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ABSTRACT 

There is little doubt that linear algebra is a fundamentally important course in 

undergraduate studies. It is required for students majoring not only in mathematics, but 

also in engineering, physics, and economics, to name just a few. However, to date, 

research on students' understanding of linear algebra is rather slim. 

This study is a contribution to the ongoing research in undergraduate mathematics 

education, focusing on linear algebra. It is guided by the belief that better understanding 

of students' difficulties leads to improved instructional methods. 

The questions posed in this study are: What is students' understanding of the key 

concepts of linear algebra? What difficulties do students experience when engaged in 

these tasks? What can example-generation tasks reveal about students' understanding of 

linear algebra? Are these tasks effective and useful as a data collection tool for research 

in mathematics education? 

This study identifies some of the difficulties experienced by students with 

learning several key concepts of linear algebra: vectors and vector spaces, linear 

dependence and independence, linear transformations, and basis, and also isolates some 

possible obstacles to such learning. In addition, this study introduces learner-generated 

examples as a pedagogical tool that helps learners partly overcome these obstacles. 

There are several contributions of this study to the field of undergraduate 

mathematics education. Firstly, focusing on specific mathematical content, it provides a 



finer and deeper analysis of students' understanding of linear algebra. Secondly, focusing 

on methodology, it introduces an effective data collection tool to investigate students' 

learning of mathematical concepts. Thirdly, focusing on pedagogy, it enhances the 

teaching of linear algebra by developing a set of example-generation tasks that are a 

valuable addition to the undergraduate mathematics education. The tasks I have designed 

can be used in assignments, tutorials, and other educational settings serve not only as an 

assessment tool but also as an instructional tool that provides learners with an opportunity 

to engage in mathematical activity. 

Keywords: linear algebra, mathematics education, learner-generated examples, example- 
generation tasks, postsecondary 
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CHAPTER 1: INTRODUCTION 

There is little doubt that linear algebra is a fundamentally important course in 

undergraduate studies. It is required for students majoring not only in mathematics, but 

also in engineering, physics, and economics, to name just a few. And yet, there has not 

been much research into students' understanding and learning of linear algebra. It is time 

to give this problem the attention it deserves. 

1.1 Personal motivation 

In the Fall 2003, I started working in the Algebra Workshop at Simon Fraser 

University. One of the courses serviced by the workshop was an elementary linear 

algebra course. Right away, I was struck by the organization and presentation of the 

material in this course. It was very different from the linear algebra course that I took as a 

freshman. The course I remember was axiomatic and theoretical, where an abstract 

vector space over a field was defined in the first lecture. There were no applications 

discussed and very few examples presented. In contrast, the linear algebra course I 

encountered in the workshop began with the introduction of systems of linear equations, 

followed by the concepts of linear algebra in the context of Rn, and only later, the formal 

definition of a general vector space was introduced. It seemed to me that this approach 

was more conducive to students' learning. Nonetheless, despite this concrete and gradual 

development of the theory, students were having difficulties grasping the material. 



As I observed students' struggles with linear algebra concepts, I tried to probe the 

depth of their understanding. Unfortunately, in many cases, it boiled down to reproducing 

the procedures or worked examples from the textbook without any real comprehension. 

While helping students to interpret the questions, I noticed that using examples in my 

explanations improved students' understanding. Not only did examples help the students, 

coming up with my own examples provided a different view of the concepts for me as 

well. Generating examples made me think of the connections between the objects in 

linear algebra that had not occurred to me before. Reflecting on my own experiences in 

the workshop, I encouraged students to use examples in their learning. 

In one particular episode, one of the students, Ted, came to me with the questions: 

"Is the intersection of the two subspaces of a vector space V a subspace of V? Is 
the union of the two subspaces of a vector space Va subspace of V?" 

Ted had to either give a proof of a positive answer or provide a counter-example. He 

started to prove the first statement, but was not convinced by his proof. He could not see . 

why the statements should be true or false. I suggested we consider specific subspaces of 

R ~ ,  such as planes and lines, to investigate the above questions. Once we analyzed the 

questions with several examples in a context familiar to Ted, he had a clearer idea of 

what the subspace of a vector space was, and what the union and intersection of the 

different subspaces were. 

There were many such episodes that demonstrated how helpful examples were in 

students3 learning. It seemed it would be a useful addition to teaching the course. 

Linear algebra is not an easy subject. The symbolic representations and formal 

definitions can leave many students with little or no understanding of the concepts. The 



learner-generated examples seemed to be an important tool to help this understanding. I 

have always been interested in undergraduate mathematics education, and my experience 

in the workshop helped me narrow down and shape my research questions. 

1.2 Rationale, purpose of the study, and research questions 

Many mathematicians and mathematics educators note that linear algebra is one 

of the most difficult subjects to teach and for students to understand. In order to address 

this difficulty, the didactic study, that is, an analysis of students' understanding of linear 

algebra, together with an epistemological analysis of the subject is necessary. To my 

knowledge, the previous research in mathematics education focused mostly on the 

teaching of linear algebra, and there is not significant work done on students' learning. 

The common findings expressed in.the literature show that many students, at best, could 

recreate memorized algorithms in a familiar situation or task. Teaching and learning are 

closely related. In order to design effective instructional strategies and to improve 

students' learning, it is essential to'understand better how people learn, how they create 

their knowledge, and what factors impede it. For those engaged in the teaching of linear 

algebra, it is beneficial to know the learning processes involved. These issues have not 

been addressed in the research on linear algebra in detail. The lack of attention to 

students' understanding and learning of linear algebra concepts constitutes a gap in the 

research. The current study attempts to fill the gap by exploring students' understanding 

of several of the central concepts of linear algebra: vectors and vector spaces, linear 

dependence and independence, linear transformations, and basis. In addition, this 

research identifies the difficulties that students experience learning the concepts of linear 

algebra and possible sources of these difficulties. Having understanding of students' 



understanding of linear algebra will guide the design of pedagogical strategies that allow 

students' to construct an understanding of the mathematical concepts as well as to apply 

them in different situations. 

Working in the Algebra Workshop I noticed that examples helped students make 

sense of the linear algebra concepts, theorems, and problems. Examples have been used 

extensively in mathematics education as a pedagogical tool. It is known that employing 

examples for explanation is beneficial to students' understanding of mathematical 

situations. The question arises whether and in what way learner-generated examples 

would affect students' understanding. Research indicates that the construction of 

examples by students contributes to their learning. Watson and Mason (2002, 2004), in 

their analysis of learning by involving students directly in construction activities, showed 

that such activities led students to reorganize their knowledge to fit the kind of examples 

the teacher was seeking. It helped students to move away from routine algorithms and 

limited perceptions of concepts, and towards wider ranges of objects. 

The purpose and focus of this study is two-fold. On one hand, it explores 

students' understanding of linear algebra through the lens of learner-generated examples. 

For this study, I chose to look at several key concepts of linear algebra: vectors and 

vector spaces, linear dependence and independence, linear transformations, and basis. I 

designed tasks, requiring participants to generate examples related to the above concepts, 

to explore what students' responses, examples and construction processes, may reveal 

about their understanding. Furthermore, this study not only identifies some of the 

difficulties that students experience but also highlights the sources of these difficulties 

and opens possible avenues for dealing with them. On the other hand, the study 



investigates how effective example-generation tasks are as research tools for extending 

the knowledge about (mis)conceptions and obstacles in students' thinking, in the context 

of linear algebra. The role attributed to learner-generated examples in the past focused on 

the pedagogical purposes. In this research, I examine whether example-generation tasks 

may provide a finer granularity to, and reveal weaknesses and gaps in, students' 

understanding of the subject. 

In summary, there are two research questions addressed in this study: 

1. What is students' understanding of the key concepts of linear algebra? 

What difficulties do students experience when engaged in the example- 

generation tasks? 

What can example-generation tasks reveal about students' 

understanding of mathematics? Are these tasks effective and useful as a 

data collection tool for research in mathematics education? 

1.3 Thesis organization 

Chapter 2 presents an overview of research on linear algebra, while chapter 3 

acquaints the reader with the literature on the use of examples in mathematics education. 

The latter chapter discusses various types of examples such as reference examples, 

generic examples, counter-examples, examples provided in the instruction, and learner- 

generated examples. 

Research on learning linear algebra falls within research on learning 

undergraduate mathematics, a field that only in the past two decades received attention in 

mathematics education research. Several theoretical frameworks have been developed to 



interpret students' learning in other undergraduate mathematics courses. Two frameworks 

that I found more appropriate for this study, to interpret learner-generated examples, are 

APOS (Action-Process-Object-Schema) (Asiala, Brown, DeVries, Dubinsky, Mathews, 

and Thomas, 1996) and concept image /concept definition (Tall and Vinner, 198 1). These 

frameworks are discussed in Chapter 4. 

The main focus of Chapter 5 is the setting of the study. This chapter describes the 

participants in this research, the course, and the methodology used for gathering data. 

Furthermore, it presents the example-generation tasks used in the study. It offers the 

rationale for considering each task as an appropriate instrument for the study, and 

suggests anticipated participants' responses. 

Chapter 6 is devoted to the results and analysis of participants' responses that are 

interpreted through the lens of genetic decomposition and the framework of concept 

imagelconcept definition. It fkther identifies the connections between linear algebra 

concepts that are present in students' schemas. 

The summary of the findings and the major outcomes of this research are 

discussed in Chapter 7. This chapter also presents the contributions of this study. Firstly, 

the study provides a better understanding of students' learning of specific topics in linear 

algebra. Secondly, it introduces a methodology for investigating students' understanding 

of mathematics. Thirdly, the study presents pedagogical tools for engaging students in 

mathematical activity. 



CHAPTER 2: RESEARCH ON LINEAR ALGEBRA 

In the past two decades, there has been a growing body of research on curriculum 

development, students' learning, and the place of technology in the teaching of calculus. 

Linear algebra is the second most popular course, after calculus, in the undergraduate 

mathematics curriculum. Despite its popularity, linear algebra has received 

disproportionate attention in mathematics education research. This chapter reviews the 

research on linear algebra relevant to this study. 

2.1 Concerns expressed in the literature 

There is a common concern expressed in the literature that students leaving a 

linear algebra course have very little understanding of the basic concepts, mostly 

knowing how to manipulate different algorithms. Carlson (1993) stated that solving 

systems of linear equations and calculating products of matrices is easy for the students. 

However, when they get to subspaces, spanning, and linear independence students 

become confused and disoriented: "it is as if the heavy fog has rolled in over them." 

Carlson further identified some reasons why certain topics in linear algebra are so 

difficult for students. Presently linear algebra is taught far earlier and to less sophisticated 

students than before. The topics that create difficulties for students are concepts, not 

computational algorithms. Also, different algorithms are required to work with these 

ideas in different settings. 



Dubinsky (1997) pointed out different sources of students' difficulties in learning 

linear algebra. First, the overall pedagogical approach in linear algebra is that of telling 

students about mathematics and showing how it works. The strength, and at the same 

time the pedagogical weakness, of linear situations is that the algorithms and procedures 

work even if their meaning is not understood. Thus, students just learn to apply certain 

well-used algorithms on a large number of exercises, for example, computing echelon 

forms of matrices using the Gaussian row elimination method. Secondly, students lack 

the understanding of background concepts that are not part of linear algebra but important 

to learning it. Dorier, Robert, Robinet, and Rogalski (2000) identified students' lack of 

knowledge of set theory, logic needed for proofs, and interpretation of formal 

mathematical language as being obstacles to their learning of linear algebra. Thirdly, 

there is a lack of pedagogical strategies that give students a chance to construct their own 

ideas about concepts in linear algebra. 

Another concern has to do with the way linear algebra is taught in the . 

undergraduate programs. As the applications of linear algebra range over a broad range of 

disciplines such as engineering, computer science, economics, and statistics, the majority 

of students taking the course come from non-mathematics majors. Therefore, a course in 

linear algebra should accommodate these students. To address this concern the Linear 

Algebra Curriculum Study Group (LACSG), consisting of mathematicians, 

representatives of client disciplines, and mathematics educators, was formed in January 

1990. This group generated a set of recommendations for the first linear algebra course: 

1. The syllabus and presentation of the first course in linear algebra must respond 
to the needs of client disciplines. Students should see the course as one of the 
most potentially useful mathematics courses they will take as an undergraduate. 



2. Mathematics departments should seriously consider making their first course in 
linear algebra a matrix-oriented course. It should proceed from concrete and 
practical examples to the development of general concepts, principles and theory. 
At the same time, representatives from client disciplines have stressed the need 
for a solid, intellectually challenging course with careful definitions and 
statements of theorems, and proofs that show relationships between various 
concepts and enhance understanding. 

3. Faculty should consider the needs and interests of their students as learners. 

4. Faculty should be encouraged to utilize technology in the first linear algebra 
course. 

5. At least one "second course" in matrix theory / linear algebra should be a high 
priority for every mathematics curriculum (Carlson, Johnson, Lay, Porter, 
Watkins, and Watkins, 1997). 

2.2 Teaching and learning linear algebra 

In France, a group of researchers developed a program on the teaching and 

learning of linear algebra in the first year of science university (Dorier et al, 2000). This 

work included the design and evaluation of experimental teaching built upon an analysis 

of the historical development, didactics and students' difficulties. They identified the 

source of students' difficulties as the obstacle of formalism that relates to the nature of 

linear algebra itself. Historically, linear algebra evolved over several centuries into a 

unifying and generalizing theory. This subject is presented to students as a completed 

package. Therefore, according to Dorier et al, one main issue in the teaching of linear 

algebra is to give students better ways of connecting the formal objects of the theory with 

their previous conceptions, in order to promote more intuitively-based learning. In their 

research, Dorier et a1 (2000) built teaching situations leading students to reflect on the 

nature of the concepts with explicit reference to students' previous knowledge, what 

researchers called meta-lever. The evaluation of the research proved that students that 



had followed an experimental teaching based on this approach were more efficient in the 

use of the definitions, even in formal contexts. 

Students construct their own knowledge and it is important for them to connect 

new ideas with prior experience or knowledge to develop an understanding. As geometry 

is intrinsically linked to visual perception, it is a potential source for intuitive thinking. 

Harel (1989, 1990, 1997, 2000) proposed exposing students to some linear algebra 

methods and concepts at the secondary level, as a foundation for the abstraction and 

precision of college linear algebra courses. He noted that the incorporation of geometric 

thinking in teaching the first course in linear algebra makes a significant contribution to 

students' understanding. Accessing students' knowledge of geometry can provide 

important background support for language and meaning in linear algebra as well as 

mental images for a large number of concepts. However, the incorporation of geometry in 

linear algebra courses must be sequenced in such a way that students understand the 

context of investigation. For example, thinking about vectors and transformations in a 

geometric context links. these concepts with more familiar ones. However, many students 

do not see it as a bridge to abstract algebraic concepts. They do not see diagrams as 

representations of the abstract setting but as the actual object of inquiry, and seem to take 

such illustrations literally. New findings, reported in Harel (2000), indicated that when 

geometry is introduced before the algebraic concepts of linear algebra have been formed, 

students remain in the restricted domain of geometric vectors and do not move up to the 

general case. 

Since linear algebra emerged as a union of various disciplines or areas of 

mathematics, it brought together different representations or descriptions as well. Hillel 



(2000) distinguished three modes of description in linear algebra: geometric, algebraic, 

and abstract. Abstract mode refers to using the language and concepts of the general 

formalized theory, including vector spaces, subspaces, linear span, dimension, operators, 

and kernels. Algebraic mode refers to using the language and concepts of a more specific 

theory of R" including n-tuples, matrices, rank, solutions of systems of linear equations, 

and row space. Geometric mode refers to using the language and concept of 2- 

dimensional and 3-dimensional space including directed line segments, points, lines, 

planes, and geometric transformations. Representations allow one to go back and forth 

between the modes. However, different representations are the source of errors and 

confusion for many students. For example, representing vectors with arrows and points, 

and shifting back and forth between the two representations, while it may be unconscious 

for teachers, creates problems for students. The relationship between arrows and points 

on a line (plane) is not so clear, particularly if one moves away from the origin. 

Sierpinska (2000) considered three modes of thinking in linear algebra: synthetic 

geometric, analytic-arithmetic, and analytic-structural, that correspond to its three 

interacting 'languages': visual geometric, arithmetic, and structural. For example, 

thinking of the possible solutions to the system of three linear equations in three variables 

as an intersection of planes in R~ corresponds to the synthetic-geometric mode. If one 

thinks about the same problem in terms of row reduction of a matrix, one is in the 

analytic-arithmetic mode. Finally, thinking about the solutions in terms of singular or 

invertible matrices would correspond to analytic-structural mode. Each of the three 

modes of thinking leads to different meanings of the notions involved. However, these 

meanings are not equally accessible to beginning students. As a result, students have 



trouble transferring from one mode to another, and seeing which mode is more 

appropriate to use in a given situation. For example, students attempted to solve the tasks 

on transformations presented in purely geometric form in an analytic way, as if the 

standard coordinate system was in place. They implicitly referred to the Cartesian 

coordinate system. Consequently, introducing basic linear algebra concepts with the aid 

of dynamic geometry software using a coordinate-free approach did not facilitate the 

notion of general basis. A computer screen as well as paper implicitly provides a 

preferred coordinate system. 

Haddad (1999) reflected on two teaching experiences in linear algebra: one 

traditional, involving an algebraic-only approach, and one experimental, involving a 

geometric-only approach using the geometry software Cabri. He concluded that neither of 

these approaches in isolation resulted in a deep understanding. However, there are 

problems with multiple representations of the same concept as well. Pimm (1986) pointed 

out that the carry-over of the terminology of a domain to a new setting carries with it the 

expectations that the same (or at least, similar) relationships are going to hold. One 

problem is that some borrowed images or relations may be inappropriate to the expanded 

or new situation. For example, going back and forth between Rn and any finite- 

dimensional vector space creates difficulty and confusion between a vector in V and its 

representation or isomorphic coordinate vector in Rn. In addition, linking notions to the 

properties specific to Rn in solving systems of linear equations becomes an obstacle to 

understanding the general theory and to the acceptance of other kinds of objects such as 

functions, matrices, or polynomials as vectors (Hillel, 2000). 



2.3 Summary 

This chapter presented an overview of research in learning and teaching linear 

algebra. Several views can be noted in reference to the course and teaching of the subject. 

On one hand, the course should proceed from concrete and practical examples to formal 

theory (Carlson et al, 1997). On the other hand, this creates obstacles for students since 

they tend to stick with concrete objects and not see the abstract structures and properties 

(Sierpinska, 2000). For example, thinking of vectors as n-tuples prevents them from 

conceiving of functions or matrices as vectors. Some research points out the need for 

multiple representations and visualizations in teaching linear algebra (Haddad, 1999), 

while other research indicates that it creates confusion for students (Hillel, 2000). Most 

students tend to think in practical rather than theoretical ways, and this affects their 

reasoning, and consequently, understanding in linear algebra. 

The different methods of teaching linear algebra have been investigated from a 

variety of perspectives. However, students' understanding of the subject has not been 

examined through student-generated examples. This study discusses students' difficulties 

with constructing examples in linear algebra, and explores possible correlations of 

students' understanding with the generated examples. In the following chapter, I will 

discuss the role of examples and their use in mathematics education. 



CHAPTER 3: EXAMPLES IN MATHEMATICS 
EDUCATION 

Examples play an important role in mathematics education. Whether provided by 

an instructor or textbook as an illustration or constructed by students, they have been 

used in teaching throughout the ages. This chapter discusses various uses of examples in 

mathematics education. 

3.1 Types of examples in mathematics education 

What is an example? Watson and Mason (2004) used example to refer to: 

"illustrations of concepts and principles, such as a specific equation which illustrates 

linear equations, or two fractions which demonstrate the equivalence of fractions; 

placeholders used instead of general definitions and theorems, such as using a dynamic 

image of an angle whose vertex is moving around the circumference of a circle to 

indicate that angles in the same segment are equal; questions worked through in 

textbooks or by teachers as a means of demonstrating the use of specific techniques - 

commonly called 'worked examples'; questions to be worked on by students as a means 

of learning to use, apply, and gain fluency with specific techniques - usually called 

'exercises'; representatives of classes used as raw material for inductive mathematical 

reasoning, such as numbers generated by special cases of a situation and then examined 

for patterns; specific contextual situations which can be treated as cases to motivate 

mathematics" (p. 17). 



There are several types of examples identified in literature. For example, 

Michener (1978) described four types of examples distinguished by their use in teaching 

and learning, which can motivate concepts and results: start-up examples, reference 

examples, model examples, and counter-examples. Start-up examples help one get started 

in a new subject by motivating basic definitions and results and setting up useful 

intuitions. They motivate fundamental concepts, can be understood by themselves, 

provide a simple and suggestive picture, and their specific situation can be lifted up to 

general case. Reference examples are examples that one refers to repeatedly. They are 

basic, widely applicable and provide a common point of contact through which many 

results and concepts are linked together. In linear algebra, a very usefhl reference 

example is the collection of 2x2 matrices whose entries are 0's and 1's. Model examples 

are generic examples. They suggest and summarize expectations and default assumptions 

about results and concepts. Counter-examples show that a statement is false. They 

sharpen distinction between concepts. 

Some examples are too extreme to be representative of entire classes, but they do 

show what happens at the 'edges', referred to as boundary examples. They may prevent 

the misunderstanding of the scope of a concept. There are also non-examples, examples 

that demonstrate the boundaries or necessary conditions of a concept (Watson and 

Mason, 2004). It is common experience that learners apply a theorem without checking 

all the conditions. Examining non-examples or constructing their own examples can force 

learners to consider the importance of the theorem and the significance and necessity of 

the conditions. 



Mason and Pimm (1984) pointed out that the role of example is to help students 

see the generality, which is represented by the particular. In order for examples to fulfil 

this role, students need to see examples as representing some more general statement and 

appreciate the generality that is being particulated (Mason, 2002). A generic example is 

an actual example, but one presented in such a way as to bring out its intended role as the 

carrier of the general. The study by Rowland (1998) suggested that generic examples can 

be used for proving theorems in number theory and provide a better understanding of the 

topic as opposed to formal proof. In the teaching context, the purpose of proof is to 

explain, to illuminate why something is the case rather than be assured that it is the case. 

