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ABSTRACT

Enumeration reducibility was defined by Friedberg and Rogers in
1959. Medvedev showed that there are partial degrees which are not
total. Rogers in his book Theory of Recursive Functions and Effective
Computability gives all the basic results and definitions concerning
enumeration reducibility and the partial degrees. He mentions in this
gook that the existence of a minimal partial degree is an open problem.
In this thesis it is shown that there are no minimal partial degrees.
This leads naturally to the conjecture that the partial degrees are dense.
This thesis leaves this question unanswered, but it is shown that there
are no degrees minimal above a total degree, and there are at most
countably many degrees minimal above a non-total degree. J. W. Case
has proved several results about the partial degrees. He conjectured
that there is no set in a total degree whose complement is in a non-total
degree. In this thesis that conjecture is disproved. Finally, Case's
result that there is a minimal pair of partial degrees is strengthened
to show that there is a minimal pair of partial degrees which are total

and form a minimal pair of r.e. degrees.
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CHAPTER I

INTRODUCTION AND TERMINOLOGY

§1.1 INTRODUCTION

In this thesis we consider the partial (enumeration) degrees as
defined by Friedberg and Rogers [2]. 1In Chapter II we disprove a
conjecture by Case [1] that there is no set A in a total degree whose
complement is in a non-total degree. Case [1] has shown that there is
a minimal pair of partial degrees. In Chapter III we strengthen this
result to show that there is a pair of co-r.e. sets whose partial degrees
form a minimal pair of partial degrees; and hence their Turing degrees
form a minimal pair of r.e. degrees. In Chapter IV we show that there
are ro minimal partial degrees and demonstrate that this result
relativizes to show that there are no degrees minimal above a total
degree. This still leaves open the question as to whether the partial
degrees are dense. In Chapter V we move closer to a solution of the
density problem by showing that given any partial degree a there can

be at most a countable number of partial degrees minimal above .a.

§1.2 TERMINOLOGY

In this section we intend to outline all the basic notation and
definitions used in this thesis. For a detailed explanation and study

of recursion theory the reader is referred to Rogers [5].



We will denote subsets of N by upper case letters, with D, E, F
being reserved for finite subsets. Members of N will be represented
by lower case letters except for f, g, h which are reserved for total
functions. Partial functions (that is, functions whose domain is a
subset of N) will be denoted by ¥ and ¢.

A will denote the complement of A, CA will be used for the
characteristic function of A and A A B will denote the symmetric
difference of A and B. For notational convenience we will sometimes
use X[n] to denote Cx(n). We will call a finite initial segment of

a characteristic function an initial function. A join B is the set
{2x : x €A} U {2x + 1 : x € B}.
We define the binary function T by,

T(x, v) = (x2 + 2xy + y2 + 3x +vy),

o

and T 1is a recursive, one to one mapping of N X N onto N (see
Rogers [ 5, p.64]). For each k we define the k-ary function % as

follows:

Tl = Ax [ %]

k+l k
T = Axl e xk [t(T (xl, cees xk), xk+l)]'

\ k
We abbreviate T (xl, cees xk) by <xl, ceey xk>. For each k we

define the projection functions ﬂ;k, l1=1i=<k%k, by

S




k, k
= < § <
Tl'i (T (xll s a sy Xk)) Xi’ l — l — k.

We will usually drop the superscript on ﬂik when its wvalue is clear
from the context.

A set B is single-valued if
<n, j> €B and <n, k> € B > j = k.

A set B 1is total if for all n there is a m such that <n, m> € B.

xk}, xl < x2 < vea < xk, then

* *x

the canonical index of D is 2 + ...+ 2

Il
-
I3
-

L]
.
»
-

If D 1is finite, i.e. D
, if D =P we let its
canonical index be 0. We denote by _Di the finite set whose canonical
index is i. We will often make no distinction between a finite set

and its canonical index, as in the use of <E, x> for <i, x>, where

We will assume that the reader is familiar with the recursive
partial functionals, (see [6, p.150]).

We let <Oe§:ﬁ0 be an effective enumeration of the\recursive partial
functionals. For each e we denote the eth-partial recursive function
Ah[@e(cg, n)] by ¢e. The function f is recursive if for some e,
¢e is total and £(n) = ¢e(n) for all n. A set is recursive just
if its characteristic function is recursive. A set is recursively
enumerable if it is the range of some partial recursive function. We

‘denote the range of ¢e by We. We say f is Turing-reducible to g
= 9 if £ = An[@e(g, n)] for some e. We extend this reducibility

to sets by defining A ST B if CA ST CB. Two functions f and g




are Turing equivalent (f ET g) if f ET g and g ST f. It can be shown
that =, is an equivalence relation (see [5, p.137]). The equivalence

classes under ET of total functions (or sets by considering their
characteristic function) are called the Turing-degrees. A Turing-degree
that contains an r.e. set is called an r.e. degree. We will use small

underlined letters for the Turing-degrees, for example a, b, c. The

jump of a set A, denoted 2A', 1is the set
{e : @ (C_, e) is defined}.
e A

The -jump operator is well defined for the degrees and if a is the

degree of A then we denote by a' the degree of A'. We use 0 to
denote the smallest degree, that is the degree of all recursive functions.
We reserve the symbol K for the set {e : e € We} and the symbol K

o}

for the set {<n, e> : n € We}. Both K and K are of degree 0°.

0
§1.3 ENUMERATION REDUCIBILITY

Enumeration reducibility is defined in Friedberg and Rogers [2]
and discussed in Rogers [5, p.146]. 1Intuitively, a set A is enumera-
tion reducible to B is there is an algorithm that will work on any
enumeration of B (the input enumeration) énd produce an enumeration

of A (the output enumeration). The formal definitions are as follows:
1.3.1 w(a) = {x : for some D, D CA and <D, x> € W}.

1.3.2 A 1is enumeration reducible to B (A Se B) if there is an

r.e, set W such that A = W(B).




1.3.3 A= B if A= B and B = A,
e e e

1.3.4 A< B if A=< B and B £ A.
e e e

Thus to every r.e. set We there is associated a function @e,
from 2N to 2N. We call this function an enumeration operator. 1In
this thesis we shall not distinguish between an r.e. set We and its
associated operator @e, for example if ¢ is the enumeration operator
associated with the r.e. set W we will write W(A) for &(a).

Notice that the definition of W(A) in 1.3.1 did not specify that W
had to be r.e. 1In later chapters for purposes of relativization we shall
sometimes use non-r.e. sets to operate on other sets.

It is easy to show that Ee is an eqguivalence relation on the
subsets of N (see [5, p.153]). The equivalence classes are called
enumeration degrees. One of the reasons for studying enumeration
reducibility, other than the fact that it is a very natural relationship
between enumerations, is that we can get a reduction between partial

functions by defining ~ - Yo
< 3 <
1P s, 9 i T <, T(P).

The equivalence classes of partial functiops {or single-valued sets) are
called partial degrees.

A partial degree is called total if it has as a member some total
function f. We will use = to denote the partial ordering of partial
degrees énd enumeration degrees induced by Se. We will use underlined

lower case letters to denote partial and enumeration degrees as well as

-




Turing degrees. We write a<b if a= b and b Z a. The structure
obtained by restricting the partial degrees to the total partial degrees
is order isomorphic to the Turing degrees (see [5, p.153]).

There is really no difference between the structure of the enumera-
tion degrees under = and the structure of the partial degrees under <.
The map which takes ¢ to 7T(¢) induces an isomorphism between the
partial degrees and the enumeration degrees. The inverse of this iso-
morphism is induced by a map which takes a set A into a constant
function with domain A. Hence in this thesis the terms partial degree
and enumeration degree will be used synonymously. We will use 0 to
denote the smallest enumeration degree that is the degree of all r.e.
sets (from a partial function viewpoint it is the degree of all partial
recursive functions). \\

Because of the above isomorphism between tﬁs‘enumeration and
partial degrees, and the isomorphic embedding of the Turing degrees
into the partial degrees, we are justified in using common notation,
such as = and 0, for all three structures.

One interesting fact is that if A is r.e. then A S C.. Hence
the enumeration degrees of co-r.e. sets have a structure isomorphic
to the r.e. degrees. Thus we will denote by 0' the partial degree
of K.

For composition of operators we will often omit the parentheses,
for example we will use WV(B) for W(V(B)). Also we will often use

lower case letters in parentheses where it would be more usual to use

subscripts as in V(k).



§1.4 INFINITE GAMES

Throughout this thesis we shall be using the method of infinite
games as explained in Lachlan [4]. 1In this section we outline some
of the basic ideas and terminology.

We consider games with two people, one called the player and
the other the opponent. Each person enumerates a sequence of sets.
That is each member of the player's sequence is a set that is enumer-
ated during the game, and similarly for the opponent's sequence. To
gain an intuitive feel for this method it is helpful to view these
sets as receptacles into which numbers can be placed. The player and
the opponent take alternate turns, with the opponent taking the first
turn. For purposes of formal definition it is usual to insist that
each person enumerate at most one number in one set during his turn.
However in describing actual games we shall only keep the opponent to
this restriction and allow the player any finite number of such actions
in one turn (this does not make any change to the ability of the player
fo win a game). The game ends after ® turns.

We shall call the combined turns of the player and the opponent

a stage. We number the stages starting with 0. The nth stage of

the game is the portion of the game that begins at the start of the oppon-

t .
ent's n+lSt turn and ends when the player's n+1°" turn is completed. If

. . . . S
is one of the sets being enumerated during the game we will use X
to denote X as it appears at the end of stage s. We will normally

use X to denote the set as it appears at the end of the game.

X




Occasionally, however, we will refer to X as a receptacle into which
numbers are placed, as in the phrase "the player puts n into X".

To specify a game we indicate the sets to be enumerated by the
player and those to be enumerated by the opponent. We also give a
recursively enumerable sequence of reqguirements. Each requirement
states a relationship between some of the sets being enumerated. For
example a requirement could be A #¥ B where the opponent is enumera-
ting A and the player is enumerating B. A requirement is said to
be satisfied if it holds at the end of the game, in our example
above the requirement would be satisfied it at the game's conclusion
the resulting set A 1is different from the resulting set B. The
player is said to win the game if at the end of the game all the
requirements are satisfied.

After n stages of the game, n < w, at most a finite number of
the sets being enumerated will be non-empty. A list of these sets
together with all the numbers in them and the stage each number was
put in is a game situation. A strategy 1is a map from game situations
into possible moves. A strategy S for the player is said to be
complete if no matter what strategy the opponent follows the player is
always able to follow S. A strategy S for the player is a winning
strategy if S 1is complete and every play of the game in which the
player follows S results in a win for the player. By encoding moves
and game situations into numbers we can consider a strategy as a

function from N to N. Thus effective strategy, effective winning




strategy and the partial degree of a strategy are defined.

Most of the games considered in this thesis will use recursion
theory notation in their requirements. It is possible to rephrase
these games in purely game theoretic terms and eliminate all notions
special to recursion theory. Although this would emphasize Lachlan's
result that recursion theory can be done by strictly game theoretic
means [4], we have sacrificed this interesting point to make the
results more concise.

In the discussions and proofs about the games we sometimes
identify with the player and occasionally refer to the player's actions
as our own.

All the strategies given for the games in this thesis are effective.
We shall not prove this for any strategy as it is clear from their

description.
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CHAPTER II

A SET IN A TOTAL DEGREE WHOSE COMPLEMENT

IS IN A NON-TOTAL DEGREE

§2.1 INTRODUCTION

Case [l, p.426] has conjectured that there is no set A whose
partial degree is total and whose complement has a non-total partial
degree. 1In this chapter we will disprove this conjecture by shewing
that there is a total function £, ¢ <q £ ST K, such that for all

single-valued B

B =, T(f) and B total . > . B Ee 8.

§2.,2 DESCRIPTION OF THE GAME

Consider a game where the player defines a set A and enumerates
the sets Vv(0), V(1), ..., and where the opponent enumerates the sets
w(o), w(), ... .

The requirements are:

R(-1): A is well defined, single valued, and total

R(0) : W(0) (A) single valued and total - W(0) (&) A v(0) finite

R(1) : A # W(0)
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R(2) : W(1)(A) single valued and total - W(1)(a) A V(1) finite

R(3) : A # W(1)

The opporent during his turn can put one number into one of his
sets W(0)}, W(l), ... . The player during his turn can add numbers to
one of his sets V(0), v(1l), ;.. . The player is also allowed during
his turn to remove a finite number of members of A and replace each
one with another number.

" We will allow the player to change the value of CA(n) only
finitely many times for each n. This is equivalent to the player

@

. . . S
enumerating a series of initial functions, say <CA>s that converge

=0’
-to A. If at the beginning of the game A is recursive, the player's
strategy is effective, and the opponent simultaneously enumerates all
the r.e. sets in an effective manner then the Turing degree of A will
be less than or equal to 0'.

