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Abstract 

I 

We define six semantics (systens of structures) for 

the modal language (the language obtained by adding to the 

language of classical propositional calculus the single 

unary connective o ) :  the boolean semantics (derived from 

the algebraic structures of McKinsey aztd ~arski [ 9 ] ) ,  the 

neighbourhood (Scott-Montague) semantics, the relational 

(Kripke) semantics, the first-order semantics (Makinson's[lO] 

generalized "relational models"), and finally the connected 

and superconnected semantics. The dissertation studies the 

strengths of these semantics in various ways: first, with 

respect to containment of one within another and then with 

respect to width and depth (measures of the "span" and 

"density" of the set of logics which are complete with 

respect to the semantics in question). 

Previously known results in these areas are noted and 

some other results are proved. In particular, we note that 

the width of the relational semantics is that of normal 

logics and that any relational frame is in fact a neighbour- 

hood frame, so that the "ground" common to both semantics 

is that of normal logics. Among the major results of the 

dissertation is the presentation of two normal logics, one 

between T and S4 and the other an extension of S4, which are 

incomplete with respect to the neighbourhood semantics, thus 

showing that, unlike the boolean and first-order semantics, 

(iii) 
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the neighbourhood semantics does not have maximal depth 

even with respect to normal logics. We also exhibit a 

neighbourhood frame which models T and is equivalent to 

no set of relational frames, thus showing that the rela- 

tional semantics has even less depth than the neighbourhood. 

The connected and superconnected semantics are shown to have 

the same depth as the relational semantics. 

Finally, we discuss some properties of structures in 

a semantics which can be "described" directly in the modal 

language; these are called modal properties. We note t h T  

all modal properties are second-order but that the con- 

verse in not true. We can, however, through a system of 

reductions, use the modal language to describe indirectly 

all second-order properties. 
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1. Introduction: Some Terminology and Background 

1.0 The study of Mathematical Logic depends on a number - 
of basic concepts. First, there is the concept of a for- 

mal language: a set of symbols and formulae constructed 

from these symbols. Then there is the concept of proof 

and from this comes the notion of a. theory or logic. These 

may be called the syntactical aspects of Mathematical Logic. 

We also have the semantical aspects of Logic. For each 

language we may have a particular concept of structures 

or models for that language. 

In some of the major branches of Mathematical Logic 

we study different aspects of these concepts. We may 

restrict ourselves, for example, to the study of languages 

(or one particular language) and proofs in the language(s), 

and in this case we have Proof Theory. Or we may study the 

relationships between a class of languages, such as first- 

order languages, and various structures or models for them, 

without particular emphasis on the notion of proof. Here 

we have Model Theory. On the other hand, we may restrict 

ourselves to one particular language, one notion of proof 

in that language, and various models or structures for it, 

such as in Set Theory or Arithmetic. 

In this thesis we study one particular language, the 

Modal Propositional Language, and compare various concepts 

of structure for it, without regard to the notion of prov- 



ability. 

1.1 We begin by trying to make precise some general terms - 
that we shall use throughout. 

By a language we shall mean a set of symbols together 

with a notion of formulae which wiil be certain finite 

sequences of the symbols. The set of formulae in a language 

is usually defined inductively. 

By a semantics for a language we shall mean a class 

of "sets with structure" together with a notion of validity, 

the type of structure being fixed for a particular semantics. 

The elements of the class, i.e. the sets with structure, 

will be called simply structures. Together with each struc- 

ture goes a set of formulae called the formulae valid in 

the structure. The notion of validity in structures is 

extended to classes of structures in the following way. 

A formula is valid in a class of structures (all in the same 

semantics) if and only if it is valid in each structure in 

the class. If A is a semantics we shall often use a mild 
abuse of notation and write S c A to mean that S is a struc- 

ture in the semantics A. If A is a formula, we write S /= A 
to mean that A is valid in S; we also say in this case 

that S models A. 

By a logic on a language we mean simply a particular 

set of formulae of the language. If K is a logic on a 

language L and A is a semantics for L and S € A, then we 

write S K to mean that every member of K is valid in S .  



If , S  K we say that -S is a model of K or S models K. K is 

the logic determined bl S if it is the set of all formulae 

valid in S. Similarly, we refer to the logic determined 

by a class of structures in A. If K is a logic we write 

K t A  to mean A , €  K. 

By a system we shall mean a pair (L,A) where L is a 

language and A a semantics for L. If C is a set of logics 

on L then we can compare C with the set of logics determined 

by structures, or classes of structures, in A. If each 
1 

logic in C is determined by some structure or class of 

structures in A, then we say that a -- is ade~uate --- - -  for C. (We 

shall later indroduce the notion of "depth" and, at least 

for the modal language, shall say that has - maximal depth 
with - respect to - -  C in this case.) If K is a particular 

logic on L we say thatA 9 adequate for g or that K is 

complete with respect to &if for each formula A in L either 

K t A or there is S € A with S K and S A (i.e. every 

formula not in K is not valid in some model of K in A ) .  

1.2 As already stated, we shall, in this thesis, be concen- 

trating on one particular language, the modal language M, 

and on certain semantics for M. The study of the modal 

language, its semantics and its proof theory is usually 

called Modal Logic, Modal Logic in its modern form was 

originated by Lewis and Langford [ B ]  in 1932. Their con- 

cern was entirely syntactical. Early semantical studies 



in Modal Logic were made by McKinsey and Tarski [9] and 

later by Saul Kripke (whose name is usually attached to 

the relational semantics) and Krister Segerberg [14] 

(who fully developed the neighbourhood semantics). There 

are a number of surveys of Modal Logic made from an almost 

exclusively syntactical point of view, but the only exten- 

sive semantical studies or surveys are to our knowledge 

those of Segerberg1141 and of Hansson and Gardenfors 161. 

1.3 There are two approaches that we can take in studying 

the relationships between languages and semantics. We can 

accept the language as primary and think of each semantics 

as a way of interpreting the language. In this case we 

would study the relative strengths of the various semantics 

with respect to various things,including adequacy and 

completeness. 

On the other hand, we may accept the semantics as 

primary and consider the language as something with which 

we can "talk about" the structures in the semantics. In 

the case of this approach it is interesting to see how 

powerful the language is for describing various properties 

of structures. We may wish somehow to compare the powers 

of various languages for describing certain structures. 

We take the first approach in chapters 4 to 9 and 

the second in chapter 10 to 12. 



1.4 A major problem with the development of the literature 
4.r= 

in Modal Logic has been one of terminology. Some Modal 

Logicians come from Mathematics, others from Philosophy, 

and each seems to bring the terminology of his background 

with him. Thus, for example, the word "model" is used in 

different and incompatible ways by different authors. 

What we are calling a "structure" is sometimes called a 

"model", what we are calling a "logic" is sometimes called 

a "theory", a "calculus", or a "system"; what some call 

"theorems" are called "theses" by others; and so on. The 

notation, also, has not been standardized. We use and 0 

. as necessity and possibility operators, but many other 

authors use L and M. We therefore make an effort to define 

out terminology and notation as clearly as possible. We 

have attempted wherever possible to use terms and notation, 

in a manner consistent with common usage among Mathematical 

Logicians. 

1,5 We have tried to keep this thesis self-contained 
I 

with respect to its Logic content, so that an intelligent 

rpader with no more than an undergraduate background in 

Mathematical Logic and in Boolean Algebra should be able 

to follow it in its entirety without making outside referm 

q c x s  to the literature in Logic. A few major results 
3#. 

from Boolean Algebra and Topology are used and references 
' $  

tQ major texts in those areas are given. Modal Lagic 



results are given with complete proofs, with a couple of 

minor exceptions in chapters 10 and 12. The results of 

chapter 7 also appear in Gerson 131 .  

1.6 - Sections are numbered beginning anew with each chapter 

and theorems, lemqnas, corollaries, and definitions are 

numbered sequentially beginning anew with each section. 

Thus 4.6.8 refers'to the eighth item (either a theorem, 

lemma, corollary, or definition) of the sixth section of 

chapter 4. Ends of proofs are noted with the symbol &#. 
The last theorem in the thesis, 12.7.1, has a particularly 

long and tedious proof and so the details of this proof 

are given in an appendix. 



2. The Modal Lanauaae 

2.1 The (propositional) modal language, M, is the language -",-. --- 
obtained by adding the single unary connective a to the 

classical propositional language. Thus, the symbols of 

the language comprise an infinite sequence of propositional 

variables, p, , p, , . . . , together with the symbols - I  -+, , 
and parentheses, ( and ) .  The formulae are defined induc- 

tively: each propositional variable pi is a formula; if 

A and B are formulae, then so are --A, (A+B), and oA. 

To simplify our notation we use the defined symbols 

v, A ,  ct, and 0. If A and B are any formulaelwe may write 

(AvB) for (-A+B), (AAB) for -(A-B) , (A++B) for ((A+B)A ( B + A ) ) ,  

and OA for -0-A. We also omit parentheses where it is 

possible to do so without ambiguity. The usual hierarchy 

of connectives is observed: first tt, then +, then v and A, 

and finally -, 0 , and 0. (Those appearing later in the 

list bind closer. ) Thus a-p, vp2 -p, +vp, ~ p ,  is unambiguously 

intetpreted as ( (0-p,vp,)+--+(p,-+ (Op,~p,) ) ) . We often use 
lower case letters q, r, s, t with or without subscripts 

to represent arbitrary (but fixed and distinct in a given 

context) propositional variables. The connectives and 

0 are called necessity and possibility operators respectively, 

and we say "necessarily A" and "possibly A" for oA and OA. 

The following definition will be useful later. 



2.1.1 Definition: If A is a modal formula then we say 

that the formula B occurs as an elementary subformula in 

A if and only if B is a propositional variable or is oC 

for some C and B has an occurrance as a subformula of A 

which does not lie within the scope of any q connective. 

In other words, B is not a proper subformula of any sub- 

formula of A of the form nD. 

For example, if A is q (op-tq) -+ (or-+s) then q (op+q) 

or, s all have elementary subformula occurrences in A. 

2.2 - A formula of the modal language is a tautology if it 

is a substitution instance of a tautology of the classical 

propositional logic. A modal logic is a logic on the 

modal language which contains all tautologies and is closed 

under substitution (Sub) and modus ponens (MP). Thus if 

L is a modal logic, A is a formula such that L A, pi is 

a variable with occurrences in A, C is any formula, and A 

is the formula obtained by replacing all occurrences of pi 

in A with occurrences of C, then L 1- B; if A and B are 

any modal formulae such that L I-- A-+B and L 1- A, then 
L t- B. 

2.3 - A modal logic L is classical if it is closed under 

the rule of equivalence 

RE: if L t A d  then L t $++nB. 



The formula 

q (pl+p2 )+(np,+op2 

will be denoted as [K]. A modal logic L is normal if L t K 
and L is closed under the rule of necessitation 

RN: if L t A then L 1- CIA. 

2.3.1 Theorem: If L is normal and L A+B, then L t 
oA+oB and L OA+QB. 

Proof : By RN , L t q (A+B) . From K and Sub, L k 
(A+B) -+ (OA+~B) . Therefore by MP , L P oA-+~B. Now L t A-+B 

a L t .-B+-A =, L ONB+ONA L wwA+-a-B = 

L 1- OA4B. 

2.3.2 Theorem: Every normal logic is classical. 

Proof: Suppose L is normal and L t A-B. Then 

L t A+B and so by 2.3.1 L /-- oA+oB. Similarly L t 
oB+oA, and therefore L 1- oAt-toB. )9I)9( 

2.4 - We mention four particular modal logics which are 

of general philosophical interest and to which we shall 

have occasion to refer later. The smallest classical logic 

is called E; the smallest normal logic is called K (no 

ambiguity should arise from this double use of the symbol); 

the smallest normal logic containing the formula npl-+pl is 

called T; the smallest normal logic containing T .and the 

formula opl+oopl is called 54. 



3. Modal Semantics 

3.0 We shall consider six semantics for the modal lan- - 
guage: the boolean semantics ( B ) ,  the neighbourhood or 

Scott-Montague semantics ( S ) ,  the relational or Kripke 

semantics (R) , the first-order relational semantics (F) , 

and two restricted versions the 
0 A 

connected relational semantics (R) and the superconnected 
relational semantics . Structures in any of these semr 

antics are commonly called framestand we shall continue 

this practice. 

3.1 A boolean frame is a sextuple I3 = (~~0~1,-,n,*) - 
where (B,O ,1,- ,n) is a non-trivial boolean algebra (i.e., 

0 and 1 are distinct elements) and * is any function from 
B to B. The function, or operator, *, is called an interior 
operator and if b € B then *b will be called the interior 

of b. If I3 = (B,o,~,-,n ,*) is a boolean frame, an assign- 

ment, - V, on 8 is a function from N, the set of (positive) 
natural numbers, to B. Each assignment V determines a 

function, also called V, from the set of modal formulae to 

B as follows: V(pi) = V (i) for each i 6 N; V (--A) = -V (A) : 

v (A-+B) = - (V (A) 0-v (B) ) ; and v (OA) = *V (A) . A formula A is 

valid in 8 if V(A) = 1 for all assignments V. --- 
The boolean semantics is a generalization of the 

closure algebras of McKinsey 

frames" was the term used by 

and Tarski 191. "Boolean 

Hansson and ~ardenfors [6]. 



Makinson 1101 refers to the same things as "ncdal algebras", 

The boolean semantics is denoted by B. 

The following lemma will be used frequently, usually 

without specific reference to it. 

3.1.1 Lemma: If B = ( ~ , 0 , 1 , - , n , * )  is a boolean frame and 

V  an assignment on B 1  then for any formulae A , B  

(a) V  (AAB) = V  (A) nV (B)  , 
(b) V(AVB)  = - (-V (A) n-V (B) ) = V  (A) UV (B)  , 
(c) V(A+B) = 1 if and only if V ( A )  5 V ( B ) ,  

(d) V(A-B) = 1 if and only if V  (A) = V  (B) . 
Proof: (a) V (AAB) = V  (--(A-B) ) = -V (A-B) = 

- ( -  ( v  (A) n-v (-13) = -- ( v  (A)  n--v (B) ) = v (A) nv (B)  . 
(b) V(AVB)  = v (-.A-+B) = - (V (--A) n-v (B) ) = 

- (-V (A) n-V (B) ) = V (A) UV (B)  . 
(c) v(,A+B) = 1 - (v (A)  T I - v ( B ) )  = 1 - 

V ( A ) n - V ( B )  = 0 V ( A )  ': V ( B )  . 
(a) v(A+-+B) = 1 - V (  (A-+B) A (B-+A) ) = 1 - 

V  (A-+B) = 1 and V(B-+A) = 1 - V  (A) 5 V  (B)  and V ( B )  5 V  (A) - V  (A) = V  (B)  . K'I 

3.2 A  neighbourhood frame is a pair F = (u,N) where U is - 
any set and N any function from U to @ ( @ ( u ) ) .  If u € U 

we write NU instead of N(u), and if S € NU we say that 

"S is a neighbourhood of u". Thus N assigns to each point 

a set of neighbourhoods of the point. An assignment, V, 



on F is a function from N to @(U). Each assignment V deter- 

mines a function, also called V, from the set of formulae 

to @(u) as follows: V(pi) = V(i) for all i € N, V(-A) = 

U-V (A) , V (A-+B) = - V (A) UV (B) , and V(OA) = { u I V(A) c Nu }. 

For u E U, we sometimes write V(A,u) = T if u € V(A) and 

V(A,u) = F if u $ V (A) . We say that a formula A is valid 

at a point u if V(A,u) = T for all assignments V, and that - - 
A is valid in F if A is valid at all points in U. 

Thus, we think of each assignment as assigning truth 

or falsity to each propositional variable at each point in 

the frame, the assignment of truth or falsity being extended 

through the boolean connectives in the usual manner and a 

formula oA being assigned truth at a point if A is true 

exactly on a neighbourhood of the point. 

The idea of a semantics based on neighbourhoods is 

due originally to Scott [13] and Montague [ll] and is 

more fully developed by Segerberg [14] who uses the term 

"neighbourhood frame". Hansson and Gardenfors 1 6 1  refer 

to them as "Scott-Montague" frames. 

The neighbourhood semantics is denoted by S. 

3 . 3  A relational frame is a pair W = (W,<) where W is - 
a set and < is a binary relation on the set. If u,v € P 

and u<v we say that v is a successor of u or that v is 

accessible from u. An assignment, V, on W is, as in the 

neighbourhood semantics, a function from 1 to a(W), and 



1 

determines a function,also called Y,  from the set of form- 

ulae to B(u) as follows: V(pi) = V (i) for all i C N ,  
4V (-A) = W-V (A) , V (A+B) = - V (A) UV (B)  1 and V (uA) = 

{ u I {v)u<v) c V(A) ). 

As with the neighbourhood semantics, we write V(A,u) 

= T or F according as u € V(A) or not. Again, a formula A 

is valid at - -  a point u if V(A,u) = T for all assignments 

V, and A is valid in W if A is valid at all u in W. So 

the assignment is again thought of as assigning truth or 

falsity to each variable at each point and hence to each 

formula at each point, this time oA being true at u if A 

is true at all successors of u (and maybe at other points 

as well) . 
The relational semantics is due to Saul Kripke and, 

in fact, relational frames are often referred to by authors 

as "Kripke structures" or "Kripke models". 

The relational semantics is denoted by R .  

3.4 A first-order relational frame is a triple, U = - 

(U ,< ,n) where (U ,<) is a relational frame and n is a field 

of subsets of U (a boolean'subalgebra of the boolean algebra 

of all subsets of U) which separates points (for u,v € U 

there is S c n with u c S and v R S) and is closed under 

the operation ,*, where for S c U, ZS = { u I {vlu<v) c S ). 

In this case, an assignment, V, on U is a function from N 
to n. Since n c @(u), the assignments on U comprise a 



subset of the set of assignments on the relational frame 

(U,<). They are extended to functions from the set of all 

formulae to P(U) as with the relational semantics, and 

* since n is closed under -, n, and , we see that such an 
extension will be a function from the set of formulae to 

IT. 

We write V(A,u) = T or F as before and define valid- 

ity of a formula at a point or in a frame as with relation- 

al frames, keeping in mind that we have fewer assignments 

and that therefore validity is easier to obtain. That is, 

3.4.1 Theorem: If U = ( ~ , < , n )  is a first-order frame, 

and if a formula A is valid in the relational frame (u,<) , 
then A is valid in U .  m 

The first-order relational semantics is due to 

Makinson [lo]. Makinson calls his frames, which are 

basically first-order frames, simply "relational models" 

and notes that they are generalizations of the usual 

(Kripke) relational models (our relational frames). 

Fine 1 2 1 ,  studying Modal Logic with propositional quan- 

tifiers recognizes the possibility of treating the quan- 

tifiers as ranging over a possibly restricted class* of 

sets of points in an otherwise Kripke-type semantics. 

Thomason [ 2 2 ]  defines a first-order semantics for 

Tense Logic, and it is from him that we take our termin- 



ology in this case. 

The first-order semantics is denoted by F. 

3.5 Let W = (w,c) be a relational frame. If u,v € W 

we say that wand v are directly connected (via < )  if either 

ucv, v<u, or u = v. We say that u and v are connected if 

there is a finite sequence u=u,, up! ... , um=v of points 
in W such that each is directly connected to the next. 

We say that W is connected if u and v are connected fox 

each pair u,v of points in W. It is clear that connected- 

ness is an equivalence relation on W; in fact, it is the 

smallest equivalence relation containing <. 

The restriction of the relational semantics to con- 

nected. relational frames is callbed the connected (relational) 

semantics. Thomason [19,20,21] on occasion considers 

connected frames for tense languages; this author has not 

discovered other references to them. 
A 

The connected semantics is denoted by R .  

3.6 We shall latex find it convenient to consider a 
v 

further restriction of the relational semantics. If 

W = (w,<) is a connected relational frame, let WE denote 

{ u€W 1 dv€W with ucv } that is, WE is the set of points 

in W with no successors. Now, if 1 is the frame (W-WE,;) 
N where is the restriction of to W-WE, then we say that 

W is superconnected if is connected. 



tics and is denoted by R .  

The restriction of the rn!atFoml semantics to 

superconnected frames is called the superconnected seman- 



4. The Semantics Hierarchy 

4.0 In this chapter we shall study a strong relationship 
II 

between the six semantics. We shall show that some of the 

semantics can be said to be actually contained in others in 

the following sense. If C and D are semantics for the same 
language and if there is a mapping from the structures in 

C to the structures in D which is one-to-one (up to isomor- 
phism) and which preserves validity and non-validity of for- 

mulae, then we say that c is contained in or is a subseman- 
tics of D. In the cases we shall study, those of the six 

modal semantics already introduced, the mapping will be seen 

to be a natural one in a very real sense. 1 

4.1 We have already noted the most obvious examples of - 
* 

subsemantics. Clearly, R is a subsemantics of R and R is a 
subsemantics of R. In these cases the mapping is simply the 

A - 
identity mapping since a frame in R - is in R and one in R - is 

&& Almost as straightforward is the case of R and F. 
* 

The mapping W = (w,<) --+ W '  = (w,< ,P(w)) is clearly a map- 

ping from the frames in R to those in F having the desired 

properties. Thus R is a subsemantics of F. 

4 d  We shall show thatR is a subsemantics of S .  If W = 

< 
(w,<) is a relational frame, then we define a function N 

from w to P(B(w)) by N: = I s c w I {vlu<v) c s 1 .  Let F W  
4 



be the neighbourhood frame (w, N<) . We must show that the 

mapping W ---+ FW 'is one-to-one (up to isomorphism) and 

preserves validity and non-validity. If FW = FU where W = 

< A (w,<) and U = ( u , A ) ,  then W = U and N = N . Thus for u 6 

thus {vlu<v) = {vlu~v), and so u<v iff uAv. Hence < = A 

and Crl = U. 

Let V be an assignment on the relational frame W = 

(w,<). Then V can also be thought of as a corresponding ass- 

ignment on FW = (w,N<), since the underlying sets of W and 

FW are the same and since V is simply a mapping from N to 
that underlying set in either case. We shall see that the 

extension of V to formulae is the same in W as in FW, in 

other words that for any formula A, V(A) in W is the same 

subset of W as V(A) in FW. 

This is certainly true if A is a variable since in 

either case V(pi) = V(i) for all i C N. If A is --B or 

B+C then we recall from 3.2 and 3.3 that in both W and FW, 

V(A) = -V(B) or V(A) = -v(B)UV(C) respectively. If A is oB, 

then V(A) in W is { u 1 {vlu<vl c V(B)) = { u 1 V(B) C N: 1 

which is V (A) in FW. 

Since V ranges over all assignments on FW as it ranges 

over all assignments on W, we see that W A iff ~~b A. So 

the mapping preserves validity and lack of it. Hence, R is 

a subsemantics of S. In the remainder of the thesis we shall 

often identify W with FW and consider a relational frame to 



be a certain type of neighbourhmd frame. 

4.4 We now show that S is contained in B. If F = (u,N) - 

is a neighbourhood frame then we define an operator on 

B(u) as follows. If S c U, then is = I uCU I S C NU} . 
Let BF be the boolean frame (B(u) ,g ,U ,- ,fl ,a )  . Then we claim 

a 
that the mapping F --- BF is one-to-one and preserves va - i 
idity and non-validity. Suppose that BF = BG where F = 

(u,N) and G = (w,M) are neighbourhood frames. Then U = W 

and fi = * Thus, for all S ' U (=W) { uCU I S C NU} = M' 
{ uCU I S € MU} , hence for all S c U and for all u C U, 

S C Nu iff S € MU. So for all u C U, NU = MU, therefore 

N = M and thus F = G. 

It remains to show that if A is any formula, then 

F A iff BF A. Let V be any assignment on F. Then V 

is a function from N to P(U) and so can also be thought of as 
an assignment on B F .  It suffices, then, to show that the ex- 

tension in F of each assignment V to formulae is the same 

as the extension of V in BF; that is, for each formula A, 

V(A) in F is the same subset of U (element of 6 (U) ) as V ( A R  
in BF. 

If A is a variable then V(pi) = V(i) in F and in BF 6 

and if A is -B then V(A) = -V(B) in F and in R F' I•’ A is '\ 

B-tC then in F,V(A) = -V (B) UV (C) = - ( V (B) n-V (C )  ) which is 

V(A) in RF. Finally, if A is oB then in F,V(A) = 

( u 1 V(B) C NU 1 = fiV(B) which is V (A) in BF. Thus V (A) in 

F is V(A) in BF and so F A iff BF A. 



We shall often identify f with 8 and thus consider a F 
neighbourhood frame to be a particular type of boolean frame. 

Thus a relational frame is, in turn, also a particular type 

of boolean frame. In fact, we shall identify W = (w,<) 

with B F  = (P(u)  4 , u , - , n  l;d where we note that i;,S = 
W 

{ u I {vl u<v) c S 1. We also note that lemma 3.1.1 can be 

applied to neighbourhood and relational frames, and, since 

it deals with single assignments, to first-order frames, as 

well as to boolean frames. 

4.5 We have the following containment diagram for modal - 

semantics. 

We cannot show that F is a subsemantics of B (or vice 

versa), but we shall, in chapter 6, construct a mapping '4' 

from the structures of F to the structures of B which pre- 
serves validity and non-validity but which is not one-to-one 

up to isomorphism. 



4.6 In order to further understand the ~ubse~antics rel- 

ationship between the various semantics it will be necessary 

now to prove some general properties of structures in B, F, 
R , and S . 