The generic example serves to provide insight as to why the proposition holds true. 

Although given in t e q s  of a particular number, the generic proof nowhere relies on any 

specific properties of that number. 

Counter-examples are used frequently in mathematics instruction. Learners can be 

asked to construct counter-examples in order to explore the limitations of a concept or 

relationship, as well as to challenge conjectures. A common task involving construction 

of counter-examples is the 'True I False task' where students have to identify the validity 

of the mathematical statements and provide a counter-example if the statement is false. 

However, counter-example construction turns out to be deeply problematic, especially 

where learners have not had a history of personal construction (Watson and Mason, 

2004). 

The status of a counter-example is very powerful compared to the status of other 

examples. One counter-example is enough to draw very definite conclusions, while 

several supporting and verifying examples do not suffice. Many students are not 



convinced by a counter-example and view it as an exception that does not contradict the 

statement in question. Zaslavsky and Ron (1998) examined to what extent students 

understand the special role of counter-examples in refuting false mathematical 

statements; how far they succeed in generating correct counter-examples; and what 

difficulties they encounter. Many students did not consider a counter-example as 

sufficient evidence to prove the statement false. Students were more persistent in their 

view that a counter-example is sufficient for refuting a geometric statement than an 

algebraic one. The findings also suggest that many students who accepted a counter- 

example as sufficient evidence for refuting a mathematical statement were not able to 

distinguish between an example that satisfies the conditions of a counter-example and 

one that does not satis@ them. 

Peled and Zaslavsky (1997) investigated different types of counter-examples and 

the extent to which counter-examples generated by in-service and pre-service teachers 

have explanatory nature. Their findings suggest that there are several categories of 

counter-examples according to the example's explanatory power and ranging from 

specific to general. Specific counter-examples do not include any reference to or 

explanation of an underlying mechanism of a more general case. General counter- 

examples provide the mechanism that explains a claim being refuted and shows how the 

counter-examples can be generated. 

Many students rely on worked examples in the textbook as they provide 

illustrations of the principles that the text aims to introduce. Chi and Bassok (1989) found 

that studying examples in textbooks for learning did not give students understanding of 

the material, just syntactic representation of procedures to apply. As a result, they could 



not adjust and modifl the examples to solve other problems. Learning fiom examples is 

diminished if the statements in the solution are not explicit about the conditions under 

which the actions apply. However, if justifications are made too explicit, the examples 

still may be unclear and not understandable by some students. Students need to 

complement the procedures with self-explanation consistent with their understanding of 

the text. 

Rowland, Thwaites, and Huckstep (2003) looked at how pre-service elementary 

teachers use examples in the classroom and how it is related to their content knowledge 

of mathematics. They identified two different uses of examples in teaching: inductive, i.e. 

providing or motivating students to provide examples of something, and illustrative and 

practice-oriented. The examples used for pedagogical purposes should be the outcome of 

a reflective process ofchoice on the part of a teacher, an informed selection from the 

available options. However, the researchers found that this was not the case for some 

teachers. In particular, teachers' poor choice of examples included calculations to 

illustrate a procedure when another procedure was more appropriate, and randomly 

generated examples when more carefilly chosen examples were more suitable. 

3.2 Learner-generated examples 

The above discussion looked at the types of examples, which were in most 

situations provided for learners rather than constructed by learners. In fact, learners are 

rarely asked to construct examples for mathematical concepts explicitly, especially in the 

postsecondary level mathematics courses. Watson and Mason (2004) claimed that 'the 

examples learners produce arise from a small pool of ideas that just appear in response to 

particular tasks in particular situations' (p.3). The authors referred to these pools as 
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example spaces. Watson and Mason (2004) further advocated two principles for the use 

of learner-generated examples. First, learning mathematics consists of exploring, 

rearranging and extending example spaces, and the relationships between and within 

them. Through developing familiarity with those spaces, learners can gain fluency and 

facility in associated techniques and discourse. Second, experiencing extensions of 

learner's example spaces (if sensitively guided) contributes to flexibility of thinking not 

just within mathematics but perhaps even more generally, and empowers the appreciation 

and adoption of new concepts. Learners will model their methods of mathematical 

enquiry on those presented, used and expected of them by the teacher. The teacher 

therefore has a role in providing a model of mathematical questioning and example 

creation as well as organizing learning in such a way as to encourage it. 

Constructing examples of objects promotes and contributes to learning, when 

viewed as becoming better at constructing and reconstructing generalities. By actively 

working on examples, one learns about classes of objects; by constructing objects with 

specified constraints, one learns about the structure of the objects, and comes to 

appreciate the concepts they exemplify. Furthermore, when a learner generates an 

example under a given constraint, a mental construction is created in hisher mind in 

parallel. When one constructs an example for a particular concept, which satisfies certain 

properties, s h e  also constructs a link between two (or more) concepts (Hazzan and 

Zazkis, 1996). 

The task of generating an example is considered powerful in terms of revealing 

strengths and weaknesses. A limited set of early examples has been shown to cause a 

wide variety of misconceptions, because it is very common for learners to identify 



concepts with one or two early examples a teacher has showed them. Since these early 

examples are often simple ones, the learner is left with an incomplete and restricted sense 

of the concept, as was found by Zaslavsky and Peled (1 996). Their study was designed to 

identify difficulties associated with the concept of binary operation regarding the 

associative and commutative properties and to investigate possible sources of these 

difficulties. The findings of Zaslavsky and Peled's study show that the concept image of 

binary operation held by teachers and student teachers is primitive, influenced by past 

experiences of both groups. This is evident in their similar distributions of types of 

difficulties as well as in their similar tendencies to suggest examples from a limited, 

familiar and basic content scope. As the study also showed, experienced teachers were 

more willing to generate unconventional examples that could have been the result of 

constantly having to generate examples in the classroom. 

Dahlberg and Housman (1997) suggested that a student's explanation of hisher 

understanding of the concept definition could reveal the student's concept image, 

discussed in detail in Chapter 4, and also cause further development in the student's 

concept image. In their study, upper level undergraduate mathematics students were 

given a definition of a fine function, were asked to study the definition and write down 

what comes to mind, and then answer a set of questions. The authors found that students 

who consistently employed example generation were able to encapsulate more examples 

into their concept image of fine function, and were more able to use these examples than 

those who primarily used other learning strategies. They suggested that it might be 

beneficial to introduce students to new concepts by requiring them to generate their own 

examples or have them verify and work with instances of a concept before providing 



them with examples or commentary. This coincides with the suggestion by Watson and 

Mason (2002) that learner-generated examples are useful for learning new concepts. By 

constructing examples learners construct and extend their example spaces. As learners 

repeatedly construct example spaces associated with a concept, they are building a 

concept image by relating things that come to mind with a definition or instructions. 

3.3 Summary and conclusion 

The purpose of this chapter was twofold: to introduce the reader to the different 

types of examples and to describe a range of use of examples in mathematics education. 

Several types of examples are noted in the literature: start-up examples, reference 

examples, modellgeneric examples, counter-examples, boundary examples, and non- 

examples. Examples offered by teachers or textbooks are used to provide, or to motivate 

students to provide, examples of something, or to illustrate mathematical situations. For 

example, the generic example can have explanatory power and can offer insight as to 

why the propositions hold true. Watson and Mason (2004) advocate the pedagogical 

value of using learner-generated examples. For research purposes, learner-generated 

examples can give an indication about students' understanding of the subject. What types 

of examples do student produce when presented with the task? Do their examples 

conform to the given conditions and constraints? What difficulties do they encounter 

when faced with "give an example" tasks? 

Tasks prompting for learner-generated examples can be used to gain information 

about students' concept image. If learners are asked to come up with an object that has 

very little, if any, constraint but which is reasonably familiar, then all they do is select the 

first thing that comes to mind. It may be the prototypical representative of their concept 
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image. As constraints are added, learners may be forced to search for less obvious and 

unconventional examples, realizing that there are possibilities other than the ones that had 

come immediately to mind. Watson and Mason (2004) suggested that since 

exemplification involves copying given examples, or constructing, manipulating, and 

transforming the knowledge of the concept, or modifying familiar objects, it possibly 

leads to reorganization of the concept image. It can be a major influence in concept 

development. In the next chapter, I will explore the theories of learning and discuss 

theoretical frameworks applicable to this study to interpret students' example 

construction process. 



CHAPTER 4: THEORETICAL CONSIDERATIONS 

The issue of understanding how students learn has arguably that made the greatest 

impact on current mathematics education research. Using the lens of constructivism to 

interpret human cognition, a number of learning theories have been developed that 

focused research on learning mathematics by undergraduate students. Among them were 

Sfard's theory of Reification (1991), Tall and Vinner's Concept Image 1 Concept 

Definition theory (198 I), Dubinsky's Action-Process-Object-Schema theory (Asiala et al, 

1996), and Gray and Tall's framework of Procept (1994). All the theories listed above 

share a common underlying assumption that learning mathematics entails construction of 

knowledge. Having examined the different theories, I will briefly describe the two 

frameworks that appeared to be most appropriate for this study. APOS theory offers a set 

of mental constructions, actions, processes, and objects, necessary to learn mathematical 

concepts, and has been proven effective in designing undergraduate mathematics 

curriculum. The theory of concept image I concept definition provides an additional 

insight into learners' existing understanding of the mathematical concepts. 

4.1 APOS theoretical framework 

The APOS (Action-Process-Object-Schema) theoretical framework for modelling 

mathematical mental constructions was developed for research and curriculum 

development in undergraduate mathematics education (Asiala et al, 1996; Dubinsky and 

McDonald, 2001). The theoretical component of the framework is based on a 

constructivist theory rooted in Piaget's work on reflective abstraction. The theory 
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maintains that an individual's mathematical knowledge is developed through the 

construction of mental Actions, Processes, and Objects, which are organized and linked 

through Schemas. 

An action is a transformation of objects, perceived by an individual as being at 

least somewhat external. A process is an action that has been interiorized to the extent 

that the individual responds to internal rather than external cues. An object is an 

encapsulation of a process. It is determined by an individual's ability to reflect on 

operations applied to a particular process, to view the process as a totality, to realize that 

transformations (either actions or processes) can act on it, and to construct such 

transformations. An individual operating with an object conception of a transformation 

can also de-encapsulate the object into the component processes. An additional indication 

of an individual object conception is when s h e  refers to the properties of a mathematical 

concept (Hazzan and Zazkis, 2003; Hazzan, 1996). Tall, D., Tomas, M., Davis, G., Gray, 

E., and Simpson, A. (2000), in their discussion of the nature of an object being 

encapsulated, stated that objects are described by their properties, their relationships with 

other objects, and the ways in which they can be used. Therefore, "it is the use of 

language in a way that intimates properties, relationships, usage of a concept which 

indicates that the individual is, in fact, conceiving" algebraic concepts as objects (Tall et 

al, 2000, p.230). A schema consists of a structured collection of processes and objects. It 

represents the totality of knowledge that is connected (consciously or subconsciously) to 

a particular mathematical topic. A schema can itself be treated as an object and included 

in the organization of other schemas. 

In what follows, I will illustrate the application of the APOS theoretical 



framework to the concept of a system of linear equations. An individual operating with 

an action conception of a system of linear equations requires external cues that give 

precise details of the necessary steps. That is, in order to decide if a particular linear 

system has a solution, such a person has to find this solution explicitly or see that it does 

not exist. An individual operating with a process conception of a system of linear 

equations can decide whether this system is consistent or not and how many solutions it 

has by analyzing an echelon form of an augmented matrix of this linear system. An 

individual operating with an object conception of a linear system is able to construct 

linear systems with one, infinitely many or no solutions. S h e  should be able to answer 

conceptual questions such as explaining why a linear system Ax = b, where A is an mxn 

matrix with more rows than columns, cannot be consistent for all b in Rm. 

The APOS theoretical framework has been used to analyze and interpret students' 

constructions of mathematical knowledge in various undergraduate subjects such as 

calculus, abstract algebra, and differential equations. Based on the data analysis, the 

theory makes predictions that if a particular collection of actions, processes, objects, and 

schemas is constructed in a certain manner by a student, then this student will likely 

succeed in using certain mathematical concepts in certain problem situations. The 

detailed descriptions of schemas, called genetic decompositions, allow the researchers to 

hypothesize about how a learning process may occur. In Chapter 5, I will introduce the 

genetic decomposition of the following concepts of linear algebra: linear dependence and 

independence, column and null spaces, and linear transformation. 



4.2 Concept image 1 concept definition theoretical framework 

A second theory that has been used in the research on students' understanding in 

undergraduate mathematics as well is the theory of concept image and concept definition. 

It was introduced by Tall and Vinner (1981). They defined the concept image to describe 

the total cognitive structure that is associated with the concept including examples and 

non-examples, representations (symbolic, graphical, pictorial, verbal, etc.), definitions 

and alternative characterizations, properties, results, processes and objects, contexts, and 

the relationships among them. According to the researchers, the concept image is built up 

over the years through experiences of all kinds, changing as an individual meets new 

stimuli and matures. The concept image is distinguished from the evoked concept image, 

which is the portion of the concept image activated at a particular time. Depending on the 

situation or context, conflicting images may be evoked. When conflicting aspects are 

evoked simultaneously this creates confusion and can lead to erroneous results. 

Concept definition refers to a form of words used to specify that concept. There 

are two types of concept definition: a personal concept definition (a personal 

reconstruction by the student of a definition), and a formal concept definition (a concept 

definition accepted by the mathematical community at large). According to Tall and 

Vinner (1981), a student, when asked to define a concept, may respond with a personal 

concept definition, which may not agree with a mathematically acceptable formal concept 

definition but which instead might be described as an ad hoc description of his or her 

concept image. Thus, some parts of the concept image function as definitions. 

The concept image is built on the experiences of the students. Solving a 

mathematical problem (or engaging in any mathematical activity) involves recalling or 



reconstructing examples, representations, objects, or processes and establishing 

connections to other examples, representations, objects, or processes. By presenting 

mathematics to a student in a simplified or restricted context, these simplified features 

become part of the individual concept image. Later these cognitive structures can cause 

serious cognitive conflict and act as obstacles to learning (Tall, 1989). For example, the 

tangent to a circle touches the circle at one point only and does not cross the circle. 

Vinner (1983) observed that many students believed that a tangent to a more general 

curve touches it, but may not cross it. When students were asked to draw the tangent to 

the curve y = 3 at the origin, many drew a line a little to one side which did not pass 

through the curve. 

The distinction between the concept image and concept definition brings out two 

ideas about students' learning of mathematics. First, around any mathematical concept, 

students' thinking is strongly influenced by the examples, non-examples, representations, 

and contexts in which they have previously experienced the concept. Second, students do 

not typically refer to a formal definition in response to mathematical tasks but rather rely 

entirely on their concept image. Tall (1988) observed that when students meet an old 

concept in a new context, it is the concept image, with all the implicit assumptions 

abstracted from earlier contexts, that responds to the task. Referring to the concept 

definition of a function, Vinner (1983) claimed that in order to handle concepts one needs 

a concept image and not a concept definition and when the concept is introduced by 

means of a definition, it will remain inactive or even be forgotten. Hare1 (2000) noted that 

even though students were exposed to the same formal concept definition of a vector 

space, their performances in solving problems that could be solved directly by applying 



the definition were different. This was because the students were exposed to different 

experiences applying the formal definition that resulted in formation of different concept 

images. In addition, even when students can recall a concept definition, the concept 

definition and the concept image might conflict with or contradict one another. Students 

may be able to reproduce the formal concept definition without any understanding of it or 

without having a connection to their concept image. Vinner (1997) referred to this 

phenomenon as pseudo-conceptual understanding. 

A potential conflict factor occurs when part of the concept image conflicts with 

another part of the concept image or concept definition (Tall and Vinner, 1981). Such 

factors can seriously impede the learning of a formal theory. For instance, students often 

form a concept image af "sn+s" to imply Sn approaches s, but never actually reaches 

there. Thus, students infer that 0.9 is not equal to 1 because the process of getting closer 

to 1 goes on for ever without ever being completed. Gaining insight into the variety of 

concept images may suggest ways in the teaching and learning mathematics that reduce 

the potential conflict factors, for instance, by offering a broad range of examples and non- 

examples necessary to gain a coherent image (Tall, 1988). When a teacher is aware of 

possible conflict images it may help to bring incorrect images to the surface and explore 

the conflict productively. 

4.3 Summary 

The APOS theory and the theory of concept image and concept definition have 

been used extensively in the research of students' understanding in mathematics. The 

APOS theory is a tool that can be used objectively to explain students' difficulties with a 



broad range of mathematical concepts and to suggest ways that students learn these 

concepts (Dubinsky and McDonald, 2001). Thus, this theory was selected for this study 

as a lens for analyzing students' construction of understanding of the concepts of linear 

algebra. The idea of schema is very similar to the concept image introduced by Tall and 

Vinner (1 98 1). The latter framework provides an additional perspective on students' 

understanding and is used in this study as well. Analyzing students' concept images can 

provide insight into learners' existing understanding of the fundamental concepts in 

linear algebra. Investigating potential conflict factors can further inform teaching 

practice. 



CHAPTER 5: RESEARCH SETTING 

5.1 The course 

Math 232, 'Elementary Linear Algebra', is a standard one-semester introductory 

linear algebra course at Simon Fraser University. It is a required course not only for 

mathematics majors but also for students majoring in computing science, physics, 

statistics, etc. The course is conducted through three one-hour lectures per week, for 13 

weeks. In addition to regularly scheduled lectures, students registered in the course are 

entitled and encouraged to come to the open workshop for assistance. At the workshop 

students meet with teaching assistants and other students, and work together to 

understand mathematics in a friendly and helpful environment. Assessment of the 

students is based on the weekly homework assignments, two midterms and a final exam. 

The content of the course includes vectors, systems of linear equations, matrices, 

linear transformations, vector spaces, eigenvalues and eigenvectors, orthogonality, 

distance and approximation. The required textbook for the course is 'Linear Algebra and 

Its Applications' by David C. Lay. Since the author was a member of the LACSG (Linear 

Algebra Curriculum Study Group), the textbook is strongly influenced by the LACSG 

syllabus. One of the LACSG recommendations was that geometric interpretation of 

concepts should always be included in linear algebra. Thus, the textbook offers a 

geometric perspective for concepts such as linear dependence and linear transformations. 

To give a better idea of the subject content included in the course and the chronological 

order in which it is taught, a summary of the syllabus is presented in Table 1: 



Table 1: Summary of syllabus 

Chapter 1 : Linear 
Equations in Linear 
Algebra 

Chapter 2: Matrix 
Algebra 

Chapter 3: Determinants 

Systems of Linear Equations; Row Reduction and Echelon 
Form; Vector Equations; The Matrix Equation Ax = b; 
Solution Sets of Linear Systems; Linear Independence; 
Linear Transformations 

Matrix Operations; The Inverse of a Matrix; 
Characterization of Invertible Matrices 

Introduction to Determinants; Properties of Determinants 

Chapter 4: Vector Spaces Vector Spaces and Subspaces; Null Spaces, Column Spaces, 
and Linear Transformations; Linearly Independent Sets, 
Bases; Coordinate Systems; Dimension; Rank; Change of 
Basis 

Chapter 5: Eigenvalues 
and Eigenvectors 

5.2 Participants 

The participants of the study were students enrolled in Math 232  in the Spring and 

Eigenvectors and Eigenvalues; The Characteristic Equation; 
Diagonalization; Eigenvectors and Linear Transformations 

Summer 2005 semesters. 68 students agreed to participate in the study in the Spring 2005 

semester offering of the course. Later in the course the students were asked to participate 

in individual, clinical interviews. A total of six students volunteered to participate in the 

interviews from both classes. These students represented different levels of achievement 

and sophistication. 

Chapter 6: Orthogonality 
and Least Squares 

5.3 Data collection 

The methodology used for gathering data includes both written and oral student 

responses. Thus, the data for this study comes from the following sources: students' 

written responses to the questions designed for this study and posed in three homework 

assignments described in detail below, and clinical interviews. There were informal 

Inner Product; Length and Orthogonality; Orthogonal Sets; 
Orthogonal Projections; The Gram-Schmidt Process; Least- 
Squares Problems 



observations of students' work in the class and open workshop throughout the course. 

These observations informed the design of questions for data collection. 

The written responses were collected from the three assignments, with later tasks 

designed in light of students' responses to the previous tasks. The students had one week 

to work on each assignment. The interviews were conducted during the last part of the 

course after the second midterm in both Spring and Summer 2005 semesters. In the 

Spring 2005 offering, the example-generation was emphasized during the course 

instruction. In particular, the distinction between "good examples" and "bad examples" 

was explained and illustrated with several concept definitions. For instance, a 2x3 matrix 

A =[: 01 is an example of a matrix in echelon form, but the properties of an 

echelon form of a matrix are not visible in this example. A matrix A = 

0 3 0 - 2 0  

offers more information about an example space of echelon forms of 

a matrix, and also puts limitations on what can be claimed. The lectures were presented 

with emphasis on understanding and promoting the building of mental models for the 

linear algebra concepts. The students were always encouraged to come up with the 'most 

testing' examples for the definitions and theorems they encountered. In addition, the 

textbook used in the course had a number of questions requiring students to construct 

examples for mathematical statements and objects. In the Summer 2005 offering, the 

course focused mainly on applications of linear algebra. Nonetheless, the textbook for the 

course remained the same. Therefore, students were still familiar with example- 

generation tasks. 



5.3.1 Interviews 

The emphasis of the interview was on the methods of constructing examples and 

thinking processes rather than evaluation of the final answer. The interviews were 

conducted in a private office and students were provided with pencil and paper. The 

students were informed that the interviews were not designed to judge or evaluate their 

knowledge but to follow their thinking process. The students were encouraged to attempt 

every task and were told that all answers (right or wrong) were equally important for the 

study. 

