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ABSTRACT

In the first part of this presentation, the theory governing
infinitesimal deformations superposed on finite deformations of a
compressible, homogeneous, isotropic, elastic dielectric is developed.

The latter part of this paper concerns finding all possible infinitesimal
deformations that can be superposed on any finite homogeneous deformations
with a prescribed electric field such that the combined deformation and
field can be supported without the body force and distributed charge in

every homogeneous, isotropic, compressible elastic dielectric.
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1. INTRODUCTION

In finite elasticity theory, there are certain static deformations
that are called universal solutions. The deformation is prescribed, and
then it is shown that such a deformation can be supported without the
body forces in every homogeneous, isotropic, elastic solid [1]. While
there is a large class of such solutions when the elastic solid is
incompressible [2], [3],,Ericksen [4] has shown that only homogeneous
deformations can be and are universal for compressible elastic solids.

The theory governing finite deformations of continuous elastic
dielectrics subjected to the simultaneous application of mechanical forces
and an electric field has been derived in recent years by Toupin [5], and
Singh and Pipkin [6]. In the latter paper, the authors define also what
is called a controllable state. In such a state, the deformation and the
electric field are both specified to begin with and then the field
equations are shown to be satisfied without the distributed charge or
body forces irrespective of the form of the stored energy function. The
usefulness of such a controllable state lies in the determination of
elastic response functions by the comparison of theoretical results with
those observed experimentally. Whereas this important feature of control-
lable deformations has been extensively utilized in finite elasticity
theory [7], the experimentation of similar nature has not been attempted
for elastic dielectrics so far. Singh and Pipkin [6] find a complete
class of controllable states for homogeneous, isotropic, incompressible
elastic dielectrics. Furthermore, Singh [8] has proved that when the

dielectric is compressible, only homogeneous deformations with uniform



electric fields are controllable.

The theory of infinitesimal deformations superposed on finite
deformations was developed by Shield and Green [9] in which fhe authors
consider the infinitesimal twist superposed on finite extension of a
right circular cylinder. The same problem has been solved for an incom-
pressible elastic dielectric by Verma and Chaudhry [10]. 1In this paper,
the authors take it for granted that the electric field of the basic state
is not affected by the superposed additional deformation.

Recently, Currie [11] has attempted to find all possible infinitesimal
deformations that can be superposed on any finite homogeneous deformation
without the body forces and without the knowledge of the form of the
elastic response coefficients.

In this presentation, we follow the procedure laid out by Currie [11]
to develop the constitutive equafions for an infinitesimal deformation
superposed on a finite homogeneous deformation of a compressible elastic
dielectric with the electric field which is initially uniform remaining
unchanged during the superposed deformation. Section 2 is devoted to such
a development. Then we seek all such solutions that are possible in every
homogeneous, isotropic, compressible, elastic dielectric without the body
forces and distributed charge. The necessary and sufficient conditions
governing these controllable states are derived in Section 3. The next
three sections are devoted to finding all possible controllable states.
Explicit solutions are obtained for the case when the principal stretches
of the initial large static hqmogeneous deformation are not all equal.
However, when the principal stretches of the basic deformation are all
equal, it is shown that an infinite number of controllable states are

permissible.



It is instructive as well as interesting to compare the results in
this presentation with those of Currie [11l]. Since our equations reduce
to those of Currie when the electric field is set equal to zero, it is
cbvious that we cannot expect more controllable deformations than those
listed in Currie's paper. However, because of the presence of the elec-
tric field in the constitutive equations and additional field equations,
the number of elastic response coefficients is eight rather than three.
Consequently, the relations which govern the controllability of states
are much more restrictive here. These additional constraints allow us to
determine solutions explicitly when the two principal stretches of the
basic homogeneous deformation are equal, and somewhat more information
about the solutions when all the principal stretches are equal.

It may be pointed out that our analysis is confined to the situation
when the electric field prescribed for the basic deformatidn remains
unchanged during the superposed infinitesimal deformation. The analytical
convenience of this assumption is motivated by the fact that the electric
field is uniform for controllable deformations of a compressible elastic
dielectric [8], and also for an infinitesimal controllable state [12].

The technique developed in this presentation can now be employed to
find all possible infinitesimal deformations superposed on finite control-

lable states of incompressible elastic dielectrics.



2. CONTINUUM ELECTRCELASTOSTATICS

I ELECTROSTATICS

Consider a deformable elastic dielectric continuum occupying a region
D and bounded by the surface 0D. Let the body be deformed and polarized
by applied mechanical forces and applied electric field. Referred to a
fixed Cartesian system, let the particle at the point ; in the undeformed
state occupy the position x in the deformed state.

We assume that the inertial forces are negligible i.e. the deformation
takes place so slowly that at any instant of time, the external forces are
in equilibrium with the mechanical and electrical forces inside the medium.

According to Maxwell-Faraday electrostatic theory of dielectrics,
there exist two vector fields in space: the macroscopic electric field
Ei (i =1, 2, 3) with the dimension; of the force per unit charge and a
macroscopic field of flux or dielectric displacement Di (i = l{ 2, 3)

with the dimensions of charge per unit area. These fields satisfy the

following integral equations:

[E. dx, = 0 (2.1)
c

[D n, @& = Q ' (2.2)
S

where C is an arbitrary closed space curve, S the boundary of an

arbitrary regular region R of D, Q the total free charge contained



inside R and n; the unit outward normal to S.
let Vk denote the regions enclosed by the charge bearing surfaces

Bk and V0 denote the remainder of the space D occupied by the

dielectric. We assume that the electric field Ei and the displacement
Di are continuously differentiable functions of position in each of the
regions D, Vk and VO. Then applying Stokes' theorem to (2.1) and

noting that C is arbitrary, we obtain
E, . =E, . (2.3)

where () i denotes the partial differentiation of () w. r. t.
14
coordinate X, .

From (2.1) it also follows that across the surface 939D of the

dielectric, the tangential component of Ei is continuous:

+ -

E, - E.}) =0 2.4
eijk( 3 ; n (2.4)
where n, is the unit outward normal to the surface 9D , E; and E;
respectively denote the values of the electric field outside and inside

the dielectric surface , and e, is the usual permutation symbol.

ijk
We restrict our considerations to the case in which the dielectric
body and its surface are free of electric charge. With this restriction,

applying Gauss' divergence theorem to (2.2) and noting that S is

arbitrary, we get
D, ., =0, (2.5)

Furthermore, applying (2.2) to a cylindrical "pill box" that contains
the boundary of the dielectric, we can show that the normal component of

Di is continuous across the surface oD of the dielectric:



DI n, =D, n, (2.6)

+ -
where as before Di and Di denote respectively the values of Di

outside and inside the dielectric surface.

