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ABSTRACT

The response of an iron whisker to longitudinal applied
fields is studied theoretically and experimentally. Long-
range magnetostatic interactions are found to play the dominant
role in the magnetization process. The micromagnetic equations
are solved for the transverse magnetization of the long domains
in the Landau configuration and we find (i) the volume charge
is always negligible for any crystalline anisotropy, (ii) the
180° wall charge depends on anisotropy and for iron never
exceeds 2.3 percent of the total magnetic charge, (iii) most
of the charge is on the surface and a close analogy exists
between the whisker and a bar of infinite intrinsic magnetic
susceptibility. This analogy is used to find the longitudinal
magnetization of the whisker in an arbitrary applied magnetic
field. Maxwell's equations are solved self-consistently over
the length of the bar and the procedure is extended to finite
intrinsic susceptibility. In addition, approximate calcula-
tions of the demagnetizing energy are used to compute the
susceptibility.

In a series of experiments a whisker is used as a trans-
former core with various d.c. bias fields. The magnetization
in a cross-section at different positions along the whisker is
determined for several length to width ratios. The results
are in excellent agreement with theory.

To our knowledge, this is the first time the micromagnetic
equations have been solved for the magnetization in a 3-dimen-

sional multidomain specimen in an applied field Ho' As a
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result of these studies, we have been able to construct a
picture of the spatial variation of magnetization in an iron

whisker during the magnetization process.
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We must expect posterity
to view with some asperity
the marvels and the wonders
we're passing on to it;
but it should change its attitude
to one of heartfelt gratitude
when thinking of the blunders

we didn't quite commit.

~--Piet Hein
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CHAPTER 1

INTRODUCTION

1.1 The Micromagnetic Approach

One can approach ferromagnetic materials from many
different levels, from the most basic (quantum mechanical)
problems of the interaction of neighboring atoms to produce
alignment of adjacent magnetic moments, to studies of
hysteresis curves and permeability. In micromagnetics an
intermediate approach is taken. A spontaneous magnetization ﬁ,
whose magnitude depends on tgmperature but not appreciably on
applied field, is assumed to exist by virtue of the guantum
mechanical exchange forces. Fluctuations whose wavelength is
comparable to the lattice spacing are averaged out. The mag-
netization is taken to be continuous over the specimen and of
magnitude Mg only its direction varies. Domains may or may not
be postulated, depending on the purity of approach and the
guestions being asked.

There are contributions to the free energy of the specimen
from the magnetic energy (dipole-dipole) of magnetization,
interaction with the applied field, interaction of the magnetiza-
tion with the lattice (anisotropy and magnetostriction), and
exchange interaction (short-range forces tending to align
neighboring atomic moments). The crystal symmetry and common
sense are used to find the form of the significant terms, and

the material constants are extracted from experiments rather than

-1 -



calculated from first-principles. The magnetization is varied
to minimize the total free energy.

A principal goal of this thesis is an approximate solu-
tion of the equations of micromagnetics for the case of a finite
ferromagnetic body. The results of the calculation are com-
pared to experimental results for oriented single crystals
of iron, commonly referred to as whiskers.

In this chapter the micromagnetic equations are summarized,
their previous uses reviewed, and their relation to the magne-

tization processes in iron whiskers is formulated.

1l.1.1 Defining Equations and Fields

From Maxwell's equations one sees that the magnetic induc-

tion B is a solenoidal vector
VB = 0, (1.1a)

and that the sources of B are current densities 3.

K]
Vox B = dng (1.1b)

In magnetostatics there are two types of contribution to

the current. One is from currents in wires or electrons in
motion, and is called free currents, jf. The other type is
fictitious or Amperian currents, ja’ associated with a magne-

tic moment/unit volume in material bodies. These currents

are expressed in terms of a new field which is called the



v 3 +
magnetization M:

> .
- J
ﬁxME

alw

. (1.2)

Maxwell's source equations can be rewritten as

i

3 x B = 4ﬂ—§ + 47Y x M

which reflects the source character of ﬁ, or as
> 3f

v x (ﬁ - 4¢M) = 4'rrE—
which reflects the field character of M and permits the defini-
tion of a new field ﬁ, where

H =z B - 47M. (1.3)

1f one further defines a fictitious magnetic charge or "pole"

density

p=-VeM, (1.4)

]
V x # = 4n—§ (1.5)
VeH=- an¥-M = 47p. (1.6)

In the absence of free currents
VxH=0, (1.7)

and one can write the magnetic field H as the gradient of



a scalar potential. Because scalar potentials are usually more
tractable than vector potentials, there is often a preference
for discussing magnetostatics in terms of ﬁ and p rather than
> >
B and J_.

a

+ 3 13 13 +

H is composed of two parts; the applied field Ho($'Ho =0
in the region of interest) and the field from the poles, H'.
Similarly, B is the sum of the applied field Eo = ﬁo and the
field B' from the amperian currents. The poles and currents
give identical "fields" outside the material (E‘ = ﬁ'); inside,

the fields differ by 47M.

The local field ﬁloc acting on an atom (or magnetic
dipole) within the material is the Lorentz local field

(Brown, Magnetostatic Principles of Ferromagnetism, p. 38 ff):

> > -> : 4 > >
H = H + H' + 5 ™ + H"
loc o} 3

> Z,
Ho o+ H') ., (1.8)

where H" is the field acting on a dipole at the center of a
small sphere due to the other dipoles within it. For a cubic

lattice with equal vector point magnetic dipole moments c¢n

the lattice sites, H" = 0.

1.1.2 Contributions to the Free Energy

The four major contributions to the free energy incorporate
the material constants of iron. The important magnetic constants

at room temperature are given in Table 1l.l. For our purposes,



Table 1.1

Properties of Iron at Room Temperature

Name or Defining Equation Symbol| Value

Saturation Magnetization M 1700 gauss

Curie Temperature Tc 1043° K

Lattice Constant a 2.86 x 10_8 cm

Spin of Iron Atom (units of #) S 1

Exchange Constant J 2.16 x 10_14 erg

J = FM; F .75 x 10729 cmd

Anisotropy Field HA 500 gauss

Anisotropy Energy/unit volume 5 3
K = MsHA/2 K 4.2 x 107 erg/cm

180° Wall Energy £ 1.1 erg/cm2




all thermal fluctuations are unimportant at T = 300°K. For
example, MS(T = 300°K) =~.99 Ms(T = 0°K). Thus, we will

essentially study the magnetic properties of iron at T = 0°K.

A. Internal Magnetic Energy (Demagnetizing Energy).

We consider the magnetic material as a cubic lattice of
point dipoles with moments ﬁi' The interaction energy of the

dipoles is
_ - - ——1 = . >, i ->
Egq = 5 i My H loc. 2/M (H + 3TM dt, (1.9)

where ﬁ'loc is the local field at moment i due to all the
i
other dipoles. The fields are assumed to vary only slightly

over a distance large compared to the lattice spacing but small

: 2
compared to the sample dimensions The constant term - §4TMS is
independent of the direction of ﬁ, and can be neglected in
variational calculations where only the direction of M

changes. Then
> >
Ed = - i/fM « H' dT1 - (1.10)

B. External Magnetic Energy (Magnetizing Energy)

In an applied field ﬁo there is an additional magnetic

energy

E=-zﬁ.-ﬁ=fﬁ-ﬁ ar . (1.11)
i (o] .



C. Crystalline-Anisotropy and Magnetostrictive Energies

By symmetry, the anisotropy energy/unit. volume to lowest

order in a cubic crystal is

Wy = K, (a?B? + a?y? + B%y2) + Koa2B2y? (1.12)

where (o, B, Y) are direction cosines of the magnetization,

referred to the cubic axes:

>
M

M_M = M_(ax + BY + vz). (1. 13)

In an unstressed crystal there is a strain on the lattice
due to the magnetization itself. This gives a term of the same
form as the crystalline anisotropy and is included there.

With the exception of the closure domains (Sec. 4.2) and

diamond domains (Sec. 6.1.2), we need not be concerned with

magnetostriction.

D. Exchange Energy

For a non-uniform magnetization‘the contribution to the
energy/unit volume from atomic forces which align neighboring

spins is

e, = s c [T+ @82+ @2, (1.14)



1.1.3 The Micromagnetic Equations

The total energy is minimized with respect to variations in

the magnetization (Brown, Micromagnetics, Ch. 4) and the result

. > . .
is that M satisfies

> >

M x HT =0 (1.15)

everywhere within the material, where

H =H + H'+H + H
T "o Tk ex '
A
= - re '
k M
>
H —

and

The meaning of (1.15) is that if there is a torque on

ﬁ due to the effective field ﬁ

o M will rotate (usually

changing ﬁT in the process) until the torque is zero everywhere
The "field" ﬁT is indeterminate by a vector_lﬁ (2 aﬁy
constant), since ﬁxﬁ = 0, This is the reason the Lorentz local
field correction %TTﬁ causes no problems, and the convenient
choice of H' (rather than B' = H' + 47mM) is sufficient for the

dipole-dipole fields.



To solve (1.15) it is necessary to attack the potential

problem contained therein:
B = - Vu,

where U satisfies

2 =
Veu 1

{4n§ - M inside
0 outside (large r, U ~ %), (1.16)

and on the surface U is continuous with a discontinuity in its
normal derivative equal to 47M n . And in this lies the

basic difficulty.
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1.2 Previous Use of the Micromagnetic Equations

The history of micromagnetics nrior to 1963 is covered in

Brown's monograph (Micromagnetics, 1963) and in reviews by

Shtrikman and Treves (Sh-63R) aﬁd Aharoni (Ah-62R). Advances
in the last ten vears are summarized in 3 review articles of
Aharoni (Ah-66R, Ah-71aR, Ah-71bR). Domain theory is

reviewed by Kittel (Ki-49) and Kittel and Galt (Ki—56); I
want to give here only a brief outline of previous applications
of the micromagnetic equations.

These equations were written down in 1940 by Brown (Br-40)
and first applied in the linearized regime near saturation.
Applications of micromagnetics have been to the properties of
both fine-particle (single-domain) ferromagnets and of larger

(bulk or thin film) specimens which are not necessarily single-

domain.

For fine particles, the basic problem is the establishment
of existence conditions for single domains (Br-68, Br-69): for
what sizes and internal parameters is a (nearly) uniform magnet-
ization more stable than a highly non-uniform one. For very

small particles the exchange and anisotropy energies associated

with a highly non-uniform magnetization would be greater than
the demagnetizing energy of a uniform magnetization, and the
particle is single-domain (Br-60). Micromagnetics is used to
determine the response of single-domain particles to applied

fields. An attempt is made to explain both the mode of magneti-
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zation reversal and the resulting hysteresis curve (St-48,

Ah-59). Hysteresis in those real materials composed of

collections of fine particles is complicated due to magnetic
(dipole-dipole) interactions between different particles, and
only highly simplified models have been used (Ne-47, Ah-59).

For a large enough particle the magnetostatic energy,
which scales with the volume if the relative dimensions are
unchanged, forces a non-uniform magnetization pattern which
avoids surface and volume poles. This is generally called a
curling pattern. With a finite crystalline anisotropy, the
magnetization in any region tends to point along one of the
easy directions in the crystal. Regions of rather uniform
magnetization ("domaing’) result and the boundaries between
them sharpen into thin "walls" (Br-59R).

For large crystals micromagnetic calculations have been
used to describe the structure of the walls between domains
and nucleation of deviations from uniform magnetization in the
presence of a reversed internal magnetic field. These calcula-
tions have all been essentially one or two dimensional. The
existence of domains has not been shown rigorously from the
micromagnetic equations, although plausibility arguments can
be made (Br-70R). In wall calculations, the domains (or
similar boundary conditions) are assumed to exist. The classic

calculations for bulk crystals are one~dimensional (La-35),
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whereas the best calculations for thin films are 2-dimensional
(La-69, Ah-67a, Ah-72, Hu-69, Hu-70). In the nucleation field
applications, the specimen is either an ellipsoid of revolution,

a cvlinder (Br-57, Fr-57) or prism (Br-62, Br-64) infinite

in one dimension, or a thin plate (Br-61, Mu-67, Fo-68, Ah-68).
It is initially uniformly magnetized in a high applied field
which is then decreased. An instability develops and the
initial mode of reversal can be studied. 1In the simplest cases
(e.g. infinite cylinder) the uniform magnetization does not
give rise to a demagnetizing field, and it is shown (Ah-58,
Br-59) that only a uniform magnetization is stable. The
magnetization reverses direction irreversibly without the
formation of stable (multi-domain) states. In a finite
specimen domains are presumably formed. However, this has
never been shown micromagnetically because the equations are
non-linear and the magnetization cannot be tracked beyond the

initial instability.
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1.3 Micromagnetics of Iron Whiskers

The non-linear equations of micromagnetics admit many solu-
tions. This makes possibie the phenomenon of hysteresis. These
equations are so complicated that there is no calculation, to
date,for a specimen of any geometry in which a domain structure
is formed, without artificial constraints (e.g. St-69) and
starting from either a random or uniform +dinitial magnetization.
Further, to our knowledge the micromagnetic equations have not
been solved for the magnetization within a postulated domain for
any 3-dimensional multi-domain specimen in an applied field ﬁo*.
This problem is solved here for the long domains in an iron
whisker of square cross-section d? in the Landau configuration
(Fig.1l.1l). We consider long whiskers where d/L << 1 and where 4 is
much larger than the theoretical wall width (~ 107°% cm.).

In the absence of an applied field, we assume for simplic-
ity that the magnetization is in the Landau structure. Certainly
the whisker will have a domain configuration similar to this.

The closure domains are necessary to prevent a large magneto-
static energy due to free poles. A simple calculation of wall
and magnetostrictive energies predicts that one 180° wall will

be lower in energy than two or more, for crystals of width

The magnetization is found trivially for the picture-frame
specimen (Wi-49), which is essentially two-dimensional and
has no demagnetizing energy. Without imperfections (and
neglecting the change in length of the 180° walls), it would
have infinite measured susceptibility. Reversal of M would
occur as in an infinite square ferromagnetic prism (Br-64),
and no domains could exist.
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d 5 700u. In fact, domain patterns observed on iron whiskers
(Co-57, Co-58) all showed only one 180° wall.

We now apply a longitudinal field HOE. The wall energy is
negligible compared to anisotropy and magnetostatic energies,
so the change in the wall energy, due to increase in length, can
be easily ignored (Sec. 4.2.1). We assume (to be verified
later) the magnetization changes.slowly enough within the
domains that the exchange energy can be neglected there, and we
solve for M within the domains by micromagnetics. That is, we
consider the anisotropy energy, magnetizing energy (interaction
of the whisker magnetizatién with the external field), and the
demagnetizing enerqgy (self-energy of the poles), and find M(T)
which minimizes the total energy.

In the long domains we expect the magnetization to be

~

nearly uniform, so a, B << 1. Then vy =1 - L(a? + B?), because

> > 2 N .
M+ M= Ms. The anisotropy energy is then

Wy T K, (a2 + B2)

where the terms in a2B8? are neglected. This leads to

He ¥ - Hy (ax + 8Y) (1.17)

_ 2K,
where HA = —H; .

The anisotropy energy can equivalently be written

w, = K; (1~-y?), which leads to

K



-> . ~ A~
K ) AYZ : HAZ . (1.18)

This differs from the previous expression (1.17) by Aﬁ, where

H
A= HA , sO it exerts the same torque.
S
->

N .
For a, B << 1, MxEp= 0 is linearized to

s ms Tom
3 |
=
H ]
Q
.

Using (1.18) for ﬁK‘

' _ ug' _ _ 9U
(Hy + H, + Hy) o = H = - x=

: . av |
(HO + HZ + HA) B = Hy = - 'a—y- . (1.19)

Because a,B << 1, they are nearly equal to the respective
angles of M with the z-axis, and (1.19) can be represented

vectorially :

Hl
X,V

]
HO + HZ + HA



- 17 -

Using (1.17) for H

Kl
T L
(HO + Hz) 0 = HX - aHA
(H + H;) B = H;, - BH, ., (1.20)

It is clear that (1.1%) and (1.20) are identical.

These equations will be solved numerically in Chapter 4
for the transverse magnetization (given by a,8) throughout a
cross-section of the whisker. In Chapter 6 they will be used

to show that the volume charge is completely negligible.



1.4 Outline of the Thesis

In Chapter 2 an experiment is described that has been
performed to measure the longitudinal magnetization of the
whisker in response to both uniform and localized a.c. magnetic
fields, in the presence of a uniform d.c. magnetic field. A
model is presented in Chapter 3 to account for the observed
magnetization by treating the long-range dipole fields locally,
and is refined by a quantitative treatment of the demagnetizing
energy. In Chapter 4 the transverse magnetization in the
whisker is found by expressing the demagnetizing fields in
integral form and evaluating the self-consistency conditions
numerically as a set of simultaneous linear equations. In this
way, no iteration is necessary. The longitudinal magnetization
is found numerically in Chapter 5 for different applied fields
by treating the whisker as a linear medium of infinite suscepti-
bility and solving Maxwell's equations for the cylindrical
boundary conditions. For purposes of general interest (such

as above Tc) solutions for finite susceptibility are also

given. We discuss iron single crystals more generally 1in

Chapter 6, and Chapter 7 is a short summary of our results.



CHAPTER 2

MEASUREMENT OF MAGNETIZATION

Iron whiskers grown in the .[100] direction are ideal for
interpreting the results of magnetic measurements. They are
perfect single crystals (except for a dislocation line down
the center) and can be grown with square'cross—section and
negligible taper. They can be cleaved transversely without
damage, permitting experiments on portions of the same whisker
with different length/width ratios. Good specimens are observed
(Co-57, Co-58, Sc-57, De-58a,b) to have simple domain structures,
such as the type predicted by Landau and Lifshitz (La-35).

Some whiskers have been observed (Ha-70, Ar-71, He-72)
to have a very simple magnetization curve. When the measured
magnetization is an average in the cross-section at the center
of the whisker, the M vs. H curve is linear until saturation is
approached, when it flattens rapidly. When the sample is in
the Landau configuration, the curve is linear and reversible.
Hysteresis is only found near the transition from linear to
saturated response. This transition was interpreted (He-72,
Ar-71) as occurring at the departure field Hyr when the freely-
bowing 180° wall touches the surface.

In the experiments to be described here, the whisker was
situated in a longitudinal d.c. bias field of variable strength.
In addition, a small longitudinal low-frequency a.c. field

was applied in two ways: either homogeneously or highly

- 19 -
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localized (~ .5 mm) at the center of the whisker. By low
frequency, we mean that the out-phase response (due to eddy
current damping) is much less than the in-phase susceptibility.
We used frequencies from 500 to 2500 Hz where the damping is
negligible. The susceptibility measured was then essentially
the d.c. response of the magnetization. All measurements were

taken at room temperature.
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2.1 Apparatus

Two "boats" of whiskers were obtained from Mr. Gilbert
Lonzarich at the University of British Columbia. The whiskers
are grown by placing FeCl: crystals in a pure iron trough and
heating to 720°C for about 15 houfs. Hydrogen gas is passed
through, reducing the iron to a Fe® vapor which condenses into
long single crystals with a screw dislocation down the center.
Suitable crystals must have a minimum of impurities, be square
in cross-section, and have no taper. The whisker selected was
originally 14.68 mm x .14 mm x .14 mm, with a taper of less
than .01 mm along its length. From experiments on similar
whiskers, Lonzarich concludes that the residual resistivity
ratio was probably greater than 1000, which indicates rather
high purity.

The whisker was placed in a (fine) quartz capillary tube
(o.d. ~ .3 mm), which was epoxy cemented to a lucite cube
(~5 mm on a side) mounted on a thin lucite plate. Different
specimen holders were used for each type of driving. For
homogeneous driving (by an electromagnet), a 10-turn pick-up
coil was wound around the tube and the leads were twisted and
cemented to the plate before being attached to a BNC connector
one cm. away. For local driving an additional 2-turn driving
coil was placed around the center of the whisker. The leads
were connected to another BNC, also mounted on the plate, and
an ll-turn pick-up coil was used.

The plate was mounted with nylon screws on the flattened

end of a lucite rod. The other end of the rod was put in a
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clamp mounted on a two-way micrometer traverse, placing the
whisker between the pole-faces of an electromagnet with its
axis perpendicular to them. The pole-faces were 10 cm. in
diameter and the gap was 3.6 cm., providing a quite
homogeneous field. The specimen was illuminated from below
and observed from above through a Wild binocular microscope.
Using cross-hairs in one eyepiece and the scale on the
micrometer, the position of the pick-up coil along the whisker

could be measured to within .01 mm.

