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© ABESTRACT

“

functors. Using a category~theoretic formulation of universal algebra

G Tasn
=

Many algebraic constructions can be viewed as algebra-valued

and first-order lcgic originated by F. W. Lawvere, we obtain algebraic
and logical results concerning functors which correspond to important

kinds of algebraic constructions--in particular, to Boolean powers and

i
bounded Boolean pcwers.
S

The noticon of an equational interpretation of an equational

theory T' 1in an eguational theory T is introduced and shown to be the

o

syntactical counterpért to coalgebras. By means of equational interpre-

tations T' — T, the representable functors Mod(T) ==+ Mod{(T') are
shown to be obtainable as T'-algebras defined "within" the underlying-set

functor U_: Mod(T) —»Set when U is treated as a T-algebra in

T T

(iii)



wnhe functor category - Set . Thne algebraic functors, i.e., the

representable functorz G ¥od(T) —> Mod(T') whose set-valued

IS

is monadic, are characterized similarly. The

latter result is associated with a syntactical characterization of

N—

all the equagional thecries T' such that Mod(T') 1is eguivalent as

a category to Med(T). Finitary and infinitary versions of the

»

e

. Boolean power construction are described as algebraic functors which

correspond to Post algepras in a functor category.

A functor-theoretic characterization of locally eguational
categories is given which is analogous to F. E. J. Linton's
characterization pf equational ;ategories. The characterizatiop of
locally equational categories leads naturally to the noti@n of a
1ocallyvalgebraic functor. .Bounded Boolean powers are éescribed as

- .
locally algebraic functors, and a new proof of T. K. Hu's theorem .

characterizing the category of Boolean algebras as a locally equational

category is sketched.

(iv)
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.

The m-valued Post algebras, for finite m 22, were introduced

£

algebras in connection with a kind of many-valued propositional logic

which was designed to be functionally complete with respect to a

[

semantics of m—valued truth tables. It was natural for logicfans and

I

algebraists to try to determine the extent and nature of the

similarities between the Post algebras and the Boolean algebras. 1In

search of “Boolean" properties of Post algebras, p~rings, and other - .

. analogues to Boolean algebras, A. L. Foster invented the Boclean power

construction and the notion of a normal subdirect power. One of his

|

main results was the fdllowing theorem.

1.1. Theorgm (A. L. Poster [14], [15]). Let A be a primal



B

N
P
A
®
N
.
£l ‘ ' -
‘ N
e S e e
- i,'“m

r o ‘ ~ .
" algebra. The fgllowing ‘cla‘ss,es_ of dlgebras are coextensive: : o
’ i) The equational class generated by A; g ;
ii) The class of all isomorphic copies of normal subdirect
powers. of &; . : S o o
PR . J - . ) : oo
o 'E?;a’_& . LI X .- : E ] Yy ) : I3 )
iii) The -class’ of all isomorphic copies &f Boolean -~ : )
_ _a¥ e S e . . B
powers of A, 2 S e
Here, a primal algebra {in Foster's terminolégy, a
"functicnally strictly complete* finite algebra) is a finite -
universal algebra A-,A having at least twoc elements, such that, for .
each_ finiﬁe n, every function. An —=* A is a polynomial of A. -
Foster explicitly recognized that the m—elyt m-valued Post algebra ’ é
‘was primal, and in his proof he showed that the Boolean algebra :
- 4
involved in constructing any given algebra in a primally-generated . i ‘
3
equational class was recoverable from that algebra. Thus, FPoster's "“v
. - Kl
proof almost shows that the category of Boolean algebras is equivalent
S
N
to the equational category (with algebras as objects and homcmorphisms :

N ‘*,’-Li’a"ré;&h S AT 0



. »
Aas arrows)  generated by any primal algebra, with the Boolean power

construction providing the equivalence functor.

In a subseguent paper [16], Foster generalized the Boolean

power construction, defining "bounded" Boolean powers of an infinite

algebra_and sbowiné,that the bounded Boolean power construction enjoyed

properties-which were "localized" versions of corresponding properties
of the original Boolean power construction. Much of Foster's work
concerning Boolean powers and bounded Boolean powers was tidied up and

extended by M. I. Gould and" G. Gratzer [18],'with most of the material

.o 1

’ b1 g '
of the latter paper appearing in Gratzer's book [19].

Foster's notions of "local® properties were studied and refined,

-

in a succession of papers by T. K. Hu, most notably ([22], [231, (241,

*

and {25}, in which Hu formulated the definition of a locally equational

beginning of Chagter 5 of this thesis. The next theorem, one of Hu's

most significant resul:ts, seems to have remained %$omewhat obscure,



possibly because it never appeared in print with both a correct proof

and the final definition of a locally equational class. : .
5

A finitary universal algebra A having at least two elements

is local;yfﬁrimal (see [16]) if, for every finite n and every finife

subset ‘X of A, each partial function X' —» A is the restriction

v f
of a polynomial A" —»A of A. .

l.2. Theorem (T. K. Hu [22], [24], [25]). Let K be a
locaily equational class of finitary universal algebras, regarded as
a category whose arrows are all homomorphisms between algebras of K.

Then K 1is equivalent to the categoxry of Boolean algebras if and only

if K 1is generated as a locally equational class by a locally primal

¥

algebra.

1.3. Corollary. lLet K be an equational class of finitary

uniyersal,algebras+fregazdedﬁguigaﬁcategoryﬂwhbse;arrowsmaregallw~w—~ﬂ~f—fa~—~~f—f~ﬂ'ff'

homomorphisms between algebras of K. Then K is equivalent to the

2
category of Boolean algebras if and only if K is generated as an



equational class by a primal algebra.

Hu;s‘prpof of (1.2) 'inﬁlzzl shows thaﬁ a locgii; equationaiv
ciéss.K,isdualiy~equi§aienttothe‘categoryofBﬁéleaﬁspaces/ffr
an§ only if X is ggnerated by a local}y primal algeﬁra A; thep
‘K is An équational class if and only if A is finite, hence’primalf
The functor thch prdvidgs the dﬁgl equivalenqe assigns to each

-~

Boolean space - X -an algebra of continuous functions C(X, A), where .

a

A Hgéiﬁhe,discrete topology. It“is now well known that, if X is the

Stone space of a Boolean algebra B, then C(X, A) is isomorphic‘to
the bounded Boclean power A[B], which is an ordinary Boolean power if

A is finite (see Banaschewski and Nelson [3] for details).

-

I3

Investigations by numerous authofs (see Burris [5] and

Banaschewski and Nelson {3] for an extensive bibliography) have shown

- _—

that the Boolean power and bounded Boolean power constructions have

extremely nice logical and algebraic properties. Most of the work

done on Boolean powers to date makes use of Foster's original

E) B



definition of Boolean powers, Foster's.characterization of Boolean

s

powers as nérmal'subdirect powerSQ the algebra-of-continuous-functions

characterization, or a characﬁé?ization of Boolean powers as a simple

type of sheaf construction.

/ |

. > /
- The important work on qut algebras as lattices done by

- 3 : =,

\

Epstein [13}, Traczyk [41], and others, has no apparent: connection
with -the Boolean power construction. The lattice-theoretic studies , -

of Post algebras express the correspondence between Post algebraé and

A

. Boolean algebras by describing the m-valued Post élgebras as coproducts
: : . . - ) p

- of an m-element chain with Boolean algebras in the category of boun&ed

-

distribﬁtive‘;attices, or as chain-based distributive lattices, or as

algebras of nonincreasing (m:l)—eiement chaing’ in Boolean algebras.

s

These constructions are discussed in Balbes and Dwinger [l]~énd in

-

Rasiowa,[37]. . s : ] ‘Al

_The results presented in this thesis have their origins ina . .

777777 3

study of the functorial properties of the Boolean power'cbnstructipn;

some preliminary results of that study, such as a construction of

iy



"Post algebras" as the Eilenberg-Moore algebras:for a Boolean power
monad in the category of ¥sets, were presented in seminars at Warsaw

University and at the Mathematics Institute of the Polish Academy of

Sciences in Warsaw in early 1976'and 1977. The writer's paper [9]

on coalgebra-représentable Boolean power functors shows:that mupch of’

.

the niceness of Boolean poWwers is attributable to a special relation-
'ship between their representing algebras and free algebras in a

category of infinitary'Boolean algebras.

!Chapter 3 of this thesis, on Morita equivalence and algebraic

-

e £ e B i A T T

functors, contains improved versions of results originally presented -~

in [10] which generalize the methods'and'réqylts of [9]. Equationél

bkt e v

theories T and ~T' are said to be Morita equivalenﬁlifAthe reséective

it sy

equational catégoriés Mod(T) and Mod(T') of algebras are equivalent as

B . ]
... tategories. A functor G: Mod(T) —>Mod(T') is algebraic if its — ——

) - -

E:

r U, : Mod(T') —»Set

composite mﬁ;,G with the underlying-set functor U

-is monadiety every algebraic functor is coalgqbra—represeﬁtable. In

-

Chapter 3 we define an eqguational interpretation of one equational_

_—

o




Nt

theory in another and show that such interpretations are the syntactical

Fge N2

counterparts to coalgebras. Morita eguivalence of equational theories

is characterized syntactically, and a syntactical characterization of

algebraic functors is derived.

The construction of m-valued Post algebras as chain-based

lattices provides an example of an eguational interpretation of the

equational theory BA of Boolean algebras in the equational theory Pm
of m-valued Post algebras which witnesses -the Morita eguivalence of

those theories. Likewise, the construction of m-valued Post-algebras

as lattices of nonincreasing (m-1l)-element chains in Boolean algebras

S

L3

is directly related to an equational interpretation of Pm in BA
* which not only witnesses the Morita equivalence of the two theories
but actually gives rise to a representable Boolean power functor.

Much of the material'of {91 appears in Chapter 4, which is a

the répresentable Boolean power functors are algebraic, and the

[

eéﬁational theory of generalized Post algebras‘associated with a




-7 [29] of algebra=valued functors, can be a practical way-of-obtaining - — -

representable- Boolean péwer functor is examined in some detail.
The connection between bounded Boolean powers and locally

equational classes as demonstrate§ by Hu's theorem (1.2) suggests that

s - T T

=z there might be a "local" generalization of algebraic functors
corresponding to boundedeooleanvpowers- The required,"loéaLly i

equational"” counterpart to monadicity (also appearing:in [11]1) is

given in Chapter 5 in the form of a functor-theoretic characterization

of locally equational categories. Bounded Boolean power functors do

e e

turn out to be locally algebraic, and a new proof of the Hu theorem
(1.2) is outlined using the results of Chaptef 5.

One contribution of this study which is not expressible as a

theorem is the demonstration that a consistent category-theoretic

i

approach to.algebraic constructions, based on Lawvere's analysis in

algebraically meaningful results.




10

CHAPTER 2. FUNDAMENTALS OF CATEGORY-THEORETIC ALGEBRA

The-reader 'is assumed to be familiar with basic notions of
category‘theory as presented in Mac Lane [32j and with stanaard
universal algebra as in Grgtze;v[l9]. The treatment of universal
aigebra described in this chapter is similar in spirit to the model- -
theoretic approach exémplified by Grgtzér [19], but is more suitable
for’dealing witﬁ the interactions of algebraic and category-theoretic
phgnomena. In Chapter 3, for example, we find it useful to treat
certain set-valued functors as algebras inﬂa funétor category; fher

", .

structure and properties of such algebras cannot -conveniently be

explained in terms of elements and mappings of elements. This particular

style of category-theoretic universal algebra 6riginated with

F. W. Lawvere's Ph.D. thesis [29] and was adapted by F. E. J. Linton

[30] to cover infinitary universgl'a;gebra. A good exposition of



11 E

finitary category-~theoretic algebra is given in Pareigis [36], while

~

Wraith [42] provides a detailed account of the basics of infinitary

. o , )
category-theoretic algebra. The paper [17] by P. Freyd~must be

I'S

included in the canon of the Lawvere-Linton approach to algebra, since
it has motivated much of the subsequent research in category-~theoretic

algebra.

We assume no particular set-theoretic foundation for category

theory; since we only discuss functor categories of finite "depth,"

v

the type of category theory which we usé is no more hazardous than - -

e i

Zermelo-Fraenkel set theory with a few Grothendieékﬁuniverses added on. -

]

»
For our purposes, then, all the categories (except Cat) which are i

mentioned below are considered as being objects in a very big category

) a3
Cat whose arrows are functors. S , %\\QS

,vh,W”w,uwﬂv,W”W,HWWWThe”catgg@;yﬂﬁﬁet;wgﬁ_séts and functions is assumed to satisfy =~ |

»

some form of the Axiom of Choice, and cardinals in Set are identified

with initial ordinals. The finite cardinals are 0, 1, 2, . . ., while

-

@ 1is.the smallest infinite cardinal. Note that, for category-theoretic




puxpdses, the domain and codomain are part of the data which define a:

-

function; thus, for example, the identity function X —s X 1is

distinct from the inclusion map X —» Y, if X is a proper subset

-

of Y.

If A and B a objects in a category M, then the family

1 ' 3
of all arrows A —»B in M is normally denoted by M(A, B);.

&

however, this usage is abandoned below in certain cases where the

notation would be confusing. The category M is small if the family

of d11 arrows in M 1is a set, i.e., an object in the category .Set;

.

M . is locally small if M(Aa, B)‘ is arsét, for allz M-objects A and B.

The identity arrow A —» A is ,idA,' or sometimes just id, and the

13

composite arrow a-Zsp L, is f.g, or simply fg. If f and g

are functions, then the value of f.g at therp‘oint a€A may be.

denoted by [f.gl(a). A subobject of A in M is an object B Wiftl

-- : & mm@hiSW*BM*"’%"Sﬁmet’imesﬂrite***B—%"tdinﬁcat e -

that B is a subobject of &a. 1If BC-i"A and C<»Aa are

subobjects of A, then B £ C is defined to mean that there is an :



"

= £f_ , . . .
arroW B —» C with c¢.f = b; in that case, f is§ a uniquely
determined monomorphism. If f 'is an isomorphism, the subobjects

B and C are egquivalent. The category M° is the opposite of M;

the objects of M° are the same as those of M, and the arrows

1

A —>B in M° are in bijective correspondence with the arrows

B—*A in M; usually, no confusion will result if the same name is
used for corresponding arrows in M and in M°.
All functors are considered to be covériant, but frequently

a functor M° —* K will be described as though it were an arrow-

reversing transformation defined on M. Note that each functor
\ : -

G: M —>» K determines a functor G°: M°®° —» K® in an obvious way. The

ks

functor category K  has as its objects all functors M —» X, and as

its arrows all natural transformations between such functors. A natural

£

transformation G —» H in KM is given as a family (not necessarily

a set) of arrows fA= ‘'G{A) —» H(A) in KX indexed by the objects & ' _

of M. 1In general, KM may-be a rather large category, but most of the

1

M .
functor categories which we use are of the form Set , where M is



14

locally small.
. If M is locally small, then each object A determines a

functor A: M —> Set defined by the following:

i) For each object B, A(B) is M(a, B);

-

ii) For each arrow B —,,f—),c, A(f) is the functien - o oo

M{A, B) —/» M(A, C) which sends each A —iDB to A _f__g_’,C-

Any functor U: M —» Set for which there is an object A such that

¥

U 1is naturally isomorphic to A 1is called a representable functor,
. [

e

e

and the objectg A 1is said to represent U. ‘Each arrow A —f—’B in
M determines a na}tural transformation f: B — A which acts by )

composition with f on the right: for each object C and each arrow
B —1» C, -we have gc(g) = g.f.

