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Abstract

We define six semantics (systems of structures) for
the modal language (the language obtained by adding to the
language of classical propositional calculus the single
unary connective no): the boolean semantics (derived from
the algebraic structures of McKinsey ard Tarski [9]), the
neighbourhood (Scott-Montague) semantics, the relational
(Kripke) semantiés, the first-order semantics (ﬁakinson's[lO]
generalized "relational models"), and finaily the connected
and superconnected semantics. The dissertation sﬁudies the
strengths of these semantics in various ways: first, with
respect to containment of one within another and then with
respect to width and depth (measures of the "span" and
"density" of the set of logics which are complete with
respect to the semantics in question).

Previously known results in these areas are noted and
some other results are proved. In particular, we note that
the width of the relational semantics is that of normal
logics and that any relational frame is in fact a neighbour-
hood frame, so that the "ground" common to both semantics
is that of normal iogics. Among the major results of the
dissertation is the presentation of two normal loéics, one
between T and S4 and the other an extension of S4, which are
incomplete with respect to.the neighbourhood semantics, thus’

showing that, unlike the boolean and first-order semantics,
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the neighbourhood semantics does not have maximal depth
even with respect to normal logics. We also exhibit a
neighbourhood frame which models T and is equivalent to
no set of relational frames, thus showing that the rela-
tional semantics has even less depth’ than the neighbourhood.
The connected and superconnected semantics are shown to have
the same depth‘as the relational semantics.

Finally, we discuss some properties of structures in
a semantics which can be "described" directly in the modal
language; these are calléd modal properties. We note that
all modal properties are second-order but that the con-
verse in not true. We can, however, through a system of
reductions, use the modal language to describe indirecfly

all second-order properties.

(iv) |



Acknowledgments

Among all the people and institutions who have helped
me in my work on this thesis, four particularly must be
mentioned. The first is the National Research Council of
Canada, whose assistance through a Postgraduate Scholarship
freed me to spend more time on research than otherwise would
have been possible. The second is Steven Thomason, whose
interest and-work in Modal Logic inspired mine. The third
is Ronald Harrop, whose help at all stages of my work, from
the initial development of my research to the proof reading
of my amateur typing, has been constant and invaluable.

His willingness to plunge with me into areas quite new to
him and his éontinued ability to make helpful suggestions
have been admired and appreciated. To him I am particularly
grateful. The fourth is Carole, who has managed to stagger
her periods of insanity with mine so well that we have both

been able to stay on our feet.

(v‘)



Table of Contents

Page
Approval ii
Abstract . | iii‘
Acknowledgments 4
Chapters: 1. Introduction: Some Terminoiogy 1
and Background
2. The Modal Language o 7
3. Modal Semantics 10
4, The Semantics Hierarchy 17
5. Width and bepth 32
6. Maximal Depth of B and [ , 37
7. Non-Maximal Depth of § 45
8. Width and Depth of R 68
9. Width and Depth of ﬁ and R 81
10. Modal Properties : 90
11. Higher-Order Languages and 98
Semantics and Second-Order
Properties of Frames |
12. Reductions and Quasi-Modal 106
Properties |
Appendix: Proof of Theorem 12.7.1 118
Bibliography 145

(vi)




1. Introduction: Some Terminologz and Background

1.0 The study of Mathematical Logic depends on a number
of basic concepts. First, there is the concept of a for-
mal language: a setvof symbols and formulae constructed
from these symbols. Then there is the concept of proof

and from this comes the notion of a theory or logic. These
may be called the syntactical aspects of Mathematical Logic.
We also have the semantical aspects of Logic. For each
language we may have a particular concept of structufes

or models for that language.

In some of the major branches of Mathematical Logic
we study different aspects of these concepts. We may
restrict ourselves, for example, to the study of languages
(or one particular language) and proofs in the language(s),
and in this case we have Proof Theory. Or we may study the
relationships between a class of languages, such as first-
order languages, and various structures or models for them,
without particular emphasis on the notion of proof. Here
we have Model Theory. On the other hand, we may restrict
ourselves to one particular language, one notion of proof
in thaf languagé, and various models or structures for it,
such as in Set Theory or Arithmetic. |

In this thesis we study one particular language, the
Modal Propositional Language, and éompare various concepts

of structure for it, without regard to the notion of prov-



ability.

;é; We begin by trying to make precise some general terms
that we shall use throughout. |

By a language we shall mean a set of symbols together
with a notion of formulae which will be certain finite
sequences of the symbols. The set of formulae in a language
is usually defined inductively.

By a semantics for a language we shall mean a class
of "sets with structure" together with a not;on of validity,
the type of structure being fixed for a particular semantics.
The eléments of the class, i.e. the séts with structure,

will be called simply structures. Together with each struc-

ture goes a set of formulae called the formulae valid in
the structure. The notion of validity in structures is
extended to classes of structures in the following way.
A formula is wvalid in a class of structures (all in the same
semantics) if and only if it is valid in each structure in
the class. If p is a semantics we shall often use a mild
abuse of notation and write S ¢ A to mean that S is a struc-
ture in the semantics . If A is a formula, we write S = A
to mean that A is valid in S; we also say in this case
that S models A.

By a logic on a language we mean simply a particular
set of formulae of the language. If K is a logic on a
language L and A is a semantics for L and S € A, then we

write S = K to mean that every member of K is valid in S.



If S = K we say that 'S is a model of K or S models K. K is

the logic determined by S if it is the se£ of all formulae

valid in S§. Similarly, we refer to the logic determined .
by a class of strucfures in A. If K is a logic we write
K — A to mean A, ¢ K.

By a system we shall mean a pair (|_,A) where | is a
language and | a semantics for |. If C is a set of logics
on | then we can compare C with the set of logics determined
by structures, or classes of structdres, in A. If each
logic in ¢ 1is determined by some)structure or class of

structures in J, then we say that A is adequate for C. (We

shall later indroduce the notion of "depth" and, at least

for the modal language, shall say that | has maximal depth

with respect to C in this case.) If K is a particular

logic on | we say that A is adequate for K or that K is

complete with respect to A if for each formula A in | either

K |— A or there is S ¢ A with S = K and S B A (i.e. every

formula not in K is not valid in some model of K in A).

1.2 As already stated, we shall, in this thesis, be concen-
trating on one particular language, the modal language M,

and on certain semantics for M. The study of the modal
language, its semantics and its proof theory is usually
called Modal Logic. Modal Logic in its modern form was
originated by Lewis and Langford [8] in 1932. Their con-

cern was entirely syntactical. Early semantical studies



in Modal Logic were'made by McKinsey and Tarski [9] and
later by Saul Kripke (whose name is usually attached to
the relational semantics) and Krister Segerberg [14]

(who fully developed the neighbourhood semantics). There
are a number of surveys of Modal Logic made from an almost
exclusively syntactical point of view, but the only exten-<
sive semantical studies or surveys are to our knowledge

those of Segerberg[l14] and of Hansson and Gardenfors [6].

1.3 There are two approaches that we can take in studying
the relationships between languages and semantics. We can
accept the language as primary and think of- each semantics
as a way of ihterpreting the language. 1In this case we
would study the relative strengths of the various semantics
with respect to various things, including adequacy and
completeness.

On the other hand, we may accept the semantics as
primary and .consider the language as something with which
we can "talk about" the structures in the semantics. in
the case of thié approach it is interesting to see how
powerful the language is for describing various properties
of structures. We may Qish somehow to compare the powers
of various languages for describing certain structures.

We take the first approach in chapters 4 to 9 and

the second in chapter 10 to 12.



1.4 A major problem with the development of the literature
in Modal Logic has been one of terminology. Some Modal
Logicians come from Mathematics, others from Philosophy,
and each seems to bring the terminology of his background
with him. Thus, for example, the word "model" is used in
different and incompatible ways by different authors.

What we are calling a "structure" is sometimes called a
"model",&what’we are calling a "logic" is sometimes called
"a "theory", a "calculus", or a "system"; what some call
"theorems" are called "theses" by othérs; and so on. The
ndtation, also, has not been standardized. We use g and ¢
. &S necessity and possibility operators, but many other
auihors use L and‘M. We therefore make an effort to define
out terminology and notation as clearly as possible. We
have attempted wherever possible to use terms and notation,
in a manner consistent with common usage among Mathematical

Logicians.

1.5 Ve haveitried to keep this thesis self-contained
with respect to its Logic content, So that an intelligent
‘reader with no more than an undergraduate background inv
Mathematical Logic and in Boolean Algebra should be able
to follow it in its entirety without making outside refer-
g&ses to the literature in Logic. A few major results
g?Qm Boolean Algebfa and Topology are used and references

to major texts in those areas are given. Modal Lagic




results are given with complete proofs, with a couple of
minor exceptions in chapters 10 and 12. The results of

chapter 7 also appear in Gerson [3].

.6 Sections are numbered beginning anew with each chapter

and theorems, lemmas, corollaries, and definitions are
numbered sequentially beginning anew with each section.
Thus 4.6.8 refers to the eighth item (either a theorem,
lemma, corollary, or defihition) of the sixth section of
chaptér 4, Ends of proofs are noted with the symbol YK.
The last theorém in the thesis, 12.7.1, has a particulariy
long and tedious proof and so the details of this proof

are given in an appendix.



2. The Modal Language

2.1 The (propositional) modal language, M, is the language

obtained by adding the single unary connective g to the
classical propositional language. Thus, the symbols of
the language comprise an infinite sequeﬁce of propositional
variables, p,, P, ..., together with the symbols ~, -, m,
and parentheses, ( and ). The formulae are defined induc-
tively: each propositional variable p; is a formula; if
A and B are formulae, then so are ~A, (A+B), and oA.

To simplify our notation we use the defined symbols
Vs, Ay, ++, and ¢. If A and B are any formulae,we may write
(AvB) for (~A-B), (AAB) for ~(A+~B), (A+>+B) for ((A+B)a(B~A)),
and QA for ~o~A. We also omit parentheses where it is
possible to do so without ambiguity. The‘usual hierarchy
of connectives is observed: first «-, then -, then v and a,
and finally ~, o, and ¢. (Those appearing later in the
list bind closer.) Thus o~P, VP, =P, >¢P, AP, is unambiguously
interpreted as((o~p,vp,)«(p,» (9P, Ap.))). We . often use
lower case letters gq, r, s, t with or without subscripts
to represent arbitrary (but fixed and distinct in a given:
context) propositional variables. The connectives g and

¢ are called necessity and possibility operators respectively,

and we say "necessarily A" and "possibly A" for pA and OA.

The following definition will be useful later.



2.1.1 Definition: If A is a modal formula then we say

that the formula B occurs as an elementary subformula in
A if and only if B is a propositional variable or is oC
for some C and B has an occurrance as a subformula of A
which does not lie within the scope of any o connective.
In other words, B is not a proper subformula of any sub-

formula of A of the form oD.

For example, if A is o(op—q)-(or-s) then o(op-q)

or, s all have elementary subformula occurrences in A.

2.2 A formula of the modal language is a tautology if it

is a substitution instance of a tautology of the classical

propositional logic; A modal logic is a logic on the

modal language which contains all tautologies and is closed
under substitution (Sub) and modus ponens (MP). Thus if

L is a modal logic, A is a formula such that L }~ A, p; is
a variable with occurrences in A, C is any formula, and A
is the formula obtained by replacing all occurrences of P;
in A with occurrences of C, then L | B; if A and B are

any modal formulae such that L |- A»B and L | A, then

L I~ B.

2.3 A modal logic L is classical if it is closed under

the rule of equivalence

RE: 1if L t— A«—sB then L f— gA<+—=n0B.



The formula

o(p,-p,)~(op, ~op, )
will be denoted as[KL A hodal logic L is normal if L |~ K
and L is closed under the rule of necessitation

RN: if L |~ A then L }- pA.

2.3.1 Theorem: If L is normal and L |~ A-+B, then L |-

oA»oB and L |- GA-¢B.

Proof: By RN, L |- o(A-B). From K and Sub, L -
@(A->B)~ (oA»oB) . Therefore by MP, L |~ pAsgB. Now L |- A-B
= L |~ ~B>~A = L - o~B-o~A = L - ~o~A+0o~B =

L - $a-0B. X

2.3.2 Theorem: Every normal logic is classical.

Proof: Suppose L is normal and L |~ A+»B. Then
L | A+B and so by 2.3.1 L |~ oA»pB. Similarly L |

oB-+pgA, and therefore L |}~ pA<«—aoB. i}

2.4 We mention four particular modal logics which are

of general philosophical interest and to which we shall
have occasion to refer later. The smallest classical logic
is called E; the smallest normal logic is called K (no
ambiguity should arise from this double use of the symbol) ;
the smallest normal logic containing the formula op,-p, is
called T; the smallest normal logic containing T .and the

formula op,-~oop, is called s4.
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3. Modal Semantics

3.0 We shall consider six semantics for the modal lan-
guage: the boolean semantics (B), the neighbeurhood or
Scott-Montague semantics (S), the relational or Kripke
semantics (R), the first-order relatiOnél semantics (F),
and two "subsemantics" or restricted versions of R, the
connected relational semantics (ﬁ) and the superconnected
relational semantics (ﬁ). Structures in any of these sem~

antics are commonly called frames,and we shall continue

this practice.

3.1 4A boolean frame is a sextuple B = (B,0,1,-,n,*)

where (B,O,l,—,ﬁ) is a non-trivial boolean algebra (i.e.,
0 and 1 are distinct elements) and * is any function from
B to B. The function, or operator, *, is called an interior.
operator and if b € B then *b will be called the interior
of b. If B = (B,O,l,—,ﬁ,*) is a boolean frame, an assign-
ment, V, on B is a function from N, the set of (positive)
natural numbers, to B. Each assignment V determines a
function, also called V, from the set of modal formulae to
B as follows: V(p;) = V(i) for each i ¢ N; v(~a) = -v(a):
V{(A*B) = -(V(A)h-V(B)); and V(oA) = *V(A). A formula A is
valid in B if V(A) = 1 for all assignments V.

The boolean semantics is a generalization of the
closure algebras of McKinsey and Tarski [9]. "Boolean

1

frames" was the term used by Hansson and Gardenfors [6].
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Makinson [10] refers to the same things as "modal algebras".
The boolean semantics is denoted by B.
The following lemma will be used frequently, usually

without specific reference to it.

3.1.1 Lemma: If B = (B,O,l,—,h,*) is a boolean frame and

V an assignment on B, then for any formulae A,B

(a) V(AAB) = V(A)NV(B),
(b) V(AVB) = -(-V(A)N-V(B)) = V(A)UV(B),
(¢) V(a»B) = 1 if and only if V(A) < V(B),

(d) V(A«—»B) = 1 if and only if V(A) = V(B).

Proof: (a) V(AAB) = V(N{A%B)) = =V (A+~B) =
~(=(V(A)N-V(~B))) = == (V(A)N-=V(B)) = V(A)NV(B).
(b) v(avB) = V(wA»é) = =(VI(~A)N~-V(B)) =
~(=V(B)N-V(B)) = V(A)UV(B).

() V(a+B) =1 = —(V(A)N-V(B)) =1 =
V(R)N-V(B) = 0 = V(a) = V(B).

(@) V(A+B) =1 = V((A+B)A(BA)) =1 =
V(A+B) = 1 and V(B-#A) = 1 « V(A) = V(B) and V(B) = V(A)

« V(A) = V(B). |

3.2 A neighbourhood frame is a pair F = (U,N) where U is
any set and N’ahy function from U to @P(®P(U)). If u € U

we write Nu instead of N(u), and if S ¢ Nu we say that

"S is a neighbourhood of u". Thus N assigns to each point

a set of neighbourhoods of the point. An assignment, V,
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on F is a function from N to (P(U). Each assignment V deter-
mines a function, also called V, from the set of formulae

to P(U) as follows: V(p;) = V(i) for all i ¢ N, v(~a) =
U-V(A), V(A»B) = - V(A)UV(B), and V(oA) = { u | V(&) ¢ N, T
For u € U, we sometimes write V(A,u) =T if u € v(aA) and
V(A,u) = F if u £ V(A). We say that a formula A is valid
at a EQEEE u if V(A,u) = T for all assignments V, andlthat
A is‘gglig in F if A is valid at all points in U.

Thus, we think of each assignment as assigning truth
or falsity to each propositional variable at each point in
the frame, the assignment of truth or falsity being extended
through the boolean connectives in the usual manner and a
formula oA being assigned truth at a point if A is true
exactly on a neighbourhood of the point.

The idea of a semantics based on neighbourhoods is
due originally to Scott [13] and Montague [11] and is
more fully developed by Segerberg [14] who uses the term
"neighbourhood frame". Hansson and Gardenfors [6] refer
to. them as "Scott-Montague" frames.

The neighbourhood semantics is denoted by S.

3.3 A relational frame is a pair W = (W,<) where W is

a set and < is a binary relation on the set. If u,v ¢ W
and u<v we say that v is a successor of u or that v is
accessible from u. An assignment, V, on W is, as in the

neighbourhood semantics, a function from N to (W), and
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determines a funétion,also called V, from the set of form-
ulae to P(U) as follows: Vip;) = V(i) for all i ¢ |,
V(~A) = W-V(A), V(A>B) = - V(A)UV(B), and V(oA) =
{ u | {v]ucv} c v(a) }.

As with the neighbourhood semantics, we write V(a,u)
= T or F according as u € V(A) or not. Again, a formula A
is valid at a point u if V(A,u) = T for all assignments
V, and A is valid in W if A is valid a£ all u in W. So
the assignment is again thought of as assigning truth or
falsity to each variable at each point and hence to each
formula at each point, this time oA being true at u if A
is true at all successors of u (and.maybe at other points
as well).

The relational semantics is due to Saul Kripke and,
in fact, relational frames are often referred to by authors
as "Kripke structures" or "Kripke models".

The relational semantics is denoted by R.

3.4 A first-order relational frame is a triple, U =

(U,<,1) where (U,<) is a relational frame and J is a field
of subsets of U (a boolean"subalgébra of the boolean algebra
of all subsets of U) which separates points (for u,v € U
there is S € 1 with u ¢ S and v £ S) and is closed under

the operation *, where for S c U, *S = { u | {v]|u<v} c 8 }.

In this case, an assignment, V, on U is a function from N

to 1. Sinceqn ¢ ®(U), the assignments on U comprise a
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subset of the set of assignments on the relational frame
(U,<). They are extended to functions from the set of all
formulae to @®(U) as with the relational semantics, and
since ] is closed under -, N, and‘: we see that such an
extension will be a function from the set of formulae to
II.

We write V(A,u) = T or F as before and define valid-
ity of a formula at a point or in a frame as with relation-~
al frames, keeping in mind that we have fewer assignments

and that therefore validity is easier to obtain. That is,

3.4.1 Theorem: If U = (U,<,l1) is a first-order frame,

and if a formula A is valid in the relational frame (U,<) ,

then A is valid in U. X

The first-order relational semantics is due to
Makinson [10]. Makinson calls his frames, which are
basically first-order frames, simply "relational models"
and notes that they are generalizations of the usual
(Kripke) relational models (our relational frames).

Fine [2], studying Modal Logic with propositional quan-
tifiers recognizes the possibility of treating the quan-
tifiers as ranging over a possibly restricted class of
sets of points in an otherwise Kripke-type semantics.

Thomason [22] defines a first-order semantics for

Tense Logic, and it is from him that we take our termin-
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ology in this case.

The first-order semantics is denoted by F.

3.5 Let W = (W,<) be a relational frame. If u,v € W

we say that u-and v are directly connected {(via <) if either

<V, v<u, or u = v, We say that u and v are connected if

there is a finite sequence u=u u cee WSV of points

17 2!

in W such that each is directly connected to the next.
We say that W is connected if u and v are connected for
each pair u,v of points in W. It is clear that connected-
ness is an equivalence relation on W; in fact, it is the
smallest equivalence relation containing <.

The restriction of the relational semantics to con-

nected relational frames is called the connected (relational)

semantics. Thomason [19,20,21] on occasion considers
connected frames for tense languages; this author has not
discovered other references to them.

The connected semantics is denoted by R.

3.6 We shall later find it convenient to consider a
further restriction of the relational semantics. If

w = (W,<) is a connected relational frame, let Wo denote
{ uew | Zvew'wiﬁh u<v }; that is, W is the set of points
in W with no successors. Now, if W is the frame (W—WE,Q)
where < is the restriction of <« to W—WE, then we say that

W is superconnected if W is connected.




The restriction of the relational semantics to
superconnected frames is called the superconnected seman-

tics and is denoted by ﬁ.

16



17

4, The Sgﬂgntgps Hierarchx

4.0 In this chapter we shall study a strong relationship
between the six semantics. We shall show that some of the
semantics can be said to be actuélly contained in others in
the following sense. If ( and [J are seﬁantics for the same
language and if there is a mapping from the structures ig

( to the structures in ]J which is one-to-one (up to isomor-
phism) and which preserves validity and non-validity of for-
mulae, then we say that ( is contained in or is a subseman-
tics of ). In the cases we shall study, those of the six

modal semantics already introduced, the mapping will be seen

to be a natural one in a very real sense. |

4.1 We. have already noted the most obvious examples of

~

subsemantics. Clearly, R is a subsemantics of R and R is a

A

subsemantics of R. 1In these cases the mapping is simply the

identity mapping since a frame in R is in R and one in R is

in R.

4,2 Almost as straightforward is the case of R and F.
: .

The mapping W = (W,<) --+ W' = (W,<,P(W)) is clearly a map-

ping from the frames in R to those in | having the desired

properties. Thus R is a subsemantics of F.

4.3 We shall show that R is a subsemantics of §. If W =
. <
(W,<) is a relational frame, then we define a function N

from W to P(®(W)) by N: ={scw| {vlucv} ¢ 8 }. Let F,
| '
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be the neighbourhood frame (W,N<). We must show that the
mapping W --= Fw " is one-to-one (up to isomorphism) and
preserves validity and non-validity. If Fw = Fu where W =
(W,<) and U = (U,0), then W = U and N = N®. Thus for u ¢
W (=U) we have { 8 | {v|ju<v} ¢ S } = { 8.| {v|uAv} < s 1},
thus {v|u<v} = {v|uAv}, and so u<v iff uAv. Hence < = A
and W = U.

Let V be an assignment on ﬁhe relational frame W =
(W,<). Then V tan also be thought of as a cofresponding ass=-
ignment on F = (W,N<), since the underlying sets of W and
Fw are the same and since V is simply a mapping from |\ to
that underlying set in either case. We shall see that the
extension of V to formulae is the same in W as in Fw, in
other words that for any formula A, V(A) in W is the same
subset of W as V(aA) in Fw.

This is certainly true if A is a variable since in
either case V(p;) = V(i) for all i ¢ N. If A is ~B or
B-~C then we recall from 3.2 and 3.3 that in both W and Fw,
v(a) = -V(B) or V(A) = -V(B)UV(C) respectively. If A is @B,
then V(A) in W is { u | {v|ju<v} c V(B)} = { u | V(B) ¢ Nz }
which is V(A) in Fw. .

Since V ranges over all assignments on Fw as it ranges
over all assignments on /, we see that W j= A iff ka= A. So
the mapping preserves validity and lack of it. Hence, R is
a subsemantics of §. 1In the remaihder of the thesis we shall

often identify W with Fw and consider a relational frame to
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be a certain type of neighbourhood frame.

4.4 We now show that § is contained in B. If F = (U,N)

is a neighbourhood frame then we define an operator ﬁ on

®(U) as follows. If S c U, then LS = { uev | s ¢ N Y -

LethF be the boolean frame (@(U),¢,U,—,ﬂ,ﬁ).’ Then we claim

that the mapping F --- BF is one~-to-one and preserves vai—
'

idity and non-validity. Suppose that BF = BG where F =

(u,N) and G = (W,M) are neighbourhood frames. Then U = W
and ﬁ = ﬁ. Thus, for all s ¢ U (=W) { ue€U | S ¢ Nu} = |
{ ueu | s ¢ Mﬁ} , hence for all S ¢ U and for all u ¢ U,
S € Nu iff S € Mu. So for all u ¢ U, Nu = Mu’ therefore
N = M and thus F = G.
It remains to show that if A is any formula, then
F = a iff By = A. Let V be any assignment on F. Then V
is a function from N to ®(U) and so can also be thought of as
an assignment on BF. It suffices, then, to show that the ex-
tension in F of each assignment V to formulae is the same

as the extension of V in BF; that is, for each formula A,

V(A) in F is the same subset of U (element of P(U)) as V(Aﬁ

_ \
in BF' ‘
If A is a variable then V(pi) = V(i) in F and in BF ¢
and if A is ~B then V(A) = -V(B) in F and in B.. If A is‘§
B~C then in F,V(A) = -V(B)UV(C) = —-( V(B)N-V(C) ) which is

V(A) in BF' Finally, if A is oB then in F,V(A) =
{u| v(B) ¢ N, } = fV(B) which is V(a) in Bp. Thus V(A) in

F is V(A) in By and so F = A iff ‘B [= A.
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We shall often identify F with BF and fhus consider a
neighbourhood frame to be a particular type of boolean frame.
Thus a relational frame is, in turn, also a particular type
of boolean frame. In fact, we shall identify W = (W,<)
with BFw = (@(U),¢,U,—,ﬂ,ﬁ€)where we note that § .S =
{ u| {v|ucv} ¢ s }. We also note that lemma 3.1.1 can be
applied to neighbourhood and relational frames, and, since
it deals with single assignments, tolfirst—order frames, as

well as to boolean frames.

