency to fail increased as sample
size increased. For the smc extraction, this tendency also increased as |
the number of random eigenvalues used in the comparison with the observed
eigenvalues increased, but for the image extraction, this tendency was
reversed.

The other index modified for the same reason was Crawford's index.
Theoretically, this index may fail if simple structure is not evidenced in
the factor matrix. In such cases, the Crawford index may not reach a

definite minimum but show several local minima. As is shown in Figure 3,

L
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TABLE 4(a)

Frequency Distributions of the Number of Factors Indicated by

Horn's Test on Principal Components

SINGLE RANDOM EIGENVALUES AVERAGE RANDOM EIGENVALUES

Number of Sample Size Sample Size
Factors 30 60 120 30 60 120
1 0 0 0 0 0 0
2 3 0 0 1 0 0
3 25 2 0 24 2 0
4 63 73 56 69 76 60
5 8 25 42 6 22 40
6 1 0 2 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
Total 100 100 100 100 100 100
[
TABLE 4(b)

Frequency Distributions of the Number of Factors Indicated by

Horn's Test on SMC Factors

SINGLE RANDOH EIGENVALUES AVERAGE RANDOM EIGENVALUES

Number of Sample Size Sample Size
Factors 30 __60 120 30 60 120
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 4 0 0 3 0 0
4 36 1 0 32 0 0
5 27 8 0 31 3 0
6 19 24 2 24 24 1
7 10 12 5 8 14 1
8 1 5 3 0 6 0
9 1 1 2 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 2 49 88 2 53 98
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TABLE 4(c)
Frequency Distributions of the Number of Factors Indicated by

Horn's Test on Image Factors

SINGLE RANDOM EIGENVALUES AVERAGE RANDOM EIGENVALUES

Number of Sample Size Sample Size
Factors 30 60 120 30 60 120 _

1 0 0 0 0 0 0

2 0 0 0 0 -0 0

3 2 0 0 0 0 0

4 18 0 0 21 0 0

5 34 2 0 32 0 0

6 27 i v 33 O o

7 8 8 . 0 8 6 0

8 4 19 0 5 15 0

9 5 17 1 1 14 0

10 1 11 3 0 20 0
11 0 9 5 0 12 1 |
12 1 10 7 0 10 3 i
13 0 2 11 0 7 15
14 0 7 28 0 9 45 :
15 0 14 45 0 7 36
Total 100 100 100 100 100 100 J

TABLE 4(d)

Frequency Distributions of the Number of Factors Indicated by

Horn's Test on Harris Factors

SINGLE RANDOM EIGENVALUES  AVERAGE RANDOM EIGENVALUES

Number of Sample Size Sample -Size
Factors 30_ 60 120 30 60 120
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 2 0 0
7 1 0 0 1 0 0
8 6 1 0 7 0 0
9 12 18 37 18 19 36
10 26 53 54 25 53 56
11 33 26 9 22 23 8
12 14 1 0 16 4 0
13 7 1 0 6 1 0
14 1 0 0 3 0 0
15 0 0 0 0 0 0
Total 100 100 100 _ 100 100 100
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TABLE 4(e)
Frequency Distributions of the Number of Factors Indicated by
Crawford's Test on the Quartimax Rotation
SAMPLE SIZE
Number of
Factors 30 60 120
2 0 0 0
g 3 3 0 0
4 21 22 17
' 5 24 43 70
; 6 29 26 9
§ 7- 14 8 4
z 8 9 1 0
Total 100 100 100
TABLE 4(f)

Frequency Distributions of the Number of Factors Indicated by

Crawford's Test on the Varimax Rotation

SAMPLE SIZE

Number of
Factors 30 ég__ . 120

2 0 0 0 p
3 3 0 0

4 21 21 _ 14 "
5 23 43 72

6 28 26 10 i
7 15 9 3

8 10 1 1

Total 100 100 100

TABLE 4(g)

Frequency Distributions of the Number of Factors Indicated by

Crawford's Test on the Equamax Rotation

SAMPLE SIZE

Number of

Factors 30 60 120
2 -0 0 0
3 3 0 0
4 25 23 18
5 28 43 72
6 26 26 9
7 17 8 1
8 1 ___0 . 0 o
Total 100 100 100
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TABLE 4(h)
Frequency Distributions of the Number of Factors Indicated by

Guttman'’s Weaker Lower Bound
SAMPLE SIZE
Number of

Factors 30 ____ 60 120
1 0 0 0
2 0 0 0
3 0 0 0
4 23 9 14
5 69 75 77
6 8 16 9
7 0 C e
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0

13 0 0 0

14 0 0 0 :

15 0 0 0 .