We will assume that at the start of the game A = {<n, n> : n € N}.
If all our changes to A that remove a member of the form <n, ml>

also add a number of the form <n, m2> and occur below some stage S(n)
then the requirement R(~1) will be satisfied.

Throughout the game the player will be putting labels on requirements.
These are a "bookkeeping" device which make the strategy more concise.
The labels persist until they are explicitly removed. The player also

has an infinite number of labels, denoted 1l-label, 2-label, ...,

with which to label numbers. If a number becomes n-labelled at some
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stage s then it is n-labelled for all stages t, t = s.

§2.3 AN EFFECTIVE WINNING STRATEGY

At stage O all sets are empty except for A, which is
{<n, n> : n € N}, and the player does nothing.

Strategy at stage s + 1:

1. 1I1f ﬂl(s + 1) = 2p thén

1.1. for each x € Ws(p)(;§; the player puts x into V(p), and

1.2, if R(2p) 1is not labelled at the end of stage s and for
some <D, <n, m>> and <D*, <n, m*>> in Ws(p) we have

-1.2.1. m# m* and

1.2.2. <x, y> €(D UD*) N a° » <x, y> is not <r, l>-labelled
for any r s 2p
.then the player takes the smallest such pair, say <E, <j, k>> and
<E*, <3j, k*>>, and

1.2.3. <2p, 0>-labels all members of E U E¥*,

1.2.4. wunlabels all labelled requirements R(gq), gq > 2p,

1.2.5. labels R(2p), and

1.2.6. for any <x, y> € (E U E%) h 2% the player removes <x, y>
from A and puts the smallest <x, y'> such that

1.2.6.1. <x, y'> £ E U E* and

1.2.6.2. <x, y'> 1is not <r, 0>~labelled or <r, 1>-labelled for
any r = 2p,

into A and <2p, 1>-labels <x, y'>.

2. 1If ﬂl(s + 1) 2p + 1, R(2p + 1) 1is not labelled at the end

of stage s, and there exists <n, m> € Ws(p) such that
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2.1. no number <n, m'> is <r, 1>-labelled for some r =< 2p + 1,
and

2.2. <n, m» is not <r, 0O>-labelled for some r < 2p + 1,
then the player takes the smallest such number, say <j, k>, and

2.3. puts <j, k> into A,

2.4, <2p + 1, 1>-labels <j, k>,

2.5. removes and <2p + 1, 0O>-labels all members of A of the
form <j, k'> with k' # k,

2.6. unlabels all R(g), g>2p + 1, and

2.7. labels R(2p + 1).

§2.4 A PROOF THAT THE STRATEGY IS A WINNING STRATEGY

A requirement R(p) 1labelled at the end of stage s can be
unlabelled at stage s + 1 only if for some g < p, R(g) 1is not
labelled at the end of stage s, but R(g) is labelled at the end
of stage s + 1. Thus for each p there exists an r(p) such that
either R(p) 1is labelled at all stages = r(p) or [R(p) 1is not
labelled at any stage = r(p). Choose r(0), r(l), ... such that
r(0) =r(l) = ... . If <n, m(l)> is put into A at stage s(1)
then for some p(l), <n, m(l)> is <p(l), 1>-labelled at stage s(1).
. If <n, m(2)>, m(2) ¥ m(l), is put into A at stage s(2) > s(1),
then <n, m(2)> must be <p(2), 1>~ labelled at stage s(2) for some
p(2) < p(1l). Therefore there must Qe a stage s(k) and a number
m(k) such that <n, m(k)> € At for all t = s(k), and consequently
A must be well-defined. A is single-valued and total since A% s
single-valued and total for every s.

It now remains to be shown that R(g) 1is satisfied for every
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g =2 0. Consider a requirement of the type R(2p), p =0, i.e.

W(p)(ﬁs single-valued and total > V{p) A W(p)CK) finite.
Now suppose W(p)(Eb is single-valued and total.
Let L = Vr(zp)(p). Clearly L 1is finite. To show that
R(2p) 1is satisfied it will suffice to show that V(p) - L C
W(p)(ﬁs and W(p)(zb C V(p). Consider any <n, m> that is put into
V(p) at a stage s + 1, s 2 r(2p). There must be a member of Ws(p)
of the form <D, <n, m>> where D C ;§: Now suppose, for proof by

contradiction, that <n, m> £ W(p)(X). As W(p)CK) is total there

must be a stage t + 1, with t > s and wl(t + 1) = 2p, such that

t
for some D* and m* ¥ n, <D*, <n, m*>> € Wt(p) and D* C A . We

claim that 1.2.1. and 1.2.2. hold for the pair <D, <n, m>> and
<D*, <n, m*>> at stage t. Clearly m* # m, so 1.2.1. holds.
Now suppose <x, y> € (D U D*) N At and <x, y> 1is <r, 1>-labelled

at stage t with r < 2p. Now as D* C At then <x, y> € DN At.
However D C A°. Hence <x, y> must be put into A at a stage t°',
t>t'>s 2 r(2p). This can occur at only two points in the player's
strategy, 1.2.6. or 2.3. Now if the player puts <x, y> into A

at stage t' on behalf of 1.2.6., then as t' > r(2p) we have

ﬂl(t') > 2p and <x, y> cannot be <r, 1>-labelled for any r =< ﬂl(t'),
which contradicts our assumption about <%, y>. If the player puts

<x, y> into A at stage t' on behalf of 2.3., then by 2.1.,

ﬂl(t') < r < 2p and R(ﬂl(t)) must become labelled at a stage t' >
r{2p) = r(ﬂl(t)) which is impossible. Therefore <D, <n, m>> and

<D*, <n, m*>> satisfy 1.2.1. and 1.2.2. at stage t + 1. It

follows that R(2p) is already labelled at stage t because otherwise
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R(2p) would become labelled at stage t + 1 contradicting t + 1 >
r(2p). Let u + 1 be the largest stage < t at which R(2p) becomes
labelled. Then there must exist some least pair <E, <j, k>> and
<E*, <j, k*> in W (p) that satisfy 1.2.1 and 1.2.2. at stage u + l.
The player <2p, 0>-labels every member of E U E* at stage u + 1

and removes every member of (E U E*) N A" from A at stage u + 1.

Clearly then <j, k>, <j, k*> € w*l(p) "), and k # k*. If at some

stage v+ 1>u+1 a member of E U E*, say <x, y>, 1is put into

A then, R(Trl(v + 1)) is labelled at stage v + 1 and as <x, y> is
<2p, 0>-labelled at stage u + 1 we have 1rl(v + 1) < 2p. Therefore
r(‘ni (v + 1))=2v + 1 which contradicts v + 1 > r(2p). As no such stage
v + 1 can exist we have <j, k>, <j, k*> € W(p) (X) and k # k*. This
in turn contradicts our assumption that W(p) (A) is single~valued. Hence
<n, m> € W(p) (A) and V(p) - L C W(p) ().

Now suppose <n, m> € W(p) (-A—), then for some s, <n, m> € Wt(p) (_A—t—)
for all t = s. There must be a stage u%. s such that ‘nl(u + 1) = 2p,
hence <n, m> € Vu+l(p) C v(p). Clearly W(p) @) ¢ V(p), and
W(p) (X) A v(p) € L. Therefore all the requirements of the type R(2p),

p Z 0 must be satisfied.

Consider a requirement of the type R(2p + 1), p =0, i.e.

A#WpE.

As A is total and single-valued, for any n there is an m such
that <n, m> € A. Thus we may suppose without loss of generality that
for all n there is an m such that <n, m> € W(p).

Each time a number becomes <r, 0>-lfrbelled or <r, 1l>-labelled
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the requirement R(r) becomes labelled. If r < 2p + 1, then R(r)
cannot become labelled at any stage greater than r(2p + 1). As only a
'finite set of numbers become labelled at any stage, there must be a

n(p) such that if k > n(p) thén for all y, <k, y> is never <r, 0>-
labelled or <r, l1l>-labelled for any r < 2p + 1. Choose a <k, y>
such that k > n(p) and <k, y> € W(p). There must be a stage s + 1 >
r(2p + 1) such that ﬂl(s + 1) = 2p+1 and <k, y> € Ws(p). Since
k> n(p), 2.1. and 2.2 are satisfied at stage s. Thus R(2p + 1)
must be already labelled at stage s, as otherwise R(2p + 1) would
become labelled at stage s + 1 contradicting s + 1 > r(2p + 1). Let
t be the greatest stage <« s + 1 at which R(2p + 1) becomes labelled.
Some <j, x> 1is put into A at stage t and <j, x> becomes

<2p + 1, 1>-labelled at stage t. WNow if <j, x> £ A then <j, x>

must become <r, 0>-labelled at some stage t' > t where r < 2p + 1.
We would then have that t< t' < s + 1 and the label on R(2p + 1) is
removed at stage t', which contradicts our choice of t. Therefore

<j, x> € A and as <j, x> € Wt(p) C W(p) we have W(p) N A # 4.

Therefore W(p) # A.

§2.5 CONCLUSIONS

Consider a play of the game in which the opponent follows an
effective strategy whereby W(0), W(l), ... is an enumeration of all the
r.e. sets and in which the player follows his effective winning strategy,
then all the sets V(0), v(1), ... will be r.e. Now suppose B Se‘X
and the partial degree of B 1is total. Then there must be a single-

valued total set B*, B* = B. Thus for some j, B* = W(j)(A) and as
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the player's strategy is a winning one,
B* A v(j) is finite.

Hence B?Ee V(j) and @ Ee B* Ee B. Also X'# W(j) for ail j, whence
X.>e g. It follows that A >e @, because A is single-valued and total.
This completes the result claimed for this chapter because the partial
degree of A is total and non-zero, but there is no non-zero partial
degree, less than or equal to the parfial degree of A, that is total.

We also note that a theorem of Medvedev is a corollary to the above
result.

Corollary 2.5.1. (Medvedev)

There is a non recursive ¢ such that for all £,

f Ee ¢ > £ recursive.
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CHAPTER III
'MINIMAL PAIRS OF PARTIAL DEGREES

§3.1 INTRODUCTION

If T is a set partially ordered by =<° with a least element «,

then B, vy € T are said to be a minimal pair if B8, vy # o and
VS el <"Band § <" y~»§ = aqa).

Case [1] has shownAthat there exists a minimal pair of partial
degrees, Lachlan [3] and vates [7] have shown independently that there
is a minimal pair of r.e. degrees. 1In this chapter we will combine these
two results to show that there are two non~r.e. but co-r.e, sets whose
partial degrees form a minimal pair. The method used is similar to the
one in the paper by Lachlan [3]. Whether every minimal pair of r,e.

degrees forms a minimal pair of partial degrees is an open question.
§3.2 DESCRIPTION OF THE GAME

We consider a game where the player enumerates the sets A, B, V(0}],
v(@), ..., and the opponent enumerates the sets W(0), w(l}, ..., U(O),
u(l), ... .

The requirements of the game are:

R(1): W(0) (@) = U(0) (B) - 3i(v(i) A W(0) (Rl is finite)

R(2)1 A # W(0)
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R(3): B # u(0)

R(4): W{l)(a) = u(l) (B) - Ji(v(i) A w(l) (&) is finite).

§3.3. BASIC IDEA BEHIND THE STRATEGY

Before giving the actual strategy and proof we outline the main
ideas behind the strategy. Let us first consider the problem of
constructing two non-r.e. but co-r.e. sets which satisfy the first

requirement, i.e.
W(0) () = U(0) (B) - Ji(v(i) A W(0) (A) is finite).

At each stage s of the game we define Level (0, s] as the largest

n < s such that

—

Vk < n(k € w>(0) %] «— k € u®(0) B5]).

We also consider the sequence s0 < sl < «oey, defined by

s, = uIx((¥j < 1) (sj < x and Level (0, s,) < Level (0, x)]).

1

3

This sequence is either finite or infinite. If it is finite then R(0O)
is clearly satisfied.

We reserve a set V(0) for this requirement. For each i, we

S, S,
enumerate each number of W l(0) (a l) that’'is <« Level (O, Si) into V(0).

At stage s we may wish to put some member x into A to ensure

K;‘ W(p) for some p. Putting x into A may remove some Kk <

-Level (O, sj), with sj < s, from WS(O) (As)‘ Despite this we may

enumerate x in A as long as we then keep out of B all numbers whose

removal from B would remove k from U (0) (BS). If Level (0, t}Y < k
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for all t > s then R(Q} will be satisfied and the restriction on B
persists from stage s through all subsequent stages. If for some
stage t > s, Level (0, t}) =2 k then the restriction on B may be
lifted at stage t and at stage t we may put any number y in A or
B provided that an appropriate restriction is placed on B or A,
respectively., The effect of this procedure, if the sequence s_ < s < ...