4.6.1 Definition: A frame in any modal semantics (any sem- 

antics for the modal language) is classical - if it determines 

a classical logic. 

4.6.2 Theorem: Every boolean (hence every neighbourhood, 

every relational, every connected and every superconnected) 

frame is classical. 

Proof: Let B = (~,0,1,-,n,*) be a boolean frame and 

suppose that B A++B. Then by 3.1.1 for each assignment V 

on 23 V (A) = V (B) , so *V(A) = *V (B)  , V (oA) = V (oB) , and 

( 3.1.1 again) V (aA+-.oB) = 1; hence B oA+-+oB. )C()C( 

4.6.3 Definition: A frame in any modal semantics is normal 

if it determines a normal logic. 

4.6.4 Lemma: If L is a classical logic closed under RN and 

such that L /- u (pnq)t-t(ophoq) and L /- A-tB, then L I-- uA-+aB. 
Proof: L t A+B - (taut) L I-- A-(AhB) = (RE) L t 
(AhB) . But L q (phq) t+ (ophoq) = (Sub) L o (AhB)++ 

(uAADB) =. L )-- o(AhB)-+oB. Therefore L oA+oB. d10( 

4.6.5 Lemma: If L is a classical logic closed under RN, 

then L K if and only if L o (p~q)++(ophoq). 



, 

Proof: Suppose that L k- I:. Then (taut. j L /- 

(p-+ (q+ ( P A ~ )  ; thus ( 2 . 3 .  lj L op-to (q+ (PA~) ) and (K, sub) 

L 1- q (q-t(p~q) )+(oq-+o (p~q) ; hence L op-+(oq+n (pnq) ) 

and so (taut.) L )-- opnoq-to (p~q) . Also L t p~q+p and L /-- 
pnq-tq (taut.) and so (2.3.1) L q (pnq)+op and L I- 

4.6.6 Theorem: A boolean frame B = (~,0,1,-,n,*) is normal 

if and only if *L = 1 and for all b,c € 8 ,  *(bnc) = *bfi*e. 

Proof: Suppose 8 is normal. Then for all assignments 

Vt V(o(pl+pl)) = 1. But V(o(pl-+pl)) = *V(pl+pl) = *l. SO 

*1= 1. If b,c 6 B, pick V such thatV(pl) = b and V(p,) = 

c. Then (4.6.5 and 3.3.l(d)) V(o(p1np2) = V(OP,AOP,) ; so 

*(v(p,)nv(p,)) = *v(p,)n*v(p,); thus *(bnc) = *bn*c. 

Now suppose *1 = 1 and for all b,c c B, *(bnc) = *bn*c. 

If B A then V(A) = 1 for all assignments V on B. Thus 

V(oA) = *V(A) = *1 = 1 for all V on B and so 13 oA. For 

any V on 13 , V(o(p1~p2)++(np1~~p2)) = 1 - *(V(p1)~)V(p2)) = 

*V(pl) n*V(p,) which is true by hypothesis. Since by 4.6.2 

8 is classical, 4.6.5 applies, and so B is normal. RR 



4.6.7 Theorem: A neighbourhood frame f = (u,N) i s  normal 

i f  and only  i f  f o r  each u  C U ,  N U  i s  a  f i l t e r .  

Proof:  Suppose F i s  normal. W e  must show t h a t  f o r  each 

u  € U:  ( a )  N U  # Q ,  (b )  N , N 1  C NU - N n N 1  C N U ,  and ( c )  
1 

N C N U  and N ' 3 N  3 -  N '  C N U .  Now, by t au to logy  and RN 

f I= ~ ( P + P )  Thus f o r  a l l  u f U and any assignment V on 

F ,  u  f V(o(p+p))  and s o  U = V(p+p) C N u .  Thus NU # 4 .  

Suppose now t h a t  N € N U  and N '  d Nu.  L e t  V be such t h a t  

V (p)  = N and V (q)  = N 1  . Then u  E V (op)  f l ~  (oq) = V (opnoq) . 
Then by 4.6.5,  u f V (o  (pnq) ) and s o  N n N '  = V ( p ~ q )  C N U .  

Suppose N € N U  and N ' 2 N .  L e t  V be such t h a t  V(p) = N 1  
\ 

and V(q) = N.  Then V (pnq) = N ' n N  = N C N U .  Thus u € 

V(o(pnq) )  and, s i n c e  by t a u t .  a n d  2.3.1 

v ( o  (pnq) -up) = 1, u 6 V (op) . ~ h u s  N '  = v (p)  C NU and s o  NU 

is  a  f i l t e r .  

Now suppose t h a t  - V U € U ,  N i s  a  f i l t e r ;  t hen  (a), (b)  , and(c )  
u  

hold.  BY 4 . 6 . 2  and 4 .6 .5  it s u f f i c e s  t o  show t h a t  RN p rese rves  

v a l i d i t y  and t h a t  F q ( p ~ q ) + +  (opnoq) . Suppose t h a t  F A.  
i) 

Then f o r  a l l  V on F ,  V ( A )  = U and s o  V ( o A )  = U s i n c e ,  by (a) 

and (c) , U C N U  f o r  a l l  u  C U ;  hence F oA and RN p rese rves  

v a l i d i t y .  

Suppose t h a t  u  C V ( o ( p ~ q ) ) .  Then V(pAq) C N u .  Now 

V(p)>V(pAq) and V(q)>V(pnq) ; s o  by (c)  V(p) and V(q) are i n  

N hence u  € v(op)nV (oq) = V (apnoq) . I f ,  on t h e  o t h e r  hand, u '  0 

u f v (opnoq) , t hen  u  C V (up) and u  C V (oq) and s o  V(p) and 
a 



Therefore V (o (pnq) ) = V (opnoq) ; hence V(o(pnq)+-+(op~oq)) = 

U and F (pnq)++(op~oq) . Thus f is normal. !M 

4.6.8 Theorem: Every first order frame, hence every 

relational, every connected, and every superconnected 

•’ramelis normal. 

Proof: Let U = (~,c,n) be a fixst order frame. By proof 

similar to that of 4.6.2 with Z for *, U is classical. Thus by 

4.6.5, it suffices to show that RN pieserves validity and that 

U q (phq)++(ophoq) . Suppose U A. Then for any assignment 

V on U, V(A) = U. Thus for u € U, V(A) 2 Ivlutv) and so u € 

V(RA) . Thus V(oA) = U; hence U b..: nA and RN preserves validity. 
Suppose that for an assignment V on U and u € U, u € 

V(o(pAq)). Then for all n u ,  v < V(pnq). So for all n u ,  

v E V(p) and v E V(q) and so u € V(op)nV(oq) = V(opnoq). 

Suppose, on the other hand, that u € V(opAoq). Then for all 

v>u, v E V(p) and v E V(q); so v f V(pnq); hence.u € V(o(p~q)). 

Therefore V(o(p~q)) = V(opnoq) and so U /== o(phq)+-t(op~oq).)o(]W: 

The following results will be useful later. 

4.6.9 Theorem: If W = (w,<) is a relational frame, then W 

T iff < is reflexive ( x<x for all x € W ) .  

Proof: If < is reflexive then for any assignment V, 

~(op,u) = T a V(p,v) = T for all v such that u<v a V(p,u) 

= T. Thus V(op+p,u) = T VuEU and W np-tp. Since W is nor- 

mal by 4.6.8, W + T. 



If W T then bJ op-tp. Pick 12 E U. Let V be such 

that V(p) = {vlu<v). Then V(op,u) - T. Since W op-tp we 

must have V(p,u) = T, and so utu. Thus < is reflexive. )a(#[ 

4.6.10 Corollary: If F = (u,<,II) is a first-order frame and 

< is reflexive, then F T. 

Proof: By 4.6.9, (u,<) T and so by 3.4.1, f T.)~()CI 

4.6.11 Theorem: If W = (w,<) is a relational frame, then 

W S4 iff < is reflexive and transitive. 

Proof: If < is reflexive and transitive then, by 4.6.9, 

W T. Let V be an assignment on W and suppose Chat V(op,u) 

= T. But then V(oop,u) = T. Therefore V(op-mop,u) = T VuCU 

and so W op-toop and W s4. 

If W S4 then W T and so by 4.6.9 < is reflexive. 

'Also W /= op-toop. Let u,v,w C W such that u<v and v<w.  Let 

V be an assignment on W such that V(p) = (xlutx). Then 

~(op,u) = T. Since W op-toop, we have V(oop,u) = TI hence 

~(op,v) = T, hence V(p,w) = T. Therefore u<w and so < is 

transitive. ]90# 

4.6.12 Corollary; If F = (u ,< , I I )  is a first-order frame 

and < is reflexive and transitive, then F S4. 

Proof: By 4.6.11, (u,<) /== 5 4  and so by 3.4.1, 

F S4. )a(# 



4.7 - Clearly there are neighbourhood frames which are not 

normal, since we can always define the neighbourhood function 

on a set so that the set of neighbourhoods of some point is 

not a filter. Therefore, when we consider relational frames 

as neighbourhood frames we see that not all neighbourhood 

frames are relational frames. If, however, we restrict our- 

selves to normal frames the question remains: are there nor- 

mal neighbourhood frames which are not (isomorphic to) rel- 

ational frames and if so how can we characterize the neigh- 

bourhood frames which are (isomorphic to) relational frames? 

4.7.1 Theorem: A neighbourhood frame f = (U,N) is isomor- 

phic to a relational frame if and only if for each u c U, 

N is a (proper or improper) principal filter. u 

Proof: Suppose f = (u,N) is isomorphic to a relational 

frame. In other words, we are saying that it is isomorphic 

to FW for some relational frame (d = (w,<). We may as well, 

in fact, assume that F is FW t  - 
- N = N<. Then for u 6 U, Nu - 

which is the principal filter 

Suppose that for each u 

that is, that U = W and that 

N:= { ScUrW 1 s 3 {v/u<v} } i 
generated by {vl ucv) . 

Define a relation c on U by utv 

a principal filter, so there is 

N C NU iff N 1 M. Thus u<v iff 

U, Nu is a principal filter. 

iff v c N V N C N ~ .  B L ~  N, is 

an M 6 N such that 
u 

v CM. ThenNC N: iff 

N 3 {vlu<v} = {V~VCM} = M. So N: = Nu and therefore NC = N 

and, if U = (u,<), F = FU. Hence F is (isomorphic to) a 

relational frame. #1Q( 



Thus when we refer to a particular neighbourhood frame 

as being a relational frame, we simply mean that it is a 

neighbourhood frame which has the property that the set of 
1 

neighbourhoods of any point is a principal filter. 

4.8 - We can ask the same question of boolean and neighbour- 

hood frames: are there boolean frames which are not neigh- 

bourhood frames and if so how can we characterize the boolean 

frames which are (isomorphic to) neighbourhood frames? 

-4.8.1 Theorem: A boolean frame B = (B,o,~,-,n,*) is iso- 
1 

morphic to a neighbourhood frame if and only of the boolean 

algebra (~~0~1,-,n) is isomorphic to a boolean algebra of 

all subsets of some set, or, in the language of boolean al- - 
gebras, if and only if (~,0,1,-,n) is a complete atomic 

algebra. 

Proof: A complete boolean algebra is one in which 

every set of elements has a meet (or sup) and an atomic 

boolean algebra is one in which every non-zero element is 

greater than some minimal non-zero element. It is a stand- . 

ard result of boolean algebra that an algebra is isomorphic 

to an algebra of all subsets of a set if and only if it is 

complete and atomic. (see, for example, Halmos [5] p.70). 

Now, if B is isomorphic to B F  for some neighbourhood 

frame F = (U , N )  , then (B, O,1, - ,n) is isomorphic to the 
algebra (P (u) ,4 ,U ,- ,n) of all subsets of U. 

If, on the other hand, (B,O,l,-,n) is isomorphic to 



the algebra (~(u),+,u,-,n) of s l l  subsets of the set U 

then we shall define a neighbourhood function N on U such 

that * corresponds to fi under the isomorphism. 
To simplify notation, we may assume that B is ff(U), - 

0 is +, 1 is U, so that we are beginning with the frame 
B = (O(U) ,+,U,-,n ,*) and wish to find N such that * = * N ' 
Define N by NU = { ScU I u C *S 1. Then for S c @(U), fiS 

= { uCU I S C NU } = { uCU I u C * S  } = *S. Therefore fi = * 

and so B = BF. #)01 

Thus when we refer to a particular boolean frame as 

being a neighbourhood frame we simply mean that the boolean 

algebra part of it is complete and atomic. 

4.8.2 Theorem: A boolean frame B = (~~0~1,-,n,*) is (iso- 

morphic to) a relational frame if and only if the algebra 

(~~0~1,-,n) is complete and atomic, *1 = 1, and for every 

set { bi I i C I } of elements of B, * - 
~ Q I  bi - ~ Q I  *bi. 

Proof: Every relational frame is a normal neighbourhood 

frame and so is a complete, atomic, boolean frame in which 

*1 = 1 and in which * - 
iQ1 bi - iQ1 *hi for any finite 

set I. It remains to show that if F = (u,N) is a neigh- 

bourhood frame then i iQI Si - 
- ~L!I fisi for arbitrary sets 

I if and only if for all u C U, NU has a minimal element 

(hence, is a principal filter since we already know that it 

is a filter). 

Suppose that fi iQI Si = iQI isi for all index sets 



I Fix u € U and pick I so that { Si I i t I 1 = NU. Then 

since Si 6 NU, u € fiSi for i € I and so u C iQl isi = 

i ~ Q I  'i . B u t u C  fiiQISi implies that iQI Si C N 
u 

and since it is the intersection of all sets in NU, must be 

minimal in Nu. 

NOW suppose that for each u t U, NU has a minimal elem- 

ent. Let { Si I i C I } be an arbitrary set of subsets of U. 

Suppose that u f fi ieI Si. Then Si c Nu and since we 

know that Nu is a filter and since for each j C I, S. 2 
3 

S C NU for all j € I. Thus u C *S for all j C I ~Q!I 'it j N j 
and hence u C i ~ I  RSi. NOW suppose that u € iQl isi. 
Then for each j € I, u € *S and so S t NU. L e t ' N  be the 

N j j 

minimal element of NU. Then S 2 N for each j € I and so 
j 

iP1 'i 3 N and hence iQI Si C Nu. But then u C f i  iQI Si. 
- *S . Therefore we have shown that fi iQI Si - iQI )## 

4.9 - We can, in summary, say the following about boolean 

frames. If B = (B,o,~,-,fl,*) is a boolean frame then 

(a) 8 is normal iff for all b,c C B, * (bflc) = *bn*c 

and *1 = 1 

(b) B is a neighbourhood frame iff (~,O,l~-,fl) isaa 

complete atomic boolean algebra 

(c) B is a relational frame iff it is a complete 

atomic frame in which *1 = 1 and for each arbitrary set 

{ b i I i € I } c B ,  * iQ1 'i - - iQ1 *bia (We note that if 

we adopt the usual convention that an empty intersection is 

the universe then we can drop the condition that *1 = 1 . 



since it is taken up by * iPI b = *hi in the case i iC1 

when I is empty.) 

4.10 We shall take this opportunity to present a couple of - 
interesting properties of the neighbourhood semantics which 

will be useful later. 

4.10.1 Theorem: If F = (u,N) is a normal neighbourhood 

frame then F T iff every point in U is an element of 

all its own neighbourhoods, i.e. iff VuCU, N C NU = u € N. 

Proof: Since F is normal we know that F /= T iff 

F op+p. Suppose F op+p. Then pick u C U and N C NU 

and let V be any assignment on F such that V(p) = N. Now 

F op-+p implies that V(op+p,u) = T. But since V (p) = N C 

NU, V(up,u) = T. Thus V(p,u) = T and so u C V(p) = N. 

NOW suppose that YuCU, N C NU * u € N. Then letV 

and u be arbitrary. If u I V (up) then V (npap ,u) = T. If 

u € V(up) then N = V(p) C NU. Thus u € N = V(p) and so 

V(op+p,u) = T. Either way, F T. )qO(X 

Now if F = (u,N) is a neighbourhood frame then we can 

consider the pair (U,fi) where fi is the function from @(u) to 
P ( U )  induced by N. We shall >efer to * as the interior 
operator on - -  U induced by - N. We shall see that 

4.10.2 Theorem: (U,fi) is a topological space where f i  is 
the interior operator of the space, if and only if F = (U,N) 



Proof: It is known that (u,*) is a t~p01ogicaL space 
N 

with fi the interior operator iff for all S,S' c u 
(a) fis c s , (b) fi(SnS') = fisnfis', (c) fis c f ins, and (d) 

fiu = U. (See, for example, Kuratowski [7] p.61) We saw 

in 4.4 that the boolean frame BF = (p(u),+,U,-, ,Q) has the 

same valid formulae as F. Now, by 4.6.6, BFtand hence F, is 

normal iff (d) and (b) hold. BF up-p - V(op) c V(p) for 

all V on BF - fi V(p) c V (p) V V on BF - (a) holds for all 

S c U. Finally, BF op+oop - V(op) c V (oop) V V on BF - fiV (p) c ijkV(p) V V on BF = (c) holds V S c U. There- 

fore BFt and hence F, models ~4 iff (u,E) is a topological 

space. 1018 



5. Width and Depth - - 

5.0 - In the previous chapter we studied one way of compar- 

ing semantics; namely, saying that one semantics is greater 
b 

than another if the class of frames in the one actually con- 

tains the class of frames in the other in some meaningful 

way. In chapters 5 to 9 we discuss a weaker but perhaps 

nore significant method of comparing semantics. 

5.1 Hansson and Gardenfors refer to the width and depth 

of a semantics. The width of a semantics is measured by the 

logic determined by the class of all frames (structures) in 

the semantics. (This definition applies to languages and 

semantics in general, although we are only interested in the 

modal language and the modal semantics.) One semantics has 

greater width than another for the same language if the 

logic which is a measure of the width of the first is con- 

tained in the logic which is a measure of the second. 

The concept of depth is intuitively a measurement bf 

the "density" of the set of logics which are complete with 

respect to the semantics in question. It is, perhaps, vaguer 

than width since we have no way of denoting the depth of 

most semantics, but shall use the term in a relative way; 

thus we shall speak of one semantics as having greater depth 

than another, or of a semantics as having maximal depth. 

Specifically, one semantics will have greater depth than 

another with respect to some specified set of logics if each 



of those logics which is complete with respect tc the other 

semantics is also complete with respect to the first. A sem- 

antics has maximal depth with respect to a certain set of 

logics if every logic in the set is complete with respect 

to the semantics. It is obvious that if one semantics is a 

subsemantics of another then the other has greater (or 

equal) width and greater (or equal) depth than the first. 
I 

In the remainder of this chapter we begin to discuss 

the widths of our six modal semantics; in chapters 6 to 9 

we further discuss width and also discuss depth with respect 

to classical and with respect to normal logics. 

5.2 We shall see that both B and S have width of measure E 
CI 

(see 2.4) and. that F ,  R, R, and R all have less width: of 

measure K. By 4.6.2 we see that the widths of B and of S 

have measure which is an extension of E (since every bool- 

ean frame is classical, hence determines an extension of E ) .  

To show that both B and S have width of measure E it suf- 

fices, then, to show that for each formula A such that E 

A there is a frame f in S such that F /# A. TO do this we 

use Segerberg's [ 1 4 ]  construction of a "canonical frame". 

5.3 A set r of formula is said to be consistent if the - 

closure under the single rule MP of r together,wikh the 

set of all tautologies (the smallest set of formulae c6ntain- 

ing I', containing all thutologies, and closed under MP) does 

not contain the negation of any tautology. By a simple ap- 
e 

plication of Zorn's lemma (or Lindenbaum's Lemma) we see 
t 
b. 



that each consistent set of formulae is contained in a 

maximal consistent set (m.c.s.) and that each m.c.s. con- 

tains one of A, -A for each formula A. 

For each classical logic L let FL = (uLINL) be the 

following frame. UL is the set of all m.c.s.'s containing 

L. If u C UL and A is a formula such that oA C u then a 

typical neighbourhood of u is the set of all m.c.s.'s v in 

UL such that A C v. Formally, for u € UL 

FL is called the canonical frame -- from L. 

Let VL be the assignment on FL given by VL(i) = 

{ u I pi € u }. We claim that for each u 6 UL and formula 

A, VL(A,u) = T if and only if A C u. The proof is by induc- 

tion on the length of A. 

If A is a variable 

for all formulae shorter 

Pi then VL (A,u) = T - VL (pi Iu) = 

VL(i) a pi C u. Now assume that 

than A the claim holds. If A is 

-BthenVL(AIu) = T  = VL(B,u) = F  B k u  a A C U  

(since u is an m.c.s.). If A is B+C then VL(A,u) = T 

VL(BIu) = F or VL(C,u) = T B )? u or C C u - -B C u or 

C C u - A = B+C € u (since u is closed under MP). It 

remains to show that if A is oB then VL(A,u) = T iff A C u. 

First assume that A = oB C u. Then (v ~BCV} C NU 

and so, by induction hypothesis, { v I vL(B,v) = T ) f Nu. 

Hence, VL(A,u) = VL(oB,u) = T. Now assume that VL(A,u) = 



T. Then v I VL(B,v) = T 1 C NU and hence, by the induc- 

tion hypothesis, i v I B C v } C Nb. Then, by the defin- 

ition of NU, there is a formula C such that oC C u and 

f v ( ~ € v )  = tvl~€v), i.e. B C v - C C v. We claim that, 

therefore, L B-C. For suppose that L tf B-tC. Then 

the set of formulae L U (BrC) is consistent and thus 

contained in an m.c.s. which would be in {~(Bcv) but not 

in {V~CCV). Thus L B-tC; similarly L 1- C-tB; and there- 

fore L /- B--C. Since L is classical, L C o P n C  and so, 

if oC € then A = oB € u also. The proof of the claim 

that VL(A,u) = T iff A € u is complete. Since we know that 

for each formula A such that L k A there is an m.c.s. u 

such that A u, we have: 

5.3.1 $heorem: If L is a classical logic and F L  the can- 

onical frame from L, then for all formulae A, L tf A implies 

It must be stressed that for a classical logic L the 

canonical frame - from L is not necessarily a model of L 

(which is sometimes called a frame - for L). We do know that 

the logic that FL determines is contained in L, but it may 

or may not be all of L. In fact, SegerbergLl41 calls a 

classical logic natural if the conv&se of 5.3.1 holds for 

it, that is if F L  L, and asks whether all classical 

logics are natural. In chapter 7 we shall give a negative 

answer to his question by displaying two non-natural logics. 



5.4 As an immediate consequence of 5.3.1 we have - 

5.4.1 Theorem: S (and hence B )  has width of measure E. 
Proof: We have already noted that every formula of 

E is in all classical logics, hence valid in all neigh- 

bourhood frames. 5.3.1, on the other hand, ensures that 

a formula which is not in E is not valid in FE. The 

theorem follows. ## 

What we have really shown here is that E is a natural 

logic. 

n - 
5.5 By 4.6.8 we see that the widths of F ,  R, R f  and R - 
have measure which is an extension of K. To show that the 

6 

widths of F, R f  R, and have measure exactly K we require 

techniques which we shall develop in chapters 6 and 8. 



6. Maximal Depth of B and F 

6.0 We shall show that the boolean semantics, B ,  has max- 
IP= 

imal depth with respect to (or, is adequate for) classical 

modal logics and that the first-order semantics, F ,  has 
maximal depth with respect to normal logics. 

6.1 Let L be any classical modal logic. We shall let BL - 
aenote the "Lindenbaum-Tarski" frame for L constructed as 

follows. If A and B are modal formulae then we write A cx B 

iff L + A++B. Clearly If-" is an equivalence relation. Let 

BL be the set of +-equivalence classes of formulae and let 

denote the --equivalence class of A. If we define 

I A ~  A I B I  = I A A B I  and -[A( = I - A ~  then, since L Alf-fA2 

and L 1- Bl++B2 implies L t- ~Alf*A2 and L A I A B ~ + + A ~ A B ~ ~  

A and - are well-defined. We can easily see, then, that 

( ~ ~ , l p ~ ~ - p ~ l  ,Iplv-pll ,-,A) is a boolean algebra. 

Now we define the operator * on BL by *IA~ = I D A / .  
Then the fact that L is classical implies that if L /-- 
AIc-tA2 then L oAl++~A2 and so * is well defined. Thus 

6.1.1 Lemma: BL L. 

Proof: Let V be any assignment on BL. For each i C 

#, let Di denote some formula in V(i), i.e. choose D such 
i 

that V(i) = 1 ~ ~ 1 .  For each formula A let A' denote the for- 

mula obtained from A by simultaneously substituting, for 



each i C N ,  Di for each occurrence of p in A.  We show by f 

induction on the length of A that V (A) = 1 A' I . 
I f  A is a variable pi then V (A) = V ti) = 1 D~ 1 = I A' I . 

