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Many z l ~ e b r s i c  c o n s t n c t i c n s  c m  be vieved as algebra-valued 

functors. Using a category-theoret ic  formulation of universa l  algebra - 
.-., 

and f i r s t -o rde r  i q i c  ~ r i g i n a t e d  by F.  W. Lawvere, we obtain a lgebra ic  

and lo-gical r e s u l t s  concerning functors  which correspond t o  important 

k inds ,of  a lgebra ic  construct ions-- in p a r t i c u l a r ,  t o  Boolean powers and 

E 

bounded Boolean powers. . 
The notion of an equational  i n t e r p r e t a t i o n  of an equational  

theory T '  i n  an equational  l$eory T i s ' i n t roduced  and shown t o  be the  

s y n t a c t i c a l  counterpart t o  coalgebras. By means of equational  in terpre-  

t a t i o n s  T '  -+ T, t he  represehtable functors MocUTf --+ ModfTff are a 

shwm t o  be obtainable a s  TI-algebras defined "within" t h e  underlying-set . 

- 
functor  UT: Mod (T)  +Set  when UT i s  t r e a t e d  a s  a  T-algebra i n  



1 
.=om-,c,scnt t f T , . G  i s  ;r,sna2ic, a r e  charac te r ized  s M l a r l y .  The 

l a t t e r  r e s u l t  i s  associatef i  w i t h  a  s p . t a c t i c a 1  c h a r a c t e r i z a t i o n  of 

L 
211 the equat iona l  ~ ~ e o r i e s  T' such t h a t  Mod(Tg) i s  equiva len t  a s  

d 

a category t o  I?od!Tj.  F i n l t a r y  and i n f i n i t a r y  ve r s ions  o f  t h e  

I 
3cclearl power c o n s t n r t i o r !  a r e  descr ibed a s  a lgeb ra i c  func to r s  which 

z o r r e s ~ o n d  t o  Post a lge3ras  in a  func to r  category. 

k functor-:heoretic cha rac t e r i za t ion  of l o c a l l y  equa t iona l  

ca t egor i e s  i s  given which is  analogous t o  F. E .  J. L in ton ' s  

cha rac t e r i za t ion  of equat iona l  ca t egor i e s .  The c h a r a c t e r i z a t i o n  of 

l o c a l l y  e q u a t i o ~ a l  ca t egor i e s  l eads  

l o c a l l y  a lgeb ra i c  functor ,  Bounded - 

n a t u r a l l y  t o  t h e  not ion  of a  

Boolean powers a r e  descr ibed  a s  

l o c a l l y  a lgeb ra i c  func to r s ,  and a  new proof of T. -K. H u g s  theorem 

cha rac t e r i z ing  t h e  category of Boolean a lgebras  a s  a  l o c a l l y  equat iona l  

category is  sketched. 
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5 
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(IfAPTER 1. INTRODUCTION , 

The revalued Post  a lgebras ,  f o r  f i n i t e  m22, were intrcduced 

by P, C. msenblcan f381 as "many-valued" analorjues t o  the Boolean 

algebras i n  connection with a kind of many-valued proposi t ional  logic 

which was designed t o  h funct ional ly  complete with r e spec t  t o  a 

semantics of %valued 
... 

truth t ab les .  It was n a t n r a l  f o r  logiciks and 

detennine the extent  and nature  of the * a l g e b r a i s t s  t o  try t o  

similarities between the Post  algebras and the Boolean algebras.  In  

search of "Boolean" properties of Post algebras,  p-r ings,  and o the r  - .  

analogues to Boolean algebras, A. L. Poster  invented t h e  Boolean Ijower 

construct ion and the not ion  of  a norrmal subdirect power.* -- One of his 

a r e s u l t s  was the following t h e ~ - -  

(A. L. Foster 1141, 



-- 

A 
0 

8 - - - 
P 
i 0 -- 

. ' algebra. The f$llowjng classes of dlgebrak 

. - 
t i) ' The equational class generated' 

are coextensive: 

, * 

i i j  The class of all i s k h i c  copies of noriadl s d x l i p c r t  
d " 

H e r e ,  a primal algebra (in Foster's terminol6gy, a 

"functionally strictly cuq~lete" finite algebra) is a finite 

universal algebra A; having a t  least two elements, such that, 

each finite n, every f irnceon.  ---+ A is a polyncaial of A. 

F a s t e r  explicitly recqnired that  the ael* wvalued P e s t  algCbra 

was primal, and in his proof he showed t h a t  the Boolean algebra 

involved in canstrucf i ing any given algebra in a primally-generated 

proof a m t  shws that the category of Boolean algebras is equivalent 

to the equational cateqary ( w i t h  algebras as objects 



** 3 

P"' 
* .  

a arrows) generated by any  primal algebra,  with t h e  Boolean power , 

construct ion providing the equivalence functor .  

In  a s & w e n t  paper fl6], Foster  general ized the  ~00lean 

power c o n s t r u c t i m ,  defining "hunded" Boolean powers of  an i n f i n i t e  

algebra and shming that the  bounded Boolean power construct ion enjoyed 

2roper t ies .vhich  w e r e  "lucafized" versiona of corresponding p roper t i e s  

of the o r i g i n a l  ~ d l e a n  power construct ion.  Much of F o s t e r ' s  work 

concerning Boolean powers bounded Boolean powers was t i d i e d  up and 

1 - extended by M. I .  Go-dd andP G .  d t z e r  El81 , with most of the material  

# 
of t h e  l a t t e r  paper appearing i n  ~ r z t z e r ' s  book [19]. 

F o s t e r ' s  notions of " local"  p roper t i e s  were s tudied  and refined,  

in a succession of papers by T. K. liu, most notably 1223, 't233, 1241, 

and f251 , in which Bu formufated t h e  d e f i n i t i o n  of a l o c a l l y  equational  

keginning of Cha-der 5 of this thesis. The next  theorem, one of Hu's 

-st s i p i f i c m t  results, seems t3 have remained Sanewhat obscure, 



possibly because it never appeared i n  p r in t  with both a correct  proof . 

and the f i n a l  def ini t ion of a 

A f i n i t a ry  universal 

e 

local ly  equational class.  
s 

algebra A having a t  l ea s t  two elements 

- - - -  A - -- 

i s  local ly  primal (see 1163) i f ,  f o r  every f i n i t e  n and every f i n i t e  

subset 'X of A,  each p a r t i a l  function X" -A-  is the res t r ic t ion  . - 

of a polynomial -A of A-. 

1 .2 .  Theorem (T. K.  Hu 1221, 1241, [251). Let K be a - 

local ly  equational c lass  of f i n i t a ry  universal algebras, regarded as  

a category whose arrows a re  a l l  homomorphisms between algebras of K. 

Then K is equivalent t o  the category of Boolean algebras i f  and only 9b 

if K is  generated as  a local ly  equational c lass  by a local ly  primal 

3 

algebra. 

homomorphisms between algebras of K. Then K is  equivalent t o  the  

- 

category of Boolean algebras i f  and only i f  K i s  generated as  an 



equational c lass  .by a primal algebra. 

H U ' S  p rmf  of (1.2)  in 1221 shows tha t  a locji-iT.$y equational 

a d  only i f  K i s  generated by a locally primal algebra A; then 

K i s  a equational c lass  i f  and only i f  A i s  f i n i t e ,  hence primal. 

functor which provides the dual equivalence assigns t o  each 

,. J 

Boolean space - X an algebra of continuous functions C ( X ,  A ) ,  where 

-4. 

A Has the discrete topology. It'is now well: known tha t ,  i f  X i s  the 

Stone space of a Boolean algebra B,  then C(X, A) is  isomorphic t o  

the bounded Boolean, power AIBI  , which is an ordinary Boolean power i f  

A is  f i n i t e  (see Banaschewski and Nelson I31 fo r -de ta i l s ) .  

~nves t iga t ions  by. numerous authors (see Burris [51 and 

that the Boolean power and bounded Boolean power Lconstructions have 
t 

f 

extremely nice logical and algebraic properties. Most of the work 

done on Boolean powers t o  date makes use of Foster 's  or iginal  



defini t ion of Boolean powers, Foster'sxharacterization of Boolean 

1 

powers as normal subdirect power the algebra-of-continuous-functions 

'characterization, o r  a cha racGiza t ion  of Boolean powers as  a simple 

- - - 
- -A  - - -  - 

I 

type of sheaf construction. 
/ 

/ 
The important work on ~ d s t  algebras as  l a t t i c e s  done by 

', 
f i 

Epstein 1131, Traczyk 1411, and others,  has no apparenk connection 

with the Boolean power construction. The la t t ice- theoret ic  studies 

of Post algebras express the-correspondence between Post algebzias and 

A, 

Boolean algebras by describing the m-valued Post algebras as  coproducts 
t 

-A 

- of an m-element chain with Boolean algebras in the category of bounded . 
dis t r ibu t ive  l a t t i c e s ,  o r  as  chain-based d is t r ibu t ive  l a t t i c e s ,  o r  Ss 

% .  

algebras of nonincreasing (m:l)-element chains in  Boolean algebras. 

* .  

These constructions are  discussed in  Balbes and Dwinger Il l  a n d  i n  
--%+ 

study of the functor ia l  properties of the Boolean power construction; 

some preliminary r e su l t s  of tha t  study, such as a construction of 

2 



"Post algebras" as the Eilenberg-Moore algebras for  a Boolean power 

monad h the category of %ets ,  were   resented in  seminars a t  Warsaw 

University and a t  the Mathematics Ins t i tu te  of the Polish Academy of 
- - * - - -  - - 

Sciences in Warsaw in early 1976 and 1977. The wr i te r ' s  paper [91 
- 

on coalgebra-representable Boolean power functors showsxthat much of - 

the niceness of Boolean pokers i s  attributable t o  a special relation- 

ship between the i r  representing algebras and f ree  algebras in a 

category of inf in i ta ry  Boolean algebras. 

Chapter 3 of t h i s  thesis ,  on Morifa equivalence and algebraic - 
- - 

functors, contains improved versions of resul ts  originally presented 

i 

in I101 whit$ generalize the methods and r e  u l t s  of C91. Equational 9 

theories T and T'  are said t o  be Morita equivalent i f  the respective 

; 
equational categories Mod(T) and Mod(T1) of algebras are equivalent as 3 

- 
- - - - - - - - --- - - - -  - 

composite U ,G with the underlying-set functor 
T u ~ '  : M ~ ~ T I )  ---+ Set 

:- i 
is monadi,&every algebraic functor is coalge,bra-re&esentable. In 

/ 

Chapter 3 we define an equational interpretation of on'e equational -- 
'= 



- theory in another and show tha t  such interpretations are  the syntactical 
< 

..,? 

counterparts t o  coalgebras. Morita equivalence of equational theories 

is characterized syntactically,  and a syntactical characterization of 

algebraic functors i s  derived. 
- 

The construction of m-valued Post algebras as chain-based 
- 

l a t t i c e s  -provides an example of an equational interpretation of the 

equational-theory BA of Boolean algebras in the equational theory . * 

of m-valued Post algebras which witnesses-the Morita equivalence of 

- 

those theories. Likewise, the construction of m-valuedP~se-alg&ra= - -- 
-- -- - 

- 
- -- 

- 

-- 
----- ---- 

as l a t t i c e s  of nonincreasing (m-1)-element chains in  Boolean algebras 

is  direct ly  related t o  an equational interpretation of Pm in BA 

' which not only witnesses the Morita equivalence of the two theories 

but actually gives r i s e  t o  a representable Boolean power functor. 

the representable Boolean power functors are algebraic, and the 

d 

equational theory of generalized Post algebras associated with a 



.c 

representable  Boolean power functor  is  examined i n  some d e t a i l .  
i 

The connection between bounded Boolean powers and l o c a l l y  I 
equational  c l a s ses  a s  demonstratee by Hu's theorem (1.2) suggests  t h a t  
- - - 

A- - --- A Up - - - I 
- t 

7@ t h e r e  might be a " local"  genera l iza t ion  of a lgebra ic  functors  

corresponding t o  bounded Boolean powers. The reqired " loca l ly  

equational" counterpart  t o  monadicity ( a l s o  appearing i n  [ l l ] )  is  

given in Chapter 5 i n  t h e  form of a functor- theore t ic  charac ter iza t ion  

of l o c a l l y  equational  ca tegor ies .  Bounded Boolean power functors  do 

tu rn  out  t o  be l o c a l l y  a lgebra ic ,  and a new proof of t h e  Hu theorem 

(1 .2 )  is  out l ined using t h e  r e s u l t s  of Chapter 5. 

I 
One contr ibut ion  of t h i s  study which i s  not  express ib le  a s  a 

theorem i s  the demonstration t h a t  a cons is tent  category-theoret ic  

approach t o  a lgebra ic  cons t ruct ions ,  based on Lawvere's analys is  in 



The reader i s  assumed t o  be familiar with basic notions of 

category theory as presented i n  Mac Lane [321 and with standard 

universal algebra as  in ~ r z t z e r  [19]. The treatment of universal 

algebra described i n  t h i s  chapter is  similar i n  s p i r i t  t o  the  model- 

II 

theoret ic  approach exemplified by Gratzer [19], but is more sui table  

f o r  dealing w i t h  the interact ions  of algebraic and ca tegory- the~re t ic  

phenomena. In Chapter 3, fo r  example, we find it useful t o  t r e a t  

cer ta in  set-valued functors as  algebras i n  a functor category; the 

s t ructure  and properties of such algebras cannot conveniently be 

explained in tenps of elements and mappings of elements. This par t icu la r  

s ty l e  of category-theoretic universal algebra originated with 

F. W.  Lawvere's Ph.D. thes i s  [29] and was adapted by F. E.  J. Linton 

, 

[301 t o  cover i n f in i t a ry  univers$l aJgebra. A good exposition of 



f in i ta ry  category-theoretic algebra i s  given in  Pareigis 1361, while 

-\ 

'4 

Wraith 1421 provides a detailed account of the basics of inf in i ta ry  

+ 
category-theoretic algebra. The paper [I71 by P. Freyd-must be 

- -- - - - - - - - - - - -- - - -- -PA - - - 

included i n  the canon of the Lawvere-Linton approa~h t o  algebra, since 

it has motivated much of the subsequent research i n  category-theoretic - 
algebra. 

We assume no part icular  set-theoretic foundation fo r  category 

theory; since we only discuss functor categories of f i n i t e  "depth," 

the type of category theory which we us& is no more hazardous than 

Zermelo-Fraenkel s e t  theory with a few Grothendieck,unjverses added on. 

For our purposes, then, a l l  the categories (except Cat) which are  

mentioned below are considered as being objects in  a very big category 

Cat whose arrows are functors. 

with i n i t i a l  ordinals. The f i n i t e  cardinals are 0 ,  1, 2 ,  . . ., while 

o i s  the smallest i n f in i t e  cardinal. Note tha t ,  for  category-theoretic 



purposes, the domain and codomain are pa r t ' o f  the data which define a 

function; thus, fo r  example, the 

d i s t i nc t  from the inclusion map 

ident i ty  function X X i s  

X -4 Y ,  i f  X is a proper subset 

- - - -  - - -- - - -- 

I f  A and B a c t s  i n  a category M,  then the family 

1 4 

of a l l  arrows A -B in M is normally denoted by M(A,  B); 

however, t h i s  usage is abandoned below in  cer ta in  cases where the 

notation would be confusing. The category M is small i f  the family 

- 

of a11 arrows in  M is  a s e t ,  i - e . ,  an object i n  the category Set; 

.+ 
M i s  local ly  small i f  M(A, B) is a s e t ,  fo r  a l l  M-objects A and B. 

The ident i ty  arrow A - A i s  idA, o r  sometimes ju s t  i d ,  and the 

. , 
f 

composite arrow A L B  ----+C is f.g, o r  simply fg.  I f  f and g 

are  functions, Uu=n the value of f .g  a t  the point aLA may be - 

denoted by [ f . g l ( a ) .  A subobject of A i n  M is an object  B with 
- - - - - 

a =0~~8xphi--B A ;  ,,.~met-wrte BL--~A to-e- 
- -  

d 
b 

tha t  B is a subobject of A. I f  B c----+ A and C 6 A are  

subobjects of A, then  B 4 C is defined t o  mean t ha t  there is an 



4 
f arrd B C with c. f = b; in  that  case, f is a uniquely 

determined moncmorphism. If  f is  an isomorphism, the subobjects 

B and C are'equivalent, The category M0 is  the opposite of M.; 

the objects of M0 are the same as those of M ,  and the arrows 

. i 

A I B  in M0 are in biject ive correspondence with the arrows 
- - - -  - 

B - A  in M i  usually, no confusion w i l l  r esu l t  i f  the same name is  

used for  corresponding arrows i n  M and in  Ma. 

A l l  functors are considered t o  be covariant, but frequently 

a functor M a  ---+ K w i l l  be described as though it were an arrow- 

reversing transformation defined on M. Note thaf each functor 
> 

G: M + K  determines a functor G o :  M0 + e  in an obvious way. The 

functor category K~ has as i t s  objects a l l  functors M + K, and as , 

its arrows a l l  natural transfoxmations between such functors. A natural 

f transfo~loation G --r H in I? is given a s  a family (not necessarily 
-~ - ~ 

- - - - --- pp --- - -- -- - - - - 

a set) of arrows fA: ' G ( A f  __+H(A) in K~-inindexedbyYtheheobiects_L ~ ~- 

of M. In general, 8 may.& a rather large category, but most of the 

functor categories which we use are  of the •’on, setM, where I4 i s  



locally small.  

* I f  H is  local ly  small, then each object  A determines a 

functor A: M --a Set defined by the  following: - 

i) For each object  B ,  A(B)  is M(A, - 

M(A,  B) --+ MLA, C) which sends each A  -% B t o  A feL C. 

Any functor U: M ---, Set fo r  which there i s  an object  A such tha t  

U is natural ly  i ~ o m o r p h ~ c  t o  - A is  called a representable functor, 
t 

1 - .  

f h and the object  A is. said  t o  represent U. Each arrow A --+B in 

M determines a natural  t ransfomation f :  B 4 A which ac t s  by - - - 

composition with f on the r igh t :  f o r  each object C and each arrow 

B a C ,  ,we have f tg) = g - f .  -c 

The Yoneda TPmmn says t h a t  the  natural  transformations A  ---.-+ U,  - 

f o r  any M-object A and any 

b i jec t ive  correspondence w i t h  

f natural  transformdtion - A -- U, the corresponding element of U ( A )  is 



fAf idA);  for  each element a of U ( A ) ,  the corresponding natural 

transformation - a is defined by a (g) = tU(g) f (a), fo r  each object 
-3 

'k B and each dffw A -a B. ?in important consequence of 'the-.Yoneda 
\ 

- 
M 

Lemma is  that the Yoneda embedding M0 ---+ Set , which takes each 

f f 
arrow A -B of M to g -A A i n  setM, is  a full embedding. - 

- - - - -  - - 
- -- - 

I, 

5@e Yoneda embedding preserves limits, i .e . ,  takes colimits of 

M 
diagrams in M t o  limits of diagrams in Set . 

An equational theory is a locally small skeletal category T. 
. . 

with a l l  products, such that  every object of T is a power of one 

particular object  T. An arrow of the form ? ---+ym in T is 

called an (m, nl-axy operation. Any (mr n)-ary operation is simply 

a product arrow induced by an m-sequence of (1, ri) -ary operations. 

f 
For any function nr w n ,  there is a corresponding operation 

f 
of' m - n in Set to ? ff P in T deterrmines a functor 



j* 
: Card0 T, where Card is the full-  subcategory in Set of a l l  * 

* 

cardinals. There are (up t o  isomozphisb) two exceptional 

theories T I  for which the f w c t o r  
j~ 

i s  not faithful.  

exception is the theory T which has only one object m d  

0 Tne second exception is tine theory T fo r  which T # T, 
- -- - - - - - - - - v - 

f c r  af 1 n # 0, and where 'titere i s  exactly osle (1, 0) -ary 

, -  - 
equational 

The first 

I 

one arraw. * 

operation. 

A (I, n) -ary o,peration f is said ta when there i s  

a funct ion g such that f = g*, o r  when there is an m < n sucn 
-# 

t 

C1, m l - a r y  operation h. G i v e n  any cardinal n ,  an equational theory 

T is said to have rank (TI d A. provided that ,  _ for  a l l  m n, there 

finitary i f  rankIT) 4 w,  and rankfT) is defined t o  be if there 

T' obtained by deleting a l l  the' nontr ivial  (I, n) -aq aperat ims - .  



S t  T be L-. e z ~ a t i o n a l  ' i ; e o r y ,  and l e t  M be any category. 

k T-algebra m % 1s a prc4uct-preserving func to r  A :  T ---+ M, and a 

\ 

T - h o a m m q n i s m  In X rs a n a t a r a l  traasformation between T-algebras. 

4 
-- 

k-p_ 5 e t - s  i K f 6 F 5 f I y  ti~cz-th~-sSz+ I e t t e r  t o  denote j o t 5  an aTge7tra 

( o r  nmornorphisrc) =id i t s  w d e r l y i n g  !+object ( o r  M-arrow) . This 5 

gene ra l i ze s  the corxm.1 s rac t i ce  jr, un ive r sa l  a lgeb ra  of i gno r ing  the 

d i s t i r i c t i on  betxeen ar- alrjebra for hamomorphism)' and its underlying s e t  

i o r  func t ion ) .  k?en v e  r ~ f e r  t o  xi !+object A as being  a T-algebra,  

Zt is to -be un3erstd L!ar *.ere is a T-algebra A '  : T M such t h a t  

. 
A '  (3 = A which i s  Ikh: referred t o .  S imi lar ly ,  we might r e f e r  t o  

- T 
The catesor; Xod (T) i s  i-:rle f u l l  &bcategcry  i n  Set of 



algebra.  There 

mode 1- theore t ic  

having a proper 

*.: -. * 
+L a r e  some " s i z e  d i f ferences"  which a r i s e  because c_ 

universa l  algkbra does n o t  normally dea l  wigh theor ies  

c l a s s  of n o n t r i v i a l  operat ions,  and t h e  language-free 

- 

category-theoret ic  approach t o  algebra leads na tu ra l ly  t o  t h e  

considerat ion and use of e n t i t i e s  such as  coalgeb 9 (coproduct- 

preserving functors  To --+ M) which a re  somewhat odd from a model& 

L-  a e o r e t i c  viewpoint. The notion of a T-algebra in , S e t  d i f f e r s  

s l i g h t l y  from the  model-theoretic notion of an algebra i n  t h a t  the  

ic l t te r  requi res  t h a t ,  f o r  any a lgebra  A,  t he  operat ions A" --+A 

should be functions from the  n-th Cartesian power of the  s e t  A in to '  
I' 

I 

. The category version of a T-algebra allows t h e  n-th power of 
0 

-Lie underlying s e t  t o  be m y  set X = A ( ? ) '  which, r e l a t i v e  t o  some 

r 

;.-sequence of projec t ions  X --+ A, i s  an n-fold product of A with 

i t s e l f  Lii Set  in the  category-theoret ic  sense. Clearly,  every T-algebra 
- - - - - - - - -- - - - - - - 

I 
, r 

-- - 

-A- 

, - 
. m Set  i s  c a n m i c a l l y  isomorphic t o  a T-algebra A'  in Set which 

- - - -  L -- t - - - - - 

\ 

2 s  constructed from the Cartesian poweYs of the  se t2  A. 