The students were asked to 'think aloud', that is, to describe everything they were 

doing and thinking while working on the problem. The interview questions were semi- 

structured. That is, the initial tasks were predetermined, but the students were asked for 

clarification or explanation during the interviews to justifir their examples and the choice 

of construction method. Occasional prompts were given by the interviewer to direct the 

students to correct their minor mistakes, to clarifir the wording of the question, or to help 

students advance with a question. All written work produced by the students was kept at 

the end of the interviews to complement their verbal work. The interviews were audio 

taped and carefully transcribed, cross-referencing with students' written work. 

The students were mostly confident during the interviews. The first set of 

questions was designed to familiarize them with the process of generating examples 

before attempting the main tasks, to make the students comfortable with the questions 

and to put them at ease. 



5.4 Tasks 

This section addresses the following questions: how the selection of tasks helps to 

answer research questions asked, the reasons the tasks I have designed were posed, and 

how the data were analyzed. As was mentioned in Chapter 1, the purpose of this study 

was to investigate what role example-generation tasks play in students' understanding of 

linear algebra and how they can inform researchers about students' understanding of the 

subject. For this study, a set of linear algebra concepts was selected to investigate the 

research questions. The concepts of vector, linear dependence and independence, linear 

transformations, vector spaces and bases are some of the central concepts of linear 

algebra. Research has shown that students have difficulty with these concepts (Dorier, 

2000; Carlson et al, 1997). Therefore, the tasks concentrate on these problematic areas. 

A summary of the tasks posed in the study is presented in Table 2. To follow the 

example-generation process, Task 1 was included in the interview questions as well. 

Having students generate examples and justify their choices through written tasks and in . 

an interview setting provided an opportunity not only to observe the final product of a 

student's thinking process but also to follow it through interaction with a student during 

hislher example-generation. The detailed analysis of the tasks is presented in Sections 

5.5.1 and 5.5.2. 



Table 2: Summary of tasks 

Tasks 

Task 1. Linear (in)dependence 
a). ( 1 ) .  Give an example of a 3x3 matrix 
A with real nonzero entries whose 
columns al, a2, a3 are linearly 
dependent. 
(2). Now change as few entries ofA as 
possible to produce a matrix B whose 
columns bl, b2, b3 are linearly 
independent, explaining your reasoning. 
(3). Interpret the span of the columns of 
A geometrically 
b). Repeat part a (involving A and B), 
but this time choose your example so 
that the number of changed entries in 
goingji-om A to B takes a d@erent value 
from before. 
Task 2. Column space /Null space 
Find an example i f  a matrix  with real 
entries for which Nu1 A and Col A have 
at least one nonzero vector in common. 
For this matrix A, find &vectors 
common to Nu1 A and Col A. I fT is the 
linear transformation whose standard 
matrix is A, determine the kernel and 
range of T. 
Task 3: Linear trans formations 
Let T be a linear transformationji-om a 
vector space V to a vector space Wand 
let u, v be vectors in Y. State whether 
the following is true or false, giving 
either a proof or a counter-example: if 
u and v are linearly independent then 
T(u) and T(v) are linearly independent. 

Topics covered 

Systems of linear equations, 
vector and matrix equations, 
and linear dependence and 
independence in R" 

Matrix operations, Invertible 
Matrix Theorem, subspaces 
associated with matrices, 
general vector spaces, and 
linear transformations 

Interview 
HW / 
Interview 



Task 4: Basis 
Let M be the space of real-valued 

2x2 

Subspaces, bases 

matrices. Let H be the subspace of M 
2x2 

consisting of all matrices of the form 

1- where a, b, c are real. 
L J 

(1). Determine dim H. 
(2). Give a basis for H. 
(3) .  Expand it to a basis for M2x2. 

Task 5: Linear transformations 
(revisited) 
(a). Give an example of a linear 
transformat ion. 

:b). Give an example of a linear 
transformation from R2 to R2 that maps 

Lhe vector [p] to the vector [:I. 
c). Give an example of a linear 
ransformation from R3 to R2 that maps 

he vector 1 to the vector &I [:I 
L J 

d). Give an example of a 
pansformation that is not linear. 

All above topics 

"ask 6: Vectors 
;ive an example of a vector. 

;ive an example of a vector from a 
'ifferent vector space. 

All above topics 

Give another example of a vector from a 
vector space which is fundamentally 
different from the first two. 

Interview 

nterview 

The example-generation tasks may reveal students' (mis)understanding of the 

mathematical concepts. Furthermore, the written responses to the tasks also provide a 

description of collective example spaces related to the concepts involved, that is, example 

spaces local to a classroom or other group at a particular time, which act as a local 



conventional space (Watson and Mason, 2004). The tasks I have designed are non- 

standard questions that require understanding of the concept rather than merely 

demonstrating a learned algorithm or technique. In particular, Tasks 1 and 2 are highly 

original and, I believe, very instructive. In addition to analysis of the tasks from the 

research point of view presented in Section 5.5, the pedagogical value of the tasks is 

discussed in Chapter 7. 

5.5 Tasks analysis 

This section presents an analysis of the tasks used for data collection. For each 

task, I describe the purpose of the task, possible responses to the task, and how the 

theoretical frameworks of APOS and concept imagelconcept definition have been used to 

interpret students' responses. 

5.5.1 Tasks used for written responses 

Task I .  Linear (in)dependence 

a). (1). Give an example of a 3x3 matrix A with real nonzero entries whose columns al, 
az, a3 are linearly dependent. 

(2). Now change as few entries of A as possible to produce a matrix B whose columns bl, 
bz, b3 are linearly independent, explaining your reasoning. 

(3). Interpret the span of the columns of A geometrically 

b). Repeat part a (involving A and B), but this time choose your example so that the 
number of changed entries in going from A to B takes a different value from before. 

The prerequisite knowledge for many concepts in linear algebra is the linear 

dependence relation between vectors. The purpose of the task was to investigate students' 

understanding of the concept of linear dependence and linear independence of vectors, in 



particular, in R3. Many concepts of linear algebra are connected, and students should be 

able to use all these terms freely and with understanding. On one hand, this task connects 

the number of linearly independent columns in a matrix A, the number of pivots in an 

echelon form of A, and the dimension of the vector space spanned by the column vectors 

of A. On the other hand, it connects the minimum number of entries required to be 

changed in A to make its columns linearly independent, and the number of free variables 

in the matrix equation Ax = 0. This task also explores the possible proper subspaces of a 

vector space R3 (excluding the subspace spanned by the zero vector, Span(0)). It can be 

further extended to a 4x4 case, and then to the general case of nxn matrices. 

This is an open-ended task with no learnt procedures to accomplish it. The routine 

tasks ask students to determine if a set of vectors is linearly dependent or independent by 

applying the definition or theorems presented in the course. In part (al) of the task, the 

given and the question are reversed. Zazkis and Hazzan claim that 'such "inversion" 

usually presents a greater challenge for students than a standard situation' (1999, p.433). 

To complete Task l(a1) students have to adjust their prior experiences in order to 

construct a set of three linearly dependent vectors in R3, viewed as columns of a 3x3 

matrix A. 

Constructing a 3x3 matrix with linearly dependent columns 

There are several approaches for constructing an example for the Task l(a1). One 

can try a guess-and-test strategy - starting with an arbitrary 3x3 matrix with nonzero real 

entries and then checking whether its columns are linearly dependent; if not, change some 

entries and try again. 



The procedure to determine if a set of vectors is linearly dependent involves row 

reducing a matrix A with vectors as columns to see if the associated homogeneous linear 

system has a nontrivial solution, or equivalently if there are free variables. In the case of a 

square matrix A, this implies that an echelon form of A has a zero row. Thus, to construct 

a 3x3 matrix A with nonzero real entries whose columns are linearly dependent, one can 

explicitly start with such echelon form U of A and perform elementary row operations to 

eliminate the zero entries in U. Alternatively, one can perform elementary row operations 

mentally to construct: 

a matrix A with two identical rows; 

- a matrix A with one row being a multiple of another row. 

The procedure works since a sequence of elementary row operations is reversible 

and transforms a matrix into a row equivalent matrix, and row equivalent matrices have 

the same linear dependence relations between the columns. 

A more sophisticated approach calls for the use of the properties of a linearly 

dependent set of vectors to construct a matrix A.  One such property is the characterization 

of linearly dependent sets theorem: a set of two or more vectors is linearly dependent if 

and only if at least one of the vectors in the set is a linear combination of the other 

vectors. Applying this property to the set of three vectors {al, a2, a3} in R ~ ,  one can 

construct: 

a matrix - [a1 cal dal] - with two columns being multiples of the first one where 

a1 has nonzero real entries and c and d are both nonzero real numbers. Then 

az=cal+ 0a3; 



a matrix - [al a2 cal+da2] - with any two columns, a1 and a2, having nonzero 

real entries where a2 is not a multiple of al, and a3 = cal + da2. 

Constructing a 3x3 matrix with linearly independent columns 

The part (a2) of Task 1 asks students to construct a matrix B with linearly 

independent columns by changing as few entries in a matrix A as possible. Construction 

of a matrix B depends completely on the original choice of a matrix A. There are the only 

two cases of importance. If the columns ofA are multiples of one column, that is, A = 

[a1 cal da l ]  and so the rank of A is 1, then two entries have to be changed in A to 

construct B. Otherwise, two column vectors in a matrix A are linearly independent with 

the third vector being a linear combination of the other two, and so the rank of A is 2. 

Then it is sufficient to change only one entry in A to make the columns linearly 

independent. This is a crucial step in solving the second part of the task. 

There are several approaches possible for this part leading to both correct and 

incorrect results and conclusions. One may construct a matrix B correctly, that is, 

satisfying the condition of having linearly independent columns, but by changing more 

than the minimum number of entries of A. A construction leading to the incorrect matrix 

B, not having linearly independent columns, results from changing the correct number of 

entries in a matrix A but in incorrect positions. 

Examples alone cannot provide sufficient evidence for students' level of 

understanding. It is justifications of the constructions that indicate the possible conflicts 

and misconceptions. Thus, the interpretation and analysis of correct responses depend on 

and require investigating the explanations given for the correct constructions. 



Geometric interpretation of the span of columns of a matrix A 

There are two possible geometric interpretations of the span of the columns of A. 

If the columns of A are multiples of one column, the span is a line through the origin in 

R3. Otherwise, the span of columns of A is a plane through the origin in R3. 

Correct responses may be expressed either graphically, representing column 

vectors appropriately and indicating the linear dependence relation, or with words: a 

plane or a line in R3 through the origin. In the latter case, analysis of the justification is 

required to investigate a student's level of understanding. 

For this part, a student may give a geometric representation of the generic span of 

linearly dependent vectors in R3. Usually, it's a three dimensional space with three 

linearly dependent vectors located in the.xy-plane. This type of example is referred to as a 

figural example, a figural image which stands for and constitutes the associated concept 

(Watson and Mason, 2004). In this case, the concept is the linear dependence of vectors 

in R3. This representation may be completely disconnected from the actual matrix A, not 

only because the vectors are drawn in the incorrect location but also because it may show 

a vector space of erroneous dimension, for instance, a plane instead of a line. 

Another incorrect response may come from giving a geometric representation of 

the solution set of a matrix equation Ax = 0, or Nu1 A. In this case, a student is 

concentrating on a process of finding Nu1 A rather than Col A. Instead of providing a 

geometric interpretation of the span of the columns of A, students may identify the 

solution set of a homogeneous linear system Ax = 0 as a span of one or two vectors - a 

line or a plane, respectively. However, the source of the mistake does not lie in the 

geometric interpretation but in giving a geometric interpretation of an incorrect object. 
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Second round of Linear (in) dependence task 

In order to complete Task l(b) students have to create an example of a matrix A 

using a different type of linear dependence relation from the one they employed 

previously. The second part of the linear (in)dependence task pushes the student to think 

of another similar example with a change in one constraint. For this part, a student might 

associate the different number of entries required to be changed with a different linear 

dependence relation between vectors. 

Using the APOS theoretical framework for analyzing students' responses to Task 

1, one can identify different levels of students' understanding of the linear dependence 

concept. When students construct examples using random guess-and-test strategy, they 

may be operating with an action conception of linear dependence. They have to perform 

row reduction on a matrix to find out if its columns are linearly dependent. Students that 

construct examples of matrices with the same rows or rows being multiples of each other, 

i.e. inverting the row reduction procedure mentally, may understand linear dependence as 

a process. Students that emphasize relations between column vectors may have 

encapsulated linear dependence as an object, and consequently might be able to construct 

any set of linearly dependent vectors. 

The case of constructing a matrix A starting explicitly with an echelon form 

deserves special attention. A student may not be operating just with the process concept 

of linear dependence. To construct a matrix in this way requires more sophisticated 

knowledge and understanding. In the course, a linearly dependent set of vectors is 

defined in terms of solutions to a vector equation. A linear dependence relation for the 

columns of a matrix A corresponds to a nontrivial solution of Ax = 0. A student may 



realize that a matrix having linearly dependent columns has a certain echelon form. So 

the object, linear dependence, is de-encapsulated to construct an appropriate echelon 

form of a matrix corresponding to Ax = 0 having a nontrivial solution. Then the 

elementary row operations are performed on this echelon form to generate an example of 

A.  

The above is just one of the ways of interpreting students' understanding. 

However, one has to look at the construction of examples for both parts of Task 1 to seek 

a more complete picture. A student may answer Task l(a) of the question correctly but 

construct a matrix A for the second part with the same linear dependence relation and yet 

change a different number of entries from Task l(a). In this case, the answer will be 

incorrect. Seeing just one possibility for a linear dependence relation and not changing it 

for the other case may indicate the process conception of linear dependence, namely that 

a student is not able to analyze the linear dependence relation in a set of vectors without 

referring to specific elements. A student.may be at the action level of linear dependence if 

s h e  can construct a set of linearly dependent vectors but is having difficulty altering the 

vectors to create a linearly independent set. 

Task 2. Column space / Null space 

Find an example of a matrix A with real entries for which Nu1 A and Col A have at least 
one nonzero vector in common. For this matrix A, fwd &vectors common to Nu1 A and 
Col A. If T is the linear transformation whose standard matrix is A, determine the kernel 
and range of T. 

Every matrix has associated with it two intrinsic and complementary subspaces: 

the column space and null space. The column space of a matrix A is the set of all linear 

combinations of the column vectors of A,  or the span of the columns of A. The null space 

of the matrix A is the set of solutions to a homogeneous linear system Ax = 0. Both types 



of subspaces are related to the linear transformation x+Ax in that the column space of A 

is the range of the linear transformation and the null space of A is the kernel of the linear 

transformation. In the case where A is a square nxn matrix, the column space and null 

space of A are both subspaces of R", and have the zero vector in common. However, 

there are cases when these subspaces share nonzero vectors, and so we can ask how large 

their intersection might be. 

The purpose of Task 2 was to explore how students treat these special cases, or 

non-examples. Non-examples are examples which demonstrate the boundaries or 

necessary conditions of a concept (Watson and Mason, 2004). They can simultaneously 

be counter-examples to an implicit conjecture. In this task, a matrix A is a non-example 

of a square matrix with Cal A fl Nu1 A = (0). At the same time, it is a counter-example to 

the conjecture that for any square matrix A, Col A and Nu1 A have only the zero vector in 

common. 

In general, for a linear transformation T:V+W, the kernel and range of T lie in 

different vector spaces. Students get used to treating them as nonintersecting by 

definition. This task probes whether students realize that, when V = W, part of the range 

of T may be in the kernel. Overall, Task 2 can help researchers uncover what connection 

students build between the fundamental subspaces associated with matrices and linear 

transformations. 

A key realization in starting Task 2 is that a matrix A must be square in order for 

Nu1 A fl Col A to be non-empty. Further, a student might try 2x2 or 3x3 matrices first, in 

the search for an easy example. If A is not a zero matrix, Col A contains at least one 

nonzero vector - one of the nonzero columns of A. However, Nu1 A contains at least one 



nonzero vector if the homogeneous system Ax = 0 has a non-trivial solution, which 

happens if the columns of A are linearly dependent, or, equivalently, if A is not invertible. 

Not all singular matrices can serve as examples for this task. However, limiting 

the choice of examples to singular matrices reduces the potential search space. Again one 

can use a guess-and-test strategy to find a matrix satisfying given constraints. In this case, 

the level of understanding is not the same as in the guess-and-test approach above as 

there is an initial observation of the restricted example space. 

Another approach is to start with a general matrix, for instance, a 2x2 matrix 

[: :] and a vector [:I in Nu1 A, and set up the required system of equations: 

[: :I [:] = [K] a b 
for Nu1 A, and [ ] [:] = [I] where I, rER for Col A. The next 

c d 

step is to assign values to the variabies to satisfy the equations. As has to be a 

nonzero vector, it forces the matrix to be singular. However, unless explicitly stated in 

the solution, it may not be clear if a student is conscious of this fact. If the student is not, 

then the approach is just a symbolic version of the first guess-and-test strategy. 

One may start with another general situation, but less general than the previous 

one, by combining the requirement of the task that Col A and Nu1 A have a nonzero 

vector in common with the observation that a column of a matrix is a vector in Col A. 

Then one may construct a general matrix but let one of the columns be a vector in Nu1 A, 

or a solution to the homogeneous system, Ax = 0. Symbolically, let A = [: t] and x 



= with a and c not both 0. Then the corresponding homogeneous system is 

[: :] [:I = [:] , and one can easily find an example that satisfies this equation. 

Possible responses and approaches to this task, resulting in both correct and 

incorrect responses, may indicate students' level of understanding. Giving an invertible 

2x2 matrix as an example may show students' lack of connection between the existence 

of  a nonzero vector in Nu1 A and a matrix A not being invertible, even though it is one of 

the implications of the invertible matrix theorem. Students constructing a square matrix A 

with the given constraints using a guess-and-test strategy and choosing A from the set of 

all nxn matrices, Mnxn (n = 2, 3), or offering an invertible matrix as an example may 

indicate an action conception of the null and column spaces. The link between the 

process of finding nontrivial solution to Ax = 0 (this matrix equation having free 

variables) and a matrix not being invertible may not be present for these students. 

Starting with a singular matrix may indicate that a student is treating Nul A as an 

object but the two vector spaces are not coordinated to meet the requirement of the task. 

Nu1 A and Col A are disconnected even though they are associated with the same object, a 

matrix A. This may indicate that the vector spaces associated with a matrix are still at the 

process level of understanding for these students. These notions are disjoint which can 

lead to the incorrect examples of singular matrices with Nu1 A fl Col A = { O ) .  

Col A is generated by the columns of a matrix A, and Nu1 A is generated by 

solution vectors to the homogeneous matrix equation Ax = 0. If a student is able to think 

of the two vector spaces without resorting to the specific elements, by noticing the 



relation between the vector spaces, s h e  is operating with the object conception of Nu1 A 

and Col A. In Task 2 [Column space / Null space], the last general approach to 

constructing such a matrix may correspond to treating the associated vector spaces as 

objects. The condition of the task is incorporated in the example generation by combining 

the properties of the vector spaces associated with a matrix A, namely, a nonzero column 

of A is set to be a solution to Ax = 0. 

Students' choices of matrices and explanations of their constructions of the 

matrices may reveal gaps in students' understanding of the nature of subspaces associated 

with a matrix, and the (dis)connection of the concept image formed by a student and the 

formal concept definition of the column and null spaces. Task 2 can also indicate the 

difficulties that students have with representations of the objects in linear algebra. 

Task 3: Linear transformations 

Let T be a linear transformation from a vector space V to a vector space Wand let u, v 
be vectors in V. State whether the following is true or false, giving either a proof or a 
counter-example: if u and v are linearly independent then T(u) and T(v) are linearly 
independent. 

It is a property of any linear transformation T from a vector space V to a vector 

space W, T: V+ W, that if {T(u), T(v)) is a linearly independent set of vectors in W, then 

{u, v) is a linearly independent set in V. Equivalently, if {u, v) is a linearly dependent 

set of vectors in V, then {T(u), T(v)) is linearly dependent in W. However, other 

variations require certain conditions on a linear transformation to hold and are not true in 

general. Task 3 asks students to identify the validity of the mathematical statement and 

provide a counter-example if the statement is false. 



One role of example-generation tasks is to explore the limitations of a concept or 

relationship, as well as to challenge conjectures. In this task, students are asked to explore 

when and why some properties do not hold for any linear transformation, and how linear 

transformations, abstract vector spaces and linear (in)dependence of vectors are related. 

On one hand, Task 3 helps researchers to investigate students' understanding of the 

properties of linear transformations. On the other hand, it helps students to better 

understand what is preserved by a linear transformation and what is not, and may preview 

for them the one-to-one property of a linear transformation. 

When the vector spaces V and W are R" and Rm respectively, this task also 

emphasizes the connection between a linear transformation and its standard matrix. A 

common problem in establishing this connection is that many students do not realize that 

the columns of the standard matrix of a linear transformation are exactly the images of 

the standard basis vectors. With this understanding, it is very easy to construct a counter- 

example. One can take an mxn matrix A with two linearly dependent columns, ai and aj 

with 1 I i < j I n, for example, at least one column being a multiple of another. These 

two columns are the images of the standard basis vectors ei and ej under the linear 

transformation T: Rn-Rm whose standard matrix is A. Since the basis vectors are 

linearly independent, this linear transformation is a counter-example. 

The linearly independent vectors in a vector space Rn don't have to be restricted 

to the standard basis vectors. A linear transformation mapping Rn to Rm is uniquely 

determined by its action on any set of basis vectors of Rn. Also, the coordinates of the 

images of the basis vectors form the columns of an mxn matrix A of a linear 

transformation with respect to this basis. Thus, to construct a counter-example one can 



take an mxn matrix A with two linearly dependent columns so that these columns are the 

coordinates of the images of any two linearly independent vectors in Rn under the linear 

transformation T(x) = Ax represented by the matrix A with respect to a basis P. Since 

students are more comfortable with square matrices, they may give an example of a 

transformation with a square matrix, either standard or with respect to a given basis. 

