
SOME RESULTS 

ENUMERATION REDUCIBILITY 

by 

LANCE GUTTERIDGE 

B.Sc. ,  U n i v e r s i t y  of B r i t i s h  C o l u m b i a ,  1967 
M.Sc., U n i v e r s i t y  of B r i t i s h  C o l u m b i a ,  1969 

A DISSERTATION SUBMITTED I N  PARTIAL FULFILMENT 

OF THE REQUIREZWNTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

i n  the D e p a r t m e n t  

of 

M a t h e m a t i c s  

LANCE GUTTERIDGE 1 9 7 1  

SIMON FR9SER 'VNIVERS ITY 

AUGUST 1 9 7 1  



Name : 

Degree : 

Title of Dissertation: 

Examining Committee: 

APPROVAL 

Lance Gutteridge 

Doctor of Philosophy 

Some results on enumeration reducibility 

7 
1 

, --L-- - I ' r , 
Chairman: N. R. Reilly ,' 

A. H. Lachlan 
Senior Supervisor 

A. R. Freedman 

- - . - 
G. E. Sacks 

External Examiner, 
Professor, 

Massachusetts Institute of Technology 
Cambridge, Mass. 

Date ~pproved: September 24, 1971 



ABSTRACT 

Enumeration reducibi l i ty  was defined by Friedberg and Rogers i n  

1959. Medvedev showed tha t  there a re  p a r t i a l  degrees which are  not 

t o t a l .  Rogers i n  h i s  book Theory of Recursive Functions and Effective 

Computability gives a l l  the basic r e su l t s  and defini t ions concerning 

enumeration reducibi l i ty  and the p a r t i a l  degrees. He mentions i n  this 

book t h a t  the existence of a minimal p a r t i a l  degree i s  an open problem. 

In  this thes is  it i s  shown tha t  there a r e  no minimal p a r t i a l  degrees. 

This leads naturally t o  the conjecture tha t  the pa r t i a l  degrees a r e  dense. 

This thes is  leaves this question unanswered, but  it is shown t h a t  there 

a r e  no degrees minimal above a t o t a l  degree, and there a re  a t  most 

countably many degrees minimal above a non-total degree. J. W. Case 

has proved several r e su l t s  about the p a r t i a l  degrees. He conjectured 

tha t  there is no s e t  i n  a t o t a l  degree whose complement i s  i n  a non-total 

degree. In  t h i s  thesis  tha t  conjecture is disproved. Finally, Case's 

r e s u l t  t ha t  there is  a minimal pa i r  of p a r t i a l  degrees is  strengthened 

t o  s h o w  t ha t  there is a minimal pa i r  of p a r t i a l  degrees which are  t o t a l  

and form a minimal pa i r  of r .e.  degrees. 
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Professor A. H. Lachlan. The  author appreciates the mathematical 

assistance and personal encouragement which he gave a t  a l l  hours 
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CHAPTER I 

INTRODUCTION AND TERMINOLOGY 

INTRODUCTION 

In  t h i s  t hes i s  we consider the  p a r t i a l  (enumeration) degrees a s  

defined by Friedberg and Rogers [2] .  I n  Chapter I1 we disprove a 

conjecture by Case [ l ]  t h a t  there  is no s e t  A i n  a t o t a l  degree whose 

complement is  i n  a non-total degree. Case [ l ]  has shown t h a t  there  is  

a minimal p a i r  of p a r t i a l  degrees. I n  Chapter I11 we strengthen t h i s  

r e s u l t  t o  show t h a t  there is  a p a i r  of co-r.e. s e t s  whose p a r t i a l  degrees 

form a minimal p a i r  of p a r t i a l  degrees; and hence t h e i r  Turing degrees 

form a minimal p a i r  of r .e.  degrees. In  Chapter I V  we show t h a t  there  

a r e  no minimal p a r t i a l  degrees and demonstrate t h a t  t h i s  r e s u l t  

r e l a t i v i ze s  t o  show t h a t  there  a r e  no degrees minimal above a t o t a l  

degree. This s t i l l  leaves open the question a s  t o  whether the p a r t i a l  

degrees a re  dense. In  Chapter V we move closer  t o  a solution of the  

density problem by showing t h a t  given any p a r t i a l  degree - a there  can 

be a t  most a countable number of p a r t i a l  degrees minimal above . a .  - 

I n  t h i s  sect ion we intend t o  ou t l ine  a l l  the  basic notation and 

def in i t ions  used i n  t h i s  thesis .  For a de ta i led  explanation and study 

of recursion theory the reader is re fe r red  t o  Rogers [5]. 



We w i l l  denote subsets of N by upper case l e t t e r s ,  with D,  E ,  F 

being reserved for  f i n i t e  subsets. Members of N w i l l  be represented 

by lower case l e t t e r s  except for  f ,  g, h which are  reserved for  t o t a l  

functions. Pa r t i a l  functions ( that  is, functions whose domain is a 

subset of N) w i l l  be denoted by $ and $. 

A w i l l  denote the complement of A ,  
C~ 

w i l l  be used fo r  the 

charac ter i s t ic  function of A and A A B w i l l  denote the symmetric 

difference of A and B. For notational convenience we w i l l  sometimes 

use ~ [ n ]  t o  denote CX(n). We w i l l  c a l l  a f i n i t e  i n i t i a l  segment of 

a charac ter i s t ic  function an i n i t i a l  function. A  join B is the s e t  

We define the binary function T by, 

r(x1 y) = f(x2 + 2xy + y2 + 3 x +  y), 

and T is a recursive, one t o  one mapping of N x N onto N (see 

k 
Rogers [ 5, p. 641 1 . For each k we define the k-ary function T as 

follows : 

k 
Me abbreviate T (xl, ..., 5) by <XI, . - . f  \>. For each k we 

k define the projection functions . , 1 5 i I kt by 
1 



k We w i l l  usually drop the  superscr ipt  on n when its value i s  c l e a r  
i 

from the  context. 

A s e t  B is  single-valued i f  

<n, j > € B  and <n, k > € B +  j = k .  

A s e t  B is t o t a l  i f  f o r  a l l  n there  is a m such t h a t  <n, m> € B. 

I f  D is f i n i t e .  i . e .  D = {xl. ..., x < x < ... < 
-- +. 1-- 2 

X I  then 

Al "k 
t h e  canonical i n d e x  of D is 2 + ... + 2 , i f  D =  p) we l e t  i t s  

canonical index be 0. We denote by Di t h e  f i n i t e  s e t  whose canonical 

index is i. W e  w i l l  o f ten  make no d i s t i nc t i on  between a f i n i t e  s e t  

and its canonical index, as  i n  the use of <E, x> f o r  <it x>, where 

Di = E. 

We w i l l  assume t h a t  the  reader is  fami l ia r  with the  r e c u r s i v e  

p a r t i a l  f u n c t i o n a l s ,  (see [6. p.150]) . 
w e  l e t  <o~>:=~ be an effective enumeration of the recursive p a r t i a l  

th 
functionals.  For each e we denote the  e - p a r t i a l  r e c u r s i v e  f unc t ion  

An[@ (C n ) ]  by Oe. The function f is r e c u r s i v e  i f  f o r  some e. 
e B' 

4e is  t o t a l  and f ( n )  = Oe(n) f o r  a l l  n. A s e t  is  r e c u r s i v e  j u s t  

i f  its cha rac t e r i s t i c  function is  recursive.  A s e t  is r e c u r s i v e l y  

enumerable i f  it i s  the  range of some pa rk i a l  recursive function. We 

denote t he  range of Oe by We. W e  say f is Turing-reducible  t o  g 

(f 5 g) if f = hn[Oe(g, n) ] f o r  some e. We extend this reduc ib i l i ty  T 

t o  s e t s  by defining A 5 B i f  C < 
T A -T C ~ .  

Two functions f and g 



a r e  Turing equivalent (f -, 9 )  if f 5  g a n d g 5  f ,  It  canbeshown 
T T 

t h a t  E is an equivalence r e l a t i on  (see (5, p.1371). The equivalence 
T 

c lasses  under = of t o t a l  functions (or s e t s  by considering t h e i r  
-T 

cha rac t e r i s t i c  function) a re  cal led the Turing-degrees. A Turing-degree 

that contains an r . e .  s e t  is  ca l le6  an r.e. degree. We w i l l  use small 

underlined l e t t e r s  f o r  the Turing-degrees, fo r  example 2, b, 2. The 

jump of a s e t  A, denoted A ' ,  is  the s e t  

I e  : Oe(CAf e )  is  defined}. 

The jump operator i s  well  defined fo r  the  degrees and i f  a is the  - 
degree of A then we denote by 2' the  degree of A ' .  We use 2 t o  

denote the  smallest  degree, t h a t  is the degree of a l l  recursive functions. 

We reserve the symbol K f o r  the s e t  {e : e f we} and the  symbol Kg 

f o r  the  s e t  {<n, e> : n € we}. Both K and K a r e  of degree 2'.  
0 

1.3 ENUMERATION REDUCIBILITY 

Enumeration reduc ib i l i ty  is  defined i n  Friedberg and Rogers [2] 

and discussed i n  Rogers [ 5, p. 1461 . In tu i t i ve ly ,  a set A is enumera- 

t i on  reducible t o  B is  there is an algorithm t h a t  w i l l  work on any 

enumeration of B (the input  enumeration) and produce an enumeration 

of A (the output enumeration). The formal def in i t ions  a r e  as  follows: 

1.3.1 W(A1 = {x : f o r  some D, D c A and <D, x> € w}. 

1.3.2 A is enumeration reducible t o  B (A Se B) i f  there  is an 

r.e. s e t  W such t h a t  A = W(B). 



1.3.3 A =  B i f  A 5  B and B 5  A. 
e e e 

1.3.4 A< B i f  A 5 B and B $ A. 
e e e 

~ U S  t o  every r.e. s e t  W there is associated a function 
e 'e 

N 
from 2* t o  2 . We ca l l  this function an enumeration opera tor .  In 

th i s  thesis we sha l l  not distinguish between an r.e. s e t  V and i ts  
e 

associated operator me, for  example i f  @ is  the enumeration operator 

associated with the r. e. s e t  W we w i l l  write W (A) for @ (A) . 
Notice that  the definition of W (A)  i n  1.3.1 did not specify that  W 

had to  be r.e. In l a te r  chapters for purposes of relativization we shal l  

sometimes use non-r.e. se t s  to  operate on other sets .  

It is easy t o  show that  E is  an equivalence relation on the 
e 

subsets of N (see [ 5, p. 1531 . The equivalence classes are called 

enumeration degrees .  One of the reasons for studying enumeration 

reducibility, other than the fact  that  it is  a very natural relationship 

between enumerations, is  that  we can get a reduction between par t ia l  
L.. 

functions by defining ? +  

The equivalence classes of par t i a l  functions (or single-valued se t s )  are 

called p a r t i a l  degrees .  

A par t i a l  degree is called t o t a l  i f  it has as a member some to ta l  

function f .  We w i l l  use 5 t o  denote the par t ia l  ordering of par t ia l  

degrees and enumeration degrees induced by 5 . We w i l l  use underlined 
e 

lower case l e t t e r s  to  denote par t i a l  and enumeration degrees as well as 



Turing degrees. Me wri te  a < b i f  a 5 b and b 2 a. The s t ruc tu re  - - - - - - 
obtained by r e s t r i c t i n g  the  p a r t i a l  degrees t o  the  t o t a l  p a r t i a l  degrees 

is order isomorphic t o  the  Turing degrees (see [5,  p. 1531). 

There is r e a l l y  no dif ference between the  s t ruc ture  of the  enumera- 

t i o n  degrees under 5 and the  s t ruc tu re  of the  p a r t i a l  degrees under 5. 

The map which takes t o  T(@) induces an isomorphism between the  

p a r t i a l  degrees and the  enumeration degrees. The inverse of t h i s  iso- 

morphism is induced by a map which takes a s e t  A i n t o  a constant 

function with domain A. Hence i n  t h i s  t h e s i s  the  terms p a r t i a l  degree 

and enumeration degree w i l l  be used synonymously. We w i l l  use 2 t o  

denote the  smallest  enumeration degree t h a t  is t h e  degree of a l l  r .e .  

s e t s  (from a p a r t i a l  function viewpoint it i s  the  degree of a l l  p a r t i a l  

recursive functions) . 
\ 
k 

Because of the  above isomorphism between the  enumeration and 

p a r t i a l  degrees, and the  isomorphic embedding of the  Turing degrees 

i n t o  the  p a r t i a l  degrees, we a r e  j c s t i f i e d  i n  using common notation,  

such a s  5 and 0, f o r  a l l  three  s t ruc tures .  - 
One in t e r e s t i ng  f a c t  t h a t  then Hence 

the  enumeration degrees of co-r.e. s e t s  have a s t ruc tu re  isomorphic 

t o  t he  r .e .  degrees. Thus we w i l l  denote by 0' the  p a r t i a l  degree - 

For composition of operators we w i l l  o f ten  omit the  parentheses, 

f o r  example we w i l l  use W ( B )  f o r  W (V(I3) ) . Also we w i l l  of ten use 

lower case l e t t e r s  i n  parentheses where it would be more usual t o  use 

subscr ipts  a s  i n  V (k) . 



1 INFINITE GAMES 

Throughout t h i s  t h e s i s  we s h a l l  be using t h e  method of i n f i n i t e  

games a s  explained i n  Lachlan [ 4 ] .  In  this s e c t i o n  we o u t l i n e  some 

of t h e  b a s i c  i d e a s  and terminology. 

We consider  games wi th  two people,  one c a l l e d  t h e  player and 

t h e  o t h e r  t h e  opponent. Each person enumerates a sequence of sets. 

That is each member of t h e  p l a y e r ' s  sequence is a s e t  t h a t  is  enumer- 

a t e d  during the  game, and s i m i l a r l y  f o r  the  opponent's sequence. To 

gain an i n t u i t i v e  f e e l  f o r  t h i s  method it is h e l p f u l  t o  view t h e s e  

sets a s  r ecep tac les  i n t o  which numbers can be placed.  The p l a y e r  and 

t h e  opponent t ake  a l t e r n a t e  tu rns ,  wi th  t h e  opponent taking the  f i r s t  

tu rn .  For purposes of  formal d e f i n i t i o n  it i s  usual  t o  i n s i s t  t h a t  

each person enumerate a t  most one number i n  one set during his t u r n .  

However i n  descr ib ing a c t u a l  games w e  s h a l l  only keep t h e  opponent t o  

this r e s t r i c t i o n  and allow t h e  p l z y e r  any f i n i t e  number of such a c t i o n s  

i n  one t u r n  ( t h i s  does n o t  make any change t o  t h e  a b i l i t y  o f  t h e  p l a y e r  

t o  win a game). The game ends a f t e r  w t u rns .  

We s h a l l  c a l l  t h e  conbined t u r n s  of t h e  p laye r  and t h e  opponent 

a stage. We number t h e  s t a g e s  s t a r t i n g  wi th  0. The nth s t a g e  of 

t h e  game is the  p o r t i o n  of t h e  game t h a t  begins a t  the  s t a r t  of t h e  oppon- 

s t  s t  
e n t ' s  n+l  t u r n  and ends when t h e  p l a y e r ' s  n+l  tu rn  i s  completed. I f  X 

is one o f  the  s e t s  being enumerated during the  game we w i l l  use xS 

t o  denote X a s  it appears a t  t h e  end of s t a g e  s. W e  w i l l  normally 

use X t o  denote t h e  s e t  a s  it appears a t  t h e  end of t h e  game. 



Occasionally, hwever,  we w i l l  r e f e r  t o  X as  a receptacle i n t o  which 

numbers a r e  placed, as  i n  t he  phrase "the player puts n i n t o  XI1. 

To specify a game we indicate  the s e t s  t o  be enumerated by the 

player  and those t o  be enumerated by the opponent. We a l so  give a 

recursively enumerable sequence of requirements .  Each requirement 

s t a t e s  a re la t ionship between some of the  s e t s  being enumerated. For 

example a requirement could be A $ B where the  opponent is enumera- 

t i n g  A and the player is  enumerating B. A requirement is sa id  t o  

be s a t i s f i e d  i f  it holds a t  the  end of the game, i n  our example 

above the  requirement would be s a t i s f i e d  it a t  the  game's conclusion 

the resu l t ing  s e t  A is d i f f e r en t  from the resu l t ing  s e t  B. The 

player is s a i d  t o  win  the  game i f  a t  the  end of the game a l l  the  

requirements a r e  s a t i s f i ed .  

