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ABSTRACT

The problem of a thick plate containing a penny shaped crack
lying in a plane parallel to the surfaces of the plate is considered.
It is assumed that shear stresses and normal displacements are specified
on both surfaces. Using Hankel transforms the problem is represented as
a set of simultaneous dual integral equations and a method contingent on
the small value of the ratio of the crack radius to the plate thickness
is presented to reduce the problem to a set of simultaneous Fredholm
equations. The special case of normally clamped shear free surfaces and
uniform pressure applied to the crack surfaces is considered and the
Fredholm equations are solved approximately leading to the evaluation of
the stress intensity factors for the problem. The case of a uniform

displacement of one of the surfaces is also considered.
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§ 1 Introduction

The problem of determining, within the classical limits of
the theory of elasticity, the stress field in the vicinity of a crack
in an infinite medium was first discussed by Sneddon [6]. This problem
has also been discussec by Green [12], Payne [13] and Sack [14] but
much of the later studies of problems concerned with penny-shaped
cracks have been based on the work of Sneddon and of methods due to
Lebedev and Ufliand [8].

An investigation of the state of stress in a plate containing
a penny-shaped crack has been conducted by Lowengrub [1 ] based on
Sneddon's original paper. The crack was taken to lie in the central
plane of the plate with its surfaces parallel to those of the plate.
Furthermore, the method of solution required that the thickness of the
plate be large compared to the radius of the crack.

Lowengrub considered two sets of boundary conditions
corresponding to the case of a small uniform normal'displacement of the
surfaces of the plate or of the case of an uniform tension applied to
bothisurfaces. In both cases the surfaces of the plate were specified
as being shear stress free and the surfaces of the crack were specified
as being completely stress free.

The symmetry of each problem was used to reduce it to that of
an elastic layer and the resulting problem ultimately reduced to the
solution of a pair of dual integral equations. These ihtegral equations
were in turn reduced to Fredholm equations of the second kind by the

method of Lebedev and Ufliand [8]. The Fredholm equations were solved



by standard methods and the paper concluded by employing the solution
in the determination of the shape of the crack after deformation.

The determination of ‘the state of stress in the vicinity of
a crack in a semi-infinite solid has been discussed by Kuz'min and
Ufliand [15] and by Srivastava and Singh [2]. The Kuz'min-Ufliand
paper is mathematically less pertinent to the present paper and is, in
the view of Srivastava and Singh, iﬁ error and will not be discussed
here.

In their paper Srivastava and Singh discussed two problems
with respect to the halfspace. In the first case the bounding plane
was assumed to be stress free and in the second it was taken to be
rigidly clamped. Stresses were taken to be prescribed on the surfaces
of the crack for both problems. Another set of boundary conditions
was obtained by considering the medium to be composed of a region
above the plane containing the crack and of a region below it. The
problem was thus made to resemble a layer problem and as is standard
with such problems conditions of continuity were imposed in the region
of the plane unoccupied by the crack.

Hankel transforms were applied to the field equations and all
the quantities involved and ultimately both problems were represented
as sets of simultaneous dual integral eqﬁations. With slight
modification a method due largely to Sneddon [4] was used'to reduce the
dual integral equations to simultaneous Fredholm equations of the
second kind. For the case in which the distance from the crack to the
Jbounding plane is large compared to the radius of the crack solutions

to the Fredholm equations were obtained in power series form. From this



solution were obtained representations of the stress intensity factors
and the energy required to open out the crack and consequently the
critical stress necessary to cause the crack to extend. Finally, for
the case in which the distance from the crack to the bounding plane
differs little from the radius of the crack, the method of Fox and
Goodwin [11] was used to solve the Fredholm equations numerically.

The concern of this thesis is to consider the more general
problem of the plate containing a crack, i.e., the case for which the
plane containing the crack is not the central one. The pfoblem wherein
the normal component of the stress tensor and the normal component of
the displacement vector are both prescribed on the surfaces of the plate
and the surfaces of the crack are prescribed to be stress free is dis-
cussed and the methods used and developed by Srivastava and Singh in
their paper on the halfspace are adapted and used throughout. As in
the Srivastava-Singh paper a set of simultaneous Fredholm integral
equations is obtained and these are solved approximately and used to
give power series representations of the two stress intensity factors
for the problem. The thesis concludes with a diséussion of other possi-
ble boundary conditions and proposes that the one discussed here is the
only one that is mathematically tractible while still being of physical

interest.



§ 2 Solution to the Equilibrium Equations for the Plate

A penny-shaped crack is a disc-shaped discontinuity in a
medium and a convenient coordinate system in which to represent such a
phenomenon is the polar cylindrical coordinate system (r,6,z). With
the centre of the crack taken to be the origin (Figure 1) the crack is
seen to lie in the plane defined by taking z = 0. If, furthermore,
the medium is considered to be contained between the planes z = a
and z =b (a >0 >Db) then the plate containing a penny-shaped crack
is completely defined (Figure B).

In general the deformation vector u has three components
u,v,w representing deformations in the radial or r direction, the
angular or 6 direction, and the normal or z direction respectively.

Each component is a function of position in the medium, i.e.,

u = u(r,0,z),
v = v(r,0,z),
w=w(r,0,z).

Taking body forces to be zero the equations of equilibrium

in terms of the components of the deformation vector are
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where A and u are the Lamé constants, and a subscript following a

comma represents a partial derivative



If the boundaries of the plate and crack are initially
deformed or stressed in a manner independent of the 0 coordinate, i.e.,
the boundary conditions are axially symmetric, then the angular

component v of the deformation vector will vanish, i.e.,

v(r,0,z) = 0,

and furthermore the components u and w will be independent of 0,

i.e.,

u(r,z),

«
1}

=
1}

w(r,z).

The equations of equilibrium simplify in the case of axial symmetry to

become
O 21) (Ut LU, o ) + pu, ., * A+ Wy, = O (2a)
U 'Y 'IT > TT' U 322 U 'T?Z >
1 1
(A+u) (u, . * ;—u,z) + U(W, ot ;—W,r) + (A+21) w,zz = 0 . (2b)

The Hankel transform of order n 1is defined as

H {f()} = fo J, (Er) rf(x) dr.