0 1

is infinite, is to ensure for all k and all t > s we have Kk¢€ Ut(O)(Bt)

or k € Wt(O)(At). However we want %%g Wt(o)(Atl[k] to be defined,

——

so we only allow k to leave Wt(O)(At) when we place numbers into A
to ensure that X'# W(g) where g < k. This restriction also ensures
that the set of numbers restricted from entry to A on behalf of k is
finite. A similar method ensures the same for B.

Now if the sequence Sy < S3 < .e- is finite then let u Dbe the
maximum stage in the sequence.v For each k < Level (0, u} we have seen
that the set of all numbers restricted from entering A or B on behalf
of k is finite., This allows the player to start playing the other
requirements starting at stage u + 1 with only a finite interference
from R(0). If the sequence Sg < S) < <o is infinite then any
restrictions on entry into A or B will be eventually lifted and other
requirements may wait for this relaxation before théy act.

At any stage s, We assume that the ééquence will be infinite, and
play a strateqy on these stages that conforms with this assumption. On
all other stages we assume that we have passed the last member of‘the
sequence and play accordingly, Thus for the requirement R(1l) we have

two strategies being played. For each strategy we carry a distinct set

from the sequence V(O), V1), «ee « When we are assuming that the
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sequence S) < S; < «.a is infinite, that is when we are at a stage sj,

then we play as if the only stages that have occurred are s0 <8 < ... <
sj. This policy is extended to all requirements. Thus for a requirement
R(p) there are p requirements above it and hence there are 2P pos~-

sible assumptions. For each of these assumptions we require a distinct

set from the sequence V(0), V(1), ... .

§3.4 A WINNING STRATEGY FOR THE GAME

We first give some definitions used in the strategy,

Definition 3.4.1

el Level (p, s) is the largest n < s such that

— ——

Vk < n(k € W (p) (a%) «— k € u°(p) (BY)).

<2, A p-state is a subset of {i : i< p}

.3. The p-states are linearly ordered by =<* defined by
E<*F<+>V¥Yj(j €F ~E~>Ji(i €E-F and i< j))

4, We define E(s) ¢ {i : i < s} and finite sequences
<N(i, s) | i <s and <u(i, j, s} | i<s, j =N, s)> by
the following §tipu1ations:
4.1, N(O, s) =s, uo, j, s} ==3j for 3 = N(O, s)

4.2. k € E(s) «> Level (k, s) > max Level (k, u(k, i, s))
i<N(k, s)

43, k £ E(s) and j =N(k, s} .». Nk + 1, s) =N(k, s} and

ulk + 1, j, s)

it

u(k, j, s)

«4.4. k € E(s) »uk +1, 0, s) =0
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4.5, k € E(s) and u(k + 1, j, s) defined and
uk + 1, j, s} <s .+, . uk+1, j+1, s) =ulk, y, s)
where
y = Hz(Level (k, u(k, z, s)) > Level (k, utk + 1, j, s)))
.4.6. k €E(s) and ukk +1, j, s) =s .». N(k + 1, s) = 3.
.5. We define E(p, s) as E(s) h {i : i < p}.
«6. RQ@p + 1) is frozen at stage s if for some m,
m € W (p) N a5,
-7. R(3p + 2) is frozen at stage s if for some m,

meupE N e,

In the strategy we will make use of the auxiliary function

E, s). It is assumed that if L(p, E, s + 1) is not set explicitly

it is equal to L(p, E, s). At stage O all sets are empty and

L(p,

then

and

E, 0} = 0. At stage O the player dces nothing.
Strategy at stage s + 1:

l. For each p € E(s) if there exist n and D such that

1.1 <D, n> ¢ Ws(p)

1.2 n £ V9 (<p, E(p, s)>)

1.3 pca®

1,4 n = Level (p, s)

the player chooses the smallest such n and

1.5 puts n into V( p, E(p, s) ) and

1.6 sets L(p, E(p, s), s + 1) to the maximum of L(p, E(p, s), s)

n.

The player chooses the least p < s, if any, such that EITHER
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2, R@Bp + 1)} is not frozen at stage s and there exists m such
that
[
21. <m, p, 1> € W (p)
2.2, if g =p and for some g-state E we have E <* E(g, s]

and further there is a D such that <D, k> € Ws(q) and D c A% for

some k = L(g, E, s + 1), then if D* is the least such D

<m, p, 1> € D* + k € U°(q) (8%}

(note that at this point in the strategy L(g, E, s + 1) will have been
set, either explicitly by part 1, or implicitly by our convention)

2.3, if g=p and k< p and if there is a D such that D C ;E'
and <D, k> € Ws(q) then if D* is the least such D we have
<m, p, 1> £ D* OR

3. R(@3p + 2) is not frozen at stage s and there exists m such
that

3.1. <m, p, 2> € U°(p)

3.2, if g<=p and for some g-state E we have E <* E(g, s) and

further there is a D such that <D, k> € Us(ql and D c B° for some

k £ L(g, E, s + 1), then if D* is the least such D

<m, p, 2 € D* + k € Ws(q)(As)

(note that at this point in the strategy L(g, E, s + 1) will have been
set, either explicitly by part 1, or implicitly by our convention]

3.3, if g=p and k< p gnd if there is a D such that D C ;g‘
and <D, k> € Us(q) then if D* is the least such D we have

<m, p, 2> £ D*,
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If p exists satisfying 2. then the player chooses the least m

that satisfies 2. for p and puts <m, p, 1> into A. If p exists
but not satisfying 2. then the player chooses the least m that

satisfies 3. for p and puts <m, p, 2> into B.

§3.5 PROOF THAT THE STPATEGY IS A WINNING ONE

For each p 2 0 we define the final p-state, denoted by Fp,
as the smallest p-state under =*, such that the sequence of all

stages s with E(p, s} = FP, say
V(,P, 0)< V(.P, l) < V(p, 2)< Teae g

is infinite. Now it is clear from the definition of E(s) that FP o

F

p+1® We define the final game state, denoted by F, as

F o
p=0"p
Consider a requirement of the type R(3p + i), i =1, 2, We let

r(3p + i) be the least stage s such that R(3p + i} is frozen at

stage s, if no such stage exists we let r(3p + i) be O.

Lemma 3.5.1 If for some p, p = 0 we have
Yn 3s Yt(t > s = Level (p, t) = n)

then p € F_,

Proof; Suppose p satisfies the hypothesis but p £ F_. Clearly then

p £ Fp+l‘ Consider the infinite sequence
vip+1l, 0) <vip+1l, 1)< vip+1 2] < «eu o

For any 'k, k> 0, there must be a j > k such that

i

T " ® =
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Level (p, v(p + 1, j)) > k. Therefore there is an infinite subsequence
t(0) < t(1) < ...
such that E(p + 1, t(i)) = Fp+l U {p} <*F i=0,1, 2, ... « This

ptl’

contradicts our definition of FP+1 and our result is shown.

Lemma 3.5.2 If for some p = 0, W(p){a) = U(p) (B) then
Yn 3s Vt(t > s + Level(p, t)} = n)

Proof; Consider p = 0, and suppose W(p) (A) = W(p) (B). Now for a
proof by contradiction assume that there is an n such that for all s
there is a stage t'(s) > s such that Level (p, t'(s)) < n. Clearly

) ©
there must be an infinite sequence <t(i)>i__0 such that for some m

t (i)

Wt (1) t(i) (o) (B )

() at )y A ot

m €

for all 1i.

Choose j sufficiently large so that t(j) > r(3g + i), ¢ <m,
t(3)

B e

e @t or mevtI @

t(3)

i=1, 2. Now either m € W

Suppose the former, then for some set D, D CA
Wt G) (p) . Therefore there must be some set D* such that D* is the
least set such that for some s = t(j) D* 'C‘A_s and <D*, m> € WS (p). 1If
D* ¢ A then at some least stage r > s a number of the form <n, q', 1>
is put into A. Hence R{3gq!' + 1) .becomes frozen at stage r and as
r>s2t(3) >r3g+1), g<m, i=1, 2, we must have gq' > m.

However <n, q‘; 1> mugt satisfy 2. of ihe player's strategy at

stage r and hence m > g' by part 2.3, >f the player's strategy.
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This is a contradiction so we must have D* c KZ
Now as <D*, m> ¢ Ws(p) C W(p) we have m € W(p)dﬁ. However
W(p) A) = U(p) (B). Hence m € Wip) (a) N U (p) (B) and for some k we

) N Ut(k)(p)(Bt(k)). Similarly for m € Ut(j)(Bt(j)

t(k), t(k)

have m € W (A ).

<«
This contradicts our choice of the sequence <t(i)>i_0 and establishes
our lemma.

Lemma 3.5.3 For every p =2 O there is a stage 2z'(p) such that
s2>2'(p) > F =<* E(p, s).
P

Proofs As there are only finitely many p-states it suffices to show
that for each p-state E, E <* Fp’ that there is a stage t(E) such

that
s > t(E) » E(p, s) # E.

This is immediate from the definition of Fp. ﬂ

For economy of notation we note that there is a stage z(p] such

that z(p) > z'(P) and z(p) >r(3gq+ i}, g=<p, i=1, 2,

Lemma 3.5.4 For all q = 0 there is a b(gql such that L(g, E, s} = b{q}

for all stages s and all g-states E su¢h that E <* Fé = Fq U {q}.

Proof: Consider a g-state E with E <* Fé. It suffices to show that
for some n, L(g, E, s) < n for all s. Suppose for proof by contra-
diction that for all n there is a stage s such that L(g, E, s} > n.

Hence thexre must be an infinite sequence of stages say
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t(0) < tQ) < tQ2) < (..

such that L(g, E, t(i) +1) > L(g, E, t(i)), i=0,1, 2, ... . Clearly
then, as the auxiliary function L can be increased only on behalf of
part 1. of the player's strategy, E(q, t(i)] =E, i =0, 1, 2, cae o

Therefore by our definition of Fq’ Fé <* E. This contradicts our

assumption that E <* Fé and establishes our Lemma.

Lemma 3.5.5 If g<p and g ¢ F, then for all k > 0.
L_(q, Fq, vip, k) + 1) = Level (g, v(p, k)).

Proofy As <v(p, k)>:_0 is a subsequence of <v(g, kl>c;_0 it suffices to
show that for all k = 0

1, L{qg, Fq’ v(g, k) + 1) = Level (q, v(g, k}).

Now L(g, Fq’ vig, 0) >+ 1) either is equal to L(g, Fq’ v(g, 0})
which has value O or is set to the maximum of L(g, Fq’ v(ig, 0)) and
some n =< Lgvel (g, v(g, 0})., Clearly then L(qg, Fq, vig, 0] + 1) =<
Level (q, v(gq, ?). Now suppose 1l. is true for k = j. Now
L(q, Fq, v(q_, j+ 1) + 1) either equals L(q, Fq, vig, j + 1)} or is
set to the maximum of L(g, Fq’ vig, j + l)) and some n =

Level (g, v{g, j + 1})). To show that 1., holds for k

n

j+ 1 it

clearly suffices to show that
L(qg, Fq’ vig, j + 1)) < Level (g, vig, j + 1)}.

By our choice of <v(q, i)>:_ we have L(q, Fq, vig, § + 1)) =

0]
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L(qg, Fq, v(g, j)l + 1} whence by our induction hypothesis

L(g, Fq’ vig, 3 + 1}) = Level (g, v(g, 3))

< Level (g, Viq, j + 1))}.

This completes our proof by induction of the required result.

We now show that requirements of the type R(3p] are satisfied.

Consider p = 0, suppose W(p) (A) = U(p) (B). Let L = w? @)

(p) (N) and
vV = V(< F >).
D, p
We first show by induction that W(p)(Eh C V. Suppose that for all

k<n

k € Wpl(A) » k € V.

Now suppose n € W(p) (Al. We can choose s sufficiently large so that "
if k<n and k € W(p) (Al then t = sk € W (p) @5 n vt ana for
some D C K} <D, n> € Ws(p). Now by Lemma 3.5.2 and Lemma 3.5.1 we have

p€F_. As s was chosen arbitrarily high we can assume that s =

v(ip+ 1, i) for some i, hence p € E(s). Also by Lemma 3.5.2 we can

choose s so that n = Level (p, s). Therefore 1.1., 1.3,, and 1l.4.,

of the player's strategy hold for n and P at stage s + 1, Therefore

either 1.2. does not hold for n and n € Vs, or 1l.2. holds for n

and n € Vs+l. Clearly n € Vv, which completes our proof by induction

that W(p)(A) c V.