After n s tages  of the  game, n < w, a t  most a f i n i t e  number of 

the  s e t s  being enumerated w i l l  be non-empty. A l ist  of these s e t s  

together with a l l  the  numbers i n  them and the s tage each number was 

put  i n  is  a game s i t u a t i o n .  A s t r a t e g y  is a map from game s i t ua t ions  

i n t o  possible  moves. A s t ra tegy  S f o r  the  player is sa id  t o  be 

comple te  i f  no matter what s t ra tegy  the opponent follows the player is 

always able  t o  follow S. A s t ra tegy  S For the player is a winning  

s t r a t e g y  i f  S i s  complete and every play of the  game in which the 

player follows S r e su l t s  i n  a win f o r  t he  player. By encoding moves 

and game s i t ua t ions  i n t o  numbers we can consider a s t ra tegy  a s  a 

function from N t o  N. Thus effective s t r a t e g y ,  e f f e c t i v e  winning 



s t r a t e g y  and the p a r t i a l  d e g r e e  of a  s t r a t e g y  are defined. 

Most of the games considered i n  t h i s  thes is  w i l l  use recursion 

theory notation in the i r  requirements. It is possible t o  rephrase 

these games i n  purely game theoret ic  terms and eliminate a l l  notions 

special  t o  recursion theory. Although t h i s  would emphasize Lachlan's 

r e su l t  t ha t  recursion theory can be done by s t r i c t l y  game theoret ic  

means [4 ] ,  we have sacr if iced t h i s  in te res t ing  point t o  make the 

r e su l t s  more concise. 

In the discussions and proofs about the games we sometimes 

ident i fy with the player and occasionally re fer  t o  the player 's  actions 

as  our own. 

A l l  the s t ra teg ies  given for  the games i n  t h i s  thes is  a re  effect ive.  

We s h a l l  not prove t h i s  fo r  any s t rategy as it is clear  from t h e i r  

description. 



A SET I N  A TOTAL DEGREE WHOSE COMPLEMENT 

IS  I N  A NON-TOTAL DEGREE 

Case [ l ,  p.4261 has conjectured t h a t  there is no s e t  A whose 

p a r t i a l  degree is t o t a l  and whose complement has a non-total p a r t i a l  

degree. In  t h i s  chapter we w i l l  disprove t h i s  conjecture by shcwing 

tha t  there is  a t o t a l  function f ,  B iT f 5 Kt such t h a t  fo r  a l l  
T 

single-valued B 

B C e  ~ ( f )  and B t o t a l  . + .  B E  9. 
e 

52.2 DESCRIPTION OF THE GAME 

Consider a game where the player defines a s e t  A and enumerates 

the s e t s  V 0 , V 1 , . . . , and where the opponent enumerates the s e t s  

The requirements are  : 

- 1 ) :  A is well defined, s ingle  valued, and t o t a l  

R(O) : W(O) CA) single  valued and t o t a l  + W(O) (A) A V ( 0 )  f i n i t e  



11 

R ( 2 )  : W ( 1 )  ('Ti) s ing le  valued and t o t a l  -+ W(1) (A) A V ( 1 )  f i n i t e  

- 
R ( 3 )  : A # W ( 1 )  

The oppo~en t  during his turn can pu t  one number i n t o  one of h i s  

s e t s  0 , 1 . . The player during h i s  turn can add numbers t o  

one of his s e t s  0 , 1 , . . The player is  a l so  allowed during 

his tu rn  t o  remove a f i n i t e  nurnber of members of A and replace each 

one with another number. 

We w i l l  allow the player  t o  change the  value of CA(nl only 

f i n i t e l y  many times f o r  each n. This is  equivslent t o  the  player 
03 

S 
enumerating a s e r i e s  of i n i t i a l  functions, say <CA>s=O, t h a t  converge 

t o  A. I f  a t  the  beginning of the  game A is recursive,  t he  p layer ' s  

s t ra tegy  is e f fec t ive ,  and the  opponent simultaneously enumerates a l l  

the  r.e. s e t s  i n  an e f fec t ive  manner then the  Turing degree of A w i l l  

be l e s s  than o r  equal t o  0 ' .  

We w i l l  assume t h a t  a t  the s t a r t  of the  game A = {<n, n> : n € N). 

I f  a l l  our changes t o  A t h a t  remove a member of the  form <n, ml> 

a l so  add a number of the  form <n, m > and occur below some s tage S(n) 
2 

then the  requirement R(-1)  w i l l  be s a t i s f i e d .  

Throughout the  game the  player w i l l  be pu t t ing  labe ls  on requirements. 

These a r e  a "bookkeeping" device which make the  s t ra tegy  more concise. 

The labe ls  p e r s i s t  u n t i l  they a r e  e x p l i c i t l y  removed. The player a l so  

has an i n f i n i t e  number of l abe l s ,  denoted 1-label, 2-label, ..., 
with which t o  l abe l  numbers. I f  a number becomes n-labelled a t  some 



s tage  s then it is n-labelled f o r  a l l  s tages t, t 2 s. 

92.3 AN EFFECTIVE W I N N I N G  STRATEGY 

A t  s tage 0 a l l  s e t s  a re  empty except f o r  A, which is 

{<n, n> : n € N}, and the  player does nothing. 

Strategy a t  s tage s + 1: 

1. I f  n (s + 1) = 2p then 
1 - 

1.1. f o r  each x € wS (p) (A') the player  pu ts  x i n t o  ~ ( p )  , and 

1.2. i f  R(2p) is  not  l abe l led  a t  the  end of s tage s and f o r  

Some <Dl  <n, m>> and <D*, <n, m*>> i n  wS (p) we have 

1.2.1. m + m* and 

1.2.2. <x, y> € (D U D*) fl A" -+ <x, y> is not <r, l>-labelled 

f o r  any r S 2p 

then the  player takes the smallest  such p a i r ,  say <El  <j, k>> and 

<E*, <j, k*>>, and 

1.2.3. <2p, O>-labels a l l  members of E U E*, 

1.2.4. unlabels a l l  label led requirements R(q), q 7 2pl 

1.2.5. l abe l s  R(2p), and 

1.2.6. f o r  any <x, y> € (E U E*) fI A' t he  player removes <x, y> 

from A and puts  the  smallest  <x, y '>  such t h a t  

1.2.6.1. <x, y l >  j! E U E* and 

1.2.6.2. <x, y l >  is  not <r, O>-labelled or  <r, l>-labelled f o r  

any r 5 2pr 

i n t o  A and <2p, l>-labels <x, y e > .  

2. I f  l'r ( s  + 1) = 2p + 1, R(2p + 1) is not label led a t  t he  end 1 
. . 

of s tage  SI and there  ex i s t s  <n, m> f wS (p) such t h a t  



2.1. no number <n, m ' >  is <r, l>-labelled fo r  some r 5 2p + 1, 

and 

2.2. <n, rn> is not <r, O>-labelled fo r  some r 5 2p + 1, 

then the  player takes  the smallest  such number, say < j ,  k>, and 

2.3. puts <j, k> i n t o  A ,  

2.4. <2p + 1, l>-labels < j r  k>r 

2.5. removes and <2p + 1 1  O>-labels a l l  members of A of the  

form < j r  k'> with k t  # k, 

2.6. unlabels a l l  R(q),  q > 2p + 1, and 

2.7. l abe l s  R(2p + 1). 

52.4 A PROOF THAT THE STRATEGY IS  A WINNING STRATEGY 

A requirement R(p) label led a t  the  end of s tage s can be 

unlabelled a t  s tage s + 1 only i f  f o r  some q < p, R(q) is not 

l abe l led  a t  the end of s tage s t  but  R(q) is label led a t  the end 

of s tage  s + 1. Thus f o r  each p there  e x i s t s  an r (p )  such t h a t  

e i t h e r  R(p) is  label led a t  a l l  s tages  1 r ( p )  o r  R(p) is  not 

l abe l led  a t  any s tage L r (p) . Choose r 0 , r 1 , . . . such t h a t  

r (0)  5 r (1) 5 . . . . I f  <n, m(l)> is  pu t  i n t o  A a t  s tage s (1) 

then fo r  some p (1) , <n, m ( l ) >  is < p ( l )  , I>-labelled a t  s tage s (1).  

I f  <n, m(2)>, 2 # 1 , is  put  i n t o  A a t  s tage s (2 )  > s ( l ) ,  

then <n, m(21> must be <p(2) , 1>- labe l led  a t  s tage s (2)  f o r  some 

p(2) c p (1) . Therefore there  must be a s tage  s (k) and a number 

m(k) such t h a t  <n. m(k) > C At f o r  a l l  t E s (k) . and consequently 

A must be well-defined. A is single-valued and t o t a l  s ince AS is 

single-valued and t o t a l  f o r  every s. 

It now remains t o  be shown t h a t  R(qi is  s a t i s f i e d  f o r  every 



q L 0.  Consider a requirement of the type R(2p), p 10, i .e .  

W(p) 6) single-valued and t o t a l  + Vip) A W (p) (A) f i n i t e .  

Now suppose W (p) CX) is single-valued and t o t a l .  

Let L = Vr(2p)  (p) . Clearly L is f i n i t e .  To show tha t  

R(2p) is  s a t i s f i e d  i t  w i l l  s u f f i ce  t o  show t h a t  V(p) - L C 

W (p) 6) and W (p) (x) c V(p) . Consider any <n, m> t h a t  i s  put  i n t o  

s V(p) a t  a stage s + 1, s 1 r(2p) .  There must be a member of W (p) 

of the  form <Df  <n, m>> where D c AS. Now suppose, f o r  proof by 

contradiction,  t h a t  <n, m> p W (p) (A) . A s  W (p) (A) is t o t a l  there  

must be a stage t + 1, with t > s and rl(t + 1) = 2p, such t h a t  - 
t t 

f o r  some D* and m* # n, <D*, <n, m*>> € W (p) and D* C A . We 

claim t h a t  1.2.1. and 1.2.2. hold fo r  the  pa i r  <D, <n, m>> and 

<D*, <n, m*>> a t  s tage t. Clearly m* f m, so 1.2.1. holds. 

Now suppose <x, y> € (D U D*) n At and <x. y> i s  <r, 1,-labelled - 
t a t  s tage t with r 9 2p. Now as  D* c A' then <x, y> € D ll A . - 

However D C AS. Hence <x, y> must be pu t  i n t o  A a t  a s tage t ' ,  

t > t' > s > r (2p) .  This can occur a t  only two points  i n  the  p layer ' s  

s t ra tegy,  1.2.6. o r  2.3. Now i f  the player  puts <x, y> i n t o  A 

a t  s tage t '  on behalf of 1.2.6., then a s  t '  > r(2p) we have 

s l ( t l )  > 2p and <x, y> cannot be <r, l>-labelled f o r  any r 5 r l ( t l )  , 

which contradicts  our assumption about <x, y>. I f  the player pu ts  

<x, y> i n t o  A a t  stage t '  on behalf of 2.3., then by 2.1., 

n l ( t l )  c r 5 2p and ~ ( r ~ ( t ) )  must become labelled a t  a s tage t '  > 

r (2p) P r  IT^ ( t )  ) which is impossible. Therefore <D, <n, m>> and 

<D*, <n, m*>> s a t i s f y  1.2.1. and 1.2.2. a t  stage t + 1. It 

follows t h a t  R(2p) is already label led a t  stage t because otherwise 



R(2p) would become label led a t  s tage t + 1 contradicting t + 1 > 

r (2p) .  Let u + 1 be the  l a rges t  s tage < t a t  which R(2p) becomes 

labelled.  Thsn there  must e x i s t  some l e a s t  p a i r  <E, < j , k>> and 

<E*, <j, k*>> i n  w U ( ~ )  t h a t  s a t i s f y  1.2.1 and 1 .2 .2 .  a t  s tage u + 1. 

The player <2p, O>-labels every member of E U E* a t  s tage u + 1 

and removes every member of (E U E*) n AU from A a t  s tage u + 1. - 
Clearly then < j ,  k>, <j ,  k*> € W " ~ ( ~ ) ( A ~ + ' ) ,  and k # k*. I f  a t  some 

s tage v + 1 > u + 1 a member of E U E*, say <x, y>, is put  i n t o  

A then, R(T (v + 1))  is label led a t  s tage v + 1 and as  <x, y> is 
1 

<2p, O>-labelled a t  stage u + 1 we have r l (v  + 1) c 2p. Therefore 

r ( n i ( v  + 1)) 2 v + 1 which contradicts  v + 1 > r (2p) .  A s  no such s tage 

v + 1 can e x i s t  w e  have < j , k>, < j , k*> € W (p) (A) and k # k* . This 

i n  turn contradicts  our assumption t h a t  W(p) (Ti) i s  single-valued. Hence 

t t 
Now suppose <n, m> € W (p) (A) , then for  some s , <n , m> € W (P (A 

f o r  a l l  t I s. There must be a s tage u l s such t h a t  r l ( u  + 1) = 2pI 

u+ 1 
hence <n, m> € v (p) c ~ ( p )  Clearly W (p) c V(p) and 

I (p)  6) h V(p) c L. Therefore a l l  the requirements of the type R(2p) , 

p L 0 must be s a t i s f i ed .  

Consider a requirement of the  type R(2p + l ) ,  p 2 0, i .e .  

As A is t o t a l  and single-valued, f o r  any n there  i s  an m such 

that <n, m> € A. Thus we may suppose without loss  of generali ty t h a t  

for a l l  n there  is an m such t h a t  <n, m> € W(p). 

Each time a number becomes <r, O>-libelled o r  <r, l>-labelled 



the requirement RCr)  becomes labelled.  I f  r 5 2p + 1, then R ( r )  

cannot become label led a t  any s tage greater  than r (2p  + 1). As only a 

f i n i t e  s e t  of numbers become label led a t  any stage,  there  must be a 

n(p) such t h a t  i f  k > n(p) then fo r  a l l  y, <k, y> is  never <r, 0% 

label led o r  <r, l>-labelled f o r  any r 5 2p + 1. Choose a <k, y> 

such t h a t  k > n(p) and <k, y> € W(p). There must be a s tage s + 1 > 

S r(2p + 1) such t h a t  'IT (s + 1) = 2p + 1 and <k, y> € W (p) . Since 
1 

k > n(p ) ,  2.1. and 2.2 are  s a t i s f i e d  a t  stage s. Thus R(2p + 1) 

must be already label led a t  stage s, as  otherwise R(2p + 1) would 

become label led a t  stage s + 1 contradicting s + 1 7 r(2p + 1). Let 

t be the  grea tes t  stage < s + 1 a t  which R(2p + 1) becomes label led.  

Some < j ,  x> is put i n to  A a t  stage t and < j ,  x> becomes 

<2p + 1, l>-labelled a t  stage t. Now i f  < j ,  x> j? A then < j ,  x> 

must become <r, O>-labelled a t  some s tage t '  > t where r < 2p + 1. 

We would then have t h a t  t < t '  < s + 1 and the labe l  on R(2p + 1) is 

removed a t  s tage t ' ,  which contradicts our choice of t. Therefore 

t 
< j ,  x> € A and a s  < j ,  x> € W (p) c W(p) we have W(p) fI A # pl. 

Therefore W@) # A. 

52.5 CONCLUSIONS 

Consider a play of the game i n  which the opponent follows an 

e f fec t ive  s t ra tegy whereby 0 1 , . is an enumeration of a l l  t he  

r.e. s e t s  and i n  which the player follows h i s  e f fec t ive  winning s t ra tegy ,  

- 
then a l l  the  s e t s  V 0 , 1 , . . . w i l l  be r. e. Now suppose B 5 A e 

and the p a r t i a l  degree of 3 is  t o t a l .  Then there  must be a single- 

valued t o t a l  s e t  B* , B* - B . Thus fo r  some j , B* = w ( j  ) (%) and as  
e 



the player 's  s2rategy is a winning one, 

B* A V(j) is f i n i t e .  

Hence B*Ee V(j) and 8 1 B* E B. Also x # W ( j )  fo r  a l l  j, whence 
e e - 

A >e 8 .  It follows t h a t  A >e B, because A is  single-valued and t o t a l .  

This completes the r e s u l t  claimed for  t h i s  chapter because the p a r t i a l  

degree of A is  t o t a l  and non-zero, but there  is no non-zero p a r t i a l  

- 
degree, l e s s  than o r  equal t o  the  p a r t i a l  degree of A, t h a t  is t o t a l .  

We also note t h a t  a theorem of Medvedev is a corollary t o  the  above 

r e s u l t  . 
Corollary 2.5.1. (Medvedev) 

There is a non recursive such t h a t  for  a l l  f ,  

f 5 4 + f recursive. 
e 



CHAPTER I11 

MINIMAL PAIRS OF PARTIAL DEGREES 

93.1 INTRODUCTION 

I f  r is a s e t  p a r t i a l l y  ordered by 5' w i t h  a l eas t  element a, 

then 8 ,  y € r are  said t o  be a minimal pair i f  B, y # a and 

V 6 € I'(6 5'6 and 6 r ' y  -t 6 =a). 