4.5 We have the following containment diagram for modal

semantics.
B
F l
S

N

TO| e T T

We cannot show that [ is a subsemantics of B (or vice
versa), but we shall, in chapter 6, construct a mapping ¥
from the structures of [ to the structures of B which pre-
serves validity and non-validity but which is not one-to-one

up to isomorphism.
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4.6 In order to further understand the subsemantics rel-
ationship between the various semantics it will be necessary
now to prove some general properties of structures in B, F,

R, and S.

1

4.6.1 Definition: A frame in any modal semantics (any sem-
antics for the modal language) is classical if it determines

a classical logic.

4.6.2 Theorem: Every boolean (hence every neighbourhood,

every relational, every connected and every superconnected)
frame is classical.

Proof: Let B = (B,0,1,-,N,*) be a boolean frame and
suppose that B = A«»B. Then by 3.l1.1 for each assignment V
on B V(A) = V(B), so *V(A) = *V(B), V(oA) = V(oB), and

(3.1.1 again) V(pA«-»oB) = 1; hence B F= oA+«-0oB. XN

4.6.3 Definition: A frame in any modal semantics is normal

if it determines a normal logic.

4.6.4 Lemma: If L is a classical logic closed under RN and

such that L |~ o(pAag)«—(opAng) and L |~ A-B, then L |- oA-oB.
| Proof: L |~ A-B = (taut) L | A~ (AanB) = (RE) L |-
oA<-»o(AAB) . But L | o(pag)«—(oprog) = (Sub) L | o(AAB)+«

(0bAADB) = L |} o(AAB)»+pB. Therefore L |- oA-+oB. XN

4.6.5 Lemma: If L is a classical logic closed under RN,

then L |- K if and only if L | o(pAq)+(upArog).
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Proof: Suppose that L |~ K. Then (taut.) L |
(p~(g>(pAg)); thus (2.3.1) L P¥ op~»o(g—+(pAq)) and (K,sub)
L = o(g~(pAq))-(og»o(pAq)); hence L | op-(og-o(pAq))
and so (taut.) L | opAog-o(pAq). Also L | pAq#p and L k—
pAg—+g (taut.) and so (2.3.1) L | o(pag)-op and L |-
o(pAg)-+og: thus L | o(pAq)-(opAog) and L | o(pAq)<«—(opAog).
Now suppose L |- o(pAg)«—(opAog). Then (sub) L f-
o(p,»p,)Aop, > o((p,»p,)Ap,)); but also (taut.) L |-
((p,»pP,)Ap,)»p, and so (4.6.4) L b n((pl+p2)Apl)+mp2.
Thus L’F—'(D(p1+p2)ADp1)+Dp2 and therefore L }

o(p,»p,)~(op,»op,), i.e. L |- K. 4

4.6.6 Theorem: A boolean frame B = (B,0,1,-,N,*) is normal

if and only if *1 = 1 and for all b,c € B, *{bfic} = *bh*c.

Proof: Suppose B is normal. Then for all assignments
v, V(o(p,»p,)) = 1. But V(o(p,»p,)) = *V(p,»p,) = *1. So
*1 = 1, If b,c € B, pick V such that V(p;) = b and V(p,) =
c. Then (4.6.5 and 3.3.1(d)) V(o(p;Ap,) = V(op,Aop,);: soO
*(V(p,)nV(p,)) = *V(p,)n*V(p,): thus *(bNc) = *bn*c.

Now suppose *1 = 1 and for all b,c ¢ B, *(bnc) = *bn*c.
If B = A then V(A) = 1 for all assignments V on B. Thus
V(oA) = *V(A) = *1 = i for all V on B and so B = oA. For
any V on B , V(o(p,Ap,)<=(op;aop,)) =1 « *(V(p,)NV(p,)) =
*V(p,)N*V(p,) which is true by hypothesis. Since by 4.6.2

B is classical, 4.6.5 applies, and so B is normal. )41




23

4.6.7 Theorem: A neighbourhood frame F = (U,N) is normal

if and only if for each u ¢ U, N, is a filter.

Proof: Suppose F is normal. We must show that for each

u € U: (a) Nu # ¢, (b) N,N' € Nu = NAN' € Nu’ and (c)

N € N, and N'>N = - N' ¢ Nu. Now, by tautology and RN

F = of(p~p). Thus for all u € U and any assignment V on
F, u € V{o(p»p)) and so U = V(p»>p) € Nu. Thus Nu £ ¢.

Suppose now that N éNu and N' ¢ Nu' Let V be such that
V(p) = N and V(gq) = N'. Then u € V(op)NV(ng) = V{(opAoqg).

Then by 4.6.5, u € V(o(pAq)) and so NNN' = V(pAq) € Nu'

Suppose N ¢ Nu and N'ON. Let V be such that V(p) = N'
and V(g) = N. Then V(pAgq) = N'NN = N ¢ Nu' Thus u ¢ ‘
V(o{pAgq)) and, since by taut. and- 2.3.1
V(o (pAag)—»dp) = 1, u € V(op). Thus N' = V(p) ¢ Nu and so Nu
is a filter.

Now suppose that Vu€y, Nu is a filter; then (a), (b),and(c)
hold. By 4.6.2 and 4.6.5 it suffices to show that RN preserves
validity and that F = o(pAq)+«-(opAog). Suppose that F = A,
Then for all V on F, v(a) = U and so V(oA) = U since, by (;)
and (c), U € Nu for all u € U; hence F1F= oA and RN preserves
validity.

Suppose that u € V(o (pAg)). Then V(pAqg) ¢ Nu' Now
V(p)2V(pAgq) and V(q)>V(pAgQ); so by (c), V(p) and V(qg) are in
Nuf hence u € V(op)NV(og) = V(opAog). If, on the other hand,

u € V(opAog), then u € V(op) and u € Vv(og) and so V(p) an?

V(g) are in Nu and so by (b) V(pAqg) € Nu; thus u € V(o (pAg)).
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Therefore V(o (pAq)) = V(opAng); hence V(o(paq)<«~(opAnqg)) =

U and F = o(pAq)«~>(opAog). Thus F is normal. )1}

4.6.8 Theorem: Every first order frame, hence every

relational, every connected, and every superconnected
frame,is normal.

| Proof: Let U = (U,<,lI) be a first order fraﬁe. By proof
similar to that of 4.6.2 with * for *, U is classical. Thus by
4.6.5, it suffices to show that RN.preserves validity and that
U k= o (pAQ)+— (opAng) . Suppose Ul=-A. Then for any assignment
V on U, V(A) = U. Thus for u € U, V(A) > {Vlu<v} and so u ¢
V(oA). Thus V(nA) = U; hence U p= pA and RN preserves vélidity.

Suppose that for an assignment V on U and u € U, u €

V(o(pAg)). Then for all vsu, v € V(pAq). So for all vsu,
v € V(p) and v € V(q) and so u € V(op)NV(ogq) = V(opAog).
Suppose, on the other hand, that u € V(opAog). Then for all

v>u, v € V(p) and v € V(q); so v € V(pAg); hence .u € V(o(pArg)).

Therefore V(o(pAq)) = V(opAog) and so U k= o(paq)«—(oprog) MK
The following results will be useful later.

4.6.9 Theorem: If W = (W,<) is a relational frame, then W

= T iff < is reflexive ( x<x for all x € W ).

Proof: 1If < is reflexive then for any assignment V,
V(op,u) =T < V(p,v) =T for all v such that u<v = V(p,u)
= T, Thus V(op»p,u) = T Yu€U and W = op*p. Since W is nor-

mal by 4.6.8, W = T.
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If W =T then W k= op»p. Pick u ¢ U. Let V be such
that V(p) = {v|u<v}. Then V(op,u) = T. Since W |= op-p we
must have V(p,u) = T, and so u<u. Thus < is reflexive. X

4.6.10 Corollary: If F = (U,<,l) is a first-order frame and

< is reflexive, then F p= T.

Proof: By 4.6.9, (U,<) = T and so by 3.4.1, F = T.XK

4.6.11 Theorem: If W = (W,<) is a relational frame, then

W = S4 iff < is reflexive and transitive.

Proof: If < is reflexive and transitive then, by 4.6.9,
W = T. Let V be an assignment on W and suppose€’ that V(op,u)
= T, But then V(oop,u) = T. Therefore V(op~oop,u) = T Yue€U .
and so W = op-oop and W = S4. '

If W = S4 then W = T and so by 4.6.9 < is reflexive.
Also W #= op~oop. Let u,v,w € W such that u<v and v<w. Let
'V be an assignment on W such that V(p) = {x|u<x}. Then
V(op,u) = T. Since W k= op-~oop, we have V(mop,u) = T, hence
V(op,v) = T, hence V(p,w) = T. Therefore u<w and so < is

transitive. Nﬂ

4.6.12 Corollary; If F = (U,<,lI) is a first-order frame

and < is reflexive and transitive, then F |= S4.

Proof: By 4.6.11, (U,<) = S4 and so by 3.4.1,

F ope S4. | M
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4.7 Clearly there are neighbourhood frames which are not
normal, since we can always define the neighbourhood function
on a set so that the set of neighbourhoods of some point is
not a filter. Therefore, when we consider relational frames
as neighbourhood frames we see that not all neighbourhoodg
frames are relational frames. If, however, we restrict our-
selves to normal frames the question remains: are there nor-
mal neighbourhood frames which are not (isomorphic to) rel-

ational frames and if so how can we characterize the neigh-

bourhood frames which are (isomorphic to) relational frames?

4.7.1 Theorem: A neighbourhood frame f = (U,N) is isomor-

phic to a relational frame if and only if for each u ¢ U,
Nu is a (proper or improper) principal filter.

Proof: Suppose F = (U,N) is isomorphic to a relational
frame. In other words, we are saying that it is isomorphic
to Fw for some relational frame ( = (W,<). We may as well,
in fact, assume that F is Fw, that is, that U = W and that
N = NS. Then for u ¢ U, Ny = NE = { scusw | s > {v|u<v} %
which is the principal filter generated by {v]|u<v}.

Suppose that for each u € U, Nu is a principal filter.
Define a relation < on U'by u<v iff v € N VNENu. But Nu is

a principal filter, so there is an M ¢ Nu such that

N € N iff N> M. Thus u<v iff v € M. Then N ¢ Nfl iff

It

N o {v|u<v} = {v|veéM} = M. So NE N, and therefore N< = N

and, if U = (U,<), F = F Hence’F is (isomorphic to) a

ur

relational frame. nﬂ
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Thus when we refer to a particular neighbourhood frame
as being a relational frame, we simply mean that it is a
neighbourhood frame which has the property that the set of

neighbourhoods of any point is a principal filter.

4.8 We can ask the same question of boolean and neighbour-
hood frames: are there boolean frames which are not neigh-
bourhood frames and if so how can we characterize the boolean

frames which are (isomorphic to) neighbourhood frames?

.4.8.1 Theorem: A boolean frame B = (B,0,1,-,1,*) is iso;
morphic to a neighbourhood frame if and only of the boolean
aigebra (B,O,i,—,ﬂ) is isomorphic to a boolean algebra of
all subsets of some set, or, in the language of boolean al-
gebras, if and only if (B,0,1,-,N) is a complete atomic
algebra.

Proof: A complete boolean algebra is one in whiéh
every set of elements has a meet (or sup) and an atomic
boolean algebra ié one in which every non-zero element is
greater than some minimal non-zero element. It is a stand-
ard result of boolean algebra that an aigebra is isomorphic
to an algebra of all subsets of a set if and only if it is
complete and atomic. (see, for example, Halmos [5] p.70).

Now, if B is isomorphic to BF for some neighbourhooq
frame F = (U,N), then (B,0,1,-,n) is isomorphic to the 5

algebra (®(U),¢,U,-,n) of all subsets of U.

If, on the other hand, (B,0,1,-,n) is isomorphic to
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the algebra (@(U),¢,U,—,ﬂ) of all subsets of the set U
then we shall define a neighbourhood function N on U such
that * corresponds to ﬁ under the isomorphism.

To simplify notation, we may assume that B is ¢(U),
0 is ¢, 1 is U, so that we are beginning with the frame
B = (¢(U),¢,U,~-,N,*) and wish to find N such that * = ﬁ.‘
Define N by Nu = { 8ScU | u € *s }. Then for S c P(U), *S

*
N
={uew | s € N, } = {uel | ue*s}=*s. Therefore } = *

and so B = BF' ﬂﬂ

Thus when we refer to a particular boolean frame as
being a neighbourhood frame we simply mean that the boolean

algebra part of it is complete and atomic.

4,8.2 Theorem: A boolean frame B = (B,0,1,-,N,*) is (iso-

morphic to) a relational frame if and only if the algebra
(8,0,1,-,N) is complete and atomic, *1 = 1, and for every
1 * = *
set { bi | 1 € I } of elements of B, iQI bi iQI bi'
Proof: Every relational frame is a normal neighbourhood
frame and so is a complete, atémic, boolean frame in which
*1 — . . * o * s
1 1 and in which iQI bi iQI bi for any flnlte‘
set I. It remains to show that if F = (U,N) is a neigh-
‘ * = * 3

bourhood frame then ¥ iQI Si iQI NSi for arbitrary sets
I if and only if for all u ¢ U, Nu has a minimal element
(hence, is a principal filter since we already know that it
is a filter).

S _ . ‘
Suppose that ,ﬁ iQI Si iQI Nsi for all index sets
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I. Fix u €U and pick I so that { S, lie 1} = N,- Then

» * : : *
51n§e Si € Nu' u € NSi for i € I and so u ¢ iQI NSi
* * i i
Iy iQI Si' But u € § iQI Si implies that iQI S; € Nu
and since it is the intersection of all sets in Nu' must be
minimal in Nu'

Now suppose that for each u ¢ U, Nu has a minimal elem-
ent. Let { Si ] i € I } be an arbitrary set of subsets of U.
* ] .
Suppose that u ¢ § iQI S; - Then iRy S; € Nu and since: we
know that Nu is a filter and since for each j ¢ I, Sj >
. * .
iQI Sy Sj € Nu for all j§j € I. Thus u € st for all j € 1
and hence u ¢ ;{i; §S;. Now suppose that u € 191 hSi.
Then for each j € I, u ¢ ﬁsj and so Sj € Nu' Let N be the
minimal element of Nu. Then Sj > N for each j € I and so
' *
iQI Si > N and hence iQI si,e Nu. But then u ¢ Iy iQI Si'
* = *

Therefore we have shown that ¥ .Q; S; iQ1 #84- )i§

4.9 We can, in summary, say the following about boolean
frames. If B = (B,O,l,—,ﬂ,*) is a boolean frame then

(a) B is normal iff for all b,c € B, *(bNc) = *bN*c
and *1 = 1

(b) B is a neighbourhood frame iff (B,0,1,-,N) ista
complete atomic boolean algebra

(c) B is a relational frame iff it is a complete
atomic frame in which *1 = 1 and for each arbitrary set
{ by | i €1} cB, * 307 by = ;@ *b;. (We note tha-t if
we adopt the usual cohvention that an empty intersection is

the universe then we can drop the condition that *1 =1
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. . . * ' £ * i
since it is taken up by iQI bi iQI bi in the case

when I is empty.)

4.10 We shall take this opportunity to present a couple of

interesting properties of the neighbourhood semantics which

will be useful later.

4.10.1 Theorem: If F = (U,N) is a normal neighbourhood

framé then F = T iff every point in U is an element of

all its own neighbourhoéds, i.e. £ff Yueu, N € Nu = u € N,
Proof: Since F is normal we know that F = T iff

F &= oup»p. Suppose F = op»p. Then pick u € U and N ¢ Nu

and let V be any assignment on F such that V(p) = N. Now |

F = opop implies that V(op-»p,u) = T. But since V(p).= N '6

Nu’ V(op,u) = T. Thus V(p,u) = T and sd u € v(p) = N. |
Now suppose that Yu€U, N € Nu = u € N. Then letV

and u be arbitrary. If u ¢ V(op) then V(op-p,u) = T. If

u € V(op) then N = V(p) ¢ N, Thus u € N = V(p) and so

V(ap~p,u) = T. Either way, F b= T. 1)}

Now if F = (U,N) is a neighbourhood frame then we can
consider the pair (U,ﬁ) where ﬁ is the function from @(U) to
®(U) induced by N. We shall refer to * as the interior
operator on U induced by N. We shall see that

4.10.2 Theorem: (U,ﬁ) is a topological space where is

(U, N)

=%

the interior operator of the space, if and only if F

mpdels S4.
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Proof: It is known that (U,ﬁ) is a topological space
with ﬁ the interior operator iff for all S,S' c U
(a) §s <5, (b) ﬁ(shs') = {sngs'y, (e) }s < MS, and (d4)
ﬁU = U. (See, for example, Kuratowski [7] p.61) We saw
in 4.4 that the boolean frame BF = (pU),s,U0,-, ,ﬁ)‘has the
same valid formulae as F. Now, by 4.6.6, BF,and hence F, is
normal iff (d) and (b) hold. B, = opp e V(ap) ¢ V(p) for
all V on BF o ﬁ V(p) ¢ V(p) V V on BF < (a) holds for all
S ¢ U. Finally, B k= opoop e V{(ap) < V(oop) ¥ V on By
= V() c t¥V(p) ¥V Von By = (c) holds ¥ S ¢ U. There-

fore By, and hence F, models sS4 iff (U,ﬁ) is a topological

space. N
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5, Width and Depth

5.0 In the previous chapter we studied one way of compar-

ing semantics; namely, saying that one semantics is greater
?
than another if the class of frames in the one actually con-
tains the class of frames in the other in some meaningful'
way. In chapters 5 to 9 we discuss a weaker but perhaps

more significant method of comparing semantics.

5.1 Hansson and Gardenfors refer to the width and depth

of a semantics. The width of a semantics is measured by the
logic determined by the class of all frames (structures) in
the semantics. (This definition applies to languages and
semantics in general, although we are only interested in the
modal language and the modal semantiCs.) One semahtics has
greater width than another for the same language if the
logic which is a measure of the width of the first is con¥
tained in the logic which is a measure of the second.

The concept of depth is intuitively a measurement bf
the "density" of the set of logics which are complete with
respect to the semantics in question. It is, perhaps, vaguer
than width since we have no way of denoting the depth of
most semantics,’but shall use the term in a relative way;
thus we shall speak of one semantics as having greater depth
than another, or of a semantics as having maximal depth.

Specifically, one semantics will have greater depth than

another with respect to some specified set of logics if each
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of those logics which is complete with respect to the other
semantics is also complete with respect to the first. A sem-
antics has maximal depth with respect to a certain set of
logics if every logic in the set is‘complete with respect
to the semantics. It is obvious that if one semantics is a
subsemantics of another then the other has greater (or
equal) width and greater (or equal) depth than the first.
\ _ _

In the remainder of this chabter we begin to discuss
the widths of our six modal semantics; in chapters 6 to 9
we further discuss width and also discuss depth with respect

to classical and with respect to normal logics.

5.2 We shall see that both B and § have width of measure E
(see 2.4) and that F, R, ﬁ, and R all have less width: of
measure K. By 4.6.2 we‘see that the widths of B and of §
have measure which is an extension of E (since every bool-
ean frame is classical, hence determines_an extension of E).
To show that both B and § have width of measure E it suf-
fices, then, to show that for each formula A such that E }f
A there is a frame F in § such that F B A. To do this we

use Segerberg's [14] construction of a "canonical frame".

3.3 A setrT of‘formula is said to be consistent if the
closure under the single rule MP of T together with the
set of all téutologieé (the smallest set of formulae contain-
ing I, containing all thutologies, and closed under MP) does

not contain the negation of any tautology. By a simple ap-

plication of Zorn's lemma (or Lindenbaum's Lemma) we see
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that each consistent set of formulae I' is contained in a
maximal consistent set (m.c.s.) and that each m.c.s. con-
tains one of A, ~A for each formula A.

For each classical logic L let F, = (U ,N;) be the

following frame. U, is the set of all m.c.s.'s containing

L. If u ¢ UL and A is a formula such that oA € u then a
typical neighbourhood of u is the set of all m.c.s.'s v in

U; such that A € v. Formally, for u € U

Nu = { {VEUL|A€V} | DA € u }.

FL is called the canonical frame from L.

Let V. be the assignment on FL given by VL(i) =
{ u| p; € ul}. We claim that for each u ¢ UL and formula
A, VL(A,u) = T if and only if A € u. The proof is by induc-
tion on the length of A.

If A is a variable p; then VL(A,u) =T e VL(pi,u)' =
T & u ¢ VL(pi) ® u € VL(i) = p; € u. Now assume that
for all formuiae shorter than A the claim holds. If A is

~B then VL(A,u) =T VL(B,u) =F & B Kyu & A € u

(since u is an m.c.s.). If A is B~»C then VL(A,u) =T o
VL(B,u) = F or VL(C,u) =T & BfuorCc€u « ~B € uor
C€u ® A =B+C € u (since u is closed under MP). It
remains to sth that if A is DB theh VL(A,u) =T iff A € u.

First assume that A = oB € u. Then {v[Bé&v} ¢ N
and so, by induction hypothesis, { v | VL(B,V) = T } € Nu'

Hence, VL(A,u) = VL(DB,U) = T'. Now assume that VL(A,u)‘=
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T. Then { Vv |~VL(B,V) =T } € N, and hence, by the induc-
tion hypothesis, { v | B € v } ¢ N,- Then, by the defin-
ition of Nu, there is a formula C such that oC € u and
{v|Bev} = {v|Ceév}, i.e. B € v e C € v. We claim that,
therefore, L |- B«>C. For suppose that L }# B»C. Then
the set of formulae L U {B,~C} is consistent and thus
contained in an m.c.s. which would be in {v|Bé€v} but not
in {v|Cév}. Thus L |- B>C; similarly L |- C-B; and there-
fore L }- B«»C. Since L is classical, L k 0B—0C and so,
if oC € y then A = 0B € u also. The proof of the claim
that VL(A,u) =T iff A € u is complete. Since we know that
for each formula A such that L # A there is an m.c.s. u

such that A ¢ u, we have:

5.3.1 Theorem: If L is a classical logic and FL the can-

onical frame from L, then for all formulae A, L Ff A implies

Fo B A. 4

It must be stressed that for a classical logic L the
canonical frame from L is not necessarily a model of L
(which is sometimes called a frame for L). We do know that
the logic that FL determines is contained in L, but it may
or may not be all of L. In fact, Segerberg[l4] calls a
classical logic natural if the convdrse of 5.3.1 holds for
it, that is if Fr, k= L, and asks whether all classical
logics are natural. In chapter 7 we shall give a negative

answer to his question by displaying two non-natural logics.
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5.4 As an immediate consequence of 5.3.1 we have

5.4.1 Theorem: S (and hence B) has width of measure E.

Proof: We have already noted that every formula of
E is in all classical logics, hence valid in all neigh-
bourhood frames. 5.3.1, on the other hand, ensures that
a formula which is not in E is not valid in FE. The

theorem follows. : ﬂ“

What we have really shown here is that E is .a natural

logic.

5.5 By 4.6.8 we see that the widths of F, R, R, and R
‘have measure which is an extension of K. To show that the
widths of F, R, R, and R have measure exactly K we require

techniques which we shall develop in chapters 6 and 8.
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6.  Maximal Depth of B and F

6.0 We shall show that the boolean semantics, B, has max-
imal depth with respect to (or, is adequate for) classical
modal logics and that the first-order semantics, F., has

maximal depth with respect to normal logics.

6.1 Let L be any classical modal logic. We shall let BL
denote the "Lindenbaum-Tarski" frame for L constructed as
follows. If A and B are modal formulae then we write A =~ B
iff L k- A«»B. Clearly "=" is an equivalence relation. Let
BL be the set of ~-equivalence classes of formulae and let
|A| denote the ~-equivalence class of A. If we define

|A] A |B] = |AAB| and ~|A| = |~A| then, since L }~ A;+>A,
and L b B1+-B; implies L |}~ ~Ai+>vA; and L |- A1ABy1+~A;ABy,

A and - are well-defined. We can easily see, then, that

(BL,|p1A~p1|,}p1v~p1|,—,A) is a boolean algebra.

Now we define the operator * on B, by *|A| = |pA
Then the fact that L is classical implies that if L }=-
A)«-A, then L }~ oA;+—pA, and so * is well defined. Thus

By, = (BLrlprNP1|r|PlVNP1|:-,A,*) is a boolean frame.

6.1.1 Lemma: By E= L.

Proof: Let V be any assignment on BL. For each i ¢
N, let D, denote some formula in V(i), i.e. choose D, such
that V(i) = lDil. For each formula A let A' denote the for-

mula obtained from A by simultaneously substituting, for
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each i ¢ N, Di for each occurrence of P; in A. We show by

induction on the length of A that V(A) = |A'].