Tne c a t e g o r j  T i s  equipped with a f a i t h f u l  underlying-set 



\ 
functor U : Mod(T) -Set, where f o r  each T-algebra A,  we have 

T 

, 
U (A)  = A(T), while f o r  each homomorphism h we have uT(h) being 

T 

the T-component of h. In accordance with the informal usage mentioned 

above, we sha l l  not ordinar i ly  dis t inguis  between A and U T ( A ) ,  o r  3 
between h and UT(h) notationally. The Yoneda embedding 

, To - se tT  factors  through Mod (T) , so it determines a f u l l  

embedding YT: To +Mod(T). Since Card is a skeleton of Set ,  

- .jT.EO. there i s  an equivalence functor E: Set -Card; l e t  JT - 

The composite functor FT = Y 3 is  a l e f t  adjoint  fo r  UT, i - e . ,  
T' T 

FT is a f ree  algebra funceor fo r  Mod(T) . The functor YT determines 

an equivalence of categories between To  and the f u l l  subcategory i n  

M O ~ ~ T )  of f ree  T-algebras. 

Every equational category Mod(T) i s  ~ I I I a l l - ~ o ~ l e t e  and 

small-cocomplete . is., has l i m i t s  a n d l i m i t s  fo r  a l l  small diagrams - - 

' I f  A is a T-algebra, then ;@A i s  a T-algebLra Ghich is 6 n-rn 

copower, i. e. , a coproduct of n copies of A ,  in Mod (T) . ' It w i l l  



-- 
? 

A in Mod (T) or ther s e t  ' A(!?) . 
\. 

A regular epimorphism in any category M is an arrow h 

such that, for -pair-of axrows (u, v) , h is a coequalizer-of- - - -- - - -- 

(u, V) . I f  h has a kernel p a i r  in M ,  - then h is  a regular 

epimorphism i f  and only i f  h is  a coequalizer o f - i t s  kernel pair .  

In Mod (T) , but not in  a l l  categories,  an~'c&mposite of regular 
- 

epimorphisms i s  a regular epimorphism, and aeXomomorphism h i s . a  

regular epimorphism i f ,  fo r  some homomorphism g, the composite hg 

- I 

/ s a regular epimorphism. This i s  so because a homomorphism h is 

a regular epimorphism i n  M d ( T )  i f  and only i f  h is sur ject ive as  

a function; a function is a regular epimorphism in  Set i f  and only 

i f  it i s  a surjection.  This f ac t  can be summarized by the statement 

tha t  UT preserves and r e f l ec t s  regular epimorphisms. The -tor 

UT a lso preserves and r e f l e c t s  monomorphisms, i . e . ,  h i s ' a  

rnonomorphism i n  Mod(T) i f  and only i f  h i s  in jec t ive  as a function. 



,- 
+, 

A binary relat ion on an object A in a f i n i t e l y  complete 

category M i s  a subob ject  R A x A. An equivalence relation on 

A i s  a binary relation on A which is  reflexive, symmetric, and 

A - 
x~ >- - -- 

t ransi t ive i n  an appropriate sense. One way of characterizing 

equivalence relations which i s  adequate for  our purposes i s  the 
a 

approach taken by Pareigis (see [ 3 6 ] ,  p. 99, on monomorphic equivalence 

relat ions) .  A binary relat ion R cf-* A x  A is  an eguivalence relation 

i n  M i f  and.only i f  B ( R )  B ( A  X A) i s  an equivalence relat ion in 

Set ( i - e . ,  equivalent as a subobject of ~ ( A ) ~ B ( A ) ,  v ia  the canonical 

isomorphism B(Ax A) --+ - B (A) x - B (A) , t o  a "real" equivalence relation 

on - B ( A )  ) ,  for  every M-object B. 

Let p, q be the projections A x A  -A; then R ~ A X A  

i s  a congruence r e l a t ion  on A i f  and only i f  there is  an arrow 

h 
A --+ B such - t ha t  (p. r ,  q.r)  i s  a kernel pa i r  of h; here, h may 

-- - - - -  ---- ---- - - - 

5e €*en €0  be T-coeqoalk~r of - tp. r , q. r) , &f one ex i s t s .  I t  is 

easy t o  show tha t  every congruence relation i n  M is an equivalence 

relation in M I  but the converse is not t rue in  general. 



In Set  and in Mod(T), however, the  congruence r e l a t i o n s  

and the  equivalence r e l a t i o n s  coincide; furthermore, t h e  category- 

t h e o r e t i c  notion of congruence r e l a t i o n  agrees with t h e  usual  one i n  

- A 

h 
un ive r sa l  algebra. I f  A -B is  a homomorphism with ke rne l  p a i r  

(u ,  V) , where u and v are homomorphisms R --+ A ,  then the  .induced 

r homomorphism R --+A xA i s  a monomorphism which embeds R i n  AxA 

a s  a congruence r e l a t i o n ,  the  kernel  congruence .ker(h)  of h. I f  

A -% C i s  a coequalizer  of (u,  v ) ,  then the re  i s  a canonical  

- isomorphism C ---t A/ker (h) such t h a t  A -% C ---+ A/ker (h) i s  t h e  

canonical projec t ion .  The functor  UT preserves and r e f l e c t s  $ 

congruence r e l a t i o n s ,  i.e. , R 6 A x A i s  a congruence in Mod (T) 

i f  and only i f  it is  a congruence r e l a t i o n  i n  Set .  

2.1. Theorem (Linton [30] ) . A category M is  equivalent  t o  - 

T - - - - 

kernel  p a i r s  and ccequal izers ,  and t h e r e  i s  a functor  U: M Set  

such t h a t  : 



i) U has a l e f t  adjoint;  

ii) U preserves and r e f l ec t s  congruence re la t ions  and 

regular epimorphisms . 

An object A i n  a category M i s  t rac tab le  i f  a l l  powers 

of A ex i s t  i n  M and, for  a l l  cardinals m and n, there is  only 

m 
a s e t  of arrows + A  . If A i s  a t ractable  object  of M ,  the 

equational s t ructure  'of. A i s  an equational theory 
*A which is  a 

skeleton ,of the f u l l  subcategory i n  M of a l l  powers of A. The dual 

\' 
notions, co t rac tab i l i ty  and equational costruqture, are  a lso important. 

'R 

The two-element s e t  2 is a t ractable  object i n  Set;  i t s  

equational s t ructure  T2 is  an equational theory of rank -, and 

Mod(T2) is equivalent t o  the category of a l l  complete atomic Boolean 
, / 
, 

algebras, with cornpiete homomorphisms. The f i n i t q  pa r t  of T2 is 

equivalent t o  the category of alA Boolean algebras, with Boolean i 
homomorphisms. 



e p a t  ional  theory the f r e e  

- 

one f r ee  generator is cotractable i n  Mod-(T) ; fo r  each n , FT (n) i s  
- 

. 
an n-th copower of FT( l ) .  The equational costructure of ~ ~ ~ 1 1  is 

T. Since the Yoneda embedding Mod(T) O -% Set - Mod takes coproducts 

t o  products i n  Set  
Mod (T) 

. I  and since,  f o r  each- n, the 

n 
functor U is represented by FT(n) ,  it follows t h a t  the functor T 

UT is  a t rac tab le  object  i n  Set Mod(T) whose equational s t ructure  

is  T; thus, UT i s ,  in the  informal sense, a T-algebra i n  Set Mod (TI 

The l a t t e r  observation is  fundamental t o  our r e s u l t s  i n  Chapter 3 .  

P. Freyd's approach t o  algebra-valued functors i n  1171 is 

based on the notion of a coalgebra, o r  a coproduct-preserving functor 

A 
To ---*MI where T i s  an equational theory and M i s  a category. 

The M-object A(T) is the  underlying M-object of the  coalgebra, and 

fo r  each T-operation f. the arrow A(f) is  a co-operation of the  

coalgebra. The Same kind of informal usage as  used f o r  algebras applies 

as well t o  coalgebras; thus,  f o r  example, F (1) might be said  t o  be 
T 



a T-coalgebra in Mod(T), although technically the  coalgebra which is 

referred t o  is 
Y~ 

: To ---+ Mod(T), which we obtained above by factoring 

the Yoneda embedding. 

Given a coalgebra A: To --+M, there  is a corresponding 

functor &: M --+ Mod(T) , which is  said  t o  be represented by A. 

For each M-object B ,  the T-algebra - A(B) i s  the  functor 

T --+- M0 + Set  obtained by composing M0 (B, -) with A O  . Freyd 

proved the following two useful theorems. 

2 .2 .  Theorem (Freyd [17] ) . Let M be a small-complete - 

category, and l e t  T be an equational theory. A.functor 

G: M -+Mod(T) has a l e f t  adjoint  i f  and only i f  G is represented 

by a T-coalgebra i n  M. \< 

Let k be an i n f i n i t e  cardinal; a k-directed s e t  i s  a small 

part ial  order (regarded as a category i n  the usual way) in which every 



s e t  of fewer than k elements has an upper bound. A monomorphic 

k-directed system in M is  a functor '  D: I + M  such t h a t  I i s  a 

k-directed s e t  and, fo r  every i-+ 

- - -  

in M is a monomorphism. A colimit 

system is called a 

on a l l  these terms 

k-directed union. 

is o m i p d .  

2.3. Theorem (Freyd 1171 ) . - 

equational theories.  Then a functor. 

4 

of a monomorphic k-directed 

I f  k = U, then the pref ix  "w" 

Let T and T '  be f i n i t a ry  

G: Mod(T) ---+Mod(Tf) is  

r ep re se~ ted  by a T'-coalgebra i n '  Mod(T) whose underlying T-algebra 

is generated by a s e t  of fewer than k elements i f  and only i f  G - 
preserves products, equalizers,  and k-directed unions. 

Note t ha t  the ident i ty  functor Mod(T) ---+ Mod fT) is 

represented by the coalgebra YT. Much interest ing material  on 
- - - -  - -- - - - - -- - -- - -- - - - 

monograph 1421. We s h a l l  return t o  the subject of coalgebra-representable 

functors a f t e r  taking a look a t  Linton's adaptation 1301 of .lawvere1s 



fundamental r e su l t s  concerning algebra-valued functors 1291. 

i"- 

The equa t iona l theor ies  a r e t h e  obje in aca tegory  ET Y 
, which an_arrow-JIL-TI_, z a l l e b  mapping- of t h e a r k s ,  i s  a- - . - 

product-preservdy functor g: T * T'  such t h a t  g(T) = TI. The I - 
b 
i 

induced functor g*: Mod (TI ) -- Mod(T) , which ac t s  by composing 

TI-algebras with g, is  cal led a reduct functor. A functor 

G: Mod (TI ) c Mod (T) has the property t ha t  U G = U ("preserves 
T T ' 

underlying sets")  i f  and only i f  there is  a mapping of theories g 

such t h a t  G = g*. Since the category Set i t s e l f  i s  equivalent t o  

W ( C a r d 0 ) ,  where Card0 is the  opposite of the f u l l  subcategory of 

a l l  cardinals in Set ,  regarded as an equational theory, the functor 

UT: Mod(T> -Set may be ident i f ied with the reduct functor jT*, 

where jT: Card0 r T  is  the functor defined e a r l i e r  i n  t h i s  chapter. 
8 

- - ~ - -  ~- - -- ~- ------ ~ ~ - -- 

Every reduct functor i s  f a i t h f u l  and has a l e f t  adjoint. 

The t rac tab le  set-valued functors form a category TF in 

which an arrow U ---+ V is  a commutative t r iangle  V.G = U. We 



d 

define a "structure" functor STR: TF --.* ETO which assigns t o  each 

tractable set-valued functor U i t s  equational s t ructure T To see u ' 

what STR does t o  arrows, l e t  V.G = U be an arrow .U - V in TF. 

- - -- - - - r 
Note that  for  every n we  have ( v G ) ~  = 9 . G  = L?. I f  fL & 
i s  an operation in T then V".G %?.G i s  an (m, n)-ary v I /' 

operation i n  T The assignment of fG t o  each T -operation f u - v 

defines a mapping of theories T --r T which i&he image under v U 

STR of the arrow V.G = U from U t o  V in  TF. 

Now define a "semantics" functor SEM: ETO ----+ TF which 

sends each equation,al theory T t o  the corresponding underlying-set 

functor UT, and each mapping of theories g: T ---cT1 t o  the 

commutative t r iangle  U .g* = U (which is  an arrow 
T T ' UTI UT in 

the category TF) . 
+-? 

counterpart t o  the Galois se t s  of iden t i t i e s  and 

classes of ,algebras which is known in universal algebra. The uni t  



I d w  
----+SEM.STR i s  a natural  transformation whose U-component, 

f o r  every t rac tab le  functor U: M --+Set, is a cclrmnutative t r i ang le  

U .E = U, where T is  the equational s t ructure  of U; the  functor 
T U 

- -  s_ - A _ -  -- - -- -- 

EU: M -+Mod(T) 1s cal led ?the comparison functor for  U.  Since 
t 

every component of the un i t  of 'an adjoint  pa i r  is a universal arrow, 
f l  

it follows t h a t  the c&parison functor E has the following universal 
U 

I - 

property : fo r  e a c ~  functor G: M --+ ~ o d  (T' 1 such that: UT, . G = U , 
. . 

there i s  a unique mapping of theories T' -% T such t h a t  G = g*.EU. 

\ - 
I 

The p rac t i ca l  q a n i n g  of t h i s  is t h a t ,  to  study any algebra-valued 
I 

functor G: M -Mad(T'l whose set-valued c w n e n t  UT, .G*  is 

t rac tab le ,  it is s u f f i c i q t  t o  investigate U .G and its equational 
T ' 

s t ructure  T. That is, in  order t o  understand G ,  w e  should examine 

M 
the T1-reduct of the T-algebra 'UT, .G, which l i ve s  in Se t  . 

s t ructure  T is the equational costructure of the M-object A(Tr). 

Thus, studying the TI-coalgebra dl in M is equivalent t o  studying 
.-' 6, 
U' 

- 3 

i 



M G e  representable functor A(i"'1 = UT,.G as a TI-a4qebra i n  Set . 
.. . 

& 

'Phe tecimique of t rea t ing  a functor as an algebra i n  a functor category - 

d t 

has the big advantage of being applicable to  both representable and 

Although the Lawwere-Linton approacheto universal algebr* is  

nominally language-free, every equational theory T is associated 

-4th 'a language LT which.corresponds t o  the first-order language 

L described in 

canonical. 1 an'guage 

~ r z t r e r  1x91. Tie language LT is the many-sorted 

for the category T, in  t he  terminol8gy of Makkai 

and %yes 1333, Our description of LT and i ts  interpretation follows 
1 

i 
E331 quite closely, w i t h  lnFnor omissicms and adaptatians appropriate 

to the special  nature of an equational theory T as a category. 

* 

The language LT coosists of #& following i t e m s :  

ii) For each cardinal n, there is an infinite s e t  of 
$ 



2-ari/ f r e e  variables z d .  sii i n f i n i t e  s e t  of n-ary b o w 6  v a r i a b l e s ;  it 

is ass-& thar itc frcc -~$riaSle is a bound v a r i a b l e  and t h a t  no 

/ n - a r ~  va r i ab l e  is b': m-sq v a r i a b i e  i f  m # n .  

. . iii)' are sr, i den t i cy  s y p b o l  =, an i n f i n i t a r y  

d i s j m c t i o n  s y e i  , b: ' i n f i n i t a q  conjunction symbol A, a  7- i 

A 

negatior: symbol 7 , an ~ z q l i c a t i o n  symbol , an e x i s t e n t i a l  

paxtlfler symbol E , a. m i v e r s a i  p a n t i f i e r  symbol t i ,  and 

Tne t enas  of. L, =e def h e d  as follows : 
L 

'L 
tl) E 2-%free variable i s  an ( n ,  n) -ary tern. 



3 2 . 

, 
fragment of t h e  language described by Makkai and Reyes. For a more 

9-v 

comp&te discussion of the  f o m u l a s ,  the  reader i s  re fe r red  t o  [33].  

' W e  s h a l l  use only equations and conjunctions and d i s junc t ions  of 

- 

equations. An (m, n ) - a r y  equation i s  an expression of the  form 

r = s ,  whereboth  r and s a r e  ( m , n ) - a r y t e r m s .  1f S i s a n y  

s e t  of equations such t h a t  t h e r e  a r e  only f i n i t e l y  many f r q v a r i a b l e s  
b 

occurring i n  the  m e h r s  of S , then \W and AS a r e  formulas. 

1s an ex-pression of t he  form S + S ' ,  where both "Y 
i and S- f i n i t e  s e t s  (which may be empty) of formulas, and where 

4' 
# 
," 

=j i s  a new symbol. In p r a c t i c e ,  we s h a l l  allow S and S '  t o  b e t  

s i n g l e  formulas instead of s e t s  of formulas. 

+ 

t M be any f i n i t e l y  complete-category. A many-sorted 

structure f o r  LT h 3 is  a mrphism of graphs A: T IM (in t h e  

m d  cod-s of arrows, b u t  no t  necessar i ly  preserving compositionrof 

r 
I 

zzrws, and not  necessa r i ly  sending i d e n t i t y  arrows t o  i d e n t i t y  arrows. 



Let X be the k-tuple (xol xl, ., . . *, xkI where x i s  an n -ary 
i i 

free  variable, f o r  i = 0 , 1 , . . . , k Let t be a term whose 1 
(only) f ree  variable i s  x . I f  t is  x , then the interpreta t ion 

j J .  

[ t l ~ , ~  of t in A re la t ive  t o  X is  defined t o  be the j-th 

<, - 'i 
projection 

I f  t i s  f fri , where r is  an (m, n . I -ary term whose b t e rp re t a t i on  
4 f 

3 

L r ' A , ~  
i s  already defined as an arrow A ( T ~ O )  x . . . x A ( T ~ ~ )  + A ( T ~ ) ,  

i s  defined t o  be A(f . Irl  A,X. N w  l e t  r = s be an 

equation whose (only) f r ee  variable is  x The 
j ' 

in terpreta t ion Er = s ]  of r = s in A re la t ive  t o  X is  an 
A t X  

equalizer of the  arrows Irl A,X and [sIAlX . A s  we see from the 

Ir = 61, , is  a subub jec t  of ~ A ( T ~ ~ )  . 1f s i s  a s e t  of 



equations such t h a t  a l l  the  f r e e  va r i ab les  occurring i n  members of S 

a r e  among those 'of X, then [&I is  defined t o  be t h e  
ArX 

i n t e r s e c t i o n ,  i f  it e x i s t s ,  of t h e  subobjects of n A u n i ,  
i < k  

corresponding t o  t h e  equations belonging t o  S ,  while is  

defined t o  be t h e  supremum, i f  it e x i s t s ,  of those subobjects .  The 

i n t e r p r e t a t i o n  of each formula of L i n  the  s t r u c t u r e  A r e l a t i v e  
T 

t o  2, i f  the re  is  such an i n t e r p r e t a t i o n ,  i s  a subobject of the  

product A ( T ~ ~ )  . ~ o t e  t h a t  the  i n t e r p r e t a t i o n s  of terms and 
i < k  

J 
formulas a s  defined above a r e  spec i f i ed  only up t o  canonical 

isomorphism i n  the  category M; t h i s  f a c t  is  discussed i n  1331. 

Now suppose t h a t  S and S '  a re  f i n i t e  sets of formulas 

such t h a t  a l l  tiie f r e e  va r i ab les  occurring i n  the  members of S ~ S '  

a r e  among those of t h e  k-tuple X given above. Then t h e  s t r u c t u r e  

il Every formula in ~ U S '  has an i n t e r p r e t a t i o n  in A 4 



relative t o  X. 

ii) The intersection 
A I X  

and the supremum 

Y F B s  

V ,,GI 
G € s '  

. 
both exist  among the subobjects of , n A ' ( T n i )  in .M. 

i < k' - - 

iii) In the natural quasi-order of the subobjects of I 
~ A ( T ~ ~ )  , we have 

I G I A , ~  i < k  F C S  G € s '  

We write A k S  =+ S '  t o  say tha t  the structure A sa t i s f i e s  

--, 

, 
the sequent S =$. S ' .  

,.,I 

i 
A T-algebra is  obviously a rather special kind of structure 

for  L i n  tha t  it sa t i s f i e s  a l l  the ident i t ies  of T I  i. e. , a l i  
T ' 

the sequents of the form ( 1 3 If(g (x1)  = h ( x ) ,  where f ,  g, and h 

are operations such tha t  f.4 = h in T. It is  useful t o  distinguish 

@. 

structures resembling T-algebras in th i s  respect i n  which the 

projections and other t r i v i a l  operations are well-behaved. W e  sha l l  
- - -  - - - - -  - - - - - - - - -- - --- - -- - 

say that a s k m c t u r e  A: T ----+ M--for I, i s  a 
T 

-sorted T-&g&ra 

in M i f  A i s  a functor and i f ,  for  a l l  cardinals m and n and 

1 fo r  a l l  (m, n) -a* terms r and s ,  the structure A s a t i s f i e s  



.. . 

tke  sequent 

where f o r  each i < m  t h e  symbol pi corresponds t o - t h e  i - th  

P i  
projec t ion T~ ----+T in  T. These conditions a r e  necessary and 

s u f f i c i e n t  f o r  every (m, n)-ary equation r  = s t o  be equivalent  

?. 
t o  t h e  conjunction'of t h e  corresponding set of (1, n)-ary equations 

p i b )  = p . ( s )  i n  every many-sorted T-algebra. We s h a l l  w r i t e  
2 

T S 3 S '  t o  say t h a t ,  f o r  every many-sorted T-algebra A i n  

which the  necessary i n t e r p r e t a t i o n s  e x i s t ,  we have A k S ..$ S'. 

It is common p r a c t i c e  i n  universa l  algebra t o  spe.cify an 

equational  theory by means of a seB of e q u a t i a s  i n  a language over a 

s i m i l a r i t y  type (see 1191); in t h e  category-theoretic context ,  t h i s  

amounts t o  providing a presenta t ion of the  equational  theory. Both 

Lawere  1291 and Wraith 1421 discuss  t h e  category-theoretic 

t e c h n i c a l i t i e s  of presenta t ions ,  but  we s h a l l  say informally t h a t  a 

presentat ion of an equational  theory T i s  given by specifying a 



family of distinguished T-operations and describing t h e i r  behaviour 

v 
. "J 

" suf f ic ien t ly  t h a t  the category ' T  is  determined up t o  isomorphism. 

For example, a presentation of the  f i n i t a ry  equational theory BA of 

~ o o ~ e a n  algebras might name the constant 0, the  meet operation A ,  

and the complement operation 7 , and provide a l ist  of axioms 

describing the behaviour of these operations i n  Boolean algebras. 

Another presentation of BA might list the ring operations 0, 1, +, 

-, and and describe how they!;work in  a Boolean ring. The difference 

/ . 
between Boolean r h g s  and Boolean algebras i s ,  from the standpoint of 

category-theoretic algebra, not  a difference of algebras a t  a l l  but 

ra ther  a matter of d i s t i nc t  presentations of the one theory BA. 

A t  about the same time tha t  the Lawvere-Linton approach t o  

universal algebra WAS taking shape, category-theoretic investigations 

of adjointness gave rise t o  the notion 07 a-rnonad3or- t r ipXe7C 

- - - 
- - -- - -- 

- -- 

of a monadic functor. Both Mac Lane 1321 and Pareigis [361 provide 

detailed expositions of the basic  theory of monads, so we s h a l l  only 



say enough about them t o  es tabl ish notation and t o  s t a t e  some resu l t s  

which w i l l  be referred t o  in l a t e r  chapters. Given categories M 

and K and functors U: M j K  and F: K --+MI with F l e f t  

adjoint  t o  U ,  the monad -in K determined by U and F w i l l  be 

called H. The category of a l l  Eilenberg-Moore algebras over H in  

K is  K and-its "forgetful" functor and f r ee  algebra functor are 

H 
respectively 3 : K ~ '  - K and F ~ :  K - K . The canonical 

H 
comparison functor for  the  monaa H is8 C: M --+K . We sha l l  say 

t h a t  the  functor U: M --+K i s  s t r i c t l y  monadic i f  C i s  an 

isomorphism of categories, and monadic i f  C i s  a category equivalence. 