Suppose n € V - L, Clearly there is a stage s(l) such that n €

s(1) ,.s(1 :
W (A )). Let D(l) be the smallest s2t D such that <D, n>¢€ Ws(l)

s(1 2
and D CA ( )-, In the following construcvion of the sequences <D(1)>i

=17
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(o]
<s(i)>i=l, we will assume that if w(i) =1 and s(i+l) = s >

<w (i ))
(_l .
l"l

s(i) then D(i) is the least set D with <D, n> € W (a°) and D c a5,
similarly for w(i) = 2 by replacing A with B. Clearly this assumption

is equivalent to dropping an argument s from each D(i).

Case 1. D(1) ¢ X, in which case n € Ws(l) (X) C W(p) (a). This is
what we want to show, We call this a terminating case,

case 2. D(1) ¢ A.

Let us suppose the latter case holds. Now a member of D(l}) can
be put into A only on behalf of part 2. of the player's strategy. Let
s(2) be the smallest stage > s(l) such that a member of D(l), say
<m(2), q(2), w(2)> where w(2) =1, 1is placed into A at this stage.

Let t(2) be the stage immediately preceding s(2). Now s(2) > s(l) >
ws(l)

z(p) as n € (As(l)) - L, hence as R(3q(2) + 1) becomes

frozen at stage s(2) we have q(2) > p. Now by Lemma 3.5.3,

Fp =* E(p, t(2)). Also
n = L(p, Fp, s(1) + 1) = L(p, Fp, s(21}.

Hence by part 2.2, of the player's strategy,

t(2) t(2)

w2 ) 53,

n € e AP U <m(2), q21, w21>h U u

That is either

—— »

1. new P Emas?®) o
2. neuv*® ) Es?,

Now if 1. is true we can repeat the above argument. Either this
repetition will continue without end or it will terminate finitely, i.e.

either we can get an infinite sequence
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s(l) < s(2) < s(3) < ...
or a finite sequence

s(l) < s(2) < «¢. < s(3)

such that n € US(J)(BS(J)). Suppose the latter (this case includes

2., as the special case j = 2), then there must be some smallest

set p(i), p(§) ¢ 853, such that <p(3), n> € U

s(j)(p). Now as before
we have two cases.

Case 1. D(j) € B, in which case n € U(p) (Bl = W(p) (B) which is
what we want to show. This is also a terminating case.

Case 2. D(j) ¢ B.

Let us suppose case 2, holds, then there must be a smallest stage i
s(j +1), s{j+1) >s(j), such that D(j) & Bs(j+l). Some number "
<m(j + 1), g(j + 1), w(j + 1)>, w(j + 1) = 2, must be put into B ;Q
at stage s(j + 1). Now s(j + 1) > s(l) > z(p), so g(j + 1) > p.
Let t(j + 1) be the stage immediately preceding s(j + 1l). By
Lemma 3.5.3, Fp <* E(p, t(j + 1)). Therefore by part 3.2. of the

player's strategy which we can apply as n = L(p, Fp’ s(1)) =

L(p, Fp’ t(j + 1)) we have

n e "I ) @O Y fanig + 1), g+ 1, WG+ 13
U Ut(3+1) (0} (At(J"'l) ).
That is either v
2. n e w1 ) @sUHYy
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Now if 1. holds we can repeat this argument and continue the

sequence. As before we get either an infinite sequence
(1) < 5(2) < ... < 8(5) < ...
or a finite sequence

s(1) < s(2) < (o < 8(3) < (.. < s(k)

—————

s (k) aS (k)

such that n € W ( }« In the latter case (2. is a special

sub-case with k = j + 1) we can apply the argument used on s(1}
to continue the sequence. Thus either one of the terminating cases will

hold and n € W(p) (A) or we get an infinite sequence
s(l) < s(2) < ...
with the associated sequences

t(2) < t(.3) < e as
q(zll q(3), e g
D(l) [ D(z) 4 LR

w(2}, w(3), ... .

Consider i = 1, Now if w(i + 1) = 1, then D{i}] is the smallest
s (i} GSal

- set such that D(i) <€ A and <D(i}, n> € (pl. By part 2.3, of

the player's strategy q(i + 1) =n. Now if w(i + 1) = 2, then D(i])

s (i) s (i)

is the smallest set such that D(i) € B and <D(i}, n> € U (Pl .
By part 3.3. of the player's strategy q(i + 1) = n. Now r(3q(i) + w(i))

equals s{i) for all i = 2, hence as at most one requirement becomes
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frozen at any stage, 3g) + w(d) # 3q@) + w(d) for all i # j,
i, 4 =2 2, This is a contradiction, hence one of our terminating cases
must hold.
We have shown that w(p)(i) CV and V -1L C W(p)(i), therefore
Wip)(a) AV C L, and all the requirements R(3p), p = 0, are

satisfied.

Now let us consider a requirement of the type R(3p + 1), i.e.

A # W(p).

If R(@3p + 1) is frozen at some stage t then there is an x such
that x € at N Wt(p), and A # W(p). Now suppose for proof by
contradiction that R(3p + 1) is never frozen at any stage., Clearly
then for all m, <m, p, 1> £ A. If at the game's conclusion there is
an m such that <m, p, 1> £ W(p) then <m, p, 1> € 2 - W(p), and
X.# W(p). We are left with the case when for all m, <m, p, 1> €
W(p) - A,

We will first show that there is a number d. and a function hl

1

such that if m > dl and s > hl(m) then <m, p, 1> will satisfy

part 2,1, of the player's strategy at stage s.

Let dl = 0 and define hl(m) to be the smallest stage s such
that <m, p, 1> € ws(p). Clearly if m > dl and s > hl(m) then
<m, p, 1> € Ws(p) whence 2.1. is satisfied.

e such that if

We will now show that there are numbers d3, 3

m > d3 and s > e, then <m, p, 1> satisfies part 2.3. of the

player's strategy at stage s.
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Consider any g <p and k < p. Suppose there is a set D such

———

that for some stage t, t = z(k), D C At and <D, k> € Wt(q). Let

D(k, gq) be the smallest such set D, and let t(k, q) be the smallest

t(qu) t(k,q)

stage such that D(k, q) € A and <D(, q), k> € W (). If

D(k, q) ¥# A then some <j, q*y 1>,<3, a', 1> € D(k, q), must be put
into A at some stage t > t(k, 9). Now as <j, q', 1> satisfies

part 2.3. of the player's strategy at stage t we have g% < k. Now
R(3g"' + 1) becomes frozen at stage t, and we have t > t(k, q) > z(k) >

r(3g" + 1). Thus we must have D(k, q) € A, Now if there is no such

———

set D such that for some t = z(k), D C At and <D, k> € Wt(q),

then we let D(k, q) = § and t(k, q) = z(k). We let d3 be the

maximum of all m such that <m, p, 1> € D(k, q) for some k < p,

q =p, and we let e_, be the maximum of all the stages t(k, q)
3 4 4

k<p and g = p.

Now suppose m > d3 and s > eq. Consider any g<p and k< p

such that there is a D, D C A% and <D, k> € Ws(q). Now s > t(k, q)
hence if D* is the smallest such D, D* = D(k, gq)l. Clearly then, by

our choice of 4 <m, p, 1> £ D*, Therefore d., and e._, have the

3’ 3 3

desired property.

We will now demonstrate that there are numbers d2 and e2 such

that if m > d, and for some i, v(pp',i) > e, p' =p + 1, then <m, p, 1>

satisfies part 2.3. of the player's strateqgy at stage v(p'-i) + 1.
Consider any g <p and k =< b(g). We can construct D(k, q) and

t(k, q) exactly as above. Let d2 be the maximum of all m such that

<m, p, 1> € D(k, q), k = blq), g < p, and let e, be the maximum of

all the stages t(k, qi} k =blq), g=p.
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Let m > dz and let 1 be sufficiently large so that v(p',6i) >

e Assume for proof by contradiction that part 2.2. of the player's

9°
strategy does not hold for <m, p, 1> at stage v{(p',i) + 1. Hence
there must be a q < p, a q-state E with E <* E(p, v(p',i)) = Fp,
and a k = L(g, E, v(p',i) + 1), such that if D* is the smallest set

V(p /1)

* V(P.ri)
such that D* C A and <D*, k> € W (q) then <m, p, 1> €

v(p', i) ,_v(p',1i) .
D* and k £ U P @V Now if E <* FqU{q}, then by Lemma 3.5.4
k < b(g), and as v(p ,i}) > t(k, q), we must have D* = D(k, q). Hence
<m, p, 1> £ D* as m > dz. This leaves the case E = Fq and q € F_. By
Lemma 3.5.5, L(g, E, v(p',i) + 1) = Level (q, v(p',i)), hence k =

Level (q, v(p',i)). Now as k € @ ") @V ®' )y, we have k €

Uv(p"i) (Bv(p"i)) which contradicts our assumption about k. Hence d2
and e, have the desired property.

Now choose m such that m 1is greater than any of dl, d2 and
d3, and choose an i such that v(p',i) > z(p), v(p',i)] > h(m) and

v(p',i) 1is greater than either e, or e

5 3 Now <m, p, 1> must

satisfy 2.1.,, 2.2., and 2.3. at stage v(p',i) + 1. .By our

assumption that R(Z_ip + 1) is never frozen there must be a q < p such
that either h(Bq + 1) or R(3g + 2) becomes frozen at stage v(p',i) + 1.
This contradicts our choice of v(p',i) > z(p). Hence we have shown that
all requirements of the form R(3p + 1), p = O are satisfied. We can
show that the requirements of the form R(3p + 2), p = 0 are satisfied

by a similar argument.

§3.6 CONCLUSIONS

Consider a play of the game where the opponent follows an effective
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strategy so tkat {(W(i}, U(i)) : i € N} 1is the set of all pairs of r.e.

sets, Therefore as the player's strategy is effective A, B and all
the sets V(0), Vv(1), ... will be r.e. Furthermore X>e £ and §>e 2
as A # W(@H) and B #U(i), i=0,1, 2, ... . Now if cseX and
C Se B then for some pair of r.e. sets (W(i)}, U(i}), we will have
C=wW(@) (@A) = UM)(B). As R(3i) is satisfied, there is a set V(k)
such that C A v(k) is finite, and as V(k) is r.e. C Ee #. Thus the
partial degrees of A and B form a minimal pair. Now A and B are
co-r.e. hence their partial degrees are total. Therefore the Turing

degrees of A and B form a minimal pair of r.e. degrees.
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CHAPTER IV

THERE ARE NO MINIMAL

PARTIAL DEGREES

§4.1 INTRODUCTION

In this chapter we will show that there are no minimal partial

degrees.

Definition 4.1.1.
.1. A partial degree a is minimal if O<a and b<a*b=0.
2. A set B is minimal if its partial degree is minimal.
Mention of this problem occurs in Rogers [5, p.282] and Case [1].
The proof will be in two parts. First we will show that a minimal degree
must be =< 0' and then we shall show that there is an r.e. set V such

. =
that for all B, @ <o B = K, we have @ <e Vv (B) <o B.
§4.2 TWO GAMES

In this section we describe two games that have an effective winning
strategy.

We consider the following game where the player enumerates V and
the opponent enumerates W(0), W(l), ... . We will assume that the
partial degree of the opponent's strategy is less than or equal to the
partial degree of a given set A. If the player's strategy is effective

then any set W(i) that the opponent enumerates will be such that
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W(i) Ee A. Also if the player'‘'s strategy is effective we will have

\% Se A. The requirements of the game are:

R_l: for each n there exists an m = 1 such that for all j
<n, j> € V(X) > j <=m for all X, X >e A
0< j<m><n, j> € Vv(X) for all X, X >, A
n € X <+ <n, m> € V(X) for all X, X >, A

Ry: W(O)v(x) # x for all X, X >, A

R.:

1¢ W(lL)V(X) # X for all X, X >y A

R,: W(2)v(X) # X for all X, X >, A

Now if we have an effective winning strategy for this game it will
wsrk when the opponent simultaneously effectively enumerates all the
r.e. sets. in the following discussion we will assume that this is the
case. We can take A to be @ and hence Ehe requirements will be
satisfied by any non r.e. set X. Also the set V the player enumerates
will be r.e. Now suppose B is minimal. We must have B > @, hence

B is non r.e. and B satisfies all the requirements of the above game.

