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ABSTRACT

The Haar integral is a positive integral which is invariant under
a group of transformations on an integration space. There are several
classical proofs which show that a Haar integral exists on every locally

compact group. Errett Bishop in Foundations of Constructive Analysis

has given a constructive proof of this result, based on the method of
Henri Cartan.

In this paper we first discuss the constructivist view of analysis
and give some examples of the differences between classical and
constructive mathematics. In Chapter 2 we discuss the constructive
Daniell integral and define a set measure from the integral. Chapter 3
applies the Daniell theory to integration on locally compact spaces.
Finally, for any locally compact group X, we give a method of constructing
the daar integral on C(X)--the set of continuous functions on X with
compact support. Using the Daniell theory, we can then extend the

integral to Cl(X)’ the "completion" of C(X).
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INTRODUCTION

Before the development of nineteenth century mathematical analysis,
there was hardly any need to prefix any mathematical theory with the word
"constructive." There were few examples of non-constructive theorems to
be found. The proof of a mathematical conjecture generally proceeded in
a way analogous to the steps in a scientific experiment. That is, it was
understood that at each step in a proof, instructions should be stated in
such a way as to be clearly humanly performable, and assertions ought to
be verifiable by any reasonable independent observer.

However, with the birth of rigorous analysis, certain underlying
assumptions of classical mathematics became problematic. In particular,
there arose the questions of whether mathematical objects have an
autonomous existence, independent of human construction, and whether
"self-evident" axioms about finite sets and processes are equally valid
when applied to infinite processes. In general, nineteenth century
analysts answered these questions affirmatively, and in so doing, created

L4

a theory which was far removed in spirit from the familiar kind of

finitary mathematics that preceded 1it.

To a constructivist, adjoining humanly performable processes and



"ideally performable" processes in a single theory gives an ambiguous
meaning to that theory. Thus, to a large extent, the purpose of
constructivizing classical analysis is to separate those operations which
can be humanly executed (e.g. "add 2 and 2") from those ideal operations
having no known method of execution (e.g. '"well-order the real numbers").
Then, in most cases, we can find constructive substitutes for the classical
theorems whose proofs rely on ideal operations. The system which results
at least has the virtue that every assertion in it is finitely verifiable
(in principle) and therefore that the meaning of every claim is unambiguous
to finite beings such as ourselves.

To say that a statement is true or false constructively does not
mean that its truth-value is predetermined in some universe and needs
only to be discovered. Rather, it means that its validity has been
established or contradicted by an argument which is totally convincing
to any reasonable individual. 1In practice, the requirement that a
proof be convincing constructively is equivalent to a requirement that
there be a finite mechanical routine (for instance a computer program) which,
if performed, is guaranteed to verify the assertion in question.

An illustration of this viewpoint can be found in the constructive
interpretation of the logical connectives and quantifiers. [In the
following paragraphs, whenever we use the words '"method" or "procedure"
we will always mean a finite routine--such as a computer program. ]

The connective "and" is treated the same way constructively as

classically: that is, to prove "A and B" we must supply a method for

Proving A and a method for proving B.



There are two ways of proving "A or B" : the first way is to provide
a finite routine which will verify A ; the second is to give a finite
routine for verifying B . Hence, if one asserts "A or B" one ought to
be able to tell which of A or B is valid.

To prove "A implies B" (A = B) there must be a method which will
produce from any proof of A , a proof of B . Of course, if it is impossible
to prove A, (i.e. A is contradictory), then "A implies B" will be valid
for any B .

The assertion '"not A" ( ~ A) we define to mean that A is contradictory.
"Not A" is equivalent to the statement "A implies 0 = 1".

Simply from the meaning given to these four connectives, it is
clear that certain classical theorems are not constructively valid. To
prove the law of the excluded middle (A or ~ A) requires that we have a
finite, purely routine method for proving or disproving any arbitrary
mathematical statement A. No one is optimistic about finding such a
method. To assert (~ ~ A = A) requires that we be able to find a method
of proving A whenever we are given a proof that it is impossible that A

is contradictory. Again there is little hope of finding this method.

To prove "Vx A(x)" we must have a routine which will yield a proof
of A(c) for each c in the range of the variable x. To be able to assert
"Ix A(x)" we require a method for constructing a mathematical abject ¢
in the ranée of the variable x, together with a éroof of A(c).

Many classical theorems which do not hold constructively claim to
show the (ideal) existence of objects. One example is the assertion that

every bounded monotone sequence of real numbers has a limit. The



constructive interpretation of this statement is that, given the sequence

of numbers, we can begin to compute the decimal expansion of its limit in

a finite number of steps. The consideration of a few examples of bounded

monotone sequences should demonstrate the implausibility of this assertion.
Recalling Goldbach's conjecture that every even integer is the sum

of two primes, we define the "Goldbach sequence", {ak}:=l , by

o = 0 if Goldbach's conjecture holds for all integers between 4 and k
1 if Goldbach's conjecture fails for some number m = k
This is certainly a bounded monotone sequence. The computation of its
limit, however, depends on the solution of a problem, and we cannot
guarantee that we will be able to solve the problem in a finite number

of steps.

[e o]
The sequence {Bk}k=l defined by

0 if the sequence 0123456789 has not occurred in the decimal

expansion of T before the k'th place in that expansion

w0
fl

1 if the sequence has appeared before the k'th place

is another bounded monotone sequence whose limit is not known--and
hence cannot be asserted to exist constructively.

It is easy to see that there are plenty of these types of sequences
to be constructed. Even if all current problems in number theory were
solved we could still define non-convergent bounded monotone sequences

based on the results of coin flips or some other random process.



When we say that a classical theorem fails to hold constructively,
it is in the sense alluded to above -- namely that when the statement of
the classical theorem is interpreted constructively, the validity of
the statement then hinges on the resolution of an unsolved problem. If
we wish to be more formal, instead of producing constructive "counter-
examples" ( such as the Goldbach sequence above) to a classical but non-
constructive theorem A , we should be able to prove that "A implies the
law of the excluded middle (E.M.)", or "A implies the limited principle
of omniscience (L.P.0.)". [The limited principle of omniscience in its
simplest form states that for any sequence {n }w of zeros and ones,

k k=1

= 0 for all k, or we can find a k with n = 1.]

either we can prove n Kk

k
However, since the production of constructive "counterexamples" is
usually more amusing than giving formal proofs of " A = E.M." or

"A = L.P.0.", we will usually do the former, with the understanding that

such formal proofs should be available (and usually will be obvious).

Much of the resistance to constructive mathematics comes from
the mistaken idea that its aims are to eliminate non-effectively
constructed objects from mathematics altogether, and to "mutilate" what
remains by restricting the methods of operation available to mathematicians.
On the contrary, the purpose of constructivizing mathematics is to
describe precisely how effectively constructable objects and non-
effectively constructable objects (e.g. sets) can be defined, and how
they really behave when viewed in strictly constructive terms. Thus,
for instance, we must make a distinction between bounded monotone

sequences and convergent sequences; and between sets in general and



sets whose elements have been constructed.

Traditionally, mathematicians have been willing to implicitly set
down a theorem A depending on the Axiom of Choice as "A.C. = A".
Constructivists would ask that if they wish to state theorems whose
proofs rely on Excluded Middle or L.P.0., they also write them as
implications: "E.M. = A" or "L.P.0. = A". Then perhaps it will become
more noticeable that a reasonable goal for mathematicians is to discover
what types of theorems can be proven without non-constructive assumptions.
The effect of making these distinctions is not to mutilate mathematics,

but to deepen its meaning and to gain more insight into the nature of

mathematical systems.



CHAPTER 1

A CONSTRUCTIVE APPROACH TO REAL ANALYSIS

l. Sets and functions

The usual classical notion of a set is that of a collection of
objects from some pre-existent (but not necessarily constructed) universe.
This is clearly not compatible with the constructivist view that a
mathematical object exists only if it has been constructed, and that the
properties of that object are determined by its construction. Hence, to
define a set constructively, it is necessary to state what must be done
to construct an element of the set, and what else must be done to show
that two elements of the set are equal. The equality relation on the
set is required to be an equivalence relation.

For example, the set of integers, Z, can be defined as follows:

1. to construct an element of the set, one must specify, either
explicitly or implicitly, a finite mechanical process which will give
the decimal representation for an integer.

2. two elements are equal if their decimal representations are
equal in the usual sense.

( Hopefully we can agree on what a decimal representation of an integer

looks like. The problem of what an integer really is, is irrelevant,



because we work only with its representation. With this in mind, we
will use the terms "integer" and "representation for an integer" inter-
changeably.]

Thus, the specification ''the smallest integer greater than 3" defines
an integer, while the specification "the smallest integer which is a
counterexample to Goldbach's conjecture, or 5 if no such integer exists"
does not, since we cannot guarantee at present that there is a finite
routine for writing down this quantity.

However, it is important to note the distinction between constructing
a mathematical object and defining a set. To define a set it is necessary
to know what must be done to construct its elements. It is not necessary
to give a finite routine for actually constructing its elements or for
deciding equality. For instance we could define a set A by stating:
"Prove Goldbach's conjecture or find a counterexample. Then to construct
an element of A, construct 5 if Goldbach's conjecture is true, or
construct the counterexample if Goldbach's conjecture is false." So
while the second definition in the last paragraph does not define an

integer, it does implicitly define a set.

An operation, ¢, between two sets, is a rule which provides a
finite mechanical procedure for constructing ¢(a) when presented with a
routine for constructing any a in the domain of ¢. A function is an
operation which assigns equal values to equal arguments.

Thus, for example, a (constructively defined) function f between the

integers will when presented with a decimal representation of an integer



n, furnish a finite routine for computing the decimal representation of
f(n).
. . . + . .
As usual, any function with domain Z -the set of positive integers-

is called a sequence.

A subset (A,i) of a set B consists of a set A and a function i:A -+ B
with the property that i(a;) = i(az) if and only if a, = a,. (Notice that
the set A consisting of 5 if Goldbach's conjecture is true or the smallest
counterexample to Goldbach's conjecture if it is false, is a subset of the
integers since the ordinary inclusion map i:A > Z will provide a finite
routine for constructing i(a) when the construction of a is specified.)
Unless explicitly stated otherwise, we will write A < B to mean (A,i) < B,
if i is the ordinary inclusion map from A to B.

If (A,iA) and (B,i_,) are two subsets of S, then the subsets (A U B,i)
and (A N B,j) can be defined in the following way:

(1) to construct an element c of A U B, either construct an element
a of A and let i(c) = iA(a), or construct an element b of B and let
i(e) = iB(b). To show that ¢, = ¢, in A U B, show that i(cl) = i(cz).

(2) to construct an element ¢ of A N B, construct an element a of A
and an element b of B and prove that iA(a) = iB(b). Let i(¢) = iA(a), and

define c, = c, to mean that i(cl) = i(Cz)-

Classically, the equality relation is'supposed to formalize the notion
of identity of objects in the universe. Constructively, of course,

equality is a convention related to the construction of objects which form
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a particular set. Hence it is not meaningful to speak of equality between
elements of two different sets A and B or to perform set operations like
union or intersection, except when A and B are realized as subsets of

another set S. 1In practice this restriction does not present any real

difficulty.

2. The real number system

Rational numbers are defined as ordered pairs of integers, and
manipulations of rationals are done in the traditional manner.

Once we have the set of rationals, we would like to complete the
number line. We wish, therefore, to define a set R of real numbers,
having the property that every Cauchy sequence of rational real numbers
converges to some number in R. Hence R is defined as follows:

(1) to comstruct a real number x we must

=]

(i) construct a sequence of rational numbers {xn}n=1

(ii) construct a sequence of positive integers {mk}:;l
(1ii) prove that, whenever i,j = m

1
Ixi - le S-E

[ In case (i), (ii), and (iii) are satisfied, we write x = {xn}:=l and

call {xn} a representing sequence for x.]