Note t ha t ,  whether U i s  monadic or  not ,  F~ i s  l e f t  adjoint  t o  uH, 

H 
and the monad in 'K determined by $ and F is  just  H. The 

canonical comparison functor c i s  unique that 8. c = U and 

Ii i s  5, and its associated functors are UH: % + K and 



F~ 
: K --+K Here, 6 is l e f t  adjoint t o  UH, and the monad in K 

H ' H 

determined by UH and F i s  just  H again. The Kleis l i  functor 
H - .  

C ' :  K --+M is  unique with the property that  U.C' = U and 
H H 

W e  shall-  c i t e  two resul t s  which illuminate the connecti~n 

between equational theories and monads. The f i r s t  resul t  i s  a theorem 

adapted from Pareigis [36], p. 135, which shows tha t  when H i s , t h e  

monad in  Set determined by UT and F , where T is an equational 
T 

theory, the Kleis l i  category SetH for  H is  equivalent t o  the f u l l  

d 
subcategory in Mod(T) of free T-algebras. - 

2.4. Theorem 1361 . Let T be an equational theory, and l e t  - 

H be the monad in Set determined by UT and F Then there i s  an 
T ' 

O =+ equivalence of categories Q: SetHO -T such tha t  Q.F 
H 

~ - -  -- - - - -  - -  ------ppp---p-----p--p- 

~- - - -  - ~ me sgF -- pp--- ~ ----- ~ ~ - -- -- - 
- - -  - --- - 

ond resul t  is  a special case, fo r  monads in Set, of L 

a theorem of Linton (Theorem 9.3, p. 41  of 1311 which explains' the 

connection between Eilenberg-Moore algebras and T-algebras. 



with a l e f t  adjoint; l e t  T be the equa'tional structure of U, and 

l e t  E: M --+ Mod(T) be the comparison functor for  U. Also l e t  H 

be the monad i n  Set determined by U and its adjoint,  and l e t  

C: M * setH be the canonicil comparison functor for  H. Then there 

is an'equivalenc'e of categories R: Mod(T) -setH such tha t  the 
i 

following diagram commutes: 

In par t icular ,  

C H 
M - S e t ,  

Mod(T) -----------L Set u 
T 

U i s  monahic i f  and only i f  i t s  comparison functor 

E: -Mod(T) is *category equivalence. 
- - - - -- - - 

-- 



CHAPTER 3. MORITA EQUIVALENCE AND ALGEBRAIC FUNCT0.R.S 

A natural  question a r i ses  i n  connection with equational 

theories:. given an equational theory T I  f o r  what other equatTona1 

theories T '  is  the category Mod (T' ) equivalent t o  ~ o d  (T) ? 

a 
Theories T and T '  such t h a t  Mod(T) i s  equivalent t o  Mod ( T ' )  

are said  t o  be Morita equivalent (see 1421 , p. 54) . 

The c lass ica l  Morita theorem 1353 of module theory, which is  

the motivation fo r  the notion of Morita equivalence of equational 

theories,  provides necessary and suff ic ient  conditions on rings R 

and S fo r  the categories R-mod and S-mod of l e f t  modules t o  be 

equivalent (see Pareigis [36] or  Cohn 171 f o r  a detai led exposition of 

the Morita theorem). Since R-mod and S-mod are  e k i v a l e n t  p 

equational categories, the  Morita theorem provides a characterization 
1% 

e 



of Morita equivalence f o r  equational theories of the kihd which Wraith 

% .  [421 c a l l s  "annular." T. K. Hugs r e su l t  (1.3) 

nontr ivia l  examples of Morita equivalent equational theories.  For 
- - 

- 

any f i n i t e  s e t  X having m elements, where m >  1, the ' - f i n i t a ry  pa r t  of 

t he  equational structu;e TX of X i s  an equational theory Pm such 

tha t  every m-element P -algebra belonging t o  Mod(Pm) is  primal and 
m 

Mod(P 1 is  ident i f iab le  with the equational c lass  generated by an m 

m-element primal algebra. In keeping with the remarks in Chapter 2 on 

presentations of the theory BA of Boolean algebras (note t h a t  BA = P ) ,  
2 

we sha l l  c a l l  P the equational theory of m-valued Post alqebras, and k 
m 

* 
we sha l l  re fe r  t o  P -algebras a s  m-valued Post alsebras. Hugs r e su l t  m 

(1.3) says tha t  the theories Pm, fo r  a l l  f i n i t e  m >  1, are  precisely 

the f i n i t a ry  equational theories which a re  Morita equivalent t o  BA. 

It should be noted that ther&_areuario-gaq~~theoretic 
0 

- 
i- -- - - - - - - - - - -- 

-- 

genekalhations of Morita equivalence-which apply t o  categories which 

a re  not necessarily equational theories.  The relevarice of some recent 



papers on category-theoretic Morita equivalence t o  the  more s t r i c t l y  

algebraic r e su l t s  discussed-here o r  i n  Wraith [421 is comented upon 

l a t e r  i n  t h i s  chapter. 
-- - 

m .  

One of our main r e su l t s  is  a syntact ical  characterization 

(3.8) of a l l  the equational &es T'  which are Horita equivalent 

t o  a given equational theory T; t h i s  r e su l t  is an &roved version of 

/;r 
- --2. 

the main resu l t  of W a r m  [ l o ] .  We a l so  provide syntactical 

f 

characterizations of coalgebra-representable functors (3 .41 and of 

algebraic functors, i . e . ,  algebra-valued functors with monadic 

set-valued component (3.14). 

When are  equational theor es  T- and T' Morita equivalent? J .  
Suppose that E: bbd(T) + M&(T1) is an equivalence functor; l e t  

U = U,,,,.E be the set-valued component of E ,  and l e t  T" be the 

L of E and FT, of 

*at U is represented 

UT, is a l e f t  adjoint  f o r  U; it follaws 
9 

by the  T-algebsa A = L(PT, (1) ) . Since L is 



C 

an equivalence functor, it is f u l l  and fa i thfu l  and preserves 

f o r  every n we have n @ ~  L(FTl (n)) , and the coproducts, so 
L 

equational costructure T" of A i s  isomorphic t o  the equational 
- - - - A A - 

/ 
costructure T' of FTl (1) . & follows that  E is  actually the 

, 4 i r  

comparison functor for  U. But then by ( 2 - 5 )  U is monadic, since 

/ 
i ts  comparison -&or is  a category equivalence. 

J 

Now we can reformulate the or iginal  problem as follows: f i n d -  

a l l  the mnadic functors k d ( ~ )  -Set, and characterize t h e i r  

equational structurg theories, 

be an arbi t rary nonempty category. An object A of 

M is  regular-projective in M i f ,  far every regular epimorphism 
5 

f h 
8 - C and. every a r r w  A ---+ C there is an .arrow A -% B k c h  

s 

ndbA ----t B. A regular-2rojective remar generator is called a 



s tmhrd  in t h e  i i t e r z r : x e .  We also define two objects A and B 

of E t o  be retract-eqivafent  i f  each one i s  a re t rac t  of some 

p d e r  of t he  o t h e r ,  ai-7~ dually retract-equivalent i f  each one is a 

M l T ) ,  the  r egu la r  s r q a e r a w r s  are precisely t h e  T-algebras which 

are d u a i l y  retract-e-q-~i$almt t o  +2:e free T-algebra Tm(l). 

3.1. fi.earex. 3 T be LY equational theory. For any ' - 

ii) U is represc3ted by a regular progenerator; 

E .  
r ,  iii) u ,xi5 are retract-equivalent in SetMOd (TI 

.. 
, 

2 c- 

Ircsf. ST--- d,+se tkat 3 rs amadic; then U has a l e f t  

\ * 
- - - -- ~ ---- -- ~- -- -- -- -- -- - ~- - ! 7 

g911ws *&t G 5 s  trac-&i&/ mCf "-h;e equatimaf strncture 1' &f . .. 
% ~ ---- 

~ ~- -~ - -  - 

i 
.- , 
; is Cie saxe as 538 q : t t F ~ ~ . a i  zcstructure of A. Since LI is. 



monadic, i t s  comparison functor E:  Mod (TI Mod(T1 ) i s  an 

equivalence functor, by ( 2  - 5 )  . The comparison functor E is  

I % 

represented by A ,  where A is  viewed as a TI-coalgebra i n  Mod(T) , 

and E ( A )  i s  isom6rphic t o  the free TI-algebra F (1) , which is 
T ' 

- 

a regular progenerator i n  M T  Since E i s  an equivalence 

functor, it i s  easy t o  see tha t  A is a regular progenerator i n  

1 

M o d  (T) This proves tha t  i) implies. ii) . Before showing tha t  ii) 
b 

implies i j ,  w e  shall prove tha t  ii) and iii) are equivalent. 

If U i s  represented by a regular progenerator - A ,  then A 

i s  dually retract-equivalent t o  P (l), which represents UT, so U 
T 

is retract-equivalent t o  UT. 

d 

5 
Suppose tha t  U is retract-equivalent t o  UT; we sha l l  show 

n r 
tha t  U is  represented by a regular progenerator. .Ut UT - U 

s n 
5e a retraction , and l e t  U - UT be a coretraction, with r. s = i d  u - 



t 
6 

t ha t  s.r = h. Let F (n) --+A be a coequalizer of h and i d  - T -7 

in Mod(T). The Yoneda embedding takes t t o  an equalizer of s.r 

and id  in Set Mod (TI 
; but then A and U are  isomorphic, i - e . ,  A - 

represents U. Since U A is ,  by hypothesis, retract-equivalent t o  - 
- - - 

u ~ '  it foilows tha t  A i s  dually retract-equivalent t o  FT(l)  , i . e . ,  

A is  a regular progenerator, This completes the proof t ha t  ii) is 

equivalent t o  iii). 

To f in i sh  the proof of the theorem, we must show tha t  ii) 

implies i). Assuming tha t  U is represented by a regular progenerator 

7 

A, we sha l l  use (2.1) in combination with (2.5) t o  show t h a t  U is  

monadic. Since U i s  represented by A, U has a l e f t  adjoint  F, 

which sends each s e t  X t o  an X-indexed copower of A in  Mod(T). 

t is  immediate from the def ini t ion of a regular-projective object i- 
f 

t ha t  U preserves regular epimorphisms. Now suppose tha t  B --+C 

- -- - - -- - - -- - - - - - -- - - - - - - 7 - - - 
- 

be the co-unit f o r  the adjoint  pa i r  (F, U) ; we claim tha t ,  since A 



is a regular generator, every component of p i s  a regular 

epimorphism. I f  t h i s  i s  so, then we have f.pg = pC.F(U(f)), where 

the r i gh t  side of the equation is  a composite of regular.epimorphisms 

in  Mod(T) and, hence, i s  a regular epimorphism, so f .pg i s  a 

regular epimorphism, which implies t h a t  f i s  a regular epimorphism, 

and we have shown tha t  tf r e f l ec t s  regular epimorphisms. 

Why is  p a regular epimorphism? The algebra F(U(C1) is 
C 

a copower of A indexed by U ( C ) , .  i - e . ,  by the s e t  hornT@, C) . 

h 
7 For each homomorphism A - C ,  l e t  h '  be the coproduct injection'  

A - F ( U  (C) ) corresponding t o  h E hornT (A,  C) . The co-unit p is 

constructed so t h a t  p h' = h fo r  each h. By  hypothesis, A is  c 

a regular generator, so f o r  some m there i s  a regular epimorphism 

m @ ~  -% C. Let gi be the  composite of g with the i- th coproduct 

inject ion A ----+m8A, fo r  each i <m. The homomorphisms 

with ti = ' fo r  each i < m .  Then p t = g ,  as can be checked by 9 i  c 



conposing with 

as claimed. 

< 

coproduct inject ions ,  so Pc is a regular epimorphism 

r' Now we must show tha t  U preserves and r e f l ec t s  congruence 

9 

relations.  Preservation i s  obvious, because U preserves ke&el 

pa i r s ,  since U i s  representable. Both i n  Set and i n  Mod(T) , 
- -  

it happens tha t  every equivalence re la t ion i s  a congruence re la t ion,  

so we need only ver i fy  t h a t  U r e f l ec t s  equivalence relations.  

Suppose t h a t  we are  given two homomorphisms u, v from R 

t o  B in Mod(T)' which induce a product homomorphism R r B  X B  

such tha t  U(h) : U(R)  ----t u ( B  x B) i s  an equivalence re la t ion i n  Set. 

The functor U is  f a i t h fu l ,  since it i s  represented by a generator, 

so it r e f l ec t s  monomorphisms, hence h is  a monomorphism in Mod(T). 

Using the equivalence of ii) and iii) established above, we may 

assume t h a t ,  f o r  some n,  
U~ 

is  a r e t r ac t  of un. L e t  un A UT 

be a re t ract ion,  and l e t  UT + 8 be a coretraction,  with r. s = id. 
- -  - - -  - - -  -- 

I t  is  easy t o  see t ha t  any nontr ivia l  power of an equivalence re la t ion 



iq  Set is an equipalence re la t ion ,  s o  U" (R) - U"(B 

equivalence re la t ion.  Using the natural  transformations 

UT (R)  - UT (B X B)  is an eqgivalence relation.  

Without loss of generali ty,  we may ident i fy  #(R) -+ $ 7 ~  TB) 

with an equivalence re la t ion R'  G B '  X B '  in the  ordinary sense, i . e . ,  

a s e t  of ordered pa i r s  which is  reflexive,  symmetric, an.d t rans i t ive .  - 

We also write UT (R)  - UT (B x B) as R C B x B,  in keeping with our 

informal practice of ignoring the dis t inct ion between the algebras and 
t 

t h e i r  underlying s e t s ,  and identifyinq h with an inclusion map. The 

natural  transformations un 5 UT and UT -% U" are  here 

considered t o  be such tha  i s  the inclusion map f o r  B C -  B '  and 
- 

such t h a t  rB i s  a function B '  4 B with r (b) = b fo r  a l l  b C B. 
B 

Then s 
B X B  

i s  the  inclusionmap fo r  B X B S B ' X B ' ,  and s is the 
R 

inclusion map for  R G R' . The retraction,  r i s  just  the product 
B X B  



- 
Suppose b C B. Then since R'  is  reflexive, (b, b) C R ' ,  

b 

so  ( rB(b ) ,  rB(b))  = (b, b) € R, hence R i s  reflexive. I f  (a ,  b) h R, 

' then (a,  b) € R' , and by symetry of Fc& we have (b, a) € R ' ,  so- 

( rg(b)  1 rB (a)) = (b, a) € R, hence R i s  symmetric. If (a ,  b) and 

(b, c) belong t o  then they belong t o  R' ; by t r ans i t iv i ty  of R' , 

(a ,  C) belongs t o  R ' ,  so we have ( r g ( a ) ,  rB(d)  = (a ,  c) E R1 

hence R is  t ransi t ive.  This proves that  R C--, B x B is an 

equivalence relation in Set,  so  it is  also a  congruence relation in 

Set. But UT re f lec ts  congruence relat ions,  so R L-* B x B is  a  , 

congruence relat ion in ~od(T). 

re f lec ts  congruence relations.  

$ 

We have shown tha t ,  i f  

This completes the proof tha t  U 
3 

U i s  represented by a regular 

progenerator, then U has a l e f t r ad jo in t  and preserves and ref lec ts  

congruence relat ions and regular epimorphisms . By (2 .1)  and (2.5) , 
- - --- - -- -- -- 

~ -- - U; IS . mona3i~iTnZrc--~e~s -tficproof -of -the theorem; ~ - - -~ ---- - 



The equivalence of i) and ii) ,in (3.1) is  apparently 

part  of the "folklore" of category theory. Lawere's version of the 

lharacterization theorem for  f in i ta ry  equational categories (see 1291, 

p. 79) expl ici t ly  s t a t e s  tha t  the underlying-set functor i s  represented 

by a regular progenerator. Remarks by Wraith in 1423 , p. 54, and a 

theorem i n  Herrlich and Strecker 121]:, p.,245, also indicate that 

. * 
(3.1) is  not a new resuSt. In a conversation with the writer in 

7 

March 1978, Michael Barr explained that  he and several other category 

theoris ts  had been s t h u l a t e d  by the Morita theorem [351 t o  investigate 

Morita equivalence of equational theories and had soon realized tha t  

a l l  equivalences between equational categories were comparison functors 

represented by regular progenerators. From a category theor i s t ' s  

point of view, the general resul t  lacked any novel features o r  

interesting departures f r m  the origina o r i t a  theorem, so the matter 
-- -- - - --* - -- -- - 

> 

There is considerable logical interest  in Morita equivalence, 

<? 
hodever, and by shif t ing our attention from the regular progenerators 



t o  the functors they represent, we sha l l  derive a synt-actical 

characterization of 

new. 

Let M be 

Q M r i t a  equivalent equational theories which is 

p y  nonempty category, and l e t  U: M +Se t  be 

* 
M 

-a a functor which i s  t ractable  in Set . If  T i s  the equational 

\ 
C 

structure of U,  then U is ,  in the informal sense, a T-algebra i n  

M 
Set . 1% f and g are (m, n)-ary operations of T ,  then the 

interpretation [ f ( x )  = g f x ) ]  of the equation f f x )  = g f ~ )  i n  the 

M 
T-algebra U relat ive t o  the variable x is  an equalizer i n  Set 

of the arrows f and g as shown in the diagram below. 

1 
Thus, [fix) = g l r i  1 Ik a subfunctor of un. For any object B of M, 

functor for  U. The value of the functor [ f f x )  = g ( d 1  at  B i s  the \ 



solu t ion  s e t  of f(x) = g ( x )  in t h e  n-th power $(B) of t h e  

underlying s e t  U(B) of t h e  T-algebra EU(B) . Every subfunctor  
Y 

B 

G un which i s  an equal izer  of a p a i r  of operat ions i n  t h e  

- - - - A - - - 

equat ional  s t r u c t u r e  of  U w i l l  be s a i d  t o  be equat ional ly  

definable.  
>T. 

3.2. Lemma. For any equat ional  theo-ry T and any - - 

ca rd ina l  h, a functor  G: Mod(T) ---+ Set  is represented by-a  
# 

T-algebra which is  generated by n o r  fewer of i ts  elements i f  and 

only i f  G is  'an equat ional ly  def inable  subfunctor of ukn. 

Proof. L e t  A be a T-algebra which is generated by a set 

X of ca rd ina l i ty  n o r  less. Then the re  is a r egu la r  epimorphism 

~ ~ ( n )  *A which sends the  free generators  {xi : i < n }  of ~ ~ ( n j  

onto  X. For each i < n,  l e t  p ( x . )  = a . .  Every element of FT(n) 
- - -  - - -- - -  I--- r - ---- -- - --- 

x = (xi : i d n ) ;  l ikewise,  every element of A i s  of the  form f ( a ) ,  



where f is a (1, n) -arys T-operation and a = (ai : i < n) ; so we 

have . p ( f  (xi) 1 = f (a)  f o r  every (1, n)-ary operation f .  Let 

( f  : j < m) and g : j < m be sequences of (1, n) -ary operations 
- I _ _  - - - - - 

such tha t ,  f o r  each j < m ,  we have f . ( a )  = g . ( a ) ,  i . e . ,  
3 3 

( f ,  ( x )  , g, (x) 1 € ker  lp) , Also assume tha t ,  f o r  each p a i r  Cu (x) , v (x) ) 
3 3 

in ker(p) , there i s  a j < m such tha t  u = f and v = g . For 
j j 

6 
each (1, n)-ary operation u, l e t  F- (1) ---tFT(n) be the (unique) 

> T 

homomorphism w ich sends the f ree  generator of FTtl )  t o  u(x) in . Y 
FT(n) ; then a is the co-oseration YT (u) of the -T-coa ebra 

b 
*.,- f 

Y~ 
: To --+ M O ~ ( T )  which w a s  defined in Chapter 2 ,  and which is  

informally ident i f ied with F (1) as  noted in Chapter 2 .  Let f be 
T 

the (m, n)-ary operation which i s  induced in T by the sequence .' 

? 
[ f i  : i <m) of (1, n)-ary operations; then F (m) 4 ~ ~ ( n )  i s  the 

T- 

homaporphisms; 1 sends the j-th f ree  generator of FT (m) t o  

f .  ( x )  in PT(n). &fin& g and $ similarly with respect t o  the 
3 



sequence (g j  : j m . It i s  easy t o  see Ma t  FT(n) A i s  a 

coequalizer of (2, 3) in Mod(T) . An a l ternat ive  construction of 

n h 
f and which makes t h i s  obvious i s  t o  l e t  FT(m) ' ker(p)  be 

X 

a regular epimorphism from a f ree  algebra onto ke r (p ) ,  which is  a 

h 

subalgebra of FT (n) x FT (n) , and take '2 p d  g t o  be the  composktes 

of h with the  projections ker(p) --+FTLn); those projections 
-. 

a kernel  pa i r  of p, and p coequalizes i t s  kernel pa i r s ,  pince 

i s  a regular epimorphism. 

The Yoneda embedding Mod(T) O -Set Mod t a k ~ s  

E n 
FT(n) A A t o  - A --+ UT I which is an equalizer of f and g 

are 

s e t  Mod(T). This proves t h a t  every representable functor is equationally 

definable as  skated i n  ( 3 . 2 ) .  

n 
I f  U i s  an equationally definable subfunctor 'of UT , then 



equalizer of ( f  ,' g) . so /U A, i.e. , U is represented by a T-a1 
- f l  - gebra 

I 

7 1 
\ A which, as a homomorphie image of FT(n), is  generated by n or 

- -- - -- I '  --------- -- - - -- - - - - - A - -- 

fewer of i t s  elements. i s  completes the proof of (3 .2 ) .  - P 
j 
.L0---- - 

Note that the proof of (3.2) i l l u s t r a t e s  several "trrcks" - 
d 

which are applied frequently below, without being spelled out in detai l .  

Also note that  (3.2) depends heavily on ther fac t  t ha t  FT(l)  is 

a regular generator in -(TI. Now tha t  w e  know tha t  every -1 

1 

representable functor U: Mod(T) --+Set is definable in a pow& of 

/ *  

UT 
in a nice way. we describe haw the equational s t ructure of U , 

re la tes  t o  tfie equational s t ructure T of UT. 

L e t  T and T' be equational theories, and l e t  n be a 
J 

nonzero cardinal- An q u a t i a n a l  interpretation-of T' in T of 
- - - -- - -- -- -- 

-- 

rank n i S g i v 7 b 5 F F m i S C o t  graphs -'I" - = - a n d  cln 

(rn, n) -ary equation ?(xi = g ( d  of 4, called the miverse a f  the 



in terpreta t ion,  satisfying conditions i l  - ivf below. d 

Let E1(xl k e  the equation f (XI = g(x), and f o r  each 

l e t  Ek(y) be the fornula. Aff (pi b)) = g(pi (91) i i <*I where, 

f o r  each, i < k t  Pi 
is. th. i-th projection tTn) 7 !TnXk -+ P- 

For each operation u of T' , let ut be the operation symbol of 

which corresponds t o  t(u). The condition& which must be satisfied 

by t and ' f ( ; c f  = g ( d  ?.re as f o l l o w s .  

i) For each (j , k) -ary ~ ' - ' o ~ e r a t i o n  u, 

For each (j , k) -ary T'-operation . u,  

For each k we have 



C 

smal l -cq le te  cateqdrp M, and let t: T' - T be an e m a t i o n a l  

. I 

in-rpretation of Tf  ir, 1 of rank n with universe . f ( x f  = gfx). 

men there  is q T'-aijebra B: T '  ---+ !4, , with ~ ( 7 ' )  = ['(rj = g(x)lAIz, 

- ~ 

such t h a t ,  for ever1 2"-cperation u, B ( y )  is the restriction to 

?roof. Ts s i q i i 5 -  notation, we wri te  A(ul : A U ~ )  - - + A u ~ )  

d 
as ' A" U' for ever- (m, R) -ary T-operation u. Also let 

F i r s t  we shall shod that E and E~ are equivalent as subobjects of 
k 

+ " *  

. ' e n  k = f3, I, -&ere is nothing t o  prove, s o  assume k >l. 

be fbs respective i-th.-,zofectim operations. Note that for any O - 
K is, tmf-ary T-ration w e  have u.; = r .u , where , . 