If A is B-tC, then A' is B ' K '  and V(A) = -(v(B)A-v~c)) = 

A - ' 1 )  = A .  If A i s ~ B  then A' is-B' andV(A) 

= -v(B) = - 1 ~ ~ 1  = A .  And if A is nB then A' is nB' and 

V(A) = *V(B) = *IB'/ = ~uB'I = /A' 1 
By sub, if L 1- A then L A' and hence L /- 

A'++p v--p . Thus ]A' I = Iplv--pl 1 and therefore if L A 

then V(A) = (A'] = (p,v-pll. So EL L. )#)# 

6.1.2 Lemma: If L A then BL # A. 
Proof: Let Vo be the assignment on BL given by 

Vo (i) = I pi 1 . Then by the previous proof, Vo (A) = I A ~  . 
Now if L tf A then L tf A+-+plv--pl and so J A ~  # Iplv-pll 

and therefore BL /=+ A. !I)# 

6.1.3 Theorem: B has maximal depth with respect to class- 
ical logics. 

Proof: By 6.1.1 and 6.1.2, BL determines L for any 

classical logic L and hence any classical logic is complete 

with respect to the boolean semantics. #10( 

6.2 We have already seen that each first-order frame det- 
I== 

ermines a normal logic and that hence the measure of the 

width of F is an extension of K. Therefore it would be im- 

possible to expect F to have maximal depth with respect 

to classical logics. We see, in fact, that we , 
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do get the best result that we could possibly expect for 

F; namely, that F has maximal depth with respect to nor- 
mal logics. 

In order to do this we shall use constructions of 

Makinsonts[lO] of maps + and Y between frames in F and 
normal frames in B. 

Let B= (B,O,l,-,n,*) be any normal boolean frame. 

We define the first-order frame @ ( B )  = (u,<JI) as follows. 

Let U be the set of all ultrafilters u in the boolean al- 

gebra (~,0,1,-,fl ) .  ucv iff for all a € B, if *a € u then 

a € v. If S c U,then S € I 7  iff there is an elementa € B 

such that S = ( u€U I a € u ), 

6.2.1 Lemma: If B = (~,0,1,- , f i , * )  is a normal boolean 

frame and if an-b = 0, then *an-*b = 0. 

Proof: an-b = 0 anb = a *an*b = *a = 

*an-*b = 0. #)Q( 

6.2.2 Lemma: If B is a boolean frame and + (23)  = (u,<,I~) 

is the structure defined above, and 2 is the operation 

defined in 3.4 (recall that $S = { v€U 1 (wlv<w) c S )), . 
then for all a E B , : ( (  uCU I a € u ) )  = i: u€U I *a C u  ). 

Proof: Let S = { u I a E u ). Then we must show that 

w C 2s iff *a € w. 

Suppose that *a € w and let w<v. Then a C v and so 

v € S. Hence ( v I w<v ) c S and so,w E 2s. 

Now suppose that w E 2.5; thus if w<v then a € v. So 

if v € U such that b t v whenever *b E w, then a € v. 



4 0  
Suppose *a j! w. Then -*a € w. Let p, p' c B be such that 

= {-a> U ib I *b E w) and P' = (-*a) U (*b / *b € w). Then 

since -*a t w, every finite intersection (meet) of elements 

of P'must be nonzero; but then by 6.2.1, every finite inter- 

section of elements of p must be nonzero. Therefore P 

is contained in an ultrafilter v and we have w ~ v  and a P v; 

a contradiction. Thus we must have *a E w. 1CO# 

6.2.3 Lemma: @ (B) = (U,C ,II) is, in fact, a first-order 

frame . 
Proof: Clearly U is a nonempty set and < a binary 

relation on U. It remains only to show that Il is a bool- 

ean algebra of subsets of U which separates points in U and 

is closed under the operation 2 .  
Suppose that SltS2 € E . Then t he re  aye a:,az E E 

such that Si = { u I ai € u } ( 1 2 )  We have U-St = 

t u I  a ~ j ! u } = { u I  -a1 € u ) € n a n d S l f l s 2 = { u I  

a1 € u and a2 € u } = ( u I alfla2 € u ) €TI; s o n  is, in 

fact, a boolean algebra. It is well known that if a # b € 

B then there is u t U with a € u and b j! u (or vice versa) 

and so ( u I a € u ) # ( v I b € v ); hence, n separates 

points. By 6.2.2, II is closed under 2; therefore (u,< ,IT) 

is, in fact, a first-order frame. )(XI 

6.2.4 Lemma: If A is any formula then R A if and only 

if @ (8) A. Thus R and + ( 8 )  are equivalent. 

Proof: It is a well known property of ultrafilters 

on boolean algebras that { u€U I a € u ) = ( uEU I b € u } 
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iff a = b. Thus the correspon2ence a ---+ ( u 1 a € u ) is 

one-to-one from B onto Jl. Now if V is an assignment on 8 - 
then for each it V(i) E B: and so the mapping V--+V,, 

where Vq(i) = ( u I V(i) E u } E 17, is one-to-one from the 

set of assignments on 8 to the set of assignments on *(B). 

It suffices, therefore, to show that if V is any assignment 

on B then for all formulae A, V(A) = 1 iff V+(A) = U. 

Since U = ( u I 1 6 u 1 it suffices to show that for all A, 

V, (A) = ( u I V(A9 t u 1 .  We do this by induction on the 

length of A. 

If A is pi, then V+ (A) = V+ (i) = ( u I V(i) € u } = 

I u I V(A) t u } If A is NB, then V+ (A) = U-V* (B) = 

1 u 1 v(B) p u ) = { u 1 -V(B) E u ) = ( u 1 V(A) t u }. 

If A is B-rC, then V, (A) = -V+ (B) UV, ( C )  = U- (v* (B) -V+ (C) ) 

= ( u I -(V(B)fl-V(C)) E u } = ( u I V(-(BA~)) E u } = 

{ u / v (A) t u } Finally, if A is LIB, then V+ (A) = PV+ (B) 

= c * (  u I V(B) E u } = ( u I *V(B) E u } (by 6.2.2) = 

{ u 1 V(A) € u }. The induction is complete. )909( 

We see that if we restrict B to the semantics of 
normal boolean frames and if we apply + to the frames in 
this restricted semantics, then, since it is easy to see 

that @ is one-to-one up to isomorphism, @ satisfies the 

conditions of the mapping called for in 4.0 and so, strict- 

ly speaking, we could say that the restriction B of B to 



normal frames is a subsernantics ~f F. The mapping @ is, 

however, not really a natural or canonical one and so it 

would offend our intuitive notion of sub-semantics to con- 

sider B as a subsemantics of F, and therefore we shall not. 

The mapping @ does have an important application, 

however. Since B has maximal depth with respect to class- 
ical logics it certainly has maximal depth with respect to 

normal logics; hence, since for normal frames B and @(B) 

are equivalent, we have 

6.2.5 Theorem: F has width of measure K. 
Proof: We already know that the measure of the width 

of F is an extension of K. But now @ ( B K )  A iff K t A 
so the measure of the width' of F is K. !Ill 

6.2.6 Theorem: F has maximal depth with respect to nor- 
mal logics. H10( 

6.3 We noticed that through the function @, the sem- - 
antics, B, of normal boolean frames was strictly speaking 
a subsemantics of F, although this offended our intuition 

about subsemantics. We now investigate Makinson's other 

mapping, I ,  from F to B.  We shall see that Y has almost 

all the requirements for the mapping in the subsemantics 

definition and, contrary to @, is "natural" or intuitive, 

but is, however, not one-to-one. 

If f = (u,< ,n) is a first-order frame, then Y (F) = 



) Since we know that n is closed under the 

boolean operations and under :, we see immediately that 

y (F) is a boolean frame. 

6.3.1 Lemma: For each formula A, F A if and only if 

~ ( f )  A. Thus f and Y(F) are equivalent. 

Proof: An assignment V on F is a mapping from N to 
IT and so is at once an assignment on ~(f). It is clear 

that it ranges over all assignments on ~ ( f )  also. We 

also know that the extension of V on F to a function from 

the set of all formulae to n is the same as that on Y(F). 

The lemma follows. #!I 

6.3.2 Lemma : For each normal boolean frame B , Y (@ ( 2 3 )  ) is 

boolean frame-isomorphic to 8. 

Proof: If B = (B,o,~,-,n,*) then @ (13)  = (~,<,17) 

where U is the set of ultrafilters on (B,o,~,-,n) , u<v iff 

a € v whenever *a E u, and for S c U, S E ll iff there is 

a E Uwith S = { u I a € u ). Hence, Y(Q(8)) = 

( , u , - , ) . We have already seen in the proof of 6.2.3 

that U-{ u I a C u) = u I -a C u 1 and that { u I a C u 3 

Il { u I b E u 1 = { u I anb E u 1 ,  and in 6.2.2 that 

:{ u I a E u 1 = u I *a C u ). We also see easily that 

4 = u 1 0  E u andU = { u I 1 E u 1 .  Thus themapping 

a --+ { u I a c u } is an isomorphism from R to Y (Q (8)). #XI 



We observe that it is not in general true that as 

first-order frames F and @(Y(F)) are isomorphic. Let F = 

I (~,<,ll) be any first-order frame where W is an infinite 
i 

set, < is any binary relation on W, and II = @(w). Then 

the set of ultrafilters on the boolean algebra @(w) and <' 

and ll' are defined appropriately. It is a known fact of 

set theory that card (U) = 2 2card (W) (see Gillman & Jerison 

14lp.130, Thm.9.2) and so there can't possibly be a first- 

order frame-isomorphism from F to @ (Y (F) ) . 
Finally, if we let F be any first-order frame such 

that F and @ (Y ( F )  ) are not isomorphic, then by 6.3.2, Y ( F )  

and Y(+(Y(F))) are isomorphic as boolean frames and so we - 
see that as a mapping of isomorphism-types, Y is not one- 

to-one . 



7. Non-Maximal Depth of S 

We have already seen (5.4.1) that S has width of 
measure E. It is known, in fact, that E,  K, TI S4, and 

virtually all other classical modal logics of particular 

philosophical interest are conplete with respect to S .  It 

might be expected, then, that all classical logics be com- 

plete with respect to S.  We shall see, however, that this 

is not the case. Thomason[lG] and Fine[,$] independently 

constructed normal logics, which we shall, in this chapter, 

denote by L1 and L2 respectively, which they showed to be 

incomplete with respect to R. We shall show that these 

two logics are incomplete with respect to S t  thus showing 
that S does not have maximal depth with respect to class- 

ical logics and hence is "weaker" than B.  
Of course, only one of these logics is really nec- 

essary to obtain our result, but the logics are quite dif- 

ferent and so add enough strength to the result to make 

the presentation of both worthwhile. The logic L1 is an 

extension of T and contained in S4; in fact, we shall see 

that L1 is properly contained in S4 but that all neighbour- 

hood frames which model L1 also model S4. L1 is a rela- 

tively simple logic and its position, "so close to" S4, 

makes it interesting in itself. If we knew only of the 

existence of L1, however, it would then be natural to ask 

whether S had maximal depth with respect to classical, 



or perhaps normal, extensions of 54.  But L, is an exten- 

sion of S4, and although it is considerably more complicat- 

ed that L,, its existence shows that even "above" S4, S 

does not have maximal depth, and so its presentation here 

is indeed worthwhile. 

7.1 - Before continuing with the presentation of L1 it will 

be convenient first to prove some general results on neigh- 

bourhood frames. In the remainder of this section F = 

(u,N) will be an arbitrary neighbourhood frame and A a 

modal formula. 

7.1.1 Definition: If S c U then we define sN to be -fi-S. 

7.1.2 Lemma: For any assignment V, .vmN = V ( 9 A )  . 
Proof: Immediate from 7.1.1 and section 4.4. )O[H 

Throughout the remainder of this chapter we shall 

usually omit the subscript "N" and simply write *S for 

-N tS and 5 for S . 

7.1.3 Lemma: If F is normal and S c U, then 5 = 

Proof: x € 5 x f *-S @ there is no set N C Nx 

such that N c -S (by 4.4 and 4.6.7) VNCNx, N ~ S  # 4 .  )CIA 

7.1.4 Corollary: In normal F, F = 4 .  

7.1.5 Lemma: If F is normal and P c S c U, then *P c *S 



and c T. 

Proof: y E *P = P (5 My (by 4.6.7) s E N 
Y 

y € *S. Thus *P c *S. Now P c S =, -S c -p *-s c 
- 

*-p -*-p c -*+ =, P c z. NN 

7.1.6 Lemma: Let F be normal. Then f models O2 p+Op 

iff for all nonempty S,P,Q c U, if S c and P c 5 then 

s c D. 
Proof: Suppose f models 02p+Op and S c and P c 5. 

Let V be an assignment such that V(p) = Q. Then by lemma 

7.1.2, V(Op) = h and V(02p) = a, and so 3 c D. Also from 

P c h and lemma 7.1.5, we have c 5 and so S c c 5 c b. 
Suppose, on the other hand, that for all nonempty 

S,P,Q c U, if S c Pand P c Qthen S c 5. Let V be any 
assignment on F . If V (Q2 p) = $I, then v (02 p) c V (Op) . So 

we shall assume that V (Q2 p) # 4 .  Then since v (02 p )  = 

VW and V(Qp) = we must have V(Op) # 9 and V(P) f 9 . 

(by corollary 7.1.4) . Now ,by our supposition, v (02p) c 

V~ (by 7.1.2). Thus for any V, v(02p) c V(Op). Hence, 

V ( Q ~ ~ + O ~ )  = U and so f models ~ ~ ~ - - + $ p .  )91B 

7.1.7 Lemma: If M is a modal logic ( F  any frame), then 

opo2p is included in M (valid in F) if and only if 

v2p+9p is included in M (valid in F) . 
Proof: M /-- op+02p = M t-- o-p+02-p =. M t 

-02-p-i-o-p =, M O~P-+QP. Similarly for the opposite 

implication. Now repeat the above, replacing "M t-" with 



7.1.8 C o r o l l a r y :  I f  f = (U,N) models T ,  then  f models 

S4 if and only i f  fo r  a l l  n o n e m p t y  S , P , Q  c U, i f  S c i? 

and P c 5,  then  S c D. ]PUP( 

7 . 1 . 8 a  Lemma: If S 4  A+o(B+C) then  S4 A+O(+B%). 

P r o o f :  ~4 G (PC)+ (-WB) , thus by 2 . 3 . 1  ~4 

q ( ~ + c ) + o  (-C--+--B) . B u t  S 4  I-- q (--c-t~B)+ (o-C+owB) and 

5 4  (o-e+o-B)-f(-~o-B--+--nC\JC) and N O ~ ~ P ~ D - C  = QB34C. 

T h e r e f o r e  S 4  /- (B+c)+(OB+@@) T h e n  by 2 . 3  01, S4 t- 
o 2  (B+c) -fo (OB+OC) . ALSO s 4  o ( B + c ) + o ~  (B+c) . ~ h u s  

s 4  )-- q (B+C)+O (OB+OC) . T h e  lemma f o l l o w s .  ]O(M 

7 . 1 . 8 b  Lemma: I f  5 4  /-- A+DB and S4 t B+C, then  

S4 t-- A+oC. 

P r o o f  : I f  S4 t B-+C then S4 t o&nC,  by 2 . 3 . 1 .  

T h i s ,  w i t h  S4 t A+oBI y i e l d s  S4 t A+oC. lea# 

7 . 1 . 8 ~  Lemma: I f  S4 t A+oB and S4 /-- A+oC 

and S4 BAC+D, then 5 4  A+oD. 

Proof : I_f S 4  BAC+D then  by 2 . 3 . 1  S4 q (BAC)+OD. 

B y .  4 . 6 . 5 ,  S4 /- q (BAC)+--t (oBAoC) . T h u s  S4 t- OBAOC-+OD. 

T h i s ,  w i t h  5 4  t A+aB and S4 A+&, y i e l d s  S4 A+oD. g#( 



7.1.9 Lemma: If F T and S c U, then *S  c S c 5. 

Proof: Since F /= T, F op-tp. Thus for all as- 

signments V, V(op) c V(p) . Pick S c U and V such that 

V(p) = S. Then *S = *V(p) = V(op) c V(p) = S. Since this 

is true for arbitrary S c U we also have *-S c -S and so 
- s = --s c -*-s = S. HR 

7.1.10 Lemma: If F T, V is an assignment on F, x € U, 

k i A a formula, and i5k, then V(o A,x) = T 4 V(O A,x) = T. 

Proof: F /= op-tp. Let j = k-i. By an obvious ind- 

j i uction on j, F q p+p, hence F ) =  oj(oi~)-+o A, i.e. F 
k i k i 

o A+O A. ~ h u s  ~ ( o  A,X) = T =, ~ ( o  A,x) = T. NN 

7.2 - We now proceed with the construction of the logic L1, 

due to Thomason[16] , and show that it is incomplete with re- 
spect to the neighbourhood semantics. Consider the form- 

ulae : , 



Let L1 be the smallest normal logic containing T, A, D, and 

E (here w e  are referring to the formula E, above -- T, how- 
ever, refers to the logic T). We see easily that A, D, and 

E are in S4 so that L1 is between T and S4. (To see that D 

is in S4, note that by 7.1.7, S4 02q+oq.) 

7.2.1 Lemma: The formula F is valid in all neighbourhood 

frames modelling L 1 .  

Proof: Assume that f = ( u , N )  is a particular neigh- 

bourhood frame which models T, models DAE, but does not 

model F; we show that F also fails to model A, thus estab- 

lishing that F is valid in all frames modelling Ll. 

Claim: If S c and P c 5 and S $ G, then there is a 

point z E Q~F. 

Let V be an assignment such that V(p) = S and V(q) = 

Q. Then S c v (p~O2q) . Since f /- D, v (p~Q2q) c 
==2E 

V(Oqvo2(q~0p)). Thus S c V(Oqvo2(qnOp)) = Q U QflS. But - = 
S{6sothatsnQrlS#+. ThusQnS#+ andsoby7.1.4 

I 

Qns # 6 .  Let z € Q~Z. The claim is proved. 

We now define an assignment V on f and inductively 

choose a pairwise disjoint sequence of nonempty sets 



w,, w,, . so that for all i , j  

Since F does not model F ,  there are, by corollary 

7.1.8, nonempty sets S,P,Q c U such that S c F, P c 

and S gl 6. Let w E S-c. Let V be such that V(p) = U-Q. 
- 

Then w ( -Q = *-Q = V (op) . Now v(--p) = Q and so, since 

2 v (--02p) ; and therefore (w) c v (R~A-a p)  . Let W, = (w) ; 

then the required conditions are satisfied by Wl. 

Suppose W1 t Wn have been chosen to satisfy 

the conditions. Since F models E, F models 
n n+l n+l n+2 n+l 

(O PA-o p)+-Q(o PA-O p ) .  Since Wn c v(onph-o p), 

n+l n+2 n+l n+2 wn c v(O(O PANO p)). SO let Wn+I=V(~ pA-0 p); 
- 

then Wn c Wn+l by 7.1.2. Since by the induction hyp~thesis 
- 

'n # 'n+l # +,and so by 7.1.4, Wn+l # 4 .  For icn+l, 

i+l x C Wi =. V ( o  p,x) = F ,  but x C Wn+l n+l 
=. V(o p,x) = T  

i+l (by 7.1.10) V(o ptx) = T ;  t h u ~ W ~ " ~ + ~  = 4 .  - 
We already have Wn c Wncl. For icn, Wi c by the 

induction hypothesis; thus, by the claim, either 

- 
(b) there is y C Wn+pq 

i 
i+l i+2 But Wi c V(NO p)! SO TC ~(0-a~''~) = V(NII p ) .  Thus 

i+2 in case (b) , V (o ply) = F and so, since i<n = i+22n+l, 



n + l  we have V ( o  p l y )  = F, by 7.1.10, c o n t r a d i c t i n g  t h e  f a c t  

n+l  - t h a t  Wn+l c V ( o  p ) .  HenceWic W n+l and t h e  induct ion  i s  

complete. 

Now l e t  V a l s o  be such t h a t  V ( r )  = n & ~ n ;  V(qi) = 

PtZ w n-1 3n+i i = 2 Then w E W, c V ( r )  and w E W1 c 

V (opn-02p) . V (qi) c V (r)  , hence V (Ai) = V (o  (qi+r) ) = 

*V(qi+r) = *U = U f o r  i = 1 , 2 .  For x E V ( r )  w e  have x c W 
j 

f o r  some j and i f  w e  choose k so  t h a t  j<3k+i ,  then W .  c 
3 

W3k+i and s o  x E W3k+i c V(qi)' (by 7.1.5) .  So V ( r )  c 

V(qi) = V(Oqi); hence,V(Bi) = V(o(r+oqi))  = *V(r+gqi) = 

*U = U f o r  i = 1 , 2 .  F i n a l l y  V(C1) = V(o-(q n q  ) )  = 1 2  
2 *- (V(ql) nV(q2) ) = *- += *U = U .  So we have w c V ( ~ A O ~ A - O  p 

n A l ~ A 2 n B 1 ~ B 2 ~ C 1 )  . Suppose t h a t  y c V ( r )  . Then y E Wi f o r  
- 

some i. Let  k be such t h a t  3 k r i .  Then y E W3k c 

- 
V (- (r+qlvq2) ) ; SO y E Wi c W3k c V (m  (r+q1vq2) - - 

V (0- (r-rqlvq2) = U-V ( 0  (r-qlvq2) ) and hence V ( r h o  (r+qlvq2) ) 

f o r e  A i s  n o t  v a l i d  i n  f and t h e  lemma i s  proved. MI 

7.2.2 Lemma: Ll /-+ F. 

Proof: This  r e s u l t  and t h e  proof we g ive  here  a r e  

due t o  Thomason~lG]. I t  would s u f f i c e  t o  f i n d  a frame i n  

any semantics which modelled L, and no t  F. We use a f i r s t -  

o rde r  frame ff = ( H , A , ~ ) .  H = N ,  t h e  s e t  of n a t u r a l  numbers; 

f o r  a , b  E H ,  aAb i f f  a l b + l  (whkre < i s  t h e  usual  o rde r ing .  

on t h e  n a t u r a l  numbers); I7 i s  t h e  set of a l l  f i n i t e  and 
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cofinite subsets of H. We know that 11 is a boolean algebra 

of subsets of H. If S c II then we can see that if S is 

finite, *S is empty, if S is cofinite then if b is the 
A 

greatest number in H-St is = { a I arb+2 } and bH = H. 

We must show that ff models T and A, D, and E but not 

F. Clearly, A is reflexive; and so by 4.6.10, Hp T. 
Let V be an assignment on ff such that V(p) = 

t a 1 a22 1 .  Then V(op) = iV(p) = I a I a23 1 and V(02p) 

= t a I a24 1. So V(op) $ V(u2p) ; V(up-+ 02p)# H; hence 

ff WF. 
Now let V be any assignment on ff and suppose that a t 

V(rA~pl\--o~~l\~ AA AB AB AC ) .  Now for all c such that aAc, 
1 2 1 2 1  

if c C V(r) then, since V (u (r+Qqi) ,a) = T and therefore 

V(rQqi,c: = T for i = 1,2, we must have V(Oql,c) = V(Vq2,c) 

= T; and so there must be d 'c-1 with di C V(qi) for i = i- 

1,2. So we see that if V(r) is infinite then both V(q ) 1 

and V(q2) axe infinite and hence both cofinite. But 

V(n-(q1Aq2),a) = T implies that {clc?a-l}n~(q~)n~(q~) = 4 

which would contradict the cofiniteness of V(ql) and V(q2). 

So V(r) must be finite. 

Now let b be the greatest element of V(r). Since 

a t V ( r ) ,  such an element must exist and arb; hence for all 

c such that bAc, aAc and, in particular, aAb. Thus, 

V(m (r+Vql)A (r-+Qq2) ,b) = T and so V(OqlA~q2,b) = T. NOW, 

if k c  then aAc and so V( (ql-r)h (q2+r) ,c) = T ,  so we could 



not have V(qi,c) = T for that would contradict our choice 

of b. We also have adb and adb-1 and therefore V(-(qlnq2),b) 

= V(-(q1"q2) ,b-l)=T. So we must have b c V (ql) and b-1 c 

V (q2) or vice versa. Then we have V (r ,b) = T and for b ~ d  

we have V(r+qlvqZ , d )  = T (since either d = b-1 c V (ql) UV(q2) 

or d = b c V(ql)U7(q2) or i r d  j! V(r)); thus V(rndr-qlvq2),b) 

= T. Therefore, since adb, V (0 (rno (r+qlvq2) ) ,a) = T, and 

so V(A,a) = T. Hence V(A,x) = T for all x c H and ff A. 

Now suppose that V (pno2qla) = T. Then a E V (p) and 

there is bra-2 such that b C V ( q ) .  Now if b2a-1 we have 

V(Oq,a) = T and so V(Oqvo2 (q~Op) ,a) = T. SO if V(~q,a) = 

F we must have b = a-2. But then V(~p,b) = T and so I 

V ( O ~ V Q ~  (qnVp) ,a) = V (02 (q~Op) ,a) = T. In either case we 

have V(D,a) = T. Thus D. 

Finally, suppose that a 6 V(opn-02p). Then ( c I cza-1) 

c ~ ( p )  but ( c I cza-2 ) $ V(p) , thus a-2 k V (p) . Then we 

have a+l 6 v(n2p) but a+l j? V(03p) and so v ( ~ ~ p ~ - ~ ~ p , a + l )  

= T. Therefore ~(O(n~pn-o~p) ,a) = T and so V(E,a) = T. 

Thus E and the lemma is proved. )#)# 

7.2.3 Theorem: LI is a normal logic between T and 54 which 

is incomplete with respect to S .  

Proof: Lemmas 7.2.1 and 7.2.2. )CO# 

7.2.4 Corollary: S does not have maximal depth with res- 

pect to classical or even normal logics. #)9( 



7.3 We now continue to the construction of L,, due to 

Fine[l], and show that it, also, is incomplete with respect 

to the neighbourhood semantics. Consider the following 

formulae where p, , pl, qo, ql, r o t  rl, t, and s are dis- 

tinct propositional variables and mz0. 