II MECHANICAL EQUILIBRIUM

We further assume that the resultant force Fi and the moment about
the origin Gi (excluding gravitational or inertial forces and moments)
exerted on any arbitrary volume V of the dielectric, can entirely be
expressed in terms of the stress vector Ti acting on the surface S of

V. That is

and

G, = . . .
i [ ele xJ Tk ds
S
The stress vector Ti accounts for all electro-mechanical forces
except gravitational and inertial forces which we have excluded.
We also assume that there are no surface couples or body cowples.
If V is an arbitrary volume of the dielectric bounded by the

surface 8, then for equilibrium we have

]T.dS+]pF.dV=O
1 1
s v

and (2.8)

f eijk xj Tk as + [ o] eijk xj Fk av = 0
s v



where p denotes the mass density of the body and Fi represents the

body force per unit mass.
By applying the first of (2.8) to a tetrahedron, it is easy to show

that the stress vector Ti on a surface with outward unit normal ni is

completely determined by

T =t., n, (2.9)

where tij represents the stress matrix. Using (2.9) in (2.8),

applying the di?ergence theorem and noting that the region V is arbitrary,

we obtain

t,.,. . +pF. =20 (2.10)
13.J 1

t,,.=t., . (2.11)
ij ji

If mechanical surface tractions Ti per unit area of the deformed
body are applied to the surface of the dielectric, it also follows from

(2.8) that:

T, = (£, - t'.) n, (2.12)
1 lJ lj J

at the boundary, where our conventions on the superscripts are as in
(2.4) and (2.6).

In the situation where electrical effects are absent, the stress
t:. in the medium surrounding the dielectric is taken to be zero. In
this paper, due to the electrical field outside the dielectric, there is
a stress th called the Maxwell stress (denoted by Mij) present

outside the dielectric.




III CONSTITUTIVE EQUATIONS

The Maxwell equations (2.3) through (2.5) and the equilibrium
equations (2.10) and (2.11), alone are insufficient to determine the
behaviour of the medium. For a deterhinate system, apart from these
equations, we also need the constitutive eguations which relate the
material response with the forces applied to the medium.

We assume that in free space surrounding the dielectric, the flux Di

is directly proportional to the electric field strength Ei :
D, = € E, (2.13)

where € 1is a dielectric constant.
We also assume that in free space, the stress tij is the Maxwell

stress Mij defined by

Mij =g Ei Ej - €/, Ek Ek Gij . (2.14)

Clearly the Maxwell stress tensor Mij satisfies the equilibrium
equations (2.10) and (2.11) identically when the body forces are not
present.

We describe the deformation of the dielectric media by the mapping

xi = xi(xl, X2, X3) (2.15)

referred to a single fixed Cartesian coordinate system. The deformation
~gradients axi/ax‘ then provide a measure for deformation.

If we assume that the displacement field Di and the stress tensor
tij are functions of the deformation gradients Bxi/ij and the electric

field Ei , then for an isotropic, homogeneous elastic dielectric body,



the constitutive equations as derived by Singh and Pipkin [6] are:

) E (2.16)

D, = L+
(By 855 + &) Byy + &, By B) Ey

1 J

and

t,.,=N_6.., +N._. B,, + , . .
ij 0 "ij 1 ij N2 Blk Bkj + 2N3 El Ej
(2.17)

+ N4(Ei B,

3k ) E

+ E, B, E_ .+ N_(E, B, B + E, B, B
J 1k) k 5( i jn nk j in nk k
where qu denotes the Finger Strain tensor

o Mg

B = (2.18)
ra BXk BXk

and where ¢0 ’ ¢l ’ ¢2 ; NO ’ Nl b eean N5 are the response functions

which depend upon the invariants

(2.19)
I. =E B B E , I_ = det. B .
5 P pPQ gr r pq
From (2.12) and (2.14), it follows that the surface tractions Ti ’

per unit area of the deformed body, required to maintain the deformation are

T, = (t,. - M,.) n,
i ij 1] j

where tij is the stress tensor given by (2.17); Mij is the Maxwell
stress tensor given by (2.14) and n, the unit exterior normal to the
surface of the dielectric body.

An infinitesimal deformation in electro-~elastostatics, called the
uncoupled theory of electrostriction, is defined as the one in which the

ou,
displacement gradients —<< 1 and the electric field Ei is

ox
J



10

Ju,

sufficiently weak so that only terms linear in 5;5- and guadratic in
3

Ei may be retained in the constitutive equations. Furthermore, in the
du,

uncoupled theory, the terms involving the products of Ei and —— are

9 x
also neglected. Equations (2.16) and (2.17) then reduce to [13]:

= E
Dl E:O i
and (2.20)
t.. = . . + 2 R E. E. +bE E '
ij A 613 ®kk H elj a®y 3j k k 613
where € is the dielectric constant; A, U are Lame's constants;

0

a, b are the scalar constants which characterize the dielectric proper-

ties of the material, and eij is the strain tensor of infinitesimal
theory:
1 Bui du,
e,.==|—=+—L]. (2.21)
ij 2 ij Bxi
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3. CONTROLIABIE TINFINITESIMAL DEFORMATIONS IN HOMOGENEOUSLY

DEFORMED COMPRESSIBLE DIELECTRICS

A controllable static deformation is a deformation which may be
maintained in all materials of a given class without the body forces or
the distributed charge.

In the present problem, we are interested in finding all possible
controllable infinitesimal deformations which can be superposed on all
possible controllable finite deformations in homogeneous, isotropic,
compressible, elastic dielectrics. Singh [ 8 ] has proved that the only
finite controllable deformations in compressible isotropic dielectrics
are homogeneous ones, in which the strain tensor is constant and the
electric field is uniform.

Before we proceed with our problem, we summarize below the set of
equations from the previous sections.

For a finite deformation of the dielectric, the dielectric displace-

ment field Di and the stress tensor tij are given by

= + + B .
Di (cbo Gij 4)1 13ij 4)2 ik Bkj) Ej (3.1)
and
= + B
tij NO Gij Nl Bij + N2 ik Bkj + 2N3 Ei Ej
' (3.2)
+ B
* N By By + EyBy) B ¥ N(By By By + By B By By

where Bij is the Finger-strain tensor given by
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1

9x. 0ox.
B.. T S §
i3 9% 9%y

. (3.3)

The coefficients ¢O, ¢l, ¢2 ; NO, Nl' ceet N5 are functions of the

following invariants:

I, = Brr ! I2 - Brs rs ' I3 = Er Er ! I4 = Er Brs Es
(3.4)
I_=E B B E , I = det. B .
5 P PgQ gr r 6 Pq
In the assumed absence of distributed charge, the flux Di .is
solenoidal:
D, . =0. (3.5)

The equations of equilibrium in the absence of body forces and any volume

charge distribution are

i1 _

% . (3.6)
3

The surface tractions Ti required to maintain the deformation are given

by
T, = (t.,, - M,.) n, (3.7)
i ij ij h]
where
= - ,8
Mij € E; Ej €/, Ek Ek 6ij (3.8)

is the Maxwell stress tensor; ng is the unit outward normal to the
surface of the deformed body.
If we choose the coordinate axes along the principal directions of

the strain tensor Bij , then every homogeneous deformation can be
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described by the mapping:
X, = A, X. , x, =X, X, , x,=A,X (3.9)

A

A, are the principal stretches.

where A 5 A5

ll
For a homogeneous deformation (3.9), the strain tensor (3.3) is

given by

2 2 2
Bij = )‘l 61i Glj + )\2 621 62j + )\3 63i 63j . (3.10)

Corresponding to this deformation field (3.9), the stress field

given by (3.2), which we shall denote by tgj and the dielectric

0
displacement field given by (3.1), which we shall denote by Di , are:

t21=N0+N1 )\i+N2 A‘ll+2Ei(N3+N4 Aist A‘ll)
t22=NO+Nl )\§+N2 )\§+2E§(N3+N4 X;+N5 7\3)
tg3=NO+N1 )\§+N2 )\g+2E§(N3+N4 )\§+N5 )\g)

(3.11)
t(l)2=ElE2[2N3+N(A +)\)+N(>\ +A)]
tg3=E2E3|:N3+N()\ +)\)+N()\ +)\):]
tgl=E3 [N +N()\ +)\)+N()\ +A)]

D(i: (dg + A ¢1+ ‘11¢2) By
Dg= (9g + Ag ¢1+J\g ¢,) E, (3.12)
Dg=(¢o+)‘§¢’1+)‘g¢’2) Bz -

> >
Consider now an infinitesimal deformation u(x) superposed on the
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basic homogeneous deformation.
The dielectric displacement and the stress matrix are functions of

the strain matrix Bij and the electric field Ei :

D, =D, (B E )
i ivpg’ p

ty = i3 Bpgr B
where Ep are constants and qu are now functions of ; = ; + G.