Case [ l ]  has shown tha t  there exis t s  a minimal pair  of p a r t i a l  

degrees.. Lachlan 131 and Yates [7] have shown independently tha t  there 

i s  a minimal pa i r  of r .e .  degrees. In t h i s  chapter we w i l l  combine these 

two resu l t s  t o  show tha t  there are  two non-r.e. but co-r.e. s e t s  whose 

p a r t i a l  degrees form a minimal pair .  The method used i s  similar t o  the 

one in  the  paper hy Lachlan [ 3 ] .  Whether every minimal pair  of r , e .  

degrees forms a minimal pa i r  of p a r t i a l  degrees is  an open question. 

53.2 DESCRIPTION OF THE GAM3 

We consider a game where the player enumerates the s e t s  A, B, VCO1, 

1 , . . . , and the opponent enumerates the s e t s  W(0) , W (11 , . . . , U(O) , 
U(1) , .... * 

The requirements of the game are: 

RC1) : W(O) (TI = U(0) (g) -+ 3i  ( ~ ( i )  A WCO) 6 1  is f i n i t e }  

R(2)t A #  W ( 0 )  



5 3 . 3 .  BASIC IDEA BEHIND THE STRATEGY 

Before giving the actual  s t rategy and proof we outl ine the main 

ideas behind the strategy. Let us f i r s t  consider the problem of 

constructing two non-r.e. but co-r.e. s e t s  which s a t i s f y  the  f i r s t  

requirement, i . e .  

A t  each stage s of the game we define Level (0, S T  a s  the la rges t  

n < s such tha t  

W e  a l so  consider the sequence s c s < ...., defined by 
0 1 

s = ~ ( C t l j  < i l  ( s .  < x and Level CO, s ) < Level (0, x l l l .  i I j 

This sequence is  e i ther  f i n i t e  o r  i n f i n i t e ,  I f  it is f i n i t e  then R(O1 

is c lear ly  sa t i s f i ed .  

We reserve a s e t  V(0) for  t h i s  requirement. For each i, we 
s - 

S 
i i 

enumerate each number of W (0) (A ) t ha t  ' is  < ~ e v e l  (0, si) in to  V (0) . 
A t  stage s we may wish t o  put some member x in to  A t o  ensure 

- 
A # M@) fo r  some p. Putting x in to  A may remove some k < - 
Level (0, s . ) , with s . < s , from wS (0) CAS1 . Despite this we may 

3 3 

enumerate x i n  A as  long a s  we then keep out of B a l l  numbers whose - 
removal from B would remove k from us (0) (BSl . I f  Level CO, t l  < k 



2 0 

fo r  a l l  t > s then RCQL w i l l  be s a t k f i e d  and the r e s t r i c t i o n  on B 

p e r s i s t s  from stage s through a l l  subsequent stages. If  fo r  some 

s tage t > s, Level (0, t) L k then the r e s t r i c t i o n  on B may be 

l i f t e d  a t  s tage t and a t  s tage t we may put  any number y i n  A o r  

B provided t h a t  an appropriate r e s t r i c t i o n  i s  placed on B o r  A .  

respectively.  The e f f ec t  of this procedure, i f  the  sequence s < s < ... 
0 1 

is i n f i n i t e ,  i s  t o  ensure fo r  a l l  k and a l l  t > s we have k € ut (0) ( B ~ )  

so we only allow k 

t o  ensure t h a t  A # 

- 
t t 

However we want l i m  W (0) (A I[k] t o  be defined, 
w - 

t t 
t o  leave W (0) (A ) when we place numbers i n t o  A 

W(q) where q < k. T h i s  r e s t r i c t i on  a l so  ensures 

t h a t ' t h e  s e t  of numbers r e s t r i c t ed  from entry t o  A on behalf of k i s  

f i n i t e .  A s imilar  method ensures the same fo r  B. 

Now i f  the sequence so < s l <  ... is  f i n i t e  then l e t  u be the 

maximum s tage i n  the  sequence. For each k < Level CO, ul we have seen 

t h a t  the  s e t  of a l l  numbers r e s t r i c t ed  from entering A o r  B on behalf 

of k is f i n i t e ,  T h i s  allows the player t o  s t a r t  playing the  other 

requirements s t a r t i n g  a t  s tage u + 1 with only a f i n i t e  interference 

from R(0) . I f  the sequence 
S o <  "' 

is i n f i n i t e  then any 

r e s t r i c t i o n s  on entry i n t o  A o r  B w i l l  be eventually l i f t e d  and other 

requirements may wait fo r  this relaxat ion before they ac t .  

A t  any s tage s we assume t h a t  the  sequence w i l l  be i n f i n i t e ,  and 
i 

play a s t ra tegy  on these stages t h a t  conforms with t h i s  assumption. On 

a l l  o ther  s tages  we assume t h a t  we have passed the l a s t  member of the  

sequence and play accordingly, Thus f o r  the  requirement R(1) we have 

t w o  s t r a t e g i e s  being played. For each s t ra tegy  we carry a d i s t i n c t  s e t  

from the  sequence V 0 , V 1 , . . . . When we a re  assuming that the  



sequence SO c S1 < .." is i n f i n i t e ,  that is when we a r e  a t  a s t a g e  s 
j ' 

then  we p l a y  a s  i f  the only s t a g e s  t h a t  have occurred are 
S 1 <  "' < 

s This  po l i cy  is extended t o  a l l  requirements. Thus f o r  a requirement 
j ' 

R(p) t h e r e  a r e  p requirements above it and hence the re  a r e  2' pos- 

s i b l e  assumptions. For each of t h e s e  assumptions we requ i re  a d i s t i n c t  

set from t h e  sequence V (0) , V (1) . . . . 

93.4 A WINNING STRATEGY FOR THE GAME 

W e  f i r s t  g ive  some d e f i n i t i o n s  used i n  t h e  s t r a t e g y ,  

~ e f  i n i t i o n  3.4.1 

. .1, Level (p , s) is the l a r g e s t  n < s such t h a t  

- 2 ,  A p-s ta te  i s  a subse t  of { i  : i < p} 

.3. The p-s ta tes  a r e  l i n e a r l y  ordered by T* defined by 

E 5* F +-t W j ( j  € F - E + z i ( i  € E - F and i < j ) )  

,4, W e  d e f i n e  E(s)  C { i  : i 5 s} and f i n i t e  sequences 

< N ( i ,  s)> by <NU, s) I i i  s> and < u ( i ,  j, s ]  I i z s ,  j - 

the following s t i p u l a t i o n s :  

4 ~ ( 0 ,  s )  = s, u(0, j, s) =. j f o r  j I NCO, s) 

.4.2. k € E C s )  + + L e v e l  (kt s )  7 max Level k, uCk, i, s))  
i<N Ck, s) 

.4.3. k j? ECs) and j i N C k ,  s)  .+. N ( k  + 1, s )  = N(k, sl and 



u(k + 1, j ,  S) < s .+, u(k  + 1, j + 1, S) = u(k ,  y,  S)  

where 

y = pz(Leve1 (k, u(k,  z ,  s ) )  > Level (k, u(k + 1, j ,  s ) ) )  

.4.,6.. k € ECs) and u ( k +  1, j, sl = s .+. N(k+ 1, s) = j ,  

.5. W e  d e f i n e  Etp, s) a s  E ( s )  fl ( i  : i <  p) .  

.6. R(3p + 1) i s  f rozen a t  stage s i f  f o r  some m,  

m c wStp) n A". 

.7. R(3p + 2) is  frozen a t  stage s i f  f o r  some m,  

S 
m c uS(p) n B . 

I n  t h e  s t r a t e g y  w e  w i l l  make use  of t h e  a u x i l i a r y  funct ion  

L(p, EI s ) .  It is  assumed t h a t  i f  L(p, E, s + 1) is no t  s e t  e x p l i c i t l y  

it is equal  t o  L(p, EI s ) .  A t  s t a g e  0 a l l  sets a r e  empty and 

L(p, El 0) = 0. A t  s t a g e  0 t h e  p laye r  does nothing. 

S t ra t egy  a t  s t a g e  s + 1: 

1, For each p € E(s) if t h e r e  e x i s t  n and D such t h a t  

1.4 n 5 Level Cp, s) 

then the p layer  chooses t h e  smal les t  such n and 

1.5 p u t s  n i n t o  V( p ,  E(p, s) ) and 

1.6 s e t s  L(p, E(p, s ) ,  s + 1 1  t o  the maximum of L(p, ECp, sl ,  s) 

and n, 

The p layer  chooses t h e  l e a s t  p < s ,  i f  any, such t h a t  EITHER 
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2, RC3p + 11  is not frozen a t  s tage s and there e x i s t s  m such 

t h a t  

2,2. i f  q  5 p and for  some q-s ta te  E we have E:* ECq, s) 
- 

and fur ther  there i s  a  D such t h a t  <D, k> € wS Cq) and D c AS f o r  

some k 5 L(q, E ,  s + 1 1 ,  then i f  D* is the  l e a s t  such D 

(note t h a t  a t  this point i n  the  s t ra tegy  LCq, E, s + 1) w i l l  have been 

s e t ,  e i t he r  exp l i c i t l y  by p a r t  1, o r  implic i t ly  by our conventionl - 
2..3 .. i f  q  5 p and k < p and i f  there  is a  D such t h a t  D C AS 

and <D, k> C wS (q) then i f  D* is the  l e a s t  such D w e  have 

3, R(3p + 21 is not frozen a t  s tage s and there e x i s t s  m such 

t h a t  

3.2. i f  q L p  and fo r  some q-state E we have E T* ECq, s )  and 
- 

fur ther  there  is a  D such t h a t  <D, k> € uSCq1 and D c BS fo r  some 

k 5 L(q, E ,  s + 1 1 ,  then i f  D* is the  l e a s t  such D 

Cnote t h a t  a t  this point  i n  the s t ra tegy  LCq, E, s + 1) w i l l  have been 

s e t ,  e i t h e r  exp l i c i t l y  by p a r t  1, o r  impl ic i t ly  by our convention] - 
S 

3.3.. i f  q  5 p and k < p and i f  there  is a  D such t h a t  D c B 

and <D, U € uSCq) then i f  D* is  the l e a s t  such D we have 
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I f  p e x i s t s  sa t i s fy ing  2. then the player chooses the  l e a s t  m 

that s a t i s f i e s  2 ,  f o r  p and puts  <m, p,  1> in to  A. I f  p e x i s t s  

but  not s a t i s fy ing  2. then the  player chooses the  l e a s t  m t h a t  

s a t i s f i e s  3. fo r  p and puts  <m, p, 2> i n t o  B. 

53.5 PROOF THAT THE STPATEGY IS A WINNING ONE 

For each p l 0 we def ine the  final p-state,  denoted by F 
P ' 

as the smallest  p-state under S * ,  such t h a t  t he  sequence of a l l  

s tages  s w i t h  E@, s )  = F say 
P I 

is i n f i n i t e ,  Now it is c l ea r  from the  de f in i t i on  of ECs] t h a t  F C 
P 

Fp+l 
W e  def ine  the  final game s t a t e ,  denoted by Fa a s  8 F . 

p=O P 

Consider a requirement of the  type R(3p + i ] ,  i = 1, 2, W e  l e t  

rC3p + i) be the l e a s t  s tage  s such t h a t  RC3p + i) is frozen a t  

s tage  s ,  i f  no such s tage e x i s t s  we l e t  rC3p + il be 0. 

Lemma 3.5.1 I f  f o r  some p,  p L 0 w e  have 

Wn 3s W t C t  > s +Leve l  (p, t] L n) 

' .  
Proof: Suppose p s a t i s f i e s  t he  hypothesis but  p R Fa. Clear ly  then 

Consider t he  i n f i n i t e  sequence 

For any . k, k > 0 ,  there  must be a j > k such that 
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Level (p, v@ + 1, j ) )  > k. Therefore there  is an i n f l n i t e  subsequence 

s u c h t h a t  E ( p +  1, t ( i ) )  = F U (PI<* Fp+l, 
p+l 

i = 0 ,  1, 2, .... . T h i s  

contradicts  our def in i t ion  of F 
p+l  

and our r e s u l t  is shown, 

Lemma 3.5.2 I f  fo r  some p 2 0, p = 1 )  then 

Proof t Consider p > 0, and suppose W @1 6) = W @I  (c] . NOW f o r  a 

proof by contradiction assume t h a t  there  is an n such t h a t  fo r  a l l  s 

there  is a stage t '  (s) > s such t h a t  Level (p, t '  (s) ) < n. Clearly 

there  must be an i n f i n i t e  sequence < t ( i )  >m such t h a t  fo r  some m 
i = O  

f o r  a l l  i. 

Choose j suf f ic ien t ly  la rge  so  t h a t  tCj1 > r(3q + il, q 5 m, - 
i = 1, 2. Now either m C Wt(j'(pl rn t ( j ) )  o r  m t u t ( j 1 @ ) @  t c j )  

Suppose the  former, then f o r  some set D, D c A t c J1  and <D, C 

PIt ( j )  (p) . Therefore there  must be some set D* such t h a t  D* is the 
- 

l e a s t  s e t  such t h a t  for  some s 2 t ( j )  D* 'c' A' and <D*, m> € wS ( p ) .  I f  

D* % then a t  some l e a s t  stage r > s a number of the form <n, q', 1> 

is put  i n t o  A,  Hence R(3qt + 11 becomes frozen a t  s tage r and a s  

r >  s 2 t ( j 1  > rC3q + 1 1 ,  q L m ,  i = 1, 2, we must have q E  > m ,  

Hawever n q ,  1 must s a t i s f y  2.. of the player 's  s t ra tegy  a t  

s tage r and hence m > q E  by p a r t  2 ,3 ,  jf the  player r s  s t ra tegy,  



"rh.is is a cont.:adiction so w e  must have D* C r, 
Now a s  <D*, m> C wS (p) C W @) w e  have m € W @ l  6 1  . However 

W@)&) = UU@)CEI. Hence m € W@) 6) n UCpl 6 1  and fo r  some k we 

t (k) t (k) ) , ut 'k' (B have m E K (A t 'k)l. s imilar ly  for  m c u t ( j )  ( B t ( j ) ) .  

OD 
This contradicts our choice of the sequence <t(i)>i-O - and es tab l i shes  

our lemma. 

Lemma 3.5.3 For every p I 0 there  is a s tage ze (p l  such t h a t  

Prooft A s  there  a r e  only f i n i t e l y  many p-s ta tes  it su f f i ce s  t o  s h w  

t h a t  fo r  each p-state E, E <* F t h a t  there is a s tage tCE) such 
P ' 

t h a t  

This is immediate from the def in i t ion  of F 
P. 

For economy of notation we note t h a t  there  is a s tage zCp1 such 

t h a t  z @ )  > z t @ )  and z(p) > rC3q + i l ,  q 5 p, i = 1, 2. 

Lemma 3,5.4 For a l l  q l  0 there  is a bCql s u c h t h a t  LCq, E, s l  5 bCql 

f o r  a l l  stages s and a l l  q-states E suCh t h a t  E c* F' = Fq U {q}. 
Q 

Proof! Consider a q-state E w i t h  E <* F' It suf f ices  t o  show t h a t  
q '  

f o r  some n, L(q, E, s) < n f o r  a l l  s. Suppose for  proof by contra- 

d ic t ion  t h a t  f o r  a l l  n there  is a s tage  s such tha t  LCq, E,  sl > n. 

Hence there muat be an i n f i n i t e  sequence of s tages  say 



such t h a t  L(q, E, t t i )  + 1 1  > L ( q ,  E,  t C i I l ,  i 0 1, 2,  . . Clearly 

then, a s  the  auxi l i a ry  function L can be increased only on behalf of 

p a r t  1, of the player ' s  s t ra tegy,  ECq, t ( i ) l  = E, i = 0, 1, 2, ... , 
Therefore by our def in i t ion  of F F' I* E ,  T h i s  contradicts our 

9' 9 

assumption t h a t  E <* F '  and es tab l i shes  our Lemma. 
q 

Lemma 3.5.5 I f  q < p and q € Fa then f o r  a l l  k > 0. 

a 03 

Proofr A s  <v@,  kl>k=O is a subsequence of <vCq, kl>kO - it su f f i ce s  t o  

show t h a t  f o r  a l l  k >_ 0 

1. LCq, Fq, vCq, k1 + l l  5 Level (4, vCq, k l ) .  

Now L Cq, Fq, v(q, 0) + 1) e i t h e r  is equal t o  LCq, Pq, vCq, 01) 

which has value 0 or  is  s e t  t o  the  maximum of L Cq, F vCq, 0) l and 
4' 

some n 9 Level (q, v(q, 01). Clearly then LCq, Fq, vCq, 01 + 1) 9 

Level (q, v (q, 0) l . Now suppose 1. is t rue  f o r  k = j . Now 

L(q, F , vCq, j + 11  + 1) e i t h e r  equals L(q, F , v(q, j + 111 o r  is 
9 9 

set t o  themaximumof L(q, F v(q, j + 111 and some n 5  
9' 

Level Cq, vCq, j + 1 2 1 ,  To show t h a t  1, holds f o r  k = j + 1 it 

c l ea r ly  su f f i ce s  t o  show t h a t  



LCq, Fq, vCq, jl + 1) whence by our induction h s o t h e s i s  

This completes our proof by induction of t he  required r e su l t .  