A Kepcd bipolar power supply was used to facilitate
continuous field reversals. For homogeneous driving, an a.c.
field was also produced in the electromagnet by amplification
through the power supply of the signal from a Hewlett-Packard
200CD signal generator. The a.c. signal from the pick-up coil
was amplified by a PAR Model 124 lock-in amplifier with digital
readout. For local driving the a.c. field was produced
directly by the signal generator, with a 1200 R resistor in
series with the 2-turn driving coil (see Fig. 2.1).

There was always a background signal from the direct
linkage of the pick-up coil by the applied a.c. field. This
background was found by nearly saturating the whisker with a
large d.c. bias field (~ 500 gauss). The phase was adjusted at
the same time, because the background signal was in phase

with the applied field.
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d.c.
(setting)
H.P. 200 CD a.c Kepco - ac.+d.c
— .+ ¢a.c. Magnet
Signal Generator ———»  Power Supply - 9
|
a.c. doc Y
I
P.A.R. . -
124 SRR X-Y Recorder Pick-up Coil
(a)
d.c. Kepco d.c.
(setting) 1 Power Supply - Magnet
|
d.c. Y
l
P.A.R.
124 et X-Y Recorder Pick-up Coil
s
a.c. A
) |
H.P. 200 CD a.c.

Signal Generator

Fig. 2.1.

(b)

-

Driving Coil

Circuits for susceptibility measurements in

(a) homogeneous driving and (b) local driving fields.
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2.2 Interpretation of the Measured Voltages

We apply an arbitrarily small spatially homogeneous
a.c. driving field h° eimt (small letters will be used to
denote differential quantities). Our "measured" flux will be
the difference in pick-up coil voltage when the sample is
present (large susceptibility) and absent (zero susceptibility).
The latter (background flux) is conveniently measured by
saturating the whisker. We ask how the measured flux is
related to the average magnetization in the cross-section of
whisker at the pick-up coil.

Let the area of a very short Np turn pick-up coil be Ap
and the whisker cross-section be A, = d%. Brackets < > will

be used throughout to denote an average over the whisker

cross-section. The amplitude of the measured in-phase voltage

is
|- 139 13 L
P c ot large c ot aturated
susceptiblity

= W _ .0

=2 Np [(<hi>+4n<m>)AS +;/ﬂhodA h Ap]. (2.1)
A -A
P S

The oniy important field components here are longitudinal,
parallel to the long axis of the whisker. Here hi is the
internal field, ho is the field outside the whisker (hi = hO
at the surface), <m> is the change in magnetization (due to
motion of the walls) averaged over the cross-section, and the

integral is over the area inside the pick-up coil but out-

side the whisker. The magnitude of the demagnetizing
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field h' is defined from

h; = h® +h', h' <o, (2.2)

where h' is nearly uniform within the whisker cross-section
and near the whisker (out to a distance still much less than
L, the whisker length). h' is taken as positive in the
direction from positive to negative poles. We define the

intrinsic and measured susceptibilities, x and X', by

<m> = X<hi> = X'ho , (2.3)
and the position-dependent demagnetizing factor D by
<h'> =-47D<m>. (2.4)

Equations (2.2), (2.3), and (2.4) give the useful relation

= 47D , (2.5)

qu
1
x|+

We will show in Chapter 5 that x >> x' when the walls are
highly mobile (far from saturation), and only the whisker

shape determines the response:

1 - 4mp . (2.6)
X

Then h, = 0, and
h' =-h° . (2.7)

For a close-wound pick-up coil, hO = hi = 0 within the winding.
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Then (2.1) becomes

wNp o

[ t -

ep S [4ﬂx A, - A }h
. WN [As o

Neglect of the second term is justified if
. A_
——-$_—. << l .
4y AS

In this experiment it gives an error of about 1 to 3 percent,
depending on the whisker length, and we ignore it.

In summary, we find that for sufficiently high intrinsic
susceptibility and for a long whisker with a tightly-wound
pick-up coil, h' cancels h® within the coil, and no subtraction
of background should be made. In the experiment, we had an
additional, larger component of the background from flux
linking the pick-up coil leads where they attached to the BNC, and
subtraction of this was necessary. In principle the background flux
could have been measured by reversing the direction of the
coil with respect to the lead wires. As this was inconvenient
and the error was small this was not done.

For homogeneous driving, an absolute calibration of the
signal was made. The signal from an N, (=50)turn, 2.2 mm

diameter calibrating coil placed in a field nh° elwt is

g = YN A ho
c

c cc f (2.9)
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where Ac = 3.8 mm®’ is the area of the calibrating coil. From

(2.4, 2.7, 2.8), the signal from the whisker is

V=N

=

=
Qje

<m>d?, (2.10)

and the measured susceptibility is

v oo <m> ='EE.';NCAC (2.11)
X ho £ 47N _d2 ¢ *
c P

It is not necessary to know either the frequency or the magni-
tude of the small a.c. field. For the low frequencies used,
the magnetization is in phase with n°.

The largest experimental uncertainty in this susceptibility
comes from the measurement'of d, which is known within about
5 percent. However, the quantity x'd? can be determined much
more accurately from experiment (2.11l) and this is the
quantity calculated from theories of Chapters 3 and 5. We will
find it more convenient to compare the dimensionless quantities

x' and x'% , but it should be kept in mind that the uncertainty

in 4@ will not appreciably affect these comparisons.
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2,3 Experimental Results

2.3.1 Homogeneous Driving

The whisker was cut successively from the same end to
five different lengths and the following guantities were
measured for each length:

i) The departure field Hd

ii) The magnitude of X' at the center

iii) The magnetization process: relative values of

x'(HO) and x"(HO), the out-phase component

iv) x'(z), or equivalently M(z).

Figs. 2.2a and 2.2b show typical curves for X' and ¥"
vs. HO, when the pick-up coil is at z = 0 (center of the
whisker) and at z =.3(%) respectively. Similar curves for a
more perfect whisker are discussed in (Ar-71, He-72). x"
depends on the number, sizé, and position of the moving walls.
In general, the eddy current damping is reduced when the walls
are large in area and near the surfaces.

The magnetization process can be followed by considering
X" in Fig. 2.2a. Start at (1) with the whisker nearly
saturated in a reversed field. Between (2) and (3) it is
possible that nucleation occurs of a Coleman-type structure
(Co-58) with perhaps two parallel (110) walls. As the field
is increased through zero to (4), the walls beéome larger
and move toward each other, decreasing x". At (4) there is

an abrupt change to the Landau structure, which



29

.Um Aom I93Fe co._”um.u:pwmm prtdex mc._:so:m ‘1 (0=2) I93UDD 3® ST TTOD

dn-3oTd *2ZH 00G=a ‘ssneb g°zT="H ‘6£T0°=T/P ‘‘WO .y0°'T=T *pToty porrdde
snoauabowoy ur A3TTTqr3doosns TeT3uaxazyTp oseyd-ano pue -uy *ez°7 *bta

T R»




30 -

*I33usd woxF (Z/T)E°* 3e ST 1100 dn-3oTd 3dooxs () se sweg

nZ A

*qz-z bta



- 31 -

is stable in fields |HO| < Hy (e.g. (5)). The Landau
structure departs (before saturation) at Hy (6) to a more
complicated domain structure, and the magnetization saturates
guickly (7) at the center of the whisker. However, when
measurements are made away from the center (Fig. 2.2b), we see
a long tail in x', showing the slower approach to saturation
there.

The most important conclusion is that x' is quite constant
for HO < Hd’ and does not depend on the domain structure. (The
slight deviation from constancy is due to damping. It disappears

<m> 3<M>

as w »> 0.,) Because X' = S = 3H is constant with applied
h o}

field in this region,

<M(z)> = x'(Z)HO , (2.12)

where <M(z)> is the average magnetization in the cross-section.

<M (z2)>

Ho

can be measured. For a whisker in the Landau configuration,

By placing the pick-up coil at different positions,

<M(z)> tracks the shape of the 180° wall.

In Figs. 2.3a, b, ¢, d, e the measured <M(z)> is plotted
for the five different lengths, along with the theoretical
curve for infinite susceptibility and the least square
quadratic fit to the results of the theory (Chapter 5). The
wall bows nearly quadratically in agreement with the prediction
of the local model of Chapter 3. In Fig. 2.3a (which is the
most accurate because the whisker is longest), the deviation

of the experimental points from a quadratic shape is seen to



32

*6600'=1/P *6° > z I0F Ax08y3z 03 3ITF ST OT3eapenb ayg

*Z STgeTIeA SSOTUOTSUSWTP 3Y3 UT ¢ ST YabusT xoysTym *L3TTTqridodsns S3TUTIUT
103 (0c=w) G xo3deyp Jo AIo9U3} WOII oI S9AIND ! TeIUdWTISAXD dI® S3UTOd
*UOT3}OOS-SSOID IASMSTYM UT uoTIezT3subel sbeasay -burataq snoousbowoy ‘*evg gz °*HTA

Z 06°0 SL'0 09°0 Sh'0 0e’0 St°N 00° 0,

1 1 1 . 1 i L

ITd
oT3eapenyd

Oh

0

-

08

08°0

/P

001
A A
118
b P
vV V




33

*6€T0° = 1I/P °qg€°z *bta

06°0 SL'0 09°0 Sh'Q 0E°0 S1°0 00°Q,
t 1 1 i —1 1 i by
o
o
-
nN
o
314 -
oT3RIPRND S
IO
[e)]
o
-
[0+]
o
6€ET0° = 1I/P
- <(0)W
8 <(2)w

vV Vv



34

*G9T0° = T/P *0o¢°Z "Hb1a

2 Q0670 SL'0 09°0 Sh'O 0E’D S1°0 oo.oO
[ 1 1 1 1 1 1 b
o
(=}
o
~
o
| o
ITd =
o13eIpENO =Y
o
o
o
| &
™
o
/P

Mot~ < (0)IW>

o <(2)N>
o




35

‘$6T10° = 1I/P ‘pgz "bta

2 06°0 SL'O 09°0 Sh*0 0E’D S1°0 00"

~
-

-
i
i
i
:
i
i

00

02°0

Oh*0

3ITd
oT3RIPEND

‘0

L.

08

-

08°0

v6T0° = 1/P

<(0)W>
<(Z)W>

00°1




36

*98€0° = 1/P *9¢z -bT14a
2 06°0 SL°0 09°0 Sh'0 0€"0 Si*0 oo.pu
t 1 1 1 ] 1 1 b
o
o
TO
>
Kxo9yg
3Ta
oT3RIpPRND) L&
=
(o]
K=
[e2}
(o]
| ©
[0+]
(o]
1/P
= <(0)W>
o <(Z)W>
(o]




- 37 -

follow the theoretical curve well.

At the departure field H, one expects that <M(0)>,

d
the average value in the cross-section at the center, will be

equal to M. Then the susceptibility can also be found from

M
X' =g (2.13)

d

In Fig. 2.4 the quantity X'% is plotted for the five
different whisker lengths. It is experimentally determined
both from the departure field by (2.13) and from the calibrated
susceptibility by (2.11]). Three sets of theoretical values are
given for the infinite susceptibility model (Chapter 5).

There are no adjustable parameters and results based on
the calibration agree with the theory within the expected
experimental accuracy. The departure field values are signifi-
cantly larger. This is interpreted to mean the departure field
(measured when the coil is at z = 0) is occurring before the

wall touches the surface.

2.3.2 Local Driving

A 2-turn driving coil was placed at the center of the
whisker for 3 different lengths. The magnetization curve x‘(Ho)
was measured at various places and was similar to the curves for
homogeneous driving (Fig. 2.2) except no tail was observed
for H, > Hd. This is reasonable because when the magnetization

is saturated at the driving coil, there should be little

response to the driving field anywhere in the whisker.
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x'(z) was also measured for H, = 0 and is plotted in
Figs. 2.5a, b, c. Also shown is ﬁhe curvé calculated for
infinite susceptibility (Chapter 5), where the driving coil
radius was set approximately equal to 4. The displacement of
the wall is nearly linear, in agreement with the prediction of
the local model (Chapter 3). 1In Fig. 2.5c two different driving

frequencies were used. No appreciable frequency dependence was

observed.
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CHAPTER 3

DEMAGNETIZING ENERGY AND SUSCEPTIBILITY

In this chapter we assume the Landau domain structure
exists, and find approximations for the magnetostatic energy of
a whisker in both homogeneous and local driving fields. The
approximations will be of two types. 1In Sec. 3.2 we attempt to
use a demagnetizing field calculated only from the local
magnetization to find the energy. The usefulness of this local
model is only in its predictive abilities (the long 180° wall
behaves like a membrane with surface tension), and in the fact
that more accurate calculations are difficult for high-frequency
(damped) response.

In Sec. 3.3 we calculate accurate values for the demagnet-
izing energy, using experimentally observed wall shapes. These
are non-local calculations, where the energy arises from the
interaction of all the charges. We neglect anisotropy energy

and find approximate expressions for the measured susceptibility.
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3.1 Preliminary Considerations

3.1.1 Different Expressions for Demagnetizing Energy

In the pole formalism the magnetization is replaced by

poles of density
> >
p==V-+M (3.1)
which act as the source for the demagnetizing field:
V. H'= 4mp . (3.2)

This field is irrotational (§ X ﬁ' = 0), and can thus be

derived from a scalar potential U

H' = -V, (3.3)
which in turn satisfies the Poisson equation

Viu = -4mp (3.4)
with the solution

U (@) =/2;‘—r—;-)—0”—- :
r-r'|

The demagnetizing energy is the interaction self-energy of

these charges and can be written

e
Ey = ;2[[ o(i)o(r ) gr'dc
+
|r-r|

!5/11(?) o(x)dr. (3.5)
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Using (3.4) and integrating by parts,

1 2
= - = v
Ed SHJ[ Uveu dart
SH/VU VU dT-ﬁ/_ﬁ (uvu)ar.

‘The second term is converted to a surface integral which

vanishes as 1/r at infinity, leaving

E,4 = %W,/‘ H'2 41 , (3.6)

all space

From (3.6) it is clear that Fq = 0. The energy assumes its
lowest possible value (Ed = 0) only in a curling pattern, where
there are no poles. Starting again with (3.5), using (3.1), and

integrating by parts,

Ed=-%fuv-ﬁdT
%/§U-ﬁdT—;5/$- (uM)dt .

The second term is again converted to a surface integral and

vanishes when evaluated outside the region of magnetization,

leaving
Eq = -i/p ' - Mar . (3.7)

Equations (3.6) and (3.7) are important results. They are

connected by the following theorem (Brown, Magnetostatic

Principles in Ferromagnetism, p. 44-45): Let 4 and V be
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functions which fall off at least as fast as %7 for large r,
and let u be irrotational (§ x 0 = 0) and v be solenoidal

(V ~ v = 0) everywhere. Then

U+ vdr =0
all space
We let u = ﬁ', v = H' + 47M = E'. Then

[ w?ar = -%}f B+ M at
1 all space

follows directly from the theorem.

3.1.2 Distribution of Magnetic Charge Along the Whisker Axis

Fig. 3.1 shows a section of the whisker with two
different magnetization configurations. In (a) the magnetiza-
tion is parallel to the sides of the whisker, putting the poles
on the wall. In (b) the ragnetization is parallel to the wall,
putting the poles on the surface. The slope of the wall is 6.
In both cases it is seen from Gauss' theorem that the charge/

unit length is

T

= 2dMs9[l + 0 (82)].

As long as the magnetization makes small angles with the z-axis,
the net flux of M into the region (and hence the charge) will be

proportional to 6.
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->

Q=-/S/¥Mdr = -~ f/M-a8 = 2M_d tan® Az

(b)

Q = - [/M.a8 = 2M_d sin® Az

Fig. 3.1. Possible magnetization in a short segment of whisker
with resulting pole distributions. The angle 6§ of the Bloch
wall with the surface+is exaggerated for clarity. (a) M paral-
lel to surface; (b) M parallel to wall.
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3.2 The Local Model: A Simple Treatment of Demagnetizing

Energy

3.2.1 Homogeneous Driving

The Landau domain coﬁfiguration is shown in Fig. 3.2a.
Under the influence of a longitudinal field ﬁo = HOQ the 180°
wall bows and the pinning points move to increase the
magnetization in the +z direction (Fig. 3.2k). The wall shape
is described by an unknown function x(z).

The local model assumes that the demagnetizing field at any

point can be found from the charge density there. A magnetiza-
tion parallel to the surface results in a charge density of

poles on the wall

o =2M = . ' (3.8)

This gives the demagnetizing field a component in the z-direction

at the wall of magnitude

dx\?
] — - t— .
Hz(z) = 270 Iz 4WMS< z) (3.9)

For simplicity this field is taken to be uniform throughout the
cross~-section of the whisker. (This would seem to be an over-
estimate of the longitudinal field, but we will see in

Chapter 5 that because of the non-local nature of the field,
this is still an underestimate.) From (3.7), the demagnetizing

energy is

L/2

= e v..-)' = 2 . dx .
Ed = 2/ f—":' M dTt = 21TMS dj[ <d—z>z dz . (3.10)
21,/2



!
o
O

!

X
l
T
|
-—
I
M
I
M ' e v
M
S
M
(a) H =
X
I
|
M
x1 !
Al i
M L *2 M
_.___T._.____ — — - — 2
_—
M
Ho
(b)
Fig. 3.2. (a) Landau Configuration in Zero Applied Field,
(b) Schematic Magnetization in Applied Field (See Fig. 7.1

for more accurate representation).
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The magnetizina enerqgy is
L/2

Yo > .
Em = —/' M Ho dt = -ZMSHO%/r xdz , (3.11)

~L/2

Variation of x(z) to minimize E = Eq * Ep (with pinning of the

end points) yields the "force" equation

0 5 = —ZMSHOd ' (3.12)

where o = 4stzd2 is the tension in the wall due to the

demagnetizing field. Using the boundary conditions

g—}z( (0) =0 and x(i 2—)= 0,

the solution to (3.12) is

x(z) = xl{}—(%§>z] (3.13)

4

2
HbL

where x; = TEr a
S

is the displacement at the center of the wall.

The bowing of the long wall is quadratic. We introduce a more
concise notation and use (3.10) and (3.11) to write the demagnet-
izing and magnetizing energies in terms of x;:

where

M_242 -
ana y =81 (3.14)



where

The energy E

X1

il

- 51 -

(3.15)

(3.16)

In fact, the tie points at the end of this wall are not

pinned; they act as if joined to the z-axis by springs. The

demagnetizing energy which results from displacing these

points a distance X, can be written (see Sec. 3.3.1)
E' = % kox. (3.17)
d
where k, = nMSZd (n is a dimensionless number). This displace-

ment gives a magnetizing energy

E =
m
Minimizing E' = Eé + Eé gives
_3 A .
Xz-'z—}-z—z— and E

These "springs"

coupled in this model, and the total energy is

I

2 2 '
%(klxl + kzXz) —/e(x1+

2
“%(k, %, + Kyx3) -

(3.18)

(3.19)

(long wall and tie points) are not
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The total displacement of the wall is
% (2) =A{1%T [1 - (%E)z} ¥ 2132} ; (3.20a)
at the center this reduces to
X, + X2 ?/4<1T | ;%:>

_ 4 {r* [ 3L
T (‘57*27{) "o

xT(O)

~

(3.20)

3.2.2 Predictions for Homogeneous Driving

A. Shape of the Wall

The first prediction of the local model is that in a
homogeneous field Hy the wall is bowed quadratically, leading
to a parabolic longitudinal magnetization with a maximum in the
center. The actual magnetization is close to quadratic

(see Fig. 2.3).

B. Departure Field

As H increases, the tie points are displaced and the
wall bows until, in a perfect crystal, it touches the surface
at HO = Hd' the departure field. The wall then breaks and the
whisker approaches saturation with a much reduced susceptibility.

The departure field occurs when

4 1
xp(0) = 3 =/éd(ﬁ+ 7k, ),
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or

Med = gL+ 4 . (3.21)
HdL 3yd n
See Tables 3.2a and 3.2b (p.66-67) for values predicted by this
2-spring model. (The value of vy used there is not E%E from

the local model).