The Yoneda Lemma says that the natural transformations A —» U,

for any M-object A and any set-valued jfﬁrictoriﬁ —>* Set, are in

o

bijective correspondence with the élements of the set U(A). For each

natural transformation A —f;’ U, the corresponding element of U(A) is



fA(idA); for each element a of U(A), the corresponding natural

transformation a 1is defined by gﬁ(g) = [u{g}]l{a), for eaeh object

B and each arrow 22+ 5. An important consequencepf‘thg*a&;oneda'

— " :
Lemma is that the Yoneda embedding M° —3> Set , which takes each

£
f - =
arrow A —>»B of M to B—>A in SetM, is a full embedding.

Qxe Yoneda embedding preserves limits, i.e., takes colimits of

B

diagrams in M to limits of diagrams in SetM.

An equational theory is a locally small skeletal category T

with all products, such that every object of T 1is a power of one
. . m . .
particular object 7. An arrow of the form Tn —>7 in T 1is

called an (m, n)-ary operation. Any (m, n)-ary operation is simply

a product arrow induced by an m—sequence of (1, n)-ary operations.

Por any function m ——»n, there is a corresponding operation

__F*x .
77 237 whose composite with the i-th projection T —=7T is

~the f(i)~th projectiom Tn — 7, for each 1 < m. The assignment

- *
of m-—f—"n in Ser to _’E’n £ '_7’m in T determines a functor



16

jT: Card® — T, where Card 1is the fﬁl;wsubcategéry in set of all

I

cardinals. There are (up to isomorphism) two excéptional eguational

theories T, for which the fupctor jT is not‘faithfui. The first

exception is the theory T which has only one object and one arrow.

The second exception is the theory T for which TO # T, but ‘%ﬁ = 7

for all n # 0, and where there is exactly o (1, 0)-ary operation.

=

A (1, h)-ary ope}ation f is said ta be trig$a1 when there is

/“\\ii/ ’
a function g such that £ = g*, or when there is an m < n such

o

A

tnat f factors as f = g*.h for some fimction m —Sﬁla and sqsf
{1, m)-ary operation h. Given any cardinal n, an equational theory

m

T 1is said to have rank(T) € n. provided that, for all m » n, there

are no nontrivial (1, m)-ary operations. In particular, T is
finitary if rank(T) € w©, and rank(T) is defined to be ® if there

is no cardinal n such that rank(T) £ n. For any equationél theory

T and any cardinal X, the x-ary part of T 1§,£he equational theory

-

T' obtained by deleting all the nontrivial (1, n)-ary operatioms

'

frem T, for all & 3 k.

-

e e e T

cepliy i

1



T
et T be an eguational theory, and let M be any category.

5 T-algebra in M 1is a ?roduct-préserving functor &: T — M, and a-

-

AN .
T-neomomorphism in M is a natural transformation between T-algebras.

we édﬁeﬁimé's'iﬁfﬁﬁasz ise” the same Iéfter to denote both an algebra
(or homoﬁorphism} and its underlying M-object (or M-arrow}. This
generalizes the cormon practice in universal algebra of ignioring the
distin?tion between an zlgebra (or‘hamomorphismf and its underlying set

v~

or function). Wnen we refer to an M-object A as being a T-algebra,

e,

it is to be understood that there is a T-algebra A': T —2 M such that

-

Similarly, we might refer to

N
5
1]
he
3
&)
H
Q
8]
W
n
g.
5
[¥9]
H
1]
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o
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L]
13
el
ot
0

an M-arrow' E —>* B  as being a homomorphism.
- . . = - . T
The category ¥cd{(T) is the full subcategory in Set of,
211 functors T —» Se? which are T-algebras. & categery is said to

e eanational if it is of the form Mod{(T), for scme equational theory

b

FEO S S

o1 nan] Rt S 15

"

% The set of all homomerphisms & —*B  in Mod(T) is homT{A, B).

Zguational thecries, esguational categories, and algebras (in Set)

;

sorrespend closely to their counterparts in mcdel-thecretic universal -



algebra. There are some “"size differences" which arise because

model-theoretic universal algebra does not normally deal with theofies -

naving a proper class of nontrivial operations, and the language-~free

category-theoretic approach to algébra leads naturélly to the

consideration and use of entities such as coalgebfaﬁ (coproduct-
preserving functors T° —> M) which are somewhat odd from a model~

theoretic viewpoint. The notion of a T-algebra in ,Set differs

3

slightly from the model-theoretic notion of an algebra in that the

i

. e . n
latter requires that, for any algebra A, the operations A —> A
snould be functions from the n-th Cartesian power of the set A into’
. A

. : n
2. The category version of a T-algebra allows the n-th power A of
, - : .

the underlying set to be any set X ='A(Tn)' which, relative to. some

> e

n-seguence of projections X —= A, is an n-fold product of A with

itself in Set in the category—theorétic sense., Clearly, every T-algebra

A 1in Set is canonicallyiisomdrphic to a T-algebra A' in Set which .

e e i

R

. .
is constructed from the Cartesian powers of the sef™ A.

Tne category Mod(T) 1is eguipped with a fgithfulruﬂderlying-set

[

. < :
e R - £ U,
AN : - T
I v ,
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N

functor - UT: Mod(T) — Set, where for each T-algebra A, we have

4

UT(A) = A(T), while for each homomorphism h we have' UT(h) being

the T-component of h. 1In accordance with the informal usage mentioned
. N i

above, we shall‘not ordinarily distinguiifgfétween A and UT(A), or _— i
between h and UT(h) notationally. The Yoneda‘embédding {//}

. T N . .
T° —» Set factors through Mod(T), so it determines a full

bt 1Pk R A el DI o e 1 o o

embedding YT: T° — Mod(T). Since Card is a skeleton of Set,

v

there is an equivalence functor E: Set — Card; let JT =,jT.EP.
The composite functor Fo = YT.JT is a left adjoint for - Ups i.e.,

) FT is a free algebra funcfor for Mod(T). The functor YT determines

an eguivalence of cétegories between T° and the full subcategory in

P
e iy s e ,sdmiwwu.‘...m b e
. ! .

Mod{(T) of free T-algebras.
Every equational category Mod(T) is small-complete and

”small:cocomplete,hi;e),,hﬁs;iimit§ﬁand:£blimits for all small diagrams.

If A is a T-algebra, then n@A is a T-algebra which is an n-th
copower, i.e., a coproduct of n copies of A, in Mod(T). It will

n o, ' i
be clear from the context whether A is an n-th power of the algebra

&
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A\

A in Mod(T) or the set 'A(T").

\
'

- / - £
N .
m .

A regular epimorphism in any category M 1is an arrow h

.such that, for some pair of arrows . (u,_v), .h isja,coéqualizerﬁofgﬁv_, S

(u, v). If h ﬁas a kernel pair in M, -then h 1is a regular

epimorphism if and only if h 1is a coequalizer of. its kernel pair.
- ,

o
-

In Mod(T), but ngt in al} categories, an?scémposite of'regular
epimorphisms is a regular epimorﬁhism, and a¢homomorphism h is.a
regular epimorphism if, for some homomorphism g, the composite hg
igzg/:;;ular epimorphism. This is so because a homomorphism h is

a fegular epimorphism in Mod(T) if and only if h 1is surjective as
a function; asfunction>is a regular epimorphism ig Set ifrand only
if ;t)is a surjection. This fact can be summarized by the statement
tﬁat UT preserves and reflects regular epimorphisms. The fumctor

UT also preserves and reflects monomorphisms, i.e., h is‘a

monomorphism in Mod(T) if and only if h is injective as a function.



A binary relation on an objeét A in a finitely complete

' . . r .
category M is a subobject R “—> A XA. BAn equivalence relation on

»

A is a binary relation on A which is reflexive, symmetric, anti

R I Ca— - R Py

~ - . R S e

transitive in an appropriate sense. One way of characterizing

equivalence relations which is adequate for our purposes is the

-

appro‘ach taken by Pareigis (see [36], p. 59, on monomorphic equivalence
relationsj. A binary relation R‘—E—’AfA is an equivalence relation
in M if and'oﬁly if B(R) —>B(AX A)/ ‘is an equivalence relation in
Set (i.e., equi\(alent as a su.bob'jerct of }_B_(A)" >< B(a), via the canonical
isomorphism B(AXA) —> B(A) XB(A), to a "real" equivalence relation

on B(n) ), for every M-object B.

-
s

let p, g be the projections AX A —>A; then ReZraxa

is a congruence relation on A if and only if there is an arrow

A ___>Wh77 B,,,,,is,u‘,:}},,t,}}fi,ﬁp'r' gq.r) 1is a kernel pair of h; here, h may -

be taken to be a coequalizer of- (p.r, g:r), if one exists.- It is . .
easy to show that every congruence relation in M is an equivalence

relation in M, but the converse is not true in general.
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In Set and in Mod(T), however, the congruence relations
and the equivalence relations coincide; furthermore, the category-

theoretic notion of congruence relation agrees with the usual one in

universal @lgeb\ra. If A LB is a homomorphism with kernel pair

(u, v), where u and v are homomorphisms R —> A, then the .induced

E

homomorphism R 52 XA 1is a monomorphism which embeds R in A XA

as a congruence relation, the kernel congruence .ker(h) of h. If

A-Zsc is a coequalizer of (u, v), then there is a canonical
isomorphism C — A/ker{(h) such that A I —> A/ker(h) 1is the

canonical projection. The functor UT preserves and r.efle?::ts

. . r . .
congruence relations, i.e., R &> AXA 1is a congruence in Mod(T)

if and only if it is a congruence relation in Set.

2.1. Theorem (Linton [30]). A category M is equivalent to

Mod(T), for some equational theory T, if and only if M has all -

kernel pairs and coequalizers, and there is a functor U: M — Set

such that: o -
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i) U has a left adjoint;

ii) U preserves and refle'c,ts congruence relations and
regular epimorphisms;

[ R R - f - R - -7 ¥

An object A in a category M 1is tractable if all powers
of A exist in M and, for all cardinals m and n, there is only

a set of arrows An ——+nAm. If A is a tractable object of M, " the

equational structure of A 1is an equational theory TA which is a

skeleton of the full subcategory in M of all powers of A. The dual

ﬂl
notions, cotractability and eguational costrugture, are also important.
K

The two-element set 2 is a tractable object in Set; its

equational structure T is an equational theory of rank ®, and

2

Mod(Tz) is equivalent to the category of all complete atomic Boolean

L

algebras, with ccmpiete homomorphisms. The finitary part of T2 is

»

the equaticnal theory BAgiéf finitary Boolean algebras; Mod(BA) is
Lk

equivalent to the category of ald Boolean algebras, with Boolean &\*rx\

homomorphisms.

—
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vFéf‘ényzquational theory T, the free T~algebra FT(l) on

)

one free generator is cotractable iﬁ>‘ModiTlg for each n, FT(n) is

-

an n-th éopower of FT(l). The equational costructure of xf&(l}-nis:,

T. Since the Yoneda embedding Mod(T)° —25 SetMOd(E’) takes coproducts

Mod (T)

in Mod(T) to products in Set , and since, for each- n, the

functor UTn is represented by FT(n), it follows that the functor -
. . . - Mod(T) : .
UT is a tractable object in Set whose equational structure
. . . ' ' . Mod (T)
is T; thus, U is, in the informal sense, a T-algebra in Set ( ).

T

The latter observation is fundamental to our results in Chapter 3.

P. Freyd's approach to algebra-valued functors in [17] is
based on the notion of a coalgebra, or a coproduct-preserving. functor
T°-jL’M, where T 4is an equational theory and M is a category.

The M-object A(T) is the underlying M-object of the coalgebra, and

for each T-operation f£. the arrow A(f) is a co-operation of the

coalgebra. The same kind of informal usage as used for algebras applies

as well to coalgebras; thus, for example, FT(l) might be said to be
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a T-coalgebra in - Mod(T), although technically the coalgebra which is
referred to is YT: T° —» Mod(T), which we obtained above by factoring

the Yoneda embedding.

Given a coalgebra A: T° —» M, there is a corresponding

%fﬁﬁctox_wéz M —» Mod(T), which is said to be represented by A.

For each M-object B,nafhe1T:algebra A(B) 1is the functor ' .

T —» M° —> Set obtained by composing M°(B;%¥7~uwi;h A°, Freyd

proved the following two useful theorems. . T

2.2. Theorem (Freyd [17]). Let M be a small-complete
category, and let T be an equational theory. A,funétor
G: M —> Mod(T) has a left adjoint if and only if G 1is represented

by a T-coalgebra in M.

. _Freyd originally stated the theorem above only for fini?gry

‘T, but his proof works for all equational Eheories T.

Let k be an infinite cardinal; a k-directed set is a small

partial order (regarded as a category in the usual way) in which every
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set of fewer than k elements has an upper bound. 2 monomorphic

k-directed system in M is a functor D: I —>»M such that I is a

k-directed set and, for every i —>» 3 in I, the arrow D(i) — D(3)

in ‘M is a monomorphism. A colimit of a monomorphic k~-directed

system is ca'llled a k-directed union. If k = w, then the prefix "w-"

on all these terms is omi}ed.

2.3. Theorem (Freyd [17]). Let T and T' be finitary

equational theories. Then a functor G: Mod(T) —»Mod(T') is -
. , _

_represented by a T'-coalgebra in Mod(T) whose underlying T-algebra

=

e

is generated b;"é”'set of fewer than k elements if and only if G

preserves products, equalizers, and k%l‘i‘rect,e@ unions.

Note that the identify functor Mod(T) — Mod(T) is

T

represented by the coalgebra Y,. sMuch interesting material on

coalgebras and coalgebra-representable functors is- pﬁ:esente&*in*Wraith*s R R

monograph [42]. We shall return to the subject of coalgebra—q;epresentable

functors after taking a look at Linton's adéptation [30] of Lawvere's



fundamental results concerning algebra-valued functors [29].