Jn(E) is the Bessel function of the first kind of order n. As is
standard when dealing with the type of problem under consideration the
Hankel transform of order 1 is applied to equation (2a) and the

Hankel transform of order 0 1is applied to equation (2b) to get

2
: s ., d
-£2 (a2 H {u} + 5;.2..141{11} - (A+u)g.aE»H0{w} =0, (3)
o) L H Tu) - wed W)+ Owan) S i) = 0 (4)
dz 1 0 70 .

dz

Solutions to equations (3) and (4) are of the type

u = Hi{ul = (A(E) + zEC(§)) cosh &z + (B(E) + 2ED(E)) sinh &z (5)

W = Hylw} = (E(E) + 2£G(E)) sinh £z + (F(E) + zEH(E)) cosh Ez.  (6)

Substituting these solutions back into equations (3) and (4) we find

A+3U

E=-(A+ e H)
F=-+ 23U
A+U

C=-G, D= -H. (7)



Thus (5) and (6) become

u = (A-2z&EG) cosh £z + (B-zEH) sinh &z (8)
w = (-A- X;fﬁ H+zEG) sinh £z + (-B- x;iﬁ G+zEH) cosh £z, (9

For the purpose of the problem of a plate with a penny-shaped co-planar

crack, the solution above the crack is written

=
il

(Aa-(z—a)EGa) cosh £(z-a) + (B;-(z-a)EH,) sinh £(z-a) (10)

=|
i

-A, sinh £(z-a) - B, cosh £(z-a)

+ G [~ A—;—\g—g-cosh E(z-a) + (z-a)& sinh £(z-a)]
+ Ha[- éigﬁ-sinh E(z-a) + (z-a)t cosh E(z-a)]. (11)

The solution for the portion of the medium below the crack
is written similarly with the subscript a replaced by b. The
solution for the entire medium is thus expressed in terms of the eight
unknown functions A,, Ay, By, By, Gy, Gy, Hy, Hy.

For the case of axial symmetry the components o

o] and ¢
22’ “rr zr

are the only nonvanishing members of the stress tensor. The expressions

relating displacements to the stresses are



1
OZZ = ()\4’2“) w:z + )\(u,r"' ?U), (123)
Opp = Wlu,+W, 7). (12b)
o is unimportant to the solution of the problem.

Irr

Applying the Hankel transform of order 0 to equation (12a)

and order 1 to (12b) gives

Oyz = Holog,d = (A+2u)w' + Aug
O,p = Hyfogp} = n(ur-gw). (13)
Thus for z > 0,
VBET = 2u&{A, sinh £(z-a) + By cosh E(zﬁa)

- Ga[(z—a)g sinh £(z-a) - cosh £(z-a)]

u
Atu

- Hy[(z-a)E cosh £(z-a) - sinh &(z-a)]} (14)

Atu
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Ezz = - ZuE{Aa cosh £(z-a) + B, sinh £(z-a)

+ G [X+2u sinh £(z-a) - (z—a)ircosh £(z-a)]
a )\+u

+ Ha[l;iﬁ cosh £(z-a) - (z-a)§ sinh £(z-a)]} . (15)

And similarly for z < 0.
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§ 3  The Boundary Conditions

A physically interesting problem, and the one most often
considered for problems of this type, is the one for which the appro-
priate components of the stress tensor are completely prescribed on the
surface of the crack. For the case of axisymmetric boundary conditions

it is sufficient to specify o, and O,r and consequently for

z

r < r., only the stress conditions

1’

0,,(r,01) = p_ (1)
0, (x,0") = q_(r)
ozz(r,o') =p (1)
o, .(r,0) =q_(r) (16)

will be considered. ozz(r,0+), ozr(r,0+) are the stresses on the upper
surface (z > 0) of the crack, and ozz(r,O—), 0,.(r,07) are the
stresses on the lower surface (z < 0) of the crack.

The conditions on the outer surfaces of the plate will, for
the purposes of this paper, be those wherein the normal deformation and

the shear stress is prescribed on each plate surface. That is,



w(r,a) = g,(r)
Ozr(r’a) = ka(r)
W(I’,b) = gb(r)

0, (x,b) = Kk (z)

are assumed to be the known surface conditions.

That (16) and (17) represent a well-defined problem; i.e.,

that the existence and uniqueness of the solution are guaranteed is

well documented and will not be discussed here.

Substituting the above equations into (10), (11), (14) and

(15) we find

A+U — ka
G = - ( +
a "2 (&, ZUE)
B = TR kg A+3u

a = yeou %a " 20E Re2u

where

(¢}
o
I

= Hb{ga}, E; = Hi{ka} .

Bb and Gb are determined similarly. Thus B,, By, Ga’ Gb

determined in terms of the known functions.

12

(17)

(18)
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8 4 Development of the Integral Equations

It has been assumed, up to this point, that the solution to
the problem is represented differently above the plane containing the
crack than below it. However, outside the region of the crack the
plane z = 0 1is a quite artificial boundary and it is therefore
necessary that all the quantities pertinent to the state of stress in
the plate be required to be continuous across this boundary. For

example, in the case of the radial deformation the relationship

u(r,0*) = u(r,0”), r > ] (19)

must hold. It is useful at this point to introduce a new function M(£)

such that

M

Aa cosh &a - Ab cosh &b - ag Ha sinh &€a + b§ Hy sinh & + U,

c
n

-B, sinh &a + By, sinh &b + af Ga cosh &a - bg Gb cosh &b . (20)

Then (19) can be expressed as

IO EM(E) J;(Er) dE =0, 1 > 1. (21)

For the normal deformation the requirement of continuity is

expressed .as
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w(r,0*) = w(r,07), r> Ty. (22)
Here a new function N(E) 1is introduced such that

A+3u sinh £a

N = Aa sinh £a - A e

sinh £b + H,(

b

- af cosh £a) - Hb(A;fE sinh £b - bE cosh Eb) + W.

W= ‘Ba cosh £a + Bb cosh &b + Ga(- A;fu cosh £a
inl G (- 23H cosh Eb + bE sinh Eb
+ a£ sinh &a) - b(- " cos + b& sinh &b). (23)
Thus (22) becomes
J EN() J,(Er) d€ = 0, T > ry. (24)
0 0 1

Note that U and W are defined in terms of the known functions.
Relationships similar to (19) and (22) exist for the stresses
o, and S also in the region r > - However, due to the nature

of the boundary conditions on the surface of the crack relationships

can be obtained for the entire region T > 0. Define



p, () -p (r), r<mr

d ()

q,(x) - q(r), T <1

d2 (r)

From (16) the following can be seen to hold

6,,(x,0%) =0, (r,00) +d (@), >0,
g (r,0 =¢ (r,07) +d_(r), T> 0.
zr zr 2
Further let
1 — +
= - = 0
z, E G ,(£,07)
1 — -
Z_=-=—0 ,0
_ o L, (E:07)
R = —7 0"
+ - zug Ozr(gs )
1 _ )
R_ - zug Ozr(gso )

