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ABSTRACT

In this thesis we reviev a number of the most
important methods of controlling a parameter of a
seqguence of random variables, with special emphasis on
CusunM éontrol procedures,  ¥%We focus our attention on
the problem of deriving or approximating the average
run-length and run-length distribution of a CUSUM
statistic, The Bagshaw-Johnson (1974b, 1975a)
approximations are compared, from both a theoretical
and practical point of view, with the approximations or
exact expressions obtained by other authors; in
particular, thos2 of Page (1954), Ewan and Kemp (1960)
and Brook and Evans (1972). We also discuss the.
computational and numerical problems associated with
these approximations and exact expressions., 1A Monte
Carlo simulation study is carried out to empirically
determine the gpodness-of—fit of the Bagshaw-Johnson
approximations, In addition, a few of the results of
Page, Ewan and Kemp and Brook and Evans are linked
together, several new results are introduced, and a new
‘approximation to the run-length distribution of a CUSUM
statistic is derived for the case in which the
observations are autoregfessive and the process is out

of control, .
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CHAPTER 1

INTRODUCTION TO SEQUENTIAL CONTROL PROCEDURES

INTRODUCTION

Section 1 of this chapter describes tﬂe general
class of problems which we are concerned with in this
thesis, and the particular member of this class which
we focus our attention on {the SEQUENTIAL
CHAHGE-POINT'DETECTION PROBLEM)., The second section
contains a number of examples of ssquential
change-point detection problems, and illustrates the
application of s=quential control procedures to these
prohlehs. “The last section reviews some of the most

important types of sequential control procedures.
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SECTION t.1: THE SEQUENTIAL CHANGE-POINT DETECTION

PROBLEM

It is well-known in the field of Statistics that
the problem of finding a parametric model for a |
non-stationary stochastic process is quite difficult,
due to the complexity of the relationships which exist
between dependent fandom variables, At preseant there
'is no unified, comprehensive class of methods for
dealing with this problem, although there are methods
available for handling certain special cases., .

One . of the more interesting and innovative mathods
to come to the attention of this author is based on a
sﬁ-called '‘dynamic linear model' for the stochastic
process, . This model, introduced by P.J. Harrison and
C.F. St=vens (1971,1976), generalizes the ordinary
linear model by allowing the parameters of the model to
vary stochastically, To be specific, the parameter |
vector follows a multi-dimensional random walk. Their
approach is based on the principles of Bayesian
inference, and their chief results are modifications of
the Kalman filtering algorithm (Jaswinski,1970)., .

In a recent paper (Ledolter,1979), J. Ledolter
employs a similar technigue, also based on the Kalman
fiitering algorithm, for recursively estimating the
parameters of an ARIMA time series model with

stochastically-varying ccefficients.
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A frequency-domain approach to this problem has
been adopted by M.Y. Hussain and T., Subba Rao (1976),
vho have developed a method of obtaining point
estimates of the parameters of.an ARMA stochastic
procéss with time-dependent coefficients, Their methbd
is based on a rather sophisticated technique called
*evolutionary spectral analysis®'. A general
description of this approach and a number of key
references are to be found in the discussion section of
a paper by'R.L. Bfovn, J. Durbin and J.M. Evans
(1975) ..

For an up-to-date review of recent progress ig the
field of time sesries analysis (ihcluding methods of
nodelling non~stationary time series), the reader is
referred to the expository paper by S. Makridakis
(1978) . .

In contrast.to»the non-stationary case, the theory
and méthodology associated with stationary time series
models is well- developed. Numerous books have been
written on the theoretical ahd/or practical aspects of
modelling stationary time series (e.g. Box and
Jenkins, 1976; Jehkins and Watts, 1968)., In light of
this féct, it would seem reasonable to attempt to model
a non-stationary tiﬁe series by applying the theory and
meéhodology which have been developed‘for stationary
time series.' One way of achieving this aim, of coﬁrse,

would be to transform the time series to stationarity.
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This is a well-established procedure, and both of the
above-mentioned books describe nethods of doing this,

| Another way of achieving this aim would be to
assume that the index set of the timé series can be
partitioned intb a number of disjoint subsets in such‘a
way that the time series can be treated as if it were
stationary over each subset of the partition, but not
necessarily between subsets of the partition or close
to the boundaries of the subsets, #e shall call a time
serias with this characteristic a PIECEWISE STATIONARY
TIME SERIES., This definition is analagous to the
definition of a piecewise linear or a piecewise
continuous function in real analysis.

Consider now the following set of conditions: 1at

the subsets of the partition referred to above be

defined by

-infinity < t < t*' (1)}

T(1) = [t:
T(2) = {t: t'(1) <= £ < t'(2)}
T(i) = {t: t1(i-1) <= t < t' (i)}
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T(n+1) = {t: t'(n) <=t < infinity}.

Thé points t* (1), t'(2), evs,s t?'(n) will be called
CHANGE-POINTS, Let X[1}, i E i, be a piecewise
stationary stochastic proéess defined on the set of
integers, I, and let x(%, x(2), ..., be a sequence of
sample values of X. ¥We are concerned with the problen
of using this sequence of observations to detect a
change from one subset of the partition to another. We
shall call this the GENERAL SEQUENTIAL CHANGE-POINT
DETECTION PROBLEM, .

The special case of this problem which we shall

focus our attention on is the.one such that:

1. WITHIN each subset of the partition, the.
random variables, X[i], 1 E I, are either

a.) independent and identicglly?distributed, or

b,) they follow an autoregreséive-moving'average

(ARMA) model. .

2, BETWEEN each subset of the partition, the
distributions of the random variables differ by a
change in

a.) the meén of a distribution function, which
ma§ or may not be normal, or

b.) one or more of the autoregressive or moviﬁg

average parameters of an ARMA model.
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3, There is only one change-point, say t', and
thlis change-point is unknown, The procedures discussed
may be re-applied to detect successive change-points if

they are relatively far apart., .

4, There is a fully-specified mathematical
model for the stochastic process, and the purpose of
monitoring the observations is to detect significant

deviations of the process from this model.

From now on, whenever we refer to a sequantial
change-point detection problem, we shall be referring
to the above-defined problem, Note that we are NOT |
concerned with the problem of estimating the
change~points, but rather with detecting a change
from one subset of the partition to another,

Page (1955) and.ﬂinkley (1971) are two authofs vho
have worked on the change-point estimation problen,
Note also that we are concernad with sequential
procedures and NOT fixed-sample-size procedures,

Many authors have adopted a fixed-sample-size approach
to this problem; for example, Brown, Durbin and

:Evans (1975) and Schweder (1976). Illustrative
exémples of change-point detection problems, and the
application of sequential control procedures to these

problems, will be given in the next section,
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SECTION 1,2: APPLICATIONS OF SEQUENTIAL CONTROL

PROCEDURES
1. - Industrial Quality Control

Perhaps the most obvious application of sequential
control procedures is in the field of industrial
quality control. Suppose that a manufacturing process
produces a sequence of batches 6f items (e.9..
handbags, chemical fertilizer, bubblegum), and suppose
further that it is possible to assign to every item in
evéry batch a number which can be used to assess the
quality of the item according to a specified set of
criteria. A 'quality number' such as this may simply
be soma measured or counted characteristic of the item
(e.g., 1length, weight, number of defects per square
meter, etc,), or it may be an assigned quantity
representing the level of quality of the item on a
nominal scale (e.g. good = 1, bad = 0, etc,). The
chief task of industrial quality control is to select a
sequence of samples of items (one sample from each
batch), compute a corresponding sequence of statistics,
x(1), x(2), +.., and basad on an analysis of this
informatidn, determine if the level of guality of the
ba£ches prodﬁced by the process has changed
significantly from some TARGET VALUE,

If +he procedure indicates that a significant
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change has occurred, then action is taken to determine
if the change is due to randonm variation or a real
change in the nature of the production process. 1In
the former case the signal is said to be a FALSE ALARM
and the control procedure is re-started, while im the
latter case the process is said to be OUT OF CONTEOL
and measures are initiated to bring the process back
into control, aftef wvhich the control procedure is
re-started. , In this sense the process is sequentially
fcontrolled' by the statistical procedure (hence the
name SEQUENTIAL CONTROL PROCEDURE).

| One way of attacking the problem faced in
industrial guality control is to assume that the
sequence of observations, x(1), x(2), ... are sample
values of a sequence of random variables, X[ 1], X[2],
»ss, and that a change in the level of quality of the
industrial process is equivalent to a change in the
joint distribution of these random variables. For
example, we could assume that, when the level of
quality of the batches produced by the process is
satisfactory, the x{i}), i = 1,2, ... form a sequence
of independent, identically-distributed normal random
variables with a known mean and standard deviation.
Depending on the circumstances, it migﬁt be reasonable
to assuﬁe that a change in the level of gquality of the
batches is due to a changs in the mean, standard \

deviation, serial correlation coefficient, or some
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othar parameter (possibly vector~valued), associated
with their joint distribution. A value of this
parameter which results in an acceptable level of
quality will be called an ACCEPTABLE PARAMETER VALUE
(APV), and a value which results in a rejectable 1evei
of quality will be called a REJECTABLE PARAMETER VALUE
(RPV) . The difference between the target value and the
actual level of quality of a batch will be referred to
as the ERROR or DEVIATION of that batch,

At this point we should distinguish between the
type of statistical control procedure which initiates
action after each observation, and the tybe-which
initiates action only after evidence of a possibly
significant departure from the target value. The
formar type of control procedure is often implemented
on an automatic device which is directly connected to
the production machinery, such as é computer-controlled
servo-mechanism, and for this reason will be referred
‘to as a NO-DELAY CONTROL PROCEDURE. In contrast, the
1attér type of control procesdure is typically
implemented by a human, such as a guality control
inspactor, or by a piece of auxillary equipment, such
as an emergency warning device, and consequently will
be referred to as a DELAYED CONTROL PROCEDURE,

No;delay control procedures are most profitably applied
to situations in which the possible sources of errors,

and the corresponding appropriate corrective actionms,
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are well-known, and the cost of taking the corrective
actions is relatively spall. oOn the other hand,
delayed control procedures are most profitably applied
when one or more of these conditions do not hold, or as
back~-up systems for no-delay control procedures, The
‘adaptive feedback control procedures described in the
book bj Box and Jenkins, (1976, part 4), are examples
of no-delay control procedures, whereas the.control
chart procedures described in the review paper by S.VW..
Roberts (1966) are examples of d=layed control
procedures, In this thesis we are mainly concerned

with delayed sequantial control procedures,
2, Remote Control and Tracking of Moving Objects

Consider now the problem of controlling the
poéition of an object in two dimensions, The
observations, x{(1), x(2), ..« , correspond to
*tracking signals' which measure the deviation of the
object above of below a target path, say f(t), where
f(t) is the preferred position of the object at time t.
The purpose of the ccntrcl procedure is to detect
‘significant departures from the target path, so that
action can be taken to correct the trajectory of the
obﬁect‘by remote control.

The problem posed in this application differs in

at least two respects from the problem pos=2d4 in the
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quality control application., The first difference is
that in this application the index space of the. »
underlying stochastic process is continuous, since the.
position of the object at any ﬁoint in time is
well-defined, whereas in the quality control
application the index set of the underlying stochastic
process is discrete, since batches of items are
discrete entities, Secondly, in this aéplication the
target value varies as a function of the index
variable, whereas in the quality control application
the target value is independent of the index. However,
these are not major differences from our point of view,
as the random variables, X[1], X{2], ..., corresponding
to the tracking signals, x(1), X{(2), ++., d0 have a
discrete index space, and are centered about a constant
value of zero when the trajectory of the object is
under control.

We realize that a no-delaj.control procedure is
probably required to directly control the trajectory of
the objecf, but a delayed control procedure may be

useful as a back-up system,
3., TEconomic Impact Studies
Another interesting application of sesquential

control procedures is to economic impact studies, The

major aims of an ecoromic impact study are to determine.
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if a certain event with economic ramifications (e.g..
the introduction of a new .tax measure; the unfolding of
a political scandal; the announcement of a
nulti-million dollar traﬁe agréement; etc) has had, or
is having, a significant impact on the economy, and if
so, the extent and time of onset of the impact. The
extent of the impact is usually measured by chaﬁges in
one or more economic indicators, such as the consumer
price index, or the gross mnational product, We will
only consider the case of a single economic indicator..
It should be eméhasized that even though the time of
the economic event might be known, the time of the
ons2t of the impact might still be unknown, except, of
course; that if the impact does occur, it must
certainly occur after the economic event, .

The problem of detecting a significant impact nmay
be dealt with by fitting a time saries model to data
prior to the occurrence of the economic'event. and then
monitoring the sequence of one-step-ahead forecast
arrors (deviations from the values of the economic
indicator forecast by the model) in search of an
otherwise unexplainable change in their joint

distribution.
4, Drug Response Studies

It would not be very difficult to re-word the
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above problem so that it refers to the problem of
sequentially monitoring values of a physiological index
ih,ordar to determine if a certain drug has had, or is
having, a significant impact oﬁ the health of a-
patient. Thus, this type of problem may also be

treated as a sequential change-point detection problem,
5. Emergency Warning Systenms

Suppose that the occurrence of a certain event is
considered extremely undesirable, and that it is known
that the event is usually precaded by changes in the
Structure of one or more stochastic processes. Whether
the changes cause the onset of tha event or vice versa
is immaterial; the important thing is that the changes
usually precede the event, . In this sort of situation
it might be useful to construct an emergency warning
system by monitoring a sequence of observations
generated by these stochastic processes and issuing a
warning signal whenever there is sufficient evidence of
ona or more changes in their structure, Some of the
areas in which such a system might be useful are
‘meteorology, pollution monitoring and industrial

accident prevention.

We could supply the reader with many more

examples, but we hope that the above examples are
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sufficient to give the reader an idea of the scops of
the'applications of sequential control procedures., It
is possible that some of the control procedures to

be discussed in this thesis coﬁld be applied to some of
the above- mentioned applications, but it is unlikely‘
that any of the control procedures could be applied
successfully to all of the applications. 1In general,
the control procedure’which is appropriate for a
particular application will depend on the unique:
characteristics of that application. In other words,
there is no such thing as an all-parpose segquential

control procedure, .
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SECTION 1,3: SEQUENTIAL CONTROL PROCEDURES - AN

OVERVIEW

The vast majority of the work on the development
of sequential control procedures has been done in the‘
field of industrial quality control, and so we have
decided to discuss them in this context., The special
case of the sequential change~point detection problem
étudied most frequently in this field is that in which
the observations, which measure the level of quality of
the batches of items produced by the process, are
treated as values of independent random variables..
Typically,_the commoﬁ distribution function of the
random variables is fully-specified when the process is
in‘control, and only partially-specified when the
process is out of control. An out of control condition
is assumed to be caused by a change in the value of a
parameter of the distribution function, usually the
mean or standard deviation, The distribution function
itself is usually assum2d to be of some standard form,
such as that given by the normal curve, We shall begin
our discussion in this saction by a review of the sonme
of the methods which have been developed for this
special case,

* One of the oldest and most widely-applied
séquential control procedures was introduced by W.ﬁ.

Shewhart (1931) in the United States and B.P. Dudding
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and W.J Jennet (1942) in Great Britain. The ess=2ntial
features of the original form of this procedure are
outlined in the following steps: given the sequence of
batches of items produced by tﬁe manufacturing process,
and a targst value, m', for the average acceptable |

quality level,

1. Take a sample of N items from the ith batch,

for 1 = 1,2, ..., and conpute the quality level,
x(i,3 ., j= 1,2, ... s N
of 2ach item in the batch.