~

f The equational theories are the objé™e in a category ET

. in which ap arrow T —>T', called a mapping of theories, is a _

product—preserviﬂ% functor g: T —> T' such that g(7) = T'. The

i
induced functor g*: Mod(T') —> Mod(T), which acts by composing

T'-algebras with g, is called a reduct functor. A functor

G: Mod(T') —> Mod(T) has the property that UG =0

i ("preserves

underlying sets") if and only if there is a mapping of theories g
such that G = g*; Since the category Set itself is equivalent to
Mod (Card®), where Card® is the opposite of the full subcategory of

all cardinals in Set, regarded as an equational theory, the functor

UT: Mod(T) —> Set may be identified with the reduct functor jT*,

Ip

: Card® —» T is the functor defined eaorlier in this chapter.

Eive:q; reduct functor is faithful and has a left adjoint.

The tractable set-valued functors form a category TF in

which an arrow U —» V is a commutative triangle V.G = U. We
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define a "structure” functor STR: TF-;—>ET° which assigns to each -

tractable set-valued functor U its equational structure TU. To see

what STR does to arrows, let V.G = U be an arrow .U —»V in TF.

I

Note that for every n we have (VG)n =vV.e=0v". 1f V —£*-Vm

AN

is an operation in TV' then V'.G —gg*-vm.G is an (m, n)-ary

>

operati?nAin TU. The assignmént of £G to each Tv-operation b
defines a mapping of gheogies TV ——*-TU which is/ghe image under
STR of the arrow V.G =U from U to V in TF.

N&w define a "sémantics" fuﬁctor SEM: ET® —> TF which
sends each equational théory T +to the co;responding'underlying—set

functor U

T and each mapping of theories g: T —T' +to the

commutative triangle Up-9* = Un: (which is an arrow Upy —> U, in .

the category TF) .

ke

P

It is a remarkable fact that STR is left adjoint to SEM;

- this-"structure-semantics—adjointness" is-the category-theoretic——

counterpart to the Galois conn ion between sets of identities and

classes of algebras which is known in universal algebra. The unit
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IdTF-———>SEM.STR is a natural transformation whose U-~component,

for every tractable functor U: ¥ —» Set, 1s a commutative triangle

U .E_= U, where T is the eguational structure of U; the functor

EU: M ——4;Mod(T) is called the comparison functor for U. Since

N
*

every component of the unit of an adjoint pair is a universal arrow,
~ -

it follows that the cotiparison functor EU has the folldwing universal

. .
. property: for each functor G: ¥ —» Mod(T') such that UT"G = U,

there is a unigue mapping of theories T' 9> ¢ such that G = g*.EU.

»

The practical meaning of this is that, to study any algebra-valued

functor G: M —» Mod(T') whose set-valued component UT,.G’ is

5

tractable, it is sufficient to investigate U G and its eguational

T

structure T. That is, in order to understand G, we should examine

P . . . M
the T'-reduct of the T-algebra UT"G‘ which lives in Set .

Suppose th?t G 1is represented by a T'-coalgebra A in M.

A\

e g6 —is isomorphic-toA(I): M — Set, whose equational

structure T is the equational costructure of the M-object A(T').

Thus, studying the T'-coalgebra .e. in M 1is equivalent to studying
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the representable functor &A(7') = UT"G as a T'-algebra in SetH.

‘ 1 4

-

The technique of treating a functor as an algebra in a functor category -

T

nas the big advantagé of being applicable to both representable and

‘non-representable functors.

Although the Lawvere-Linton approach’to universal algebra is

) nominally language-free, every equational theory T is associated
with ‘a language LT whicn corresponds to the first-order language

L(T) described in Gratzer [19]. The language L is the many-sorted

T

canonicalAlaﬁguége for the category T, in the terminol®bgy of Makkai é(
- . rd '
and Reyes [33]. Our description of LT and its interpretation follows
. v

|

133] quite closely, with minor omissions and adaptations appropriate

to the special nature of an egquational theory T as a category.

-

The language L congists of thé following items:

.~ i} - For each arrow f of T, there is an operation symbol f;

it is assumed that Ff # 7 whenever f # g.

ii) Por each cardinal n} there is an infinite set of
4
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n-ary free variables and an infinite set of n-ary bound variables; it

.

is assumed that no free variable is a bound variable and that no

////’”//:;ary variable is an m—ary variable if m # n.

1ii)! There are an identity symbol =, an infinitary

. . - W " L . .
disjunction symcl W/, an infinitary conjunction symbol iﬁ\; a

negation symbol —', an implication symbol -+, an existential

gquantifier symbol Z, & universal guantifier symbol ¥, and
carentheses [ . :

The terms of 1_ are defined as follows:

s

tl) Every n-ary, free variable is an (n, n)-ary term.
tz) If + is an {m, n)-ary term and’ £ is a (k, m)-ary

3

operation, then F7:) is a {(k, nj-ary term.

.

”,7,,”W;3i_aéﬂﬂiréng of rsymbois of I is a term if and omly if it
T

can be cons{ructed by finitely many applications of tiffand t2.’"

Tnhe formualas zf 1. wnich we require constitute only a small
L

e

—

S

.
bR

i Bkt o i il SR

L




fragment of thg language described by Makkal and Reyes. For a more
s '

compiete discussion of the formulas, the reader is referred to [33].

‘we shall use only eguations and conjunctions and disjunctions of: - -

»

egquations. An (m, n)-ary eguation is an expression of the form

r = g, where both » and s are (m, n)-ary terms. If S is any

set of equations such that there are only finitely mény free variables
a .

occurring in the me#bers of S, then \ﬂ's and 4“5 are formulas.
A se 1s an expression of the form S =» S', where both

5 and 5\ are finite sets (which may be empty) of formulas, and where

- e
~

-

=» 1is a new symbol. In practice, we shall allow S and S' to be,r’

oy

single formulas instead of sets of formulas.
2

let M be any finitely complete category. A many-sorted

structure for LT in M is a morphism of graphs A: T —> M (in the.

sense of Mac Lane [32}). In other words, A sends objects of T to

_objects of 4 and arrows of T to arrows of M, preserving domains L

and codomains of arrows, but not necessarily preserving compositioniof

[

arrcws, and not necessarily sending identity arrows to identity arrows.
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X - ° ", ; -
Let be the k-tuple (xo, Tyr oo oy xk), where x; is an n -ary
free variable, fér i=20,1, . . -, k. Let ¢ be a term whose

(only) free variable is xj. If ¢ |is xj, then the interpretation

~

[£]

A X of ¢ in A relative to X is defined to be the j-th

N
’projection

A(C™0) x . . . x A(C"K) ———— > A (™).

iIf ¢t is f(r), where »r is an (m, nj)—ary term whose interpretation
- R

-

i

is already defined as an arrow A"y x . . . x A(Tnk)-——)ZHTm);

. Now let r = ¢ be an

is defined to be A(f).[r]A’X

thé‘;;a [£1, 4

i nj)-ary equation whose (only) free variable is xj. The

interpretation [r = s]A ¥ of r=s in A relative to X 1is an
4
equalizer of the arrows [7] and [s] . As we see from the
A,X AxX
diagram

) l ' T : :
[r = s] is a subobject of AT Y). If S is a set of

A, X i<k
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eguations such that all the free variablesloccurring in members of S
are among those of X, then [J\S]A X is defined to be the

. 2 . 0 + v n 7
intersection, if it exists, of the subobjects of l IA(T 1)
i<k

corresponding to the equations belonging to S, while [“VS]A X is
definquto be the supremum, if it exists, of those subobjects. The

interpretation of each formula of LT in the structure A relative

v

to £, 1f there is such an lnterpretation, is a subobject of the

- n. .
product I I A(T ). Note that the interpretations of terms and

i<k -

| ; _ . J

formulas as defined above are specified only up to canonical
isomorphism in the category M; this fact is discussed in [33].

Now suppose that S§ and S' are finite sets of formulas
such that all the free variables. occurring in the members of SUS'

are among those of the k-tuple X given above. Then the structure

A satisfies the sequent S =» S' if and only if the following

conditions are satisfiedr ~

i) Every forwula in SUS' has an interpretation in A
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relative to X.

ii) The intersection /\[F]

and the supremum \/ 1G]
Fes '

A X . ALK
» GEs A

both exist among the subobgects of I ]A(T iy in ‘M.
i<k’

iii) In the natural quasi-order of the subobjects of

T_rA(T iy , we have /\[F] \/

i<k Fe€s Ges!' f

. We write A [ S =» S' to say that the structure ,ﬁ satisfies

2

the sequent S = S'.

. F2
A T-algebra is obviously a rather special kind of structure

for LT",'in that it satisfies all the identities of T, i.e., a1l

the sequents of the form { } = f(g(x)) ="h(z), where £, g, and h

are operations such that f.§ =h in T. It is useful to distinguish

N

g

structures resembling T-algebras in this respect in which the -

progectlons and other trivial operatlons are well—behaved. We shall

. say that a structure A: T —> M for Ly ~-is--a-many~sorted -T-algebra- - —

4

in M if A is afunctor and if, for all cardinals m and n and

for all (m, n)-ary terms r and &, the structure A satisfies



the seguent
A{piér) =‘pi(8) : i<m} = r = s,

where for each i<m the symbol [97; "cor'r’espon'ds to the 1i-th
. . om Pi , C
projection I ——>T7 in T. These conditions are necessary and

<

{
sufficient for e.very (m, n)-ary equation ¥ = 8 to be equivalent

to the conjunction” of the 'cérrésponding set of (1, n)-ary eqguations
p'i(r) = pi(‘s) in every many-sorted T—algeb?a. We shall write’
T F S =>5s' to say that, for every many-sorted T—algebura A in
which the ngcessary intgrpretations exist, we have A E S =» S'.

It is commop practice in universal algeb_ra to specify an
] ‘equational theory by means "_of a set »of_equa'.tions in a lan’guage over a

similarity type (see [19]); in the category-theoretic context, this

amounts to providing a presentation of the equational theory. Both

Lawvere [29] and Wraith [42] discuss the category-theoretic

=

technicalities of presentations, but we shall say informally that a

presentation of an equational theory T is given by specifying a

-



-of-addjointness gave rise to the notion of a monad (or "triple”) and.
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family of distinguished T-operations and describing their behaviour>

: sufficientiy‘ that the categoryv’T is determined up to isomorphism.

For example, a presentation of the finitary equatidnal theory BA of

3§6iéaﬁ élgébféérmighfrnamé'the constant 0, the meet operation A,

.

and the complement operation. — , and provide a list of axioms

3

describing the behaviour of these operations in Boolean algebras.

Another presentation of BA might list the ring operations 0, 1, +,

-, and *° and describe how theyt work in a Boolean ring. The,differehce

- /

" between Boolean rings and Boolean a;gebras*is, from the standpoint of'

category~theoretic aigebra, not a difference of algebras at all but

rather a matter of distinct‘presentations of the one theory BA.

:

At about the same time that the Lawvere-Linton approach to

universal algebra was taking shape, category-theoretic investigations

Lane [32] and Pareigis [36] provide

oo s - =

of a monadic functor. Both Mac

detailed expositions of the basic theory of monads, so we shall only

| | \

L L O
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;ay en.ough about them to establish notation and Fo state éome results
which will be referred to m later chapters. Given categories M
and K and functors U: M —>K and F: K —>M, with F Cleft
;djoint to U, the monad - in K determined by ‘U and F will’be
called H. .The category of all Eilenberg-Moore algebras over H in
K is KH, and~its "Vforge‘tful" functor and free algebra functor are
respectively UH KH)——’K and FH: K —-’KH. The canonical

, . H
comparison functor for the monad H is® C: M —» K . We shall say

that the functor U: M —» K 1is strictly monadic if C 1is an

isomorphism of categories, and monadic if C is a category equivalence.
Note that, whether U is monadic or not, F is left adjoint to '

H
and the monad in 'K determined by UH and F is just H. The

canonical comparison functor C 1is unique s?{that vl.c= U and

C.F ;,EH.

Wwith U, F, and H as given above, the Kleisli category for

. . . .
H 1is IS'I’ and its associlated ﬂmctors are UH KH —» K and
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Fyt K —>K . Here, éH is left adjoint to Uy, and the monad in K

determined by UH and FH is just H again. The Kleisli functor

Cc': KH-——*-M is unique with the property that U.C' = UH and

C'.F, =F.

We shall{cite two results which illuminate the connection
between equational theories and monads. The first result is a theorem
adapted from Pareigis [36], p. 135, which shows that when H. is the

monad in Set °determined by dT and FT’ where T is an equational

theory, the Kleisli category SetH for H 1is equivalent to the full

subcategory in Mod(T) of free T-algebras. -

2.4. Theorem [36]. let T be an equational theory, and let -

H be the monad in Set determined by UT and FT. Then there is an

equivalence of categories Q: SetH° — T such that Q.FH° ='JT.

a theorem of Linton (Theorem 9.3, p. 41 of [31]) which explains the

connection between Eilenberg-Moore algebras and T—algebras.r



2.5. Theorem (Linton [31]). Let U: M —»Set be a functor
with a left adjoint; let T be the equational structure of U, and

let E: M —> Mod(T) be the comparison functor for U. Also let H

be the monad in Set determined by U and its adjoint, and let

"C: M ———>SetH be the canonical comparison functor for H.. Then there

is én'equivalenc\q of categories -R: Mod(T),—--——>SetH such that the
' ; ;

following diagram commutes:

. ’ N ——— Set

1 .

Mod (T) ————t—J—-—-’- Set
T

S

In particular, U is monadic if and only if its comparison functor

E: ¥ —*Mod(T) is a category equivalence. . . T.
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CHAPTER 3. MORITA EQUIVALENCE AND ALGEBRAIC FUNCTORS

A natural question arises in connection with equational .
theories:. given an equational theory T, for what other equafidnal
theories T' 1is the category Mod(T') equivalent to Mod(T)?

»

Theories T and T' such that Mod(T) is equivalent to Mod (T*)

are said to be Morita equivalent (see [42], p. 54).

The classical Morita theorem [35] of module theory, which is
the motivation for the notion of Morita equivalence of equational
theories, provides necessary and sufficient conditions on rings R

and S for the categories R-mod and S-mod of left modules to be

é&ﬁi&éiéﬁ%"?éeéﬁﬁéiéi§1§ftsei“br Cohn [7] for a detailed exposition of

the Morita theorem). Since R-mod and S-mod are equivalent o

v\\\

equational categofies, the Morita theorem provides a characterization
\ -

I
i



~of Morita equivalence for equational theories of the kind which Wraith

[42] calls "annular." T. K. Hu's result (1.3) also pfgbiquisome

nontrivial examples of Morita equivalent equational theories. For

any finite set X having m elements, where _m>1, the finitary part of )

the equational structure TX of X is an équational theory .Pm such

that every m-element Pm—élgebra belonging éo Mod(Pﬁ) -isrprimal and

Mod(Pm) is identifiable with the équational class generated by an '/f\\

m~element primal algebra. In keeping with the remarks in Chapter 2 on

presentations of the theory BA of Boolean algebras (note that BA = P2),

we shall call Pm the eguational theory of m-valued Post algebras, and *

v

we shall refer to Pm-algebras as m-valued Post algebras. Hu's result

(1.3) says that the theories P, for all finite m>1, are precisely
the finitary equational theories which are Morita equivalent to BA.