C. Differential Susceptibility: Independent of Ho’ MS

The magnetic moment of the whisker is

L/2 L/2
77"2/" =fﬁ drt =f <M(z)>dz = 2/ M d x(z) dz
~L/2 -L/2

The bulk differential susceptibility is from (3.20)

bulk _ 1 872 _ 16 [L)\?|1 , 9 /4
ey g (s o

which is independent of M and depends only on the dimensions
of the whisker. The bulk susceptibilty can be measured with a
pick-up coil much longer than the whisker.

In the experiment a small pick-up coil of Np turns
(N_ = 10) is used, which measures instead the longitudinal flux

p
of M at only one point along the whisker. The internal magnetic

induction is

-5
B. =
1

> >
+ H' + 41M

Ty
0o

where H is the demagnetizing field. For typical whiskers

(L/d ~ 50), 47<M(z=0)> = 22,000 gauss when HO = v 20 gauss.

H
. . > > >
Also, as will be shown in Sec. 4.3.2, Hi = HO + H

d
' @ 0 below
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saturation, so

- -
B, = 4mM
i
is an excellent approximation.
As in Chapter 2, we consider the differential fields,
magnetization changes, and fluxes produced by a small super-
imposed a.c. field h® elwt. For the geometry used, the signal

obtained at z = 0 after subtracting the background (when the

sample is saturated) is from (2.10)

= - 130> 4w > = w
€ S5t = 41 & Np m ds = 81TNp = Msd AxT(O), (3.23a)

where xT(O) is the differential displacement of the wall at

z = 0, giving rise to a differential change in net magnetiza-
tion m. A term from the demagnetizing field of the whisker of
relative size

A
1 L _
Tryaz ~ Too f°r g = 30

has been neglected. AxT is due to the arbitrarily small

field h®. Using (3.20a, 3.23a),

2
L 3Ld] n° . (3.23b)

: W
= —m— — —_— ——
€ ¢ NP [Y 2n
Note that the signal to a first approximation (neglecting

the effect of the end spring) is independent of d. Two whiskers

of the same length give approximately the same signal. A super-
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imposed d.c. field Hy does not change the signal as long as
the wall is able to move freely. This signal is again
independent of M (and hence temperature). No deviations
from linear susceptibility are observed experimentally at low
frequency (v < 103 Hz) for applied fields smaller than Hd where
the wall can bow freely.

The susceptibility at the center is found from (2.9, 2.10,

3.23b) to be

. €
. Cce "p 1l _ 8 (n)? 4 (L
X'(0) = = e T = 3‘7(@) t (a) - (3.242)

When the pick-up coil is not at the center this is easily

generalized to
vy 8 (N2, _ (2z)? 4 (L
Note the equivalence:
XI(O) E e = e = e, (3025)
For iron whiskers onlv the z-component contributes to the

average.

D. Deflection of the Tie points

From (3.20a) the fraction of the signal at z = L/2 to the
signal at the center is
X S

\ 1
= : . : (3.26)
XT(07 2n L
1+§7 d
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Table 3.3 gives theoretical values for the ratio of displace-

ment at the end, x,, to that at the center, x; + x,.

3.2.3 Local Driving

Instead of using homogeneous d.c. and driving fields,
one can use a fine coil at z = 0 to drive the magnetization and
a small pick-up coil as before to sample the response at
different values of z. We again use the local model for the

demagnetizing field. The magnetizing energy here is

LA2
Em = —2Msd Hz(z) x(z) dz .

-L/2

The axial applied field a distance z from a one-turn coil of

radius r,, current I, is

- 1
Ho(z) = H, AT (3.27)
[1+{ =) ]
r
where Ho = %gl is the field at the center of the coil, The
c

integrated strength of this field is

H = %/? Ho(z) dz = 2Hor .

0

For simplicity we will take the driving field to be H6 (z-0).
Th
en L/2
En = -’-MSH'd/ x(z) § (z-0)dz . (3.28)

-L/2
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Variation of x as before to minimize E gives

..d.zx_ '__
o Iz = -ZMSHd 6§ (z-0) . (3.29)

Integration from -4 to A gives

A _
S dx _ Cdx - =
[0 a—z— = (2 [0 ] E (A)) = 2MSHd .
~A
Using the boundary condition k(%) =0,
x(z) = x,(1-]%2 X, = i . (3.30)
1 L ! 1 BﬂMSd :

The local model predicts the wall will be triangular,
with its apex at the driving coil. The wall is pulled upward
by the driving field and behaves like an elastic membrane with
a tension determined by the demagnetizing fields. If we permit
the driving field to be smeared out (as it actually is) the top
of the triangle becomes rounded, with the curvature still
determined by the strength of the driving field.

Again using (3.11) and (3.10) the energies can be written

B = S (3.31)
where
ALY = -2m HA,
s
and
Eq = %k?xf
where 252
kL = YL‘MS'd , oYM = lem, (3.32)
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Note that YL < Y. The demagnetizing energy is less for the
linear wall than the quadratic because the + and - charges

are less separated.

The magnetizing energy due to the end springs is
E' = -2M Hdx_ = -/APx - (3.33)
m s T2 2 " *

" and the demagnetizing energy is again

Eq = % k x? . (3.34)
2

Minimization of the total energy with respect to x1 and x2
gives at z = 0
_ Y, 1
XT(O) = Xl + X2 —-/X, <E¥ + -]E-z-) . (3.35)

The fraction of the signal at the end to that in the center is

x
2
xT(O)

'_J

+
-<l: o

=

Quf 1

This fraction is < .1 for typical whiskers. The local model
predicts the relative end-spring deflection in homogeneous

driving to be about twice that in local driving:

1+ —%-%
Ratio = — Y29 T 3¥_ _ o |
14+ 20 L oL
3y d

Experiment tends to bear this out, the wall being displaced
at the end about 5-6 percent of the center deflection.

(Compare with Table 3.3 for homogeneous driving.)
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3.3 Non-local Calculations of Energy

As we saw in Sec. 3.1, the demagnetizing energy can be

found from the self-energy of the poles:

> >

......... l
Ed=%/g—(—£-)—gg——)-d‘r at' .
|r-r* |

The problem is that we must know the micromagnetic solution
ﬁ(;) in order to find p(;). The approach taken in Chapter 4
is to find the transverse M and p in any cross-section of
the whisker self-consistently. The result is then used in
Chapter 5 to find the longitudinal M self-consistently. In
this section we will use the longitudinal M found from
experiments and calculate the demagnetizing energy for
different configurations of the transverse M. We will also
give a more accurate description of the magnetostatic energy

than the local model (Sec. 3.2).

3.3.1 Homogeneous Driving Field

A. Long Wall

From both experiment and a self-consistent calculation of
the longitudinal magnetization (Chapter 5), we know that in a
homogeneous field ﬁo the long wall bows nearly quadratically.

A quadratic bowing gives rise to a charge/unit length of

. - 16M x.d
2Msd§-’5=— s 1

dz 1.2 z (3.36)
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along the whisker. Here we consider the demagnetizing energy
for the cases:
(i) the charge is on the wall
(ii) The charge is on two surfaces (say, parallel
to the wall)
(iii) the charge is equally on all four surfaces
(iv) the charge is on the surface of a cylinder
with cross-sectional area equal to az,
with the above linear variation of charge density.
We first find the interaction energy between two strips

of charge density

4

O(Z) = OO m
8Msx
(where O, = T ), of width dy and dy', and separated by
ly-y'|. This energy is
) 0; dydy L/2 L/2 .
pu— 1] L
d°E = z'dz’ 5%
[(z=2') “+s°]
L/2 —L/2
= (ln y_z_;‘ - %) o’aydy' - (3.37)

(see Appendix 1Aa).

In Appendix 1B the demagnetizing energy is found for the
four above cases, in the form

232
Ms'd
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where ,
128 2L 5
128 [, 2L _ 5 _m
128 2, ' 5 T+1n2
Yoo = {1 L2 < . )] (3.38c)

(3.384)

_ 128 [1 /L 7]
n d 3‘ .

The Y from the local field model of Sec. 3.2 is

Susceptibilities from these charge distributions are compared

in Table 3.1, where (3.24, 3.328) are used and we set n = =,

B. End Spring and Interaction Fnergy

By Gauss' law, we know that the total charge at each end

due to displacement of the tie points is (Fig. 3.3a)

Qe=t/ﬁ-d§= +2M x d.
S 2

surface

Let this charge be spread over the end and the four sides with-
in a distance d/2 from the end (total area 3d2). We find the

self-energy of this charge when it is distributed on a sphere

of area 3d?, which then has a radius r = %? d. The self-

energy of both ends is
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(b)

Fig. 3.3. (a) Gaussian surface for finding charge on the end
spring due to displacement x, of tie point. (b) Diagram for
approximating end spring energy and interaction energy of end
spring with long wall.
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2

L&

' e 2 2
L] - ;4
2 > = ans dx \

where n &2 16. It will be convenient to rewrite this as

M 2g%
- s 2 ~
Ed = %YZ T *2 , Yz ~ 16

|

. (3.39)

; between the

charges on the end and those due to bowing of the long wall.

There is also an interaction energy E

To find this crudely, we center the sphere of charge at the end
of the whisker and put the bowing charges on a line down the
center of the whisker which ends at the pinning point, a

distance % from the effective end charges (Fig. 3.3b). For

16Mde zdz
the bowing charges, Idel Lzl and
a
L/2 - 3 4 40
En = 2 e w
Fa L_,
“1./2 2
32m_2a? 1-7
= T X x./r zdz
172 =2
-1
=k x x (3.40)
371 2
M 2432

= s - 2L _
where k3 = Ya T ’ Y3 = 32<ln 3 2).

With the assumption that the charges are on the four

surfaces, the demagnetizing energy can be written

E. = %k x? + 4k %% + k x x (3.41)
d 1 1 2 2 3 1 2

M %232

M5

where k = Yas T ¢ The magnetizing energy is again
1
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3 :
E = f/5<xl + 5 x2> . (3.42)

Minimization of the total energy with respect to x and x
1 2

gives
x, = k—g-—.z'—: 2 2/ and x_ = ~§j_____~,“k3 £ (3.43
1 k k2 - an X, ® F % k: . .43)
1 2 3 . 12 3
At H, = Hy , xp(0) = x, +x, =5 . Then
Ma 4y + Sy -2y
Ty 7 (3.44)
HgL Y. Y,-Y2 a- .

We compare this with (3.21), which is the limit of (3.44) where

Y3 =+ 0 (no interaction):

M_d
s _ 8 4 L
T = (3Y1 + ?;> I (3.45)

d

and with the one-spring model where both y, = « and vy, > 0:

e (3.46)
a Y1
These values are compared in Tables 3.2a, b with the results
of Chapter 5, which are written as iﬂ%ﬂlﬁ % , and with the
o € N A

9 . P cc
corresponding experimental value ec'Zﬁﬁ;Ef
from (2.11). We used v, = \ Comparison of experiment

with the theory of Chapter 5 was given in Fig. 2.4.

The relative magnitudes of these "susceptibilities" can

be easily understood. The one-spring model should have the
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least susceptibility, and the two-spring non-interacting one
should have the largest value, because it permits deflection
at the ends as well. The model with an interaction energy
added should have an intermediate value. From Table 3.2a, we
see that the interaction energy is relatively large, the
susceptibility being only slightly greater than for the
pinned-end model.

We conclude that the l-spring model gives a good
approximation to the demagnetizing energy and hence to X'. A
large interaction term must be included when the end springs
are added. This interaction energy drives the susceptibility
back to near the l-spring value. Hence Table 3.1 was

constructed using the simple case of Yz = ® and Ys = 0.

The actual x' (« 1/y) is an upper bound for the
susceptibilities of any set of postulated charge distributions
(assuming the demagnetizing energies are accurately found).
Thus of these possibilities, reference to Table 3.1 shows that
a real whisker is most closely approximated by putting the
charge equally on the four surfaces. (The local model result
has a greater susceptibility than the non-local values due to
neglect of non-local demagnetizing fields.)

In summary, the susceptibility can be accurately
calculated using the l-spring model and assuming the charge
is on all four surfaces.

Table 3.3 gives the displacement of the tie points as a

fraction of the displacement at the center of the wall, as
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X2
X, 4+ Xy Quadratic Fit
L Non-interacting Interacting
1.468 .085 .076 .119
1.047 .105 . 097 .135
.881 .117 .110 .144
.746 .128 .123 .154
.376 .181 .191 .206
Table 3.3. Relative magnetization (homogeneous driving)

at the end of the whisker to that at the center, for non-
interacting springs (from (3.43) with K3=0), interacting
springs (from (3.43) with K3 given in (3.40)), and best

guadratic fit to theory of Chapter 5.



- 70 -

predicted by the two models here. Also shown for comparison
are the values found from the best quadratic fit to the
magnetization calculated in Chapter 5.

The 2-spring models attempt to treat the actual departure
from linearity of the charge density along the whisker as
being concentrated entirely at the end, giving rise to the
second spring and interaction energies. The results of
Chapter 5 indicate that for a self-consistent solution, the
extra charge on the end must be spread along more of the

whisker.

The most impressive thing about these models is that
there are no adjustable parameters. Susceptibilities are
found which agree with experiment within 5 percent, based on
the assumption of a parabolic magnetization. An assumed
magnetization which is not too far from micromagnetic
equilibrium can give good results for the energy, because at
equilibrium the variation of the energy is of second order
when the variation of M is of first order. We have assumed
various magnetization configurations, giving différent charge
distributions. Thoseconfigurations which are "close" to
equilibrium give excellent results for the energies (and hence

susceptibility). However, comparison of the energies does not

-5
give much information about the true M. To find M we must

minimize (to zero) the torques on the atomic moments.
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3.3.2 Local Driving

We found in Sec. 3.2 that the local model predicted a
triangular-shaped wall for local driving, with YL = 16 .
From experiment, the wall is nearly this shape. In Appendix
1C, the actual demagnetizing energy (non-local) for a
triangular wall is calculated for the case of charges on the
surface of a cylinder. We find

M 242

L s 2

= L
Ed A

1, Xl ’ (3.47)

where Yg = 32[1n ig% -1 + —%%%—] -
i L

By comparing Yg with Yo (for the homogeneous driving),

we find

<

<
Q H‘O
s
W) >

to within one percent, for % > 30. This would be expected if

the susceptibility in homogeneous driving for both triangular

and quadratic walls is nearly equal, because the ratio of
areas, and hence magnetizing energy, is also 4/3. On energy
considerations alone, in homogeneous driving a triangular
response of the magnetization should be as favorable as the
actual quadratic bowing of the wall., This emphasizes the
point made in the last section that different magnetizations
which are not "too far" from micromagnetic equilibrium have

nearly identical susceptibilities.
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It is interesting that the local model also predicts
64

The magnitude of each of these quantities is incorrect (by a
factor of about 2) but the relative sizes seem to be
accurate for different wall shapes.

In local driving, only the.  deflection at the center

determines the magnetizing energy. The wall shape just
minimizes the demagnetizing energy for a given center
deflection. The triangular wall has only 3/4 the demagnetiz-
ing energy of the quadratic wall for the same center deflec-
tion, so the former will clearly be favored. The actual shape
of the wall is found, from the self-consistent field approach
of Chapter 5, to be very sensitive to the radius of the
driving coil (Fig. 5.6).

Although we can't distinguish well between different wall
shapes from these energy calculations, we have seen that
minimization of magnetostatic energy requires the charge to
be at the surface. That the chargé is in fact at the surface
(because of the low crystalline-anisotropy of iron) will be

shown in the next chapter).



CHAPTER 4

" THE TRANSVERSE MAGNETIZATION

In this chapter it is shown that in a long whisker the
transverse and longitudinal magnetization can be solved for
separately. In Sec. 4.1l.1 a simple functional form for the
transverse magnetization is assumed and the parameters in the
expression are evaluated. In Sec. 4.1.2 the micromagnetic
equations are reduced to a set of coupled linear algebraic
equations and solved numerically. Most of the magnetic charge
is found to be on the whisker surface, with very little on the
180° wall and virtually none within the domain volume. In
Sec. 4.1.3 it is assumed that the volume charge is zero and
a more accurate calculation of the surface charge distribution
is presented.

Contributions to the magnetic energy of the entire whisker
are calculated in Sec. 4.2. Neglect of wall energy and exchange
energy within the long domains is justified, and it is shown
that the anisotropy energy within the long domains lowers the
whisker susceptibility about a pereent below the magnetostatic
result found in Sec. 3.3.

The similarity of the iron whisker to a medium of infinite
magnetic susceptibility is established in Sec. 4.3, and the
result is used in Chapter 5 to calculate the longitudinal

magnetization (i.e., the shape of the long 180° wall).

- 73 -
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4.1 Micromagnetic Theory: ' The Torque Equation

It was shown in Chapter 1 that the distribution of
magnetization can be found in two equivalent ways: (i) varying
M to minimize the "energy", or kii) varying M until the "field"
is parallel to M everywhere. In this section, we adopt the
latter method. We first discuss self-consistent fields and a
simple analytical model for the whisker. The micromagnetic
equations are then set up in integral form and solved

numerically.

4.1.1 Self-consistent Fields

We will find the transverse magnetization in a long
whisker (L. >> d) when a longitudinal field HOE is applied.
We start by assuming the existence of the 180° wall and the
closure domains in zero applied field (HO = 0). In this con-
figuration there is no demagnetizing field fi' and the torque
equation B x ﬁT = 0 (where ﬁT = ﬁo + A+ ﬁk + ﬁex) is satisfied
by the competition between the anisotropy field ﬁk and the
exchange field ﬁex within the domain walls. This competition
is unaffected by the displacement of the wall in an applied
field. We need consider only the effects of ﬁo' ﬁ', and ﬁk
within the domains themselves. The magnetization within a

domain varies slowly enough that ﬁex is negligible there.
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The simplest magnetization distribution which approximates
the whisker is shown in Fig. 4.1. The origin of the coordinate
system is at the center of the whisker. The angles are greatly
exaggerated for clarity. Throughout this section the wall is
assumed to be in the center (x = 0) to simplify the calculation.
(The wall is near the center only for the initial magnetization
(HO << Hd), but our conclusions will be valid for all HO < Hd).
The magnetization is assumed to rotate uniformly from the center
to the sides, giving rise to + and - contributions to the
“uniform volume charge from the derivatives of x and y angles,
respectively. It will be seen that this is a fairly good
approximation.

The magnetic charge for this approximate solution is
found from

aM aM

= = =—_}.{.— =
p = -V-Hi X oy

Py + Py,

which gives for small 'angles (¢3 ~ ¢, < ¢; <6 << 1) the

volume charge densities

o M (81-02)
X=———H72_— (4.la)
and
M_(-¢3)
Py =8 " (4.1b)

a/2
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Fig. 4.1. Charge densities (o 102'03'01'02)1 magnetization
angles (¢,,¢,,4,), and wall angle 6 1in approximate configuration
for long domains separated by 180° wall. Volume charge is
assumed to be uniform; actual volume charge is p = p; + p,.

Dotted arrows in y-z projection indicate magnetization on far
side of Bloch wall.
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and the surface charge densities

Ow = ZMS(G - ¢]), (4.1c)

0, = M_b,, (4.14)
and

0’3 = MS¢3 o (4.le)

The transverse demagnetizing fields are found from these

charge distributions.

A, Separation of the Problem

At any point z along the whisker, the wall makes an-angle
©(z) which results in a total charge/unit length Py 8(z)
(Sec. 3.1). This angle is slowly varying over distances (in
the z direction) comparable to d. Because the transverse
fields fall off rapidly as E% %  they can be equivalently
calculated from an infinitely long bar with the same charge
distribution in cross-section, but uniform charge/unit length
in the 2z direction given by Py above. This equivalence is
further aided by the fact that first order deviations in
0(z) on each side of the point in question give tranéverse
fields which tend to cancel, being positive from one side and

negative from the other.

In a whisker cross-section at any point z, the demagneti-.
zing fields, and hence transverse magnetization, vary linearly

with 0(z), but do not otherwise depend on z. Thus, the total
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amount of charge in the x~y cross-section scales linearly with

©(z), and the distribution of this charge, which is determined

by the demagnetizing fields (and the crystalline anisotropy),
is independent of z. Note, however, that very near the ends
of the long domain wall the approximations made here are of
limited validity.