2, Compute the mean quality level of the items in

sach batch,
x(i) = [x(i,) + ... + x(i,N) /¥

and plot the points (i,x(i)) on a graph, for i =

1’2' *e

3., If the mean of the ith sample falls more than
g standard deviations (where g > 0 is a spacified
nu&ber,‘usually 3) above or below the target value,
signal that the process is out of control and take

appropriate action; otherwise continue sampling,
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The graph of the points (i,x(i)), i = 1,2, ...
tégether wifh the super-imposed TARGET LINE (or center

line),
x = m?,

and ACTION LINES (or g-sigma limits),
x = mn' + g,s!
x = n' - g,s!,

is called an XBAR, or SHEWHART, CONTROL CHART,

One disadvantage of this scheme which is
immediately obvious is that only the current mean,
x (1), is used at the ith stage of the procesdure to
decide if the process is in control or out of control. .
No use if made of the previous wmeans, x{i-j), j = 1,2,
+s» o and in this sense the procedure does not have a
'memory', In fact, the standard xbar control chart is
equivalent to a sequence of independently-applied
standard normal tests (often called z-tests).. Although
this procedure is sensitive to relatively large changes
in the average quality level, (2.9. more than g
standard deviations frbm the target value), it is

insensitive to smaller changes,-
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Dudding and Jennet (1942), proposed that WARNING

LINES,
x = n' + g(W).s' , 0 < g(w) <g
X = m' - g(w).s?',

be placed on opposite sides of the target line and
inside of the action lines, and that a specified number
of points between the warning and action lines, or a
single point outside of the action lines, should cause
an out of control signal to be issued. Several other
authors, (e.g. Weiler, 1953, Moore, 1958, as reporfed
in Page, 1961), considered similar schemes involving
runs of points within certain horizontal regions of a
control chart,  Schemes such as this are known as RUN
TESTS.,

An interesting variant of a run test, called a RUN
SUM TEST, was discussed by Roberts (1966). The control
chart is partitioned into a number of disjoint zones,
syammetrically situated on either side of the center
line, and a non-zero integer score is assigned to each
of these zones. Zones above the center line are
assigned a positi;e score; those below the center line
are assigned a negative score; and the magnitudes of
the scora2s increase as a function of the distance of

the zones from the center line, The scores are.
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accﬁmulated on positive and on negétive runs, and when
the magnitude of the cumulative sum exceeds a specified
value, an out of control signal is produced. As we
shall see, this type of procedure may be treated as a
restricted form of a more general éumulative sunm
procedure,

Two other technigues which are designed to make
greater use of the available information are based on
the construction of moving average and geometric moving
average charts (Roberts, 1959, 1966). A MOVING AVERAGE
of order p is simply the arithmetic mean of the p most
recent sample means, x(i), x(i-1), ... , x(i-pt1),

i, e, .

n{i,p) = [x(i) + ... + x(i-p+1) Y/p,

The points (i, m(i,p)) are plotted on a graph, as
with the Shewhart chart, and an out of contfol
condition is signalled if the most recent point falls
outside of a zone determined by two horizontal lines
super-imposed on the graph. Although the moving
average of order p obviously uses more of the available
information than the simple Shewhart chart, it still
does not utilize all of the information available.
Moéeover, the number of terms *o be used in a moving
average is a thorny problem in practice, as too few

terms make the procedure insensitive to small changes
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in the mean, whereas too many terms make the procedure
insensitive to large changes, Indeed, for p= 1, a
moving average chart reduces to an (unmodified)
Shewhart chart, and as p approaéhes infinity, recent
observations receive increasingly smaller weights.

A GEOHETRIC MOVING AVERAGE (also called an
EXPONENTIALLY- WEIGHTED MOVING AVERAGE) with weight a,
0 <a < 11is given by thé recursive formula, for i =

1, 2' s .
g({i) = (1-a).g(i-1) + a.x(i), g(0) = nmn', .

A geometric moving average control chart is
similar in construction to the other control charts
mentioned previously. Note that although a geometric
moving average uses all of the available information at
each stage of the procedure, it places successively
smaller weights on the information contained in past
samples., This may or may not be a good feature,
depending on the importance of the information
contained in the previous samples, Also, the
performance of this method is quite sensitive to the
choice of the weighting factor, a, which determines the
extent to which information from the past is
digcounted, and it is not always easy to choose a
reliable value of this parameter.

It is possible to use a SEQUENTIAL PROBABILITY
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RATIO TEST, or SPRT, as a sequential control procedure,
although it was not designed for this purpose. The ith
SPRT statistic, w(i), is the sum of the logarithms of a
sequence of probability ratio Statistics.A If the
observations are independent and
identically-distributed with density f(x;c), and if ¢ =
c (0) under the null hypothesis and ¢ = c(1) under the.

alternate hypothesis, then
w(il) = w(@i-1) + 1n{f(x;c(1))/Ef(x;c{0)], w(0) = w!

Sampling continues as long as b < w(i) < a, with
acceptance of the nanll hypothesié if w{i) <= b and
rejection if w(i) >= a. We shall call any test of this
sort a WALD TEST, whether or not w(i) - w(i-1) is a
probability ratio statistic, See the bogk by Ghosh
(1970) for a comprehensive account of the theory of
sequential tests of hypotheses,

In this situation, an out of control signal is
produced if the null hypothesis is either accepted or
rejectad. That is, the union of the usual acceptance
and rejection ragions constitutes the out of cecntrol
‘region of the scheme, This procedure uses all of the
available information, and is uniformly'most efficient
under cartain conditions. Bagshaw (1974) developead
a one-sided version of this scheme and obtained a

Wiener process approximation to some of its properties.
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He showed, however, that segquential control procedures
based on SPRT's may not be as efficient as CUSUM
control procedures (discussed below) in detecting a
small change in the mean of a ﬁrocess when the
change-point, t', is unknown, which is the case we

are interested in, .

The cumulative sum (CUSUM) procedures introduced
by E.S. Page in 1954 make use of all the available
information and are reasonably éensitive to both swmall
and large changes in thé mean., Page discussed a number
of different iules for controlling a process with a
cumulative sum procedure, and we shall discuss most of

these in the next chapter. The ith cumulative sum is

usually computed using a recursive formnla of the form:
s(i) = s{i-1) + (x(i) - X), s{0) = 0. .

The quantity k is called a REFERENCE VALUE and is‘
usually chosen to give the graph of the points,
(i,s(i)), i = 1,2, «..« a downward drift when the
quality of the products being produced by the process
is satisfactory, and an upward drift when the quality
is unsatifactery. One of the rules suggested by Page
‘was that if the graph of the points rises a certain
spécified amount, say h {h > 0), above its previous
minimum, the process should be considered to be out of

control., 1In other words, an out of ccntrol signal
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should be produced whenever
s(i) - min[s(§)] >= h, j <= i,

The quantity h is referred to as the DECISION
INTERVAL or the CRITICAL VALUE of the schene, | This
tyﬁe of CUSUM scheme is appropriate for detecting an
increase in the mean of the process; other, more
general, types can easily be constructed..

In contrast to the standarad Sheuhart chart, a
cunulative sum chart describes the cumulative effect of
'all the sample means produced by the process in the |
past, In this sense a cumulative sum procedure has an
infinite memory. Thus, if the true mean of the process
has increased, this will be reflected in the cumulative
sum chart by a pronounced upward drift in the plotted
poihts.- Also, in a cumulative sum chart, a rough
eﬁtimate of the time at which the increase occurred 1is
the time of the previous nminimum of the cumulative sum.
In fact, as menﬁioned by Page, under certain conditions
this time is the maximum-likelihood estimator of the
change~-point,

As might be expected, a fair number of papers have
been written comparing varicus control chart
pr&ﬁedures. Almost all of the references listad at the
end of this thesis pertaining to CUSUM procedures

contain comparative studies., ¥We particularly recommend
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the papers by W.D. Ewan (1963) and S.W. Roberts
(1966) o
The usual way of comparing control chart

procedures is in ternms of their.average run-length
cﬁrves. In this context, the AVERAGE RUN-LENGTH of a.
procedure is the average number of samples taken before
an out of control signal is produced, and an AVERAGE
RUN-LENGTH CURVE is a graph of the average run-length
of a procedure as a function of the true mean of the
samples, One reason for the importance of the average
run-length curve in practice is thﬁt the cost of
controlling a manufacturing process is oftan an
incr2asing function of both the number of false alarms
vhen the process is in control and the number of
batches produced after the process has gone out of
control. If the average rumr-length is long when the
process is in Control, there will be very few false
alarms, and if the average run-length is short when thé
process is out of control, there will be very feow
batches produced after the.process has gone out of
control. Thus, the cost of controlling a process is
often a monotonic function of a pair of quantities
which are directly related to the average run-length
curve,

’ Another reason for the popularity of the average
run-length curve as a basis for comparing statistical

control proczdures is that it apparently has intuitive
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appeal to people working in the field. Probably one of
the mbst compelling reasons that stgtisticians have .
elected to deal almost exclusively with average
run-length curves is that in most éases it appear; to
be very difficult to derive the run-length
distributions in an explicit form., In certain cases
the run-length probabilities can be computed
recursively (Ewan and Kemp, 1960), but the required
'computer procedure is computationally expensive and
numerically troublesome, This is an unfortunate
circumstance, as it has long been éppreciated (e.g.
Barnard, 1959), that since run-length distributions
tend to be highly right-skewed, the averége run-iength
of a procedure is not necessarily a very informative
measure of the performance of the procedure. .
predictably, CUSOM control procedures have proven
to be more sensitive to small shifts in the mean of a
process than stardard Shewhart control charts, with tha
reverse being true for large shifts in the mean (Ewan,
1963; Roberts, 1966). CUSUM control procedures also
appeér to be as good as or better than most othar
control procedures with respect to the detection of
small shifts in the mean of a process. However, the
remarks of both Ewan and Roberts suggest that the
differénces’between the average run-length curves of
nost of the established sequential control procedufés

are probably of more interest to mathematicians than to
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people working in the field’of quality control, .
Indeed, in some situations it may be undesirable to use
a coﬁtrol procedure which is too sensitive to small
changes in the mean of the ptocéss, espeéially ifva
fairly broad range of méans is considered acéeptable 6r
the cost of taking corrective action is gquite high. If
these conditions prevail, the standard Shewhart chart
is probably just as usefnl as any of the more
recently-developed procedures, .

As might be inferred from the above comments, we
do not claim that CUSUM procedures are in any way
optimal, but rather that they are competitive, in terms
of their average run-lenggh curves, Hith most of the
other common control chart procedures, and that any
differences between a well-chosen CUSUM procedure and a
hypothetical optimal procedure are likely to be

unimportant from a practical point of view,
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CHAPTER 2

RESULTS OF PAGE, EWAN AND KENP

AND BROOK AND EVANS

INTRODUCTION

‘In this chapter we review some well-known
results concerning CUSUM sequential control procedures, .
The results of Page (1954), Ewan and Kemp (1960) and
Brook and Evans (1972) are reproduced in sections j, 2
and 3, respectively., Of course, many other authors
could have been reviewed (e.g,_ Barnard, 1959; Bissel,
1968; etc.), but we have decided to concentrate on the
afora-mentioned authors because their results are the
most relavant to the chief topic of our thésis - the
run-length distribution of a CUSUM sequential contrql.

proczadure,
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SECTION 2,1: RESULTS OF PAGE

In 1954 E.S;,Page introduced a class of sequential
control procedures which since then have come to be:
known as cumulative sum, or CUSUNM, schemes., He defined
the schemes by listing a number of rules, reproduéed
below, which described how the schemes were to be .

applied:
RULE 1: ‘ i

Take samples of fixed size N at regulat intervals;
assign a SCORE, x(i), to the ith sample and plot the.
cumulative sum

s{n) = x(1) ¢+ .,.. *+ x{(N)
on a chart, Take action if

s{n) - min{s{i) ] >= h,
whera h > 0 and i <= n..

Thé quantity h is currently referred to as the
DECISION INTERVAL or the CRITICAL VALUE of the scheme,

This procedure was designed to detect changes in oniy

one direction (e.g.. an increase in the mean of the
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process),'and is therefore sometimes referred to as a
ONE-SIDED sequential control scheme, ' Page suggested
that the sequence of scores, x(1), x(2), .».. be so
chosen that the sample path of fhe cunulative suams
slopes downwvard when the level of quality of the itemé
produced by the process is acceptable, ané upward when
the level of quality is rejectable, In the case of
¢oﬁtrolling the mean of a procéss; it is now common
practice to produce this typé of sample path by
subtracting a constant, k, called a REFPERENCE VALUE,
from each sample mean. It is also common practice to
scale the cumulative sums by some multiple of tﬁe
standard deviation, which is assumed to be known, .
NOTE: 1In order to simplify our notation, we
generally assume that k = 0, and most of the formulas
in this and the remaining chapters are based on this
assumption, However, this does not present any
theoretical or practical difficulties, as it is only
necessary to maks the transformation X -> X - k in
order to derive the appropriate formulas when |k} > 0.
Page derived the properties of this scheme as
special cases of the properties of thé schames

described in rules 2 and 3.
RULE 2:

pefine
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"

's*(n) = max{0,s'(n-1) + x(n)], (n >= 1),

s' (0)

(|

o,

The above stopping rule is then equivalent to the

rule: take action if
st (n) >= h,..

The schemes described by rules 1 and 2 are
equivalent because the amount by which s? (n) exceeds 0
is always equal to the amount by which s{(n) exceeds
minfs(i) ] for i <= n, and thus s'(n) >= h iff
s{n) - min{s{i) ] >= h.

Page stated that rule 2 (and hence rule 1) is
aquivalent to a sequence of Wald tests with common
boundafies at [{0,h] and common initial values of zzro.
Recall from chapter 1 that a Wald test is a procedure‘

in which sampling continues as long as b < w({i) < a,

 where w(i) = w(i-1) + x{i), %(0) w', with the null
hypothesis being accepted if w{i) <= b and rejected if
w(i) >= a. In the case of a CUSUM scheme, b = 0 and

a = h, If the first test ends on the lower

bougdary, the next test starts at the lower boundary,

and if the first ta2st ends on the upper boundary,

action is taken. Similarly, if the second test ends on



page 31

the lower boundary, the next test starts at the lower
boundary, and if the second test ends on the upper
boundary, action is taken, etc..

Using this equivalence between a CUSUM scheme and
a sequence of Wald tests (which we shall call the HALb
BQUIVALENCE), Page was able to obtain an expression for
the average run-length of a CUSUM scheme in terms of
the average run-lenéth of a ¥Wald test and the
probability that a Wald test will end on the lower
boundary.

Let N'(s) be the average run-length of a CUSUM
procedure starting from s, and let Nw'(s), Nw!(s[0) and
Nw' (sth) be the average,run-lengtﬁ of a Wald test
starting from s, unconditional, conditional upon the
test ending on the lower boundary, and conditional upon
the tast ending on the upper boundary, respectively, .
Also let Pw(s]0) be the probability that the test ends-
on the lower boundary. Fcr notational convenience pat
ﬁ' = N'(0), Nw' = N«#?'(0) and Pw = Pw (0]0). |

Since the wald tests\are applied independently,
the probability that r acceptance tests occur before
the first rejection test is a geometric random variable

with probability mass function

P[R = r] = pt.u - Pw).
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The expected value of R is thus
R* = Pw/(1 - Pv), .

It follows that the average run-length of a CUSUM

scheme is givén by
N' = R',Nw' (010) + Nw'(O]h). .

In words, N!' is equal to the average number of
accaptance tests before the first rejection test, tinmes
the average run-length of an acceptance test, plus the.

average run-length of a rejection test. Using the fact

that
Nw' = Puw.Nw*'(0]0) + (1 - Pw).Nw'(O}jh),
the above squation can be re-expressed as
K'Y = Nw'/(1 - PW).

Thus N' can be computed if Nw' and Pw are
obtainabla, 1t is known (see, for example, van Dobben
ae Bruyn, 1968), that Nw' and Pw can be obtained as
solﬁtions of a pair of integral equations. Let F(x) be
the distribution function of the observations, which

may be discrete or continuous, Then Nw'(s) satifies
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the integral equation

h

But(s) = 1 + fﬂv' {x) ,dF(x - s)
° .

and Pw(s) satisfies the integral equation

| h
Pw(s) = F(-s) + IPw(x).dF {x - s)
0
where 0 <= s < h and the integral is a Sfieltjes
integral., These equations can be derived by
conditioning on the fifst observation,

Page also obtained an approximation to the
run-length distribution of a CUSUM test when Pw is
nearly 1 (i.e. when there is a high probability that
the component Hald tests will end on the lower
boundary).. If N{s] is the random variable represanting
the run-length of a CUSUM scheme starting from s (with
ﬁ = Nf0]), and if G(n;s) = P[N[s] <= n] (with G(n) = |
P[N <= n]), then Page showed that

n’
G{n) -> 1 - Pw

as Pw -> 1, where
n' = 1 + n/Nwt (010).

Another result which Page stated is that if two
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independent CUSUM schemes of this type are operated
simultaneously, then, using the above approximation to
the run~-length distribution of a CUSUM scheme, the
run~length of the combined schepe ‘is distributed as the.
minimum of two independent random variables,. E
Using this result, it can be shown that the following
relationship must hold between the average run-length
of the combined scheme, say N', and the average.
run-lengths of the component 5chemes, say B'(1) and

N' {2):

1/8' = 1/N' (1) + 1/8'(2). .

Page introduced the following rule in order to
derive an alternative integral equation for the average
run~-length of a CUSUM schenme, .

RULE 3:

Compute s(n) as in rule 1, except set s{0) = s,

where 0 <= s < h, Take action if either
{a) s{(n) >= h and s(i) > 0, for 1 E [{1,n~-1},
or (b) s(n) - min{s{(i) ] >= h.

An integral equation for this scheme, which
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generalizes rule 1, is given by

h

N'(s) = 1 + N'(0).F(-s) + fN'(x).dF(x-s) .
[
: !
This integral equation can also be derived by
conditioning on the first observation.
The following rule is a THWO-SIDED CUSUM 'scheme;

that is, it can be used to detect both an increase and

a decrease in the parameter being controlled, .
RULE 4:

Define s(n) as in rule 1 and take action if

either
s{n) - min[s(i) ] >= h?
or max{s(i)] - s(n) >= h'y,

Thus, the two-sided scheme is composed of two
one-sided schemes, and an out of control signal is
produced if either the cumulative sum rises above its
previous minimum by an amount h', or falls below its
previous maximum by an amcunt ht?,

'l The properties of this CUSUM scheme were not
investigated by Page, but he stated that it is possible

to derive integral equations for the average run-length
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directly and in terms of component Wald tests, as in

the case of a one-sided scheme. In this thesis we

shall concentrate mainly on one-sided CUSUM schenes. .
An interesting observation made by Pagé is that if

theus¢ores; x{1), x(zj, sse . are log-probability ratid

statistics,
x(1) = log{E(x;c(1))/£(x;c(0)) ],

and if the parameter c increases from ¢ = c(0) to

¢ = c(1) at the point t', then the time corresponding
to the minimum of the cumulative sum, s{n), is the
maximum-likelihood estimator of the change-point £,

In addition to characterizing a CUSUM schem2 as a
sequence of Wald tests, Page also recognized that a
CUSUM schzme can be treated as a random walk betwesn an
absorbing barrier at h and a holding’(reflecting)
barrier at zero. This equivalence has proven to be a
useful analytical tool, and we shall refer to it as tﬂe
RANDOM WALK EQUIVALENCE.