It should be noted that there are various category-theoretic

géhéiéiizatibﬁéjOEWQBEIEEfédEIVéiéhééhﬁﬁigﬂﬁéﬁbli to categories which

are not necessarily eguational theories. The relevance of some recent




papers on category-theoretic Morita equivalerice to the more strictly

algebraic results discussed here or in Wraith [42] is coﬁmented upon

later in this chapter.

One of our main results is a s&htactical characterization
(3:8). of all the equational tﬁggzies T' which are Morita eguivalent -

to a given equational theory T; this resultkiS*an%iﬁproved version of

e

the main result of Dukarm [10]. We also provide syn£33€1cal

characterizations of coalgebra—representablé functors (3.4) and of

algebraic functors, i.e., algebra-valued functors with monadic

set-valued component (3.14).

When are equational tiii§[;s T and T' Morita equivalent?

Suppose that E: Mod(T) —> Mod(T') is an equivalence functor; let

U= UT,.E be the set-valued ccmponént of E, and let T" be the

equational structure of U. The composite L.F_,, of the left adjoints’ .-

-

',L of E and FT' of UTI is a leftﬂadjoint for U; it follows

that U is represented by the T-algebxa A = L(FT,(l)). Since L 1is



(o

S

P

(l
L(FT, (n)), and the

(=1

an equivalence functor, it is full and faithful and i:re_servés

coproducts, so for every n we have n®a

equational costructure T" of A is isomorphic to the equational \
s |
{ -

-

(1). ~#* follows that E is actually the

T’ of Frs

costructure
comparison functor for U. But then by (2.5) U is monadic, since

its comparisegn functor is a category eguivalence.
W
Now we can reformulate the original problem as follows: find-

all the monadic functors Mod(T) ——> Set, and characterize their

equational structure theories.

Let M be an arbitrary nonempty catégory. ~An object A of

M is reg\llar-projectiVe in M if, for every regqular epimorphism

C and every arrcw A—b*c there is an arrow A —»B such

g L.
, . |
h. .A regqular generator in M 'is an object A such that

that £f.g
for every ocbject B there is a cardinal n and a regular epimorphism

n®a —> B. A regular-projective regular generator is called a

regular progenerator. These definitions are, wﬁh minor variatioms,




?,,
y

T

i

standard in the literature.

We also define two objects a and B

of M to be retract-ecuivalent if each one is a retract of some

power of the other, and dually retract-eguivalent if each one is a

retract of some copower of the other, In any equational category

Mod (T}, the regular crogenerators are precisely the T-algebras which

are dually retract-eguivalent to the free T-algebra F,_(1).

z :

3.1. Thepren,

For any

et T pe an eguational theory.

functor U: Mod(T) —> 3Set, the fclicowing are equivalent:

1}. U "is zonadic;

ii) U 1is recvresanted by a regular progenerator; - .

. . . Mod (T
: are retract-equivalent in Set ( }.

Proof. Suppcose that § 1s monadic; them U has a left

F{1). It

adjeint P, and U is recresented by the T-algebra &2 =
w
follows thatr © is tractable, and the eguational structure T' ®f .-
_ = N

Since U is

oo v o e




monadic, its comparison functor E: Mod(T) — Mod(T') 1is an

equivalence functor, by (2.5). The comparison functor E is
1 Y
represented by A, where A 1is viewed as a T'-coalgebra in Mod(T),
” .
and E(A) is isomorphic to the free T'-algebra FT‘(l)’ which is

a regular progenerator in Mod(T'). Since E 1is an equivalence

functor, it is easy to see that A 1is a regular progenerator in

¥

Mod(T). This proves that i) implies- ii). Before showing that ii)
implies i), we shall prove that 1ii) and 1iii) are equivalent.

If U 1is represented by a regular progenerator A, then A

is dually retract-equivalent to FT(l), which represents UT’ so U

is retract—-equivalent to UT'

Suppose that U 1is retract-equivalent to UT; we shall show

n r

that U 1is represented by a regqular progenerator. Iet UT —U

. s n . . .
e a retraction, and let U ——*-UT be a coretraction, with r.s = ldU'

L3
*

- .
e ——Ten- s —is—am-equalizer of — s:r-—and —id.—Since the Yoneda embedding

£

is full and faithful, there is a homomorphism F(n) —Ee-FT(n)' such
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that s.r = h. Let FT(n)-—E*-A be a coequalizer of h and id
~ .

in Mod(T). The Yoneda embedding takes t to an equalizer of s.r

. . - Mod '
and id in Set (T); but then A and U are isomorphic, i.e., A

represents U. Since U £ A is, by hypothesis, retract-equivalent to.

U it foilows that’ A 1is dually retract-equivalent to FT(l), i.e.,

o’
A 1is a regular progénerator.A This completes the proof that ii) -is
eguivalent to  iii).

To finish the proof of the theorem, we must sbow that ii)

implies 1i). Assuming that U 1is represented by a regular progenerator

A, we shall use (2.1) in combination with (2.5) to show that U is
monadic. Since U is represented by A, U has a left adjoint F,

which sends each set X to an X-indexed copower of A in Mod(T).

t is immediate from the definition of a regular-projective object .

: f
that U preserves regular epimorphisms. Now suppose that B —>»C

-— = — ——ig-given-suchthat—U(f) ~is a regular epimorphism. Tet FU-Ew1d —

the adjoint pair (F, U); we claim that, since A

be the co-unit for



is a regular generator,1every component of p is a regular -
epimorphism. If this is so, then we have f.pB = pC.F(U(f)?, where B
the‘right side of the equation is a compositerof regular_epimorphisms
in Mod(T) and, hepce, is a regular epimorphism, so f.pBr isra
regular epimorphism, which implies that £ isra regular epimorphism,
and we have shown that U reflects regular epimorphisms.

Why is p. a gégular epimorphism? The algebra F(U(C)) is
a copower of A indexed by U(C),' i.e., by the set homT(A,VC).
For each homomorphism A _E¢.C, iet h' be the coprpduc# injection’
A —»F(U(C)) corresponding to he homT(A, C). The co~unit p is
constructed so that pC.h'\= h 'for each h. By hypothesis, A is
a regular generator, so.for some m there is a regular epimqrphism

m®a 2. Let 9 be the compdsite of g with the i-th coproduct

injection A —>»m®Aa, for each i<m. The homomorphisms

t

1

-

with ti = gi' fof each 1i<m. Then pc:i: = 4q, as can be checked by

g, 't A—>» F'(U‘(C)')Wfiﬁaifcféfé"EOﬁthfJEt hémomorfphlsmiﬁﬁAf—;"’ > F(u(cyy —



49

+

composing with coproduct injections, so pC is a regular epimorphism

as claimed.

Now we must show that U preserves and reflects congruence

o : oL o
relatijons. Preservation is obvious, because U ' preserves kernel

pairs, since U is representable. Both in Set and in Mod(T),

it happens that every egquivalence relation is a congruencé relation,

o

so we need only verify that U reflects equivalence relations. .
Suppose that we are given two homomorphisms u, v from -R
to B in Mod(T) which induce a product homomorphism R — B XB

such that U(h): U(R) —> U(B XB) 1is an equivalence relation in Set.

The functor U is faithful, since it is represented by a generator,

so it reflects monomorphisms, hence h is a monomorphism in Mod(T) .

Using the equivalence of ii) and 1iii) established above, we may

. r
assume that, for some n, UT is a retract of Un. Let Un ——*-UT

be a retraction, and let UT

It is easy to see that any nontrivial power of an eguivalence relation

v

———>Un be a coretraction, with r.s = id.



in Set is an equivalence relation, so U (R) —> U (B XB) is an

equivalence relation. ﬁsing the natural transformations r .and s,

we shall shgw that UT(R) '—bUT (BXB) is an equivalence relation.

Without loss of generality, we may identify U (R) — U(BXB)

with an equivalénce relation R'S B' XB' in the ordinary sense, i.e.,

a set of ordered pairs which is reflexive, symmetric, and transitive.

We also write UT(R) —>UT(B XB) as RS BXB, in keeping with our

informal practice of ignoring the distinction between the algebras and

s

their underlying sets, and identifyinq h with an inclusion map. The

natural transformations Un L’UT and UT—S—rUn are here

considered to be such that\ég is the inclusion map for B < B' and

such that Iy is a function B' —B with rB(b)' = b for all beB.

Then SBXBV is the inclusion map for BXBS B' XxB', and Sz is the

inclusion Iﬂap for RS R'. The retraction rB X B is just the product

function rBXrB: B' XB' —» B XB, and T is the restriction of

x . lg 'XB'_
g XTIy to R B



77umpgqg;uencg_;g}atioqg7§g§u;gggigx epimorphisms. By (2.1) and (2.5),
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Sﬁppose b € B. Then since R' is reflexive, (b, b) € R',

so (rB(b), rB(b)) = (b, b) € R, hence R is reflexive. If (a, b)€R,

then (a, b) € R', and by symmetry of R*~we have (b, a) € R', so-

(rB(b), rB(a)) = (b, a) € R, hence R is symmetric. If (a, b) and

(b, ¢c) belong togﬂ¥ﬁ*then they belong to R'; by transitivity of R',

———

(a, c) belongs to R', so we have (rB(a), rB(c)) = (a, c) € R,
hence R 1is transitive. This proves that R<—»BXB 1is an
equivalence relation in Set, so it is also a congfuence relation in

Set. But UT reflects congruence relations, so R“—>BXB is a

congruence relation in Mod(T). This completes the proof that U

>

reflects congruence relations.

<
We have shown that, if U 1is represented by a regular

progenerator, then U has a left-adjoint and preserves and reflects

U, is-monadic. '%‘nlsifotupléfe’S ’tﬁeﬁprwf*of*ﬂ!€'thecrenﬁ S T

'4"‘”/



The equivalence of i) and ii) .in (3.1) is apparently
part of the "folklore" of category theory. Lawvere's veréion of the

¢haracterization theorem for finitary equational categories (see [29],

*

p. 79) explicitly states that the underlying-set functor is represented
by a regular progenerator. Remarks by Wraith in [42], p. 54, and a

theorem in Herrlich and Strecker [21]:;, p. 245, also indicate that

(3.1) is not a new resu%t. In a conversation with the writer in
Y

March 1978, Michael Barr explained that he and several other category

theorists had been stimulated by the Morita theorem [35] to investigate

Morita equivalence of equational theories and had soon realized that

all equivalences between equational categories were comparison functors

represented by regular progenerators. From a category theorist's

N -

point of view, the general result lacked any novel features or

-

interesting departures from the‘origingl_Mgrita theorem, so the matter

was dIOPpQ(i - T T T T T T s T T T T T T T T T T T

There is considerable logical interest in Morita equivalence,
. .

/

nowever, and by shifting our attention from the regular progenerators



’

to the functors they represent, we shall derive a syntactical

-

characterization of M{iita equivalent equatiohal theories which is
new.
Let M Dbe any nonempty category, and let U: M —* Set be
- Q ~
. . . M . ' .
a functor which is tractable in Set . If T is the eguational
structure of U, then U 1is, in the informal sense, a T-algebra in
M ' 4 .
set . If f and g are (m, n)-ary operations of T, then the
interpretation [f(x) = g(x)] of the equation f(x) = g(x) in the

T-algebra U relative to the variable x 1is an equalizer in Set

of the arrows f and g as shown in the‘diagram below.

o o

[flz) = g(x)]

{

Thus, [f(z) = g(xz)] is a subfunctor of U". For any object B of M,

—_
.. 9

the set U(B) inherits T—operatioﬁé from U -and is the underlyiﬁg set

—— - S [ e e N

of the T-algebra EU(B), where EU: M ——+;Mod(T) is the comparison

functor for U. The value of the functor [f(x) = g(x)] at B is the

%
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solution set of f(z) = g(z) in the n-th power U (B) of the

>

underlying set U(B) of the T-algebra EU(B). Every subfunctor

n . . . . .
Ge——U which is an equalizer of a pair of operations in the -

equational structure of U will be said to be equationally

- ___definable.

3.2. Llemma. For any equational theory T and any

;

cardinal ﬁ, a functor G: Mod(T) — Set is represented by-a.

N

T-algebra which is generated by n or fewer of its elements if and

only if G is‘an equationally definable subfunctor of Uin.

.Proof. Iet A 'be a T-algebra which is generated by a set .
X of cardinality n or less. Then there is a regular epimorphism
FT(n) ~E» 2 which sendsrthé free generators {xi : i<n} of FT(nf

onto X. For each 1i<n, let p(xi) = ai. Every element of FT(n)

- ’ isﬁoimthe4£o£m~~£uduf4#wuefwfﬁrisﬁauilTAnlearyuTeoperationfand —

x = (xi : i<n); likewise, every element of A is of the form £(a),



have ‘p(f(xi)) = f(a) for every (1, n)-ary operation  f. Let

where f 1is a (1, n)-ary T-operation and a = (ai : i<n); so we

-

(fj : j<m) and ”‘(gj : j<m) be sequences of (1, n)-ary operations

such that, for each j <m, we have fj(a) = gj(a), i.e.,
(-fj(x) ’ gj (x) )v € ker(p). Also assume_that, for each pair  {(u(x), v(x)) .
in ker(p), there is a j<m such that u = fj and v = 9 For

each (1, n)-ary opération u, let F;r(l)'—u—'rFT(n) be the (unique)

»

homomorphism w?ich sends the free generator Qf FT(l) to {J(x) in

FT(n); then 1 is the co-operation YT(u) of the -T-coalgebra
| . g ,

e

YT: T° —> Mod(T) which was defined in Chapter 2, and which is
informally identified with FT(l) as noted in Chapter 2. Let f be
the (m, n)-ary operation which is induced in T by the sequence

(fi : i<m) of (1, n)-ary operations; then FTf(m) —f—OFT(n) is the

coproduct-homomorphism -induced-bythe ——séquenee—&%—f:%—<m9—9£ fffffffffff e —+

homomorphisms; f sends the j-th free generator of FT(m) to

fj(x) in FT(n). Definée g and § similarly with respect to the




sequence (gj : j<m). It is easy to see that FT(n) _—P—)A is a

coequalizer of ('f, g) in Mod(T). An alternative construction of

f and § which makes this obvious is to let FT(m)' —h-bker(p) be
. A

a regular epimorphism from a free algebra onto ker(p), which is a
- subalgebra of Fpo(n) XF_(n), and take ? and § to be the composites

of h with the projections ker(p) —PFT(n); those projections are

a kernel pair of p, and p coequalizes its kernel pairs, gince p

is a regﬁlar epimorphism(

. N
The Yoneda embedding Mod(T)° — Set od (T) tak;s
p B n L . .
FT(n) A to A— UT , which is an equalizer of f and g _in
L gMod () o _
Set . This proves that every representable functor is equationally

definable as stated in (3.2)..