* ,  i -  i 

k 
-n* u _n*x 
A ---PA is s k  X - & 3  power of u. Gince 5 i s  the intersection 



- i 
- ,  k ,  . %  w i t h  E .  

k r . f k . e k =  f . p . . e  = g.p. .e  = ri.g .ek f o r  each - i < k .  so 
i 1 k  l k  

d 

= gk.ek, which implies t h a t  
k 

Ek 4 E . This c m ~ l e t e s  t he  proof 

that EL wd E* are  equivalent and permits us t o  iden t i fy  B~ and 

. - 6 0 

a prove E k 6 Ek by show"hg +at E It < Ek fo r  each i < k .  But f o r  , i" 

k 
indeed E ,< EkI; 

k f0r each i, hence E < Ek. Products and 

k 
equalizers ccmmute, s o  E~ A A nxk is  an equalizer of (8. gk) . 

'a. u I 

Also note that f .p, . e = g.pi ,ek , because Ek 4 Ek; i. Then we-Bve 
1 k  

Condition ii) of the  def ini t ion says t h a t ,  f o r  any (j, k)-ary 

' t  
Ty-operation u ,  the  r e s t r i c t i on  o k  [U (y)lAIy t o  gk , anXk 

fac tors  through BJ L, AnXJ ak in t he  diagram below. 



k we define ~ ( u )  t o  be the  arrow B + l3j which completes the  

diagram; since e j  is a only one such arrow. 

Condition iv )  of 
- - - 

- 

- 

T-operationsl even though perhaps t does not. Thusr B is  a 

functor T' ---+ M. According t o  condition iii) , f o r  each projection 

P. AnXk An 
the projection on gk - A ~ ~ ~ .  ~ u t  then in the -- - 

commutative diagram 

the bottom arrow B(qi) has t o  coincide with the  "real" i-th 

k 
iglnomorphim e is qua1 t o  p i - e  . This shows tha t  B is  a 

product-preserving functor T' - M I  i . e . ,  a T-algebra in M The 

q& 



proof of (3.3) i s  now complete. 
F 

I f  t: T' --+T is  an equational interpreta t ion of T '  in 

T of rank n w i t h  universe f(x) = g k d .  then applying ( 3 -3  to ----  

u~ ' viewed as a P ebra in Set Mod we see t h a t  the interpreta t ion 

/ 

n defines a subfunctor U of UT which i s  a TI-algebra i n  Set Mod(T) . 
I 

t h i s  means tha t  U is the set-valued component of a functor . 
i; 

Mod(T) -Mod(Tf) which we s h a l l  denote ( a  l i t t l e  ambiguously) by t*.  

Note t ha t  any mapping of theories t: T' --+ T is an equational 

interpreta t ion of rank 1 with universe x = x; in t h i s  case, 

t* :  ModfT) - Mod(T1) i s  the reduct functor. 

3.4. Theorem. A functor G: Mod(T) Mod(T') is - 

coalgebra-representable i f  and only i f  there i s  an equational 

coalgebra A: T I 0  - xod(T1. ~n accordance with our informal usage, 



we identify A with its underlying T-algebra,'equipped with 

TI-co-operations. By (3.2) , there is, for some m and n, an 

(m, n)-ary equation f(x) = g(x) of LT such that the set-valued 
0. 

d t v ,  .G - A: Mod(T) --+ Set can be identified with 

n Lf(x) = g(x)I - UT . This means that in Mod(T) there is a 

L 
coequalizer diagram FT (m) FT(n) &A, so that p is a - 

g 

regular epimorphism. Becaus,e copowers commute with coequalizers, 

- /kQP , 
every copower FTCn k @ ~  of p is a regular epimorphism. -. 

" e 
- -Now let u be any (j , k) -ary TI-operation, and let j @A - k @A 
be the corresponding co-operation. Consider the following diagram: 

A 

hmormrphism h as s h m  which completes the diagram. If j = 0, 



then both FT(nXj)  and j @ ~  are  isomorphic copies of the  algebra 

~ ~ ( 0 )  of constants. which i s  an in i t i a ' l  object in ~ o d ( T )  , so the 

diagpm canmutes with h being the embedding FT (0) FT (n x k) . 1 
- -- - - 

sa 
Define a morphism of graphs t: T '  --+T by se t t ing  t ( u )  equal t o  

h for  each (j-,. k) -ary operation u of T '  . where h i s  any 

A 

(n x j , n x k) -ary operation of T such tha t  ( k a p )  .h = G. ( j  @PI .  

This morphism of graphs defines an equational interpreta t ion of 

i n  ,T with universe f (z) = gfz). 

Given an equational interpretation t: T '  - T with 

(mi n) -ary universe f fx) = g (x) , l e t  A be a coequalizer i n  

h A  

of the T-co-operations f ,  g: FT (m) FT (n) . By pull ing the 

T4-algebra operations of €IT, - t *  - A -Tn back through the 

T ' 

Mod (TI 

Yoneda embedding, we endow A with T'-co-operations which make A 

- - - ~- ~- 
~ ---- -- ~ ~ 

t h i s  coalgebra A.  Tnis cmcludes the proof of the theorem. 

Theorem ( 3 . 4 )  snp6 tha t  equational interpreta t ions  a re  the i 
/' 



syntactical counterpar ts  of coalgebras. In  t h i s  connection it is  

i n t e r e s t i n g  t o  note Wraith's observation in 1421 , p. 62, t h a t  a 

coalgebra is  a kind of general ized mapping of theor ie s .  The s y n t a c t i c a l  
- 

descr ip t ion  of a coalgebra-representable functor  in terms of an 

equat ional  i n t e r p r e t a t i o n  of  theor ie s  enables us t o  inves t iga te  the  

l c q i c a l  p roper t i e s  of the  functor  wtthout recourse t o  u l t raproducts  

o r  modifications of t h e  Feferman-Vaught Theorem a s  employed, f o r  

. example, i n  Burr is  [ 5 ]  o r  Banaschewski and Nelson [3] . I n  p a r t i c u l a r ,  

it is  immediately obvious t h a t  t h e  representable functor  t *  

&-- 
correspon g t o  an equat ional  i n t e r p r e t a t i o n  t: T' ---+T w i l l  

preserve any l o g i c a l  p roper t i e s  which the  def inable  subs t ructures  

provided by t h e  i n t e r p r e t a t i o n  (see ( 3 . 3 ) )  i n h e r i t  frm t h e  "parent" 

category M, and let T je, t h e  &a t i ana l  s t r u c t u r e  of A. Then B 

is a r e t r a c t  of A~ if and m l y  i f  there  i s  an idemgotent (n ,  •’11-;rry 



T-operation A" such that B is isomorphic to the subobject 

n fact about retracts: First, suppose that B is a retract of A . Then 

anh%n r 
we have arrows B --% ---* B with r.s = id The composite 

B 

s. r is an idemptent (n, n) -ary T-operation, since s. r. s. r = s.-.id . r = 
B 

= s-r. Furthermore, it is easy to verify that s is an equalizer of 
- -. 

NOW suppose is given with u.u = u and with 

s 
B = fu{x)  = sf 4 A ~ .  Tl-e arrow s is an equalizer of u and id, 

but u itself satisfies u.u = id.u, so there is a unique 'arrow 

An & B such that s.r = u. But s, being an equalizer, is a 

m m c q h i s n ,  and s t c s  = u.s = id.s = s.id so it follows that 
B ' 



We s h a l l  say t h a t  an equational  i n t e r p r e t a t i o n  of T' in T 

is s t rong i f  the  morphism of graphs t: T' --*T preserves composition 

of  arrows arid i f  t h e  universe of the  in ter$re ta t ion  is  u(x) = x, g 

operation of T' .  Let f '  be a (j, k)-ary TI-operation, and l e t  

k 
f = t ( f l ) .  Then w e  have ul . f .u = f. Let f ' ,  g ' ,  and h '  be 

T'-operations whose i n t e r p r e t a t i o n s  i n  T are f, g, and h 

respect ive ly ,  Then because the  morphism of graphs t preserves 

composition of arrows, any i d e n t i t y  f l . g '  = h '  in T' w i l l  

correspond t o  an i d e n t i t y  f . g  = h in T. 
I 

Given an equat ional  theory T with an idempotent * (n, n) -ary 

# 
operat ion u,  w e  def ine  a new equational  theory T I  u ,  the r e s t r i c t i o n  

of T t o  u, a s  follows . Say that an (n x j , n x kl -ary operat ion g 

of T is a u-operation ' i f  uJSg.uk = g. Note t h a t  a composite of 

category whose arrows are t h e  u-operations of T and whose i d e n t i t y  
2 



arrows are  the powers (which may be computed in  T) of the operation 

u. The ver i f ica t ion  t h a t  T ~ U  is  actual ly  an'ecpational theory is  

contained in  the proof of lemma (3.6) below. The inclusion T 1 u - T, 

together with the equation u(x) = x ,  defines a strong equational 
h 

in terpreta t ion of Tlu in T of rank n; obviously, a strong 

equational in terpreta t ion of any equational theory T '  in T with 

universe u(x) = x w i l l  always take the form of a morphism of graphs 

T' - T whichIifactors a s  a mapping of theories T '  - T I  u followed 

i 
by the inclusion morphism T ] U  ---, T, 

3.6. Lemm. Let A be a t ractable  object  with equational - - 

s t ructure  T in a a n a l l - c a p l e t e  categoky 14. Let u be an idempotent 

In, nl-ary operation in T, Then fu(x) = x )  t rac tab le  object  

*dose equational structure is isamorpfiic t o  T 1 u. 

n S I1 
A**. Iat kn -A B and B - A be arrowsfjsuch t ha t  r. s = i d  B 



and s.r = u. Let T t L  be a skeleton of the f u l l  subcategory in  M 

of powers of B. Def h e  a morphism of graphs t : T' ---+ T 1 u as 

- k 
(n x j, n x k) -ary T-operation sj.g.r ; it is easy t o  see tha t  t (g) 

is a u-operation of T, and it is also easy t o  see tha t  t preserves 

k k composition of arrows and takes the identity arrow B - Bk t o  u , 

for  each k. Hence, t: T '  --+ ~ l u  is a functor and is surjective 

on objects. Because powers preseme retractions and coretractions, 

every power of .  -r is  an epimorphism and e-very power of s is a - 
monomorphism, so  it follows tha t  t is fai thful .  Finally, t is 

f u l l ,  since for  any (n X J ,  n X kl -ary u-operation f of T we have 

k f = uJ.f.uk = s 3 . ~ j . f . s k . r k  = t ( r3 . f . s  ) .  Wehave shown tha t  t 

is an isomorphism of categories, so  B = [u(x)  = sf i s  a t ractable  

3 . 7 .  Lens~, Let A and 3 be tractable objects in  a - - 

s m a l l - c q l e t e  category Pi, and l e t  T be the equational structure 



of A. Then A and B- are  retract*equivalent, with B being a 

n r e t r ac t  of A and A being a r e t r a c t  of Bm, i f  and only i f  T 

s a t i s f i e s  the following conditions: 

t h a t  

- - -- -- - - - - - - - -- - - a 
i) There is  an idempotent (n, n)-ary T-operation u such 

ii) There i s  an (n x m, 1) -ary T-operation d such tha t  

iii) There i s  a (1, n x m) -ary T-operation p such tha t  

p.d = id .  

Proof. By (3.5) , condition i) i s  necessary and su f f i c i en t  

f o r  B t o  be a r e t r a c t  of A ~ .  Suppose tha t  A and B a re  re t ract-  

equivalent a s  described above. Then we have B -% A" and A" f B 

h 
w i t h  r. s = i$, and we also have A --r Bm and B~ -% A with 

-- -- -- -- - -/ - -- - -- 

rn 
and p = g.r . On the other hand, now suppose that . 



m r .d m where s and r are as above. Consider the arrows A - B 
m .  

+nd B~ LA; using ii) and iii), w6 compute 

Combining (3.1) , (3.6) , and (3.7) , we now have a syntactical 
- 

- ,  
characterization of a l l  the equatimal theories T' which are Morita 

L 

equivalent to a given equational theory T. 

a 

3.8. Theorem- Equaticmal theories T and T' are Morita - - 
i 
I 

, 
equivalent i f  and only i f ,  for  same cardinals m and n, .the 

- 4 

fallowing conditions are satisfied: 

i) There is an idempotent (n,*n)-ary T-operation u such 

that Tt is isosporphic t o  T ~ U ;  

ii). There is an (n x m,  1) -ary T-operatian d such that 

iii) There is a (I, n x m) -ary T-operation p such that 

p.d = id.  



C 
4 .  . . 
€; 

. with A strong equational ifiterpretation t: Tf -+ T - 
.* - 

fn, n) -ary universe - u(x1 = x wif 1 be c a l ~ e d  a spanning 
- ,, i , + 

and TI;, i n t ep re ta t ion  i f  t determines an isomorphism of T '  
.. - ' P .  

+ 
- 

and i f  conditions ii) &d iii) of . ( 3 . 8 )  are sat isf ied.  It is 

evident tha t  G: Mcd(T) - Mod(T*) is  an equivalence functor if and 

only i f  there interpretation I t : T' ---+ T 

t*. such that G 

generalization of Morita 
- - 

There is a category-theoretic 

equivalence which has been studied in various forms and for which 

some partial  ch&ac&rizati& have been published. .Given a fisked 

base category M, two small categories A . and B are Horita 

'2 
equivalent over H i f  the Wctor categories 8 and 2 are 

I 

over Set; his Theor- 6.1 is actball-- a special case of f 3 .&) , since 

each v o i d  



features a monoid of unary operations isomorphic t o  A, so tha t  the 

I 

category se tA of "left A-acts" i s  ident i f iable  w i t h  Mod (A1  ) . 

According t o  Knauer, Banaschewski 121 contains similar resu l t s .  on 

4 a way which is obviously strongly related t o  our (3 .81 .  In the 

~ o l o g y  of [121 , a xeak functor i s  a composition-preserving . -- . . J  - 
r 

& @ i s m  of graphs. k weak equivalence A ---+ B is a weak functor 

t 

. s i t i s fy inq  conditions analogous ose which def h e  a category 4" 

A h and B, the functor categories Set 

3 

&-ad only i f  there is a weak quivafence 

% 

that, for  smal.1 categories 

and Set 
B are equivalent if . . 

It shuuld dim be noted Wt Preyd 1171 cantdins a syntactical 



Next we present a few corollaries t o  

t ractable  objects in a 

A - A A -- - - -  - 

~at<~o-$ M have Morita equivalent equational structures. + 

% 

-. - 3.10, ~orollaxy,  I f  k is a tractable object i n  a 
.A 

small-complete category M ,  qnd i f  the equational structure of A i s  

-%rita equivalent t o  f, then A is retract-equivalent t o  some object 

whose equational structure is  isomorphic 

The significance of the next lerraha 
-+ 

is  tha t ,  i f  we are  

cardinals m and interested only Lq f in i t a r ; r  ecpaticnal Lheories , the 

r. mentimed (3.31 m y  be take; t o  be finite. Part i) of (3.11) 

the equatiwal 4 

2 

then 



costructure of A is  f in i ta ry ;  

ii) I f  A is  a regular progenerator whose equational 

costructure i s  f in i t a ry ,  then A i s  f & i t e l y  generated. 

Proof. I f  A i s  f in i t e ly  generated, then it is 'evident 

from the of (3.4) that there i s  an equational interpretation of 

f i n i t e  rank  of the equational costructure T'  of A in T I  so it  

follows tha t  T' is f in i ta ry ;  On the other hand, suppose that  A is 

a regular progenerator whose equational costructure T' is f ini tary.  

Tnen by (3-1) the caaparisan functor E: Mod(T) ----* Mod(T'1 for  - A 

is an*$quivalence functor, so by (2.3) A is  f in i t e ly  generated. 

I. 

Note that tise canverse of condition i) above is not valid. 

't . 
are a l l  t r i v i a l ,  I s  certainly a f in i ta ry  theory. An example of 



an algebra with no proper endomorphisms but which i s  not f i n i t e l y  \\ 

- 
generated i s  constructed by equipping a countably i n f i n i t e  s e t  X 

? 

with a -sequence (ni : i < ~ )  of unary operations, each of which i s  a 

-- - 

permutation of X with a single fixed point,  with each point of X 

being f m  by a t  l e a s t  one of the  operations, and with the operations 
- 

chosen so tha t ,  for each point a of X, the s e t  X - {ui(a) : i 

is in f in i t e .  

Applied t o  finitary theories ,  (3.8) obviously has great  

p t e n t i a l  fo r  t ransferr ing logical properties such a s  categoricity,  
+ 

1. 

s t a b i l i t y ,  decidabi l i ty ,  and so on. For the moment we shall cantent 

ourselves with two logical coro l la r ies  t o  (3.8)- A finit- equational 

theor-  T is countably pre&table i f  there i2 a presentation of T 
d 

0 - - 

z ~ e r a t i m s .  An equationhr theory T is local ly  finite i f ,  for each 

s aid c, there are o n l y  f i n i t e l y  many nontr ivia l  bur n)-ary 



3.12. Corollary. A countably presentable f in i ta ry  equational - 

theory is Morita equivalent t o  exact ly w different f in i ta ry  

equational theories, and they are a l l  countably presentable. 
- - -  - - - -- - 

Morita equivalent t o  a f in i ta ry  and locally f i n i t e  equational theory 

i s  locally f in i t e .  

The caponical language LT of an equational theory  T, while 
. . 

adeipate for technical purposes, is in'convenient for  informal discourse * 
--A\ 

because a14 of i ts  operation symbols are formally unary, which makes 

iit necessary to exploy a multitude of operation symbols fo r  projections 

and arqthrent-shuffling opexatioq. W e  sha l l  frequently resort t o  a 

self-explanatory no ta t ion ,  employing variables in the farqiliar way, 

tenninolcqy of ,H&hi and Reyes 1331, w e  are using the exten&d - .  

canonical language d T. B e -  following exi&les, using the extended 



language, may help tonprovide an i n tu i t i ve  understanding of how the 

operations u, d, and p mentioned i n  ( 3 . 8 )  determine an equivalence 

of categories. 
- - A - - - - - -- 

Recall t ha t ,  fo r  f i n i t e  m > l ,  Pm i s  the f in i t a ry  equational 

theory of m-valued Post algebras, which was pointed out a t  the 

i beginning of t h i s  chapter as being Morita equivalent t o  the f i n i t a ry  
I 

$\ \ 
\ 

equational theory BA of Boolean algebras. A survey of basic  

Lattice-theoretic r e su l t s  concerning Post algebras is given i n  Balbes 
I 

and Zkringer [ l l  and in Rasiowa [37] . Rasiowa provides a presentation 

of P in terms of:  
m 

i) Constants e e l r  . . . e 
m-1 , 

ii) Unary operations -t , Dl, D2, . . , . ' Dm-l 

i'ii) B i n a r y  operations A ,  vr + 

iv)  A list of equational axioms (po), (pl), . . . , (p8f. 

The equational axi- ensure t h a t  every &valued Post algebra 



is a Beyting a lgebra  with respect t o  e e 
O r  m-1'  1 ,  A ,  v ,  and 

+, with e being the "zero" and e 
0 

being the  "one. " The 
m- 1 

opera t  ion can be proved to  coincide with "double negation," 

e .  , D (XI = 7 7 x (see [ 3 i ' ) ,  p. 137). 
1 

The opera t ions  u ,  d ,  and p required for a spanning 

I 
equational  interpxetation of rank f of BA i n  

Pm 
are as  follows : 

i l  u is the  (1, I) -ary "double negation" operation 

U(X) = 1 - x  

ii) d is the (PI, 1) - a r y  operation 

The identities which u, d, and p are -required to satisfy 

f 3.8) , and Ip7) , which correspoads to condition iiif of (3.8). The 

operation u picks aut #e subset of  a l l  ccmglemented, or 'tBcKlleanIW 



elements of any arva lued  Post algebra. The operation d decanposes 

dp 
each element gf the Post algebra irito a chain o f  Boolean elements 

Tne u-operations of Pn are  p rec i se ly  the  operat ions which preserve 

"&m1arm elenze-nts; kt is. easily seen fsee •’371, p. 1361 tha t  the 

Bociean elements of any "os t  algebra form a Boolean algebra with 

respect t o  the orperations which preserve them. Thus, t he  analysis 

of T o s t  algebras as chain-based d i s t r i b u t i v e  l a t t i c e s  by Epstein 1131 

and Traczyk f41j corres_mds prec i se ly  t o  the s y n t a c t i c a l  ,candi t ions  

_wsed by f 3.8)  for Pm ~1 tG berita equivalent to-the theory BA of 

amlean algebras.  

The tepres&tation of the ~ a l u e d  Post algebras as lattices 

of nonincreasing f&-1)-element chains in Boolean algebras (see 

interpretatim of rank m-l  of P in BA. In this case, the three m 



i) (m-1, m-1) -ary idempotent operation 

2 
l e t  k~ be the full subcategory in T of powers of i ; then , k~ 

is an equational theory, called the k-th matrix theory of T for 

reasons explained in W r a i t h  [42 ] .  Since k~ is the equational 

structure of I', ririch is retract-equivalent in T to T i t  

follows by (3.9) that 'T is llorita equivalent to T. A spanning 

- equational intomretation of rank L of 'T in T is given by the 

fuxtor *+: *T T, &ti& i s  nut a mapping of theories 

- B  
unless k = I. ihe operation u in .this case is the ident i ty  arrow 

of ?, while d is the diagonal arrow P 2 ' '  and p * is any 



projection T~ 4 Z. 
i 

Another significant example rel2vant to  (3.8) is provided by 
s 

the, role of idempotents in the  endomorphism ring, i. e. , equational 

.costructure, of a free-module in defining Morita contexts (see Cohn 

171, pp. 46-47) ; the c#untrerpazts to d and p do not seem t o  be 1 
f i i n t e d  out in Cohn I s discussid a n , however. 

Lawvere f291 defines an algebraic functor t o  be any functor 

of the f o m  g*: ModITl -+ HodfT' f , where T and T' are ecpatimal 

and g: T' -+T is any product-preserving functor. The degree of - 
such an algebraic functor gf is  that cardinal n such t ha t  

lat G: W t T i  ---tMcx3fT1) be any functor such tha t  
i 

A 
GT3.G =. UT . Then UTl . G is represented by F ( n f  , and the T 



n n cclnparison functor E for  U is  the equivalence functor t*, 

n n n 
where t: T -T is  the spanning equational interpretation of T 

1 
n in T discussed above. Thus, we have G . =  g*,.nt* = ( t .g)*, .so 

G is an algebraic functor of degree n ,  in Lawvere's terminology. 

N o w  l e t  G: ModtT) ----+ w ~ T ' )  be any ,functor w b s e  

A 

set-valued ccmpcrment tl = UT,.G then' U ' i s  represented ' 
. . 

by a regular progenerator, and the equational structure T" of U is . 

Horita eqgivalent to T. Consider the followin4 casarmtative* diagram. 