If A is a variable p; then V(A) = V(i) = |D;| = |A'].
If A is B+C, then A' is B'+C' and V(A) = ~(V(B)A=V(C)) =
-(|B'"|a=|C"|) = |A'|. If A is ~B then A' is ~B' and V(A)
= -y(B) = -|B'| = |A'|. And if A is oB then A' is oB' and

V(a) = *v(B) = *|B'| = |oB'| = |A"

By sub, if L }~ A then L }~ A' and hence L |-
A'~sp v~p . Thus |A'| = |[pyv~p1| and therefore if L |- A

then V(a) = [A'| = |pyv~p1|. So B, |= L. _ i

6.1.2 Lemma: If L | A then B B A.

Proof: Let V, be the assignment on By, given by

el

. Then by the previous proof, V,(A) = |A

Vo (1) = ]pl
Now if L |# A then L [# A«-sp;v~p; and so |A| # |piv~p:]|

and therefore B, B A. 4

6.1.3 Theorem: B has maximal depth with respect to class-

ical logics.
Proof: By 6.1.1 and 6.1.2, BL determines L for any
classical logic L and hence any classical logic is complete

with respect to the boolean semantics. 4

6.2 We have already seen that each first-order frame det-
ermines a normal logic and that hence the measure of the
width of | is an extension of K. Thérefore it would be im-
possible to expect F to have maximal depth with respect

to classical logics. We see, in fact, that we -
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do get the best result that we could possibly expect for
F; namely, that F has maximal depth with respect to nor-
mal logics.

In order to do this we shall use constructions of
Makinson's[10] of maps ¢ and ¥ between frames in F and
normal frames in B.

Let B= (B,O,l,—,h,*) be any normal boolean frame.

We define the first-order frame ¢(B) = (U,<,1) as follows.
Let U be the set of all ultrafilters u in the boolean al-
gebra (B,0,1,-,n ). u<v iff for all a € B, if *a € u then
a € v, If S c U, then S €1l iff there is an element a € B

such that S = { u€u | a € u },

6.2.1 Lemma: If B = (B,0,1,~,1,*) is a normal boolean
frame and if aN-b = 0, then *aN-*b = 0.
Proof: anN-b =0 = aNb =a = *an*b = *a =

*an-*b = 0. | |

6.,2.2 Lemma: If B is a boolean frame and ¢(B) = (U,<,l)

is the structure defined above, and * is the operation
defined in 3.4 (recall that *S = { veU | {w|v<w} c S }),-
then for all a € B, *({ uetU | a €¢ u }) = { ueu | *a € u }.
Proof: Let S = {u | a € u}. Then we must show that
w € XS iff *a € w.
Suppose that *a ¢ w and let w<v. Then a € v and so
v € S. Hence { v | w<v } ¢ S and so w € %S.
Now suppose that w € *S; thus if w<v then a ¢ v. So

if v € U such that b € v whenever *b ¢ w, then a € v.
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Suppose *a £ w. Then -*a € w. Let p, p’ ¢ B be such that

P = {~-a} U {b‘]'*b € w} and P’ = {~-*a} U {*b | *b € w}. Then
since -*a € w, every finite intersection (meet) of elements
of P’ must be nenzere; but then by 6.2.1, every finite inter-
section of elements of P must be nonzere. Therefore P

is contained in an ultrafilter v and we have w<v and a £ v;

a contradiction. Thus we must have *a € w. 4
6.2.3 Lemma: &(B) = (U,<,II) is, in fact, a first-order
frame.

Proof: Clearly U is a nonempty set and < a binary
relation on U. It remains only to show that II is a bool-
ean algebra of subsets of U which separates points in U and
is closed under the operation X*.

Suppose that S:,S2 € II . Then there are a;,az ¢ B
such that s; = { u | a; €u} (i=1,2). We have U-Sy =
{u]|a £gu})={u| -a;-€u} €10 and S;NS, = { u |
ai € uand a €u}={u]l ajNfaz € u} €I; soll is, in
fact, a boolean algebra. It is well known that if a # b ¢
B then there is u € U with a ¢ uw and b £ u (or vice versa)
and so { u | a €u}t# {v | b€v }; hence, Il separates
points. By 6.2.2, Il is closed under *¥; therefore (U,<,II)

is, in fact, a first-order frame. N

6.2.4 Lemma: If A is any formula then B k= A if and only

if (B) = A. Thus B and ¢(B) are equivalent.
Proof: It is a well known property of ultrafilters

on boolean algebras that { uéU | a ¢ u } = { u€U | b € u }
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iff a = b. Thus the correspondence a --» { u | a € u } is
one-to-one from B onto I[I. Now if V is an assignment on B
then for each i, V(i) € B; and so the mapping V==V,

where V (i) = { u | V(i) € u } € I, is one~to-one from the
set of assignments on B to the set of assignments on & (B).
It suffices, therefore, to show that if V is any assignment
on B then for all formulae A, Vv(A) =1 iff V®(A) = U.

Since U = { u | 1 € u } it suffices to show that for all A,
Vo(d) = { u | V(A) € ul}. We do this by induction on the
length of A.

If A is p;, then V,(A) =V (i) = { u | V(i) € u} =

{u] V() €u}. If A is ~B, then V (A) = U-V,(B)

{u|VvVvB) fult={u| -v(B) ¢ul={ul| v@a) €u}.

If A is BoC, then Vg (A) = -V (B)UV,(C) = U=(V, (B)-V, (C))

= {u| -(V(B)N=V(C)) € u } ={u| V(~(BAC)) € u } =
{u| V(d) € u}. Finally, if A is oB, then V (A) = 2V, (B)
=*{u | V(B) €ul={u]| *(B) €ul} (by 6.2.2) =

{ u | V(d) € u }. The induction is complete. MW

We see that if we restrict B to the semantics of
normal boolean frames and if we apply ¢ to the frames in
this restricted semantics, then, since it is easy to see
that & is one-to-one up to isomorphism, ¢ satisfies the
conditions of the mapping called for in 4.0 and so, strict-

ly speaking, we could say that the restriction E of_B to
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normal frames is a subsemantics of . The mapping ¢ is,
however, not really a natural or canonical one and so it
would offend our intuitive notion of sub-semantics to con-
sider B as a subsemantics of F, and therefore we shall not.
The mapping ¢ does have an important application,
however. Since B has maximal depth with respect to class-
ical logics it certainly has maximal depth with respect to
normal logics; hence, since for normal frames B and & (B)

are equivalent, we have

6.2.5 Theorem: F has width of measure K.

Proof: We already know that the measure of the width
of F is an extension of K. But now @(BK) = A iff XK |- A

so the measure of the width of F is k. )4

6.2.6 Theorem: [ has maximal depth with respect to nor-

mal logics. _ o

g;i We noticed that through the function &, the sem-
antics, B, of normal boolean frames was strictly speaking
‘a subsemantics of F, although this offended our intuition
about subsemantics. We now investigate Makinson's other
mapping, ¥, from F to B. We shall see that ¥ has almost
all the requirements for the mapping in the subsemantics
definition and, contrary to &, is "natural" or intuitive,
but is, however, not one-to-one.

1f F = (U,<,l1) is a first-order frame, then ¥ (F) =
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(m,¢,u,-,N,*). sSince we know that I is closed under the
boolean operations and under :, we see immediately that

¥(F) is a boolean frame.

6.3.1 Lemma: For each formula A, F = A if and only if
¥(F) = A. Thus F and ¥(F) are equivalent.

Proof: An assignment V on F is a mapping from N to
I and so is at once an assignment on ¥(F). It is clear
that it ranges over all assignments on ¥ (F) also. We
also know that the extension of V on F to a function from
the set of all formulae to II is the same as that on ¥ (F).

The lemma follows. ﬂﬂ

6.3.2 Lemma: For each normal boolean frame B, Y (®(B)) is
boolean frame-isomorphic to B.

Proof: If B = (B,0,1,-,0,*) then &(B) = (U,<,I)
where U is the set of ultrafilters on (B,0,1,-,0), u<v iff
a € v whenever *a € u, and for S c U, S ¢ II iff there is
a € Uwith S = { u ] a € u}. Hence, Y(®(B)) =
(H,¢,U,—,h,§). We have already seen in the proof of 6.2.3
that U~{ u | a € u} = { u | ~a € u'} and that { u | a € u }
N{u|be€ult=1{u] aNb € u }, and in 6.2.2 that
*{ul ac€ul - {u]| *a € u }. We also see easily that
¢ ={u] 0€ultanduU=1{ul 1 €ul. Thus the mapping

a--+{ul| ae€eu} is an isomorphism from B to ¥(2(B)). MK
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We observe that it is not in general true that as
first-order frame; F and & (¥ (F)) are isomorphic. Let F =
(W,<,1) be any first-order frame where W is an infinite
set, < is any binary relation on W, and 11 = ®(W). Then
¥Y(F) = (@(W);¢,W,-;ﬂ,é) and & (¥(F)) = (U,<*,01’) where U is
the set of ultrafilters on the boolean algebra ®(W) and <~
and 11’ are defined appropriately. It is a known fact of

= 22card(w) (see Gillman & Jerison

set theory that card (U)
[4]p.130, Thm.9.2) and so there can't possibly be a first-
order frame-isomorphism from F to (¥ (F)).

Finally, if we let F be any first-order frame such
that F and ®(¥(F)) are not isomorphic, then by 6.3.2, ¥ (F)
and Y (& (¥ (F))) are isomorphic as boolean frames and so we

see that as a mapping of isomorphism-types, ¥ is not one-

to—-one.
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7. Non-Maximal Depth of §

1.0 We have already seen (5.4.1) that § has width of
measure E. It is known, in fact, that E, K, T, S4, and
virtually all other classical modal logics of particular
philosophical interest are complete with respect to §. It
might be expected, then, that all classical logics be com-
plete with respect to S. We shall see, however, that this
is not the case. Thomason[16] and Fine[l] independently
constructed normal logics, which we shall, in this chapter,
denote by L; and L, respectively, which they showed to be
incomplete with respect to R. we shall show that these
two logics are incomplete with respect to §, thus showing
that § does not have maximal depth with respect to class-
ical logics and hence is "weaker" than B.

Of course, only bne of these logics is really nec-
essary to obtain our result, but the logics are quite dif-
ferent and so add enough strength to the‘result to make
the presentation of both worthwhiie. The logic L; is an
extension of T and contained in S4; in fact, we shall see
that L; is properly contained in S4 but that all neighbour-
hood frames which model L; also model S4. L; is a rela-
tively simple logic and its position, "so close to" 54,
makes it interesting in itself. If we knew only of the
existence of L;, however, it would then be natural to ask

whether § had maximal depth with respect to classical,



or perhaps normal, extensions of S4. But L, is an exten-
sion of S4, and although it is considerably more complicat-
ed that L;, its existence shows that even "above" S4, §
dges not have maximal depth, and so its presentation here

is indeed worthwhile.

7.1 Before continuing with the presentation of L; it will
be convenient first to prove some general results on neigh-
bourhood frames. In the remainder of this section F =
(U,N) will be an arbitrary neighbourhood frame and A a

modal formula.

7.1.1 Definition: If S ¢ U then we define SN to be -ﬁ-s.

7.1.2 Lemma: For any assignment V,,VZASN = V(QA) .
Proof: Immediate from 7.1.1 and section 4.4. N

Throughout the remainder of this chapter we shall

usually omit the subscript "N" and simply write *S for

ps and § for 3V

7.1.3 Lemma: If F is normal and S ¢ U, then S =

{ X | NeN_ = NS # 4 }-
Proof: x € § ®© x f *-S e there is no set N ¢ NX

such that N ¢ -S (by 4.4 and 4.6.7) < VUNEN_, NNS # ¢. KX
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7.1.4 ’Corolla;z; In normal F, ¢ = ¢. “ﬂ

7.1.5 Lemma: If F is normal and P € S € U, then *P C *g



47

and P ¢ §.
Proof: y € *P = P ¢ Ny = (by 4.6.7) S ¢ Ny =
y € *S, Thus *P c *S, NowPc § =» =S cC =P = *=§cC

P o —%_P ¢ -*%-5 o ib'c"s—, XK

7.1.6 Lemma: Let F be normal. Then F models O p+Op

iff for all nonempty S,P,Q ¢ U, if Sc P and P ¢ Q then
s ¢ Q.

Proof: Suppose F models ¢2p+0¢p and S ¢ P and P ¢ Q.
Let V be an assignment such that V(p) = Q. Then by lemma
7.1.2, V(¢p) = Q and V($2p) = 6, and so Q € 0. Also from
Pc Q and lemma 7.1.5, we have P ¢ 6 and so Sc Pc Q< Q.

Suppose, on the other hand, that for all nonempty
S,P,Qc U, if Sc Pand P ¢ Q then S ¢ Q. Let V be any
assignment on F. If V{?p) = §5, then V{2?p) ¢ ViPp). So
we shall assume that V(¢2p) # ¢. Then since V($2p) =
v?3§7'and V(ep) = VTET we must have V(¢p) # ¢ and Vip) # ¢ -
(by corollary 7.1.4). Now by our supposition, V(¢?p) <
T({p) (by 7.1.2). Thus for any V, V(¢?p) < V(¢p). Hence,

V(¢2p+¢p) = U and so F models ¢?p-~¢p. NN

7.1.7 Lemma: If M is a modal logic (F any frame), then

op~o?p is included in M (valid in F) if and only if
¢2p+9op is included in M (valid in F).

Proof: M | op+o?p = M | o~pro?~p = M -
~o2~ap~o~np = M b= ¢2p+0p. Similarly for the opposite

implication. Now repeat the above, replacing "M (" with
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with "F p=". : ‘ ' | "X

7.1.8 Corollary: If F = (U,N) models T, then F models
S4 if and only if for all nonempty S,P,Q c U, if S ¢ P

and P ¢ Q, then S ¢ Q. | b

7.1.8a Lemma: If S4 }- A+o(B°C) then S4 |— A0 (OB>4C) .

Proof: S4 bk (B*C)=(~C>~B), thus by 2.3.1 sS4 |-
o (B~>C)-o (~CB). But s4 F— o (~C>~B)— (o~C>*o~B) and
S4 |}~ (o~C>o~B)- (~D~B~O~C) and ~ag~B~O~C = OB4C.
Therefore S4 n(B*C)*(éB*é@i.' Then by 2.3.1, S4 }-
o’ (B+C)»o (0B»¢C) . Also S4 |~ o(B>C)»o? (B*C). Thus

S4 | o(B*C)»D(0B+9C). The lemma follows. "X

7.1.8b Lemma: If S4 b A+nB and S4 | B+C, then
S4 |- A-oC. |
Proof: If S4 | B»C then S4 |~ oB+nC, by 2.3.1.

This, with S4 |- A»gB, yields S4 |~ A-»oC. i

7.1.8c Lemma: If S4 b A»oB and S4 | A-oC

and S4 } BAC-D, then S4 |- A-oD.
Proof: If $4 }- BAC»D then by 2.3.1 S4 |- o(BAC)-oD.
By.4.6.5, sS4 }-—- o (BAC)«— (aBAnC). Thus S4 {—- oBAoC~»oD.

This, with S4 - A»pB and S4 |- A»nC, yields S4 p A-oD. JK
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7.1.9 Lemma: If F =T and S ¢ U, then *S ¢ § ¢ §.

Proof: Since F =T, F | op»p. Thus for all as-
signments V, V(op) < V(p). Pick S ¢ U and V such that
V(p) = S. Then *S = *V(p) = V(op) ¢ V(p) = S. Since this
is true for arbitrary S ¢ U we also have *-S ¢ -S and so

S = --§ ¢ -*-g = §. 7 R

7.1.10 Lemma: If F =T, V is an assignment on F, x € U,

A a formula,\and i<k, then V(DkA,X) =T = V(uiA,x) = T.
Proof: F = op»p. Let j = k-i. By an obvious ind-

uction on j, F #:,Djp+p, hence F |= mj(DiA)»DiA, i.e. F =

DkAﬁmlA. Thus V(DkA,x) =T = V(DlA,X) = T, mm

7.2 We now proceed with the construction of the logic L,
due to Thomason[l6], and show that it is incomplete with re-
spect to the neighbourhood semantics. Consider the form-

ulae:

A, = n(q£+r) (1 =1,2)
B, = D(r+0qi)/ (i =1,2)
Cy = o~(aqnqy,)

= 2 .
A YAopPA~D pAAlAAzABlABzACl - <xrAu(r»qlvq2))



D = (prd2q) - (¢qve? (grop))

23]
il

(apa~a®p) + Olo?pa~o’p)

t
i

ap»o?p.
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Let L, be the smallest normal logic containing T, A, D, and

E (here we are referring to the formula E, above -- T, how-

ever, refers to the logic T). We see easily that A, D, and

E are in S4 so that L; is between T and S4. (To see

is in S4, note that by 7.1.7, S4 k= ¢%*g+oq.)

that D

7.2.1 Lemma: The formula F is valid in all neighbourhood

frames modelling L;.

Proof: Assume that F = (U,N) is a particular
bourhood frame which models T, models DAE, but does
model F; we show that F also fails to model A, thus

lishing that F is valid in all frames modelling L;.

Claim: If S c P and P ¢ §Q and S ¢ Q, then there is

point z € QNS.

Let V be an assignment such that V(p) = S and
Q. Then S c V(paQ2qg). Since F p= D, V(pA®2q) <
V{ogve2(gadp)). Thus S ¢ V(egve? (gadp)) =‘6 U Sﬁg.
S ¢ § so that SNONS # ¢. Thus é"n_—?s: # ¢ and so by 7.1

onS # ¢. Let z ¢ onS. The claim is proved.

We now define an assignment V-on ¥ and inducti

choose a pairwise disjoint sequence of nonempty sets

neigh-
not

estab-

V(gq) =

But

.4

vely



:
4
i’{

W,, W,, ... so that for all i,]

i<j = Wi C W;
W, V(DipAmui+lp)-
Since F does not model F, there are, by corollary
7.1.8, nonempty sets S,P,Q c U such that S ¢ P, P c Q
and S ¢ Q. Let W € S-Q. Let V be such that Vip) = U-Q.
Then w ¢ -0 = *-Q = V(gp). Now V(~p) = Q and so, since
Pc@, PcVR~p). Thus {w} c S c P ¢ VT{g~p) = VO2~p) =
V(wnzp);-and therefore {w} c V(DPANDZP). Let W, = {w};
then the required conditions are satisfied by W,.
Suppose W;, eee Wn have been chosen to satisfy

the conditions. Since F models E, F models

n+l

* P) .

2p). Since Wn C V(anAND

+1 +2
n+l=‘V(Dn pANDn p);

(anANDn+lp)+°(Dn+lpANDn

n+2p)).

Wn c V(O(un+lpA~D So let w

———

then Wn C Wn+l

Wn # ¢, Wn+l # ¢,and so by 7.1.4, Wn+l # ¢. For i<n+l,

i+1 n+l :
X €W, = V(ot"p,x) = F, but x ¢ W, = V(e p,x) =T

i+l

= (by 7.1.10) V(o p:x) = T; thus WiﬂWn+l = ¢.

We already have W ¢ W ... For i<n, W, ¢ W; by the

n+1

induction hypothesis; thus, by the claim, either

(a) Wi “ Wn+l

or

(b) there is y € Wn+lnwi

But W, c vi~ottlp), so W, c Vie~oltp) = vipit?

in case (b), V(nl+2p:Y) = F and so, since i<n = 1i+2=<n+l,

p). Thus
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by 7.1.2. Since by the induction hypothesis
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+1

we have V(g" p,y) = F, by 7.1.10, contradicting the fact

n+1l
o

that W c V{( p) . Hence W. ¢ W ., and the induction is

+1

complete.
Now let V also be such that V(r) = nﬂlwn; V(qi) =

nnlw3n+i (i =1,2). Then w ¢ Wy, ¢ V(r) and w ¢ W, ¢

V (opA~o?p) . V(qi) c V(r), hence V(Ai) = V(u(qi+r)) =

*V(qi+r) = %U = U for i = 1,2. For x ¢ V(r) we have x ¢ Wj

for some j and if we choose k so that j<3k+i, then Wj c

Wirs; and so x € Wy o c Vig;) (by 7.1.5). So V(r) c

VZqi) = V(0g;); hence,V(B;) = V(o(r+0oq;)) = *V(r-eq;) =

*U = U for i = 1,2. Finally V(Cl) = V(Dw(qlqu))
*—(V(ql)nv(qz)) = *- 4= *U = U. So we have w ¢ V(rADpAmuzp
AAlAA2ABlAB2ACl). Suppose that y ¢ V(r). Then y ¢ W for

some i. Let k be such that 3k>i. Then y ¢ Wy ©

V{~Tr>qvq,J); so y € W, c Wy < Vi~(r-qqva,))

V(O~(r+qlvq2)) = U-V(u(r+qlvq2)) and hence V(rAD(r+qlvq2))
= ¢. So V(O(rAn(r+qlvq2))) = ¢ and thus w £ V(A). There-

fore A is not valid in F and the lemma is proved.  RK

7.2.2 Lemma: L}~ F.

Proof: This result and the proof we give here are
due to Thomason[i6). It would suffice to find a frame in
any semantics which modelled L, and ﬁot F. We use a first-
order frame # = (H,A,J1). H = N, the set of natural numbers;
for a,b € H, aAb iff a<b+l (whtre < is the usual ordering.

on the natural numbers); II is the set of all finite and
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cofinite subsets of H. We know that II is a boolean algebra
of subsets of H. If S ¢ [ then we can See that if S is
finite, *s is empty, if S is cofinite then if b is the
greatest number in H-S, ZS = { a | axb+2 } and KH = H.

We must show that H models T and A, D, and E but not
F. Clearly, A is reflexive; and so by 4.6.10, Hr= T,

Let V be an assignment on H such that V(p) =
{ a | az2 }. Then V(mp) = XV(p)‘= f a | a=3 } and V(ao2p)
={a| a=z4 }. So V(ap) ¢ V(o2p); V(op+ o?p)# H; hence
H B F.

Now let V be any assignment on H and suppose that a ¢
AA |

V (rAopA~o2pAA ABlABZACl)‘ Now for all c such that aac,

17772
if ¢ € V(r) then, since V(m(r+0qi),a) = T and therefore
V(r+Oqi,c) =T for i = 1,2, we must have V(qu,c) = V(qu,c)
= T; and so there must be d.,zc-1 with 4; € V(g,) for i =
1,2, So we see that if V(r) is infinite then both V(ql)
and V(qz) are infinite and hence both cofinite. But
V(o~(gyAq,),a) = T implies that {cicza-l}DV(ql)hv(qz)'= 6
which would contradict the cofiniteness of V(ql) and V(q2).
So V(r) must be finite. 7

Now let b be the greatest element of V(r). Since
a € vV(r), such én element must exist and a<b; hence for all
¢ such that bAc, ahc and, in particular, aab. Thus,
V(rA(r»qu)A(r+oq2),b) = T and so V(Oqleqz,b) = T. Now,

if b<c then aAc and so V((ql+r)A(q2+r),c) = T, so we could
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not have V(qi,c) = T for that would contradict our choice

of b, We also have apab and apab-1 and therefore V(m(qlqu),b)

= V(N(qlqu),b-l)=T. So we must have b ¢ V(ql) and b-1 ¢

V(qz) or vice versa. Then we have V(r,b) = T and for bad

we have V(r-q,vg,,d) = T (since either d = b-1 ¢ Vi(gy)UV(a,)

or d =b ¢ V(ql)UV(qz) or b<d ¢ V(r)); thus V(rAu(r+qlvq2),b)

= T. Therefore, since apb, V(O(rAD(r+qlvq2)),a) = T, and

so V(A,a) = T. Hence V(A,x) =T for all x ¢ H and H = A,
Now suppose that V(pa®2qg,a) = T. Then a ¢ V(p) and

there is b=a-2 such that b ¢ V(qg). Now if b>a-1 we have

Vi®g,a) = T and so V(¢qve? (gaep) ,a) = T. So if V(¢g,a) =

a-2. But then V(¢gp,b) = T and so

F we must have b

V(¢gve? (gaep) ,a) V(02 (grdp) ,a) = T. In either case we .
have V(D,a) = T. Thus H = D.

Finally, suppose that a ¢ V(opa~o?p). Then { c | cza-1}
c V(p) but { ¢ | cza~2 } ¢ V(p), thus a-2 ¢ V(p). Then we
have a+l ¢ V(n?p) but a+l £ V(p3p) and so V(usz~D3p,a¥l)
= T. Therefore V(0 (zc?pAa~n’p),a) = T and so V(E,a) = T.

Thus f P= E and the lemma is proved. 441

7.2.3 Theorem: L is a normal logic between T and S4 which

is incomplete with respect to §.

Proof: Lemmas 7.2.1 and 7.2.2. ﬂ“

7.2.4 Corollary: § does not have maximal depth with res-

pect to classical or even normal logics. R
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1.3 We now continue to the construction of L,, due to
Fine[1], and show that it, also, is incomplete with respect
to the neighbourhood semantics. Consider the following
formulae where p,, Py, 99, 91, Yo, L1, t, and s are dis-

tinct propositional variables and m=>0.