Page also made a number of other significant
contributions to both the theory and practice of
qumulative sun tests (most of his important papers are
listad in the bibliography), but we do not intend to

focus on his other results in this thesis.



page 37
SECTION 2.2: RESULTS OF EWAN AND KEMP

In a series of papers (Ewvan and Kemp, 1960; Ewan,
1963; Kemp, 1961-1971), w.n.,EwAn and K.¥W., Kemp
extended both the theory and meihodology of CUSUN
sequential control procedures.. The 1963 paper by Ewan
is recommended as an introduction to the methodology,
and the 1971 paper by Remp is recommended as a
rigorous treatment of the theory. Most of the results
vhich ve review in this section are contained in
thgir joint 1360 paper..

Starting with the following recursive equation for
the run-length probabilities

h

P{(n;s) P{n-1;0).F(-s) + I'P(n—l;x).dF(x-s),
0

1

P(1;:s)

1 - P(h-s),

which was obtained by conditioning on the first
observation, Evan and Kemp showed that the moment
generating function, M!'(t;s), of the random variable

N{s] satisfies the recursive equation

H' (t;s) = exp[t]sf1 - F(h-s) + M'(t;0).F(~-53)

h

+ IH' {t;x) .dF {x~s) ).
/]
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It is easy to establish this result by noting that

the definition of M' (t;s) is
m .
MY (t;s) = ZP(n;s).exp[n.t]). .
=)

If both sides of the recursive equation for P{(n;s)
are multiplied by exp[n.t] and then summed over n, the
recursive equation for.u'(t;s) is obtained,

By repeatedly differentiating the recursive
equation for M!(t;s) with respect to t and setting t =
0, it is possible to derive»inteéral equations which
the moments of N[s] must satisfy, Foi exanmple,
differentiating once and setting t = 0 we get

h

N'(s) = 1 + N'"(0).FP(-s) + fn'(x).dr(x-s),
o
‘which is the integral equation for N'({s) obtained
by Page, Similarly, if N''(s) is the second momeant of

N[ s], we must have

N''(s) = 2.N'(s) = 1 + N'"{0).F(-s)

h

+ fnn {x).dF (x-s) .
0
An interesting observation made by Ewan and Kemp
is that if we are using a CUSOM control procedure to

detect an increase in the mean, m', of the
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observations, and if the mean does increase, a rough

apprbximation to the average run-length of tﬁe cUsun

sdheme is given by
N'* = 1 ¢+ h/m', (approximately),

They did not attempt to justify this assertion. .

By solving the integral equation for N' with a
number of different parameter values, Ewan and Kemp
constructed a nomogram which can be used to determine
the average run-length of a CUSUM scheme, given the
parameter values, They assumed that the observations
are normally distributed. A table of the average
run-lengths of CUSUM schemes for selected parameter
values (assuming normality and a standard deviation
of 1) is available in the book by van Dobben de Bruyn
(1968) .

Based on an analysis of their nomogram, Ewan and
Kemp obszrved that if a reference value, k, is
subtracted from each observation, and if we want the
average run~length at m* = m'(a) to be fixed af some
‘ value, say C, then the average run-length at m' = m' (r)

is minimized by chdosing
k =[n'(a) + a'(r) }/2.

In the above, m'({a) is an acceptable parameter
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value, a'(r) is a rejectable parameter value, and for
convenience vwe assume n'(r) > m*'{a). This observation
has been theoretically justified by both Reynolds
(1975) and Bagshaw and Johnson (1975c).,

It has been pointed out by Bissell (1968) that
this value of k is not necessarily optimal (even
approximately) if the variance of the observations
changes ihen'the mean changes, |

It is also possible to express M'(t;0) as a
function of the moment generating function, Mw'(t;0)0)
of a Wald test which, starting from zero, ends on the
lower boundary, and‘the moment generating function,
Mw'(t;01h), of a Wald test which, starting from zeré,
ends on the upper boundary. The functional

relationship is
MY (£;0) = [1 - Pwl.¥w'(t;01h)/[1 - Pw.Mw' (t;0(0) 1.

The most straightforward way of obtaining the
abqve result is to make use of another functional
relationship which Ewan and Kemp established. Let
Pu(m;040) be the probability that a simple Wald test
starting from zero will end on the lower boundary in =
steps, and let Pw(m;0|h) be the corresponding
pr&ﬁability that it ends on the upper boundary in m
steps. Then by enumerating all the possible outcomes

of the Wald tests of which the CUSUM control



page U1

procedure is composed, it follows that

n-4
P(n;0) = Pw(n;01h) + Pw(m;040) .Pw(n-m;0|h)..

mz¢

That is, the event that the CUSUM control
procedure, starting from zero, ends on the upper
boundary in n steps is equivalent to the event that a
Wwald test starting from zero ends on the upper boundary
in n steps, or it ends on the lower boundary in m steps
and is followed by a Wald test which ends on the upper
boundary in p-m steps, for some m E [ 1,n-1].

If we multiply the above equation by exp[n.f] and
sum over n, we obtain the functional relationship
between M* (t;0), Mw'(t;040) and Mw?({t;0}h). We note in
passing that it must be possible to derive the
relationship between N' and Nw' obtained by Page and
mention=2d in section 1 by differentiating M¥*(t;0) with
rTespect to t and setting t = 0, |

We see from the above result that one way to find
P{n;0) is to first find Pw(m;040) and Pw(m;0{h), and
then to employ the relationship between these
gquantities, Ewan and Kemp showed that Pw(m3;0}10) and
Pw(m;0}h) satisfy a pair of integral =squations, which

w2 shall reproduce below. Let

H{n,x;s) = P[S[{n] <= x{s{i] E (O,h), i < n}
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vhere 5[{0] = s and n >= 1,

By conditioning on the first observation after
S[n-1] (i.e. X[n]), we find that the following
recursive equation holds

h
H(n,x;s) = IF(x-—u‘).dH(n—Lu;s)..
- 0

Given this method of computing H{n,x;s)
recursively, the quantities Pw(m;0]0) and Pw(m;0fh) can
be found by means of the eguations |

0
Pw(m;040) = faa(m,u;o), and
,-°°+oo
Pw(m;0lh) = [dﬂ(m,u;()),
h

respectively., The first equation computes all
ths possible ways in which a Wald test, starting from
0, can reach the lower boundary in m steps, while the
second equation computes all the possible ways in
vhich the upper boundary can be reached in m steps.

Besides demonstrating several ways in which the
exact run-length distributicn of N can be obtained,
Evan and Kemp also derived an asymptotic approximation
to the distribution., By repeatedly differentiating the
mom;nt-generating function of Ni, M* (t;0), they were
able to show that if N' is large, the variance of N is

approximately the square of N!', so that it is
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reasonable to anticipate that, except for small values

df n;
G(n) = 1 - exp(-(n=-1)/N*') (approximately).

An important iﬁplication of this result, which
Evan and Kemp pointed out, is that when N' is large,
the distribution of N is completely determined by N°¢, .
This fact re-inforces, and justifies; in an asyﬁptotic
sense, the statement made in the previous chapter that
the average run-length is a very important quantity in
the study of sequential control procedures.

In his 1961 paper, Kemp established that a useful
relationship exists between N?, N' (1) and N'(2), where
N' is the average run-length of Page's two-sided CUSUM
procedure, and N'(s) and N'({2) are the average
run-lengths of the tio one-sided procedures of which it
is composed, Recall'that Page's two-sided procedure

signals at the first n such that either
s(n) - min{s(i) ] >= h?

or max[s(i)] - s(n) >= h'?,

Kéﬁp showed that if h' = h*' = h, then

1/8' = 1/8' (1) + 1/N"(2).
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This result was later proved by Reynolds (1975)..
The following alternative methods of computing
P(n;0), Pv and N' were provided by Kemp in his 1971
wm) : '
paper: (He = H(n,oo;O))

) - n-l ,
P(n;0) =H_- H(n,h;i0) + Z H(i,0;0).P(n-i;0),
‘ {=0

Qo
Pv = 3 H(i,0;0), and
=l

> @ .
N? =£1,[H°; H{(i,h;0) ¢ H(i,0;0) /{1 - Pw].
= |

The first two equations are established by enumeration

and the last equation follows from the fact that
N* = Nw?'/(1 - Pw),

and from the definition of Nﬁ'.

Evan and Kemp also made a number of other
contributions to the theory and ptactice of CUSUM
control procedures, but wve shall not discuss these
results in this thesis as they are not pertinent to our

main topic,
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SECTION 2,3: RESULTS OF BROOK AND EVANS

D. Brook and D.A. Evans (1972) exploited the
random walk equivalence to aeveiop methods of obtaining
the moments and run-length distrihution of a CUSUM
scheme,  Their method is theoretically applicable to
any sequence of cumulative sums of i.i.d., discrete
random variables, and as an approximation to i.i.d.
continuous random variables as ueli._ They treated the
different possible values of the cunmulative sums as
states of a Markov chain, with h being an absorbing
state and zero being a reflecting state, . They derived
the transition probability matrix of the chaig, and
based on this they determined the moments and

run-length distribution of the CUSUM schene, They also

obtained an asymptotic approximation to the run-length

distribution,
Let
r{0) = {(-infinity,0]
r(i) = ((i”)o“,i.“]' (i = 1, 2, so 0 m)

r{m+1) = [(h,infinity),

where 0 < w < h/m, r(m+1) = r{h) by definition, and

r{0), s+, C(n+t1) form a partition of the real linse,
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The transition probabilities may be defined in the

following manner:

P(i,j) = P{S[n} E r(j)is[n~-1] E r(i) ],
vhere i,j = 0, 1, .4y, B+1 and P(h,j) = P(m+1,35),
P(i,h) = P(i,m+1) by definition. Thus, the transitiomn
probability matrix, A, is given by

pP(0,0), P(0,1), eeo. , P(O,m), P(O,h)

P(1,0), P(1,1), s4s. , P{1,m), P(1,h)

P(2,0), P{(2,1), ees. , P(2,m), P(2,h)

P(m,0), P(m,1)y ees , P(m,m), P(m,h)
P(h,0), P(h,V), «». s P(h,m), P(h,h)

It is immediately obvious that

i
(=]

‘ P(h,i) (1 =0,1, ¢eo, m),

P(h,h)

i
-
-
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P(0,i) = P[X E r(i)] 1 =0,1 .o, n+l),

Using the midpoint of the interval ({(i-1).v,i.v]
as a token point for the interval, we find that the

remaining transition probabilities are approximated by
P(i,j) = P[X + i.,vw - w/2 Ex(j)],

i=1,2, «vo, @and j=0,1, ..., n+tl,.

We shall now discuss some of the results of Brook
and Bvans,  Let N[i] be the run-length of S[n] starting
from state i, let N' (i) be the average run-length, and
let N(k;i)! be the kth factorial moment of N[i]; that

is,
N(k;i)! = B{N1i)e(F[i]=1) s .ea (N[i]J-k+1)].

In particular, N(1;i)! = N' (i), .

If B is the matrix obtained by deleting the last
row and last column of A, and if g: is an (m+!1 x 1)
column vector with ¢omponents N'"(0), N' (1), eee, H'{(m),
then Brook and Evans showed that a matrix squation for

N is given by

(I-B).J =4

wvhere I is an (m+1 x m+1) identity matrix and Jvis
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an {(m+1 x 1} column vector of ones. .

Note the sihilarity betveen this formula and the
formula for the mean of a geometric distribution. If
ve observe a sequence of indepehdent trials with a
fixed probability, p, of success on each trial, then
the probability that the first failure occurs on trial
t is given by

,, &
P[T = t] = p. (1-p).

e

The mean of T, say T*, is given by
(1-p) «T' = 1.

The similarity referred to above should now be
obvious, We shall see that there are more similarities
between the properties of the run-length distribution
of a CUSUM scheme and the geometric distribution,-

NOTE: The varigbles R and T are both geometric
random variables, but they have different means because
they have been defined differently. P{R=r] is the
probability of obtaining the first failure on the
(r+1)st trial, and P[T=t] is the probability of

.obtaining the first failure on trial t. Thus,

P[R=r] = p.P[T=r].
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If we define N(k)! to be the (m+1 x 1) column
vector with components N(k;0)?, N(k;1)!, «eo, N{k:m)?,

then Brook and Evans showed that
(I - B) 0N~(k)! = k, Boyk"‘i)!.

Once again, thére is a striking similarity between
this recursive rglationship'and the one that holdé
betvween the facta;ial moments of a geometric randonm
variable, If T(k)! is the kth factorial moment of a

geoma2tric random variable,
(1-p) (k) ! = k.p.T(k=-1)1,

wvhich is obviously of the same form as the
prec2ding matrix eguation..
BY successive substitution we obtain the following

explicit form for the kth factorial moment of-}b where

ﬁ,z [N{O0]y ees, N[(m]]:
(I"B, .INV(k’! = k!cacb

This equation is analagous to the following
equation which holds for the kth factorial moment of a
.geOmetric random variable:

A y

(1-p) . T(k)?! = k!.p.
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Let xgn) be the (m+1 x 1) column vector with
components P(n;O), Pn;1, ¢se, P{n;m).. Then Brook and

Evans showed that a recursive equaticn for‘gjn) is

given by
’g'(i) = (I -~ B).'L,
R = B.R(n-1,

for n =2, 3, ... By successive substitutions we
discover that -

hel
E(n) = 8' (I - B) ol. .

This is obviously of the same form as the
probability funétion for the geometric random variable,
T (see above),

If we define g}n) to be the (m+1 x>l) column
vector with components G(n3;0), 6(n3;1), +e», G(n;m),
then Brook and Evans state that K0) satisfies the
following matrix equation:

h
EJB) = (I-B).brx:?, 2, sew

The geometric random variable T satisfies a
g

univariate analogue of the above equation,
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Brook and Evans used the following argument to
establish their asynptofic results:

By the Perron-Frobenius Theorem (Cox and Miller,
1965, p120), if B is irreduciblé and primitive, then
B has.a unique maximum eigenfalue q > 0; and |

corresponding to gq there exists two positive

eigenvectors , )& and xg, such that
B'u = g!ur
128 = 1.2,

1f vl and Y2 are normalized sqch that gg:.gl'= 1,

then (Cox and ﬁiller, 1965, page 123)
n
- L - 3 3 ]
B/q" > 3\’:% {n => infinity).

Let Vvi(i), v2¢(), i =0, 1, «e» ,m be the

componants of vl and Ve respectively, and let

m . ’
<= [Eovzu)].u..

Then by making usz of the above facts, it can be
shown that the above matrix equations for y;, ﬁ&k)!,

L(ﬁ) and ;Jn) converge to

PRSI IALE
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) ¥

Ayt -> c.kloq/(1-q),

-}
R => & (1-q) .q,
n
&(n, -> l - z;qo

as n ~> infinity,
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CHAPTER 3

RESULTS OF BAGSHAW AND JOHNSORN

INTRODUCTION

In section 1 of this chaptér we reviev some topics
from time series analysis which serve as background
material for the subjects covered in the following two
sections., Specifically, we look at the‘so-called
Box-Jenkins method of modelling ARIMA time series, a
number of properties of Wiener processes, and a
functional central limit theorem,  In the next section
we review the work of Bagshaw and Johnson on the
problem of detecting an increase in the mean of an ARMA
procass. The last section deals with the complimentary
problem of detecting a change in an autoregressive or
moving averaqge parameter. The work of some other

authors on related problems is also discussed.



page 54

SECTION 3,1: REVIEW OF SOME TOPICS FROM

TIME SERIES ANALYSIS
PART 1: The Box-~Jenkins Method

Much of the recent work of Bagshav and Johnson
{(2.9g. 1975a, 1977), is based on the assumption that
the stochastic process being controlled follows aﬁ ARMA
nodel., - Since we intend to review their work later on
in this chapter, it is appropriate that we first
discuss the class of ARMA time series models, . The most
popular mathod of fitting Aéua models to time series
data is undoubtedly the so-called Box-Jenkins method,
so we have decided to present our discussion of ARMA
models in the context of this method.

Box and Jenkins (1976) have developed a method of
forecasting time series which theoretically produces
uncorrelated one-step-ahkead forecast errors, . In this
section we shall only describe those aspects of the
Box-Jenkins method which are relevant to the ensuing
discussion, -

Given a time series, XI[t]; t =1, 2, 40, the
Box-Jenkins method consists essentially of transfdrming
this seriss into a stationary time series, X[(t}], £t = 1,
2, ;..,'fitting an ARMA model to the transformed
series, checking to determine if the data fits the

model adaguately, and either using the model to produce
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forecasts or chposing another model and repeating the.
above stéps, depending on whether the fit is adequate
or not.. | -

Box and Jenkins suggest differencing the tima
series a sufficient number of times to insure
stationarity. That is, set tﬁe X[t ] series equal to

the dth difference of the X1[t] series,
X(t) = D[ aj:xit]..