Total 100 100 100 A

il

K

TABLE 4 (1) s

Frequency Distributions of the Number of Factors Indicated by -

Guttman's Stronger Lower Bound y

SAMPLE SIZE
Number of

Factors 30 60___ 120
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 14 35 66
10 62 62 34
11 20 3 0
12 4 0 0
13 0 0 0
! 14 0 0 0
15 0 0 0
Total 100 100 100
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Fig. 1. Mean number of factors indicated by Horn's test following
.two methods of extraction and two number-of-random-eigenvalues levels
(a) before and (b) after modification.
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Fig. 2. Number of failures of Horn's test before modifi-
cation.
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the tendency to fail decreased as sample size increased. The test was
modified such that the number of factors considered to be indicated was

the number of factors which generated the smalleét of the local minima when
they occurred. A comparison of the results of the original and modified
procedures, as illustrated in Figure 4, indicated that although there was
not a large effect on the frequency distributions, if any existed the

modified version would show more bias in the later analyses.

Analysis of Variance Designs

To assess the significance of the effects of (a) sample size; M)
type of index, and (c) the several cases within Horn's and Crawford's indices,
two sets of analvses of variance were carried out on the data. One set of
analyses was made on the raw data results of the number—of~facfors indices.
This set of analyses allowed for examination of the direction of the bias
of the indices, i.e., for the examination of whetlhier they tended to indicate
fewer or more factors than the population value. The second set of analyses
involved a transformation of the raw data to absolute deviations from the
population value of the number of factors in order to analvse differences in
the indices' magnitude of bias.

Each set of analvses was composed of four separate analyses, the last
of which depended on the results of the first'thfee:"“Thé‘desighs‘wefé aé;
follows. | ”

Horn analysis. This was a three-way analysis with two within- and one

between~samples variables. The samples were nested within three sample-size
levels and crossed with the four tvres of extraction (or tvpes of communality
estimate), and with the two levels of number of random eigenvalues used in

the average-comparison eigenvalues.
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Fig. 4. Mean number of factors indicated by Crawford's test following
three rotation methods (a) before and (b) arfter modification..
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Crawford analysis. This was a two-way analysis with samples nested

within the three sample-size levels and crossed with the three types of

rotation.

Guttman analysis. This also was a two-way analysis. Samples were

nested within sample-size levels and crossed with the two types of index
(viz, Guttman's Weaker Lower Bound and Guttman's Stronger Lower Bound).

Overall analysis. This was a two-way analysis in which the indices

which showed the smallest magnitude of error in the above three analyses
were selected for comparison with each other. Samples were nested within
the three sample-size levels and crossed with the three types of number of
factors index.

Information was gathered regarding the relative magnitudes of the

different types of effects in the eight analyses of variance. For any

significant effect, E,

e
- (17)

where MSE represents the mean square for the E-effect, MSe is the mean
square for the error term, and N is the number of observations at each
level of E. ﬁévrepresents an estimate of the magnitude of the effect of
E on the data and is comparable to the other 821g (of significant effects)
in the analyses,

Following the analyses of variance, several a posteriori comparisons
of means were made using the Scheffé procedure presented by Ferguson (1959,
p. 296). These comparisons were made to determine whether (in the magni-
tude-of-bias analyses) there was a significant difference between the most

accurate and the second most accurate indices when averaged over sample-

size levels.
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Results of the Analyses of Variance

Horn analyses. As is indicated in Table 5, the type of extraction

for the Horn test had a significant and large effect. Table 6 indicates
that the Horn test most accurately approximates the population number of
factors after a principal components extraction and most inaccurately
approximates the population number of factors after extraction with smc's.
Table 5 also shows a significant and large sample-size effect, the
direction ot which is indicated in Table 7. Increasing sample size tends
to increase the bias of the Horn indices. However, there is a very largev
interaction effect between sample size and type of extraction indicated

in Table 5 which is illustrated in Figure 5. Whereas increasing the
sample size tends to decrease the raw-score and absolute deviations of the
Horn test following Harris and principal components analyses, it tends

to increase both types of bias following smc and image analysis. Table 6
and Figure 5 also indicate that this index tends to underestimate the
population number of factors following principal components extraction and
tends to overestimate the population number of factors following the other
types of extraction.