15

(25)

(26)
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These quantities can alternatively be written as

- A+2U .
Z+ = Aa cosh &a + Ha( VT cosh Ea - ag‘51nh ta) + P+ . .a
Z = cosh &b + H (A+2u cosh £b - b& sinh &b) + P b
_ Ab G wey e e
- : - | :
R+ = —Aa sinh £a - Ha(-ag cosh £a + pwET sinh &a)+ Q+ . . .C
N . U .
R = —Ab sinh &b - Hb(—bg cosh &b + X:ﬁ-51nh Eb)+ Q_ . d (27)

where

a . A+2u .
P+ = -Ba sinh £a + Ga(— ¥ sinh £a + £a cosh £a) . . .a
P = -B, sinh &b + G (- 222H sinh &b + £b cosh £b) b
_ b Gb e .o
- - : -
Q, = Ba cosh £a Ga(ag sinh af >\ﬂl,cosh at) .C
- - i S
Q = Bb cosh &b Gb(bg sinh bg vEn cosh bg) .. .d (28)

Note that P+, P, Q+, Q are expressed in terms of known functions.

Then
2 [0 2,0 By = p, (), T<r .. a
2 720 £ ENE =p (1, T<r b
2 [TR(®) £ (BN = a0, T L.
u TR (D) £ E0dE = (@, T<T . ..d (29
0 - 1 - 1
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We see that

Z -7 = -d (30)

(31)

where

o
t

1 (oo}
L= iﬁz'fo d, (r) rJ,(Er) dr

) iﬁé’fo d,(r) 13 (Er) dr (32)

Now substitute equation (27a)into equation (20) to eliminate

A, A to get

A+p

(M—Ml) 20 = - Ha cosh ag + Hb cosh bg
M, = P ~-d, " 3
= U-P +P_ ~d ", (33)

and substitute equation (27c)into equation (23) to get

Aty . .
(N-Nl) YT Ha sinh af - Hb sinh b§
- _ _ *

N1 =Q, - Q d2 + W 34)

Solving for Ha and Hb yields



_ At 1
a (A+21) sinh &(a-b)

[(N—Nl) cosh &b + (M-Ml) sinh £b]

- A+ 1
b (A+2y) sinh £(a-b)

o)
|

[(N~N1) cosh £a + (M—Ml) sinh £a]

Substitute equations (35), (36) into equation (20) to get

MCL + (A+2u§gzﬁigg(a_b) = (a-b) sinh &a sinh &b)

(Ar) g )
*+.N (A+2p)sinh £(a-b) {-b sinh &b cosh £a

+ a sinh ga cosh £b) - M, (A+2U§2;ﬁ%££(a_b) - (a-b)

sinh £a sinh &b

A+ &

- N (A+2u)sinh E(a-b)

= Aa cosh ga - Ab cosh &b + U ,

Substitute equations (35), (36) into equation (23) to get

18

(35)

(36)

(-b sinh &b cosh £a + a sinh &a cosh &b)

(37)
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H (A+) € .
NC- 3757 * Do Ziysinh easy - (a-b)cosh Eb cosh £a)

(A+) €
* M 32y sinh £(a-b)

(-b sinh £a cosh &b + a sinh &b cosh &a)

A+3u (A+u) cosh &b cosh &a

+ N (- S (o & simh Eraby . (8PD)

B Ml (X+2u)£§;ﬁ)§(a-b) (-b sinh &a cosh &b + a sinh &b cosh &a)

= A sinh ga - A
a

L sinh Eb + W . (38)

Solving for Aa yields

A = (A+u) & [(M-M

= 5 )(a sinh &b cosh g(a-b) - b sinh &a)
& (A+2wsinh” £(a-b)

1

+ (N-Nl)(a cosh &b cosh £(a-b) - b cosh £&a)]

. M A+3u
+ [- M sinh &b - XIEi‘N cosh &b + X:jﬁ-Nl cosh &b
+ U sinh &b - W cosh &b]/sinh &(a-b) . (39)

Similarly the result for Ab is
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A - (x+u;£ [(M-M})(a sinh gb - b sinh £a cosh g(a-b))
(A+2u)sinh” &(a-b)

+ (N—Nl)(a cosh &b - b cosh &a cosh g(a-b))]

u A+3u

+ [- M sinh &a - X:Eﬁ'N cosh £a + 2 N1 cosh £a
+ U sinh £a - W cosh Ea]/sinh £(a-b) . (40)

Henceforth only results valid for z > 0 need be given. Substitution

of equations (35) and (39) into equation (273) results in

Z, = (0 [(M-M,) (a sinh Eb cosh Eb
(A+2u)sinh™ £(a-b)

t

b sinh &a cosh &a) + (N-Nl)(a cosh2 b - b cosh2 £a)]

cosh £a sinh Eb
1 sinh £(a-b)

. cosh &a cosh &b
(A+2W)sinh £(a-b)

[(A+)N + N, ]

.\ U sinh &b - W cosh &b
sinh &(a-b)

cosh &a + P+ . (41)

Equations (35) and (39) into equation (27c) gives
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R = (M) € - [(M-M)) (-2 sinh? Eb + b sinh? £a)

(A+2u)sinh2 E(a-b)

+ (N—Nl)(—a sinh &b cosh &b + b sinh £a cosh £a)]

sinh £a sinh &b sinh £a cosh &b
Y DaZwsinh E(a-py LM+ WM ] - N) = T

i sinh &b - W cosh &b
sinh &£(a-b)

sinh £a + Q, (42)

Let

a(g) = -b cosh &a sinh &a + a cosh &b sinh &b

BI(E) = -b cosh’ Ea + a cosh? Eb
., 2 . 2
82(5) = -b sinh™ £a + a sinh” &b
v -2u) e’
Fl(8) = H{F (D)} = : [-M,a(E) - N8, (8)]
(A+2p)sinh™ £(a-b)
N u  cosh £a cosh &b N cosh £a sinh &b M
A+2U sinh £(a-b) 1 sinh &(a-b) 1
U sinh &b - W cosh &b
+ P+ + SInh £(asb) cosh &a .
¥ 2u(A+u)£2
F (E) = H {F, (1)} = [-M8,(8) - Nja(8)]

(A+2u)sinh2 &(a-b)

y  sinh £a sinh £b cosh &b sinh £a

*Yrop  sinh E(asb) 1 T simh E(ab) M
U sinh &b - W cosh &b .
+Q, - SToh E(ab) sinh Ea . (43)
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Combining equations (26), (41), (42) and (43) , we obtain

o 2
- 0 : [M(E)Ea(E) + N(E) (£8, (&)

(A+21) 70 ¢inn? £ (a-b)

+ cosh £a cosh &b sinh £(a-b))] JO(Er) d&

=-F@ +p (), T ‘ o
2u(0+p) 1 ? [M(&) (&8, (&)
(A+21) 7 sinh2 ¢(a-b) .