Eere again the c0mp-i- fttnctur E is an equivalence functor, and 
% 

g is a uniquely determined mapping of theories. In t h i s  case, 

'! 
0 

E = t* ,  where t :. TH - T provides a spanning equational -' 

in terpreta t ion of Tn -i.p T as demanded by ( 3 . 8 ) -  Note that t 
- 

n 
factors as T" ---t T -'I?, &ere n is the rank of the 

- 

. ---. 

interpre'tation. Thus, - w e  have G = ,gf.  t *  = .. (t .gf *, where g is 

a mapping of theories and t i s  a- spanning equational interpretation 4 

* 
. . 

of rank n. 

t The foregoing considerations sugge~r a broadening of 

-p ~ -- 

~ayve?~~- - -deZZ~im.  Say that a e i r  ti: R6al.i.) --HuWT*l is 

algebraic i f  G is represented by a regular pkgenerator.  



I 

8 5 

3.14. Theorem. For any equational theories T and T' and , 

G: Mod(T) -+ Mod (T' ) , the following are equivalent: any functor 

if 

* 

* - 
G is algebraic; 

---A- (_ . -- --.PAL - 

regular 

G has a l e f t  adjoint an preserves and ref lects  "t 

iii) G facturs as an followed by a 
I 

functor; f 
- 

ivl  The set-valued component UT, . G of G is monadic; 
1 

1 

V) G ( t . g )  *, where g: T' ---+ T" is a mapping of 

interpretation. 

Note that i is used a s  the definition of the term 

"afqebraic fnnctm in IIerrlich Strecker 1211, except that the 

algebraic! fuizctors is explicitly pointed mt in [ Z L J ,  Thesorem 32.21- 



* , , . . ' I 

rhe equivalence qf conditions ' iii) and .. iv) dbove &lied by , 
.. . . . 

7 

* .  , '  J 

Lintan's result f 2.5) . TheL syntactical characterization v) is new. 
1 

' , 

Define the - rank of an algebr& functor 6: Mod(T) - HDdfT*) 
- --- -A-u--- 

'2- 

to*& the smallest cardinal n such that  the  regular progenerator . 

, . 
r, 

which represents G is  generated by n elements. If  G has rank 
- - - - - i - *  - 

- -  - - - -  - - --- 

-a n, then n i s  the smallest cardinal, k 
. - 

retract  o f .  U and for  which the spanning in tekreta t ion ---$ d 

T' / c 

i .  

' mentioned in cmdi t im v) above factor; through 't. ~ b t e  that, by 
3 ,  

/C 
(3.111, the equatianal structure of UT, .G .is*finitary if and only'if ' 

'I 
< 

' 5  
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CBAPTeR 4. KEPflES~TABLE BOOLEAN P W R  FUNCPORS P --- - 

C 

5 

The notion of the Boolean extension A[BI of a f in i tazy  
- 

universal a l g a r a  

-- - - - 

A )by a Boolean algebra B ' w a s  introduced by 

as a *vicea f o r  making s t ruc tu ra l  comparisons 

-. . 

A. L, Foster •’141 

between Boolean algebras and other kinds o$ algebras such a s  p-rings. 

One of Foster* s pr&cipal r e su l t s  w a s  e a t ,  when A ' is  priplal, i .e. , 

f i n i t e  and nontr ivia l ,  having a l l  possible f i n i t a ry  operations, the 

equational class generated by A is the c lass  of all- is&rphic copies 

view, of Boolean elftensioas of A (see [I41 , El51 1 . From* our point  of 

Foster, without the help of category theory, defined and studied 

r e su l t s  about Fostkr* s functors which would be d i f f  ikult .  t o  fokmulate 



category-theoretic concepts, but which have algebraic 
b 

import. In showing that these results carry over t o  infinitary 

algebra, we prove an Fnfinitary version of Foster's theorem cited 

above which could not be proved by directly extending Foster's 

original method. Our analysis of Boolean power functors as algebraic 
- --- -- - -  - -  - - - 

functors provides a useful alternative fo the topblogical o r  
r 

- sheaf-theoretic approach as kfzmplified by Bur-is 151 and 

Banaschewski and Nelson [3] . 

We begin with a naive search for a l l  the monadic functors 

r- 
Mod(BA) <--+ Set whosmequational structure is finitary. Such a search 

would be motivated, i f  we did not already have other reasons for it, 

- ,  

by-the fact that  M&(BA) i s  an' important and ccmparat qy 
well-understood equatisnal category which enjoys a n e e  of 

search is equivalent t o  the problem of identifying aLl the finitely- 
' 

generated regular progenerators in W ( B A ) .  Since 



- 
89 

I 

f in i te  theory, a l l  f in i te ly  generated Boolean algebras are f in i te .  

0 
The f in i t e  regular progenerators i n  Mod(BA) are rather 'easy t o  find. 

\ 

4.1. L a m a .  Every f i n i t e  Boolean algebra having more than - - 
two elements i s  a regular progenerator. 

- -- - 

Proof. Every f in i t e  Boolean algebra is a power of a 

two-element Boolean algebra; the free algebras are the one? of the 

+ 2" 
form 2 , where n is the number of free generators. Obviously, 

for  > 2 the free algebra FBA(l) 22 is a retract  of the - 
algebra 2k; f u r t h e m o r  sufficiently large f in i t e  n, zk is 

a retract  of 

having mofe than two 

FBA (n) . ,Thus, every f in i t e  Boolean algebra 

f i  
elements is dually retract-equiviilent to  FBA( l ) ,  

hence i s  a regular progenerator. 
\- 

- - - 

* 

- 
In fact ,  every countable -----p--pp---p-pp Boolean algebra having more than 

- 

two elements is a regular progenerator in Mod(BA); not much is known 
3) 

* 

about the uncountably infini te  Boolean algebras which are regular 



progenerators {see Balbes and minger [ l ] ,  p. 107) . 

; 4.2. Imma. For any f in i t e  rn > 1, the equational - - 
- --- --- 

costru~ture of ;he Boolean algebra 21" in Mod(BA) is  isomorphic to  

the finitary part of the equational structure of an m-element se t ,  i .e. ,  

- - -  -- - 

to the equational theory Pm of m-valued Post algebras. 

Proof. Since 2m is f ini tely generated, its equational 

1 

costructure is  f ini tary,  by (3.11) . Thus, it is suf fi,cient to  verify 

that the f ini tary parts of the two theories cited are isomorphic. For 

a l l  f in i te  n, the Boolean algebra 
n 

2m is an n-th copower of Zrn 

2m ff- 2m" to  each finitary in  Mod (BA) , and the assignment of 

the n f 
operation m -m establishes required isomorphism. 

~ h u s ,  i f  the se t  A has m 
- ~ ~ ~ 

> 1 elements, then the 

- 
representable functor 2A: M o d ( = )  ---4 Set is an m-valued Post algebra 

- - -- - - - -- - -- -- --- - 
- C 

-- -- -- - ---- - -- - -- 

i n  Set ; the corresponding ccrmparison functor Mod (BA) ---+ Hod (Pm) 

emvalence. since 2A i s  a regular progenerator. is a category 



combining (3.l), (3.11) , ( 4 . 1 ) ,  and (4.21, we have a proof o f  T. K. g u t s  

If A is a f i n i t e  set having at least two elements and B 

is  a Boolean algebra,  the  -lean p e r  A[Bl i s  t h e  set of a l l  

-- - - 

A-indexed p a r t i t i o n s  of un i ty  in 8, i . e . ,  t he  s e t  of all funct ions  

u from A into t h e  underlying s e t  of B such t h a t :  

i f  For a # b  in A,  wehave u ( a ) A u ( b ) . = O  .in B; 

The d e f i n i t i o n  abme is A. L. Fos te r ' s  ( see  11411, For each 

h 
homomorphism B -+C, le t  A[hl be t h e  functioli which sends each 

p a r t i t i o n  u in A [B] t o  the p a r t i t i o n  h.u in A IC] ; we have now 

&fined a set-valued -lean p'ower functor  A[-]  : Mod(BA) -Set. 

Boolean algebra zA. 



Proof; It is easy to see that the restriction of any . 

A 
hcraomorphism 2 --+a to the atoms of 2A determines an A-indexed 

. . 
,-1 +y In B, and-t each partition u belonging to 

ACB], regarded as a function from the atoms of zA into B, has a 

- - - 

un&e extension to ; hcmmorphism 2' - 8. &re formally,  the 

isclmorphism zA -&[-I in the functor category Set 
Mod CBA) 

- 

E 
corresponds, by the Yoneda L-a, to an element of ~ [ 2  1 or, in 

Mac Lane's te2minology1 to a universal element of A[-] .  That 

element is the partition A zA defined hy the insertion of the 

Z 

The representability of A[-] does not seem to have-been 
. - 

L 

directly,&loited before to any significant extent, although 

spaces into =CAI, and it .f s pointed out that C (-1 A) has an 

"adjoint on the rightWw 



\ 

Foster 's  def in i t ion  of A[B] i n  El41 includes a fonrmla 

1 

n f 
which shows how each f i n i t a r y  operation- A can he - f '  
transmogrified i n t o  an operation ACBJ" --+ ACBI. I f  A is  a 

the Boolean algebra 2* is a T 

equational categary M t T '  ) , then - - 

-a. ' 

f - operation An ---+ A determines 

C-coalgebra i n  Mod(BA);' each f in i t a ry  
r 

exploiting the f a c t  that every Boolean B has an embedding 

in to  a power of a two-element Boolean show t h a t  both 

Foster' s formula f o r  f ' and the co-operation f yield the same 
2 

sha l l  often i d e n t i f y  A[ -1 wi-& - 2A, i n  l i g h t  of (4 .3)  ) . 



f 4.4. Lemqa. Let An 4 A be a f ip i t a ry  operation on a 
- .  

f i n i t e  set A having a t  l e a s t  two e l emnt s ,  and l e t  -* f '  = f *  be the - 

corresponding operation on the set-valued functor A 1-1 .A Then fo r  any 

Boolean algebra B,  the  a f lB.: A [ B I ~  --+ A [B] is . d e s k b e d  

*. 
as fo l l a i s .  For any u = (u0, u . - . , u 1 in A I B I ~  andany 

n-1 

c € A ,  w e  have- 

Proof. Each of the par t i t ions  u corresponds t o  a 
j .  

A I 
homomorphism v *: 2 - 2' which factors  thtomjh B L--- 2 ; these 

j 

homomrphisms col lect ively induce a coproduct homomorphism 2 A" v* 7 21 -. 

which factors  through B and corresponUs t o  u C A [B 1 n. To simplify 

the notation, we ident i fy  elements of B with subsets of I. Then 



Note t h a t  (4 -4 )  only serves t o  show t h a t  our viewkg ~ f - I  

as a representable functor does not confl ic t  in any respect with 
x w, 

Foster ' s  or iginal  def ini t ion of the Boolean extension construction; 

- \ 
\ 

the  computation upon which t he  proof is based is, with minor 

variations depending on context, widely known (see 133 , p. 5 ,  f o r  ' 

example), and w a s  probably used by Foster himself t o  derive .the 

formula given i n  (4.4) . Indeed, since A[-] is representable, it 

B ' 2' w e  have preserves products and mawmrphisms, so i f  

/' 

in the  roof above is 

t o  the  r e su l t  of 
d 



w i s e "  to that n-tuple in the familiar way. This is how one,shews 

,&hat B o o l e a n  powers of algebra A a r e  isolnorphic to certain 
i * 

subdirect powers of ~&thvhich Foster defined in I141 and called 

*-7 
Rn~nnal" subdirect powers,, 

> 

7%L%, 
- -  - - - _There i s  ane fact which has apparently never - been pointed - - 

- 
out before that can be derived fran (4.4) together with (4.3) and 

(4.21, namely, that the Boolean pcrrJer functors A[- ] ,  where R is 

I 

finite, have finibry equational structure, i . e , ,  they are incapable 

of carrying nmtrivial. infinitary operations, so #at in fact every 

nontrivial operation which A[-f admits is of the kind described by 

the 'formula in (4.4) . 

The &of-cartin&-ft1clcti.0~1~ version of A f - I  , featured in 

'4- 1 

f 

[31, is recoverable frotn our representable functor version quite Basily. 

2x.- 
* _  - s e t s  in 2' (identieing nth  the p&r set algebra o f  

Informally, we have a chain of correspondences 



w+ch factor 

through B L+ 3 
- 

f 
functions X A such that f* ({a)) t B 

for a l l  a t  A - - - --- - 

continuous functions •’ram x to  the 

discrete space A., 

W e  shall refer t o  any functor &bd (BA) ---* W ( T )  , where 

- 

is equational, as a representable Boolean power functor i f  it is 

i, 
J '  represented by Einite Boolean algebra with more than two elements. 

of (4.1) in more The next result is really just a restatement 

bqressive language. 

- -- ~_L--T%U=O~~~RI- ,Par-equational theory T, the algebraic - 
-- -- -- 

functors . W(B.A) - b ~ o d E ~ ) ,  of finite rank arePre=sely the 

representable Boolean 



The definition sf the functor A1BJ given above depends 
a ' - 

. 1 (  r . 2  : 
I ,  

P 

upon-the finiteness of the s e t  A to  guarantee that the join in 4 '  

, ' *  7 = 

condition ii) of the definition i s  an operation* in  F l e ~  - - 
C =, . -u 

algebra B, rather than just an order-theoretk supremum, so that 
/'> 

partitions wil.1 be presercred by composition with homomorphismsi For 
I 

+ 
- - - -  - - - - -- - - p- - - 

infini te  A, there are two versions of the Boolean power AIBI t o  
4 * 

choose ~ H O  One version, whieh remains faithful t o  the set-of- \ . 

continuous-functions approach, is called a bounded'Boolean power and 

uses only partitions u: A --B for which - u(a) is nonzero for 

only f in i te ly  many a€A; bounded Bookan powers are discussed in 

Chapter 5.. The other way of defining A[B] when A is  infini te  is  

, , 

t o  require that  B be a complete Boolean algebra, so that the 

definition of AfB1 given above still works, with the join i r k  . . 

condition ii) being an infinitary one. This approach has a serious 

theore-int of view: the categoly 
", - .  

t 
of complete -lean algebras w i f 3  complete hamoatorphisms (needed t o  

, * 
I - 



.. 
-- 

* - L 5 

3 

3 *9 0 99 . " 4 
4- * 

0 
d - 

p&rve part i t ias )  i d  hot & e=iticoai category and even lacks 
p i- 

7 - . *  y e  4 4 -' 

- algebras. . Rav +hsn straggle vith functors defined m such ab . * 
1 

I 3 
- complete & have A-indexed joins. 'Th$s b r o a c h  is not tmknwm in 2 L 

L . . since &y investigators like to treat the Boolean p e r  structicm 

L 

variable; the Boolean algebras are required to be ccqlcte in order to 

a c a h t e  arbitrarily large sets A. I t  seems likely 

' L 

ftmctor-theoretic investigation of Boolean parers as hifunctors - 

. ,  

> * 
best  proceed by restrictingalto sets of bounded cardinality (a 

" 

w 

equational category of Minim Boolean algebras as defined belcnv, 

Let k be an izrfiaite.regalat cardinal. A fhitarg Boolean 



I 

. 7  

. * 
*_  

algebra . B , is k-pdmplete if eve&.f&ly of fever than k elements 
. . . ~ 

' d. - .. * 
h y  a supresap and an infimum in B relative to  the custamary 

3 . 
. -.- * 

s 

&id orhe=. , . A . k-hznplete BooIean h o d r p h i s m  is a p o l e &  
. . * 0 , ... ' . + 

d . . .  .:v r 

i ~ i c h p ~ e s ~ t ; h e e e ~ r n d d ~ i m h . n f ~ i e ~ o ~  
i - .' 

. *  
category k-Boo1 of a l k  k-complete ~ o o l e 2  algebkas with k-ccmplete - . - 

I - ,  ' , 

, kd*. Irr ; 
-j - ' 

h p  a represgkitable under1ying:set funCtor U with a - 

lef t  adjo'ht 

- 7 

W, The categ>ry $-Boo1 is monadic over set, i.e- , 
- 1 5 

.", , ,- - i . d . ~, 
1 C 

- + A ,  1.: , , > .  L 

/aarlyins-set functor o : . ; r -Bbl ,y  set. :.; .. . , ~ 

1 
- - - -- -----------p------ ~ ------p ~ - - -- -- 

* **. - ,  ,<r , --- ~ 

-: 
- . .~ . . . 1 5  

- i - :  



Prqof. We sha l l  use (2.1)  . to,prove-the theorem, It . 

follows from ~ i k & s k i  1401 , p: 131 f f .  that  U has a l e f t  adjoint a 
. I  (the f ree  algebra functor). According t o  R. Lagrange [281, a k-complete . . I  

, + 

f 
U(f) is  surjective. In par t icular ,  i f  f js a regular epimorphism, 

#then' it is an epimorphism, so ' U ( f )  is surjective . Thus, U preserves 

regular epimorphisms. To show tha t  U re f lec ts  regular3 epimorphisms, - 

suppose that  U(f) i s  surjective; Form the kernel 'congruence 

D f U ( B )  xU(B) of U ( f )  in Set, i . e . ,  D = { ( a ,  b) : f ( a )  = f ( b ) ) .  
B 

Then the two projections D ---+ U (B) are a kernel pa i r  l o r  U ( f )  , and 
rb 

"' 

U(f) is 9 coequalizer for  them &I Set. By routine calculations, it . 

can be verif ied tha t  D is a k-complete subalgebra of B'xBI- tha t  ,'- 
, -  3 -  

the kernel pa i r  in Set  l i f t s  in to  k-Boo1 as  a kernel pa i r  of f ,  

and that f coeqvalizes i t s  kernel pair. Since U is  representable 

(by the f ree  alg&ra F ( l ) ) ,  it preserves congruence relations.  To 



/' k-complete subalgebra such t h a t  UCC) is an equivalence relation on 
* 

* , . U(B) . Then by routine calculations check that/ U(B) /U(C) is a 
. + 

k-complete Boolean algebra with the obvious operations, and that  the 
1 

- -  projections C _ : ,  B are  a kernel pa i r  fo r  the&-rojection B -_.i. B/C. .- 

&re are no sutprises i n  any of these computations, be'cause the fac t  

t ha t  the f i l t e r  . f*({ l ) )  fo r  any k-complete homomorphism f is  a 

-, f 
k- f i l t e r  and tha t  the quqtient of any-k-complete Boolean algebra by a 

k - f i l t e r  i s  a k-complete Boolean algebra ( 1401 , 521) guarantees tha t  

* everything works as i t-should. - 
~ e m a * ( 4 . 6 )  should be regarded a? "folklore" resu l t ;  see 

Manes [34] for  related exzbples; 

t o  have a convenient presentation 

P* 

k-complete Booleaq algebras. A s  
f, , 

It is in tu i t ive ly  helpful 

of the'equational tbeory k-BA of 

one would hope, it suffices' t o  distinguish the constants 0 and 1, 

That t h i s  works follows from the- fac t  t ha t  a Boolean - .  algebra 



is k-complete i f  and only i f  it admits these operations, and that a 

? a '  

J 
Boolean homomorphistris k-complete i f  and these 

operations. From now on. a k-complete Boolean algebra is identified 

- 
with a k-BA-algebra in  Set, i .e . ,  a Boolean algebra w m ~ r i f i T T i T ~ - -  

f operations which pick out the and infima of families of fewer / 

than k elements. 

Note that- thefe are obvious mappings of thwkies 

BA + k-BA -4 T ~ ,  where 
T2 

i s  the epuational StrUCtUre of a 

+ - 
twaelement v set ,  otherwise known as the equational theory of complete 

atomic Boolean algebras. Define an equational theory T ' t o  be a .  
i 

- 
9 .  

equational theory of k-dmplete Boolean algeblas i f  T is a quotient 

theory of k-BA, i - e . ,  i f  there is a fu l l  mapping of theories 

k-BA 1 T. The cor reshd ing  equational category Mod(T) w i l l  be - 

0 

called an equational category of k-complete Boolean algebras. Note 
9 

that ,  i f  T - 

subcategory Mod (k-BA) which is closed under H, S, and P. 



Intuitively,  an equational theory of k-complete Boolean algebras is 

the resul t  of adding d is t r ibut iv i ty  axioms t o  k-BA. 

For the r e s t  of t h i s  chapter, l e t  BA* be a fixed equational 

@cog p f  k-complete Boolean algebras. - - - - 

.. 

4.7. Learma. If A i s  a se t  of cardinality less  than k, but - - 
- 

1 

greater than 1, then zA and a l l  of i t s  copowers in blod(BA*) are 

regular progenerators in Mod (BA*) . 

Proof .  Every nontrivial  copower of a regular-projective 4 
4 

object i s  regular-projective, and every BA*-algebra with more than 

v "T 9 
two elements has FBAl(l) ' 2,2 as a re t rac t ,  so t o  prove the lemma 

it is sufficient t o  show tha t  2A i t s e l f  is regu la r -p ro jwve .  Let 
c, * 

f 
B --+ C be a regular epimorphism, and l e t  2A C be any homomorphism. 

Sh 

- 
W e  sha l l  c d s t r u c t  a ham-rphism 2A A B such tha t  f . g = h. Since 

- - - - - - - - - - - - -  - . - - --- --. ~ - 

1 ~ 1  < k ,  BA*-alg&ra 2 is  generated by i t s  atO%US, ~ l ~ ~ f f i c e S - ~ - ~ ~ - - ~ j  
g p~-2 -------------p- 1~ ~: -pp-----p-- 1 ~ ---9------ 7 ! 

t o  desCrih what g does t o  the m. . 



Iet (ai : i 4 m) be a well-ordering of A, and l e t  g({ao}) 

% 

be any element bo of B such tha t  f (bo) = h ({ao}) ; kj, exis t s ,  
i"l/ 

because UBA* ( f )  is  surjective.  (Note that  we are identifying 
2 

-- )I 

g({aj}) is  defined fo r  each j < i so that  f (g({aj}))  = h({aj}) , 

and so tha t  for  a l l  j' < j we have g { a j g { a j  = 0,  then . . 

l e t  g({ai}) = bi - V g ( { a j l )  , where bi is u m e n t  of B 
j < i  f 

such that f(bi)  = h({ai}) . The foregoing suffices 0 define g({ail) f 

Lemma (4.7) provides an important example of how an equational * 

ca tegoq of k-complete Boolean algebras, for  uncountable k, d i f fe rs  

from the category of f in i ta ry  Boolean algebras. In the l a t t e r  

category, no in f in i t e  parer of 2 is regular-projective. Indeed, no 

- -- - -  

inf b i t e  

f in i ta ry  

complete f in i t a ry  Bmlean algebra is even embeddable in a free 

_j 

Boolean algebra (see Sikorski 1401, p. 6 7 ) .  ' 
I 



4.8. Lemma. When - - 

retract of the n-th copower 

' f in i te ,  then the retraction 

A'! IAnI < k ,  the BA*-algebra 2 is  a 

is an isomorphism. 

Prmf. Each projection A" -% A induces a (complete) 

n 
homomorphism 2A 2A , which we shall ca l l  a coprojection; the n 

r 
An 

coprojections induce a coproduct homomorphism n@zA 2 . By 

A" 
hypothesis, IA" 1 < k ,  so 2 is generated by i t s  atoms and i s  a 

regular progenerator in Mod(BA*) , by (4.7).  For each i < n, the 

A An 
i-th coprojection 2 ---+ 2 sends {c) to   LA^ :.a = c). For 

i 

any given b6An, we have {b) = n I a C A n  : a = bi], so clearly 
i i<n 

An 
eachatom {b) of 2 i s i n t h e i m a g e o f  r but then r must 

n n 

An 
be surjective, hence it i s  a retraction since 2 i s  regular-projective. 