D{d}: 1is the DIFFERENCE OPERATOR and can be

defined recursively in the following manner:

D[ 1]:X1[t] = XI1[t] - XI[t=-1],

D[2]:X1[t] = D[ 1):X1[¢] = D[ 1]:X1[t-17,

D{dJ:X1(t] = D[d-1]:X1[t] - D[d—l]ﬁxl[t-l].n
Repeated differences can also sometimes be used to
gliminate a seasonal effect, although in this case the
periodicity of the time series must be taken into
accéunt.  The numrber of differerces, 4, is usualiy
chosen by repeatedly differencing the Xi[t] time series

until the auto-correlations generated by the X{t] time



page 56

series appear to be independent of the time origin
(that is, untilvthey appear to depend only on tinme
differences}; which is a property of a stationary tinme
series (Box and Jenkins, 1976, éhapter 1)..

Of course, other types of transformations, éuch as
the Box-Cox transforhations (1964) , may be useful in
this regard.. A comprehensive review of
statistical transformation tedhnigues‘is available in
the paper by M,H. Hoyle (1973). .

An AUTOREGRESSYVE-MOVING AVERAGE (ARMA) tinme

series has the following form:
X[t] "&(1’ DX{t'I] - eew - a(p) .X{t-p],
= E{t] - b(1).E[t-1] - ... = b{q).E[t-q],

where Ap = [a(1), ssss a(p) ] and Bq = [b(1), cee,

b(q) ] are two vectors of constants, and where E[t] is a‘
white-noise stochastic‘process (usually a sequence of
i.i,4. normal random variables with a mean of zero and
a variance of E*'), When ve wish to emphasize the
dependence of an ARMA model on the parameters p, q, Ap
and Bq we shall use the notation ARMA{p,q,3Ap,Bq]..

‘ The above model can be conveniently represented by

thejoperator equation:

L{Ap]:X[t] = R[Bql:E[t],
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vhere

- 3(1).1‘(1]: coe . ™ a(p).T[p]='

il
-t

L[ Ap]:
R[Bq]: = 1 - b(’)oT[1]= see .= b(q’.T[q]'
and

T{m]:X[t]

X{t-m] is the BACKSHIFT OPERATOR. .

If the X{t] time series follows an ARMA[ p,.q,2ApP.Bq]
model, and if it was obtained from the X1[t] time
series by differencing the latter time series d times,
then the X{{t] time series is said to follow an
AUTOREGRESSIVE~-INTEGRATED~-MOVING AVERAGE,

ARIMA[ p,d,9,Ap.Bq], model, .
Box and Jenkins (1976) show that if the roots of

the operator equation, -
L{Ap]): = 0O,

(treating T[m]: as the mth power of a continuous
variable, T), all 1lie outside of the unit circle, the
ARMA process is STATIONARY and may be represented by

the GENERAL LINEAR PROCESS (GLP),
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X{t)}:s = GLP[CJ):E[t]..
In the above equation,
GLP[C): =1 + CN.T{1]: + c(2).T2): + .ouy
and the sequence of constants, C = [c(1), €(2)y ses]
can be found by_expanding R[{BqJ:/L[Ap]: in |

ascending values of Tfm]:, m = 1, 2, w.. and equating

corresponding terms.in
GLP[C]: = R{Bql:/L[RAp]:..

Similarly, if the roots of the operator equation,
R[Bg] = O,

all lie outside of the unit circle, the ARMA process

is said to be INVERTIBLE and may be represented by the

GENERAL AUTOREGRESSIVE PROCESS (GAP),
GAP[D]}:X{t] = E[t],
where
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and the sequence of constants, D = [d(1), d(2), eee]

can be found by equating corresponding terms in
GAP[D]: = L{ApJ:/R[Bq]l:..

Box and Jenkins generally assume that the ARMA
mod2l for the time series, X[t], is both stationary and
‘invertible, - .

The order of the ARMA model can be chosen by
axamining the auto-correlation and partial
auto-correlation functions of the time series, as
suggested by Box>and Jenkins (chapter 6), or by sonme
othér method (see the papers by Ozaki, 1977; McClave,
1975; Gray, Kelley and McIntire, 1978) . Box and
Jenkins (chapter 7) discuss a number of estimation
methods, including a Bayesian and an approximate
maximum likelihood approach, Ansley (1973) has worked
out the details of an exact maximum likelihood
approach, and Ansley et al, (1977), have developed an
algorithm which can be used to simultaneously find a
suitable Box-Cox transformation of the data and to
estimate the parameters of the model,

Let X*'{t;t0] and E*[t;t0] be the conditional
axpectations of X[t] and E[t], respectively; given
infsrmation up to time t0. Then Box and Jenkins show
in chapter 5 that thke minimum mean-square error

forecast, Xf[t;t0], of X[t] at time t0 is given by
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XE[£;0] = X'[t;t0]
uhgfe for t-t0 > 0,
CXULEIEO] = a(D.X[-1it0] ¢ L., b a(p).X'[t-p;t0]
b(1) LE'[£-15t0] = .40 = b(Q).E'[t-q;t0]

and

X'[t;t0] = X[t], t-t0 <= 0,
E'[t;t0] = X[t] -~ Xf{t;t-1], t-t0 <= 0,
E'[t;t0] = 0, t-t0 > O,

The above recursion relationships are usually
initiated by substituting zero for unknown values of
X'[t;t0) and E'[t;t0]. The effect of these
approximations on the forecasts is negligible for
sufficiantly long time series.

Tha authors also show that the corresponding

foracast error, Ef[{t;t0], is given by

Ef{t;t0] = E[t] + C(1) .E[t=1] +...+ c(t-t').E[t'],
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where t* = t0 + 1, 1In particular, the one-step-ahead

forecast error is simply
Efft;t-1] = E[t],

and since E{1]}, E[ j}, are independent for i not equal
to j, the one-step-ahead forecast errors are
uncorrelated,

The .above results concerning the forecast errors
are based on the assumption that the model used to
forecast the time series is the same as the model used
to generate the time series. In practice, this will
seldom if ever be the case. A more general
relationship between the one-step-ahead forecast errors
and the white-noise sequence, when the forécasting and
generating models are not the same, was given by
Bagshaw and Johnson (1977) and is reproduced below.

Suppose that a stochastic process, X[t], is
generated by the stationary and invertible

ARMA[P,q,Ap,Bg] model

L{ ApJ:X[t] = R{BgqJ:E[t]..

Suppose further that the following stationary and
invertible ARMA[P{(1),q(V),Ap(1),Bqg(1) ] model, which we

shall call MODEL 1, is fitted to the data:
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L{Ap(1) J:x{t] = R{Bq (1) J:EI[t],

where

L{ Ap(l) ]: 1"31(1’.1‘( 1]:'..." al(P(l)’.T[P(" ]:'

R[Bg (1) I: 1-b1(1)eT[1]2=see= bI{g(1)).TLq(Y) ]z,

and E1ft] is the sequence of one-step-ahead forecast

errors generated by this model. Then by a

straightforvard substitution,

L{Aap{1) J: (R[Bgl:/L[Ap]:) E[t] = R[Bq(1) J:ENt],
which'implies

L{Ap1:R{Ba (1) J:EI[t] = L{Ap(1) 1:R[Bq]:E[t 1.
Defining

LAp' 1t = L0Rp):RLBG (1) I:

= 1 -a'(1).T[1): - see = a'(p').T{p']:,
and

R{Bq']): = L[hp(1)]=R[qu=
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=1 =Db'"().T[1]: = ses. - b'(q").T{q']:,

where p' <= p+q(1) and q' <= gq+p(1), we see that
‘the Ei{t] and E[t] sequences are related by the

ARMA{p',4q',Ap',Bq' ] model,
L{Ap!' J:EIft] = R[Bq']:E[t].,

If the fit is exact; that is, if model 1 is

AN

jdentical to the true model, then L{Ap]): = L{Ap(1) ]z

and R[ Bq]:

]

R[Bq(1) J:, so that

BIft] E[t].
Thus, the one-step-ahead forecast errors for the
fitted model will be uncorrelated if and only if the

fit is exact; otherwise they will follow an ARMA model.

PART 2: Properties of Wiener Processes and a

Functional Central Limit Theoren

‘ Most of the results presented in the remainder of
this chapter are based on the fact that under a fairly
bro;d set 6f conditions a normalized sequence of

partial sums of random variables converges to a Wiener

process, Consequently, in this part of section 1 we
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briefly review some useful background material
concerning Wiener processes and discuss a functional
central limit theoren,.

Let W[t], t E[O, infinityf, be a WIENER PROCESS
with MEAN PARAMETER W', VARIANCE PARAMETER ¥'' and
INITIAL VALUE w (if W*' = 0, ®W'' = 1, this is calleéd a
 STANDARD WIENER PROCESS). Then W[ t] has the following

properties (see, for example, Cox and.ﬂiller, i965):
(1.)

E[[£]] = w + W't
(?-) |

var{W[t]] = W', t
(3.)

, i

cov[H[s],th]] = §*''.nin[s,t]
(4.)

The increments W[ t(1)] - W[t(2)], W[t(3)] -

wt(4) ] are independént if the intervals (t(1),t(2)),

{(t(3),t(4)) do not overlap.
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(5.

For fixed t, W[t] is normally distributed, and the.
joint distribution of W{t(1) ], ..., W[ t(n) ], vhere.
t(1), ¢os, t{n) are fixed numbers in (0, infinity), is

multivariate normal. .

(6.) :

The transition probability density of Wty
T(W[t]:;v), satisfies the partial differential

equation,

WYt 3 - Wt _-_-QI
( /2).%%5‘, 3{, el .

(7.)
If W{t] has an absorbing barrier at h and a

reflecting barrier at zero, T(W[t];w) is subject to

the constraints

[}

T(¥[0 ) w) T (R{0] = w),

0 (R[0] < ¥ or W[O] > W),

i

%—'I - (2.0 /9y, T(W{t];w) = 0 (W[t] = 0),
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and T(W[t]:w) =0 (¥{t] = h)..
(8.). -

Under the above-stated conditions, the probability
density of the first passage time (FPT) of W[t] to the

absorbing barrier h is given by

uftsv) = - ﬁ!t{ .

vhere
h

v =IT(3[t];w).dw.
Q
(9.).

The Laplace transform, L(x;w), of the first
passage time distribution satisfies the differential

equation

(W"/Z)-dl + H'é_L .= x.L,

d w? dw

wher2 x is the dummy variable, The boundary

conditions are

%&L: =0 (w = 0),
w
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L(th;vw) = 1,

Before we introduce the central limit theorenm, it
is first necessary to define a few terms, A stochastic
process is said to‘be STRICTLY STATIONARY if for any |
fixed numbers, t(1), t(2), +ses t(n), in the domain of

X{t], the joint distribution of X[t(1) ], X[t(2)])s eves
| X[ t(n) ] depends only on the differences, t(i) - t(j).,
i,jJj E[1,n). Im other words, if all the finite joint
probability distribﬁtions of X[t] are independent of
the time ofigin, then X[t] is strictly stationary..

Let X[t] be a strictly stationary stochastic
process, and suppose that there exists a sequence of
constants, p'(0), p'(1), ..., converging to zero, such
that

(P[X(t] E r(i)iX[t-n] E £(§)] - P[X(t] E T(i) ]I

is bounded by p'(n), wﬁere r(i) and r(j) are
arbitrary non-empty subsets in the range.ﬁf X[(t}., Then
X[t] is said to be a PHI-MIXING stochastic process. -
The implication of this definitibn is that, for
sufficiently large n, the 'ﬁresent' event, X[t] E r{i),
is effectively independent of the 'past' event, X[t-n]
E r‘(j). ‘

The following theorem may be found in Billingsley

(1968, pages 182-190).
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THEOREM 3,1,1: PuanctiomlCentral Limit Theorenm

Let X[i]' 1 = XYW -1' 0, 1' X ) be a
phi-nixing\stochasfic process, and let

¥[i]), Y1[{4i,j] be stochastic processes defined by
Y[i] = Y[..._. 'X[i"1]' X{i], XIi"‘]' .QQ]'
Y’[igj] = YU X[i-F]), »e0y X[1), +.., X[i+§]]..

<

That is, Y[i] is a real-valued function of Xfi],
for all i, while Y1{i,j] is a real-valued function of
X[ k], for kx B [i-j,i+§].
Further, let
S[n] = Y[‘} + 1[2] t .0 + Y[n]' -
00
Wty = E{Y{O]z] + 2, ZE[Y[O].Y[i]],'
)
n

S'LE]=s[nV[n W],

where n' is the greatest integer innt and

0 <= t &~

Now suppose that the following conditions hold:
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(1.)
2wk
< (p' (1)) "< infinity,
=0

(2.)
E[¥(n]] = O,

(3.)

0 < W'Y < infinity,
(4.)
00
< (E[ (Y[0]-Y1[0,] 3)2])’& infinity,

f:l

Then as n ~-> infinity, S'[ ¢ ] converges in

69

distribution to a standard Wiener process, W[ t].
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SECTIOF 3,2: CONTROLLING THE MEAN OF AN ARMA PROCESS

A comnon assumption of most sequential control
procedures is that the random vériables generated by
the stochastic process which is being controlled are
independent Aﬁd identically-distributed. This is not
always a reasonable assumption.,. The stochastic
processes in which we are usuélly interested are
mathematical models for observed phenomena (e.g. .
industrial processes or diffusion processes or economic
processes, etc,) and as such should behave in a manner
which coincides with our observations, at least in an
approximate sense, Since many real-world phenomena, by
their very nature, or by some artifact introduced by
the observer, generate auto-correlated observations, it
would therefore seem unreasonable to model'these
phenomena as white-noise processes.,

In a series of publications between 1974 and 1977,
M. Bagshaw and R.A, Johnson obtained a number of
results which may prove to be useful in the analysis of
CUSUM schemes with dependent random variables. More
specifically, they assumed that the random variables
being accumulated follow a specified ARMA time ssries
ﬁodel, and based on this assumption and the work of
Biliingsley (1968) , Darling and Siegert (1953) and
Sweet and Harden (1970), they showed that the sequence

of cumulative sums converges to a Wiener process, and
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they obtained asymptotic approximations to the
run-length distribution and the average run-length.l

In this section ve consider the problem of
detecting an increase in the meén, m*, of a sequence of
random variables which follows the ARMA[p,d,Ap,Bq] |

nodel,
L{Ap): (X[t] - m'(1))= R{Bql:E[t].

The parameter m'{1) is the target value of m',
The operators L[ Ap]: and R{ Bgq]: are defined as in

section 1; that is,

L[Ap]: 1 = a(.T[1]: - «oe - a(p)-T[prl:,

R{Bq]: 1 = b(NT[1]: = o0 = Db(9x)T{q]:,
vhere T[m]:X{t] = X[t-mn] is the backshift operator

and ap = [a(1), «+s, a(p) ], Bg = [b(1), +u0s b(q) ] are
two vectors of constants. E[{t] is a sequence of i.i.d
random variables with a mean of zero and a variance of
E'?,

Suppose that we apply Page's one-sided CUSUHM

procadure to control the mean of this process, Recall
tha£ this procedure signals that the process is out of

conttol at the first n such that
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S{n] - min[S{1]] >= h,

—~

vhere n >= 1, 1 <= n, h > 0 and S[{n] is given by

s{n] = X[ 1] - m*(1) + .... ¢ X[(n] - n'(1),

i

S{0] 0 by definition,.

Note that Qe are subtracting m!' (1) from each
observation, and we are assuming that the reference
value, k, is equal to zero, which implies that the
axpected value of S[n] will be zero, ¥#e consider
the more general (and useful) case when k > 0
subsequently. .

One possible way of obtaining an asymptotic
approximation to the run-length distribution of this
CuUsuM procedure is to first obtain an asymptotic
approximation to S[n], say S'{+ ], and then to find the
exact run-length distribution of S'[+ 1.. This is in
fact the way that Bagshaw and Johnson obtained their
asymnptotic approximation. In Appendix 2 of their 1974D
paper, they showed that if we define n' to be the

largest integer innt, where 0 <=t <=0~ , and

BY Y

2
[1-Db() - oo - Dblq) ],

Al'

2
[] - a(l) = esses . ~ a(P) ]I
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W't = Ete Brespee,

|
S04 1= S[a' Vin ke

then as n  => infinity, S'[-£ ] converges to a
Wiener process, W[t], with a mean parameter of zero and
and a variance paranmeter of W''.