- sinh &b sinh &a sinh £(a-b)) + N(&) &a(&)] Jl(gr) d&

= - Fz(r) + q+(r), r<r; . (45)

Thus equations (21), (24), (44) and (45) represent a pair of simultaneous
dual integral equations. It should be noted at this point that were the
expressions for the functions Z_ and R_ derived expressions identical

to (41) and (42) would have resulted.
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§ 5 Significance of M(£) and N(£)

The determination of the solution, originally expressed in
terms of eight unknown functions, has now bee% reduced to the problem
of finding two unknown functions M(§) and N(é). If M and N can
be resolved all quantities pertaining to the solution above the crack,
i.e., z >0, can be determined from them and the known functions M,
Ny, By and G, defined in (33),(34),(18). The solution below the
crack, i.e., z < 0, 1is found in an identical fashion and will not be

given. For example, defining the component of A, that can be expressed

in terms of the functions My and Ny as

6 = - A+U g
A*2U cnh? E(a-b)

[Ml(-b sinh £a + a sinh £b cosh £(a-b))

+ Nl(-b cosh £a + a cosh £b cosh £(a-b))]

A+3p cosh &b U sinh Eb ~ W cosh &b
* Ny + -
A+2U sinh £(a-b) sinh E(a-b) “6)

and the component of H, that can be defined in terms of M, and N, as

_ A+U 1
b= - A+2U sinh £(a-b)

[N1 cosh &b + M; sinh £b] (47)

and furthermore, defining functions
Ll(g,z) = -b sinh &a cosh E(z-a) + a sinh &b cosh £(z-a) cosh &(a-b)

- (z-a) sinh &b sinh £(z-a) sinh £(a-b) (48)



L,(E,2)

Ly(£,2)

L,(&,2)

Lg(E,2)

Lo (£,2)

H

-b

cosh &a cosh £(z-a) + a cosh &b cosh §(z-a)
(-(z-a) sinh £(z-a) cosh &b

é-cosh Eb cosh £(z-a)) sinh £(a-b) .

sinh éa sinh g§(z-a) + a sinh &b cosh &(a-b)
((z-a) sinh &b cosh.g(z—a)

ésinh Eb sinh £(z-a)) sinh E(a-b) .

cosh £a sinh £(z-a) + a cosh Eb cosh £(a-b)

(z-a) cosh &b cosh £(z-a) sinh &(a-b) .

sinh £a cosh g(z-a) + a sinh &b cosh £(z-a)

((z-a) sinh &b sinh £(z-a)

A;fﬁ é—sinh Eb cosh £(z-a)) sinh £(a-b) .
cosh £a cosh £(z-a) + a cosh £b cosh £(z-a)

((z-a) sinh £(z-a) cosh &b

Xgaécosh £b cosh £(z-2)) sinh E(a-b) .

24

cosh g(a-b)

(49)

sinh £(z-a)

(50)

sinh £(z-a)

(51)

cosh E£(a-b)

(52)

cosh £(a-b)

(53)
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L7(£,z) = b sinh £a sinh &(z-a) - a sinh &b sinh &(z-a) cosh &(a-b)
+ ((z-a) sinh &b cosh &(z-a)
- XEU %—sinh ¢b sinh &£(z-a)) sinh &(a-b) . (54)
L8(€,Z) = b cosh £a sinh &£(z-a) - a cosh £Eb sinh £(z-a) cosh &(a-b)

+ ((z-a) cosh g(z-a) cosh &b

- A—}%—E—écosh b sinh £(z-a)) sinh &(a-b) ., (55)

The expression representing the normal stress is

2

A+l &
ol [ML

g (r,z) = - 2uH
o M2 S inn® £(a-b)

1 + NL2]

+ £[¢ cosh &(z-a) + Ba sinh £(z-a)

+ Ga(é%%%-sinh £(z-a) - (z-a)& cosh £(z-a))

A+2u

yvT cosh &(z-a) - (z-a)& sinh £(z-a))]} (56)

+ Y(

and the expression for the shear component is

o (r,2) = 2u H {IH g” [ML. + NL,]
» = |
Zr 1°A+2y sinh2 £(a-b) 3 4

+ E£[¢ sinh E(z-a) + Ba cosh £(z-a)

- Ga((z—a)g sinh g(z-a) - X%E-cosh £(z~a))

- v((z-a)E cosh E(z-a) - X%E-sinh £(z-a))]}. (57)
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The expression for the normal component of the displacement vector is

w(r,z) = H { ! & [ML

+ NL_]
0°A+2U Sinn® g(a-b) 8

7

¢ sinh &(z-a) - Ba cosh &(z-a)

+ Ga(— x;fﬂ cosh &(z-a) + (z-a)& sinh £(z-a))
e A;ft sinh £(z-a) + (z-a)§ cosh &(z-a))} (58)

and that for the radial component is

- 1 &
u(r,z) = Hl{x+2u sinhz o [ML

gt NL6]

+ ¢ cosh &(z-a) + Ba sinh g(z-a)

- (z-a)§ ysinh £(z-a) - (z-a)£ G cosh g(z-a)} . (59)

For the case of a constant pressure opening the crack, an expression
for the energy, T, required to open out the crack can be determined

from

1
T=-27 [0 ro, (r,0) w(r,0) dr , (60)

]

where, without loss of generality Ty has been set to 1. Since

‘Ozz(r,O) = -pg, T <1 we have



]

21TpO

ZTrpO

21rpO

- A+2U

+ G
a

+ P(- ey sinh £(z-a) + (z-a)g cosh g(z-a))} J,(£) d& . (61)

1 o
[,r ], W0 Jy(e) dedr

oo

[, W0 3,08 &

IO {[ML7+NL8]/sinh2 tEh - ¢ sinh §(z-a) - B, cosh £(z-a)

(- A+3U
A+U

cosh £(z-a) + (z-a)& sinh &(z-a))

A+3U

27
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§ 6 A Method of Solution of the Integral Equations

Equations (44) and (45), while successfully representing the
problem as a set of integral equations, do not appear to lend them-
selves to easy solution. Most equations of this type are reduced by
some variation of Sneddon's method for equations with a weight function
to equations of Fredholm type of the second kind. The particular
variation which will be employed here is the one developed by Srivastava
and Singh.