(In the remainder of section 7.3, the letters assigned above 

to formulae will always denote those formulae, even though 



some af these letters, notably K and. E, are commonly used 

to denote other particular formulae or logics,) 

The logic L, is the smallest normal logic containing 

S4 and G and H. 

7.3.1 Lemma: The formula -E is valid in all neighbourhood 

frames which model L,. 

Proof: The proof requires two preliminary results. 

For m10 and any formula A let Am be the result of substi- 

tuting, for i = 0.1, Bm+i for Bi (= qi) and Cm+i for 

m - m - Claim 1: Bn - Brncnt Cn - 'm+nt and A: = 4,+, for m,nzO. 

Proof of claim: We first show that B: = Bm+n and 

simultaneously that C: = Cm+n by induction on n. If n = 0 or 

1 then the result follows by the definition of Am. Suppose 

now that rrl and that for all nsr and m=O, In - 
Bn - Bm+n and 

m - m Cn - Cm+n. Then Br+l = ( o B ~ A o c ~ - ~ A ~ o c ~ ) ~  = VBr~OCr-l~-OCr m m m 

= (by induction hypothesis) OBm+r~~Cm+r - - 
"wQCm+r - Bm+r+l* 

m - Similarly, Cr+l - 'm+r+l . The induction is complete. 

m m m 
Now An = (OBn+1NCn+1~-VBn+2 A"OC~+~) * +Bn+l~OC n+l 

""QB;+~A"OC:+~ = (by above induction) Bm+n+l~+Cm+n+l 

"*m+n+2 
- 

"+m+n+2 - Am+n . The claim is proved. 

Claim 2: For any m?O, S4 K~-+K~+'. Thus if m'em, 

s4 K~+K~'. 

Proof of claim: The second statement clearly follows 



from t h e  f i r s t .  W e  have 

Thus, 5 4  K*-+C+'. Interchanging B '  s and C ' s i n  ( f )  

m + l  t o  (q) y i e l d s  5 4  Km+J, , and with (d)  and (e) we have 

5 4  K ~ + K ~ + ' .  The claim i s  proved. 

W e  a r e  now ready t o  conclude t h e  proof of 713.1. Sup- 

pose t h a t  F = (u ,  N )  i s  a p a r t i c u l a r  neighbourhood frame 

which models S4 and i n  which G i s  v a l i d  b u t  --E i s  not  v a l i d .  



We shall show that H is not valid in F ,and so F is not a 

model of I,,. This will show that --E is valid in all neigh- 

bourhood models of L, . 
Since -E is not valid in F, there is an assignment V 

on f such that V (E) # 4 . Let w c V ( E )  . We shall construct 

by induction an infinite sequence of pairwise disjoint sub- 
- 

sets W,, W,, ... of U such that for m z O ,  Wm c Wm+l and 

m WmC V(E ) .  

Let W, = {w) . ~s#ume that W,, . . . , Wn have been 
chosen to satisfy the conditions. Now G" = E"+F". ~hus, 

then Wn - c V($An). Suppose i = 0. Wn c V(E") and so, 

since OA is a conjunct of E", Wn-i n = Wn c V @An) . Suppose 

now that kizn and Wn- (i-l) c V (QA,) . Then since Wn - c 

'n- (i-1) 'n-i c V(02~J by 7.1.2 and 7 .l. 5. Thus, since 

54 t 02An-+VAn by 7.1.7, Wn-i c V (OA ) . The induction on n 

i is complete; thus for all it Orirn, Wi C V (QAn) . But 

'n+l c U-V @A,) . Thus Pn+lnW = 4 V irn. i 

Now Wn c V(E"), and so Wn c V(K"). Thus by claim 2, 

Wn c V(K n+l) . NOW let Si n+l "+l= V(Ji ) for l~is6. (Note 

n n that for i = 1 or 2, Ji = J. Vn, hence S: = Si Vm,n.) Let 
1 

6 n+l &n+1 
'n+ 1 = (iQ1 si )nPn+l. Then from definitions of Pn+lt , 

and ~"'lwe have W n + l ~ ~  (E"+~) . L e t  y€Wn: then since each Ji is 

"+' begins a conjunct of E, y ~ ~ r + l  for lsis6. Since each Ji 



with ,, , and since F models S4, F models o C + l + + ~ ~ + ~ ;  thus i 
sn+l = v (jn+l) = V (D J:") ; and so, since y C  S n+l s"l f~ 

i i i r l  
6 n+l 

Y 
Let N C  ),I . Then by 4.6.7 ti.fllSi ) nN C N y ;  and so, since Y C  

Y # - b n+l 
Wn C Pn+l t (in_1 si nNnPn+l # 4  by 7.1.3. Thus NnWn+l # 4 ;  
- 

'n 'n+l by 7.1.3. Since also Wn+l c V (E"+~) , the con- 
struction of our required sequence of sets is complete. 

It remains to show that H is not valid in F. Let V' 

be the assignment on F such that V' (s) = i& Wjit V' (t) = 

i10 '3i+l , V'(p) = 9 for all propositional variables p 

other than s and t. Then for each it W3i+2 c W3i+3 c v'O 

= v' (0s) ; thus W3i+2 C V' (wsh-thOs) ; and so W3i+l c 

-V'(s) nV'(t) nVO(-sn-thos) = V'(-sntn O(-sn-tnOs) ) . Theref ore Wgi 

' '3i+l c v'(o(-SA t~ ~(-sA-~Avs) ) ) . SO v'(s) c 

V'(O(-SA~AO (-SA-t~Os) ) ) and therefore V'(S+Q(-SA~AO (-sh--tMs) ) ) 

= U. Hence w € W, c V ' ( s ~ o ( s - + O ( - s h t h O ( - s h - t w s ) ) ) )  and so 

w $ v'(H). Therefore H is not valid in F and the lemma is 

proved. I#( 

7.3.2 Lemma: L, p-E. 
Proof: This lemma is due to FineIl]. The proof we 

give here is a modification of his proof. Let F = ( w , A , ~ )  

be the first-order frame with the following diagram, where 

uAv if v = u or if one can reach v from u by travelling 

along a finite number of arrows always in the direction of 

the arrow. 



{ cn 1 "'0 }, and ( dn / n?O } be four  countably i n f i n i t e ,  

pa i rwise  d i s j o i n t  sets and l e t  W be t h e  union of t h e s e  four  

sets. Now, f o r  u,v c W let U A V  i f  and only i f  

(1) u = bi and e i t h e r  v = b .  some jsi o r  v = c 
J j  

some j r i - 2  

o r  ( 2 )  u  = c and e i t h e r  v = c some j n i  o r  v = i j j  

some jri-2 

o r  (3) u = a  a n d e i t h e r v = a  o r v =  b some j 5 + l  i i j 

o r  v = c some j s i + l  
j 

o r  ( 4 )  u = d i  a n d e i t h e r  u = d .  some j z i o r  v =  a 
3 j 

some j ? i  or  v = b .  o r  v  = c f o r  some j .  
3 j 



We note that the relation a is reflexive and transid 

tive and so by 4.6.12, f S4. 

Let17 be the smallest family of subsets of W closed 

under the operations of complementation, intersection, and 

1 and containing the sets fb,), {b,), jc,), {c,), 

f d2n I "20 I t  and d2n+l I n20 I. 

Let V, denote the particular assignment on F such 

- that V, (qi) = {bill V, (r.) 1 = fciIr VO (pi) - f d2n+i I nrO 1 

for i = 0,1, and Vo(p) = B for all propositional variables 

It will be helpful, before continuing with the proof 

proper, to make and prove the following claims. 

claim 1: For any mZO, V, (Bm) = fbm) and Vo (Cm) = fcm]. 

Proof of claim: By induction on m. For m = 0 and 

m = 1 the result follows by definitions of V,, Bit Ci (i = 

0 )  Suppose the result holds for all m5k where krl. 

Then V, (Bk+l,w) = T V, (OBkAOCk-lA"QCk,~) = T 

there are x,y 6 W such that x ( Vo (Bk) , y 6 V, (Ck-l) WAX, 

and WAY, and there is no z such that z V, (Ck) and wAz. 

Since Vo (Bk) = fbklt V, (Ck-l) = ick-l}, V, (Ck) = fck} by 

the induction hypothesis, we see that Vo(Bk+l,w) = T if and 

only if wAbk,  WAC^-^, and wjfck. But we can easily see that 

this only happens if w = bk+l. Similarly, interchanging B 

and C, b and c in the above, we see that Vo(Ck+l,w) = T if 
* 

and only if w = c ~ + ~ .  The claim is proved. 



Claim 2 :  L e t  V be any assignment on f and w 6 kl such t h a t  

V(D,w)  = T.  Then w = dm f o r  some m and f o r  a l l  jem, 

a .  c V(p, vp, ) 
3 

* 
I 

Proof of claim: W e  show t h a t  i f  V ( D , w )  = T then  

e i t h e r  a cyc le  o r  an i n f i n i t e  chain with r e s p e c t  t o  A i s  

a c c e s s i b l e  from w, o r ,  t o  be p r e c i s e ,  t h e r e  i s  an i n f i n i t e  

sequence w, , w, , w, , .. . of p o i n t s  i n  W such t h a t  w = w, 

and f o r  izO, w i ~ w i + l  and wi # w ~ + ~ .  It i s  easy t o  see  

t h a t  we can only have t h i s  i f  each wi = d .  fo r  some j ,  and 
7 

i n  p a r t i c u l a r ,  w = d for some m. m 
We cons t ruc t  t h i s  i n f i n i t e  sequence by induct ion .  

pose t h a t  w l ,  ... , wk have been chosen t o  s a t i s f y  t h e  pre- 

ceeding condi t ions  and such t h a t  each wi C V ( P ,  vp, ) . s i n c e  

w = w, A wk and V ( D , W )  = T we have ~ ( ( p ~ - g p , ) ~ ( p , + ~ p ~ ) ~  

-- (p, np, ) ,wk) = T.  Therefore,  i f  wk C V (p, ) then  V (Opl ,wk) 

= T i n  which case  we choose w ~ + ~  so  t h a t  w k A ~ k + l  and Wk+$ 

c V ( p l ) ,  and i f  wk C V(p, ) then  v(t)p0 ,wk) = T i n  which case  

we choose w k+l  s o  t h a t  wkAwkcl and Wk+l C V (po ) . Since 

V (- (p, np, ) ,wk) = T w e  know t h a t  wk # w ~ + ~ .  The induct ion  

i s  complete. 
b 

Since t h e r e  a r e  n o t  u ,v  C W with u # v ,  uAv, and vAu 

( i . e . ,  t h e r e  a r e  no n o n - t r i v i a l  cyc les  i n  F ) ,  we s e e  t h a t  

we must have an i n f i n i t e  s e t  of d s i n  V (pa vpl ) . Thus f o r  j 

each j Zsn t h e r e  i s  a j 'rj such t h a t  d . C V (PO vpl ) . Then d 
1 j j 



But V (3 ,  ,dm) = T and since dmdd V (-- (p,vpl I+=-- (p, vp, ) ,d . ) = jt 7 

T. T ~ U S  v(D--(p,vp,),d.) = T and so V(-O(p0vp~)tdj) = TI 
3 

a contradiction. Therefore we must have d € v(p0vp,) for 
j 

all jrm and the claim is proved. 

Claim 3: Let V be any assignment on F and w € W such that 

V(H,w) = F. Then w = d for some m. m 

Proof of claim: The proof is similar to that of claim 

2. By a similar induction we construct an infinite sequence 

satisfying similar conditions as the one in the proof of 

claim 2, and-so.w = dm for some m and the claim is proved. 

Claim 4: If A is any formula and V any assignment on F ,  

then there is a formula A' which is a substituted case of 

A such that Vo (A' ) = V (A) . 
Proof of claim: We shall first show that for any S 

E IT there is a formula B such that Vo (B) = S. It suffices 

to show that IT is equal to IT', where we define n' by 

n' = f V, (B) I B is a formula 1 .  We know that Vo (p) 6 IT 

for each propositional variable p and therefore that Vo (B) 

€ IT for each formula B. Thus IT' c n. Now since U-Vo (B) = 

VO ("B), VO (B)nVo (C) = VO (BAC) and *Vo (B) = VO (OB) , we see 
that n '  is closed under the operations of complementation, 

intersection, and 8 ,  and from the definition of Vo we see 

that n' contains {bolt fbll, ~ c 0 1 ,  fcl}, f d2n I "20 1, 

' d2n+l I n2O ) and therefore TI C ll' . 



Now let p , ... Pim be a list of the propositional il 

variables occuring in A and let 8 .  , ... , Bim be formulae 
11 

such that V,(B. ) = V(p. ) for k = 1, ... , m. Let A' be 
f.k Ik 

the substituted case of A obtained by replacing each occur- 

rence of pik by Bik. Then V(A) = v,(A*). The claim is 

proved. 

We now continue with the proof of 7.3.2. 

We first show that F NE by showing that V, (E ,do ) 

= T. We have do c V, (pol c V, (p, vpl 1 .  If w E V, (p,) then 

w = d for some j and so w c V,(-p1 ) , but since wbd2 j+l 
2 j 

and d2j+l E V,,(pl 1 , w E V,(Qp, 1. Therefore V, (p,-+~p, = W. 

Clearly V, (-(pOhpl ) ) = W. Therefore do f V,(o ( (po-+gp, ) A  

( P ~ ~ ~ ) A - ( P ~ A P ~ ) ) )  =V,(J,). If w C V,(-(povp,)) then w # 

di for any i and so if w ~ v  then v # d for any j and there- 
j 

fore w E V, (ow (p, vpl . Thus Vo (- (po vp, )-+a- (p, vp, ) ) = W 

and so do € V, (a (- (pO vpl )+a- (pO vpl 1 = Vo (J2 . Therefore 

do € V(D). 

Now a, ~ b ,  , a, AC, , aafio, and a0bco. Thus, by claim 1, 
V, (A, , a, ) = T and, since do ba0 , Vo (+Ao ,do ) = T. We note 

that b,~b, and b,&co, c1acOand cldbo, bo$bl, cOdc, ,bodcl ,codbl; 

so by claim 1 again, V,(B~+OB,A-OC,) = V, (C,+OC,A--VB,) = 

v ~ ( B ~ " Q ( B ~ V C , ) ) ~ V ~ ( C ~ " O ( C ~ V B ~ ) ~ W ~  Hence do C Vo (J3)nV0 (J,) 

nv, (~,)nv, (J,) = v, (K) . ~ h u s  do c V, (E) . 
Next we show that F G. Let V be any assignment on F 

and w e W such that w f V (E) . Since B is' a conjunct of E, 



v (D ,w) = T , and hence, by claim 2, w = dm for some m. QA P 

is a conjunct of E and so, for some t 6 W, w ~ t  and vCA,,~) 

= T : thus V (OB,AOC ,A-OB, A-QC,,~) = T . Thus for some u, 

and v,, tau,, tAv,, V(B,,u,) = T and V(C,,v,) = T. Now J, 

is a conjunct of E, and so w C V(J,) = V(o (B,+OB,A--VC, ) ) . 
- Since wAu, and V (B, ,u, ) = T, we must have V (OB, A ~ C ,  ,u, ) - 

T. Thus there is uo such that u, Au, and V (B, ,u, ) = T. Sim- 

ilarly, from w E V (J, ) we see that V (QC, A--OB, ,v, ) = T and 

so there is v, such that v, Avo and V (C, ,v, ) = T. Further- 

more, since V(--OCo,ul) = V(-VB,,v,) = T, we have vl&uo and 

u,plv,. Now J, is also a conjunct of E ; so V ( o  (B0-+-~(E3,vC, ) ) ,w) 

= T and since wAu, and V(Bo,uo) = T, V(--O(Blv~,)-,u0) = T. Sim- 

ik&l.y from V(J6,w) = T we get V(--O(Cl~Bl)t~o) = T. Thus uobul, 

u6Jvlr vO&rlt vohu1. We see now that the structure (w,A) 

restricted to {t,u,,v,,uo,v,) has the diagram 

where the only "A-accessibility" is that marked by the arrows. 

Now by comparing with the diagram of (W,A) we see that the 

only possibility for such a substructure is to have t = an, 

- 
Ui - bn+it and vi - - Cn+i for some n (i = 1.2) and that, in 

fact, V(Bi) = ibn+i} and V (Ci) = { c ~ + ~ }  for i = 0 and 1. 



From this it follows,'by a routine induction argument, that 

- for each L O  V(Bi) = Ibn+il, V(Cil - and V(Ai) = ,  

Now dn+lAan+l and dn+l&an and so V(-OA, AOA, rdn+l) 

= T. Since dm = w A t = an we must have nlm and therefore 

w = dm A dn+l. Hence, by the second part of claim 2, dn+l 

€ V (p, vp, ) . Theref ore we have V ( (p, Vp, ) A+A, A OA, , dn+l) = T 

and so V ( 0  ( (p, vp, ) A--+A, AQA,),~) = T, i .e. V (F ,w) = T. Now 

we have V(G,w) = T for all w € W, V on F and so F G. 

Finally we show that F H. Suppose otherwise. Then 

for some w E W and some V on f, V(H,w) = F. By claim 3, w 

= dm for some m and by claim 4 there are formulae A and B 

such that V, (AAo (A+O(-AABAQ(-AA-BAQA) ) ) ,w) = T . Now let 

d,, ... , oDk be all the formulae beginning with which 

have elementary subformula occurrences in either A or B 

(see 2.1.1). If j>i and V,(cDhrdi) = T then VJrD d.) = T 
h t  3 

for h = 1,2, ..., k and i 3 0 .  So for some n2m we have for all 

h = l,...,k and all n'zn, V,(oD d ,) = ~,(oD~,d~). h' n 

If i,j3 and i-j is even then for each propositional 

variable p, Vo (p,di) = Vo (p,dj ) ; therefore V, (A,di) = 

Vo (A,d. ) , Vo (-AAB,di) = Vo (-AAB,d. ) , and Vo (-An--B,di) = 
3 3 

V, (-An--B,d . ) . It is easy to see that for some i, >i2 >i3 Zn, 
3 

V(A,di,) = V(-AAB,d. ) = V(-AA-B,d ) = T. But one of 
1 2 i 1 

, i -  , i - i  , (i2-i3) must be even and so either 
V (An (-AAB) ,di2) = T or V ( (-AAB) A (-AAAB) ,dil ) = T or 

V (An (-An*) ,dil ) = T; an impossibility. So we must have 



7.3.3 Theorem: L2 is a normal extension of S4 which is 

incomplete with respect to S. 

Proof: Lemmas 7.3.1 and 7.3.2. HA 

7.3.4 Corollary: ' S  does not have maximal depth even with 

respect to normal extensions of ~ 4 .  HM 

7.4 We now have a negative answer to Segerberg's question - 
mentioned in 5.3: "Are all classical modal logics natural?" 

Since we have already seen (5.3.1) that the canonical frame 

FL from a logic L models no more than L, if we also had -- 
FL L we would have L determined by the single frame FL 

and thus complete with respect to S. Therefore as a cor- 

ollary of 7.2.3 and 7.3.3 we cannot have f L1 or 
PI1 

F ~ 2  
L2 ,. and hence 

Theorem: Neither L1 nor L2 is a natural logic. 



8.0 In this chapter we shall study the width and depth - 
of the relational semantics. As we have already mentioned, 

we shall see that the relational semantics has width of 

measure K and has less depth than the neighbourhood seman- 

tics. 

8,1 - We have already seen in 5.5 that the measure of the 

width of R is an extension of K. To show that it - is K it 

suffices to construct a relational frame W, such that for 

each formula A, W, A if and only if K A.. 

Let BK be the Lindenbaum-Tarski boolean frame for K 

described in 6.1. By 6.1.1 and 6.1.2, BK A iff K A. 

Now let o (BK) = (U, ,<,, ,no) be the first-order relational 

frame where O is Makinson's mapping described in 6.2. By 

6.2.4, @(BK) A iff B K  f= A. Now let I, = (u,,<,) . Then 

by 3.4.1, if W, A then O (BK) A. Therefore if +(BK) 

A then W, )+ A. Thus if K t.f 
A then W, )qc A, and since we know by 4.6.8 that W ,  /== K, 
we have W, A iff K t A. Hence 

8.1.1 Theorem: R has width of measure K. 

8.2 We shall show that even when restricted to normal - 

frames, the neighbourhood semantics has strictly greater 

depth than the relational semantics. We do this by dis- 

playing a normal neighbourhood frame F = ( u , N )  which is 



not equivalent to any class of relational frames. Then, if 

L is the logic determined hy F, L will be conplete with F F 
respect to S but incomplete with respect to 1. Since we 

already know that the depth of S is at least as great as 
that of R this result will show that S in fact has strictly 
greater depth. We show that F is not equivalent to any 

class of relational frames by showing that a particular 

set r of formulae is valid in F but that another partic- 
ular formula G is not. We then show that in every relation- 

al frame which models I?, G is valid. Thus no class of rel- 

ational frames can determine the logic LF. 

Frequent reference will be made to the following 

formulae . 

n+l 
Fn ( A A ~ ~ A - ~ ~ ~ ) + o ( ~ ~ ~ ~ - ~  p) (nr2) 

G A-t(~~p-t~~p) 

Let r denote the infinite set {B, C, D, E, Fn I nz2 1. 



8.2.1 Lemma: Any relational frame that models I' also mod- 

els G. 

Proof: The formulae r ,  G are very similar to those 

used by Thomason in I171 and the proof that we give of 

this lemma is an adaptation of his proof of the correspond- 

ing fact in 1171. 

Suppose that W = (W ,<) models C , D , E, and Fn for all 
1322 but that it fails to model G. We show that W fails to 

model B, and thus any relational frame that models I' must 

also model G. Since W G there is w < W and an assign- 

ment V on W such that V(A,W) = T and ~ ( o p + o ~ ~ , w )  = F. 

2 Thus V(Anopn--o p,w) = T. For each W 2 ,  V(Fn,w) = T and so 

n+l v (~(o~~n-o p) ,w) = T. Thus there is a point, call it wnI 

n+l in W such that w<wn and V ptwn)' = T. Let w = w,. 

We shall show that for irj, w.<w i j* 

Since W E, W T; so by 4.6.9, < is reflexive. 

Choose positive integers i and j. Then wcwi and wcw 
j* 

2 Let V1 be such that V1 p,w) = T and also such that 

2 V, (q) = Iwi) and Vl (r) = {wj}. Then V1 (opAmo pA0qAOr ,w) = 

T and since also V1 (D,w) = T, we have Vl (O(qAVr)vO(rAOq) ,w) 

= T. If V, (O(q~~r),w) = T we must have wi<w and if 
j 

V, (o(~Ao~) ,w) = T we must have w.cw 
J i' So either wi<w j or 

W .<W . 
I i 

If i=j then since c is reflexive, wi<w . I•’ i+2c j 
j 

i and if w .cwi then since V (o pnn~o i+l 
7 

p,wi) = T, we have 



i+l is+ 1 V(-D p,wi) = T and t h u s  V&D p , w j )  = T. Therefore 

i+2 j j +l vl-o p t w j )  = T. ~ u t  V L  pA-o p , w j )  = T and so ~ b j ~ , w ~ )  

i + 2  = T and by 7 . 1 . 1 0  V b  p t w j )  = T;  a contradic t ion.  So 

w e  can ' t  have w.<wi and therefore m u s t  have wi<w 
7 j *  

Now suppose i+l = j. I f  w.)(wi then wi<w . So, J j 
suppose tha t  w FWi* Then l e t  V, be such t h a t  V, (q) = { w j } ,  

i-1 V 2 ( r )  = V ( O  p )  ( o f  course, mop w o u l d  s i m p l y  be p ) .  W e  

j j+l i+l i + 2  k n o w  t h a t  V (O PANO p , w j  ) = v (D p , w j )  = T and so 

3 V2 ( d m - $ r , w  ) = T.  T h u s  V, r , w j )  = T I  and since 
j 

V2 ( C t w j )  = T ,  w e  have V, ( o ( ( ~ m - o ~ r ) + O q )  ,w = T .  Now 
j 

i i + l  V 2 ( o r ~ - 0 2 r , w i )  = V ( O  PAVO p I w i )  = T and w . c w i  and so 
1 

V , ( Q q t w i )  = T .  T h e r e f o r e  wi<w . A l l  cases are taken  care 
j. 

o f ,  and so, i f  i5 j then  wi<wi. - 
Now l e t  V3 be such t h a t  V3 ( p )  = V ( p )  , V3 ( r )  = 

it i s  easy t o  see t h a t  V3 ( A A O ~ ~ ~ U ~ ~ t ~ )  = T. '  NOW l e t  u be 

such  t h a t  w<u and u 6 V 3 ( r ) .  T h e n  u = wj for  s o m e  j'l. L e t  

k be such t h a t  4 E j .  T h e n  w.%ut4k and s i n c e  for- each i = ' 
7 

1 ~ 2 t 3 t  W4k P VII b u t  W 4 k  6 ~3 ( r ) '  w e  have V~ ( r ~ q ,  vq ,  v q ,  , 

such t h a t  w t u ,  V3 ( ~ A O  (r+ql V q ,  V q 3  ) ,u) = F and so 

Now le t  F = ( u , N )  be the  par t icular  neighbourhood 

f r a m e  w i t h  t h e  f o l l o w i n g  d i a g r a m .  



g is any non-principal ultrafilter on the natural - 
numbers.(beginning with 1). The arrows are to be inter- 

preted as follows. If v can be reached from u by a se- 

quence of solid single arrows or by one dotted arrow - 
(double or single -- note that x can be reached from each 
z,,) then v is in every neighbourhood of u. In addition, 

the solid double arrow with "E" above it indicates that 

the neighbourhoods of y,, y,, and y, are those sets which 

in addition to containing (y,, y2, y3) containt for some 

K 6 9, all the rows of z's corresponding to the numbers in 

K. Also every element is in all its own neighbourhoods. 

Thus we have, formally: 

g any non-principal ultrafilter on the natural 

numbers (positive integers) 

u = fxt ylt Y,, y d  U i z i j  1 11-jci } 



f o r  i = 1 , 2 , 3  N C N i f f  there i s  K 6 g such t h a t  
Y i 

N C Nx i f f  x C N 

Since 9 i s  a f i l t e r ,  N i s  i t s e l f  a  f i l t e r  f o r  each 
Y .: 

i. It  is c l e a r  t h a t  t h e  s e t  of neighbourhoods of each 

o t h e r  p o i n t  i n  U i s  a  f i l t e r .  So f i s  normal by 4 .6 .7 .  