P , 
A 

If n is  f in i te ,  then n@2 is atomic, and r is bijective n 

on atoms. To see this, l e t  Cs. : i < n) be the coproduct injections 

single 



atom of 2A 
. 

t o  1. If the i-th .homomorphism in t h w q u e n c e  sends 

I then the induced homomorphism n 632A - 2 sends 
I 

which sends r\ si ({ai}) t o  1 must be such tha t  b a s i l  ({ai}) = 1 
iul 

for a l l  i < n. This mearts  t h a t  h.si " f ac to r s  through 2 -B, f o r  
I 

a l l  i < n, so h does too. ~ u t  then it f.ollows t h a t  n s i ( { a i } )  ' 
i<n 

/ 
,/ 

s an atom i n  n@zA.. It is  easy t o  see tha t  the homomorphism r n 

defined above es tabl ishes  a b i jec t ive  correspondence between the atoms 
4 

An 
of 11632~ and of 2 i i f  we show tha t  1 - 2 8 2 ~  is complete and atomic. 

then it follows t h a t  r an isomorphism. (Here, a complete 
n 

BA*-algebra i s  one which has a supremum and an infimum f o r  every family 

of elements; obviously, the  BA-reduct of a complete atomic BA*-algebra 

- - 
is complete and atomic in the ordinary sense, hence i s  isomorphic t o  

F i r s t ,  note t h a t  n@zA is pmplete because . i t  is  a 

k-complete Boolean algebra which is  generated by fewer than k elements. 



It i s  atomic because the join" of i ts  atoms is 1 - (see 1401, p. 59). 
4 

we prove t h i s  by induction on n, . using the f a c t  tha t  ( n ~ 2 ~ )  ~2~ 

1 
A A m. 

i s i s m m ~ C r t ~ ( n + ~ L @ ~ - -  ~i_r&-noteth_dt~0~2~_~2_~~satorrn'c. 

Spppose tha t  n ~ 2 ~  i s  atomic; t o  show tha t  (n+l) ~2~ is atomic, 

It should be noted tha t ,  i f  n is inz in i te ,  rn is not 

. W  
g ~ e f & & - - ~ - - p ~ ~ a m p ~ , -  i f -  k22 -,--- the>= -1- I--- -1 

1 

' 2W 
k-complete Boolean algebra w @ z 2  is not isomorphic t o  2 , by 

[403 , Proposition 31.3. If the  qquptional t h e o q  BA* imposes. 



u 
suff ic ient  i n f in i t a ry  d i s t r i bu t iv i ty  conditions on i ts algebras, then ,. 

for  sane i n f i n i t e  values of n the algebra n@2A is  atomic, and r - n 

is an isomorphism (see 1401, Proposition 24.5). 
- - - - 

Let A be a s e t  with 1 < I A I  < k. The set-valued Boolean 

- - - 
4 

power functor A[-] : Mod(BA*) - Set i s  defined as follows. 

i) For each BA*-algebra B, A[Bl . is the s e t  of a l l  

A-indexed par t i t ions  of unity i n  B; 

\ h .  - 
ii) For each homomorphism B ---+ C,  A[h] is the function 

A [Bl -- A[CI - which sends each par t i t ion  u i n  A [Bl t o  h. u 'in A [C 1 . 
@ . . 

4.9. Lenrma. The functor A [-I is  repres&ted by the . - - Y 

BA*-algebra zA. J 

Proof. Ident ical  t o  the  proof of (4 .3) .  

Cn the  basis  of (4.9), ye sha l l  r e f e r  t o  a l l  algebraic 

CA 
functors of the form G: Mod(=%% -ModC~l, h e r e  U .G g z  f o r  T 

J . 



e 
4 

some A, as representable Boolean power functors. 
r 

A t  this point we can begin t o  appreciate an important 

* 
difference between the infinitary Boolean powers A[-] : ModtBA*) 

which we are now discussing and the finitary ones A[-] : Mod (BA) 

is represented by the 
A' 

tak- A = 2, the-Boolean power functor 

.-. 

---+ Set 
C 

* 

---+ Set . 

f ini tary free Boolean algebra 2L . FBA(l) , i.e., ~ 

2 E-I is isomorphic to the underlying-set 

- 

equational structure is  just the finitary 

finitary part of the equational structure 

the infinitary case, it i s  s i m i l a r l y  true 

functor U and i t s  
BA ' 

theory BA, which is the  

of a two-element set'. In 

that 2 1-1 : Mod(BA*) ---+ Set 

is represented by the  BA -algebra 22 F (1) , so that  2 1- 1 i s  
B A* 

isomorphic t o  the underlying-set functor 
'BA* and has equations? \ 

structure BA*. When BA* is an equational theory of k-complete 

is isamrphic t o  a theory of operations on'a two-element se t ,  i.e., to 

a Subtheory of T2, since BA* may lack necessary distributivity 



I properties. The "image" of the mapping of theories. BA* -T 
2 

L 

- 4  the equational " k-RBA of k-representable k-complete ' 

Boolean algebra?; klod ( l c - i A )  is identifiable with the  f &ll 

- 

subcategory HSP ((2)) of Mod (BA*) . Thus, we cannot count on being 

able t o  extrapolate from operations on the se t  2 to  describe the 

equational 

- 

structure of 2 1-11, and yet it i s  

- -- 

the evident that 

operations admitted by 2 (-1 are 
3 

feature of inf initary an important 

the functor and should not be ignored. 
* 

Such considefations indicate that the infinitary Boolean 

power functors A -  w i l l  generally have infinitary equational 

structure which is somehow not fully expressible in terms of 
.. 

operations on the se t  A; the Foster formula (4.4) cannot be relied 

upon unless we  resort t o  draconian measures: either throw away the 
-* 

< 

domain of the functors. Karatay 2261 does both in order t o  describe 



* 

A[-] as a "normal subdirect power?' construction. 

In the remainder of this Chapter we shall  show how, for  any 
, , 

equational theory BA* of k-complete Boolean algebras, the 

- 
representable Boolean powerAfunctors with dorna&-d(~~*) can be* 

analyzed by means of the results of Chapter 3. \ 

The functor AI-J / is  sometimes called a Boolean extensim 
S 

functor because each Boolean power AIBJ contains a copy of the se t  

A, namely AI23. An element a of A is repres6n-d h- AIB] by 

A 
the unique hmonrorphism 2 *B which sends {a) t o  1. Evidently, 

f 
each natural transfoxmation A[-ln +A[-] induces a *unction 

f' n 
A~ -A corresponding t o  the 2-carponent f 2  : A121 - A121 of 

f .  The assignment of f' t o  f defines a mapping of theories 
\ '\ 
,. P -*Tgr where P is the equational structure of A[-] , i. e. , the 

equatPanal structure of the se t  A. In the case where I A ~  = 2 ,  

th i s  gives us the standard mapping BA* -T2. 



4.10. L e n u n a ' ~  function A n & A  is induced & A by a - - 
% 

f -  
n f 

- 
P-operation A[-] ---+ Af-I , i f  and only i f ;  for each c C A, g*({c)) ? 

A" 
b e l a g s  t o  the BW-subalgebra of 2 which i s  generated by the 

family of a l l  subsets of of the form {aSA : a = cp, i <n. , 
i 

-w 
3 * 

n 
- - - - -- - - - - - -- -- - A - - - - - - - - 

Proof. The BA*-subalgebra of 2 d e ~ c r i b e d i n t h e ~ ~ + ~ ~ ~ ~  - - 

-2 

/ 

is  the image of the haaamrphism r defined in the proof of (4.8) ; ' 
n 

An 
for sufficiently large n, #he algebra 2 is not generated by i t s  

* 
I atoms, and then r f a i l s  to be surjective. 

n 4 
- -  - 

= f 
Suppose that g is indncedby A[-ln --+A[-], i g 

- 
A 1 

is obtained in the following way. Let 2 * n ~2~ be the 

co-operation representing f ;  for each a €  An, l e t  n Q 2  A h a 3 Z  

be the hmmorphism which sends eacQ of the elements si({ai)) t o  1 

(if n is too large, the'atom s i i  might not exist. since 
i en .# 

BA* night  nut have an n-;rrv meet operation), Then g(af is that - 

el-t c of A s a d  that ha.Z sends {c) t o  1. 



. . I .  
/ , * 

J '  An For each a € A ~ ,  . l e t  p . be 2 -2, ' 

rh i ch  sends Caf t o  I: I t  is e w y  t o  ee t h a t  g i s  induced.by f - 
F. 7 # C '  

,-. 
paIgf = h . f .  Rlrthermore, w have pa.= = h f o r a l l  . a € A n ;  a \ n a 

5 - * - .  

. - t h i s  cm be checked by ver i fy ing b a t  pa- rn sends si ({ai}) t o  1, 
- -- - 

. f o r  qach i < L  

. . . . 
fl 

h 

<, . :we claim that g i s  h d u c e d  by f i f  and only i f  g* = r . f .  
n 

  his claim *lies the  lama. 

> '  . 
- I ,  ' - 

+ .  
If g is indttced by f ,  then for  each a € A" we have 

. -  
) I.. 

-h 
. * -  

-p. .r .f = h .? = pa.$ as noted a w e ,  so it follows t h a t  
a n .  a 

-. /":* 1 

h 

r Lf = g*. Q1 t h e  o t h e r  hand, i f  %.? = g*, then w e  have 
n . *. 

h h 

pa.g* = f = h .f, so g is induced by f .  This completes 
Fa*xn.- a 

the prmf of the l a m a .  

tRe f ree-generator-preservbg oapping A E m l  f ram the free P-algebra 



t o  the P-algebra the l a t t e r  being, f ree  

when viewed as  a T -algebra. The image of A[rn] is a f r ee -  algebra 
A 

of rank n i n  the f u l l  subcategory HSP({A[~] )) of Mod(P) . 
- C - - - 

- - A  - -  

The f ac t  t h a t  the in f in i ta ry  P-co-operations on the BA*-algebra 

2* are not generally invesse-image mappings between powers of 2 i n  

Mod (BA*) means t h a t  the Foster formula of (4.4)  , which fu l ly  explains 

the equational s t ructure  of a f i n i t a q  Boolean power functor, does not 

1 

work fo r  the kind of Boolean powers which we a re  presently discussing, 

1 
except for  isolated cases as described i n  the next r e s u l t - '  

5 .  
I 

4.11. m a .  Let f be an n-ary operation in the . - -. . I '  

equational s t ructure  P of A[-], where n<k .  For any BA*-algebra 

B which is ismorphic  t o  an m-completeL f i e l d  of s e t s ,  where n<m<k, 

the action 09 fa: ~ 1 3 3 ) ~  - A [B] * is described as follows. For ali 



where the supremum may be computed by an i n f in i t a ry  join operation of 

Proof. Z t e r r t r i f y a i # -  an -in-c0~1~2eke-fM-d &strb~&~s----- -- 
'"5 

A 
of some s e t  I. Also l e t  the  coproduct in ject ions  2 n @ 2A be 

(s : j < n . Then f o r  each j 4 n we have 
u j  u.Sjr 

i f  the  

n-sequence u € A [B]" i s  iden t i f i ed  with ii homomorphism n @2A B 

A 
(note t h a t  A l-I is  represented by n @2 ) . i E I and 

j < n , .  there is exactly one element a e A such t h a t  i € u .  ({a i j  3 

Then we have 

f o r  a l l  i E  I, s o  it follows t h a t  

in B. Now * 



-- ALP- 

= sup u ;({C})A //-.. a :  ac.)-F .. 
j < n  3 3 

* ". -. 
h BE 

Note t h a t  the meet of f ({c}) 3 *with A sj({aj}) is nonzero i f  and 
j < n  

A A 
only if f({c}.l>, s . ( { a }  , since the l a t t e r  i s  an atom .in n@Z . 

3 j < n  

But f o r  any a € A", ? ( { c } )  contains the atom A s .  a if and 
j < n  J 

f '  (a) = c ,  only i f  ha.: sends {c} t o  

where f' is  the operation on 

i.e.,  i f  and only i f  

induced by f .  Thus, 

4.12. Corollary - . Every f i n i t a q  P-operation f is  

T -operation as  shown in 
A determined by i t s  corresponding 

. 



A. J. Foster ' s  device in  I141 of using a two element I - 
t 

"subframe" of the "kernel'' algebra A t o  recover the "core" 

Boolean algebra B frpm A[B] was one of the  or ig ina l  inspirations. 
1 

- - - - - - A -- -- - - -- - - -- - - - -- - - - 
fo r  the resu l t s  in Chapter 3 .  Before any of those r e su l t s  had been 

discovered by the  wri ter ,  Foster 's  method was adapted in  Dukarm [91 
3 

fo r  a brute-force proof t h a t  the in f in i ta ry  representable Boolean 

power functors a re  monadic. In [91, the resu l t s  which appear above 

as  lemmas (4.7) through (4.12) were the bas i s  fo r  a description of 

P-operations which were strongly reminiscent of Post algebra operations. 

We n o w r e s e n t  a modified version of tha t  description,  showing tha t  

. the P-algebras a re  actual ly  generalized Post algebras as  defined by 

Cat-Ho Nguyen 161. Thi s  approach, which is an extension of Foster 's  

method of analyzing Boolean powers, w i l l  then be contrasted with an 

/" 
analysis based on the r e su l t s  of Chapter 3. 

Recall t h a t  BA* is an equational theory of k-complete 

Boolean algebras, A is a s e t  with 1< I A ~  <k, and P is the 

equational s t ructure  of - 2A = AI-] : Mod(BA*) - Set. 



Let (ai : i < m )  be a well-ordering of A, where m is an 

'1 ordinal of the same cardinality as A. T ~ L  ordering of A determines 

d 
i 

l a t t i ce  operations A and V on A,  relative to  which A is a 

- - - - - - - - -- 
6 

complete linearly-ordered la t t i ce  with a least element a and a 
0 

greatest element a . This la t t ice  admits a pseudocomplement 
rn 

operation -I , where 

A relative pseudocomplement operation -+ is defined by 

For each successor ordinal i < m ,  define a unary operation Di by 

determined P-operations which we shall denote by the same symbols as 



above. Each element a of A determines a constant ((1, 0)-ary) 
i 

P-operation e in par t icu la r ,  we w r i t e  e as  0 and em as  1. i ' 0 

It is easy t o  see f r m  (4.8) and (4.10) t h a t  the  f i n i t a r y  pa r t  of P ' 

- - - - - - - -- - - - - - -- - - 

is  actually isomorphic t o  the f i n i t a ry  pa r t  of TA (see l91). It 

follows tha t  each P-algebra is, re la t ive  t o  the f i n i t a ry  operations 

defined above, a r e l a t i v e . 1 ~  pseudocomplemented bounded d is t r ibu t ive  

7 
l a t t i c e ,  i .e . ,  a Heyting algebra, in which there i s  a complete 

"-, * 

linearly-ordered sublat t ice  constants, which we sha l l  identify . k 
\' 

with A, and some extra  unary oqqa t ions  Di. Note t h a t  the chain of 
_ Q I 

constants A is actually a copy of the i n i t i a l  P-algebra Fp(0). By 

examining the corresponding operations on A, we see t h a t  the f i n i t a ry  

o p e r a t b x u ~ c i t e d  - - above sa t i s fy  the same kinds of i den t i t i e s  as  their, 
-- -, -- - - - - - - L - 

counterparts in a f i n i t a m  equational theory P of m'-valued Post m ' 
v 

algebras. 

there mus t  be a join operation so .that 



is an idftntity of P (expressed in  the extended canonical language), 

- - - - A - 

I f  A is  f i n i t e ,  the  join i s  f i n i t a r y  and easi ly  found. If A is 

i n f i n i t e ,  we would l i k e  t o  be able t o  " l i f t "  the m-ary join from the 

complete 

f i n i t a ry  

join in 

f o r  any 

l a t t i c e  A and use it as  a P-operation, as  ,we did with the 

"Post algebra" operations. This can be done, since the m-ary 
7 

A s a t i s f i e s  the  condition of (4.10). To see t h i s ,  note t ha t ,  

i < m ,  we have .r > 

belonging t o  the image of r and we can write m ' 

t 
- - - - - -- - -- -- - - -- - - -- - - 

B 

Thus, "the m-ary join on A is  induced by an w a r y  P-operation 
- 

' . There is' no guarantee t h a t  1 is  a t rue  join operation i n  P, i f  



!" 

6 is i n f i n i t e ,  but 1 h& a l l  the same f in i t a ry  properties as a 

t rue  join operation: the  r e su l t  of r e s t r i c t i ng  1 t o  f i n i t e l y  many 

* 

d i s t i n c t  arguments is a f i n i t a ry  join operation. Most importantly, . 
* 

- - - 
- -- - - 

w e  do have the iden t i ty  

-. 
L 

since the wzaq composite P-operation on the rkght side of the 

v equation induces the operation (Di+l (x) /\ ei+l) on A, and it 
i < m  

- - 

is  easy t o  see t ha t  the l a t t e r  operation is  the iden t i ty  operation on A. 

In a study of many-valued inf in i ta ry  propositional logics 161, 

4 
Cat-Ho Nguyen defined and investigated a c lass  of generalized Post 

algebras. As we sha l l  see, our P-algebras are generalized Post algebras 
t 

of the kind which Cat-Ho Nguyen studied, and irt f a c t  the  P-algebras 

correspond t o  the  Lindenbaum-Tarski algebras of the propositional logics 
-- - -- -- -- - - - - - - - - - - - - - - 

- 

which Cat-Ro Nguyen worked with. The.follawing is  a version of h i s  
- - - - - - - - - - - - - - -- - - -- - -- 

characterization (163, Theorem 1.6) of h i s  generalized Post algebras; " 



we have specialized 

well-ordered 

the or iginal  

Let 

chain, 

it, t o  the case where the cons t s  form a " P 
and we.are using the resu l t  as a def ini t ion,  since 

def ini t ion given in 161 i s  much too d a d  f o r  our purposes. 
---- - -  - P A -  P P- -- - - - 

m be a nonzero ordinal. A generalized Post algebra of 

is a universal algebra C such tha t :  

i) C is a Heyting algebra re la t ive  t o  operations 0,  1, 7 , 

and +; 

ii) The constants 

t 

in C form a chain (ei : i < m )  of order 

m + l ,  where e = O and em = 1, and where each family of 
0 

constants has a supremum in C which is  a constant; 

iii) There i s  a family (Di+l: i < m) of (1, 1) -ary operations 

tha t ,  f o r  every element c of C, r we have c = Sup { D ~ + ~  (CIA ei+lj ; 
i < m  

The following i d e n t i t i e s  hold in  C: 



4.13. Theorem. Let BA* be an equational theory of - 

k - ~ l e t e ~ f e a r t  egebras ,  and let P be the  equational structure 

of the Boolean power functor A[- ] ,  where A i s  a se t  with 1 < I A I  < k. 

Then for every ordinal m with I m + l l  -=  I A /  there is  a presentation 

of P relat ive t o  which every P-algebra i s  a generalizgd Post algebra 

of. type m. 

t 

Proof. It is  clear frorn the foregoing discussion that we- 

need only verify the parts of conditions ii) and iii) of (4.13.) 

pertaining t o  suprepaa- Zlhe pseudojoin 1 is constructed so tha t  it 

Q 
induces a true join opera<ion on the subqgebra A of constants. Then 

in A -- w e  have the identity y A 1 eim = 1 (y/\e. ) , which has 
j<m 3 j<m ? - -  

rxily one f ree  variable and thus also holds in P; ' t h i s  identity says 

k 



P-algebra, since 

l e s s  than o r  equal t o  each upper bound of 

belongs t o  the  algebra of 

c 

t h a t  condition ii) .is s a t i s f i e d  i n  every 

i s  an upper bound of {e : j < m )  and 
i j  

constants, 

<' A s imi la r  t r i c k  works fo r  corkition iii). The following 
I 

t 

f i n i t a ry  equations hold in A, and therefore are i d e n t i t i e s  of P. 

The equations of t he  f i r s t  kind col lect ively  .asser t  t h a t  

I 'Di+l (x)A ei+l) is  an upper bound f o r  the s e t  { D ~ + ~  (XI A ei+l: i < m ) ,  
iun 

while the  equation in the secmd l i n e  says t h a t  it is  a least upper 
- 3 

bound. This concludes the  proof of the theor&. 

above can be used t o  show that the  pseudojoin operation 1 induces 



a true join operation on the Boolean e l h n t s  of any P-algebra; the 

same can be shown by diagram-chasing in Mod(BA*) ; however, th is .  

r 

_ approach t o  describing P is  rather inefficient for treat$ng in any 

-- 
deta i l  the infinitazy properties of the infinitary P-operations. In 

particular, it seems t o  be di f f icul t  t o  show that the P-algebras can 

- 

be presented as generalized Post algebras with k-complete l a t t i ce  

3 

operations. 

Using the results of Chapter 3, we can find a familiar-lookipg 

presentation of the P-algebras as generalized Post algebras. Taking a 

cue f ran (3.8) , w e  seek a spanning equational intgrpretation of P in 

BA*; such an interpretation is provided by the retraction I? BA* (m) f zA 

A s 
and coretractim 2 * FBA* (m) given as follows. 

For each i < m ,  the retraction r sends the i-th free 

generator x of 
'BA* 

(mf t o  the set A - {a : j < i )  (viewed as an 
i j 

element of the =A*-algebra 27 . while the coretraction s sends that  

rX 

s e t  t o  /\ n in P (m). Here, we are assuming that A is 
j < i  j BA* 



-3 
well-ordered as (ai : < mj * The idemptent (m, m)-ary BA*-operatian $ 

- 

x - m 1 
r.2 = - US uBA* - %A* determines a spanning equational - 

6 

LppLp- 

interpretation,of the finitary theory of Post algebras in BA which 

* 
i Y 

w a s  given as an example in Chapter 3. . Because p is? a spanning a 

- - - - -- 
pp - - - - - - - - - - - - - 

interpretation, the P-operatians are the BA*-operations which are 

* 

u-operations, i . e . ,  the anes which preserve nmincreasing *indexed 

chdns in every BA*-afgebra. 

The presentation of BA* in term of 0 ,  1,  7 ;+, and the 

n-ary join and meet o&r Yions , for a l l  n < k ,  thus provi 
?i fi 

presentatfon of P* in terms of those basic Boolean 'operations together 

w i t h  u. In particnlar, #e finitary and infinitary lattice operations 

of P are given by m-sequences o-ies of the correspo~ding 

qperations of BA*; for w l e ,  the bilrary join operatica of P is 



- -  - 

tha t  the  "nonincreasing chain" spanning Thus, 

a presentat ion of P as an 

algebras which are k-complete 

in te rp re ta t ion  of P in BA* yields 
- - 

equational theory of general ized Post 
-- -A A - - - - - - - - 

as l a t t i ces .  

'p, 

C 

BA* are  

The interpretations of the other "Post operations" of P 

t h e  

in 

f o r  

as follows. For each ig m ,  the constant  e is 
i 

d 

is given by a l l  j i For each i < m ,  the operation Di+l 

1 

D. fx. : j<re t f  = (xi, x r + l  2 i r  . 

The p s e u d o c c e p l h t  is 



The possibility of representing generalized Post algebras as la t t ices  

of nonincreasing chains of elements i n  Boolean algebras is discussed 

in f61; the representation mentioned there i s  essentially the one we 

have obtained by means of the spanning equational interpretation 

p : P ---+ BA* , except that there is an error in [61 which we have 

corrected here. 

For any equational theory T, the action of a representable 

Boolean power functor A 1- 1 : Mod (BA*) ---+ Mod(T) can be described 

conveniently in terms of the spanning interpretation p: P --BA*- M 

-C- - 
defined above, since by (3.14) we have A[-] (p.t) *, where 

t : T + P is an ordinary mapping of theories. To compute A [B] , 
.J 

just cmstruct the Post algebra of nonincreasing m-indexed chains in 

B and forget some of the Post operations, as directed by t.. 