In order to prove this result they shovwed that
S'(n'] satisfies the conditions of Billingsley's
functional central 1limit theorem (1968,page 182-190).J'
Their result holds true for a géneral white~-noise
proéess (not necessarily normal). HNote that although
S{n] is defined only on the non-negative integers, the
limiting Wiener process, W{t], is defined for all real
oL t &,

Having obtained an asymptotic approximation to
S{n], they then considered the problem of obtaining the.
exact run-length distribution and average run-length of
ithis approximation., As a first step in this
direction, they noted that when the mean of the Wiener

process is zero,
W{t]) - infimum{W[s]] (s <= ¢t)

and W[t
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have the same distribution. This result can be found
in Karlin (1966, page 281). Thus, the run-length
(first passage time) distribution of W[t] -
infimum{W{s]] to h, which we shall call u(t;0), is
equal to the distribution of the first time tbhat iﬁ[tjl
crosses h,

Darling and Siegert (1953) obtained the Laplace
transform of u(t;0) and inverted this transform to
obtain u(t;0).. The transform, L(x;d,h), {x is the
dummy variable) with initiallvalue zero is given by

L{x;0,h) = 1/cosh[h.(2.x/ﬁ")%.

and the first passage time distribution is given

by
» 2
u(t:;0) = & ud(i).ut{i).exp[ (-t/2).ul({i) I,
(=20

whare

(W? ')%'h, (i éven) e

w0 (i) =
g3
= - (¥'")%h, (i o0dd),
¥ 3
wt@i) = T (i + 1/2). (R**) Ph.

By differentiating the negative of this transform
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and setting x = 0, Bagshaw and Johnson found that the
expected first passage time of [W[t]} to h, say U?', is
eqhal to

gt = h’i/ﬁl!.

0f course, the higher order moments of u(t;0)
could also be found in a similar manner.
Consider now the problem in which S[n] is

re~-defined as

S[n] = XI‘I]- k + ess  *+ X[n] - k'
| %
where k > 0, If we set S'[i&] = S{n')/(n ), then
the Wiener process approximation still holds, except
that the process now has a variance parameter of W*'?

.

and a mean paranmeter of
W' = n'(1) -k

vhen the process is in control, and

when the process is out of control.
In this case it is no longer true that W{t] -

infirun{W[s]] and {W{t]i have the same distribution, so
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that a new approach is necessary. Since, as pointed
out by Page (1354), a CUSUM procedure is equivalent to
a random walk between a reflecting barrier at zero and
an absorbing barrier at h, it ié not unreasonable to
expect that the corresponding procedure involving a
Wiener process is equivalent to a continuous randon
walk (i.e, diffusion process) between the same
barriers. Bagshaw and Johnson proved that this is in
fact true in Appendix 1 of their 1975a paper.. So they
reduced the problem of finding the first passage time
disfribution of W{t] - infimum{W[{s]] to h when k > 0
to the problem of finding the first passage time
distribution of a Wiener process between a reflecting
barrier at zero and an absorbing barrier at h. .

This latter problem has been solved by Sweet and
Harden (1970), although, as pointed out by Bagshaw and
Johnson, there is an incorrect cbﬁstant in their
expression. The correct equation, taken fromiBagshaw

and Johnson (1975a), is given by

[ ]
u(t;0) = QO(t).[ (ZOol(t,i)/02(i)) + 03(v) 1],
F=b
where

: 2
QO(t) = (¥''/h).exp[ (H'/W'*).h ~ (W').t/(2.0'") ],

-}
Q1{t,i) = gq(i).sin(g(i).h).exp[-(q(i)).W''.t/2],
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Q2(1) = 1 + (H'/(h.i")).(sin(g(‘i).h)/q(i))z,
Q3(t) = 0 (=-W',h/u' ( 1);
= 3/(2.h) (~¥' . h/WN?'* = 1),
= Q031(t)/Q32(t) (’W'gh/ﬁ" >N,
; . | 2
Q31(t) = -q'.sinh(q*'.h).exp[ (q*).¥''.t/2]
o 2
032(t) = 1.+ (W'/(h.¥'")) w(sinh(q*.h)/q"),

and g(1) < gqg(2) < ++»s are the solutions of tan(gqg.h) =
~q.¥'"'/¥' and q' is the solution of tanb{g'h) =
-q'. W' ue,

As mentioned in section 1, the moment generating
function of the Wiener process can be obtained as the
solution of a differential equation with appropriate
boundéry conditions. Bagshaw and Johnson (1975a,
Appendix 2) solved this differential equation,
following the treatment i; Cox.(1968). The solution

- (with initial value zero) is
L(x:0,h) = L1(x)/L2(x),

where
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L3(x) - L4 (x),

"L1{x) =

L2(x) = 1;‘3(’x) cexp[ hoL8 (x) ] = L4 (x).exp[ho L3 (x) i
L3(x) = [-W' - (§W'+ z.x.w'-)&yn'-

LU(x) = [-H' + (W'%4 z.x.ﬂ"fg]/w"._

The expected first passage time of W[{t] can be
obtained from this tranform, and Bagshaw and Johnson

found that it is

U' = h/W'. (1/c).fexp[-c] - 1 + ¢c],
whe;e

C = 2.0 h/W'Y.

This latter result was obtained independently by
Reynolds (19?5), although he assumed that the
observations are independent and hence d4id not obtain
the same value of W'?,

Baghsaw and Johnson {1975¢c) used the above
exéression for the expected first passage time of W[ t]
ﬁo show that if h and k are chosen such that U' is

equal to a prescribed constant, say A', when a' =
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m'{1), then the value of U' corresponding to any other

value of m' > n' (1), Say m'(2), is minimized by taking
k= (r'(1) + m'(2))/2,

and choosing h such that 0! = A' at this value of’

k. Reynolds (1375) showed that a similar result holds
approximately for a two-sided CUSUM scheme. Both of
these results were obtained by constrained minimization
of the expression for U', Recall from chapter 2 that
Evan and Kemp (1960) obtained the same result by an
analysis of their nomogram for the average run-length
of a CUSUM schene with indepenaent normal random
variables,

Bagshaw and Johnson (1975c) also studied the
effect of estimating the standard deviation on the
average rnn-lehgth of a CUSUM scheme, Their analysis
showed that the average run-length is sensitive to
minor variations in the value of the standard deviation
and that this sensitivity is greater when k > 0 than
when k = 0, However, by averaging U' over the
distribution of the estimates (assuming i.i.d. normal
pbservations), they discovered that even though the
values of U' obtained by using estimates of the
st;ndard deviation differed signifiéantly from the true
values of U', when k > 0 these differences appeared to

be in the 'right direction'. For small values of m' -
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m?* (1), the estimated values of U' tended to
over-estinmate the true values, with the reverse case:
baiﬂg true for larée‘values of ' - m*(1)., In quality
control applicationé, it is genérally desirable to have
large averagé run~-lengths when the process is in |
control, and émall average run-lengths when the process
is out of control, so that from this point of view the
di fferences are in the 'right difection'.

Before concluding this section we should mention
that Nadler and Robbins {(1971) obtained asynmptotic
Wiener process approximations to the run-lenéth
distribution and the average run-length of Page's
two-sided CUSUM procedure. They assumed that the
observations are independent,‘and‘that the scheme is
symmetric; that is, h' = h*? = h, Under these
conditions, they proved that Page's two-sided procedure
is equivalent to the proéedure vhich signals at the

first n such that
max{ S[1]] - min{sS{i]] >= h (i <= n)..

Following the same line of reasoning as Bagshaw
and Johnson, they approximated S{n] with a Wiener
érocess, and then obtained the transition prcbability
denéity of the range of a Wiener process, from whence
they obtained the first passage time distributionm.

They also derived the moment generating function of the
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first passage time distribution, and from this they

deduced the expécted first passage time, .
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SECTION 3,3: CONTROLLING AN AUTOREGRESSIVE OR MOVING

AVERAGE PARAMETER OF AN ARMA PROCESS

In this short section we sﬁall consider the
problem of sequentially controlliﬁg an autoregressive
_or moving average parameter of an ARMA process.  Very
little literature exists on methods of handling this
problem,  Phatarfod (1971) developed an SPRT for
testing the autoregressive parameter of a first order
autoregressive, AR(1), process, and he derived
asymptotic expressions for its moment generating
function and operating characteristic curve. As
pointed out in chapter 1, an SPRT can be used as a
two-sided sequential control procedure, so Phatarfod's
SPRT can be applied to control the autoregressive
parameter of an AR(1) process.. In an unpublished
paper, Box and Jenkins (1966) (also sece chapﬁer 4 of
Bagshav, 1974a) described an approximate SPRT for:
testing the moving average parameter of a first order‘
integrated moving average, MA(1,1), process. The
method described below applies to both of these cases,
and in addition to many cases in which they do not
apply. Bagshaw and Johnsoﬁ (1977) introduced a CUSUM
procedure which can (theoretically, at least) be used
to ;ontfol an auntoregressive or moving average
parameter of a stationary and invertible ARHA‘process.

Actually, their method applies to an arbitrary ARIMA



page 83

process as well, although it is necessary to make
certain restrictive assumptions in this case.
Suppose that a time series, x[t]; follous the

stationary and invertible ARIMA(p,d,q9,Ap,Bq) model
L{Agq]):Y{t] = B[ Bql:E[t],

where L{Ap]: and R{Bq]:-are the operators

described in the previous sectibn, E[t] is a segquence
of i.i,d., random variables with a mean of zero and a
variance of E'', and Y[{t] is the dth difference of

X[t]; that is
Y{t] = p[d]J:x[t].

Suppose further that two alternative stationary
and invertible ARIMA models for the process,

ARIMA[pP (1) ,d,9(}),Ap(1),Bq(D) ],

ARIMA[ p(2) ,d,9(2) ,Ap(2) ,Bg(2) ], are given by

MODEL 1: L{ap(1) J:¥[t] = R[Bq(1) JsEI[t],

MODEL 2: L{Ap(2) J:Y[t] = R[Bq(2) J:E2{t],

where for 1 = 1, 2,

L{Ap(i) )z = 1 - ai(1).T(1])z=e0v-ai(p(i)). TP (i) Iz,
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R[Bq(i)): = 1 = bi(1)aT[1):=0ee=bi(g(i)).T{q (L) 1z
and

Ap(i) ={ai(1), «vep ai(p(i)) ],

Bg(i) ={bi(1), «.., bi(‘l(i))‘]-

and E1 t] and E2[t] are the one-step-ahead
\

forecast errors generated by the models., Note that it
is assumed that the degree of differencing, 4, is the

same in all three models. Now define
L{ap']: = L[Ap]:=R{Bq (1) ]z,
L{Ap'']: f L{ap]:R[Bg (2) ]z,
R[Bq']J: = L{Ap(1) J:R[Bq]:,
BR[Bq'']J: = L{Ap(2) J:R[Bq]:, \
ap' = fa'{1), ..., a'(p") 1,

Ap'' = [a'*' (1), «+.p, @' (P'"N) 1,

Bg' = [b' (1), «ee, b'(q") ],
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Bqll = [bll(“)' cevy b"(q")], '

where p' <= p + q(1), p"_<= pl+ q€(2), q* <= p(V)
+ q, g'* = p(2) + q, and the elements of Ap', Ap'?,
Bq', Bgq'' are determined by equating coefficients 'in
the above definitions. .

Substituting for Y[(t] in models 1 and 2; it is not
difficult to shov that the following relationships must

exist between E{t], Ei[t] and E2[t]:
L{ap' ]:EI[t] = R[Bq' J:E[t],
L{Ap®' J:E2[{t] = R{Bq'"J:E[t]. .

That‘is, E1ft] and E2[ t] are both ARMA processes
related to the same white-noise process, but with
different operators, Moreover, since the Y[t] time
seriass is stationary and invertible, the E1{t] and
E2[t] time series will also be stationary and
invertible. This in turn implies (Box and Jenkins,
1976, chapter 1) that Ei{t] and E2(t] have the general

linear process representations:

EN{t] = GLP[C'J:E[ t],

E2[t]

]

GLP[C'*' J:EB[t],
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vhere
GLP[C']: = 1 - c'(l).T[1]:‘- C'(2)eT{2]: = wssey
GLP[C'?']: = 1 - c"(‘l).T[‘l]: - c"(2)7T[2]: - eeey
and
C' =[c'(M), c'(2), »o. ]s
C'' = [C'' (1), €' (2), vo. .

The 2lements of C' and C'' are obtained

by equating coefficients in GLP{C']: = R[Bq']:/L[Ap']:
and GLP{C'*]: = R[Bq''J:/L[Ap'']:, respectively., .

Box and Jenkins (1376, page 134) show that the elements
of C' can be determined recursively in the following

vays:
c'(j) = a'(N).c'(j=1) ¢...t a'(p).c'(j-p) - b'(I),

yhere c'{j) =0, j <0, c*'(0) = 1 and b*'(j§) = O,
1> 3 > gq.. The elements of C'' can be determined in
thefsamé vay., |

Note that if L[Ap(1)]: = L[Ap]: and R[Bg(l)]J: =

R[Bg):, then E1[ t] = E[t], for all t, with a similar
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result holding for E2{ t], Otherwise, both sequences
»will be autocorrelated and crqsscorrelated._
Let H1 be the hypothesis that Ap = Ap(1), Bq =
Bq(1), and let H2 be the hypothesis that Ap = Ap(2), Bq

= Bq(2).. Define the cumulative sum, Sz[n], as
Sz{n] = Z2[1] ¢+ 2[2] ¢+ ... .+ Z{n],

vhere
Z[t] = EVft] - E2[t].

Bagéhaw and Johnson suggested that if it is
desired to sequentially detect a change in the
parameter vector (Ap,Bq) awvay from (Ap(1),Bq(1)) and
towards (Ap(2),Bg{2)), then Page's rule 1 CUSUM
control procedure should be applied tc Sz[n].

In order to approximate the run-length
~distribution of this CUSUM scheme, Bagshaw and Johnson
obtained a Wiener process approximation to Sz[{n], and
then applied the results described in ihe previous
section, Specifically, in the Appendix of their 1377
paper they showed that if n' is the largest integer in

nt, 0 <=t <=},...  and

¥z' = E{Z[t]],
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@
Wz'' = Var[z[t]] + z.f Coviz[t],Z[t+k]],
: ' =

sz'[§ ] = sz{n' ¥V (n )

then Sz'[+ ] converges in distribution to a Wienmer
~process, Wz[t], with a mean parameter of Wz' and a
variance parameter of Wz'', .
In order to obtain their expressions for #@z' and
Wz'', Bagshaw énd Johnson made use of the following

properties of the moments of EiI[t]) and E2[t]:

(1)
E[EI{t]}] = E[E2[t]] = O,
(2)
a o 2
E[E1[t]] = E'", Z [c'(1) ],
=0
a =3
E[E2[t]] = E''. & [c'' (i) ]?
_ £=0
(3)

o0
E[EI[t].E2(t]] = E''. & [c'(i).c'' (i) ],
=
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‘t

o0
Ev?, z [c?(i).c' (i+k) 1,
(=0

]

E[E1[t].E1[ t+k]]

L.
EVr, 2 [c'(d).c'r(itk) ],
£20

1}

E{E2[t]).BE2[ t+k]]

’ o9
E[EM t].E2[t+k]] = E**'. Z [c' () .c'' (i+k) ),

L3I0

%
E[E2[ t]. B[ t+k]] = E*', 2 [c'* (i) .Cc?' (i+k) ],

£0 :

(5) If the E[t] sequence is normal,

% 2
E[EI[t]]) = 3. (3[31[“:]])2:

‘f 2 2
E[E2[t]] = 3. (E[E2[t])},

(6) If the E[t] sequence is normal,
2 3 a 2
E[E1[t).E2{t]] = E(E1[t]].E[E2[t]]
+ 2, (E[EVHt]).B2[t1)),

(7) 1If the E[t ] sequence is normal,

2 2 A p 3
E[EI[t).E2[t+k 1] = E[E1[t]}].E[ E2[t+k ]]

o+ 2, (E[E1[t].E2[t+k]])2.

a2 2
F{E2[ t].E1[ t+k 1]

2 2
E[E2[ t]].E[E1[ t+k 1]

2
+ 2, (E[E2[t].E1[t+k]]).
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The first property is a result of the fact that
the.E[t] sequence has a mean of zero, and the second,
third and fourth properties hold.because the E[t] are
i,i.d4. with a variance of E".(vhich implies that
E[E t].E[t-i]] = 0 for i not equal to 0).. The £ifth,
sixth and seventh properties are vell-known properties
of bivariate normal random'variables (see, for exanmple,
Kendall and Stuart, Volume 1, page 83), and if the E[t]
sequence is normal, then for fixed t, E1[t] and E2[t]
are bivariate normal random variables.

For notational convenience in the foliowing

prESentatién, define, for i, § = 1, 2,
n
Mi(n) = E[Eift]],
h m
Mij(n,m) = E[Ei[t].Ej(t]],
n m
Mij(k;n,m) = E[Ei[t).Ej[t+k]],

Thus, for example,

2
M1(2) = E[(EI[t]],

2 2 o
M22(2,2) = E[E2{t1.E2[t1]1 = E[E2(t]],

2 2
M12(k:2,2) = E[EN[t].E2[t+k]1.
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With these conventions, the formulas for Wz*' and
Wz'' derived By Bagshav and Johnson (assuming

normality) are given by

Wz' = M1(2) - M2(2),

Wz'! = 2.[,(u1(2))x+ (uz(zna- 2. (112(1,1))
2.2 (M1 (k:1,1)) ¢ (M22(k;31, 1))
=) 2
- (M12(k;V, 1)) "~ (H2l(k;1,1)f5.,
In the special case that model 1 is correct (i.e..

Ct* = 0), these equations reduce to

Wz!' = E'' - M2(2),

o
Hz't = 2.[93‘+ 2. 2(522(){;1,1))2]._.