By = qp B, = a
C0=r° C1=r1

B2 = <>Bm+lA°CmANQCm+l

C = &C AOBmANOBm

m+2 m+l +1
Ap = OB 1M OC 1M OB MOl o
J, = a((py>~P1AdP1) A (P1>0P0))

Jz = o(~(poVp1)-o~(povp1))
Js = 0(B;»0ByA~QCy)
J, = o(C,~>0CyA~0B,)
Js = 0(Byg-~0(B;vC,))
Jeg = 0(Cy»~¢(CyVvB;1))

D = (Povp1)AJ1AT,

K = J3AT,ATsAT

E = DAOA,AK

F = O((poVvp1 ) A~OAGAQA, )

G=E->F

H = ~(sAo (s>Q (~sAtAd ((~sA~t)APs))))

(In the remainder of section 7.3, the letters assigned above

to formulae will always denote those formulae, even though
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some of these letters, notably K and E, are commonly used

to denote other particular formulae or logics.)

The logic L, is the smallest normal logic containing

S4 and G and H.

7.3.1 Lemma: The formula ~E is valid in all neighbourhood

frames which model L,.

Proof: The proof requires two preliminary results.

For m=0 and any formula A let A™ be the result of substi-

3

tuting, for i = 0,1, Bm+i for Bi (= qi) and Cm+i for
C. (= r.;) in A.
i i
. m _ m _ m _
Claim 1: Bn = Bm+n’ Cn = Cm+n’ and An = Am+n for m,n=0.
Proof of claim: We first show that BT = B and
n m+n

. m _
simultaneously that Cn = Cm+n

by induction on n. If n =

0 or

1 then the result follows by the definition of a™, Suppose

m

now that rzl and that for all n=r and m=0, B, = Bosn and

m m N R Y
Ch = Cnen- .Then B4l = (OB AQC __1A~0C )" = OBLAOC  _1A~0C
= (by induction hypothesis) OBm+rA°Cm+r—lAN°Cm+r = Bm+f+l’

m
r+l

m- ~J
Now An = (an+lAOCn+lA ¢B

Similarly, C =C The induction is complete.

m+r+1°

n+2

m m , .
AQB  ,AC ., = (by above induction) B AC

m+n+1 m+n+1

AmoBm+n+2AN°Cm+n+2 = A .- The claim is proved.

Claim 2: For any m>0, S4 |- Km+Km+l. Thus if m’=>m,

S4 |'— Km—er' .

m _ ,.m m
AOC 1) = OB AT 1

Proof of claim: The second statement clearly follows



from the first. We have

(a) K®
(b) Bm+2
(c) Cr2
(d)

(e) sS4 }
(f) s4
(9) s4
(h) s4
(1) s4
(i) s4 p
(k) s4 |
(1) sS4
(m) s4
(n) sS4
(o) s4
(p) sS4 F
(q) sS4
Thus, S4
to

s4 - KMugTtL

A

(q) yields s4 | K

= OC

m .m _.m .

D(Bmﬁwchm+1VCm+1

= OB 1 NOC A -

m+lA°BmAN°Bm+l‘

Km+JT+l.

))AD(Cm+~0«3

= JHAT AT AT =,m(Bm+l+¢BmA~ocm)Au(cm+l»0CmA~oBm)

m+1 VB2 )

(from (b), RN, and taut.)

(from (c), RN, and taut.)

K"+ (C,, ,»0C 1)+ (from (e), 7.1.8b)

Km+D(Cm+l+0Cm). ((a), 7.1.8b)

m 2
K ~n (0Cm+l—><) Cm) .

((g), 7.1.8a)

cﬁcm»ocm. (7.1.7)

K0 (QC,  1+0C ) .
Km+D(Cm+2»0Cm).
K'>0 (B, ,~0C_ ).
Km»D(Bm+2va+2+OCm)
Kmem(Q(Bm+2va+2)+chm).
Km_'D(<>'(Bm+2vcm+2)_><)cm)'
Km»m(Bm+l»mocm).

m
K »D(Bm+l»N°(Bm+2VCm+2))'

((h), (i), 7.1.8b)
((£),(3), 7.1.8¢c)
(ta), 7.1.8b)

(k) , (1), 7.1.8c)

((m), 7.1.8a)-
({(n), (i), 7.1.8b)
((a), 7.1.8b)

((0),(p), 7.1.8c)

Km»JT+l. Interchanging B's and C's in (f)

maJ?+l

sS4 Kk™1.  The claim is proved.

pose that F = (U,N) is a particular neighbourhood frame

, and with (d) and (e) we have

We are now ready to conclude the proof of 7.3.1.

57

Sup-

which models S4 and in which G is valid but ~E is not valid.
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We shall show that H is not valid in fF . and so F is not a
model of L, . This will show that ~E is valid in all neigh-
bourhood'models of L,.

Since ~E is not valid in f, there is an assignment V
on F such that V(E) # ¢. Let w ¢ V(E). We sball construct

by induction an infinite sequence of pairwise disjoint sub-

sets "W , Wy, 0. 0f U such that for m=0, Wm e Wm+l and
Wooc v(ED) .
Let Wy, = {w}. AsBume that W,, ... , W, have been

chosen to satisfy the conditions. Now ¢t = grFD. Thus,

. n n . 1
since Wn c V(E), Wn c V(F ), i.e. V(O((povpl)ANOAnAoAn+l),x)
=T Vern.

Let P ., = V((POVP1)ANOAnAOAn+l)- Then W, € Py by
7.1.2. We shall show by induction on i that if 0<i=<n,
. n
then Wn—i c V(OAn). Suppose i = 0, W, c V(E') and so,

) . . n _ ;
51nce10An is a conjunct of E, Wn—i = Wn c V(OAn). Suppose

now that 0<i=<n and Wn—(i—l) C V(OAn). Then since W C

n-i

— 2 .
Wn—(i—l)’ Wo_; © vV An) by 7.1.2 and 7.1.5. Thus, since

S4 |- 0%A -0A_ by 7.1.7, W__. c V(A ). The induction on

i is complete; thus for all i, 0=<isn, W, c V(OAn). But

P c U—V(OAn). Thus Pn+lﬂWi = ¢ ¥Yi=n.

n+1
Now W _ ¢ Vv(E™), and so W v(K®). Thus by claim 2,

n+l 1 n+l

W.oc VK™Y, Now let s?+ = v(3{"") for lsis6. (Note

that for i = 1 or 2, J? = Ji ¥n, hence S? = S? Yym,n.) Let

& _n+l, . e n+l
Wn+1 = (igl Sy )nPn+1' Then from definitions of Pn+1’-gi '
and En+lwe have Wn+lcV(En+l). Let yewn; then since each-Ji is

1

. +1 .
a conjunct of E, yES?+ for 1=i<6. Since each J? begins
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with o, and since F models S4, F models uJ?+lP+J2+l; thus

S?+l = V(Jl:ll+l l); and so, since y € S?*l, S?+l €N .

6 n+l .
Let N ¢ Ny' Then by 4.6.7 (iglsi )ﬂN.GNy; and so, since y¢
Sn+l

_ n+

.8

Wn < F id1

n n+1’ JANAP .. # ¢ by 7.1.3. Thus NOW__; # ¢;
n+l

so W, ¢ W by 7.1.3. Since also LR c V(E ), the con-

n+l +1
struction of our required sequence of sets is complete.

It remains to show that H is not valid in F. Let V°

be the assignment on F such that V' (s) = iﬁo Wil vV’ (t) =

iEO‘W3i+l' V’(p) = ¢ for all propositional variables p

other than s and t. Then for each i, W3i+2 C W3. c V- (s)

i+3

= V’ (¢s); thus W c V’ (~sA~tAds); and so W C

3i+2 3i+l

=VA(s)NV(t) N"T(<sA~EAPS) = VA{~sAtAO(~sA~tAds)). Therefore Was
Ty — /)

C W35, © V(O (~sAtA O(~sA~tAQs))). So Vis) c

V{0 (~sAtA® (~sA~tAOs))) and therefore V{(s+0Q(~sAtAQ (~sA~tAOsS)))

= U. Hence w € W, ¢ VTSAD(s+OOwsAtA0¢wsA~tAos)))) and so

w £ V(H). Therefore H is not valid in F and the lemma is

proved. X

7.3.2 Lemma: L, |A~~E.

Proof: This lemma is due to Fine[l]. The proof we
give here is a modification of his proof. Let F = (W,A,H)
be the first-order frame with the following diagram, where
udAv if v = u or if one can reach v from u by travelling
along a finite number of arrows always in the direction of

the arrow.
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Formally, we let {-an | n=0 }, { bn | n=0 3,
{ ¢ | n=0 }, and { dn | n>0 } be four countably infinite,
pairwise disjoint sets and let W be the union of these four

sets. Now, for u,v ¢ W let uav if and only if

(1) u = bi and either v = bj some j<i or v = cj
some j<i-2
or (2) u = c, and either v = cj some j=i or v = bj
some j<i-2
or (3) u-= a, and either v = a, or v‘= bj some j=<i+l

or v = cj some j=<i+l

or (4) u = di and either u dj some j=zi or v = a,

J
some jzi or v = bj or v = cj for some j.
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We note that the relation p is reflexive and transi-
tive and so by 4.6.12, F‘F= S4.

Let 1 be the smallest family of subsets of W closed
under the operations of complementation, intersection, and
# and containing the sets {b;}, {by}, {cg}, {C1};

{ | nz0 }.

d n>0 }, and { 4

2n | 2n+1l
Let V, denote the particular assignment on F such

that Vo(qi) = {bi}, Vo(ri) = {ci}, Vo(pi) = {d | nz0 }

2n+i
for i = 0,1, and Vo(p) = ¢ for all propositional variables
p other than q¢, 91, ¥y, ¥1, Po, and p;.

It will be helpful, before continuing with the proof

proper, to make and prove the following claims.

-

i . . > = =

Claim 1: For any m0, Vo(Bm) {bm} and VO(Cm) {cm).

Proof of claim: By induction on m. For m = 0 and
m = 1 the result follows by definitions of V,, By, C; (i=
0,1). Suppose the result holds for all m<k where kz1.
Then VO(Bk+l'w) =T <« VO(OBkAOCk_lANOCk,w) =T
there are x,y € W such that x € vV (B), y € v, (Cy_1) whx,
and wAy, and there is no z such that z ¢ Vo(Ck) and wiz.

= {

Since Vo(Bk) = {bk}, Vo(Ck_l) ck—l}’ Vo(Ck) = {ck} by
the induction hypothesis, we see that V (B, ,,w) =T if and
only if wAbk, wAck_l, and wﬂck. But we can easily see that

this only happens if w = b Similarly, interchanging B

k+1°
and C, b and ¢ in the above, we see that Vo(Ck+l,w) = T if

and only if w = Crp1® The claim is proved.
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Claim 2: Let V be any assignment on f and w ¢ W such that

V(D,w) = T. Then w =_dm for some m and for all jzm,

dj € V(py,vpy ) = .

N ]
Proof of claim: We show that if v(D,w) = T then '

either a cycle or an infinite chain with respect to A is
accessible from w, or, to be precise, there is an infinite
sequence w, , w3 , W, , ... Of points in W such that w = w,

and for i=0, WoAW,L and W, F W It is easy to see

+1°

that we can only have this if each w, = dj for some j, apd
in particular, w = dm for some m.

We construct this infinite sequence by induction.
Let wy = w. Since V(D,w) = T we have w € V(p,Vp,). Sup-
pose that w;, ... , wk have been chosen to satisfy the pre-
ceeding conditions and such that each W € V(p,Vp;). Since

Ww=w, Aw, and V(D,w) = T we have V((py,—¢p;)A(p; >9oP, ) A

k

w(poApl),wk)‘= T. Therefore, if w, € V(p,) then VKOpl,wk)

k

so that w and w '

k+1 k" Vk+1 k+1,
€ V(p;), and if Wy € V(p;) then V(OPoer) = T in which case

= T in which case we choose w

we choose Wpy1 SO that kawk+l and Wial € V(py). Since
VQv(poApl),Wk) = T we know that w, # w, ;- The induction
is complete. )

Since there are not u,v € W with u # v, uldv, and viu
(i.e., there are no non-trivial cycles in F), we see that

we must have an infinite set of dj's in V(po Vp1). Thus for

each j2m there is a j“Zj such that dj' € V(po Vp1) - Then‘dj
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¢ V(O(p,vp,)). If dj £ V(p,vp;) then V(N(povpl),dj) = T,
But V(Jz,dm) = T and éince dmAdj, V(w(pQVp1)+D~(pQVp1),dj) =
T. Thus V(o~(p,Vp,),d;) = T and so v(~<prVp1),dj) =T, ‘
a contradiction. Therefore we must have dj € V(p,Vp;) for

all j=2m and the claim is proved.

Claim 3: Let V be any assignment on f and w € W such that
V(H,w) = F. Then w = dm for some m.

Proof of claim: The proof is similar to that of claim
2. By a similar induction we construct an infinite sequence
satisfying similar conditions as the one in the proof of

claim 2, and-so.w = dm for some m and the claim is proved.

Claim 4: If A is any formula and V any assignment on F,
then there is a formula A’ which is a substituted case of
A such that Vv, (A’) = Vv (a). |

Proof of claim: We shall first show that for any S
€ II there is a formula B such that V,(B) = S. It suffices
to show that II is equal to [1“, where we define II” by
ns = { v, (B) | B is a formula }. We know that Vg (p) € II
for each propositional variable p ahd therefore that V, (B)
€ I for each formula B. Thus I’ ¢ I, Now since U-Vgo (B) =
Vo (~B), Vo (B)V, (C) = Vo (BAC). and *V, (B) = V, (0B), we see
that I’ is closed under the operations of complementation,
intersection, and %, and from the definition of Vg wé see
that 11’ contains {be}, {bi}, {co}, {ex}, { 4, | nz0 },
| nz0 } and therefore Il ¢ II”, |

{‘d2n+l
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Now let p. , ... , p; be a list of the propositional

variables occuring in A and let Bi + -+« » B;j be formulae
1 m
such that V,(B, ) = V(p, ) for k =1, ... , m. Let A’ be
X k 1

the substituted case of A obtained by replacing each occur-
rence of Pi, by Bik. Then V(A) = V,(A’). The claim is
proved. |

~ We now continue with the proof of 7.3.2.

We firgt show that f | ~E by showing that v, (E,d,)
= T. We have d;, ¢ V,(p,) c Vo(pyvpy). If w € V,(p,) then
w = d2j for some j and so w ¢ depl), but since wAd2j+l
and d2j+l € Vipy), w € V,(Qp,). Therefore Vo (Po>0P,) = W.
Clearly V, (~(pyAp;)) = W. Therefore d;, ¢ V(o ((py+0p;)A
(Pi*Opo)A~(poAp;))) = V(J,). If w ¢ V,(~(p, vP;)) then w #
di for any i and so if wapv then v # dj for any j and there-
fore w ¢ Vo(n~(p09p1)). Thus V; (~(p,vp; )»o~(pyVvp,)) = W
and so d, € V, (o(~(p,vp,)>o~(pyvp;))) = V,(J,). Therefore
d, € V(D). |

Now a,pb,, ajAc,, aekfbo, and aofco. Thus, by claim'l,
V,(A,, a,) = T and, since djpra,, V,{(©®A,,d,) = T. We note
that b,aAb, and b,fc,, c;ac,and c;fb,, byLb,, cyhc,; ,byhc,,cohb,;
so by claim 1 again, V, (B,»¢B,A~0C,) = V, (C;»0C A~0B,) =
V,y (B, *~0(B,VC,)) =V, (C,*~O(C, VB, )=W. Hence d, € V, (J,)NV, (J,)
NVe (I5)NVy (Tg) = V, (K). Thus d, € V, (E).

Next we show that F p= G. Let V be any assignment-on F

and w ¢ W such that w ¢ V(E). Since D is a conjunct of E,
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vV(b,w) = T, and hence, by claim 2, w = dm for some m. oA

is a conjunct of E and so, for some t € W, wAt and V{a,,t)

= T: thus V(¢B;AQ0C;A~0B, A~QC,,t) = T. Thus for some u,

and Ql, tauw,, tavy, V(B;,u;) =T and V(C,,v,) = T. Now J,

is a conjunct of E, and so w € V{(J,) = V(o(B,;+0B,A~9C,)).

Since wAu, and V (B, ,u;) = T, we must have V(0B,A~C,,u,) =

T. Thus there is u, such that u,Au, and V(B,,u,) = T. Sim-
ilarly, from w € V(J,) we see that V(0C,A~0B,,v,) = T and

so there is v, such that v,Av, and V(C,,v,) = T. Further-
more, since V(~0C,,u,) = V(~9B,,v;) = T, we have v,fu, and

u, fv,. Now J, is also a conjunct of E; sO V(o(B,»~¢(B,vC,)) ,w)
= T and since wAu, and V(Bo}uo) =T, V(m&NBlvcl)ﬁuo) = T. Sim-
ilatly from V(Jeg,w) = T we get V(~O(C,VB,),v,) = T. Thus ujfu,,
ugAv,, voAv,, V,Au,. We see now that the structure:(W,A) |

restricted to {t,u;,v,,u,,v,} has the diagram

where the only "A-accessibility" is that marked by the arrows.
Now by comparing with the diagram of (W,A) we see that the

only possibility for such a substructure is to have t = a. .

u, = b _,., and vy =¢ for some n (i = 1,2) and that, in

i n+i n+i

fact, V(3i) = {bn+i}‘and V(Ci) =.{cn+i} for i = 0 and 1.



66

From this it follows, by a routine induction argument, that
for each i20 V(B;) = {b_ .}, V(C;) = c .}, and V(A,) =

{a }. Now dn+lAan+l and dn+l,dan and so V(~0A, AQA, ,d

n+i n+l)

= T, Since dm =wAt= an we must have nzm and therefore
w = dm A dn+l‘ Hence, by the second part of claim 2, dn+l
n+l) =T
and so V(¢((p,Vp, )Am~9A,APA),w) = T, i.e. V(F,w) = T. Now

€ V(p,vp,). Therefore we have V((p,Vp, ) A~0A AQA, ,4

we have V(G,w) = T for all w €¢ W, Von F and so F = G.
Finally we show that F = H. Suppose otherwise. Then
for some w € W and some Von F, V(H,w) = F. By claim 3, w
= dm for some m and by claim 4 there are formulae A and B
such that V, (AAo (A+O(~AABAQ(~AA~BAQA))) ,w) = T. Now let

o©,, ... , oD, be all the formulae beginning with @ which

k
have elementary subformula occurrences in either A or B
(see 2.1.1). If j>i and V,(EDh,di) = T then VO(EDh,dj) =T
for h=1,2,...,k and iz0. : So for some nZm we have for all
h=1,...,k and all n’zn, %(DDh'dnf) = WJDDh,dn).

If i,j=2n and i-~j is even then for each propositional
variable p, Vo(p,di) = Vo(p,dj); therefore VO(A,di) =
VO(NAANB,dj). It is easy to see that for some i;>i,>is;Zn,
v(a,d. ) = V(~AAB,d, ) = V(~AA~B,d, ) = T. But one of

1, 1, 11
(i,-i,), (i,-i;), (i,=-i;) must be even and so either
V(AA(~AAB) ,d, ) =T or V((~AAB)A(~AA£B),di1) = T or
2

V(AA(~AAB) ,d; ) = T; an impossibility. So we must have
1
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F = H. M

7.3.3  Theorem: L, is a normal extension of S4 which is

incomplete with respect to §.

Proof: Lemmas 7.3.1 and 7.3.2. )i}

7.3.4 Corollary: ‘S does not have maximal depth even with

respect to normal extensions of S4. AN

7.4 We now have a negative answer to Segerberg's question
mentioned in 5.3: "Are all classical modal logics natural?"
Since we have already seen (5.3.1) that the canonical frame
FL from a logic L models no more than L, if we also had

FL = L we would have L determined by the single frame FL
and thus complete with respect to S. Therefore as a cor-
ollary of 7.2.3 and 7.3.3 we cannot have F, = L; or

FL2 = L,,.and hence

7.4.1 Theorem: Neither L, nor L, is a natural logic. }R
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' 8. Width and Depth of R

8.0 In this chapter we shall study the width and depth
of the relational semantics. As we have already mentioned,
we shall see that the relational semantics has width of

measure K and has less .depth than the neighbourhood seman-

tics.

8.1 We have already seen in 5.5 that the measure of the
width of R is an extension of K. To show that it is K it
suffices to construct a relational frame W, such that for
each formula A, W, = A if and only if K - A.

Let BK be the Lindenbaum-Tarski boolean frame for K
described in 6.1. By 6.1.1 and 6.1.2, B, p= A iff K |- A.‘_
Now let ¢ (Bp) = (Ug,<y.0,) be the first-order relational
frame where ¢ is Makinson's mapping described in 6.2. By
6.2.4, o(By) = A iff By = A. Now let W, = (Uy 1<)+ Then
by 3.4.1, if W, f= A then ¢(B.) = A. Therefore if &(B.) |
A then W, }* A. | Thus if K }/
A then W, B¢ A, and since we know by 4.6.8 that U, = K,

we have W, F= A iff K ~ A. Hence

8.1.1 Theorem: R has width of measure K. 44

8.2 We shall show that even when restricted to normal
frames, the neighbourhood semantics has strictly greater
depth than the relational semantics. We do this by dis-

playing a normal neighbourhood frame F = (U,N) which is
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not equivalent to any class of relational frames. Then, if

L. is the logic determined by F, LF will be complete with

F
respect to S but incomplete with respect to R. Since we
already know that the depth of S is at least as great as
that of R this result will show that S in fact has strictly
greater depth. We show that F is not equivalent to any
class of relational frames by showing that a particﬁlar
set T of formulae is valid in F but that another partic-
ular formula G is not. We then show that in every relation-
al frame which models T', G is valid. Thus no class of rel-

ational frames can determine the logic LF'

Frequent reference will be made to the following

formulae.
A, D(qi+r) j (1<i=<3)
Bij_ sz(inqj) (1<i<j=<3)
C, D(r+0qi) (1=<i=<3)
A r/\/\Ai/\/\Bij/\/\ci
B (AAapA~o?p)+0(xrao (r+q; vg, vds))
C (aro?ra~p®r) o ((ora~p?r)-+Qq)
D (upANszAOqAOr)+(O(éAOr)VO(QAQq))
E op-P o
F (A/\np/\~u2p)~>O(nnp/\~nn+lp) (n=2)
G A~ (op~»n?p)

Let T denote the infinite set {B, C, D, E, Fn | n=2 }.
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8.2.1 Lemma: Any relational frame that modelis I' also mod-

els G.

Proof: The formulae I'y G are very similar to thosé
used by Thomason in [17] and the proof that we give of
this lemma is an adaptation of his proof of the correspond-
ing fact . in [17].

Suppose that W = (W,<) models C, D, E, and F for all
n>2 but that it_fails to model G. We show that W fails to
model B, and thus any relational frame that models I' must
also model G. Since {§ B G there is w € W and an assign-
ment V on ({ such that V(A,w) = T and V(Dp+ﬂ2p,w) = F.

Thus V(AADpANDZP,w) = T. For each n=2, V(Fn,w) = T and so
V(O(nnpAwnn+lp),w) = T. Thus there is a point, call‘it W

n+l

in W such that W<W and V(anAND p,wn) =T, Letw=w;.

We shall show that for i=j, wi<wj.
Since W = E, W k= T; so by 4.6.9, < is reflexive.
Choose positive integers i and j. Then WW, and w<wj. '
Let V; be such that Vl(DpANDZP,w) = T and also such that
Vy (@) = {w;} and V, (r) = {wj}. Then V; (opA~o’pAOgher,w) =
T and since also V; (D,w) = T, we have V; (©(gAor) vO(rrdq) ,w)
=T, If V,(&6(grer),w) = T we must have W<, and if
V, (¢(rAog) ,w) = T we must have wj<wi. So either wi<wj or
wj<wi.
If i=j, then since < is reflexive, wi<wj. If i+22j

+1

and if wj<wi then since V(nlpAwul P’wi) = T, we have
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Vcwul+lp,wi) = T and thus ka%3;+lpywj) = T. Therefore

i+2 j j j
Viun ™ p,Wj) = T. But V(ngANDJ+lp,wj) = T and so V(Djp,wj)
= T and by 7.1.10 V(Dl+2p,wj) = T; a contradiction. So

we can't have wj<wi and therefore must have wi<wj.
Now suppose i+l = j. If w&gwi then wi<wj. So,
suppose that wj<wi' Then let V, be such that V, (q) =‘{wj},

Vz(r) = V(Dl—lp) (of course, o’p would simply be p). We

know that V(DJpANDJ+lp,wj) = V(Dl+lpA~gl+2p,wj) = T and so
VZ(DZrAmgir,wj) = T, Thus Vz(qAnzrw~u3r,wj) = T, and since
VZ(C,wj) = T, we have Vz(g((nrAwuzr)+0q),wj) = T. Now

i i+l
vvz(nrA~g2r,wi) = V(o pA~o p,w;) =T and Wy<W and so
VZ(Oq,wi) = T, Therefore wi<wj. All cases are taken care

of, and so, if i<j then Wi<W. .