W e  now show t h a t  requirements of t h e  type RC3p) a r e  s a t i s f i e d .  

Now suppose n € W(pl (A?. W e  can choose s su f f i c i en t ly  l a rge  so tFmt 

t t 
i f  k c  n and k f W ( p l ( j i )  then t 2 s + k € W ( p ) U  1 n vt and f o r  

- S some D C A, < D l  n> € W (p).  Now by Lemma 3.5.2 and Lemma 3.5.1we have 

p € Fm. AS s was chosen a r b i t r a r i l y  high we  can assume t h a t  s = 

v (p + 1, il for  some if hence p € E (s) . Also by Lemma 3.5.2 we can 

choose s so  t h a t  n 5 Level (p, s ) .  Therefore 1.1, 1 . 3 .  and 1,4., 

of t h e  player ' s  s t ra tegy  hold f o r  n and D a t  s tage  s + 1. Therefore 

S 
either 1.2. does not hold f o r  n and n € V , o r  1.2. holds f o r  n 

s + l  
and n € V . Clearly n € V,  which completes our proof by induction 

Suppose n € V - L, Clearly there  i s  a s tage s(1) such t h a t  n € 

wS (l) (A' 
) . Let D (1) be the  smallest  s z t  D such t h a t  <D,  n> € W s (1) 

00 

and D c A . I n  the  following construciion of the  sequences <D (i)>i-l, - 
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<s (i)>i-l - , <w (i)> we will assume that if w(i) = 1 and s(i+l) I s > 
i= 1 - - 

s (i) then D (i) is the least set D with <Dl n> € wS (AS) and D c AS, 

similarly for w ( i )  - 2 by replacing A with B. Clearly this assumption 

is equivalent to dropping an argument s from each D(i). 

w5at we want to show, We call this a terminating case, 

Case 2, DUI 9 A. 

Let us suppose the latter case holds. Now a member of DCll can 

be put into A only on behalf of part 2. of the player's strategy. Let 

s (21 be the smallest stage > s (1) such that a member of D (1) , say 
<m (2) , q (2) , w (2) > where w(2) = 1, is placed into A at tkis stage. 

Let t (2) be the stage immediately preceding s (2) . Now s (2) > s (1) > 

z(p) as n € W  s (1) @S (1) ) - L, hence as R(3q(2) + 1) becomes 

frozen at stage s(2) we have q(2) > p. Now by Lemma 3.5.3, 

F 5* E(p, tC21). Also 
P 

Hence by part 2.2. of the player's strategy, 

That is either 

Now if 1. is true we can repeat the above argument. Either this 

repetition will continue without end or it will terminate finitely, i.e, 

either we can get an infinite sequence 



s(1) < s(2) < sC3' < ... 

or  a f i n i t e  sequence 

s ( l )  < sC21 < ... < sCj) 

such tha t  n C U (j ' (8' 'j) ) . Suppose the l a t t e r  (this case includes 

2 . ,  as  the special  case j = 21, then there must be some smallest 

s e t  D ( j ) ,  D(j) C E l S ( ' ) ,  such tha t  <D( j ) ,  n> C Us( ')  (p) .  Now as before 

we have two cases. 

Case 1. D ( j )  C B, i n  which case n € U @ I  = ~ ( p l  6) which is 

wkat'we want t o  show. This is  also a terminating case. 

Case 2. DCj) % 

Let us suppose case 2. holds, then there must be a smallest stage 

s ( j  + l ) ,  s ( j  + 1) > s ( j ) ,  such tha t  ~ ( j )  $ B ( j + l l  . some nunher 

<m(j + l ) ,  qCj + I ) ,  w(j +I)>, w(j + 1) = 2,  must b e p u t  in to  B 

a t  stage s ( j  + 1). Now s ( j  + 1) > s(1) > z ( p ) ,  so q ( j  + 1) > p., 

Let t ( j  + 1) be the stage immediately preceding s ( j  + 1) . By 

Lemma 3,5.,3, F 5* E @, t (.j + 1) 1 . Therefore by par t  3 . 2 .  of the 
P 

player 's  s t rategy which we can apply as  n 5 L @ ,  Fp, ~ ( 1 1 )  5 

L 4 ,  Fpf t ( j  + 1)) we have 

That is e i the r  



Now i f  1. holds we can repea t  this argument and continue t h e  

sequence. A s  before we g e t  e i t h e r  an i n f i n i t e  sequence 

o r  a f i n i t e  sequence 

such  t h a t  n € wS 'k) (A' 'k) 1 . I n  the l a t t e r  case  (2. is  a s p e c i a l  

sub-case wi th  k = j + 1) we can apply t h e  argument used on s ( l 1  

t o  continue t h e  sequence. Thus e i t h e r  one of t h e  terminating cases  w i l l  

hold and n € W(p1 (A1 o r  w e  g e t  an i n f i n i t e  sequence 

w i t h  the associa ted  sequences 

Consider i 2 1. Now i f  w ( i  + 1) = 1, then D f i I  is the smal les t  - 
s e t  such t h a t  D C i )  C A S(i' and <DCi1, n> € W ~ ~ ' @ I I .  B y  p a r t  2.3. of 

the p layer  ts s t r a t e g y  q(i + 1) 5 n ,  Now i f  wCi + 1) = 2, then D C i I  - 
is the smal les t  set  such t h a t  D ( i )  C B s ( i l  s(i' and < D ( i l 1 n > C U  (pl. 

By p a r t  3 . 3 .  of t h e  p l a y e r ' s  s t r a t e g y  q ( i  + 1) 5 n. Now r ( 3 q ( i l  + w(i)  ) 

equals  sCil  f o r  a l l  i L 2, hence a s  a t  most one requirement becomes 
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f r o z e n a t  any s tage,  3qCil + w C i 1  # 3qCjl + w C j 1  fo r  a l l  i f  j ,  

i, 9 L 2 ,  T h i s  i s  a contradiction, hence one of our terminating cases 

must hold. 

W e  have shown t h a t  W(p) (x) c V and V - L c W(p) (3, therefore 

W@) (A) A V c L,  and a l l  the requirements RC3pl, p 2 0, a r e  

s a t i s f i e d .  

Now l e t  us consider a requirement of the  type RC3p + 1 1 ,  i , e .  

I f  R(3p + 1) is frozen a t  some stage t then there is an x such 

t t 
t h a t  x € A r) W (p) , and A f W (p) . Now suppose fo r  proof by 

contradiction t h a t  R(3p + 1) is never frozen a t  any s tage,  Clearly 

then f o r  a l l  m, <m, p,  1> ,f A .  I f  a t  the  gamets conclusion there  is 

an m such t h a t  <m, p ,  1> ,f W ( p )  then <m, p ,  1> € - W @ 1 ,  and 

- 
A f W(p). We a re  l e f t  with the case when fo r  a l l  m, <m, p ,  1> € 

He w i l l  f i r s t  show t h a t  there  is a number 
dl 

and a function 
hl 

such t h a t  i f  m > dl and s > hl(m) then <n, p, 1> w i l l  s a t i s f y  

p a r t  2.1, of the player 's  s t ra tegy a t  s tage  s, 

Let dl = 0 and define hl(m) t o  be the smallest  s tage s such 

S 
<m, p, 1> € W (pl whence 2.1. is  s a t i s f i e d .  

We w i l l  now show t h a t  there  a r e  numbers 
d3' e3 

such t h a t  i f  

m > d  and s > e then <m, p ,  1> s a t i s f i e s  p a r t  2.3. of the 
3 3 

player 's  s t ra tegy  a t  s tage s. 



t h a t  

D (k, 
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Consider any q 5 p and k < p. Suppose there is a s e t  D such - 
t fo r  some stage t, t 2 z(k) , D c At and <D, k> € W (q) . Let 

q)  be the smallest such s e t  D, and l e t  t ( k ,  q)  be the smallest 

s tage such tha t  D (k, q) c A t(krq' and <D&, q ) ,  k> C w t(krq) (q) . I f  

D&, ql $ x  then some <j, q t ,  l> ,<j ,  q t ,  1> € D(k, q ) ,  must be put 

in to  A a t  some stage t > t (k, q) . Now a s  <j, q ' ,  1> s a t i s f i e s  

p a r t  2.3. of the player 's  s t rategy a t  stage t we have q t  < k. Now 

R(3q1 + 1) becomes frozen a t  stage t, and we have t > t (k, q)  > z (kl > 
- 

r(3qr  + 1). Thus we must have DCk, q) c A ,  Now i f  there is no such - 
t s e t  D such that for  some t 2 z(k) ,  D c At and <D, k> € W Cq) , 

then'we l e t  D(k, q) = and t (k ,  ql = zCk1. We l e t  d3 be the 

maximum of a l l  m such tha t  <m, p ,  1> € DCk, ql for  some k < p,  

q 5 p, and we l e t  e be the maximum of a l l  the stages t Ck, q) , 
3 

k c  p and q I p ,  

Now suppose m > d3 and s > e Consider any q 5 p and k <  p 
3 ' 

such t h a t  there is a D, D c AS and <D, k> € tiS Cq). Now s > t C k ,  q) 

hence i f  D* is the smallest such D,  D* = D C ~ ,  q l .  Clearly then, by 

our choice of d <m, p ,  1> j? D*, Therefore 
3' d3 and e have the 

3 

desired property. 

We w i l l  now demonstrate tha t  there a re  numbers d2 and e such 
2 

t ha t  i f  m > d2 and for  some i, v ( p m I i )  > e2. P'  = P f 11 then <m. PI  1> 

s a t i s f i e s  p a r t  2.3. of the player 's  s t rategy a t  stage V(P ' ~ i )  + 1. 

Consider any q 5 p and k I b(q1. we can construct D(k, q) and 

t (k ,  ql exactly as  above. Let d2 be the maximum of a l l  m such tha t  

<m, p, 1> € D (k, q)  , k I b (q) , q 5 p, and l e t  e be the maximum of 
2 



Let m > d and l e t  i be suff icient ly large so tha t  v (pf , i) > 
2 

e Assume for proof by contradiction tha t  par t  2.2. of the player's 2 - 
strategy does not hold for  <m, p,  1> a t  stage v ( p l , i )  + 1. Hence 

there must be a q 5 p ,  a q-state E with E C* E@, ~ ( p ' r i ) )  = F 
P 

and a k I LCq, E, v(p' , i) + 1) , such tha t  i f  D* is the smallest s e t  

D* and k p U v(p. , i) (Bv(pfIi) 1 . Now i f  E c* F U{q), then by Lemma 3.5.4 
q 

k 5 b(q) ,  and as  ~ ( ~ l , i )  > t ( k ,  q), we must have D* = DCk, q). Hence 

<m, p, 1> p D* as m > d 
2 ' This leaves the case E = F and q E Fa. By 9 

Lemma 3.5.5, L(q, E ,  v ( p 8 , i )  + 1) 5 Level (q, v ( p f , i ) ) ,  hence k 5 

Level (q, v(pf I i l l .  Now as  we have 

u vcp'ti) v(pfii) 
CB ) which contradicts our assumption about k.. Hence 2 

and e have the desired property. 
2 

Now choose m such tha t  m is greater than any of dl, d2 and 

d3, and choose an i such tha t  v@' , i) > z (pl , v 4 ' ,  i ]  > h(m) and 

v(p' I il is greater than e i ther  e or  e Now <m, p, 1> must 
2 3 ' 

s a t i s f y  2.1,, 2.2.,  and 2.3. a t  stage vCpl,il + 1. B y  our 

assumption tha t  R(3p + 1) is never frozen there must be a q c p such 

tha t  e i the r  R(3q + 1) or  R(3q + 2) hecomes frozen a t  stage vCpf , i l  + 1 

This contradicts our choice of v ( p l , i )  > zCp). Hence we have shown tha t  

a l l  requirements of the form R(3p + I ) ,  p ' ~  0 are  sa t i s f ied .  We can 

show tha t  the requirements of the form R(.3p + 21,  p L 0 a re  sa t i s f i ed  

by a similar argument. 

•̃ 3,6 CONCLUSIONS 

Consider a play of the game where the opponent follows an effect ive 



35 

s t ra tegy  so tE.at { i , U i 1 : i C N} fs the s e t  of a l l  pa i rs  of r . e. 

s e t s .  Therefore as the player 's  s t rategy is effect ive A,  B and a l l  

- - 
the s e t s  V (0) , V (1) , . . . w i l l  be r .e,  Furthermore A > 9 and B >e pl 

e 
- - - 

as A # ~ ( i )  and B # U ( i ) ,  i = 0 1, 2, . . Vow i f  C 5 A and 
e - 

C 5 B then for  some pa i r  of r .  e .  s e t s  W i , U i 1 , we w i l l  have 
e 

C = W C i )  6 1  = U C i )  (El. A s  RC3i) i s  sa t i s f i ed ,  there is a s e t  v C ~ )  

such tha t  C A Vck) i s  f i n i t e ,  and as  V(k) is  r . e .  C E PI .  Thus the 
e 

- - 
p a r t i a l  degrees of A and B form a minimal pair .  Now A and B a re  

co-r.e. hence t h e i r  p a r t i a l  degrees a re  t o t a l .  Therefore the Turing 

- - 
degrees of A and B form a minimal pa i r  of r .e.  degrees. 



CHAPTER IV 

THERE ARE NO M I N I M A L  

PARTIAL DEGREES 

In  t h i s  chapter we w i l l  show tha t  there a re  no minimal pa r t i a l  

degrees. 

Definition 4.1.1. 

.l. A p a r t i a l  degree - a is  minimal i f  - 0 < - a and - b < a +  - b = - 0. 

- 2 -  A s e t  B  is  minimal i f  i ts  p a r t i a l  degree i s  minimal. 

Mention of t h i s  problem occurs i n  Rogers [5, p.2821 and Case [ l ] .  

The proof w i l l  be in  two parts .  F i r s t  we w i l l  show tha t  a minimal degree 

must be 5 - 0 '  and then we sha l l  show tha t  there i s  an r .e .  s e t  V such 

- 
t h a t  fo r  a l l  B I  j l  ce B 5 K ,  we have 

e 
pl ce V ( B )  ce B. 

54.2 TWO GAMES 

I n  t h i s  section we describe two games t h a t  have an effect ive winning 

strategy. 

W e  consider the following game where the player enumerates V  and 

the opponent enumerates ki 0 I W (1) I . . . . We w i l l  assume tha t  the 

p a r t i a l  degree of the opponent's s t rategy is l e s s  than or  equal t o  the 

p a r t i a l  degree of a given s e t  A.  I f  the player 's  s t rztegy is ef fec t ive  

then any s e t  W ( i )  t h a t  the opponent enumerates w i l l  be such tha t  
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W ( i )  I A. Also i f  the  player 's  s t ra tegy  is ef fec t ive  we w i l l  have 
e 

V 5 A. The requirements of the game are:  
e 

R-l 
: f o r  each n there  e x i s t s  an m L 1 such t h a t  f o r  a l l  j  

<n, j> € V(X) + j  5 m fo r  a l l  X ,  X > A 
e 

O <  j < m + < n ,  j > € V C X )  f o r a l l  X ,  X A 
>e 

n € X * <n, m> € VCX) f o r  a l l  X ,  X >e A 

Now i f  we have an e f fec t ive  winning s t ra tegy  fo r  t h i s  game it w i l l  

work when the opponent simultaneously e f fec t ive ly  enumerates a l l  the  

r.e. s e t s .  I n  the  following discussion we w i l l  assume t h a t  t h i s  is  the 

case. We can take A t o  be jd and hence the requirements w i l l  be 

s a t i s f i e d  by any non r . e .  s e t  X. Also the s e t  V the player enumerates 

w i l l  be r .e.  Now suppose B is  minimal. We must have B re jdr hence 

B is non r .e .  and B s a t i s f i e s  a l l  the  requirements of the above game. 

By def in i t ion  fl 5 V(B)  Se B,  hence e i t h e r  V(B)  Z B o r  V(B) - !if. e e e 
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V (B) f B w o ~ l d  imply t h a t  B 5 V (B) , hence f o r  some r .e. s e t  W (p) 
e e 

we would have B = W ( p ) ~  (B) . T h i s  is  impossible a s  B s a t i s f i e s  R(p) . 
Therefore, f o r  every minimal B w e  must have V(B)  r . e . ,  t h a t  is  

V(B)  = W(q) f o r  some q. Now i f  2 is the  p a r t i a l  degree of the  join 

of t h e  c h a r a c t e r i s t i c  function of V and t h e  c h a r a c t e r i s t i c  function of 

W (q) , then we have by 
R-l 

t h a t  t h e  p a r t i a l  degree of C 5 b. Having 
B - 

a n  o r a c l e  f o r  V would allow us t o  compute f o r  each n t h e  m whose 

exis tence  is  assured by 
R-l 

. we can then consul t  an o rac le  f o r  W(q) 

t o  see whether <n, m> is i n  ~ ( q )  o r  not .  I n  t h e  former case n C B, 

i n  t h e  l a t t e r  n j? B. Now c l e a r l y  b i s  a t o t a l  degree and b 5 O ' r  - - 

hence we have t h e  following: 

Theorem 4.2.1. I f  X is  minimal then X has T-degree 5 0 ' .  - 

A s  V (B) = W (q) , an enumeration of  V and W (q)  w i l l  give us a 

sequence of i n i t i a l  funct ions  {cS lm which w i l l  converge t o  . For 
B s = O  c~ 

given p a r t i a l  enumerations of V and w (q) , say vS and wS (q) , we 

s 
t a k e  CB(n) t o  be 1, i f  the re  is <n, j> C wS (q) such t h a t  

S 
<n, k> € W (q) + k 5 j and k < j * <n, k>> € vS, and 0 otherwise. 