A linear transformation T: V+W such that T(x) = 0 for all xEV is an 

inear 

easy 

counter-example for this task. It works for any vector spaces V and W since any two 

linearly independent vectors are mapped to the zero vector in W, and any set of vectors is 

linearly dependent if it contains the zero vector. 

Different approaches to constructing examples for this task may indicate varying 

levels of students' understanding of the =oncept of linear transformation. Some students 

may use properties of linear transformations to try to prove the statement of the task, 

incorrectly using quantifiers and implications: u, v linearly independent + cu + dv = 0 

+ c = d = 0 -, T(cu + dv)  = cT(u) + dT(v) = 0 + T(u), T(v) linearly independent since c 

= d = 0. Others may construct a transformation with an invertible standard matrix, which 

is not a counter-example. In both cases, students may be operating with an action 

conception of linear transformation. If a student constructs a matrix of a linear 

transformation that is singular and uses the standard unit vectors to provide a counter- 

example but still checks that the conditions are met and that the images of the unit vectors 

form a linearly dependent set, s h e  may understand linear transformation as a process. A 

student is thinking of linear transformation as an object when the student is able to 

evaluate how and why the properties of a linear transformation can be applied to 

construct a counter-example, such as giving a zero transformation as an example. 



Task 4: Basis 

Let M be the space of real-valued matrices. Let H be the subspace of M consisting of 
2x2 2x2 

all matrices of the form , where a, b, c are real. (1). Determine dim H. (2). Give 

a basis for H. (3). Expand it to a basis for M 
2x2' 

This task provides researchers with tools to gauge students' understanding of the 

concept of a basis. The task offers a M h e r  glimpse into students' understanding of basis 

and dimension, in particular, how a basis of a subspace of a vector space can be extended 

to a basis of the vector space itself, and how "big" the subspace can be inside a space. 

There is no explicit request to construct an example in this task. However, 'give a 

basis for H' requires a student 'to give an example' for a possible basis for H. 

In response to this .task, a student may present an obvious basis of this subspace: 

1 0  0 1 0 0  

= {[O o]'[-1 o],[o 1]} 
, verifying its properties by showing that it is a subset of 

H, spans H, and is a linearly independent set. For part (3), one may complete the basis 

0 0 
with 0], or with [' I]  . The dimension of H is 3, which is the cardinality of any 

0 0 

basis of H, and dimension of M2x2 is 4. 

This task might allow us to capture students' concept image of a basis. One of the 

problems that students encounter in a linear algebra course is not knowing how to work 

with definitions in a mathematically precise way. The unfamiliar definitions are usually 

encountered one after another and many definitions depend on previous ones. For 

example, the definition of a basis depends on the ideas of linear independence and 

spanning set. Another requirement for a set of vectors to form a basis for a given vector 



space is that it has to be a subset of that vector space first. For a nontrivial vector space 

spanned by a finite set of vectors, the number of elements in a basis is invariant and is 

referred to as the dimension of this vector space. Thus, the concept image of a basis 

should include the concepts: linear independence, spanning set, subset of a vector space, 

dimension. Students' responses may indicate what components are missing from their 

concept image. 

5.5.2 Tasks used for clinical interview 

Task 5: Linear transformations (revisited) 

(a). Give an example of a linear transformation. 

(b). Give an example of a linear transformation from RZ to R2 that maps a vector to [PI 
the vector [:I. 
(c). Give an example of a linear transformation from R3 to RZ that maps a vector [!I to 

the vector [:I. 
(d). Give an example of a transformation that is not linear. 

The purpose of this task is to investigate students' concept image of a linear 

transformation. The exercises and problems dealing with linear transformations usually 

ask students to check if a given transformation is linear, or one-to-one, or onto, or has 

other properties. These tasks can be successfully completed without necessarily 

understanding the concepts. This is not the case when finding or constructing an example 

of a linear transformation. 



As definitions provide the foundation for every subject, it is necessary to 

understand why all the conditions are needed and what class of objects is being defined. 

To be able to reproduce a definition does not guarantee understanding of the concept. 

Every linear transformation fi-om R" to Rm can be represented as a matrix 

transformation. This property can be used to provide an example for the first part of the 

task. One can choose any mxn matrix A and indicate the corresponding vector spaces 

involved to define a linear transformation. However, examples don't have to be restricted 

to these vector spaces. One can give an example of a linear transformation of the space of 

polynomials, for example, T(p) = Dp fiom P, to Pn.l where P, is the space of 

polynomials of degree at most n and Dp is the derivative of p. 

To generate examples for parts (b) and (c), one can find a matrix of a linear 

transformation by setting up a system of linear equations with unknowns being the entries 

in a matrix, and then try to find a possible solution to this system. Then in both questions . 

the entries a21 and a22 are determined by the coordinates of the image vectors. The 

remaining entries can have any values. 

Alternatively, one may remember that an image of a vector under a matrix 

transformation is the linear combination of the columns of a matrix with weights 

corresponding to the entries in the vector, for example for part (c), T(x) =Ax = [al a2 a3]x 

= xlal+ x2a2 + x3a3 . Then one can find the entries in A by solving the vector equation: 

Oal + la2 + 0% = [:I. Again, this shows that the second column of A has to be 

the other two columns can have any values. 



Another approach is to use the property that the standard matrix of a linear 

transformation is uniquely determined by the action of the transformation on the standard 

basis of Rn. This property can be used to construct infinitely many matrices representing 

.a linear 

any 2x3 

transformation with the given requirements. Again for part (c), one may choose 

matrix A so that the second column ofA is . [:I 
These three approaches may correspond to three levels of understanding in action- 

process-object theoretical framework. In the first approach, a student may be thinking of 

the matrix of the linear transformation as an action. To find it s h e  has to set up a system 

of linear equations and solve it explicitly. In the second case, a student has interiorized 

one of the actions of finding an image of a vector as a linear combination of the columns 

of a matrix. S h e  is able to mentally perfbrrn this procedure to find numerical values for 

the matrix. However, a student may not understand the defining property of the standard 

matrix of a linear transformation. When no computations are performed to construct a 

matrix, one may have encapsulated the concept of a matrix transformation as an object. 

The vector [ ] or 111 is immediately recognized as one of the basis vectors of R' or $, 

respectively. Thus, its image will be the second column of the required matrix. With this 

approach a student can construct other matrices with the given property which will be 

evident from the response to a request for another example of a matrix with the same 

constraints. In addition, viewing the matrix of a linear transformation in terms of the 

actions on the basis vectors will help himher later to work with the matrix of a linear 

transformation relative to any basis. 



A nonlinear transformation is a non-example. As was pointed out in the 

description of Task 2, non-examples are examples which demonstrate the boundaries or 

necessary conditions of a concept (Watson and Mason, 2004). Non-examples also 

contribute to and are part of the concept image of a linear transformation. This question 

explores what are the defining properties for students of a linear transformation and how 

these properties are modified to generate a transformation that is not linear. Thus, it 

complements the first question of the task and provides further indication of the students' 

concept image. 

Task 6: Vectors 

Give an example of a vector. 

Give an example of a vector from a different vector space. 

Give another example of a vector from a vector space which is fundamentally different 
from the other two. 

This was the first task that students were asked during the clinical interviews. The 

purpose of this task was two-fold: to make the students comfortable with the questions, as 

was mentioned above, and to see what objects constitute their concept image of the 

central concept of linear algebra. 

Students first encounter vectors in Rn, and then move on to abstract vector spaces. 

Usually, the definition of an abstract vector space is followed by a set of examples of 

different vector spaces including the vector space, P,, of polynomials of degree at most n; 

M,,,, the vector space of mxn matrices; the space of continuous functions; etc. 

When a student is asked for an example of a vector, the assumption and 

expectation is that a student will produce an example of a vector from hisiher prototypical 



vector space: a vector space that dominates the concept image and is easily accessible. A 

possible response may include a vector in R' or R ~ .  The second prompt may elicit a 

response of an element from Rn for a value of n other than 2 or 3. The third request was 

added to push students to search for other possibilities that haven't come up in their 

examples so far by imposing a constraint that vectors have to be from a vector space 

hndamentally different from the ones mentioned in the previous two questions. In case 

the vectors in the first two examples belonged to a vector space Rn for some values of n, 

the third example of a vector would have to belong to a vector space other than R". 

Overall, students' responses to this task may provide some indication about 

students' understanding of the concepts of vector and vector space and about students' 

personal/local example space of a vector, the example space triggered by current task as 

well as by recent experience (Watson and Mason, 2004); the characteristics of students' 

concept images of vectors; what objects are conceivable as vectors by students; and what 

modes of representation are used. When one is asked for three examples of the same 

concept s h e  may start to look in the personal potential example space. Personal potential 

example spaces, from which personal/local space is drawn, consists of one person's past 

experience (even though not explicitly remembered or recalled), and may not be 

structured in ways which afford easy access (Watson and Mason, 2004). If a student is 

unable to go beyond Rn, the concept image of a vector and consequently of a vector space 

of this student is limited. This task helps identify these limitations. 

5.6 Summary 

The intention of this chapter was to introduce the reader to the participants of the 

study, the research setting, and the data collection process. Furthermore, the chapter 



presented the discussion of the tasks included in the study. Firstly, the rationale for 

considering each task as an appropriate instrument for the study was offered. Secondly, 

anticipated participants' responses to the task were suggested, and interpreted through the 

lens of genetic decomposition and the framework of concept image/concept definition. 



CHAPTER 6: ANALYSIS OF RESULTS 

6.1 Introduction 

The goal of this chapter is to analyze students' understandin .g of the co incepts of 

linear algebra through the example-generation tasks described in Chapter 5. To reiterate, 

for the purpose of this research several topics were selected from the undergraduate 

course in linear algebra. These topics are: vectors, linear dependence, column and null 

spaces, linear transformations, and basis. Strategies and tools used in students' responses 

helped to shed light on their understanding. The data were analyzed through the lens of 

two frameworks: APOS and concept image / concept definition. The analysis does not 

follow the order of the numbered tasks, with Tasks 3 and 5 (Linear Transformations) 

analyzed together, but corresponds to the topics under investigation. To protect students' 

confidentiality, the students' names have been changed; however, the gender has been 

preserved. 6 students that have been interviewed are: Nicole, Stan, Leon, Anna, Sarah 

and Joan. 

6.2 Vectors 

Vectors are the building blocks of many concepts of linear algebra. They are the 

elements of any set that satisfies the axioms for a vector space. It is important for students 

to be able to think of vectors in general to understand and apply the theory of vector 

spaces. On the other hand, their concept image of vector should include all possible 

objects that can be treated as vectors. 



Task 6: Vectors 
Give an example of a vector. 
Give an example of a vector from a different vector space. 
Give another example of a vector from a vector space which is fundamentally different 

from thejrst two. 

Task 6 was asked during the clinical interviews to acquaint students with 

example-generation and to gain some understanding of their concept image of a vector 

and vector space. As students first encounter vectors in R", these vectors are the 

prototypical examples for them. Thus, it is not surprising that all but one student gave 

examples of vectors in R' or R~ in response to the first prompt in the task as can be seen 

in the following interview excerpts: 

I: Can you give an example of a vector? 

Nicole: OK (writes 0 ),. . .in R3. /:I . 

I: Can you give an example of a vector? 

Anna: It can be (writes: 

I: Can you give an example of a vector? 

Joan: (1,3,5) . . . in R3. 

In reply to the second request for an example of a vector, the example space of all 

students again consisted of vectors in Rn where n = 2,3,  or 4. 

Nicole: OK. (writes: 

Joan: (1,O) in R2. 



Stan: (writes: I:] ) in R3. 

Anna: Sure. Another one would be a 4 by I ,  so it could be (writes: 

However, only two students were able to provide an example for the third prompt 

that required them to look beyond R", as the students had to look for an example of a 

vector space fundamentally different from the two they used to answer parts (a) and (b). 

The answers indicated that students either didn't know how to respond to this question or 

thought of vectors as nxl arrays of numbers. 

I: Can you think of any other vector space different from R"? 

Joan: I don't know how to do that. Maybe an equation. 

I: Can you think of any other vector space different from R"? 

Anna: Different from R', R2, and R4; or completely different from the general one? 

I: Different from the general one. 

Anna: No. I think of vectors as always something n by 1. So it can be as many rows but only 1 
column. 

Two students used the geometric representation of vectors. For instance, Leon 

made the diagrams of vectors in R2 and R3 to support his explanations. 

I: Can you give an example of a vector? 

Leon: A vector? So from the origin and to any point in the space, I will construct a line, and then 
to another point, somewhere in the space, I would connect it to, and I would call it a vector, in 
such a direction. 



I: What vector space does this vector belong to? 

Leon: R' 

1: Can you give me an example of another vector from a different vector space? 

Leon: Alright. Then I would try R ~ .  I would again start from the origin, and to some point in this 
space, I would direct this line, and give it direction. 

The other student, Sarah, had difficulty representing her examples symbolically as 

an array of numbers even though she indicated the coordinates of the vector on the 

diagram. She didn't indicate that this is a directed line segment. For her, it was a point on 

the plane. 

I: Can you represent your example numerically? 

Sarah: No. I can see it as a diagram ... It's apoint. 

For the second request, she just drew a general vector as an example. She didn't 

specify the vector space that contains this vector. 



I: Can you give an example of another vector from a different vector space? 

Sarah: It could be this. 

I: What vector space does this vector belong to? 

Sarah: I don't know. .. Could be any vector space. 

Students once exposed to Rn have difficulty considering other elements as 

vectors. Only two students gave examples of vectors from vector spaces other than Rn. 

Only one of them provided a correct representation for his examples. In response to the 

first question, this student offered a polynomial as an example of a vector. 

I: Can you give me an example of a vector? 

Stan: Sure.. .(writes: p(t) = 1 +t+t2). 

The same student offered several more objects that could be treated as vectors. In 

fact, he claimed that an element of any set that satisfies the axioms of a vector space 

could be viewed as an example for Task 6 (Vectors). 

I: Can you think of any other vectors from different vector spaces? 

Stan: Real-valued functions, for example, y = x . . .  I don't know how to write it properly, but I 
know they can be treated as vectors. I mean, any n-tuple could be a vector, (0). Anything I can 
find that has the property of scalar multiplication and addition. 

Another student, after giving examples of vectors in Rn for different values of n, 

was confused with the representation of polynomials in a vector space P2. Consider the 

following interview excerpt. 

I: Can you give me an example of a vector that doesn't belong to any vector space Rn? 

Nicole: OK. (writes: 1 8: 1 ). 
I: What vector space is this an element of! 



Nicole: P2. I think. 

I: What is P2? 

Nicole: Polynomials of degree two, I think. 

I: If P2 is the space of polynomials of degree at most two, would you represent an element of this 
space as you did before? 

I: From your answers, the vectors in R~ and P2 look the same. Do R~ and P2 share the same 
vectors? 

Nicole: Maybe ... Actually, no. It will not be t. It will be (writes: 8 1:: 
Nicole: That what it looks like. 

I: Are they the same vector space? 

Nicole: They will be in the same one big vector space but they are different ones. .. They are in the 
same big V, but then they are different subspaces. 

I: What do you mean by that? 

). Not sure. 

Nicole: You know, it's like an apple and orange are in the same space but then they are different 
things. 

I: What is this V? 

Nicole: Vector space. 

I: What are the vectors in this vector space? 

Nicole: It can be these vectors that have 3 entries. 

In the courses under consideration, students first encounter vectors as nxl arrays 

of real numbers: [g 1, andthe concepts of linear algebra are first introduced in the 

context of Rn. Later in the course, a formal definition of a vector space is presented. 

Examples of vector spaces other than Rn are presented such as the space of polynomials 

of degree at most n or the space of mxn matrices, and there is a discussion of an 

isomorphism between a finite dimensional vector space over R and Rn. At this point, 

students9 concept image of a vector includes arrays of numbers and the new objects. 

However, since the concept of an isomorphism is not yet internalized this creates a 

conflict. For example, in the preceding interview excerpt the student represented a 



polynomial in P2 first as 8t , then corrected her answer ao 

1 2 2  I Both of these answers 

are incorrect representations of vectors in P2. The first one indicates the confbsion 

beween the different represenaatntisns of vectors: as a coordinate vector in R" and as an 

element sf a space sf poiynomials. in this case. In fact, she was convinced that this is 

what elements of Pt look like, and claimed that P2 and IX3 have exactiy the same elements 

but are different subspaces of "the big vector space Y9. While Nicole and Stan could 

envision polynomia8s as vectors, for other students the concept image included only 

vectors in Rm: either geometric vectors as directed line segments or mx9 arrays. 

Interpreting students9 responses to Task 6 with the concept imagelconcept 

definition theory reveals that for the majority of students the concept image of a vector at 

this point in the course is limited to elements s f  R". They are only able to viewi the 

vectors as 12x1 arrays or directed line segments or points in ElE or Et3. This restricts 

snndents' access to conceptual understanding of the general theory of vector spaces 2s is 

manifested in their understanding of the concept o f a  basis discussed in Section 6.6. 

6.3 Linear dependence and linear independence 

The two concepts of linear dependence and independence are closely connected. 

To have a solid understanding of one of them involves having understanding of the other. 

H will first present the summary of students' responses for constructing matrix A with 

linearly dependent columns, and then use APOS theoretical framework to analyze 

students' understanding of linear ((in)dependence. 



Task 1: Linear (in)dependence 
a). (1). Give an example of a 3x3 matrix A with real nonzero entries whose columns a,, 
a2, a3 are linearly dependent. 
(2). Now change as few entries o fA  as possible to produce a matrix B whose columns bl, 
b2, b3 are linearly independent, explaining your reasoning. 
(3). Interpret the span of the columns o fA  geometrically. 

b). Repeat part a (involving A and B), but this time choose your example so that the 
number of changed entries in going from A to B takes a different value from before. 

6.3.1 Constructing matrix A with linearly dependent columns 

In Task l(a1) the students were required to give an example of three linearly 

dependent vectors represented as a 3x3 matrix with nonzero real entries. Table 3 presents 

the summary of different approaches used to complete this part of the task. The total 

frequencies exceed the number of participants as some students provided two examples 

for the task. Although all but 6% of the students constructed correct examples, their 

methods indicate different levels of understanding. 

Table 3: Constructing 3x3 matrix A with linearly dependent columns 

Method 

Rows method: same I 11 2 31 14 9 1  

Examples 

Guess-and-Check 
method 

rows, one row 
multiple of another 
row 

1 4 2- 

3 6 0  

Frequency of 
occurrence 



Echelon method: sta 
with echelon form U 
ofA 

I 
Identical columns 
method: 
[a1 a1 all where a1 
has nonzero real 
entries 

Multiple columns 
method: two columns 
are multiples of the 
first one - [al cal dal] 
where a1 has nonzero 
real entries and c and 
d are both nonzero 
real numbers 

Two multiple 
columns method: two 
identical columns or 
two columns 
multiples of each 
other and the third 
column having any 
nonzero real entries: 

[a1 ca1 a31 

Linear combination 
method: any two 
columns, a1 and a2, 
having nonzero real 
entries and a3 = cal + 



The responses to the remaining parts of the task depended on the construction of a 

matrix A.  The results and analysis of these remaining parts are presented with examples 

of students' work in Sections 6.2.2 - 6.2.5. 

6.3.2 Linear dependence as action 

For students using a guess-and-check strategy the linear dependence was 

concluded as an outcome of an action performed on a chosen 3x3 matrix A.  To complete 

Task l(al), these students had to pick 9 numbers to perform a set of operations on these 

numbers getting a certain result, in this case, at least one zero row in the modified form of 

A.  This is a consequence of the condition for the columns of a matrix to be linearly 

dependent. These students had to go through calculations explicitly to. verify that their 

example satisfied the requirement of the task. 

Many students changed an arbitrary number of entries in a matrix A to construct a 

matrix B with linearly independent columns. 17% of the students changed one entry or 

two entries in the same row when the columns of A span a line. This approach always 

leads to an incorrect answer. For example, Lucy changed two entries in the same row - 

[ 5  10 15j  [ 5  10 15i 

going from A = 10 20 30 to B = 10 20 30 with the explanation 'I changed one 

20 40 60 20 39 10 

number in each column that was a multiple of another column except for the first 

column.' In this case, the entries should be changed in different rows and different 

columns. Some students incorrectly claimed linear independence since none of the 

vectors was a multiple of another. They did not check whether the columns were still 

linearly dependent. 



Leon made the same mistake as Lucy during the interview when working on Task 

lb. He changed two entries in the same row when the entries should have been changed 

in different rows. His matrix A was 2 4 6 . When prompted for justification of his 1: 1 
claim, Leon checked his result by row reducing the matrix B. He wasn't satisfied with the 

result of that approach. For him, it was possible that the vectors were not linearly 

independent, but it wasn't sufficient evidence. 

Leon: You see that all three of these are linearly dependent on each other, all multiples of one 
another, and possibly just change the last entries of each of the vectors to make them no longer 
multiples of one another. (changes the last entries in the first and second columns of A to 5 and 9, 

respectively; writes: 2 4 6 ). [: I 
I: If you change two entries in the same row, will the resulting vectors be linearly independent? 

Leon: . . . They may or may not be. 

I: Will the three vectors in your new matrix: (1,2,5), (2,4,9) and (3,6,12) be linearly independent? 

Leon: Maybe not necessarily. The method I can think of checking it is by row reducing'it. (row 

reduces the matrix to get: ). Yes, they are not necessarily linearly 

independent in this way. 

To be positive that the resulting vectors were linearly independent using the linear 

combination method, Leon chose large numbers and different positions in a matrix A and 

generated another matrix B. He then was confident that none of the vectors could be a 

linear combination of the other two. Leon was applying the property of a linearly 

dependent set of vectors. He further supported his argument geometrically. Though, he 

didn't register that the second time he changed the entries in different positions and that 



was the reason for vectors to become linearly independent, not the magnitude of the 

entries. 