Since,  a l s o ,  every element of U i s  i n  a l l  i t s  own neigh- 

bourhoods, ? models T I  by 4.10.1, and so  

8.2.3 Lemma: I f  V(A,u) = T then  u = Y i f o r  some i i l r i s 3 j .  

Proof: Suppose v ( r h A c i , x )  = T.  Then s i n c e  i x )  C 

V (qi ,x) = T f o r  a l l  i ( l j i 5 3 )  . Thus V (Bi ,x)  = F f o r  lsic j53. 

So V(A,x) = F. 

Now suppose t h a t  V(A,z ) = T. Let  h  be t h e  g r e a t e s t  
nk 

such t h a t  V ( r , z  ) = T .  Such an h must e x i s t  s i n c e  r i s  a 
nh 

conjunct  of A and hence ~ ( r , z  ) = T. Thus k ~ h r n .  Now z 
nk . nh 

c N f o r  every N E N and s o ,  s i n c e  ( r - + ~ q . )  i s  a  conjunct  
'nk 1 

of A f o r  l z i 5 3 ,  V(r+Vqi, znh) = T and hence V (Oqirznh) = T 

f o r  l s i c 3 .  We have j zn  - znh, ... 1 znn3 6 N ( i f  h  
Znh 

= k = 1 then zn - simply denotes  x), and so  f o r  l r i 5 3 ,  

k i  fl f - I  1 1 znn } # 4 .  But znm c N f o r  every N 

C N i f  h - l n  and s o  V(qi+rrznm) = T f o r  such m and 
'nh 



3 .  Since h i s  the l a r g e s t  scch that  v (r , znh)  = T ,  w e  

must have V (qi, zn,) = F f o r  h + l z ~ n .  Thus V (qi) n 

iZn h-1 "nh 
# 4 f o r  i = 1, 2 ,  and 3 and s o  f o r  some i , j  

such t h a t  1 5 4 j z 3  e i t h e r  V(m(q i~q . )  ,zn h-l ) = F o r  
7 

v (qi"qj) t Z n h  ) = F. I n  e i t h e r  c a s e  t h i s  c o n t r a d i c t s  

V ( a 2 - ( q i ~ q j , z n k )  = T ,  and s o  v(A,znk)  = F. 

8.2.4 Lemma: I f  k i s  any formula,  V any assignment,  and 

15iz3 ,  t hen  (i) i f  v(02Htyi )  = T then  V ( H , x )  = T ,  (ii) i f  

V ( O H , Y ~ )  = T and V ( H , x )  = T then  V(02H,yi) = T ,  and (iii) 

i f  V ( 0 2 H ,  yi) = T then  ~ ( o j ~ , ~ ~ )  = T f o r  a l l  j10. 

Proof:  (i) v(02Htyi )  = T impl i e s  t h a t  V(oH,u) = T 

f o r  a l l  u  i n  some neighbourhood of yi; i n  p a r t i c u l a r ,  

V(oHtznl) = T f o r  some n. But then  V ( E r r . )  = T s i n c e  x i s  

i n  every neighbourhood of  zn l .  

(ii) I f  V(nH,yi) = T then  t h e r e  i s  some K C 

8 such t h a t  V ( H , U )  = T f o r  u  6 iy , ,  y2 , y 3 1  U I znm I n  6 KI.  

Then V(oH,yi) = T f o r  E j 5 3 .  A l s o ,  s i n c e  V(H,x) = T and 
-r , V(oH,z ) = T f o r  a l l  n  € K and 

I x t  znlt ... t 1 C N  nm nn Znm 
n .  Thus V(oH,u) = T f o r  u  C {y,,  y , ,  y,} U { z  I nfK.m_cn} nm 

and s o  v ( 0 2 ~ , y i )  = T. 

(iii) I f  v(02Htyi)  = T ,  t hen  by 8.2.2 i, 

j V(o H,yi) = T f o r  j = 0  o r  1. Suppose jB2 and t h a t  i f  

V (02Htyi) = T then  V (0 j-'trtyi) = T. Then by (i) wi th  H 

rep laced  by u ~ - ~ H ,  V ( O ~ - ~ H , X )  = T ,  and so, s i n c e  i x }  C N x t  

v ( ~ ~ - ~ H , x )  = T.  But then  by (ii) , w i k h  H rep laced  by o ' - ~ H ,  



8.2.5 Lemma: f B. 

Proof: Let V be an assignment such that for some u, 

V(A,u) = T. Then by 8.2.3, u = yk for some k ( I r i s  3) . 
Let So = n I for everymn, znmj?V(r) } 

Si = { n I for every E n ,  V(qi-+r,z ) = T } (Ei53) nm 

'l+i+ j = f -n I for every e n ,  V(-(qinqj) ,zm) = T } 

(Ei< j 3 )  

'6+i = { n I for every ~ n ,  V(r+Oqi,znm) = T 1 (lziz3) 

Then since V (A,yk) = T; S, , . . . , S, C 8 . We shall show 

that also Sp 6 Q. 

Let Q = -So fl S, fl . . . fl S, and suppose that Q # 4 .  

Pick n c Q and let m be the greatest such that zm € V(r). 

Then since jzn - znmt ... t znn} C N Z  (if m = 1 then 
nm 

z denotes x) and since for mchsn, v (qi ,znh) = v (r,znh) n m-1 

z = F, v (qi) n {zmr m-l ) # 4 for each i ( 3 .  Thus 

for some i,j ( lc i<js3) ,  V(--(qinqj),znrn) = F or 
8 

V (- (qiN ,Zn m-l ) = F. But V (- (qinqj ) , zm) = F contra- 
3 

dicts the fact that n C Q, as does v (- (qinq. ) ,zn m-l ) = F  
3 

if mr2. On the other hand, if rn = 1 the impossibility of 

V(-(qinqj),x) = F follows from the fact that V(A,yk) = T and 

and from 8.2.4(i). Thus we must have Q = $ .  Therefore Q 

j! Q and so -So j! 8 and, since Q is an ultrafilter, So € % .  

Now let R = S, n s, n . . . n S,. Then R € 8. 

Now, since V(A,yk) = T, V(Wj ,yk) = T for lSj53. Thus 

every neighbourhood of yk includes points v,, v,, and v, 
u 

a 



such that v  . < V (q. ) (& j r 3 )  . O r e  p a r t i c u l a r  neighbourhood 
3 3 

of yk i s the  s e t M =  i y3 ,  y2, y33 U I zm / n C R 3 .  But 

i f  n  € R then  n  € Sp and so  z  f V C r )  f o r  a l l  a n ,  and n  € nm 
S, f l  S, fl S,  a n d s o z m j % V ( q j l  f o r  j =1 ,  2 ,  a n d 3 .  Thus, 

s i n c e  w e  c a n ' t  have v  = z we  must have f v, , v2 , v3)  = 
j I-U~ 

y y 3 And s o  f o r  E j 5 3 ,  w e  have y  V(q1) U V(q2) 
j 

8.2.6 bema: I f  H i s  any formula, V any assignment, 
h  Em5n, and e m ,  then i f  V ( o  H,znm) = T then  f o r  a l l  u  f 

fx, n-1 * = .  I znn 1 and a l l  j ? O ,  V ( ~ ~ H , U )  = T.  

Proof: Primary induct ion  on m. Secondary induct ion  

on j. I f  m = 1, then s i n c e  h r m  and F E l  V ( O H , Z ~ , )  = T .  

Since f o r  a l l  N € N ,  , { x ,  z , . . . , znn} F N, we must 
n l  n l  

have V(H,u) = T f o r  u  € f x ,  z , ... nl 'nn 1. But f o r  a l l  

such u ,  { x ,  z n l I  ... 'nn 1 € N u ,  and so  f o r  such u  V(oHIu) 

= T. The induct ion  s t e p  y i e l d i n g  V ( D ~ H , U )  = T f o r  j> l  f o r  

a l l  such u  i s  obvious. 

Now suppose m l ,  t h a t  t h e  r e s u l t  holds  f o r  m-1,  and 
h  t h a t  V ( o  H,z,) = T where hzm. Then s i n c e  f o r  a l l  N € N Z  , 

nm 

'n m-1, € N ,  we have v ( o ~ - ~ H , z ~  m-l ) = T .  But h - E m - l a n d  . 

s o  by induct ion  hypothesis  V ( o j ~ , u )  = T f o r  a l l  u  C 



8.2.7 Lehma: I f  V i s  any assignment and k any number such 

that j zkl,  . . . , Z& c Y(p1 and x p/ VCp), t h e n ,  f o r  E I I E ~ ,  

m ~ b ~ - ' p ~ - - o  pIzkm1 = T. 

Proof : Induct ion  on m. V (p ,zk1 ) = T I  b u t  s i n c e  x C 
I 

N f o r  a l l  N f N, , V(op,zkl) = F.  Thus V b Q p - - o l p t z k l )  = T .  
kl 

n l s o  s i n c e  j z2  imp l i e s  { z k l t * * * t z  1 c N z k j l  V ( " ~ t z k j ) = T  V j 1 2 .  

m-2 Suppose t h a t  w 1 and V ( o  
m- f 

PIZk m - 1  ) = T and 

m-1 t h a t  f o r  a l l  jzm, V(a p t z k j )  = T.  Then i n  p a r t i c u l a r ,  

m-1 V(o pIzkm) = T .  But f o r  a l l  N f N , zk m-l € N ,  and 

m-1 m %rn 
s i n c e  V (a p ,zk m-l ) = F t  V("  Plzkm ) = F. Thus 

m-1 m 
V ( Q  p,zkm) = T .  A ~ S O ,  s i n c e  izkmt  . . . t zkkl 

Z 
k  j 

f o r  a l l  j t m + l ,  v (omp,a ) = T f o r  a l l  j ? m + l .  The induct ion  
k  j 

i s  complete. 

8.2.8 Lemma: For a l l  ne2,  F Fn. - 
2 

Proof:  Pick nr2.  Suppose ~ ( A A ~ ~ A - O  p ,u)  = T. By 

L e t  N c N . Then i f  sN = i k I izk, ,  ... I Zkkl N 1 
Y i  

t hen  SN € 8. Thus SN fl R C 8 and so SN ll R i s  i n f i n i t e .  

Pick k  such t h a t  k  C SN ll R and k  > n. Then t h e  hypotheses 

of  8.2.7 hold f o r  V and k  and so 
n + l  

PIZk n + l  ) = T  

wi th  zk n+l n + l  
C N. Thus v ( o ( ~ ~ ~ A - ~ I  p) ,yi) = T and so 

v (Fn,yi) = T. Hence F Fn. 

8.2.9 Lemma: F C. 



Proof:  W e  show t h a t  f o r  any asaigrurzent V and any u 

U ,  V(C,u) = T. 

I f  u = z o r  z n 2  f o r  m e  R r  t h e n ,  by 8.2.6,  n i 

V b  2 r ~ - 0 3 r , n )  = F;  i f  u = Yi (133) t h e n  by 8 . 2 . 4 ( i i i ) ,  

~ ( o ~ r ~ - o ~ r , u )  = F. I f  u = x and V (02 r ,u )  = T ,  then  s i n c e  

{x} EN,, v ( 0 3 r , x )  = T. Thus V(C,x) = T .  

Finallyr, suppose u = 'nk f o r  some n and some k?3. 

Suppose f u r t h e r  t h a t  v(qAo2rA-n3r , u )  = T .  Then V(or  , zn  k-l) 

= T s i n c e  zn k-l C N f o r a l l N C ~ ~  . T h u s z  6 V ( r )  
nk n j 

f o r  a l l  jhk-2. B u t  zn k-3 f V ( r )  ( i f  k = 3 then  zn k-3 

denotes  x )  s i n c e  o therwise  w e  would have V (03  r ,znk)  = T .  

Now { zn k-l, . . . t znn} c N and V(or , z  ) = T f o r  a l l  
Znk n j 

j such t h a t  k - lz jzn ,  and s o  V ( 0 2 r , z  . )  = T f o r  a l l  j such 
nl 

t h a t  kz jzn .  Thus i f  v ( o r ~ - o ~ r , z ~ ~ )  = T f o r  some j (k - l s j zn )  

w e  must have j = k-1. But znk( 6w N f o r  a l l  N c N and 
'n k-1 

= T and s o  V(C,znk) = T. XI(8 

8.2.10 Lemma: F D. 

Proof:  L e t  V be any assignment.  Then f o r  any n ,  

v ( o p + ~ ~ ~ , z ~ )  = F by 8.2.6, and s o  V ( D , z  ) = T: s i n c e  {x} 
n l  

E N,, V(opn-oZp,x) = F, and s o  V ( D , x )  = T. 

Now l e t  V be an  assignment such t h a t  V ( O q ~ @ r , z ~ )  = 



all N C N , znh C N and either V(q~~r,z~~l = T or 
nm 

v ( ~ A Q ~ , z ~ ~  ) = T depending on whether h = j or h = k. Thus 

-Finallyu suppose that iciC3 and V (9q~+r,y~) = T. If 

for any j (15j53) V(q,yj) = T, then since N = N , 
Y i Yj 

v(or,yj) = T; and so V(o(qnor) ,yi) = T and so v(D,~~) = T. 

Similarly, if V(r,yj) = T for some j ,  Thus we can assume 

that for 15j53, V(r,yj) = V(q,yj) = F. 

and let Sr = In I for some msn, zm c V(r) } ,  we must have 

S ,S 6 8 . Now let S, = i n I for some k ,m with ksmsn, 
q r 

'nk 6 V(r) and znm C V(q) } and let S, = n I for some k,m 
with ksrnsn, znk € V(q) and zm C V(r) 1 .  Then S, U S, - - 

Sr Vq. Since Sr,Sq € 8 ,  S fl Sq C % and so since 8 is an r 

ultrafilter, either S, € E or S, E % .  If S, C Z3 then 

V (O(rnOq) ,yi) = T and if S, C 8 then V (O(@Q~) , yi) = T. 

8.2-11 Lemma: F I' but f k G. 
Proof: Let V be an assignment such that V(p) = U-{XI, 

V(r) = {yl, y,, y3) and V(qi) =iyi}for 1953. Then it is 

easy to see that V (G,yi) = F for lS53 and so F G. 

This together with 8.2.2, 8.2.5, 8.2.8, 8.2.9, and 8.2.10 

gives the tesult. M 



8.2.12 Theorem: F is a normal neighbourhood frame with 

no equivalent class of relational frames. 

Proof: 8.2.1 and 8.2.11. 

even if S is restricted to normal frames. 
8.2.13 Coro'lJary: R has strictly less depth than S, 



A - 
9. Width and Depth of R and & 

9.0 We introduced the connected relational semantics, a, - 
and the superconnected relational semantics, K, in 3.5 

- A 

and 3.6 and noted in 4.1 that R is a subsemantics of R 
which in turn is a subsemantics of R. We shall see in this 

A 

chapter that in a very minor sense R is weaker than R and 
A 

k is weaker than R, but that the three semantics all have 
the same width and depth and so are equally strong for all 

intents and purposes. 

9.1 It is certainly clear that there are relational frames - 

that are not connected. It may be true, however, that for . 
every relational frame there is a connected frame which det- 

ermines the same logic, i.e. an equivalent connected frame. 

We show that this is not the case. 

Let W, = (w, ,< , ) where W, = I x , y }  and for u,v E W,, 

u<v iff u = v = y. Thus W ,  has the diagram 

Let B = pc-up and C = o(p~-p). Then W, )= BvC, W ,  # B, 
andW1 H C .  

At any point in any relational frame, C is true 

under one assignment at that point iff it is true under 

all assignments at that point iff the point has no suc- 

cessors (not even itself). If a point has a successor 



and is in a frame which.models ByC,  then B must 

be true under - all assignments and so the point is its own 

sole successor. Thus any connected frame which models BvC 

has exactly one point which either is or is not its own 

successor. But then the. frame either iodels B or models C, 

and so is not equivalent to W,, 

So we see that it is not the case that every relaL 

tional frame is equivalent to a single connected frame. 

In this very limited sense we might say that R is stronger 
A 

than R .  

9.2 Since we have a relational frame equivalent to no = 

single connected frame, it seems natural to ask next 

whether for every relational frame there is a class of con- 

nected frames which determines the same logic. The answer 

is yes. 

If W = ( W , c )  is a relational frame, then for u C W 

we define the connected component containing u to be 

( u , < ~ )  where Us = Lv C 

is the restriction of 

I U i  I i C I )  is the 

then for each formula 

for each i € I. Thus 

as that determined by 

frames. 

W I u and v are connected } and <U 

c to U. It is clear that if 

set of connected components of , 

A, W A if and only if Ui A 

the logic determined by W is the same 

the set i U i  I i C I 1 of connected 

Now for each logic L that is complete with respect to 



R there is a set 1 I j € J ! of relational frames which 
j 

determines L. If we let 3 Ui 1 i C I 1 denote the set of 
j 

connected components of &! then, by what we have just 
j ' 

shown , u I U i  
jcJ ( i I will also determine L. And so 

j 
A 

L is complete with respect to R .  We have 

9.2.1 Theorem: A logic L is complete with respect to R 
A 

if and only if it is complete with respect to R .  

9.2.2 Corollary: R has the same width and depth as R . 

This essentially means that anything we can do with 

relational frames we can do with connected frames, although 

we may sometimes need more connected frames to do the same 

thing. 

9.3 We shall, later-on, find it cahvenient to restrict - - 
our semantics even further, to that of superconnected 

- 
frames: R ,  We should, then, ask the same questions compar- 

h '3 
ing a with R as we asked to compare R with R. 

It is certainly clear that there are connected frames 

that are not superconnected. It may be true, however, that 

for every connected frame there is an equivalent supercon- 

nected frame. We show that this is not the case. 

Let W, = (w, where W2 = ix,y,z) and for u,v C W,, 

u<v iff either u = x and v = y or u = z and v = y or z .  

Thus W2 has the diagram 



It is easy to see that if V is any assignment on w, we 

thus V(BvC) = W . So we have W, BvC. But we can also 

easily see that W, k B and W, & C. We also note that W, 

is connected but not superconnected. ((W2)E = fy] and if we 

remove ly) from W p  we get a disconnected frame.) 

Let W .= (w,<) be any superconnected frame such that 

W BvC and CII C. Then there is w € W and an assignment 

V on W such that V(C,w) = F. Thus there exist wl,w2 € W 

such that ww1<w,. Let V' be an assignment on W such that 

~'(p) = {w). Then V'(C,w) = F and so V'(B,w) = T, and since 

V)(O(PA-P) tW)= F and V'(p,w) = T, we must have 

V' (~(pvo (PA-p) ) ,w) = T. But since V' ( o ( p ~ - - p )  ,w ,) = F w e  

must have V' (p ,w = T . Thus w , = w (since V' (p) = I W) ) ., 
Now let E = WE = i u6W I for n9.v do we have u<v 1 .  - 

Since W is superconnected we know that the frame W'obtained 

by restricting W to W-E is connected. But we just showed 

that any point in W at which C fails is in W-E and is its 

om. sole successor in W ' .  Since W'is connected, this point 

must be the only point in W-E. So the only points in W are . 
this point (at which po(pvo(p~-p)) is true under any as- 

signment) and points in E (at which (p&p) is true under 



any assignment); so kl /== B. 

Me have seen that if Irl is superconnected and W BVC 

and W # C then W B, and therefore cannot be equivalent 

to W,. So W,.is a connected frame with no equivalent single 

superconnected frame. 

We can see, then, that it is not the case that every 

connected frame is equivalent to a single superconnected 

frame. In this very limited sense we might say that R is 
stronger than R . 

t 

9.4 Since we now have a connected frame equivalent to - 
no single superconnected frame, it seems natural to ask 

whether for every connected frame there is a class of 

superconnected frames which determines the same logic. 

As in 9.2, the answer again is yes. The proof of this, 

however, is not quite the simple affair that the corres- 

ponding proof in 9.2 was. 

We show, in fact, that every relational frame is 

equivalent to a set of superconnected frames. We begin 

by introducing the concept of a qenerated subframe. The 

concept of a generated subframe is derived from Kripke 

and developed more fully by Segerberg [14], among others. 

We shall see that generated subframes are superconnected 

and that the set of all generated subframes of a relation- 
8 

a1 frame determines the same logic as the relational frame 

itself. It will follow, then, that the superconnected 



semantics has the same width and depth as the relational 

and connected semantics. 

Suppose that W = (w,<) is a relational frame. Then 

we define the relation << on W (called the ancestral of < )  

as the transitive reflexive closure of <; namely, 

for u,v € 

i) 

ii) 

or iii ) there is w € W such that u<<w and wcv. 

For w € W we define the subframe generated & w to be 
the frame uW = (w~,<~) where wW = { u€W I w<cu } and 

cW = < n (wWxwW). Now for each assignment V on W let vW 

be the assignment on WW given by vW(n) = V(n) fl wW for 

each n € N. 

9.4.1 Lemma: For each formula A and u € wW, V(A,u) = 

vW (A,u) . 
Proof: By induction on the length of A. If A is 

a variable pi then since vW (i) = v (i) nww, V (A,u) = vw (A,u). 

If A is -B or B-C then the induction goes through in 

the obvious manner. Suppose, then, that A is oB. 

Now, { vcW I ucv j = { v€wW I u cW v } and by the 

induction hypothesis, for such v, V(B,v) = vWi~,v). 

Therefore V(A,u) = vW(~,u). 

It is certainly the case that every generated frame is 



superconnected. Let WW be the subframe of W generated 

by w and, as before, let W; = { u€wW I there is no - v€wW 
such that u cW v 1, the set of points in wW with no 

successors. If we let DW denote the restriction of WW 
to wW-w; then we must show that is connected. 

Let u and v be points in ww-w;. Since u and v are 

in wW there are sequences uo, ... , un and v,, . .. vm 

of points in wW such that for each i, ui iW u ~ + ~  and 

vi <" v ~ + ~ ,  uo = w = vo, un = U, and vm = v. Clearly, 

W then, all the points in the sequences are in wW-wE and so 
W u=un, ". , U', W, V', ... , vm =v is a sequence in W -w; 

connecting u and v. 

9.4.2 Lemma: For each relational fra~e W = (w,<), the 

set { WW 1 w F: W 1 of all generated subframes of W deter- 

mines the same logic as W. 

Proof: Suppose W /== A. We show that for each w F: W, 

WW A. We note that as V ranges over all assignments on 

W, vW ranges over all assignments on wW. Pick u C wW. 
0 

Then u F: W and for all V on W, V(A,u) = T. Thus vW (A, u) 

= T by 9.4.1 for all vW on WW. Hence, wW k A. 
Now suppose W k A. Then there is a point x W 

and an assignment V on W such that V(A,X) = F. But then 

by 9.4.1, in WX, vX(~.x) = F and so WX k A. 

Now suppose that L is a logic complete with respect 

to R. Then there is a set W 1 j C J 1 of relational 
j 

1 



frames which determines Ii. Then by 9.4.2, 

W jyJ { W j  I w C W. } will also determine L. And so L 
j - 

is complete with respect to R .  We have 

9.4 .3  Theorem: A logic L is complete with respect to R 
if and only if it is complete with respect to K . 8!J 

- 
9.4.4 Corollary: R has the same width and depth as R, and - 

A 

hence as R. JIB 

So anything we can do with relational frames or with 

sets of relational frames we can, in fact, do with sets of 

superconnected frames. And so if sometimes instead of 

considering R with the modal language, M I  we consider the 
A - 

subsemantics R or even R with M I  as we shaii i a t e r  on, 

we are not really losing anything. 

In chapters 5 through 9, then, we have seen that B 
A - 

and S have width of measure E while F , R , R , and R all 
have width of measure K. If we restrict B and S to frames 
which model K, i.e. to normal frames, so that they are on 

A 

llcommon ground" with F ,  R, R ,  and R ,  we see that B and F 
have maximal depth, Shas strictly less depth and R has 

A - 
strictly less depth again. R and R have, however, the 
same depth as R .  We have the following "depth diagram" 

for normal frames. 



9.6 While we have answered the questions about the rela- 

tive depths of our various modal semantics, we have left a 

large question unanswered: the question of the absolute 

depths of the various semantics. In other words, we may 

ask for a non-semantic characterization of the set of logics 

complete with respect to the respective semantics. 