(2) to show that two real numbers x = {Xn} and y = {yn} are equal,

oo
construct a sequence of positive integers {Nj}j=l and prove that

1
|xn~yn|53 1fnzNj,

[ Notice that a rational real number has a representing sequence of the
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form { 2,2, B ...}, where p,q € Z.]
q q q

Most simple operations with real numbers involve straightforward

manipulations of their representations. For instance, if x = {xn}:_l
d {y }° h

and y = 1y J__i» then

(a) x+y-= {x + yn}n—

(b) - - =)

n'n=1
(c) {xnyn}n_

@ max {x,y} = {max {(x_,y_}} _;
() |x| = {max {x_,- xn}}n_

[ Proofs that these quantities are real numbers and that the operations

are in fact functions can be found in Bishop [1].]

Order relations in R are not so straightforward. Let a = {an} and
= {bn} be two real numbers. We define "a < b" to mean that we can find

two positive integers k and N such that a, = bn —-%~ for all n =2 N, and
"a < b" to mean that we can construct a sequence {Nm}:=l of positive
integers with the property that a = bn + é- whenever n 2 Nm. Then
"a # b" is defined as "a < b or a > b" (or, equivalently, that there are
two positive integers k and N with Ixn - ynl = %- for all n = N).

We don't wish to define "a < b" as "a < b or a = b". This is because
we can define real numbers r which, for instance, are clearly non-negative
in any reasonable sense of the word, but which cannot be asserted to have

the property "r = 0 or r > 0", For example, recall the Goldbach sequence

of integers, {a }oo defined by

k k=1’



12

o = 0 if Goldbach's conjecture is true for all integers between 4 and k

1 if Goldbach's conjecture is false for some integer m < k

0‘k
and let r —kz . It is easily seen that r is a real number, (and
T2

ought to be called non-negative), but to show "

=0 or r > 0" it is
necessary to decide Goldbach's conjecture. However, the constructive

definition of " < " gives r the property that 0 < r, since

N oo
) = 02, 5 K )

every positive integer m.

is a representation for r, and 0 = rn + l— for
= m

On the other hand, there seems to be no way to give a constructive

proof of the classical law of trichotomy. Consider the real number

*
r* = Z (- l)k ik . We cannot claim that "r < O, F = 0, or rr s 0", nor
2
can we claim "r¥ < 0 or r* = 0". The classical theorem "a £ b implies

a > b" also fails constructively, because the impossibility of producing

a sequence {N } with a_ <b_+ 1 for n 2 N_ does not guarantee the
) n n m m

. X 1
existence of a method to produce integers m and N with bn = a -0

for all n = N. [ See Heyting [4]), Sections 7.3 and 8.1.]

Nevertheless, there is a constructive substitute for trichotomy
which may be suggested by the above examples. It is: For any real
numbers a, b, and €, with € > 0, either a< b or a > b -~ €. The proof of
this assertion involves just computing sufficiently many terms of {an} and
{bn} to decide which relation holds. Also, "a £ b implies a = b" is a
1

1
theorem, since for any m € Z, either a =b - ora >b - = (the

law of trichotomy is valid for the rational numbers a, and bn)’ and the

former case can be ruled out for all sufficiently large n, (say, n > Nm),
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Sequences and series of real numbers are defined in the usual manner.
L .
A sequence of real numbers {xn}n_1 converges if a real number Xy and a

[e o]
sequence of positive integers {Nk}k=l can be constructed with

for all n = Nk' This means, of course, that both the limit of the sequence
and the rate of convergence must be known before we can say a sequence
converges. Most of the familiar classical properties of sequences and
series are valid constructively. In particular, a sequence of real

numbers converges if and only if it is a Cauchy sequence. Hence, substi-
tuting the constructive form of trichotomy for the classical one, we can
say that the constructive real numbers form a complete ordered field.

As we saw before, one important classical theorem which fails is the
one claiming that all bounded monotone sequences of real numbers converge.
A (constructive) counterexample to this is the Goldbach sequence. Here,
as you would expect, the problem lies in the fact that, classically, the
"rate of convergence" is not known, and so constructively, it has not been

proven that the sequence converges.

The set of values {a,, Q,, a,,...} of the Goldbach sequence also

provides arcounterexample to the classical theorem that all bounded sets

in R have a least upper bound, since we cannot say whether O or 1 is the

least upper bound of this set.
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3. Functions defined on the real numbers

Let [a,b] be a non-empty closed interval in R. A function
f: [a,b] * R 1is a rule, which, when given a representing sequence {xn}
for a number x in the domain, will compute a sequence {zn} for £(x) € R,
in such a way that x = y implies f(x) = f(y). A function f: R > R is
defined similarly.

A function f: [a,b] > R is continuous if for every € > 0 there exists
a 6 > 0 such that

[£(x) — f(y)| = ¢ whenever |x - y| =8, (a = x,y <b)

[ Notice that this definition means we must have an operation w: R > R
which, when given € > 0 will supply a number § > 0 in a finite, mechanical

manner.] A function f: R > R is continuous if it is continuous on every

closed interval in R.

A little reflection will show the difficulty of defining discontinuous

functions between the real numbers. For example,

0 if x is rational

£,(x) =
1 if x is irrational (i.e. x # r for any rational number r)
or
0if x< O
f£,(x) =
1ifx=0

on the whole real line. 1If

are not constructively defined functions
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there were a finite mechanical method of computing fl(x) or fz(x) for
every x € R, that method would also decide whether each x was rational or
irrational, negative or non-negative. In fact no such method presently
exists, and so neither of these classical functions are defined construc-
tively on all the real numbers.

Since we don't wish to eliminate the classical discontinuous functions
from constructive analysis, we are led to enlarge the class of functions
on R to include partial mappings, whose domains may be any subset of the
real numbers. Continuity and discontinuity are defined in the obvious
manner. Then the classical function fl defined above is a discontinuous
partial function from R to R whose domain is the union of the set of
rationals with the set of irrationals; f2 is a discontinuous partial
function whose domain is (- «,0) U [0,). [ Notice that neither of these
set unions is equal to the whole real line. For example, the number r¥*,
defined in Section 2, is not in (- «,0) U [0,®), since putting r* into one
of (- »,0) or [0,®) requires a proof that r* < 0 or a proof that ™ = 0.]

We might note here that if f is a continuous partial function whose
domain is a dense subset of R, then f has a unique continuous extension to

all of R. Thus we could have defined the absolute value function as the

unique continuous extension of the partial function

I ‘ -x 1ifx< O
X =

x if x=0

Of course, no such extension principle is available for discontinuous

partial functions.
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4. Partial functions

As one might guess from the above considerations, partial functions
are more basic in constructive analysis than total functions. The
definition of a partial function can be extended to sets other than R.

Let S be any non-empty set. We formally define a real-valued partial
function on S as an ordered pair (f, D(f)), where D(f) ¢ S and f is a
function mapping D(f) to R. (We will usually call the function simply f,
whenever its domain D(f) is understood.) Two partial functions f and g
are equal if D(f) = D(g) and f(x) = g(x) for all x € D(f). A function
f is non-negative if f(x) = 0 for all x € D(f).

Functional operations are defined in the following way: Let (f, D(f))
and (g, D(g)) be two partial functions on S. Then (f + g, D(f + g)) is
defined to be that function with D(f + g) = D(f) N D(g) and (f + g) (x) =
£(x) + g(x) for all x € D(f + g). The partial function (fg, D(fg)) has
D(fg) = D(f) N D(g) and fg(x) = f(x)g(x) for all x € D(fg). Max {f,g}
and min {f,g} are defined in a similar way. (|£], DC|£[)) is that partial
function with D(|£]|) = D(£) and |£|(x) = |£(x)]| whenever x € D(|£]).

Max {f,a}, min {f,a}, and af can be defined similarly, for any given o € R,

5. Complemented sets

The properties of the order relations in R‘pught to illustrate that
there is rarely any useful purpose to be served by using negative
definitions. For instance, we could have defined "a = b" to mean "a # b",

(i.e. a>b = 0 = 1). This proves to be equivalent to the definition we
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did give, and yet does not describe as well the property that we want two

numbers a and b with a = b to have: namely that there is a sequence

{n }

m m=1

% o 1 . .
of positive integers with a = bn + 5 for n 2 Nm' To define

"a < b" as "a ¥ b" only invites confusion, since there is no obvious
general method of obtaining the property we would certainly like aand b
to have (i.e., a < b iff 3 k,N € Z+ with a = bn - %— for n 2 N) from
a proof of "a =2 b = 0 = 1". And using these two negative definitions still
does not retrieve the property ''a = b or a # b".

With this in mind, we define an inequality relation on any set S,
not as the negation of equality, but in the following positive sense:

Let " = " be the equality relation on S. A relation " # " is an
inequality relation if, for all x, y, z € S,

(1) x=yandx#y=0=1

(i1) x =y andy # z=x+# 2

(1i1) x4 y=y # x

iv) x#y= x#zory#z

Then a complemented set in S is an ordered pair (A,B) of subsets of
S with the property that for any x € A andy € B, x # y. If (A,B) is a
complemented set in S, we define its complement - (A,B) to be (B,A), which
is also a complemented set. We write x € (A,B) if x € A, and x € —(A,B)
if x € B.

Notice that complemented sets have the'property that - - (A,B) = (A,B).
This would not be the case if we defined complementation in terms of
negation. [ For instance, the interval [0,®) would be the complement of

(- ©,0) if the complement of (- «,0) were defined to be {x ¢ RI x ¢4 0}.
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We could not, however, prove that (- «,0) was the complement of [0,®) if
that complement were defined as {x ¢ R] x# 0}.] 1In addition, the general
notion of complementation given here is flexible enough to cover structures
such as metric complements (discussed in Chapter 3), which would not be

incorporated in the usual negative formulation of complementation.

If (A,B) is a complemented set in S, then its characteristic

function is a partial function on S with domain A U B, such that
Xp p

XA(X) - 1 1if x € (A,B)

0 if x € - (A,B)

We will be defining a measure on complemented sets in terms of their
characteristic functions. Therefore we define the set operations on
complemented sets to correspond to operations on their characteristic
functions. If A = (Al’Az) and B = (BI’BZ) are complemented sets in §,
then:

(a) their "intersection", A A B, is

(A, NB, a,n B,) U (a, N Bl) U (a, N B,))

(b) their "union", A Vv B, is

(4, N Bl) U, NB) U(,nN B), A, N B,)
(¢) A< B ("A is a subset of B') 1if A ¢ B and B, ¢ A,

-

(d) & ~B=AA (-B)

Notice that X,,, has domain (A, N BHUG N BHU@, N BHU, N B,

=[A, N @B, UB)Y)U[A, N (B, UB) =(4A, UA)) N (B, UB,), and so
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Xpap = min {XA’ XB} = X, Xg - Similarly, Xave = Xa ¥ Xg = Xapp -
[Note: In Bishop [1], the union of complemented sets A = (A,,A,) and
B=(B,,B,) is defined as A UB = (A1 UB,,A, N B,), and their intersection
as ANB = (A1 N B,,A, u B,). While these definitions are simpler, they
present a problem in dealing with characteristic functions. Since the
functions, and not the sets, are basic to the type of measure theory that

will be done in this paper, we have simplified the "function theory" at

the expense of the set theory.]
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CHAPTER II

THE DANIELL INTEGRAL

The theory of integration plays a central role in mathematical

analysis and geometry. It is customary in analysis to study first the

Riemann integral and then its generalization and extension to the Lebesgue

integral via the theory of measure. A constructive treatment of this

subject can be found in Bishop [1]. The Daniell theory, on the other

hand, provides a development of integration which focuses directly on

functions without any preliminary discussion of measures on sets.

1.

Integration spaces

Definition 2.1. An integration space is a triple (X,L,I), where X is a

non-empty set with equality and inequality relations, L is a set of partial

functions from X to R, and I is a function from L to R, with the following

Properties:

(1)

(2)

If f is in L, so are |f| and min {f,1}. If f,g € L and a,B € R, then
af + Bg is in L and I(af + Bg) = oI(f) + BI(g).