Now let V; be such that Vi3 (p) = V(p), Vs (r) =

{w, | n=1 1}, Va(qi) = { W4 | n=1 } (i =1,2,3). Then
it is easy to see that V; (Apppa~p?p;w) = T. Now let u be
such that w<u and u ¢ V4{r). Then u = Wy for some jzl. Let
k be such that 4k=j. Then_wj§w4k and since for each i =
1,2,3, wyy ﬁ'Vs(qﬁ) but w,, € Vs (r), we have V3 (r+q Vq,Vq,,
Wap) = P Thps V3(D(r;q1Vq2Vq3)}Wj) = F. #Thus for all u
such that w<ﬁ, V3(rAn(r+qIVqZVq3),u) = F and so

Vs (¢ (rAm (r+qyva, Vg, )) ,w) = F. Therefore V; (B,w) = F and so

w P B. | . L

Now let F =‘(U,N) be the particular neighbourhood

frame with the following diagram.
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2

Ya (:j\ /k:> N
T l 1 257 2322

Y, (:) ¢ ::::::> ::i(:>.

| T l 231 zii’ 233

n O, OO0

] o
z z z
nl nz‘ L . nn
C>¢-<>¢-- *"CD
| : N
1
o D
[ ' | | \
% is any non-principal ultrafilter on the natural
numbers . (beginning with 1). The arrows are.to be inter-
preted as follows. If v can be reached from u by a se-
quence of solid single arrows or by one dotted arrow
(double or single -- note that x can be reached from each

an) then v is in every neighbourhood of u. In addition,
the solid double arrow with "" above it indicates that
the neighbourhoods of y,, y,, and y,; are those sets which
in addition to containing {y,, v,, Ys;} contain, for some

K € 8, all the rows of\z's corresponding to the numbers in
K. Also every element is in all its own neighbourhoods.

Thus we have, formally:

% any non-principal ultrafilter on the natural

numbers (positive integers)

U= 1%, yi, Yar ¥a} U { 2 | 1=j=i }
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for i = 1,2,3 N ¢ NY iff there is K € © such that
i
N oIy, v,r ¥, U { 2 | j<k, k € K }
N ¢ Nx iff x ¢ N
N € N iff N > X, Zn3, ««« , Zpn}
Zn3a
for 2=m=n N € Nz iff N> {z;, .94 «+- , Zppn}

nm

Since & is a filter, Ny. is itself a filter for each
i. It is clear that the setlof neighbourhoods of each
other point in U is a filter. So F is normal by 4.6.7.
Since, also, every element of U is in all its own neigh-

bourhoods, F models T, by 4.10.1, and so

8.2.2 Lemma: F = E. | X

8.2.3 Lemma: If V(A,u) = T then u = Yi for some i (l$i53).

Proof: Suppose V(rA/\Ci,x) = T, Then since {x} ¢ Nx’
V(qi,x) =T for all i (l<i=<3). Thus V(Bij'x) = F for l<i<j=3.
So V(A,x) = F.

Now suppose that V(A,znk) = T. Let h be the greatest

such that V(r,z h) = T. Such an h must exist since r is a
n :

conjunct of A and hence V(r,znk) = T. Thus k=<hsn. Now Z h

¢ N for every N ¢ NZ and so, since n(r»Oqi) is a conjunct
nk '
of A for 15i53,'V(r+Oqi, Znh) = T and hence V(Oqi,znh) =T

for 1l<i<3. We have {zn b1’ Zppt vt ¢ z } € Nznh (if h

= k = 1 then z_ simply denotes x), and so for 1l=is<3,

h-1
V(qi) h {zn hel? *°° 7 znn} # ¢. But Z.n € N for every‘N

€ N if h-l<m<n, and so V(g.-»r,z__) = T for such m and
) Znh 1 nm
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1=i<3. Since h is the largest such that V(r,znh} =T, we

must have V(qi,zn.m) = F for h+l<m<n. Thus V(qi) n

iz, _,+%2;}# ¢ for i =1, 2, and 3 and so for some i,j

such that l<icj=<3 eltherV(N(qi/\qj),zn h—l) = F or
V(N(inqj),znh) = F., In either case this contradicts

2 - —1
Vo N(inqj,znk) T, and so V(A’an) F. X

8.2.4 Lemma: If H is any formula, V any assignment, and
l<i<3, then (i) if V(DZH,yi) = T then V(H,x) = T, (ii) if
V(oH,y,) = T and V(H,x) = T then V(o?H,y,) = T, and (iii)
if v(o2?H, yi) = T then V(DjH,yi) = T for all j=0.

Proof: (i) V(DZH,Yi) = T implies that V(cH,u) = T
for all u in some neighbourhood of Yy in particular,

V(nH,zn ) = T for some n. But then V(H,x) = T since x is

1
in every neighbourhood of Z 1.
(ii) 1If V(DH,yi) = T then there is some K ¢

@ such that V(H,u) =T for u € lyy, vo, ys3 U {2z _ | n € K}.

Then V(DH,yj) = T for 1=j=3. Also, since V(H,x) = T and

, V(oH,z_ ) =T for all n € K and
ix, znll cee 7 Znn} € Nznm nm
msn. Thus V(aH,u) = T for u € {y,, y,, y3} U { z__ | néK,m=n}

and so V(DZH,yi) = T,
(iii) 1If V(DZH;yi) = T, then by 8.2.2

T for j = 0 or 1. Suppose j>2 and that if
j-1

v (alH,y,)

V(DZH,yi) T then V(O H,yi) = T. Then by (i) with H

j=-3

replaced by DJ_3H, V(o H,x) = T, and so, since {x} € N,

V(Dj-zH,x)'= T. But then by (ii), with H replaced by DJPZH,

V(DjH,yi) =T, | M
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8.2.5 Lemma: f |= B.

Proof: Let V be an assignment such that for some u,

V(A,u) = T. Then by 8.2.3, u = Yy for some k (1=i=<3).
Let s, =1n | for every m=n, Z.m ¢ V(r) }
8; = { n | for every msn, V(g;»r,z ) =T} (1=i=3)
Sl+i+j = {+an | for every m<n, VGV(inqj),an) =T}
(1=1i<j=3)
Sgri = { n | for every m<n, V(r+0qi,%un) =T } (1=1i=3)

Then since V(A,yk) =T; S;, ««. , S € E. We shall show
that also S, ¢ &.

Let Q = =S, 1 S, N ... N S, and suppose that Q # 4.
Pick n ¢ Q and let m be the greatest such that z o € V(r).

1l then

Then since {z y ees znn} € Nz (if m

nm

denotes x) and since. for m<hz=n, V(qi’znh) = V(r,zhh)

Z
n m-1’ “nm

Z
n m-1

=F, Vig.) n {z__, 2z _1} # ¢ for each i (l=i=3). Thus
i nm n m-1l

for some i,j (l=i<j=<3), V(~(inqj),znm) = F or

V(~(qi/\qj),zn m_l) = F. But V(N(inqj),znm) = F contra-

dicts the fact that n ¢ Q, as does V(N(inqj),z = F

n m—l)
if m=2. On the other hand, if m = 1 the impossibility of
V(w(inqj),x) = F follows from the fact that V(A,yk) = T and
and from 8.2.4(i). Thus we must have Q = ¢. Therefore Q
£ % and so =S, £ & and, since & is an ultrafilter, S, € E.
Now let R =S, N S; N ... N Sq. Then R € &.

Now, since V(A,yk) = T,'V(Oqj,yk) = T for 1l=j=3. Thus

every neighbourhood of Yi includes points v,, v,, and v,
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such that vj E:V(qj) (1=3j=3) . One particular neighbourhood
of y, is the set M =4Iy5,'y2, ys} Uiz | n€ R}, But
if n € R then n € S, and so znmfl V(r) for all m<n, and n ¢
S, h S, h S; and so th'7 V(qj) for j = 1, 2, and 3. Thus,
since we can't have vj = an we must have {vl,_vz, vi} =
{y,, ¥,+ ¥3}. And so for 15j53; we have Ys € Viagy) U Viay)
U Vig,). Thus'fqr v ¢ M we have V(r*q;vVq,vVq;,v) = T, and

so V(rAo (r>q;Vq,Vq;) ,yy) = T; hence VQ(rAo (rrq;Va:Vds)) vy )

= T and so v(B,y'ky = T. Thus F p= B.

8.2.6 Lemma: If H is any formula, V any assignment;

1<m=n, and h=m, then if V(DhH,znm) = T then for all u ¢

eee , 2__} and all .j=0, V(DJH,U) =T,

X, Z2_°
ix, ni’ nn

Proof: Primary induction on m. Secondary induction

on j. If m= 1, then since hzm and F |}= E, V(DH,znl) = T.

Since for all N ¢ Nzng’ {x, Zogr e Znn} ¢ N, we must

have V(H,u) =T for u € {x, z_ , ... , z__}. But for all
ni nn

such u, {x, 2, .. , z .} € N, and so for such u V(oH,u)

= T, The induction step yielding Vv{odd,u) = T for j>1 for
all such u is obvious.
Now suppose m>1l, that the result holds for m-1, and

that V(nhH,znm) = T where hzm. Then since for all N ¢ N,

-4 - € N, we have V(Dh—lH z ) =T But h-1Zm-1 andnm
n m-1 ! '“n m-1 .

1

T for all u ¢

so by induction hypothesis V(DJH,u)

eee 4 Z__}. A

{x, z nn’

ny'’
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8.2.7 Lemma: If V is any assignment and k any number such

cee 1 Zpg} o Vi(p) and x ¢ V(p), then, for 1smek,

that
at {z, .
-1
V(Dm pANDmp'ka) =T,
Proof: Indpction on m, V(p,zkl) = T, but since x ¢
= : 2 pA~p -
N for all N ¢ Nqu' V{Dp,zkl) F. Thus_V(u pA~D p,zkl) =T,
Also since j=2 implies {zki""’zkk} G'H;kj' V(Dp,zkj)=T viz2.
Suppose that m-1 and V(Dm—szNDm- P,Z, p_1) =T and
that for all j=m, V(Dm—lp,zkj) = T, Then in particular,b
m-1 _
Vg p,zkm) = T, But for all N ¢ Nzkm’ Z) m-1 € N, and
. m-1 : m
since V(o P2y m—l) = F, Vo p,zkm) = F., Thus
o, m=1 m _ .
V(o “pa~o Pr2Zy,) = T. Also, since {zkm? ceep By € Nzkj
for all j=m+l, V(ump,zkj) = T for all j=m+l. The induction
is complete. o

8.2.8 Lemma: For all nz2, F = F .

Proof: Pick n22. Suppose V(AADpAwuzp,u) = T. By
8.2.3, u = yifor some i (1=i=3), and by 8.2.4(ii), x £
vip). IfR={k | {z.,, ..., Zyd © VIp) 1, then R € &,

Let N ¢ Ny.' Then if § = { k ] {2+ eee s 2} CN]

i .
then SN € %. Thus SN N R € 8 and so SN N R is infinite.

Pick k such that k ¢ Sy N R and k > n. Then the hypotheses

of 8.2.7 hold for V and k and so V(anANDn+lp,Zk n+l) = T

with 2z € N. Thus V(O(unpAwun+lp),yi) = T and so

k n+l
V(F ,y;) = T. Hence F |=F_. _ )

8.2.9 Lemma: F k= C.
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Proof: We show that for any assignment V and any u ¢
U, v(C,u) = T.

If u = z,, °or Z., for some n, then, by 8.2.6,
Vo %rA~odr,n) = F; if u = ' (1<i<3) then by 8.2.4(iii),
V(o?rAa~o®r,u) = F. If u = x and V(p?r,u) = T, then since
{x} €N, s V(o’®r,x) = T. Thus V(C,x) = T.

Finallyn'suppose u =z, for some n and some k=3.
Suppose further that V(qADerND?r,u) = T. Then V(or,z ,_;)

= T since z ¢ N for all N € y, . Thus Zh3 € V(r)

n k-1

nk
2> ] =
for all j=k-2. But z , 5 £ V(r) (1f k =3 then z_, 1
denotes x) since otherwise we would have V(Dar,znk) =T,

Now {zn Kel? "o ¢ znn} € Nznk and V(Dr,an) = T for all

j such that k-1=j=n, and so V(Dzr,znﬁ) = T for all j such

-

that k=j=n. Thus if V(DrANDzr,znj) = T for some j (k-lsj=<n)

we must have j = k-1. But 2 x'& N for all N ¢ y and
“n k-1

Znk € V(q), thus Vv(Qq,z =T, Hence V(o ((ora~o?r)+0q),2z

n k-1’ nk’
= T and so V(C,znk) =T, 4

8.2.10 Lemma: F |= D.

Proof: Let V be any assignment. Then for any n,

v(npmvuzp,znl) = F by 8.2.6, and so V(D,z ) = T; since {X}
‘ ni
€ Nyr V(opA~o2p,x) = F, and so V(D,x) = T.

Now let V be an assignment such that V(OqAOI,znm) =

T where 2<m<n. Then {z vee g znn} h Vi{gq) # ¢ and

n m-1’'
: .
{z .17 +++ » 2,3 N V(r) # ¢ So let j and k be such-that
Zh3 € {z 9 eee s Zpp 3N Vigq) and.z , €
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iz e ,.Znn}{j V{r) and let h = min(j,k). Then for

n m-1'

all N ¢ N‘nm' z 4 € N and ei;her V(qAOr,znh) = T or
V(rAOq,znh) = T depending on whether h = j or h = k. Thus

V(O(_qAOr)-VO(rAOq);,znm) = T and hence V(D,z__). = T.

nm

.Finallyy,  suppose that 1<i<3 and V(oqur,yi) =T, If
for any j (1<3j=3) Vv(gq,y.) = T, then since N =N_,
J Yy Yj

'V@)r,yj) = T; and so V(o(qur),yi) = T and so V(D,yi) = T,

Similarly, if V(r;yj)'= T for some j, Thus we can assume
that for 1<j=3, V(r,yj) = V(q,yj) =F.
Then, if we let Sq = {n | for some m=n, Z o € V(qQ) }

and let Sr'= {n | for some m=n, Zom € V(r) }, we must have

Sq'sr ¢ 2. Now let 8, = { n | for some k,m with ksm=n,
Z € V{r) and Z.m € V(g) } and let S, = { n | for some k,m
with ksm=n, 2z, € V(q) and z__ € V(r) }. Then s, Us, =

Sr n Sq. Since Sr,Sq €&, Sr n Sq € ¥ and so since & 1is an
ultrafilter, either S, € &€ or s, € E. 1If S, € E then

V(o(rAOq),yi) = T and if S, € E then V(o(qur),yi) = T.

Thus V(o(erq)vcﬂerq),yi) = T and so V(D,yi) = T. | . )14

8.2.11 Lemma: F k= T but F B G.

Proof: Let V be an assignment such that V(p) = U-ix},
Vir) = {y,, ¥,» ¥,} and V(qi) ={yi}for 1<i=<3. Then it is
easy to see £hat V(G,yi) = F for 1<i=3 and so F k# G.
This together with 8.2.2, 8.2.5, 8.2.8, 8.2.9, and 8.2.10

gives the result. R



80

8.2.12 Theorem: F is a normal neighbourhood frame with

no equivalent class of relational frames.

Proof: 8.2.1 and 8.2.1l1. X

8.2:13 ' Corellary: R has strictly less depth than §,

even if § is restricted to normal frames. X



81

9. Width and Depth of R and {

9.0 We introduced the connected relational semantics, R,

and the -superconnected relational semantics, R, in 3.5

and 3.6 and noted in 4.1 that R is a subsemantics of R

which in turn is a subsemantics of R. We shall see in this
chapter that in a very minor sense R is weaker than R and

—— A

R is weaker than R, but that the three semantics all have
the same width and depth and so are equally strong for all

intents and purposes.

9.1 It is certainly clear that there are relational frames

that are not connected. It may be true, however, that for
every relational frame there is a connected frame which det-
ermines the same logic, i.e. an equivalent connected frame.

We show that this is not the case.

Let w1,= (W1,<1) where W = {x,y} and for u,v ¢ Wl(

il

wvVv iff u = v =y. Thus W, has the diagram

o O'Q

X y

Let B = pe~op and C = o(pA~p). Then wl'k= BVC, W, K B,
and W, k£ C.

At any point in any relational frame, C is true-
under one assignment at that point iff it is true under
all assignments at that point iff the point has no suc-

cessors (not even itself). If a point has a successor
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and is in a frame which models ByC, then B must
be true under all assignments and so the point is its own
sole successor. Thus any~cohnected frame which models BvC
has exactly one point which either is or is not its own
successor. But then the frame either models B or models C,
and so is not equivalent to W,.

So we see that it is not the‘caée that every rela*
tional frame is equivalent to a single connected frame.
In this very limited sense we might say that R is stronger

"N

than R.

9.2 Since we have a relational frame equivalent to no
single connected frame, it seems natural to ask next
whether for every relational fréme there is a class of con-
nected frames which determines the same logic. The answer
is yes.

If W = (W;<) is a relational frame, then for u € W
we define the connected component'containing u to be
(U,<t) where U = {v € W | u and v are connected } and < -
is the restriction of < to U. It is clear that if
{'Ui | i € I } is the set of connected components of
then for each formula A, W k= A if and only if u; = A
for each i € I. Thus the logic determined by W is the same
as that determined by the set 1 U, I i€1) of connected
frames. |

Now for each logic L that is complete with respect to
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R there is a set i-wj | 3 € J 1) of relational frames which
determines L. If we letl'i"ui } i,€r1j } denote the set of

connected components of wj’ then, by what we have just

shown, i€ Ij } will also determine L. And so

j%J{ Uy

L is complete with respect to R. We have

9.2.1 Theorem: A logic L is complete with respect to R

if and only if it is complete with respect to R.

A

9.2.2 Corollary: R has the same width and depth as R.

This essentially means that anything we can do with
relational frames we can do with connected frames, ‘although
we may sometimes need more connected frames to do the same

thing.

9.3 We shall, later.on, find it cotvenient to restrict

our semantics even further, to that of superconnected

frames: ﬁ. We should, then, ask the same questions compar-
ing R with ﬁ as we asked to compare'ﬁ with,R.‘

It is certainly clear that there are connected frames
that are not superconnected. It may be true, however, that
for every connected frame there is an equivalent supercon-
nected frame. We show that this is not the case.

Let g, = (W2;<2) where W, = {x,y,z} and for u,v ¢ W,,

u<v iff either u = x and v =y or u = 2z and v = y Or z.

Thus W, has the diagram



84

Let B = (peso (pvo (pa~p)))va (pa~p) and C = go (pap)

It is easy to see that if V is any assignment on y, we

have V(C,x) V(o (pA~p) ,y) = V(pe»o (pvo (pA~p)) ,2) = T and

thus V(BvC)

W . So we have W, = BVC. But we can also
easily see that W, k% B and WZIF# C. We also note that W,
is connected but not supercohnected. ((WZ)E = {y} and if we
remove {y} from w2 we get a disconnected frame.)

Let W.= (W,<) be any superconnected frame such that
W = BVC and W k# C. Then there is w € W and an assignment
V on W such that V(C,w) = F. Thus there exist w,,w, ¢ W
such that W<W <W,. Let V’ be an assignment on W sﬁch that
v’ (p) = {w}. Then v’(C,w) = F and so V’(B,w) = T, and since
vV’ (a(pA~p) ,w)= F and V’ (p,w) = T, we must have
v’ (o(pvo(pAa~p)),w) = T. But since V’(o(pa~p),w,) = F we
. {wl) .

]

must have V’(p,w;) = T. Thus w, = w (since V”(p)
Now let E = W, = { €W | for ne.v do we have u<v }.
Since W is superconnected we know that the frame W’obtained
by restricting W to W-E is connected. But we just showed
that any point in W at which C fails is in W-E and is its
own sole successor in Ws. Since W’is connected, this point
must be the only point in W-E. So the only points in W are

this point (at which p+-o(pvo(pA~p)) is true under any as-

signment) and points in E (at‘which n(pk&p) is true under



85

any assignment); so { k= B.
We have seen that if § is superconnected and (¢ k= BvC
and ¢ p# C then W = B, and therefore cannot be equivalent

to W So W, .is a connected frame with no equivalent single

2"
superconnected frame.

We can see, then, that it is not the case that every
connected frame is equivalent to a single superconnected
frame. In this very limited sense we might say that ﬁ is

stronger than R.

9.4 Since we now have a connected frame equivalent to
no single superconnected frame, it seems natural to ask
whether for every connected frame there is a class of
superconnected frames which determines the same logic.
As in 9.2, the answer again is yes. The.proof of this,
however, is not quite the simple affair that the corres-
ponding proof in 9.2 was.

We show, in fact, that every relational frame is

equivalent to a set of superconnected frames. We begin

by introducing the concept of a generated subframe. The
concept of a generated subframe is derived from Kripke

and developed more fully by Segerberg [14], among others.
We shall see that generated subframes are superconnected
and that the set of all generated subframes of a relation-
al frame determines the same logic as the relational fram;}

itself. It will follow, then, that the superconnected
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semantics has the same width and depth as the relational
and connected semantics.
| Suppose that W = (W,<) is a relational frame. Then

we define the relation << on W (called the ancestral of <)
as the transitive reflexive closure of é; namely,
for u,v € W, u<<v if

i) u=yv,

ii) u<v,
or iii) there is w € W such that u<<w and w<v.

For w ¢ W we define the subframe generated by w to be

the frame WY = (WW,<W) where W' = { u€w | w<<u } and
M =< (W'xw¥). Now for each assignment V on W let vY
be the assignment on ww given by v¥(n) = v(n) N W' for

each n € |.

9.4.1 Lemma: For each formula A and u ¢ Ww, V(A,u) =

Vw(A,u).

"Proof: By induction on the length of A. If A is
a variable P; then since Vw(i) =‘V(i)nWw, V(A,u) = Vw(A,u).
If A is ~B or B+C then the induction goes through in

the obvious manner. Suppose, then, that A is ogB.

" Now, { VEW | u<v } = { veW" | u <¥ v } and by the
induction hypothesis, for such v, V(B,v) = VWZB,V).

Therefore V(A,u) = VW(A,u). ' X

It is certainly the case that every generated frame is
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superconnected. Let #¥ be the subframe of W generated

by w and, as before, let Wg = { ueéW’ | there is no veWw"

such that u <" v }, the set of points in W' with no
successors. If we let @ denote the restriction of WY
to Ww~Wg then we must show that ww is connected.

Let u and v be points in Ww—Wg. Since u and v are

. W
in W' there are sequences u,, ... , u, and V;, ... , Vi

of points in W" such that for each i, u <w'ui+l and

w - = - 1
Vi <7 Vigqr By =W =V, u =, and Vi V. Clearly,’

then, all the points in the sequences are in WW—Wg and so

W

. . . W
u=u ese U3, W, Viy eee o4 Vm=V is a sequence in W —WE

nl

connecting u and v.

9.4.2 Lemma: For each relational frame ¥ = (W,<), the

set { WY | wew?l of all generated subframes of () deter-
mines the same logic as W.

Proof: Suppose W k= A. We show that for each w € W,
WY b= A. We note that as V ranges over all assignments on
w, vV ranges over all assignments on w¥. Pick u € wW'.
Then u € W and for all Von W, V(A,u) = T. Thus Vw(A,u)l
=T by 9.4.1 for all V¥ on &Y. Hence, W' k= A.

Now suppose W k%4 A. Then there is a point x € W
and an assignment V on W such that V(A,x) = F. But then

by 9.4.1, in W%, v®(a.x) = F and so W* p¥ A. X

Now suppose that L is a logic complete with respect

to R. Then there is a set {-wj | 3 € g} of relational
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frames which determines L. Then by 9.4.2,

5EJ { ij | w € Wj } Will also determine L. And so L

is complete with respect to ﬁ. We have

9.4.3 Theorem: A logic L is complete with respect to R

if and only if it is complete with respect to R . R

9.4.4 Corollary: R has the same width and depth as R, and

hence as R. XX

So anything we can do with relational frames or with
sets of relational frames we can, in fact, do with sets of
superconnected frames. And so if sometimes instead of
considering R with the modal language, M, we consider the
subsemantics ﬁ or even.ﬁ'with M, as we shall later on,

we are not really losing anything.

9.5 In chapters 5 through 9, then, we have seen that B
and S have width of measure E while F, R, ﬁ, and ﬁ all
have width of measure K. If we restrict B and S to frames
which model K, i.e. to hormal frames, so that they are on
"common ground" with F, R, ﬁ, and ﬁ, we see that B and F
have maximal depth, Shas strictly less depth and R has
strictly less depth again, ﬁ and § have, however, the
same depth as R. We have the following "depth diagram"

for normal frames.
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F— B (maxima

R

>
pm

9.6 While we have answered the questions about the rela-
tive depths of our various modal semantics, we have left a
large question unanswered: the question of the absolute
depths of the various semantics. In other words, we may
ask for a non-semantic characterization of the set of logics
complete with respect to the respective semantics.