The effect of using averaged eigenvalues rather than single-sample
eigenvalues from the random data matrices in the comparison with the eigen-
values from the observed sample matrices was not significant.

To select the best case of the Horn test for the overall anlysis, the
means of the principal components and Harris extractions (in the absolute-
deviation analysis) were chosen as showing the least magnitude of error
and were compared with each other using the Scheffé method for a posteriori
comparisons. It was found that the principal components results were

significantly better than those following the Harris extraction at p £ .0l.
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TABLE 6(a)

Means of Extraction Groups for the Horn Analyses

TYPES OF EXTRACTION

PRINCIPAL
ANALYSES COMPONENT SMC IMAGE , HARRIS
Raw Scores 4.15 10.15 10.02 10.12
Absolute Deviation .86 5.43 5.17 5.12
TABLE 6(b)

Means of Rotation Groups for the Crawford Analyses

TYPES OF ROTATION

ANALYSES QUARTIMAX VARIMAX FQUAMAX

Raw Score 5.27 5.31 5.16

Absolute Deviation .71 .72 .63
TABLE 6(c)

Means of the Test Type Groups for the Guttman Analyses

TYPES OF TEST

ANALYSES GUTTMAN'S WEAKER GUTTMAN'S STRONGER
LOWER BOUND LOWER BOUND

Raw Scores 4.96 9,72

Absolute Deviation .26 4.72

TABLE 6(d)

Means of the Test Type Groups for the Oygrall Analyseé

TYPES OF TEST

ANALYSES ' HORN-PC~100 CRAWFORD: ~E G.W.L.B.
Raw Scores 4.13 5.16 4.96
Absolute Deviation v .87 .63 , .26

36




TABLE 7
Means of Sample Size Groups in the Analyses

of Variance

SAMPLE SIZES

ANALYSES 30 60 120
HORN:

Raw Scores 6.27 8.91 10.65
Absolute Deviation 2.19 4.30 5.94
CRAWFORD:

Raw Scores 5.52 5.23 4,99
Absolute Deviation 1.07 .67 .32
GUTTMAN

Raw Scores 7.50 7.38 7.15
Absolute Deviation 2.73 2.47 2.19
OVERALL:

Raw Scores 4.67 4,82 4,76

Absolute Deviation .82 .57 .38

37
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Since there was no significant difference between the single- and
averaged-eigenvalue cases, and since the averaged-eigenvalue case is
expected to be more accurate on theoretical grounds, the Horn test
following principal components analysis with averaged-random eigen-
values was selected for the overall analysis.

Crawford analyses. Table 5 indicates that the sample-size effect,

the tvpe-of-rotation effect. and the interaction between these effects

were significant in both of the Crawford analyses. The magnitude of
the sample-size effect is greater than the other two effects. As is

indicated in Table 7, increasing sample size decreases the bias in the g

F wzmﬂj
Crawford index in both analyses. The type-of-rotation effect, as is Lm
i

i
shown in Table 6, indicates that the Crawford index best approximated '?%
il

il

W)
the population number of factors following the equamax rotation and was MM

most biased following the varimax rotation. The significant but small mw
£l

. . . . ; i
interaction between sample size and type of rotation in the raw-score “

analysis is illustrated in Figure 4b. This illustration indicates a ww

il
tendency for Crawford's index to underestimate the population number of
factors following the equamax rotation in the large sample-size group.

For the purpose of selecting the rotation which gave the most accurate
results, the means of the quartimax and equamax rotations from the
absolute-deviation analysis were compared. It was found that the results
following the equamax rotation were significantly more accurate than the

gquartimax results at p < .01,

Guttman analyses. In both analyses of the Guttman tests, as is

shown in Table 5, the sample-size, type-of-index, and interaction_effects
were all significant. The largest effect was due to the type of test.

The sample-~size effect was smaller than the interaction effect. As is
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illustrated in Figure 6, although increasing sample size tends to
produce less bias in Guttman's Stronger Lower Bound, it has no
consistent effect on Guttman's Weaker Lower Bound. Table 7 and Figure
6 both indicate that Guttman's Stronger Lower Bound tends to over-
estimate the population number of factors and Guttman's Weaker Lower
Bound tends to underestimate the number of factors.