If U is an equationaliy definable subfunctor of U.", then

T
- ‘ - ____Qf
there is an equalizer diagram U -—-—-PU'n U - which witnesses
,,,,,, there 1S an equa.ilzer diagram U =% Uqn ___, “p
: g -
-~ that fact—The arrows f and g correspond, via the Yoneda embedding,

to homomorphisms %, S: FT(m) ——bFT(n). Let FT(n) L2 be a



coequalizer in Mmé{TT"‘u@ (%, a); then é:————*t%? is an
N - | ) '

+

equalizer of (f; gi} so[jU £ A, i.e., U 1is represented by a T-algebra

/. | .
A which, as a homomorphid image of FT(n), is generated by n or
I .
Cf

i

fewer of its elements. ]7%15 completes the proof of (3.2).

|
T

Note thaf the proof of (3.2) illustrates several “"tricks"

el
- - . s

_which are applied frequently below without being spelled out in detail.

Also note that (3.2) depends heavily on the-fact .that FT(l) is

a regular generator in Mod(T). Now that we know that evéry’ <;
" B . t
1

/
representable functor U: Mod(T) —>Set is definable in a powex of -

e

UT' in a nice way, we describe how the equational structure of U~

relates to the equational structure T of Up-

let T and T' be equational theories, and let n be a
P :

i
+

nonzero cardinal. An equational interpretation-of T' in T of

rank n 1s given by a morphism of graphs t: T' T and an

(m, n)-ary eqﬁation Flz) = glz) of Ly called the universe of the
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-

_interpretation, satisfying conditions i) - iv) below. ‘

v , . . i ’ o H . N
Let El(x) be the equation flx) = g(x),  and for each k>1

B

let Ek(y) be the formula " Axk{prify)) =’g(p£(y)) i<k} where,

C : - s

for each i<k, Py is: the 1i-th projection (Tn)k = 7" k n

— 7.
For each operation u of T, ieé ‘?t be tﬁe operation symbol of LT
which corresponds to t{u). Thé condi£ioﬂ§ which must be‘satisfied
by t and ffGrJ = gf{z) are as foll&ws. ‘ ' b
i) For each {(j, k)-ary T':oééiatioh. FJ> t(u) is. an

(n xj, nl‘k)-arf T-operation.
ii) Fof each (j, k)-ary T'-operation uﬁ,‘wg Have

TR B(y) = E.(u(y)).

k . Jj

iii) Por each g we héve .

S T e E ) > MNpyy) =q ) 1<k,

q, , ‘
where AT’k —fé;»i” is the i-th projection in T'. v ' §

i

Por all T'~operations —u, v, w -such that —u.v =W, where
w is (5, k)-ary, we have -

T o 20y = Wt =0ty

“x



3.3. Lemma. Let A: T —»M be a T-algebra in a : %

small-comclete category M, and let t: T' — T be an ecjuaéional

3
’ . 3 ES

interpretation of T' in T of rank n with universe .Ffz) = g(x).

\

S e j s . -
Then there is 3 T'-algebra B: T' —M,. with B(7') = [f({z) = g(:c)]A 2!
14

-

, ) . o =
such that, for every T'-operation u, B(u) 1is the restriction to

<

o
,-

of Alttw] = Wi, . \

s . . ~D m
Proof. Toc simplify notation, we write A(u): AT )} —»a(l ).

, - Ly :
nou m : : -
as A —> 3 for every (m, n)-ary T-operation u. Alsoc let i

‘ ) e /
Fof s ’ . e _ 1 (1)1 1 B k An><k
Itir; = 74 E z o
, z I”A,a: e E<—*A  and let [& (y A,y k

Tirst we shall show that E.’,( and E° are equivalent as subobjects of

PR
nAk ] . L '
a7 7. ‘wWhen k = 0, 1, there is nothing to prove, so assume Xk >1.- ,

: - D, . : « r.
Por =ach 1<k, let (Z"n)k=f,nxk-——>l % ang (Tm)}{:.’l’mAk—’l ig ¢

B

be the respective i-th.projection operations. HNote that for any

T ' ok o,

{m, a}-ary T-operation u we nave u.p, = r..u, where : : o

-«

4
-n <k u . 3.6 G , e . . . .
T —_— is the x-ta power of u. #Since E‘.k is the intersection

, . S per y nxk .
of the subobjects E. | = [S(z.(y)) = 2/5.(yl}] —— A =, we can

x,1i 1

A




o

. fk.ek = gk.ek,‘which implies that E

M

' i . . ' ;
N o R . . el
N . 2N N V :

-

prove E g Ek by showing that E < Ek 3 for each 1i<k. But for

each 1i, Ek ic‘—f?APXk 'is an equalizér of ‘(f.pi, g.pi), . and

Y

“ ke - k k' k k k k
f.pi.e = {i.fk.e = ri.(f.e)j = ri.(g.e) =r,.9.¢ =g.p,.e, sO

indeed Ek £ Ek 4 for each i, hence Ek < E, - Products and
r .

&

ek X

equalizers commute, SO Ek ————a-An'k is an equalizer of (fk, gk).

¥ . : ' .

Also note that f.bi.ek = g.p;.e, because E_< B i Then we Rhve
: : . ,

, N k .
= = = <
ri.fk.ek f.pi.ek 9.P;-€ r.-g9 .e for each i<k, so

A

X S Ek, This completes the proof

13

) o : : k
that E, . and Ek are equivalent and permits us to identify B and

k

+

B, with EF.

‘Condition 1ii) of the definition says that, for any (j, k)-ary

. . ; ‘ "k nxk
T'-operation u, the restriction S}* [ut(y)]A y to B &e—>1
j , 7 _

- M ) x' , s .
factors through Bl e a7 as in the diagram below.

B . R
. R A(t(u))  ,n%]
X S e’
]
‘. |
B —— - — — — 57 ~



»

- diagram; since e

k n k nXx
the projection AT — on B &—»A .

6l

) .k 3 .
We define B{u) to be the arrow B —> B7 which completes the
. \

J is a monomorphis there is only one such arrow.

Condition iv) guarantees that B pYeserves composition of

T-operations, even though perha[ps t does not. Thus, B is a
functor T' —> M. According to condition 1iii)}, for each projection

operation —T’k —ng” the interpretation A(t(qi)) coincides with

b, .
X -
= k But then in the

commutative diagram

. rs
P. -
x
An k i A “{
k
e e
B - A>3
B(C_[i)

the bottom arrow B(qi) has to coincide with the "real" i-th

projection BX —» B, since the composite of the latter with the

moncmorphism e . is equal to p‘i.ek. This shows that B 1is a

product-preserving functor T' —> M, i.e., aT—algebra in M. The

<
=



proof of (3.3) is now complete.

If t: T" — T 1is an equational interpretation of T' in

T of rank n -with universe f(x) = g(x), then applying (3.3) -to -~ « o

L . Mod (T . .
UT' viewed as j/;rai%ebra in Set ( ), we see that the interpretation

g

. M 0
defines a subfunctor U of UTn which-is a T'-algebra in Set Od(T); ,

this means that U is the set-valued component of a functor -

#
Mod(T) —>Mod(T') which we shall denote (a little ambiguously) by t*.
Note that any mapping of. theories t: T' — T -is an equational

interpretation of rank 1 with universe x = x; in this case,

t*: Mod(T) — Mod{(T') is the reduct functor.

3.4. Theorem. A functor G: Mod(T) — Mcod(T') is

coalgebra-representable if and only if there is an equational

interpretation t: T' — T such that G = t*.

Proof. Let G: Mod(T) —> Mod(T') be represented by a .

coalgebra A: T'°® — Mod(T). 1In accordance with our informal usage,

<



e

—f6nctor —¥s,.G £ A: Mod(T) —>Set can be identified with
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we identify A with its underlying T-algebra, equipped with

T'-co-operations. By (3.2), there is, for some m and n, an

(m, n)-ary equation f(x) = g(x) of L, such that the set-valued

T

[flx) = g(x)] &~ UTn. This means that in Mod(T) there is a
_ £ ‘
coequalizer dlagr;m' FT(m) . FT(n)
g

—L2 »a, so that p is a

regular epimorphism. Because copowers commute with coequalizers, .

- ® , :
every copower FT(-n,I/-;/}—{——P——'kQA of p 1is a regular epimorphism.

-Now let u be any (j, k)-ary T'-operation, and let j@A ——ll—kaA

-

>

be the corresponding co-operation. Consider the following diagram:

~

. . h
FT(nXJ) - - - wFT(nXk)
i®p | k®p
;®a - >k ®n
1

jr>70, then FT(n Xj)ﬁiiié iégular-projective, so there is a

homomorphism ﬂ as shown which completes the diagram. If 3j = O,



-

then both FT(n X3j) and FOA are isomorphic copies of the algebra
FT(O) of constants, which is an initial object in Mod(T), so the

diagmwm commutes with h being the embedding FT(O) L——bFT(n xXk).

‘befine a morphism of graphs t: T' — T | by setting tZ) equal ‘té
h for each (j*,jk)—ary operation u of T', where h is any

(nXj, nxk)-ary operation of T such that (kiﬁp).ﬁ = {4.(38p).
This morphism of graphs defines an _equational interpretation of T'
in T with universe f(x) = g(x):

“”‘:}\\ ' Given an equational interpretation t: T' —> T with

(m, n)-ary universe f(z) = g(o::), let A be a coequalizer in Mod(T)
of the T-co-operations E, ;: FT(m) ——-’FT(n). By pulling the
T'-algebra operations of UT,.t* = _P:Q—VUTn ~ back through the

Yoneda embedding, we endow A with T'-co-operations which make A

—a T'-coalgebra in . Mod(T}. It is obvious that t* is represented by

e

this coalgebra A. This concludes the proof of the theorem.

Theorem (3.4) shows that eguational interpretations are the
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syntacti¢al counterparts of coalgebras. In this connection it is

interesting to note Wraith's observation in [42], p. 62, that a‘

coalgebra is a kind of generalized mapping of theories. The syntactical

description of a coalgebra-representable functor in teims of‘én
equational interpretation of theories enables us to inyéstigate the
logical properties of the functor without recourse to ultraproddcts
or modifications of the Feferman-Vaught'Theorem as employed, for

. example, in Burris [5] or Banaschewski and Nelson [31. In particular,.
it is immediately obvious that the representable functor t¥*
correspondi é to an equational interpretation t: T' —>» T will
preserve any logical properties which the def%nable substriactures

provided by the interpretation {see (3.3)) inherit from the "parent”

T-algebras.

3.5. Lemma. Let A and B be tractable objects in a

' category M, and let T be the eguational structure of A. Then B

is a retract of A" if and only if there is an idempotent (n, n)-ary




u

T-operation A’ =t

[utz) = z} <> A,

fact about retracts. First, suppose that B 1is a retract of A

Proof. This lemma is a thinly-disguised version of a

such that B

is isomorphic to the subobject

Then

s ﬂ#ﬁﬁgl . S .
we have arrows B —» A" and” " _L,B with r.s = id_.. The composite

s.r is an idempotent (n, n)-ary T-operation, since s.r.s.r = snidB.r

sS.Xx.

s.r and 1id. Letting

B

u=s.r, we have B ZT [ul{x)

u,_.n
Now suppose A" ——>a

u(z) = z] —s a".

but u 1itself satisfies

AP —EL’B such that s.r

monomorphism, and s.r.s

B

is given with u.u u and with

The arrow s 1is an equalizer of u and

u.u

= 1.

id.u, so there is a unigque arrow

But s, being an equalizer, is a

id.s = s.idB, so it follows that

Furthermore, it is easy to verify that s 1is an equalizer of

x] as required.

id,

well-known . "

idB, i.e., B is a retract

of An.
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We shall say that an equational interpretation of T' in T
is strong if the morphism of graphs t: T' —> T preserves composition

of arrows and if the universe of the interpretation is u(x) = x, <

;/ Qﬁere ﬁ Vi; the interprétation under Vt of thé (1,hi;—a¥y ;dé;;;ty
’operation of T'. let f' be a (j, kl-ary T'-operation, and let
f = t(f'). Then we have uj.f.uk = f. Let f', g', and h' be
T'-operations whose interprétations in T are £f, g, and h
respectively, Then because the lmorphism of graphs t preserves
composition of arrows, any identity f'.g' = h' in T' will
correspond to an idehtity f.g=h in T.

Given an equational theory T. with an idempotent ‘{n, n)-ary
| ]

operation u, we define a new equational theory T|u, the restriction

of T té u, as follows. Say that an (n Xj, n Xk)-ary opération g

of T is a u-operation if uj.g.uk = g. Note that a composite of

category whose arrows are the u-operations of T and whose identity



“{‘uh!‘\-‘mbﬁﬁ& sl
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[

arrows are the powers (which may be computed in T) of the operation

u. The verification that ‘T[u is actually an'equationél theory is

\

}

contained in the proof of lemma (3.6)'below. The inclusion T|u —> T,

*pdlia L

S

together with the equation u(x) = zx, "defines a strong equational

“

interpretation of Tju in T of rank n; obviously, a strong

equational interpretation of any equational theory T' in T with

universe u(x) = & will always take the form of a morphism of graphs

T! —> 7T which,/factors as a mapping of theories T' —— T{u followed
' A

by the inclusion morphism T|u —> T.

3.6. Lemma. Let A be a tractable object with eguational
stfuctu_re T in é small-complete categoky M. Let u .be an idempotent

{n, n)-ary operation in T. Then [u(x) = x} ﬁ tractable object

whose equational structure is isomorphic to Tlu.

PYoof.  Let B = [ulx) = z£}; then by (3.5) B is a retract of

n s : n .
a®. et A" X+B anéd B —»2a" be arrowsfsuch that zr.s = ldB



and s.r = u. Let T' be a skeleton of the full subcategory in M
of powers of B. Define a morphism of graphs t: T' ——>Tlu as

follows. For each arrow Bk—-g—’BJ of T', 1let t(g) be the

. : {n Xj, nxk)-ary T-operation sj.g.rk; it is easy to see that t(g)
is a u—operatiqn of T, and it is also easy to see that t preserves
compositién of arrows and takes the identity arrow B —> Bk tov" uk, .
for each k. Hence, t T' —> T|u is a functor and is surjective

on objects. Because powers preserve retractions and coretractions,

every power of. r 1is an epimorphism and every power of s is a -

« -
-

mnomozphiém, so it follows that t is faithful. Finally, t is
full, since for any (an, nXk)-ary u-operation f of T we have R
f = uj.f.u = sj.rj.f.sk.rk = t(rj.f.sk), We. have shown that t

is an isomorphism of categories, so B = [u(x) = &£} is a tractable

P N

W

.. ___object, since T' ¥ T|u is locally small. This proves the lemma. L

3.7. Lemma. Let A and B be tractable objects in a

small-complete category M, and let T be the equational structure
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of A. Then A and B are retracthequivélent, with B being‘ a
retract of A" and A being a retract of Bm, if and only if T

satisfies the following conditions: ‘

-

v Ul

i) There is an idempotent (n, n)-éfy 7'714—61:'>érration_ u such

that B 2 [u(x) = x] e a";
Cii) There is an (n xm, 1)-ary T-operation d such that
ut.d = & :
. 7
iii) There is a (1, nxm)-ary T-operation p lsuch that
p.d = id. -

Proof. By (3.5), condition i) 1is necessary and sufficient
for B to be a retract of a”. Suppose that A and B are retract-
r

equivalent as described above. Then we have . B _s_’vAn and A —B

with r.s = idy, and we also have 2a Dop™ ana B Z5a with

7797."5"57526;.* “The operitlbns called for by the theorem are u = S:Iy

§

. I
d = sm.h, and p = g.rm. On the other hand, now suppose that

v

-

conditions i), ii), and 1iii) are true. We may suppose that u = s.r,
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S T 71 .
' .a m
where s and r are as above. Consider the arrows A ————» B - -
m s° : | | -
and B —B:5 5 a; using ii) and iii), we compute
p.sm.rm.d = p.um.d = p.d = idA’
T i
. . . - i
iy A - i5-a— reta;actqai*B%fﬂ_l‘hlsf completes the proof. ¥
Combining (3.1), (3.6), and (3.7), we now have a syntactical

characterization of all the equational theories 'T' which are Morita

equivalent to a given equatiorial theory T.