By definition 2 Se V(B) Ee B, hence either V(B) Ee B or V(B) Ee g.
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V(B) Ee B would imply that B Ee V(B)}, hence for some r.e. set W(p)
we would have B = W(p)V(B). This is impossible as B satisfies R(p).
Therefore, for every minimal B we must have V(B) r.e., that is

V(B) = W(q) for some g. Now if b is the partialidegree of the join
of the characteristic function of V and the characteristic function of

W{g), then we have by R that the partial degree of C_ = b. Having

1 B

an oracle for V would allow us to compute for each n the m whose

existence is assured by R We can then consult an oracle for W(q)

1
to see whether <n, m> is in W(gq) or not. 1In the former case n € B,

in the latter n £ B. Now clearly b is a total degree and b = 0',

hence we have the following:
Theorem 4.2.1. If X is minimal then X has T-degree = 0°'.

As V(B) = W(g), an enumeration of V and W(g) will give us a
sequence of initial functions {C:}:=O which will converge to CB. For
given partial enumerations of V and W(g), say v°  and Ws(q), we
take Cz(n) to be 1, if there is <n, j> € Ws(q) such that
<n, k> € Ws(q) +k=3j and k< j <> <n, k>> € Vs, and 0 otherwise.
Now recall that V satisfies R_l and thus for each n there exists an
m > 1 such that <n, > € Ws(q) >3 <m and j<m~*><n, > € Ws(q)
and <n, m> € V(B) «> n € B. For any n either <n, m> will appear
in Ws(q) for some s > n in which case t = s = Cg(n) = 1, or there
will be an s > n such that t = s =+ C;(n) = 0. As W(g) = V(B) and
<n, m> € V(B) <> n € B these final values will agree with CB. Now each

of these initial functions C: is finite and hence has a canonical index,

. S [AS1%® .
thus we can consider the sequence {CB}s—O as a function from N to N,
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say d. As game one is played we are essentially getting an enumeration
of countably many such functions, and if a minimal B existed at least
one of these functions would have to converge to B in the manner
described above. To show that a non r.e.‘set B is not minimal it is
sufficient to find an effective procedure that, applied to the above
function g enumerated by game one, will enumerate a set V such that
] <e V(B)'<e B.

Let us consider the following game where the player enumerates V
and the opponent enumerates W(0), W(l), ... . As before we assume that
the opponent's strategy has partial degree less than or equal to the
partial degree of a given set A. We will also assume that at each stage
of the game we have an initial function C; such that CB = éig C:,

B > A and the function that encodes this sequence of initial functions
has partial degree less than or equal to the partial degree of A.

The requirements are:

R(0): W(0) # V(B)

R(1): W(l)Vv(B) # B

R(2): WwW(2) # v(B)

R(3): W(3)V(B) # B

Now suppose that we have an effective winning strategy for the above
game. Applying that strategy when the opponent simultaneously effectively

enumerates all the r.e. sets such that W(2p) = W(2p + 1) and A =@
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we see that there exists an r.e. set V such that all the requirements
are satisfied. By definition @ Se v(B). If @ Ee V(B) then for some
r.e. set W(2r) we have V(B) = W(2r), which would imply that B does
not satisfy R(2r). If V(B) Ee B then for some r.e. set W(2r + 1)
we have B = W(2r + 1)Vv(B) and B does not satisfy R(2r + 1). Both
of these_assumptions contradict the existence of an effective winning

strategy. Hence if we can find an effective winning strategy for both

games we have:

Theorem 4.2.2. For every B > @ there is an r.e. set V such that
] <e,V(B) <e B.

We notice that the V depends upon the choice of B and hence the
result is not uniform. NoQ suppose B > C and the partial degree of
C 1is total (we may then regard C as being the graph of a characteristic
function). We now re-examine the games and this time in the first game
let the opponent play so that his strategy has partial degree iess than

or equal to the partial degree of C, and W(i) = U(i)(C) i

L]
o
-
-
-
K]
-

where U(0), U(l), ... are all the r.e. sets. We also take A to be C.
Hence as our winning strategy is effective and C 1is total v=s C,
that is for some r.e. set Uy V= UO(C).

This is not necessarily the case if the partial degree of C, say
C, 1is not total. As ¢ is total we can assume that the order of
enumeration of {<n, 3> : n € W(3§)(C)} is fixed. Because given any
enumeration of C there is an effective procedure that will output a

fixed enumeration of C. Hence as our game takes a fixed enumeration

of {<n, j> : n € W(3j)(C)} and outputs an enumeration of a set V, we
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can combine these two effective procedures and get an effective procedure
such that for any enumeration of C it will output an enumeration of V.
However, if ¢ is non-total we cannot effectively extract a fixed
enumeration of C from an arbitrary enumeration of C, see Case [1],
and so we cannot conclude that V Ee C unless ¢ 1is total.

Now V(B) = UO(C)(B) but B >y C hence for some r.e. set Ul'
C = Ul(B). Therefore V{(B) = Uo(Ul(B))(B) thus there is an r.e. set
02 such that V(B) = U2(B) Se'B. Finally there must be some r.e. set
U3 such that U3(B) = V(B) join C. Now suppose there is no set strictly
between C and B. If U3(B) Ee B, then for some r.e. set W_,

1
W.U.(B) = B and so Wl(V(B) join C) = B. Therefore for some g,

173
W(q)V(B) = B. This would contradict the fact that an effective winning
strategy exists for game one. Hence U3(B) Ee C, that is U3(B) = W(q)
for some g. Now U3(B) = V(B) join C, hence we can extract a sequence
of initial functions as before, the only difference being that this time
the function that encodes them will have a partial degree that is less

than or equal to the partial degree of C. Hence we can apply the

second game to this seguence where the opponent's strategy is =_C

e

and where W(2i + 1) = W(2i) = u(i)((&), i=0,1, 2, ... . Again we

take A to be C. Now consider V(B). Clearly V Se C, hence as in the
analysis of game one, there is an r.e. set U* such that U*(B) =

V(B) jein C, and C Ee U* (B) Se B. If U*(B) Ee B then for some r.e.

set W*, W*U*(B) = B. However, W*U*(B)

It

W*(V(B) join C) thus as

B >e C there is a g such that W*U*(B) W(2g + 1)V(B). Therefore

B = W*U*(B) = W(2q + 1)V(B) which contradicts R(2q + 1).
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The only other alternative is U* (B} e C, that is for some r.e. set
W*, W*(C) = U*(B) = V(B) join C. Thus there must be an r.e. set w**
such that W**(C) = v(B) but W**(C) = W(2q) for some g and hence
W(2q) = V(B). This is impossible by R(2q) hence our assumption that

there is no set strictly between B and C must be false. We have

Theorem 4.2.3. If a and b are partial degrees with a total and

a < b then there is a partial degree ¢ such that a < ¢ < b.

§4.3 STRATEGIES FOR THE GAMES

We now present an effective strategy for the first game and prove
that it is a winning one. The player will construct a function £f(n, s)
at each stage s. It is intended that the value of f(n, s) should
remain fixed for all sufficiently large stages. This final value of

f(n, s) will be the m required for n by R_ If, during the

1
construction the player does not explicitly set the value of f£f(n, s + 1)
it is assumed to be £f(n, s). At stage 0, all sets are empty and
f(n, 0) = 1 for all n. A superscript s on a set being enumerated
will indicate that set as it appears after s stages of the game.

The basic idea behind the strategy is that each number n is issued
a flag <n, 1> by putting <{n}, <n, 1> into V. (At stage s the
flag of n will be <n, f(n, s)>). We cail <n, 1> a flag since the
presence of <n, 1> in V(X) would indicate the presence of n in X.

To satisfy R, we ensure that the only solution of X = W(CQ)V(X) is

0
ﬁ n o . n+l .
n=0(W(O)V) (8), where (W(0O)V) is W(O)Vv and (W(0)V) is
W(0)V((W(0)V)™). For the first instruction of the form <E, 0> that is

placed in W(0) we put <@, <m, 3>> into V for any <m, j> € E.
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Thus O € X <> 0 € W(O)V(F). Now <m, j> € E € V(X) will no longer
indicate the presence of m in X, so we issue a new flag <m, j 4+ 1>
by putting <{m}, <m, j + 1>> into V. For the first instruction of
the form <E, 1> in W(0) we proceed as we would for 0 but we do not
disturb any flagé of 0. Thus 1 € X <>+ 1 € w(o)v(g) U (W(O)V)l(ﬁ). It
is clear that we can ensure that n € j_I__GO(W(O)V(O))j(Qi) <> n € X. Notice
also that this strategy requires that n has at most n + 1 flags, as
we only issue a new flag for n to handle a number less than or equal
to n. This will satisfy R(0). For R(k), k > 0, the method is the
same except that we never repeal a flag of any n < k. This means that
any sblution of X = W(k)V(X) has the form nEO(W(k)V)n(F) where F

is a subset of {0, 1, ..., k = 1} and hence will be Se A.

Player's strategy at stage s + 1:

1. For every member <D, r> of Ws(ﬂl(s)) and for every sequence L
<F , ..., F> with F, € {x : x< 7,(s)} such that
0 r i 1
1.1. D c v (N)
1.2, <m, k> € D and ﬂl(s) <m< r > <m, k> € Vs(ﬁ) or m is
< >—
ﬂl(s), Fm labelled
1.3. r is not <ﬂl(s), Fr>—labelled
1.4. Fr = {n < ﬂl(s) : <n, > €D - Vs(ﬂ) for some 3} U
LJ{Fm : ﬂl(s) <m<or and <m, k> € D - V°(@) for some k}
the player <m, (s), F >-labels r and for each <n, j> € D such that

n2>2m7.(s) and n 2 r the player

1
1.5. puts <@, <n, j>> and <{n}, <n, j + 1>> into V
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1.6. sets f(n, s+ 1) to f(n, s) +1 if 3 = f(n, s).

(He proceeds through the members <D, r> of ws(ﬂl(s)) and the subsets

F

or 0 F of {n:nc< ﬂl(s)} in numerical order with respect to the

index <F0, F2, s Fr <D, r>>.)

2. The player puts <{ﬂl(s)}, <ﬂl(s), 1>> into V and sets

f(ﬂl(s), s+ 1) =1 if f(ﬂl(s), s) = 0.

Now consider any X, X >é A. We show that R_l is satisfied.
Consider any n € N. Clearly by our construction if f£(n, s +>l) >
f(n, s) = 1 then ﬂl(s) = n and there is an r < n that becomes
<ﬂl(s), E>-labelled at stage s + 1 for some E C {x : x < ﬂl(s)}.

However a number may become <ﬂl(s), E>-labelled at most once. Hence

for all t, f(n, t) =< 2n e (n + 1)2 + 1. Thus there must be a smallest

I

t such that s =2t - f(n, s) f(n, t ). We denote f(n, t ) by
n n n n

f(n). By induction on s:

1. Jt(t < s and ﬂl(t) s) + £(n, s) =21

2. <n, j> ¢ Vs(x) =2+ j = f(n, s)

3. 0< j< £f(n, s) +<g, <n, §>> € v°

4. f(n, s) >0 and n € X <+ <n, f(n, s)> € VS(X).
Therefore we can conclude:

5. <n, j> € V(X) - j = f(n)

6. O0< j< £(n) » <@ <n, §>> € Vv

7. n € X« <n, £f(n)> € v(X).

Thus R__l is satisfied for all X.

Now suppose for some X >o A and some W(g) we have W(q)V(X) = X.

We define U as follows:
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X(0) = {x: x<qg}NX

W(@)v{X(m)) U x(m)

X(m + 1)

a
il

mE__Jox(m).

Since the player's strategy is effective and the oppcnent's strategy
has degree Se A we must have U Se A. We show by induction on m that
for every m, X(m) C X. Clearly X(0) = {x : x < g} N X € X. Suppose

X(m) € X, then
X(m + 1) = W(@)v(X(m)) U X(m) € W(g)Vv(x) UX C X.

We now show by induction on n that

IHl. n € X - there is a set Fn C X and a stage tn such that

the player <qg, Fn>—labels n at stage tn

IH2. if the conclusion of the implication in IHl1. holds theﬁ
n € U.
Suppose this is true for all n < k and suppose k € X. Clearly
k € Ws(q)Vs(X) for some stage s. Thus there must be a member of Ws(q),

say <D*, k> such that D¥* C VS(X). Let Fk be the set

{n<q:<n, j> € D* - V(@) for some 3} U

L_J{Fm :g=m< k and <m, j> € D* - V(f) for some j}.

We see that Fk C X, by our induction hypothesis and noting that n< g

and <n, j> € D* - V(@) € V(X) > j = f(n) and n € X. Now conditions

1.1., 1.2. and 1l.4. given in the player's strateqgy clearly hold for




46
<D*, k> and Fk at any sufficiently large stage t with ﬂl(t) = q.

Hence there must be a stage tk such that the player <q, Fk>—labels

k at stage t Thus we have shown part IH1. of our induction result.