However, in order to proceed it will be helpful to introduce
three new parameters: h, p, q. The plate thickness will be represented
by h and the position of the plane containing the crack will be

indicated by p and q as follows:

=
i

(a-b)

b
Q=-3y, a>0 (62)
and of course it automatically holds that
p+tq=1. (63)

It is now possible to indicate the position of the crack plane within

the plate without reference to the coordinate systen.
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The next step in accomplishing the reduction of equations
(44) and (45) to Fredholm equations is the modification of the form of
the coefficient of N in equation (44) and M 1in equation (45).

First note that

1 ® .
Y, Lo~ 2KhE
sinh“ hg k=1 (64)

is a uniformly convergent series if & > 0. Next make the substitutions

(62), (63) and expand the coefficient of N in (44) as

BI(E) + cosh &hp cosh &hq EEIQLjZL

= gh cosh? ph& + ph cosh? qh&

E;Z (eZhE _ o-2phE _ -2ahE  2qhE  2ER 28Ry (65)

+

Multiply through by Ez/sinh2 hE&:
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sinh £h

Ez/sinh2 Eh(Bl(E) + cosh &hp cosh &hq F )

-2hkE

42 T ke

[qhE %{2 + ¢2PhE | -2pht,
k=1

+ phg %{2 . e72ahE ethE) + %{eZPhE _ e72phé

_ t2ahE |, 2ahE | 2hE  -2he,,

= 45 I k[qhg %{Ze-Zkhg + o-2hE(k-p)
k=1

_ o-2hE(k+p) -2khE | _-2hE(k+q)

) + phE 7(2e

. o 2hE(k-Q)) %{e—ZEh(k—p) _ o~2En(k+p)

_ om2Eh(k+q) | -2Bh(k-q) _ -2Bh(k-1) e 2En (k1)

Consider the last two terms in the above expression:

Lo-2hE(k-1)
1 K

5 ke-2h£(k+1)

L
= 1

1
n o~ 8

e-2he(k-1) L 2hE(kel)
1 k=1

Let k=n+ 1 in the first sum, k = n - 1 in the second, so that the

above 1is



Thus

£2

where

kO (&) =

Further, note

/sinh® £n(B,(E) + cosh phE cosh ghE

1
= 5 E(1+k, (8))

[o.e] -’1’ ;
L [4khE o DKE

k=1

+ 2qkhe e 2PELP) L ook e

+ 2pkhg o 2hE(k+a)

(

+ 2qkhf e

~2hE (k-p)

—2h€(k§q)

-2hE(k-p) _ _-2hE(k+p)

L o-hE(k+q) | -2hE(k-Q)y Ze-zkhg]

the relationship (uniformly convergent for & >

e—ZhE

1 - e'Zhg k

z

1

-2khg

sinh h§

31

(67)

(68 )
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Consequently, ko(g) can also be expressed as

kg€) = (2887€) + %—sinh 2phE + %-sinh thg)/sinh2 Eh

.Ze—zgh
PR
1- e—2€h . (66)
Similarly,
inh hE
Ez/sinh2 Eh(B,(E) + sinh ph& sinh ght 51n£ Y = %.g(1+kl(g)) 70)
where
ky(B) = % [-4kng e 2PEK L oqng o 2RE-P)
k=1
+ 2qkh& o~2hE(k+p) | 2pkhE o-2hE(k-q)
+ zpkhg e—2h£(k+Q) _ k(e-ZhE(k—p) _ e—2h€(k+p)
v o E(ea) o ZhElra)y,  2khE (71)

Or

2e'zgh

1
k1(£) = (28B(§) - 5 sinh 2phE - 3 sinh 2qhE)/sinh® hE + AL
' 1 -e¢

(72)
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Also

(o0}

_g_(g_)___ = T hk[_p(e—ZhE (k—q) _ e_ZhE(k.’.q))
sinh2 hEg k=1

-2Eh (k+p) e-2€h(k-P)

- q(e N (73)

Thus the set of simultaneous dual integral equations (21), |

(24), (44) and (45) may be written |

I

0, r> LE

[, EM@©) I (En) de

n
o
-

T>r,

[, EN(E) I (Er) dE

2“___(2’““) [ E(EME) (1+k (B)) + 2E°N(E) a(g) ) J)(Er) dE
A+2u 0 sinh“ hg

= -2F,(r) + 2q, ()

2p(A+u) f o(£)
g(2g M(E) + EN(E) (1+k4(E))) Jy(Er) dE
A+2u 51nh2 hg 0 0

- 2F(x) - 2p,(x), T<T, . (74)

It is convenient now to point out that so long as the ratio of the plate
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thickness, h, to the crack radius, r;, 1is known it is unnecessary

to leave r unspecified. That is, no loss of generality occurs if

the problem is normalized by letting r, = 1. Now the following

substitutions for M(E) and N(&) can be made:

1
i) = /2 [ m() 3,00 at
1/2 | 1
i, é{%g [-m(1) sin £ + fo % 5%(t1/2m(t)) sin £tdt] ,  (75)
1
EN(E) = [ n(t) sin &tdt
0
= - n—(—1—)—cos £+ 1/& fl —in(t) cos &£tdt
£ o dt | ’
n(0) = 0 . (76)

Observe that (Bateman [10])

0 0<r<t

[=s]

fo sin t£ J, (Er) dE = |

-1/2
t/r(rz—tz) t<r <o
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0 0<r«<t

(e

IO cos &t JO(Er) df = ¢

L(rz-tz)'l/z ter<e. (77)

the last two equations of (74) become (r<1)

d 1/2
172 r =S (M %ne) o 1
2 dt 3/2
(r-t)

1
+ 26(f n(t) sin gtdt)-ﬁigL—-}Jl(gr) dE

sinh™ 6§
_ _A+2u
= u(}\+u) (q+(r)—Fa(r)) (78)
d
T n(t) ®
__.__.——7——dt Ny 3/2(f n(t) Jy 060 do—25—
0 (r _tz) 0 sinh” '6¢

1 .
+ £(f n(t) sin gtdt)ko(g)} Jo(Er) dg
0

A2y
el

(F, (x)-P (1)) (79)

Now employ Abel's integral equation, i.e., if

fr £(t) dt

1/2 = g(r)
(rz-tz)
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then £(t) = %-a%-fo —Efifi—%§7 , (80
(t7-r)
and two results obtainable from Bateman [10]
2 1/2 t fle(Er) dr 3/2 -1/2
('.E) "‘—‘——]._/_2_': t g Js/z(tg) >
0 2 2
(t7-r7)
t ErJO(Er) dr
— 173 " sin t& , (81)
2 2
(t7-r7)

to get the set of simultaneous Fredholm equations of the second kind:

1 <]
m(t) + t [ nw fo &5 /o (B0 J5,,(E8) Ky (8) dEdu

1 [e]
1/2 : a(g)
+ 2t n(u) £ J. . (Et) sin Eu —=2—— d&du = E_(t)
| fo fo 3/2 sinh® he 2 (82)

1 o4}
4 1/2 i a(g)
n(t) + — m(u) £ J (Eu) sin £t ——2—— d&du
n IO J 3/2 sinh® he

[e e}

1
+ %. fo n(u) fo sin £t sin £u k (£) dEdu = E; (1), (83)

where
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(F,(x)-P, (1))

_ 2 As2u gt
E)(0) =3 A+ 2 2 1/2 dr
' (t -r)
. (q,(r)-F, (r))
E(t) = 2 A2t 2 " ar .
2 T u(A+w) "o 5 2 1/2
(t -r) (84)

The analysis which follows is based on that used in the
Lowengrub and Srivastava-Singh papers and demands that the plate thick-
ness be large compared to the radius of the crack. In the case of both
the plate and the half space when the crack is in the vicinity of one
of the surfaces the method fails due largely to the fact that the
definition of the problem becomes ambiguous. The method is straight-
forward, however, and for the purposes of this thesis instructive, and
will be employed here with the restriction that the crack plane remain
close to the central plane. This restriction is consistent with the
restriction imposed in the Srivastava-Singh paper inasmuch as, with
respect to that paper, it is a result of the restriction that the dis-
tance from tlie crack to the single bounding plane be large.

Expand all known quantities in series form to get

3/2
/2 gt L2ty

2
EJS/Z(gt) Js/z(gu) = 9_Tr—(tu) 10
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2 1/2 1 8
gl/2 J5,,(E0) sin £t = () tu3/2(§-g3- ET'(3u2+5t2) £>

16 4 2 2 4 7
+ §T'(3u +14u 't +7t ) & -...) ,

' 1 2
sin £t sin £u = ut(E°- ET{u2+t2) 4 37(3u4+10u2t2+3t4) AT

(85)

Thus, integrating term by term,

[ 850080 355080 1) d = () 2o
+ @it?) kh T o))
[ e 5 (ew sin g =28 ar - ¢,¥2(q n
0 3/2 sinh? he 4

- a6h"6(3u2+5t2) + a8(3u4+l4u2t2+7t4) h-8 + O(h—g)) s

(o]

. . ' _ -3 2.2 -5
jo sin £t sin Eu k) (E) d& = ut(k 67" + ks (u™t) h

. k07(3u4+10u2t2+3t4) h’ o+ ot . (86)
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Where ko, k1 and «(g) are defined in equations (68), (71), and (73),

and
1 5 .8 2k 2k 2k 2k
k = — X (-—-—- - + + -
03 3 3 3 3 3 3
2" k=1 k (k-p) (k-q) (k+q) (k+p)
31kq 31kq 31kp 31kp
gt 7" 7t D
(k-p) (k+p) (k+q) (k-q)
kos'%‘lv“"sl;"z(g.‘lst‘!""“(ks* k5"kps
2° k=1 & (k-p)°  (k+p)”  (k+q)
- k S)—5!( k3‘6+ kq6+ kp6+ kp6)),
(k-q) . (k-p) (k+p) (k+q) (k-q)
ko7 = 6‘%"’; L (12;6! -6 (- — 7 * : 7
2" k=1 k (k-p) (k+p)
.k _k7)+7!(kq+kq+§R+kE

)
(k+q) | (k-q) k-p® ke’ ® g?
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1/2 o
2 1 k k k
a, = (3 —= I [q( - ) + p( - )],
4 T 2% k=1 (k+p)5 (k-p)sj (k-q)5 (k+q)5}
1/2 %
o= B G L o - X ¢ pEe - K
n 27 k=1 (k+p) (k-p) (k-q) (k+q) ’
1/2 w :
2 1 k k k
0 = —5 I Ilal - ) + p( - )],
8 n 2° k=1 (k+p)9 (k—p)gj (k-q)9 (k+q)9}
4 1 2 22041 k k
K,p = s —= I ( + 41 +
157975 2 5 p)® (k)
- 5 S v 51 kg‘é o gt = 6 = &)
(k+q) (k+p) (k+p) (k-p) (k+q) (k-q)
4 1 - 16%6! k k
ki, = z5——= L ( + 6! (— -
17 7 930m 37 21 7 ) (kep)]
k kq kq kp kp
- )+ 71 ( + + ))
(kvq)”  (k-q)’ k-p % ep® k- e®
(87)
The result is
1
m(t) + /2 jo m(u) us/z(klsh’5 + ko7 v o™ du
1
+ 2t/ / un(u)(a4h_4 - aéh_6(3t2+5uz)
0
+ a8h°8(3t4 + 14u2t2 + 7u4) + O(h_g)) du = Ez(t) (88)



41

]

4
n(t) + 1t f u3/2 m(u) (o h4 a h'6(3u2+5t2)
i 0 4 6

+ agh'8(3u4 « 140%t? + 7t s 0h7Y)) du

1
2 -3 -5 2 2
ot IO un(u)(kosh + kOSh (u+t9)

2.2

+ k07h‘7(3u4 + 10u"t” + 3t4) + O(h‘g)) du = El(t) . (89)

Graphs I through VI illustrate the behaviour of k03, k05’

k with respect to the position of the plane containing

07> %4> %> %8
the crack to the plate surfaces. It can be seen that these quantities
are meaningful only if the crack plane is restricted to lie not too

far from the centre of the plate.
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§ 7 The Case of Constant Normal Pressure on the Surfaces of the Crack

If the kernels of equations (88 ) and (89 ) are truncated at
terms of order h’8. they willlrepresent the approximation of equations
(88 ) and (89 ) by equations with a so-called degenerate kernel (c.f.
Tricomi [9]). If,‘further, the assumption is made that eaéh of m(t)

and n(t) can be expressed as a Taylor series in h then equations
(88 ) and (89 ) can be solved easily simply by substituting the series
representations and comparing coefficients.