Leon: For instance, let's say by changing a number here to a really large number, 80 (changes a22 
from 4 to 80 in the original matrix A above). Then the first and the third shouldn't come together 
to form this (i.e. the corresponding entries in the first and third columns will not add up to 80) [. . .] 
if another number was very very large, let's say, in the bottom here (a3,) and this was 90, if then 
these two (the third and the first column vectors) would come together to form the second vector, 
and yet they'd have to form a smaller number even though the combination of the first and the 
third are much larger. I don't think it would be possible. This should be a linearly independent 
matrix. 

I: How can you be sure that the vectors (1,2,90), (2,80,8) and (3,6,12) are linearly independent? 

Leon: One way to do is to row reduce, another way for me would be to put it in R~ space and see 
if such relationship exists ... So, I'll do that. (1, 2, 90) is way up here (draws on the diagram the 
three vectors), and even though my sketch isn't accurate, I can be pretty sure that they are not 
multiples of one another, and they are not parallel. 

The answers to part (a2) revealed students' misconceptions about linearly 

dependent sets of more than two vectors. One of the theorems that students encounter 

says that a set of two vectors is linearly dependent if and only if a't least one of the vectors 

is a multiple of another. However, students internalize the connection: linear dependence 

t, vectors are multiples of each other, but not the assumption about the number of 

vectors. As a result, they misgeneralize and use this property to determine if a set of more 

than two vectors is linearly independent. Namely, the fact that none of the vectors is a 

multiple of any other was misgeneralized to show that the vectors are linearly 

independent. For justification of linear independence of the columns of B, a number of 

students used the above property. Since this property is not a sufficient condition, some 

students gave incorrect examples of matrices B. For example, one student claimed that 

the columns of the matrix B = 2 4 6 are linearly independent because b;! and b3 are [: : :I 



not multiples of bl, and another claimed that B = 4 2 1 has linearly independent : I 
columns because the columns are not multiples of each other. 

On the whole, several types of responses can be identified from participants' 

solutions to Task 1 (Linear (in)dependence). Some students constructed matrix A 

correctly but failed to perform the next step either changing an arbitrary number of 

entries in A, or generating matrix B with linearly dependent columns. These students are 

most likely operating with the action conception of linear dependence. 

6.3.3 Linear dependence as process 

Applying the APOS theoretical framework, students are operating with the 

process conception of linear dependence when they construct a matrix A emphasizing the 

relations between the rows. They may know that in order for the columns of A to be 

linearly dependent an echelon form of a matrix has to have a zero row. The row reduction 

process is an intended action in this case. It is performed mentally, and then reversed to 

generate a required matrix. 

23% of the students constructed their examples with one row being a multiple of 

another as was indicated in some responses: 'I made one row multiple of another', or 

'take R3 to be 2xR1'. This is a possible way to get a zero row in an echelon form since 

one of the elementary row operations involves replacing a row with a sum of that row and 

a multiple of another row. 

Joan used the Rows method (see Table 3) in her construction of matrix A .  She 

gave an example of a matrix with 2 rows being multiples of the first row and proceeded 



immediately to reduce this matrix to echelon form and represent the variables of a 

homogeneous equation. After showing that she got 2 free variables, she offered an 

example of a matrix so that Ax = 0 has one fiee variable. However, in her explanations 

she confused vectors with variables, and linear dependence of vectors with representing a 

variable in terms of other variables. She couldn't interpret the span of the columns 

geometrically and was always going back to free variables: '. . . if I reduce the matrix of 

the 3 equations, then I get a matrix and I have to get a free variable and because it's one 

of the criteria for the vectors to be linearly dependent.' 

Joan: So 3 ,  5, 2 (starts writing the first row), and 6 ,  10, 4, and 1, 513 and 213. (writes: 

[: :I ) and this would simplify to (writes: ) where XI is -5x2+(-2x3); x2 is x2 

1 5/3 2/3 
which is a free variable; x3 is linearly dependent on x2.. . Then if x2 is t, and x3 is s, then xl is -5t- 
2s; xl is linearly dependent on x2 and x3 ... And if you want two vectors that dependent on one 
variable, you'd have to have something else here (in the third row) so new matrix is 

). So when I row reduce, I get (writes: 0 0 0 ) . [' 0 -1 . 1 

There is an intermediate step that links the linear dependence of columns of a 

matrix and its echelon form having a zero row. The definition of linear dependence of a 

set of vectors is given in terms of a solution to a vector equation. That is, a set of vectors 

{vl, .. ., vn} is linearly dependent if the vector equation, clvl + .. . + c,v, = 0 has a 

nontrivial solution. The solution set of this vector equation corresponds to the solution set 

of a matrix equation Ax = 0 having the vi's as columns which in turn corresponds to the 

solution set of the system of linear equations whose augmented matrix is [A 01. In the 

prior instruction it was shown that the linear system Ax = 0 has a nontrivial solution if it 

has free variables, and this can be inferred from an echelon form of A. Thus, some 

students formed the connection: linear dependence o free variables o zero row in 



echelon form. As a result some examples were justified with the following statements: 'a 

linearly dependent matrix is a matrix with free variables', 'columns of A are linearly 

dependent since x3 is free variable which implies Ax = 0 has not only trivial solution', or 

'when the forms are reduced into reduced echelon form, the linearly dependent matrix 

has a free variable x3; however, the linearly independent doesn't - it has a unique 

solution'. 

Anna used the Echelon method to construct her correct example. As her first 

example she generated a matrix with the zero row, and then changed the zero entries to 

keep the column vectors identical. She referred to the rows of the matrix for justification. 

Anna: So, if it's a 3 by 3 matrix, and linearly dependent, then I'm gonna have free variables in my 
matrix. Because, when you have linearly independent, it means it's a pivot column. So it can be 

1 

(writes: - 1 - 1 - 1 ). [I 0 ,/ 
I: How can you modify your matrix to eliminate the zeros? 

1 

Anna: Maybe replace the 0 with 2. (writes: - 1 - 1 ). It's still gonna be linearly dependent, [-: 2 , : ] 
no matter what it is. There always are some scalar times the multiple of the first one (row). Yeah, 
I'll get the second row.. . 

The reference to free variables and echelon forms is observed in responses and 

explanations for constructing the matrix B by changing as few entries in matrix A as 

possible. 16% of the students modified the link: linear dependence ++ free variables to 

complete Task 1 (a2). Consider the following response. The student correctly changed A 

claiming that, in matrix A, a2 is a multiple of a1 which 

produces a free variable: 'by definition of linear independence, solution can't have a free 



variable - can't have nontrivial solution'. In this case, students used the link: linear 

independence t, no free variables. Since in a linear system corresponding to a 3x3 matrix 

there are three variables, and each one is either free or basic, students only need to change 

as many entries in A  as there are free variables. These students constructed one of the 

connections intended by the task: 

number of free variables - number of entries needed to be changed, 

as can be seen in the explanation ' A  has 2  free variables, then changing 2  values of A  will 

make B have no free variables.' However, only 3% of the students extended this 

connection to complete Task l(b). Many used the same linear dependence relation 

between the columns of A,  but changed a different number of entries, incorrectly in this 

case, to get B. 

6 students referred to the number of pivot 

constructing a matrix B. For example, starting with 

positions in a matrix A  when 

A = 2  2 I 1 I, one student 

correctly observed that the last row of A  is a multiple of the second row and has no pivot, 

but incorrectly concluded that changing the last entry of the last row of A  from 2 to 1 

would make it a pivot row: 'in order to make it a pivot row the last entry in this row 

should be nonmultiplication of the second row, that is why I changed that entry'. When 

the columns of A  were the same, i.e. A  = [al a1 a{], to construct B another student 

correctly changed two entries, 'because if you change only one, it is still going to be 

linearly dependent - there should be three basic variables'. These students connected the 

linear independence of columns to a homogeneous linear system having three basic 



variables and therefore three pivot positions: linear independence +-+ pivot positions 1 

basic variables. 

Similarly, Anna approached this part of Task 1 (Linear (in)dependence) in terms 

of the pivot positions. First she wanted to change 3 entries in her original matrix A 

= 1 - 1 - 1 - 1 )  so that the pivot positions would be clearly visible in a matrix B. 

Anna: I am gonna make -1 here (au) to be 0. Because automatically when I set this to be 0, then 
I have a leading entry right here (all). But if I wanna do the minimum, then I wanna do one more 
[. . .] I can set these two (a31 and a32) to be 0. So it's linearly independent. 

She then realized that one of the changes was unnecessary and corrected her 

mistake. However, Anna wasn't confident in her result and had to use row reduction to 

check that her matrix B has linearly independent columns. 

Anna: I can just set this (aj2) to be 0, and this (a31) could be a 2 still (writes: 0 - 1 - 1 ). [: : :j 
because when I row reduce ... No, that's not good. I'll just set it (asl) to 0, just to be safe ... Oh, 
actually it will work out. So I can replace this -1 here (all in original matrix A )  with 0, and this 
( ~ 3 ~ )  with 0, and this ( ~ 3 , )  can stay a 2. 

Anna didn't connect the dependence relation to the number of entries she had to 

change. She was concerned whether the row reduction process gives the right echelon 

form. When she thought that her calculations wouldn't produce the desired outcome she 

wanted to go back to her original intention of changing 3 entries: '. . . no, that's not good. 

I'll just set it (a3J to 0, just to be safe.' 

An explicit use of the link: linear independence +-+ pivot positions I basic 

variables can be observed in the following response. One student found that the matrix A 



1 3  

in the first part of the task is row equivalent to /O - 3 -21] ; then she assigned n non- 

zero value to a33 in this echelon form of A, a33 = 1, to get an echelon form of By and used 

reversed elementary row operations to get B. 'If this, a33, is nonzero, then the augmented 

matrix has only trivial solution, and column a3 is not a linear combination of a, and a2, so 

the system is linearly independent.' This student is making every column in an echelon 

form of A a pivot column. Since elementary row operations preserve the linear 

dependence relations, and because the elementary row operations were reversed, the 

resulting matrix B has linearly independent columns and differs from the original matrix 

A in only one entry. 

Leon was using the same strategy to generate matrix B. He reduced his matrix A = 

to an echelon form U = to see what entries he should change. 

Leon then correctly changed a22 from 4 to 3, so that a new echelon form U' = 0 1 1 r 
corresponded to a possible echelon form of a matrix with linearly independent columns. 

Leon: So then what I would do is to try and row reduce this matrix, and see what values would 

make this matrix consistent, from reduced echelon form. (reduces the matrix to get 0 0 1 ). 1: :I 
And then I would look and see what I can change here ... If I make this (az2) 3, then I'll get 1 (a22) 
instead of 0 in echelon form. And then this would be a linearly independent matrix. 

Only 50% of the students completed both parts of the task, with 63% of incorrect 

responses to Task l(b). In the majority of incorrect responses students ignored the 



different structures of linear dependence relations between vectors. They either used the 

same matrix A in both parts of the task or a matrix A having the same linear dependence 

relations between columns. Then if the students changed the correct number of entries in 

Task l(a), their response to Task l(b) was incorrect. For instance, one student constructed 

matrix A for both parts with the same dependence relation between columns, a3 in 

Span{al, a*), and changed 1 entry in the first part but 3 entries in the second part. 

Similarly, another student used the same construction: 'columns of A are linearly 

dependent, so a3 = cal + daz with c and d scalars', but then used the same vectors a1 and 

a2 and different scalars for parts (a) and (b) of the task. Even though this student 

indicated one of the general construction methods for 3 linearly dependent vectors, he 

didn't perceive the purpose of the task. 

Some students used the same matrix in both parts of the task, but changed a 

different number of entries in each part, changing the correct number of entries in part 

(a), but making more changes than needed in part (b). For example, A = 12 2 4 1 , B = 

1: 1 in part (a), and B = I in part (b): 'this time I changed 2 entries of A 

to make B. ' 

Interviews revealed the analogous tendency to generate a matrix A for part (b) 

with the same linear dependence relations. Anna first offered a matrix with identical 

columns again and changed an incorrect number of entries. After being reminded that she 

had to change as few entries as possible, she knew that to change 'two would be just 



enough'. Anna then tried a second strategy and said that changing entries in other 

positions would affect the minimum number of entries required to change. But she had 

not yet linked this requirement to the linear dependence relations: 

I: If you compare your two matrices, what is similar about them? 

Anna: The columns are multiples of each other, they are the same. My vl, vz, v3 are all the same. 

Her third attempt used vectors that were multiples of each other, and so also 

failed: 

I: What is a different way to construct 3 linearly dependent vectors in R ~ ?  

Anna: They don't necessarily have to be the same, the vectors. So, I could have (writes: I-ll] ) 

and then this one can be multiple of the first one, so it could be ). Or I could have a 

2 
completely different one. I could have (writes: [-I1 : -131). 1 

Anna as well as many other students correctly completed Task l(a), but used the 

same matrix A or a matrix A having the same linear dependence relations between 

columns for part (b). She then changed a different number of entries of A from part (a), 

but in this case this number wasn't minimal. In both cases, Anna and the students that 

made the same mistake as her didn't relate the number of entries needed to be changed 

with the type of dependence relation between columns of A .  They were able to check the 

mechanics of the task but didn't make a connection between different parts of it. These 

students may be understanding linear dependence as a process. They don't think of linear 



dependence globally, considering different structures of linear dependence relations, but 

revert to specific vectors. 

6.3.4 Linear dependence as object 

The row reduction process is central to linear algebra. It is an essential tool, an 

algorithm that allows students to compute concrete solutions to elementary linear algebra 

problems. However, encapsulation of linear dependence as an object requires a 

movement beyond the outcome of actual or intended procedures of row reduction toward 

a conceptual understanding of the structure of linear dependence relations in a set of 

vectors. 

An indication of the construction of linear dependence as an object is 

demonstrated when students emphasize the relation between vectors, when they use the 

linear combination method to construct their examples of three linearly dependent 

vectors. In the linear combination method, there could be recognized different levels of 

generality for constructing an example. Either students gave a specific example of a 

matrix with a linear dependence relations between columns easily identified, as can be 

seen in Table 3, or they identified a general strategy for constructing a class of 3x3 

matrices with linearly dependent columns. For example, Amy wrote: 'to be linearly 

dependent, at least one of the columns of a matrix A has to be a linear combination of the 

others . . . xlal + ma2 + x3a3 = 0 with weights not all zero. Pick a, and a2. Then for a,,  a2, 

a3 to be linearly independent, a3 has to be a linear combination of a1 and a2. So, let a3 = 

a ,  + a*'. In the latter case, students applied the property that if u and v are linearly 

independent vectors in R", then the set of three vectors {u, v, w} is linearly dependent if 

and only if w is in Span{u, v} (i.e. w is a linear combination of u and v). 
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Sarah generated her matrix with the Linear combination method making the third 

column the sum of the first two: A = 0 1 3 . Leon used the Two multiple columns [: : :I 
method for his construction. He explained his reasoning by pointing out the linear 

dependence relations between columns. 

Leon: Right away if I put two vectors that are linearly dependent to start, ( I ,  2, 4) and (2, 4, 8), 
and v3 that is not dependent on the first two, (3, 5, 7). Then I can simply put: v2=2vI+Ov3. And I 
think this will suffice. 

There were some representational errors in the responses as well. Carrie 

constructed A = of the form [al a2 -al-a2] and justified that the columns 

were linearly dependent because a3 was a linear combination of a1 and az: 'a1 + i 1 
a2 1 = a3 1 ] . The first part of the response is correct, however, the last claim indicates 

the gap in symbolic representation of the statement. The confusion between the 

weights/coordinates and vectors may create an obstacle in applying these concepts in 

other situations. 

Several students that correctly produced a matrix B from matrix A explicitly 

referenced the linear dependence relations in their explanations. For example, one student 

expressed the second column of a matrix A as a linear combination a2 = 2al + 0a3 and, by 

changing an entry in the second column, concluded that in a matrix B the columns 'can 



not be put in a linear combination except Oal + Oa2 + Oa3 = 0', while another student 

wrote that 'since a3 = a1 + a2, it is in Span{al, az), so al, a2, a3 are linearly dependent. 

However, b3 is not in Span{bl, bz), there is only the trivial solution for Bx = 0, so bl ,  bz, 

b3 are linearly independent' where A = 2 3 5 and B = 2 3 5 . These students [:::I [:::I 
are using the definition of linear dependence in reference to a solution of a homogeneous 

linear system. They are referring to the defining properties of linear dependence which 

may indicate that these students are treating the concept as object. 

Sarah changed correctly one entry, arj, in her matrix A = [al a2 al+a2] to 

construct a matrix B, claiming that the columns of B formed a linearly independent set, 

explaining.that 'because it's not the multiple again, and . . . other two, any two that adds 

together with scalar that times with each vector, column vector cannot make the third, 

cannot make the other . . . any two of the column space in the matrix.. .adding them 

together and timesing them with any scalar cannot make the sum of the third in the 

matrix'. It appears she was trying to explain that now it is not possible to form the third 

vector as a linear combination of the other two. However, when she attempted to justify 

this symbolically, she used different scalars in the linear combination a3 = cal+da2, and 

couldn't show this in general. 

Sarah identified the span of the columns of her matrix A = [al a2 al+a2] 

correctly, but initially wasn't confident in her statement: '. . . I can try to guess, but I don't 

think I'll do it right though ... it will be just a plane'. However, her reasoning for this 

answer illustrates she wasn't guessing but understood the concepts she was dealing with. 



I: A plane through which points? 

Sarah: This is tricky. Through the first two columns, through the first two points, because the 
third one is dependent on the other two. 

I: So you just need the first two vectors to figure out what the span is of these three vectors? 

Sarah: It's more like the dependence factor, it doesn't necessarily have to be the last one, but it's 
not the linear dependence column vector. Because the span of the first two will include the 
dependence of the last vector. 

During clinical interviews, students were able to move from the process 

understanding of linear dependence to the object level. Initially, both Anna and Leon 

used matrix A with the same linear dependence relation between columns to complete 

Task l(b). They were changing different number of entries but knew that some changes 

were unnecessary. To allow Anna to move forward with the task the interviewer 

suggested she looked at the geometric interpretation of the column space of a matrix. 

I: In all of these cases, the column span of your matrix is a line in R3. What is the other possible 
geometric interpretation of the column space of a 3 by 3 matrix in R3 (with the prescribed 
properties)? 

Anna: Is it just a flat plane? That's like all possible vectors in that span, I mean, in that space. 
Like all the possible combinations, linear combinations that I can have of these vectors. 

I: What is an example of a 3 by 3 matrix whose column space is a plane? 

Anna: It will be a linearly independent set. 

It seems Anna knew the alternative geometric interpretation but she thought it was 

formed by a linearly independent set of 3 vectors. She struggled with this question: '. . . 

with 3 by 3 matrix, I don't know, I can't see it as a plane. I should, I don't know why. .. It 

will be the span of these three vectors that make a plane. But that doesn't make any 

sense'. Finally, Anna was able to complete the task when she started with two linearly 

independent vectors and found the third vector to make a set linearly dependent: 

Anna: Let's say I have e l  and e2 again as my two vectors. If I wanna add the third vector to make 
it linearly dependent, I would add, for example, 2el. And this 2el, it's just gonna look like (2, 0, 
O), 2 times the vector el, which is ( I ,  0,O). 

I: What would be the span of these three vectors, {el, e2, 2el)? 



Anna: It's linearly dependent. .. A plane. 

She then asserted that to make this set linearly independent only one change is necessary: 

Anna: Just change this one (aj3, changes 0 to I), because you want them (the vectors) to be 
different from each other. So I will need to change something in 2el to make it different from the 

other two. So if I write it out (writes: 0 1 0 ), and I want to make it linearly independent; all I [l : :j 
have to do is add a 2 or, probably 1 (in au)  is the best way to go (to make a change). 

Leon used the same matrix in his first attempt at solving Task I(b). He drew a 

diagram this time to demonstrate his reasoning. He still changed one entry and, after his 

error was pointed out, Leon suggested that he can change two entries. In his second 

attempt to generate an example for this part, Leon's reasoning shows that he had a clear 

idea of how to approach the problem: ' . . . what I am .really trying to do right now is find a 

relationship that will relate two vectors to one and still be linearly dependent after the 

first change and then make it linearly independent.. . what I was originally thinking is that 

I could change one of the entries and still make it linearly dependent in another way, and 

then change an entry to make it linearly independent'. He finally constructed a matrix 

with 3 columns being multiples of each other: 2 4 6 . [: : 
Working through this task helped students understand the connection between the 

linear dependence relations, the geometric interpretation, and the minimum number of 

entries needed to change: 

Leon: ... actually, I think to make two changes is minimum, because all three vectors are linearly 
dependent to one another. Changing one will not change the relationship overall. You will still 
have at least two linearly dependent vectors. So can I draw from that with three linearly dependent 
vectors you need two changes and with only two linearly dependent vectors you only need one 
change. 



Anna even attempted to generalize her strategy for an nxn case: 

Anna: First, if my vectors are the same it's going to take more than one step to make them linearly 
independent. But if two of the vectors are different and the last one is the same as one of the other 
ones, I just need to change the leading entry number in that matrix; so when I row reduce it, I have 
an identity matrix ... If I have an n by n matrix, and I have {vl ,  ..., v n - ~ )  and then I have 2vl.  This 
one vector is twice vl, or three times vl, just to keep it general, as my v,. So if I make {v, ,  ..., v , . ~ )  
linearly independent, and the very last one is cvl then I need to change only one entry. 

Object conception of linear dependence relation includes mastery of all possible 

characterizations of a linearly dependent set of vectors, in particular, the ability to 

recognize the possible ways to alter a set in order to obtain a linearly independent set. In 

Task 1 (Linear (in)dependence), encapsulation of linear dependence as an object includes 

viewing a matrix as a set of column vectors, not as discrete entries that have certain 

values after performing algebraic manipulations. The latter perspective inhibits students' 

geometric interpretation of the span of columns, because the structure of linear 

dependence relations is not visible. Thus, the students that correctly completed both parts 

of the task might be operating with the object conception of linear dependence. An 

interesting note is that in the majority of the correct responses the students constructed 

matrix A of rank 2 in Task I (a), and of rank 1 in Task I (b). 