The question is, of course, answered for B and f:
the answers being "all classical logics™ and "all normal
logics" respectively. The problems for § and for R, however,

remain unsolved. These are, perhaps, the outstanding un-

solved problems in this area at this time.
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10.0 So far in this thesis we have taken the approach of
starting with'ﬁ, the modal language, and studying the
strengths of various semantics for M. For the remainder

of the thesis we shall take the opposite approach. We

shall be looking at the strength of M as a language which

we may use to discuss properties of structures in the various
modal semantics. In this chapter we shall be looking par-
ticularly at properties of structures in B, 8, and R. 1In
later chapters, when we discuss reductions, we shall be par-

ticularly interested in the system (M,ﬁ).

10.1 Let ]) denote an arbitrary modal semantics. If P is
a property which may or may not be held by frames in J),

then P will be called a modal property of [) if there is

a set M, of formulae in M such that for each frame F in ]},
F has property P if and only if F k# A for each A ¢ L
In such a case, P and MP are said to correspond. P will

be called a strongly modal property of )] if and only if

there is some corresponding M, which is finite. Clearly,
then, P is strongly modal if and only if there is a single
formula AP such that for each frame F in ), F haé property
P if and only if F = Ap.

In the remainder of chapter 10, we shall -consider

certain properties of boolean, neighbourhood, or relational
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frames and consider whether or not they are modal or strong-

ly modal.

10.2 Various propérties of relational frames are known to
be strongly modal. For example, if W =,(W}<) then
(a) W is reflexive (i.e., < is réflexive) iff
W j= op>p (4.6.9)
(b) W is transitive iff W }= opro’p
thus (c) W is pre-ordered iff W k= (op-p)A (op+o?p)
(4.6.11) iff w k= s4.
(d)' < is an equivalence relation iff W k= (oprp) A
(op~o p)A(Qp709p). (The smallest normal

logic containing this formula is called S5).

10,3 Sahlgvist[12] has shown that the property of being
irreflexive (i.e. ufu Yu€éW) is not modal. 1In fact, he
has shown much more.

If W = (W,<) and u,v € W, then we write

u<'v iff u=v

u <m+l v iff 3Ix€w (u'<m x and x<v).
Thus u <™ v iff v can be reached from u in exactly m stéps.
For m # n, we say that < (or ) is m,n-intransitive iff
Yu,v € W (~(u <™ v and u'<n v)) .

and we say that < (or W) is m,m-intransitive . iff

- <
Vu,v,wy, «ee o Wom1rX1r eee 0 X g €W (u<w1<...<wm__l v

and u<xi<..;<xm_i<v implies 1<i<m—lv(wiv_ xi)).
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Thﬁs, W is m,n~intransitiveviff V. can never be reached from
u both in exactly m steps and in exactly n steps, and W is
m,m-intransitive iff whenever v can be reached from u in
exactly m steps, then there is only one path of that length
from u to v.

Sahlgvist]12] (chapter 7) uses Segerberg's "unravel-
ling technique" to show that for m # n, m,n-intransitivity
is not modal, and for m22, m,m-intransitivity is not modal.
It is easy to see that irreflexivity is simply 1,0-intran-
sitivity, asymmetry(. yweéW, ~{u<v & v<u)) is 2,0-intransiti-
vity, and intransitivity ( Yu,v,w € W, u<v & v<w = ~(u<w) )

is 2,l-intransitivity. Thus none of these properties is modal.

10.4 The following lemmas will be useful.

10.4.1 Lemma: If P is a property which may or may not be

held by frames in JJ, and if there is some logic J such that
for every formula A either J |— A or there is a frame F in

D with property P such that F { A, and if there is a

frame without property P which models J, ‘then P is not

" modal.

Proof: Suppose P were modal and MP the corresponding
set of formulae. Since there is a frame, For without pro-
perty P which models J, at least one of the formulae in MP’
say B, must not be valid in F . Thus J |# B. But then
there is a frame F with property P such that F % B cdntrary

to our assumption that B ¢ M;. 1
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10.4.2 Lemma: If D2 is a subsemantics of Dl’ and if P,, P,

are properties which may be held by frames in Dl’ D2 respec-
tively such that a frame in D2 has property P, iff it has
property P, (when considered as a frame in Dl)’ then if P,
is a modal property, P is also.

Proof: A frame in Dl has property P, iff it models

M Since every frame in D2 is in D1 and it has property

P, "
P, iff it has property P,, then it has property P, iff it

models MP Thus P, is a modal property in D2 and we may

1
take MP2 = MP;' | nn

10.5 Quite a few interesting properties of neighbourhood

frames are modal.

(a) Normality is strongly modal in B, hence, by
10.4.2, in §. We claim that B is normal iff B =
o (p~p) A (o(p>q)»(op+og)). Let ngbe the logic determined by
a boolean frame B. Now if B is normal then Lg is normal.
Since Lg is closed under RN and p»p is a tautology, Lg k—
o(p>p). Also Lg |~ K and so Lgi— o(p»q)~»(op+ng). Therefore
B = o(p»p)A(o(prq)~(apoq)). If,-on the other hand, B k=
o (p»p)A (o (p>q)~ (op»oq) ), then Lg |~ o(p*p). Since B, hence
Lg, is classical (4.6.2), Lg - o(p»p)«oA if Lg f=— p-peA.
Thus Lg f— oA if Lz }— A. Th;refore Lg is closed under RN
and contains o(p+q)~(op>og) -and so B is normal.

(b) We saw in 4.10.2 that a neighbourhood frame was

a topological space in a natural way iff it modeled S4. By
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(a) that will happen iff it mOdelS'u(é+p)A(n(p+q)+(Dp+Dq)A
(op~p) A(op»o®p) . Thus the property of being a topological

space is a strongly modal property in S§.

10.6 In chapter 4 we studied particular embeddings of R
in Sand of § in Band decided to say that.a neighbourhood
frame was a relational frame if it was isomorphic to the
image under this embedding of a relational frame, and sim-
ilarly that a boolean frame was a neighbourhood frame if it
was isomorphic to the image under this embedding of a
neighbourhood frame. We shall have this interpretation in

mind in this and following sections.

In B, the property of being a neighbourhood frame is
not a modal property. We have seen that K is complete with
respect to R(8.1.1) and so it is certainly complete with
respect to S. Thus every formula not in K is not valid in
some neighbourhood frame which models K. It is easy to see
that there are boolean frames which model K but are not
neighbourhood frames. (The Lindenbaum~Tarski frame fof K,
for example, is a countably infinite boolean frame and
therefore cannot be a neighbourhood frame.) Thus by 10.4.1,

the property of being a neighbourhood frame is not modal in

B.

10.7 .We shall see that in §, the property of being a rel-

ational frame is not a modal property. We begin by showing
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that for each relational frame W =~(W,a), if there are some
u,v € W with uwv, then .there is a normal neighbourhood frame
G, which is not a relational frame and is such that W | A
implies G, K A.

VLet % be a non-principal ultrafilter on N, the natural
numbers. Let G, = (WXN,N) where S ¢ N(

w
there is a set K € E such that if udav and m € K then (v,m)

m) if and only if

u,

6 S.

First, we see that Gw is not a relational frame. By

' 4.7.1 it suffices to show that there is a point (u,n) € wWN

such that N ) is not a principal filter. Pick u such

(u,n
that there is a v with u«v and let n = 1. Since & is a non-
principal ultrafilter, for each m ¢ N there is a K € & such

that m £ K. Thus there is no point in WX\ which is in every

S ¢ N(u 1)+ But since ¢ £ = and there is v with uav, ¢ £
1

N(u,l)‘ Thus N(u,l) is not a principal filter, and hence

Gw is not a relational frame.

Next, we see that Gw is normal. Let Sl,FS2 € N(u,n)'
Then there are K, , K, ¢ E such that, for i = 1,2, if u<v
and m € K then (u,m) ¢ S;. Thus if u<v and m ¢ K NK, then
(v,m) € Slﬂsz, and’thexefore, since K, NK,€ & , Slﬂs2 € N(u,n)'

Also, since T # ¢,'WXN € N( and so Gw is normal.

(u,n)
Finally, suppose that W ¥ A. Then there is a point

u € W and an assignment V on W such that V(A,u) = F. Let

the assignment V, on G, be such that V, (p) = v(p)*N for each

propositional variable p. We claim that for each formula B,
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and for each (y,m) ¢ wxN, V (B,(v,m)) = V(B,v). The proof
is by induction on the length of B.

If B is a propositional variable then the claim is
true by definition of V,. If B is ~C or C-D then the claim
follows trivially. So, suppose B is noC. Then V(B,v) = T
o V(C,w) = T for all w such that vaw ¢ (by induction
hypothesis) Vo(C,(w,m5)) = T for all w such that vgqw and
for allm’ ¢ N = Vo(B,(v,m)) = T for allbm ¢ N since

{ (w,m") | vaw and m’ ¢ N } €N Therefore V, (B, (v,m))

(v,m) "
= V(B,v) and so, in particular, V,{(A,(u,l)) = V(A,u) = F.
Hence G, F# A.
Now let W = (W,<) be a particular relational frame

such that there are u,v € W with u<v (i.e., the-relatiOn.<
is nonempty) . Then.Gwis normal and hence Gw P= K, but

is not relational. We know (8.1) that K is complete with
respect to R, so every formula is either in g or not valid
in a relational frame which models K. But there is a non-
relational frame, Gw, which models K. So by 10.4.1 the pro-
perty of being a relational frame is not a modal property

in S.

We can use our techniques of this section to get
another result. We have shown that every formula not valid
in some relational frame is not valid in some’ non-relational
neighbourhood frame which models K, and therefore every

formula is either in K or not valid in a non-relational frame

which models K. But there is a relational frame which models
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frame is also not modal in S.

......

10.8 The property of being equivalent to a neighbourhood
frame (determining the same logic as a neighbourhood frame)
is not a modal property in B. Since K ié complete with res-
pect to S, every formula is either in K or not valid in some
neighbourhood frame which models K. But we have seen in
chapter 7 that there are boolean frames which model K and
which are equivalent to no neighbourhood frames. Therefore,
by 10.4.1, the property of being equivalent to a neighbour-

hood frame is not modal in B.

10.9 The property of being equivalent to a relational frame

is not modal in S. Since K is complete with respect to R,
and since we have seen in chapter 8 that there is a neigh-
bourhood frame which models K and which is equivalent to no

relational frame, the result follows as above from 10.4.1.

10.10 Connectedness is not *a modal property in R. K is
complete with respect to R and so, by 9.2.1, with respect

to ﬁ. Thus each formula is either in K or not valid in some
connected frame. Clearly, however, there are disconnected

relational frames and we know that they model K, Therefore’

by 10.4.1 connectedness is not a modal property in R.

10.11 Superconnectedness is not a modal property in either

R or R. The proofs are analogous to that in 10.10.
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1 B Higher—order-Languages and Semantics

’and:Second:Ordef‘PrOPertiES bfﬁFramés

21.0 Iﬁ this chaptér we introduce other languages that
can be used to describe frames in our various modal- seman-
tics. These are the natural higher-order languages for the
various types of frames we are dealing with. We compare
properties of frames that can be described in these languages
with modal properties. We concentrate on neighbourhood and
relational frames and are particularly interested in second-

order properties, for we shall see that all modal properties

in § and R are second-order.

11.1 A higher-order language is a monadic n*_order 1an~
guage (for some nzl) with finitely many predicate symbols
each taking a finiﬁe number of arguments of specified orders.
More precisely, L is an nth—order language if L has variables

n n
1 1 2, %%, .3 e X0 X,

(the superscript denotes the order of the variable); symbols

+, ~, ¥, =, €; predicates Ql' cee Qm -- Wwe say that Qi
lSjgﬁjtype‘l%il,...yaikil, Where CISRAREE "aiki are
positive integers =< n, if Qs takes ki>arguments, the first

h of

t
of order asqs the second of order Qi1 eoe s the ki
order 5. Formulae of | are defined as follows.

i
An atomic formula is of one of the following forms:

(a) of the form Qi(yl""'yki) where, if 0y is of
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ltype(ail,...,aiki) then for lfjfki, yj is a variable of
order aij'

(b) of the formvy = y’ where y and y’ have same order.

(c) of the form y ¢ y” where the order of y” is one
greater that the order of y.

If A and B are formulae, so are A-»B, ~A, and VvyA,
where y is any variable (of order = n). We shall use the
"defined symbols" A, v, 3; so that AABIdenotes ~ (A-+~B) ,

AVB denotes ~A-+B, 3yA denotes ~Vy~A.

We are now ready to define a semantics for |, the nth—
order semantics for the nth~order language. First, if S is
a set, we define #°(s) = S and @ "1 (s) = f(Fl(s)). (@
denotes the power set operation.)

If A denotes the n*Poorder semantics for L, then S is
a structure in ;A if S = (S,Qi,...,Qm), where S is a nonempty
set and if Qi is of type (ail,...,aiki) then so is Qi, i.e.
Q; < 2il=1(g)x. .. x0PikiL(g),

An assignment A on S is a mapping from the set of
variables of L to ZE; @i(s) such that A(xg) E(?j_l(s).

Then A induces a function, also called A, from the formulae
of L to fT,F} as follows:

A(Qi(yl,..,.,yki)) =T iff (A(yl),...,‘A(yki)) €9

My, = y,) =T iff  Aly;) = Aty,)

My, € y,) =T iff  Alyp) € Aly,)

A(A»B) =T iff A(A) =F or A(B) =T

A(~A) =T iff  A(A) = F
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and  A(YyA) = T iff A’(A) = T for all assignments A” which

agree with ‘A on all variables except y.

If S is a structure in ;A and A a formula in L then §
models A (S = A) if and only if A(A) = T for all assignments
A on S,

We shall often be dealing with second-order languages.
In this case we shall often use lower case letters ..

1

Xyg Xy oes in place of xj, X ... and upper case letters

1
217

: 2 2
X1’ Xz, ... in place of x{, x;, ... .

~11.2 We shall now consider the second-order language |
for neighbourhood frames, Lg will be the monadic second-
order language with a single‘predicate symbol N of type
(2,1). Let As be the second-order semantics for Lge Then
each structure U is a pair U = (U,N) where U is a nonempty
set and N ¢ @(U)xU. There is a natural correspondence be—
tween neighbourhood frames (structures in the semantics §
for the language L) and the structures in As' With the frame
F = (U,N) in § we associate the structure Up = (u,N) in As
where (S,u) ¢ N iff s ¢ N . If U= (u,M) is a structure
(u, M) by

in A, then define the neighbourhood frame F

NM
u

{seu | (S,u) € M }. Clearly, then, W = §f so that
UFU = . Thus the correspondence F ——9=UF is one-to-one
and onto. Therefore we can identify neighbourhood frames

with structures in the semantics As for. L, and vice versa.

In this manner we may think of Ls as a second-order language
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for neighbourhood frames.

11.3 Next, we consider the second-ordexr language Lr for
relational frames. Lr will ‘he the monadic second-order
language with a single predicate symbol Q of type (1,1).

Let Ar be the second-order semantics for Lr' Then a struc-
ture W in Ar is a pair W = (W,<) where W is a nonempty set
and < ¢ WxW. Thus the class of structures in Ar is exactly
the same as the class of structures in R, i.e. each relation-
al frame is a second-order structure for Lr and vice versa.
In this way we can speak of Lr as a second-order language

for relational structures. ¢

11.4 If P is a property which may or may not be held by

neighbourhood (relational) frames, then P is called a

second-order property if there is a set SP of formulae in
g (Lr) such that for each neighbourhood (relational) frame

F

F has property P if and only if F f= B VYB€S;. .

(if F is a neighbourhood frame we identify it with UF)'

P is strongly second-order if it is second-order and

there is a corresponding S, which is finite.

11,5 1In §, if P is the property of being a relational frame,
then we have already seen that P is not modal. However, P
is strongly second-order. Recall (4.7.1) that a neighbogr—

hood frame is relational iff the set of neighbourhoods of
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each point is a proper or improper principal filter. Thus

we let SP = {A} where A is

Vx,3X, (N(X, ,x, )AYX, (N(X, %) )+=2Vx, (X, €X,-x,€X,))).

11.6 We have already noted that the property in R of
being irreflexive is not modal. However, irreflexivity

is strongly second order. Let Sp = {A} where A is

VXJ(NQ(XJ,XJ))-

It is, in fact, not hard to see from our description
in 10.3 of m,n-intransitivity that for each m and n, m,n~

intransitivity is a strongly second-order property.

11.7 Connectedness is not a modal property in R (10.10),

but it is a second-order property. Let SP = {A} where A is

VX, ((3x, (x, X, )AVx, VX, ((x, €X,A(Q(x,,%,) vQ(x,,x,)))

+x2€X1))+VX1(X1€X1))
L ]

11.8 We shall show that every modal property in S is sec~

ond~order. Let T be the transformation from formulae in M

to formulae inb,|_A_S defined inductively as follows:

il

T(p;) = x,€X; for 'each. propositional variable p,
T (~A) = ~TA

T (A+B) = TAEB

T (oA) ;73xﬁ&N{Xn'X1)Avxm(xmexn+*TA(Xm/xl)

where n and m are the least numbers such that anand X, re-
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spectively dQ not occur in TA and where TA(gm/xj) is the
formula obtained by replacing all free occurrences of X, in
TA by X

We note the following two facts, which can immediately
be seen to be true for all modal formulae from the definition
of T.

1. The only first-order variable with free occurrences
in TA is x,; and x,; has only free occurrences in TA.

2. X, occurs free in TA iff p; occurs in A.

We now show that F = A (in §) iff F = TA (in A)).
Pick a neighbourhood frame F = (U,N) and an assignment V on
F in §. Then for each u € U we let Ay be an assignment on
F in As such that Au(xi) = V(p;) and j (x,) = u. We claim
that V(A,u) = Au(TA) for each modal formula A.

Since x, is the only free first-order variable in TA
and since for assignments V’/ and V~ on F, if Vv’ and V” agree
on all variables occurring in A then V’ (A) = Vv~ (A), we know
that as V runs through all assignments on F in § and u runs
through all elements of U, Au runslthrough all the assign-
ments on F in As which are significant in determining the
validity of TA in F; i.e. TA is valid in F if Au(TA) =T
for all such Au" From the claim then, we see that V(A,u) = T
for all u ¢ U and for all V on F in § iff A(TA) = T for all
A on F in A . Thus, to prove that F = A iff F p= TA it

suffices to prove the claim.
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Proof of claim by induction on length of A:

If A is P; then TA = x, exi. We have V(2,u) = T =
V(.pi,u) =T o u € V(pi) e u € Au(xi) o 'Au(xl,xi) = T
< A (TA) = T.

If A is ~B then TA = ~TB. We have by induction hypo-
thesis, V(B,u) = 'Au(TB), thus V(~B,u) =“’Au(~TB), i.e. v(a,u)

If A is B-»C.then we have V(A,u)

T o V(B»C,u) =T
e V(B,u) = F or V(C,bu) = T e (by induction hypothesis)
Au(TB) = F or Au(TC) =T e Au(TB+TC) =T e Au(TA) = T.

T = for some

Il

If A is oB then V(A,u) = T = V(oB,u)
S ¢ Nu (v(B,v) =T iff v € S;,) < for some S such that

(Sau) € N, | AV(TB) =T iff v € S ) e

)

Au(HXn(N(Xn,xl)/\me(meXn*——rT‘B(xm/xl)))) =T A’u(TA) = T.

The induction is complete and the claim is proved.
Thus F = A iff F |= TA for all modal formulae A.

Now suppose P is a modal property in §. Then there
is a set My of modal formulae such that for eaéh neighbour-
hood frame F, F has property P iff F = A for all A ¢ M.
Let S, = { TA | A € M, }. Then F has property P iff F = A
for all A-¢ S,. Therefore P is a second-order property.

P

If MP is a finite set then so is SP

modal property in § is strongly second-order.

and so every strongly

- 11.9 We shall show that every modal property in R is also

second—order. Let R be the transformation from formulae in
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M to formulae in Lr defined inductively as follows:

xlexi for each propositional variable P;

R(pi)

R{~A) ~RA

i

R(A>B) = RA~RB

R(oA) = ¥x (Q(x;,%,)>RA (xp/x,) )

The proof that & f=A (in R) iff & = RA (in A ) is
‘essentially the same as the proof that F b= A (in §) iff F
= TA (in As) in 11.8. It differs only in the last case of
the inductive prdof‘of vV(A,u) = Au(RA) and so we shall do
only that here:

If A is oB then V(A,u) = T e V(oB,u) =T « for all

v such that u<v, V(B,v) = T e for all v such that u<v,
A (RB) =T = A (Vxn(Q(x,,%,)RB(xy/x,))) =T = A (RA) =
T.

Thus W = A iff 0 = RA. If P is a modal property in

R then, as in 11.8, we can let Sp = { RA | A ¢ M_ } and we

P
see that P is a second-order property. If P is strongly

modal then it is strongly second-order.
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12.0 We saw in chapter 11 that all modal properties in §

or R were second-order properties but that the converse was
not the case. This would seem to indicate that the second-
order languages are more powerful, or mofe expressive, than
the modal language‘for these particular semantics. This is
vcertainly true if we are usiﬁg the language to "say things"
directly about the frames in the various semantics. But we
shall see that we can use the languages through a series of
reductions to say considerably more than we could say direct-
ly.

Our reductions are devices through which we can "talk
about" structures in one semantics in a language which be-
longs with another semantics; or, as we shall eventually do,
in a language which belongs with the semantics in question
but which can be strengthened considerably by using the
reduction. Our reduction is a development of the reductions
used by Thomason [19,20,21] which in turn were inspired by

the notion of interpretations as in Shoenfield [15](p.61)

12.1  1f (_,A) and (L',A') are systems then.a reduction of

(L,A) into (L’,A’) is a device through which we can use the

language ﬁ to describe properties of structures in A.
(At this:point we shall begin to make use of the abuse
of notation mentioned in 1.1 and shall write M ¢ A if M is

a structure in the semantics A.)
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A'reduction'p of,ﬁL,A) into (L’,A’) is a quadruple

(g,Tp,Cp,Dp) satisfying:

(1) g.is an association between isomorphism clasées
of structures in f| and isomorphism classes of structures
in A’. (As a further abuse of notation we write M g Mo if
M ¢ A and Mo € A’ and the isomorphism class of M is assoc-
iated via.g with the isomoxrphism class of M’.) ‘g must sat-
isfy the condition that for M ¢.;A the class of isomorphism
classes in A’ associated via Y with the isomorphism class
of M in A is a set, or more precisely, any class of struc-
tures in A’ which contains a unique representative from each
isomorphism class in A!associated via g with the isomorphism
class of M in A and which contains 6nly such structures is
a set, The fﬁrther condition that distinct isomorphism
classes in A»are associated with disjoint sets of isomor-
phism classes in A'must also be satisfied. v then, is
almost a function from a subclass of A’ onto A which is
"set~to-one" -- except, of course, that neither A’ nor A
are usually sets and so cannot really have functions defined
on them.

(ii) Tp is an effectively computable one-to-one
transformation of formulae of L into formulae of ['.

(1ii) .Cp and Dpvare particular finite sets of formulae
of L'. .

(iv) For all formulae A of L, M ¢ A, and M7 ¢ A’ such

that M y M”,
o)
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Hima = 4 1
(v) For all M* ¢ A'
(3M€p such that M«Z,M’) o M k=C ¥CeC  and M’ B D DD ).

Intuitively, then, each structure M in | is associated
with structures #’ in A’ such that for any formula A in the
‘language L, M models A if and only if M” models its trans-
form in L'. The formulae Cp and Dp are used to tell whether
or not a structure in A’ is associated with any structure in
A (is in the "“range" of‘g), A structure in A’ is so assoc-
iated if and only if it models all formulae in Cp and none
in Dp. Thus the reduction must be such that the "range"
of g is describable in.L' in this weak sense.

We note that a reduction p is particularly interesting
if g can be effectively described, in the sense that given
M € A we can describe in terms of M the set of isomorphism
classes associated with M via,g,vand‘if g is effectively
invertible, in the sense that we can describe the "range"
of g in A’ and for each M’ in the range we can describe the
M in A such that M § M7. All the reductions we shall use in
this thesis have these properties to a certain extent. They

will also have the additional properties that Cp and Dp are

either empty or singletons.

12,2 We shall use reductions in the following way. Suppose

there is a reduction o of (L,A) to (L’,A')- Then we can use.
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the language L‘ to describe properties of frames in A as
follows. Let P be a property in A. 1If there is a set Sp
of formulae in L' such that for M ¢ A, M has property P

if and only if M* models each formula in SP for each struc-

ture M’ ¢ A’ such that ng M7, then we could say that Sp

describes property P through the reduction p.
We see immediately that any property in A describable
in | is also describable in | ‘. Suppose that P is describ-

able in L. Then there is a set S, of formulae in E such

P

p 1ff M has property P. Let Sp”

be the set I'TpA | A € Sp } of formulae in L'. Then, since

that M = A for all A ¢ S

p is a reduction, S_” describes property P through the re-

P

duction p.