The question is, of course, answered for B and F: 
the answers being "all classical logics" and "all normal 

logics" respectively. The problems for S and for R, however, 

remain unsolved. These are, perhaps, the outstanding un- 

solved problems in this area at this time. 



10. M~dal Properties 

10.0 So far in this thesis we have taken the approach of 
5_ 

starting with M, the modal language, and studying the 

strengths of various semantics for M. For the remainder 

of the thesis we shall take the opposite approach. We 

shall be looking at the strength of M as a language which 

we may use to discuss properties of structures in the various 

modal semantics. In this chapter we shall be looking par- 

ticularly at properties of structures in B ,  8, and R. In 

later chapters, when we discuss reductions, we shall be par- 

ticularly interested in the system (M,R). 

10.1 Let D denote an arbitrary mcdal semantics. If P is - 
a property which may or may not be held by frames in D, 
then P will be called a modal property of - 11 if there is 
a set Mp of formulae in M such that for each frame F in D, 
F has property P if and only if F A for each A C Mp. 

In such a case, P and M are said to correspond. P will P 

be called a strongly modal property of D if and only if 
there is some corresponding Mp which is finite. Clearly, 

then, P is strongly modal if and only if there is a single 

formula Ap such that for each frame F in D, F has property 

P if and only if F Ap. 

In the remainder of chapter 10, we shall.considsr 

certain properties of boolean, neighbourhood,or relational 



frames and consider whether or nQt they are modal or strong- 

ly nodal. 

10.2 Various properties of rd.1-ki~na3. frames are known to = 

be strongly modal. For example, if = (w,<) then 

(a) W is reflexive (i.e. , < is reflexive) iff 

W a p p  (4.6.9) 

(b) W is transitive iff W /== ~ ~ - + o ~ ~  

thus (c) W is pre-ordered iff W ( o p p ) ~  (op+02p) 

(4.611 iff W S4. 

(d) .c is an equivalence relation iff W (op-+p) A 

(op+~ p) A (0p-+uQp) . (The smallest normal 

logic containing this formula is called S5). 

10.3. Sahlqvistll21 has shown that the property of being 

irreflexive (i.e. u#u Vu€W) is not modal. In fact, he 

has shown much more. 

If W = (w,c)' and u,v € W, then we write 

u c0 v iff u = v 

u < m+l v iff ~X(W (u ern x and xcv). 
Thus u cm v iff v can be reached from u in exactly m steps. 

For m # n, we say that c (or Q)) is m,n-intransitive iff 

Vu,v E W (--(uinvand ucn v ) )  , 

and we say that c (or W) is m,m-intransitive . iff 

m-1 
Br and ucx,<...cx <v implies ici<m-l (wi = xi)). 



Thus, k! is m,n-intransitive iff v can never be reached from 

u both i n  exactly m steps and in exactly n steps, and Irl is 

m,m-intransitive iff whenever v can be reached from u in 

exactly m steps, then there is only one path of that length 

from u to v. 

SahlqvistI12] (chapter 7) uses Segerberg's "unravel- 

ling technique" to show that for m # n, m,n-intransitivity 

is not moda1,and for W2, m,m-intransitivity is not modal. 

It is easy to see that irreflexivity is simply 1,O-intran- 

sitivity, asymmetry ( VwEW, - (wv  a; v<u) ) is 2,O-intransiti- ' - 

vity, and intransitivity ( Vu,v,w f W, u<v & v<w = -(u<w) ) 

is 2,l-intransitivity. Thus none of these properties is modal. 

10.4 The following lemmas wiii be useful. - 
10.4.1 Lemma: If P is a property which may or may not be 

held by frames in D, and if there is some logic J such that 
for every formula A either J A or there is a frame F in 

D with - property P such that F W A, and if there is a 
frame without property P which models J, then P is not 

modal. 

Proof: Suppose P were modal and Mp the corresponding 

set of formulae. Since there is a frame, F,, without pro- 

perty P which models J, at least one of the formulae in Mp, 

say B, must not b& +did in F , .  Thus J B. But then 

there is a frame F with property P such that F B contrary 

to our assumption that B 6 Mp.  #)C( 



10.4.2 Lemma: If D2 is a subsemantics of Dl, and if P,, P, 

are properties which may be held by frames in Dl, D 2  respec- 
tively such that a frame in D2 has property P 2  iff it has 
property P1 (when considered as a frame in Dl) , then if P, 
is a modal property, P2 is also. 

Proof: A frame in Dl has property P, iff it models 

Mpl 
. Since every frame in D2 isin Dl and it has property 

PI iff it has property P,, then it has property P, iff it 

models Mp,. Thus P2 is a modal property in D2 and we may 
take Mp - 

2 - M ~ ,  

10.5 Quite a few interesting properties of neighbourhood 

frames are modal. 

(a) Normality is strongiy modal in B ,  hence, by 
10.4.2, in S.  We claim that is normal iff B 

q (p-+p) A (o (p-q) -s (op+oq) ) . Let L be the logic determined by 

a boolean frame B. Now if B is normal then LB is normal. 

Since Lg is closed under RN and ptp is a tautology, LB /- 

q (prp). Also Lg k K and so L B t  a (p+q)-+ ( o p o q )  . Therefore 

L ~ ,  is classical (4.6.2) , Lg k a (p+p)++oA if LB /- pT+A. 
a 

Thus LB oA if Lg A. Therefore LB is closed under RN 

and contains o(p+q)+(up+oq) and so 21 is normal. 

(b) We saw in 4.10.2 that a neighbourhood frame was 

a topological space in a natural way iff it modeled S4. BY 



(a) that will happen iff it models o (&p) A (D ( p y )  - (.~p-oq) n 

Cop-tp) ~,(np+.o~p) . Thus the property of being a topological 

space is a strongly modal property in S. 

10.6 In chapter 4 we studied particular embeddings of R 

in Sand of S in Band decided to say that a neighbourhood 
frame was a relational frame if it was isomorphic to the 

image under this embedding of a relational frame, and sim- 

ilarly that a boolean frame was a neighbourhood frame if it 

was isomorphic to the image under this embedding of a 

neighbourhood frame. We shall have this interpretation in 

mind in this and following sections. 

In B, the property of being a neighbourhood frame is 

not a modal property. We have seen that K is complete with 

respect to R(8.1.1) and so it is certainly complete with 

respect to S .  Thus every formula not in K is not valid in 

some neighbourhood frame which models K. It is easy to see 

that there are boolean frames which model K but are not 

neighbourhood frames. (The Lindenbaum-Tarski frame for K, 

for example, is a countably infinite boolean frame and 

therefore cannot be a neighbourhood frame.) Thus by 10.4.1, 

the property of 

B. 

10.7 We shall - 

being a neighbourhood frame is not modal in 

see that in S, the property of being a rel- 

ational frame is not a modal property. We begin by showing 



t h a t  f o r  each  r e l a t i o n a l  frame W = (w,G) , if thexe a r e  some 

u,v < W w i t h  w v ,  then, t h e r e  is a normal neighbourhood frame 

GW which i s  no t  a  r e l a t i o n a l  .frame and i s  such t h a t  W # A 

impl ies  G& kC a- 

Let 8 be a  non-principal  u l t r a f  i l t e r  on N , t h e  n a t u r a l  

numbers. L e t  G w  = ( w ~ N  ,N) where S  C N i f  and only i f  
(u , m) 

t h e r e  i s  a  s e t  K € E such t h a t  i f  UQV and m K then (v,rn) 

€ s. 

F i r s t ,  we see t h a t  G i s  n o t  a  r e l a t i o n a l  frame. By 
W 

4.7.1 it s u f f i c e s  t o  show t h a t  t h e r e  i s  a  po in t  (u ,n)  e WXN 
such t h a t  N i s  not  a p r i n c i p a l  f i l t e r .  Pick u  such 

(urn)  
t h a t  t h e r e  i s  a  v  wi th  uav and l e t  n  = 1. Since 8 i s  a non- 

p r i n c i p a l  u l t r a f i l t e r ,  f o r  each m f N t h e r e  i s  a  K e 3 such 

t h a t  m ,4 K.  Thus t h e r e  i s  no p o i n t  i n  WXN which i s  i n  every 

" ( U , l )  
. But s i n c e  4 P E and t h e r e  i s  v with uqv, 9 k 

N ( u , l )  Thus N ( U , l )  
i s  no t  a  p r i n c i p a l  f i l t e r ,  and hence 

G i s  n o t  a  r e l a t i o n a l  frame. 
W 

Next, w e  s e e  t h a t  G W  i s  normal. Let  S, ,  S, € N ( U , n ) .  

Then t h e r e  a r e  K, ,  K, 6 8 such t h a t ,  f o r  i = 1,2, i f  uqv 

and m 6 I$ t hen  (u,m) € S .  Thus i f  uqv and m f K, n K 2  then  

( v , d  6 SlflS2, and t h a e f o r e ,  s i n c e  K , n K 2 E  E , SICIS, f N (u ,n)  ' 

Also, s i n c e  B # 4 ,  WXN € N ( u , n )  and so  G W  i s  normal. 

F i n a l l y ,  suppose t h a t  W kc A. Then t h e r e  i s  a po i9 t  

u € W and an assignment Y on W such t h a t  V(A,u) = F. L e t  

t h e  assignment V, on G W  be such t h a t  V, (p )  = v ( p ) x N  f o r  each 

p ropos i t iona l  v a r i a b l e  p.  We claim t h a t  f o r  each formula B, 



and f o r  e a c h  (v,ml € NXN Y, CB, b , m )  1 = Y ( B , v )  . T h e  proof 

is by induct ion  on the l e n g t h  of B. 

I f  B is a  p r o p o s i t i o n a l  v a r i a b l e  then  t h e  claim i s  

t r u e  by d e f i n i t i o n  of V,. I f  B i s  -C o r  C+D then  the claim 

fol lows t r i v i a l l y .  So, suppose B is oC. Then V(B,v) = T - v ( c , ~ )  = T f o r  a l l  w such t h a t  v w  @ (by induct ion  

hypothesis)  V , ( C , ( w , m ' ) )  = T f o r  a l l  w such t h a t  vqw and 

f o r  a l l  m' t N V a ( B ,  (v,m)) = T f o r  a l l  m t N s i n c e  

( ( w p m p )  I VQW and m' C N } € N ( v t m ) .  Therefore Vo(B,(v,m))  

= V(B,v) and so ,  i n  p a r t i c u l a r ,  V, (A ,  ( u , l ) )  = V(A,u) = F. 

Hence G W  # A. 

Now l e t  W = (w,< ) be a  p a r t i c u l a r  r e l a t i o n a l  frame 

such t h a t  t h e r e  a r e  u,v t W wi th  u<v ( i . e . ,  t h e - r e l a t i o n  < 

i s  nonempty). ThenGWis  normal and hence G K ,  bu t  
Irr 

is n o t  r e l a t i o n a l .  W e  know (8 .1)  t h a t  K i s  complete with 

r e s p e c t  t o  R ,  so  every formula i s  e i t h e r  i n  K o r  n o t  v a l i d  

i n  a  r e l a t i o n a l  frame which models K.  But t h e r e  i s  a  non- 

r e l a t i o n a l  frame, G W ,  which models K.  So by 10.4.1 t h e  pro- 

p e r t y  of being a  r e l a t i o n a l  frame i s  n o t  a  modal proper ty  

i n  S. 
We can use our  techniques of t h i s  s e c t i o n  t o  g e t  

another  r e s u l t .  W e  have shown t h a t  every formula no t  v a l i d  

i n  some r e l a t i o n a l  frame i s  no t  v a l i d  i n  some non-re la t ional  

neighbourhood frame which nodels  K ,  and t h e r e f o r e  every 

formula i s  e i t h e r  i n  K o r  n o t  v a l i d  i n  a  non-re la t ional  frame 

which models K. But there i s  a  r e l a t i o n a l  frame which models 



K, and hence by 10.4.1 the property of being a ncn-relatima1 

frame is also not modal in S . 

10.8 The property of being equivalent to a neighbourhood - - 
frame (determining the same logic as a neighbourhood frame) 

is not a modal property in B .  Since K is complete with res- 

pect to S t  every formula is either in K or not valid in some 
neighbourhood frame which models K. But we have seen in 

chapter 7 that there are boolean frames which model K and 

which are equivalent to no neighbourhood frames. Therefore, 

by 10.4.1, the property of being equivalent to a neighbour- 

hood frame is not modal in B .  

10.9 The property of being equivalent to a relational frame - - 
is not modal in S .  Since K is complete with respect to R, 

and since we have seen in chapter 8 that there is a neigh- 

bourhood frame which models K and which is equivalent to no 

relational frame, the result follows as above from 10.4.1. 

10.10 Connectedness is not modal property in R . K is 

complete with respect to R and so, by 9.2.1, with respect 
h 

to R. Thus each formula is either in K or not valid in some 

connected frame. Clearly, however, there are disconnected 

relational frames and we know that they model K,   here fore' 

by 10.4.1 connectedness is not a modal property in R. 

10.11 Superconnectedness is not a modal property in either __ 
h 

R or R. The proofs are analogous to that in 10.10. 



11. Higher-Order Languaqes and Semantics 

and Second-Order Properties o f  Frames 

11.0 In this chapter we introduce other languages that 

can be used to describe frames in our various modal seman- 

tics. These are the natural higher-order languages for the 

various types of frames we are dealing with. We compare 

properties of frames that can be described in these languages 

with modal properties. We concentrate on neighbourhood and 

relational frames and are particularly interested in second- 

order properties, for we shall see that all modal properties 

in S and R are second-order. 

11.1 A higher-order language is a monadic nth-order lan-- 

guage (for some nrl) with finitely many predicate symbols 

each taking a finite number of arguments of specified orders. 

More precisely, is an nth-order language if L has variables 

1 2 xi, x2, ...; xi, x2, ...; ..., xl, n x p ,  n ... 
(the superscript denotes the order of the variable); symbols 

-, -, V ,  =, € ;  predicates Q1, . . . -- 
Qm we say that Qi 

is of typei(a. ,..., -- ) , where ail, . . * .  are 
-11 - aiki- aiki . 

positive integers 5 n, if Qi takes ki arguments, the first 

of order ail, the second of order ai2, ... , the ki th of 
Order aiki 

. Formulae of L are defined as follows. 

An atomic formula is of one of the following forms: 

(a) of the form Qi(yl, ...,y 1 where, if Qi is of 
ki 
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type(ail, ... ,a ) then for l ~ j z k ~ ,  yj iki is a variable of 

order ai . 
(b) of the form y = y' where y and y' have same order. 

(c) of the form y € y' where the order of y' is one 

greater that the order of y. 

If A and B are formulae, so are A-tB, -.A, and VyA, 

where y is any variable (of order 5 n). We shall use the 

"defined symbols" A, v, 3; so that AAB denotes -(A-B), 

AvB denotes -A+B, 3yA denotes -VywA. 

th We are now ready to define a semantics for L, the n - 
order semantics for the nth-order language. First, if S is 

i+l a set, we define P(s) = S and D (S) = 6'(@ (s) ) . ( 6) 

denotes the power set operation.) 

If A denotes the nth-order semantics for L, then S is 

a structure in A if S = (s,Q~,...,~), where S is a nonempty 

set and if Qi is of type (ai...,a ) then so is ail i.e. iki 

Q~ c pail-' (s)  x . . . x@iki-'-(s). 
An assignment A on S is a mapping from the set of 

n-1 j -1 
variables of L to U pi (S) such that A (xl) C Q (S) . 

i= 0 
Then A induces a function, also called A, from the formulae 

of L to ITIF) as follows: 

~(~~(y~,...,y . ) )  = T iff Y , )  C Qi 
k, kl 

A(yl 6 y2) = T  iff A(yl) 6 A(y2) 

A(A-+B) = T iff A'@) =ForA(B) = T  

A (,A) = T iff A (A) = F 



and A(VyA) = T iff ' A ' & )  = T for all assignments A' which 

agree with A on all variables except y .  

If S is a structure in A and A a formula in L then S 

models A (S  A) if and only if A @ )  =: T for all assignments 

A on S. 

We shall often be dealing with second-order languages. 

In this case we shall often use lower case letters . -  - 

x,, x,, ... in place of xi, xi, ... and upper case letters 
X1 1 X2 1 ... in place of x:, x:, ... . 
11.2 We shall now consider the second-order language L~ - 
for neighbourhood frames, L~ will be the monadic second- 

order language with a single predicate symbol N of type 

2 .  Let As be the second-order semantics for is. Then 

each structure U is a pair U = (u,N) where U is a nonempty 

set and N c @(u)xu. There is a natural correspondence be- 

tween neighbourhood frames (structures in the semantics S 

for the language L) and the structures in As. With the frame 

F = (u,N) in S we associate the structure UF = (U,V) in As 
where (S,u) € iff S € NU. If U = (u,M) is a structure 

in As , then define the neighbourhood frame F u  = (u,N~) by 

N~ = i SCU I (S ,u) C M 1 .  Clearly, then, = M so that u 

U ~ u  
= U. Thus the correspondence f --+ U is one-to-one F 

and onto. Therefore we can identify neighbourhood frames 

with structures in the semantics AS  for.^^ and vice versa. 
In this manner we may think of L~ as a second-order language 



for neighbourhood frames. 

11.3 Next, we consider the second-order language for - 
relational frames. L~ will-be the monadic second-order 

language with a single predicate symbol Q of type (1,l). 

Let Ar be the second-order semantics for L ~ .  Then a struc- 

ture W in Ar is a pair W = (w,<) where W is a nonempty set 

and < c WxW. Thus the class of structures in Ar is exactly 
the same as the class of structures in R, i.e. each relation- 

al frame is a second-order structure for L~ and vice versa. 

In this way we can speak of L~ as a second-order language 

for relational structures. ( 

11.4 If P is a property which may or may not be held by - 
neighbourhood (relational) frames, then P is called a 

second-order property if there is a set Sp of formulae in 
L---- 

L, (L,) such that for each neighbourhood (relational) frame 

F 

F has property P if and only if F B \IBeSp. 

(if F is a neighbourhood frame we identify it with U F ) .  

P is strongly second-order if it is second-order and 

there is a corresponding Sp which i$ finite. 

11.5 In S, if P is the property of being a relational frame, - 
then we have already seen that P is not modal. However, P 

is strongly second-order. Recall (4.7.1) that a neighbour- I 

hood frame is relational iff the set of neighbourhoods of 



each point is a proper or inproper principal f i i t e r .  Thus 

we let Sp = i A 1  where A is 

11.6 We have already noted that the property in R of - 
being irreflexive is not modal. However, irreflexivity 

is strongly second order. Let Sp = {A} where A is 

Vx3 (9 hl ,XI 1 1 

It is, in fact, not hard to see from our description 

in 10.3 of m,n-intransitivity that for each m and n, m,n- 

intransitivity is a strongly second-order property. 

11.7 Connectedness is not a modal property in R (10 .lo) , 
_I_ 

but it is a second-order property. Let Sp = { A )  where A i s  

11.8 We shall show that every modal property in $ is sec- - 
ond-order. Let T be the transformation from formulae in M 

to formulae in $ defined inductively as follows: 

T ( p i )  = x,CXi for each propositional variable pi 

T (-A) = -TA 

T (-A+B 1 + T A 4 . B  

T (on) = 3X;1 .(N an 1 A Vx m Lx m (Xn+-+TA (xm/x1 ) 

where n and m are the least numbers such that Xn and xm re- 



spectiyely do not occur in TA and where TA(xm.&,) i s  t h e  

formula obtained hy replacing all free occurrences of x, in 

TA by xm. 

Me note the following two facts, which can inmediately 

be seen to be true for all modal formulae from the definition 

of T. 

1. The only first-order variable with free occurrences 

in TA is x, and x, has only free occurrences in TA. 

2 .  Xi occurs free in TA iff pi occurs in A. 

We now show that F /== A (in S) iff F TA (in As). 
Pick a neighbourhood frame f = (u,N) and an assignment V on 

F in S. Then for each u € U we let be an assignment on 

F in As such that A,(X~) = V(pi) and ~,(x,) = u. We claim 

that V ( A , u )  = (TA) for each modal formula A. 

Since x, is the only free first-order variable in TA 

and since for assignments Vt and VA. on F ,  if Vp and Vp agree 

on all variables occurring in A then V'(A) = vW(A), we know 

that as V runs through all assignments on F in S and u runs 

through all elements of U, iiu runs through all the assign- 

ments on F in As which are significant in determining the 
validity of TA in F; i.e. TA is valid in F if iiU(TA) = T 

for all such Au. From the claim then, we see that V(A,u) = T 

for all u c U and for all Y on F in $ iff A(TA) = T for all 

A on F in As. Thus , to prove that F /== A iff F /- TA it 

suffices to prove the claim. 



Proof of c l a i n  by induct ion  on l e n g t h  of A :  

If A i s  pi then  TA = x,CX i' We haye V(A,u; !  = T @ 

V(-pi1u) = T @ u C J7(pi) .- u C \ai) - "x,,Xi) = T u - A (TA) = T.  
U 

I f  A i s  -B then  TA = -TB. We have by induct ion  hypo- 

t h e s i s ,  V(B,u) = A (TB), t h u s  V(-B,U) = Au(-TB), i . e .  V(A,u) 
U 

= nu (TA) . 
I f  A i s  B+C.then we have V(A,u) = T @ V(B+C,u) = T 

V(B,u) = F o r  V(C,u) = T o (by induct ion  hypothes is )  

nu (TB) = F o r  AU (TC) = T - AU (TB-rTC) = T @ ILU (TA) = T .  

I f  A i s  oB then  V ( A , U )  = T @ V(oB,u) = T =, f o r  some 

s € N U  ( V(B,v) = T i f f  v C S , )  - f o r  some S such t h a t  

(SJLU) C N ,  ( Av(TB) = T i f f  v C S ) - 
~ U ( 3 ~ n ( ~ ( ~ n , ~ , ) ~ V ~ m ( x m ~ X n ~ T B ( x m / x , ) ) ) )  = T @ f iU(TA) = T .  

The induct ion  i s  complete and t h e  claim i s  proved. 

Thus F A i f f  F /= TA f o r  a l l  modal, formulae A. 

Now suppose P i s  a modal proper ty  i n  S. Then t h e r e  

i s  a set Mp of modal formulae such t h a t  f o r  each neighbour- 

hood frame F ,  F has  proper ty  P i f f  F A f o r  a l l  A C Mp. 

L e t  Sp = TA I A C Mp 3.  Then F has  proper ty  P i f f  F A 

f o r  a l l  A . C  Sp.  Therefore P i s  a second-order proper ty .  

I f  M i s  a f i n i t e  set then  so  i s  Sp and so  every s t rong ly  P 

modal proper ty  i n  S is s t rong ly  second-order. 

11.9 W e  s h a l l  show t h a t  every modal proper ty  i n  R i s  a l s o  - 
second-order. L e t  R be t h e  t ransformat ion  from formulae i n  



M t o  formulae i n  L def ined  induc t ive ly  a s  fa l lows:  r 
R C P ~ )  = X , ~ X  i f o r  each p r o p o s i t i o n a l  v a r i a b l e  p i 

R ( 4 1  = -RA 

R (A*B) = Ra-tRB 

R (oA) = hin (Q Lx, ,xnl+RA (xn/x, ) 

The proof t h a t  Y /== A ( i n  R )  i f f  W RA ( in  Ar) i s  

e s s e n t i a l l y  t h e  same a s  t h e  proof t h a t  ? A ( i n  S)  i f f  F 

TA ( i n  As)  i n  11.8. It d i f f e r s  only  i n  t h e  l a s t  case  of 

t h e  induc t ive  proof of V(A,u) = h,(RA) and s o  w e  s h a l l  do 

only  t h a t  here:  

I f  A i s  oB then  V(A,u) = T o V(oB,u) = T o f o r  a l l  

v such t h a t  u<v, V(B,v) = T f o r  a l l  v such t h a t  u<v, 

Thus W A i f f  W RA. I f  P i s  a  modal proper ty  i n  

R then ,  as i n  11.8, w e  can l e t  Sp = { RA I A C Mp } and we 

see t h a t  P i s  a  second-order proper ty .  I f  P i s  s t rong ly  

modal then  it i s  s t rong ly  second-order. 



12. Reductions and Quasi-Modal Properties 

12.Q We saw in chapter 11 that all nodal properties in S - 
or R were second-order properties but that the converse was 
not the case. This would seem to indicate that the second- 

order languages are more powerful, or more expressive, than 

the modal language for these particular semantics. This is 

certainly true if we are using the language to "say things" 

directly about the frames in the various semantics. But we 

shall see that we can use the languages through a series of 

reductions to say considerably more than we could say direct- 

ly * 

Our reductions are devices through which we can "talk 

about" structures in one semantics in a language which be- 

longs with another semantics; or, as we shall eventually do, 

in a language which belongs with the semantics in question 

but which can be strengthened considerably by using the 

reduction. Our reduction is a development of the reductions 

used by Thomason [19,20,21] which in turn were inspired by 

the notion of interpretations as in Shoenfield [15](p.61) 

12.1 If (L ,A) and (L' ,At) are p*y~t-s then a xeduction of - 
(L,A) into (L' , A t )  is a device through which we can use the 

language f to describe properties of structures in A. 
(At thia~point we shall begin to make use of the abuse 

of notation mentioned in 1.1 and shall write M E A if M is 

a structure in the semantics A, ) 
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A reduction P of L,A) into k t  'A') is a quadxuple 

,T ,C ,P  ) satisfying: ( a P P P  
C i )  v is an association between isomorphism classes 

P  
of structures in A and isomorphism classes of structures 
in A'. (AS a further abuse of notation we write M v M *  if 

P  
M C A and M' E A' and the isomorphism class of M is assoc- 

iated via V with the isomorphism class of M'.) v must sat- 
P  P  

isfy the condition that for M € . A  the class of isomorphism 
classes in A '  associated via with the isomorphism class B 
of M in A is a set, or more precisely, any class of otruc- 

tures in A' which contains a unique representative from each 

isomorphism class in Atassociated via v with the isomorphism 
P  

class of M in A and which contains only such structures is 
a set. The further condition that distinct isdmorphism 

classes in A are associated with disjoint sets of isomor- 
phism classes in A' must also be satisfied. 0 ,  then, is 

P  
almost a function from a subclass of A' onto A  which is 
"set-to-one" -- except, of course, that neither A '  nor A 
are usually sets and so cannot really have functions defined 

on them. 