It has been claimed [10] that when an infinitesimal deformation is
superposed on a finite homogeneous deformatioﬁ, then the electric field
if uniform during the basic deformation remains unchanged during the
superposed infinitesimal deformation. Singh[lz] has also shown that if
an infinitesimal deformation is controllable, then the field must be
uniform. In view of these results, the electric field Ei that we take
during the superposed infinitesimal deformation is identical to the

(0)

constant field Ei of the basic homogeneous deformation.

With the help of Taylor's Theorem, we can then write

BDi

D. = D, + (B - B ) + ..,
i Til, * OB rq _ pq]

0 Pg 0 0

ati. ' (3.13)
t,.=t,. + (B -B Y + ...
i i oB
J J'o pq 0 jole| quo

where () denotes the quantity () in the homogeneously deformed
lo

state. Now

9y 9y 9(x +u ) 9(x +u )
B = .—2. = p p .
e
9x ox 9x me Ju 9x 9x _ du
=L S, R _2_d, 9 B _P neglecting
axk Bxk axk 9 axm agk axk axm

|Ii
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second order terms in u

Pq.
= + B ml u m + B m u m .
Thus,
9D, 9D,
l(B—B)al(B u +B u )
B
Boal, P pq|0 Byl Pmlg am” Tam| ) Tpum
0
9D,
=2 BBl m| b m
qu P 0 d.
BDi
= 2 u
aBprO rqlo P'q
= A, u
ipg p.q
aD.
where A, = 2 B .
| ipqg aBpr rqf,
Similarly,

Bti.‘ ati.

—1 (B - B ) =2 — B u

Bogl, P pal, 3B, “ral, g

0
= C,. u
1jpgd p.q
ot, .
where C, . = 2 5531- B .
1jpq br dfo

Using these results, (3.13) finally takes the form

. D. + A, u (3.14)
1 1 ipg P.q

t, . t,. +C,. u (3.15)
1j 1] 1ijpa P.(g

where
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aDi
A, =
ipg aBpr rq /4
3. . {3.16)
C.. =2 5Ell B
jpa or T4/ 0
In view of (3.14), (3.15), equations (3.5) and (3.6) imply
A, u . =0 (3.17)
ipq p.q91
and
C.. u ., =0, (3.18)
ijpqd pP.q)

In the remainder of the analysis B

will denote the tensor having the

value given by (3.10).
Now, from (3.16)
3Di
a = 2 B
ipg aBpr rq
= 8§, B. + 6. B, E,
¢l[ ip Jq jp 1q] J
+ §. B, B +4§, B, B + B, B, + B, B, E,
¢2[ ip jr "rq jp ir g ig jp ip Jq] 3 (3.19)
+ (G0 §,. + G1 L G2 B.. B .) E.
pq 1] pa ij pa ik kj° ]
where
1l o a¢a a¢a a¢a
=G =—B8B —B B +—E E B
2 pq 311 jole] 812 pr rq 814 p r
39, 3¢,
—_— B —
* 815 (Ep By Prr qu + Ey By ka r )+ s 816 qu ’
for a=0, 1, 2.

Also ,
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|
N
|

Ciqu B oB qu

N(G B. +6. B, ) + N_(6, B, B +6. B, B 4B, B, +B, B, )
ip jg Jjp iq 2 ip jr rq Jjp ir rq "ip jq Jjp iq

+N[6 E +6. EEB +4E.,E B, 4E.E B, |
jrrq jpirrg ipjg jpiq

+EEB, B +tELEB, B 4+E(LEB, B +E.EB, B |
1 p Jr rg jplrrq 1 r Jp g J r ip xrgq

HO §.. + Hl B,.+ B, B .H2 + 2E.E.H3
pq ij pPq 1ij it tJ pq ijpa
+ (E.B +EB)EH4+(EBB+EB.B)EH5 '
i jt 3 it" t'pg ijtts j it ts’ s pg
where
1 a BNa BNa BNa
> =3 + 2=—8B =~ E_E_B
2 Hpq BIl qu BI pr rq 3I4 P r rq
aNa BNa
+ + §
aIS(E Ek Bk + Ek E ka) B I6 316 oq

for (!,=0, 1' 2' e ey 5.

These expressions for A, and C,. are evaluated in the homo-

ipq i1jpq

geneously finite deformed state described by (3.9).

Since we want to find all controllable infinitesimal deformations

> >

that can be superposed, we therefore intend to seek the solutions u(x)
of (3.17) and (3.18) which hold irrespective of the response functions
¢0, ¢1, ¢2 ; NO' Nl' ooy N5. If such a solution is to exist, it is
necessary and sufficient that in (3.17) and (3.18) the coefficient
of each response function aﬁd its derivative be zero.

Substituting (3.19) into (3.17) and equating to zero the

coefficients of each response function and their derivatives, we have the
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<>
the following set of equations to be satisfied by u :

E. u .= E. B u .
i PpP.p1 i1 pg Pp.91

]

E, B B u . =E, E E_B u .
i1 pr rq p.q1 i1 p r rq p.q1

B. +
Ei (Ep Ek Kr Ek Er ka) qu up,qi

(3.21)

E,. B, u +E B, u .
J 3J9 Pp./.P4 P 19 Pp.q1

E. B, B_u +E B, B_ u  +E, B, B, u .
J Jr 4 p.pq p 1r rq p.gl J 1g Jp Pp.ql

+ E

. B, B, u .
J 1p 319 P./91

Substituting (3.20) into (3.18) and equating to zero the coeffi-
cients of each response functions and their derivatives; and on removing

<>
the redundancies, we find that u must also satisfy the following set of

equations:

u . B u . B u, = B B u .
P.pP1 Pqg p.qil Pq 1.,pq pr g p.,q1i

B B u, =E E_B u .
pr rq 1.pq p r rq p.ql

(E E. B B + E. E
P

k kr g k °r ka qu) up,qi (3.22)

E.(E_B u, .+ E B, u .}
j r g 1,93 P 149 p.9]

il
o

=E.(E B B u. .+ E B B, u )
j 'k kr rq i,qj r rp iq 'p,q]

<>
Thus u has to satisfy (3.21) and (3.22) if (3.17) and (3.18)
hold irrespective of the response functions. We show now that the set
of equations (3.21) are identically satisfied in view of (3.22) and

are thus redundant.
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E. u .2 0 in view of (3.22) (i)
i p.,p1

E. B u .= 0 in view of (3.22) (ii)
1 pg Pp,g1

E. B B u .= 0 in view of (3.22) (iv)
i “pr "rq p.qgi

E.E E B u .2 0 in view of (3.22) (vi)
i"p "r "rg piqi

+ = i i .22 i1
Ei(Ep Ek Bkr qu up,qi Ek Er ka qu up,qi) 0 in view of (3.22) (wvii)

E, B u +E B u . Z 0 in view of (3.22) (i) and (iii)
3 T3a "ps/pq p ig "p,qi :

E. B, B u + E B, B u .+ E. B, B, u . +E,B. B. u .=
J Jr ra p.pq P 1ir rqgq p,q1i ] 19 Jp Pp.91 J 1ip 3Jg9 PpP.q1

on using (3.22) (i), (v}, (iii) and (ii) in the first, second, third

and fourth terms respectively.