12.3 As previously, M will be the modal language and ﬁ the

superconnected relational semantics for M. Let ]) be any
semantics for M. We say that a property P which may or

may not be held by frames in J) is quasi-modal if there is a

reduction p of (M,D) to (M,R) and a setlQP of modal formulae
such that for each frame F in ] and each W in ﬁ such that
Fvw
0
F has property P if and only if W |= B VB € Q.

A property P is strongly gquasi-modal if it is quasi-modal

and has an associated QP which is finite.
Thus, P is quasi-modal if P can be described in M, not

necessarily directly, but through some reduction to (M,R).

It would
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be nice if it were immediately obyious that every modal
property is quasi-modal. While this fact is true, its
proof will take a considerable amount of work and so will
come later.

We shall restrict our study of guasi-modal properties
to those in the semantics § and R. Our object is to show
that every second-order property is quasi-modal. Since we
know that every modal property is second-order (11.9) it

will follow that every modal property is quasi modal.

12.4 The following theorem shows that reductions can

be composed .

12.4.1 Theorem: Let p be a reduction of (Ll,Al) to (Lz'Az)

and ¢ a reduction of (Lz'Az) to (L3,A3). Then cop is a
reduction of (Ll,Al) to (L3,A3) where

(a) cgb = gog (if U,and Uzare isomorphism classes.

in Al and A3 respectively, then Ulcgp U, iff there is an

isomorphism class U, in A2 such that U, v u, and U, g)ua).

(b) Tcrop = TGQTp.

@ Coop=2C, UA{»T%C lcec, 3

(d) voop =D U.'IfTOD | D ¢ Dp ‘}.»

Proof: We must show that bgp satisfies (i) - (v) in

the definition of reduction.

(i) Clearly crgp_is an association between isomorphism
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classes of structures Qf Al.and isomorphism classes of
structures of A,. If U; is an isomorphism class in A;,
then the class of isomorphism classes U, in A; such that
u, Ggp u, is USEII-U3 [ u, g U, 3 (whére I={U, | u,is
an isomorphism class in A2 and'ulxg uz 1, and as suéh is
the union of a set of sets and is therefore a set.

Suppose that U, is an isomorphism class in A3 and
that U, and U,;” are isomorphism classes in A; such that
U1 0Vp U3 and ul;'cvp Ua. Then there'are isomorphism classes
UZ,UZ’ in Aé such that Ulvg Uz, u, v u,, Ul) g u,”, and
u

# Yy U4 . 8Since o is a reduction and U, v U, and U_* v U
2 (e} 3 2 o 2 le}

3 3

we must have U, = Uz;. But then U vV U_, U 7 ¥V U, and since
1 o 2 1 o} 2

p is a reduction we must have U; = U,”. Thus distinct iso-
morphism classes in Al are associated vi‘avovp with disjoint
sets of isomorphism classes in A3.

(ii) Clearly T =T oT is effective and one-to-one

cop o Tp

since both TO'and Tp are.

(iii) is immediate.

(iv) Suppose A is a formula of Ll’ M, ¢ Al and M, ¢
A5 with M1 va,Ma. Then there is M2 € A, with M v M, and

. . < T T =T A.

M2 cV7M3 Now M1‘{=A - M21= TpA M, FE ot pA) 00 p

v) Let M, A3. Suppose there is M, ¢ A, with

1 0'p

Mo v M, . Then there is , in A2 with M, Y Mz ande2 g M, .
Thus M, b= CO and M F=_Cp, and therefore M3 = CO U

00" Also M, f# D.yD ¢ P_ and ,Mz B D

yD € D, and therefore M, #povbep UiTB|BED, }=

2
{»TOC | C ¢ Cp } = CO
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cop
Now suppose M, F=,Coop_and My B D YD ¢ Pyop+ Then

M; = C_ and My D“vae.DO and so there is M, ¢ A, with
’Mz v My Also.Ma F=‘{‘TOC | C ¢ Cp}. and so‘M2 F=vcp.
Further, M, B T D for all D ¢ Dp and so M, k£ D yD ¢ Dp.

Thus there is M; ¢ Al with_ijg Mz.%nd so M, ogp4M3. - m

12.5 We have already, in fact, shown in 11.2 and 11.8 that

there is a reduction from (M,S) to (LS,AS). Let ¥ be such
that for F ¢ § and U ¢ As, F ¥ U iff U is isomorphic to
the structure UF-described in 11.2. Let TY be the trans-
formation T bf 11.8. Let CY = DY = ¢. It is easy to see
that conditions (i) to (v) of reductions are satisfied by
Y = (¥,TY,CY,DY).

Similarly there is a reduction from (M,R) to (L..A.)-
Let ¢ be such that for W ¢ R and U ¢ Ar’ w ? u iff‘u is
isomorphic to W in Ar (hence, also in R). Let T6 be the
transformation R of 11.9, and let C, = D, = 4. Then it is

easy to see that 5 = (g'Ts'Cs'Dé) is a reduction.

12.6 Thomason [i9,20,21] developed his notion of reduction
for a purpose quite different from ours. He was studying
the logical conéeéuence relation of a system:;. 1if (L,A) is
a system then the logical consequence relation R for (L.A)
is a binary relation such that (p,A) ¢ R if A is a formula

in L, r a set of formulae in L and for each structure M ¢ A,

if M = then M = A.
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If L is such.that we cén efﬁectively code formulae
with_natuial numbers, then we can consider the logical con-
sequence relation as a binary relation between sets of
numbers and numbers, and; as such, can discuss the recui—
sive complexity of the relation (i.e.; its position in the
arithmetic or analytic hierarchies.)

Thomason shows that if there is a reduction from
(L,A) to (L',A') then the logical consequence relation of
(L,A) is at least as complex as that of (L’,A’), i.e. the
logical consequence relation of (L’,A’) is recursive in
that of (L,A). This relative recursivity hinges on the
fact that the transformation of formulae in a reduction
must be effectivetand therefore recursive.

It should be pointed out that Thomason's notion of
reduction 'is somewhat looser than ours, but that our notion

would suffice for Thomason's work.

[y

2.7 We shall conclude with the following theorem.

|

12.7.1 Theorem: If L is any higher-order language of the

type described in 11.1 and if A is the higher-order semantics

for L also described in 11.1, then there is a reduction of

(LA to (M.R)-

12.7.1  Corollary: Any second-order property in Sor R is

quasi-modal and any strongly second-order property is

strongly quasi-modal.
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Proof of corollary; 1If o is‘thé reduction promised -
by the theorem lZ,?.l'frOm‘(Ls,As) or (L ,A.) ) to

(M.R) then let Qp = 1-TA | A ¢Sy }. iy

The theorem tellsius more than we originally sought: if P
is a property in § or R (or any other semantics) which can
be described in an appropriate language of any finite order,
then P is quasi-modal and so can be described in the modal
language«M through an appropriate reduction. It follows im-

mediately from 12.7.2 and the results of 12.5 that

12.7.3 Corollary: Every (strongly) modal property in § or

R is (strongly) quasi-modal. N

It also follows from 12.7.2 and from 11.5, 11.6, 11i.7 that
the property of being a relational frame in § and the pro-
perties in R of being irreflexive ar connected are all not
modal but strongly quasi-modal.

The proof of 12.7.1 is a modification of Thomason's
proofs in [19,20,21] and is rather long and tedious. For
this reason the details of the proof will be given in an
appendix and only a brief outline will appear in the main
body of the thesis.

The reduction, o, -that we need is constructed as the
composition of a sequence of other reductions. These red-

uctions involve various tense systems, n-tense languages

with the corresponding n-tense connected relational semantics.
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The concept of the n-tense language is an extension
and generalization of the concept of the modal language.

The n-tense languagel'fﬁ; is the language with propositional
variables Py» Pys «.. , and classical connectives + and ~ as
in M, and additional unary connectives Gl’ ...,‘Gn and

Hl’ ""”Hn' We usg defined connectives V,‘A, and +—> as
before, in addition to Fl’ veoy Fn and Pl’ ceey Pn where for
a formula A, FiA = ~Gi~A and PiA = NHiQA.

An’n—tense relational frame is an n+l ~tuple W =
(W;<l,...;<n) where W is a nonempty set and <, is a binary
relation on W (for l<i=<n). As with the relational semantics
for M, a valuation is a mapping V from ) to (P(W) and induces
a mapping, also called V, from the set of n-~tense formulae

to (W) according to the rules:

Vip;) = V(i)

V(~A) = W-V(a)

V(A-B) = -V(~A) U V(B)

V(G,A) = { weW | {v|w<;v} c V() }
VIH;A) = { weW | {v|v<,w} c V(a) }

We see immediately that V(AvB) = V(A) U V(B), V(AAB) =

V(A) N V(B), V(aeB) = (VAW (B)) U (V(~A)W(~B)), V(FA)

{ w | there

= I w | there is v € V(A) with w<;v }, V(R.A)
is v € V(A) with V<iw }. As before, we write V(A,w) = T or

F if w ¢ V(A) or w £ V(A) respectively.

If we think of'<i as being the ith future relation,

i.e., W<V if v is in the ith'future from w, then V(FiA,w)
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1lle

1

T if on w, A is true at gome point in the i_. future;

th

th
V(PiA,w) =T if on w, A.ds true.at gome point inAthe i
past; V(GiA,w) = T if on w, A is true at all points in the

.th . . . . .
i future; and V(HiA,w) =T if on w, A is true at all points

in the ith past. The comparison with the modal language is
obvious. The n-tense concept: is an extension of the modal
concept in that we have a past tense as well as a future

and it is a generalization in thatbwe may have more than only
one "temporal ordering".

A formula A is valid in a frame @ if V{(A) = W for all

valuations V on W. if w,v € W, then w and v are‘diréctlz

connected viaf<i if W<iv ar V<iw. Two elements w and v are
connected in { if there is a sequence w=w0,wl,...,wn=v of
elements of W such that for each j = 1,2,...,m there is an
i (1=i=n) such that Wj—l and wj are directly connected via
<;+ A frame ¥ = (W,<y,...,<y) is connected if every pair
of elements in W is connected. The sémantics of n-tense
connected relational frames together with the above noﬁion
of validity is denoted R .

our construction of the reduction o of (L,A) to (M,R)
proceeds in three stages. 1In the first stage we construct
a reduction u of (L,A) to (jh,Rh)_Where h = 6+2n+m+e+i§lki,

n is the order of the system (L,A), m is the number of rela-

tions Qi in_L, k.

i is the arity of Qi’ and e = 1 +

maximum({ki | 1=<i=m} U {3}) (thus e=4). The second stage
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cqnsiSts of the constructiqn, fqr each n>2, of a reduction
v, of (Tn:Rn) to (Tnél’Rnél)’ and in‘the_final stage we
construct a reduction vy of (T1.Ry) to (M,R).

.The reasons £or our use of ﬁlin all of this rather
than simply R or ﬁ will become apparent when the actual
reduction vy is presented. Our techniques would not yield
a’proper reduction at this stage if we were to use (M,R)
or (M,ﬁ) instead of (M,ﬁ).

It is not known whether or not other techniques could
be used to get a reduction of (Tl,Rl) to (M,R), or even to
(M ﬁ) » or whether we could more directly construct a reduc-
tion of a higher-order system ({,A) to (M.R) or (M,ﬁ). If
we could, we could re-define gquasi-modal properties to

obtain what would perhaps be a more natural concept of

quasi-modality.
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Aggendix

Proof of Theorem 12.7.1: Construction of a reduction o =
(X,TB,CG,DG) of (L,A) to (M,R) where L is the nth

language with m predicate symbols Qur oev Qm' Q; being
th

" order

of type (a.,,...,a;,.) for l<i<m, and where A is the n
il ikj
order semantics for | . In the construction of pu which
follows, n, m, k;, and ail""'aiki for l<i<m will be fixed
at these numbers.
Let e = 1 + max({k; | 1si=m } U {3}); thus e is either

4 or 1 plus the greatest arity of the Q;, whichever is great-
er. Now let I = {1,2,3,4,9,10,12,13} U {(3,i) | 5=j=<6,
l<i=n-1} U {(7,i,j) | 1=<ism, 1sj<ki} U {(8,i) | l=is=m} U
m

1

{(11,3) | 1=jse}. If h =6+ 2n+m+ e + .2, k;

i then

i&
card(I) = h. If we are considering the system (Tp Ry) it

really makes no difference whether we subsctipt the G's and
H's and <'s with integers from 1 to h or with elements from
I. Thus, we shall take this latter course, keeping in mind

that the subscripts that we are using are really just sub-

stitutions for the numbers 1 to h.

Ap.l The first step in our construction of o is the con-
struction of a reduction i of (L,A) to (Th’Rh)' We begin
by associating with each formula A of L a finite sequence
'T(A) = (Tl(A))Té(A),...)Tr(A)) according to the following

definition.



‘v (~a) = (0,A) - ©A=B) = (1,A,B)

k. k v - k k+1 : .
Tl = x5) = (20kE0) vl e xjf ) = (3,k,4,3)
T (4x<a) = (4,k,i,n) T(Q, (x511,x%12, ., . x%iky))

i ‘ 134 Jo Jki

o= (4+i’j1’j2""’jki)
Thus, for all fb;mulae A in L, Tl(A) is a number between 0
and 4+m,'72(A), TB(A);'?4(A) are either numbers or sub-
formulae of A,andLTi(A) is a number for j=5. We note that
e is the maximum lepgth of the t-sequences. If A is a
formula such that t(A) is a sequence of length e’<e then
define'7j(A) = 0 for e’<j<e, so that for lfjfe,'7j(A) is
defined for all formulae A,

Let § = (S;Ql,...,Qm) be a structure in A. Then

there is a structure W ='(W;<i(i€I)) in R, such that W
is the union of disjoint nonempty sets U, N, R, D, and

Kl' es e g Km and conditions (1) - (11) below are satisfied.
(1) ’<1 is an irreflexive well-ordering of W.

(2) <5 is an irreflexive well-ordering of N of order type
“w. Thus N can and will be identified with the natural

numbers beginning with 0.

(3) ‘<3 is a function from U to the subset {1,2,...,n} of

2

N. Hence U = U1 U u® U...Uu o® disjointly, where ut = {u I

[ ) . . )
(4) <, is a function from U to N. Therefore, for 1=i=n,
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<4|U; (the restriction of the function <4 to the domain Ul)
is a function from UT to N, and hence for 1l=<i=n, ut =

I e . . S i .
jQOUj disjointly, where Uj = {1 €U | U<, ] 3.

(5 ug = &)  (isisn)
U<, . v 1iff u ¢ Ul, v € Ul+1, and u € v (1l<i<n-1)
5,1 0 0
. i i+1 ,
u <6,i v 1iff u ¢ UB, v € Ug , and u £ v (l<i=n-1)

(6) For ls=ism, K; = e2i171(g) « ... x 6%iki™l(g

( = Ugil X vee X Ugiki). (Even if Q. and Qy have the same

120

type,'we assume that Ki and.Kj are disjoint.) Thus Qi < K,.

is the projection from K, to Uil ( = @aij—l(s))

<7,i,3 0

(1=i=m, lfjfkl

8,1

u € Qi c Ki and u = v. (1=i<m)

<g. i 1s the identity function on ¢Q.; i.e., u< v iff
Pl 1

(7) <g is a function from U into U such that for each i

(l<i<n) and each j ¢ N,'<9|U; is a one-to-one function from
U; onto Ué, and'<9|U8 is the identity function oén Ug.

(8) R is the set of all formulae of L, and <10‘ is a

function from R to N such that u'-<"l0 v iff v = ht(u),

where ht(a)

and ht (A>B) = 1 + max(ht(A) ,ht(B)).

(9) v iff m € R and‘¢j(u) = vy. (1=js<e) -

% <11,5

(10) D is the set of all assignments on S. u <15 V

)

0 if A is atomic, ht(vA) = ht(YxjA) = 1 + ht(a),
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" iff v ¢ D and for some i (l=<i=n), n ¢ U;, and u‘<9vy(x§),

(Note that since v is an assignment, v(x;) € @l"l(s) = Ui

a’
thus, each v € D has a unique'<12-predeCessor in each of

the subsets U; of U.])

(11) U<qy Vv iff uw € R, v € D, and v(u) = T in (i.e.,

the formula u is satisfied by the valuation v on S).

Let %J be the conjunction of the formulae numbered (12)
- (78) below. Note that some numbers are subscripted and
really are associated with a finite sequence of formulae.
In the lines marked (Def.), A, B, and C are used to denote

arbitrary h-tense formulae.

(12) Vi (F;p) > pvFipvPp
(13) ’FlFlp‘tzFlp
(Def.) MA = AvFlAvPlA

(Def.) LA = ~MuA

(14) FlPlpvPlFlp > Mp

(15) Plp - Pl(pANPlP)

(Def.) Unit(A) = MAAL(A+~(F1AVP1A))

(Def.) N = Fz(pv~p)

(16) MN
(17) NAM(Nap) - pVF,pVP,D
(18) P2N -+ N

(19) F,Fp = Fyp -



(20)
(21)

(22)

(Def.)
(Def.)
(Def.)
(Def.)
(Def.)
(Def.)
(Def.)

(Def.)

(23)
(24)
(25)
(26)
(27)
(28)

(29)
(30)
(3li)
(32;)

(33;)

(Def.)

FoPopVRFoRp > pYF pVP,P

PAP N

~ P, (G, (pVP,p))

Nmbr (A) = Unit (A)AM(NAA)

Sr (A)

{0} =

" {k+1}

Uu=F
UA

U

w

& b

= NAPzAAHZ(AVFzA)

NAHZ(pAmp)
= Sr({k})

3N

UAF3A

UAF4B

UAF3AAF4B

F3(pv~p) +— U

P3 (pv~p) +— (Fz{n+l}/\~{0})‘

F4(pv~p) + U

P4(pv~p) = N

F3p -+
F4p -

{1}
{0}

Fg 4P
p

MU

5,iP
Fe,iP

Pg.iP ~

G4p

Ay
- ot
o

o

-

A\ Aa

(1l=is=n-1)

-

~

(k

orat(a) = Unit(A)AM(Ufé}AA) (1<i<n)

0,1,...
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(34,)
(35iy

(Def.)
(421)

(43.)

(44)
(45)
(46)
(47)
(48)°
(49)

(50)

orat praora*™ @) - Ll Fg jaenFg A

orait (praord™ (U aM(paH, [ TAH s~T)A
N4 N A

M(gnHg irAH.G,iNr) + L(pe—q)

muiitiIag,

101 "'Hs, ;PN g P)

K, = Fq 4 1 (eV~pl
,i M
F? llJ(PVNp) A K

(pv~p) U{alj} (1=j=<kji)

7 yied {0}

-+ . .
F7riljp G7r113p
fi(Ordaij(p.>) oMl E )
=1 3 j=1"7,1,37]
Prod (n) Unit(A)AM(K AR)
Prod, (q) AProd; (r)A A (Ordalj(p A
ki k
. A A
M(quél(F7,l,Jpj)) Mrh A (F7 i3
~ L(g*r)
Qi = Fsli(pVNP)
i i

,ip - PAGg,iP

Fgp ~ U

PoP > Y0y

ng > Ggp
Nmbr(p)Anmbr(q)wu§0}+ Pgug
Nmbr (p) AUF > FoURgy
Nmbr(p)ANmbr(q)APg(UgAr) - Hg(Ugfr)

U{O}‘+ (p++ng)
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hlﬁjmd)-

-
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L(lsism)

Pj)




(Def.)
(Def.)
(51)
(52)
(53)
(54)
(55)
(56j)
(Def,)
(Def.)
(57)

(58)

(59)

(60i)

(61)

"R® = RAF

R = FqoN

Fiod
Fi1oP > R
- N

Sm ¢

R -»
J=

v F R
5 (Fq4 Jp) -

11,jp - Gll,j(pA(NVR)) (1=jse)

Fmla(A) = Unit (A)AM(RAA)
Fmla® (a) = Fmla (A)AM(BFq ,B)

ps))

e
A (Unlt(p ))AFmla (s)aFmla (£)AM (s A (Fll,j 3

J=l . J_

M(tAjgl(Flllj)) + L (s<+st)

Nmb¥ (p)ANmbr () ANmbr ()AL (> (F,{n+1}A<{0}))
{0}
> M(RUTAF g ({2}AF ) oXAF ) 3PAF ) 490

e
(F {oh)
j=5 11,3

Nmbr(p)ANmbr(q)ANmbr(r)AL(r+(Fz{n}AN{O}))

. {0}
+ M(R AF11'1{3}AFll,erFll,3PAF11,4QA

e
_AS(Fll,j{O}))

J=
ki o o N {0}
hgl(Nmbr(ph)) M(R

A
j=2+kyg
P M (ST (p)
Nmbr(p)Alea (@) > M@®R""P AF11,11030F 1y HaA

jz3(Fll,jIO}))

o ki
AFpy,184%830 A0 17 14nPR)A
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(62)

(63)

(64)

(65)

(Def.)
(Def.)

(66)
(67)

(68)

125
Nmbr(p)Alea(QVF2P)(Q)AEmla(PVsz)(r)A

(Fm1aP (q) vFmlaP (r))

- M(Rsr(P)AFllilil}AEll'2qAFll 3TA

R, (Fyp 4103))

j=4 "~ ii,3

Nmbr(p)ANmbr(q)ANmbr(r)Alear(s)AL(p+(F21n+l}A~{O}))

N M(Rsr (r)

AF11,11430F 1 oPAF ) 3dAF 1 4SA
jhs (F1g, 31000)
ka} > ([((Fll,lIZ}AFlllz(FZIn+l}A~I0}))
V(F ) 1I33AF ) 5 (F,{n}ani0}))
AFy1,3MAF ) g NAES (Fyp 51011 v
igi[FllllI4+i}Ai£§l(Fll,hN)Aj=§+kéFll,j{0})])

Nmbr (p)ARST (B)
3
P
([Fyy,1{03AF ) SRYA545(Fyy 4101)]
P
Y [Fll,l{ 4}A?ll,2 (Fz{n+l}/\~{ 0} )AF11,3N/\F11,4R

AjZS(FllleO})],
féR(Pszp)

’

(pPVvF9p)
VIF 1 {33AF g R 280AF

p p e ‘
11, 2R VL, RN R By 5100 ])

Asst (A) = Unit (A)AM(DAA)

D~ H12U

Asst(p)ANmbr(q)ANmbr(I)AL(q+(F21n+1}A~{0})) -
Unit (F) ,pAF ;a0 F 1)

L(N - i)_(__‘l(P4(pAU{i}))) - M(DAlep)



(69)

(Déf.

" (Def.

(70)
(71)

(Def.
(Def.
(Def.

(Def.

(72)

(73)

(74i)

(75)

(76)

(77)
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Asst (p) AAsst () M (pAH,  F ;1 5q) > L(p—q)

B B

a¥c = Upg)hPo (F3BAF ,CAF, 5A)
?j(B) =_P11'jB (A=j=<e)
Pigp > D
Fi3p > R
'Qi"(Al,...,Aki) = M(QlAjAl(F7 i'jAj)) (1 i m)
AII__.IIB = M(AAB)
n=1
"eIIB — /\ .B
A M(ill(A F5,l ))
Stfy(A,B) = Asst(A)AFmla(B)AL(B+Fq3A)

Asst(p)Alea(q)A(T (q)"="{2}) -~

— TZ(q)u " TZ(q)
(Stfy(P:Q) X (G) P T4(q))

ASSt(p)Alea(q)A(T (@) "="{3}) =~

s xT2(@ucn ¢Srta(a))
(Stfy (p,q) xT () € p 4 (q§ )

Asst(p)Alea(q)A(Tl(q)"—"{4+1}) -

! n {ail} {aiZ} {alk
(Stey (P "0 " (X 2HG Xy p¥ay +:li(q)))

(1=i=m)
Asst(p)Alea(q)A(?l(q)"="{0}) -
v(Stfy(p,q)**NStfy(p;rz(q))
Asst(p)Alea(q)A(fi(q)"=ﬁili) - '
(Stfy (p,q) > (StEY (p,7, (@) +StEy (p, 75 ()
Asst (p)AFmla(q) A (T (q) "="14}). >

(st (p,@) L ((PAH, (U;2 (L e 5p))>P1 374 ()
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(78) .(UVNVRVDMi$I&§i))AN(UAN)AN(pAR)AN(UAD)AN(NAR)AN(NAD)
,AN(RAD)AgX (N(ﬁAKi)AN(NAKi)AN(RAKi)AN(DAKi))
.1<l<j (’\’(K /\K ))

Let W = (W,<j(4¢p)).. De such that g |=C .

Claim: @ is isOmérphic to some W; satisfying (1) - (11).

(1), By definition ( is connected by { <i ] ieI 3. (12)
ensures that (¥ is connected by'<1; (13) that‘<lls transitive;
(14) that'<1 is linear: (15) that'<1 is irreflexive and

every nonempty subset of W has a'<l—least element. Thus

<1 is an irreflexive well~-ordering of W.

(2). For every assignment V, V(MA) is W or ¢ according as
V(A) is nonempty or empty, because g satisfies (1). Also,
V(N) = {x | for some vy, x‘<2 y } is independent of V;: we
write N for V(N). Then (16) and (17) ensure that <, c NxN.