K
Now suppose the conclusion of part 7IH1. holds about k. Let <D, k>

t

be the member of W k(q) that causes k to be <q, Fk>—labelled at

stage t. Now consider <n, j> € D.
Case a) n < g: in which case either <n, j> € V(@) < V(U) or

n € F, < X(0) whence <n, 3> € V(X(0)) C V(U).

Case b) n = g: we have two sub—-cases
t, +1
i) n =z k, 1in which case <@, <n, §>> €V and
hence <n, j> € V(g <€ vV(X),
t
ii) n < k, in which case either <n, > € V (@) < V(U)
or n 1is <qg, F#>-labelled for some F* C Fk c X

and hence by our induction hypothesis n € U and

<n, j> € v(U).

Thus in all cases <n, j> € V(U). Therefore D C V(U) so k € W(g)V(U) =
U. This completes our induction.

Thus we have shown that X € U and U C X hence X = U. This
would contradict our hypothesis that X > A as U Ee A. Hence our
assumption that W(g)V(X) = X is false. Thus any X such that X > A

must satisfy all the requirements.

To construct a winning strategy for the second game we rely heavily
on the sequence of characteristic functions. At any stage we act as if
the characteristic function given to us at that stage is correct. The

negations of some requirements, which are equalities, will be evidently
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false if we know that our current characteristic function is correct.
We only deal with the smallest requirement that could possibly be unsat-—
isfied (i.e. the equality could hold). 1If this requirement is an even
one, say R(2p), we issue flags of the form <n, 2p> for larger and
larger n. If the requirement is odd, say R(2p + 1), we force
W(2p + 1)V(X) to be W(2p + 1)V(@) for any X. If the opponent allows
us to work on a requirement infinitely many times any solution to its
equation will have to have partial degree less than or equal to the
partial degree of A. Thus for any requirement he must make the equality
in that requirement contradict the characteristic functions for all
sufficiently large stages. However as the sequence of characteristic
functions converges to CB it will be impossible for any such equality
to hold at the game's conclusion.

A superscript s on one of the sets being enumerated by the
opponent or the player will denote that set as it appears after s stages.
At stage 0 all sets are empty and the player does nothing. We make the

following definitions to simplify the strategy and the proof.
‘4.3.1. s(n) 1is the smallest stage such that

s (n)

s 2 s(n) ~ C;(n) = CB

(n) = CB(n)-

4.3.2. t(g, s) 1is the largest stage < s such that R(g) is the
first requirement not passive at stage t(g, s) and is 0

if no such stage exists.

4.3.3. R(2q) 1is passive at stage s if s > 0 and for some

n< t(2q, s), <n, 2g> ¢ V> (@) and W (2q)[<n, 2g>] # C;Ln).
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4.3.4. D(2q + 1, s) = {<n, 2p> € V°(N) : 2p < 2g+1 and c:(n) =1}

U {<n, 2p> € V(@) : 2p < 2q + 1}.
4.3.5. Z(2q + 1) ={<n, 2p> : n € N, 2p > 2q + 1}

4.3.6. R(2g + 1) is passive at stage s if s > 0 and for some
n< t(2qg + 1, s) either

i) 1

wS(2g + 1) (D(2g + 1, s) U vo(®))[n] # C:(n) or

ii) ©

WW(2q + 1)(D(2g + 1, s) Uz(2q + 1) [n] # c (n).

4.3.7. R(g) 1is active at stage s if it is not passive at stage s.

Player's strategy at stage s + 1l:
Let g be the smallest number <« s such that R(g) is active at
stage s (if there is no such gq the player does nothing at stage s + 1).
Case 1. g = 2p
for each n < s the player puts <{n}, <n, 2p>> into V.
Case 2. g = 2p + 1
for all n, r such that s > 2r > 2p +1 and n< s the

player puts <@, <n, 2r>> into V.

We now show that this strategy is a winning one. In particular we
shall show that for each g, R{(g) is satisfied and there is a stage
r(q) such that s 2z r(q) - R(g) is passive at stage s. Suppose there
is a q for which this does not hold and let g* be the smallest such
g. Let t' be chosen > r(p) for all p < g* and let t* > t' be
chosen such that t* > s(m) for all m«< t'.

We consider two cases.

Case 1. g* = 2p* for some p*.
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Suppose for each stage t there is an s 2 t such that R{2p*)
is active at stage s. Let U= {n : <n, 2p*> € W(2p*)}, and let
L={n : n< t*}. Clearly U Ee W(2p*) Se A. We shall prove that the
symmetric difference of B and U is a subset of L and hence finite.
We can then conclude that B Se U Se A which is impossible, hence
r(2p*) must exist. Suppose n € B - L. Let us choose an r > 0 such
that r > s(n), r > t*, +t(2p*, r) > n 4and R(2p*) is active at
stage r. Consider any 2q + 1 < 2p*. Since t* > r(2q + 1), R(2q + 1)
cannot be active after stage t* and since n > t* the player never
puts <@, <n, 2p*>> into V on behalf of R(2g + 1). Thus <n, 2p*> £
V(@), and as R(2p*) is active at stage r we must have
W' (2p*) [<n, 2p*>] = C;(n). Now r > s(n) and n € B, hence C;(n) = 1.
Therefore <n, 2p*> ¢ Wr(2p*) C W(2p*) which implies that n € U. This
shows that B - L C U. Suppose n € U-L and n ¢ B. Choose r as
above. As n £B and r > s(n) we have 0 = CB(n) = C;(n). By the
same reasoning as above <n, 2p*> £ V(@) hence as r(2p*) 1is active
at stage r, <n, 2p*> £ Wr(2p*). Now as out choice of r could have
been arbitrarily large we must have <n, 2p*> £ W(2p*) which contradicts
the fact that n € U. Hence U - L € B and thus the symmetric differ—
ence of B and U 1is included in L. By our remarks above r(2p¥*)
must exist. We must then have by our assumption about g* that R(2p*)
is not satisfied, that is W(2p*) = V(B).

Choose r > s(m) for all m< t* + r(2p*). Now as r > r(2p*)
we have R(2p*) passive at stage r, hence for some n < t(2p*, r).<
r(2p*), <n, 2p*> £ Vr(g) and Wr(2p*)[<n, 2p*>] # C;(n). Now as

n < r(2p*), r > s(n) hence CB(n) = C;(n). Also as we could have
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chosen r arbitrarily large we can assume that W (2p*)[<n, 2p*>] =
W(2p*)[<n, 2p*>]. Hence CB(n) # W(2p*){<n, 2p*>]. As n < t(2p*, 1)
the player must have put <{n}, <n, 2p*>> into V at stage t(2p*, r).
However <n, 2p*> £ V(@), thus CB(n) = V(B)[<n, 2p*>]. By our
assumption that R(2p*) is not satisfied we have V(B) = W(2p*) which
would imply that CB(n) = W(2p*)[<n, 2p*>] contradicting

Wr(2p*)[<n, op*>] # CB(n). Therefore our assumption about g* cannot

hold in this case, and Case 1 is impossible.

Case 2. g* = 2p* + 1 for some p*.
Suppose for each stage t there is an s =2 t such that R(2p* + 1)

is active at stage s. Let
U= W(2p* + 1)(D(2p* + 1, t*) U v(®)).

Clearly U Ee A. We shall show B = U and hence r(2p + 1) must exist.
Suppose n € B. Choose r > 0 such that r > s(n), r > t*,

t(2p* + 1, r) >n and R(2p* + 1) 1is active at stage r. Now suppose

*
<m, 2p> € D(2p* + 1, t*). Thus <m, 2p> € Vt (N), hence m< r{(2p).
t* r t* r

Therefore t* > s(m) and 1 = CB (m) = CB(m). Also V (N) ¢ v (N),
therefore D(2p* + 1, t*) C D(2p* + 1, r). Notice that if <m, 2p> €

r t* r
V (N) then m«< r(p) < t* hence <m, 2p> € V  (N) and CB(m) =

*

1~ C; (m) =1 as r > t*, therefore D(2p* + 1, r) € D(2p* + 1, t*)-
This shows that D(2p* + 1, r) = D(2p* + 1, t*). Now suppose <m, 2g> €
Z(2p* + 1), we can choose r' >r so that r'>2q, r'>m and
R(2p* + 1) is active at stage r'. Hence as r' > r > r(2p) for all

2p < 2p* + 1 and as R(2p* + 1) is active at stage rt' the player

puts <@, <m, 2g>> into V at stage r'. Thus 2(2p* + 1) < V(@)
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hence
Wr(zp* + 1)(Op* + 1, r} U Z (2p* + 1))
CW(2p* + 1) (D@p* + 1, t*) UV(E) = U

Now as R(2p* + 1) is active at stage r and r > s(n} then 1 = CB(n) =
r r

Cp(n) = W (2p* + 1) (D(2p* + 1, r} U 2(2p* + 1))[n] hence n € U. Now
suppose n € U, we can choose r as before but with the added condition

that
n € W (2p* + 1) (D(2p* + 1, t*) U v (@).

Now as before we have D(2p* + 1, r) = D(2p* + 1, t*). Thus as R(2p* + 1)

is active at stage r we have
r . R~ r
1 =W (2p* + 1) (D(2p* + 1, r) UV (®))[n] = CB(n)

and as r > s(n), CB(n) = 1l. Thus B = U which is impossible as
U Se A, hence r(2p* + 1) must exist. Therefore, by our assumption
about g*, R(2p* + 1) cannot be satisfied, that is B = W(2p* + 1)V(B}.
Choose r such that r > r(2p* + 1), r > t* and such that r > s(m)
for all m < r(2p* + 1), As above we have D(2p* + 1, r) = D(2p* + 1, t*).
Also R(2p* + 1) is passive at stage r hence for some n < t(2p* + 1, r) <
r(2p* + 1) we have two cases:

Case a]l 1 =W (2p* + 1) (D(2p* + 1, 1) UV (@))[n] # C;(n).

Consider <m, 29> € D(2p* + 1, r). Either <m, 2g> € Vr(ﬂ) C v(B)
or C;(m) = 1, Now as m«< r(2gq) we have r > s(m) hence CB(m) =1

and thus <m, 2g> € V(B). Therefore D(2p* + 1, r}) U v (g) ¢ v(B) and
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thus n € W (2p* + 1) (D(2p* + 1, r) UV (#)) € W(2p* + 1]V(B) = B which
is impossible,

Case b) 0 =W (2p* + 1) (D(2p* + 1, r) U z(2p* + 1))[n] # C;(n).
Now as n< t(2p* + 1, r) < r(2p* + 1) we have r > s(n}, and thus
n €B As B = W(2p*.+ 1)v(B), n € W(2p* 4+ 1)V(B)} and there must be a
member of W(2p* + 1) of the form <D, n> where D C V(B). Consider
<m, 2g> € D, there are two possibilities:
i) 29 < 2p* + 1, in which case either <m, 2¢g> € V(@] or
m € B. Suppose m € B, we must have m < r(2q), by our
choice of r we have r > s(m} hence C;(m) = 1 and
<m, 2g> € D(2p* + 1, r). Thus for sufficiently large r,
<m, 29> € D and 29 < 2p* + 1> <m, 2g> € D(2p* + 1, r].
ii) 2qg > 2p* + 1, in which case <m, 2g> € Z(2p* + 1]}.
Thus we can choose r sufficiently large so that D C
D(2p* + 1, r) U 2(2p* + 1) and <D, n> € W (2p* + 1].
Hence n € Wr(2p* + 1)(DOE2p* + 1, r} U 2(2p* + 1)} which
is impossible.
Thus neither case a) nor b) can hold and hence R(2p* + 1] must be
satisfied. Therefore there can be no such stage g* and the player's

strategy must be a winning one. This completes the prcof of our result.
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CHAPTER V

DEGREES MINIMAL ABOVE A

NON-TOTAL DEGREE

§5.1 INTRODUCTION

In this chapter we will extend some of the results of the previous
chapter. 1In particular we will show that for a given partial degree a
there are at most countably many partial degrees minimal above a, that
is, for any B there are at most countably many C such that C >a B
and for no A is C >y A >a B. In the previous chapter we were able to
do this for any B that belonged to a total degree. However for sets
that belonged to non-total partial degrees we were not able to ensure
that the enumeration operator we constructed was independent of the
particular order in which the opponent enumerated his sets. We will give
a new strategy for the first game of the previous chapter that will itself
be an enumeration operator and hence will produce an enumeration operator

that is independent of the order of the opponent's enumeration.

§5.2 EXTENDED ENUMERATION OPERATORS

In order to demonstrate this new strategy we will need operators
that consider not only the input enumeration but also their own output
enumeration. We will show that such operators can be replaced by enumer-

ation operators, and hence are only a notational convenience.
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Definition 5.2.1.