> >
Hence conditions ({3.22) are necessary and sufficient that u(x)
generates a controllable superposed infinitesimal deformation.
Three cases arise now depending upon whether the principal stretches

are equal or unequal. We discuss these cases in the next sections.
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4. GENERAL CASE -~ WHEN NO TWO PRINCIPAL STRETCHES ARE EQUAL

Here we discuss the most general case when Al # 12 # A3 # Al. We

use (3.10) to simplify (3.22).

The equations u . =0, B u . =0, B B u . = 0 become
b.p1 P9 p.ql pr @ p,49t
u ., +u + u =0

1,11 2,21 3,31

2 2 2
+ =
AL U1 P A 0 A3y <0
} A3 + A%y + 24 =0 .

11,11 2 72,2i 3 73,31

Since the determinant of coefficients _(Ai - lg)(li - Ai)(lg - Ai) #0,

therefore
Uy 95 T Y05 T Y¥3,33 50 (4.1)
Again the equations B u, =0, B _B__ u, = 0 yield
Pq 1,pd Pr rg 1,pg
u, = u, = u, =0 . ' (4.2)

Also the remaining equations in (3.22), with the use of (3.10), (4.1)

and (4.2) simplify to:

2 2 2

E E (Al 2,11 Az 1, )+E E (A 3 2i+k3 2,31 )+E3El()\3ul 31 A1u3,1i) =0
2 2. .2 2 2

EjEy AT+ ) (Aquy, pi+houy o )+EES (A +)‘3)0‘2 3,2iA39,3;)

2
+E3E1(A +A )()\3 1,3i Alu3,li) =0

EE [(A )ul'12+Bi3(u2,31+u1,23)]+E Byl 0 +7‘3 ,23%B11 (U3,12%9,13)]

2 .2
+EE) [O+A) 0, (548, 5 (uy o) +uy oy

and

(u +u )l =0,
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4 .4 2 2 4 .4
+ + + 3
BB LAy 4B, (AT ¥ douy o) FEELOGH A, oy (4.3)
2 2 4 .4 2 2
+ + + =0 .
* By gy 3p*Agug 1) 1+ BB [ QAW 548, (ASu, o) Ajup, 0301 =0

We now consider the following three subcases of this case.

(A) Let the electric field vector be parallel to one of the coordinate

planes, say -plane (El =0, E,#0, E;#0) .

Xy%3

Then in this case, the equations (4.1), (4.2), (4.3) further

simplify to
“1,18 T Y2,2i T Y3,31 T %,11 7 Y,22 7 %,33° 0
2 ' 2
+ =
Ay U301 FA3 Y 5 =0
| (4.4)
2 .2 2
0 + + + =
A, +3) U2z T AUy g, ey 1) =0
4 .4 2.2 2
+ + 0.
Py A uy e ATOG Uy g+ AUy o)
5>
The general solution u satisfying
U1,18 T Y2,21 T Y3, T Y,11 T Y,227 Y,337 0
is
- + .
ul cl x2 x3 + dl x1 + el x2 + f1 x3 const
u, = c, X, x1 + d2 x1 + e, x2 + f2 x3 + const. (4.5)
u3 = c3 x1 x2 + d3 x1 + e3 x2 + f3 x3 + const.

where Cs dr' e fr (r =1, 2, 3) are arbitrary constants.
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If u has also to satisfy the other three equations in (4.4) then,

using (4.5), we have

2 2
c, X3 + cy Xz =0

2 2 2 2
cl()\2 + X3) + c, Al + cy Al =0

4 4 2 .2 2 .2
cl()\2 + X3) + c, Xl Xz + Cqy Xl X3 =0 .

2
Since the determinant Zkl X; Xi(k; - Xi) # 0 , therefore

Hence it follows that the general solution of (4.4) is a linear displace-
ment field so that in this case the only controllable infinitesimal

deformations which can be superposed are the homogeneous ones.

(B) Let the electric field be along one of the coordinate axes - say

along the =x-axis (E1 #0, E2 = E3 = 0) .

In this case, all the equations in (4.3) are satisfied identically
in view of (4.1) and (4.2), and the only equations left to be satisfied

-»>
by u are:

U1 T V2,21 T U335 0 O

(4.6)

Yi,11 7 Y%,227 Y,33°

Apart from homogeneous deformations, the general solution of (4.6) is

u, = k. x. x.,, u, =k, x, x_, u, =k, x.  x 4.7)
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where kl, k2, k3 are arbitrary constants. This deformation can be given

a physical interpretation. The displacement Uy represents a shear in

the x2—direction, the magnitude of the shear varying linearly with Xg.

Thus the total deformation (4.7) represents the superposition of three
such shear displacements.

If kl + k2 + k3 = 0 , the deformation may be thought of as a pure

torsional deformation about two of the axes, say a twist k3 about the

xl—axis and a twist —kl about the x3-axis.

Calculating the stresses produced by the finite homogeneous deformation
(3.9) together with infinitesimal deformation (4.7), we have, on using
(3.11), (3.15) and (3.2),

2 4 2 2 4
tll = tll = NO + Nl Al + N2 Al + 2E1(N3 + N4 Al + N5 Al)

o
%
-

227 Y = N 1 22 F Ny Ay

0 2 4
t..=t.,=N_+N_ A +N. X
33 33 0 2 "3
t 13 (4.8)
]
[ .
2 2 2 2 2 2
t, = (Al k2 + Az k3) xg [Nl + N, E]+ (Al + >\2)(N2 + N El)]
|
' 2 2 2 2
tyy = (XZ k3 + A3 k2)[Nl + N2(>\2 + A3)] X,
42 2 2 2 2 2
t3l-(Alk3+x3kl)[N1+N4El+(xl+x3)(N2+N5El)]x2

Suppose that in its initial homogeneously deformed state, the material is
in the form of a rectangular block with faces X, = * a; - The infinitesimal

deformation (4.7) deforms the point (a on the plane x. = a

1’ *pr %3 1 1

into the point (yl, Yy y3) where
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= = = + .
y, =a + k, X, X, Y, X, + k2 a; x3 v ¥y =X k, a, x

Eliminating x x, from these equations, we get

2! 3
£( )= (1 -k k. a’) y. - 1 - x k. ad)
Yyr Yo ¥3) = 2 f32t ¥ 73 2 %3 21

2 2 2
-k (¥, ¥y =k, 2, v (1 = k) kya)) + k) kyaly, ~k;,a; yy) =0

which is the equation of the surface to which the plane X, =2 deforms

after infinitesimal deformation. The normal to this surface in the

deformed state is proportional to

2

F B I \_ 2 2 _

2
k (- k, k3 al)(k2 a, X5 - x2)] .