The means of the absolute deviations for the two tests were com-
pared for selection to the final analyses, and it was found that
Guttman's Weaker Lower Bound shdwed significantly less bias than
Guttman's Stronger Lower Bound at p £ .0l, and thus, the former was
included in the overall analyses. |

The overall analyses. The indices included in the final analyses -

(a) Horn's test with averaged eigenvalues following principal components
analysis (Horn - PC - 100), (b) Crawford's index following the equamax
ord - E), and (¢) Guttman's Weaker Lower Bound {(G.W.L.B.) -
had a significant effect in both of the overall analyses as is indicated
in Table 5. From the same table it can be seen that there were also
small but significant sample-size- and interaction effects. As is indi-
cated in Table 7, in the absolute-deviation analysis, increasing sample
size produces decreasing magnitude of bias; but in the raw-score analysis,
the interaction effect, illustrated in Figure 7, indicates that increas-
ing sample size iﬁproves the results of the Crawford and Horn indices

(and has no apparent effect on Guttman's Weaker Lower Bound), but that

at small sample sizes, whereas the Crawford test tends to overestimate

the number of factors, the Horn index tends to underestimate the number
of factors.

From Table 6 it can be seen that in both analyses, Guttman's Weaker

it

e
Mg
g
i
T

o

i
i
e
i

=

Al
it

i
L

fl
I
| MHIM



NUMBER OF FACTORS

151

41

O Guttman's Stronger Lower Bound
®Guttman's Weaker Lower Bound

Fig. 6.
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Lower Bound is the least biased and the Horn index, the most biased.

A comparison was made on the means of the Crawford index and Guttman's
Weaker Lower Bound from the absolute~deviation analysis, and it was
found that Guttman's Weaker Lower Bound is significantly better at
approximating the population number of factors than the Crawford index

(following the equamax rotation) at the p < .01 level.
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Discussion
Reliability
The scree test was devised as an aid in determining the number of

factors to consider for people who have had a relatively large amount

of practical experience working with factor analytic techniques (Cattell,

1966a). Apparently, the mean square ratio test was developed for a
similar population of factor analysts. Thus, it might be argued that
the relatively naive raters in the present study should show less
reliability than those for whom the indices were designed. Howevef,
both tests are highly susceptible to being biased toward any hypothesis
the user has regarding the number of major common factors in a set of
data. A user with a hypothesis regarding the number of factors would
probably interpret the scree or root break to be closer to the hypoth-
esized number of factors whenever subjective estimation of where the
scree begins or root break occurs enters into the implementation of
these indices. Thus, these indices should be used with extreme caution
(a) by naive factor analysts,and (b) when the analyst has some implicit

or explicit hypothesis of the number of factors to consider.

Modifications

Horn's Index

The modifications to the Horn test resulted from failures of the
test to indicate the number of factors using Humphreys' (Humphreys and
Ilgen, 1969) expansion of Horn's (196%) original procedure. The
surprising failures of the eigenvalues to cross in the smc and image
analyses indicates that although the eigenvalues from the factoring of

two different correlation matrices of the same order and sample size may
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be comparable following principal components analysis, they are not
necessarily comparable following smc or image extractions. In the
principal components case, the sums of the eigeﬁvalues of the
comparable correlation matrices described above are equal to n, the
number of variables. Thus, the eigenvalues must either be identical

or show a cross in their plot. Similarly, in the Harris case, the sums
of the reciprocals of the two sets of eigenvalues are equal to n and
the plots of both the reciprocals and the eigenvalues show crosses. In
other extractions, however, no similar restriction is placed on the sum
of the eigenvalues, and their plots need not necessarily cross. Thus,
the Horn test need not necessarily give an estimate of the number of
factors following factor extractions which do not place éppropriate

restrictions on the sum of the eigenvalues.

Crawford's Index

The findings (a) that the modifications to the Crawford index had
little effect on the sampling distributions, (b) that the failure rate
decreased as sample size increased in the unmodified version, and (c)
that there was little effect of the type of rotation on the sampling
distributions, suggest that this index probably estimates the number of
factors well even when the correlation matrix does not contain, and the

factor matrix does not exhibit, the conditions of simple structure.