.1. a triple of the form <n, e, D> 1is called a positive e-
condition

.2. a triple is a positive condition if it is a positive e-
condition for some e

.3. an extended enumeration operator S 1is an r.e. set of
positive conditions

.4. a set T is said to satisfy § for X if for every positive

e-condition <n, e, D> in S, we have
n € We(T join X) » D C T
.5. 8<X> is the intersection of all sets T which satisfy S for

X.

Theorem 5.2.2. If S is an extended enumeration operator then S<X>

satisfies S for X.
Proof: Suppose L(1), L{2), ... 1is an enumeration of §S. Also suppose

L(j) = <n, e, D>. Then we define

D n € We(ﬂ join X)
Y(Q, J) =

' otherwise .

Let 2Z(0) = _ﬁOY(O, j). Now we define 2Z(k + 1) by induction. Suppose
J:

Z(k) has been defined, also suppose that L(j) = <n, e, D>, then we let

D if n € We(Z(k) join X)
Y(k + 1, j) =

@ otherwise .
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We then set 2(k + 1) = _ﬁOY(k + 1, j) U2z(k). Firally we set 2z = i Z(k) .
J=

Consider any L(j), say <n, e, D>, and suppose n € We(Z join X).
Now Z(k) € Z(k + 1) for all k, hence there must be m such that
n € We(Z(m) join X). By our construction of Y(m + 1, j) we have
D=Y{m+ 1, j) € Z2{m + 1) € Z. Therefore 2Z satisfies S for X and
thus S<x> C zZ,

We will now show that 2Z C S<X>. This will prove that 2z = S<X>
and as we have shown that Z satisfies S for X, we will have proved
the theorem.

Let us consider a T such that T satisfies S for X. If
x € 2(0) then x € ¥Y(0, j) for some j, where L{(j) = <n, e, D>, and
by our construction of Y¥(0, j) we have n € We(ﬁ join X) and x € D.
However We(ﬂ join X) C We(T join X), and as T satisfies S for X
we can conclude that D C T. Thus x € T and hence Z(0) C T.

Now suppose 2Z(k) € T. If x € Z2(k + 1) - 2(k)] then x € ¥Y(k + 1, 3J)
for some L(j) = <n, e, D>. Therefore n ¢ We(Z(k) join X) and x € D.
Now 2(k) € T, hence n € We(Z(k) join X) < We(T join X) and as T
satisfies S for X, x € D C T. Thus by induction Z CT. Nowas T
was an arbitrary set that satisfied S for X, we must have 2z C S<¥X>.

This theorem tells us that S<X> is a solution to all the conditions
in S. We will now show that an extended enumeration operator can be

replaced by an enumeration operator.

Theorem 5.2.3. If S 1is an extended enumeration operator then there

exists an enumeration operator V such that for all X, V(X) = S<X>.

Proof: Let L(1), L(2), ... be a recursive enumeration of S. We will
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assume that this enumeration is being given, together with a simultaneous
effective enumeration of all the r.e. sets. We will construct V in
stages. 1In effect we will be showing that V is enumeration reducible
to these input enumerations and hence is r.e. We will denote by WZ,
the finite subset of We that has been enumerated at stage s.

Let V(0) = 8. Consider some stage s + 1. Suppose ﬂl(s + 1) = j.
Let U = ﬁ V(k), and suppose L(j) = <n, e, D>. Then we take as V(s + 1)

k=0

the set of all pairs <FO ] Fl, x> such that x € D, FO c {i: i< s}

[e o]
and for some F, C U(FO) we have <F2 join F_, n> € WZ. Let V = kUOV(k).

2 1

Clearly each V(k) 1is finite and V Ee S and hence V is r.e.
We now complete the proof by showing that V(X) = S<X> for all X.
Consider any set X. Clearly V(0)(X) € S<X>. Suppose V(t)(X) C
S<X> for all t<s + 1. Let n € V(s + 1) (X). Suppose ﬂl(s + 1) = j
and L(j) = <m, e, D>. Now as n € V(s + 1) (X) there must be some pair

<F0 U Fl, n> € V(s + 1) with FO UFP, ¢ X, n €D and for some F_,

1 2

c < .. N ] . . hesi
F2 (kEOV(k))(FO) and F2 join F., m> € We By the induction hypothesis

ll
V(k) (X) € s<xX> for all k = s hence

ﬁ (v(k) (X)) <€ s<x>

F,c (Ivanm e T

2

and

m € We(S<X> join X).

As S<X> satisfies S for X by Theorem 5,2.2., D C S<X> and thus

n € S<X>. Clearly then

V(X) € s<x>.
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Referring to our proof of Theorem 5.2.2., we see that S<X> = kEOZ(k).
Suppose n € Z(0), then n € Y(0, j) for some 3j, where L(j) =

<m, e, D>. By the construction of Y(0, j), m € We(ﬂ join X) and

Y(0, j) = D. Now choosing s sufficiently large with ﬁl(s + 1) =3

we have m € WZ(ﬁ join X), that is there is a finite set F such that

1

Fl C X and <@ join F,, m> € WZ. Now clearly @ C V(s) (@), hence

1
<g U Fl, n> € V(s + 1) and n € V(s + 1) (X) € V(X). Therefore 2Z(0) C
V(X). Now suppose Z(k) C V(X). Let n € zZ(k + 1) - 2(k), then

n € Y(k + 1, j) for some j, where L(j) = <m, e, D>. We see that

m € We(Z(k) join X) and Y(k + 1, j) = D. We choose s sufficiently
large so that m € WZ(Z(k) join X) and ﬂl(s + 1) = j. There must be a
member of WZ éf the form <F2 join Fl, m> where Fy C X and F2 C z(k).
Now Z(k) € V(X), hence we can assume that s is sufficiently large so
that F2 c (tiov(t))(x). Thus there is a finite set Fo C X such that

s
F, C(tgov(t))(Fo). We can also assume that Fy © {i : i < s} By our
construction of V(s + 1) we have <F0 u Fl, n> € V(s + 1), and n€ v(X)

as Fo u Fl C X. Therefore 2 = S<X> C Vv(X) by induction and so

S<x> = V(X).

§5.3 AN ENUMERATION STRATEGY

We will now reconsider the first game in the previous chapter. One
of the conclusions drawn from that game was that there are at most a
countable number of partial degrees minimal above a total degree. If the
opponent changes the order of enumeration of his sets, the strategy given

in the previous chapter will produce a different set V (unless the
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opponent is eaumerating all sets enumeration reducible to a total set,

in which case it can always be assumed that the order is fixed). Let

KC denote the set {<n, e> : n € We(C)}. We will demonstrate an
extended enumeration operator S such that for any A if V = S<KA>
and W(i) = WiLA) for all i then for A = W(0) the requirements

R, Rl' R

0 ... 1listed on page 37 hold together with

5t
R‘l': Y YY 2(Y # 2 > V(Y) # V(2)).
We will show that this is sufficient to prove our result.
The idea behind the construction of our extended enumeration
operator is similar to the strategy for the first game in Chapter 1IV.
To illustrate this and to clarify the construction we will first construct
an S such that VvV = S<W(0)> satisfies the requirements RO’ R_l'.
Let f be the function from N X N “to 2N defined by letting
f(n, j) be the set {i : i < n} - Dj-l if j =21 and @ otherwise.
Let g be the function from N X N to N defined by letting g(j, i)
be 1 plus the canonical index of Dj—l U'{i} if =1 and O
otherwise. |
Consider the following four sentences concerning a pair <D, r>:
1. <D, r> €Y
2. D C 8S<¥Y>(N)
3. €n, j> € D and n=1r)>r € £(n, 5)

4. (<n, 3> € D and n < r)>f{there is a set D* such that <D*, n>

satisfies 1. = 4. or <n, j> € s<¥>(g@)).

When we take Y to be W(0), then these will be the conditions on
a pair <D, r> in W(0) that must hold before we repeal some flags in

D. The first condition asks that <D, r> be in W(0) and the second
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that D C S<W(0}>(N). Both of these conditions are clearly necessary.
The third condition is to avoid a process in the strategy of the first
game that cannot be handled by an enumeration operator. In that strategy
once we have forced D, from a pair <D, r> into W(0), into
kEO(W(O)V)k(ﬁ) we then label r so as not to upset more flags to achieve
an already accomplished result. Let us look at an example of how we
achieve a similar result in an enumeration operator. Now O will have
two possible flags <0, 1> and <0, 2>. We will construct S so that
<{0}, <0, 1>> is always in S<W(0)>. If some <E, 0> appears in W(0)
with E C S<W(0)>, then we will repeal all the flags in E, that is,
force each <n, 3> in E into a solution of X = W(0)S<W(0)>(X) by
putting <@g, <n, j>> into S<W(0)>. We will then issue new flags to all
the - n such that <n, j> € E which will encode the fact that O has
been forced intc a solution of X = W(0)S<W(0)>(X). The set Dj—l is
the set of all r = n that have already been forced into a solution of
our equation, g(j, 0) will then be one plus the canonical index of
Dj—l U {0}, and we will issue a new flag <n, g(j, 0)> to each <n, j>
in E. Hence if <0, 1> € E then we will put <@g, <0, 1>> and <0, <0, 2>>
into S<W(0)>. Now <0, 2> will never be repealed because as in the
strategy for the first game in Chapter IV we never repeal a flag of r to
force in a number n > r, and as <0, 2> has coded into it the fact that
0 has been forced into a solution of our equation, we have exhausted all
the possible reasons to repeal a flag of 0. In general there are 2n+l
possible flags of n.

In the first strategy given in the last chapter much the same result

as the above was gained by labelling numbers to indicate that they had
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been forced into a solution of X = W(0)V(X). The player could then
check the label of a number to seé if he wanted to repeal flags on its
behalf or not. This technique cannot be used in a strategy which is an
enumeration operator as one cannot inhibit instructions from working
after they have been put in the operator.

The intent of the fourth condition is to ensure that if there is a
set E C S<W(0)>(N) and <E, r> € W(0) and if we force r into any
solution of X = W(0)S<W(0)>(X) then for all <n, 3> € E‘ with n < r,
which we cannot repeal for r, we have that n has been forced into a »
solution of X = W(0)S<W(0)>(X).

If we consider the set of all <D, r> that satisfy 1. to 4. above,
we see as f 1is recursive that this set is Ee S<Y¥> join Y and hence is
Wd(S<Y> join ¥) for some d.

Now if <D, r> satisfiesv l. to 4. we will want to repeal all flags
<n, j>, <n, j> € D, such that n = r. Thus we let

E, (x) = {<@g,<n, > : <n, > € D

and n = m_(x)}
1 2

(x)

We will also need to issue new flags which will indicate that r has been

forced into our solution. We let

By0 = {elnd, <n, gy my(0)>> ¢ <ny 3> €0y () and

n = nz(x)}.

We let Sl be the set of all positive conditions <x, d, El(x) U E2(X)>.

Clearly Xx[El(x) U Ez(x)] is recursive hence S1 is r.e.

We also need instructions to issue initial flags to all n. Let §,
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be the set of all positive conditions <n, 4', D> where d' is such that

Wd.(ﬂ) =N and D = {<{n}, <n, 1>>}.

Finally let S = Sl Us Clearly S is r.e. We shall show that

5"

V = S<W(0)> satisfies R and R' We denote by Pl., P2., P3. and

0

P4. the instances of 1., 2., 3. and 4. respectively that result from

1 -

replacing Y by W(0), and the references to 1l., 2., 3. and 4. by
references to Pl., P2., P3., and P4,

Consider RO'
W(0)V(X) # X, for all X >e A.
‘Consider a particular X so that
W(0)v(x) = X.
We will show that X Se W(0). Let
X(0) =g
X(m + 1) = W(0)V(X(m)) U X(m)

U= ;Qox(m).

Now by Theorem 5.2.3 V = S<W(0)> % W(0), hence U=, w(o) .

We claim that X = U. Clearly U C X as
X(0) =g cCcX
X(m) € X > X(m+ 1) = WOIVEmM)) U X(m) € X.

We will show by induction that X € U. Suppose for all k < r we have
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IHl. k € X - there is a D* such that <D*, k> satisfies ©Pp].
to P4.

IH2. 1if the conclusion of the implication in 1IH1. holds then
k € U.

We first show that part IHl. of our induction hypothesis holds
for r.

Suppose r- € X, then for some D C V(X), <D, r> € W(0). We claim
that Pl. to P4. hold for the pair <D, r> or for some pair <D*, r>.

As <D, r> € W(0) and D <€ V(X) <€ V(N) clearly Pl. and P2. hold
for <D, r>. Now suppose <n, j> € D and n2r. If r £ f(n, j) then as
<n, j> € V(X) and V satisfies S for W(0) we must have for some j',
<{n}, <n, g(j', r)>> € V and hence for some D*, <D*, r> € Wd(V join W(0)).
That is <D*, r> satisfies Pl. to P4. which would show IH1l. was true for r.
Now suppose <n, j> € D and n < r, then as <n, j> € V(X) either <n, j> € V(@)
or n € X whence by our induction hypothesis Pl. to P4. hold for some <D*, n>.