Thus in the final deformed state, the normal to the bounding surface which

was originally in the homogeneous deformed state as X, = a; is parallel

to
2

ajy o kl(k a. Xx. - x3) , kl(k2 a. x. - xz)] . (4.9)

n=[1-%k k
- ) 3 %1 72 173

3

Thus, by (3.7), the components of surface traction T.,, T., T3 on this

1 2

face necessary to maintain the deformation are given by

n,
o= (t,, - M) —— (4.10)
1 1) 1] IKI

where tij is given by (4.8), Mij by

= - 4.1
M, € Ei Ej €/, Ek Ek Gij . (4.11)
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>
and n by (4.9).

Substituting (4.8), (4.11) and (4.9) into (4.10), and linear-

izing with respect to kl, k2, k3 , we find that to the first order in
the infinitesimal displacements, the surface tractions on the face X, = al ’
required to maintain this deformation, are:
2 4 2 2 4
= + -
T) =Ny + N >‘1 N, )\1+2E1(N3+N4 )\1+N5 >‘1 8/4)
2 2 2 2 2 2
T, = [{Nl + N, El + 0‘1 + >\2) (N2 + Ng El)}(kl >‘2 + k2 Al)
' (4.12)

2 4 2
- kl(N0 + Nl >‘2 + N2 >‘2 + 8/2 El)] Xy

~ 2 2, 12 . 42 2 . 2
T = [[(Nl+ N4 El) + (N2 + N5 El)O‘1+ )\3)](kl )\3 + k3 Al)

2 4 2
- kl(N0 + Nl )\3 + N2 )\3 + 8/2 El) X,

The surface tractions required on the cther faces tc maintain the
deformation to the first order of infinitesimal displacements can be

calculated in a similar manner.

(C) Let the electric field be a general one (i.e. E, #0, E, #0,

E37!0).

Using (4.1) and (4.2), the first equation in (4.3) yields

2 2

Ayuz oyt A3y =0
2 2

Ay Uz FA3U 5370
Xz u Az =0 .
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2
Since the determinant of coefficients 211 A; Ai # 0 , therefore

Y ,23 = Yy,31 % Y3,1270 -

In view of this, (4.1) and (4.2), the remaining equations in (4.3)
are identically satisfied.

>
Hence in this case, the equations to be satisfied by u reduce to

Uy 1i T Y05 T Y3,3 =0

|
o

Y11 Y,02 7 Y,337 Y (4.13)

]
o

Y1,23° Y2,13 7 Y3,12

>
Apart from a homogeneous deformation, the general solution u of
< - 1 -— = 1 = 1 = =0
Y,10 7 Yi,22 7 4,337 V1,10 T 2,21 T Y33
is

(4.14)

]
=
»
]

Uy = k) Xy Xy, Uy =ky x) Xg, U, 3 %1 %

This solution has also to satisfy the equations

Y1,23% Y,137 Y3,12° 0

which gives kl = k2 = k3 =0 .

Hence this case also does not furnish any non-homogeneous controllable

infinitesimal deformation that can be superposed.
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5. BIAXIAL CASE - WHEN TWO PRINCIPAL STRETCHES ARE EQUAL

Here we discuss the case, when the basic homogeneous deformation
has two equal principal stretches, say A = Al = Xz # X3 .

Then using (3.10), the equations (3.22) reduce to

1,1i 2,21 3,31

Woar Y Y, Y,337 0
2 2
(B) - E)) uy g3 +E)Epluy 5y + 1y 430 =0
2 2 2 2
B, By ug o5 + A3 uy 33) + B B 0wy 0 + A3 9 5,1 =0
(5.1)
20 2 2 2 .2
- + +
ALE] - B uy 4y + 2B) Ey w5, + By EQLAT + X3 uy 54
2 2 2
+ (A7 - X3) u2'13]+-2l E; Eg 4y 93 = 0
(E2 - E2) u + 2E. E. u + 2E_. E_ u + E. E_(u + u ) =0
1" By uy 182 9%,12 2 B3 Uy o3t By B3ty H3 ¥ 9y 3
2 2
- + =
(Ey = E)) uy .y + 2B Eyuy,,=0
E. E_(u u ) =0

2 7°3'%71,23 0 2,13

By Byluy 13- 9y 590 =0 -

Once again, the following subcases may be considered.

(B) When the electric field is parallel to one of the coordinate planes.

(i) Let E be parallel to XX, -plane, i.e. E; =0, E, #0,

E; #0 .
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>
Then from (5.1), u satisfies the following set of equations:

. = + =
U, =0 A uy o+ A3, 5 =0
2 .2 2 .2
+ + - =
(A A3) u a3t O Al uy 43=0
- + - = - =O.
By Uy,11 7 E3 9y 53=0 0 U3 45,=0, u) o3-1, 3

These equations can be further simplified to

and (5.2)

Y237 Yy,937 93,3570

which is the same set of equations as (4.13). Thus in this case also,
apart from homogeneous deformations, there is no other infinitesimal
deformation which can be superposed.

This result is also true when the electric field is parallel to the

X3 Xl plane, i.e. E2 =0, E3 £ 0, El #£ 0 .

(ii) Let E be parallel to the XX,

E2 #0 o
Here two subcases arise, according as El = E2 or El # E2.

(a) Let E, = E,.

Then the equations (5.1) simplify to

-plane, i.e. E;=0, E #0,
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Yiai Y Y08 T35 C Yt Y, T Y ,537 00 (@
+ - ' 5.3
Uy, o3 ¥ 8y 93 =0 (b) (5.3)

u = = u =0. (C)

Apart from homogeneous deformations, the general solution of (a} is
= + = e - = .
U me Lyt XV, uy = o XY Uy =X (5.4)

where ¢, Y, X are functions of x, and x_, only, and

1 2
2 2 2
Vl ¢ =0, Vl ¢ = const. = ¢ (say) , Vl X =0 . (5.5)
Here i
2 2
2z 8,23
17 5 k2
1 2
Equation (5.3) (b) implies
U o, + u2'l = const. = 2K (say)

which on using (5.4) and (5.5) vyields

—-— .IS 2 2 L t .
¢ = 2(x2 - xl) +B' x; X, + C %) + D x, + const.

2 2
or ¢(xl, x2) = Al(x1 - x2) + Bl Xy %, + Cl Xy + Dl x., + const,

and

(5.6)
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Using (5.4) - (5.6) into (5.3 (c)), X and ¥ have the forms:

x(xl, x2) = p(xi - xg) tqx, +rx + const. ,

and (5.7)

2
Ylx., x,) = Sx? o+ x2) +B_x. X. 4+ C_. x, +D_ x_+ const.
1 2 471 2 2712 21 2 2

In view of (5.6) and (5.7), the equations (5.4) yield

. C
= —_— - - +
ul > x2 x3 + B2 xl x3 Bl xl 2Al x2 D2 x3 + Pl .
C
U, = - 3 %) X3 - By x, x, - 2R x) =By X, = C) x5 -Cp,
and

u,=x = plx° - x) + +r + t

3 < X=p xl 5 . xl X, const.