The three-~dimensional problem thus separates into a two-~
dimensional (x-y) and a one-dimensional (z) problem. As the
separation is valid everywhere except near the ends, it is a
good approximation for long whiskers. The longitudinal problem
is to find x(z), the shape of the wall, and is studied in

Chapter 5.

B, Self-consistency at the Wall

At the wall, the angle of M with the z-axis, ¢1, can be

immediately found. By symmetry, the only demagnetizing field
acting on these spins is due to the charge on the wall itself.
Fig. 4.2 shows the fields. M points in the direction of the
sum of anisotropy and demagnetizing fields. For small angles
and using (4.1lc), ‘

¢ o~ 2moy _4TMg(0-9,)
H H )

A A
Defining
H
. M . _ A 500
' ¢, = ‘5 and R’f T; A
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(a)

Hy

27T 6,
¢, _
Ha
(b)
. Fig. 4.2, (a) Magnetization and charge at the wall--definition
of magnetization and wall angles. (b) Self-consistency

condition at the wall.
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we find

d. =

1
. R (4.2)

and the fractional charge on the wall is

R

-4 =qx=

.023,

Only 2.3% of the charge is on the wall.

This result also applies when the wall is not in the
center of the whisker, where there is an added transverse
demagnetizing field. 1In the small angle approximation, this

extra field rotates the spins on one side into the wall, and

on the other side an equal amount away from the wall. The
net flux of M into the wall (and hence the charge on the wall)

does not change.

C. Simple Model

As a first attempt to find the transverse magnetization
(and distribution of magnetic charge), we assume a solution

to (1.15) of the form (Fig. 4.1)

2x% d
M_6 q>1-(q>1-q>2)_5] , 0<x=§
M (x)=
* 2 d
-M_6 [¢1—(¢1-¢2)-—g—] -5 =x<0 (4.3)

2 d d
M (y)= M 00, oL ' "3y =3



wnere ¢; is known from (4.2) and ¢, and ¢; are the constants

to be determined. This magnetization creates uniform volume
aM )
charge densities due to both a:and 5%. In Appendix 2 the

fields perpendicular to the surface from the volume, wall, and

surface charges are evaluated at two points: (x,y) = (%70‘>and
s 4) s s . d

'35 ) § is any non-zero distance less than R In the small
angle approximation, the self-consistency condition (1.11)

> > -+ -+
' =
M x(HO + H' + Hk) 0

is equivalent to setting the transverse demagnetizing fields
at these two points proportional to the x-angle (¢,) and
y-angle (¢,), respectively. These two equations are solved
in Appendix 2 for the unknown angles ¢, and ¢,, and the

results are given in Table 4.1.

The y-field is evaluated at (x = §, y = g) in order to
avoid the logarithmic singularity in the y-field at the wall
(x = 0) due to the wall charge. (The field tangential to a
charged plate is infinite at the edge of the plate.) The
solutions are thus finite and fairly independent of §

(Table 4.1).

H
. . " TA .
In the limit of vanishing R = T, ! which can be

observea experimentally at high temperatures, the transverse

demagnetizing fields must also vanish. The solution for the
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Table 4.1

Charge Distribution Within The Whisker

Fraction of Charge
R Volume Wall Surface Surface
//Wall | Wall
Exact Solution 0 0 0 .5 .5
0 .0803 0 .4599 .4599
Approximate .023 .0726 .0229 .4481 .4565
Sogution .23 .0228  .1927 .3657  .4187
2.3 -.0379 .7048 .1391 .1939
23 -.0088 .9598 .0199 .0291
0 .0803 0 .4599 .4599
.023 .0781 .0229 .4506 .4485
Approximate
Solution .23 .0619 .1927 .3794 .3660
§ =25 1,33 .0195 .7048 .1448 .1310
23 .0024 .9598 .0201 .0178
.0233 0 .0229 .4863 .4908
Accurate .233 0 .1896 .3944 .4160
Numerical
Solution 2.33 0 .7006 .1378 .1617
from E
Sec. 4.1.3% 3.3 0 .9590 .0184 .0226

*  Volume charge assumed to be zero.
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transverse charge distribution becomes identical to the two-
dimensional solution for the charge on an infinitely long

metal bar with
Py = charge/unit length = 2MSB .

In a metal bar, the charges arrange themselves on the surface
to give zero electric field everywhere inside. This analogy
of electric charges on a metal bar will prove useful for all
aspects of the iron whisker in a magnetic field.

In the limit as R + 0, the exact solution would have all
charge on the surface. Our simple calculation gives about
92 percent on the surface and 8 percent in the volume. It is
the difference between the charge distributions calculated
for R = 0 and R = 023 which is meaningful (see also Sec. 4.1.3
and entry at bottom of Table 4.1). This difference is 2.3%
on the wall and less than a percent (of negative charge!) in

the volume. Thus, we can conclude even from this simple model

that about 98% of the charge is on the surface for these iron

whiskers at room temperature.

4.1.2 The Two-dimensional Solution

For a more rigorous calculation of the transverse magnet-
ization, but still under the approximation that the charge
per unit length is constant along the whisker, one generalizes

the fractional angles ¢,, ¢, and ¢, to continuocus variables

2
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¢x(x,y) and ¢y(x,y). One neglects difference between ¢(x,y)
and sin ¢(x;y) to linearize the self-consistency equations
(1.20) . Neglecting the terms on the LHS and writing the
transverse demagnetizing fields in integral form, one gets

two coupled integral differential equations:

a/2 a/2 , "
4ﬁR¢x(x,y) f/ﬁ dx'g{ dy'Kx(x-x',y—y') - 5§§(x',y')
-a/2 -4/2
20 d/2
- 3§X(x',y') + dy'{Kx(x,y—y')-2(l—¢x(0,y'))
~d/2
o T e vy Yo (o Symg) o () b
x 7YY X 2rYTY x\2' )
a/2 ' ’
+ dx‘[K (-x V- -2->+K (x—x' A %>]¢y€(' ,%) (4.4a)
-d/2

and a similar equation (4.4b) for 4“R¢y(x,y), where on the RHS

only the R, are replaced by Ky'

Kx(x—x',y—y') is the Green function for the x-component
of the field at (x,y) due to an infinite line charge at
(x',y"'):

(x-x')

! v=—vuv'l) = dz!
K, (x-x',y-y") ./; 2 Iz}2+(x—x‘J2+(Y—Y')2]3/2

-

2 (x-x") . (4.5a)
(x-x')2+(y-y')2

Similarly,

: Ny = 2(y-y') . (4.5b)
KY(X"'X ' YY ) = —(}7{"X')2+(Y'Y')2
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For example, the demagnetizing field in the x-direction at
(x,y) due to a rectangular bar at (x',y'), infinite in the

z-direction and of cross section dx'dy', which contains a
N
s 09X

uniform charge density p(x',y') = -M (x',y'), is given by

3¢
Kx(x—x', y=-y") (—Ms—§§(x',y')dx'dy'> .

Division by Mse gives the integrand of the first term of
(4.4a) above. Likewise, a segment of surface charge at Yor
infinite in the z-direction and of width dx', with surface
charge density

1 — '
o(x ,yo) = Mse‘by(x ,YO) ,

gives a field in the x-direction at (x,y) of
—r ! - t ]
Mser(x x', vy yo)éy(x ,yo)dx .

In (4.4) we have taken the wall to be in the center
(x = 0) for two reasons. PFirst, it gives the basic charge
distribution for small fields. Since the wall has conly about
2% of the charge, we expect the distribution to be nearly
unchanged even for a large bowing of the wall. (The experi-
mental evidence for this is given in Sec. 4.3.) Second, it
gives the charge distribution the symmetry of two perpendicular
mirror planes intersecting along the z-axis, which simplifies

the calculation.



Because (4.4a,b) are valid at every point (x,y), each
one constitutes a two-fold infinite set of simultaneous
equations. An exact analytic sqlution of these equations is,
to our knowledge, impossible.

An approximate solution, whose accuracy is limited only by
the size of an available computer, is found by replacing these
integral equations by a set of simultaneous linear equations.
A guadrant of the whisker is broken up into an m *x m grid. The
volume charge in each grid is approximated by a line charge at
the center, and the surface and wall charges are approximated
by a line charge at the center of the appropriate grid line.
Both the x and y fields from these charges are evaluated
(using the above Green functions) at the (m+1)? intersections
of grid lines, and 2(m+1)? equations are formed by setting
these fields proportional to the respective x and y angles at
these (m+1)? points. Details of the reduction of (4.4) to
algebraic equations are given in Appendix 3.

The resulting transverse magnetization for m = 10 is
given in Figs. 4.3a, b, c, d, for four different values of R.
The most important conclusion is that the volume charge is very
near zero (< .5%, which is within the expected error of the
program) and this holds for all values of R . When R is large
and traps a significant part of the charge on the wall, there

still is no significant charge distributed in the volume. The
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B gaane - —JREEND Blammsess - RN Samaacs - NN Mama - —SEEEENES S i

Fig. 4.3a. Transverse magnetization in one quadrant of the
whisker, calculated from (4.4) for m = 10 (242 self-consistency
conditions). Bloch wall is horizontal line at bottom.

R = Hy/4mM_ = .023, ¢ = ¢ /6 = .977.
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Fig.

4.

3b.

Transverse Magnetization.

R
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Fig. 4.3c. Transverse Magnetization. R = 2.3, <I>w = .303.
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Fig. 4.3d. Transverse Magnetization. R = 23.0, @w = .042.



1.1

TITem 03 xeTnoTpusdiaad uoT3zezizaubepy

—

[Vl
OO~

-/

\

TN

\

\

S
N\
O\

91

\

X
\

7

\

—
N
\
\\
\

// N
\ )\

N
\
\

= f

——

B

/_
#

\
_,

\
/

Bloch wall

.45

.55

6
.65
7

75

.85

.95

M
"LL6° = o ‘€Z0° =¥
*jueapenb suo uT uoTr3ezTisuberuw Jo sjusuodwod X pue X I0J SINOJUOD dTbBue-0ST

b 7891 1

5

.45

*uUMOysS

se 9UTT TRIUOZTIOY

ST ITem yooTd
‘efy bTI

TITem 03 ToTTexed uoriezZTI3laubel

T AT TS
2518 L
BN AD=
S g
”HMHH\\\\\\\\\\HH“HH\\\\\\\\\\\\\‘ I
‘\\\\\\1\\\\ P

/

35

.25

a5



vy wy wy wH
~r ~r wH wy 0 0 ~ N~ (==}

ITem 03 xernotpuadaad uotjezijsubepn

6
5

45

* =¥ °sanojuoo oTbue-osy ‘qp°y

*brg

4/ /
/ \ \ // //

AN

d
\\\

"
et

/
4
\\\\
1

\v\\l

TITem o3 ToTTexed uoTjezTjoubeR

.6

A4 .45.5

35

.25

15

.05



"e€0€”

/ T L=

VAR AV SZ7/l

14
=

- 93 -

\
AN
i

g «© o
—

—

TITes o3 xernorpusadaad uoTjezZTI3loubel

2
22
.24
2
2

EER WA
NEMNERNNRNS
~ /V // ) //.
~_ ~ |
/// 4///1!
//.!1. T

TTem o3 ToTTexed uotrjezTrisubel

02 .04 06 0 .08 1 12 14,16 .18 .2.22.24.3



czp0° = "¢ ‘0°€z = ¥

015
N

*sInojucd o9Tbue-0sI ‘pPy°y °"OT4A

- 04 -

all=s>/ NS
Pzl /1 I NURNINANANN NN
AL A A AN NINNNSES
ARV aaaiine NENRNNRN
AV avavivn NN N T
AN/AWaaa S S
Lo | T~ T
NiEVinaArian e
) ITeM oM um?onm@cmmuwm cohﬁﬁ“&mzﬁ ITem o3 ToTTeied uoTaezTaoUbEN




- 95 -
charge density on the surfaces has logarithmic singularities at .
the corners and at the intersection of the charged wall. (The
true charge density can of course never be larger than Ms' The
infinity results from the small angle approximation.)

Figs. 4.4a, b, ¢, d show iso-angle contours for the x and
y angles of the magnetization. The rotation of the x spins
away from the wall and the y spins away from the x-2z plane
quickly deviates from the uniform ;otation assumed in the
simple model above. Peaking of thé charge density at the

corner (for iron) and the ends of the wall (high anisotropy) is

evident. For HA = 0 (not shown) the magnetization is nearly

H
identical to that for R = Z%ﬁ = ,023 (iron at room temperature).
S

4,1.3 More Accurate Calculation of the Surface Charge

Within the approximation (if any) of no volume charge, we
can carry out a more detailed investigation of the surface
charge. The charge density on the wall, as a fraction of the

wall angle, is again

N
o)

5

o :
W - _ 4.
H_0 = 2(1-¢ ) TR - (4.6)

'_l

In dimensionless variables, the torque equations at the
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surfaces and perpendicular to them are

47Re_(y) = 2(1—<1>w)f1 dy'IK (1,y-y") + K (1,y+y")]
0
1

+f dy'[Kx(Z,y—y') + Kx(2,y+y')] <I>x(y')
0

1
+f dx' [Kx(l—x' ,Y-1) + Kx(l+x' ,v-1)

0

+ Kx(l—x',y+l) + K (1+x',y+1)] ¢y(x')

- 2me_(y) (4.7a)

and

1
4ﬂR¢y(x) = 2(1—<I>w,1/~ dy'[Ky(x,l~y') + Ky(x,l+y')]
0
1

+f dy'[Ky(x-l,l—y') + Ky(x—l,l+y')
0

+ Ky(x+l,l-y') + Ky(x+1,1+y')]¢x(y')

1l
: { —! t (o) '
t/; dx [Ky(x x',2) + Ky(x+x ,2)] y(x )

- 2n¢y(x), (4.7b)

for the surfaces parallel and perpendicular to the wall,

respectively.

These coupled equations must be solved, along with the
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Fig. 4.5. Grids used to solve (4.7), shown here for m = 10.
Fields are evaluated on the grid lines in the upper right
quadrant, except at the point @ where the self-consistency

condition is replaced by (4.7c). O is uniform and depends
only on R,
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constraint of unit charge/length on wall and surfaces:
1

/ <I>x(y')'dy' +/~1 <I>y(X‘)dx‘ = ¢w . (4.7¢c)

0 0

In converting to linear equations, we divide each surface in a
quadrant into m segments, with n = m + 1 angles needed as
before to express the m charge densities (Fig. 4.5). The wall
charge is also segmented, and we arrive at 2n + 1 equations and
2n unknown angles. One of the self-consistency conditions must
be ignored (we choose the one for ¢x(0), because to first
order @x doesn't vary there), and the remaining 2n equations
are solved. (The program is in Appendix 4). The charge
densities are plotted in Figs. 4.6a, b, ¢, 4, e for m = 100.
These charge densities are normalized in the sense of (4.7c).
The curve for iron at room temperature (Fig. 4.6b) is almost
identical to that for Hy = 0 (Fig. 4.6a). The logarithmic
singularity at the intersection of wall and surface , is most
evident at high anisotropy, when the wall charge is considerable.
Both the applied field Hoﬁ and the longitudinal demagnetizing
field H;Q exert torque on the transverse magnetization, and
should be included in ﬁT' As we will see in Chapter 5, these
two fields are nearly equal in magnitude and opposite in

direction. Even if the cancellation were not good (which it

is!), the applied field is always much less than Hy. 1In short
whiskers % ~ 25 the departure field is ~ 50 gauss, and hence

would give a small correction to R and a negligible correction
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to the charge distribution (which as we have seen depends on

4mM ).
s
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4.2 Minimization of the Energy

Consider an infinite ferromagnetic bar of square cross-
section with a 180° wall in the center. If the sum of magneto-
static (demagnetizing) and anisotropy energies is minimized
with the constraint of constant magnetic charge/unit length

and a fraction of that charge on the wall, one arrives

A
4wMS
at the torque equations (4.4) solved previously. The energy/

unit length of this model bar becomes infinite logarithmically
as the length of the bar becomes infinite.

In this section we compare the energies (wall, exchange,
magnetostrictive, anisotropy, and magnetostatic) of a finite
whisker in a homogeneous field Ho with an assumed quadratic
wall bowing. Only magnetostatics and anisotropy are important
at room temperature, and an approximate expression is found
for the increase in stiffness due to the anisotropy (over the

stiffness due to magnetostatics alone).

~4.2.1 Wall Energy

We are interested in the wall energy difference between
the magnetized and unmagnetized whisker in the Landau configura-
tion. We consider only the long wall and assume the wall
energy/unit length is not changed by the applied field. This
assumption is valid if the longitudinal internal field H, is

z
very small (so that the wall is symmetric about the plane through

its center) and if the change in wall structure due to the

charge on it is not significant.
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The wall energy then changes during magnetization only
due to an increase in length. Using (3.13) for the wall
displacement in a small applied field, the change in wall

area due to the bowing is

L/2
_ ’ dx \ 2dz - L ,
AA = d 2 .}; 1+ (85?)

where
Thus
8x2 d
AR = §i~— ’

and the change in wall energy is

AE_ = £ A A, (4.8)
where (Ki-56R, §10)
/2 2
£, = 2n( K,Js2/a) ~ 1.1 erg/cm

for iron. We rewrite (4.8) as

2 2
pE. = ¢ ¥, 4, (4.9a)
W W
L
where for d = .01 cm,
8£w 3

This energy is 3 orders of magnitude less than the anisotopy

energy in the domain(4.13) and of the same form; it can there-
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fore be neglected. The wall itself acts like an elastic membrane

with negligible restoring force.

4.2.2 Exchange Energy within the Domain

This energy is completely insignificant. For simplicity
we consider only gﬂx 2 and take the exchange energy between

ox
two adjacent atoms to be

2

wex(z) = Jszw:{(Z) = Js? [% O(Z)] '

where wx is the angle difference in the x-direction and a is
the lattice spacing. The number of these atoms/unit length

of the whisker is d?/a?, so the exchange energy is roughly

L/2 <2 g2
AE = 2Js? 0%2dz = ¢C ==, (4.10a)
ex _ ex L
a o}
where for d = .01 cm,
ex 3 ad? 10 erg/cm?® . (4.10b)

4,2.3 Magnetostrictive Energy

Magnetostriction is only important in the closure domains,

favoring
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1 — |
| — r

over the Landau structure. However, the Landau configuration
has less wall energy, and a simple calculation (analogous to

Chikazumi, Physics of Magnetism, p. 230) shows it is favored

in-iron when @ < 740 y.

Differentiation between the two structures is not possible
using only the in-phase susceptibility (see Chapter 5). Both
configurations should have the same departure field (at

M) = % MS), but the two-walled structure is expected
to have reduced eddy current losses, and hence a smaller

out-phase susceptibility (He-72). The double brackets & >

indicate a volume average over the entire whisker.

4.2.4 Anisotropy Energy

If all magnetization were along z or -z, the charges
would be entirely on the wall and the anisotropy energy would
be zero. We compare this with the energy for a uniform

rotation of magnetization discussed in Sec. 4.1, where for
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Angles are a(x,z)

— %

A

o

Angles are B(y,z)

Fig. 4.7. Approximate magnetization in a segment of the
whisker. The wall is in the center and all charge is put

uniformly on the four surfaces.
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simplicity all charge is distributed uniformly on the four
sides and the wall is in the center (Fig. 4.7). For small

deviations from the z-direction the magnetization is

M = a(x,z) x +8(y,z) y + [ -% (a4 32)]2'(4.11)

where for a quadratic bowing of the long wall the approximate

micromagnetic solution is (x,y,z >0)

- _x  _ 8 _ X
a(x,z) = 0(1 -3, fz.l z (1 -3) (4.12)
8X1
Bly,z) =0 % = =Sy
d L2d

To second order in small angles from (1.8)

AE_ = _[[[ K, (a?+ Bg2) dr

1 /2 5
-L/2

x2 42
= CK 1L ’ (4.13a)
_ 32 1
where CK = 5 K1 and Kl— 5 MsHA. (4.13b)
For iron K1 = 4,2 x 103 -(e:%g; , and
e
cy =1.5x 10° =% (4.13c)

4,2.5 Magnetostatic Energy

In Ch. 3 the demagnetizing energy was found for various

distributions of the poles. The reduction in demagnetizing
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energy when the poles are moved from the wall to the four

surfaces 1is

- - = 2 g2
AE4 = By = Eus = C4  x{ g ’ (4.14a)
where using (3.38),
_ 64 2 - 7
C,= =— M 7 + 1ln2 = 5.9 x 107 erg (4.14b)
d 3 s \T7T cm®

Because the angles are small, the magnetizing energy
= ﬁ'ﬁodr is not sensitive to the actual transverse magneti-

zation. Here

AJ

_ s 2 yp2 -
AE_ -HOMS/_l_ (a2 +82) dt = o AE (4.15)

2 Hy

For typical whiskers 4 << L, HO << H, in the linear susceptibi-

A
lity region, and this term can be ignored.