If £ is in L and {fn}:=l is a sequence of non-negative functions in
L such that ngl I(fn) converges and ? I(fn) < I(f), then there is a

[e ]
point x ¢ ﬁ D(fn) 1 D(f) where ? fn(x) converges, and % fn(x) < f(x).
1
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(3) There is a function p in L with I(p) = 1,

(4) For each f € L, 1lim I(min {f,n}) = I(f), and lim I(min{|f|, l}) = 0.
n*e n>o n

Notice that if f € L, we may assume min {f,n} and min {Ifl,-%} are also in

L, since min {f,n} = n°min {%’f,l} and min {|f[, %} = %‘min {n-|f],1}.

Properties (2) and (3) ensure that all functions in L have non-empty domains:

if f € L, so is |f]|, and I([fl) < I(|f] +p) = I(]£]) + 1; hence there must

be a point x in D(f) N D(p).

Proposition 2.2,

(1) If f and g are in L, so are max {f,g} and min {f,g}.

(11) £ € L 1f and only if £ and £ are in L. I(f) = I(f)) - 1(f) for
every f € L.

(i11) If f € L and f(x) = 0 for all x € D(f), then I(f) = 0.

Proof: (i) The function (f - g)+ is in L, since (f - g)+ =

%-(f - g+ |f -g|). Therefore max {f,g} = g+ (£ - g)+ and min {f,g} =

- max {-f, -g} are also in L.

max {- £, 0°f}. Clearly f, f+, and

(i1) f+ = max {f,0f} and f

£ - 7 and 1) = (D) - 1(£7).

£ must have the same domain, so £

+ -
(11i) Suppose f = 0 and I(f) < 0. Then I(f) < I(f ), hence by
+ -
Property (2), there is an x € D(f) with f (x) < f (x). But then

f (%)

f+(x) - £ (x) < 0, which is contrary to the assumption. Therefore

I(f)

v

0.o

Proposition 2.3. Let {f } be any sequence of functions in L. Then
n

©
Q D(fn) is non-empty.

Proof: {f ~ f }oo 1 is a sequence of non~negative functions in L, and
—_— n n n=
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ngl I(fn - fn) =0 < I(p) = 1. Hence, by Property (2), there is a point
a0 o8]
x €1 D(f) N D) <N DEf).o
1 n 1 n
The following definition enlarges the set L to form a set Ll, of

integrable functions, which will be in a sense "complete" with respect

to I.

Definition 2.4. Let (X,L,I) be an integration space. An integrable

(o0}
function is an ordered pair (f, {fn}n=l)’ where f is a partial function
o
on X and {f } is a sequence of functions in L such that nél I(lfnl) exists
n

o o0 .
and 2, f (x) = f(x) whenever % lfn(x)[ converges. The integral of f

0=l “n integ

is defined to be I(f) = g I(fn)' Two integrable functions (f, {fn})
1

and (g, {gn}) are equal if f = g as partial functions.

If £ € L, then (f, { f, O°f, 0+f,...}) is in L), so L is a subset

of Ll under the inclusion mapping f =+ (f, {f, 0+f, 0+f,...}). We will

usually denote a function (f, {fn}) in Ll by its first element f, and call

{f}a representing sequence (or representation) for f. It will be seen
n

later that (X’Ll’I) is in fact an integration space, and consequently that

every function in Ll has a non-empty domain.

Operations on integrable functions are defined in the following way:

Let (f, {fn}) and (g, {gn}) be in L. Then
(a) f+g=(f+8g, {fn + gn}) €L.
(b) of = (af,{afn}) € L, for every real number a.
(o |£f] = (|£], {wn}) € L, where {wn} = {lfll, £, - £,

lfl+ f2|.— ,fll, f2’ - fza 'fl+ fz + f3l - lfl+ le"“ }‘
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(d) min {f,1} = (min {f,1}, {wn}) € L, where {wn} = {min {fl,l},

£ 2’ 2°

p» ~ f1» min {fl + f2,1} - min {fl,l}, £, = £.,... ).

In (c), the terms fl’ - fl,...,fn, —fn,... are included in the representation

{¢n} in order to ensure that I |¢n(x)| does not converge outside of the
domain of f. (If it did, then obviously we could not say |fl(x) =z ¢n(x)
whenever Z|¢n(x)] converges.) If we defined {@n} = {|fl[,

lfl + f2| - |f }, Z]¢n(x)| might converge when Zlfn(x)l did not--

Loeee
for instance, consider fl # 0 and fn+l = - 2(fl + ... +fn). The same

consideration applies in (d).

To show (X,L,,I) is an integration space, it is necessary first to

l)
establish that I is a function on Ll' This can be done following a

discussion of the properties of I on Ll'

Lemma 2.5. Suppose (f, {fn}) € Ll and f{ x) = 0 whenever ?Ifn(x)l
converges. Then I(f) 2 0.

and

-8
n—-Ma

f+
n

Proof: Let A = {x € X: lfn(x)! converges}. The two series

fn also converge on A and f(x) = Zf:(x) - Zf;(x) for all x € A.

I(f:) and E I(f;) both converge, since the sum ? I(lfn,) exists.
1
+ oo + N - [o] -
Let N € Z' and suppose Z I(f ) < Z.I(f ). Since Z I(f ) converges there
1 n n=1 n 1 n

is an M € 27 with
T rcet z - > -
2 T(E) + 2y T(E) < 2y I(£)

Then by Property (2), there must be an x € A with

+

S + > £ y
L £ 00+ B 100 < 2 £(0)
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® +
which implies that % fn

(x) < ? f;(x). But this is impossible because
© 4 N - +
f >0 on A and so we must have % I(fn) > nél I(fn) for every N € Z ,

and hence 3 I(f1) =% I(f]). Then I(f) = Z I(f) = 2 I(f) -2 I(f]) = 0.a
1 n 1 n n n n
[ In particular, we might note here that |I(f)l = I(|f|) for each f € Ll']

Definition 2.6. A subset of X which contains a countable intersection of

domains of integrable functions is called a full set.

Lemma 2.7 Every full set contains the domain of some integrable function.

Proof: Let {fn} be a sequence of functions in L, with nﬁl D(f ) contained
. )
in the full set A. Each fn has a representing sequence {fnk}k=l of

[o0]
functions in L. Let Gn =1+ 1 I(lfnkl), and let {¢% be a rearrangement

f ké
of the double sequence { ok }°° _

2fs k,n=1

- On

) converges for each n € Z+,

into a single sequence. Since

I(lf mzl I(|¢m|) converges. Hence

(o]
kél nkl

there is a function f € Ll whose domain, D(f) = {x € X : 2 l¢m(x)|converges},

and whose value at each x € D(f) is 2 ¢m(x). Clearly D(f) c il D(fn) ¢ A.o
1

Proposition 2.8. If f and g are in L, and f(x) =< g(x) for all x in some

1
full set A, then I(f) = I(g).

Proof: There is a function h € L. with D(h) €A, Then F=f +h - h

1

and G = g+ h - h are both in L., and D(F) = D(G) = D(h) ¢ A. Therefore

1
F(x) < G(x) on D(F) = D(G), and so I(F) < I(G) by Lemma 2.5. Any

representing sequence {Fn} for F will also be a representing sequence for

f, hence I(F) = I(f), and similarly, I(G) = I(g). Thus I(f) = I(g).o

Corollary 2.9. I is a function on Ll'

Proof: We need only show that f = g implies I(f) = I(g) for f,g € L

1
But if f,g € L, D(f) and D(g) are full sets, and so f = g on a full set.
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Hence by Proposition 2.8, I(f) = I(g).o

More generally, if f = g on any full set, then I(f) = I(g).

Consequently we can define f = g almost everywhere [a.e.] to mean that

f =g on a full set. Similarly, £ < g [a.e.] will mean f < g on a full
set.
The following corollary will be used later in our discussion of

integrable sets.

Corollary 2.10. Let f be a partial function on X and g a function in Ll'

If f = g [a.e.] then f is also in Ll’ and I(f) = I(g).

Proof: f = g on some full set A. By Lemma 2.7, there is a function
h € Ll with D(h) ¢ A. Then F =g+ h - h is in L
D(F) = D(h). 1If {¢n} is any representation of F, it must also be a

1 and is equal to f on

representation of f, hence f € Ll’ and I(f) = ? I(p ) = I(F) = I(g).O

We can now state the completeness theorem for L The theorem

1

asserts that if we redefine equality on L, as equality almost everywhere,

1
and apply the limit processes in Definition 2.4 to Ll’ we do not obtain a

larger class of integrable functions. The proof of this assertion can be

found in Bishop and Cheng [2].

Theorem 2.11. [Completeness Theorem] Suppose {fn} is a sequence of
(o2
functions in Ll’ and % I(lfnl) converges. Then there is a full set A and
o0
a function f € L, such that %lfn(x)l converges on A, f(x) = g fn(x)

o0
for all x € A, and I(f) = z1 I(fn).u

We need two more lemmas before we can prove that (X,L.,I) is an

l’

integration space.
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Lemma 2.12., If f is a non-negative function in L then for each € > 0,

l’
f has a representing sequence {fn} with

? (£ ) < 1(6) + ¢

Proof: Let € > 0 be given, and let {wn} be any representation of f.
o] o] +
Since % I(l@nl) converges and % I(@n) = I(f) 2 0, we can find a k € Z

o k k
with £ 0 I(o [) <% and 1C | Z; 0D ST + 5. [ lmI(| 2, oD =

n=k+1 Koo
I(|£]) = 1(£).]
k
Let £, = nél ¢ £y = 0pyps £5 = ¢ ps---etc. Then {fn} is a

representation of f and ? I(Ifnl) < I(f) + .0

Lemma 2.13. If f € Ll and {fn} is any representing sequence for f, then

N
lm I(|f - 2, £ ]) = 0.

N0 =

Proof: Let A= {x € X : Zlfn(x)| < ®}, A is a full set since we can

define a function F € Ll with domain A such that I(F) = 3 I(fn) and

F(x) = 2 fn(x) for all x € A. Since 2 I(|fnl) converges, there exists,

. + . ®
for any given € > 0, an N € Z with nZN+1 I(Ifnl) < €.

o2

n§N+l
N o
I(|F - 2 fnl)Ns 3y TUE D < e

N
Now |F(x) - % fn(x)| = lfn(x)l on the full set A, and hence

N
But F- 2 f =f - 2 ¢ on A, and so
1 n 1 1

N

N
nfp D = T(F- 2 £ D <

I(f -

N
and lim I(|f - 2, £ [) = 0.0

N>

Theorem 2.14. (X,Ll,I) is an integration space,

Proof: We must show that properties (1) to (4) of Definition 2.1 are

valid for (X,Ll,I)-
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(1) has already been shown.
(2) Suppose f ¢ Ll and {fn} is a sequence of non-negative functions

in Ll with ? I(fn) < I(f). Then there is an € > 0 with the property:

¥ I(f) + 3e < I(f)
1 n

and
o]
(a) there is a representing sequence {fnk}k=l for each £
x [
with 2. I([f  |) < I(f) + s [Lemma 2.12]
+
(b) if {¢k} is any representation of f, there exists an N € 2
N ©
with I(f) = 2, I(@,) + e and 2o I(e ) se.
(oo} [o o] [ee] o] E
Thus, 2,2 O£, 1) + 2y, Te D) < 2, Q) +—=) +e
N 2
[
< -
= % I(fn) + 2e < I(f) £ = kél I(cpk).

Since Property (2) is valid for functions in L, we have

fee]

2z 2 l f X l + .2 [} X 2 [ X
n=1 k=1 nk( ) k=N+1 ' k( ) l < k=1 k( )
for some x € X. Then

RN N fee] o]
w21 09 < 2y 9 00 = 2yl O] =2 0, (0 = £(0

(3) If p €L and I(p) = 1, then (p, {p, O¢p, O°p,...}) € Ll and

I(p) = 1in L,.