Thus apart from homogeneous deformation, the general solution of

(5.3) is:

c
I
b
»
»
+
w
o
L

u, = -B X, X, - A X, X (5.8)

[«]
|

2 2
= p(,xl - x2)

where A, B, p are arbitrary constants.
For infinitesimal deformation (5.8) the stress field can be

obtained from (3.15):
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Tty =Nyt A2 N, o+ a4 &2 + ZEi(N3 + Az N, o+ A4 NS)
+ 2>\2[Nl + 222 N, + ZEi(N4 + 22 NS)] B x,
t,, = N, + A2 N, o+ 2 N, + ZEi(N3 + AZ N, *+ A4 NS)
- 2>\2[Nl + 222 N, + 2Ei(N4 + 222 NS)] B x,
tyy = tg3 =Ny + N, A§ + N, Xi (5.9)
t,, = tgz = ZEi(N3 + Az N, t A4 NS)
ty3 = -[Nl + 02+ Ai) Nz][li(A x; *+ B X)) +2p A2 x2]
+ Ei[N4 + (AZ + Ag) Ns][Zp Az + Ag(B - A)](xl - x2)
ty, = [n) +_(>\2 + Ag) N,1l2p A2 x) + Xi(A x, + B x,)]

2 2 2 2 2
+ [N4 + (A7 + A3) NS] E] [2p A + A3(B - A)](xl - x2).

If in the initially homogeneously deformed state, the body is in the

shape of a rectangular block bounded by surfaces X, = + a; » then the
infinitesimal deformation (5.8) deforms the point (a

11 %o x3) on the

plane X, = al into the point

[a. +A2Ax_ x_+Ba Xy 0 X, = Bx x.-Aa, x, , x.+ p(ai - xz)] .

1 273 1 2 273 1°3 3

In the final deformed state the normal to the boundary surface which was

originally in the homogeneous state xl = a; is parallel to

> 2 2. 2 2 2 2
n = - - - - - - - - -
[1 Bx3 pB(al x2), AX pA(al x2), Bal Ax2+(A B )alx3] . (5.10)

3
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Hence, by (3.7), the componentsg of surface tractions Tl' T2, T3 on
this face necessary to maintain the deformation are given by
T, = (t,, - M) Y57 (5.11)
i ij ij In,

' -
where tij is given by (5.9), Mij by (3.8) and n by (5.10).

Substituting (5.9), (3.8), (5.10) into (5.11), noting that E3 =0,

E2 = El # 0 , and linearizing with respect to the constants A, B, p ,

we find that, to the first order in displacements,

T, = Ny + A2 N+ A4 N, + 2Ei(N3 + A2 N, t A4 NS)(l - A x3)

+ 22% B x3[Nl + 222 N, + 2Ei(N4 + 222 N5)] -€A Ei Xy
T, = Ei[Z(l - A x3)(N3 + Az N4 + A4 Ng) - el + A(N0 + Az Nl + A4 N2) X4
r, = BNy + % + 2% w220 2% 4 A - M) 1tx, - xy) (5.12)

2 2 2 2
- [Nl + (A" + A3) Nz][k3(B X, + A x)) + 2p A x2]

2

2 4
- [N0 + A2 N, + A3 N

2
3 Ny + € El](B a

+ -
A x2)

2 1

(B) Now let E3 =0 , E) # E, £0 .

In this case, the equations (5.1) simplify to

Ui,ai T Y2,2i T Y33 T Y,a1t Y, T Yy,337 0 (a)
(E2 - E2) + E. E_(u + u Yy =0 (b)
1 27 Y1,14 1 °2'Y, 21 2,11’
. (5.13)

(E2 - E2) + 2E. E_. u =0 (c)
1 2’ M1,11 1°2 M,12°7 c
(E2 E2) u + 2E. E_ u =0 (d)

1 2’ 2,11 172 2,12
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2 2
- + = -
(Ey ~Ej) u3 33 * 2B By U3 45, =0 (e)

Apart from homogeneous deformations, the general solution of
(5.13 (a)) is

_ 90 _ . .o =
ul_sz’ Y = ax, ' uy = Xlxyr %))

where a = q)(xl, x2) + x3 lp(xl, x2) p

Va=cx,, Vox=0, Vs %:2:2_+2% :
1 2
These may also be written as
ul=¢,2+x3 t[J,z, u2=-q>'l-x3 11)'1 roug =X (5.14)
where ¢, ¥, ¥ are functions of X0 X only, and
Vi $=0 , Vix:O ' Vi 11)=conét. =c . (5.15)

Now (5.13 (b)) implies
(E2 - E2) + E_ E_(u + u, ) = const. = K (say)
17 %20 B, R R, 2T Mo . y
which, on using (5.14) and (5.15), gives
&2 -8 Y _ +2E E Y. =cE E
1”52 Yo 127,22 172
and (5.16)

2 2
- = +
(E1 E2) ¢,1 + 2E1 E, ¢,2 K x, f(xl)

where f is an arbitrary function. The equation (5.13 (c¢)) 1is



identically satisfied in view of (5.14) - (5.16).
Using (5.14) -~ (5.16) into (5.13 (d)) and solving the resulting
partial differential equations in ¢ and Y by Langrangian Method, we

find that Y and ¢ are of the forms

lb=Alxi+le§+Clx1x2+Dlxl+le2+const.

(5.17)
¢ =2 x2 + B x2 + C_X. X. + D, X.+F_X_+ const.
1 2 72 271 2 271 2 72
where Al' cees Fl and A2, coer F2 are arbitrary constants such that
2(A1+Bl)=c, A2+B2=0
and (5.18)

2 2
- 4 =
(El E2) Cl + Bl El E2 c El E2 |

using (5.14) and (5.15) into (5.13 (e)), and solving the resulting

partial differential equation for X . we find that ¥ assumes the form

2 2
= + + + .
X A3 xl + B3 x2 + C3 xl x2 D3 xl F3 x2 const

where
A_+B_=0, (5.19)
2 2 -
A3(El - E2) + C3 El E2 =0,

Thus, with the explicit forms of ¢, Y and X, when used in (5.14), we

get
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= + .
ul A x2 X3 + B xl x3 + C xl + D x2 F x3 + const

= e - - +G .
u, B x2 x3 + (A c) Xy x3 + D xl C x2 x3 + const

[
|

= p(xi - xg) +qx X, +trx + s x, + const.

where we have put

and (5.20)

Hence apart from homogeneous deformations, the solution of (5,13) is:

u, = A X_x_.+ B x. x

1 2 3 13
u2 = -B x2 x3 + (A - ¢) xl x3 (5.21)
2 2
uy = plx; = X)) +.q x) X,
where in view of (5.18), (5.19), and (5.20),
B(E2 - E2) + 2AE_. E_. = cE_ E
1 2 1 2 1 2
€2 -£8%) +qE,E =0 (5.22)
PE) = 8y T4 5 5 . .

Calculating the stresses produced by the homogeneous deformation
combined with the infinitesimal deformation (5.21), we find, on using

(3.10), (3.15) and (3.20), that
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t, =Nyt Az Nt Az N, + 2Ei(N3 + Az N, t x4 N5)
+ 2>\2[Nl + 222 N, + (Ei + Eg)(N4 + 222 NS)] B x,
t, =Ny + A2 N, + 2 N, + 2E§(N3 + 22 N, + A NS)
- 212{Nl + 222 N, + (Ei + Ej)(N4 + 232 Ns)] B x,
tay = tg3 = Ng + A§ N, + Ag N, (5.23)
t), = 2B, E, (N, + 22 N, + a4 N.) + A2[Nl + 22 N,
+ (Ei + E;)(N4 + 22 NS)](ZA - ¢ xg
t,y= N+ 02+ A% NZ][{A2 a+ @ - o)t x - (2p A%+ 8 22 x,]
+ [N4 + 02+ Ag) Ns]{El Eé{(z)\2 p+B Ai) x, + (A2 q + Ai A) x,}
+ E;{(Az q+ Xi(A - x - 232 p + B Ai) x,}]
ty, = [Ny +'(A2 + Ai) Nz][(zA2 p+B ki) X, +_(A2 g+aA Ag) x,]

2 2 2 2 2
+ [N4 + %+ NS][El{(2p A"+ BAY x

2 2
1t @ A f A 13) x2}

. 2 42 2 2
+E E,{@ A + 25 - e x - (2p A7 + BAY) x,}]

where the constants B, A, ¢, p, g are subject to conditions (5.22).