Now r e c a l l  t h a t  V s a t i s f i e s  R-l 
and thus  f o r  each n the re  e x i s t s  an 

S 
m L 1 such t h a t  <n, j> C WS(q) -t j 5 m and j < m -t <n, j> € W (q) 

and <n, m> C V(B) * n € B. For any n e i t h e r  <n, m> w i l l  appear 

t 
i n  W' (q) f o r  some s > n i n  which case t 2 s -t CB (n) = 1, o r  t h e r e  

w i l l  be an s > n such t h a t  t l s + c r ( n )  = 0. A s  W(q) = V(B)  and 
B 

<n, m> € V(B) -++ n € B these  f i n a l  values w i l l  agree with CB. 
Now each 

S 
of  these  i n i t i a l  functions 

CB 
i s  f i n i t e  and hence has a canonical index, 

thus  w e  can consider  t h e  sequence {cSlrn a s  a funct ion from N t o  N ,  
B s = O  



say g. A s  game one is played we a r e  essent ia l ly  get t ing an enmeration 

of countably many such functions, and i f  a minimal B existed a t  l eas t  

one of these functions would have t o  converge t o  B i n  the manner 

described above. To show tha t  a non r.e.  s e t  B is  not minimal it is 

su f f i c i en t  t o  f ind an effect ive procedure tha t ,  applied t o  the above 

function g enumerated by game one, w i l l  enumerate a s e t  V such t h a t  

B<, V(B)  ce B. 

Let us consider the following game where the player enumerates V 

and the opponent enumerates W 0 , W (1) , . . . . A s  before we assume tha t  

the opponent's s t rategy has pa r t i a l  degree l e s s  than or equal t o  the 

p a r t i a l  degree of a given s e t  A. We w i l l  a l so  assume tha t  a t  each stage 

S 
of the game we have an i n i t i a l  function ps such tha t  CB = 1% CB, -B S 

B > A and the function tha t  encodes t h i s  sequence of i n i t i a l  fanctions 
e 

has p a r t i a l  degree l e s s  than or  equal t o  the p a r t i a l  degree of A. 

Now suppose tha t  we have an effect ive winning s t rategy for  the above 

game. Applying tha t  strategy when the opponent s im~ltaneously effect ively 

enumerates a l l  the r.e. s e t s  such t h a t  WC2p) = W(2p + 1) and A = B 
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we see  t h a t  there  e x i s t s  an r .e.  s e t  V such t h a t  a l l  the requirements 

a r e  s a t i s f i ed .  By def in i t ion  5 V ( B ) .  I f  % V ( B )  then for  some 
e e 

r .e.  s e t  W(2r) we have V(B)  = W ( 2 r ) ,  which would imply t h a t  B does 

not s a t i s f y  R ( 2 r )  . I f  V(B) - B then for  some r .e .  s e t  W(2r + 1) 
e 

we have B = W (2r + 1) V (B) and B does not s a t i s fy  R(2r + 1) . Both 

of these assumptions contradict  the existence of an e f fec t ive  winning 

s t ra tegy.  Hence i f  we can f ind an e f fec t ive  winning s t ra tegy fo r  both 

games we have: 

Theorem 4.2.2. For every B >e 9 there  is an r .e .  s e t  V such t h a t  

pl ce V(B)  <e B. 

We notice t h a t  the  V depends upon the choice of B and hence the 

r e s u l t  is not uniform. Now suppose B > C and the  p a r t i a l  degree of 
e 

C is t o t a l  (we may then regard C a s  being the graph of a charac te r i s t ic  

function).  We now re-examine the games and t h i s  time i n  the f i r s t  game 

l e t  the  opponent play so t h a t  h i s  s t ra tegy  has p a r t i a l  degree l e s s  than 

o r  equal t o  the  p a r t i a l  degree of C ,  and N ( i )  = U ( i )  (C) i = 0, 1, 2, . . . 
where U 0 , U 1 , . . . a re  a l l  the  r. e. s e t s .  We also take A t o be C. 

Hence a s  our winning s t ra tegy i s  e f fec t ive  and C is  t o t a l  V 5 C,  
e  

t h a t  i s  fo r  some r .e .  s e t  UO, V = UO(C)  . 
This is  not necessari ly the case i f  the  p a r t i a l  degree of C,  say 

c, is not t o t a l .  A s  5 i s  t o t a l  we can assume t h a t  the order of - 
enumeration o i  {<n, j> : n C W(j) (C)) is  fixed. Because given any 

enumeration of C there  is  an e f fec t ive  procedure t h a t  w i l l  output a 

fixed enumeration of C. Hence as our game takes a fixed enumeration 

of {<n, j> : n C W(j) (C)) and outputs an enumeration of a s e t  V, we 



can combine these  two e f f e c t i v e  procedures and g e t  an e f f e c t i v e  procedure 

such t h a t  f o r  any enumeration of C it w i l l  oiltput an enumeration of V. 

However, i f  - c i s  non-total  we cannot e f f e c t i v e l y  e x t r a c t  a f ixed  

enumeration o f  C from an a r b i t r a r y  enumeration of C ,  s e e  Case [ l ] ,  

and s o  we cannot conclude t h a t  V Se C 

Now V ( B )  = U O  (C) (B)  b u t  B >e C 

C = U1 (B) . Therefore V (B) = UO (U1 (B) ) 

U2 such t h a t  V(B) = U (B) 5 . B .  Fina 2 e 

unless  2 is  t o t a l .  

hence f o r  some r . e .  s e t  
ul' 

(B) t hus  t h e r e  is  an r . e .  s e t  

~ l l y  t h e r e  must be  some r . e .  s e t  

U3 such t h a t  U (B) = V ( B )  jo in  C. Now suppose t h e r e  is  no s e t  s t r i c t l y  
3 

between C and B. I f  U3(B) Ee B ,  then f o r  some r . e .  s e t  W1 ' 
W U (B) = B and s o  W1(V(B) jo in  C) = B. Therefore f o r  some q ,  

1 3  

W(q)V(B) = B. This would c o n t r a d i c t  t h e  f a c t  t h a t  an e f f e c t i v e  winning 

s t r a t e g y  e x i s t s  f o r  game one. Hence U3 (B) Ee C ,  t h a t  i s  U (B) = W(q) 3 

f o r  some q.  Mow U (B) = V ( B )  j o in  C ,  hence we can e x t r a c t  a sequence 
3 

of i n i t i a l  funct ions  a s  before ,  the  only d i f fe rence  being t h a t  t h i s  time 

t h e  funct ion  t h a t  encodes them w i l l  have a p a r t i a l  degree t h a t  i s  l e s s  

than o r  equal t o  t h e  p a r t i a l  degree of  C.  Hence we can apply t h e  

second game t o  t h i s  sequence where t h e  opponent 's s t r a t e g y  i s  5 C 
e 

and where W(2i + 1) = W(2i) = U ( i ) ( C ) ,  i = 0 1, 2, . . Again we 

t ake  A t o  be C. Now consider  v(B)  . Clear ly  V 5 C, hence a s  i n  t h e  e 

ana lys i s  of  game one, t h e r e  is an r . e .  s e t  U* such t h a t  u*(B) = 

V ( B )  j c i n  C ,  and C 5 U*(B) 5 B. I f  u*(B) - B then f o r  some r . e .  e e e 

set W*,  W*U* (B) = 5. However, W*U* (B) = W* (V(B)  j o in  C) thus  a s  

B > C t h e r e  is  a q such t h a t  W*U* (B) = W (2q + 1) V (B) .   here fore 
e 

B = W*U* (B) = W(2q + l)V(E) which c o n t r a d i c t s  R(2q + 1) . 
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The only o t h e r  a l t e r n a t i v e  i s  U*CB) - C, t h a t  is f o r  some r .e .  set 
e 

W f ,  W ( C )  = U*(B) = V(B)  jo in  C. Thus t h e r e  mus t  be an r . e .  s e t  w** 

such t h a t  w** (C) = V ( B )  but  W** (C) = W(2q) f o r  some q and hence 

W (2q) = V (B) . This is impossible by R (2q) hence our assumption t h a t  

t h e r e  is  no s e t  s t r i c t l y  between B and C must be f a l s e .  We have 

Theorem 4.2.3. I f  - a and b a r e  p a r t i a l  degrees wi th  5 t o t a l  and - 

a c b then t h e r e  is  a p a r t i a l  degree c such t h a t  a c  c c b. - - - - 

54.3 STRATEGIES FOR THE GAMES 

W e  now presen t  an e f f e c t i v e  s t r a t e g y  f o r  t h e  f i r s t  game and prove 

t h a t  it is a winning one. The plziyer w i l l  cons t ruc t  a  funct ion  f ( n ,  s)  

a t  each s t a g e  s. It is intended t h a t  the  value of  f ( n ,  s) should 

remain f ixed  f o r  a l l  s u f f i c i e n t l y  l a r g e  s t a g e s .  This f i n a l  value of  

f ( n ,  S)  w i l l  be t h e  m required f o r  n by R-l. I f ,  during t h e  

cons t ruct ion  t h e  p laye r  does no t  e x p l i c i t l y  set t h e  value of  f ( n ,  s + 1) 

it is assumed t o  be f ( n ,  s ) .  A t  s t a g e  0, a l l  s e t s  a r e  empty and 

f  (n, 0) = 1 f o r  a l l  n. A s u p e r s c r i p t  s on a s e t  being enumerated 

w i l l  i n d i c a t e  t h a t  s e t  a s  it appears a f t e r  s s t ages  o f  t h e  game. 

The b a s i c  idea  behind t h e  s t r a t e g y  i s  t h a t  each number n i s  i s sued  

a f l a g  <n, 1> by p u t t i n g  <{n), <n, 1>> i n t o  V. (At s t a g e  s t h e  

f l a g  of n w i l l  be <n, f ( n ,  s )> ) .  We c a l l  <n, 1> a f l a g  s i n c e  t h e  

presence of  <n, 1> i n  V ( X )  would i n d i c a t e  the  presence of  n i n  X. 

To s a t i s f y  RO we ensure t h a t  t h e  only s o l u t i o n  of X = w (O)V(X) is  

0 ( W ( O ) V ) ~ ( ~ ) ,  where ( w ( o ) v ) ~  is W ( O ) V  and (W(O)V)"+~ is  
n=O 

W(O)V( (W(0)V)n). For t h e  f i r s t  i n s t r u c t i o n  of t h e  form <El O> t h a t  i s  

placed i n  W(0) we p u t  <g, <m, j>> i n t o  V f o r  any <m, j> C E. 



i n d i c a t e  t h e  presence of m i n  X I  SO we i s s u e  a  new f l a g  <m, j + 1> 

by p u t t i n g  <{m}, <m, j + 1>> i n t o  V. For the  f i r s t  i n s t r u c t i o n  of 

t h e  form <E, 1> in W(0) we proceed a s  we would f o r  0  b u t  we do not  

d i s t u r b  any f l a g s  of  0. ~ h u s  1 C x * 1 C W(O)V(~I)  il (w(o)v) ' (%).  ~t 
n 

i s  c l e a r  t h a t  we can ensure t h a t  n  C jLJO (W ( O ) V ( O )  ) j (j3) * n € X. Notice 

a l s o  t h a t  t h i s  s t r a t e g y  requ i res  t h a t  n  has a t  most n  + 1 f l a g s ,  a s  

w e  only i s s u e  a  new f l a g  f o r  n  t o  handle a  number l e s s  than o r  equal 

t o  n. This w i l l  s a t i s f y  R(0).  For R(k) ,  k  > 0, the  method is  t h e  

same except t h a t  we never r epea l  a  f l a g  of  any n  c k. This means t h a t  

any s o l u t i o n  of X = W (k)V(X) hs.s the  form 0 ! w ( ~ ) v ) ~ ( F )  where F  
n=O 

is a  subse t  of 0  1, . . k - 1 and hence w i l l  be 5 A. 
e 

P l a y e r ' s  s t r a t e g y  a t  s t a g e  s + 1: 

1. For every member < D l  r> of wS (IT (s)  ) and f o r  ev 
1 

<FoI . ..! F > wi th  F  c {x : x c I T ~ ( s ) }  such t h a t  r i 

1.1. D c ?(N) 

1.2. <m, k> C D and r (s )  5 m < r -t <m, k> € vS(j3) o r  
1 

<rl ( s )  Fm>-labelled 

1.3. r is n o t  <IT1 (s) , Fr>-labelled 

1.4.  Fr = { n <  I T ~ ( S )  : <n, j> C D - vS(j3) f o r  some j}  U 

/-I m : IT 1 (s) 5 m < r and <m, k> C D - vS (PI) f o r  some k) 

t h e  p laye r  < I T 1 ( ~ ) l  Fr>-labels r and f o r  each <nl j> € D such t h a t  

n E I T ~ ( S )  and n  2 r t h e  p layer  

1.5. p u t s  <@, <n, j>> and <In) ,  <n, j + l>> i n t o  V 



Ule proceeds through the members <D. r> of L? ( s )  ) and t h e  subsets  

Fof . . ., Fr of In : n < li ( s )  1 i n  numerical order  with r e spec t  t o  the  
1 

index <Fo, F2, ..., F~ <D, r>>.) 

2. The p laye r  pu t s  { n  s , n s , 1 i n t o  V and s e t s  

f ( n l ( s ) .  s + 1) = 1 i f  f ( n l ( s ) ,  s) = 0. 

Now consider  any X I  X >. A .  We show t h a t  R i s  s a t i s f i e d .  
e -1 

Consider any n € N .  Clear ly  by our cons t ruct ion  i f  f ( n ,  s + 1) > 

f (n, S) L 1 then n (s) 5 n and t h e r e  is  an r 5 n t h a t  becomes 
1 

<nl (s) , E>-labelled a t  s t a g e  s + 1 f o r  some E c {x : x < ITl (s) 1 .  

However a number may become <nl(s)  , E>-labelled a t  most once. Hence 

f o r  a l l  t, f (n, t) 5 2" (n + 1) + 1. Thus t h e r e  must be a smal les t  

tn 
such t h a t  s 1 t -t f ( n ,  s) = f ( n ,  tn). W e  denote f (n, tn) by 

n 

f (n) . By induct ion  on s : 

1. 3 t ( t  < s and ?r (t) = s) -t f ( n ,  s) L 1 
1 

2.  <n, j> € vS(x) -t j 5 f (n, S) 

Therefore we can conclude: 

Thus R-l is s a t i s f i e d  f o r  a l l  X. 

Now suppose f o r  some X > A and some W(q) we have W (q)V(X) = X -  
e 

We d e f i n e  U a s  follows: 



Since t h e  p l a y e r ' s  s t r a t e g y  is  e f f e c t i v e  and the  opponent's s t r a t e g y  

has degree 5 A we must have U 5 A .  We show by induction on m t h a t  e e 

f o r  every m, X(m) c X. Clearly X (0)  = {x : x < q) n X C X. Suppose 

X (m) c X I  then 

W e  now show by induct ion  on n t h a t  

I H 1 .  n  E X -+ t h e r e  is a s e t  
Fn 

c X and a s tage  
tn 

such t h a t  

t h e  p laye r  <qr Fn>-labels n a t  s t a g e  t 
n 

IH2. i f  t h e  conclusion of t h e  impl ica t ion  i n  I H 1 .  holds then 

n E U. 

Suppose t h i s  is  t r u e  f o r  a l l  n c k and suppose k € X. C lea r ly  

S 
k E wS (q)vS ( X I  f o r  some s t a g e  s. Thus t h e r e  must be a member of W (q) , 

say <D*, k> such t h a t  D* c vS(X) . Let Fk be the  s e t  

{n c q : <n, j> E D* - V ( g )  f o r  some j )  U 

U { F ~  : q C m c  k and <m, j> E D* - V(g) f o r  some j}. 