(4) By Lemma 2.13, if f € Ll and {¢n} is any representation of f,

' k
then, for any € > 0, there is a function fk € L with fk = nél ¢ and
I(lf - fkl) < %-. Since property (4) holds for functions in L, there
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exists an N € Z+ with I(fk) - I(min {fk,N}) < %-. Then
|I(min {£f,N}) - I(min {£ 8D ] = 1(|min {£,N} - min{fk,N}l)

€

< I(|f - £.) < 3

Therefore, I(f) - I(min {£f,N})

< |1(¢f) - I(fk)l + II(fk) - I(min {fk,N})l + |I(min {£,,N} ) - I(min {f,ND)]

[ [
< I(|f - fkl) + 3 + 3<€
and so lim I(min {f,n}) = I(f).
n*oe
Similarly, if f ¢ Ll’ for any € > 0 there is an fk € L and N ¢ Z+
. 3 . 1 [>
with I(I lfl - lfkl l) <3 and I(min {lfkl, ﬁ}) <7 Then

T(uin {|£], = D

< |I(min {|£], %}) - I(min {|f —I}]—})|+ | I (min {|fk|, l})l

el T

< €

}) = 0.0

B

so lim I(min {|f],

n-e

2. Integrable sets

Definition 2.15. A complemented set A = (A,B) is integrable if its

characteristic function XA is in Ll. The measure of A is defined to be
U(A) = I(XA) oo

Proposition 2.16. (i) If A and B are integrable sets, then A A B and

A v B are also integrable, and u(A) + u(B) = u(A v B) + u(A A B).
(1) If A and A A B are integrable, so is A - B, and p(A - B)
= u(A) - u(a A B).

Proof: (i) We saw in Section 5 of the first chapter that XAnB ©
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min {XA’ XB}. Hence by Proposition 2.2 and Theorem 2.14, A A B 1is
integrable with measure W(A A B) = I(min {XA’ XB}). Consequently,
Xavg = X + Xg = Xapp 1S also integrable, and u(A v B)
= U(A) + u(B) - u(A A B).

(11) X, p = min {Xs 1= X3} = X, (1 = Xg) = X, = Xypp O

Proposition 2.17. (i) If A = (A,B) is integrable, then A U B is a full

set,
(ii) If A = (A,B) is integrable, then p(A) = 0 if and only if B is
a full set.
Proof: (i) A U B is the domain of the integrable function Xy *
(ii) 1If B is full, then Xy = 0 on a full set, and hence by
Corollary 2.10, u(a) = I(O’XA) = O'I(XA) = 0.
If p(A) = I(XA) = 0, then I(n-xA) = n'I(XA) = 0 for every

n € Z+. Thus ng I(ln-xAl) converges, and so there is a function f € L1

1
with f(x) = 2 n-xA(x) for every x € D(f) = {x € X : ?[n-xA(x)l converges}.

Now x € D(f) implies x € D(YX,) and (x) = 0, so x must be in B.
A Xp

Therefore D(f) ¢ B and so B is a full set.o

Corollary 2.18, If A = (Al, Az) and B = (B Bz) are integrable sets with

1°

A < B, then u(a) =< u(B).

Proof: A < B means that A} ¢ B, and B, < A,. Both Xy and Xg are defined
on (A, UA)) N (B, u B,), and if XA(x) =1 for any X in this set, then
clearly XB(x) = 1 also. It follows that Xy =< Xg on (A1 U Az) N (B1 U Bz)'

But this is a full set, and hence by Proposition 2.8, p(A) < u(B).o

Now that we have established these facts about integrable sets, it
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is natural to ask whether we can find many integrable sets in an
integration space (X,Ll,I). Bishop and Cheng [2] have proved that if f

is any function in L then for all but a countable number of t € R, the

l!
complemented sets At = ({x € X : f(x) =2t}, {x € X: £f(x) < t}) and

B, = ({x € X ¢ £(x) > t}, {x € X : £(x) = t}) are integrable and have the
same measure. The proof of this theorem is rather long, and so we shall

not repeat it here. It should be noted, though, that in the proof, a

[

sequence of real numbers {an}n—l is constructed, with the property that
+ .

whenever t # o for any n € Z ', At and Bt are integrable. The fact that

we can find such a t in any non-empty interval in R is a consequence of

the uncountability of the real numbers. This can be formalized as follows:

Proposition 2.19. Let {an}:=l be a sequence of real numbers and let (a,b)

be any non-empty open interval in R. Then there exists a number x in

fa,b] with x # o for any n € Z+.

Proof: We construct two sequences of rational numbers {Xn}:=0 and
[eo]
{yn}n=0 by induction., They will have the properties:
(i) a=x =x <y =y =b fornzzm=1

m n n m

(ii) x >0 ory_<a for each n =2 1
n n n n
. 1
(iii) Y, "~ X, <3 for all n =1

Let Xy = a, ¥y = b, and for k = 1, suppose Xgseeos X and Yorreos Ypo1
have been constructed. Since X, 1 < Yy_y» We can prove that % > ¥ 1
or & < ¥y, _g- Construct X, and Y in one of the following ways:

(1) 1If o > X 1s let X, be any rational number with

X 1< %X < min {ak’yk—l}’ and let Y be any rational with

%, < ¥, < min Lo, g n )
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(2) 1If ak < Vo1 let Yi be any rational number with
max {ak, xk—l} < Vi < Yoy and let X, be any rational with
1
max {0, x> Y g d < <y -
It is easy to see that (i), (ii), and (iii) are satisfied.
Then for any n 2 m = 1, lx - x I =X -X <y -X < L and
m n n m m m m
ly =y l=y -y <y -x_ < L | Hence x X and {y ¥ are the
m n m n m m m n n=0 n" n=0

representing Cauchy sequences for two real numbers x and y. Since
1
ly - X l <— foreachnz1l, x=y. Also0_< x_ ory < o_ for each
n n n n n n n

. +
n, and since x =X and x < Y, ve have x # o for any n € Z .o

Therefore, it follows from Bishop and Cheng's theorem in [2] that
the set {t € R : A and B, are integrable}, is dense in R, and that we can
effectively construct an element of this set in any non-empty open

interval in R.
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CHAPTER III

INTEGRATION ON LOCALLY COMPACT SPACES

1. Metric spaces

A metric space (X,p) consists of a set X and a total function
p: X x X > R with the properties:
(a) p(x,y) =20 for all x,y € X

(b) p(x,y) = 0 if and only if x

y

(c) p(x,y) = p(y,x) for all x,y € X

(@) p(x,2) = p(x,y) + ply,2z) for all x,y,z € X
Also, if x and y are two elements of (X,p), then x # y if and only if
p(x,y) > 0.

Functions, uniform continuity, sequences, and converges of sequences
in metric spaces are defined in the usual manner. [An important example
of a uniformly continuous function is f(x) = p(x,xo), which maps (X,p) to

R (with the Euclidean metric). This is continuous for any fixed X, € X

since, if p(x,y) < €, then |f(x) - f(y)| = ID(X,XO) - O(Y,Xo)l
< lpx,y) + p(y,xy) - p(y,x0)| = p(x,y) = e.]

A subset Y of a metric space (X,p) is also a metric space when
given the metric Py - the restriction of p to Y. We will usually denote

an induced metric space of this type simply as (Y,p).



33

A subset Y of a metric space (X,p) is closed if every Cauchy
sequence in Y converges to a point in Y.

A metric space (X,p) is bounded if there exists a constant C € R
with p(x,y) = C for every x and y in X. If (X,p) is bounded by C, we
say that the diameter of X is at most C.

A non-empty subset Y of (X,p) is located if p(x,Y) =
inf {p(x,y) : y € Y} exists for every x € X. If Y is located, then its

metric complement is defined to be the set -Y = {x € X : p(x,Y) > 0}.

[Note: A subset X of R has a least upper bound or supremum (respectively,
greatest lower bound or infimum) if there exists a number ¢ € R such that
X = ¢ (resp. ¢ = x) for all x € X, and for each € > 0 there exists an

x € Xwith ¢ - x< € (resp. x -~ c< €).]

2. Locally compact metric spaces

A set A is an initial segment of z¥ifa- ¢ or A= {1,..., n} for
some n € Z+. A set X is finite if there is a one~to-~one function mapping
X onto an initial segment of Z+. X is called subfinite if there is an
operation ¢ mapping X onto an initial segment A of Z+ and a function £
from A to X such that f(p(x)) = x for every x € X. Intuitively, a set
is finite if it has exactly n elements, and subfinite if it has at most
n elements, for some non-negative integer n. [Not all subfinite sets can
be proven to be finite. For example, the éet consisting of zero and the

Q.

© k
Goldbach number r = % ~ (where {ak} is the Goldbach sequence) has at
2

most two elements, but we do not know exactly how many elements it has.]
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Definition 3.1. A subset A of a metric space (X,p) is totally bounded

if, for each € > 0, there exists an N € Z0+ and a finite subset

{xl,..., xN} of A with the property that if a € A, then at least one of
the numbers p(xl,a), p(xz,a),..., p(xN,a) is less than €. The set

{x

IERRRE xN} is called an € approximation to A.

It is sometimes easier to find subfinite € approximations to sets.
The following proposition indicates that a set is totally bounded if, for

every € > 0, it has a subfinite € approximation.

Proposition 3.2. If a metric space (A,p) has a subfinite € approximation

for every € > 0, then it also has a finite € approximation for every

€ > 0.

Proof: Let € > 0 be given, and let X = {xl,..., xn} be a subfinite %

approximation to A. For 1 =1i < k = n, either p(xi,xk) > %- or
€ € .
p(xi,xk) <7 1f p(xl,xk) <3 for any k > 1, discard X from X. 1If X,
. €
has not been discarded and p(xz,xk) <3 for any k > 2, discard X from
the set, Continue this process for successive i's until X is reached.

The set Y = {x .,xm} which remains is finite since i # j implies

10

. €
X, # xj for any Xy and xj in Y, If a € A either p(a,xk) <3 for some

xk Y or else there exist elements x, € X and xk € Y such that
- i

€

€
p(a,x,) < ) and p(xi,xk) <5 - In either case p(a,xk) < €, Hence Y is

an € approximation to A.o

Definition 3.3. A subset of a metric space is compact if it is closed

and totally bounded.
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Definition 3.4. A metric space (X,p) is locally compact is every bounded

subset of X is contained in a compact set. A (total) function on a
locally compact space (X,p) is continuous if it is uniformly continuous

on every compact subset (equivalently, every bounded subset) of X.

We next establish some properties of compact and locally compact

spaces which will be useful later.

Proposition 3.5. Let f be a continuous function from a locally compact

space (X,p) to a metric space (Y,0*. 1f A is a totally bounded subset
of X, then its image, f(A), is also totally bounded.

Proof: 1If A is totally bounded, then it is bounded and hence contained
in a compact set K. f is uniformly continuous on K. For any given

£ >0, let § > 0 be such that p*(f(x), f(y)) < € whenever p(x,y) < § and

X,y € K. Let {x xn} be a & approximation to A. Then for any

ERERE)
f(a) in f(A), there is an x; with p(a,xi) < § and p*(f(a), f(xi)) < E.

Thus {f(xl),..., f(xn)} is an € approximation to f(A).o

Corollary 3.6. Let f be a continuous function from a locally compact

space X to a locally compact space Y. If A is a bounded set in X, then
f(A) is bounded in Y [and hence contained in a compact set].

Proof: If A is bounded, it is contained in a compact set K. £(K) is
totally bounded, by Proposition 3.5. Therefore f(A) is contained in the

bounded set f(K), which is contained in a compact set in Y.o
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Proposition 3.7. Let f: (X,p) > R be continuous on the locally compact

space X. If K is any non-empty compact subset of X, then sup {f(x) : x € K}
and inf {f(x) : x € K} exist.