The infinitesimal deformation (5.21) deforms the point (al, X0 x3)
on the plane X, = a, in the initially homogeneously deformed state into
the point

x_+ (az-x2)+ x_)
3 pla;mxyirqa .

(al+Ax X +Ba_.x_. , 1%

5X3 1%3 x2--Bx2x3+(A--c)alx3 P
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>
The normal to this bounding surface is parallel to the vector n , where

h = [1-B - Bp( 2. 2) - B X - Ax_. ~- A (az—x2) - A X
n= X3 T PRl 7X, qay%y v 3 7 AR TX qay %,

2
- Ba, - Ax, - B'a;x, - A(A—c)alx3] . (5.24)

The components of surface traction T on this surface necessary to

i

maintain this deformation are given by (5.11), where now tij are

-5

given by (5.23), Mij by (3.8) and n by (5.24).
Substituting (5.23), (3.8) and (5.24) into (5.11), noting that
E3 =0, and linearizingw. r. t. A, B, p, g0 A' = A - c , we have to

the first order of displacements:

2 2 0
T, =t —E/z(El—E)—(t - € E E2)Ax

1 11 2 12 1 3
0 2 2
T, =t, - €E E, - A[t22_— 6/2(E2 - El)] X, (5.25)
T3 = t13 + t33(-B a; - A x2)

. 0 . _ _
where tij are given by (5.23) and tij by (3.9) [with Al = AZ = XA

Ej

]

0].

(B) When the electric field is parallel to one of the coordinate axes.

(i) Let E be parallel to x, -axis, i.e. E19€0, E.=E_=0.

1 2 3

In this case the equations (5.1) simplify to

Y2 Y Y08 T Y3 T Y%,11t Y,22 T Y,33 7
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ox

u . = U . = u =

- - -0. 5.2
1,1 - Y221 T V3,31 T Y,117 %i,227 Yi,337 0 (5.26)

The general solution of (5.26), apart from homogeneous deformations, is
u, = kl X, X3 4w, = k2 Xy x3 youg = k3 X, X, (5.27)

which is the same as (4.7).

Thus the stresses tij in the final deformed state and the surface

tractions Ti required on the face X =a to maintain the deformations

(5.26), to the first order of displacements are given by changing

Al = Az = A in (4.8) and (4.12) respectively.

The case when E2 # 0, E3 = El = Q0 also yields the deformation

(5.27) and hence gives a similar result as above.

(i1) Let E be parallel to Xq ~arig, i.e. E, #0, E), =, = 0.

Then the equations (5.1) reduce to

1,1 T Y%, T Y38 %,11t %,027 Y%,337 0 (5.28)

Apart from homogeneous deformations, the general solution of (5.28) is

= + = - - = - 9
u, ¢'2 g w,2 P, ¢,l Xy w,l rouy =X (5.29)

where ¢, ¥, X are functions of X0 X,

Vi ¢ = Vi X=0, Vi Y = const. = ¢ (say), and where

only and

2_ 3%
1 8x2
1

3

2
\ .
3x§

it

(5.30)
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(5,292), (3.10) and (3.11) into (3.15), the stresses

in the final deformed state are:

2 4 2 2
tiy=Ng+ AT N, o+ AT N, + 207N, + 2)7 N) (¢,21 + %, IP'21)
2 4 2 2
ty, =Ny + A N+ A N, - 22 (Nl + 2A NZ)(¢'21 + X, ¢'21)
0 2 4 2 2 4
tyg=tog = Ng + AN, + AJN, + BN+ A3 N, o+ A3 N.)
2 2 (5.31)
o = AT+ 227N [0 p =0 5)) + x50 o, = Y )]
2 2 2 2 2 2 2
tyy = [Nl + AT+ A N, + E3{N4 + (A + >\3) NS}](A X 5" A3 w’l)
2 2 2 2 2 2 2
ty = [Nl + (A7 + A N+ E3{N4 %+ NS}](A Xt A3V )

We consider
(5.29), when ¢

the sides of the

the block is assumed to be contained within the planeé X, = t a,.

a

r

particular case of the general infinitesimal deformation
X = 0. This may be thought of as the indentation of

ectangular block. In the homogeneously deformed state,

i

Then a superposed de formation (5.29) with ¢ = x = 0 implies that

there is no displacement in the x_-direction. 1In this particular case,

3

(5.29) and (5.31) reduce to

where

and

= = = =0
W) = Xy Yo Uy = cX3 Yoy Uy

(5.32)
2 2
Viw=u+u=const.=c
2 2
Bxl sz
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tll = Ny + )\2 Nl + A4 N, + 2>‘2(N1 + 2A2 N2) Xq lp'lz

t22 =N, + Az N, o+ A4 N, - 2A2(Nl + 2A2 N2) x3 w,lz

tay = tg3 =N, + Ag N+ Ag N, + 2E§(N3 + Ag N, + Ag N)

t, = AZ(Nl + 222 N2)(¢'22 - w'll) Xg (5.33)
tyy = =Iny + 02 4 2%) w2, + 02 40 N AT v,

tyy = [N . 02 2w, + 22w, 4+ %+ w2 v, -

The infinitesimal deformation (5.32) deforms the point (al, X, x_)

2 3
on the plane X, =2, in the homogeneous state into the point
9 Y
v ox, & - x, 9L :
(El *3 8x2 < = v Xy T X3 8xl <.=a r %3
11 1™

Denoting this new point by (yl, Yy y3), we see that

= Y =
Yy T2t ¥ EE a; + x5 9(x,)  say
171 '
— — QL — -
Y, = X, - Xg Bxl . Xy = Xg f(x2) say
1™
Y3 = X5 .
The equation of the bounding surface, which was the plane x; =2 in
the initially homogeneously deformed state is:
F(y.r ¥Y,r ¥,) 5 v, = g_l(z) +y f[g-l‘(z)]: 0 (5.34)
1" "2 3 2 3
173

where 2 = .
Y3
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The normal to this bounding surface is parallel to the vector

F -+ ‘
gy v gF ' %5 or is parallel to the vector n , where
1 %Y 3 - _

>
ne [w,2|x1=al - x3(wl2 lPllz)xl=a~l ! -X3(q),2 lP122)Xl=al !