Now consider the circumstance wherein the points on the
surfaces of the plate are fiked so that they cannot move in a direction
perpendicular to the surfaces, i.e., the direction of the =z-axis, but
are allowed freedom to move radially, i.e., along an r-axis. Angular
displacement will not occur because the initial disturbance of the plate
will be symmetric (8 2). Thus it is required that thelnormal component

of the displacement vector be zero on the surfaces, or

w(r,a) = w(r,b) = 0 , | (90)

and that there is no restricting shear stress to inhibit movement in

the radial direction, or

0,,(r,a) = 0, (x,b) =0 . ( 91)

Further, suppose that some substance of the nature of a fiuid or a gas
is present between the surfaces of the crack. Such a phenomenon would

incur almost no shearing stresses on the crack surfaces and so, referring
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to equation (16 ), we set

q,(r) =q_(r) = 0. . (92)

Since the deformations are constrained to be small the pressure, Py
exerted by the gas acts approximately normally to the crack surfaces

and thus, using equations (16), we set

p (r) =p_(r) = Py - ( 93)

The known functions M , N, G, B, P, Q defined in
1 1 a a + +

equations (33), (34), (18), (28) are easily shown to

be identically zero in this case and consequently, from equation ( 43)

Fl(r) = Fz(r) =0 .
Thus from equation (84)
2 A+2u
B0 = 5 omn Po
Ep(t) = 0. (94)

Now make the representation

it

i



Substituting

no(t) =

mo(t) =

nl(t) =

ns(t) = -

m4(t) = -

m6(t) =

n, (0 =

ns(t) = -

n6(t) =

44

1 -2

m(t) mo(t) + ml(t) h™™ o+ mz(t) h ™+ .

-1 -2

n(t) £, (8) W7 .. (95)

no(t) + nl(t) h

the above into equations (88) and (89) yields

2 A+2p t
T o P ?

m (t) = my(t) = my(t) = 0,
n(t) =0,
4 X+2u
) Nl Po Koz t s
4 A2u 5/2
3T W0 Yo %4 t ’
4 a2u 5/2,.2
Oy Po % €
0
4 )\+2]_1 t2
2 n0) Pg kog t(/5+ =)
8 A2y 2

o3 HOTW Py Koz T
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m,(t) = 982 ﬁ%§%%7' Po Koz % 2
n7(t) = - 742 ﬂ%§%ﬁj-p0 07 t(3+l4t2+7t ),
me(t) = - si ﬁ%%%ﬁj’ ag t5/2(5t4+l4t2+5) ,
g0 = 2 [ s (gt )] g
The stress intensity factors, as defined ig Sneddon [5],‘are
K, = lim /7(?713 { (r,O), r > 1} (97)
r+l
k., = lim v2(r-1) {0;;(r,0), r > 1} . (98)
r>1
where KZZ and KrZ are the factors associated with the normal stress

and the shear stress respectively at the tip of the crack.

We have
K = - 255;*“) lim, VZ(z-1) j 3 [ ME)
r+l 51nh th
+ 3 ENCE) (1+k(8)) | Iy (ED) dE ()

It is not difficult to show that the term
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Tl ME L1
IO S ekl SUCE ORI

is bounded near r = 1., Employing equation (76) to express N(&) in

terms of n(t) yields
[ eN(®) J,(Er) & =
0
fo £(-n(1) cos& + j n(t) cos £tdt) J,(Er) dE . (100)

The last term can also be shown to be bounded near r = 1 and so

K =- 3;_%;11) iix{l+ v2(r-1) [f: - 5n(1) cosg J (gr) d& + 0(1)—JI
- “(““) n(1) (101)

Kp2 = { - 3_2' he - Té‘?r‘ kosh—5 * ;ﬂ‘g koszh_6 ) %’% 1‘07}‘_7
" (Tg‘ﬁ a42 . 4;13 0550s) B 8 o™y, | (102)

¥

Similarly,

u
]
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Kz = P A+21 m(1)
172
_ 2 4 -4 -6
@ P {" 3 %0t T %D
8 -7 96 -8 -9 1
+ ;;E-k03a4h §E'a8h + 0(h 7) J. (103)

For the problem of an infinite medium the stress intensity

factor is (Sneddon [6])

2
K. = %P, - (104)

Due to the finite distance of the crack from the normally
clamped boundaries there is a decrease in stress intensity at the tip
of the crack compared to the case in which the medium is unbounded.
The percent decrease with respect to the infinite medium of the normal

stress intensity factor can be expressed as

K =22 %22 100 . (105)

The value of K when the crack is located a distance of .4h

from the upper plate surface; i.e., a = .4h,

3 ) 6

K = 403.590h "~ - 1852.45h ° - 1628.85h = + 9138.31h‘7

+ 13993.6h7% + oh™) . (106)
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The value of the sheer stress intensity at this point is

Krz = -.572140}1'4 + 10.7097}1'6 + 2.30910h"

+ 0(h™)

7 8

- 72.4282h"

(107)
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§ 8 The Case of an Uniform Surface Displacement

Suppose that the problem of Section 7 is varied so that the
upper surface of the plate is no longer fixed but rather is given an
uniform displacement in the positive direction along the z-axis. That
is, the normal component of the displacement vector is non-zero on the

surface z = a, so that from equation (17),

w(r,a) = g, = € . (108 )

Let, however, the remaining conditions of Section 7 be unchanged. That

is,

w(r,b) = gb(r) =0
ozr(r,a) = ka(r) =90
=0 .

o,.(r,b) =k (r) =

Modify the problem further so that the crack surfaces are no longer

stressed. That is

(109 )



o (x,07) =p,(®) =0
0,,(r,00) =p (r) =0
0, (r,07) = q () = 0
o%r(r,o‘) =q (r) =0.

It is assumed here that € 1is sufficiently small that the
resultant warping, due to the presence of the crack, of the plane
containing the crack, will be several orders of magnitude smaller than

€. In other words the crack-plane will remain approximately plane.

From equation (18) we have

o 8(E)
Ga = - 21 € 3 s
B = 3up € S(B)/E

and from equations (20), (23), (28), (33), (34

50

(110)

Il
)

I
)
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Géi) (u sinh &Ea + (A+u)a& cosh £a) ,

8E) ((A+2u) cosh &a - (A+p)af sinh &a)

€ Séi) )\Sﬁ (sinh £a + af cosh £a) ,
P =0,
dl =0,
Aru inh £a
Q, = ¢ 8(8) T & St ga ,

51

>

I
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_ . 8(8)
N, :

cosh &a , (111)

where &(£) 1is Dirac's delta function.