Proof: By Proposition 3.5, f£(K) is totally bounded in R. For each k ¢ Z+

choose a-% approximation {xl,..., xn} to f(K). For some my, 1 < m < n, we
1
> - — i =
have X 2 max {xl,..., xn} K - Write C L
+ 2 2 o
. _ <2 ,2 .
For any j,k € Z , lck cj] =3 + K’ therefore {cn}n=l is a Cauchy
sequence. Write ¢ = lim c - Then for any x € f(K), x - ¢ = 1lim (x - ¢_)
n->o n->oo n

< lim 2_ 0. Therefore x < ¢ for each x € f(K). Since ¢ = lim c and
S D o D

each e € f(K), c is the least upper bound of f(K).

A similar proof shows that inf {f(x) : x € K} exists.o

Proposition 3.8. (i) A non-empty compact subset of an arbitrary metric

space (X,p) is closed and located.

(ii) A closed and located subset of a compact space (X,p) is compact.
Proof: (i) If K is a compact subset of (X,p) it is closed. Let X0 be
any point in X. Then f(x) = p(x,xo) is uniformly continuous on X, and
hence on K. By Proposition 3.7, inf {f(x) : x € K} exists, so
p(xo,K) = inf {p(x,xo) : x € K} exists for each point x, € X.

(1i) Let Y be a closed located subset of the compact space (X,p).

Fix € > 0 and let {xl,..., xﬁ} be an %- approximation to X. For each i,

. €
1 <1 =n, we can choose a Y4 € Y with p(xi,yi) < p(xi,Y) +-§ .
For any y € Y, there is an X, with p(xi,y) < %-. We chose ' with

€ € €
p(xi,y.) < p(Xl,Y) + §< 3 + 3 ° Thus p(yi,y) =< p(yi’xi) + p(xi’y)

=

€
—_ 4
<3

w|m

€
+ 376 and the subfinite set {yl,..., yn} is an € approximation
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to Y. Since € was any arbitrary positive number, it follows that Y is

totally bounded and hence compact.o

Proposition 3.8 (ii) is one substitute for the classical result that
a closed subset of a compact space is compact. Of course, classically,
every subset of a metric space is "located" since the greatest lower
bound of a bounded set of numbers is not required to be effectively
computable. It is easy to find an example of a closed subset of a compact
space which is not provably compact (constructively). Let f: [0,1] » [0,1]

be the unique continuous extension of the partial function ¢, defined by

X for 0 = x E-i +r
3
p(x) =

N jw

+ %—r for %-+ r<x=<1

: %
k

where r = 2
12

{x € [0,1] : f(x) = %—} is certainly closed, but it is not located since

and {uk} is the Goldbach sequence. Then

we do not know whether this set is equal to [0, %J or [0,1].
Theorem 3.10 provides another set of sufficient conditions for a

closed subset of a compact space to be compact.

Lemma 3.9. Let (X,p) be a compact metric space. Then for every € > 0,
there exist a finite number of compact subsets of X whose diameters are

ar most £, and whose union is X,

€ .
Proof: Let {xl,...,xN} be an ) approximation to X. We define by

¢ o ,
induction N sequences {Xi}i=l""’ {Xﬁ}:;l of subfinite subsets of X

such that:
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(i) xJ% c xJz. C . forj=1,..., N
(i1) plx, X)) <— ifx ext, 1<35=n
] 31 J
. . i+l € X i (3 .
(1i1) p(x, Xj ) < 3i+2 if p(x, Xj) < 3i+l s, 1 =3 =N
1 1 i
Let X, = {xl}, X, = {xz},..., X; = {xN}, and suppose Xi,..., X; have
been defined for i = 1. Let {y,,..., y_} be an ? approximation to X.
1 m i+2 P
3
Then for each j and k, 1 = j =N, 1 =k £ m, either p(yk, X?) < —%—
3
i .
or p(y,, X)) > For 1 = j = N, let
k* 7j i
23
i+l i i £
= . — < <
Xj Xj U {yk : p(yk, Xj) < ; , 1 =k =< m}.
(1) and (ii) are clearly satisfied. Suppose p(x, X;) < iil . There is
3
. . €
ay, in {yl,..., ym} with p(yk,x) < 3i+2 , and consequently
i, o i € € € i+l
P> XJ.) = oy ¥+ o(x, XJ.) <zt TS T andy ¢ X
3 3 23
i+l € C o s
Therefore p(x, Xj ) < p(x, yk) < <57 and (iii) is satisfied.
Now let Yj = igl Xj for j = 1,..., N. Ify ¢ Yj then
xi _ € , +
o(y, ) = = ———— for eve i €Z . It follows that for any
k- k i-1 ry
3 23
i ¢ Z we can choose an element x in the subfinite subset X3+2 of Y, ,
with p(x, y) < ei . Therefore Yj is totally bounded.
23

Let Xj be the closure of Yj' Then Xj is compact, and by (ii), it

has diameter at most 2 °.§ £ = €.
i=1 31
Suppose x € X. Since {x cees xN} was an %- approximation to X,
there is an xj with p(x, xj) = p(x, Xj) < g—. Then by (iii) we have

N

i € +
— f i € . = 4.
p(x, Xj) < 3i+l or every i € Z Therefore x € Xj and jgl Xj X.o
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Theorem 3.10. Let (X,p) be a compact space and f: X > R a uniformly

continuous function on X. Then for all except countably many o € R,
the set X = {x € X: f(x) = a} is compact. [Similarly, for all except
countably many o € R, the set X; = {x € X: f(x) =2 o} is compact.]
Proof: 1If X is empty, the theorem is trivial.
If X is non-empty, then for each k ¢ Z+ we can find non-empty combact

set Xk k such that Nﬁk) Xk = X and the di t f h Xk i
S Xyseees XN(k) u 121 5 iameter of eac 1 is
less than %-. Let S inf {f(x) : x € X? » 1 =3 =N&)}.. By

Proposition 2.19, we can find a number o in any non-empty open interval in

R with o # cjk for every j, 1 = j = N(k), and every k € Z+. For each

+ 1 . . ,
such o, and each k € Z' , we can construct a E-approxlmatlon to Xa’ in the

following way: 1If cjk <a, (1 =3 =N(k)), pick a point xj € X? . Let

Ak be the set containing all such xj's. (Note that Ak is subfinite.)

Now if x € Xa’ then x € X? for some j, and then cjk < f(x) £ o. But
1

# o for all j and k, hence c¢,, < 0, and so xj € Ak and p (x, xj) < =

“ik jk k-

Thus Ak is a %— approximation to Xa' Xa is closed since f is a uniformly
*
continuous function. Therefore Xa is compact. The proof that Xa is

compact is similar.o

Corollary 3.11. Let (X,p) be a locally compact space and let K be a

compact subspace of X. Then for all except countably many o € R, the
set Ka = {x € X : p(x, K) =a} is compact.
Proof: We shall show that for any n € Z+, éhe sets Ka are compact for
all except countably many o in (- ®, n).

Let n € Z+ be given. The function f(x) = p(x, K) is uniformly

continuous on X since K is located. K = {x € X : p(x, K) =n} is
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bounded, and hence is contained in a compact set K*. Now f(x) = p(x, K)
*
is uniformly continuous on the compact space (K ,p), and therefore for all
*
except countably many o € (- «, n), the set Ka = {x €K : p(x, K) =a}

is compact.o

3. Positive Integrals

Definition 3.12. Let f: X - R be a continuous function on the locally

compact space (X,p). A compact set K C X is a support for f if f(x) = 0
for all x € -~ K (the metric complement of K). The set of all continuous

functions on X with compact support is denoted C(X).

Proposition 3.13. Every function in C(X) is uniformly continuous.

Proof: Let K be a compact support for £ € C(X), and choose any o > 0. f

is uniformly continuous on the bgunded set Ka {x € X: p(x,K) = a}.
Therefore for every € > 0 there is a §, 0 < § < %-, so that for all

X,y € Ka’ If(x) - f(y)I < € whenever p(x,y) < 8. Now let x and y be in
X with p(x,y) = 6. Either p(x,K) = a - 8§ or p(x,K) > §. In the first
case, both x and y are in Ka’ and so lf(x) - f(y)l < e€. In the second
case, both x and y are in - K, so lf(x) - f(y)l = |0 - 0| < g. Hence £

is uniformly continuous on X.O

Definition 3.14. A positive integral, I, on a locally compact space (X,p)

is a linear real-valued functional on C(X) such that
(a) 1f £ € C(X) and £ = 0, then I(f) =0

(b) there is a function f € C(X) with I(f) # O.
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Theorem 3.15. If (X,p) is a locally compact space and I is a positive

integral on X, then (X, C(X), I) is an integration space.
Proof: We must check Properties (1) through (4) of Definition 2.1:
(1) If f has compact support, so do lfl and min {f,1}. If f and
g have compact support, then so does of + Bg and, by the linearity of I,
I(af + Bg) = aI(f) + BI(g) for every a,B € R. [Note: if f,g € C(X), so is fg.]
(2) The proof that (X, C(X), I) satisfies (2) requires several
technical lemmas which we will not present here. They may be found in
Bishop and Cheng [2], p. 67 - 74. The idea of the proof is that, given
g € C(X) and the sequence {fn}T in C(X) with ? I(fn) < I(g), we can
construct a Cauchy sequence {xn}T of points of X, in such a way that
(a) there is a sequence {An} of functions in C(X) with An(xn) > 0,
but An(y) = 0 whenever p(xn,y) > ii-;
(b) there is a strictly increasing sequence {Mn}:=l of positive
integers;
i

(c) there is a sequence of real numbers {Gn}, with Gn S =

3%

and for all n € Z+ and some € > 0,

-1
z I(£ ) < s (L -8 )I(A (g - €))

KM, k=1 "k

If x = 1lim x_, then, after some work, we can conclude that
n>® n
Mngl £(0) < 2
x) =1 1 6 (- Gn)[g(X) -]

k=Mn_l

© n-1 ®
and since nél [(1 - Gn) kgl dk] =1, it follows that nél fn(x) < gx).
The details of all these constructions can be found in Bishop and Cheng [2],

p. 70 - 74.
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(3) By assumption there is an f € C(X) with I(f) # 0. Then the

f f
I(f) € C(X) and I( —I—(f-)—) = 1.

function

(4) Let K be a compact support for £ € C(X). Then sup {f(x) : x € X}
= sup {f(x) : x € K}, and, by Proposition 3.7, this quantity exists and
is finite. Pick N € Z' with sup {f(x) : x € X} < N. Then
lim I(min {f,n}) = lim I(min {f,n}) = I(f)
n>® n=N
If K supports f, then the continuous function g(x) = [1 - p(x,K)]+
is supported by any compact set containing the bounded set
K, = {x € X : p(x,K) =1}. Let M=sup {|[£(x)| : x € K} + 1. Then for

1
+
every x € X and every n € Z ,

A

0 = min Hfl(x),%} l:-g(x)

1A

S

and consequently, 0 < I(min {|f|, D) %-I(g). Therefore

0 = lim I(nin {|£[, 2 }) = lin S 1(g) =0

n>» n-eo

3|~

hence lim I(min {Ifl, l-}) = 0.0
no n

The locally compact integration space (X, C(X), I) can be enlarged,
using Definition 2.4, to form another integration space, (X, Cl(X), I).
[We can also modify Definition 3.14 in the obvious way to define a
positive integral on Cl(X).] Cl(X) will include integrable partial
functions. 1In particular, there will be many integrable compact subsets
of X in (X, Cl(X), I). [Note: A complemented set in X is compact if

its first element is compact as a subset of X.] This is because, if X
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is locally compact and f € Cl(X), the set

A, = ({x €X: £(x) 2t}, {x €X: £f(x) < t})

is compact and integrable for all except countably many t € R, For
example, if N € Z+ and K is any compact subset of the locally compact
space X, then the function [N - p(x,K)]+ is in C(X); hence

KN-t = ({x € X: p(x,K) =t}, {x € X: p(x,K) > t}) is compact and
integrable for all except countably many t in (- «, NJ.