6.3.5 Geometric interpretation of span 

Many students had problems with the geometric interpretation part of Task 1 

(Linear (in)dependence). It appears that for these students, linear dependence and span 

are just algebraic manipulations of symbols. To interpret the span of the columns of A 

geometrically students used a visual representation andlor a verbal description. 14% of 

the students used a visual representation of the span. However, 88% of these students 

didn't correctly represent linear dependence relations. Nonetheless, of these, 64% still 
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correctly identified the geometric object. For example, a geometric representation of a 

matrix A with two identical columns, that is, A = [al a2 a3=a2], is reproduced in Fig. 1: 

'/ 

Figure 1 : Geometric representation of the column span of A = [al a2 a2] 

This diagram does not correctly represent the linear dependence relations between 

the columns of A. Moreover, only thee  vectors are indicated, but not the actual span of 

the vectors. One student drew three vectors with a2 = a1 + a3 in xlx3-plane when A = [al 

a1 a2]. These students did not form a mental model of linear dependence and span. As 

another example, to express the geometric interpretation for A = [al 2al 3al] the student 

drew a plane in R~ with 3 vectors not related to each other, as in Fig.2. 

Figure 2: Geometric representation of the column span ofA = [al 2al 3al] 

In all of these examples the span of the columns of A is disconnected from the 

actual vectors. Also in the latter example the object that these vectors span is 

misrepresented: vectors lying on a plane and not on a line though the origin. 

Several other misconceptions could be noted in relation to the geometric 

interpretation of the span of vectors. One of the misconceptions comes from using the 



row vectors in an echelon form of a matrix to represent the span of the columns of A.  For 

instance, one student correctly constructed matrix A = 3 5 7 , showed that it is row 11 11 
equivalent to 0 1 2 , and then used the rows of this echelon form of A to give a [: : -J 
geometric interpretation of the span of the columns of A.  It seems the student confused 

the column space of A with the row space of an echelon form of A .  He might have 

realized that to construct the span of the columns, he had to consider vectors in a matrix, 

but wasn't certain what vectors he had to look at for this task. 

The same confusion is noted in Anna's initial response to a request for a 

geometric interpretation of the column space of A. 

I: How can you represent the span of the column of the ,original matrix geometrically, 
1 

( - 1  - 1  - 1  )? (I 2 I] 
Anna: So (1, 1, 1) will be here; (-1, -1, -1) here, and (2, 2, 2) ... So this is vl, this is VJ, 'and this is 
v2 .... 

She started working with row vectors, but then remembered that in her matrix all vectors 

were the same and identified the span as a straight line. 

Another student started with a correct justification of why the span of the columns 

of A is not R ~ ,  however, it was poorly phrased: 'the span of the columns of A have only 

two pivot positions and therefore only two pivot columns of three columns (making it 

linearly dependent) so A will not span R ~ ' .  But the student didn't carry through this 



explanation and instead switched to interpreting the solution set of Ax = 0, 'A  has one 

free variable making it a line through the origin.' 

Leon first claimed the column space of his matrix A cannot exist '...there cannot 

be any ... the space would not be R3 by linearly dependent set.' After it was suggested 

that the column space of A may be a subspace of R3 he stated that it would be R2 then, 

and explained why R2 is a subspace of R3. 

Leon: It would be a subspace of R3, RZ. 

I: Is RZ a subspace of R3? 

Leon: Yes. RZ has. .. there is x, there is y and there is 0, then it would be a subspace of R3. Or at 
least in R3. .. Not, actually (x, y) which is in R2. 

It appears that some students incorrectly transferred the statement that the linear 

system Ax = 0 has infinitely many solutions to describe the span of the columns of A as 

being an infinite number of planes. For example, one student stated that for the columns 

of A to.be linearly dependent there must be at least one free variable, and constructed the 

third row, R3, of A to be 2xR1. He then claimed that x3, free variable, can be any point so 

the span of columns of A 'would be infinite planes'. 

Several students claimed the same geometric interpretation of the span of the 

columns of A in Task 1 (a) and l(b), even though the echelon forms of A and the number 

of entries changed were different: one in the first case and two in the second. These 

students didn't connect the structure of the linear dependence relation to the object 

spanned by the vectors. They might have had difficulty understanding the dimension of a 

vector space later in the course. 

A common confusion appeared in students' responses of the span of the columns 

of A with the solution set of Ax = 0. Instead of providing a geometric interpretation of the 



span of the columns of A,  some students gave a geometric interpretation of the solution 

set of the homogeneous system Ax = 0. The nature of the above confusion is explored in 

Section 6.3. 

6 . 4  Column space 1 Null space 

Recasting some of the analysis and conclusions of Task 1 in terms of column 

space and null space of a matrix, we saw previously that students commonly confused the 

span of the columns of a matrix A (namely Col A )  with the solution set of the 

homogeneous equation Ax = 0 (namely Nu1 A) .  Having been exposed to systems of linear 

equations, when students see the words 'matrix' and 'span' in the same problem, many of 

the students may rush into solving the homogeneous system Ax = 0 without 

comprehending what the question asks. Particular words in the problem trigger a certain 

reaction in some students without reflection on the meaning. These students develop only 

symbolic meaning of the words and this becomes an obstacle. Some examples of such 

confusion in students' responses to Task 1 are: 'The span of the columns of A will 

geometrically be a line through the origin since the equation Ax = 0 has only 1 free 

variable x3', in this case, the span of the columns of A is a plane, or similarly, 'x, and xz 

are dependent on x3; this is a line through the origin'. 

It seems that for students such as these, the procedure of solving systems of linear 

equations, and especially the expression of solutions of a homogeneous linear system in 

parametric form after row reducing a coefficient matrix or an augmented matrix [ A  01, 

has become a routine exercise so that the mechanics creates a barrier in answering the 

question about the column span of A .  Up to that point in the course students were 

exposed to questions of whether or not columns of an mxn matrix A span Rm, but were 
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not required to find the span of the columns of A in the case of a negative answer. So 

many students reverted to procedures when incorrectly giving the geometric 

interpretation of a solution set to Ax = 0 instead of the span of the columns of A. 

Task  2: Column space / Null space 

Find an example of a matrix A with real entries for which Nu1 A and Col A have at least 
one nonzero vector in common. For this matrix A, find &vectors common to Nu1 A and 
Col A. I f T  is the linear transformation whose standard matrix is A, determine the kernel 
and range of T. 

Task 2 was designed to further investigate the students' understanding of the 

fundamental subspaces Col A and Nu1 A, and how they can be related. This task calls for 

generating a non-example, an example that tests the boundaries of a concept. The 

summary of responses to this task is presented in Table 4. 

Table 4: 'constructing matrix A with v in Nu1 A ~ C O ~  A, v # 0 

T y p e  of Response 
-- 

Invertible matrix 
(necessarily incorrect) 

Singular matrix with 
NU] A n c o i  A = (0) 

Any other specific 
singular matrix 
(necessarily correct) 

Semi-general 
construction 

General construction 

Example 

Nu1 A: Ax = 0; Col A: can be any column in A. 
Pick one column and determine the other column. 

Let x equal to first column. [: ;] [:I =[:I ; 

a = -4 2 - 4  
and A =  -2] .  

b = -2 

[. b d b  [ . ] = [ : ] : A =  [: -!:I. 

Frequency 



6.4.1 Nu1 A I ColA as action 

Students that constructed an invertible matrix as an example may be operating 

with an action conception of the vector spaces associated with a matrix A .  They need to 

work with specific numbers and perform calculations explicitly to find the solution set of 

a homogeneous equation Ax = 0, and to compute the column space of A. As a result, 

computational mistakes lead them to incorrect conclusions. 

12 % of the students constructed an invertible matrix as an example for this task 

such as the 2x2 identity matrix [,l, y ]  or the 2x2 invertible matrix [: 261 . This may 

show students' lack of making the connection between the existence of a nonzero vector 

in Nu1 A and a matrix A not being invertible, even though it is one of the implications of 

the invertible matrix theorem. 

6.4.2 Nu1 A / Col A as process 

The process conception of column space and null space may entail realizing that 

one has to work with a singular matrix since its null space contains a nonzero vector. The 

action of solving a matrix equation is performed mentally to satisfy one of the 

requirements of the task. However, an individual has to compute the null space to show 

that null space and column space share at least one nonzero vector, which doesn't follow 

from the construction of an example. Students acting at a process level of understanding 

are unlikely to connect the vector spaces Col A and Nu1 A. 

In this task 88% of the students chose a matrix from the set of 2x2 singular 

matrices to satisfy constraints of the task. 48% of the students provided a specific 

example for Task 2 (Null space / Column space). However, the example space for these 



students was very limited. The examples are summarized in Table 5. The scalar multiples 

of representative matrices are included in the same group. As can be seen from the table, 

95% of the matrices come from a set of 6 groups of matrices, which can be identified as 

reference examples (Michener, 1979; see also Chapter 3). 

Table 5: Examples of singular matrices with v in Nu1 AnCol A, v # 0 

/ Example I Frequency 

I Misc 1 5% 

Some examples of students' correct explanations include: 'A = [;' 1'1 where 

Col A and Nu1 A contain [;I] . Therefore, [-xx] where x = all real ##s will be all 

1 1  
vectors common to Nu1 A and Col A'; 'A = 

- 1  -11 
... All vectors common to both 

subspaces can be expressed as w = where a is all real numbers'; or 'A = [: ::I 



Col A = Span{ [:] , [I :] ), but [I :] is a linear combination of , so it does not add to [:I 
the spanning set. Col A = Span { ). Nu1 A and Col A are equal and both have infinitely [:I 
many common vectors.' 

Not every singular matrix can serve as an example for Task 2 (Column space / 

Null space). Some students accounted for the requirement of Task 2 regarding null space, 

but ignored the intersection condition. These students may not link the null space to the 

column space, and may be operating with the process conception of two vector spaces. 

23% of the students generated incorrect examples. One of the reasons'that led to incorrect 

examples such as A = [: :] was overgeneralization: 'any 2x2 matrix with one fiee 

variable will do'. 

For students that generated incorrect examples, the computational and 

interpretational errors prevented them from realizing their mistake. Several incorrect 

responses included matrices A = [: :] or [: :I. in both cases, students incorrectly 

claimed that Nu1 A and Col A have the vector v = in common. However, in the first 

case, v is an element of Col A but not of Nu1 A, while, in the second case, v is an element 

of Nu1 A but not of Col A. Some of the possible explanations included finding a nonzero 

vector in one of the two vector spaces, Nu1 A and Col A, and concluding that this vector 

belongs to both; or computational mistakes that prevented students from reaching the 



correct conclusion. Starting from the incorrect example, A = [: :] and r = [i] , Tina 

attempted to show that vECol A by row reducing the augmented matrix [A  v]. However, 

she failed to apply the same row reduction operations to the vector v as to the matrix A 

resulting the matrix 1: At this point her combined errors led her to the 
L 

conclusion that the vector v 

Gary did get a pivot in the 

J 

is in Col A since the rightmost column is not a pivot column. 

rightmost column of the augmented matrix 1: r 2 ] ,  
however, he still claimed that vector [- y2] is common to both vector spaces.  or both 

solutions students were using an algorithm for verifling that a vector lies in the column 

space of a matrix. Lack of interpretation of the results created an obstacle for these 

students. 

Representational mistakes are very common in linear algebra. Even in the correct 

responses to this task, many students represented ~ o l  A as one vector or a set of two 

vectors, for example, Col A = [I'] or Col A = [ I  , [I :] , or the null space of A as a 

matrix, for example, Nu1 A = . These students treated Col A as a set of 

columns of A rather than a set of all linear combinations of the columns of A.  Showing 

that vectors lie in both Col A and Nu1 A ,  some students checked in turn whether each 

column x of a matrix A satisfied the homogeneous equation Ax = 0. However, then they 

failed to find all vectors common to these two vector spaces. A common mistake was that 



students indicated only 2 vectors in Nu1 A and Col A, for example, Nu1 A = 

Col A. Similarly, students said that Nu1 A = { [:I ) and Col A = { [:I , [: :] j 
:I [I :I = 

so they had 

only the vector in common. This may indicate that the students interpreted the 

column space of a matrix as the set not the span of column vectors, even though the 

distinction between a set of vectors and their span was emphasized in class and several 

problems in the textbook that were assigned to students. Many students failed to recall 

and apply this distinction. Perhaps they found it trivial and so did not attach any 

importance to it. 

Regardless of the computational and representational mistakes, students that 

incorporated the requirement that the null space and column space of a matrix have at 

least one nonzero vector and limited their potential example space to the set of singular 

matrices may be working with the concepts of Nu1 A and Col A. as a process. They 

internalized the procedures for finding these two vector spaces but were still unable to 

connect them. 

6.4.3 Nu1 A / Col A as object 

An indication that students have encapsulated Nu1 A and Col A as objects is 

demonstrated when the students are able to analyze a new situation and recognize how 

and why to apply the properties of Nu1 A and Col A. In this task, an individual might 

recognize that Nu1 A having at least one nonzero vector implies A is singular. Further, the 

analysis of Col A having an element in common with Nu1 A should lead to construction of 



a matrix such that one of its columns, ai, also satisfies the matrix equation Ax = 0, so that, 

Aai = 0. 

17% of the students indicated a general construction method for this task. All 

conditions of the task were incorporated in their responses. Several strategies could be 

identified within these responses. 

Some students used the echelon form of a 2x2 singular nonzero matrix A. In this 

case, the last row of A has to be zero: 'A = [: ] , then ' 1  ['I = 0 with condition 
0 0 0  

that x # 0. Then a + b = x and ax + bO = 0; so a = 0 (because if x = 0 we have the trivial 

solution) and b = x. Then setting x = 1, the matrix A = [: :] satisfies the given 

constraints.' This is a subcase of the general method of Table 4. 

Some students picked one specific column of a 2x2 matrix and set it to be a 

solution to the homogeneous equation Ax = 0. This determines uniquely the entries in the 

other column. Another strategy is the generalization of the previous approach. Students 

started with a general 2x2 matrix A, and set the first column of A to be a vector in Nu1 A: 

'Let A be 2x2 matrix; let v be a vector in Nu1 A and Col A. Let a, = v. Let A = I: :1 
and v = [I] . Then 

Not all general constructions led to correct results. For example, Peter started with 

a general 2x2 matrix A and a vector v in R': 'Let A= [ a  and x = [:I] . Then Nu1 A 
c d 



= A x = O ; C o l A = s  [E] + t [:] = [: ] . Then + bx2 = 0; if a = I and X I  = -1, then bx2 

= 1 and b = 1 and x2 = 1. Then cxl + dx2 = 0; -c + d = 0; c = d = 1.' This leads to the 

incorrect matrix A = [: :] . However, he still claimed that Nu1 A and Col A have the 

vector [A'] in common. Even though Peter started with a general matrix and vector and 

included all the requirements of the task in the set-up, he didn't ensure that the resulting 

matrix is valid. A source of his error is choosing arbitrary values for a and X I .  

Students that used the general construction methods of Table 4 included all the 

conditions of Task 2 (Column space / Null space) in their example-generation. There is 

strong evidence that they understand the concepts of Nu1 A and Col A as object. 

6.5 Linear transformations 

Linear transformation is another central concept in linear algebra. To determine 

students' understanding of this concept, they were presented with several linear 

transformations tasks. Students' examples provide significant data on their understanding 

of linear transformation. The responses are very diverse and are interpreted using a 

combination of both frameworks: APOS and concept image 1 concept definition. 

Task 3: Linear Transformations 

Let T be a linear transformation from a vector space V to a vector space Wand let u, v 
be vectors in V. State whether the following is true or false, giving either a proof or a 
counter-example: if u and v are linearly independent then T(u) and T(v) are linearly 
independent. 



Task 5: Linear Transformations (revisited) 
(a). Give an example of a linear transformation. 

(b). Give an example of a linear tranflormation from R~ to R2 that maps the vector 

to the vector [:I 
(c). Give an example of a linear transformation from R3 to R2 that maps the vector 1: 
to the vector I:]. 

- - 

(d). Give an example of a non-linear transformation. 

In Task 3 students were required to construct a counter-example for a 

mathematical statement. However, they first had to identify whether the statement is true 

or false. The summary of students' responses is shown in Table 6. Both correct and 

incorrect responses were included. 

6.5.1 Concept Image of a linear transformation 

Task 5(a) asks students to give an example of a linear transformation. Students 

were free to choose the representation and vector spaces to describe their examples. To 

construct an example of a linear transformation, students either started by recalling the 

definition and then constructed their examples to fit the definition, or they first came up 

with an example and then used the properties of a linear transformation to justify that 

their transformations were indeed linear. Nonetheless, students that used the second 

approach had difficulty with the verification part. For these students the link linear 

transformation ++ defining properties is a part of their concept image, but they had 

difficulty applying the definition to the problem. The definition did not appear to carry 

much meaning for the students. They were still operating at the level of symbolic 
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manipulations. The students that provided examples of a matrix transformation had 

incorporated the link linear transformation t+ matrix transformation in their concept 

image. These links are explored in detail below. 



Table 6: Summary of students' responses to Task 3 (Linear transformations) 

Type of Response 

Statement is true 

Incorrect Examples 

Jnit vectors / 
iingular matrix 

! linearly 
ndependent vectors 
singular matrix 

Verbal I geometric I 
other 
representations 

Example 

Since u and v are linearly independent, so the 
transformation is one-to-one. Therefore, the 
transformation is linearly independent, so the 
statement is true 

= [: :] . Thus this is 
1  

linearly dependent; 

-3- 

1  

3 

T(u) and T(v) are linearly dependent since the 
number of vectors in each matrix is greater than the 
number of entries in each vector. 

are linearly independent 

3 
2  1 2  

T(u) = '1 [i] and T(v) = [ ] - 
2 1 6  3 4 7  

3 

u and v are unit vectors in R' and A = F : ] O r  

because they are not multiples of each other; and 
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Let T: Rn+Rm be a linear transformation whose 
standard matrix A is an mxn zero matrix. Then T(u) 
= Au = 0 and T(v) = Av = 0, so T(u) and T(v) are 
linearly dependent even though u and v are linearly 
independent: cT(u) + dT(v) = 0 for all c,d in R. 

Projection in R'; 
[f T maps u to 0, and T maps v to T(v) then T(u) and 
T(v) are not linearly independent. 

Frequency 



6.5.1.1 Linear transformations * defining properties 

For two students, Sarah and Leon, an immediate reaction to the request for an 

example of a linear transformation was to recall its definition: 

Sarah: If it is a linear transformation, it means it must qualify that ...( writes: cT(u)=T(cu) and 
T(u+v)=T(u)+T(v)) for any u,v. So if it's a linear transformation, it must satisfy that a scalar times 
that transformation equals to the scalar times a vector and then transformation. And then it has to 
satisfy that a transformation of the sum of two vectors must satisfy.. . equals to the transformation 
of the first vector plus the transformation of the second vector. 

Leon: A linear transformation is required, has to satisfy two requirements ... T(x+y) has to equal 
T(x) + T(y)  and T(cx) equals cT(x). 

Only after recalling the definition did they start to look for examples satisfying the 

requirements: 

I: Can you give me an example of a transformation that satisfies these properties? 

Sarah: Let's say our transformation would be.. . from R2 to R2. And then it would be just ( x y )  to 
(YJ): so changing the two.. . vector ... you change the coordinates .. . 1 don't know what it's 
called. ..Interchange it, s o x  becomes y and y becomes x, the value, not exactly the point. 

I: Can you give me an example of a transformation that satisfies these properties? 

Leon: .. . Trying to satisfy these two requirements ... I am thinking, for instance, just 
multiplication perhaps, where T(x) = 2x and T(2x) = 4x. So just trying to'satisfy these properties. 
Then T(x+y) = 2(x+y) = 2x + 2y = T(x) + T(y) .  So I would say that the closest transformation I 
can think of is T(x)=2x. 

To present an example of a linear transformation one has to specify the vector 

spaces involved, namely, domain and co-domain of the linear transformation, and the 

action of that transformation. While Sarah correctly indicated the vector spaces, R2 to R2, 

and defined the action of the transformation symbolically, (x, y) to 0.1, x), her explanation 

showed the confusion between the vectors and the coordinates. The same mistake 

appeared in her solution to part (b) of Task 5 when she was trying to show that the non- 

linear transformation (x, y)+(x+3, yt4) is linear. 



I: Is this a linear transformation? 

Sarah: I am hoping it is. T(x+y) = T(x) + T b ) ,  and this gives me T (x+y) = (x+3) + w 4 )  and T(x) 
= (x+3) and T b )  = w 4 )  ... As long as you can write it, as long as it satisfies the condition, then it 
will be a linear transformation. 

I: In the equation: T(u + v)=T(u)+T(v), u and v are vectors, but x and y in T(x+y) = T(x)+Tb) are 
the coordinates of one vector. 

Sarah: It looks like I am mixing my vectors and coordinates. 

Sarah didn't have an appropriate language to support her reasoning. This was 

observed in students' responses to other tasks as well. Another point to notice is that she 

described the transformation on the coordinates of a vector, which is still correct, and not 

as an action on a vector space as a whole. In this case, T(x, y) = 01, x) is a linear 

transformation of R2 to R2, which is a reflection through the line y = x. A similar 

response was given by Leon. He defined his transformation as an action on an element of 

a vector space, namely multiplication by a scalar. He then made sure the properties of a 

linear transformation were satisfied, checking the scalar multiplication property for a 

particular. scalar 2: T(2x) = 4x. For both of these students, even though they referred to 

the properties of linear transformation, it doesn't seem that they understood what these 

properties meant and why they were required. 

In addition, Leon didn't identify the vector spaces in his example for which the 

transformation was defined and was prompted by the interviewer to complete his 

example: 

I: If your transformation is T(x)  = 2x, what vector space does x belong to and where would 2x be? 