Thus

) ” AU E S(E)
F,(x) = 2ue fo £ 8(E) {MU ol [sinh Ea a(E) - cosh £a B ()]

H . A+l A+2U
" Y sinh &a - X:Eﬁ{— v

sinh £a + Ea cosh £a)

+ X%%%{sinh &b sinh &a cosh &a - cosh2 £a cosh &b)/sinh &h
+ af cosh & }JO(Er) d& . (112)

1t is not difficult to show that the above reduces to

_ 4pp) e
=5 n . | (113)

Similarly we have

F.(r) =0 . (114)

Equations (44) and (45) become

{h
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o 2
) —27— [M(E)E w(E) + N(E)(E 8,(E) + cosh £a cosh &b sinh £h]
sinh™ &h

Jo(gr) d§ = z%—, r<1, (115)

o 2
5 [M(E) (£ B,(8) - sinh Eb sinh ga sinh Eh) + N(E)E a(8)]
0 sinh™ £&h '

J, (er) d& =0, r<l, (116)

The stress intensity factors for this problem can be obtained

.

from the problem of a constant pressure exerted on the crack surfaces by

taking

o Al e
p,(r) = - A+2y  h °

(1]

F S
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§ 9  Some Other Boundary Conditions

The following results can be obtained by following the
procedure of Section 4. The first set of equations, (118) and (119),
obtains if the outer surfaces of the plate arc specified to be normal
stress free, i.e., there is no tension applied along‘the z-axis, and
if the points of the surface are fixed with respect to the z-axis,
i.e., the radial component of the displacement vector is zero. The o
second set of equations, (121) and (122), is the result of applying the
above conditions to one surface of the plate and the conditions of
Section 3 to the other. In both cases the surfaces of the crack are
assumed to have a constant pressure, Py applied to them.

Thus if the surface conditions are

u(r,a) u(r,b) = 0

o,,(r,a) =0, (r,b) =0 . (117)

Then equations (44) and (45) take the form

2000 2 £

A+2u 0 ginp? gp

[M'(8) a(8) + N'(8) (& B,(8) ’

- sinh &a sinh &b sinh &h)] JO(Er) dg

po , r<1l1. ‘ {(118)
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2

2p (A+y) fm 3

M' (&) (& Bl(g) + cosh &b cosh &a sinh &h)
M2U 0 sinh? gh

+ N'(E)E a(E)] 3, (Er) dE
=0, r<1l. (119)

And if the surface conditions are such that

- w(r,a) =0
u(r,b) =0
I
Ozr(r,a) =0 (
Ozz(r,a) =0 . (120)

then equations (44) and (45) become

2u(A+y) (@ g2

A+21

Mt + N" g B g
o cosh? &h M (E)E a(E) (&) ( l( )

+ sinh &b cosh £a cosh Eh)] J,(Er) &

= Py > r<l. (121)
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2
2u(d+) [® g
A+2U

5 [M"(E) (& Bz(g) - cosh &b sinh £a cosh £h)
g cosh® Eh

+ N(E)E a(8)] J, (Er) dE
=0, r<li. (122)

Although the above surface conditions seem unlikely to occur
naturally a method of solution similar to that employed in Section 6 can
be used to'reduce the problems described by conditions (117) and (120)
to Fredholm equations. Only the expressions on the right of the equa-
tions (118), (119) and (121), (122) change if the surface conditions are
NON-Z€ero.

The expressions analogous to (44) and (45) for the boundary
conditions representing the plate that is clamped on both sides and the
plate that is stress free both sides are quite complicated. Consider

the surface conditions for the clamped plate:

u(r,a) = 0

w(r,a) = 0

u(r,b) = 0

w(r,b) = 0, (123)



with constant pressure prescribed on the crack surface.

consider the surface conditions for the stress free plate:

o r,a
. (T,a)

CZZ(r,a) -

czr(r,b)

czz(r,b)

with constant pressure prescribed on

Define the matrices

(o o+
S3 (at) -53 (b€)
£a‘sinh ta -Eb sinh &b
A =
5, (£3) -5," (£b)
¢, (@) C," (bE)

1}
o

1
o

1}
o

1
o
-

the crack surface.

-g£a sinh &a

5, (ak)

C, (ag)

-5, (ag)

£b sinh gbW
-SS—(bé)

-C, " (bE)

Furthermore,

5,7(68) |
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(125)
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s," (a£)
'Cz_(ag)
B =
af sinh a&
[ 8,7 (a8)
where

-5, (bE) -C,7(at)

C, (b&) -5, (af)

-b¢ sinh bg -sl+(ag)
=S, (bE) -af sinh ¢a

Sl—(z) = sinh z - z cosh z

s,7 ()

sinh z + z cosh z

C,”(b&)
5,7 (bE)

5,"(b8)

bf sinh Eb
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- = K gj -
82 (z) = ey sinh z z cosh z

82+(z) = X%ﬁ-sinh z + z cosh z
SS—(Z) = X;fﬁ sinh z - z cosh z
SS+(Z) = X;fﬁ sinh z + z cosh z
' Cz-(z) = X;fﬁ cosh z - z sinh z
C2+(z) = A;fﬁ cosh z + z sinh z (127)

Furthermore, define Aij to be the determinant of the matrix
obtained by deleting the ith row and the jth column of A, and Bij to
be the determinant of the matrix obtained in the same way from B.

Then for the clamped plate the expressions analogous to (44) and (43)

are

© 2
2p(A+y) g e * -
X+ 20 fo ger AlM" Sy (Ba) Ay + €y (Ba) Ayg)

- N (8,7 (8a) A, + CyT(Ba) Ay)] J(Er) dE

=p0’ r<1. (128)
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o 2
2u(A+) / £
A+2U det A

+ -

1"
[M (C2 (&Ea) A11 + 52 (af) AIS)

+ -

_ N1t

N"(C,T(aE) Ay + S,T(aB) Ayl Jy(En) dE

=0 s r<1., (129)
For the stress-free plate the expressions (44) and (45) become

o 2
2u(A+y) £ e - ,
20 fo dorp M8 (a8) By - ak sinh Ea B,

3)

_ Nun(sl'(ag) By, - af sinh &a B23)] JO(Er) dg

2u(A+1) I“ g2
d

1 3 +
X+2u ), det B [M'"'(Ea sinh Ea By, + S, (ab) B ;)

- N'""(Ea sinh &a B21 + Sl+(a£) 823)] Jl(Er) dg

=0 . (131)
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/fo3

The variation of k with the value of p; i.e., the position of the
crack with respect ~“to the plate surfaces.
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kos

The variation of kOS with the position of the crack.
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The variation of k07

with the position of the crack.
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The variation of «

4

with the position of the crack.
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GRAPIl V
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The variation of Og with the position of the crack.



GRAPH VI
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The variation of Og with the position of the crack.
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