Classically, of course, every compact set K in a locally compact
space is integrable. This follows from the fact that each function
fn(x) = [1 - np(x,K)]+, (n € Z+), is integrable, and {fn} converges
monotonically (pointwise) to Xg * Thus {I(fn)} is a monotone decreasing
sequence converging to I(XK). However, constructively, we require the
series ? I(lfn+1 - fnl) to be convergent (with a known rate of convergence)
before we can say that K is integrable and u(K) = lim I(fn)' This may

n->o°
be restated in the following way.

Proposition 3.16. A compact set K = (K, - K) in a locally compact

integration space is integrable if there exists a constant ¢ € R, such
that for all € > O there is a § > 0 with |I(f) - c¢| < €, whenever

f €CX), 0=f=1, and £f(x) = 1 on K, f(x) = 0 if p(x,K) > §.

Proof: By assumption we can find a sequence {fn} of functions in C(X)

with 1lim £ = Xg and II(f ) - cl < 1 for.some constant c. Then
poeo D n oh

o0}
I(|f1|) + % I(|f - fn|) must converge, and hence K is integrable
I

n+l

[eo]
and @) = I(£) + £ I(f, - £) = cuo
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An important example of a locally compact integration space is
(R, C(R), I). If f € C(R), then I(f) is defined to be the ordinary
Riemann integral fz f(x)dx, where [a,b] is any compact interval
supporting f. The Lebesgue integral on Cl(R) is then defined as in
Definition 2.4.

As an illustration of the method in Proposition 3.16, we can show
that the set of rationals (Q, Q') is Lebesgue integrable.
[Q' = {x € R: x# q for any rational number q}]. Let {qn}:;l be an
enumeration of Q. Then each singleton set {qm} is compact and X{q }

m
can be approximated by a sequence {f?}§=l of functions in C(R) with
lim £7 = X{q } and lI(fT)l < 13-. Therefore X{q } is integrable, and
o 3 q j 9 qQ

(o]
H({qm}) = 0. Then by the Completeness Theorem, XQ = nél X{qn} is also

integrable, and hence Q also has measure zero.
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CHAPTER 1V

THE HAAR INTEGRAL

In this chapter we prove that every locally compact group G admits
a left-invariant positive integral and that this integral is unique up to
a constant of proportionality. [The proof can be easily modified to show
that a right-invariant integral also exists on G.] The construction of
the Haar integral is basic to the study of certain properties of locally
compact Abelian groups. A constructive treatment of some of the

applications of the Haar integral can be found in Bishop [1], Chapter 10.

1. Locally compact groups

Definition 4.1. A locally compact metric space G is a locally compact

group if G is a group and the mapping (x,y) - x-ly from G X G to G is
continuous.

[Lf p denotes the metric on G, then the product metric p* on G X G is
defined by p*((x),%,)5 (71,¥,)) = p(x,y)) + p(xy,y,).]

The identity element of G will be denoted by e.
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Proposition 4.2. Let G be a locally compact group, and let x,y be

elements of G. Then

(1) the operation x * x ~ is continuous

(ii) the operation (x,y) = xy is continuous

(iii) for each a € G, the transformations x + ax and x + xa are
continuous

(iv) 1if H and K are bounded subsets of G, then the sets HK, H_lK

-1 . -1 -1
and HK © are also bounded. Similarly, HK, H and HK = are totally
bounded if H and K are totally bounded subsets of G.
Proof: (i) The composite function x + (x,e) ~ x—le = x ~ is continuous.

. s -1, X -1 -1.-1

(ii) Since x > x ~ is continuous, so is (x,y) *> (x ,y) > (x ) 'y
= xy.

(iii) x - xa is equivalent to the composite mapping

x * (x_l,a) - (x-l)_la = xa, which is continuous for any fixed a € G.

Similarly, x -+ (a_l,x) > (a_l)_lx = ax is continuous for fixed a € G.

(iv) The functions (x,y) > xy, (x,y) > x-ly, and (x,y) - (X-lgy_l) >
> xy.-l from G X G to G are continuous mappings from one locally compact
space to another. Hence, by Proposition 3.5 and Corollary 3.6, they take

bounded sets into bounded sets and totally bounded sets into totally

bounded sets.o

Proposition 4.3. Let G be a locally compact group. If H is any bounded

subset of G, then
(i) for each € > 0 there is a § > 0 such that p(x—ly,e) =€

whenever x,y € H and p(x,y) = §.



47

(ii) for each € > 0 there exists a § > 0 such that p(x,y) < €
whenever x,y € H and p(x-ly,e) = 4.
Proof: Recall that a function on a locally compact space G is continuous
if and only if it is uniformly continuous on every bounded subset of G.

(i) The composite function (x,y) > x_ly -> (x_ly,e) is continuous on
G X G, and hence uniformly continuous on H X H,

(ii) From Proposition 4.2 (ii) and 4.2 (iv), we know that the
mapping (x,y) > Xy is uniformly continuous on H x H-lH. Therefore, for
all € > 0, there is a § > 0 such that if (x

) and (x ) are in

l’yl 2:}’2

H x H_lH and p*((xl,yl), (x2,y2)) =4, [i.e. p(xl,xz) + p(yl,yz) < 4],

. -1
then p(xlyl, xzyz) < €, Substituting x for x, and X,, € for i and x 'y

1
for Yo» we have p(x, x(x—ly)) = p(x,y) = € whenever x and y are in H and

p(e, x—ly) < 8§8.a

Corollary 4.4. Let G be a locally compact group. A subset K of G is

1200 Xy

lx),...

totally bounded if and only if for each € > 0 there exist x

in K such that for any x in K at least one of the numbers p(e,xz
os p(e,x;lx) is less than €.

Proof: If K is totally bounded, then it is bounded. Then by Proposition

4.3 (1), we can choose a § approximation to K with the property desired.

Conversely, let € > 0 and suppose X o X exist so that for each

17"
x € K, there is an x, with p (e, x;lx) < €. The set

-1 -1 X
{xi x € G: ple, X x) < €} is bounded, and the map z - X,z is continuous
for each fixed X, . Hence {x € G : p(e, x;lx) < €} is also bounded, since

continuous functions take bounded sets into boundad sets. Since

KC:L

s

-1
1 {x €G: ple, Xy x) < €}, K is a bounded set. We can then apply



48

Proposition 4.3 (ii) to obtain a A approximation to K for any given

A> 0.0

J

Lemma 4.5. Let f € C(G)0+—— the set of all non-negative functions in C(G).
Then for every € > 0 there exists a 6 > 0 such that lf(x) - f(y)l <€
1f pGy T, e) < 6.
Proof: Since z - z"l is continuous, we can choose for any A > 0 a v >0
with p(e, z-l) < A whenever p(e,z) = V. Let E be any compact set containing
{z € G : p(e,z) = A} and let K be a compact support for f. Write
(EK)l = {x € G : p(x, EK) =1}, The function (x,y) - xy is uniformly
continuous on E X (EK)l , and f is uniformly continuous on G. Hence, for
any € > 0 we can choose a Yy > 0 and § with 0 < § < v, such that
p*((z,y), (e,y)) = p(z,e) =6 implies p(zy, y) < Y and lf(zy) - f(y)l <€
for all z € E and y € (EK)l.

Now we claim that for all z in {z € G : p(e,z) < 8} and every y € G,
|£(zy) - £(y)]| < e

() Ify € (EK),, then |£(zy) - £(y)| = € by definition of §.

(2) 1fy € -(EK), then since e € E, y € - K and hence f(y) = 0. If
f(zy) >0, zy €¢ K and y € z-lK. But since 8§ < v, p(e, z—l) = A,
and so y € EK, which contradicts our assumption. Hence f(zy) = 0 also.

Now write x = zy, and z = xy_l. Then we have for each € >0 a § >0

such that |f(x) - f(y)l =g if p(e, xy—l) = §.o
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2. Construction of the Haar Integral

Definition 4.6. Let G be a locally compact group. For each function

f: G > R and each s € G, we define the left translate of f by s, f°Ts, by

foTs(x) = f(sx)

for all x € G. The right translate is defined similarly.

Definition 4.7. Let G be a locally compact group and (G,L,I) an integration

space. The integral I is said to be left-invariant, or invariant under

left translations if f € L implies foTs € L, and I(f) = I1(feTs) for every

f €L and s € G, The definition of right invariance is similar. A

left-invariant positive integral on G is called a left Haar integral.

We begin the construction of the Haar integral by defining the Haar
covering function, (f:¢), which is a rough measure of the "size" of
the function f, compared to another function ¢.

Let C(G)0+ denote the set of all non-negative functions in C(G),
and let C(G)+ be the set of all non-zero elements of C(G)0+. Then for
each f ¢ C(G)0+ and ¢ € C(G)+ there exists a set S, consisting of all
functions & with

(1) & = igl c; 9oTs; for some n € Z+, where ¢, 2 0 and s, € G,

i i
(=1 =n)

L]

and ({i) £ =¢ . .

We define

(£:¢) = inf { 2 g * £E =13 (ci onsi) is in S}

whenever this infimum exists.
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0+
Lemma 4.8. Let f € C(G) and ¢ € C(G)+. Then there is a compact set K
n
: < < 2z
such that if f = iél’ci <p°Tsi , then f = 1A S <poTs:.L s, Where
Ac{1,..., n} and {si : i € A} CK.
Proof: Let H and J be compact supports for f and ¢, respectively. By

Proposition 4.2 (iv), JH_l is totally bounded; hence its closure is compact.

Choose o > 0 so that
-1
K={x€G:p(x, JH") =< a}

is compact. [The distance from a point x to a set A is the same as the
distance from x to the closure of A, if either of these quantities exists.]
o . -1

Suppose f = iél ¢y <p°Tsi . For each S either p(si, JiI 7) £ a or

psy » Ml >0, Let A= {1: plsys mly < a, 1 =i =<n}.
2

If f(x) > 1A S ¢°Tsi(x) for any x € G, then x € H, and
k%A C ¢°Tsk(x) >0 (1l =k =n). But for each x ¢ H and k ¢ A, (1 <k <n),
p(sk, JH-l) > 0. Hence p(skx, J) > 0 and w(skx) = onsk(x) = 0, since J

< Z
supports ¢. Therefore f = 1éa S onsi .0

We can now show that for any f € C(G)O+ and ¢ € C(G)+, the set

s={:&=3c¢ ¢°Tsi, and £ < f} is non-empty.

i

Let H be a compact support for f and choose K as in the proof of
the last lemma. There exists a t € G and Y > O with ¢(t) > Y. Since
y * ty is continuous, we can choose § > 0 so that ¢(ty) > Y whenever

-1 :
p(e,y) < §. Pick S1 seers Sy in K such that for each x € K, we have

p(e, ij) < § for some j (1 = j =N) [Proposition 4.3 (i)]. Then
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w(tij) > Yy and

e =2

1=

L

121 q>(tsiX)

for every x € H. Let M. = sup {f(x) : x € H}. Then

1 N
f (%) S-;-M ié o) Ttsi(x)

f

M

f ..
for all x € G, and hence £ = iél ;—- chTtsi is in S.

1

-4

Classically, then, the number (f:¢) must exist because it is the
infimum of a non-empty bounded set of numbers., However, for the constructive
proof of the existence of (f:¢), we require more information about the

set { Zeg 2 Loy @oTt, € s}.

Lemma 4.9. The quantity (f:¢) exists for every f € C(G)0+ and ¢ € C(G)+.