1+ x (P ). =x oYY ) . (5.35)
3'7,12 xl—al 37, B 12 xl—al

The components of surface tractions Ti on this bounding surface

(5.34), which shall maintain the infinitesimal deformation (5.32), are

~given by (5.11), where tij to be used are furnished by (5.33), Mij

>
by (3.8), and n by (5.35).
Substituting (5.33), (3.8), (5.35) into (5.11) and noting that

E3 #0, El = E2 = 0 and further linearizing with respect to the

derivatives of { , to the first order in displacements, we have

2 4 2
T, = (N0 + A N, + A N, + €/, E3) w'2

™

2 2 2 2 2 2
- [Nl + (A7 + A3) N, + E3{N4 + (A7 + A3) N5}1 A3 w,z

2 2 2 2 2 2
T, = -t,, = [Nl AT AP N, 4 E3{N4 + A7+ 1Y) NS}] A3 w,Z
T, = (t ., + € E2)(-l + x_ Y (5.36)
3 33 /273 37,12 x =a; -
2 4 2 2 4 2
= €
[N0 AN, H AN, + BTN, + AT N, + A NG + € E3]

X (1 +x_ V¢ _ .
37,12 Xy = al)

(C) When the electric field is a general one (El £ 0, E, # 0, Ey # 0)

Two subcases arise according as El = E2 .or El # E2.
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(i] Let E, #E,

5>
In this case the set of equations (5.1), to be satisfied by u .,

simplify to

. L, = = + = . =0
Y, Y Y2,21 T ¥3,31 T OY,11 T Yi,22 7 Yi,33 (a)

2 2
- = . b
(El E2) ul + El Ez(ul 5 u2,l) const (b)
2 2 2 2
= t. C
El(A u3 4 + A3 u1,3) + EZ(A u3 5 + A3 u2'3) cons (c)
(5.37)
2r, .2 2 2 2
A [(E1 - E) LR + 2El E, u 1, 12] +E, E3[(A + 13) 4 o3
2 2 2
- E = 0 (4
* AT -2 vy 5]+ 24 By By g (d)
(E2 - E2) u + 2E. E + E. E_(u u ) + 2E E. u = 0 (e)
1 2’ T2,11 172 Y2,12 1731, 23t 2,1 3 2,23
2 2
- E . 0 £)
(El Ez) “3,11 + 2El E2 3, 12 = (
u - u =0 . (g9)

As before the general solution of (a), apart from homogeneous deformations,

is

= = - - = 5.38
4 =d ot xg Ve =ty - XYy Uy =X (5.38)
where ¢, Yy, X are functions of X0 X, only and
2 2 2 | 2 3% 32
Vi¢=V. x=V.~-c=0, V. =-—+—, c=const.
1 1 1 1 2 2
axl 3x2

Using this, (g) implies Vi Yy =0 or c=0. Again, using (5.38) in
(£), solving the resulting P. D. E. by Lagrangian Method and using the

fact that Vi X =0, we find that ¥ is of the form
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X(Xl, x,) = p(Xi - xg) +4qx, x, + X% +5s x,+ const.

where p, g, r, s are arbitrary constants. Using (5.38) in (5.37 (b))

, . , 2 .
and solving the resulting P. D. E. for { with Vl Y =0, we obtain

w(xl, x2) = Al(xi - xi) + Cl X %, + Dl X, + Fl x, + const. (5.39)
and
(E2 - E2) ¢ + 2E. E_ ¢ = const. (5.40)
l. 2 121 1 2 7,22
where Al' Cl, ooy Fl are arbitrary constants such that

2 2
(El - E2) Cl - 2Al El E2 =0 .

In view of (5.38) - (5.40), equation (5.37 (e)) yields

¢(xl, x2) = Az(xi - xg) + C2 X)X, + D2 3 + F2 X, + const.

where A2, eees F are arbitrary constants,

2

Using (5.38) and the expressions for ¢, ¥, ¥ in the remaining
two equations (5.37 (c), (d)), we obtain further restrictions on the

constants involved in ¢, Y, X :
2 2 2 2
El(2p AT+ cl A3) + E2(q A - 2Al A3) =0
2 2. 2 2
El(q AT - 2Al A3) + E2(-2p AT - A3 cl) =0
El Cl - 2E2 Al =0 .

These equations for Al, Cl’ P, q yield



a3 T i

v

Thus, finally, we have

¢(Xl, x2) = D2 3 + F2 x, + const. ,

w(xl, x2) Dl xl + Fl x2 + const. ,

X(Xl, x2) =rx + s X, + const.

44

Upon substitution in (5.38), we conclude that the infinitesimal

deformations u, obtained are also homogeneous ones only.

(i1) Let E, = E,.

In this case the equations (5.37) or (5.1) simplify to

+ = = = =
Y1,08 T Y2,21 T U3, T %,11 T Y02 T Y%,337 0
ul'2 + u2’l = co§st.
Az(u + u ) + Az(u + u, .) = const.
3,1 - Y3,2 39,37 Y,
2 2 .2 2 .2
E + + + -
22" (B Y12t E;3 u1,13] Bl (A7 + Ay) 4,23 (A7 = A3) Y2,13
2E -
19,12 7 %3y 53 H Egluy 53+ w430 =0
U3 1= 0
u u =0 .

Solving the equations as in subcase (C) (i) above, we again find that

(5.41)

u,



45

and x. ; so that the only controllable

are linear in X X
1’ "2 3

deformation furnished is a homogeneous one.
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6. EQUAL PRINCIPAL STRETCHES

Finally we consider the case, when in the basic homogeneous

deformation, the three principal stretches are equal:

Since the material is isotropic, the basic homogeneous state is one
of hydrostatic pressure. The dielectric body will have the same shape
as in its reference state, either uniformly expanded or uniformly compressed.

In this case (3.10) implies

2 .
Bjg =By, =By3=XA", By, =B,y =By =0.

Also in this case, every direction is a principal direction of B .
~e

Thus, without loss of generality, we can choose our coordinate system in
such a way that our X-axis is parallel to the electric field vector, so

that
El=|i§|;£o, E,=E,=0.

2 3

The equations (3.22) in this case reduce to

which may be rewritten as
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(a)
= const. = A (say)
ul,l 34
(b)
+ = const. = B (say) :
Us,2 7 U3,3 (6.1)
a (¢
Y11
(d)
+u, ,.=0
Y,22 7 Y,33
where A, B are arbitrary.
The general solution of (6.1(c}) is
(6.2)
= i = 2, 3
u, = x; fi(xz, x3) + gi(xz, x3) , 1 lﬁ !
..ns of X
where f. and g, are twice differentiable arbitrary functio” 2
i i
and x3.
Using (6.2) in (6.1(a)), we have
fl (le X3) =A .
In view of (6.2), (6.1(d)) implies
+f, ..=0
£3,22 7 %1,33
(6.3)

and

+ g, =
95,22 " 9,33

. unctions
i, 2, 3) are harmoniC £

This means that fi and 9; (i

of x2 and x3"

Using (6.2) in (6.1(b)), we have

+ =0
£2,2 7 f3,3




48

- 6.4
92'2 + 93'3 B . ( )

The solutions to (6.3) and (6.4) are infinite. In fact, if we

choose

Hh
]

. + 1

Re F(x2 1x3)
. .

f_ = «Im F(x2 + 1x3)

9, = Re. G(x2 + 1x3) + B x2 and g3 = ~Im. G(x2 + 1x3)

= . i = «Im. + i
or g, = Re G(x2 + 1x3) and 95 Im G(x2 1x3) + B X,

where F and G are any two analytic functions of x, + ix3 + then

equations (6.3) for i =2, 3 and (6.4) are identicaily satisfied.

Again in view of (6.3), gl(xz, x3) is any harmonic function of Xy x3.
Thus the solutions ui given by (6.2) are infinite. Once we know

the explicit form of a solution (6.2), then as before we can calculate

the surface tractions required to maintain this deformation. /
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