These energies show that magnetostatics strongly favors
putting the charge on the surfaces and anisotropy weakly favors

putting the charge on the wall. Energy minimization will clearly

lie with most of the charge on the surface.

4.2.6 Decrease in Susceptibility due to Anisotropy

We ask for the relative change in stiffness when HA is

increased from 0 (near Tc) to ~ 500 gauss (the room temperature
value). Let the energy be EO when HA = 0. This energy is
purely magnetostatic and depends only on the applied field

and the shape of the specimen. We are neglecting exchange
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energy. For HA = 0, the 90° walls do not exist. Instead, the

magnetization follows a curling pattern resembling the Landau

structure ( Chapter 6). We take from (3.38c)
v = 64 1, o2 5 x} a2
EO~ E4s = 3 MS [ln 3 ; (n Zlnz)] T ergs. (4.16)

Now increase HA to 500 gauss, a value much less than 4mMg.
This results in an increase in energy and hence a decrease in
susceptibility. The increase in anisotropy energy is slightly
compensated because about 2.3 percent of the charge goes to the
wall, both decreasing the anisotropy energy and increasing the
demagnetizing energy. But it will be seen that these latter
effects are quite small. For small angles (MX,My <<Ms) the
anisotropy energy varies as the square of the charge or the

surface. Then the change in anisotropy energy is from (4.13)

AEa = sza ’ (4.17)
6 x? d2 . .
where Ea = 1.5 x 10 1 and p is the fraction of charge

L
left on the surface when charge g=1-p moves to the wall.

The increase in demagnetizing energy is

' - 2 2 -
AEmag = Eop + qu + Eint pa- E_ , (4.18)

where from (3.38a)

252
E, = %ﬁ Mé [ln %E - %] de ergs (4.19)
L

is the demagnetizing energy when all poles are on the wall, and

E: ¢ is the energy of interaction between poles on the wall
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and surfaces.

E could be found by doing the integration, assuming

int
uniform charge distribution on the surfaces. However the
charge is not uniform and another approach is necessary.

The total change in energy is

AE = AEa + AEmag' (4.20)
We vary p to minimize AE and solve for E. ¢f
_2p (E+ E_+ E_) - 2E
Eint = 0 W a W o. (4.21)
2p - 1

Expanding Ein in a power series in g, retaining terms to

t

order q and using Ea << Eo’

E; o & 2(E_+ E) - 2q (B, - E_) - (4.22)

Now Ein must be larger than 2EO . Otherwise, the minimum

t
energy state in the absence of anisotropy would have some

charge on the wall. Then (4.22) becomes

E, > q(B, -E ). (4.23)

This is satisfied for the quantities calculated here.
From micromagnetics we know p = .977. The value of Ea (4.13)
is probably accurate within 10 percent. Using these in (4.20)

and (4.21), we construct Table 4.2. E = 2.001 E

int or only

very slightly greater than 2. The increase in stiffness

(decrease in susceptibility) from the presence of HA is
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AE AEa

0 E !
o

|
IR

arising almost entirely from turning on the anisotropy energy.
The relaxation effects which in magnitude equal AEmag are but

2 percent of AE. AE falls in the range
.63 < %-E- < 1.1% (4.24)

for the whiskers studied. This is the fractional decrease in
susceptibility when the temperature is lowered from Tc to room

temperature.
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4.3 The Poles are on the Surface

4.3.1 Experimental Verification

There are three experimental results which are sensitive
to the location of the poles:
i) x' (Ho) is a constant for Ho < Hd’
ii) x' is independent of Mg and HA, and
iii) the magnitude of X' agrees with theory when the
poles are on the surface.
The differential susceptibility is independent of the
wall position. If there are both appreciable wall and surface
charges one would expect the magnetostatic energy of these
charges to change as the wall approaches one surface. It is

unlikely that a charge redistribution will keep X' constant

as the applied field is varied.

Both the magnetization and H, are monotonically decreasing

A

functions of temperature, but H, vanishes much more rapidly

A

(approximately as M!?) as T increases (Chikazumi, Physics of

Magnetism, p. 151). When HA = 0 the energy is entirely
magnetostatic and the poles are on the surface. If the poles
were on the wall at room temperature, we would expect y'
to increase about 35 percent as the temperature is raised to

Tc' The susceptibility has been found ( Ar-72a) to be indepen-

dent of T over the range 650%K< T < Tc' From the calculation
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of Sec. 4.2 we expect x' to change by less than half a percent
in this temperature range, in agreement with experiment. (The
slight temperature dependence observed there results mostly
from a change in eddy=current damping due to the temperature
dependence of the conductivity,)

Finally, as shown in Sec. 3.3, the measured susceptibility
is found to agree very well with the susceptibility calculated
for charge on the surface. From Table 3.2a, the experimental
deviation is not more than 5 percent from the energy calculation
(one-spring model) and 3 percent from the field calculation
of Chapter 5. 1If all charge were on the wall, the measured

susceptibility would be 26 percent less than calculated.

4.3.2 Analogy to Infinite Susceptibility Medium

We consider the whisker in the limit HA + 0, which can

be obtained in practice at temperatures near but below T,-

The self-consistency conditions (1.20) in this limit give
H! = a(H_+ H!) (4.25)
X o z

H o= B(H + H).
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Because there is no volume charge density we also have
$°ﬁw = 0 inside, (4.26)

and the solution

H' = 0

H' =0 H. =0 (4.27)
Y 1

H' = -H

V4 @]

clearly satisfies (4.25) and (4.26).

We now argue that (4.27) is the unique solution in this
limit. The anisotropy energy vanishes as HA + 0. To the
extent to which the exchange energy of the curling pattern
can be neglected (Sec. 4.2.2), the whisker energy is entirely
magnetostatic and the analogy of a perfect conductor in an
electric field is exact. There, minimization of the electro-
static energy requires Ei = 0 inside the conductor, since

electric charge can move in the presence of a field. The

analogous condition for the whisker is (4.27), that the

internal magnetic field is zero everywhere, a1l charge
is on the surface and the magnetostatic energy is a minimum.
We can describe the whisker when Hy = 0 as a medium of

infinite intrinsic magnetic susceptibility, since a finite
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magnetization results when ﬁi = 0. The demagnetizing field
ﬁ'exactlycancels ﬁo everywhere inside, and the measured
susceptibility is determined entirely by the shape of the
whisker. (The perfect conductor likewise has infinite electric
susceptibility, with a finite polarization when Ei = 0. The
depolarization field from the surface charge exactly cancels
the applied electric field inside the conductor).

For a room temperature whisker (HA/41rMs = ,023) there
are small components of the transverse and longitudinal
demagnetizing fields, and about 2.3 percent of the charge is
on the wal. But compared to the zero anisotropy case, this
is only a small rearrangement of charge in the cross-section.
The longitudinal charge distribution still essentially mini-
mizes magnetostatic energy, and would not be appreciably
different from the zero anisotropy case. Thus for a room

temperature specimen,

Then from (1.20), the transverse demagnetizing fields are

o H

]
Hx A

1R

1

1
Hy B HA.

The transverse internal fields are always much smaller than

H and the longitudinal internal fields are always much

AI
< -
smaller than HO (for HO Hd)
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We call the infinite susceptibility model the "bar" to
distinguish it from the whisker. The magnetization is

continuous in the bar and has a variable magnitude.
> 13 >
M = im XHi .
+0 (4.28)

The whisker is constrained by exchange forces to have |ﬁ | =
cons tant, and for Hy = 0 the magnetization would be in a curling
pattern to avoid poles at the ends. The magnetization in the
bar is variable and decreases near the ends to avoid large
demagnetizing fields there. The bar resembles the whisker
in having an identical pole distribution on the surface.

In the next chapter we solve Maxwell's equations for the

magnetization inside a long cylindrical bar in a longitudinal

magnetic field, when the medium is linear (X not a function of Hi),

M 4.2
M—XHi. (4.29)

oo

We will be most interested in the special cases of X =
and Hy(z) = constant, but the method is applicable to any

susceptibility and to any applied field.



CHAPTER 5

MAGNETOSTATICS OF LINEAR MEDIA:

THE LONGITUDINAL MAGNETIZATION

In this chapter we derive approximate solutions to Maxwell's
equations in media characterized by the linear relation M = Xﬁi.
For simplicity we replace the bar of square cross-section
(Sec. 4.3) by a cylindrical rod of equal length (L) and equal
cross-sectional area, and solve for the internal fields and
magnetization when a longitudinal field Ho(z); is applied.

The experimental connection of the bar with the whisker
is that in applied fields Hy < Hd the average longitudinal
magnetization in a cross-section should be nearly the same for
both an infinite susceptibility bar and an iron whisker. For
in such applied field, the 180° wall bows away from the center
of the whisker. Correspondingly, the bar assumes a magnetiza-
tion whose magnitude varies along the long axis in the same
way as the 180° wall bends.

There is a long history of experimental and theoretical
work on the magnetization of iron rods. Magnetization measure-
ments were made on iron rods as early as 1899 (La-1899).
Approximate calculations for the magnetization of a finite
rod having arbitrary X in a uniform axial field were made
in Germany between 1924 and 1939 (Wa-36, Wa-37, Wa-39). The

longitudinal magnetization was expressed in a series of even

- 121 -
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powers of z and carried out only to order zz,‘although
corrections to the fields from the quartic term were incluaed.
In the most elaborate calculation (St-35) a weighting factor
was used to make the solution less dependent on the magnetiza-
tion near the end, which was most inaccurate. Warmuth (Wa-39)
tabulated various calculations for the rod, along with some
interpolation formulas he devised for short and long rods.
The results were reviewed by Bozorth and Chapin (Bo-42).

More recently, Okoshi (Ok-65) has determined ballistic

demagnetizing factors for X = ® rods by analog measurements in

an electrolytic tank. There have been several calculations
(Jo-65, Jo~66) of rods with X = 0 (uniform magnetization), but
this special case is not useful for soft ferromagnets except
near saturation. Copeland (Co-72) did a one-dimensional
iterative calculation of the magnetization in thin rectangular
slabs of permalloy, and the results are similar to ours. For
two- and three-dimensional magnetostatic problems, the
differential equations can ke solved iteratively by finite
differences (Ko-70, Si-70). These methods are sufficiently
general to allow for arbitrary material characteristics (B-H

curve) and sample shape.
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5.1 Fields, Poles, and Demagnetizing Factors -

The internal magnetic field is composed of both applied

and demagnetizing fields:
> > > .
H. = H + H'. (5.1)
We define the local intrinsic and measured susceptibilities,

respectively, by

-> -> _ P
M= XH; = X Hge (5.2)

(Similar expressions in (2.3) were for differential suscepti-

bility and can be defined for any magnetic material, although

the interpretation of X as a local intrinsic property of a

real ferromagnet makes sense only for X © , Otherwise X
is at best a microscopic average.) We consider linear media,
where X is independent of Hi' It was shown in Sec. 4.3.2
that when X = ® , the fields in this fictitious magnetic
medium are similar to those in a whisker.

Using (l.la), (1.3), (5.2),
v . ﬁi =V -(1+4nx)ﬁi = (1+4mx)V - H, =0 ,

1

so for a ferromagnet

VeM=0 inside, (5.3)
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(This holds even for a perfect diamagnet (superconductor) since

nothing discontinuous can happen as y + - %?). For any suscept-

ibility, all charge is on the surface. Because H is defined
to be an axial field (3& ﬁ; = 0),
VxM=0 (5.4)

-
and M can be written as the gradient of a potential Um , which

satisfies the Laplace eguation

V3u =0 inside .

The demagnetizing field from a uniform magnetization is
uniform only in ellipsoidal specimens. For any other shape the
demagnetizing field is non-uniform. The equilibrium magnetiza-
tion is then non-uniform (when x # 0) and scales linearly with
H;. (In real ferromagnets M| = M_, and the magnetization does
approach saturation (uniformity) as HO +> ®),

For an ellipsoidal specimen the demagnetizing factor D

defined by
> < >
H' =-47D M (5.5)

is a tensor and depends conly on the sample dimensions. For
non-ellipsc idal specimens it depends on position and intrinsic
susceptibility as well as shape. Two useful average demagnetiz-
ing factors are the ballistic (Db) and magnetometric (Dm),

defined as
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<H;(z)> =-47mD_(z) <M, (z)> (5.6a)

and

L] [P— v
<<Hz>> = 41TDm <<Hz>> ’ (5.6b)

where the average in (5.6a) is as usual over the cross-section
at z and in (5.6b) the entire sample is averaged. We are
considering long rods in a longitudinal field, so only the D,

component is important. Dy is useful when the pick-up coil is

much shorter than the sample. We will only be interested in

Db(O) = Db’ the value at the center. From (5.1), (5.2), (5.6a,
b),
1 1
— - — = 47D (5.7a)
x]; X b
11 gm (5.7b)
Xm X m
where
1 nd 1
xg o <M(0)> X T Ems
m

For infinite instrinsic susceptibility the measured suscepti-
bilities are given by these demagnetizing factors alone. When

D>>._l_

vl the demagnetizing factor dominates the response of
the sample, which then can be treated with little error as a

medium of infinite susceptibility.
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5.2 Solution for the Long Cylinder

In cylindrical coordinates (5.3) becomes

(rMr) . {(5.8)

The magnetization satisfies

M= x(H, + ") (5.9)

everywhere inside the rod. H' is related to ¥ by

i (r) -[ "(r ) ($-%1)as,
|T-7' ]2

surface

where 0 = ﬁ e n and n is the outward unit normal to the

surface.

For long cylinders (p = % << 1) we can neglect the
aM

r-dependence of —35-, and (5.8) can be integrated to
BMZ 2
__a_z_= - -er . (5.10)

Integrating again along the z-axis and using

Mr(r = -‘;- ,2) = 0(z)

L

Mz(r,Z'= 7) (r)’

end

we find
L/2
-4

M (2) = o 4(0) + d—f o(z')dz' . (5.11)

z
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In the presence of an applied field HOQ, the demagnetizing

field along the z-axis is

L/2
H'(z) = znd o(z')dz"' 3 2=z’ - z+zf' é
][ I(z-z')2+(%)213/2 I(Z+Z')2+(g)7]3/2
)
+ Hénd(z) ' (5.12)
where we used o(z) = -o(-z) 2 0. Taking o to be uniform

end

and putting (5.11]) and (5.12) into the self-consistency condition

(5.9), we get

1
-H, = ZTrO/O(z')K(Z,Z')dZ' " 2M0gng? (2)
0
1
1 2[ otzyan
X [oend * of"(z )dz] ’ o1
, -
where
K(z,z') _ Z~-Z _ Z+Zz
[(z-2') 240217/ % [(z+z2') 24p2]>/?
and
J(z) _ 2 _ l"z _ l+Z .

[(1-2) 240217  [(l+z) 2+p2]>2

Note that the variables are now dimensionless.

This integral equation (5.13) has p and x as parameters.
The applied field on the LHS is uniform (this case is treated in
Sec. 5.2.1), but in general it can be any function of z (a non-
uniform field is treated in Sec. 5.2.2). The equation is valid

at all points on the z-axis for z < 1. It constitutes an
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infinite number of simultaneous linear equations in the
unknowns ¢ (z) and Oend ’ and can be solved to arbitrary
accuracy by dividing the cylinder into 2m discs with uniform
charge on the surface of each disc. We let the source points

be in a ring centered on the surface of each disc and

evaluate (5.13) on the axis at

2 =51 k-1, . m+1 .
m

These m + 1 equations are solved for the m charge densities on

the side and the charge on the end of the cylinder.

5.2.1 Homogeneous Driving Results

In Fig. 5.1 we plot <M(z)>/<M(0)> for various X for a long

rod (p = %? = .01) homogeneously driven. The magnetization is

normalized to the value at the center. The Y = «» curve fits the

measured susceptibility (Figs. 2.3). The magnetization is
nearly guadratic for x >> 4;éb and in the limit x = 0 it
approaches uniformity where all the poles are on the ends.
<M (0)> is a maximum (<M (0)> = E;%; ) for x = « and
decreases to xHo as X * 0. Fig. 5.2 shows Xx'(z) = iﬂéﬁlﬂ , the
o

susceptibility of the rod (as measured with a short pick-up

coil), plotted for various X. For x >> 4;% the shape of the

b
rod determines x', and the energy is mostly magnetostatic. For

x' << the susceptibility is proportional to H o and the

1
41rDb

energy is mostly in the intrinsic magnetization process (Brown,
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Magnetostatic Principles of Ferromagnetism, p. 56):

a2
E x'/][ I%—)—(—d‘r . (5.14)

In Fig. 5.3 the susceptibility is plotted as a function of

z for infinite susceptibility and various values of p. By

C<M(0)> 1

HO 4'erb

expected from the results of Chapter 3 and the demagnetizing

inspection varies roughly as p~2. This is to be

factor of an "equivalent" ellipsoid.

We develop formulas for the ballistic demagnetizing factor
of a rectangular bar of infinite susceptibility. From (3.24)
or (3.46) and (5.7a) the susceptibility for the l-spring model

is (all demagnetizing factors are ballistic)

_ <M(0)> _ 8 L\ _ 1
x' = 0> 8 (a,) - A (5.15)
(o]
We let w = 4/L for the bar and use Y4s in (5.15):
4s _ 4 [a\? 2L _ 5 _ (m+ln2

P “F(‘II) [1"71" 3 (4 )]

=iw2[1nl-1.099] : (5.16)
™ w

Using v, from the equivalent cylinder <4w2 = npz) ,

O3

A
L
2 -1
wiln vl 1.0681| . (5.17)

o
n
Al

I
STES
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These values agree within 1 percent. As we interpret from

rables 3.1 and 3.2, DS

and D€ agree with the numerical
calculation of this chapter to 3 percent.
The demagnetizing factor of an ellipsoid of rotation with

axis ratio g is (0s-45)

. 2 N .
pell - (]2> [ln 2a _ ] .
a b
Defining "equivalent" in the same way as for the cylinder

82 'ﬁbz
(@2 = 7b?, 2a = L, and w? = ot Tk

() e ]

_ 4 1
= =W [}n o .428] . (5.18)
Dell differs from D by 15-25 percent.

We can compare our demagnetizing factors for cylindrical
rods with those of Warmuth (Wa-37), who approximated the

complicated expression of Stablein and Schlechtweg (St-35) by

1,95 2
D= .667 p 1n 5" 1 . (5.19)

This agrees with Stablein's calculation at % = 10 and % = 500,

but is nearly 4 percent too low for % = 50, Writing (5.17) in

terms of p ,

o€ (p) = p2[1n flp- - ,}] ) (5.20)
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Table 5.1,

Comparison of Calculated Demagnetizing Factors of

Infinite Susceptibility Rods.

1=1L D D D p° D*
p 2r (m=25) (m=50) (m=100) Warmuth
10 .0153 .0151 .0150 .0136 .0151(.0151)
20 .00540 .00535 .00532 .00512 .00518
30 .00286 .00281 .00280 .00273 .00272
40 .00182 .00176 .00175 .00171 .00170
50 .00128 .00122 .00121 .00118 .00118(.00122)
60 .000956 .000902 .000892 .000874 .000866
70 .000743 .000700 .000687 .000674 .000667
80 .000594 .000561 .000548 .,000537 .000533
90 .000486 .000462 .000448 .000439 ,000435
100 .000404 .000389 .000374 .000366 .000368(.000372)

* Values in parenthesis are those calculated by

Staplein and Schlechtweg.
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In Table 5.1 we give the demagnetizing factors calculated
numerically and by (5.19) and (5.20). Figures in parenthesis
are from the calculation of Stablein and Schlechtweg, and the
numerical calculation values remarkably converge toward them

as the grid is made finer. Above % = 20 agreement between (5.19)
and (5.20) is within 1 percent. This is interesting because

of the relatively large disagreement of (5.19) with Stablein's
calculation. We suspect the "true" value to lie above (5.19)

and probably between (5.20) and the numerical calculation value
for m = 100.