We s e e  t h a t  F c X I  by our induct ion  hypothesis  and noting t h a t  n < q 
k 

and <n, j> E D* - V ( 9 )  C v(x) + j = f ( n )  and n C X. Now condi t ions  

1.1., 1.2. and 1.4.  given i n  t h e  p l a y e r ' s  s t r a t e g y  c l e a r l y  hold f o r  
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<D*, k> and F a t  any s u f f i c i e n t l y  l a r g e  s t a g e  t wi th  T (t) = q.  
k 1 

Hence t h e r e  must be a s t a g e  
tk 

such t h a t  t h e  p layer  <q, F >- labels  
k 

k a t  s t a g e  . Thus we have shown p a r t  IH1. of our induct ion  r e s u l t .  
tk 

Now suppose t h e  conclusion of p a r t  I H 1 .  holds about k. Let <D, k> 

tk be  t h e  member of W (q) t h a t  causes k t o  be  <q, Fk>-labelled a t  

s t a g e  t. Now consider  <n, j> € D. 

Case a )  n < q: i n  which case e i t h e r  <n, j> C V ( @ )  c V ( U )  o r  

n € Fk C X(0) whence Cn. j> C V(X(0) ) c V(U). 

Case b) n L q: we have two sub-cases 
t k + l  

i) n L k, i n  which case  <@, <n, j>> € V and 

hence <n, j> € V (9 c V (x) , 
t 

ii) n < k, i n  which case  e i t h e r  <n, j>  € V n(@) c V ( U )  

o r  n is  <q,  F*>--labelled f o r  some F* c Fk c X 

and hence by o u r  induct ion  hypothesis n € U and 

<n, j>  € VCU).  

Thus i n  a l l  cases <n, j> € V (U) . Therefore D c v (u) s o  k C w ( q ) ~  (u) = 

U. This completes our induction.  

Thus w e  have shown t h a t  X c U and U c X hence X = U. This 

would c o n t r a d i c t  our hypothesis  t h a t  X > A a s  U 5 A. Hence our  
e e 

assumption t h a t  Wiq)V(X) = X is f a l s e .  Thus any X such t h a t  X ze A 

must s a t i s f y  a l l  t h e  requirements. 

To cons t ruc t  a winning s t r a t e g y  f o r  t h e  second game we r e l y  heavi ly  

on t h e  sequence o f  c h a r a c t e r i s t i c  funct ions .  A t  any s t a g e  we a c t  a s  i f  

t h e  c h a r a c t e r i s t i c  funct ion  given t o  us a t  t h a t  s t a g e  is cor rec t .  The 
. . 

negations of  some requirements, which are e q u a l i t i e s ,  w i l l  be evident ly  
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f a l s e  i f  we know t h a t  our c u r r e n t  c h a r a c t e r i s t i c  funct ion  is  c o r r e c t .  

W e  only dea l  with the  smal l e s t  requirement t h a t  could poss ib ly  be unsat- 

i s f i e d  ( i . e .  t he  equa l i ty  could ho ld ) .  I f  t h i s  requirement is an even 

one, say  R(2p). we i s s u e  f l a g s  of t h e  form <n. 2p> f o r  l a r g e r  and 

l a r g e r  n. I f  t h e  requirement is odd, say  R(2p + 1 1 ,  we fo rce  

V(2p + l ) V ( X )  t o  be  W(2p + l ) V ( P ( )  f o r  any X. I f  t he  opponent al lows 

u s  t o  work on a requirement i n f i n i t e l y  many times any s o l u t i o n  t o  i t s  

equation w i l l  have t o  have p a r t i a l  degree l e s s  than o r  equal  t o  t h e  

p a r t i a l  degree of  A.  Thus f o r  any requirement he must make t h e  equa l i ty  

i n  t h a t  requirement c o n t r a d i c t  t h e  c h a r a c t e r i s t i c  funct ions  f o r  a l l  

s u f f i c i e n t l y  l a r g e  s t ages .  However a s  t h e  sequence of c h a r a c t e r i s t i c  

funct ions  converges t o  CB it w i l l  be impossible f o r  any such equa l i ty  

t o  hold a t  t h e  game's conclusion. 

A s u p e r s c r i p t  s on one of the  s e t s  being enumerated by t h e  

opponent o r  t h e  p laye r  w i l l  denote t h a t  set a s  it appears a f t e r  s s t ages .  

A t  s t a g e  0 a l l  s e t s  a r e  empty and t h e  p laye r  does nothing. We make the  

fol lowing d e f i n i t i o n s  t o  s impl i fy  t h e  s t r a t e g y  and t h e  proof .  

4.3.1. s ( n )  is t h e  smal l e s t  s t a g e  such t h a t  

S 

B 
(n)  = cB w . s 1 s (n) -t C (n) = CB 

4.3.2. t (q,  s) is the  l a r g e s t  s t a g e  < s such t h a t  R(q) is  t h e  

f i r s t  requirement no t  pass ive  a t  s t a g e  tCq, s) and is  0 

i f  no such s t a g e  e x i s t s .  

4.3.3. R(2q) is passive a t  stage s if s > 0 and f o r  some 

n < t (2q, s) . <n, 2q> j? vS (g )  and wS (zq) [<n. zq>] # C;(n) . 
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S 4.3.4. ~ ( 2 q  + 1, s) = {<n, 2p> v'(N) : 2p < 2q4-1 and C tn)  = 11 
B 

4.3.6. R(2q + 1) is p a s s i v e  a t  s t a g e  s i f  s > 0 and f o r  some 

n < t (2q + 1, s) e i t h e r  

i) 1 = ~ ' ( 2 ~  + l ) (D(2q  + 1, s) U vs (0) ) [n]  # ~ i ( n )  o r  

ii) 0 = ~ ' ( 2 ~  + 1)(D(2q + 1. s) U Z(2q + l ) ) [ n ]  # ~ : ( n ) .  

4.3.7. R(q) is ac t ive  a t  s tage s i f  it is not passive a t  s tage s. 

Player 's  s t ra tegy a t  stage s e 1: 

Let q be the smallest  number < s such t h a t  R(q) i s  ac t ive  a t  

s tage s ( i f  there  is no such q the player does nothing a t  stage s + 1). 

Case 1. q = 2p 

fo r  each n < s the player puts  < in ) ,  <n, 2p>> i n t o  V.  

Case 2. q =  2 p + 1  

f o r  a l l  n, r such t h a t  s > 2r > 2p + 1 and n c s the 

We now show t h a t  t h i s  s t ra tegy is a winning one. In par t icu la r  we 

s h a l l  show t h a t  f o r  each q, R(q) is  s a t i s f i e d  and there  i s  a s tage 

r (q) such t h a t  s > r (q) + R(q) is  passive a t  stage s. Suppose there  

is  a q fo r  which t h i s  does not hold and l e t  q* be the smallest  such 

q. L e t  t '  be chosen > r ( p )  fo r  a l l  p < q* and l e t  t *  > t '  be 

chosen such t h a t  t *  > s (m) f o r  a l l  m < t '  . 
We consider two cases. 

Case 1. q* = 2p* f o r  some p*. 
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Suppose f o r  each s t a g e  t t h e r e  i s  an s L t such t h a t  R ( ~ P * )  

is a c t i v e  a t  s t a g e  s. Let  U = i n  : <n, 2p*> E W(2p*)), and l e t  

L = ( n  : n < t*}. Clear ly  U 5 W(2p*) 5 A. We s h a l l  prove t h a t  t h e  
e e 

symmetric d i f f e rence  of B and U is a subset  of L and hence f i n i t e .  

W e  can then conclude t h a t  B 5 U 5 A which i s  impossible, hence 
e e 

r (2p*)  must e x i s t .  Suppose n € B - L. Let us choose an r > 0 such 

t h a t  r > s (n) , r > t * ,  t (2p*, r) > n and ~ ( 2 p * )  is  a c t i v e  a t  

s t a g e  r. Consider any 2q + 1 < 2p*. Since t *  > r (2q  + l ) ,  R(2q + 1) 

cannot be  a c t i v e  a f t e r  s t a g e  t *  and s i n c e  n > t *  t h e  p laye r  never 

p u t s  < P I  <n, 2p*>> i n t o  V on behalf  of R(2q + 1). Thus <n, 2p*> j? 

V ( p ) ,  and a s  ~ ( 2 p * )  is  a c t i v e  a t  s t age  r we must have 

r wr (2p*) [<n,  2p*>] = C: (n) . Now r > s (n) and n € B, hence C (n) = 1. 
B 

Therefore <n, 2p*> € wr(2p*) c W(2p*) which implies t h a t  n € U. This 

shows t h a t  B - L c U. Suppose n € U - L and n j! B. Choose r a s  

r 
above. A s  n j? B and r > s ( n )  we have 0 = C (n) = c B ( n ) .  By t h e  

B 

same reasoning a s  above <n, 2p*2 j? V(@) hence a s  r (2p*)  is  a c t i v e  

a t  s t a g e  r ,  <n, 2p*> ,C ~ ~ ( 2 ~ * ) .  Now a s  o u t  choice of r could have 

been a r b i t r a r i l y  l a r g e  we must have <n, 2p*> j? W(2p*) which con t rad ic t s  

t h e  f a c t  t h a t  n C U. Hence U - L c B and thus t h e  symmetric d i f f e r -  

ence o f  B and U is included i n  L. By our remarks above r (2p*)  

must e x i s t .  We must then have by our assumption about q* t h a t  R(2p*) 

is n o t  s a t i s f i e d ,  t h a t  i s  W ( 2 ~ * )  = V(B) . 
Choose r > s (m) f o r  a l l  m < t *  + r (2p*). Now a s  r > r (2p*) 

w e  have R(2p*) pass ive  a t  s t a g e  r, hence f o r  some n < t ( 2 p e ,  r) < 

r 
r (2p*) , <n, 2p*> P vr (B) and wr (2p*) [<n,  zp*>I # CB (n) . NOW a s  

r 
n < r (2p*) , r > s (n) hence CB(n) = CB (n) . Also a s  we could have 
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r 
chosen r a rb i t r a r i ly  large we can assume tha t  W (2p*) [<n, 2 ~ * > ]  = 

W(2p*) [<n. 2p*>]. Hence CB(n) # W (Zp*) [<n ,  z ~ * > ] .  A s  n c t (Zp*, r) 

the player must have put <In)  , <n, 2p*>> in to  V a t  stage t (2p*, r) . 
However <n, 2p*> )? V (J2) , thus CB (n) = v (B) [<n, zp*> 1. By our 

assumption tha t  R(2p*) i s  not sa t i s f i ed  we have v(B)  = w (2p*) which 

t,rould imply tha t  C (n) = W(2p*) [<n, 2p*>] contradicting 
B 

$(Zp*) [<n ,  2pf>] # CB(n) . Therefore our assumption about q* cannot 

hold i n  t h i s  case, and Case 1 i s  impossible. 

Case 2.  q* = 2p* + 1 for  some p*. 

Suppose for each stage t there is  an s 2 t such tha t  R(2p* + 1) 

is act ive a t  stage s .  Let 

Clearly U 5 A.  We sha l l  show B = U and hence r(2p + 1) must ex is t .  e 

Suppose n C B. Choose r >  0 such t h a t  r >  s ( n ) ,  r >  t * ,  

t (2p* + 1, r) > n and R(2p* + 1) is active a t  stage r. Now suppose 

t *  
<m, 2p> € D(2p* + 1, t * ) .  Thus <m, 2p> € V ( N ) ,  hence m< r (2p) .  

t *  r 
Therefore t *  > s (m) and 1 = CB (m) = CB (m) . Also vt* ( N )  c vr (N) , 

therefore D (2p* + 1, t*)  c D (2p* + 1, r) . Notice t h a t  i f  <n, 2p> C 

r 
vr (N) then m < r  (p) c t *  hence <rn, 2p> € vt* (N) and CB (m) = 

t *  
1 -+ CB (m) = 1 as r > t *  , theref ore D (2p* + 1, r) c D (2p* + 1 I t* )  

This shows tha t  D(2p* + 1, r) = D (2p* + 1, t*)  . Now suppose <m, 2q> C 

Z (2p* + 1) , we can choose r '  > r so tha t  r  ' > 2q, r ' > m and 

R(2p* + 1) is active a t  stage r '  . Hence a s  r '  > r > r(2p) for  a l l  

2p < 2p* + 1 and as  R(2p* + 1) is act ive a t  stage rl the player 

puts <PI, <mr 2q>> in to  V a t  stage r '  . Thus Z (2p* + 1) c V (PI) 



hence 

c W(2pf: + 1) (D(2p* + 1, t*)  U V(P)l = U 

Now as R(2p* + 1) is active a t  stage r and r > s (n) then 1 = CB (n) = 

r 
CB(n) = ~ ~ ( 2 ~ '  + 1) (D(2p* + 1, r) U Z(2p* + 1) ) [n] hence n U. NOW 

suppose n € U ,  we can choose r as  before but with the added condition 

tha t  

Now as before we have D(2p* + 1, r)  = DC2p* + 1, t*)  . Thus as R(2p* + 1) 

is act ive a t  stage r we have 

and as r > s (n) , CB (n) = 1. Thus B = U which is impossible as  

U 5 A, hence r(2p* + 1) must ex is t .  Therefore, by our assumption 
e 

about q*, R(2p* + 1) cannot be sa t i s f i ed ,  tha t  is B = W (2p* + l)V(B) . 
Choose r such tha t  r > r(2pk + l ) ,  r > t* and such tha t  r > s(m) 

for  a l l  m< r(2p* + 1). A s  above we have D(2p* + 1, r) - ~ ( 2 p *  + 1, t * ) .  

Also R (2p* + 1) is passive a t  stage r hence fo r  some n < t (2p* + 1, r)  < 

r(2p* + 1) we have two cases: 

r 
Case a )  1 = W (2p* + 1) (D(2p* + 1, r)  U vr(,O))[n] # c;(n). 

Consider <m, 2q> € D (2p* + 1, r)  . Either <m, 2q> € vr (g)  c V (B) 

r or  C B h )  = 1. Now as  m c r (2q) we have r > s (m) hence CB (m) = 1 

and thus <m, 2q> € V (B) . Therefore D (2p* + 1, rl U vr (9) c V (B) and 
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thus n € wr(zp* + l)(D(2p* + 1, r)  U vr(fI)) C W(2p* + lIV(B) = B which 

is impossible ., 

n € B ,  A s  B = WC2p* -1- llV(B), n € W(2p* + l ) V ( B )  and there must be a 

member of N(2p* f 1) of the form <D,  n> where D C V (B) . Consider 

<m, 2q> € D, there a re  two poss ib i l i t i e s :  

i) 2q < 2p* + 1, i n  which case e i ther  <m, 2q> € V ( @ )  or 

m € B. Suppose m € B,  we must have m c r (2q),  by our 

r 
choice of r we have r > s Cm) hence C Cm) = 1 and 

B 

<m, 2q> € DC2p* + I,  rl.  Thus for  suf f ic ien t ly  large r ,  

<m,  2q> € D and 2q < 2p* + 1 -t <m, 2q> € ~C2p* + 1, r l .  

ii) 2 q >  2p* + 1, i n  which case <m, 2q> € Z(2p* + 1). 

Thus we can choose w suf f ic ien t ly  large so tha t  D c 

DC2p* + 1, r)  U Z (2p* + 1) and <Dl  n> € wr (2p* + 1 1  . 
Hence n € ~ ~ ( 2 ~ *  + 1) CD(2p* + 1, r j  U Z(2p* + 1) 1 which 

is  inpossible . 
Thus neither case a )  nor b) can hold and hence RC2p* + 11 n u s t  be 

sa t i s f i ed .  Therefore there can be no such stage q* and the player 's  

s t rategy must be a winning one, T h i s  completes the proof of our r e su l t .  



CHAPTER V 

DEGREES MINIEVIL ABOVE A 

NON-TOTAL DEGREE 

95.1 INTRODUCTION 

In t h i s  chapter we w i l l  extend some of the r e su l t s  of the previous 

chapter. In par t icular  we w i l l  show tha t  for  a given pa r t i a l  degree 5 

there a re  a t  most countably many p a r t i a l  degrees minimal above a, t ha t  

is ,  for any B there a re  a t  most countably many C such t h a t  C >e B 

and for  no A i s  C > A > B.  In the previous chapter we were able t o  
e e 

do t h i s  for  any B t ha t  belonged to  a t o t a l  degree. However for s e t s  

tha t  belonged to  non-total p a r t i a l  degrees we were not able t o  ensure 

tha t  the enumeration operator we constructed was independent of the 

par t icular  order i n  which the opponent enumerated h is  se t s .  We w i l l  give 

a new strategy for  the f i r s t  game of the previous chapter t.hat w i l l  i t s e l f  

be an enumeration operator and hence w i l l  produce an enumeration operator 

tha t  is independent of the order of the opponent's enumeration. 

95.2 EXTENDED ENUP.IERATION OPERATORS 

I n  order t o  demonstrate t h i s  new strategy we w i l l  need operators 

tha t  consider not only the input enumeration but a l so  the i r  own output 

enumeration. We w i l l  show t h a t  such operators can be replaced by enumer- 

a t ion  operators, and hence are  only a notational convenience. 