=1

If model 2 is correct, the correspording equations

are
Az' = M1(2) - E'Y,
Hz'Y = 2.[sz+ 2. 2:? (M'Il(k;l,‘l))z]. .
Since M1(2) >= E'' and 12(2) >= B'', it is clear |

from the above equations that wWz' will be negative when

model 1 is correct and positive when model 2 is
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correct. It is also clear from the above equations
that wWz'* depends on Wz'., 1In the degenerate case when
both model 1 and model 2 are correct, then obviously
§z' = ¥Wz'*' = 0, . | |

Before concluding this section, we should point
out that the Wiener process approximation obtained by
Bagshaw and Johnson holds for any white-noise sequence
E{t] with a finite fourth moment and E! = 0, E'* > 0,
Also, it may be possible to improve the performance of
the scheme by subtracting a reference value from Sz[n].
However, since the variancé parameter of the process
changes when the mean parameter changes, the optimal
reference value is not necessarily

k = (Wz' (1) + ®Wz'(2))/2.
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CHAPTER & -

ANALYSIS OF  RESULTS

INTRODUCTION

Section 1 of this chapter contains an analysis of ..
some of the.resulgs‘of Bagshaw and Johnson..  ¥e show
how the approach which they adopted in their 1377 paper
can be applied to the problem of detecting an increase-
in the mean of an Aaua_process,-ahd We establish a.
number of theorétical properties of the first passage.
time distribution of a Wiener process,. In the next
.section we look at the work of Page, Brook and Evans, .
and Ewan and Keap, . The similarities between their
apparently different appro;ches“are.pointed out, and we
démonstrate how their asymptotic approximations to the:
run-length distribution of a CUSUM scheme are
inter-related., A new approximation is derived for theas:
run-length distribution of a CUSUM scheme for the case
in which the observations are autoregressive and the
process is out of control, 1In the last section we
discuss.some computational and numericél problens
and the results of a Monte Carlo goodness~of-fit

study of the Wiener process approximation.
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SECTION 4,12 ANALYSIS OF BAGSHAN-JOHNSON RESULTIS:.

In this section we analyze some of the:.
~results establishad by Bagshag‘a;d_Johnsondin,th§i§<
"19155 and 1977 papers.., The analysis_is‘:elatiyglyvvu
simple1and_Sttaightforwatd, and max;he;useful to;‘
,,soneone:who wishes to apply the methods or study the:~

. theoretically. .

Part 1: An Equivalent CUSUM Scheme for Detecting

a Change in the Mean of an ARMA Process

It is possible to modify;the‘method_desCribgd in .
Bagshaw and Johnson (1977) to develop an CUSUM scheme-
for detecting a change in the mean of an ARMA process
~which is equivalent to the scheme which they advanced
in their 1975a paper. The method proposed by Bagshaw.
-and Johnson in their 1975a paper is to apply Page's
rule 1 CUSUM procedure and to approximate its
run-length distribution.and average run-length with the
~corresponding first:passage timeJdistributibn and
.expected first passage time of a Wiener process

. approximation to the cumulative sum
S[n} = (X[1] - k) + +0s + (X[Dn] - k)&

Oon the other hand, in their 1377 paper, in which
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they studied the problem of detecting a change in an.
autoregressive or moving average parimetqr of an ARNMA
process, they proposed that Page's rules 1 CUSUM

~procedure ‘should be ‘applied to
SZ[n] = Z[‘] + se e + Z[n], ER
“where
p,\ 2
a[t] = E1[t] - E2[t]

~and E1[t], E2[t] are the one-step-ahead forecasg:
~errors from models 1.and 2, respectively,. It is
natural to wonder, therefore, whether the approach
..adopted in\;hest971Apaper can be applied to the:probleu
. attagkéd in the 1975a paper. We shall show that this
can bé'done, and that in fact the resulting schenmes are .

equivaient.:

If we are concerned with detecting an increase in.. -

the mean of an ARMA process, and if m*' (1) and n'(2) -
are the assumed values of.m' under models 1 andlz,;
respedtively (m*(2) > m' (1)), then m' (1) and m'(2) are
two simple one-step-ahead forecasts of X{t] for all t,..
SingefE[X[t]] = n'(1) if m* = m'(1) and E[X[t]] = a' (2)"
if m? ?'m'(Z), the forecasts are unbiased if the
correSponding models are correct. . The associated

one-s tep~ahead forecast errors at time t are X[fj-m'(i)r'
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and X[t])-m*'(2). This suggests that a simple method of:

detecting an inqgegse.in the mean of'an ABMA process is

14

to apply Pagels_gqle,1.cusuu procedurato the;.

.cunulative sum. ., .-
ssp{n} = SD[1] + sreu * SD{nY,
vhere:
Spft] = (X[(t].~ a'(}) )1 = (X[t] - ll"(Z)__)zc_ﬂ.,. .

- If we define. . .

| 2 2
551 n] (X{1] = »*' (1)) 4.0t (X[n] = a® (D)

2

552[n] = (X[1] - m'(Z)).a treet (X[n] - W' (2)}

"

then SSD[{n] can be re-expressed as

SSp{n] = SsSi[n] - SS2[n]..

Thus, SSD[n] is just the difference between  the.

sum-of-squares under models 1 and 2, respectiveiy
(hence Ss1, ss2 and ssD), and consequently SSD{n] is

propoftional to the difference betwvween the

corresponding sample variances. ., This is an intuitively

appealing result, as it is normally comnsidered
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:desirablewtq choqse.the mode1 whicp‘pqupces the
.smallest sapple_yariance;ﬂ‘uo:eqygr,fif modg;qi;is the:
correct model, E[SD[t]] < 0, and if model 2 is correct,: -
E[SD[t]].> 0, so that the sample path of SSD[n] will:
. behave .in the manner suggested by Page. . |
It is,fgirly easy to shoy that,SSD[n]{converées to
a Wiener process, and to determine the mean and-
,vériance‘paramepe:s‘of this ;ppgoximation.\ If we.
expand SD[t]wand collect powers of X[ t], the squared

.terms drop out and we get
2
Sp{t].= d ¢ 2.4.(X{(t] - a'(2)) -
=-a™+ 2.4, (X[ t] - m'(1))
= 2.d. (X[t] - k*) -
where
d = m*'(2) - ()
and
k' = (n'(1) + m'(2))/2..
Since 'SD[t] is a linear function of X[t], and
Bagshaw.and Johnson showed that S[n] converges to a

Hienef process, therefore SSD{n] must also converge to-

a Wiener process. The mean parameter of the Wiener



page 98

- process approximation is

W (SD) .

E[sDp[t]] .-
= 2.4.9'

and the variance parameter is-

W'e(SD) = Var{sD[t]] + 2. Cov[SD[t],SD[t+k]1]

wvhere w"and,ﬂ?!_are the‘mean,and variancerparapeters
of the'ﬁiqur p;ocess.apprqximation to S{n].. Thus,
~except for a scale;factor,.the-sspfn]qp:ocedure:is '
identical to the S{n] procedure with k = k'..

If model 1 is correct,

E[SD[t]] = -a>
and if yodel 2 is correct,

B[SD[t]] = dr
_ It follows from the above two facts, and the
re;ulf of Bagshaw and Johnson (1975¢), that the.

asjmpfotically optimum reference value for this CUSUM

schene is
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k= [ar- Q2 = 0.

In other words, for any choice of a'(1): and m'(2)/
. thisvscheme;is'asgnppqtically‘0ptim§1,;in,;ye;§énse,of,
..minimizing theigxpectedtfirst.passqge.time.under the
f‘hypothesislif(sn)v= dzsubject to,alfixed_expgq;egiﬂ
.Eirst pass;ge.tigeiunder the.hypothgsig.ﬁ!(SD);?_-dfw_
We see, ‘therefore, that the;Bagshavaohnsqp CUSUN
. statistic, s[n], is optimal iff it is equivalent to:..

- Sssp{nJ.. .

Part 2:  The Asymptotic Average Run-length of a CUSUM:
Scheme.gnd Bounds for the Expected First

Passage Time of a Wiener Process

As.stated in chapter 2, Ewan and Kemp (1960):: -
found that if m' > 0, a rough approximation to the:

average run-length of a CUSUM scheme is given by
§'* = 1 + h/at*, (approximately) s

~They d4id not attempt to justify this assertion, but:

it is not difficult to do so in a heuristic mamner. .
If gaéh observation had the vaiue.m', then the CUSUH,
scheme.iould signal at the first integer n such that-
n.m' >= h, and the average run-length of the

procedure in this case would be N' = n. Now
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n >= h/m*, since (h/m').m* = h, and n < 1 ¢+ h/nm?,
since (n-i).mf < h implies n < 1 + h/h'.“Thus, we pust

‘have that
h/m® <= N' < 1 + h/m'. .

It therefore makes sense that as the standard deviation
‘of the observations decreases relative to a!

N' should converge.to a point somewhere in the
>interval {k/m?, 1+ h/m']. Also; since ¥ >= 1 and
run-length distributions are often highly right-skeved,
'itvis not surprising that Ewan and Kemp found that N!

' is closely approximated by 1+h/m', especially for small
values of h, ¥We have found thét vhen h is fairly large
‘and the run-length distribution is not highly
right-skewed, h/m' is often a better approximation to
B! than 1+h/m'.

Note that if N were a continuous random variable
rather than a discrete random variable, the restrictidn
/(n-1).m' < h would no longer be valid, and we would
therefore expect N' to converge to a point in the
*intervalt {h/m?,h/n'] (i.e. N' =-> h/m?),

We nov show that the expected first passage time.
of a Wiener process converges to h/W' as ﬁ" -> 0,

" which ié in accord with the above heurisfic argument,

Recall that the expected first passage tinme,
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_vq', satisfies the eguation

g = h/H'.(1/c).[exp[-c]'- 1 + c],'
‘where | | ' '
c = 2.2;.h/ﬂ".
TIf ¢ > 0, then‘as'c -> infinity;
| Ut -> Y. '
.iLThe result follows directly..

An_alternativé.uay of proving this result is to
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take the limit as #'' -> 0 in the expression given in
chapter 3 for the Laplace transfornldf‘thevfirst'
passqgémtiqa Qistribution.v:If this is dongg(it is
. necessary to apply,L'HospitaL{s“rulgfhgre:: ), the
‘transforn conveigas to exp[-h.x/W' ], - The inverse of
this transfo#mvishh/i', which establishes‘;het:esﬁlt.f,
"He_nbatprqqegd to demonstrate,hov,simple upger.agd
lower bounds for the expected first-paésage,time;of the -
Wiener process approximation to the seguence of
‘,cumulative,snms can be cbnstructed.j In theiabove;
expression for U*, note that -1 + c_are‘theifiyst twb%i,
-terms in the Taylor's series expansion of exp{-cJl..
_The;efore,fpsing Laqrénge's form for the remainder, wa:

.find for ¢ < 0, .

exp{-c] - lﬂ‘ + c= (G}Z) .exp[-c'] (c < p' <:0)
| <= (d}Z)-QXP[fF].A

But this‘impligs?that

ur = (h/li.'-)--ﬂ/c) o[exp{-c] -1+ c]
<= [(h/ﬁ').(1/c)].L(é$2).exp[-c]]
<= [ (h/¥#*) 1.0 (c/2) cexpl-c]]
<= (ﬁ&ﬁ").exp[-c]..

Also, substituting c¢' = 0 in the above Taylor

saeries we obtain
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exp[~c] - 1 + Cc >= (592),
vhich implies
3 2
gr >= [ (h/¥%'). (1/¢) Jol{c/2] >= (h/0'") ..
Combining these results we obtain .
2 | 2
(h/4"1). <= U' <= (b/4€'").exp[-c] (¢ < 0)..

‘The tern\(h}ﬁ!!) is the expected first passage-
time when #' = 0, so the above inequalities show tﬁatu
f as W' -)wO,aUl_f>:(£>¥'!).at least as fast as exp[~-c}
-> 1.

An analagous argumgnt can be,used.to;shov that

when ¢ > 0,
2. - ) e
(h7d*r) cexp[~-c] <= U' <= (h/H'') -(C > 0).

These bounds can in turn be used to bound the .

‘ ratio of the expected first passage time, U'(Z); when.
-;he prbcess is out of control to the expected first

' pa;sade time, U'(1), vhen it is in control,. Let W'(1),
w'(Z)vbé the mean parameters of the process when it is

in control and out of control, respectively, and let

W'' (1) and W''{2) be the corresponding variance
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parameters, . Define c(1) and c(2) in the obvious

manner, Then, since Hﬁ(lf < 0 and Hf(Z) >0,
gt = @Ry,
ur(2) < (Hsﬂ"(z))."
' .
from which it follows that
Ur(2)/00 (1) <= WO /E(2) .,
'By similar reasoning
2
U (1) <= (h/urr(1)).exp{-c(1) ],
Ut (2) >= (YR 1(2)).exp(-c(2) 1,
Vso that

U'(2) /0t (1) >= (W () a1 (2)).exp[-(c(2)-c(1)) ..

Taken together these results lead to the following

 inequa1ities for U' (2) /U (1)
W(1,2).exp[-c(1,2) ] <= U? (2) /U' (1) <= ¥(1,2),

where
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W(1,2) = ®w''(1)/u'r(2) :

6(1.2) = c(2) - c(1)-

2.8' (2) JB/H' ' (2) = 280 (1).hat (D)

_putting '

W (1,2) = w-(z).n--(ip - W) LH(2)

WOP(1,2) =W (1)Lt (2),

' we can re-write c(1,2) as

c(1,2) = 2,4'(1,2).h/W'* {1,2)..

2,000 (2,810 (1), = §' (1070 (2) LB/WS (00 (2) e

and
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SECTION 4,23 ANALYSIS OF RESULTS OF PAGE, EWAN AND

KEMP, AND BROOK AND EVANS .

The purpose of this section is to point out the:
similarities in the work of Page (1954), Evan and Kemp -
(1960) and Broqk;andizvans“(1972),y He alsojshpv fhatr
it is possible-thgitend sdme”of their_resu;tstfv
Specifically, we derive recursive approximatiqns‘toktha;:
run-length distribution, average run-length and moment

,generating function of a CUSUM scheme for an
autoregressive process vhich is out of coatrol. .
Y,Purther, wa discuss some of the mathematical problems
involved in»obtaining an app:oximation for the case in-

- which the process is in control,

Part 1: Connection between the Brook-Evans Matrix
Equations and the Integral Equations of

Page, Ewan and Kemp

Although the .approaches adopted by Page and Ewan
and Kemp, on the one hand, and Brook and Evahs, on the-
other, are apparently dissimilar, we now demonstrate.
'that they are in fact very similar. To begin with,
coqsider the Brook-Evans matrix eguation for the

average run-length of a CUSUM scheme:

(I - B)

+N? 1.
Lo d A
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If we write down the ithvroq.oﬁ.this equation and

re-arrange terms, we obtain

N m,
B (L) = 1.+ Z 0 (.2, Dy
-0 '

1+ %0 (0) B (i.0) +Z W (D) .RAD.
| R

This is ohvipusly of the same form as the.

Page-Evan-Kemp equation., Letting the nuamber of

, partitions,vaf)‘infinity, and the partition width,
W =>0, vhile m.w -> h, the continuous form of the
Page~Ewah-Kemp.equation ié obtained. .

_Thé.Brook-Evans matrix equations for the
run-length distribution and factorial moments of a.
CUSUM -scheme can also be re-written as integral .
equations, . The latter integral equation was not
obtained by either Page or Ewan and Kemp. The integral
~equation for the kth factorial moment of a CUSUM scheame

with initial value s is given by

- N(k;s)! = [N(k;0)! + k. H(k-1;0)2].F(-5)
+ [ [N(k;x) ! - k.N(k-1;%)1].dF (x=S).
(/]
Note that, due to the well-known relationsﬁips
betveen the factorial moments and moments about zero of
a distribution {e.g. Johnson and Kotz, 1969, page 19),

the abovs equation can be used to produce an integral
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equation for the moments about the origim of the
run~length distribution. . For example, if ¥' (i;s) is

the ith moment about zero, for i = 1,2, ves, We hava:

N' (158) -

N(1;s) !,

N'(23s) = N(2iS)L.+ B(1;s)8.

4

B'(3;s) = N(3;s)! + 3, N(2;8)8 .+ N(1;s)1 .

]

N (4;s) = N{U;s)l + 6.N(3;8)1 .+ T.8(2;s) L

_ +.N(1;s)!.,

Thus, it is possible to obtain the moments about
zero (and from these the moments about the mean,
kurtosis, etc,) of the.rgn-length distributiqn without
repeatedly‘diffe:entiating‘the expression given by Ewan .
-and Kenmp for the moment generating function. .