In Fig. 5.4 the susceptibilities from the numerical
calculation (for m = 25, 50, 100) are compared with the
experimentally measured values. This is related to Fig. 2.4
where the susceptibility is multiplied by d/L. The equivalcnt
cylinder is defined in the usual way. The susceptibility is
seen to converge fairly rapidly as m increases, convergence .
being slowest for long cylinders. The true susceptibility is
probably larger than that calculated for m = 100.

Combining the Mz(z) calculated from the charge density
with Mr(z) calculated from Mz(z) using (5.10) permits us to
give the schematic representation of the magnetization of the
cylindrical rod shown in Fig. 5.5a. Comparison with Fig. 7.1
shows a resemblance to the magnetization in the y-z plane of the
actual whisker when viewed from the bottom (but not the top!).
The self-consistency condition can be visualized schematically
in Fig. 5.5b. The correct M arising from a field ﬁo is such

that the field H' (coming from the poles due to ﬁ), when added



136

‘sxoj3awexed oTqe3isnlpe ou axe aI9Yyg * syuswaINSseaW
UOT3BIQITED 93NTOSqe woiy oIe sjurtod TejuswTIadxe ! «» = X I0F oIe sjurod TedT39IosYL

*SU3buUST JUSIASIITP SATF IOF ISNSIYM dY3 JO I93U8D ayj 3e A3TTTqTr3deDsns *$°G *b1da
/T 00°02t 00°00t 00°08 00°08 00°0h 00°0e 00°04
i 1 1 A J 1 Y
A3TTTIq |
-13deosnsg P

pe3eIqITed x

0§ = W 4 " )
00T = w @
(0]
¥ @
Q
®
#
-
Q
TI
@ g

(0)X F

*oo¢




- 137 -

~a 7
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(a)

Ho
(b)

Fig. 5.5. (a) Magnetization and poles of infinite suscepti-
bility bar in homogeneous field. Both length and direction of
M change to make .M = 0 everywhere inside. (b) Schematic
illustragion of self-consistency for finite X . Relation
etween M and H' depends on bar shape and X; relation between
M and Hy depends only on X.
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>
to ﬁo ; gives an H; which is identical to ﬁ/x. For x = =,

> . ->
H' simply cancels Hy everywhere.,

5.2.2 Local Driving Results

The field

N>

Ho(z) = H [1+<E;32]3/2
Te

is applied by a driving coil of radius r,at z = 0, where HOE
is the field at the center of the coil. The resulting magneti-
zation for X = ®» is given in Fig. 5.6 for different coil radii
and p = ,01. [For a given r. the M(z)/M(0) curve is found to
be guite independent of p.] This response is sensitive to Lor
since for r, < 3r (r is the cylinder radius) the magnetization
is concave upward near the center. For r, = 3r the magnetiza-
tion is linear over nearly the whole bar, and as r, > ° the
magnetization goes to the homogeneous driving result.

The experimentally determined magnetization was slightly
concave (Fig. 2.5) and the choice of r, = 2r , a reasonable
approximation to the experimental arrangement, fits it fairly

well. ©Note from (3.12) that a local field model could only give

a concave upward curvature where the applied field was locally

reversed.
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CHAPTER 6

DISCUSSION

In this chapter we discuss and extend some of our previous
results. Sec. 6.1 gives a more general discussion of the
charge distribution in single crystals, which leads to a
criterion for the use of demagnetizing factors in ferromagnetic
samples. In Sec. 6.2 a rough treatment is presented of the
magnetization curling pattern which results from competition
between magnetostatic and exchange energies in the absence of
anisotropy. The pattern is expected to be relatively tempera-
ture independent up to Tc. Sec. 6.3 compares the local model
with the correct micromagnetic theory and extends the former
to finite intrinsic susceptibility. Finally, Sec. 6.4 gives

three broad areas into which our results should be extended.

6.1 Charge Distribution in Iron Single Crystals

We first show that the fraction of volume charge in a

L

more general domain configuration for single crystals. A

) 2
long whisker is of order (2) or less, and then discuss

criterion is established for the use of demagnetizing factors
based on the intrinsic susceptibility, and a connection is

made between X and Hy for perfect single crystals.

- 140 -
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6.1.1 Volume Charge in Long Crystals

The micromagnetic equations can be used in differential
form to show that to good appfoximation there is no volume

charge in the whisker. Equations (1.19) can be written

U vy Mxo_
% T (HA + H0 + Hz) Eg =0
3U My
— + (H,_ + H_ + H') =0 . (6.1)
By A O Z MS
Differentiating and using the fact that
-+ > > >,
H >> H, = H + H
A i o) z
z
we get .
3%y o M oH,
Sz AR gkt 4 < O (6.2)
IM aH!
320 L 4mrR Y + g2 =0
Y 2 ™R 5y 3y !

where R = HA/4TrMs .

For long whiskers (and, in general; specimens with the

z-dimension much larger than the other two),

o H' H M
pA

a << A X
5% M;— wE (6.3)
9 oM oM '
MZ << _X .Y (6.4)




and
oH! oH! oH'
-2z << X~ Y.
02 ax oy
Eqn. (6.3) follows from O being irrotational:
]
e | My
X 97 !
whence
L
aaHx o . 0‘HA/L a
3z - = a-—]_: <<
Hy oMy Hp a/q
Ms X

Z a? MS/L
92z _ 4 << 1.
oM ~ o M_7d = o
ax
When o % , the whisker is saturated at the center,

in general

L
<M>Z=O~ MS a-a- -

(6.5)

(6.4)

SO
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. d
Since D ~ ( ¢ ¥,
d
T ~ —
| v z%-4ﬂD <MD, 4T M o,
and (6.5) follows:
L
oH z 47 % M o/L 4 ™ g .2
Sz S = S ( = )y << 1.
0 H'x HA o/d HA
J X

We first consider the initial magnetization (the limit
of arbitrarily small o ). Adding eqns (6.2) and then
using (6.3, 6.4, 6.5) to eliminate quantities higher than

order O on the RHS,

oH' oH!
> > 3%y d M ( z + z) (6.6a)
ViU = -4TR V.M + 2 + A47R z -0 y
Toz —1 “ox  dy
| ]
¥ 4R Tem - OHy L (6.6b)
0z
ince Bz << PH; is tempted to i this term i
Since 3;1 ~3§ , one 1s tempte O lgnore 1s term 1n
: om! : dm! , oH!
(6.6). However, we are really comparing z with X _ Y
M M 02 oxX aY
(or with x + y ), and as we saw in Chapter 4,
X Y%
oH! oH! . . .
X ~ _Y - Thus, this term must be considered. Comparing
axX Yy

(6.6b) with (1.16),
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= - 47(l + R) V.M = 4n( 1 + R) P- (6.7)

If 3-& =0, then H; = constant ( =-HO ) as expected from
the infinite susceptibility analogy (Sec. 4.3.2) of the electric
field in an ideal conductor. From (6.7) we calculate the
volume charge QV and compare it to the total charge QT in a

region of length A z, In terms of the slope of the wall 0,

QT = 2 MSOd Az (6.8a)

and
oH'
d?Az z
= 2 =
lo, I= | ol a® 8z = 755y | =5 [+ (6.8D)
A dimensional argument is adequate. ‘H;‘ < H, with the
equality holding only for infinite susceptibility. But

Hé can vary at most from zero to B in a distance . In a

N

typical part of the whisker, we then expect

| o, | {4 7 ( % ) M Q]r

0Z

o

and from (6.8a,b)

(=) . (6.9)

The restriction to initial magnetization is not necessary.

Returning to (6.6a) and considering a finite bowing angle © ,

we find (omitting numerical factors)
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Now because 0

for any wall displacement in the linear yx' region.

6.1.2 Wall and Surface Charge

We can indicate the generality of the previous results
for wall and surface charge by considering two simple variations
on the Landau configuration. The first variation is a long
thick iron crystal with N parallel 180° walls of width d
running along its length. In the absence of an applied field
we expect no net magnetization. When a field is applied we
expect that the walls will bow and the tie points will be
displaced. For an arbitrary segment of the whisker the N
walls make angles ei with the long axis. This segment of

the crystal will have the same net charge per unit length,

2Md j0,

t4 2

.<=l

'_J

as an equivalent one in the Landau configuration with wall

angle

O]
I

. MZ
(O]

'_J
]
(S
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by the argument of Fig. 3.1.

Micromagnetic self-consistency at the ith wall requires

2R
1+ R

R
follows that T+ & (=2.3 percent at room temperature) of the

the charge/unit length on the wall to be Ms@id . It
total charge is on the 180° walls, independent of N or the

spacing between walls.

Another variation on the Landau structure is the diamond
domain (Fig. 6.la) which has been oﬁserved in whiskers (Sc-57,
Co-58, De-58b, Fo-61, Ha-70) and platelets (Ge-66). 1In a
magnetic field this configuration appears as in Fig. 6.1b.

The slope of the 180° walls (which are curved, as in the mag-
netized Landau structure) is small. If the 90° walls of the
diamond domain make 45° angles with the whisker axis and the
magnetization is along the easy axis everywhere, there will

be no poles on the 90° walls.This is the zeroth order approxima-
tion to the magnetization (in the same sense that a uniform
magnetization within the domains in the magnetized Landau
structure is zeroth order). It is a simple exercise to see
that in this approximation the existence of the diamond has

no effect on the average magnetization in the cross-section.

If we now let the zeroth order magnetization relax under
the influence of the demagnetizing fields which arise from the
charge on sloping 180° walls, in addition to the charge
mainly going to the surfaces we expect the 90° walls to become
slightly charged (~2 percent again). These walls should

bend slightly to increase the volume of the domains parallel
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A

‘\\\\\\\\\\\\\ (a)
H
o

/s (b)
H
O

Fig. 6.1. Diamond domain in (a) unmagnetized and (b)
magnetized whisker. Magnetization is shown in zeroth
order approximation (uniform within the domains).
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to Hoand decrease the antiparallel domains. The volume charge of

the diamond domain should still be negligible. In this case,

the y 1is cancelled by the M, of the large transverse
oy 092

magnetization. (In the Landau configuration it was cancelled

aMx of the longitudinal magnetization).
oX

by the

In general we expect the existence of diamonds (or any
other domain structure) should not affect the measured susceptibi-
lity in any appreciable way. The demagnetizing energies should
be independent of the domain structure and the pole distribution
should not be significantly different from that of the magnet-
ized Landau configuration, as long as saturation is not reached

anywhere along the length.

6.1.3 Use of the Demagnetizing Factor

That most of the charge will be on the surface of
magnetized iron single crystals is apparently not generally
appreéiated. Gemperle et al (Ge-69) gtate that the poles in
single~-crystal platelets are on the domain walls. Most authors
only draw arrows parallel to the easy axes, indicating uniform
magnetization within domains. But Néél (Ne-44a,b) long ago
appreciated the true situation.

Because the poles are on the surface, the demagnetizing
fields can be found from the model of Chapter 5 with large x.
For good single crystals (with the exception of the picture

frame) X 1is much greater than Iﬁlﬁ for the dimensions
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which have been grown. In our experimentsy =« within experi-
mental accuracy.

Theoretically, we can convert a non-zero H, to a finite

A
intrinsic susceptibility X(HA)'through

1 1 _
Y' WX) = 4TTD. (6.10)
theo

X'theo isthe expected measured susceptibility when the increase

in stiffness due to anisotropy is considered, and is found from

(4.24):
1 o
7D Xtheo ~ .01. (6.11)
1
471D
Then
100
X(HA) ~ Ip = 10", (6.12)

which is strongly shape (length) dependent. To measure this it
would be necessary to have absolute x' measurements to better
than 1 percent. Besides anisotropy, any imperfections and
inhomogeneities would cause X to decrease. In good whiskers
the major contribution to this "intrinsic" susceptibility is
probably from anisotropy. Williams et al (Wi-49) measured the
intrinsic susceptibility of Fe (.03ci) picture frame crystals
to be ~10%, which is expected from the increase in wall

energy alone. The whiskers should be at least as good as
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alloy crystals.
For soft polycrystalline ferromagnets the demagnetizing

factor has the same use, but one must be careful to use the
1

B Without

infinite X model only for specimens with ¥ >>7
any assumptions about the M vs. Hi curve for such sapples, we
know that for large enough D most of the poles will be on the
surface, because for those shapes the sample is responding as
if X = o« ., The energy is entirely magnetostatic. In the
low susceptibility X <<Z%5- limit the demagnetizing energy
from the external surface charge 1is small, and the response
of the sample is determined by the internal magnetization

processes,
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6.2 Curling Pattarn for H = 0; Estimate of Wall Thickness

At temperatures near but below Tc the anisotropy is
small. The ground state of a whisker at these temperatures
is probably a curling pattern with a 180° wall separating two
regions of opposite magnetization. The thickness of this
wall is determined from the competition between exchange (which
favors a thick wall) and magnetostatic energy (which favors a
thin wall because of the poles at the surface). We will see
that this competition results in a wall of thickness t ~ 1ngy g
which is twice the room temperatqre Bloch wall thickness in

the usual calculation (Chikazumi, Physics of Magnetism, p. 188).

We expect a Bloch-type wall everywhere except near its
intersection with the surface, where the wall shoul” be Néel-
type to avoid large demagnetizing fields. La Bonte's result
(La-69) for the 180° wall in thin films (but with uniaxial
anisotropy in the plane of the film) was of this form. The
wall should thicken somewhat away from the crystal surface.

A rough value for the wall thickness t near the surface
is found by assuming that the wall is Bloch~type even at the
surface, and that the resulting charge density at the surface
is Ms for the entire wall thickness. This will lead to an
overestimate of the demagnetizing energy. The magnetostatic
energy of two parallel strips of charge density Ms' width t,

and length L, a distance d apart is

Uy = 2 Mg(T)Lé[ 1n %E + %-] ' (6.13)
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where we assume

% <<1 and <= << 1.
(6.14)

The latter assumption will be verified (6.17) and means the
interaction energy between the two charge strips is neglected
compared to the self-energy of each strip.

The exchange energy at temperature T is

2 Ms(T) ’
Uex = ™V |m_Toy (6.15)

where

is the angle between adjacent spins. The term in brackets in
(6.15) accounts for the decrease with rising temperature in

the expectation value of the Heisenberg Hamiltonian

> >
(<Si>°<Sj>). This decrease is due to thermal fluctuations of
the magnetization. Then
2
y = Jr’ 1d Mg (T (6.16)
ex at MS(O)

and variation of t to minimize Ug UeX gives
t3 = 1T2 g
a

= F
2L 1
41 [E_ + 7]

7

(6.17)
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where F = J/MSZ(O) is given in Table 1l.1l. Note that since both
the demagnetizing and exchange energies have the same tempera-
ture dependence (MSZ(T)), the wgll thickness is independent of
temperature. The wall thickness is virtually independent of

L and only weakly dependent on d. For the whiskers studied,

t ~1000 R << d, which is an underestimate of t because we
overestimated the magnetostatic energy. This value is tempera-

ture independent, so the 180° wall exists right up to Tc'
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6.3 Local Model Revisited

6.3.1 Critique

The demagnetizing fields in the local model are far from
correct. We have already seen that for a typical whisker
L/d ~ 50) the longitudinal demagnetizing field from the local
model is only about one-half the true demagnetizing field, and
points in different directions on each side of the wall. 1In
reality, the longitudinal field arising from charge on the
wall is small. Most of the demagnetizing field actually comes
from charge on the surface. The internal field is very small
—Z%B—) because the

demagnetizing field cancels Ho everywhere to good approximation.

for a whisker of high susceptibility (X>>

The demagnetizing energy (3.10) can also be seen to be
*
incorrect. If the crystal thickness in the direction perpendic-

ular to the wall were d', then

Ed « 4°' /owz dz.

Because the surfaces are in fact uncharged, d' can only affect
the self-energy of the end charge and the interaction energy
of the end and wall charge. The former is a constant and the
latter depends only linearly on 0" Hence (3.10) is clearly
wrong. In view of all the incorrect assumptions of the local

model, how can it predict anything correctly?

W.F. Brown, Jr., private communication.
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Consider the demagnetizing energy in the local model:

- _ % .
Ey = - jﬁ-ﬁ dr | (6.18)

M.H' =

of the integral:

> >
- Ms |H'| only depends on H', and Ms can be taken out

Eqg = % Mg / [H) | dr. (6.19)
The dependence of Ed on HO comes only from Hé, since

L} —
Hy ~ 210, 0= 4mM_ o2, (6.20)

where upon variation of the wall to minimize the total energy,

it is found that

0 < xl oC EQ
M ¢ (6.21)
]
X is the deflection at the center of the wall. The result
is that
2 .
Ed. o< Hj , (independent of Ms) (6.22)

and in addition the wall shape is accurately predicted.
The true situation (for x=« ) is that H' = H, can be

taken out of the integral and

-5

By = - %/M.ﬁ- ar = %ﬁo-fﬁdr = -%E_.(6.23)
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If the wall shape is independent of Ho v then

I/EZ' dtl X - (6.24)

To show the measured susceptibility is linear (xlct HO),

use the model of Chapter 5. When X = o

14

H0 = 41 DM

where D is independent of M and E, - Then

-

35 35
jM dt o Hj (6.25)

. 2
and again Edcxzno.

Thus although the local model results for both the
demagnetizing field (6.20) and the dependence of the demagnet-
izing energy in terms of this field (6.19) are incorrect, the
errors cancel. The experimentally verifiable predictions

2)

that the demagnetizing energy should vary as HO2 (or as Xq

and should be independent of MS are correct.

In his ripple theory Hoffmann approximated the non-local
demagnetizing field by a local field proportional to the
second derivative of the magnetization (Hpo- 68a, b). This
introduces errors (Br-70) but is presumably a fair approximation

when the variations in the magnetization are rapid enough.
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The approximation in the local model is of the same form, but

no such justification can be made. 1In fact, the only justifi-
cation for developing and using this model is that it also gives
reasonably accurate descriptions.of complicated phenomena

such as the susceptibility at high frequency, when both the
demagnetizing field and the field from eddy~currents are

non-local (He-72).

6.3.2 Extension to Finite Susceptibility

The local model can be extended to include the effeéects
of finite intrinsic susceptibility. We consider a long

whisker and use the equivalence
<M >d% = M_ x4, (6.26)
z S
where x is the displacement of the wall. Then

V
d<Az> M dx

H' = - H (6.27a)

where

d2<Mm >
VA . (6.27b)
Z
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The numerical constant in (6.27b) is wrong. Using (3.38c) we

can correct it to

2<M
poep Mg (6.28a)
dzz '
where
o1, 5 T + 1ln2
P=411n - — % ~ ! dz. (6.28b)

This is a very good approximation to the demagnetizing field
when H is uniform.

Now consider an "equivalent" bar (of sguare or circular
cross-section) with an intrinsic susceptibility X. Using
(5.9) and (6.28a), we get the magnetization equation

2 < M >
p %ﬁ’lﬁ =-m +—Z . (6.29)
X

The following special cases are of interest:

(i) Ho uniform,X »+ « . The solution is the quadratic

wall.
< M >

(ii) H0 vniform, X - ¢ . H' » 0 faster than , which
X

then equals H, - (uniform magnetization).

(iii) Ho = 0. Then
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<M, (z)>=<n (0)>e = 271 (6.30)

where £ =‘fP X 1is a characteristic length of the material.

The numerical value of P in (6.28b) may not be correct for

non-uniform HO . For a non-linear material with X(M),
i -CAR
<M (z)> = <M (0)>€eXxXp
z b4 Fr
o VPxM (z'))

The general solution for H_uniform and X constant is

(0]
| h (z/38) 1
v o _ cos z/ 8
<M, (zj>= XH, 1 cosh(z 2R)J (6.31)

This magnetization is similar to that found numerically in
Chapter 5 (Fig. 5.2).

Fquation 6.29 must be considered phenomenological at
this time. It can be used to predict effects of stray fields
(e.g. from magnetic tape heads) on magnetic materials, and
because of its simplicity might be useful near Tc where the

susceptibility is finite.
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6.4 Extensions of the Thesis

There are three obvious extensions of this work. The
first is to the a.c. response of iron whiskers. The non-local
equations for both the demagnetiéing fields and the fields
of the eddy-currents have not yet been worked out. Once this

is done, accurate numerical calculations should be possible.