Defini t ion  5.2.1. 

-1. a t r i p l e  of t h e  form <n, e ,  D> is c a l l e d  a p o s i t i v e  e- 

c o n d i t i o n  

.2. a t r i p l e  is  a p o s i t i v e  c o n d i t i o n  i f  it is a p o s i t i v e  e- 

condit ion f o r  some e 

. 3 .  an e x t e n d e d  e n u m e r a t i o n  o p e r a t o r  S is an r . e .  s e t  of 

p o s i t i v e  condit ions 

.4 .  a  s e t  T is  s a i d  t o  satisfy S f o r  X i f  f o r  every p o s i t i v e  

e-condition <n, e ,  D> i n  S, we have 

n € W (T jo in  X )  -+ D c T 
e 

.5. S<X> is t h e  i n t e r s e c t i o n  of a l l  s e t s  T which s a t i s f y  S f o r  

X .  

Theorem 5.2.2. I f  S i s  an extended enumeration operator  then S<X> 

s a t i s f i e s  S f o r  X. 

Proof: Suppose LC1) , L (2) , . . . i s  an enurneratian of S. Also suppose 

L ( j )  = <n, e ,  D>. Then w e  de f ine  

Let  Z(0) = Y (0, j) . Now we d e f i n e  Z (k + 1) by induction.  Suppose ' 
-J=o 

Z (k) has  been defined,  a l s o  suppose t h a t  L ( j )  = <n, e ,  D>, then w e  l e t  

D i f  n € We(Z(k) jo in  X I  

Y(k + 1, j) = 

pl otherwise . 



We then s e t  Z(k + 1) = Y(k + I, j) U Z(k) .  F i ~ a l l y  we s e t  Z = ~ ( k ) .  
j=o k= 0 

Consider any L( j ) , say <n, e, D>, and suppose n € W ( Z  j o i n  X) . 
e 

Now Z(k) c Z(k + 1) f o r  a l l  k, hence the re  must be m such t h a t  

n € W ( Z  (m) jo in  X)  . By our const ruct ion of Y (m + 1, j) we have 
e 

D = YCm + 1, j) c ZCm + 1) c Z .  Therefore Z s a t i s f i e s  S f o r  X and 

thus  S<X> c 2. 

We w i l l  now show t h a t  Z c S<X>. T h i s  w i l l  prove t h a t  Z = S<X> 

and a s  we have shown t h a t  Z s a t i s f i e s  S f o r  X I  we w i l l  have proved 

t h e  theor em. 

Let us consider a T such t h a t  T s a t i s f i e s  S f o r  X.  I f  

x € Z(O) then x € Y(0, j )  f o r  some j ,  where L ( j )  = <n, e, D>, and 

by our const ruct ion of YCO,  j )  w e  have n € We(% jo in  X)  and x D.  

However W (@ jo in  X )  c We (T jo in  X )  , and a s  T s a t i s f i e s  S f o r  X 
e 

we can conclude that D c T. Th-1s x € T and hence Z (0) C T. 

Now suppose Z(k) c T. I f  x € Z(k + 1) - Z ( k )  then x € Y(k + 1, j) 

f o r  some L ( j )  = <n, e l  D>.  Therefore n € W CZ (k) jo in  X) and x C D. 
e 

Now Z(k) c T, hence n € W (Z(k) jo in  X )  c W (T jo in  X )  and a s  T 
e e 

s a t i s f i e s  S f o r  X I  x € D c T. Thus by induction Z c T. Now a s  T 

was an a r b i t r a r y  s e t  t h a t  s a t i s f i e d  S f o r  X I  we must have Z c S<X>. 

This theorem t e l l s  us t h a t  S<X> i s  a so lu t ion  t o  a l l  the  condit ions 

i n  S. W e  w i l l  now show t h a t  an extended enumeration operator  can be 

replaced by an enumeration operator .  

Theorem 5.2.3. I f  S is  an extended enumeration opera tor  then t h e r e  

e x i s t s  an enumeration operator  V such t h a t  f o r  a l l  X I  V(X) = S<X>. 

Proof: Let L ( 1  , L 2 . . . be a recurs ive  enumeration of S . We w i l l  
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assume t h a t  t h i s  enumeration is being given, together  wi th  a simultaneous 

e f f e c t i v e  enumeration of a l l  t h e  r . e .  s e t s .  We w i l l  cons t ruc t  V i n  

s t ages .  I n  e f f e c t  w e  w i l l  be  showing t h a t  V is  enumeration reduc ib le  

t o  these  inpu t  enumerations and hence is r . e .  We w i l l  denote by WS 
e' 

t h e  f i n i t e  subset  of W t h a t  has been enumerated a t  s t age  s. 
e 

Let  V(O1 = pl. Consider some s t a g e  s + 1. Suppose IT (s + 1) = j. 1 
S 

Let . U  = U V(k),  and suppose L ( j )  = <n, e l  D>. Then we t ake  a s  V ( s  + 1) 
k= 0 

t h e  s e t  o f  a l l  p a i r s  <Fo U Fl1 X> such t h a t  x f D, Fo C (i : i c s) 

<F2 jo in  F 
00 

and f o r  some F2 C u ( F ~ )  we have 
1' 

n> F wS. Let v = U V W .  
e k=O 

Clea r ly  each VCk)  is f i n i t e  and V 5 S and hence V is r . e .  
e 

W e  now complete t h e  proof by showing t h a t  VCX) = S<X> f o r  a l l  X .  

Consider any s e t  X .  C lea r ly  V(0) (X)  c S<X>. Suppose V(t) (X) c 

S<X> f o r  a l l  t <  s + 1. Let  n f V ( s  + 1)Cx) .  Suppose ITl(s + 1) = j 

and L ( j )  = <m, e l  D>. Now a s  n € V ( s  + 1) (X) t h e r e  must be  some p a i r  

<Fo U F1, n> C VCs + 1) wi th  F U F1 c X I  n € D and f o r  some 
0 F2' 

F2 C QOV (k) ) (FO) and <F2 jo in  F , m> f W . By t h e  induction hypothesis  
1 e 

V(P) (X) C S<X> f o r  a l l  k i s hence 

and 

m € W (S<X> jo in  X ) .  
e 

A s  S<X> s a t i s f i e s  S f o r  X by Theorem 5-2.2. '  D c S<X> and thus  

n € S<X>. Clear ly  then 
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Referring t o  our proof of Theorem 5.2.2., we see  t h a t  S<X> = U z ( k ) .  
k= 0 

Suppose n € Z C O ) ,  then n € Y(0, j)  f o r  some j ,  where ~ ( j )  = 

<m, e l  D>. By t h e  cons t ruct ion  of Y (0, j)  , m € W (B jo in  X )  and 
e 

Y(0, j)  = D. Now choosing s s u f f i c i e n t l y  l a rge  with T (s + 1) = j 
1 

we have m € W: jo in  X )  , t h a t  is t h e r e  is a f i n i t e  s e t  F such t h a t  
1 

S F1 C X and <@ j o in  F1, m> € W . Now c l e a r l y  B c V ( s )  ($31, hence 
e 

<@ U Fit n> € V(S + 1) and n € V ( s  + 1) (x) C v ( X )  . Therefore z (0) c 

V(X) . Now suppose Z (k)  c V (X) . Let  n € Z (k + 1) - Z (k) , then 

n € YCk + 1, j) f o r  some j ,  where L ( j )  = <m, e l  D>. We see  t h a t  

m € We ( Z  (k) jo in  X)  and Y (k + 1, j ) = D.  We choose s s u f f i c i e n t l y  

l a r g e  s o  t h a t  n € W: ( Z  (k) jo in  X )  and nl ( s  + 1) - j . There must be a 

member of  L i S  o f  t h e  form < F  jo in  F m> where F c X and F2 c Z(k) .  
2 1' 1 e 

Now Z (k) c V ( X I  , hence we can assume t h a t  s is  s u f f i c i e n t l y  l a r g e  s o  

s 
t h a t  F2 c ( U V ( t )  ) ( X )  . Thus t h e r e  is a f i n i t e  s e t  Fo c X such t h a t  

t= 0 
S 

F2 C (tio~(t) ) (Fo) . We can a l s o  assume t h a t  F c {i : i < s) - By our 
0 

cons t ruc t ion  of V (s + 1) we have <F U F1, n> € V (s + 1) , and n € V ( X )  0 

a s  Fo U F1 C X.  Therefore Z = S<X> c V(X) by induction and s o  

55.3 AN ENUNFZATION STPATEGY 

W e  w i l l  now reconsider  t h e  f i r s t  game i n  t h e  previous chapter .  One 

of t h e  conclusions drawn from t h a t  game was t h a t  the re  a r e  a t  most a 

countable number o f  p a r t i a l  degrees minimal above a t o t a l  degree. I f  the 

opponent changes t h e  order  of enumeration of h i s  s e t s ,  t h e  s t r a t e g y  given 

i n  t h e  previous chapter  w i l l  produce a d i f f e r e n t  s e t  V (unless the  



opponent is e:~umerating a l l  s e t s  enumeration reducible t o  a t o t a l  s e t ,  

i n  which case it can always be assumed t h a t  the  order is f ixed) .  L e t  

KC denote the s e t  {<n, e> : n € We(C)}. We w i l l  demonstrate an 

extended enumeration operator S such t h a t  fo r  any A i f  V = S<KA> 

and W(i) = Wi@) f o r  a l l  i then fo r  h = W(0) the  requirements 

Rot R1, R2,  ... l i s t e d  on page 37 hold together with 

R-l 
: w YW Z(Y # Z+V(Y) # V(Z)). 

W e  w i l l  show t h a t  this is s u f f i c i e n t  t o  prove our r e s u l t .  

The idea behind the  construction of our extended enumeration 

operator is s imi la r  t o  the  s t ra tegy  f o r  the  f i r s t  game i n  Chapter I V .  

To i l l u s t r a t e  t h i s  and t o  c l a r i f y  the  construction we w i l l  f i r s t  construct  

an S such t h a t  V = SW (0) > s a t i s f i e s  the  requirements Ro, R-l' . 
Let f be the  function from N x N . .to 2N defined by l e t t i n g  

f ( n ,  j )  be the  s e t  {i : i 5 n} - D i f  j  2 1 and otherwise. 
j -1 

L e t  g be the  function from N x N t o  N defined by l e t t i n g  g ( j r  i) 

be 1 plus  the  canonical index of D U { i }  i f  j  1 1 and 0 
j -1 

otherwise. 

Consider the  following four sentences concerning a p a i r  <D, r>: 

4. (<n, j> € D and n c r )+ ( there  is a s e t  D* such t h a t  <D*, n> 

s a t i s f i e s  1. - 4. or  <n, j> € s < Y > ( % ) ) .  

When ue take Y t o  be W(O), then these w i l l  be the  conditions on 

a p a i r  <D, r> i n  W ( G )  t h a t  must hold before we repeal  some f l ags  i n  

D. The f i r s t  condition asks t h a t  <D, r> be i n  W(0) and the  second 
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t h a t  D c S<W(O)>(N). Both of  t h e s e  condi t ions  a r e  c l e a r l y  necessary. 

The t h i r d  coridition is t o  avoid a process i n  the  s t r a t e g y  of the  f i r s t  

game t h a t  cannot be handled by an enumeration opera tor .  I n  t h a t  s t r a t e g y  

once we have forced D,  from a p a i r  <D, r> i n t o  W (0) , i n t o  

k 
(W(0)V) @) we then l a b e l  r s o  a s  n o t  t o  upse t  more f l a g s  t o  achieve 

k= 0 

an a l ready accomplished r e s u l t .  Let  us  look a t  an example of how we 

achieve a s i m i l a r  r e s u l t  i n  an  enumeration opera tor .  N o w  0 w i l l  have 

two p o s s i b l e  f l a g s  < O f  1> and < O f  2>. We w i l l  cons t ruc t  S s o  t h a t  

<{0), < O f  I>> is always i n  ScW(O)>. I f  some <E, O> appears i n  W(0) 

w i t h  E c S a ( O ) > ,  then we w i l l  r epea l  a l l  t h e  f l a g s  i n  E, t h a t  is, 

fo rce  each <n, j> i n  E i n t o  a s o l u t i o n  of X = W (O)S<W(O) > ( X )  by 

p u t t i n g  <$3, <n, j>> i n t o  S<W (0) >. We w i l l  then i s s u e  new f l a g s  t o  a l l  

t h e  n such t h a t  <n, j> E E which w i l l  encode t h e  f a c t  t h a t  0 has 

been forced i n t o  a s o l u t i o n  of X = W (0) S<W (0) > ( X )  . The s e t  D is  
j -1 

t h e  s e t  of a l l  r I n t h a t  have a l ready been forced i n t o  a s o l u t i o n  of 

our equation,  g ( j ,  0)  w i l l  then be one p l u s  t h e  canonical  index of  

D U (O), and we w i l l  i s s u e  a new f l a g  <n, gCj, O ) >  t o  each <n, j> 
j -1 

i n  E. Hence i f  <0, 1> E E then w e  w i l l  p u t  <PI, <0, 1>> and < O r  <0, 2>> 

i n t o  S<W(O)>. N o w  <0, 2> w i l l  never be  repealed  because a s  i n  t h e  

s t r a t e g y  f o r  t h e  f i r s t  game i n  Chapter I V  we never r epea l  a f l a g  of  r t o  

f o r c e  i n  a number n > r ,  and a s  < O r  2> has coded i n t o  it t h e  f a c t  t h a t  

0 has been forced i n t o  a s o l u t i o n  of our equation,  we have exhausted a l l  

2n+1 
t h e  p o s s i b l e  reasons t o  r e p e a l  a f l a g  of 0. I n  genera l  t h e r e  a r e  

p o s s i b l e  f l a g s  of  n. 

I n  t h e  f i r s t  s t r a t e g y  given i n  t h e  l a s t  chapter  much t h e  same r e s u l t  

a s  t h e  a5ove was gained by l a b e l l i n g  numbers t o  i n d i c a t e  t h a t  they had 
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been forced i n t o  a so lu t ion  of X = W(O)V&). The player could then 

check the  l abe l  of a number t o  see  i f  he wanted t o  repeal  f l ags  on i ts  

behalf or not. This technique cannot be used i n  a s t ra tegy  which i s  an  

enumeration operator a s  one cannot i n h i b i t  ins t ruc t ions  from working 

a f t e r  they have been put  i n  the  operator. 

The i n t e n t  of the  fourth condit ion is t o  ensure t h a t  i f  there  i s  a 

s e t  E c S<W(O) >(N) and <E, r> E W(0) and i f  we force r i n t o  any 

so lu t ion  of X = W (0) SW(O) > (X) then f o r  a l l  <n, j>  E E with n c r, 

which we cannot repeal  f o r  r ,  we have t h a t  n has been forced i n t o  a 

so lu t ion  of X = W (0) S < W  (0) > (X) . 
I f  we consider the  s e t  of a l l  <D, r> t h a t  s a t i s f y  1. t o  4. above, 

we see  a s  f i s  recursive t h a t  t h i s  s e t  is 5 S<Y> join Y and hence is  e 

U (S<Y> join Y)  f o r  some d.  
d 

l 

N c w  i f  < D I  r> s a t i s f i e s  1. t o  4. we w i l l  want t o  repeal  a l l  f l ags  I 

<n, j>, <n, j>  E D ,  such t h a t  n t r. Thus we l e t  

We w i l l  a l so  need t o  i s sue  new f l ags  which w i l l  indicate  t h a t  r has been 

forced i n t o  our solut ion.  We l e t  

E2 
= {<{n}, <n, g ( j  , r2W )>> : <?I j> 

Da (x) 
and 

1 

W e  l e t  Sl be the  s e t  of a l l  pos i t i ve  conditions <x, d, E~ (x) U E ~ ( x ) > .  

Clearly h x [ ~ ~  (x) U E2 (x) ] is  recursive hence S1 is r.e.  

We a l s o  need ins t ruc t ions  t o  i s sue  i n i t i a l  f l ags  t o  a l l  n. Let S 2 



6 1 

be the s e t  of a l l  pos i t ive  conditions <n, d', D> where d '  is such t h a t  

wd,(pl) = N and D = {<in),  <n, I>>).  

Final ly  l e t  S  = S1 U S Clearly S is  r .e .  We s h a l l  show t h a t  
2 ' 

V =  S<W(O)> s a t i s f i e s  R and RL1 . We denote by Pl. .  PZ., P3. and 
0 

P4. the  instances of 1 2 3.  and 4. respectively t h a t  r e s u l t  from 

replacing Y by W (0) , and the references t o  1 ,  2. , 3. and 4. by 

references t o  P l . ,  P2., P3., and P4. 