We now show that part IH2. holds fof r. Suppose for some D,
<D, r> satisfies Pl. to P4. We claim that D <€ v(U). Consider
<n, j> € D: -

Case 1. n<r

Now as <D, r> satisfies P4. we have either for some D*, <D*, n>
satisfies Pl. to P4. hence by our induction hypothesis n € U, and
thus <n, j> € v(U), or <n, j> € V(@) whence <n, j> € V(@) < V(U).

Case 2. n=2r

Now as <D, r> satisfies Pl. to P4. we have <D, r> € Wd(V join W(0)).
Hence as V satisfies S for W(0), El('D, r>) ¢ v, and <@, <n, §>> €

V. Therefore <n, j> € V(@) < v(U).
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This completes our proof that D C V(U). Clearly r € W(0)V(U) = U.
Hence we have shown by induction that X C€ U. It follows that X = U
and thus X Se w(o).

We now show that V satisfies R' Suppose for proof by contra-

1°

diction that 2 # 2* (we can assume Z - Z* # @) but V(Z) = V(Z*).

Let n € Z - Z*, Consider <n, j(1)> € V(2Z) (there must be at least

one such number in V(Z) as n € Wd,(W(O)) = N and hence <{n}, <n, 1>> €

S<W(0)>). As n £ Z* we have <n, j(1)> € V(). Then <@, <n, j(1)>> €

V, whence sone <D, r(l)> € wd’ nzr(l), and <n, j(l)> € D. Now as
<D, r(1)> satisfy Pl. to P4. we have r(l) € £(n, j(1)). Also

<{n}, <n, g(3(1), r(1)>> € V. Let j(2) = g(3(1), r(l)). Now <n, j(2)> €

V(Z) hence we can repeat our argument with j(2) instead of j(1). Thus

®

[ve]
< i)>
i=1' r{i) i=

we can construct two sequences <j(i)> Now as j(k + 1) =

1°
g(j(k), r(k)) we have r(k) £ f(n, j(k + 1)). However, r(k) € f(n, j(k)).
Therefore for some %k, f(n, jk)) = P and =r(k) € £(n, j(k)) which is
impossible. Hence 2 # z2* > V(Z) # V(Z*) and Rll is satisfied.

We will now show that it is possible to extend S so that V = S<KA>

will satisfy all the requirements Ril, R R ... « The basic idea,

o’ "1’
as in the first game of Chapter IV, is to not let any requirement R(k),
k > n, disturb any flag of n. This, however, adds a complication,
specifically that it is not sufficient to force some r into
(W(q)V(O))k(F) for some k by repealing some members of a set D, and
then consider r as "handled" for the remainder of the game. Attention
must be paid to the flags of numbers <« g that were in the set D. We

must be prepared to take action on behalf of r for each possible subset

of numbers <« g. To provide for this action we let our second co-ordinate
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code not only the numbers less than n that have been acted on but also

the set of high priority numbers that was involved in this action. we
re-define f as a function from N X N into 2NXF, where F is the
set of all finite subsets of N. We let f(n, j) be the set {<r, F> :
r<n and F C {i : i< n}} - Dj—l when j =21 and @ otherwise.
We re—-define g as a function from N X N x F to N by setting
g(j, r, F) to the canonical index of the set Dj—l U {<z, P}, if
j =21 and 0 otherwise.

For each j, j=0,1, 2, ..., consider the following six
sentences concerning a triple <D, r, F>:

j.1l. <D, r> ¢ wh(j)(Y)

j.2. D C S<Y>(N)

j.3. <n, k> €D and n=2r and n = j - <r, F> € f(n, k)

j.4. <n, k> €D and j<n< r .>. there is an E*, E* CF and
a set D* such that <D*, n, E*> satisfy j.l. to j.6. or <n,k>€ S<Y>(g).

j.5. m € {n : Jk(<n, k> € D and n< j)} - F->m € 5<Y> (@)

j.6. FC {n:n< j}.

Let us suppose that h(j) 1is recursive. Then clearly there is a
recursive function d(j) such that <D, r, F> satisfies j.l. to j.6.

if and only if <D, r, F> € wd(j)(S<Y> join Y).

We let

E,(x, 3) = {<g, <n, k>> : <n, k> € ™ (x) and
n = ﬂz(x) and n = j}
E,(x, §) = {<n, <n, g(k, mo(x), T (x))>> : <n, k> € W, (x) and

n= ﬂz(x) and n = j}.
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Let S(j) Dbe the set of all positive d(j) conditions
<x, d(3), E3(x, j) U E4(x, jy>.

Now choose ¢ so that wc(ﬂ) = N and let S(-1) be the set of

all triples
<n, CI' {<nl <n, l>>}>.

Finally let S = k;ﬁls(k). Clearly each S(j), j= 0O is r.e. as
Xxy[E3(x, y) U E, (x, y)] is recursive, S(-1) is clearly r.e., and
hence as d(j) is recursive S 1is r.e.

Now in the game the opponent enumerates the set W(0), W(l), ... .

Let W* = {<n, 3> : n € W(j)}, and let us consider an h'(j) so that

wh,(j)(w*) = W(j).

Clearly we can take h'(j) to be recursive. Let V = S<W*>. We shall

show that V satisfies the requirements:

R:l' RO' Rl' ees 5 for all X >e Wk,

We let Pj.l. to Pj.6. be the instances of j.l. to j.6. that
result from replacing Y by W*, h(j) by h'(j), and all the references
to j.l. - j.6. by references to Pj.l. to Pj.6. respectively.

Now consider a requirement of the type Rj’ j>0 1i.e.

wEIvx) # X.

Suppose that Rj is not satisfied, i.e.
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W(lvx) = X.
We shall show that in this event X Se W*., We define U by

X(0) =xN{i:1i< 3}

X(m + 1) = W(j)V(X(m)) U X(m)

o«

U= mgox(m).

Clearly U Ee W* as V Se W* by Theorem 5.2.3 and W(j) Se W*., Now

X(0) © X

X(m) € X > X(m + 1) = W(§)VX(m)) U X(m) < X

hence U C X.

Now if k € X and k< j then k € U. Therefore if we can show
that k € X and k= j =+ k € U then we will have X € U, and hence
X=10U Ee W*. This will show that Rj is satisfied.

We prove the following two statementslfor all k = j by induction:

IH3. k € X and k = j - there is a set D and a set Fk such

that F, € X(0) and Pj.l. to Pj.6. hold for <D, k, F, >

k k
JH4. if the conclusion of IH3. holds then k € U.

Suppose IH3. and 1IH4. are true for all k < r. We first show

that IH3. holds for r.

Suppose r € X and r = j. Now as X = W(j)V(X) there is a
<D, r> such that <D, r> € W(j) and D C V(X). Let Fr={n:3k,<n,k> €D
and n< j and n gVv(@1l U [_J {Fm : <m, k> €D and j<m<r}. Now

if k € Fr‘ then either k € Fm for some m, j < m«< r, and k € X by IH3. or
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<n, i> € D for some i and n< j and n £V(@). Now if n< j and
<n, i> € D © V(X) then either n € X(0) or <n, i> € V(@), hence
Fr C X(0). We will now show that Pj.l. to Pj.6. hold for some <D, r, Fr>_

Clearly <D, r> € W(j) = Wh,(j)(W*), so Pj.l. holds. Also
D C V(X) C S<W*>(N), hence Pj.2. holds. Now suppose <n, k> € D
and n2r and n 2 j. Now if <r, Fr> £ £(n, k) then there must be
a <n, k'> € V(N} such that <r, Fr> € £f(n, k') and for some D%,
{D*, r, Fr> satisfies Pj.l. to Pj.6., which establishes IH3. Thus
either for <D, r, Fr> Pj.3. holds or 1IH3. is true for r. Now
suppose <n, k> € D and j < n< r, then either <n, k> € V(@) or
n € X whence Pj.4. holds by our induction_hypothesis. Pj.5. and Pj.6.
are immediate from our definition of Fr.

We now show that IH4. 1is true for r. Suppose the conclusion of
IH3. is true for r. That is there is a set D and a set Fr such
that Fr € X(0) and <D, r, Fr> satisfies Pj.1l. to Pj.6. Now we
claim that D € v(U). Consider <n, k> € D;

Case 1. n< j

Now either <n, k> € V(g8) € Vv(U) or by Pj.5. n € Fr, whence
n € X(0) by our induction hypothesis and <n, k> € V(X(0)) < v(U).

Case 2. n = j

Sub-case 2.1. n<r *

Now as Pj.l. to Pj.6. holds for <D, r, Fr> then Pj.4. holds
for <n, k>. Hence either <n, k> € V{#) C V(U] or there is a set
E* C Fr and a set D* such that <D*, n, E*> satisfy Pj.l. to Pj.6.
Now Fr C X(0) hence E* € X(0). Thus as n < r by our induction

hypothesis n € U and hence <n, k> € V(U'.
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Sub—case 2.2. n=>r
Now as <D, r, Fr> satisfies Pj.l. to Pj.6. we have <D, r, Fr> €

d isfie * < >, §) C v.
wd(j) and as V satisfies S for W* we have E3( D, r, Fr : J) \V/

Hence for all <n, k> € D with n2r, n= 3j we have <@, <n, k>> € V
hence <n, k> € V(@) < v(U).

We have shown that D € V(U), hence r € W(j)V(U) = U. This
completes our iﬁduction proof that X C U. Hence X = U, and therefore
X < W*,

e

Now we will show that Rll is satisfied. Suppose not; that is,

v(z*).

suppose there are two sets 2, Z2* such that 2 # Z* but V(Z)
We c;n assume without loss of generality that for some n, n € Z - Z*,
Now there must be a flagon n, say <n, j(l1)> in Vv(Z) (<n, 1> is

in Vv(Z2)). Hence <n, j(1l)> € V(Z*). However n £ 2*, thus <n, j(l)> €
V(@) . Hence there must be a triple <D(1l), r(l), F(l1)> that satisfies
Pj.1. to Pj.6. for some j with <n, j(1l)> € D(1) and <r(l), F(l)> €
f(n, j(1) . Hence <n, g(j(1), r(l), F(1))> € V(Z). We can repeat the
above argument to extract the sequences

<5 (4 >co
ji) i

oo
< i)>
=1’ F(i) i

©
< i)>
=1’ D(1) i

o
<r{(i)>
=1’ r(i) i=

ll

where g(j(k), r(k), F(k)) = j(k + 1) and <r(k), F(k)> € f(n, j(k)).

Thus for t = k + 1, <r(k), F(k)> £ £(n, j(t)). Now

[£(n, 5] = ¥ where 2= 2" x (n+1).

Hence there must be a k such that £(n, j(k)) = #, and <r(k), F(k)> €

f(n, j(k)) which is impossible.
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R, «c.

This completes our proof that our strategy will satisfy Rll' o

§5.4 CONCLUSIONS

Consider a play of the game where the opponent's strategy has

partial degree Se A and he enumerates all the sets <e A, that is

W(i) = W_(A). Then w* = {<n, 5 : n € W(3)} = K, =, A. Let the player

enumerate the set V = S<KA>. Now by Theorem 5.2.3 we have V Se KA Ee A.

We have shown that V satisfies R:l, RO' Rl, eevy for all X >e W* Ee KA.
Consider any set B, C, such that B >e C. Consider a play of the

game as described above where A = C. As the resulting V satisfies

Rj for B, we have W(j)Vv(B) #¥ B, for all j = 0. Now as C <e B we

have V <e B and hence V(B) Se B. Let M= V(B) join C. Clearly

M fe B. Suppose M Ee B, then for some r.e. set U we have U(M) =

U(V(B) join C) = B. Thus there must be some W(j), such that

W(j)Vv(B) = B. This is impossible as V satisfies R(j}, hence

V(B) join C <e B. Now suppose Bl > C, then by an identical argument

to the above we have V(Bl) join C <e B Now suppose both B and B

1° 1

are minimal above €, that is for all L

B.>L=2C-~»>L= C
1 e

and
B>Lz2C—-L Ee C .
Hence V{(B) join C Ee C and V(Bl) join C Ee C, so for some Jj and 1

V(B) join C = W(j) and V(Bl) join C = W({i).



Now as V satisfies R‘l

Bl # B e-V(Bl) # V{(B) a-V(Bl) join C # V(B) join C
- W) # W(3)
- 1i# 3.
Therefore we have the following.

Theorem 5.4.1. There can be at most a countable number of partial

degrees minimal above a partial degree.
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