(19) - (21) ensure that <, is an irreflexive well-ordering

2
of N, and (22) that the order-type of‘<2 is w.

(3). & (4), Vv(U) is independent of V, so we write U for V(U).
Similarly, we write i for Vv({i}). (23) and (24) ensure that

<3 c Uux{l,...,n}; (25) and (26) that‘<4 c UxN; (27) and (28)
that'<3 and'<4 are functions.

0 ) , : i i+l
(5). By (29) U # ¢; and by (30i) - (33iL <g,i € UgxUy
and <6.1i < UéXU3+1 for 1<i=n-1. For any assignment V,
’ .
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V(Qrdl (A)) = W if V(A) = {u}, uGUa‘.,‘ and ’v'(Oeri (A)) = ¢ other- -

wise. By (34i),_for each'ueUér VéUE*l,exactly one of
. . - . ' i+l : i
1 <s5,i v, 1 <6,i v holds. Define N from U0 to ?(Ué) by

¢i(V) %L{'u | u'<5,iv };} By (35i) 95 is one-to-one, and by
(36i) oy is onto. Thus ¥ is isomorphic to some W’ satis-

fying (5) for somé S where S is in one-to-one correspondence

0

with UO'

(), Fix i, 1<ism. We write K, for V(Ki) (which is indep-

endent of V). For each j (1Sj5ki); (37ij) and (38ij) ensure

aji- . _

that <7,i,j C KiXU0 J. (391j) ensures that <7,i,j is a

function and (37..) and (38..) ensure that <, . . is from
1) 1] 7:,1,3

ajj . ki, a;. _
Ki onto U0 . Define ei from Ki to j;l(UOlJ) by Gi(u)

v.. The fact that the <

(Vl,...,vki) where u <7,i,j 3 7,i,3

are functions ensures that'e.i is well-defined; (40i) that
ei is onto:; andf(41i) that it is one-to-one. We write
Qi for V(Qi) (also independent of V) and note that (42;)

and (43;) tell us that Qi ¢ K; and that < is the identity

function on Qi' Since in any structure S in A the relations
Qi may be arbitrarily chosen as subsets of the proper
product sets, the above confirms that W is isomorphic to

gsome W’ satisfying (6) .
(7). By (44) - (50).

(8). & (9). Write R for V(R) (independent of V). By (51) -

(53)-<.l is a function from R to N. By (54) - (56j) each

0
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}éll,j is a function from R to NQR;» If u'#lo.v we write

ht (u) for v; if u'<11 . we write (u), for v. By (57), if
(u)j =_(v)j for all j, 1=j<e, then u = v. Hence the follow-
ing defines a function ¥ from a set of formulae of L into

R:

ViE=®) = wif ), =2, W, =k, (W, =1, (@, = 3

i j 1 14 . 2 14 3 14 4 Jl
and (u)h = 0 for 5=h=e

k+1

' W(X?ex.

3 )y =uif (wy =3, (W, =k @;z=1i, (W, =7j,

and (u)h = 0 for 5=h=e
¢(Qi(x?il,.f.,x?i:i)) = uif (wg = 4+i, (W, = 3, for
1=h=k;, (u)h = 0 for kiihfe |
V(~A) = u if (u)l =0, (u)2 = ¢(A) and (uh) = 0 for 3=hZ=e
VaoB) = wif (W) =1, W, = V@), (W, = (B), (W, =0
for 4=hZ=e ,
V(VRER) = u if (W) =4, (W, =k, Wy =1, @, = V@),

(u)h = 0 for 5=h=e

From the fact that for u € R and 1SiZe, (u)i is unique,
we see by an obvious induction on length of formulae that V¥
is one-to-one. From (58) - (63) we can prove by induction
on ht(A) that ¢(A) is defined for every formula A of L.

(For example, (58)’tells us that for numbers i,j,and k with
1<k=n, there is a u € R such that ht(u) = 0, (u)1 = 2,

(W, =i, (W, =k, and (u), = 0 for 5%hse; thus V¥ (x=x})

is defined. ...Assuming that ¢(B) is defined for all formulae

B with ht(B)=<r, then (63) tells us that for numbers k,i and
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formula A with‘ht(A) = r and Id<k<n there is a u € R such
that ht(u) = r+l, (u); = 4, (u), = k, (), = i, @), = y(A),
and (u)h»= 0 for 5=<hs<e; thus ¢(VX?A) is defined and ht(yx?A)
= r+l. ...) By (64) and (65) it can be proved by induction
on ht(u) that every u € R is ¢(A) for some formula A.
Therefore ¢ is a one-to-one correspondence from the formulae
of L onto R such that if u = ¢(A) then ht(u) = ht(A). So

W is isomorphic to some W’ satisfying (8) and (9).

(10). By (66) and (67), each u in D (= V(D) for arbitrary V
on W) has exactly>one'<12—predecessors in each U% (1=i=n,
0<j) and no other <12—predecessors, so v may be associated
with the assignment A_ on S defined by Av(xi) = u iff there
is v in U% such that u"<l2 v and u"<9 u. Thus Av(xi) € Ué
(which may be thought of as @i—l(S)) as we would expect,

(68) tells us that for each assignment A on S there is v € D

such that A = A& and (69) tells us that such a v is unique.

Hence W is isomorphic to some W satisfying (10).

(11). (70) and (71) tell us that‘<13 ¢ DxR. If we make the

identification indicated in the previous paragraphs (D with
assignments on S, R with formulae of L: Ué with G}—l(S), etc.)
then the following hold. If V is any assignment on W,

Ajs AZ’ o e formulae.'in Th,‘and ul,,uz; .+« €W such that
V{A;) = {u,} forfiZI,tHgn,V("Qi"(Al,,..,Aki)) = W or ¢ ac-

)€ Qi or n0t;

cording as, for ISjSki,uj € Ugij and ‘(ul_,,..,ukl
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V(Ai"=ﬂAj) = W or ¢ acchdipg as ui ﬁ'p. or not; ;V(AifE“Aj)

J
= W or ¢ according as for some h (lshsn-1) u; ¢ Ugv»uj eng+l!

and us E"uj or not; :V(Stfy(Ai,Aj)) = W or ¢ according as

u. is an assignment Au- on S, uj is a formula of L and
i
: - . 114 . .
uj <33 u; or not. Also V(Aixig) = Aui(xug) if u; is an
€ N with 15u55n, and ¢ other-

i

assignment A on SA u. and u
19 uj 4 3 h

wise, and V(?j(Ai)) = ?j(ui) if u. is a formula of [,
and ¢ otherwise. 1In this light we see that by induction on
formulae, (72) - (77) tell us that if u, €D and uj € R
then uj'<12 u, if and only if the formula uj is satisfied
by the assignment A, on S. (For example, if U is

hi_ hy o X hyy, _ hy

xh2 xh3 then by (72) uj <12 Y; iff ui(xhz) = ui(xh3) .o
assuming that the claim holds for all subformulae of u, and
hj . )

hy 12 u; iff for every as

signment A on S which agrees with u; on all variables other

that uj is Vx A, then by (77) uj'<

than xi%, A satisfies A. ...) Hence, W is isomorphic to

some W’ satisfying (11).
(78) ensures that W is, in fact, the union of the

pairwise disjoint sets U, N, R, D, and Kl’ -ee 4 Koo

We shall write S X W if W is isomorphic to some W’
which satisfies (1) = (11) with respect to S. We have
shown that if ¢ |=;Cp then $ ¢ W for some S. Conversely,
~given a structure S in A, there are sgtructures W such that
N E W and they are simply those structures, or structures:

isomorphic to those, which satisfy (1) - (11) with respect
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The claim is proyed

Define the transformation o from formulae of L to formulae
of T, as follows.

0 (ef=x3) = RAF;) ) (2347 R3NP 3{i}AFll'41j}A'§ (Fyy (0D

o Gdfexy = Ry l{Z}AFll 2URINFYy SUIIAFY (3

CFll h{o}l
¢(Qi(x§i1;...}x§i:i)) = RAFyy ) (4riIA R k (Fll’h{j})A
h=ﬁi+2(F11,h{°})
¢ (~n) = RAFll’l{o}AFll’2¢(A)Ahz3(Fll’h{o})
0(a%B) = RAF) ({1IAF) 0 B)AF); Jo(B)A R (P {0D)
@ (yxjR) = RAF11,1{4}A311,2{k}AF11,3{i}AF11,4¢(A)Ah§4(Fll,h{o})
and let
T,(A) = L(D+Pl3¢(A)).
If S § W then by (8) - (11) S |= A if and only if W |= Tu(A).

t
0
ﬂ.
g

f

{Cu} and let Du = ¢.- Then we have shown that

"
W= (&,Tu,cu,vu) is a reduction of‘(L,A) to (Th,Rh)a

Ap.2 For nz2 we shall construct a reduction Vo ofon,Rn)
to (Tn-1Rn-1) - )

Let W =,(W}<l,...,< ) be a structure in R Then there
is a structure (¥ = OW',<1,... —1) in R _jSuch that W’ is

the union of disjoint'nonempty\sets E, U, U’ and conditions
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(1) - (9) below are satisfied.
1) U= W.

(2) <1 N E@W) =s.

(3) <1 N (UxE) is a one-to-one correspondence from U onto

E.
(4) <} N (UxE) = .
(5) '<i n (U)XU) is a one-to-one correspondence from U’

onto U, If u € U then we write v = W if v ¢ u’ and v <i u.

N (Uxu) = < (Recall that U = W and <, < WxW)

. ~ . 1.
N7 (BxXU*) = ¢.

1

(8) If u’,v) € U*, then u"<i v* if and only if v’ = 1,

v/ = ¥ for u,v € U, and u‘<n v in W.

(9) For 25i5n-1,'<£ c UxU ( WxW) and </ = <..

’
1 1

Let C be the conjunction of (10) - (18) below.
n

(Def.) E = G, (pA~p)
FE
(Def.) U’ = ~EA~U

(Def.) U

(10) E > PU

(11) EAP,P > Hlp

(12) UAF, (EAP) ~ G, (E>p)
(13) U ~» PlU

(14) UAP, (U”Ap) + Hy (U7~p)

(15) U’ - FlU
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(16) UZAF, (UAp) ~ G, (U>p)
(17) U2 > ~P U

n-1 : }
(18) i:Z(FiPVPip)-» U

Let s = C3n.
Claim: W’ satisfies (1) - (9) with respect to some ¢ Rn'

‘Proof: For any assignment V on W2 u € V(E) if and
only if there is no v € W such that u <{ v; thus V(E) is
independenﬁ of‘Vvand we shall refer to the set V(E) as
simply E. u ¢ V(U) if and only if there is vv€ E such that
u < v, thus V(U) is independent of V and shall be called
simply U. V(U’) = W -(V(E)UW(U)) = W -(EUU) and shall be
called U’. Clearly W’ is the ﬁnion of the disjoint sets
E, U, U-. v ’

(2) and (4) follow from the definitions of E, U, and
U’ above.

.(3) follows from the definition of U and from (10) -
(12) . The definition of U ensures that each point in U has
a successor in E and (10) that it has at most one. (11)
ensures that each point in E has a predecessor in U and (12)
that it has at most one.

(5) follows from (13) - (16) in a similar way.

(7) follows from (17). |

(18) ensures that for 25isn-l,'<i c UxU.

To satisfy (1), (6), (8), and the rest of (9), we let
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W =_U,‘let éi =_the'restrictipn qf <i to UxU for 1l=i=n-1 and
for u,y € W (= ,U)l, let uw < v if 'andﬂon.ly if T <) 7.

It remains to show only that U, U*, and E are nonempty
and that W is connected.

There are one-to-one correspondences between U, U’,
and E, which together comprise W . If one of U, U’, E were
empty, so would the other two be and hence W would be empty;
an impossibility.

Let u,v €W (= U). We must show that u and v are
connected in W; we know that they are connected in W’. Let
USUy, Ugy eee p Wp gy U SV be a sequence of points in W’

such that for 1l=i=n-1, uy is directly connected to Ui
via one of <i""’<ﬂ—l' We shall obtain a new sequence of

points in W (= U) such that each point in the new sequence

is directly connected to its successor via one of <qrecsi<ps

n
by starting at the beginning of the existing sequence and
replacing portions of it by new portions according to the
following procedure.

Let U, be the first point in the sequence not already
dealt with. We can assume that us €U (=W). If i =1 this
will certainly be true. If u, is directly connected to u,

1

yi o ’ <'<._
via <3 where 2<j=<n-1 then u;q

ectly connected‘via'<§. Do nothing to uy in the sequence.

€ U and uy and u.

i+l are dir-

The first point now not dealt with in the sequence is Usqe

If us is directly connected to Usq via'<i we consider sev-

eral subcases.
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(i) wu.

i+l € U. In this case u; and u;,q are dlrectly

connected via <; and so we do nothing to u; in the sequence.
The first point now not dealt with_ui+l.
(ii) u..q € E. In this case the only point directly

conn to u. i . .
ected ul+l is u, and so u

i+ 18 the same point as u; .

Omit u, and U9 from the new sequence. The first point now

not dealt with is u.,..
i+2

. e . . . -
(1ii) U € U/, In this case‘we must have U

UI. Let uj be the next point in the sequence (after ui) in

U. Then ui+1,...,uj_1 must all be in U . Let Vi+l""’vj—l

be the points in U such that Ui = Vigqr oo s uj_y = V;jI.
Each of ui+l""’uj-l must be directly connected to its
» rd - » [

successor via <7, thus each of Vi+l""’vj—2 is directly
connected to its successor in W via <h and we must have
u. = U., thus v. = u.. SO we replace the portion
H5-1 7 Yy j-1 = %3 P P
ul"“'uj—l with Vi+l""’vj—2 and the flrst.p01nt now not -
dealt with is u.

When i = m, then uy = v and our new sequence is con-
structed.

Thus u and v are connected in W and so W is connected.

The claim is proved.

Now, if ® € R and if #" is isomorphic to some W’ in
Rnhl which satisfies (1) - (9) with respect to some W, we
write W § W, It is clear that if U and W are isomorphic
n .

in Rn and if W’and W satisfy (1) - (9) with respect to
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W and W respectively, then W’ and ¥’ are isomorphic in Ry-1-

Hence, ¥ . is well-defined on isomorphism classes of struc-

n
tures.

Define a transformation @ from formulae of fn to
formulae of Tp-1 BY

¥YP; = P; for each variable'pi

y (VA) = ~(UA~A)

\.l/ (A>B) = \FA—»\"IB
y(G;A) = G, (UsyA)

ot o (1<is<n-1)
v (B,2) = H, (UsyA)

Y(G_A) = Hy (Ur~G, (U7+G (U>yA)))

H

y(H A) = H) (U/~H) (075G, (U>yA)))
Now, for a formula A of T, let
T, B = UsyA.
We must show that if W ¢ Rn, ws € Rn—l and W gnw', then for
.a formula A of T,
W |= A if and only if @//|=T A
vn

-Let U, U’, and E be subsets of W’ as before. We know
that W is in some sense isomorphic to U and so .shall assume
that W = U. Now as V runs through all valuations on W’,
Vo= V}W (the restriction on V to W) runs through all
valuations on W (probably’more than oncge, in fact). It
suffices, then, to show that for each u ¢ W’ -U, V(Tv A,u)

n N

= T for all V on W and for each u € U (= W), V(Tv A,u) =

. , n
v’ (A,u), for all V on W’. If u £'U then V(U,u) = F and so
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V(T; A,u) = V(U»WA,u) =;T. We show by lnductlon on the
1ength of A that for u ¢ U (= W), V(T A u) = V2. (A,u) for
all v on W’.

If A is a variable p; then V(TVnA,u) = V(U%pi,u) =
V(pi,u) (since V(U,u) = T) = V*(A,u). Nowiassume that the
result holds for all formulae shorter than A.

If & is ~B then V(T A,u) = V(U+yA,u) = V(U (UAYB) ,u)
= V(N\JJB,u) = V(~(U—>\¥B) Ju) = V("vTvn_B,u) = v’ (~B,u) = V’(A,u).
If A is B-C then V(T A,u) = V (U= (yB-yC) ,u) = V(yB>yC,u) .
This is T iff either V(yB,u) = F or V(yC,u) = T, which
happens if and on;y if either V(TVnB,u) = F or V(TVnC,u) =T,
which happens iff either v’ (B,u) = F or V' (C,u) = T, which
happens iff V)(A,u) = T,

If A is G;B (1=i=n-1) then V(TVnA,u) = V(VA,u) =
V(Gi(U+¢B),u) =T iff V(U*¢B,V) = T for all v such that
u <£ v. But V(U*¢B,V) = V(TvnB'V)' and if v € U, this,
by the induction hypothesis, equals v'(B,v), and if v £ U
then V(U>¥B,v) = T. And so V(U*¢B,V) = T for all v such
that u <} v iff V' (B,v) = T for all v in W (= U) such that
u <; v. Therefore v’ (A,u) = V'(Tv A,u). Similarly,

vi(r, H;B,u) = vV’ (H;B,u) (1=i=n-1).

Now, if A is G B then V(T“nA'u) = V(YA,u) =
V(Hl(U'*Gl(U'*Gl(Q*WB))),u). Thigs is T if and only if
V(Gl(U’*Gl(U*yB)),E) = T; if’and only if for alliv €U

such that ﬁ'<i v, V(Gl(U*¢B),5§ = T; if and only if for all
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v € U such that u'<n,v in W, V(TV.B,V) = T; by induction
v TV,
hypothesis, if and only if V“(B,v) = T for all such v;
and hence, if and only if V*(A,u) = V)(GnB,u) = T. Finally,

V(T H_B,u) =,V5(H B,u) follows similarly.
vnn n .

Let C = {C_ } and D = ¢. Then we have shown
AV Vn Vn

n

that for nz2, v = (gn,Tv C, 0D,

) is a reduction of
n Yn Yn

(Tn'Rn) to (fn—l'Rn—l)'

Ap.3 Finally, we construct a reduction v, (which we shall
usually call simply v) of(Tl,Rl) to (M,ﬁ).

Let W = (W,<) be a structure in Rl.vThen there is a
superconnected structure W’ = (W';<') in ﬁ such that W’ is
the union of disjoint nonempty sets U, U’, and {e} and

conditions (1) - (8) below are satisfied.

(1) U= W.

(2) <’ n ({epH”)

= d).'
(3) <’ N (u’x{el}l) = ¢.
(4) <’ N (UxU’) is a one-to-one correspondence from U

onto U’. If u € U then we write v = u if v € U’ and u <" v.
(5) <* N o) = < N wxwnd 7t

(6) <’ N (Uxfe}) = Uxiel.

(7) <’ N (UxU) = <. . - (Recall that U = W and < ¢ WxW.)

(8) If u,v €U then'ﬁ;v € U’ and we have u <’ v if and only

if v <’ u.
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Let C be the conjunction of (9) - (18) helow.

(Def.) e = olpA~p)
(Def.) U = ¢e

(Def.) U’ = ~eAU

(9) U - oU”

(10) UAO(UZAP) ~ 1 (U’-p)

(11) Us - oU |

(12) | U%AQ(UAp) ~ n(U-p)

(13)  Uap - o(U’~op)

(14) U’ap - o(U-op)

(15) UapaQ(UAg) - HlgAPU’AQ(U " AQp)))
(16) U ApAd(U’Aq) - Q(gAoUAQ(UAOP))
(17) Olenp) - o(e-p)

(18) QOleap) - uﬁ(e+p)

Let p = {e}. h .-
Claim: If W’ = (W’,<”) ¢ ﬁ, W’ = c, and W’ B e, then W’/
satisfies (1) =~ (8) with respect to some W ¢ Rl'

Proof: It is easy to see from the definitioné of e,
U, and U that V(e), V({U) and V(U”) are independent of the
assignment V, and so, as before, we shall call these three
sets of points simbply E, U, and U , respectively. It is
clear fr‘om the d'ef'initionvs that they are disjoint and that

W’ is their union.
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The fact,;hat w- f#ve.ensures that either U or U’ is
nonempty. If U # ¢ tﬁeﬁ (9) ensures that also U’ # ¢.‘

If U2 # ¢ then (11) ensures that also U # ¢. So both U and
U’ are nonempty. Buf then the definition of the formula U
ensures that E is nonempty.

(9) and (10) ensure that <’ N (UxU’) is a function
from U into U); (11) and (12) that'<5 h (U)XU) is’a function
fram U’ into U. cCall the first function £ and the second g.
Then (13) ensures that for all u ¢ U,_g(f(u)).= u; (14) that
for all v € U , f(g(v)) = v. Thus g = f_1 and so f is a
one-to-one function from U onto v’ . (4) and (5) are there-
fore both satisfied.

Suppose u,v € U and u <” v. Then (15) ensures that
in U, V<’ U. Suppose, on the other hand, that in U’,

V <’ U. Then (16) ensures that in U, u <’ v. Thus (8) is

satisfied.

We shall now show that E is a singleton. We already
know that E # ¢. Suppose that E is not a singleton.
Then We shall show that there are distinct elements e and
e’ in E such that there are points u,v € U with u <’ e,
v <’ e’ and either u<’ v or v </ u.

Since W’ is superconnected it is surely connected.
Let e=u;, Uy, .-+ qm=e'#e be a sequence of points in W’
such that each is directly connected to the next via <’.

We can without loss of generality assume that u2,...,um_l‘
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{ E, fqr otherwise rédesignate»e? #9»be{the first point in
the sequence # e:but in E,and reﬁove all of the sequence
before the last occurrence of e preceeding this new e?,and
after this new es. If not all of gy <+« , U, 4 are in U
then we can replace this sequence by a similar one in which
they are all in U according to the following inductive
procedure.

u, must be in U since u; ¢ E and so we leave u, as it
is,

Let u, be the first point in the sequence not yet
dealt with., If u; €U then leave it as it is in the sequence
and u,

i+l
then u, = u. 1* Let uj be the next point after u, that is

is now the first point not dealt with., If u, € U’
i i-
in U. Then Ujresesuy o are all in U” and are directly con-
nected via <”. Thus there are Vi""’vj-l in U such that
they are all directly connected via </, u, = VI, oo
uy_y = V;:I, and v; = u;_; and v, ;= uy. Then replace
ui,...,uj with Vi+l"”’vj—l' The first point not now dealt
with is uj+l’
Now we can.asgume that Ugpees, U g € U. The definition
of the formula U and (17) ensure that each of Ugr wee 4 Up g
have exactly oné'<?— successor in E... Clearly the <’=-suc-
cessor.:gf_u2 is;efsinqefngisyaigectly connected via <’
to gi (= e). Le£ u; now be the first point in the sequence

whose <”“-successor in E is not e. Such a point must exist

since the «”-successéor in E of w1 is e’. Now redesignate
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e’ to be the successqr in E Qf,ui if i@ is not already. Let
uﬂ= us g and v = u, . Then we have u;<? e, v<’ e), and
either u<’ v or v <’ u. Without 1ossﬂof_generality assume
u<” v. |

Now let V be an assignment. on wérsﬁch that V(p) = {e}.
Then V(@(eap),u) = T but V(oo(e»p),u) = F since V(e,e’) =T
but V(p,e’) = F. However this contradicts our original
assumption that (18) is valid in w*. So E must be a single-
ton after-all. Let E = {e}.

(2), (3), and (6) now follow from the definitions of
e, U, and U~-.

If we let W= U and < = then (1) and (7) are

<l w
satisfied. It remains only to show that W is connected.

Let u,v € W (= U). Then since W’ is superconnected
there is a sequence U=Uy /s eee U =V of points in W’ such that
each is directly connected to the next via <’ and such that
none of Ugreee Uy 4 is e. But then, as we have seen before,
we can reconstruct this sequence so that all the UgresepUy g
are in U. (This reconstruction is exactly the same as the
corresponding oné in the pfeceediﬁg section.) Thus S
U=Uy oo e U=V is a sequence of points in W‘such.that each
is directly connected to the next via <. So W is connected.

Let ( 8 w? if w? € ﬁ‘is isomorphic to a structure
which satisfies (1) = (8) with respect to W ¢ Ry Clearly,

if W’ is isomorphic to a structure which satisfies (1) - (8)

with respect to W
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and is also isomorphi¢ to a structure which satisfies
(1) - (8) with respect to W, then @ and (W~ are isomorphic.

So‘g is well-defined on.isomorphism classes.

Define a transformation ¢ from formulae of T; to
formulae of M by
VP; = pP; for all propositional variables p;

¥ (~A) = ~(UAYA)

¥ (A>B) = YA+yB

¢(G1A)'= o (U->yA)

o (U%-p (U’ (U+VA) ) )

W(HlA)

Now, for a formula A of Tl’ let
TvA = U*?A.
We must show that if W € Ry, W ¢ R and W y @’ then for a
formula A in Ty
W b= A if and only if W’ }= T A.

'The proof is almost exactly word for word that of the
corresponding property in the reduction Vh and so won't be’
repeated. ‘

Finally, we let Cv =:{Cv}. Recall that Dv = {e}.

Then v = (X,Tv,Cv,Dv) is a reduction'of(fl,Rl) to
™ R) -

If we let o be the composite v0v201..0vhpp,‘then o

is the desired reduction of,(L,A) to (M,ﬁ).
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