3.8. Theorem. Equational theories T and T' are Morita '
\ S .
i

v

equivalent if and only if, for some cardinéls m and n, the

-

following conditions are satisfied:
i) There is an idempotent (n,”’ n)-ary T-operation u such

that T' is isomorphic to T|u;

ii) There is an (nxm, l)-ary T-operation d such that

u.d = d‘; .

iii) There is a {1, n Xm)-ary T-operation p such that



e .

.
H
);Jg
2
' £
o O S e E
: A , ' - 72 ;
. B A . | §
4 o {% =
A strong equational. ifiterpretation t: T' —» T ,withl i
(n, n)-ary universe - u(x) = & “will be called a spanning equational ) .
) i . R ‘ R © ; , :
inte;gpretation if t det;etmines an isomorphism of T' and Tlﬁ, -
- and if conditions 1ii) and iii) of -(3.8) are satisfied. It is :
evivdént that  G: Mod(T) —* Mod(T') is an equivalence  functor if and
only if there is a spanniqg egquational interpretation t: -T' —>» T . ’ “;
such that G ¥ t*, . :
&

There is a category-t:l'xeoretic'generalization of Morita
o ) T
‘equivalence which has been studied in various forms and for which =

- ¥ . 0 . - - fg

) ’ ( some partial characterizations have been published. Given a fixed -

?‘\J/ » - [ L . :
base'category M, two small categories A  and B are Morita B

5 .
equivalent over M if the functor categories MA and HB are
equivalent. S -
: i -

—— U. Kn B
over Set; his Theorem 6.1 is actunally a special case of (3.8), since ;
sach monoid A is identifiable with an equational theory A' which ’ ]

b - s




features a monoid of unary operations isomorphic to A, so that the

13

A ‘ . .
category Set of "left A-acts” is identifiable with Mod(A').

According to Knauer, Banaschewski-. [2] contains similar results.on
{
[

monoids. ' . .

~

~ °

A related paper is Elkins and Zilber [12], in which Morita

equivalence of arbitrary small categories over Set .is characterized
: . . v

.

2
H .
id a way which is obviously strongly related to our (3.8). In the

términology of [12], a weak functor is a compoéition-preservihg .

I3
H

mérphism of graphs. & weak equivalence A ---» B is a weak functor

H X .
_'éa?ttisfying conditions analogous %ﬁhos,e which define a cateqbty/ '
s 7

equivalence. Theorem 4.4 of [12] seates that, for small categories
- : A B o i
k and B, the functor categories Set and Set are equlvaleqt if
‘and only if thére is a weak equivalence A -—<» B.

It should also be noted that PreYd-Il7J contains a syntactical

“characterization of auto“equivalences Fod (T} —= Kod(T), for finitary

‘equational theories 7.

i



< p—

Next we Qresenf a few corollaries to (3.8).

s -

©3.9.. Cordllaiy. Retract-equivalent tractable objects in a

P 2

category M have Morita equivalent equational structures. -
i o - .

>

©3.10. Corollary. If A is a fractable object .in a

=

small-complete category ¥, and if the equational structure of A is

¢ .

Morita equivalent +o T, then A 1is retract-equivalent to some object

B whose‘equational structure is isomorphic to T.

The significance of the next lemha is that, if we are
\ - - .

interested only in finitary/equaticnal theories, the cardinals m and

»n mentioned in (3.8) wmay be taken to be finite. Part i) of (3.11)

iz certainly not new, but part 1i) might be.

5

N

- -~ 3,11, Lemma. let T be a finitary equatiomal theory, and —

iet A be a T-algebra belonging to Mod(T). Then: =

iy I1f A is finitely‘génerqted; then the eguational

'
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costructure of A is finitary;
ii) If A is a regular progenerator whose equational

costructure is finitary, then A 1is ffnitely generated.

Proof. If 2 is finitelg generated, then it is evident
from the probf of (3.4) that there is an equational interpretation of
finite rank of the equational costructure T' of A in T, so it
follows that T' 1is finitary: An the other hand, suppose that A is
a régular progenerator whose equational costructure T' is finitary.
Then by (3.1) the comparison functor E: Mod(T) —> Mod(T') for Aé
is anigquivalence functor, so by (2.3) A 1is finitely generated.

This comp)Yetes the proof of the lemma.

. . .

Note that the converse of condition 1) above is not valid.

If A has;ag;g;ggg;\ggéggg;phi%ms, then the eguational costructure

+

sf A is the trivial theory, i.e., the theory Card® whose operations

.

are all trivial, which is certainly a finitary-iheory. an example of’



an algebra with no proper endomorphisms but which is not finitely

generated is constructed by equipping a countably infinite set X
. Y

with a sequence (ui : 1 <w) of unary operations, each of which is a

permutation of X with a single fixed point, with each point of X

being fixed by at least one of the operations, and with the operations

¥

chosen sc that, for each point a of X, the set X - {ui(a) : 1i<w}

\z

is infinite.

spplied to finitary theories, (3.8) cbviously has great

potential for transferring lcgical properties such as categoricity,

- - o ,‘\
stapbility, decidability, and so on. For the moment we shall content

x

curselves with two logical corcllaries to (3.8). A finitary equational

7 .
theory T 1s countably pzes&ntable if there‘if a presentation of T

o

in terms of countably many equations and countably many distinguished

-

cperaticns. An equational theory T 1is locally finite if, for each

‘&»A'

zn and n, there are oniy finitely many nontrivial (m, n)-ary

T-cperations.



3.12. Corollary. A countably presentable finitary equational

theory is Morita equivalent to exactly. w different finitary

equational theories, and they are all countably presentable.

3.13. Corollary. Every finitary equational theo hich is
Horita~equivalent to a finitary and locally finite equational theory

is locally finite.

The canonical language L of an equational theory T, while

T

adequate for technical purposes, is inconvenient for informal discourse

e
.

because all of its operation symbols are formally unary, which makes

it necessary to employ a multitude of operation symbols for préjections

and argument-shuffling operations. We shall frequentljhresort-to'a.

self-explanatory notation, employing variables in the familiar way,

S . -»

when discussing the operafions of an equational theory T. 1In the-

“terminology of Makkai and Reyes {33], we are using the extended

canconical language QE T. The following examples, using the extended



language, may help to provide an intuitive underétanding of how the
operations u, d, and p mentioned 4in (3.8) determine an equivalence

of categories.

Recall that, for finite m>1, Pm is the finitary equational
'fheory of m-valued Post algebras, which was pointed out at the

beginning of this chapter as being Morita equivalent to the finitary

N

N,

N\

équational theory BA of Boolean algebras. A survey of basic

——

lattice-theoretic results concerning Post algebrgs}is given in Balbes

© and Dwinger [1] and in ﬁa;iowa [37]. Rasiéwa érovides é presgntation
of P_ in terms of:

i) Coﬁstapts.-eo; elf P -

ii)‘ Unary,o?eratidﬁs =, Dy Dy, ...', D

iii) Binary operations /\, V, =+

iv) A list of equational axioms (py), (p)),.. - - + (pg).

The eguational axicms ensure that every m-valued Post algebra

o X -



.t

is a Heyting algebra with respect to ey €y

being the "one."” The

-+, with g, being the "zero" and e 1
can be proved to coincide with "double negation,™

operation Dl

1 x (see [37], p. 137).

i.e., Dl(x) =

The operations u, 4, and p required for a spanning

. N\
equational interpretation of rank 1 of  BA in Pm are as follows:

i} u 1is the (1, l)-ary "double negation" operatiocon

u{x}) = =~ x

ii) d 1is the (m-1, 1l)-ary operation
d(x} = (Dl(x}, DZ(X), - e e Dm»_l(x)}v

iii} p is the (1, m—1l)-ary operation

) = (el/\xl)v(ezl\xz) V...V o

PIXy, v v e Xy

»

A28

The identities which u, 4, and p are.required to satisfy

are given in {37} as jgs),rwhich takes care of both 1) anﬁ ii} .of

{3.8), and,(p7), which corresponds to condition iii) of (3.8). ?he

operation u picks out the subset of all complemented, or "Boclean,”



elements of any m-valued Post algebra. The operation d dJdecemposes

> .
each element @f the Post algebra into . chain of Boolean elements

=

wnich can be re-assembled by p to recover the original element.
The u—operatibns of Pm are precisely the operations which preserve
Boolean elements; It is easily seen {see {37}, p. 136} that the

Booclean elements of ény Post algebra form a Boolean algebra with

respect to the operations which presgrve‘them. Thus, the analysis

cf Post algebras as chain-based distr?butive lattic;s by Epstein [13]
and‘Traczyk iél] correspands precisely to the syntactical conditions
cosed by {3.8) for Pm té,be Morita equivalent to-the theory BA of

Boolean algebras.

The tepresehtation of ;he_mdvaluedipost algebras as lattices
of nonincreasing (m—1)-element chains in Boolean algebras (ség

o
4

'~ Rasiowa [37], pp. 143-144 for details) provides a spanning eguational

interpretation of rank m1 of Pm in BA. In this case, the three

BA-operations which determine the spanning iDtEIPIetat;bQ\Effi

L



i)- an {m-1, m-1l)-ary idempotent operation

ul{x., « « . , x )} = (=

1 m-1 1 XNy e X A AR, )

D —

ii) The {m-1, 1l)-ary diagonal operation

For the next example, let T be any equatiocnal theory, and
L

k -
let T be the full subcategory in T of powers of Tk, then k'I‘

is an eguational theory, called the k~th matrix theory of T for

reascns explained in Wraith [42]). Since kT is the equafional

P 4 . . . . . .
structure of T, which is retract-equivalent in T to T, it

.

follows by (3.9} that k'l‘ is Morita equivalent to T. A spanning

‘a\*‘wﬁﬁmw a mapping of theories

unless k = 1. ‘The operation u in this case is the identity arrow

Y D)

of E‘K, while & 1is the diagonal arrow -T —-PTk and p" is any

»



s

projection Tk — 7, ; - v s L .

”~

Another significant example relevant to (3.8) is provided by
b

the role of idempotents in the endomorphism ring, i.e., equational

.costructure, of a free module in defining Morita contexts (see Cohn
71, pp; 46-47); the counterparts to d and p do not seem to be \ e

Tointed out in Cohn's discussi';n, however.

o

Lawvere [28] defines an algebraic functor to be any functor
of the form g*: Mod(T) —> Mod{T'), where T and T' are equational

and g: T' —» T 1is any product-preserving functor. The degree of

-

such an algebraic functor g* is that cardinal n such that .

* =
UT,.g UT .

Let G: Mod(T) '-}—-’Mod{'r') be any functor such that

G_,.6 = U”. Then UT,.G is represented by PT(n), and the

T“U T .

-

) . . R "7 ‘ 77 . . n .
equational structure of U,‘?,.G is isomorphic to T. Consider the

following comutatitk diagram.

i}
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> Mod ("'T) T
g* g’
- Set ¢ Mod(T"') T'

Here, g is a uniquely-determined mapping of theories, and the

, : n
comparison functor E for UT

where

g

in T discussed above. Thus, we have G = g*.

-

G 1is an algebraic functor of degree n, in Lawvere's tetminologjg.

. . . n
is the equivalence functor t*,

n, n . . . . 3
t: T «—>T 1is the spanning equational interpretation of

n

t* = (nt.g)*, S0

Now let G: Mod{T) —> Mod(T') be any functor whose .

set-valued camponent U = UT

by a regqular progenerator, and the equationdl structure ™ of U i

,-G ;Waaic; then’ U

N

S

"is represented

Morita equivalent to T. Comsider the followind commutative diagram.




&
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TII - v
g
! i ’:
' - | set & Mod (T"') T
T T e : S *
- Here again the comparison functor E is-an equivalence functor, and
g is a uniquely determined mapping of theories. 1In this case,
\ - B )
E = t*, where t; T" —= T provides a spanning equational
interpretation of T" -ip T as demanded by (3.8). ‘Note that t
factors as T" —>"pe—»m where n is the rank of the o a\\ B
7interpré'tation. Thus, -we have G = ,g*.t* =" (t.g)*, where g is
a mapping of theories and t is a spanning equational interpretation
of rank n.
The foregoing considerations suggest a broa_dening of .
i " Lawvere's definitiom. Say that a fuzictor’ G: Mod{T) —=»Mod(T')} —is ,
~algebraic if G 1is represented by a regular p‘rogene;:ator. . 7
>

5

<
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3.14. Theorem. For any’equationai theorieé T and T' and

v

any functor G: Mod{T) —> Mod(T'), the following are equivalent:

; 4

57)‘ G 1s algebraic;

»

-

ii) G has a left adjoint a% preserves and reflects

regular epimorphisms;

s r-J
T
!

/ iii) G factors as an equivalehc; functor followed by a .

S :
-~ reduct functor:

\

iv) The set-valued component UT"G of G is monadic; "
. : _ .

K - . - .