The Sampling Distributions

Increaéing sample size (a) had no effect on Guttman's Weaker Lower

Bound; (b) improved the estimates of the number of factors in all cases

of Crawford's index, Horn's index following principal components analysis

and the Harris extraction, and Guttman's Stronger Lower Bound; and (c)
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impaired the estimates of Horn's index following smc and image analyses.
This last tendency indicates that the theoretical basis for the Horn
test is weak, and that outside the principal components model, there
may be a tendency for the test to fail entirely. If one considers the
factor analytic model to include three sources of error variance -

(a) psychometric, (b) statistical, and (¢) an interaction between the
psychometric and statistical sources - the improvement of the non-purely
statistical test with increasing sample size (or decreasing amounts of
statistical error) is to be expected. It is interesting, however, that

Guttman's Weaker Lower Bound appears to be robust with respect to

variations in statistical sampling error. This apparent robustness,
however, may be peculiar to the population matrix used in the study since
for this matrix, Guttman's Weaker Lower Bound gave good results even at
the smallest sample size.

The tendency of Guttman's Weaker Lower Bound, Horn's index (follow-

ing principal component, smc, and image extractions), and Crawford's
index to specify too few factors in some samples (as is shown in Table 4)
must be noted. In general, the underestimation of the number of factors

is considered worse than its overestimation. Usually the investigator

would rathervrisk overinterpretation of his data than not identify a
possibly interpretable factor which was rejected by one of the number-of-
factor indices. However, the indices which consistently overestimated
the number of factors in thg present study overestimated it to such an
extent that any rotation of the number of factors indicated by these
tests would have been badly distorted. The rotation would have taken
advantage of too much information specific to the particular sample for

the analysis to be useful.
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Concluding Comments

It must be remembered that only one population matrix was included
in the study. This implies that only one levei of psychometric error
was present in all of the samples. Such a restriction precludes the
examination of the effects on the number-of-factors indices (a) of
interactions between different levels of statistical and psychometric
error; (b) of the number of variables (e.g., Cattell (1966b) notes that
Guttman's Weaker Lower Bound tends to underestimate the number of factors
when the number of variables, n, is less than 20 and to overestimate the
number of factors when n is greater than 56); and (c) of the ratio of
the number of major common factors to the number of variables (e.g.,
Kaiser (1960) discusses the tendency of Guttman's Stronger Lower Bound
to indicate more than n/2 factors. If the true number of major common
factors is close to n/2, Guttman's Stronger Lower Bound would probably
give better estimates of the number of factors than many of the other
indices.) The effects of all these parameters on the sampling distri-
butions of the number-of-factorsindices are probably of even greater
interest to the psychologist using factor analytic techniques than is
knowledge of their statistical sampling distributions alone. Given
this warning, however, in the present study, Guttman's Weaker Lower
Bound and Crawford's index (on equamax factors) appeared to give better
estimates of the population number of factors than didthe other indices
considered.

Given that, in practice, factor analytic procedures include both
psychometfic and statistical error, it seems that the traditional indices
of the number of factors, which assume the observed error to be fotally

psychometric or totally statistical, are not really appropriate. An



MWT

objective test which operates on some criterion of the identifiability
of the factors, but which operates independently of the statistical or
psychometric models of factor amalysis, such as‘the Horn index (after
principal components and Harris analyses) and the Crawford index, may
be more appropriate in most practical situations.
I feel I must conclude this discussion with a comment which has

appeared in every study of this type: '"None of the indices considered
in the studvy appears to be a completely adequate estimator of the

number of factors to consider in exploratory factor analysis'.
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Summary

For the purpose of examining the behaviour of non-statistical
indices of the number of factors under conditiohs in which various
degrees of statistical sampling error were present, empirical statis-~
tical sampling distributions of the estimates of six number-of-factors
indices were generated by Monte Carlo procedures and inspected for
deviation from a known population number of factors. The distributions
were based on 100 samples (at each of 3 sample sizes) from Cattell and
Sullivan's Cups of Coffee Problem - Sample A (which has a fairly well
defined number of factors but includes psychometric error comparable
to that found in typical applications of factor analytic techniques
to psychological data).

Cattell's scree test and Linn's mean square ratio test, which require
subjective operations, were implemented too unreliably by five raters to
be included in the analysis of sampling distributions. Horn's index
(following smc and image analyses) and Crawford's index failed to indi-
cate any number of factors for some samples. In order to include them
in the analysis of sampling distributions, modifications were made which
(a) had little effect on the mean estimate of the number of factors of
the Crawford test, and (b) biased the estimates of the Horn test to an
extent indicating the number of failures. For the particular population
matrix used in the study, sequential analyses of variance indicated that
Guttman's Stronger Lower Bound consistently overestimated the popula-
tion number of factors whereas Guttman's Weaker Lower Bound and the
modified version of Crawford's index gave the most accurate estimates of

the population number of factors.
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