Leon: It would be from R' to R'. But if there is x and y coordinates then from RZ to RZ. 

To justi@ that the transformations in their examples were linear, students 

proceeded to check the properties of the linear transformations. However Joan, as well as 



Leon, concluded that the transformation she defined was linear because it satisfied just 

one of the properties: 

I: Why is this transformation linear? 

Joan: Because if I transform this using this property, the property of the linear transformation, and 
if I tried to determine if the transformation of vector v and vector u equals the transformation of 
vector u plus the transformation of vector v separately (writes: T(u+v) = T(u)+T(v)), they would 
be equivalent. Then they would prove it's a linear transformation. 

I: You showed that the transformation of u+v is the same as transformation of u plus the 
transformation of v. Is it enough to show that T is a linear transformation? 

Joan: Yes. 

Anna verified the above property of linear transformation for the two specific 

vectors and not in the general case. Only after questioning did she complete her 

verification of both properties of linear transformation for any two vectors in a vector 

space: 

I: Why is this transformation linear? 

Anna: It has to satisfy the prope rty... If I take T(u) = 2u and T(v) = 2v ... Let's say (writes: u = 

), and when I add them together I get (writes: T(u) + T(v) = ). So they are equal. 

I: Does one example prove the general statement? 

Anna: You mean . . . I cannot use the numbers.. . Then I think I can write T(u+v) = 2(u+v), and . . . 
I said before T(u) + T(v) = 2u + 2v = 2(u+v). .. Yes, they are still equal. 

I: Is this sufficient condition for a transformation to be linear? 

Anna: Yeah.. . Oh, wait. There is another property.. . Scalar multiplication? For some scalar c in 
R I will have T(cu) = 2(cu) ... and it has to be the same as cT(u) = c(2u) ... Yes. They are the 
same. 

The reference to the properties of a linear transformation was reiterated in 

students9 written responses to Task 3 that asked for a counter-example to the statement. 

22% of the students claimed incorrectly that the statement is true. Several types of 



explanation can be noted in this case. Some students used the property of a one-to-one 

linear transformation incorrectly, by transferring the linear independence of the vectors u 

and v in the domain of T to the linear independence of the columns of the standard matrix 

of T: 'since u and v are linearly independent, then Au = 0 and Av = 0 have only the trivial 

solution, and by definition, Au = T(u) and Av = T(v) and they are linearly independent'. 

Others referred to the IMT (invertible matrix theorem) in their justifications: 'since u and 

v are linearly independent, by IMT T(v) and T(u) will be one-to-one transformations and 

it will be linearly independent.' These responses show that students were using the right 

words but applying them to the wrong concepts. These students made no distinction 

between vectors, a linear transformation and a matrix. The IMT applies to a matrix of a 

linear transformation from Rn to Rm in the case m = n, and a linear transformation from 

Rn to Rm is one-to-one if and only if the column vectors of the matrix are linearly 

independent. 

Some students tried to impose constraints on T to make the statement true rather 

than look for a counter-example. For example, several students incorrectly assumed that 

the linear transformation is invertible (which means it is also one-to-one, even though 

that was not stated explicitly in their solution), so the statement of the task is true, and the 

images of u and v are linearly independent: 'clT(u) + c2T(v) = 0; T-'(clT(u) + c2T(v)) = 

T-'(clT(u)) + T-'(C~T(V)) = T-'(0); clu + c2v = 0 and cl = c2 = 0 because u and v are 

linearly independent'. 

Other students correctly inferred that since u and v are linearly independent then 

the vector equation clu + C ~ V  = 0 implies that cl = c2 = 0. Then they used the same 

symbols for the scalars in the equation clT(u) + c2T(v) = 0, concluding incorrectly that 



this equation also implies cl = cz = 0 so that {T(u), T(v)) is a linearly independent set. 

Yet others incorrectly started with the assumption that T(u) and T(v) are linearly 

independent and proved the correct conclusion that u and v are linearly independent, 

which is always true. Both situations may be due to the problems with the logical 

reasoning. It was indicated in the previous research that such problems are an important 

prerequisite for understanding linear algebra, and could be an obstacle in students' 

learning (Dorier et al, 2000). 

It seems that in most of these responses, students were using the properties of a 

linear transformation without attaching meaning to them. They were manipulating the 

symbols to fit the requirements of the tasks. 

6.5.1.2 Linear transformations t, matrix transformation 

Two students represented their transformations as a matrix transformation: T(x) = 

Ax. They first gave a general description of a linear transformation, specifying the vector 

spaces, and when the question was repeated, the second request gave a correct example of 

such a transformation: 

I: Can you give an example of a linear transformation? 

Stan: Sure. I have x goes to Ax (writes: x+Ax). For example, a transformation from R2 to R' (T: 
R'+R~). 

I: What is an example of such transformation? 

Stan: So, any value in R2, any vector maps (writes: [: i] = [:I - Ax) to that (Ax). 

I: Can you give an example of a linear transformation? 

Nicole: I start with R3 and end up with R3 and there is a matrix, 3x3. 

I: What is an example of such transformation? 



Nicole: It can be anything. Let's say (writes: A = 4 5 6 ). And (writes: A 2 [:::I [:I 
vector in R3. 

Another indication of the link linear transformation t, matrix trans 

) equals some 

ormation is 

seen in the construction of the examples of a nonlinear transformation. Leon tried to find 

a transformation that could not be represented as a matrix transformation. However, his 

example of scaling a vector by a factor of 2, even though not represented as a matrix 

multiplication explicitly, can still be written as T(x)  = A x  where A = 1: 3: 
Leon: OK, transformation that is not linear. So you want something that just doesn't meet the 
criteria.. . So according to the definition T(x) = Ax ... So, for instance, we have a vector with two 

entries: T( [l] ) = [:] and T(2o, 2b) should get to (2e, 2 4 ,  (writes: T( [;;I = [:;I ). 

6.5.2 Linear transformations with APOS 

6.5.2.1 Linear transformations as action 

Students may be operating with the action conception of a linear transformation 

when they concentrate on the numbers/coordinates of a specific vector and not the 

properties of linear transformations. They perform an action by calculating the image of a 

vector under a linear transformation, or they recall this action for constructing their 

examples of a linear transformation. For instance, students offered an example of a linear 

transformation as an action on a specific vector: 

Joan: Sav from RZ to R4...so 3x3+x2+5x-1 would go to 3x5+x4+5x3-x 2... This would be ... from 

1 
R3 to Itsa- 

Anna: It could be (writes: T 1 [Il: 
4 

= [i, 



The same approach was used by Sarah for Task 5(b) when she was looking for an 

example of a linear transformation that maps [ y ]  to [:I. She found a transformation 

satisfying this particular condition but it wasn't linear. 

I: Can you give an example of a linear transformation that sends the vector (0,l) to the vector 
(3,5)? 

Sarah: I don't know if you can write it this way (writes: (x,y)+(x+3,y+4))? It satisfies only this 
condition: (0,l) goes to (33). 

Sarah's example of a transformation is a translation. Every vector v in the domain 

of T is translated by the vector to a vector v + . In this case the zero vector is 

mapped to a vector , violating the property of a linear transformation requiring T(0) = Ill 
0. In fact, non-trivial translations are a class of transformations that are nonlinear. 

Although Sarah's example hlfils the condition on mapping (0, 1) to (3, 5), she did not 

realize that it is an example of a non-linear transformation. 

Considering Joan's response, not only did she construct her example for a specific 

vector but she also indicated the vector spaces incorrectly, apparently recalling an 

isomorphism of the space of polynomials P, with R"+' incorrectly. In fact this student 

wasn't comfortable with the task; she said she was never asked to write her own 

transformation. In the routine exercises students are asked to find an image of a vector 

given a linear transformation. It seems that they adopted this process in generating 

examples of a linear transformation acting on a specific vector. 

While providing examples of a linear transformation with imposed constraints as 

in parts (b) and (c) of Task 5, some students concentrated on the coordinates of vectors 



and not the properties of linear transformations. These students either guessed the answer 

or tried to solve the problem by trial and error, looking for numbers that would work. 

After struggling with Task 5(b), Sarah was asked explicitly for a matrix to 

represent a linear transformation. As can be seen, she still didn't know how to approach 

construction of an example, and was guessing the position of the numbers to put in a 

matrix. 

I: How else can you describe a linear transformation from Rn  to Rm? 

Sarah: I don't know. 

I: If you have a vector x in R", and you want to write your transformation as an action of some 
object on your vector, how can you write it? 

Sarah: With something in Rn? 

I: You are starting with vector in Rn and you want to get a vector in Rm. 

Sarah: It's a vector space that has m vectors in it. You can take some matrix that has ...y ou want 
mxn matrix ... you multiply it by nxl vector ... so you get an mxl vector. 

I: So if you describe your linear transformation as an action of a matrix on a vector, what does the 
dimension of your matrix have to be? 

Sarah: It will be 2 by 2. 

I: Then how can you find the matrix of a linear transformation that maps vector (0,l) to (3,5)? 

Sarah: I don't know ... I am timesing something, I am timesing A with what, (0,l) to get ( 3 3 ,  so 

that (writes: [A] [ ] = [:] ). . . Something like (writes: [: :] )... No ... I don't know how to 

justify it. Maybe (writes: [P :I '. 
Even after other constraints were added to the task to limit the potential example space to 

one matrix, Sarah couldn't find a strategy to solve the problem. She continued guessing 

the matrix: 

I: I'll add another condition. Can you give an example of a linear transformation from R' to R' 
that sends the vector (0,l) to the vector ( 3 3  and sends the vector (1,O) to the vector (-4,7)? 

Sarah: (writes: T ( [ y  A] ) -> ( [: -74] ) ). (0,1), (1,O) goes to (3.9, (-4,7). Yes, that would be 

my standard matrix. 

I: If you write the transformation as T(x)=Ax, what is the matrix A? 



Sarah: It would be this one (writes: [: -74] ). T of this guy (writes: [ y  :] ) will be this guy 

3 - 4  
(writes: [5 ] ). 
I: But you transformation is from R'. What would be the image of the vector (0,l) under this 
linear transformation? 

Sarah: It will be (-4,7). That's not right (laughs). 

I: And if you apply your transformation to the vector (I$).. . 

Sarah: It will be (3,5), so ... which means the standard (matrix) would be (writes: [:, Y] ). 

I: So, what is your matrix A? 

Sarah: If I multiply it by (1,0), I get (1,O). No, I don't get (-4,7) ... That has nothing to do with this 

matrix ... So matrix A would be ... 1'11 do a wild guess. .. (writes: [: -;I )* 

Every linear transformation from R" to Rm can be represented as a matrix 

transformation. The standard matrix of a linear transformation is uniquely determined by 

the action of the transformation on the standard basis of Rn, namely the columns of the 

nxn identity matrix, I,. This property can be used to solve Task 3, and to construct 

infinitely many matrices in Task 5(b) and (c). 

Students may be aware of this property but not many of them were able to apply it 

in the problem-solving situation. Anna didn't know how to describe a linear 

transformation. She restated the question: 'if I call (0,1,0) u and I call this, (3,1), v, then I 

want to say that some transformation of u will give me v', but was stuck after that. Even 

after being prompted to find a matrix of a linear transformation, she tried to recall the 

procedures she knew to see which one might work in this case. 

I: How can you find a matrix of a linear transformation that will map the vector (0,1,0) to the 
vector (3,1)? 

Anna: It's just a vector, so I can't see how I can put it into a matrix. ... If I multiply it by a matrix, 
it has to be something by 3 to give me 2 by 1. If my matrix is something by 2 and I multiply it by 
u, which is 3 by 1 to get a 2 by 1, it has to be a 2 by 3 matrix. 



(writes: A u - - v 

2x3 3x1 2x1). 

... If I row reduce u and v, I should end up with A .  No. It's not invertible, it's not going to be 
inverse of v and u. But, all I can think of is row reducing.. . But one of them is in R~ and another 
one is in R ~ ,  so they can't be put in the same matrix ... I know it has to be multiplied by some 
matrix, the vector (0,1,0) to give me (3,l). . .So I have to figure out what that matrix is. 

From this excerpt it can be seen that Anna was familiar with the row reduction 

procedure as it is associated with a matrix, and she was prompted to use a matrix in some 

way: 'all I can think of is row reducing', but she didn't know where and when it can be 

applied. She couldn't put the vectors in the same matrix since they were elements of 

different vector spaces. Organizing vectors in a matrix is one of the first steps in solving 

linear algebra problems involving several vectors from the same vector space, for 

example to check if a set of vectors is linearly dependent. Then Anna realized that one of 

the vectors has to be multiplied by a matrix to get the second vector: '...it has to be 

muitiplied by some matrix ...' This suggests that some students first search for some 

known algorithm to apply right away rather than considering the statement of the 

question and its meaning. 

In her search for a matrix, Anna was looking for specific numbers to be sure that 

matrix vector multiplication works out, without comprehending what the vectors and 

matrix represent. The multiplication process is detached from the action of a matrix on a 

vector, and from a linear transformation. However, Anna's first attempt at generating a 

0 3 0  
matrix, [ 1,  was incorrect: 'if I don't want the third row then it has to be all 0's' 

0 0 0  

After checking her matrix, Anna corrected her mistake: 



Anna: Oh, no. It can't be all O's, because I have a 1 in (3,l). One of the 0's is a 1. It has to be the 
middle one (changes a 2 2  from 0 to 1). And this one (all) has to be a 3.  Oh, no. It has to be this one 
(al2). Because.. .(checks the matrix vector multiplication). . . When I multiply my matrix 

( [: :] ) with vector u, I am going to end up with vector v. 

When faced with a request for another linear transformation that had the same 

property, namely transforming the vector , Anna was surprised and 

didn't think it was possible. 

I: Can you find an example of another matrix associated with a linear transformation that maps the 
vector (0,1,0) to the vector (3, I)? 

Anna: Another matrix? ... I was thinking it's a unique one, because you need to have a 3 and 1 to 
multiply with 1 in u to give me (3,l). 

The theorem stating that a linear transformation between R" and Rm can be 

represented as a matrix transformation also states that matrix involved is unique and is 

determined by the action of the linear transformation on the standard basis of R". It seems 

Anna was referring to the uniqueness part of this theorem, but ignoring the other 

conditions. Even though Anna was able to generate example's of other linear 

transformations, the relationship of the position of the image vector in a matrix to the fact 

that the vectors in the domain were unit vectors didn't guide her example-generation. She 

wasn't able to connect the theorem, part of which she recalled, to this task. She 

concentrated on the vectors not the properties of linear transformations. This suggests 

that Anna is operating with the action conception of a linear transformation. 

The need to refer to specific numbers or symbol manipulation is seen again in 

students9 counter-examples. Some students claimed that the statement presented in Task 

3 is true based on a single example. For example, Tara constructed the linear 



a  + b  
transformation: T[;] = [ ] , but showed only that the images of the unit vectors are 

a - b  

linearly independent: T(el) = [:] and T(Q) = [Il] , while Kim defined T(x) =Ax with 

A being an invertible matrix: T(x) = 2 2 3 x. i' '1 
The students that claim the statement of Task 3 is true after imposing additional 

constraints on the linear transformation or making assumptions that are not specified in 

the given task, and students that used invertible matrices in their examples may have an 

action conception of a linear transformation. These students appeared unable to interpret 

the problem without computing values. 

6.5.2.2 Linear transformations as process 

Students understand linear transformations as a process if they internalize the 

action of finding the image of a vector in R" under a matrix transformation as a linear 

combination of the columns of this matrix. They are able to mentally perform this 

procedure to find the appropriate entries in the matrix. However, at this stage, the 

defining property of the standard matrix of a linear transformation may not be understood 

by the students. For example, Nicole represented a linear transformation, T(x) =Ax as 

[a1 a2]x = xla l+ x2a2 and then found the vectors that solved this vector equation: 

I: Give an example of a linear transformation that takes the vector (0,l) to the vector (3 ,5 )  in R*? 



Nicole: ... I have A times (0, 1) has to equal (3,s). So now I can do (writes: 0 [ 1 + I [ ]  = [:I)- 

3 3 
Then A can be (writes: [, ,I ). 

It was common to take the unit vectors in R* or R3 as the two linearly independent 

vectors in the domain of a linear transformation to construct a counter-example for Task 

3. 21% of the students offered correct counter-examples using the unit vectors and 

appropriate matrices to represent a linear transformation. However, less than half of these 

students gave coherent explanations for their examples. In fact, some explanations 

revealed students' lack of understanding or pseudo-conceptual understanding (Vinner, 

1997). 

Vinner introduces the notion of pseudo-conceptual understanding, and further 

categorizes it into two types. One is when students don't understand the topic but want to 

appear as if they do. In this case, they would put down as many mathematical statements 

and as much terminology as they can remember in their response to a question, for 

example, to make it look as if they understand it. The other type of pseudo-conceptual 

understanding is when students think they understand the topic but in reality they don't. 

In this case, the answer may be partially correct. For instance, Nick started with a correct 

counter-example, defining T as a matrix transformation with A = [: :] . If he had 

stopped at this point, his answer would be considered correct. However, his subsequent 

remarks reveal misconceptions in Nick's understanding. Namely, he computed T(u) = Au 

as the 2x2 matrix [: :] , similarly, for Av, and then calculated that Au + Av = A The 



conclusion that T(u) and T(v) were linearly dependent was based on the fact that the 

columns of the matrix A were linearly dependent. This is a correct conclusion, since the 

columns of A are the images of the unit vectors, u and v .  But it is difficult to conclude 

that this was Nick's understanding as well. 

An example of the second type of pseudo-conceptual understanding is seen in 

Lola's response. She defined the standard matrix of T to be A = [l :] with T(u) = [ l ]  

and T(v)  = [:I, however, she never indicated what the vectors u and v were. Also, the 

first part of her explanation using the properties of a linear transformation: clu + czv = 0 

with cl = c2 = 0, then clT(u) + c2T(v) = 0, indicates that Lola may not know what the 

standard matrix of a linear transformation represents and how it is defined. Even though 

students were using unit vectors and the standard matrix of a linear transformation to 

generate a counter-example, they still proceeded to calculated T(u) = Au and T(v) = Av. 

These students'didn't associate the columns of the standard matrix A with the images of 

the unit vectors. 

In response to Task 3, 16% of the students selected specific linearly independent 

vectors in R2 or R3 and a singular matrix to represent a linear transformation. 45% of 

these responses offered linear transformations from R2 to R2. For instance, Sam correctly 

stated that if u = [:I and v = [:] and T has the standard matrix [-22 .,] , then T(u) = 

0 making the set (T(u),  T(v) )  linearly dependent. 30% of counter-examples were of 

linear transformations fiom R3 to R ~ .  Some of the linear transformations were of the form 

T(x) = Ax where A = [al  0 a3]  or A = [al  a2 01. In the former case, u and v can have the 
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first and third coordinates in common; in the latter case, u and v can have the first and 

second coordinates in common. As a result, u and v are mapped to the same vector. For 

. This is a special case of the general 

construction offered by one student with T(u) = T(v) = b that leads to T(u) and T(v) being 

linearly dependent. 

Several students either supported or represented their examples visually indicating 

that u and v were linearly independent vectors while T(u) and T(v)  were linearly 

dependent. For example, one student correctly chose linearly independent vectors u = 

[:] and v =[:I with a linear transformation defined as [i] - [:I. Her explanation 

included the geometric interpretation: the images of the vectors lie on the same line, so 

since the vectors are multiples of each other, they are linearly dependent. 

Students using particular vectors and matrices in their examples may be operating 

with a linear transformation as a process. They internalized the mechanics of finding the 

images of vectors under the action of a linear transformation and looked for a 

combination of matrix 1 vectors that would give the desired outcome. 

6.5.2.3 Linear transformations as object 

Students may conceive of a mathematical notion as an object, when they talk 

about its properties (Hazzan and Zazkis, 2003). Thus, students may be operating with an 

object conception of a linear transformation when they emphasize the properties of a 

linear transformation in their solution. They do not perform any computations to 



construct a matrix for their example of a linear transformation for Task 5. This approach 

may suggest that the students have encapsulated the concept of a matrix transformation as 

an object. 

Stan and Leon emphasized the columns of a matrix in their example-generation in 

Task 5(b) and (c). They correctly placed the coordinates of the image vectors in the 

appropriate column of a matrix. 

I: Can you find a linear transformation from RZ to RZ that maps (0,l) to (3,5)? 

Stan: OK, I saw that the column, one of the columns of the matrix, the second column has to be 
(3,5); it's the image of the unit vector (0,l). And then I can choose any values to satisfy that 

property, so, that would be (writes: [: :I [ Y ]  = [:I ). 

Stan immediately recognized that was one of the standard basis vectors of R'. Thus, 1J 
its image would be the second column of the required matrix. Leon, on the other hand, 

first determined the dimensions of a matrix that would satisfy the requirements of the 

question and then found a class of matrices that would work as examples for a linear 

transformation: 

I: Can you give me an example of a linear transformation from R3 to RZ that sends the vector 

) to the vector (writes: 

L J  

Leon: So we are looking at the linear transformation matrix. .. So we are going from R3 to RZ, and 

then we know that the transformation of (writes: [:I) is to (writes: [i] ) Then I would 

L J  

multiply.. . What would I multiply by to get a 2 by 1 vector? This is a 3 by 1 and I want it to 

become 2 by 1, so this (matrix) has to be 2 by 3... And afterwards, we have (writes: 1 ), so the I11 
second column has to be (3,l) and the first and the third columns can be anything. .. So I will call 
the 2 entries here (all and a13) a and b, where a and b can be any number, and then c and d here 



(a2, and a23, writes: [: 11 ). And this would be a possible linear transformation matrix and it 

should get you to (3,l). 

The same strategy was used by the students to generate another example of a 

linear transformation with the given image of the one of the standard basis vectors. While 

Stan again offered a specific example, Leon presented a general form of a matrix that 

could serve as an example: 

I: Give an example of a linear transformation from R3 to R2 that maps (0,1,0) to 

(3, 1). 