Second, the work should be extended to high temperature.
Of most interest is the behavior around Tc' Experiments on
iron whiskers near TC are in progress (Ar-72a), but the role
of dipole fields (from fluctuations in the magnetization) in
the ferromagnetic phase transition has not been quantitatively
worked out (Ar-72b, Ar-72c). Although the micromagnetic
equations have been generalized to variable MS (Mi-70), to
date there is no simple theory of the behavior near Tc which
incorporates an equation of state.

Third, the concepts developed for the magnetization of
single crystals should help in the understanding of technical
magnetization in polycrystalline ferromagnets of large grain

size.
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CHAPTER 7
SUMMARY

The micromagnetic equations have been solved in differen-
tial form to show that the volume charge in a long ferromagnetic
single crystal is negligible, even for large anisotropy. These
equations have been used in integral form to find the magneti-
zation in the long domains of an iron whisker in the Landau
configuration. The whisker is illustrated greatly foreshortened
in Fig. 6.2. The important features are

(i) the 180° wall bows nearly quadratically,

(ii) the tie points are deflected to increase the
magnetization,
(iii) the magnetization is non-uniform in the domains,

being nearly parallel to the wall at the wall, and
less curved at the surface, and

(iv) the magnetization changes within the domain so as
to create virtually no volume charge and put all

but 2.3 percent of the charge on the surfaces.

Facts (i) and (ii) were in essence known from photographs
showing the response to an applied field of 180° walls in

thin iron platelets. This thesis gives a theoretical basis

- 161 -
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for (i). The features of the magnetization distribution in
the long domains, (iii) and (iv), were not previously under-
stood. We have also shown that (iv) is a general result,
independent of the actual domain structure, for iron single

crystals,
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APPENDIX 1

EVALUATION OF DEMAGNETIZING ENERGIES

A, Interaction energy of lines of charge representing

quadratic magnetization

The integral we need is

/2 L/2
I(s) =Jf/ zdz z'dz! 1 r
[(z-2')%+s217

-L/2 <L/2

Let z = % z, z' = % z', and s = % s, and remove the bars from

the variables of integration. Then

. rl 1
- 1 1l
I(s) = (-) zd%)r z'dz -
: .! [(z-2') 245217

-1

With a change of variables the z' integral becomes

z
1 +
~/ﬂ z'dz"' 12 — = [% 1n<z'+/;'2+§2>-/g'2+§2] ,
[(z-2z')*+s5%]"7 -
-1
where z, = z+l and z_ = 2z-1. We get
I(s)

(fT—11+Iz+I3+Iu
2
1

=f zdz [z 1n<z+ + ¢z+2+§2)

+ -

-z 1n<z_ + /z_2+§2> - V/z %+5? + /z_2+§2] .
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It is easy to see that I; = I,, and a change of variables gives
2 o
I3 = :/ﬁ(z-l)/zz+§2 az
0
/r;—:; =2 ‘ . 2 =2y 3/2 2
|2 L T (e ) - 25BN
0

For long whiskers, s < < 1, and

With similar changes of variables,
2

I, =~/r (z-1) 2 ln<?+¢zz+§2>dz
0

and 0

I, =/ (z+1)? 1n<z+»/zz+ E;—z)dz
-2

2
(z > -2) j{ (z-1)?2 1n(—z+¢zz+§2>dz.

0

Using Dwight (625., 625.1, 625.2) and equivalent integrals

for -z, and setting r = V/z?+s?, we find

3 + 2r 3 s
I1+Iz=3[-z§—-lnfzf_r>— ; +2§r
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{}n é - %]
)

o
I(s) = %(%) [m%—%_ (Al.1)

B. Energy for charges in whicker and on an equivalent cylinder

Again for s < < 1,

W &

I, + Iz ~

and finally,

Case (i): Charges on the wall,
From (3.37), the demagnetizing energy is
: d d
_ 2L 21 . 2L _ 7
EW~-3—-00 zf de dy (ln']—yt—y—'-—r 3 .
0 0
To avoid infinities, integrate requiring y = y':

a a y
/ dy! dy' 1lnly-y'| = 2 dyf dv' 1n(y-y')

0 0 0
d

= 2/ (y Iny-y)dy = d*(In 4 - 3),
0

using

lim(y 1n y)= 0.

y+0
Then 2 12
M “d
= L 2 2L _ §]_ . s
Ew—-3-0 d[ll"I'-—a- 6—2Yw T, Xl
where
v, = 128 [ 2. 3] (a1.2)

Case (ii): Charges on two parallel surfaces.
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We put half the charge on each surface.

Then

h
where 3 q

W

\ 2
Ellnt = %—E <g—°> / dy/ dy' iln 2L - Z—]
V(y=-y')2+d42

0 0

Using Dwight (623, 623.1, 525),

a
/ dyfdy' 1n [(y-y') 2+4?]

0 0
d

%gf dy[y In(y?+d2?) - 2y+24 tan~!

DQaf<g
—

= 2d2[}n a+2- 3].

2 2
Thus
nt _ L 2 2L _ 5 _11
Bt =gy @t E-2- 7
and
E=Ei"-+}31nt Lo2gzfin2k-2_1T
's 2 1 3 0o d 3 4
M 232
s
= % Y)g L Xy v
where

Case (iii): Charges on all four surfaces-.

Put one quarter of the charge on each surface.

(A1.3)

(Al.4)



+ 4 Eint
where
. 2~ d d
Ezlnt = .§£ (O—Z—)/ dx/ dy [ln ———-——_2L - -_Z’-:l
0 0 ,/x§+y5
Now,
d d d a
/ dxf'dy In(x2+y?) =f dx [d 1n(x2+d?) - 2d+2x tan~! ;} .
0 0 0

The first two terms give

dz[ln 242 —4+1?f-].

The third becomes, letting u = %

2d2me%T tan~! u du = 42 .

1

and using Dwight (526.3),

We get
nt _ 2L {0y 2 2 2L ~ 5 T 1
Eiz = T<~—4-> d [ln ‘—d - Z ] 1n 2 (Al.S)

and

_ L 2 » 2L _ 5 _(7m+ln 2
E4s‘§'00d[ln“d 6 ("4 ')}

where

(Al1.6)
S

<
>
|
|—l
N
©
I |—l
o]
|N
jof gl
1
o u»
i
/-:1\
+
'_-I
e 1]
N
—_
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Case (iv): Charge on the surface of a cylinder,
We distribute the charge on the surface of a cylinder of

area mr?2 = d%?. The charge/unit length is

pl = G(Z) 2Tr = God Lﬁ .

This gives

_ Z

c
g(z) = 0, /3 ¢

where

The demagnetizing self-enerqgy (Fig. Al.1l) is

td
n
Ny

27 s
2L, . 2 2L, 7
c . 3—- rd¢‘ /2 rd¢ 0"; [1n s—(mr - -3--‘. (Al.7)
0 0 B

Because of cylindrical symmetry the ¢' integration is independ-
ent of ¢; we take ¢é = 0. Then

2 L 7
_2mwrlL CZ_/ [ln(———-,—) - —] de¢' .
E, = —— 0 . ¢ - 3
c 3 0 r sin =—
0 2

From Dwight (630.1),

m

J/. 1n (sin 6) d6 = -7 1n 2.
0

Thus,

2
4Tr2Lr20C 2L 7 ’s 2
Ec"""-—s“"’—'[ln—r‘i_:“ Xy s
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\¢'

s=s(¢'-¢)=2r|sin

¢’-¢|
2

Fig. Al.1l Definition of integration variables for

potential of cylindrical charge distribution.
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where

s

128 [ 2Y/mL 7
1n ——

Yo & 3 T " 3} . (Al.8)

C. 1Interaction and Self-Energy for Linear Magnetization

bo(2)

lof

-L/2 L/2

We first find the interaction energy of two strips of

charge of width dy and dy', of charge density

o - % =z <0
o(z) =
-0 0 <z = L/2

and separated a distance s:

0 L/2 0 L/
a%E = dydy' <’ J/. dz i/ﬁ dz - az! :/Zdz' L
i 0 \-1./2 0 /(z—2")*+s?

Rewrite this as

d%E = Lo’dydy' (I, + I,),

where

_ 1 1 —_—
Il(S)=fdzf dz' — '

0 0 /(Z_z|)2+‘§2
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oy

1 1 '
I,(s) = —f dzf az' ,
Y (z+z')%+5?
0 0

and

I, comes from repulsion of charges on the same side of z = 0;
I, comes from attraction of charges on opposite sides of z = 0.

This is indicated schematically below:
+ + + + + + - - - - - -

i
IR

i
1
+ o+ o+ o+ o+ o+ - - - - - -
By inspection, |I,| > |I,|, so @’E > 0. (For a general
longitudinal magnetization, the I, type integral causes like
charges to spread out, and the I, integral attempts to bring
opposite charges together at z = 0. The actual magnetization

is a compromise which minimizes I, + I, + Em' where Em is the

2

magnetizing energy
L/2

E o<~Hf z'o(z')dz'),
m (@]

-L/2

To first order in s,

I,(s)

Il

N

5
TRES

1

'_J

+
2L

il
u|

1
N}
5
N}

I, (s)
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and

d2E=L02dydy'[2 1nISi+gs- 2 - 2 1n 21.

As in Appendix 1B, put the charge on the surface of a
cylinder of area mr? = d?. The charge/unit length is to be
the same. By the corresponding argument of (3.36),
4Msx1

L d‘

2Tr ¢ =

As in Fig. Al.l, s = 2r|sin ¢/2] and

2T
EL=1/2L02-21rr2f d¢'[21ng+%s—2—21n2]

where

(Al1.9)

<
g
1"l
w
N
o]
B
(gl
|
’_l
+
’_l
N
joN]
—
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APPENDIX 2

TWO PARAMETER ANALYTICAL SOLUTION TO

THE TRANSVERSE MAGNETIZATION

The charges and fields of interest are indicated in this

transverse view:

(0]
0 A
H, ‘
¥
OW 8
*
0'3 o 0'3
o 7—Y
2

Define the fields at a point (x,y) due to an infinite

strip of width d with charge density o as shown:

o
4 Hl(X:Y)

(o}
- H” (X:Y)
(x,v)

A
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d © 5
f dx'f dz' 4
0 i z'2 + y2 + (x - X-)z]a/z

d

20y dx' 1
0 (x = x")2 + y?2

Redefining in terms of dimensionless variables

Then

H-I_O (le)

i

and § =

E |
I
P

QU

ch(;<,§) = 20 [tan'1 X - tan™! 22 l] (A2.1)
Y Y
Also,
d i '
an(x,y) = dX'/ dz' o (x - x)
O o [2'2 +y2 + (X_X|)2]3/2
so
- =2 2
H”G (x,y) = 0 ln — X"ty —
(x - 1) + y%2 . (A2.2)

Define the field at (x,y) due to an infinite square bar

of side d with charge density p as Hlp (x,y) :



d: d

H P(x,y) = dx' dy ' dz'

l [2'2
0 0 ~o0
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Y
} Hi(x,y)
N
a
” p (y - v")

or
- - - s2,72 _
Hlp(x,y) = pd x 1ln :__5:i1~_ - (x-
x2+(y-1) 2

+ 2§(tan'1 X - tan™! X—:1—> - 2(§-1)<t
Y

With these definitions,

>

=3

—2705 + 2H”02(l,%) + H103<%,1) + Hl°<%,1) + H”GW<1,6)

1)

(x=1) 2+y?

(x-1) 2+ (y-1) 2

F O3 02 p o
-270, + 2H (1,%) + H (%,1) + H " (%,1) + H Y (4s,%)
2 ” 2 l 2 l 2 l 2 2J

take H“GW(l,é) because of the logarithmic divergence as

0.

From (A2.1, A2.2, A2.3),

oy =y (x - xn?1¥/2

>

>

(A2.4)
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B 7(1,%) =0 1n 5

O (s = 1oy
Hl (3,1) = 4 ¢ tan 5
Hlp(%,l) =pod [ In 5+ 4 tan ' % ]
ch(%,%) = 40 tan ' 1 = oT
H”O(l,d) = -20 1n 6§ (6§ << 1) .

The self-consistency conditions are

Hy _ Hado _ 4TRS,
M 0 M 6
s s
H_a_ = 41TR®3 p
M
s
using
¢y = Ei, R = _HA , and ¢ = L (small angles).
6 4TrMS HA

Then using (4.1), (A2.4), (A2.5) and the definitions

A, = 27

A, = 2 1In 5

As; = 4 tan ' %

Ay = 2 1n 5+ 8 tan ! %

As = 4 1n 6§,

(A2.5)

(A2.6)
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equations (A2.6) become

4WR¢2 = =A%, + Ar,03 + A3d, + Aq(¢1—¢2-¢3) + Al(l—él)

4TRd3 = -A103 + APy + Az + Ay ($1-0,-03) + As(1-9,) .

These two equations are solved for ¢, and ¢,

(¢; is given by (4.2)), and the results are in Table 4.1.
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APPENDIX 3

SOLUTION OF THE TRANSVERSE MICROMAGNETIC PROBLEM

The whisker has reflection symmetry about both the xz and
yz planes when the wall is at x = 0, so the charge densities at

the four points shown below are equal:

X
A

(x',-y")

(-x',~y"') * (-x',y")

We use this to rewrite the first term in (4.3a) for the x-de-
magnetizing field at (x,y) due to volume charges throughout the

whisker as
L/2  L/2
/ dy'[Kx(x—X‘, y-y') + Kx(x—X', v+y ')

o
x-
=z~
0 be
4‘<
-
Q,
”

+ K (x+x', y-y') + R (x+x', Y+Y')]x

(A3.1)

T ox! oY’

[_ 30 _(x',y") 8<I>y(x',Y')]

We divide all variables by L/2 to make them dimensionless.
This changes only the limits of integration because equations

(4.3) are already dimensionless.
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An m X m grid is set up for numerical evaluation of this

field, as described in the text:

%/ I,R 4?”/’/;’i:;::;;7’vsurface charge
(5,1) T~ (5,5
L J ¢ [ ] [ 4 e p
=4
n=5
L [ ) o L ] [ 4
volume
, ‘?ﬂﬂ_a_,_fz;;:”charge
[ ] o o )
14 [} . . .
wall
. charge
- - . 4.4-————(7 >y
\
a1, (1,5)
o - . . .

The field is evaluated at grid intersections

I;l—l , I=1, ... m¢l = n

J-1
y:T ‘ J=1l, ... n

The volume charge is placed at the center of each grid
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sgquare, at

X = m K=l, s e IM
y' = L;ﬁs L = l, cee., mm

It is calculated by a linear interpolation:

3¢
x [K-.5 L-.5}\ _ _m

SpeL ( = ’ - ) = 7[§X(K+l, L+l)+¢x(K+l, L)

- ¢X(K’ L+l) - QX(K, Lﬂ ' ' K, L = l, ee. I
and

a(I)y K-.5 L-.5 m
T ( ! = > = - E.[}Dy(K+l, L+1)+¢y(K, I+1)
—<1>y(1<+1, L) —<I>y(K, L)} , K, L=1, ... m.

When the dimensionless integrals are converted to sums, all
factors of m must cancel. The RHS of the (I,J) th equation
of (A3.1) becomes finally

m i
-y [K},(I—K—.S,‘ J-L-.5) + K_(I-K~.5, J+L-1.5)
K=1L=11 * x

+ KX(I+K—1.5, J+L-.5) + KX(I+K—1.5, J+L—l.54 x
%[@X(K+l, L+1) + ¢X(K+1, L) - @X(K, L+1)
- ¢X(K, L) + ¢y(K+1, L+1) + @y(K, L+1)

_ 6 -0 . A3.
, (K+1, L) es L)] (23.2)
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As before, for any numbers Ax and Ay,
2Ax

Ry (Bx, 8Y) = Try oy (ayye
and
- 28y
Ky B3 0Y) = TrRyer (ayy

There are n? of these x-fields (at grid intersections)
and n? similar equations for the y-fields where Ky is replaced
by K_.

Yy

The second term in (4.3a) gives the x~field at (x,y) due

to charges on the wall; we rewrite it as

1
2[ dy'[Kx(x, y-y') + K (x, Y+Y')] X[l—¢x(0,y')]
0

m
= 22 [KX(I—l, J-L-.5) + KX(I—-l, J+L—l.5)]><
L=1 )

P—%(@X(l, L+1) + @X(l,L)ﬂ ' (A3.3)

where the charges are put at (x', y') = (0,

L-.5 .

— ). The magni
tude of the wall or surface charge density in the center of a
grid line is taken to be the average of the values at the ends
of that line.

Similarly, the x-fields due to charge on surfaces

parallel and perpendicular to the wall are, respectively,

f[xx(x-l-m, J-L-.5) + K_(I-1-m, J+L-1.5)

L=1

+ KX(I—l+m, J-L~-.5) + KX(I—l+m, J+L—l.Sﬂ X

%_[@X(n, L+1) + @x(n,L)] (a3.4)
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and

m
> [K (I-K-.5, J-1-m) + K_(I+K-1.5, J-l-m)
X X
K=1
+ KX(I—K—.S, J-14+m) + KX(I+K—1.5, J—l+m{]x

%[@Y(Kﬂ,n) + ‘Dy(K,n)J. (A3.5)

This procedure gives a good approximation to the fields
at all points except for the perpendicular field at the wall
or surface due to charges on that surface. The charges are
concentrated in lines on this surface and give no perpendicular
fields at the field points on the same surface. So at the

wall, we add to the x-field

2o (L) = Mse . 4ﬂ[i—¢x(l’Lﬂ , L =1, .... n,

Similar additions are made for the surface fields.

The 2n? unknown angles are taken to be a vector ¢ where
o [(K—l)n ¥ L] = ¢ (%,L)
@[n2+(1<—1)n +L] = <I>y(K,L)

Equations (4.3) are replaced by

4RI = CO - P

~

MY

where I is the identity matrix, C is a 2n? x 2n? matrix, and
is a vector. 1In C(A,B), the variable A indexes the equation

(field point) and B indexes the source.