(ii) T is an effectively computable one-to-one 
P  

transformation of formulae of L into formulae of k t .  

(iii) C and P are particular finite sets of formulae 
P P  

of L' . 
(iv) For all formulae A of L, M E A, and M1 c A' such 

that M v M ' ,  
P  



( M c A  such that M X M') - (M' C VCCC and M O #  D YDhDp). 
P 

Intuitively, then, each structure M in A is associated 
with structures M' in A C  such that for any formula A in the 
language L, M models A if and only if M' models its trans- 

form in L ' .  The formulae C and IJ are used to tell whether 
P P 

or not a structure in A r  is associated with any structure in 
A (is in the "range" of V). A structure in A t  is so assoc- 

P 

iated if and only if it models all formulae in C and none 
P 

in P . Thus the reduction must be such that the "range" 
P 

of V is describable in L t  in this weak sense. 
P 

We note that a reduction p is particularly interesting 

if V can be effectively described,in the sense that given 
P 

M C A we can describe in-terms of M the set of isomorphism 

classes associated with M via V, and if V is effectively 
P P 

invertible, in the sense that we can describe the "range" 

of in A '  and for each M '  in the range we can describe the 

M in A such that M V M'. All the reductions we shall use in 
P 

this thesis have these properties to a certain extent. They 

will also have the additional properties that c and p are 
P P 

either empty or singletons. 

12.2 We shall use reductions in the following way. Suppose 

there is a reduction p of (L ,A) to ( i t  ,A I). Then we can use 



109 

the language L' to describe propexties of frames in A as 
follows. Let P be a property in A. If there i s  a set sp 
of formulae in L' such that for M f A, M has property P 

if and only if M' models each formula in Sp for each struc- 

ture M' c A'  such that M '$ M', then we could say that Sp 

describes property P through the reduction p. 

We see immediately that any property in A describable 
in L is also describable in L'. Suppose that P is describ- 

able in L. Then there is a set Sp of formulae in L: such 

that M A for all A h Sp iff M has property P. Let Sp4 

be the set I T A I A f Sp 1 of formulae in L' .  Then, since 
P 

p is a reduction, Sp' describes property P through the re- 

duction p .  

12.3 As previously, M will be the modal language and K the - 
superconnected relational semantics for M. Let D be any 
semantics for M. We say that a property P which may or 

may not be held by frames in D is quasi-modal if there is a 
reduction p of (M,D) to (M,R) and a set Qp of modal formulae 
such that for each frame F in D and each W  in R such that 
F V W  

P 

F  has property P if and only if W  B V B  f Qp. 

A property P is strongly quasi-modal if it is quasi-modal 
* 

and has an associated Qp which is finite. 

Thus, P is quasi-modal if P can be described in M, not - 
necessarily directly, but through some reduction to (M ,R) . 
It would 



be nice if it were immediately obvious that every nodal 

property is quasi-nodal. While this fact is true, its 

proof will take a considerable amount of work and so will 

come later. 

We shall restrict our study O f  quasi-modal properties 

to those in the semantics $ and R. Our object is to show 

that every second-order property is quasi-modal. Since we 

know that every modal property is second-order (11.9) it 

will follow that every modal property is quasi modal. 

12.4 The following theorem shows that reductions can - 
be composed. 

12.4.1 Theorem: Let p  be a reduction of (L~,A~) to (L2 ,A2) 

and o a reduction of (L* ,A2) to (i3 ,A3). Then o o p  is a 

reduction of ( L ~  ,A1) to ( L ~  ,A3) where 

, = VOV (a) o g p  o p  ( i f  U,and Usare isomorphism classes* 

in A1 and A3 respectively, then U, g U, iff there is an 
o f =  

isomorphism class U, in A2 such that U V U, and U 2  g 4 U 3 ) .  
l P  

Doop = V  0 U I - T D I D C D ~ I  (5 

Proof: We must show that g satisfies (i) - (v) in 
0 P 

the definition of reduction. 

(i) Clearly g is an association between isomorphism 
O P  



n h i s m  classes of c l a s s e s  of s t r u c t u r e s  of Al and i ~ . ~ m x ,  

s t r u c t u r e s  of A j .  ~f U, is an isomorphism c l a s s  i n  All 
then  t h e  c l a s s  of isomorphism c l a s s e s  U, i n  A j  such t h a t  

g U, } (where I = { U, I U, is 

an isomorphism c l a s s  i n  A2 and U, g U, } , and a s  such i s  

t h e  union of a set of s e t s  and i s  t h e r e f o r e  a s e t .  

Suppose t h a t  U3 is an isomorphism c l a s s  i n  A j  and 

t h a t  U, and U,' a r e  isomorphism c l a s s e s  i n  A1 such t h a t  

U V U, and U1' c 7 V p  U S .  Then t h e r e  a r e  isomorphism c l a s s e s  
l o p  

U,,U,' i n  A Z  such t h a t  U, ; U,, U, ; U,, UlP ; U,', and 

U2 '  ; U, . Since o i s  a reduct ion  and U, g U 3  and U 2 '  U 3  

we must have U, = U,'. But then  U ,  g U,, Ul' V U, and s i n c e  
P 

p i s  a reduct ion  w e  must have U1 = U,'. Thus d i s t i n c t  i so-  

morphism c l a s s e s  i n  A1 a r e  a s soc ia ted  v i a  V with  d i s j o i n t  
U P  

sets of isomorphism c l a s s e s  i n  A j .  
(ii) Clea r ly  T = TooTp i s  e f f e c t i v e  and one-to-one ' 

0 0  P 
s i n c e  both T and T a r e .  

c7 P 

(iii) i s  immediate. 

( i v )  Suppose A i s  a formula of L ~ ,  M1 c A1 and M, c 

A 3  with  M v M,. Then t h e r e  i s  M2 c A 2  with M v M and 
l o p  l P  

M V M  . NowM, F A  M 2 k T A  M ,  P T  ( T A )  = T  A. 
2 0  3 P 0 P 00 P 

(v) Let M, c A j .  Suppose t h e r e  i s  M, c A1 wi th  

o V p  M, . Then there i s  M2 i n  AZ with  M1 M, and M, g MI. 

Thus M 3  t= c~ and M, C p  
, and t h e r e f o r e  M, C o  U 

(. T C I C c C } = C . Also M, W D.yD c O and M, P( D 
o P 00 P 0 

yD C Up, and t h e r e f o r e  M, k D YD C Do U T,B I B 6 D p  1 = 



M3 /= c o o p  and M 3  # D YD 6 Poop. Then 

D' vD c P and so there is Jl, t A2 with 
o 

/== ( - T C  / C c C } and soM2 
o P P C P *  

D for all D c Q and so M2 W D \ID c Qp. 
P 

12.5 We have already, in fact, shown in 11.2 and 11.8 that 

there is a reduction fron (M ,S) to (L,,A,) . Let v be such 
Y  

that for F S and U c As, F YJ U iff U is isomorphic to 
Y 

the structure U described in 11.2. Let T be the trans- f Y 

that conditions (i) to (v) of reductions are satisfied by 

y = ( v ~ T  tC 80 ) +  
Y Y Y Y  
Similarly there is a reduction from (M ,R) to (L, ,Ar). 

Let g be such that for W c R and U c Ar, W g U iff U is 
isomorphic to W in Ar (hence, also in R ) .  Let T be the 

6 

transformation R of 11.9, and let C6 = V6 = 4 .  Then it is 

easy to see that 6 = (pT6 'C  ,P ) is a reduction. 
6 6 

12.6 Thomason [19,20,21] developed his notion of reduction 

for a purpose quite different fron ours. He was studying 

the logical consequence relation of a system;. if (L,A) is 

a system then the logical consequence relation R for (L,A) 
is a binary relation such that ( r ,A)  6 R if A is a formula 

in L, r a set of formulae in and for each structure M c A t  
if M $ r then M A. 



If L is such that we can efgectively code formulae 

with natural numbers, then we can consider the logical con- 

sequence relation as a binary relation between sets of 

numbers and numbers, and, as such, can discuss the recur- 

sive complexity of the relation (i.e., its position in the 

arithmetic or analytic hierarchies.) 

Thomason shows that if there is a reduction from 

(L,A) to (L' ,At) then the logical consequence relation of 

(L,A) is at least as complex as that of (L' ,At), i.e. the 

logical consequence relation of (L',A') is recursive in 

that of (L,A). This relative recursivity hinges on the 

fact that the transformation of formulae in a reduction 

must be effective and therefore recursive. 

It should be pointed out that Thomason's notion of 

reduction is somewhat looser than ours, but that our notion 

would suffice for Thomason's work. 

- - 
12.7 We shall conclude with the following theorem. - 

12.7.1 Theorem: If L is any higher-order language of the 

type described in 11.1 and if A is the higher-order semantics 
for L also described in 11.1, then there is a reduction of 

12.7.1 Corollary: Any second-order property in S or R is 
quasi-modal and any strongly second-order property is 

strongly quasi-modal. 



Proof of corollary; 

by the theorem 12.7.1 from 

(pl , R) then let Qp = I - 

X f  o is the reduction promised 

The theorem tells us more than we originally sought: if P 

is a property in $ or R (or any other semantics) which can 

be described in an appropriate language of any finite order, - 
then P is quasi-modal and so can be described in the modal 

 language,^ through an appropriate reduction. It follows im- 

mediately from 12.7.2 and the results of 12.5 that 

12.7.3 Corollary: Every (strongly) modal property in S or 

R is (strongly) quasi-modal. lg(R 

It also follows from 12.7.2 and from ii.5, 11.6, li.7 that 

the property of being a relational frame in S and the pro- 

perties in R of being irreflexive ar connected are all not 
modal but strongly quasi-modal. 

The proof of 12.7.1 is a modification of Thomason's 

proofs in [19,20,21] and is rather long and tedious. For 

this reason the details of the proof will be given in an 

appendix and only a brief outline will appear in the main 

body of the thesis. 

The reduction, a, that we need is constructed as the 

composition of a sequence of other reductions. These red- 

uctions involve various tense systems, n-tense languages 

with the corresponding n-tense connected relational semantics. 



The concept of the n-tense language is an extension 

and generalization of the concept ~f the modal language. 

The n-tense language, -rn, is the language with propositional 
variables pl, p2, . . . , and classical connectives + and - as 
in M I  and additional unary connectives GI, ..., Gn and 
H1, ...,,H,. We use defined connectives v, A ,  and ++ as 

before, in addition to F1, ..., Pn and Pll ..., Pn where for 
a formula A, FiA = "GiwA and PiA = -Hi--A. 

An n-tense relational frame is an nl-1 -tuple W = 

(~,<~,...,c ) where W is a nonempty set and <i is a binary n 

relation on W (for lrirn). As with the relational semantics 

for M, a valuation is a mapping V from N to Q ( W )  and induces 

a mapping, also called V, from the set of n-tense formulae 

to Q(w) according to the rules: 

We see 

V ~ A )  n 

= I w  

is v € 

F if w 

immediately that V (AvB) = V(A) U V (B) , VBAB) = 

I there is v € Y (A) with wiv  3,  V(PiA) = 1 w I there 
V(A) with vciw }. A s  before, we write V(A,w) = T or 

If we think of <i as being the ith future relation, 

i .e. , w< .v if v is in the ith future from w, then V (FiA ,w) 
1 



= T if on w, A is true at - some point in the ith future; 

VQiA,ur) = T if on u, A . i s  true .at some point in the i th 
7 

past; V(GiA,wl = T if on w, A is true at - all points in the 

ith future; and V(HiAtw) = T if on w, A is true at all points - 
in the ith past. The comparison with the modal language is 

obvious. The n-tense concept is an extension of the modal 

concept in that we have a past tense as well as a future 

and it is a generalization in that we may have more than only 

one "temporal ordering". 

A formula A is valid in a frame W if V(A) = W for all 

valuations V on W. If w,v € W, then w and v are directly 

connected via - ci if wciv ar v<.w. Two elements w and v are 
1 

connected in W if there is a sequence w=wo,wi, ..., w =v of n 

elements of W such that for each j = 1,2,. ..,m there is an 

i (15izn) such that w j -1 and w. are directly connected via 3 
< i* A frame W = @, , . . . , c2) is connected if every pair 
of elements in W is-connected. The semantics of n-tense 

connected relational frames together with the above notion 

of validity is denoted Rn. 
our construction of the reduction o of (L, A) to bt E) 

proceeds in three stages. In the first stage we construct 
m 

a reduction p of (L~ A) to ( T ~ ~  b) where h = 6+2n+mtet Z kit 
i=l 

n is the order of the system (L,A), m is the number of rela- 

tions Qi in L, ki is the arity of Q i ,  and e = 1 + 
maximum({ki I l~i3-n) U 1 3 ) )  (thus e'4). The second stage 



consists of the construction, far each n12, of a reduction 

v n of (T~.R,) to (T,,~,R~-~), and in the final stage we 

The reasons &for our use of a in all of this rather 
A 

than simply R or R will become apparent when the actual 
reduction v l  is presented. Our techniques would not yield 

a proper reduction at this stage if we were to use (M.R) 

or Qqf R) instead of (M ,R) . 
It is not known whether or not other techniques could 

be used to get a reduction of (T1,R1) to (M fR)  or even to 

(M i )  or whether we could more directly construct a reduc- 
A 

tion of a higher-order system (L .A) to (M! R) or (M .R) . If 

we could, we could re-define quasi-modal properties to 

obtain what would perhaps be a more natural concept of 

quasi-modality. 



Proof of Theor'em 12.7.1 : Construction of a reduction a = 

0.1 ,F) where ; is the nth order 
language with m predicate symbols Ql, ... , , Qi being 

of type (aill . . ,aiki 1 for b i r m ,  and where A is the n th 

order semantics for L. In the construction of p which 

at these numbers. 

Let e = 1 + max(jki I k S m  } U 1 3 ) ) :  thus e is either 

4 or 1 plus the greatest arity of the Qi, whichever is great- 

er. Now let I = {1,2,3,4,9,10,12,13) U { (j,i) 1 55j56, 

lzisn-11 U { (7 ,it j) 1 Eizm, 15 j~ki} U 1 (8,i) 1 lSi.Sm} U 
m 

{(ll,j) I lzjse). If h = 6 + 2n + m + e + i&l kiF then 
card(1) = h. If we are considering the system (T~,R~) it 

really makes no difference whether we subsctipt the G's and 

H's and <'s with integers from 1 to h or with elements from 

I. Thus, we shall take this latter course, keeping in mind 

that the subscripts that we are using are really just sub- 

stitutions for the numbers 1 to h. 

A .  The first step in our construction of o is the con- 

struction of a reduction IJ. of &,A> to (T h,Rh) . We begin 

by associating with each Eormula A of L a finite sequence 

7 (A)  = (T (A) ,7 (A)  , . . . ,T r (A)) according to the following 
definition. 



Thus, for all formulae A in L, T (A) is a number between 0 
> 1 

formulae of A,and .T . (A) is a number for j15. We note that 
" 3  

e is the maximum length of the T-sequences. If A is a 

formula such that T(A) is a sequence of length e'<e then 

define T. (A) = 0 for et~jre, so that for lrjre, 7 .  (A) is 
3 3 

defined for all formulae A. 

Let S = (s,ql, ...,%) be a structure in A. Then 

there is a structure W = (w,c~ (iCI) ) in R,, such that W .. . 
is the union of disjoint nonempty sets U, N, R,  D, and 

K1, . . . , K, and conditions (1) - (11) below are satisfied. 

(1) c1 is an irreflexive well-ordering of W. 

(2) c 2  is an irreflexive well-ordering of N of order type 

a. Thus N can and will be identified with the natural 

numbers beginning with 0. 

(3) c3 is a function from U ta the subset 11,2, ..., n) of 

1 i 
N. ~ence U = U U U' U...U U" disjointly, where U = Iu I 

* 
( 4 )  C4 is a function from U to N. Therefore, for lSiZn, 



c41ui ( the r e s t r i c t i o n  of t h e  funct ion  c4 t o  t h e  domain vi) 

i s  a  funct ion  from ui t o  N, and hence f o r  lQc_n, ui = 

p ui d i s j o i n t l y ,  where ui = 1 u C ui I uc4 j } . 
j-0 I j 

i - , in1 
(5) U o -  CS 1 ( l s i r n )  

u < i 
5 , i  v i f f  u  C U o t  v C u:"~ and u C v ( l s i sn -1 )  

u  < 6 , i  v i f f  u c u;, v c uitl ,  and u i[ v ( l s i sn -1 )  

- (6) For 1 3 9 ,  Ki - @ a i l - l  (S) x ... x Qaiki-l ( S )  

a m k  ( = ~ i i l  x . . . x U O 1  i ) .  (Even i f  Qi and Q have t h e  same 
j  

type ,  we assume t h a t  K .  and K. a r e  d i s j o i n t . )  Thus Q i  c Ki. 
1 3 

< i s  t h e  p r o j e c t i o n  from Ki t o  ~ : ~ j  ( = (Pail-' 
7 A j  (S) 

< 8 , i  i s  t h e  i d e n t i t y  func t ion  on Pi; i . e . ,  u  < 8 , i  v i f f  

u  c qi  c Ki and u  = v. ( I r i r m )  

(7)  c g  
i s  a func t ion  from U i n t o  U such t h a t  f o r  each i 

i ( I r i 4 n )  and each j C 1, I u .  i s  a  one-to-one func t ion  from 

i i i 
( 9  7 

i U .  onto U o ,  and e g l u 0  i s  t h e  i d e n t i t y  funct ion  on Uo.  
3 

(8)  R i s  t h e  s e t  of a l l  formulae of L ,  and i s  a  

funct ion  from R t o  N such t h a t  u  c10 v i f f  v = h t ( u ) ,  

where h t  (A) = 0  i f  A i s  atomic,  h t  (--A) = ht ( Y X ~ A )  = 1 + h t  (A) , 

(9) u < I l , j  Y i f f  u f  R a n d ~ . ( u )  = Y .  (I5 j r e )  
1 

(10) D is  t h e  s e t  of a l l  assignments on S .  u v 



i iff v c D and for some i ( L z k n ) ,  u c u and u cg vb;). 
J '  

i-1 i (Note that since v is an assignment, v k i l  c @ (Sl = uo; 
thus, each v c D has a unique <12-predecessor in each of 

the subsets ui of U. 1 
3 

(11) u c13 v iff u € R ,  v € D, a-rld V(U) = T in (i.e. , 

the formula u is satisfied by the valuation v on S). 

Let C be the conjunction of the formulae numbered (12) 
IJ 

- (78) below. Note that some numbers are subscripted and 

really are associated with a finite sequence of formulae. 

In the lines marked (Def.), A, B, and C are used to denote 

arbitrary h-tense formulae. 

(Def. ) MA = AvFIAvPIA 

(Def.) N = ~~Cpv--p) 



( D e f  . 1 Nmbr (A) = U n i t  (A) AM ( .NAN 

( D e f  . ) Sr (A)  = NAP2AAH2 (AvF2AI 

( D e f  . ) 10) = NnH2 (PA-p) 

( D e f . )  1k.t.l') = S r ( { k ] )  

( D e f  . ) $ = UAF3A 

(Def  . ) UB = UAF4B 

i 
( D e f .  Ord (A)  = u n i t  (A) A M  ( u ' ~ ' A A )  101 ( E i r n )  



( D e f  . ) 

(Def . ) 



B Fmla (A) = F ~ ~ ~ ( A ) A M ( ~ F ' ~ ~ B )  

M(Ri0'~F11,1f3 I A ~ ~ ~ ~ ~ ~ A ~ ~ ~  , 3P~F11, 49" 
e 
A (Fll,j io)) j=5 

fi (Nmbr (ph) -+ M (R lo1 ki 
h=l e AF1l, 1 i 4 + i ) ~ ~ i ~  (F11 ,l+h~h! A 

" Pll,j 1011 
(15irm) 

3=2+k, 



D + H12U 

A s s t ( p ) ~ N m b r ~ q ~ ~ N m b r ( r ) ~ L ( q r ( F ~ ~ n + l ) ~ ~ I O ~ ) )  + 

U n i t  WIZp+q~"r) 

L (N -+ ( p 4  (P"u'~ ' )  ) ) -+ M(DnH12p) 





Claim: &l is isomorphic to some @' satisfying (I) - (11). 

(1). By definition ty is connected by I <i I i ( I 1 .  (12) 

ensures that W is connected by el; (13) that elis transitive; 

(14) that is linear: (15) that el is irreflexive and 

every nonempty subset of W has a cl-least element. Thus 

is an irreflexive well-ordering of W. 

(2). For every assignment V, V(MA) is W or + according as 

V (A) is nonempty or empty, because w satisfies (1) . Also, 
V (N) = Ix I for some y, x <2 y 3 is independent of V; we 

write N for V(N) . Then (16) and (17) ensure that c2 c NxN. 

(19) - (21) ensure that c2 is an irreflexive well-ordering 
of N, and (22) that the order-type of <2 is a. 

(3). & (4) .  V(U) is independent of V, so we write U for V(U) . 
Similarly, we write i for V({i)). (23) and (24) ensure that 

< c ~ x i l , .  . . ,n}; ( 2 5 )  and (261 that c4 c UxN; (27) and (28) 3 

that <3 and c4 are functions. 

0 i i+l 
(5). BY (29) Uo # 4 ,  and by UOi) - (.33i), < 5,i c u0xuo 

and c6,i c uoxu0 i+l for isicn-1. For any assignment V, 



i v (Ordi (A) ) = W i f  V (A) = fu l l  U C U ~ ,  and V (Ord (A) = 4 o the r -  

wise. By (.34il, f o r  each  UCU;, v c ~ y ~ , e x a c t l ~  one of 

u csIi  V I  u c6, i  v holds.  Define p from u ~ + I  t o  ~ ( ~ 6 1  by i 

(pi (v) = { u I u c5 , i ~  3. By (3Si) yi i s  one-to-one, and by 

(36i) Q i s  onto.  Thus W is  isomorphic t o  some u' s a t i s -  

fy ing  (5) f o r  som& S where S i s  i n  one-to-one correspondence 
0 wi th  Uo.  

(6). F i x  i 1 W e  write Ki f o r  V(Ki) (which i s  indep- 

endent of V) . For each j  ( E j  ski)  , ( 3 7 .  . ) and (38. . ) ensure 
1 3 17 

t h a t  c7 c K ~ x u ; ~ ~ .  ( 3 9 .  . ) ensures  t h a t  < 
1 3  

i s  a  
7 1 i I l  

func t ion  and (37. . )  and (38. . )  ensure t h a t  < i s  from 
11 1 3 7 , i I j  

Ki onto ~ : ~ j .  Define ei from Ki 

(vl , .. . , vk ) where u < v 
i i j  j '  

a r e  func t ions  ensures  t h a t  Oi i s  

0 .  i s  onto;  and1  (41 i )  t h a t  it i s  
1 

The fac t  t h a t  t h e  c ~ , ~  
j  

well-defined; (40i) t h a t  

one-to-one. W e  w r i t e  

% f o r  v(%) ( a l s o  independent of V) and note  t h a t  (42i) 

and (43i) t e l l  u s  t h a t  2 c Ki and t h a t  i s  t h e  i d e n t i t y  

func t ion  on %. Since i n ,  any s t r u c t u r e  i n  A t h e  r e l a t i o n s  

may be a r b i t r a r i l y  chosen a s  subse t s  of t h e  proper 

product sets, t h e  above confirms t h a t  W i s  isomorphic t o  

some W '  s a t i s f y i n g  (6) . 