To conclude this Chapter, we note that the infinitary 

counterpart t o  Hu's result (1.3) would be to  find a l l  of the regular 

b - 
prcqenerators in Had(BA*) which axe generated by f&r than k 



elements. This problem seems t o  be a rather d i f f i c u l t  one, since 

fo r  inf in i ta ry  

it is  possible 

i equational theories BA* of k-complete B?olew gebras 

for  Mod(BA*) t o  contain regular progenerators, 

generated by fewer than k elements, which are not powers of 2;  for  

example, some f ree  algebras of rank n < k  w i l l  usually f a i l  t o  be 

powers of 2. In many cases: the precise solution t o  the problem 

seems t o  depend upon properties -of the category Set corresponding t o  

the Generalized Continuum Hypothesis, the existence or  nonexistence 

of various kinds of exotic large cardinals, and so on. 



AND LOCALLY AUEBRAIC FUNCTORS 

f 

The notion of a locally equational c lass  of f i n i t a r y  

universal algebras originated i n  the work of A. L. Foster [I61 and 

w a s  fur ther  developed in a serLes of investigations by T. K .  Hu 
I 

+culminating i n ' a  1973 paper 1251 in which a characterization of 
7 .  

'-d 

loca l ly  equational c lasses  is  given in the s t y l e  of Birkhoff 's  

W" characterization of equational classes (see [I91 f o r  an 

exposition of Birkhoff's r e s u l t ) .  In t h i s  Chapter we provide 

necessary and su f f i c i en t  conditions f o r  a category t o  be equivalent 

t o  saw= local ly  equational category ( i . e . ,  to a f u l l  subcategory of a 
- - - - - - p- - pp 

form a locally equaticaal  c l a s s ) l  O u r  ca tegoe- theoret ic  



f 

characterization of locally equational categories i s  analogous to  

Linton's result (2.1) for equational categories, but the proof of our 

- 

result  is very different from the proof of (2.1) sketched in Linton's 

paper 1301. The characterization of locally equational categories 

leads naturally t o  the notion of a locally algebraic functor, i d  we 

i 
show that bounded Boolean powers can be regarded as locally algebraic 

i, 

functors. Finally, we sketch a new proof of Hu's result  (1.2) 

characterizing Mod(BA) among a l l  locally equational categories. 

%e characterization theorem (5.3) and the claim that bounded Boolean 

powers are "locally monadicn appear in Dukarm [ l l ] .  Definitions and 
R 

% 

results cited •’ran H u  1251 are adapted to  our category-theoretic 

frame of reference. P 

t T be a f ini tary equational theory, l e t  A be an algebra 

* 

say that a (1, n ) - a r l  equation :(XI = g ( ~ l  in the language LT is 

an ident i ty  of X provided that X" is  a subset of [ffxj = g ~ ~ ~ ~ ~ , ~ -  



For each n ,  the  s e t  of a l l  (1, n)-ary equations which are 

i den t i t i e s  of X is  cal led ldn (x) . 

The local ly  equational closure of a c lass  K of algebras 

- - - - - - - - - -  -LA - A 
- - - - - - - - - - 

belonging t o  W ( T )  is the f u l l  subcategory L ( K )  of Mod(T) whose 

u e c t s  are  

each f i n i t e  

a l l  the  algebras A having the following property. For 

subset X of A, there  are  a f i n i t e  sequence 

B of algebras i n  K and & f i n i t e  subset Y of the 
n \ 

algebra / lBi such tha t  Idu(Y) C Idw(X). A f u l l  subcategory K of . 
i 

M d ( T )  is said t o  be a lucalfy equational category i f  K is the 

local ly  equational closure of the  c lass  of a l l  algebras which are 

objects of K. These def in i t ions  are adapted from Hu 1253. 

As evidence that the concept of a local ly  equational category 
'; 

is of algebraic interest, we c i te  a few e x w l e s .  Bu points out in 
% 

I251 t ha t ,  - i f  -- T is ~ firritary, the category M&(T) i t s e l f  is 

locally F?@aticmaf, 

algebras or localiy s-le algebras. It should mteresting t o  7- 



logicians tha t ,  f o r  every i n f i n i t e  k ,  the category of a l l  local ly  

finite-dimensional cylindric algebras of dimension k (see Henkin, 

' Monk, and Tarski 1201 , p. 231) is locally equational, but not  

A - - - - - -- - - - - - -- 

equational; these cylindric alg&as a re /  the Lindenbarn-Tarski algebra's 

e 

of f i rs t -order  theories.  4 (. 

5.1. Theorem (T. K. BU - be a f i n  ' ary 7 ,  
equational theory, and l e t  M be a f u l l  subcategory of Mod(T) 

local ly  equational i f  

of directed unions, 

and only i f  M i s  closed under 

homoatorphic images, subalgebras, 

w". and f i n i t e  products. 

In  h i s  _paper 1253, Bu points out t ha t  ce ain algebras, 7 
&led h m c q a e m s l y  generated algebras 

;Play an 
rtant roJe in 

focal ly  equational categories wBich in sane respects to 

the roie of the free algebras  in an 
- 

5 

a fiinitaxy quaticndl theoxy, and l e t  X be a subset of an algebra 4 



which belongs t o  Mod(T). Then X i s  homogeneous i f  it has the  

following property: f o r  each f i n i t a r y  equation f (XI = g ( x )  in LT, - 

if x"n [ f f z )  = g f x ) l , , ,  i s  nonempty , then . f (x) = g(x l  is  an 

1- 
- - - - - - - - - -- -- --- - 
iden t i ty  of X. z e  algebra A i s  said  t o  be homogeneously 

generated of n i f  there  is  an n-element homogeneous subset of 

A which generates A. 

5.2. Theorem (T. K. H u  1251). Let X be a s e t  of generators - 

for an algebra A .in W { T ) .  Then the following are equivalent: 

ii) Every function X ---+ X has a unique extension t o  

iii? If Y is a subset 
I 

md f T) , and Ian 03 5 Idn (Y1 for 
- - ~ ~  

B which belongs t o  

then every function 



Let  X be a subset of A, and l e t  m be any cardinal. 

x" 
Then define BX(m) t o  be the subalgebra of A which i s  generated 

by the projections ? ----+A. I t  is  not d i f f i cu l t  t o  verify tha t  

- - - - - - - - - - P 

s ( m )  i s  homogeneously generated by those projections and tha t ,  for  

HX (m) Hy (m) . F'urthermore, i f  X i s  a hamogeneous generating se t  

for A, then k 'tIX(m) , where m is  the cardinal of X. The proof 

e characterization theorem (5-3) w i l l  show in precisely what sense 

e homogeneously generated algebras in a locally equational category i' 
are analogous t o  the free algebras in an equational'category, 

4 
I An inverse system in a category M is a diagram of the form 

D: I0 -H, wkre I is a directed se t ;  the inverse system D is L 
epbrphic  i f ,  for  each arrow f of I ,  the arrow D(f) is  an 

epimxphism. A IhiC, of an imerse system is called an inverse Limit. 

Eet 5 :  I" ----+ Y * an Lyverse system. Applicatim of the Y o n d a  

g Ye 4 jetn yields  a directed system D: I --+Me * Set 
M 



M of r e p e s e n t a b l e  functors in Set . If D is  an epimorphic inverse 

system, t h e n  - D is a &xmmorphrc directed s y s t e m ,  and we say that 

the fuhctor U = Col in  D is  l o c a l l y  represented by the epimorphic - 

representable i f  LFiere is an epimsrphic inverse system D: I0 --+ M 

/a, 
such that U C o l h  3; b-1 the Yoneda Iemma, it follows that U is 

', - 
-. 
i 

l o c a l l y  r ep re sen t ab l e  i f  and only i f  U i s  a d i r e c t e d  union of 

If U is represected b y  an object A, i.e., U - A, ' t h e n  

the Yuneda Lmma says that,  t h e  assignment a -a d e f i n e s  a bijective - 

% 
cones-pcmdence betireen the elements  of U(A)  and the n a t u r a l  

 artsf sf or nations U -E. Correspondingly, it is not hard to see 

that there is a b i j e c t i ve  correspondence between the "global elementsn 

I - U. D [where 1: Ie ---+ Set has the constant value "onem> and 

the naturai transformations Ij --+ U when U : M - Set is locally 

represented by D. W e  say t h a t  D i s  coherent ,  and that U Colim D is  +. - 



coherently locally represented by D, i f  the  following condition i s  , 

sa t i s f ied .  

Cukrence condition. For every i f  I and every element 

a of U ( D i ) ,  there is a global element t: 1 --+ U.D such tha t  

ti: 1 - U(Di)  is the constant function which picks out the 

T 4  

element a. 

5.3. Theorem. A category M i s  equivalent t o  a local ly  - 

equational category i f  and only i f  M i s  f i n i t e l y  complete, with 

directed unions and coequalizers of kernel pa i r s ,  and there is  a 

functor U: M --+Set such that: 

i) For every f i n i t e  n ,  the functor 3: M --+ Set i s  

coherently loca l ly  representable; 

ii) U preserves and r e f l ec t s  congruence re la t ions  and 

iii) U preserves directed unions. 



Proof. F i r s t  we s h a l l  prove t h a t  M as  specified abovg, 

with a functor U: M - Set sa t i s fy ing  i) , ii) , and iii) ,. is 

equivalent t o  a local ly  equational category, To do this we show, by 
d 

where T is the  f i n i t a r y  p a r t  of the  equational s t ruc ture  of U, 1s 
4 

exact,  f u l l ,  and f a i t h fu l ;  then, using Hu' s r e su l t  (5.1) , we show 

I t h a t  the closure of the image category E (M) in Mod (T) under the  

formation of isomorphic copies i s  a local ly  equational category. 

According t o  condition i), we may assume t h a t  f o r  each 

f i n i t e  n there is a coherent epimorphic inverse system 5 

H (n) I (n) O ----+ M, which local ly  represents U". L e t  H (n) send 

h . .  
each i ----t j in I (n) t o  H . (n) a Hi (n) in M. For each 

3 

i € I (n) , the colimit in jaction H .  (n) U" is hi, where hi 
1 - 

- belongs t o  U " ( H ~ ( ~ ) ) ,  i .e . ,  hi - (hito, hiIl, . . . hi,n-l  ) is 

an n-tuple of elements of U (Hi (n) ) . 



r e f l ec t s  f i n i t e  . l imits ,  moncmorphisms, and isomorphisms. 

Proof. Each of the representable functors H . ( l )  preserves 
1 

L- - -- -- - --- ---- - 
l imits .  Because directed unions in Set commute with f i n i t e  limits, 

% * 

it follows t h a t  U preserves f i n i t e  limits. Every functor preserves 

isomorphisms, and every functor which preserves f i n i t e  

preserves monomorphisms, so U preserves iscinorphisms 

~o'*show t h a t  TI is fa i td fu l .  l e t  f and g 

i 

and monomorphisms . 

be arrows 

A ---* B i n  M with U ( f )  = U(g) , and l e t  C -% A be an equalizer 

of ( f ,  g) . Then s is  a mondnorphism, and U ( s )  i s  an e&alizer of 

(U(f) ,  UCg)), since U preserves f i n i t e  l imits .  But then 

- .  
an isomorphism; hence a regular epimorphism, since U(3) = 

1 

~ u t  U r e f l ec t s  regular epimorphisms, so s is a regulai  

- 

! 
Then s is  an isaxorphism, so f = g; t h i s  proves t h a t  - U is fa i th fu l .  

. 
L--- Fai th fu l  functbrs r e f l e c t  monomorphisms; since U re f Iec t s  

-- 7------ 
- 

regular epimorphisars, it r e f l e c t s  monomorphisns which a re  .regular 
$ 



epimorphisms, i .e.,  U reflects 

Now we shall show that U ref1 cts limits of f ini te  1 
diagrams. Suppose that D: J --* M is a f ini te  diagram in HI and 

o.D in set. Also suppose that A, w i t h  proj&tions d, : A -+ Dj , . 
1 3  

diagrams, V(A)-  with projections 

% 
in Set. Beca&e 

constitut'e a cone 

arrows f are a 
j 

iiiduced arrow; f 

al l  j E J. Since 

i 

preserves limits of f ini te  

U i s  faithful, and beca'use the functions U(fj) 

* )  ' 
in Set f.rcnn U I B )  t o  U-D, it follows that the 

f 
cme i n  M frcm B Yo D, Let B ---P A be the 

is unique w i t h  the property that d . . f = f for 
J j 

u(d.J ,u(f) 'T U(f .) for a l l  j d J ,  the arrow 
3 J t 5 



we conclude tha t  ii reflects limits of f i n i t e  diagrams. This concludes - 

i 
the proof of (5.41 - 

R e c a l l  that in any category, i f  (u, v) i s  a kernel  pair of 

f -- -A 

A - 8, then f i s  a regular epimorphism if and only i f  

. 
- coequalizer of (u, vf . A regular f ac to r i za t ion  of an arrow, h (see  

a regular ep-rphissi and s i s  a monornorphism. The fac to r i za t ion  

Irt = s.f is U i S i p  (up to canmica1 isomorphism) i f ,  for every 
Y 

regtrfar factorizacim h = sl.f', there 4s an isamorphism g such 

factorization of A, the subobject B - 9 
C is an image of 

5 

h, 'written iP&f , and a l l  images of h are equivalent as subob j e c t s  



f Proof. Given A ---+ B in MI l e t  (u,  v) be a kernel 

pa i r  of f ,  and l e t t  r be a coequalizer of (u, v) .  Since f .u  = f.v, 

there is a unique a r r w  s such t h a t  f = . In Set we have 

fU(u) , U(v) ) of U f  f) . This guarantees t ha t  U ( f )  = U ( s )  , U ( r )  i s  

a regular factor izat ion of U(f) i n  Set, In  par t icu la r ,  U ( s )  is  

a monomorphism, so  s is too, s o .  f = s.r is a regular factor izat ion 

of f in M, Preservation and reflection of regular factor izat ions  

by U is  obvious, since D preserves and r e f l ec t s  both regular 

epimorphisms and mnomorphisms, Uniqueness of regular factor izat ions  

,in M i s  eas i ly  seen from the  uniqueness of regular factor izat ions  
d 

5 i n  Set, together with the preservation and ref lect ion of regular 

*P 

factor izat ions  and isamorphisms by U. ,'This concludes the proof of (5.5). 

, 

5.6. Lemma. Let u and v be arrows A - B in MI and - 
-- - - - - - -- - - - -- - . , 

B 
> 

.- -- -B 
is -*-and- iaQ %f -- -- r,a - . 

C 

off).V(u) = U t f ) - f J I v )  is exact. 



Proof. This one i s  obvious, since by definition f.u = f.v 

is exact i f  and only i f  (u, v) i s  a kernel pair of f and f is 

a regular epirnorphism, but U preserves and reflects kernel 'pairs 

--A- -p~L~ ~ -- ---LpL--.----pp 

and regular epimorphisms. 

The next. result is a crucial one. It belongs t o  the genre 

of r e s u l t s  known to  category theorists as "f i l l - in" lemmas., and i s  

adapted from ~ e r r l i c h '  and Strecker 1211 , proposition 32.7. i 

5.7. Lemma. Let r and g be arrows i n  M I  with r being - - 

a regular epimorphism. 

If T ere' i s  a function f such that 

f.U(r)' = U(g) , then there is' a unique arrow f '  in M su a t  

Proof, 
\ 

t (u, V) be a kernel pair of r; then r .u = r.v 

U ( g )  .U(u) = U(g) .U(v), so by faithfulness of U we have g.u = g.v. 

~ u t  r is a coequalizer of (u. v) , so t h e 3 s  a unique arrow f ' 



a 
since D ( r l  is M epimorphipre. Tflis completes the proof of ( 5 . 7 ) .  

5 .8 .  hma.  The fvnctar U is f i n i t e l y  t ractable ,  i .e . ,  - - 
- - - -  - - 

-- - A  

- 
the f u l l  subcategory in setHq of f i n i t e  parers of U is  locally small. 

2 

Proof. Let m rmd n be f i n i t e ;  there i s  a b i jec t ive  

correspondence between a U" --+urn and cones from H ( n )  t o  

3, since U" = Colim H(n). Since, by the Ymeda Lemma, each arrow 

H i i n )  - urn c a r r e s p d s  to  a uniquely determined element of 

1 

8(si (n) 1 , it follovs t h a t  each -a, 3 ---+ urn can be matched w i t h  

Ckt the basis of (5.8) we h o w  t ha t  the functor U has a 

fioitary cauparison fmctor E: M ---+ llod(T) , where T is a finitary 

e p u a t i o n a L t i a = o ~ - ~  
- -0pez3tiOns arc L!C -4-*- 

/ - - 
- 

~7, 
-- - - - ----- - 

-- 
s k e l e t a n a f  fuU mbcztegory in setn of a l l  finite pcwers of U, 

This faripaxison functor is the m e  described in Lawere's thesis 1293, 



theories,  In keeping with t he  

i 
viewpoint of our Chapter 3, we can say tha t  U is a T-algebra in 

M 
Set , and t h a t  for  each, object B i n  M the  T-algebra E(B) is  

T-operations frcm U in the obvious way. Lawvere's structure-semantics 
w -' 

adjointness works Fn the se t t ing  of f i n i t a ry  theories,  so (as  in  the 

i n f in i t a ry  case) E: M + -(TI has a universal property similar t o  

that ascribed t o  infinitmy comparison functors in Chapter 2. Using 

has all t h e  pro-perties claimed for U, it is  easy t o  prove t h e  

follolriing result. 



- - 

- - 

5.10. 

Proof .  

t 
k m ~ .  The inverse  l i m i t  of E.H(n1 is FT(n).  

first, note t ha t i the  inverse l i m i t  Lim EtH(n) in 
C 

is constructed on t h e  underlying-set l e v e l  as t h e  s e t  of a l l  

- - 

xith the l i m i t  algebra Lim E.H(n) h i n g  a subalgebra of the product 

E n ) . me caspa t ib le  families of elements are identifiable 
1 

w i t h  the global  elements 1 ---+ u.H (n) , a s  noted in Mac Lane f321 , 

To prove the m, we define a function p which reaps 

elements of b.to elexcents s f  Lim E . H ( n ) ;  it is evident t h a t  

preserves T-operations, hence m y  be regarded as 

an iscnxlorphism in W l T )  N o t e  the f ollwing chain of bijective 



I - 23 
of elements of t h e  algebras E (Hi (nl) 

Define p(f(xg. . . . , r ) I  t o  be f((hitj : i G  I ( n ) )  : j <n). 
n- l 

Sote that the c m p s i t e  05 p w i t h  t he  i-th projection 

\ 

Lim E.E jnf - E EBi fnf 3 is a harsarrrrrphisn Pi which takes the j - th  

•’-fee generator x . ro  h. , for a11 j < n. Relative to the family 
3 L, j 

5 . .  TLama. Far each 3 d anci each i C I (nl , the algebra - - 

S!Ei (n t  t is generate6 by the set <h. 
f,0' * - - , ?I. 1,n-1 1. 



f 

c q a t i b l e  family of n - t u p l e s  of elentents of t h e  algebras E(H.(nl), 
3 

j f I (n) , which if, turn corresponds to some n-tuple of elements of 

FT(nl which is sent to a '  b.1 pi. This suffices to show tha t  pi 

- - - - - - - - -- - 
*s%E€+e&w. 

f' a a 
there is an H-arrav H, fnf ---+ h such t h a t  E ( f l )  = f .  

Proof. t f be as shorn above, and l e t  a t  $(A)  be the 

A-tu@e of elems s cato w h i c h  f sends the  generating n-tuple "P 

directed mior, of the representabie functors H . fn) j f I (ni , it 
7' 

fa l lws  thdt there is a j 2 i in I (n) and an M-arrow H. (n) -q-* A 3 



/' 
\ 

C 

p: is an epimorphism, so E(g) = f .E(h . . ) .  But since pi = E(h. . )  .p 
I 3.1 11 j 

i s  a regular epirnorphism, E (h, . ) i s  a, regular epimorphism. Thus, 
1 3  

by the f i l l - in  lemma (5.7) there is  an M-arrw f' such that 

f ' 
1 

% - -  r'2Q f)_ -5 IWL~XCZE-CII ~L•’DUQMS tha t  = F F . =r--S 

the proof of (5.12 ) . 

5.13. Iama. For every M-object A and every finitely- - - 

generated subalgebra B of E (A) , there i s  an M-object B ' such 

that E ( B ' )  B. 

Proof. Suppose that B 5 E (A) is generated' by the se t  

Ibo, . . . , bn-l>. Since 

H i  A ,  i C l ( n ) ,  there 

since bo, . . . , bn-l 1 

u ' ( A )  isBa d i rec tedh ion  of the sets  

are j € I (n) and an M-arrow H .  (n) A A 
3 

onto the sequence b = (bo, - . , bn-l) 

generates B,  evidently B i s  an image 
- I 

- - -- 

folluws that B = E ( B ' ) ,  where B' is an ' 

image in M of g. This proves e Y 



5.14. Lemma. For any M-objects A and B, i f  E(A) is  - - 

I f f i n i t e l y  generated, then f o r  each horn rnorphism E(A) - E (B) there 

f' is an M-arrow A-B such thaf: E( f ' )  = f .  

- - - - - - - - - 

Proof. Suppose t h a t  E(A)  is  generated by a f i n i t e  number 

f n of i t s  elements, and tha t  E (A) E (B) i s  a homomorphism. It is . 
8 

c lear  from the proof of - (5.13) t ha t  there is a j t I (n) and a ---- 

regular epimorphism H . (n) A. By (5.12) , there is  an M-arrow 
3 

1% 

H.(n) -%B such t h a t  ~ ( g ' )  = f .E(g).  Thus, we have 
7 

U(g') = UT(f).U(g), where g i s  a regular epimorphism. By the - 0 
f '  

f i l l - i n  lemma (5.7), there is  an M-arrow A ---+ B such t h a t  . 

U ( f ' )  = U T ( f ) ,  from which it follows t h a t  E ( f m )  = f .  This completes 
5 

the proof. 

'47 

-3 - 5.15. - Lenrma. The ~omparison~functor  E is  f u l l .  

E (A) f-+ E (B) be a homomoqhism. Since T i s  f i n i t a ry  , every 



T-algebra is a directed-union of i t s  finitely-generated subalge&as; 
. 

. * 

by (5.13) it follows that  E(A) i s  a diretted union 6f ,finitely- 
, ,  f 4 

-1- - 
l o  . 

generated algebras of the' f om E (A. 1 C---C E (A) , ,indexed by the ' 
3 

..'. 
\ - P: * . r  

of A in ' M ' which i s  an image of an arrow Hi (n). --+ A. for some P 

I 
1 . . 

f '  
R4 A B. These arrouts in H constitgte 3 -a cone from the 'directed - * - 

system (A : j 4 3) ' t o  B; the - cone determines a unique arrow 
3 .  , . 4 s ,  

f' 
A d B -  such th& f '  

fg  j 
= f j  ' , for each -j € J. .a& we have 



the fomation of isomorphic copies. Clearly, M $ i s  equivalent t o  

e 5.16. Lemma. The category M'  is local ly  equational. - - 

Proof, W e  s h a l l  show t h a t  M' i s  closed under the formation 

- - 

of directed unions, homomorphic images, subalgebras , and f i n i t e  produits, 

and then apply Hut s characterization theorem (5.1) . 