(t.g)*, where g: T' —» T" is a mapping of

| “\

equational theories and t: T" —>» T 1is a spanning equatiomal

n

Q)G

X

N

interpretation. V\

A

Note that ii) is used as the definition of the term

"algebraic functo¥¥ in Herrlich and Strecker [21], except. that the
- ~ ) , "

Y

domain of an algebraic fmctcrésdefinedbythaneednot be an

3

equational category. The role of regular progenerators._ in représent‘ing

-

algebraid functors is explicitly pointed out in [21], Theorem 32.21.
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’ . ‘The equivalence of conditions iii) and 1iv). above is implied by' '
‘Linton's result (2.5). The syritactical characterization v) is new. - . -
‘Define the rank of an algebriic functor G: Mod(T) —> Mod(T%) :
- ' to'be the smallest cardinal n such that the z"egul'ax_ vprogeneratbrr‘l“‘} k
. }vhj.ch_ represents ‘G 1is generated by 'n ' elements. . If G has rank

"+ " 'n, then n is the smallest cardimal k } fg{:}ﬁnich‘ U,;,.G is a L

P . e - -
. - ~ -

- retract. of . UTk, and for 4w'hich the spanhing/ interpretation ."f,‘{:. L -
. . i ; . .
N ) . . . L [ )

mentioned in condition v) ™bove factors through k. Note that, .by ° _
(3.11), the equational structure of ,UTHG .is-finitary if and only if ™ '
. ST . ‘ T e Ty

G ‘bas: finite rank. I o s R

)

£t

a
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‘;:\“

universal algebra A 'by-a Boolean algebra B' was introduced by

A. L. FPoster {[14] as a dgvibe’for making structural comparisons

between Boolean algebras and other kinds of algebras such as p-rings.
One of Foster's priﬁcip&l résultsiwas that, when A "is primal, i.e.,

vfinité and nontrivial, having all possible finitary operations,' the

equatibnai class generated by A is the ¢lass of all'isoﬁorphic copies

of Boolean extensions of A (see [14], [15]). From our point of view,

t

Foster, without the help of category theory,‘defined and studied a"

‘class of functors, showing that certain of those functors were

categgxyggqﬁizdlenges,A_qumggalgingthisgchap;erwis,tg,proggﬂsgme;” e

resuits about Poster's functors which would be difficult: to formulate

Ll
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‘without usi;a categor?—theoretic concepts, but which hawve algebraic
v . ; y ) ,
import} In showing that these results carry over to infinitary . ;

algebra, we prove an‘infinitary version of Foster's theorem cited

_ functors provides a useful alternative to the topological or

ébove which could not be proved by directly extending Foster's

original method. Our analysis of Boolean power functors as algebraic

sheaf—theoretic'appfoagh as’exfmplified’by Bugsis [?] and

Banaschew;ki and Nelson [3]. 7 .

We begin with a naive search for all the monadic £unctors
Mod(BA) — Set whose: equational structure is finitary. Such a seaxch

would be motivateé, if we did not already have other reasons for it,

by the fact that Mod(BA) is an‘important’and comparatiy?ly

E

well-understood equatianal category which enjoys an’gg;gg;;}e of

a

interesting and easily-studied coalgebras. As (3.11) informs us, our '

search is egquivalent to the problem of identifying‘allAthe finjtely~

generated regular progenerétors in Mod(BA). Since BA is a locally



v .

a

¥

finite theory, all finitely generated Boolean algebfas are finite.
The finite'regulér progenerators in Mod(BA) are rather ‘easy to find.

~

-

4.1. Lemma. Every finite Boolean algebra having more than

———

two elements is a regular progenerator.

Proof.  Every finite Booleén algebra is a power of a

>

two-element Boolean aldebra; the free algebras are the ones of the

. n
form 22 , where n is the number of free generators. Obviously,

for & > 2 the free algebra FBA(l)’ > 227 is a retract of the

algebra Zk; furtheriore for sufficiently large finite n, 2* is

n.

a retract of ;3/' =1 FBA(n)' ,Thus, every finite’Booiean’algebra‘

AN

having more than two elements is dually retraét—equivélent to 'FBA(l),

¢

hence is a regular progenerator.

~."

a7

In fact, every countable Boolean algebfa having more than

L

two elements is a regular progenerator in Mod(BA); not much is known

B - »

about the uncountably infinite Boolean aigebras which are regﬁlar

4

L 3



3

progenerators {see Balbes and Dwihger [1}, p. 107).

‘ '\‘ 4.2. Lemma. For any finite m > 1, the Equational

costructure of the Boolean algebra 2 in Mod(BA) 1is isomorphic to

the finitary part of the equational structure of an m-element set, i.e.

to the equational theory Pm of m-valued Post algebras.

Proof. Since 2" is finitely generated, its equational

1

costructure is finitary, by (3.11). Thus, it is sufficient to verify

that the finitary parts of the two theories cited are isomorphic. For

n
all finite n, the Boolean algebra 2" is an n-th copower of 2"

. n L
in Mod(BA), and the assignment of 2" —é—ﬂbzm to each finitary

operafion m —E*'m establishes the required isomorphism.

Thus, if the set A hés m > 1 elements, then the

e

representable functor 2A: Mod (BA) — Set is an m~valued Post algebra .
— b . B - -

in Sethd(BA); the corresponding comparison functor Mod (BA} — Mod(Pm)

+

.. ' . A .
is a category equivalence, since 2 is a regular progenerator. By
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combining (3.1), (3.11), (4.1), and (4.2), we have a proof of T. K. Hu's

result (1.3).

-

If A 1is a finite set having at least two elements and B

is a Boolean algebra, the Boolean power A([B} is the set of all

A-indexed partitions of unity in B, i.e., the set of all functions
u from A into the underlying set of B such that:

i) For a #b in A, we have u(a)Au(b) =0 4in B;

ii) \/u(a) = 1 in B.

a€h .

The definition above is A. L. Foster's (see [14]}). For each
homomorphism B -—h—’C,A let A[h] be the function which sends each

partition u. in A[B] to the partition h.u in A[C]; we have now

défined a set-valued Boolean power functor A[-]: Mod(BA} —>Set.

4.3. Lemma. The functor &A[-] is represented by the

Boolean algebra 2A.
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Proof. It is eaﬁy to see that the restriction of any -

homomorphism 2A —>B to the atoms of ZA' determines an A-indexed

—partition of unity in H®, and that each partition u belohging to

. A
a[B], regarded as a function from the atoms of 2 inte B, has a

" unique extension to a homomorphism 2 —-»B. Moré formally, the ~

isomorphism gf_———rat-j in the functor category setMod (BA)

corresponds, by the Yoneda Lemma, to an element of A[Zé] or, in

'Mac Lane's terminology, to a universal element of Al-]. That

element is the partition A-——*ZA defined hy the insertion of the F:}f

. : ; ya
atoms. g/
-+ N .
The representability of Al-] does not seem to have been

directly exploited before to any significant extent, although

Banaschewski and Nelson [3] treat Aa[-] as a contravariant -
algebra~of-continucus~funetions -~ C{=,A)  from topological
e

spaces into IYSP(A), and it is pointed out that C(~, A) has an

P"adjeint on the right,"
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™
Foster's definition of A[B] in [14] includes a formula

3

: £
which shows how each finitary operation- An —>A can be

——ﬂh(vdﬁ\ n £
transmogrified into an operation A[B] ——aA[B]. If A is a

finite algebra in some finitary eguational category Mod(T'), -them - -

«

’ ' - o
the Boolean algebra P isa T*~coalgebra in Mod(BA); each finitary

. n , .
operation A £, A determines a co-operation

exploiting the fact that every Boolean algebfa B has an embedding
can show that both

into a powér of a two~element Boolean algebras

Foster's formula for f' and the co-operation £# yield the same

‘natural transformation jAE—]n —> al-]. (Note that from now on we

shall often identify A[-] with 27, in light of (4.3) ).
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n f N Find . :
4.4. Lemma. Let A —> A be a finitary operation on a

finite set A having at least two elements, and let < f' = f* be the

corresponding operation on the set-valued functor A[-]. pThen for any

Boolean algebra B, the acii:% f'B,: asi® — A[B] is described

as follows. For any u = (uo, Upr e un-l) in a[B]" and any

c €A, we have.

7[f'B(u)](c) = \/ /\uj(bj).

5 4 f(b)=c j<n

Proof. Each of the partitions uj corresponds to a

homomorphism vj*: 2A —-—>‘2I' which factors through B‘——’ZI; these

N . . n : 3
homomorphisms collectively induce a coproduct homomorphism ZAj"Z

I

which factors through B and corresponds to  u¢ A[B]n. To simplify

the notation, we idemtify elements of B with subsets of I. Then

(£ @l = £ (v91dch

¥
il

'[v*.f¥)({9})

L 27

[(£.v)*] ({cH




a5

= {i€1I : [f:v] (i = ¢}

= {ier : fvy(d), . . ., v (1)) =c}
= U mv *({b h
'f(b)-g 3<n
= U mu (b)
f(b)=c. j<n
Note that {4.4) only serves to show that our viewing A[-]
as a representable fimctor does not conflict in any respect with
* ~

’ t
Foster's original definition of the Boolean extension construction; \

the computation upon which the proof is based is, with minor
variations depending on context, widely known (see [3], p. 5, for
example), and was probably used by Foster himself to derive the

formula given in (4.4). Indeed, since A[-]  is representablé, it

- X : I ‘
preserves products and monamorphisms, so if B S—* 2" we have

7{,L‘—’ ZJ A”., The function I —~ = 2" in the proof above is

5

ivalent to an n-—tuprle of elements of /21 , and the composite

l’h —f-'A corresponds to the resulf;* of applying f "coordinate~



26

wise™ to that n-tuple in the familiar way. This is how one, shews

sthat Boolean powers of an algebra A are isomorphic to certain

y ! -
¢
»

subdirect powers of Aiwhich Foster defined in [14) and called

a e
"normal” subdirect powers. .

.. _‘There is one fact which has apparently never been pointed ,

‘out before Fhaércén be derived from (4.4)'together with (4.3) and
(4.2}, namely, that the Booleanrpower functors A[-], where A is

! finite, have finitary equational structure, i.e., they are incapable

.of carrying ncntrivialyinfinitary operations, so thatAin fact»every -
nontrivial operation which A[-] admits is of the kind described gy

-~ f

The set-of-continucus-functions version of A[-], featured in

the formula in (4.4).

L. -~

131, is recoverable from our rgpreéentable functor version quite easily.

Let X be the Stone space of B; then B is the subalgebra of clopen

. sets in 2x (identifying 2" with the poﬁer set algebra of XJ}.

Informally, we ﬁave a chain of correspondences



A[B] <> homamorphisms P B

. A X ] ) .
<+ homomorphisms 2 —* 2 which factor :

K:2""\ : through B «—» X ) . 3 -

«> functions X £, A such that f*({a}) ¢ B /

- . - c ’
S for all a€a -
» <> continuocus functions fiom X to‘ the A
| disc';:ete spage A.. : | ’ " r . 4
We ;hall refer to any functor Mod (BA) —;Mod(T) ' where T ' d
is equat;.onal, as a representablg Boolean "p_Qwer functor if it is ' o T -
rgpresent_ed by finite Bool'ean algebra with moretha.n two elementsr
The next resulf Vis really just a restatement of .."(.“4.1) in more o
@ressive laélguage. | (
. : st,'xhoio:en;?,gar;an;Lecmgtimal theory T.. the algebraic
functors ;Mo;i(BAi ———'*Hod(;‘l of finite rank are preciself éhe . , T A

representable Boolean power f\ip_ctors.

-
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'L o V » n:’ V B ) ] » . - . ] ' 7 . .

The definition of the functor A{BJ givén>above depénds

»

upon- the finiteness of the set_’A_ to guarantee that the join:ih ’

condition ii) of the definition is an operation in"the Boolean

e L . Lt e g

=

. >
. 4 .
o . -

algebra B, rather than just an order-theoretic supremum} so that

partitions will be preserved by composition with homomorphisms. For

infinite A, there.are two versions of the Boolean péwer A[B}] to

*
[ ]

choose frdﬂ‘*hE::!;i:fion' which remains faithful to the set-of-

continuous-functions approach, is called a bounded ‘Boolean power and

e

'Vuses only partitions u: A —>.B for which u(a) is nonzero for

only finitely many aé€ A; bounded Boolean powers are‘discussed in

S -

Chapter 5. The other way of defining A[B] when A is infinite is

-
- -

to require that B be a complete Boolean algebra, so that the

definition of A[B]

x

given above still works, with the join in

condition ii) being an infinitary one. This approach has a serious

4

-

of complete Boolean‘arlgebr_asrwith complete homomorphisms (needed to

< | e e

M

disadvan;ageT4fromﬁa4ca;egory:theqreticfpgintggﬁ_yiew:' the category




. s B
L‘,;V . > ; * 99"
- o 4 . N n
~ e ‘ o -
'p,regerve partitions) - is not an quaj:ionai category and even lacks ( ;
Some desirablé;féaéu'x'es, suchiasi coproducts of infinite fanilieg of - 1
- algebras. Rag:}at than struggle with functors defined om such an .« —y
e unpleasant alin ca gory, we. may:re.é,trict the ‘domain of A[-] to an 3
S . Dol ’ : e N ans ; 1
vép o ‘\\ . . g - v ’ \)\e‘~ / . % .
I equational Category of Boolean algebraswhicﬁ are sufficiently o %
. “ ‘ - ' . ) | - - A %
’ complete td& have A-indexed joins.. ‘This éppfoach is not unknown in . % )
. o , : ;_
the literature (see Karatay [26], for exémple) , but is not common, :
. sixrce—m}my investigators like to treat the Boolean power struction :
"as a bifunctozri with both the set- A --and -the Boolean -algebma -B- bea:nq‘d g R
. B B . r#
R | L i
" variable; the Boolean algebras are required to be complete in order to f
: o B
accomodate arbitrarily large sets A. It seems likely yt' a serious L s ‘
functor-theoretic investigation of Boolean powets as bifunctors ;rould v T
best proceed by restrictingq:o sets of bounded cardinality {a ~ /
7,,7777,xel}:behayed4:ategg1¥Lmd to Boolean algebras belonging to some 4
equational category of infinitary Boolean algebras as defined below. : §
. 3
, ) . : %
Let k be an infinite reqular cardinal. A finitary Boolean 3
2
> p &
- — ‘
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-

algebra B ‘is k-complete if every.family of fewer than k elements

3

t
-

,hag a supremyu and an infimum in B relative to the customary

partial order. A k-complete Boolean homdmorphism is a poolgaﬁ

L
L PR

. »
LSy

Q\ e

LR
2

R )

et -
- # . -
i .

A .o N

hmrphf;m}gzhMMeﬁ;thé,,mmm&,mfmgfjamﬂieLof

4

7

& - .
=" . 3 >
-3 - i R

X

D av iiéj}iviﬁé-to refer contindally to algebras which ar

* .
R

for all m ff’k-“

cof

category k-Bool of alk k-complete Boolean algebras with k-complete

X

. v [ L~

. _‘“‘ . C *’1"" . ‘}lf, -
It follows from®Sikorski [40], p. 131

-

L ¥ hd

R,

homcmorphlsms has a répz}e\sé’ln"tabl\e Vunderl‘/ying—,s'et funét

-

left adjoint F,

»

s - i -

i.e.; a free algebra functor. :

I3
i

there is an mderlying—se£-§res_erving,a gqgiixfglence of categories

3

k-Bool —# Mod{k-Ba), where k-Ba is_tHe eguational structure of the

s
N -
”

EN ' o

»

we %

b

5 W o,

E

+ fewer than k. elements. . We deviate from:Sikorski's usage in [40] to

& "m-complete
ff, ’ th;at the

L < 7(,“
or U with a *

+

[

4

.
-

»

4.6. Lemma. The category %-Bool™ is monadic over ’,Se:.;t, i.e.,

3 . . o . » W L, . 1
. /underlying—set functor U:.;k-Bbol-ffs—? set. .
T 7 5 — ’ e s -
. ; 3 c - i .
- ., . : B i -
et
5 . a,
e = - : . . .
: .
S .
L



Proof. We shall use (2.1) . to prove the theorem. It .