Although the integral equation approach is more.
generél than the matrix,equation approach, we believe
that both approaches are useful and should be used in
~conjunction with one another, The connection between
the run-length distribution of a CUSUHM scheme and the:
geogetric distribution is obvious in the matrix
eguation formulation, bht it is not so apparent in the
integral eguation formulation. Moreover, the .

techniques of theoretical and numerical linear algebra
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can be applied to the problen of analyzing the .
. prope:tiestof arcpsuu!scheae,using‘tﬁe mat:ix_equatiqp,
_ approach,«ghereas_the,mgre:sophisticated technigueszqﬁi
the theoreticalhanq_pqmerical analysis of integral.
equations»mnstvbaipsed,in the«latta; app:pgch.@;Sinceu
_statisticiansl(atﬂleast this yonld-bg.gtatisticiai)-are:-'
', gene:ally-mqre,f@nixiarhwith,the;ggome;riq\ﬂiStributiqn
and linear algeb:aithan they are.u;th‘;unj;ength--v -
distributions‘and_integra1 equ§tiqns,_thesg;twoufacts .
alpne voulé.seem tq.justify»the,mat:ix equation ‘

approach, ., -

Part 2: Connection betwe2n the Asymptotic Results of

Page, Brook and Evans, and Ewan and Kemp

It is also possible to establish a connection
betveen the asymptotic results of Page, Brook and
Evans, and Ewan and Kemp. Again, the dissimi;arify
.betveen these tesq1ts is more apparent than real..

In 13961 Page showed that,his asymptotic,expression
for the run-length distribution function of a CUSUM
scheme convarges to the corresponding expression given
by Ewan and Kemp (except for a term which is
asy@ptotically negligible).. He obtained his asymptotic.
apptoximétipn by repeatedly differentiating the
characteristic function of the total number of

observations in the Wald acceptance tests and letting
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the probability of an acceptance test, Pw, approach 1,.
He.ﬁow derive a slightly modified version of Page's
approximation in a completely different manner, and
prove that it converges exactly to the Ewan-Kemp
approximation, .

Let N¥Nwi(0{0) be the run-length of the ith
acceptance test in a CUSUM scheme. Then by the Wald

egquivalence we know that
N=Nu1(0}0) + Nw2(0J0) ¢ .., + NwR{0}10) + Nw(O{h).

As Pw -> 1, Nwi(0J0) -> 1 and Nw(0O}h) -> 1 in

'probability, so that’
N")R"‘"o
From this it follows that

G{n) = P[N <= n] -> P[{R <= n-1] as,Pv => 1,
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Since R is a,geoaetric;randon variabie;-this

probability is easy to compute and we get

n-1
Pu. (1 - PW),

PR <= n-1]

1 - P'u (P' ->. 1,.(&,‘

1

Fow is we make use of the facts that

N = Nw'/(1 - Pw)  -> 1/(1 - P¥) (Pw ,->‘ .1).,
and

(1.4 x) =>e (x =>0)
(put x = Pv - 1), we find that

G(n). -> 1 - exp{-(n-i)/s!],

vhich is exactly the expression obtained by Ewan and

'Kemp. Page found that
G(n) = 1 - exp[-n/N'] (approximately). .

This difference is unimportant, however, since as

Pw -> 1, N'* -> infinity so that 1/N' -> 0, and the
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results are therefore asymptotically equivalent..

So we have established a conneciion betueen Page's
vasymptotic,approximation to the run-length di;tributipn
of a CUSUNM scheme and that of Evan and Kenmp,. It
rerains to tie in the asymptotic approximation of

- Brook and Evans.. |

Recall that Brook and Evans stated that for

large :n
n
& =L Lar

N =gy-a.,

where G(n) = {G(:i0), .... , G(n;m) ] is the vector

of cumulative run-length probabilities corresponding to
-~ the ipitial states 0, 1, .es, m, N is the-aésoéiated
vector of average run-lengths, q is the largest.

eigenvalue of B, and

[zvz i) 3. A
=0
V] and V4, are the positive right and left-hand

elgenvectors correspondlng to gq (normalized so that.

zvul).vz(i) 1.
¢=0

¢ The matrix B is obtained from the transition

probability matrix, A, of the CUSUM scheme by deleting

the last row and last column of A, Since A is a
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transition probability matrix, the rows of A add to

one, vhich. implies that A satisfies_ihe‘uatrix equation

A. l'= ‘1‘:
Thus, the vector 1 is an eigenvector of A
,.balpnging tqwthe:e;genvalue.1.; Moreover, .1 is the'
maximum eigenva19e,of_A, since,the,max-nprn of Ahis the
,maximug rou-snm_of-n, which is equal to 1, andkpo,
_leigenvaluevof a.matrix can be greater in modulus than
any norm of a matrix (Conte and de Boor, 1372, pagé
172)..,

As ihe:probabilities in the last column of A
approach zero, the row-sums of B must approach 1, since-
A is a stochastic matrix. This implies that B must
approach a stochastic matrix, which in turn implies
that the maximum eigenvalue of B, which is q, must
approach 1, and C must approach 1, Using these facts, -

and the fact that
(1 .+ x) => e | {(x -> 0),

(put x = ¢ - 1) we find t#&t, for'i = 1, 2, eee, B,
G(n;i) -> 1 - exp{-n/N'{i]}, .

which is asymptotically equivalent to the results
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of Page and Ewan and Kenmp. .

. Part 3: . Becursiya;App:oximgtiqns_tpvthejRunflehgth
D}stpibqﬁiqn, Average Run-length and Homent.
~ Generating Function of an Autoregressive.

Process which is Out of Control.

The Brook-Evans matrix equations and the Page-
Ewan-Keap integral equations_are.based on the-
assumption that the stochastic process being controlled
is a white-noise process,. The Bagshaw-Johnson
approximations, on the other hand;,ara less restrictive.

. in'the.sense that the process can follow an arbitrary
stationary and invertible ARMA model, provided that the:.
sequence of cumulative sums converges to a ¥iener
process, . The question which we have asked outsélves
is: 1Is it possible to derive integral equation
approximations for an ARMA process? The ansver is a.
qualified yes, If the ARMA process is purely.
autogressive, and if the process is out of control, .
then it is possible to derive such approximations..
We now proce=d to justify this assertion.

We begin our analysis by deriving the run-length
distribution:of a CUSUM schenme with'positive

first-order autoregressive observations. Let

X[i] = a'X[i'1] * E[i] (1 =-1 0, 1, «..)
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=0 (1 <-1,
~where, 0 < a < 1, and the E[i] are independent and
identicallyfdistqibuted positive random variables with

distributiOnkfunction F(e).. Also, let

. S[n}:

S[n-=1) + X[] (@ = =1, 0, 1, wea)-
=0 B {n <’_.1’-‘!"

and
P{N = n] = P[S[n] >= b and S{m] < h, ® < n)s:
Finally, let

R (0)

{~infinity,0],

B(r) = {(z=1)..¥, To¥] (r = 1, 2, esp' o B}

R{n+1) = [h, ¢+ infinity),

wvhere 0 < ¥ < h/m and R(r), T =0, 1, s0s , B+1.
form a partition of the real line..

Now for any events A and B, and any set of
muthallj exclusive and exhausive events C(r), r = 0, 1,

see g m+1'
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m+|
P{A1B] = Z P[A{C(r),BI.P[C(r)IB]..
' =0 o .
Let s(0) and s(=1) be twomnumbers.infthe.inte;valp.
(O,h) .. Then since S[1] E R(r), L= 0, 1, 000e hfi}

form a set of mutually exclusive and exhausive events,:

P = nIS[0] = s(0),S[~=1] = s(-1)]
o0
S P(¥ = nIS[1] E R(x),S[0] = s(0),S[=1] = s(-1) ]

r=o
© «P[S5(1) .E B(r)IS[0] = s(0),S[-1] = s(-1)]

for all . n >= 1. . Our task nov¥ is to express the:
terms onrn the right-hand-side of the above eguation-in a.
form which allows the run-length probabilities to be:

computad recursively..

It follows from the assumption that B[{i] > O.that
P[S[1] E R(0) 15[(0] = ‘S(O) S{-1) = s(-1) ] ='_0- .
Also, since S[ 1] BE R(m+1) implies S[1] >= h,
RIS[1] E R(a+1),5[0] = s(0),S[-1] = s(-N 1

1, S
=0 '(n > 1)0_;

P[N

= 1 {n

Before we camn proceed any further we need to

establish the following fact: .
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s(n] + [z M (stal - Ste-1
2 QEUJ.

10\’"

S[n]

for all m < n., This fact is easily established by

inductions. For m = n - 1.ve know that . .

A\

S{n}. = S[n-1] + X(n] = S{a-1].+ a.X(n-1] + E[n}.

‘and that
S{n-11 = S{n=-2] + X[n=1}e ..

- Therefore ‘a, {S[n=1] - S[n-2]) = a.X[n-1], from

which it follows that
S{n] = S[n-1] + a.(S[n-1] - S[n-2]) + E[(n],

which is of the required form. - Suppose now.that -

it is true for m = n'; that is,

’
5(n] = S{m*] + [:é:a‘] (sfa*] - s{n*~-1]) -
o2 Fhhen..
4:m'n k=0
| If we substitute S[m'-1] + a.(S{m'-1] - 5{m'=-2]) +
E[m?] for S[m*] in the above expression and re-arrange-
terms, collecting powers of a, the result is obtained..

The important thing to notice about the above.
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expansion for S{n] is that! if s[m) and S[{m-1] are-
given, then the,distrfzutiéh of S[n]} is determined by 
the independent randoa vériables E{fn+1] + oee. + E{n], -
and does NOT dependent on E[1] for i < mf1;f In other
.words, thegsequence:of'cumulativefshms is'narkovian.w

¥e can now calculate some probabilities. Firstly,

PLH = 115[0] = 5(0),S[-1] = s(=1) ]

PLS[1] >= hIS[0] = s(0),5[~=1] = s(-1).]

P[S[0] + a.(S[0] ~ S[-1]) + E{1] >= h
IS[0) = s(0),S[=1]1= s(-1) ]
PIS(0) + a.(s(0) = s(=1)) ¢ E{1] >= h]

1}

1 - Fth - s), =
where s = s(0) + a.(s(0) - s{-1)).. Secondly, -

PIS[1] E R@) IS[0] = 5(0),S[~1] = s(-1)]

i

P{S[0] + a.(S[0] - s{-1])) + E[1] E R(r) -
IS[0] = s(0),S[-11= s(-1)]
= P[s{0) + a.(s(0) - s{(-1)) + E[1] E R(T) ]

= P(r.¥w - s) ~- F((:?I).w - S)a.

Our next step is to show that

P[N = n|S[1] E R(r),S[0] = s(0),S[-1] = s(-1) ]

s (0) 1..

= P[N = n-1{S[0] E R(r),S[-1]
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By definition, ¥ = n implies that

s{n] >= h, S} < h, B < n..

—

Applying the recursion relationship between the -

cupulative sums to S[n] and s{m], we obtain

Nl 2
S{nl] = S[1] + {g.a'],(s“,] - S{O] -

( R R
4=2 ﬁ=0

| : Ml g
S5{an} = 5{1] + lg.aﬁ. (S{1] - sf{oy -
L2V M

’g [ £ $4=090..
4=2 &=o0

By the same reasoning, ¥ = n~1 _implies that:
S[n-1] >= h, sfa=1] < h, m-1 < n-1

and (using j* instead of j as a dummy variable) . -

n-l ¢
S[0} + [£ al).(S[0] - s[-1]D -

S{n-1} = £ >
Fond
T
§'=1 k2o
m-{ -
S{m-1] = S[0] + {F a% (S[0] - S[-1])

ezl po)-
Ve e
4= 4=0

Let x be an arbitrary element of R(r).. In the.

expressions for S{n] and S[m], substitate S{1] = x,
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S{0] = s(0), and in the expressions for S{n-1] and
S[a-1] substitute S{o] = x, sf-1}1 = s(O), and put i =

j*+1. . The resulting expressions are-

an=x+[zaﬁ(x-swn «z[z LE[1]
2) 422 2
- "
S[m] = x + [z a‘] (x - s(0)) .+ E { -“fE{j]
&2l 1- lz:
: n . N
S(a-11 = x + (¥ a%. (x - 5(0)) +2[Z’aé E(1}
& S :

i

M-
Sa=1] = x + [$ a9. -,s(on +Z[Z ‘fE[i]»
i | 42 f=o

We see that the expreésions for s{n)] and S{mn7], -

m<n, given S{1] = x, S{0] = s(0), S[=-1] = s{(=1), are:

identical to the expressions for S[n-1] and S{m-1], n~1.

< n-1, given S{0] = x, S[~1] = s(0). Since this is
true for each fixed x E R(r), the events must be.
agquivalent, and the corresponding probabilities must
therefore be equal, .

Combining the above results we find that -

P[¥ = niS{0] = 5(0),S[-1] = s(-1)]
=1-F(h - 5) | |

for n = 1 and

m
=S [F(r.¥ - s) - F((c=1).¥ - s) ]
=) ‘
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«P[N = n-1{S[0] E R(r),S{~-1] = s(0) }

for n > 1, where s = s(0) + a.(s(0) - s(=1)). . Letting

v.=>0, n.->uinfinity.and,m.u:7>_h,.ve:findjth;§,v

PLS = niS[0] = s(0),S[-1] = s(-1)]

= 1= F(h ~58) .

for n = 1.and

h

o= J[P{N = n=-115{0] = u,s[~-1] = s(0)-].dF (u-s) -
/]

for n > 1..

ieVhavevtherefore'de:ived a iecursion:relatignship
‘which can be used to compute thewrgp-length
distribution of a CUSUM scheme with positivé"s
first-order autoregressive observations.. Note. that it
is of the same form as the Page~Evan-Kemp regurSion
relationship for the run-length distribution of a CUSUN .
scheme with independent random variables, except that
our probabilities are conditioned on the events S[{0] =
s(0), S[~-1] = s(-1), vwhile their probabilities are.
conditioned on the event S{0] = s(0).. Also, the term
co;respondiﬁg to the state R(0) is missing in our .
equation, since we have assumed E[i] > 0., It is clear
that we could proceed in this manner to obtain a-

recursion relationship for an arbitrary positive:
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autoregressive process.. For example, for a.
second-order positive autoregressive'p:ocess”ye_wéu;d
condition on the events S{0] = s(0), S[~1) = s(=1)s -
S[-2] = s(=2).. ..

Having obtained an integral equation for the:
run-length distribution, it is nov possible to obfain
an integral gguation for the moment generating .
function,.H'(t;s(O),s(-l)),;and the ave:age run-length,:;-
N'(s(0),s(-1)), of the scheme, . If
P[¥=n{S[0]=s(0),S[-1]=s(-1) ] is multiplied by exp[a.t]
and summed over n, the following iq;eg:al equation fo:,

M*' {t;s(0) ,s{-1)) is obtained: .

M*' (t;s(0) ,s(=1)) = exp(t].[ () - F(h=s))
| : + (B (t3u,5(0)) 47 (u-5) ]
° _
If this integral equation is differentiated wvith
respect to t and t is set equal to zero, we find that
N*' (s(0),s(-1)) satisfies the integral eguatipn;i

h

H' (s (0) ,s(-1)) = 1 + f N' (u,s(0)).4dF(u-s) ..
o

We now consider some of the assumptions in the:
above analysis, 1In géneral, when the process is in
control; the observations will not be strictly positive.
and the above~derived recursion rélationship cannot be

expected to hold, even approximately. On the other .
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hand, when,the'procésszhas gone out of cont:ol,.the;
mean of the process will be pqSitiyeﬁand hénce.there:
will be a relatively high probability that the "
obserVatiops:willube;ppsigive,mso.iu this case it is . .
vreasonable#to”expagt,that.the,regur§iqn_£e1a§ionship.
-will generaté probabilities which are close_tpkthé true:
.values., Actually, as long as the sequence .of -
,cumulatite,sums remains positive (i.,e., does not hit-
the reflecting barrier at zero) we expect that the:
~above approximation will be fairly good. .

The reason that we excluded the region R(0) -from
the range of the cumulative sums is that, without this
:estriction, vwe found that we could not uniquely
recover the X-values, given the S-values, There are in :
general an infinite number of values of X[n] which map
S[n] into zero (e.g. any X{n] such that S{n=-1] + X{n].
<= 0) so that even if we were given the entire Sample
path of the cumulative sums, we could not uniquely
determine X{n] if S{n] = 0.. Since.the3crux of the .
above de:ivation is the relationship between S[n], 5[&]
~and S{m-11, and since S[m] and S{m=-1] cannot be used to
determine X{n] if S[n*] = 0 for some n >= n'! >=m, wWe:
therefore were forced to exclude the possibility that.
S{n'] E R (0) fof all n'. We restricted our
conéiderétions to purely autoregressive processes,
‘rather than moving average or ARMA processes, becausei.

with or without the restriction that S{n] > 0, the
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cumulative sums of the latter processes are not:
uarkovian,vand_hgqpa ve cannot expect to obtain a
'simple reqqrsionJ;elatipnshiphbetveen the run-length

probabilities (at least not in the above manne:{ax
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SECTION 4,3:  SOME PRACTICAL PROBLEMS ASSOCIATED WITH
THE COMPUTATION OF THE RUN-LENGTH .

DISTRIBUTION OF A CUSUM SCHEME .