Proof: Given f and ¢, let K be chosen as in Lemma 4.7, and let

nea

M
£ = 523 _f ontSi be as above. Write
Y

A={p: =2 c; onti € S and t; € K for each i}
and A ={2Zc, :Z c, ¢oTt, € Aand Z ¢, < EEE }
c i-° i i i~

Y
Then to show that (f:¢) = inf { Zci : 2 c; chTti € S} exists, we need

only show that inf { Zc, : Zci € AC} exists.

i

To do this, we provide a method of constructing, for any € > 0, a

subfinite set B_ ¢ { Zc, ¢ Z c, ¢oTt, € S} such that, if Zc, is in A ,
£ i i , k c

i

then there is a Zbi in B€ with Zbi =< ch + €. From this construction,

we can find (f:p) by a procedure similar to that in the proof of

Proposition 3.7.
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Let € > 0 be given, and let H be a compact support for f. Write

€
§ = 2 . To construct B :
N Mf + YN + 2 €
2
Y
(1) Choose elements Xiseees X in K such that, for any x € K,

there is an xj (1 =3 =J) with ¢o(xy) = w(xjy) + § for every y € H.

[Since ¢ is uniformly continuous [Proposition 3.33], there is a A > O

such that lw(a) - @(b)l = § whenever p(a,b) < A and a,b € G. By the

same method as in the proof of Proposition 4.3 (ii), we can find XpseeesXyg

in K such that for each x € K there is an xj with p(xy, xjy) = X for every

y € H. Then |o(xy) - cp(xjy)l = 8.]
(2) Pick n € Z+ with JNMf < n.
Y$
(3) Let B be the subfinite set consisting of all functions of the

form
g, = S g (k, + 2) @oTx, + §-( Egﬁ + 1) g' @oTts
kT i1 Y 1y Yy i1 i
where k= (kl,..., kJ) and 0 = ki =n foreachi=1,...,J.

(4) Divide B into two sets B' and B" in such a way that
< \}
(i) £ = Em for any Em €B
(ii) for each Em € B", there is a y € H with
£@) > ¢ (y) -6

[Since H is totally bounded, there is a finite method of assigning

-

L4

each element of B to at least one of B' and B".]

= . = 1
Then let B, {Zbi 2L z bi QoTt, € 3B }.

Now suppose ¥ = T e <p°Tuk is in A and ch is in Ac' From the
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definition of A, we know that each W is in K. We picked x s X, SO

e 3

that for any u € K there is an xj with ¢(uky) < ¢(xjy) + 6 for all y € H.

. , <
This implies that Sy ¢°Tuk(y) = ¢y onxj(y) + ckG for every y € H, Hence

we can find non-negative integers a (which are linear combinations

1Pee0s 2y

1 =
of the Cye s) such that iél a; ch, and
2 = g § €H
V) = 2 ¢ eoTu (v) = ;) a, @eTx (y) + 63c, (y € H)
1 N
< o
Since ch € AC and 1 = > iél o) Ttsi(y) [y € H],
Ey) +6 =Yy +6= 3 a P Sais SAPSE S EPI
y = vy =421 3 P0RX Y y Y i1 ®° 1Y
) NM nd .
for ally € H. Now for 1 = j = J, aj = ch = f = 3 by our choice of
Y

n. Hence there is an m = (ml,..., mJ) with 0 = mj =n (1 =3j=<J) and

S
-j(m +2)

o
8
1A
v

NM N
Then f(y) + 6 =< P l J (m + 2) ¢oTx (y) + —-( —;ﬁ + 1) Z ¢oTts (y)

L) [y € H]

and so L € B',
m

We then have a Zbi € B such that

s NM,
Zby =5 ;Z; (m +2) + —-( —;—-+ 1N
J Nsz + YN
= I a; + 28 + &( Y2 )

ch + €.0
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0+
For £ € C(G) and ¢ € C(G)+, the function (f:p) has the following
properties:
+
(1) If £ € C(G) , then (f:¢) > 0. [If £f(x) =32 c; @OTsi(x) for all

x € G, then f(x) = 2 c, sup ¢(y) for all x € G, and

y€G
£
sup f(y) < sup ¢(y)*Zc, . Thus 0 < 2B 2 < 3¢ . and it follows that
SR (y Sep ey sup ¢ i
sup f _ .
0 < e (f:9).]

(2) If a=0, (@f:9) = a(f:e).

(3) (foTs:¢) = (f:¢) for every s € G. [If f(x) =2 c; @oTsi(x) for
every x € G, then feoTs(x) = 2 c; ¢0Tsis(x) for all x € G. Conversely,
if foTs(x) = 2 di onti(x) for all x € G, then, for each y € G there is
an x with y = sx, and f(y) = 2 di @oTtis—l(y).]

(4) 1f £, and f, are in C(G)O+, then

(a) (f1 + f2:¢) =< (f1:¢) + (f2:¢). [ For every € > 0 there

exist non-negative integers c «sC_,d

12 e9C sy
St such that

.,dk, and elements of G

.sS

PERERFL NS S

< .
f. =12 c; ¢@eTs, and Zci < (f1.¢) +

i

£

2

£

<l . —

f2 =2 dj @oth and Zdj < (fz.@) + >

Then (f1 + f2:¢) < Zci + 2d, < (flz@) + (f2:¢) + €, and since this holds

h|
for any € > 0, it follows that (f1 + f2:¢) h (f1:¢) + (f2:¢).]
(b) (f1=®) - (f2=¢) = ((f1 - f2)+:¢). [ For each € > 0 there

0+
are e ..fn in Z and sl""’sk’tl""’tn in G such that

1""’ek’f1"

+ _ +. £
(f1 fz) =2 ey chTsi and Zei < ((f1 - fz) ) + >
f2 <2 fj ¢°th and ij < (f2:¢) + %~
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= ° ° : = +
Then fl Z e, ¢ Tsi + Z fj 0 th and (fl ) Zei ij, S0

(£1:0) = (£,:0) = (Gey +2£) = Gfy - 5) = Zey + 5< (£ - £)70) +e.]
5) If ¢, 0, € (&), then (£:0,) = (f:0) (0 :0,), (and

1 (¢1:¢2)
(f:0) ~ (f:9,)

+
consequently, if £ € C(G) , ). [ For all € > 0, there

exist non-negative integers cl,...,ck,dl,...dn, and elements of G

t such that

sl,...,sk,tl,... 0

Ph
1A

z ¢ cplOTsi and Zci < (f:@l) + €

1A

N 2 d ¢2°th and Zdj < (¢l:¢2) + €

]

Then for i = 1,...,k,
¢1(Six) =32 dj @2°thsi(x)
for all x € G, hence
f(x) =2 ci(Z dj ¢2othsi(x))
for all x € G. Therefore (f:¢2) = Zci(Zdj) < [(f:¢1) + e][(wlzwz) + €],

and since € can be arbitrarily small, the result follows.]

Now fix (for the rest of this section) a particular-function f0 in

c(e)t and, for each £ in ¢(6)%Fand ¢ in c(6)T, write

’ _ (f:9)
Iw(f) (fy:0) -

The functional I@ has the following properties:

(1) 1f £ € c(6)" then 1,5 > o.
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(2) If az=0, Iw(af) = aIw(f).

(3) Iw(fl + f2) < Iw(fl) + 1¢(f2).

) = . . (foTs:p)
( )(4) Iw(f Ts) I¢(f) for each s € G. | Iw(f Ts) ‘?}6}¢)
f:o -

(fO:w) Iw(f) ]

(5) 1f £ € c©)V, then '(f_O:LfTS I(5) S (f:£). [For all £ ¢ ¢,

(f:9) = (f:fo)(fozw), hence I¢(f) < (f:fo). If f € C(G)+, then
1
(fo.w) < (fo.f)(f.w), and so ?EB?E) < Iw(f).]
Lemma 4.10. Let € and M be any positive numbers, and let fl,...,fn be

functions in C(G)0+. Then there exists a 8§ > 0 such that
n n
<
121 Tp () = 1,052y 0, f) + €

for any real numbers S ERRREILN with 0 = o =M (=1 =<n), and any
¢ € C(G)+ such that ¢(x) = 0 whenever p(e,x) = §.
Proof: It is sufficient to show that for every € > 0 there is a § > 0

such that
n n
<<
% ain(fi) = (I¢(§ aifi) +e)(1 + €)

n
for every ¢ € C(G)+ with ¢ (x) = 0 whenever p(e,x) = 6. | Iw(% aifi)
n n
= I¢(§ Mfi), so the functionals Iw(§ aifi) are bounded independently of

the choice of al,...,an.]

Suppose € > 0, M, and fl,...,fn have been given. Let K be a compact

f , and let g ¢ C(G)+ be any

support for all of the functions fl,..., n

function with g(x) = 1 for all x € K.

f
Write A= ~—=— and h, = J . By Lemma 4.5, we can
0 iélaifi + Ag
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choose § > 0 so that Ihj(s_l) - hj(x)l = E-, for 1 £ j < n, whenever

p(e,sx) < 28. [The choice of § is independent of the values of UpseeesQ
£, (uw) £4(v) |
because Ih,(u) - h,(v)l = . -
J J Zuifi(u) + Ag(u) Zaifi(v) + Ag(v)l

Eilk(f (u) g(v)-£, (V)g(U))+ f (U)ZM(f (v)-£, (u))+ ZMf (W (£, (u)-£, (V))l
A

Now let ¢ € C(G) be such that ¢(x) = 0 for all x with p(e,x) = §. By

Lemma 4.9, there exist CpoeresCy € R0+ and SpseeesS € G with

m
Z (a f, ) + Ag = c cpoTsj

I
-
-

Without loss of generality, we may assume p(six,e) < 2§ for i . sM
and all x € K. [If p(six,e) > §, then @(six) = 0.] Then

h,(x) < h (s ) + ~ (1 =3=<n, 1=1i=m. This gives

]
£, = B GO C 2 (1) + Agl)
< o °
=< hj(x) él c, ¢ Ts.(x)
s 421D + £) (e oos, (0)
-1 €
< m ci(hj(si ) + ;
Thus (fj:¢) (h (s ) + —-)c , and I@(f) =< iél (f0;¢)
Summing, we have
-1 €
n m h.(s,7) + =
< j 1 n
Z1 aJI (£) = jél oLj( lzl 1( (f0:¢) )
o n ho(sjl ) + &
B B T e L (3 I
-1
m a f.(s,7)
= I ¢ (20 (2t )] )
i= i= & (f,:¢) " D (f.:¢)
0 21y (s
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m
n
Now iélci may be chosen to be arbitrarily close to I ( ,2.(o.f,) + Ag)
(5 o) 0r 1
o

Hence

1A

n n
121 4T, (0) ST 0 2, f) + Ag) (1 + €)

1A
s

[T (

01 aifi) + AI@(g)](l + €)

1
< [1,( (B 4 E) + Agf) 1 + €)
[Property (4) of I@]

= (1, (

s

1 aifi) +e)(l + ¢€).o

Lemma 4.11. Suppose € > 0 and f € C(G)0+.‘ Choose § > 0 so that
If(x) - f(y)l < € whenever p(x-ly,e) =d8. 1f g€ C(G)+ has the property

that g(x) = 0 whenever p(x,e) > Q_’ and if o is any constant greater than

2
. 0+ ,
.s¢, in R° and 815 .58, In G such that

€, then there exist ¢ K K

120"

k
|£x) - iél c; g°Tsi(x)| =a

for all x € G.

Proof: For all x and s in G,
-1 -1 -1
(f(x) - €)g(s "x) = f(s)g(s "x) = (f(x) + e)g(s "x) (1)

[p(s™x,0) =6 = [£0 - £ =€, and p(s™Ix,e) > 5= 8671w = 0.]