Stan: This could be ...( writes: [: : :] [: 1 = [:] ) so ( 1  3) will be in the second column. 

X3 

I: Can you give an example of a linear transformation again from R~ to R2. that sends the vector 

Leon: ... Then I just call these a, b, c, and d [the first and second columns] and this has to be 1 and 

4 (writes: [Y "I ). 
c d 4  

When students do not perform any computations to construct a matrix of a linear 

transformation but rely on the properties, it may indicate that they have encapsulated the 

concept of a matrix transformation as an object. Thus, both Stan and Leon may operate 

with an object conception of a linear transformation. With this approach they can 

construct other linear transformations with the given constraints as can be seen in their 

responses to the requests for another example. In addition, viewing the matrix of a 

transformation in terms of the actions on the standard basis vectors will help them later to 

work with a matrix of a linear transformation relative to any basis. 



In response to Task 3, three students went beyond the requirements of the task 

and identified a general class of situations that refute the statement of the task. One can 

take any two linearly independent vectors u and v in the kernel of a linear transformation 

T: V-W, or two linearly independent vectors with the same image. Then T(u) = 0 and 

T(v) = 0, or T(u) = b and T(v) = b, respectively, so the set {T(u), T(v)) is linearly 

dependent. The third student correctly stated that if T(u) = 0 and T(v) is any vector, the 

set {T(u), T(v)) is again linearly dependent. 

Projection is another class of linear transformations that can be used as a counter- 

example for Task 3. Alana represented one such projection geometrically; however, her 

representation of vectors in the domain was incorrect: 

Figure 3: Counter-example for Task 3 

Students that offered general strategies for constructing counter-examples for 

Task 3 or general scenarios that refute the statement may understand a linear 

transformation as an object. They were able to operate on a set of linear transformations 

without reference to individual elements. 

6.6 Basis 

The concept of a basis includes and is related to the concepts of linear 

independence, spanning set, dimension and subset of a vector space (Fig. 4). 



Figure 4: Concept map of a basis 

Task 4: Basis 

Let M be the space of real-valued matrices. Let H be the subspace of M2x2 consisting of 
2x2 

all matrices of the form , where a, b, c are real. Determine dim H, give a basis 

for H, and expand it to a basis for M2x2. 

In Task 4, the students were asked to give an example of a basis'of a vector space, 

a subspace H of M2r2, consisting of all matrices of the form [- , f ] , where a, b, and c 

are real numbers. To be able to construct an appropriate example for' this task students 

need to possess all the above links in their concept image of a basis. However, the results 

indicate that for many students one or more connections either have not been formed yet 

or have not been invoked in this task. The summary of students' responses is presented in 

Table 7 below. The responses are categorized based on the number and type of 

connections identified in students' answers. 



Table 7: Summary of students' responses to Task 4 (Basis) 

Dimension, Linear 
Independence 

Subset l------ 
Spanning Set, 
Dimension 

Subset, Spanning Set, 
Dimension 

Subset, Dimension t--- 

Example 

vi = [-ab] and v2 = [:I . It is possible for these 
- - 

two vectors to be linearly independent. So {vl, v2) 

is linearly independent and hence is a basis for H. 
Thus, dim H = 2. 

[-I2 :1 is a basis for H; dim H = 2 since its 
L J 

columns are linearly independent. 

By isomorphism 

3 linearly independent vectors, so dim H = 3. A 

There are 3 vectors, dim H = 3. 

= 3 because there are 3 free variables 

Frequency 



1 All 

= b = c = 0, so linearly independent. Basis for H is 

As can be seen in the table, 24% of responses illustrated all connections 

associated with the concept of a basis. Students represented an element of H as a linear 

combination of 3 matrices and showed that the set of these matrices is linearly 

independent and spans H. For example, a student correctly stated that ' 
[Pb :] = 

. The three matrices are linearly independent because 

they are not multiples of each other and not linear combination of the preceding ones, and 

1 0  0 1 0 0  
H = Span{ [0 o], [ 1 ,  [ ] ).' As another explanation, some students used the 

- 1 0  0 1  

definition of a linearly dependent set of vectors to show that the three vectors are linearly 

independent: 'the three matrices are linearly independent because for a [: I + 

b :] + [ y ]  = [: ] the weights a = b = c = 0'. Jeff considered the entries of 

vectors to just@ linear independence: 'since each of the vectors does not have the 

nonzero entries in the corresponding position of the other two.' To expand the basis of H 



to a basis of M2x2, Nora first combined the above basis of H and the standard basis of 

M2x2 to get a spanning set of M2x2, { [A :I9 [-O1 ] [: Y ]  [: q [ y  :] and 

then removed the vector that was expressed as the linear combination of the others, 

[ y  01 = (-1) 
A] + [: :I, to get a linearly independent spanning set. In above 

responses, all students indicated that a basis has to be a subset of H, a spanning set, 

linearly independent, and the number of elements in the basis gives the dimension of a 

vector space. 

26% of the students used the columns of a specific or general element in H to 

form a basis for H. For these students the connection basis * subset may be absent. The 

first part of the concept definition of a basis of a vector (sub)space H says that 'an 

indexed set of vectors {vl, . . . , v,) in V is a basis for H if.. .' (Lay, 2003; p238), that is, 

the basis vectors are the elements of a vector space in the first place. The students, 

however, don't treat this clause as part of the defining property of a basis. They focus on 

the second part of the definition that emphasizes the conditions that make this subset a 

basis, namely, linear independence and spanning set. Furthermore, many students still 

couldn't apply these conditions correctly in the context of the vector space of matrices. 

The vector space of matrices is a particularly problematic concept for students. It 

requires students to treat matrices as objects, as elements of a vector space. (As was seen 

in Section 6.2, for many students their concept image of a vector is restricted to R", to 

nxl array of numbers). At the same time, each matrix has associated with it other vector 

spaces such as column space, row space, and null space. This creates an obstacle for 



many students when working with the vector space of matrices as can be seen in the 

following response: 

'dim H = 2. A basis for H -+ [-21 1;2]* [-21]9 [1;2] . Expand to basis for M2x2, 

[-21] + [1;2] = 3;2] -+ [-42] [3;2] 
'. In fact, these students do not distinguish 

between matrices and vectors in Rn. As a result, the students combine the properties and 

definitions associated with the column space and null space of a matrix with the 

definitions referring to the general vector spaces. For example, linearly independent 

columns of a matrix A form a basis for the column space of A. This property was 

transferred to Task 4 (Basis) when students claimed that 'since columns of H are linearly 

independent and there are two of them, dim H = 2 and basis of H is 2 linearly 

independent vectors in H, e.g. all the linear combinations of c, [-I,] + c2 [:I where CI = 

c2. ' In the explanation there was an attempt to include the condition that the basis vectors 

form a spanning set for the vector space, but the student was not applying it correctly. 

Some students that used the columns of a specific matrix in H a s  a basis realized that the 

vector space M2x2 is bigger than H, so a basis for it has to include more elements. For 

example, 'basis for H has at 

linearly independent because 

most 2 vectors. Assume basis for H = {[:I, [;'I} is 

the vectors are not multiples, then basis for MzX2 = 

{[:I, I-:], [il]] '. However, even though they claimed that a basis for H had at most 2 

elements because more vectors would result in linearly dependent set, they didn't check 



that the basis for M2x2 they provided was a linearly dependent set. Another student 

attempted to show that the expanded basis formed a linearly independent set: 'a basis for 

H i s  B = {bl, b2) where bl = and b; = [:I, and a basis for M;,2 is {bl, b2, b3) 

where b3 = which is not a linear combination of the other two'. [;I 
8% of the students used an isomorphism with R4 to represent a general matrix in 

of R4 isomorphic to H and expanded it to a basis of R4. However, the students didn't 

li: a matrix [ a b] could be expressed as 
- b  c 

convert the vectors in R4 back to the elements of H. The answers were left as basis of H = 

vector space. A similar approach is seen in Beth response. She used an isomorphism 

between H and Rn, but incorrectly used R3 instead of R4 collapsing two entries b and -b 

b 

- b 
, and then found a basis for a subspace 

basis for M2x2 are the same thing, the columns of 13.' As a result, she identified the 

dimension of H correctly, but didn't complete the rest of the task. Several students used 

:a ,b,cER)= 

the number of variables in the general form of an element of H to justify their conclusion 

1 

- d 

a - i + b m % ] + c  81, sodim H - 3 .  AbasisforHand a 

- 



about dim H such as 'Span a { [b :p[-Ol b],$ P I} is a basis for H, there are 3 free 

variables and dim H = 3'. 

To find an obvious basis for H, one can represent a general element in H as a 

linear combination of the matrices: [A 01, [-O1 A], and [; y ] .  The following 

response indicates such an attempt. However, a student again collapsed the matrices into 

2x1 arrays which led to the erroneous conclusion: ' H  = 

{[-ab :] : a, b, E 4 * a[:] + b[-ll] + c[y] '. Observing that [-Il] is a linear 

combination of [A] and [ p] , he concluded that a basis for H consists of the standard unit 

vectors in R'. This student may understand how to construct a basis for a subspace. 

However, the difficulty of viewing a matrix as an element of' a vector space and 

encapsulating a matrix as an object on which other transformations and'operations can be 

performed creates an obstacle for this student. 

Examples constructed for Task 6 indicate that for many students their concept 

image of a basis is incomplete. When students list the elements of a basis that are not 

elements of a vector space, the necessary component of a basis being a subset of this 

vector space is not present or inactive in students' concept image. If the number of 

elements in a basis does not correspond to the dimension of a vector space, the link basis 

t, dimension may be lacking in the concept image. Some participants of this study did 

not perceive the defining properties of a basis: linear independence and the spanning set 

as the necessary components for their examples. 



Tall and Vinner (1981) characterize a potential conflict factor as part of the 

concept image or concept definition that may conflict with another part of the concept 

image or concept definition. Such factors can seriously impede the learning of a formal 

theory. In students' responses several potential conflict factors were identified: basis 

vectors form a subset of a vector space; a basis is a linearly independent set; dimension of 

a vector space equals the cardinality of a basis. These conflict factors create obstacles for 

the conceptual understanding of a basis. 

6.7 Summary 

In general, example-generation tasks provide a view of an individual's schema of 

basic linear algebra concepts. Through the construction process and students' examples 

we see the relationships between the different concepts. 

Task 1 (Linear (in)dependence) revealed that the connections linear dependence 

++ fiee variables / pivot positions / zero row in echelon form, and linear independence t, 

no free variables / vectors not multiples of each other are strong in students' schema. This 

task also showed that students tend to confuse the null space and column space of a 

matrix, and this confusion was further demonstrated in students' responses to Task 2 

(Column space / Null space). In addition, Task 2 identified that some students' schema of 

null space doesn't have the connection between the existence of a nontrivial solution to 

the homogeneous equation Ax = 0 and the singularity of A. 

Students' responses to Tasks 3 and 5 (Linear transformations) suggested that 

some students connected a linear transformation to its defining properties, while others 

formed the link linear transformation o matrix transformation in their schema. At the 



same time, the connection of a linear transformation to the properties of its standard 

matrix is weak or nonexistent for some students. 

Vectors were generally associated with the elements of R" as was shown by Task 

6 (Vectors). The links to other spaces such as matrices and polynomials have not been 

formed yet by many students. Task 4 (Basis) showed that the relation basis t, subset of a 

vector space was ignored by many students, while some students misinterpreted the link 

basis t, dimension. 



CHAPTER 7: CONCLUSION 

"Researchers in mathematics education have suggested that the mistakes students make can provide 
windows through which we can observe the inner workings of a student S mind as s h e  engages in the 
learning process" (Dubinsky, Dautermann, Leron, and Zazkis, 1994,p.295). 

This study is a contribution to the ongoing research in undergraduate mathematics 

education, focusing on linear algebra. Despite the centrality of the subject in the 

undergraduate curriculum for students in mathematics, sciences and engineering, research 

on learning and understanding of linear algebra is rather slim. In particular, students' 

learning and understanding of the specific concepts of linear algebra has not been 

addressed in the research in detail. This study is an attempt to fill this gap and it is guided 

by the belief that better understanding of student's difficulties leads to improved 

instructional methods. 

Two research questions were posed in this study: 

1. What is students' understanding of the key concepts of linear algebra? 

What difficulties do students experience when engaged in the example- 

generation tasks? 

2. What can example-generation tasks reveal about students' understanding 

of mathematics? Are these tasks effective and useful as a data collection 

tool for research in mathematics education? 

Below I will summarize and discuss the findings addressing each of the above 

questions. I will highlight the contributions of this study from a pedagogical and from a 



methodological perspective. In addition, I will offer recommendations for teaching linear 

algebra and directions for future studies. 

7.1 Main findings and contributions of the study 

One of the goals of this thesis was to investigate students' understanding of linear 

algebra. Several fundamental topics were selected for this investigation. My study has 

identified some of the difficulties experienced by students with learning several key 

concepts of linear algebra, and has also isolated the possible obstacles to such learning. It 

was shown that many students have limited example spaces to support their concept 

formation/understanding. In the following paragraphs, I outline the main findings of my 

research as related to the concepts under investigation. 

Learners' responses to Task 1 (Linear (in)dependence) show that many students 

treat linear dependence as a process. They think of linear dependence in reference to the 

row reduction procedure. Some students connected linear dependence to the 

homogeneous linear system A x  = 0 having free variables that in turn corresponds to the 

nxn matrix A having a zero row in an echelon form. Other students linked the linear 

independence of vectors to a homogeneous linear system having only basic variables and 

therefore n pivot positions. However, few students considered the different structures of 

the linear dependence relations. 

Even though geometric representation helps in visualizing the concepts, for some 

students geometric and algebraic representations seem completely detached. This can be 

seen in students' attempts to provide a geometric interpretation of the span of the 

columns of a matrix. There was a common confusion of the span of the columns of A 



with the solution set of Ax = 0. Instead of providing a geometric interpretation of the span 

of the columns of A, some students gave a geometric interpretation of the solution set of 

the homogeneous system Ax = 0. Further analysis of students' understanding of the 

column space and null space showed that some students did not connect a matrix A being 

singular with Nu1 A having at least one nonzero vector. Other students internalized the 

procedures for finding these two vector spaces but were still unable to connect them. 

Learners' concept image of a linear transformation included the links: linear 

transformation * defining properties, or linear transformation * matrix transformation. 

However, students had difficulty applying the definition to the problem. Some students 

appeared to operate at the level of symbolic manipulations without attaching meaning to 

definitions. 

The study reveals that for the majority of students the concept image of a vector is 

limited to elements of Rn. They are only able to view the vectors as nxl arrays or directed 

line segments or points in RZ or R3. For example, as we saw in the interview with Nicole 

(Chapter 6, Section 6.2), she was confused between the elements of Rn and Pnml. 

Thinking of polynomials as arrays of numbers creates a conflict when a student is asked 

to check if a set of polynomials in Pn satisfying the equation p(0) = 0 is a subspace of P,, 

or when considering the action of a linear transformation T: p3+R4 given by T(p) = 

The concept image of a basis is fragmented or incomplete for many learners. 

When constructing an example of a basis, many students failed to check if the elements in 



the set are elements of the vector space in question. They jumped to verifying that a set is 

linearly independent and spans the vector space without considering the above condition. 

This study showed that example-generation tasks are a useful tool to discuss 

students' understanding of the mathematical concepts. In particular, students' examples 

reveal their appreciation of the structure of the concepts involved, the connections 

students make between the different concepts, students' level of understanding according 

to the AF'OS theoretical framework, and students' existing concept image. All these are 

components of the complex notion of understanding. 

In summary, there are several contributions of this study to the field of 

undergraduate mathematics education. Firstly, focusing on specific mathematical content, 

it provides a finer and deeper analysis of students' understanding of linear algebra. 

Secondly, focusing on methodology, it introduces an effective data collection tool to 

investigate students' learning of mathematical concepts. LearnerTgenerated examples 

showed that students' concept images conflicted at times with formal mathematical 

definitions. The tasks developed in this study provide researchers with useful tools to 

investigate the scope of students' understanding. 

Moreover, focusing on pedagogy, the study enhances the teaching of linear 

algebra by developing a set of example-generation tasks. As was pointed out in Chapter 

2, one of the reasons for students' difficulties in learning linear algebra is the lack of 

pedagogical practices that allow students to construct their own knowledge (Dubinsky, 

1997). Therefore, example-generation tasks are a valuable addition to undergraduate 

mathematics education since they serve not only as an assessment tool but also as an 



instructional tool that provides learners with an opportunity to engage in mathematical 

activity. 

7.2 Pedagogical considerations 

As mentioned above, the tasks soliciting learner-generated examples were 

developed by the author in this research for the purpose of data collection. However, 

these tasks are also effective pedagogical tools for assessment and construction of 

mathematical knowledge, and can contribute to the learning process. 

Part of the power of Task 1 (Linear (in)dependence) is that it anticipates the 

concept of rank, long before students are exposed to it. In playing with the examples 

(assigned after only two weeks of classes), students develop their intuition about what 

linear (in)dependence "really means". The students may not be able to articulate why the 

second example works differently from the first, but they are starting to develop a "feel" 

for the difference. This task can be further extended to higher dimensional vector spaces. 

Task 2 ( ~ u l l  space 1 Column space) explores the connection between the 

fundamental vector spaces associated with a matrix as well as their relation to a linear 

transformation represented by this matrix. In general, for a linear transformation T: V--+ W, 

the kernel and range of T lie in different vector spaces. This task helps students realize 

that, when V = W, part of the image of T may be in the kernel. To further guide students' 

thinking, Task 2 can be extended in several directions, for example, by applying the 

transformation again, so that some of the vectors in the range of T are sent to 0. If A is the 

standard matrix of a linear transformation T, this shows that Ker contains Ker A and in 



this case is larger. This can be restated in terms of the solution sets to homogeneous 

systems: the solution set of A ~ X  = 0 contains the solution set of Ax = 0. 

Task 5 (Linear transformations (revisited)) helps learners explore the properties of 

linear transformations. This task can be modified to introduce and investigate various 

classes of linear transformations such as one-to-one, onto, or invertible. A possible 

variation of Task 3 (Linear transformations) that was not explored in this study is to 

impose other constraints, such as requiring that any two linearly independent vectors 

necessarily map into linearly dependent vectors, or that dim V > dim W. Addition of this 

last constraint would require students to produce a non-square matrix transformation as a 

counter-example, if the transformation they choose can be represented as a matrix 

transformation. Task 3 can also be formulated in the form of a question: Is it always 

possible to find a linear transformation T from a vector space V to a vector space W such 

that for linearly independent vectors u and v in V, the images T(u) and T(v) are linearly 

independent? This wording of the task may trigger different responses from students. It is 

not only asking for a specific counter-example, but may also provoke students to consider 

classes of linear transformations for which the possibility always exists. 

Task 4 (Basis) helps students to better understand what a basis is, and to realize in 

a hands-on setting that a basis of a subspace can be extended in more than one way to a 

basis of a vector space. Furthermore the reasoning must take place outside the familiar 

comfortable setting of Rn. In the subsequent class discussion of the problem, different 

answers can be investigated to emphasize that a basis is not unique: Why are all correct? 

Are some more natural than others? When is a standard basis not the most natural? 



As was seen in the interviews, example-generation tasks created situations where 

students were stuck. Their examples did not fit the required constraints. Furthermore, 

faced with the contradictions, students were led to identify their misconceptions and 

eventually correct them. Learning happens when there is a challenge, when students are 

confronted with a problem for which previous solution methods are inadequate. Example- 

generation tasks present such challenges for students. Working on example constructions, 

students were able to progress from the process understanding to the object level 

(interviews with Leon and Anna, Chapter 6, Section 6.3.4). However, this may not be 

possible in the limited time frame of lectures to a large class, since individual attention is 

required and the instructor/tutor must avoid the tendency to just tell students the intended 

answer. 

Furthermore, example-generation tasks give students an opportunity to reflect on 

their knowledge. Joan commented that she found it difficult to construct examples for 

mathematical concepts. She could perform the calculations, but could not make sense of 

them. In the interview, she could not produce an example of a linear transformation 

because she was never asked to write her own transformation. As she acknowledged 

afterwards, ". . . now I can understand why I am doing the calculations". 

7.3 Limitations of the study and suggestions for further explorations 

There are several limitations of this study. Firstly, some conclusions are based 

only on written data and are not corroborated by interviews. The written responses did 

not always provide enough information about the genesis of the examples. Secondly, as 

there was less than full participation from students enrolled in a course, their responses 

might have not been representative. Thirdly, the data were collected using one type of 

13 1 



tasks, and there were no verifications from the different tasks to further support the 

findings. 

There are several directions that can be suggested for fbrther explorations 

focusing on the methodology, content and teaching. 

The use of example-generation tasks as research tools does not have to be limited 

to specific concepts discussed in this study, or even to linear algebra. The study can be 

expanded to other undergraduate level courses such as abstract algebra or real analysis to 

explore and improve students9 learning. 

This study examined students' understanding of several key concepts in linear 

algebra through learner-generated examples. It would be interesting to investigate 

students' understanding of the same concepts using different tools or. mathematically 

equivalent tasks, and to compare the analysis of the results. Another extension might 

focus on different concepts of linear algebra such as eigenvectorsieigenvalues, 

diagonalization of matrices, or orthogonality. 

Another extension of this study that could be of interest is the expert-novice study 

that explores the example-construction by the different groups: mathematicians in 

general, mathematicians that teach linear algebra, and students. In particular, the study 

could investigate the diverse approaches used for example-generation by these groups, 

and how these approaches correlate with the understanding of mathematical concepts. 

It is hoped that by examining students' learning, the data collected can lead to 

teaching strategies, which will help students expand their example spaces of 

mathematical concepts and broaden their concept images/schemas. It is proposed that 



further studies could discuss the design and implementation of example-generation tasks 

intended specifically as instructional strategies and evaluate their effectiveness. There is 

also a need for further investigation of the relationship between learner-generated 

examples and learner's knowledge and understanding. 
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