So far in this thesis we have considered the
.problen of determining the run-length distributiqh of

a CUSUM control procedure from a purely theoretical
point of view, . We nov consider some of the practical
problens vhich arise in this context.. Specificﬁlly,.ve
~look at'the.numerical aﬁd computational difficultieé
vhich are associated with the techniques we have-
discussed, and we perform a Monte Carlo study to gauge-
the goodness-of-fit of the Bagshaw-Johnson

approximation. .
Part 1: Numerical and Computational Difficulties

We ‘have discovered (the hard way) that there are.
. some rather severe numerical and computational
difficulties associated with all the approximation
techniques discussed in this thesis, ., Although some of
these difficulties are obvious, others are more subtle:
and so we feel that it would be useful to practitioners
if we discussed then, | |

| We begin our discussion by analyzing the formula
for the Wiener process approximation to the run-length

distribution given by Bagshaw and Johnson (19753a).. It
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is unnecessary for our purposes to reproduce the .

formula here; rather, we simply poini out tﬁat it is of

the fora:
u(t;0) = explc/2).£(q(1) +9(2) sees) s

vhere ¢ = 2,W' . h/¥'' and the -values of the

_ function f£(.) are obtained by evaluating an infinite

- series, The coefficients of the infinite series, q(1),

q(2), ++s.  are the-positive solutions of .
tan(goh) = ‘q.‘ﬁ"-/ﬁ'n. N

It can be seen from the above egquations that if -
W' > 0 and E!/if' increases, exp[c/2] increases as an
exponential function of ¢, and since u(t;0) < 1, £(.) -
must also decrease as an exponential function oi»c.u
This is an unfortunate circumstance, as it 1eéps to
numerical instability, as we shall now shou._

If we make the substitution x = q.h, the’

non-linear equation for q reduces to
tan(x) = -x/c,
and the roots of this equation are the .

intersections of the straight line -y = -x/c with the

curves y = £an(x)., By inspecting the graph of the set
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of roots to this equation it becomes clear that
the robts approach multiples 6f”ﬂ72,'vhi¢h are singular
points of tan(x). . Also, a small change ‘in the value of
¢ results in a large change in the solution set.. In
:oéher.words,vthe:solutions of the non-linear eguation.
.tan(xi = =X/C are unstable,  This implies that it is
‘nbt easy to eValuate the infinite series accurately, -
even with a high precision computational routine..

So now suppose that, instead of computing f£(.), ve
compute £(.) + e, where e is an error which is-pot-
_necessarily small, . Then instead of computing u(t;0),

ve actually compute
u' (t;0) = exp[c/2). (f(.)+e) = u(t;0) + exp[c/2].e..

If ¢ is large (i.e.. ¥' > 0 and W*'/N'' large) then
‘even if e is small, the product exp{c/2].e is not
necéssarily small, , In fact, suppose that W' = ,5, W''
= ,25 and h = 15 (we actually had to compute u(t;O0)
with these parameter values).. Then ¢ = 60 and exp{c/2]
is‘on the order of 10|,3 so that in order to have

u' (t;0) < 1 it is necessary for e to be on the order of
]5{¢uhich is close to the maximum attainable-

precision in double-precision in Fortran. Needless to
say; with values of ¥' > .5 and the same values of W''

and h the sitvation rapidly deteriorates..

An added difficulty is that the run-length
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distributions prqduced by the Wiener process
approximation (and, incidentally, thé‘other.
approximations as vell) have high-order contact at
zero, which implies that even for modsrate values‘of c-
the error caused by the extra tern exp[c/Z].e can be
appreciable, .- . '

since the coefficients of the infinite series must
be"computéd accurately by an iterative'techﬁique; and
since in many cases the infinite series converges .
slowly (as pointed out bj Sweet and Harden, 1970), the
evaluation of the run-length distribution can become -
computationally quite expeﬁsive.h Bagshaw and Johnson
(1977) found it necessary to resort to an extended
Newton-Raphson method in order to evaluate the roots of
the ncn-iinear equation, as even 50 iterations of the:
unextended Newton-Raphson method did not yield enough
accuracy. . ¥e found that a simple fixed-point iteration
method obtained reasonable accuracy without too much
computational effort, but that it was inefficient in
obtaining high-order accuracy..

Unfortunately, the Brook-Evans matrix egquation and
the Page-Ewan-Kemp integral equation (and even more-
" unfortunately, our integral equation) involve
similér nuperical and computational problems. .

Coﬁsider first the Brook4ﬁvans matrix equation, -
In order to approximate the probability

P[N{i] = n] it is necessary to multiply an (m+1 x m+l) -
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matrix n times, vhere.n is the nﬁmber of sub-intervals
into vhich the interval (0,h) is parfitioned.h Each
matri; multiplication t;kes on the order of (amt+l1) .
.arithmetic Qperations, so that the computation of
P[N[1] = nj takes on the order of n. (m+l)3 operatioas. .

If the state-space of the observations is |
continuous, then a will have to be fairly large in
order to approximate the run-length probabilities with
~sufficient accuracy, As the number of arithmetic
~operations required to compute the probabilities
increases as a cubic function of m, it is therefore .
coﬁputationally.expensive.to achieve high-order
accuracy, . But if high-order accuracy is not acﬁieved
~and maintained, then the round-off errors generated by
the computations will quickly build up as n increases
and lover the precision of the upper-tail
probabilities, Moreover, since the initial
probabilities are usually very small (due to highbofder
contact at zero), and since in most cases the order of
magnitude ‘of the probabilities changes very rapidly
near the mode, small errors in the initial
probabilities can lead to very large errors in
subsequent probabilities, Thus, the computation Qf the
probabilities is numerically unstable as Qell as
computaiionally expensive,

The same statement is true of the recursive

integral aquation of Pagé-Ewan-Kemp and our own
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equation. . Since approximations to the solutions
of the integral equations can be‘obtéined by converting.
them to matrix equations, many of the computational and -
~numerical difficulties involved with the solution of .
the matrix equations are also involved with the
solution of the integral egquations. . In particulaf, the -
 prob1ems posed by_thevcomputAtional expense of -
achieving high-order accuracy, the build-up of
round-off eirors and the numerical instability of the-
solutions are all present. . |

One might expect that efficient numerical
integration hethods could be used to relieve some of
the compﬁtaiional effort, and although this is probably
true in many cases, it is not necessarily true in all
cases, In one case , for example, we found that the.
trapezoidal rule out-performed Simpson's rule, which is
~usually more efficient, because a large portion of tha:
area under the curves was concentrated near the
end-points of (0,h), and the trapeioidal rule assigns
. more weight to the end-points than does Simpsont!s rule..

In light of thé above analysis it might seem that"
the best way to approximate. - the run-length
distribution of a CUSUM scheme is by Monte Carlo
simplétion." This is in fact true in many cases, buf it
is falsé in many others., As we shall see in the next
sectiqn, the run-length distributions of CUSUM control

procedures often have long, heavy right-hand tails, and
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it is computationally expensive to approximate .
run-length distributions of this_typé using Monte Carlo.
methods, , Suppose, for example, that there is a
pfobability of p percent that a run-length will exceed
the positive integer n;g At leasiun observations'mnsti
be simulated iq‘order to generate just one run-leﬁgth
~vwhich is greater than n, and fhis procésé nust b97 
repeated a fairly large number of times to accurately:
estimate the upper-tail probabilities., Let us assume.
that, in order to achieve the desired level of

accuracy, ¥e need £o~generate.at least m run-~-lengths
wvhich exceed n.  Then wé require MORE THAN m.n |
observations to approximate the upper-tail
probabilities, and this number will be only P percent -
of the total number of observations required to
‘approximate the run-length distribution..  For
run-length distributions with long, heavy tails, p and a
will be large even for fairly large values of n, and a
considerable computational effort will therefore be

regquired to adequately approximate the .distribution, .

Part 2: Goodness-of-Fit of the Bagshaw-Johnson

1.

Wiener Process Approximation.

One major problem with the Wiener process
approximation is that the first passage time

diétributipn of the Wiener process is often.
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stochastically larger than the run-length distribution .
~of the CUSUM scheme. The reason fon,ihis is that a.

. Wiener process is a continuous process, and it will
_therefore tend to signal at the same time or before a
,discreteAprdcess with the sanme mean, variance ‘and |
'absorbing and reflecting barriers, .Bagshaw and Joﬁnson
(1977) suggestéd_that the critical value, h, should be:.
‘increased somewhat' to improve the approxima?iqn, but=
they did not suggest a method of determining how much h-
should be increased., We have not been able to:

find a general method of determining an

appropriate value of h, In fact, we have found that
under certain circumstances the first passage time
distribution will be stochastically smaller than the
corresponding run-length distribution, so that an
increase in the value of hAwould>make the approximation -
worse, not better,.

The fact that the variance of the Wiener process
approximation to Sz{n] changes when the mean changes
also presents a practical problem.. Due to a
simultaneous change in both the mean and variance of
the Wiener process, it can occur that the expected
first passage time actually increases rather than
decrgases wvhen the process goes out of control {i.e..
switéhes‘frcm nodel 1 to model 2)..

This is certainly an unappesaling result,

since we ‘therefore have the anomaly that it takes



page 133

longer, on aferége, for the process to signal when it
has gone out of control that uhenvit'has,remainad in
control, . Although this result is unappealing, it
should not be too surprising, as the upper-bound thdt,
Ve derived;for'U'(Z)/U'(1) was of the form iﬁ(l)/ij(Z},
so that if.H!(1)/H'(2) > 1, then there is a nonfzéro:
probability that U'(2) > U'(1).. Unfortunately, we do-
not see how this problem can be avoided, as the: .
variance of an ARMA process necessarily phanées if one:
of the autoregressive or moving average .parameters
~change, as it is a function of these parameterg.a
Bagshaw and Johnson (1977) suggested that it might be:
possible to exploit the ‘dependence of the variance of
an ARMA process on the autoregressive and moving
average parameters by developing a scheme which signals
vhenever there is a significant increase or decrease in
the variance of the process, This seems like an
excellent idea, but we have not had a chance to
investigate it thoroughly,..

We will now discuss the resuits of our Monte Carlo
goodness-of-fit study. For the sake of continuity Ve
- started with many of the same parameter values as used
by Bagshaw and Johnson, and then we changad some of
them to study the effect of the changes., We
con¢entfated our efforts on the CUSUM schenmes
corresponding to the statistic S{n].. Since the Wiener

process approximations to S[n] and Sz[{n] differ by only
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'a change in the mean and variance parameters, we expect
~that the conclusions which we nake;pdncerping‘tha S{n}) :
Cusun schgmgs gill_hold for the S?[n],CUSUH'SChQEQS-f

Figures 4.3.}1 .~ #.3.5 are”graphs;of the
,cugulativeérunflength distributions_an@ Hiener process
Wapproximationé of five CUSUH.schemgs with fir;;-ofder
Lautp:egressive,observations.,The;schemes have:

,éommon autoregressive'pa:ameters,.variénce parameters .
and critical values of a = 0.5, W'' = 4.0 and

~h = 17.32, respectively. The mean parameters range.
from 0.7 to -0,.,1 by increments of 0.2. The-

. cumulative run-length distributions generated by

. Monte Carlo simulation are denoted by H[N <= n], and
plotted with the symbol *'.!', and the Wiener process
approximations;are denoted by P[¥ <= n] and plotted
vuith the synbol 'x', The letters 'AARL!' stand for |
Asymptotic Average Run-Length (i.e._ expected fi;st~
passage time), and the letters 'ARL' stand for
Average Run-Length., Baghsaw and Johnson (1975a,
figure 5), considered the case corresponding to
_figure u;3;2.,

It is clear that the Wiener process approximations.
are stochastically larger than the simulated run-length
distributions, . It-is also clear that the:
approxiﬁations become progressively worse as W!
decreases, in tﬁe sense that the absolute errors

incurred by using the percentage points of the first
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passage time distributions to approximate the.
corresponding percentége points of tﬁe run-length
distributions increase markedly as W' decreases.. For.
examnple, with W' = 0,7, the difference between the true:
and estimated medians is less than 25 - 17 = 8, but
~with 8 = -0,1, the"difference is greater‘than 135v- 76
= 59.. Also, with W' = 0.7 the difference between the:
- true and estimated average run—lengths,is_only.26.}9 -
.20.67 = 5,52, but.with W' = - 0.1, the difference is-
181.85 - 102.28 = 73,57. We have found a similar
relationship between the value of W' and the fit of
the"approximationé in all of our simulations,,

| One reason for this relationship between the value
of W' and the goodness-of-fit of the approximations is
that as W' increases, the first passage time
distributions and the run-length distributions converge
~to peaked, short-tailed distributions with simi}ar
mean and variance parameters in the interval [0,1], so-
that the absolute differences in their percentage
points necessarily decrease, Another reason is that as
W' decreases, the tails of the run-length dist;ibutions
become much heavier than the tails of the first passage:
time distributions, which tends to inflate the values
of the average run-lengths relative to the expeéted
firét passage times,

Since S[n] converges to a Wiener process as

n increases, and since th2 average run-length of a
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CUSUM scheme increases as W' decreases, the-
run-length distributions must converge.tovthe*'
first passage tinme distributions as
W' => - infinity, However, the rate of convergence:
~appears to‘be.very,slov.n

We next considered the effect of the value of the .
critical value.bn;thevgoodness-of-fit of the:
approximation. Figures 4.3.6 - 4.3.8 have the same:
values of a, W' and W'' as figure 4%4.3.2 (the case -
considered by Bagshaw and Johanson), but their
critical values are 29, 54 and 156, respectively. .
Note that the wiener process.approximation becomes
appreciably better, in the sense defined above, as
h increases, 0Of course this is to be expected, as
the approximation should improve as the average
run-length increases, and the "average run-length
“increasesvas h increases, The results of all our
simulations suppoft the conclusion that the:
goodness-of~-fit of the Wiener process apptdximationv.
. improves as h increases., . |

It is interesting to note that there appears to be:
a fixed bias of about - 8,0 in the asymptotic average:
run-lengths of figures 4.3.2, 4.3.6 and 4.3.7 (the bias
.in figure 4.3,8 is slightly less, which is
_understahdable, as the bias mustvapproach zero as h =->
infinity). Even more interesting is the fact that the

formula for the asymptotic average run-length of the:
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Wiener process approximation is of the form

U = [4'0/(2.5%) Jexpl-c] - 1.+ c],

~and with Hl = 0.5 and W'' = 4 we have
r 3
'H"/(Zog') = 800. e

Thué, if we ignore -the term '-1? in the eguation for.
U', we obtain almost an exact fit between the.
AARL's and the ARL's in figures 4,3.2, %.3.6 and
4.3.7.. |

Fiqure 4#.3.9 illustrates the effect of a changef
in the variance parameter on the goodness-of-fit of
the approximation. The values of W' and h' are the
samé in figures 4.3.2_and 4.,3.9, but the value of
' é is 0.5 in the former figure and -0.5 in the latter
figure, which changes the corresponding variance
parameter from 4,0 to O.4444,,, Obviously, the
- decrease .in the variance parameter from 4.0 to
0.4444,.., improves the goodness-of-fit of the
approximation dramatically. When &' is greater than
zero and is fairly large (say >= 0.5) we have found
that this is always the case..

We éuspect that the reason that this is true is
that as W' -> infinity and W'' -> 0, both the first

passage time distributions and the run-length
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distributions rapidly convergé to peaked,
~short-tailed distributions with similar mean and
variance parameters in the interval [h/W',1+h/W']. .

The empirical formula
ARL = 1 + h/a? (n* > 0),

wvhich was suggested by Evan and Kemp (1960) , seenms
to support this argument. Also, our heuristic -
justificatipn of the Ewan-Kemp formula, given in
‘seciion 1 of this éhapter, and our proof that.the;.
expectéd first passage time of a Wiener process
_converges tb h/w¥', seems to lend further support to
this argument, In addition, the intervalj[h/ﬂ'.lth/i']E
converges to the interval [0,1] as W' => infinity, and,u
as stated above,'the first passage time
distributions and run-length distributions converge to
peaked, short-tailed distributions with the similar
mean and variance parameters in this latter interval as
W' -> infinity.

As a final point, we present the:
following short list of AARL's and ARL's, with the:
corresponding values of h/W' and 1.+ h/W' (the-
values of a, W'' and h are -0.5, O.4444,.,, and

17.32, respectively):
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w! AL ARL  h/w!  1+RW

0.7  26.29  26.96 204,74 25.74
0.6  28.25  29.01. 28.87 29,87

- We feel that this evidencs, take@ together,
- strongly supports our argumentixg

The purpose of figure 4.3,10 is simply to show .
that under certain circnystanées run-length
distributions can be stochastically larger than first-
_passage time distributionms. .
If we consider the results of the .above-
.simulations as a whole, we come to the conclusion
that the goodness-of-fit of the diener process

approximations improve as
c -> infinity
and ¢ -> ~-infinity,
vhere
C = 2.8'.h/NYY

Note that c is the constant that appears in U£
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CONCLUSIONS:

Based on our analysis we conclude:

1.) There is no such thing as amn all-purpose
sequential control procedure,  The seguentiél control
procedure which is appropriate for a particular .
application will depend»on the 'unigue characteristics .
associated with that application and may have to be

specially designed, .

2,) Ai present there is no single method of
generating or approximating the run-length distribution
of a CUSUM statistic which is superior to all other

methods in all cases.,

3.,) The Wiener process approximation obtained by
Bagshaw and Johnson works well in some cases (e.g. as
c -> infinity and for large average run-length) but it
can be gquite misleading in many other cases and should

be used with caution, .

4,) More research is required to find methods of
improving the Wiener process approximation, and to find
methods of efficiently solving the matrix and integral

" equations,
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