Define g* € C(G)+ by g*(x) = g(x—l), and write 1 = E%?FE%Y ~ Choose
Vv so that |g(x) - g(y)l < 1n whenever p(x_ly,e) = V.
Suppose K is a compact support for f. Then there exist sIl,...,s;l

in K such that, for any x € K, there is an s;l €K (1 =1=<k), with
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\Y, . +
p(six e) < 7 - Choose hl,...,hk in C(G) with

(a) 121 h,(x) = 1 for every x € K
(b) hi(x) =0 if p(s;x,e) 2 v,

[v - p(s;x,e)]"

] Then for each h, and each s € G,
% + i
j=l[v - p(ij,e)]

hy ()£(s) [g(s )= n] = h (s)£(s)g(s,) = h (s)£(s) [g(s™ %) + n] @

for all x € G. [If hi(s) > 0 then p(sis,e) = p(sixx-ls,e) < Vv and

Ig(six) - g(s_lx)l =n. If hi(s) 0, then (2) is clearly valid. Hence
by continuity, (2) holds for each s € G.]

From (1) and (2) we have

A

(£(x) - g 1x) = ni(s) = £(s)g(s tx) - ne(s) (3)

k -1
21 B (OE6) @GETX - )

[z hi(s) #1=s € ~K=£f(s) =0]

1A

k
121 by (8)E(s) g (s, )

<3z hi(s)f(s)(g(S_lx) + )

(£(x) + £)gls t%) + nf(s).

1A

Now fix x € G and consider all the functions in (3) as functions of s.
Let ¢ € C(G)+. Then since g(s-lx) = g*(x-ls) and I¢(g*°Tx—1) = Iw(g*)

-

(4
for each fixed x, we have

k
(FGO - T (g9 = 1L (5 S I (2 g(s;)h5)

1A

*
(f(x) + E)Iw(g ) + nlw(f).
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I ()

. f: o0 - €
Dividing by Iw(g*), and noting that Iw?g*) = (é $; < (f:g%) = o
we obtain

I ( % g( )b f)
Z s.x)h,
f -2 e 0 171 2L < f(x) + 218 (4)
2 w( g") 2

Let fi = hif (1 =1i =%k), and choose an m € Z+ so that %< 9—-;—8

and m > g(six)(fozg*) for every x € Gand 1 = 1,...,k. Write

g(s x)
8y (x) = ————w— (1 =i <k)
w(g )
(f,:9) .
(g o) = g(six)(fozg ) = m. Hence, by Lemma 4.10,

we can restrict ¢ so that

Then 0 = gi(x) = g(six)

k 1
2, gi(x)Iw(fi) = Iw( ;21 8 (L) + =
I (fi)
Then let ¢, = (1 =1i = k), and consider any x € G.
i I (g%
¢
k g (s, X) k
Lol iz 1—@7‘1 B = 1,032 g5

1A

z gi(X)I (fi)

[Property (3) of I ]
1 (f )

o i
2 g(s;%) g (g*)

]

3 cig(six)

1
I¢(Z gi(X)fi) + a

1A

k g(Six) o - €
= 1,¢ iél'f;?**T b8 + 7

¢ g

Together with (4), this gives

k
= 42

f(x) - g_%_g =44 Cig(six) < f(x) + a (x € G)
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and so

neaR

| £(x) - 121 cig°Tsi(x)| < a

for every x € G.o

Now to construct the Haar integral, we consider a sequence of

functionals {I }m_ , where ¢_ € C(G)+ has the property that ¢ (x) = 0
¢y n=1 n n

if p(e,x) = 1 It will be shown that, for each f € C(G)+, {Icp (f)}:_l
n =

n
is a Cauchy sequence, converging to a number I(f). The functional I, so
defined, is positive and left-invariant. It can be extended to C(G) by

defining, for each f € C(G), I(f) = I(f+ + ¢) - I(f + ¢) for some

o €c@)r.

Theorem 4.12. Let G be a locally compact group. Then

(1) there exists a positive left-invariant integral I on C(G), with
the property that I(f) > 0 if f > 0.

(ii) 4if J is any positive left-invariant integral on C(G), then
J = ¢l for some constant c € R*.

+ (]
Proof: (i) Let f € C(G) and let {wn}n=l be as above. To show that
(]
{Icp (f)}1 converges, it is sufficient to show that for any ¢ > 0, there
n

exists an N € Z+ such that
I f) -1 f =<

if n,k = N.

Suppose 0 < £€ < 1. Choose ) > 0 so that p(x,s—l) < £ whenever
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p(sx,e) = A. [Since (x,y) > xy is continuous, there exists a A > 0
such that p*((s—l,sx), (s—l,e)) = p(sx,e) < A implies p(x,s-l) < e.]

Let K be a compact support for f and KO be a compact support for fo. Then

(K UK {x €6 :p(x, KU KO) < 1}. Let w be any function in C(G)+

0)1
with w(x)

1 for all x in (K U Ko)l.

Wri B €
rite ¥ = 7711 + (Wi TIL + (Fiy)]

0 <6< A and

and pick § ¢ R so that

£G) - £ | =¥ 1f oy Tx,e) =6

lfO(X) - fo(y)l 5-% if p(y_lx,e) <46

Choose g ¢ C(G)+ so that g(x) = 0 on {x € G : p(x,e) 3-% }.

. . 0+ -1 -1,
By Lemma 4.11, there exist Cysrvesc im R and t1 seeest T in K
such that
m

| £(x) - 2 cig(tiX)l <y (x € G)

We then have
m
[£(x) - 2 cig(tix)l < yw(x) (x € G)

[1f lf(x) -2 cig(tix)|> yw(x) for some x ¢ G, then w(x) < 1 and
lf(x) -7 cig(tix)l > 0. If f(x) >0, x € K and so w{x) = 1. Hence
f(x) = 0. Ifg cig(tix) > 0 then g(tjx) > 0 for some j, which implies

that p(t,x,e) = §. But then, since § < A, p(x,t}l) < €< 1, and so

h|
x € (KU KO)l and w(x) = 1.]

So

b2 cig(tix) - yw(x) = £(x) =2 cig(tix) + yw(x)
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and
° < <
I (& c,geTt,) — YL (w) =1 (f) =1 (2 c.goTt,) + yI (w)

for any ¢ € C(G)+. Hence

IIw(f) - Iw(z cigoTti)l = Ylw(w) =y (éﬁgﬁ% = Y(w:fo) (1)
I (h,f)
From the proof of Lemma 4.11, we know that cj =1 ) for j = 1,...,m.
¢
Now hjf < f, hence
I (f
c oD (£:0) < (f:g%) (1=<j=m

LI N CONNNCI!

We can now apply Lemma 4.10 to obtain an N ¢ z* such that

m m
|I¢k( iél cig°Tti) - iél Cink(goTti)l =Y
and hence
o m
|I¢k( 121 48Tt = ;2 Cilwk(g)' =y (2)
for every ¢, with k = N.

Combining (1) and (2), we have

|15, () = €Ly (] < Y11+ @ify)] (3

m
where ¢ izl ci > 0 and k > N,

We can substitute fO for £ in all of the above inequalities, and, since

I¢k(f0) = 1, we obtain

1- dek(g)l SYIL+ Wif))
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for some d > 0, or, equivalently,
1S - eI, ()] =5 YI1 + (wif)] (4)
d Py -4 1y

From (3) and (4), we conclude

T, (O = | = ¥[1+ (f)IL+5) (5)

for every k = N. Then
c . < .
E—(l - v[1l + (w.fo)]) =< I¢k(f) + y[1 + (w.fo)]

and so

I¢k(f) +1 (f:fo) + 1

ST+ (@i =] _ -
GI(f:£.) + 1]
0

+1 s 2[(f:fy) + 1]

£
d

since 0 < € < 1. Combined with (5), this gives

(& -S| =L+ (melal(E:£) + 1] = £

B8 2

%

for every k = N. Hence if k,n 2N,

| 1, () - I¢n(f)| <e

%

and so lim I (f) = I(f) exists for each f € C(G)+.
n=*® 9n

I(f) has the following properties:
1

(a) If £ >0, I(f) >0, because 0 < z?g?fy

<1 (f) for each n € Z+.
®n

(b) I(af + g) = al(f) + I(g). [By Lemma 4.10, for each € > 0

. +
there is an N € Z such that aI¢k(f) + I¢k(g) < I¢k(af + g) + € for every
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k 2 N. Hence OI(f) + I(g) =I(of + g). I(af + g) < aI(f) + I(g) by
Properties (2) and (3) of Lp.

(c) I(feTs) = I(f) for every s € G.

Now if f € C(G), then f+ and f are in C(G)0+. Therefore we can
choose any ¢ € C(G)+, and have f = (f+ + ¢) - (f + ¢). Define

I(f) = I(f+ +¢) - I(f 4+ ¢). [If we also have f

+
fl - fzs (fl’fz € C(G)»),

then fl +f +9¢ = f2

= I(fz) + I(f+ + ¢). Hence I(f) does not depend on the particular

+ f+ + ¢, and so I(fl) + I(f + o)

choice of fl and f2'] Clearly (a), (b), and (c¢) hold for the extended

functional T.

(ii) Let J be a left-invariant positive integral on C(G). 1If

+ . . 0+
f € C(G) and J(fl) > 0, then there exist dl""dn in R° and SEEERFA
in G with
n
fl =< igl difOTti
and

n
J(fl) < 21: diJ(f)

n
where Z‘.di > 0. Consequently, J(f) > O whenever f ¢ C(G)+.
1

Now let fl and ¢ be in C(G)+ with

m

fl = jél Cj¢n°TSj
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Then

and it follows that

(£1:0)) 2 755 (6)

+
for every £, o, € c(G) .
Let f ¢ C(G)+ and let w € C(G)+ be defined as in part (i). For each

€ > 0 there is an N € Z+ such that for all n = N, [and ¢n(x) = 0 for all

1 , 0+ .
x in {x € G: p(e,x) 2= }], there exist Cys+v-pc in R™ and §1s-++»8 in
G with
f ) z
<
(x) < ew(x) + 121 cicpn(six)
and
m
<
iél ci¢n(six) < £(x) + ew(x) (x € 6)
From this we can conclude that
f = z
( .¢n) = €(w.¢n) + %Ci
and
m
iél ciJ(¢n) < J(f) + eJ(w) ) (n =2 N)
Hence

(wip_ )
J() + eJ(w) = (f=¢n)[l - € ?E?&ET ]J(¢n) > [1 - e(w:f)](f:¢n)J(¢n)
n



67

for each n = N,

Now let fl be any fixed function in C(G)+. From (6) we have

(f:) I, ()
J(£) J(W o _ . n-_ — . L
J(fl) + € J(fl) > [1 - g(uw:f)] (fl:¢n) [1 e(wi f)] I¢n(f1)
for every n = N, Therefore
J(£) J(w . I(f)
3??17-+ € J(fl) > [1 - e(w:f)] I(fl)

and since this holds for each ¢ > 0,

J(f)  _I(f)
J(E) T I(E)

or,

(£) ooy
J(f) =2 —— I(f)
I(fl)

for every f ¢ C(G)+. Holding fl fixed, we can repeat the above argument

with f and £, interchanged and obtain

1
J(fl)
J(f) = i??z) I(f)
+ I(£y) +
for any given f € C(G) . Hence J(f) = I??'T I(f) for every f € C(G) ,
1
: J(fl) ) .
and consequently, J(f) = Ey I(f) for every f € C(G).o
1

We can now use the Daniell extension method of Definition 2.4

to extend I to Cl(G)'
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Corollary 4.13. Let G be a locally compact group. Then there exists a

left Haar integral on Cl(G).
Proof: Let I be a left-invariant positive integral on C(G). Clearly
I is also a positive integral on Cl(G). Suppose g € Cl(G) and {fn}:=l

is a representation for g. Then
5. £ % £ oT
= = = o
geTs(x) = g(sx) = 2, £ (sx) 2 £ s (x)
o]
whenever % lfnoTs(x)l converges, and
(o] (_‘n o0}
2 I(|f e1s]) = 2 I(|£ |°Ts) = 2 IC(JE ) < o
since {fn} is a representation for g. Hence goTs is integrable, and

]'_(go'_[‘s) = %: I(fn°TS) =

- Mg

I(fn) = I(g) .o
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