Consider R 
0  ' 

W(O)v(X) # X I  f o r  a l l  X > A. 
e  

Consider a  pa r t i cu l a r  X so t h a t  

We w i l l  show t h a t  X 5 W(0). Let 
e  

Now by Theorem 5.2.3 V = S W  (0) > 5 W (0) , hence U Ze W ( 0 )  . 
e 

We claim t h a t  X = U. Clearly U c X a s  

We w i l l  show by induction t h a t  x C U. Supg~ose for  a l l  k <  r we have 
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I H 1 .  k € X -t t h e r e  is a D* s u c h  t h a t  <D*t k> s a t i s f i e s  p i .  

t o  P4. 

IH2. i f  the conclus ion  o f  t h e  imp l i ca t ion  i n  IH1. ho lds  t hen  

k € U. 

W e  f i r s t  show that p a r t  Ell. o f  our  i nduc t ion  hypothes is  h o l d s  

f o r  r. 

Suppose r € X then  f o r  some D c V i X ) ,  <D, r> € W i O )  . We cla im 

that PI .  t o  P4. ho ld  f o r  t h e  p a i r  <D, r> o r  f o r  some p a i r  <D*, r>. 

A s  <D, r> € W (0) and D c V (X) c v(N) c l e a r l y  P1. and P2. hold 

f o r  <D,  r > .  Now suppose <n, j>  € D and n 1 r. I f  r f f ( n ,  j )  then  as 

<n, j> € V ( X )  and V s a t i s f i e s  S f o r  W (0) we must have f o r  some j  ' , 

<{n), <n ,  CJ( j  ' , r) >> € V and hence f o r  some D* , <D*, r> € W (V j o i n  ~ ( 0 )  ) . d 

That is  <D*, r> s a t i s f i e s  P1. t o  P4.  which would show I H 1 .  was t r u e  f o r  r .  

Now suppose <n ,  j >  € D and n < r, then  as <n,  j> € V ( X )  e i t h e r  <n,  j, € v(%) 

o r  n € X whence by ou r  i nduc t ion  hypothesis  P I .  t o  P4. ho ld  f o r  some <D*, n>. 

M e  now show that p a r t  IH2. ho lds  f o r  r. Suppose f o r  some D f  

<Dl r> s a t i s f i e s  P1. t o  P4. W e  c la im t h a t  D c V(U). Consider 

<n, j> € D: 

Case 1. n c r 

Now as <D, r> s a t i s f i e s  P4. we have e i t h e r  f o r  some D*, <D*, n> 

s a t i s f i e s  P1. t o  P4. hence by ou r  indudt ion  hypothes is  n  € U, and 

thus <n, j> € V(U) o r  <n, j> € V i P )  whence <n, j> € ~ ( 9 )  C v ( u ) .  

Case 2. n L r 

Now as <D, r> s a t i s f i e s  P1. t o  P4. ue have a, r> 6 Wd(V j o i n  W ( 0 ) ) .  

V. Therefore  <n, j> € ~ ( d )  C V(U) . 



This completes our proof t h a t  D c V (U) . Clearly r E W (0) V (U) = U.  

Hence we have shown by induction t h a t  X c U. It follows t h a t  X = U 

and thus  X 5 W(0). 
e 

We now show t h a t  V s a t i s f i e s  RL1. Suppose f o r  proof by contra- 

d i c t i o n  t h a t  Z # Z* (we can assume Z - Z* # pl) bu t  V ( Z )  = V(Z*). 

Let n € Z - Z*. Consider <n, j (1) > € V ( Z )  ( there  must be a t  l e a s t  

one such number i n  V ( Z )  a s  n E W d ,  (W (0) ) = N and hence <{n}, <n. 1>> € 

S a  (0) > ) . A s  n f Z* we have <n, j (1) > € V (PI) . Then <PI, <nI j (1) >> € 

V ,  whence some <DI  r ( l )>  € Wd, n F r ( l ) ,  and <n, j ( l ) >  E D. Now a s  

<D, r ( l ) >  s a t i s f y  P1. t o  P4. we have r 1 € f n j 1 Also 

<(n}, <n, g ( j  (1) , r ( l ) > - >  € V. Let j 2 = g 1 , 1 Now <n, j (2)>  € 

V ( Z )  hence we can repeat  our argument with j ( 2 )  i ns tead  of j (1) . ~ h c s  

03 w 
we can cons t ruc t  two sequences < ~ ( i ) > ~ = ~ ,  r i . Now a s  j (k + 1) = I 

g ( j ( k ) ,  r ( k ) )  we have r ( k )  f? f ( n ,  j ( k +  1)).  However, r ( k )  € f ( n ,  j ( k ) ) .  I 

Therefore f o r  some k, f (n, j (k) ) = pl and r ( k )  € f (n, j (k )  ) which i s  

impossible. Bence Z # Z* + V ( Z )  # V(Z*) and R '  is s a t i s f i e d .  - 1 

W e  w i l l  now show t h a t  it is  poss ib le  t o  extend S s o  t h a t  V = S<K > A 

w i l l  s a t i s f y  a l l  t h e  requirements R I l I  Rot RII ... . The bas ic  idea ,  

a s  i n  t h e  f i r s t  game of Chapter I V ,  is t o  no t  l e t  any requirement R(k),  

k > n, d i s t u r b  any f l a g  of n. This,  however, adds a complication, 

s p e c i f i c a l l y  t h a t  it is n o t  s u f f i c i e n t  t o  fo rce  some r i n t o  

k 
( w ( ~ ) v ( O )  1 (F) f o r  some k by repeal ing some members of a s e t  D,  and 

then consider r a s  "handled" f o r  t h e  remainder of t h e  game. At tent ion 

must be paid  t o  t h e  f l a g s  of numbers c q t h a t  were i n  t h e  s e t  D. We 

must be prepared t o  take  a c t i o n  on behalf of r f o r  each poss ib le  subset  

of numbers c q. To provide f o r  t h i s  a c t i o n  we l e t  our second co-ordinate 



t h e  set  of h igh p r i o r i t y  numbers t h a t  was involved i n  t h i s  ac t ion .  we 
2 ~ x  F 

re-define f a s  a funct ion from N x  N i n t o  where F i s  t h e  

set of  a l l  f i n i t e  subsets  of N. W e  l e t  f ( n ,  j) be t h e  s e t  {<r, F> : 

r 5 n  and F c { i  : i <  n))  - D  when j L 1 and otherwise. 
j-1 

Re re-def ine  g a s  a function from N x N x  f t o  N by s e t t i n g  

9 ,  r F) t o  t h e  canonical  index of t h e  set D U {<r, F>),  i f  
j -1 

j 1 1 and 0 otherwise. 

For each j ,  j = 0 1 2  . consider t h e  following s i x  

sentences  concerning a t r i p l e  <DI  r, F>: 

j.3. <n, k> € D and n L r and n > _  j -t <r, F> € f ( n ,  k) 

j.4. <n, k> € D and j f n < r .+. the re  is an E*, E* c F and 

a se t  D* such t h a t  <D*, n, E*> s a t i s f y  j.1. t o  j .6. o r  <n,k>€ S<Y>(g). 

j.6. F c {n : n <  j). 

Let  us suppose t h a t  h ( j )  is  recurs ive .  Then c l e a r l y  t h e r e  is a 

recurs ive  funct ion d ( j )  such t h a t  < D l  r, F> s a t i s f i e s  j.1. t o  j .6. 

i f  and only i f  <Dl  r ,  F> € W (S<Y> jo in  Y ) .  
d (  j) 

W e  l e t  

E4(x, j) = {<n. <n, g(k,  n2 ('1 I n3 (XI I > >  : 'nr k> € ITl (x) and 

n E n2(x) and n 5 j). 



Let S ( j )  be the s e t  of a l l  posi t ive d ( j  conditions 

Now choose c so  t h a t  W (PI) = N and l e t  s(-1) be the s e t  of 
C 

a l l  t r i p l e s  

Finally l e t  S = C8 S(k) .  Clearly each S ( j ) ,  j 1 0 is r.e. as 
k=-1 

A I P I [ ~ 3 ( ~ I  y) U E4(xI Y )  ] is recursive, S (-1) is clear ly r.e.. and 

hence a s  d ( j )  i s  recursive S is r.e. 

Now i n  the game the opponent enumerates the s e t  N ( O ) ,  W(l), ... . 
Let W* = {<n, j> : n E W(j) 1 ,  and l e t  us consider an h '  ( j )  so t h a t  

%I ( j )  
(W*) = W(j). 

Clearly we can take h l ( j )  t o  be recursive. Let V = S<W*>. We sha l l  

show tha t  V s a t i s f i e s  the requirements: 

RL1, Ro, R1, ... , for  a l l  X s W*. 
e 

We l e t  1 t o  Pj.6. be the instances of j.1. t o  j.6. t ha t  

r e s u l t  from replacing Y by W*, h ( j )  by h )  and a l l  the references 

t o  j .l. - j .6. by references t o  P j  -1. i o  P j  .6. respectively. 

Now consider a requirement of the type R j > 0 i . e .  
j ' 

Suppose tha t  R is not sa t i s f ied ,  i . e .  
j 



WCj)VCX) = X. 

We s h a l l  show t h a t  i n  t h i s  event X Te I* .  We define U by 

~ ( 0 )  = X n {i : i c j} 

Clearly U 5 W* a s  V 5 W* by Theorem 5 . 2 . 3  and W(j) 5 W*. N o w  
e e e 

hence U c X. 

N o w  i f  k € X and k c  j then k € U. Therefore i f  we can show 

t h a t  k € X and k L j -+ k € U then we w i l l  have X c U, and hence 

X = U I W*. This w i l l  show t h a t  R is s a t i s f i e d .  
e j 

We prove the following two statements for  a l l  k 2 j by induction: 

I H 3 .  k € X and k l j -+ there  is  a s e t  D and a s e t  Fk such 

that Fk c X(0) and P j .l. t o  Pj .6. hold f o r  <D, k, Fk> 

4 .  i f  the  conclusion of I H 3 .  holds then k € U, 

Suppose I H 3 .  and I H 4 .  a r e  t r u e  f o r  a l l  k c  r. We f i r s t  show 

t h a t  I H 3 .  holds fo r  r. 

Suppose r € X and r L j . N o w  a s  X = W ( j )  VCX) there  is  a 

<D, r> such t h a t  <D, r> € W ( j )  and D c ~ ( x ) .  Let ~ ~ = { n : g k , < n . k >  € D 

and n c  j and n j ? V ( f l ) } U  U {rm : <m, k> € D  and j  I m < r } .  Now 

i f  k € Fr, then e i the r  k € F fo r  some m, j  5 m c r, and k € X by IH3. or  
m 



<n, i> € D f a r  some i and n < j and n )? V((ll). Now if n < j and 

<n, i> D ' vU) then e i t h e r  n X(0) o r  <n, i> € V(%), hence 

Fr C X(0). W e  w i l l  now show t h a t  Pj.1. t o  Pj.6. hold f o r  some <D, r ,  F >. 
r 

Clear ly  <D, r> € W (  j )  = W 
h t  ( j )  

(W*), s o  P j . l .  holds. ~ l s o  

D c V(X) c SW*>tN), hence Pj .2.  holds. Now suppose <n, k> € D 

and n 2 r and n l j. Now i f  <r, F > f f ( n ,  k)  then t h e r e  must be 
r 

a <n, k t >  C VCN) such t h a t  <r, f > € f ( n ,  k t )  and f o r  some D*, 

<D*, r, F > s a t i s f i e s  1 t o  Pj.6.,  which e s t a b l i s h e s  IH3. Thus 
r 

e i t h e r  f o r  <D, r ,  F > Pj.3.  holds o r  IH3. is  t r u e  f o r  r .  Now 
r 

suppose <n, k> C D and j 5 n < r, then e i t h e r  <n, k> € V(9) o r  

n € X whence Pj .4.  holds by our induction hypothesis.  Pj.5. and Pj.6. 

a r e  immediate from our  d e f i n i t i o n  of F . 
r 

W e  now show t h a t  1114. is t r u e  f o r  r. Suppose t h e  conclusion of 

IH3. is  t r u e  f o r  r. That is t h e r e  is a set  D and a s e t  F such 
r 

that F c X ( O )  and <Df r, Fr> s a t i s f i e s  Pj .1.  t o  Pj.6. Nowwe 
r 

claim t h a t  D c V(U). Consider <n,  k> € D: 

C a s e  1. n c j 

Now e i t h e r  <n, k> € V (g) c V (U)  o r  by P j .5. n € F whence 
r 

n € X (0) by our induct ion hypothesis and <n, k> € V (X (0) ) c V(U) . 
Case 2. n 2 j 

Sub-case 2.1. n < r 

Now a s  1 t o  Pj.6. holds  f o r  <Df r, F > then Pj.4. holds 
r 

f o r  <n, k>. Hence e i t h e r  <n, k> € YCgl c VCul  o r  t h e r e  is a s e t  

E* c F and a s e t  D* such t h a t  <D*, n, E*> s a t i s f y  Pj.1. t o  Pj.6. r 

Now F c X (0) hence E* c X CO) . Thus a s  n < r by our induction r 

hypothesis n € U and hence <n, k> € V(U1 . 



Now as  <D, r, F > s a t i s f i e s  1 t o  Pj.6. we have <D, r, F > € 
r r 

w 
d ( j )  

and as  V s a t i s f i e s  S for  W* we have E J ( < ~ ,  r, Fr>, j) C V. 

Hence fo r  a l l  <n, k> € D with n  I r,  n I j  we have <pl, <n, k>> € V 

hence <n, k> € V(pl) C v(u) .  

We have shown t h a t  D c V (U) , hence r € W ( j  ) V(U) = U. This 

completes our induction proof t h a t  X c U. Hence X = U,  and therefore 

Now we w i l l  show t h a t  RL1 is s a t i s f i e d .  Suppose not; t h a t  is, 

suppose there  are  two s e t s  Z, Z* such t h a t  Z # Z* but V ( Z )  = V ~ Z * )  . 

We can assume without loss  of general i ty  t h a t  fo r  some n, n  € Z - Z*. 

Now there  must be a  f l a g  on n, say <n, j ( l ) >  i n  V(Z) (<n, 1> is 

i n  V ( Z ) ) .  Hence <n, j ( l ) >  € V(Z*). However n  J? Z*, thus <n, j ( l ) >  € 

V (g)  . Hence there  must be a  t r i p l e  D 1 , r 1 , F 1 > t h a t  s a t i s f i e s  

Pj.1. t o  Pj.6. f o r  some j  with n  1 € D l  and < r ( l ) ,  F ( l ) >  € 

(  ( 1 )  . Hence <n, g C j ( l ) ,  r ( l ) ,  FCl) )>  € V ( Z ) .  We can repeat the 

above argument t o  ex t rac t  the sequences 

R 
I f (n ,  j ( l ) ) l  5 2 where R = 2" x (n + 1). 

Hence there  must be a k  such t h a t  f  (n, j  (k) ) = pl, and <r (k) , ~ ( k )  > 

f (n, j (k) ) which is impossible. 



This completes our proof t h a t  our s t ra tegy  w i l l  s a t i s f y  RL1, KO, ... . 

95.4 CONCLUSIONS 

Consider a play of the game where the opponent's s t ra tegy has 

p a r t i a l  degree 5 A and he enumerates a l l  the s e t s  5 A, t h a t  is 
e e 

W ( i )  = We (A) . Then W* = {<n, j> : n C w ( j )  } = K Z A. Let the player 
A e 

- 
enumerate the s e t  V = S<K >. Now by Theorem 5.2.3 we have V 5 K = A. 

A e A e  

We have shown t h a t  V s a t i s f i e s  R KO, R . for  a l l  X > W* E e e K ~ .  

Consider any s e t  B, C ,  such t h a t  B > C. Consider a play of the 
e 

game a s  described above where A = C. A s  the resul t ing V s a t i s f i e s  

R fo r  B ,  we have W(j)v(B) f B, fo r  a l l  j F 0. Now as C < B we 
j e 

have V < B and hence V ( B )  5 B. Let M = v(B) join C. Clearly 
e e 

M 5 B. Suppose M E B ,  then for  some r . e .  s e t  U we have U(M) = 
e e 

U (V(B) join C) = B. Thus there  m u s t  be some j , such t h a t  

W(j)V(B) = B. This is impossible a s  V s a t i s f i e s  Rcj) ,  hence 

V(B) join C <e B. Now suppose B > C ,  then by an ident ica l  argument 
1 e 

t o  the  above we have V(B ) join C < 
1 e B1 

. Now suppose both B1 and B 

a r e  minimal above C,  t h a t  is fo r  a l l  L 

and 

B > L L C + L f  C .  
e 

Hence V(B) join C I C and V(B ) join C le C, so  fo r  some j and i e 1 

v(B) join C = W(j) and V ( B  1 join C = W C i ) .  
1 



Now as V s a t i s f i e s  R '  
-1 

Tnerefore we have the following. 

Theorem 5.4.1. There can be a t  most a countable number of p a r t i a l  

d.egrees minimal above a p a r t i a l  degree. 
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