(8). & (9). Write R f o r  Y ( R )  (independent of V). By (51) - 
(53) cI0 i s  a func t ion  from R t o  N. By (54) - ( 5 6 . )  each 

7 



. i s  a  func t ion  from R t o  NUR. I f  u v w e  w r i t e  
< ~ , 3  
h t ( u )  f o r  v; i f  n < 

j 
we w ~ i t e  Cu) f o r  v .  By (57) , if 

j 
(u) = (vl . f o r  a l l  j , l s j s e ,  then  u  = v. Hence t h e  follow- 

3 
i ng  d e f i n e s  a  func t ion  from a  s e t  of formulae of L i n t o  

R: 

+ (Q. ( x a i l , . .  . ,xaiki) = u i f  ( u ) ~  = 4 + i ,  ( u ) ~ + ~  = j h  f o r  
1 31 3ki 

< c lsh'ki, ( u ) ~  = 0 f o r  ki-h-e 

$ (--A) = u i f  (u)  = 0,  (u) = $ (A) and (uh) = 0 f o r  35h5e 

$(A*) = u i f  ( u ) ~  = 1. ( u ) ~  = $ ( A ) ,  ( u ) ~  = (B), ( u ) ~  = 0 

f o r  4  5hze 

k  S ( V X ~ A )  = u i f  ( u ) ~  = 4 ,  ( u ) ~  = k ,  ( u ) ~  = i t  ( u ) ~  = $ ( A ) ,  

( u ) ~  = 0 f o r  55h5e 

From t h e  f a c t  t h a t  f o r  u  c R and 1 3 - Z e ,  ( u ) .  i s  unique, 
1 

w e  s e e  by an obvious induct ion  on l e n g t h  of formulae t h a t  $ 

i s  one-to-one. From (58) - (63) w e  can prove by induct ion  

on h t  (A) t h a t  $(A) is def ined  f o r  every formula A of L. 

(For example, 158) t e l l s  u s  t h a t  f o r  numbers i t  j ,and k  with 

l%h, t h e r e  i s  a  u  c R such t h a t  h t ( u )  = 0, ( u ) ~  = 2, 
k k  

( u ) ~  = i t  (uIq  = k t  and (uIh = 0 f o r  55h5e; t h u s  $ b i = x . )  
3 

i s  def ined .  ... Assuming t h a t  q ( B )  i s  def ined  for  a l l  formulae 

B wi th  h t ( B ) Z r ,  then (63) t e l l s  u s  t h a t  f o r  numbers k , i  and 



formula A with ht (A) = r and lskrn thexe is a u € R such 

k and (u) = 0 for 55&e ; thus (QxiA) is defined and ht (.WX;A) 

= r+l.  . . . ) By (64) and (651 it can be proved by induction 

on ht (u) that every u C R is \l/ (A) for some formula A. 

Therefore q is a one-to-one correspondence from the formulae 

of L onto R such that if u = q (A) then ht (u) = ht (A) . SO 

W is isomorphic to some W' satisfying (8) and (9) . 

(10). By (66) and (67), each u in D (= V ( D )  for arbitrary V 

i on W) has exactly one <12-predecessors in each U  (Eisn, 
j 

O5j) and no other c12-predecessors, so v may be associated 

with the assignment A v  on S defined by nv (xf) = u iff there 
3 

i is u' in ui such that u' c12 v and uN < u. Thus Av(x.) C U: 
j 9 J 

i-1 (which may be thought of as 6 (S) 1 as we would expect. 

(68) tells us that for each assignment A on S there is v  C D 

such that A  = Av and (69) tells us that such a v is unique. 

Hence W is isomorphic to some W' satisfying (10). 

(11). (70) and (71) tell us that c13 c D x R .  If we make the 

identification indicated in the previous paragraphs (D with 

i-1 assignments on S t  R with formulae of L , U$ with V (S) , etc. ) 
then the following hold. If V is any assignment on W, 

A1 , A2 , . . . formulae -in Th, and u1 ,. u2, . .. € W Such that 

V(AI) Nil forli'l,than Y ( s * Q I 1 l ( ~ l  ,..., A . ) )  - w or + ac- 
k, 

cording as, for l 5 j  Si, u j  C U ; i j  and (ul,. * .  ,u 1 C or n o t ;  
ki 



Y(A~~'=~A.) = W or 4 according as ui = u or not; v(A~"c~A.) J j I 
h h+l. = W or 4 according as for some h Cl*=- l )  ui C u0, uj f u0 , 

ui is an assignment PU on S, n is a formula of L and 
i j 

uj 3 . 3  ui or not. Also V( & )  = 6 (xUj if ui is an 
2% ah Ui Uh 

assignment A on S, u and uh C with 1- 
ui. j cuj cn 

and 4 other- 

wise, and V ( z .  (A~) ) = 'F. (ui) if ui is a formula of L, 
3 . 3  

and 4 otherwise. In this light we see that by induction on 

formulae, (72) - (77) tell us that if ui c D and u € R 
j 

then u. cI2 ui if and only if the formula u is satisfied 
3 j 

by the assignment A on S .  (For example, if u is 
U r  j 
1 

xhl=xhl then by (72) uj c12 ui 
h2 h3 

iff 
Ui Ui 

assuming that the claim holds for all subformulae of ui and 
a 

that u is wxh1A, then by (77) u. <12 ui iff for every as 
j h2 I 

signment A on S which agrees with ui on all variables other 

than xhl, A satisfies A. . . . ) Hence, W is isomorphic to 
h2 

some W' satisfying (11). 

(78) ensures that W is, in fact, the union of the 

pairwise disjoint sets U, N, R, Dl and K1, ... , Km. 
We shall write f (4' if W is isomorphic to some W' 

which satisfies (1) - (11) with respect to S. We have 

shown that if W I =  C then S X W for some S. Conversely, 
F 

given a structure S in A, there are structures W such that 
S V W and they are simply those structures, or structures 

CL 

isomorphic to those, which satisfy (1) - (11) with respect 



t o  S.  

The claim As proyed 

Define t h e  t ransformqtton 9 from formulae of L t o  formulae 

of Th as  fol lows.  

and l e t  

If S $ w then  by (8)  - (111 S I =  A i f  and only i f  W ) =  T ( A ) .  
I-', 

Let C = { C  ) and le t  P = 4 .  Then we have shown t h a t  
I-L I-', P 

p = ( v I T  , C  ,P ) i s  a reduct ion  of (L,A) t o  (T 
C L C L V P  h'Rh) 

Ap.2 For nE2 we s h a l l  c o n s t r u c t  a reduct ion  vn  ofCjnrR,) 

t o  c~n-lfRn-11 

Let W 3 (w,<~, .  . .,< 1 he a  s t r u c t u r e  i n  Rn. Then t h e r e  n 

is a s t r u c t u r e  W+ = (W,/l,...,<' ) i n  %_lsuch t h a t  W' is n-1 

the union of d i s j o i n t  nonempty sets E,  U ,  U" and cond i t ions  



(1) - C9) below are satisgied. 

(3) <i fl (WE) is a one-to-one correspondence from U onto 

(5) c i  f l  (U'XU) is a one-to-one correspondence from U' 

onto U. If u C U then we write v = IT if v C U' and v ci u. 

(6) c ' n  (UXU) =<,. 
1 

(Recall that U = W and c WxW) 

( 8 )  If u',v' t U', then u' <i r' if and only if up = a, 

v' = V f o r  u,v 6 U,and u < n  v in W. 

Let Cv be the conjunction of (10) - (18) below. 
n 

(Def . ) 
(Def . ) 
(Def . ) 



Let " ':no 
Claim: W' satisfies C1) - (91 with respect to some - Rn. 

Proof : For any assignment V on W',  u € V (E) if and 

only if there is no v f W such that u <i v: thus V(E) is 

independent of V and we shall refer to the set V(E) as 

simply E. u E V(U) if and only if there is v € E such that 

u <1 v, thus V(U) is independent of V and shall be called 

simply U. V (U') = W - (17 [E) W (U) ) = W'- (EUU) and shall be 

called Up. Clearly W' is the union of the disjoint sets 

E l  U, U'. 

(2) and (4) follow from the definitions of E, U, and 

Up above. 

(3) follows from the definition of U and from (10) - 

(12). The definition of U ensures that each point in U has 

a successor in E and (10) that it has at most one. (11) 

ensures that each point in E has a predecessor in U and (12) 

that it has at most one. 

(5) follows from (131 - (26) in a similar way. 
(7) follows from (171, 

(18) ensures that for 2ricn-1, 0 c Uxu. i 

To satisfy 111 , (6) , (8) , and the rest of (9) , we let 



W = U, l e t  ci = t h e  r e s t r i c t i o n  of c': t o  U x U  for E i z n - l  
I. 

f o r  u,y 6 W (= U), let u cn v if and only if i ici  7. 

13 5 

and 

It remains t o  s h o w  on ly  t h a t  U, U*, and E a r e  nonenpty 

and t h a t  W i s  connected. 

There a r e  one-to-one correspondences between U ,  U p ,  

and E ,  which toge the r  comprise W . I f  one of U ,  U ' ,  E were 

empty, s o  would t h e  o t h e r  two be and hence W' would be empty; 

an i m p o s s i b i l i t y .  

L e t  u ,v  W (= U )  . We must show t h a t  u and v a r e  

connected i n  W; we know t h a t  they  are connected i n  W ' .  Let  

u=ul , u2 , . . . , u m  U,=V be a sequence of p o i n t s  i n  W' 

such t h a t  f o r  E i 5 n - 1 ,  u i s  d i r e c t l y  connected t o  u ~ + ~  i 

v i a  one of <it.. . ,<' n-1' We s h a l l  o b t a i n  a new sequence of 

p o i n t s  i n  W (= U )  such t h a t  each p o i n t  i n  t h e  new sequence 

i s  d i r e c t l y  connected t o  i t s  successor  v i a  one of el, ..., < n'  

by s t a r t i n g  a t  t h e  beginning of t h e  e x i s t i n g  sequence and 

rep lac ing  p o r t i o n s  of it by new p o r t i o n s  according t o  t h e  

fol lowing procedure. 

Let  Ui be t h e  f i r s t  p o i n t  i n  t h e  sequence no t  a l r eady  

d e a l t  with.  W e  can assume t h a t  ui C U (= W ) .  I f  i = 1 t h i s  

w i l l  c e r t a i n l y  be t r u e .  If ui is  d i r e c t l y  connected t o  u ~ + ~  

v i a  K '  where 25&%-1 then  u i+l t U and ui and u ~ + ~  a r e  d i r -  
j 

e c t l y  connected yia  <<. Do nothing t o  u i n  t h e  sequence. 
3 i 

The f i r s t  po in t  now no t  d e a l t  wi th  i n  t h e  sequence i s  u ~ + ~ .  

I f  ui is d i r e c t l y  connected t o  u ~ + ~  v i a  c' we consider  sev- 1 

e r a 1  subcases.  



(i) 

connected 

The f i r s t  

1 3 6  

u it1 € U. I n  this c a s e  ui and u ~ + ~  a r e  d i r e c t l y  

v i a  and so we do na th ing  t o  ui i n  the sequence. 

p o i n t  now n o t  d e a l t  w i t h  u ~ + ~ .  

(ii) ui+l € E. I n  this c a s e  t h e  only  p o i n t  d i r e c t l y  

connected t o  u ~ + ~  i s  ui and so u ~ + ~  i s  t h e  same p o i n t  a s  ui. 

O m i t  ui and u ~ + ~  from t h e  new sequence. The  f i r s t  p o i n t  now 

no t  d e a l t  with is u ~ + ~ .  

(iii) u E Up. I n  t h i s  case  we must have u ~ + ~  - - 
i+l 

~ e t  u j  be t h e  next  p o i n t  i n  t h e  sequence ( a f t e r  u .  1 ) i n  

U. Then u ~ + ~ ,  ..., u j -1 must a l l  be i n  U' . Let  v ~ + ~ ,  . . . ,v  j -1 
- - be t h e  p o i n t s  i n  U such t h a t  u ~ + ~  - v i + l r  -- I u j - l  = 5. 

Each of U ~ + ~ , . . . , U  j-1 must be d i r e c t l y  connected t o  i t s  

successor  v i a  <' t hus  each of V ~ + ~ , . . . , V  1' j -2 i s  d i r e c t l y  

connected t o  i t s  successor  i n  W v i a  cn  and we must have 

u j  -1 = iTT, t hus  v 
3 j -1 = u j *  

So we r e p l a c e  t h e  p o r t i o n  

U ~ ~ . . . , U ~ - ~  wi th  V ~ + ~ , . . . , V ~ - ~  and t h e  f i r s t  p o i n t  now not  . 
d e a l t  wi th  i s  u . 

j 
When i = m ,  then  ui = v and our  new sequence i s  con- 

s t r u c t e d .  

Thus u and v a r e  connected i n  W and s o  W i s  connected. 

The claim is proved. 

Now, i f  W Rn and if WN is isomorphic t o  some W' i n  

Rn-1 which s a t i s f i e s  (1) - (9) w i t h  respec t  t o  some W ,  w e  

write W $ w". It i s  c l e a r  t h a t  if W and are isomorphic 
n 

i n  Rn and i f  Wpand s a t i s f y  (1) - (9 )  with r e s p e c t  t o  



W and r e s p e c t i v e l y ,  then  I' and @' are isamorphic i n  Rn - 
Hence, 

s n  
i s  well-defined on isanwrphism c l a s s e s  of s t r u c -  

t u r e s .  

Define a t ransformat ion  from formulae of T~ t o  

formulae of T ~ - ~  by 

- 
qPi - Pi f o r  each v a r i a b l e  pi 

J/ (-A) = -- (UA-A) 

9 (A-+B) = qA+qB 

Now, f o r  a formula A of T ~ ,  let 

W e  must show t h a t  i f  W d Rn,  U p  t Rn-l and W v W' , then  f o r  
vn 

.a formula A of T~ 

w I =  A i f  and only if w " I =  T A 
Vn 

L e t  U ,  U ' ,  and E be subse t s  of  W' a s  before.  We know 

t h a t  W i s  i n  some sense  isomorphic t o  U and s o , , s h a l l  assume 

t h a t  W = U. Now a s  V runs  through a l l  va lua t ions  on W ' ,  

V'= vIW ( the  r e s t r i c t i o n  on V t o  W )  runs  through a l l  

va lua t ions  on W (probably more than once, i n  f a c t ) .  It 

s u f f i c e s ,  then ,  t o  s k o w  t h a t  f o r  each u E W'-U, 'V(T A , u )  
V n 

= T f o r  a11 V on W; and f o r  each  u E U (= W), Y(T A,u) = 
vn 

VP(A,u), f o r  a l l  77 on W'.  I f  u ,$ U then  V ( U , U )  = P and so  



vLT,, A , u )  = V(WqA,u) = T.  We ~ s h s w  by induct ion  on the 
n 

a l l  V on U'. 

I f  A i s  a v a r i a b l e  pi then V(T A,u) = tr(.U+pi,u) = 
v n  

V(p. , u )  ( s ince  V(U,uZ = T )  ,=  Y' (Alu) .  Now assume t h a t  t h e  
1 

r e s u l t  holds  f o r  a l l  f o m u l a e  s h o r t e r  than A. 

I f  A i s  --B then  V(T A,u) = V(U+~A,U) = v(u-~-.CUAJIB) ,u)  
v n  

If A i s  B-+C then  V(T A , u )  = V(U+(.\tB-+\CIC) ,u) = V(qB+$C,u). 
Vn 

This  i s  T i f f  e i t h e r  V ($B,u) = F or  V (qC ,u) = T ,  which 

happens i f  and only  i f  e i t h e r  Y (T B,u) = F or V (T C ,u)  = T ,  
vn v n  

which happens i f f  e i t h e r  V' (B,u)  = F or V' (c,u) = T ,  which 

happens i f f  v'(A,u) = T .  

I f  A i s  GiB ( l s i sn -1 )  then V ( T v  A,u) = v ( ~ A , u )  = 
n 

v (Gi ( u + ~ B )  ,u) = T i f f  v ( u + ~ B , v )  = T f o r  a l l  v  such t h a t  

u  v .  But v ( u + ~ B , v )  = V ( T v  B , v ) ,  and i f  v  U ,  t h i s ,  
n  

by t h e  induct ion  hypothes is ,  equals  V' (B ,v) , and i f  v  P U 

then V ( U + ~ B , V )  = T .  And so  v(u+$B,v) = T f o r  a l l  v  such 

t h a t  u <; v i f f  v '(B,v) = T f o r  a l l  v i n  W (= U )  such t h a t  

u  ci V. Therefore v'(A,u) = v'(T,  A,u) . Simi la r ly ,  
n  

Now, i f  A i s  GnB then  VCT, A,u) = V(YA,u) = 
n 

V (H1 ( u ' + G ~  (u '+G~ ( ~ ~ 9 ~ 1 )  1 ,ul . This  i s  T i f  and only i f  

V ( G ~  ( u ' + G ~  (u++B) l ,El = T ;  i f  and only i f  f o r  a l l  'lr C U 

such t h a t  ii <; I, V(G1(U+qB) = T; i f  and only  i f  f o r  a l l  



Y € U such that u cn y in W, VCTv B'Y) = T; by induction 
n 

hypothesis, if and only if Y H C B I v l  = T for all such v; 

and hence, if and only if Y' (A,ul = Y' (GnB,u) = T. Finally, 

V(T HnB,u) = V' (HnBIu] follows similarly. 
vn 

Let C = {C ) and V = 4.  Then we have shown 
vn vn Vn 

that for 1122, vn = (7 ,T ,C ,Vvn) is a reduction of 
n vn Vn 

(T, I Rn) to ( T ~ - ~  1 Rn-l) 

A Finally, we construct a reduction v l  (which we shall - 
usually call simply v ) of (il b) to (M, R )  . 

Let W = (w,<) be a structure in Rl. Then there is a 

superconnected structure W' = (w',<') in such that W' is 

the union of disjoint nonempty sets U, U', and (e and 

conditions (1) - (8) below are satisfied. 

(4) <' n (UxU') is a one-to-one correspondence from U 
- 

onto u'. If u c U then we write v = u if v € U' and u <' v. 

(5) <' n (UW) = c<' n (.UXU')J-'-. 

(6) C' f l  (~xfe)) = uxle). 

(7) C' n {UXU) = c .  (Becall that U = W and < c WxW.) 
- - 

(8) If u,v € U thehu,~ € U' and we havez<'Yif andonly 



L e t  C he t h e  c o n j u n c t i ~ n  of (9)  - (1%) below. 

CDef . ) e = dpA-p) 

(Def . ) u = 0e 

(Def . ) U p  = - ~ A - U  

L e t  p = {e). 
v - 

Claim: - I f  W '  = (w',<') € R,  W'k C y  and W' # e ,  then W' 

s a t i s f i e s  (1) - (8)  with respect  t o  some W C R1. 
Proof: It i s  easy t o  see  from the  de f in i t i ons  of e ,  

U ,  and U t h a t  V [el , V (Yl and V (Y ') a r e  independent of the  

assignment V,  and so, as before,  we s h a l l  c a l l  these  t h ree  

sets of points  simply E, U, and U , respect ively .  It i s  

c l e a r  f ron  the  d e f i n i t i o n s  t h a t  they , , a re  d i s j o i n t  and t h a t  

W' is  t h e i r  union. 



T h e  f a c t  that U' e  ensures  that e i t h e r  U o r  U' i s  

nonempty. I f  U # 9 t h e n  (91 ensures  t h a t  a l s o  U' # 4 .  

I f  U' # 4 t hen  U1) ensures  t h a t  a l s o  U # 4 .  So both 'U and 

U' a r e  nonempty. But then  t h e  d e f i n i t i o n  of t h e  formula U 

ensures  t h a t  E i s  nonempty. 

(9 )  and (10) ensure  that <' fl (UXU') i s  a  func t ion  

from U i n t o  U p ;  (11) and (12) t h a t  C' f l  (U'xU) i s  a  funct ion  

•’ram U p  i n t o  U .  C a l l  t h e  f i r s t  func t ion  f  and t h e  second g. 

Then (13 )  ensures  t h a t  f o r  a l l  u f U ,  g  (f (u) ) = u; ( 1 4 )  t h a t  

-1 f o r  a l l  v  € U , f ( g ( v ) )  = v. Thus g  = f  and s o  f  i s  a  

one-to-one func t ion  from U on to  U' . ( 4 )  and (5)  a r e  the re -  

f o r e  both s a t i s f i e d .  

Suppose u,v f U and u  <' v. Then (15) ensures  t h a t  
- 

i n  U , 7 <' ,u. Suppose, on t h e  o t h e r  hand, t h a t  i n  U' , 
- 7 c' u. Then (16) ensures  t h a t  i n  U ,  u  <' v. Thus ( 8 )  i s  

s a t i s f i e d .  

W e  s h a l l  now show t h a t  E i s  a  s ing le ton .  W e  a l r eady  

know t h a t  E # 4 .  Suppose t h a t  E i s  n o t  a s ing le ton .  

Then w e  s h a l l  show t h a t  t h e r e  a r e  d i s t i n c t  elements e and 

e' i n  E such t h a t  t h e r e  a r e  p o i n t s  u ,v  € U with u  <' e ,  

v <' e' and e i t h e r  u <' v o r  v <' u. 

Since W '  i s  superconnected it is s u r e l y  connected. 

Let  e=ul, u2, ... , um=e'#e be a sequence of p o i n t s  i n  W' 

such t h a t  each i s  d i r e c t l y  connected t o  t h e  next  v i a  <'. 

W e  can without l o s s  of g e n e r a l i t y  assume t h a t  u2 ,  .... u m - 1  



I 

E ,  f o r  otherwise redesQnate e' hs be t h e  f i r s t  p o i n t  i n  

the sequence # .eY,but i n  E,and remove a l l  of t h e  sequence 

before  the l a s t  occurrence of e preceeding this new eH,and 

a f t e r  this new e'. If no t  a l l  of u2 ,  ... , a r e  i n  U 

then we can rep lace  this sequence by a s i m i l a r  one i n  which 

they  a r e  a l l  i n  U according t o  t h e  fol lowing induc t ive  

procedure. 

u2 must be i n  U s i n c e  ul C E and s o  we l e a v e  u2 a s  it 

i s .  

L e t  ui be t h e  f i r s t  p o i n t  i n  t h e  sequence not  y e t  

d e a l t  with.  I f  ui c U then  l eave  it a s  it i s  i n  t h e  sequence 

and u ~ + ~  i s  now t h e  f i r s t  p o i n t  n o t  d e a l t  wi th .  If ui C U' - 
then  ui = u ~ - ~ .  Let u .  be t h e  next  p o i n t  a f t e r  ui t h a t  i s  

7 
i n  U.  Then ui, ..., u j -1 a r e  a l l  i n  U' and a r e  d i r e c t l y  con- 

nected v i a  c'. Thus t h e r e  a r e  vi, ..., v j -1 i n  U such t h a t  
- 

they  a r e  a l l  d i r e c t l y  connected v i a  <', ui = vi,  ... , 
- - - 

uj  -1 vj-l t  ui-l and v ~ - ~ =  u j *  and vi = Then rep lace  

u ..., u wi th  V ~ + ~ , . . . , V  i I j j-1' The f i r s t  p o i n t  not  now d e a l t  

wi th  i s  u ~ + ~ .  

Now w e  can assume t h a t  u ~ , . . . , u ~ - ~  c U. The d e f i n i t i o n  

of t h e  formula U and (171 ensure t h a t  each of u2, ... , 
have e x a c t l y  one e'- sWC~swr i n  $3.. Clear ly  t h e  <'-suc- 

cesso r  o f  w2 i s  e since u2 i s ,  d i r e c t l y  connected v i a  <' 

t o  ul (= e l .  L e t  ui now be the f i r s t  p o i n t  i n  t h e  sequence 

whose <'-successor i n  E is n o t  e .  Such a po in t  must e x i s t  

s i n c e  t h e  < ' - - s u c e e s s b r - i n  E of um - i s  e ' .  Now redes ignate  



e' to be the successor in E of ui if i t  i s  not already. Let 

u = ui-l and v = ui. Then we have n <' el v -=' e' , and 
either u<' y or v <* u. Witbut loss of generality assume 

Now let V be an assignment on W' such that V(p) = le}. 

Then V (QCe~p)',u) = T but Y b o  (e+p) ,u) = F since V (e ,e') = T 

but ~(p,e') = F. However this contradicts aur original 

assumption that (18) is valid in W'. So E must be a single- 

ton after-all. Let E = Ie). 

(2) , (3) , and (6) now follow from the definitions of 

e, U, and U'. 

If we let W = U and < = <'IW then (1) and (7) are 

satisfied. It remains only to show that W is connected. 

Let u,v E W (= U). Then since W' is superconnected 

there is a sequence u=ul, ..., u =v of points in W' such that m 

each is directly connected to the next via <' and such that 

none of u~,...,u~-~ is e. But then, as we have seen before, 

we can reconstruct this sequence so that all the u2, ..., u m-1 
are in U. (This reconstruction is exactly the same as the 

corresponding one in the preceeding section.) Thus * . 
U=U~,...,~~=V is a sequence of points in W such that each 

is directly connected to the next via <. So (4 is connected. 
- 

Let W 7 W F  if w F  6 R is isomorphic to a structure 
which satisfies UI - C81 with respect to W f R1. Clearly, 

if W' is isomorphic to a structure which satisfies (1) - (8) 
with respect tb W 



and is also isomorph& to a structure which satisfies 

(11 - (81 with respect to W M ,  men U and W" are isomorphic. 

So $ is well-defined on.isomorphism classes. 

Define a transformation from formulae of T1 to 

formulae of M by 

- 
"Pi - Pi for all propositional variables pi 

Now, for a formula A of T1, let 

TvA = P ~ A .  

we must show that if W C R1, W p  c and W v W' then for a 
v 

formula A in T~ 

W A if and only if W p  /== T A. v 

The proof is almost exactly word for word that of the 

corresponding property in the reduction v n  and so won't be 

repeated. 

Finally, we let C v  = icy). Recall that 0 = {el. 
v 

Then v = (7 ,Tv ,Cv ,Vv) is a reduction of(~~,R~) to 

0.1 l?i) 

I•’ we let o be the composite vov 2o . . .OV O F  , then o h 

is the desired reduction of (L /A) to (M ,E) . 
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