Mse C(A,B) % (B)
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is the demagnetizing field at A due to sources (both volume and

surface) near B and proportional to ¢ (B). The equations are

inhomogeneous, and the vector P(A) essentially gives the

field at A due to the term in the wall charge prorortional to 6.
The contribution to C(A,B) from volume charges is found

in (A3.2), from wall charges in (A3.3), and from surface

charges in (A3.4). The x-fields are found for A =1, ... n?;

the y-fields for A = n? + 1, ... 2n?, where again K, is

replaced by XK . The Fortran G program follows. 242 simultan-

eous equations were solved (m = 10) for the transverse

magnetization.
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IMPLICIT REAL*8 (A~H,0-2)
DIMENSION PHI (242),C(242,242)
DIMENSION RHOX(10,10),RHOY(10,10),RHO(10,10)
DIMENSION SIGW(10),SIGT(10),SIGS(10)
FORMAT ('0', (10F12.7))
FORMAT('0', (11F11.6))

M=10

R=5.D2/1.7D3

WRITE (6,15)R
FORMAT('1l','ANISOTROPY FIELD/MAGNETIZATION="',F20.6)
RM=M

N=M+1

NS=N*N

NS1=NS+1

NST=2*N*N

ZERO=0.D0

HALF=,5D0

ONE=1.DO

THALF=1.5D0

TWO=2.D0

FOUR=4.D0

PI=3.1415926535D0
TWOPI=TWO*PI

FOURPI=FOUR*PI

DO 6 I=1,NST

DO 5 J=1,NST

C(I,J)=ZERO

CONTINUE

CONTINUE

DO 110 I=1,N

DO 100 J=1,N

IA=N*(I-1)+J

DO 20 K=1,M

DO 10 L=1,M

DA=I-K-HALF

DAS=DA*DA

DB=J-L-HALF

DBS=DB *DB

DC=I+K~-THALF

DCS=DC*DC

DD=J+L~THALF

DDS=DD*DD

F=DA/ (DAS+DBS) +DA/ (DAS+DDS) +DC/ (DCS+DBS) +DC/ (DCS+DDS)
FA=DB/ (DAS+DBS) +DD/ (DAS+DDS) +DB/ (DCS+DBS) +DD/ (DCS+DDS)
IBA=K*N+L+1

IBB=K*N+L

IBC=(K-1) *N+L+1

IBD= (K-1) *N+L
C(IA,IBA)=C(IA,IBA)-F
C(IA,IBB)=C(IA,IBB)-F
C(IA,IBC)=C(IA,IBC)+F
C(IA,IBD)=C(IA,IBD)+F
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C(IA,NS+IBA)=C(IA,NS+IBA)-F
C(IA,NS+IBB)=C(IA,NS+IBB)+F
C(IA,NS+IBC)=C(IA,NS+IBC)~-F
C(IA,NS+IBD)=C(IA,NS+IBD)+F
C(NS+IA,IBA)=C(NS+IA,IBA)-FA
C(NS+IA,IBB)=C(NS+IA,IBB)-FA
C(NS+IA,IBC)=C(NS+IA,IBC)+FA
C(NS+IA,IBD)=C(NS+IA,IBD)+FA
C(NS+IA,NS+IBA)=C(NS+IA,NS+IBA)~FA
C(NS+IA,NS+IBB)=C(NS+IA,NS+IBB)+FA
C(NS+IA,NS+IBC)=C(NS+IA,NS+IBC)~FA
C(NS+IA,NS+IBD)=C(NS+IA,NS+IBD)+FA
CONTINUE

CONTINUE

PHI (IA)=ZERO

PHI (NS+IA)=ZERO

DO 30 L=1,M

DA=I-1

DAS=DA*DA

DB=J-L~HALF

DBS=DB *DB

DC=J+L-THALF

DCS=DC*DC

F=DA/ (DAS+DBS) +DA/ (DAS+DCS)

PHI (IA)=PHI (IA)-FOUR*F
C(IA,L+1)=C(IA,L+1)-TWO*F
C(IA,L)=C(IA,L)-TWO*F

FA=DB/ (DAS+DBS) +DC/ (DAS+DCS)

PHI (NS+IA)=PHI (NS+IA)~FOUR*FA
C(NS+IA,L+1)=C(NS+IA,L+1l)~TWO*FA
C(NS+IA,L)=C(NS+IA,L)-TWO*FA
CONTINUE

DO 40 L=1,M

DA=I-1-M

DAS=DA*DA

DB=J-L-HALF

DBS=DB*DB

DC=I-1+M

DCS=DC*DC

DD=J+L-THALF

DDS=DD*DD

F=DA/ (DAS+DBS)+DA/ (DAS+DDS) +DC/ (DCS+DBS) +DC/ (DCS+DDS)
IBA=N*M+L+1

IBB=N*M+L

C(IA,IBA)=C(IA,IBA)+F
C(IA,IBB)=C(IA,IBB)+F

FA=DB/ (DAS+DBS)+DD/ (DAS+DDS) +DB/ (DCS+DBS) +DD/ (DCS+DDS)
C(NS+IA,IBA)=C(NS+IA,IBA)+FA
C(NS+IA,IBB)=C(NS+IA,IBB)+FA
CONTINUE

DO 50 K=1,M

DA=I-K-HALF
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DAS=DA*DA
DB=J-1-M
DBS=DB*DB
DC=1+K-THALF
DCS=DC*DC
DD=J-1+M
DDS=DD*DD
F=DA/ (DAS+DBS) +DC/ (DCS+DBS) +DA/ (DAS+DDS) +DC/ (DCS+DDS)
IBA=NS+K*N+N
IBB=NS+ (X-1) *N+N
C(IA,IBA)=C(IA,IBA)+F
C(IA,IBB)=C(IA,IBB)+F
FA=DB/ (DAS+DBS) +DB/ (DCS+DBS) +DD/ (DAS+DDS) +DD/ (DCS+DDS )
C(NS+IA,IBA)=C(NS+IA,IBA)+FA
C(NS+IA,IBB)=C(NS+IA,IBB)+FA
50 CONTINUE

100 CONTINUE

110 CONTINUE
DO 120 L=1,M
PHI (L)=PHI (L) -FOURPI
C(L,L)=C(L,L)-FOURPI

120 CONTINUE
PHI (N)=PHI (N) -FOURPI
C(N,N)=C(N,N)-FOURPI
DO 130 L=1,M
IA=N*M+L
C(IA,IA)=C(IA,IA)-TWOPI

130 CONTINUE
C (NS ,NS)=C(NS,NS)-TWOPI
DO 140 K=1,M
IA=NS+K*N
C(IA,IA)=C(IA,IA)-TWOPI

140 CONTINUE
C(NST,NST)=C(NST,NST) -TWOPI
DO 150 I=1,NST

150 C(I,I)=C(I,I)-R
CALL DSIMEQ(NST,C,PHI,NST)
WRITE(6,35)

35 FORMAT('0',10X,'X AND Y ANGLES')
WRITE (6,230) (PHI(I),I=1,NS)
WRITE (6,230) (PHI(I),I=NS1,NST)
RHOAV=ZERO
DO 170 K=1,M
DO 160 L=1,M
IBA=K*N+L+1
IBB=K*N+L
IBC=(K-1) *N+L+1
IBD=(K-1) *N+L
RHOX (K,L)=-"(RM/TWO) * (PHI (IBA)+PHI (IBB) -PHI (IBC) ~PHI(IBD))
RHOY (K, L) =- (RM/TWO) * (PHI (NS+IBA)+PHI (NS+IBC)
1-PHI (NS+IBB)~PHI (NS+IBD))

RHO (K, L)=RHOX (K,L) +RHOY (K, L)
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RHOAV=RHOAV+RHO (K, L)
160 CONTINUE
170 CONTINUE
RHOAV=RHOAV/ (RM*RM)
WRITE (6,36)
36 FORMAT(///10X,'VOLUME CHARGE DENSITIES: X,Y,TOTAL')
WRITE (6,220) ( (RHOX(K,L) ,L=1,M),k=1,M)
WRITE (6,220) ((RHOY(K,L) ,L=1,M) ,K=1,M)
WRITE(6,220) ((RHO(K,L) ,L=1,M) ,K=1,M)
WRITE(6,25) RHOAV
25 FORMAT('0','AVERAGE VOLUME DENSITY=',6Fl6.8)
SIGWAV=ZERO
DO 180 1=1,M
SIGW(L)=ONE-HALF* (PHI (L+1)+PHI (L))
SIGWAV=SIGWAV+SIGW (L) /RM
180 CONTINUE
SIGTAV=ZERO
DO 190 L=1,M
IBA=N*M+L+1
IBB=N*M+L
SIGT(L)=HALF* (PHI (IBA)+PHI(IBB))
SIGTAV=SIGTAV+SIGT (L) /RM
190 CONTINUE
SIGSAV=ZERO
DO 200 K=1,M
IBA=NS+ (K+1) *N
IBB=NS+K*N
SIGS (K)=HALF* (PHI (IBA)+PHI (IBB))
SIGSAV=SIGSAV+SIGS (K) /RM
200 CONTINUE
WRITE(6,220)SIGW
WRITE (6,26) SIGWAV
26 FORMAT (1X,'AVERAGE WALL CHARGE=',6F16.8)
WRITE (6,220)SIGT
WRITE (6,27)SIGTAV
27 FORMAT (1X, 'AVERAGE TOP SURFACE CHARGE=',kF1l6.8)
WRITE(6,220)SIGS
WRITE(6,28)SIGSAV
28 FORMAT (1X,'AVERAGE SIDE SURFACE CHARGE=',bFl6.8)
END
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. ‘APPENDIX 4

CALCULATION OF SURFACE CHARCE ASSUMING V.M = 0

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION PHI (202),C(202,202),SIGT(100),SIGS(100)
310 FORMAT(/(10F12.7))
320 FORMAT (/(10F12.7))
M=100
DO 400 IR=1,5
RIR=IR
R=5.D2/1.7D3
R=R* (1.D1** (RIR-3.D0))
N=M+1
N1=N+1
NT=2*N
NTMI=NT-1
RM=M
MMI= M-1
ZERO=0.D0
ONE=1.DO0
THALF=1. 5D0
HALF=, 5D0
TWO=2.D0
PI=3.1415926535D0
TWOPI=TWO*PI
FOUR=4.D0
FOURPI=FOUR*PI
PHIW=ONE/ (ONE+R/FOURPI)
SIGW=TWO* (ONE-PHIW)
WRITE (6,5) R
5 FORMAT('1','ANISOTROPY FIELD/MAGNETIZATION=',F20.8)
DO 10 I=1,NT
PHI (I)=ZERO
DO 10 J=1,NT
10 C(I,J)=ZERO
DO 100 J=1,N
DO 30 L=1,M
DA=M
DAS=DA*DA
DB=J-L-HALF
DBS=DB*DB
DC=J+L~THALF
DCS=DC*DC
F=TWO*DA/ (DAS+DBS) +TWO*DA/ (DAS+DCS)
PHI (J) =PHI (J) -SIGW*F
30 CONTINUE
DO 40 L=1,M
DA=TWO*RM
DAS=DA*DA
DB=J-L-HALF
DBS=DB *DB
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DC=J+L~THALF
DCS=DC*DC
F=DA/ (DAS+DBS)+DA/ (DAS+DCS)
C(J,L+1)=C(J,L+1)+F
C(J,L) = C(J,L)+F
40 CONTINUE

DO 50 K=1,M
DA=M-K+HALF
DAS=DA*DA
DB=J-1-M
DBS=DB*DB
DC=M+K~HALF
DCS=DC*DC
DD=J-1+M
DDS=DD*DD
F=DA/ (DAS+DBS) +DC/ (DCS+DBS) +DA/ {DAS+DDS) +DC/ (DCS+DDS)
C(J,N+K+1)=C(J,N+K+1)+F
C(J,N+K)=C(J,N+K)+F

50 CONTINUE

100 CONTINUE
DO 200 I=1,N
DO 110 L=1,M
DA=I-1
DAS=DA*DA
DB=M-L+HALF
DBS=DB*DB
DC=M+L~HALF
DCS=DC*DC
F=TWO*DB/ (DAS+DBS) +TWO*DC/ (DAS+DCS)
PHI (N+I)=PHI (N+I)~-SIGW*F

110 CONTINUE
DO 120 L=1,M
DA=I-1-M
DAS=DA*DA
DB=M~-L+HALF
DBS=DB*DB
DC=I-1+M
DCS=DC*DC
DD=M+L-HALF
DDS=DD*DD
F=DB/ (DAS+DBS) +DD/ (DAS+DDS) +DB/ (DCS+DBS) +DD/ (DCS+DDS)
C(N+71,L+1)=C(N+I,L+1)+F
C(N+I,L)=C(N+I,L)+F

120 CONTINUE
DO 130 K=1,M
DA=I-K~HALF
DAS=DA*DA
DB=TWO*RM
DBS=DB*DB
DC=I+K~THALF
DCS=DC*DC
F=DB/ (DAS+DBS) +DB/ (DCS+DBS)
C(N+I,N+K+1)=C(N+I,N+K+1)+F
C(N+I,N+K)=C(N+I,N+K)+F
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CONTINUE .

CONTINUE

DO 210 I=1,NT

C(I,I)=C(I,I)-TWOPI

DO 217 I=1,NT

C(I,I)=C(I,I)-R

NEQ=1

WRITE (6,45)NEQ

FORMAT('0', '"EQUATION REPLACED IS',I10)
PHI (NEQ)=RM*PHIW

C(NEQ,1)=HALF

C(NEQ,N)=HALF

C(NEQ,N+1)=HALF

C(NEQ,NT)=HALF

DO 15 I=1,MMI

C(NEQ,I+1)=ONE

C(NEQ,N+I+1)=0ONE

CONTINUE

CALL DSIMEQ(NT,C,PHI,NT)
WRITE(6,310) (PHI(I),I=1,N)

WRITE (6,310) (PHI(I) ,I=N1,NT)
SIGTAV=ZERO

SIGSAV=ZERO

DO 220 I=1,M
SIGT(I)=HALF* (PHI (I+1)+PHI(I))
SIGTAV=SIGTAV+SIGT (I)/RM
SIGS(I)=HALF* (PHI (N+I+1)+PHI (N+I))
SIGSAV=SIGSAV+SIGS (I)/RM

CONTINUE

SIGT (1)=SIGT(2)

WRITE(6,320)SIGT
WRITE(6,17)SIGTAV
FORMAT (1X, 'FRACTION OF CHARGE ON TOP=',F20.7)
WRITE (6,320) SIGS

WRITE(6,18B5IGSAV
FORMAT (1X, '"FRACTION OF CHARGE ON SIDE=',F20.7)
SIGW=HALF*SIGW

WRITE(6,19)SIGW

FORMAT('0', 'FRACTION OF CHARGE ON WALL=',F20.7)
CONTINUE

STOP

END
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APPENDIX 5

CALCULATION OF LONGITUDINAL MAGNETIZATION

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION A(101,101) ,AMAG(101),AMAGN (101) ,AK(200) ,AL(200)
DIMENSION B(101,101) ,F(101),G(101) ,SIGMA(101l) ,HDEM(101)
DIMENSION ADEM(101,101) ,HINT(101),BMAG(101)
DIMENSION CMAGN (101),2(101),2ZSQ(101) ,ERROR(101)
M=100

L=M/10

DO 400 K=1,5

READ (5,450)R

FORMAT (F6.5)

FOURPI=4,D0%*3.1415926535D0

CHI=1.D20

W=2.D0

H=1.DO

CHI IS INTRINSIC SUSCEPTIBILITY

W IS RATIO OF COIL TO CYLINDER RADIUS

H IS APPLIED FIELD

LP=L+1

ML=M-L

LMI=L-1

MMI=M-1

MTWO=2*M

RM=M

RW=R*W

N=M+1

RN=N

ZERO=0.D0

TWO=2.DO0

TWOPI=TWO*3.1415926535D0

CHIME=TWO/ (R*RM*CHI)

WRITE(6,17)R,CHI

FORMAT('1',' RHO=',6F9.5,5X,'CHI=',D12.3)
FIND FIELDS FROM END CHARGES

DO 100 I=1,N

AIM=I-1

AIM=AIM/RM

SIGMA(I)=-H

I1=M-I+1

I2=M+I-1

R1=I1

R2=I2

R3=(R1*R1+RM*RM*R*R) ** _ 5D(
R4=(R2*R2+RM*RM*R*R) ** ,5D0
ADEM(I,N)=-TWOPI* (TWO-R1/R3-R2/R4)
A(I,N)=ADEM(I,N)-1.D0/CHI

B(I,N)=A(I,N)

CONTINUE
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FIND FIELDS FROM SIDE CHARGES
DO 110 I=1,MTWO
R1=I-M-.5D0
R2=I-.5D0
R3=(R1*R1+RM*RM*R*R) **1,5D0
R4=(R2*R2+RM*RM*R*R) **1, 5D0
AK (I)=RM*R1/R3
AL (I)=-RM*R2/R4
110 CONTINUE
DO 120 1=1,N
DO 130 J=1,M
MP=I-J+M
MO=I+J-1
ADEM(I,J)=TWOPI*R* (AK (MP)+AL(MQ))
A(I,J)=ADEM(I,J)
B(I,J)=A(I,J)
130 CONTINUE
120 CONTINUE
DO 105 I=1,M
DO 107 J=1,M
A(I,J)=ADEM(I,J)~CHIME
B(I,J)=A(I,J)
107 CONTINUE
105 CONTINUE
CALL DSIMEQ(N,A,SIGMA,N)
WRITE (6,70)
70 FORMAT('0',' 2 SIGMA(Z) SIG. SLOPE DEV
1IATICN')
AZ=.5D0/RM
WRITE (6,75)A%,SIGMA (1)

75 FORMAT (F6.3,F14.7)

FIND SECOND DERIVATIVE OF MAG. AND DEVIATION FROM CONSTANCY
END{.PR=ZERO
DO 170 I=2,M
AZ=I-,5D0
AZ=AZ/RM
SI=SIGMA (2)~SIGMA(1)
SLOPE=(SIGMA(I)-SIGMA(I-1)) /SI
ALIN=RM*AZ*SI
DEVAB=SIGMA (I)~-ALIN
DEV=DEVAB /ALIN
ENDSPR=ENDSPR+DEVAB
WRITE(6,76)A%,SIGMA(I) ,SLOPE,DEV
76 FORMAT (F6.3,F15.7,2D16.7)

170 CONTINUE
WRITE (6,85)SIGMA(N)

85 FORMAT(' SIGMA(END)=',Fl4.7)
FIND MAGNETIZATION AND DEMAGNETIZING FACTORS
AMAG (N) =SIGMA (N)

DO 225 I=1,M
AMAG (N-1I)=AMAG (N+1-I)+ (TWO/ (R*RM) ) *SIGMA (N-I)
225 CONTINUE
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DTWO=ZERO
DO 227 I=1,N

AMAGN (I)=AMAG (I) /AMAG (1)
DTWO=DTWO+AMAG (I)

CONTINUE

DO LEAST SQUARE FIT OF PARABOLA TO MAGNETIZATION
S1=ZERO

S2=ZERO

S3=ZERO

S4=ZERO

S5=ZERO

OMIT LAST M/10 POINTS FROM FIT
NFUDG=LP

NRED=N-NFUDG

RNRED=NRED

DO 300 I=1,NRED

Z(I)=I-1

2(I)=2(I)/RM

2SQ(I)=Z(I)*Z(I)
S1=S1+AMAGN (I)

S2=52+7%SQ(I)

S3=S3+2ZSQ(I) *ZSQ(I)
S4=S4+7SQ(I) *AMAGN (I)

CONTINUE
COB=(S4-S1*S2/RNRED) / (S2*S2/RNRED-S3)
COA= (S1+COB*S2) /RNRED

DO 305 I=1,NRED

CMAGN (I)=COA-COB*ZSQ (I)

ERROR (I)=AMAGN (I)-CMAGN (I)
S5=S5+ERROR (I) *ERROR (I)
CONTINUE

NR=NRED+1

DO 310 I=NR,N

Z(I)=I-1

Z(I)=2(I)/RM

ZSQ(I)=Z(I)*Z(I)

CMAGN (I)=COA-COB*ZSQ (I)

ERROR (I)=AMAGN (I)-CMAGN (I)
CONTINUE

RMSD= (S5/RNRED) **. 5D0

WRITE (6,224)

FORMAT('0',' Z',10X,'M(2)',16X,'M(Z)/M(0)"',11X,

2'CALC.M(Z) /M(0)',6X, 'ERROR"')

DO 320 I=1,N

WRITE (6,228)Z(I),AMAG(I) ,AMAGN (I) ,CMAGN(I) ,ERROR(I)
FORMAT (F7.3,4F20.12)

CONTINUE

WRITE (6,230) COA,COB

FORMAT ('0', 'NORM.MAG(Z)="',F16.12,'-",F16.12,'2*2")
WRITE (6,232) RMSD,NRED
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232 FORMAT('0','RMS DEVIATION=',6D12,5,20X,'NO. OF PTS USED=',I3)

DONE= (H/AMAG (1) -1.D0/CHI) /FOURPI
DTWO= ( (H*RN) /DTWO-1.D0/CHI) /FOURPI
WRITE (6,25) DONE

25 FORMAT('0', 'BALLISTIC DEMAGNETIZING FACTOR=',hDl6.8)

WRITE (6,26) DTWO

26 FORMAT('0', 'MAGNETOMETRIC DEMAGNETIZING FACTOR=',hD1l6.8)

XYZ=AMAG (1) *R/1.13D0
WRITE (6,620)XYZ

620 FORMAT('O','M(0)*RHO/H(APPLIED)=',F18.8)

CHECK SELF-CONSISTENCY: FIND INTERNAL AND DEMAG. FIELDS
WRITE(6,60)

60 FORMAT('0','Z',15X,"'H(END)',15X,'H(SIDES) ', 14X, "H(TOTAL)"

2,14%,'H(INT)',15X,'M(2)")

DO 200 I=1,N

AZ=I-1

AZ=AZ/RM

F(I)=ZERO
G(I)=ADEM(I,N) *SIGMA (N)

DO 210 J=1,M
F(I)=F(I)+ADEM(I,J)*SIGMA (J)

210 CONTINUE

HDEM(I)=F(I)+G(I)

HINT (I)=H+HDEM(I)

BMAG (I)=CHI*HINT (I)

WRITE (6,65)A%Z,G(I) ,F(I) ,HDEM(I) ,HINT(I) ,BMAG(I)

65 FORMAT(F7.4,5F20.13)
200 CONTINUE
400 CONTINUE

END
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