Closure under the formationFof directed unions and f i n i t e  

products is  obvious from the preceding lemmas. L e t  B be a subalgebra 

of E(A). Then B is a directed union of its finitely-generated 

subalgebras, which are also finitely-generated subalgebras of E(A) 

and, thus, by (5.13) , belong t o  M I .  Closure of M '  under directed 
* 

c 
unions enables us t o  conclude t h a t  B belongs t o  M;-this is suf f ic ien t  

t o  show t h a t  M' is closed under t$ formation of subalgebras: 

f 
1 Now le t  E(A) ---*B be a sur ject ive homoanorphism. The 

kernel congruence ke r ( f )  i s  an object of M I ,  s ince it i s  a subalgebra 



h . We may assume without loss of generality. tha t  

". fo r  some object '  C of M; s i n c e r  E ref lec ts  

/ < 

congruence q l a t i o n s ,  C is  a congruence relation on A, i .e. ,  

- ----a -- / .  - --- - -- A 

there is an exact diagram 

in M I  where f .E(u) = f .E (v) is exact in Mod'(T) . But E preserv&s 

follows tha t  E(B ' )  is canonically isomorphic in Mod(T) t o  B, so 
I I 

B belongs t o  M ' .  This shows tha t  M' is  closed'under homomorphic 

images and concludes the proof of (5.16) . 
, 

So far, we have proved tha t  the conditions given in (5.3) are .l 
suff icient  t o  guarantee that M is equivalent, via the f i n i t a q  

remains t o  be shown'that the canditions are also necessary. 
z& 

If M is a locally equati f u l l  subcategory of a finitary 
4 



-* 
equational category -(TI, then the functor U:U M --+ Set required 

by (5.3) is the restriction t o  M of UT. For each. finite n, a 
-, 

I 

se t  of representatives of a l l  the  isomorphism types of the algebras 
"t 

i n  M which are homogeneously generated by an n-element s e t  forms an 

d 

epjmorphic inverse system in M in a natural way, and it is easy t,,o 

check that  FT, (n) is an inverse 

the finitary equatiunal structure 

i s  the closure of M in 

limit of the system, where .T' is 
. 

v 

of U. ( In  other 'drds ,  M o d  (T' 1 

under H,  S, and PI. The fact' 
- 0 

b 

that  the l i m i t  projections from FT,(n) t o  the homogeneously 
- 

generated algebras of rank n are =surjective guarantees that  the 

- .  

inverse system coherently locally rep&ents I?. The regular 

epirnorphisms, cmgruence relations, and directed unions in M are 

the same as in -(TI , and U preserves and reflects  them, sink 

UT does. This - ax6ple-s the prwf of (5.3) . 



e 1 
<\ 

There is  an obvious way of generalijzing the notions of 

focally equational categories and locally representable functors by 
* 

a l l w b g  an inf in i te  regular cardinal k to play the role of w ih 

t o  prwide an i n f i h i t a q  counterpart to  (5.3) , ' 

- - - - - - - - - - - - 

According to  (3.14) , a functor G: Mod (T) ---* Mod(T' ) is 

algebraic i f  and only i f  its set-valued component UTl.G sa t is f ies  

6 . + conditions i) and ii) of Li ton's characterizatien theorem (2.1)  

for eqoational categories. Let T and T ' 

W e  shall  say that  G: Mod(T) ---+ Mod(T1) is  

% 

be f ini tary theories. 

- 

locally algebraic i f  i t s  

set-valued camwent 
O T ~  

. G sat isf ies conditions i) , ii) , and iii) 

= * 

of the characterization theorem (5.3) for locally equational categories. 

After scee remarks concerning locally algebraic functors i n  

genera, we identify a class of locally algebraic functors, the 

eI-n.t;ary ImaIly algebraic functors, which offer some promise of 

k i n g  aUalyzable syntactically. W e  prove a theorem giving sufficient 



- - - - -  -- - - -- - 

157 

conditions f o r  as func tor  t o  be an elementary local ly  algebraic 

?; 
' functor, and &en show t h a t  bounded Boolean powers can be fegarded a s  

elementary loca l ly  algebraic functors. The chapter concludes -with a 
# 

- --p.-p - pL -- - - - - - P A -  
- 

sketch of a proof of Hu's theorem (1.2) employing our r e su l t s  on 

bbounded ~ k l e a n .  powers. 

A syntact ical  analysis of locally representable functors by 

the methods of Chapter 3 may be impossible, since it i s  not c lea r  t h a t  
. i  . ( d 

a local ly  representable functor U: Mod(T) ---*Set is necessari ly a 

+ 
s&functor of a power of UT. Although U i t s e l f  is  a directed 

union of repdesentable functors DiI 1 which are equationally 
- 

m definable sflbfunctors of some suf f ic ien t ly  large power UT L of UTI 

m 
the natural  monombrphisms 

Di L, UT 
might not const i tu te  a cone 

m 
f r h  - D: I --+Set Hod(T) t o  U . L e t  A = f i i m  D; i f  the projections 

T 

cone p of sur ject ive  homomorphisms from FT(m) t o  D by coanposing 

a sur ject ion FT(m) -A with the  o jections A - D. In 



P i  
m t h i s  case (and only i n  t h i s  case) the monomorphisms D. C U T  

1 

m we then have Di [ELI U , where Ei i S ~ - I n  n 4 - a ~ -  ---- A - 

equation in t h e  language LT o r ,  equivalently,  a conjunction of 
b 

I l .  m)-ary equations. &ce Di g Dk whenever i 6 k i n  I ,  it 

follows t h a t  T Ei =S Ek ; thus ,  the  fonnulas Ei. i € I, form 

a d i rec ted  system with respect  t o  implication. Since U i s  t h e  union 

of the  functors  [Eil , i$ I, we  have U = I W E .  1 . l o c a l l y  rep- 
i E  I 1 

resentable functor U: M { T )  +Set  which i s  embeddable in a power 

of 
UT 

a s  shown above w i l l  be ca l l ed  an elementary l o c a l l y  representable 

functor. 

F i n i t e  products cammute with d i rec ted  unions i n  Set-, and 

limits and co l imi t s  are coreputed *pointwise" in S e t  Mod (T) I s o  it 

in p a r t i c u l a r ,  8 is a d i rec ted  union of t h e  functors Di n , i € I ,  - 



n 
for all f i n i t e  n. But Di is  represented by the algebra n @D~. 

- 

By t a k i n g  the n-th copuwer in PIodfT) of each of the algebras and 

connecting homanwlrphisms in the inverse system D, ue obtain an 

sur jec t rve  hmnnoFpZ-15- which c5rrGsprxlds to the c m e  of product 

hisms D . W i t h  U and its finite pawers thus 
i - 

Ln 
fizmly p b t e d  LT a d  i t s  pavers, we would l i k e  to be able to 

* 

obtain the f i n i t a r y  e-tiondl structure of U by r e s t r i c t i n g  

rn 
T-operations, as we did w i t h  tfie representable subfunctors of 

U~ 

in f 3 . 3 1  and t 3 . 4 f .  

L e t  L" AL' be given; the c-sites 

--titate a c m e  fzatr I P ~ D -  zu fP,1 czwrespcading to a cone 
a 



n@p to g e t  a ho~~morp'nism h as shown in the diagram, 

h g ~ x n  - TZ - rJm would 

8 u* m x n  

program jbe 
projective and 

b. 

vould induce 

carried 

n @pi 

be a T-operation whose res t r ic t ion  t o  

:. Bdeed, for each i € I t h i s  

i s  a regular 

below, since PT(rnl is regulax- 

epimorphism. 

, P _ b  x n f  

t 
I 
t 

7, 



f 4 8 ----t U is given as a cone of pa r t i a l  operations Di n - fi W, 
- 

n where each partial U-operation 
i i s  the res t r ic t ion  t o  Di of - 

hi mxn - m 
s m  T-operation 

U~ 
-+UT . 

representable and locally algebraic functors must w a i t  u n t i l  the 

algebraic and category-theoretic properties of these functors afe  

bet te r  underst&. A t  the the of writing, it is unclear t o  what 

extent locally algebraic functors as defined above are syntactically 

andLoqous t o  algebraic functors. 

We shall say &at a locally algebraic functor G is an 

elementary locally algebraic functor i f  its se t -Wued component is  

an eienaentary Locally representable functor. Just as a representable 

functor whose representing algebra is  a regular progenerator i s  algebraic, 

the next result  tellis us that an .ele8lentary locally representable - 
progenerators is a?, n i - t a r y  locally algebraic functor. 

2. 1' 



5.17. Theorem. Let T be a f in i ta ry  equational theory, - 
LI 

c and l e t  D: I* 7 W f T )  be an inverse system of f in i te ly  

b 
generated regular progenerators such that there is a cone of 

the funct r t': , W f T )  ----+ set which is locally represented by D P 
Proof .  It is obvious •’ran the preceding discussion that 

U is elementary, and that the cone of surjections A ----* D presents 

D as a directed system of equatianally definable subfunctors of A, - - 

C- 
with U-A as the union of that system. For each finite n, 8 is - 

loca l ly  represented by n@D. 

Since D is f i n i t e l y  generated, Di preserves directed 
i - 

j 
unions, for all i€f, preserves directed -ions. Each of the 

functors Di, ie I, preserves lhaits, so it follows that U presehes 



--l 
congruence re la t ions ,  and that, f o r  each f i n i t e  n, n@D i s  

coherent. . 
ri 

convenient, we s h a l l  t r e a t  the  colimit 

in ject ions  DiC--cU as though, f o r  each T-algebra B, the  - 
-- 

E-cempsnent Di (3) -7TtBI were &ii kiclusion map. - 
h 

~ u ~ ~ o s e % a t  B --+ C is  a  regular epimorphism. If uc U(C), 

we may iden t i fy  it with an element of Di (C) G U(C) , fo r  some i e I. - 

But Di is  regular-projective, so D. preserves regular epimorphisms. 
1 - 

Then Di (hf : Di (B) 4 Di (C)  is  su j e c t i v e ,  so there is same - - - 

v € Di@) 5 U(B1 such that h.v = u. This suff ices  t o  show t h a t  - 

U I h )  is sur ject ive ,  so U preserves regular epimorphisms. 

To prove that U reflects regular epimozphisms, suppose that 

B -% C is given with ~ ( h )  surjective. Then every element of 

- - - - 
-- - 

DlfC) G U L C )  is a Ufh)-izwp of s ~ m e  element of U(B), i-e., for - - 

each D. -%c t,b=re is j &i i n  I and an arrow D. LB such 
1 3 a 



d 
that h.v = u.d where D .  A D  is  the connecting arrow. 

i j '  3 i 

(This amounts t o  viewing u as an element of a bigger piece D . ( C )  
1 

of U ( C ) ,  where j is  chosen so that the pre-image * of u l>ves 

surjective, it follous that dij  i s  surjective. But  Di 

regular-projective , so there is Di -% D 

is C 
with dij . s = id  . h u t  , 

Di 

then u = u.d . s  = h.v,s, which shows that the function Di(h) is 
i j - 

sur j ed ive  ; since Di 
i s  a regular generator, it follows that h is 

t 

t Now we rimst shcki that U reflects congruence relations. 
1 

Suppose th+t C C--* B x B i s  given such that in Set 

U (C) L---* D tB x B} = U(8) x u {B) is isamrphic t o  a congruence relation 

- ( i-e. ' ,  an equivalence relaticvl in the ordinafy sense). For any i 4 1 ,  

let (u, V) : D. ---+ R x 9 be the hoamaoorphism wbose ccmposites with 
1 

the projectims 3 x B - B are respectively u, v: Di ---+%. The 

Elements of Di(C) are in bijective correspcodence w i t h  the a r m s  - 



2 

(u, v) :  D.  *BxB which f ac to r  through ' c ~ - - + B ,  Let i C I  be 
1 

fixed; we s h a l l  show t h a t  Di (C) ' Di (B X B) = Di (B) X Di (B) is  an - - - - 

t Di -% B be g i  is reflexive,  there  

# 

is j >r i in I such t h a t  (u'  *tors through C. where 
- - -  - - .  

v h  U '  = u.d 
i j '  

A s  we have pointed out,  
di coretraction s, so '& 

( u ' ,  u ' )  . S  = (u' .s,  u'.s) = (u, U) factors  th ro  C, so  Di(C) i s  
- 

,' 

reflexive . i 

Now suppose t h a t  tu, v) : D. --+ B X B  is given which fac tors  - . 
1 

(v ' ,  u'): D .  - - * B ~ B  which 
3 , 

and u' = u.d 
ij' Then (v' , 

symmetric, f o r  some j i i n  I we have 

factors  through C, where v '  = v.d 
.ij t 

u') .S =' (v'.s, u'.s) = (v, U) fac tors  

through C, s o  Di(C) is s m t r i c .  - , 

The same t r i c k  shows t h a t  D, (C) is t r ans i t i ve ,  Ao it is an 

i n  a regular prog&erator, Di r e f l ec t s  congruence re la t ions .  by - 



\ 
C i s  a congruence relation in Mod (T) . This proves , t h a t  

v- / 

U r e f l ec t s  
. , 

congmence relations.  

Finally,  we s h a l l  show tha t  nQbD i s  coherent, f o r  a l l  

i& I, the  projection (Lim U".~QPD)  -L JL (n@oi; i s  surjective.  

-- - - 

n Q3p 
By hypot6esis we have a cone n @ ~  * n @ D of s u r j  ect-ions ; 

s h c e  U preserves surjections.  8 does too. and U" (nep) i s  a 

cone of surjections from #(A)  t o -  U " . ~ O D .  L e t  

f # (A) - Lim un.n @D be the induced arrow. For each i € I, w e  have 

t h a t  di. f = # (n @pi) is  sur ject ive,  SO di is surjective. This 

completes the  proof t h a t  U i s  an elementary loca l ly  algebraic 

functor. 

Let A be any s e t  having a t  l e a s t  two elements, The . ' , - 
? 

3 * 

r functor A I-] : Mod (BA) --+ Set is  set-valued bounded boolean pcwe --  

i) For each Boolean algebra B . AEB] is the set of a l l  



"A-indexed par t i t ions  of 'unity u: A +$ B such tha t  the set 

{ ~ C A  : u(a) # 01- is  f in i t e .  

h 
ii) For each Boolean homomorphism B + C, l e t  

-- -- - La-u PA- - -- 
A[h] : A[B] ---* A [C] be the function which sends each u C ABI- LC 

s 

A n  algebra-valued b&%ed Booleh power functor i s  any J', 

functor of the 

some se t  A. 

When 

coincides with 

in Chapter 4. 

form G : Mod (BA) -+ Mod(T) , where UT,G A [-] , fo r  

A is  f i n i t e ,  the bounded Boolean power functor A[-] 

the f in i ta ry  representable Boolean power functor defined 

The bounded Boolean power construction was introduced 

by A. L. Foster 1161 and has been studied extensively i n  conjunction 

with-Boolean'pawers. Major r e f e r a c e s  on bounded Boolean powers are 

-.d 

Boolean powers admit canvenient representations as "bounded nomal 

functions subdirect powers" (see 1183 and as  algebras of continuous 



(see I31 1. Our treatment of bounded Boolean powers as elementary 

/ locally algebraic functors seems t o  be new. 

5.18. Theorem. Every bounded Boolean power functor is ari - 

elementary locally algebraic functor; furthermore, every locally 

algebraic functor of the form G: Mod(BA1 ---+ Mod(T) i s  a bounded 

-- - - -- - - - - - - - - - - - - - - 

Boolean power functor. 

Proof. Since a functor is or i s  not an elementary locally 

algebraic functor by virtue of the properties of i ts  set-valued 
, 

compon&tr it is sufficient t o  consider only set-valued functors. 

F i r s t ,  we shall  prove that  A[-] : Mod(BA) ----+ Set i s  an elementary 

locally algebraic functor. t I be the directed system of a l l  

f in i t e  subsets of the se t  A, w i t h  inclusion maps as connecting 

f 
arrcws. Assigning t o  each X Y the corresponding Boolean 



4' 

Y X 
i) All ,connecting homomorphisms 2 ---+2 are surjective; 

A 'X X. 
ii) The surjections 2 - 2 , corresponding, to X C--, A 

for all X € I, constitute a cone p from zA to P. 

For each f inite n ,  w e  have an inverse system 

- ~ -- ----- ~- 

A 
n@P: I0 --+ W ( B A )  of quotients of 11632 ,; ~ Q ) P  sends each 

x" 
X - Y  of 1 to 2 ? - 2  in llDd(811). Theconditions i) and 

ii) above are satisfied, mutatis mtandis, by n@P. 

We claim that P locally represents A f - f ,  Far each X € I ,  
". 

- -- 

gx 
a natural  trausfo-tim 2 --*AI-1 is defined as fdlas. For 

defined by uu(a2 = h.Px({ajl for a l l  a€ A. Cbviuusly, for each 

Boolean algebra B, the arrow g is an injective funct5.m which 
X*B 

X 
mian af the funcfms .- 2 , X G X ,  let B be anyB001ean algebra, and 



f e t  2' -&- B be the Boolean homomorphism whidh $sends { a )  to ti (a) , 

. X 
for each. ' a E x. Then gX, (h) = U. This shows that A131 = Collm - 2 (B) 

X b I  - 

-for each B. so AI - ]  = Cdim - 2'". = Colim - P. It is iqmediate that, 
X €  1 

n 
for eash finite nr A f r l  i s  l m a l l y  represented by nap, By 

I-- 

(5.171- is @ elementary locally algebraic functor. -' 

t D: I0 9 -(BAS be an epiglorphic inverse system. which locally 

represents U. - Epimorphisms .in Mod(BA) are 9 j e c t i v e  , so a l l  the 

d 
ij _ 

cc~nect ive  arr& Di are su r j ~ c t i v e .  Suppose that Di is 8' 
not finitely generated; *en neither 'is D for &ly. j >i' in I, 

j ' 

so we may as we13 that none of the algebras 'in the inverse 

' system D is 'finitely generat&, L e t  iCI be fixed, and l e t  the. 

- 

f in i t e ly  generated sibalgebras of Di be \-Pi . V h e ~  tbp* 

since fs a 
I 

f 



f i n i t a r y  epuational  theory. We s h a l l  show t h a t  U does no t  preserve 

the d i rec ted  - union C o l h  B 

Application of U t o  t h e  cone of inc lus ions  B - Di 

rphisms ---A- U. B - U (Di) , s o  obviously t h e  

h~~ 

d i r e c t e d  union Colim U.B is embedded i n  U(Di) by t h e  induced 

union CoLim B = Di if and only i f  t h e  embedding Colim U.B + U ( D i )  

is an isomprphism. I f  Di is no t  f i n i t e l y  generated, however, the 

element' of U ( D )  represented by , the i d e n t i t y  arrow i n  Di ( D ~ )  E U (Di) . - 

has 'no counterpa& in Colim U.B, so the embedding of Colim U.B 4 

in W(Dil i s n o t  an ismmrphima, and U does no t  preserve directed - 

unions. 

$he p,rleceding argmmt shows that i f  the functor  

, .  Pi 
unio~s. But  then- each aIg-a Di is a finite p e r  21 



two-element Boolean algebra. Each of the surjective connecting 

d 
Xj ij *2xi 

I 

- homamorph~sms 2 i s  induced by injection Xi - X "P j I 

and it i s  easy t o  see that U A I - I ,  where i s  the directed 

completes the proof of (5.18) . ' 

5.19. Theorem. Let A he a se t  having a t  feast t w o  elements, - 

The f h i t a r y  ewational structure of A[- ] :  M d ( B A )  -----+Set is 

isamorphic t o  the f ini tary equational structure of the se t  A. 

Proof. If A is f in i t e ,  this result i s  a consequence of 
ff 

* . - 
- (4.2) and (4.3) .  Suppose that A is infini te ,  and fe t  P: I' - + W ( B A )  

bq the inverse system, defined in the  proof of (5.18), which 'locally 

C A 
: represents A 1-1 . R e d l  that p: 2 --+ P is the obvious cone of 

\ " 

& e & w r  +h that  g:  - -P PAE-1 4s the cone of colirait injections. 
2 3 

- f 



where r is the c o l i d t  arrow induced by the cone E: 
+ 

?'his composite corresponds t o  a cone 2 1 f ' n C P ~ .  in 

A" hence, t o  a hoormorphism zA -% 2 , since 2 A" - .  - 

verify that f '  really does induce f on AI-I  in same reasonable 
* L 

sense, observe that there i s  a natural transformation A [ - ) ~  - 2  
A" 
- 

- - - - 

which, for each -1-3 algebra 23, embeds AIBJ An 
hmBAf2 , 8) 

as the set of all hmcmorphisms u which fac tor ,  fo r  sorne X Q I ,  
as /- 

fin qX X" u' 
2 - 2 ----+ B, h e  re 

9x 
is the projection induced by xn c*. An. 

d 
?he action of f on an element u of A L B I ~  (viewed as an arrow 

S i n c e  u - f '  is an element of -(zA, B) which represents 



We claim that f ' is a complete homoanorphism, i. e. , t h a t  

h 
f' = h*, for s- function A" ----* A. The claim is true because, if 

f' is  not canrplete, the original operakion f i s  not  well-defined 

on A [ 2 ] .  To see this, l e t  A o 2  A i 3 .  . . ? A m 7 .  . . be a 

v 

descendinq chain of subse t s  of 3 s u c h  tha t  n Ai = 0 while 
i 

n f (Ai) # 0; such a chain must ex i s t  i f  f t  is not complete. 
i 

A* 
which sends {b) t o  l l / C l e a r l y ,  u belongs t o  \ p ~ 2 1 n  C homgA(2 , 2) . 

I 

'FOX each of the sets  Ai w e  have fu. f ' I  (Ai) = u( f  '.(Ai+ 1 &u({b)) = 1. 

A 
homomorphism and, h&ce , not  an element of A [ 2 ]  hom BA (2 , 2) . 

- t 

So far, we have established that each finitaxy operation 



1 

for a1 l c G A and u E A f31n (derived as in f 4.4)  1 , shows that every 

f ini tary operatioll on A induces an operation on A[-] , and that 

no two d i s t i n c t  A-aperations induce. the same A [-]-op?ration. I t  

follows that AI-1 and A have isomorphic f in i ta ry  equational 

structure. This cunpletes the proof of (5.19) . 

The new content of (5.19) is simply that f o s t e r $ ~  fonnula 
f 
\ 

is sufficient for bounded -lean p e r s ;  A[-] is incapable of 

carrying any finitary operations which f 

The proof of (5.19) is intere+ing, in 

(as noted earlier in this Chapter) the 
'. 

directly representable as restri&icas 

operations in the equatimal structure 

are' not' inherited from A. 

-. 
&at it shows that, while 

operations on hf-3 are not 

A 
of the functor 2, .the - - 

A I-1-operations nre abtainable as' restrictions of operaticms in a 

a possible means of miding the hifficulties in th= syntactical . 



analysis of locally representable functors, as pointed out in the 

b 

discussion preceding ( 5 .  f 75 . 

Finally,  note that (5.18) and (5.19) together can be used to 

prwe Hu's theorem (1.2). The fixtikary equatipnal structure of a set 

+ 
- - -  A i s h e  equational tkmxy T o f  a locally primal algebra A whose 

underlying set is A. Theorems (5.~18) and (5.19) together 
r 

ModfBA) is Bquivdtent, v ia  the ccrqparison functor for the 

s h w  that 

bounded 

Boolean pbwer functor A f - 1 ,  to the locally equational subcategory 

LI{A+I~ of ilodR1 generated by the locally primal algebra A'. 

Given any algebra A' vhczae underlying set i s  A and which belcngs 
i 

to an equational category 'd (T") , let T ' 

theory of the algebra A* L e . ,  look at A' i tself  as an equational 

the inclusion T! C--,T - is a arapping of theories, The caupsite 

- r * 
T" - T' --T, T ~~& a reduct fuuctor 



which es tab l i shes  a caLgoxy equivalence between 

exactly when A'  is l o c a l l y  p imal. . i 
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