@

~ follows from Sikekski [40], p. 131 ff. that U has a left adjoint o 2

(the free aléebra functor) . According to R. Lagrénge [28], a k-complete C
;‘"f“] *"*;’*f’iromomorphrsrr" v T—% —is-an-epimorphism- —inf—k-Beel%ﬁ——andbnlkifr«—w‘*A*—? —

4

U(f) is surjective. 1In particular, if f is a regular epimorphism, .

¥then it is an epimorphism, so” U(f) is surjective. ‘Thus, U prééerves N .-

; regulér epimorphisms; To show that U refleéts regular epimorphisms,

suppose that U(f) is surjective. Form the kernel‘congiuence

1

D € U(B) xri(B) of U(f) in Seé, i.e., D =',{(£a, b) : f(a) = f(b)}.

A

Then the two projections D —>U(B) are a kernel pair for U(f), and

U(f)) is g coequalizer for them ;in Set. By routine calculations, it

&

) El R - N . i . . i . _‘
_can be verified that D is a k-complete subalgebra of BXB,- that

the kernel pair in Set 1lifts into _k-ﬁool as a kernel pair of f,

o

‘and that f coequalizes its kernel pair. Since U is representable

,‘g,/ | —— . . i ’

* (by theAfree algeﬁfa F(1)), it preéerves congruerice relations. To

- . . 4

\
|
[
|
.

2 , .
show that! U reflects congruence relations, le:%}Cf——ﬁgi*B be a



8

//// k—-complete subalgebra such that U(C) is an equivalence relation on
r S U(B).v Then by routine calculatiens check that~" U(B) /U(C) 1is a
k—Eomplete Boolean algebra with the obvious operations,vand that the

3 -

__projections C —> B are a kernel pair for theggrgjectidn B —» B/C.

?

There are no surprises in any of these computations, because the fact

that theAfilter £x({1}) for any k-complete homomorphism f is a

=

k-filter and that the quqtienf of any k-complete Boolean algebra by a

+ = v

k-filter is a k-complete Boolean algebra ([40], §21) guarantees that

» everything works as it_should.

~i

Lemma‘(4.6) should be regarded as a "folklore" result; see

3

. Manes [34] for related examples.

It is intuitively hélpful to have a convenient presentation '

. .
of the'equationalrtheory k-BA of k—completevBooleag,algebras. As
. S v g

I3

one would hope, it suffices to distinguish the constants 0 and 1,

~*v'f*~~w;4-ﬂW~hthe~cemplemeatmgpeza€ion;4:¥1fandﬁthegm:aryujoin_cgeration§. for every
7 . ‘ C

‘'m < k. That this works follows from the fact that a Boolean algebrq

-



'd

_BA —> k-BA —3 T

- . . N . . N N
atomic Boolean algebras. Define an equational theory T to be an

__ that, if T is a quotient of k-BA, then Mod(T) "is a full

103

is k4comp1ete if and only if it admits these operations, and that a

¥

& e

Boolean homomorphismit™is k-complete if and onlg\if it preserves these

operations. From now on, a k-complete Boolean algebra is identified

~

with a k-BA-algebra in Set, i.e., a Boolean algebra with imfimitary — —

* i

/PPérationS'which pick out the;fagrema and infima of families of fewer

.

than k elements.
Note that- there are obvious mappings of theories

’ whére— T.

5 is the equational structure of a

2

Yy ' o -
two-element set, otherwise known as the equational theory of complete

» -

equational theory of k-complete Boolean algebras if T is a quotient
theory of  k-BA, i.e., if there is a full mapping of theories

k—BA-——?‘r. The corresponding equational category Mod(T) will be

7

rcalled an equational category of k-complete Boolean algebras. Note

subcateéory of Mod(k-BA) which is closed under H, S, and P.



Intuitively, an equational theory of k-complete Boolean algebras is -
the result of adding distributivity axioms to k-BA.
For the rest of this chapter, let BA* be a fixed equational

theory of k-complete Boolean algebras.

f ) -
- -

4.7. Lemma. If A is a set of cardinality less than k, but

greater than .1, then 2A and éll of its copowers in Mod(BA*) are

regular progeﬁerators in Mod(BA%*). FJ‘EC’

Proof. Every nontrivial copower of a regular-projeétive

. object is regular-projective, and every BA*-algebra with more than

o -

(1) = 22'.asra retract, so to prove the lemma

two elements has FBA *

) ‘o . . . A . . ’ . .
it is sufficient to show that 2 itself is regular—prOJgs;lve. Let

B —EL’C: be a regularvepi%gfphism, and let 25 —E*'C be any homomorphiém.

We shall comstruct a homomorphism 2P 2+ 8 such that f.g = h. Since

77“”TA172Wg’viﬂ;fﬁi;;éiéebra 2" is generated by its atoms, so it suffices

;777777 ‘ / . - i . . S {f

~

to desc¢ribe what g does to the ghoms.
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Let (a; : 1 €m) bea well-ordering of A, and let g({ao})

be any element b

0 of B such that f(bo) =rh({a0}); bO eﬁif}s,

because UBA*(f) is surjective.. (Note that we are identifying .
~~the elements of 2> —with the subsets of A}, If-0.< i <m, and

g({aj}) is defined for‘each j < i so that f(g({aj})) = h({aj})

-

and so that for all j' < j we have g({aj})/\ g({éj,}) = 0, then

let g({ai}) = b, - \¥/;({aj}) » Where b, is an.element of B

j<i

such that f(bi) = b({ai}).. The foregoing suffices

for all i < m. Finally, let g({a })’ = = Vgl
i<m

Lemma (4.7) provides an important example of how an equational

%

category of k-complete Boolean algebras, for uncountable k, differs

from the éategory of finitary Boolean algebras. In the latter C:>2i;éf

~

éategory, no infinite power of 2 1is regular-projective. Indeed, no

infinite complete finitaxy Boolean algebra is even embeddable iﬁggifree—

f —_— -

\ v

finitary Boolean algebra (see Sikorski [40], p. 67).

|
. i
)

——
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. , n :
4.8. Lemma. When |Anl < k, .the BA*-algebra 2B is a

%

5 A :
retract of the n-th copower n®2 of ZA in Mod(BA*). If n is

finite, then the retraction is an isomorphism.

Proof. Each projection A" £ a induces.a (complete)

fem 2® B5 R g » s :
homomorphism 2 2 , which we shall call a coprojection; the n
a fn A"
coprojections induce a coproduct homomorphism n®2" ——— 27 | By
n A '
hypothesis, lA ] <k, so 2 is generated by its atoms and is a

regular progenerator in Mod(BA*), by (4.7). For each i < n, the

- ..n
. : . . ; - A :
i-th coprojection P 2" . sends {c} .to {aG.An i.a; = c}. For

any given bGVAn, we have {b} ==//—\\{ae.An ta, = bi}, so clearly
. ‘ i<n
A ‘
each atom {b} of 2 is in the image of r but then r =~ must
o AP ,
be surjective, hence it is a retraction since 2 is regular-projective.

.. A . S .. .
If n is finite, then nébz is atomic, and rn . is bijective

on atoms. To see this, let (si : 1 < n) Dbe the coproduct injections 4

*4’ 2 Avn132A.‘*Each‘homcmorphisny“ntazé*ﬁi=4r2‘“iS‘induced“by”an“f*

n-sequence of homomorphisms ZA’———ADZ, each of which sends a single

!
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T

7 A . ) ~ . Tl
atom of 2. to 1. If the i-th .homomorphism in the-gequence sends:

{ai} to 1, then the induced homomorphism n®2A —— 2 sends

h

msi'({ai}) _to 1.%0n the other hand, any homomorphism nQZA —B
e et B S e :

which sends msi({ai}) to 1 must be such that [h.si] ({ai}) =1
i<n , -

for all i < n. This means that rh.sri factors rthrou'gh 2 &~——>»B, for
‘, . . M

all i <n, so h does too. But then it follows that msi({ai}) ' ﬁ

i<n
/

/'t_s an atom in n92A.;_ It is easy to see that the homomorphism r,

defined above establishes a bijective correspondence between the atoms
n .
A A . : B s
of n®2" and of 27 ; if we show that n@®2  is complete and atomic,

then it foldows that r 1\.5 an isaomoxphism. (Here, a complete

BA*-algebra is ohe which has a supi‘emum and an infimum for every family

+

of elements; obviously, the BA-reduct of a complete atomic BA*-algebra

is complete and atomic in the ordinary sense, hence is isomorphic to

¢

T '*ffﬁf T Ta power of WV’ZTTi T

e e - : :
A : : S
First, note that n®2 is complete because it is a

k-complete Boolean algebra which is generated by fewer than k elements.

+



It is atomic because the join of its atoms is 1.
- - oy

We prove this by induction on n,.

108
(see [40], p. 59).

using the fact that

n®2") 112*
. .

is atomic.

T e A

_is isomorphic to (n+l1).@2",
A L,

Suppose that n®2" is atomic;

T
»

we compute
: /\S({a})=
eﬁw1'1<nﬁm

“First, note that 082" = 2

to show that

\/ (s (YA \/ /\s {a, })]/

(n+1) 632A

is atomic,

VoV

béA aeA

i<n

(s, (DA /\ s, (la, })] ]

b €A aEA -i<n
, \/ /\ Y
aEA i<n
L 3
= 1Al = 1.
A s
It should be noted that, if n is infinite, r is not .
generhl%yfafkisemexphismﬁ—f’crxxamplef71fﬁ,,kzz,,,,fthejxee r ‘ R
) 2 . \ . - zw l
k-complete Boolean algebra w®2 is not isomorphic to. 2~ , by .
' ’
If the equational theory BA* imposes N

{40], Proposition 31.3.

N
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sufficient infinitary distributivity conditions on its algebras, then

; -
for some infinite Values of n the algebra n@2A is atomic, and r
| is an isomorphism (see [40], Proposition 24.5).
' o 1 4
: Iet A be a set with 1< |A| <k. The set-valued Boolean
: : .
E - power functor A[-]: Mod(BA*) —> Set is defined as follows.
; a , s
1 . : ;
E i) For each BA*-algebra B, A[B]. is the set of all
* A-indexed partitions of unity in B;
' ii;rri For each homomorphism B —h—b'Cr, ‘A[h] is ‘the function
3 A[B] —-a[C] which sends each partition u in A[B] +to h.u in A[:C].
] 4.9. Lemma. °‘The functor A[-] is represénted by the
3 A o ’
BA*-algebra 2 . . , -
; - ) j’ . ) )
Proof. Identical to the proof of (4.3).
i .
On the basis of (4.9), we shall refer to all algebraic
F- ' functors of the form G: Mod(BA%) — Mod(T), Where U.-G 2 2" for
-3 '
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- 1o
<l

some A, as representable Boolean power. functors.

At this point we can begin to appreciate an important

?difference between the infinitary Boolean powers A[-]: Mod(BA*) —> Set

which we are now discussing and the finitary ones A[-]: Mod(BA) —> Set.

In the finitary case, taking - & = 2, the Boolean power functor 2[-] -

4

is represented by the finitary free Boolean algebra 2

FBA(l), i.e.,
2{~] 1is isomorphic tQ the underlying-set functor UBA' and its

equational structure is just the finitary theory BA,(which is the
fihitary part of the eqﬁational structure of a two-élemént set. In
the infinitary case, it is similarly true that 2[-]: Mod(BA*)l——’Set

' »
is represented by the BA -algebra 2 (L),

NP

FBA* so that 2[-]

is
isomorpﬁic to the underlying-set functor U A% and has equafionq} \\

structure BA*, When BA*

[N

is an equational theory of k-complete

>

T T T Boolean . irgéﬁfasfﬁiéﬁﬁ*{w , 1t 1s not generally true that BA*

is isomorphic to a theory of operations on’'a two-element set, i.e., to

a subtheory of Tz, since BA* may lack necessary distributivity
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P R

properties. The "image" of the mapping of theories BA* ———>T§ is

v

) . the equational theo ;© k-RBA of k—representablé; k—cdmplete

¢

Boolean algebrasj (k-RBA) is identifiable with the full

.

subcategory HSP({2}) of Mod(BA*). Thus, we cannot. count on being

-

~able to extrapolate from operations on the set 2 to describe the

equational structure of 2[-], and yetzit is evident that the

infinitary operations admitted by -2[~] are an important feature of

k]

the functor and should not be ignored."

L

Such considerations indicate that the ihfinitary Boolean
power functors A[-] wiIL generally have infinitéry equational
structure which is somehow not fﬁlly expressible iﬁ terms of

.-

operations on the set A; 'the Foster formula (4.4) cannot be relied
upon unless we resort to draqpnian meaSU;esi; either throw away the

infinitary structure of the fpncto:s,«which so far has been theiusualrl

ey

Afﬂ”mm,ﬁAugwmAggpracticeginAsrndiesgofgagghﬁal3;agn$hfgx’deSticallv restrict the

domain of the functors. Karatay [26] does both,in order to describe
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A[~] as a "normal sqbdirect power" construction.

In the remainder of this Chapter we shall show how, for any

>

equational theory BA* of k-complete Boolean algebras, the

—
M

representable Boolean power functors with domain Mod(BA*) can be_

analyzed by means of the results of Ché.pter 3. \\

The functor A[-] “is sometimes called a Boolean extengion
Y .

o - -

functor because each Boolean power A[B] contains a copy of the set.

‘A, namely A[2]. An element a of A is represénted in- A[B] by

“the unique homomorphism 2P — 5 B which sends “{a} to 1. 'Evidently,

' . ) £ . .
each natural transformation’ A[-]n —>A[-] induces a function

n £

A —A correspdnding to the 2-component £ A[2]n——’A[2] of

2:
- £. The assignment of f' to f defines a mapping of theories

P —DTA, where P is the equational structure of AI[-], i.e., the

equat;onalxostructur&oﬂi 74'.LMod£BA1L,7,while_'LA7'isq:he

equational structure of the set A. In the case where |a] = 2,

this gives us the standard mapping BA* -——*Tz. : B}
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0

4.10. Lemma. A function A" —2»A is induced on A by a

P-operation A[-]n‘——* A[-] if and only if; for each c€AR,  g*({c})
. o .
belongs to the BA*-subalgebra of 2 - which is generated by the

i

' family of all subsets of An of the. form {a€n : a., = c}, 1i<n.

i
"Nq ) 1
. Y
A :
~ Proof. The BA*-subalgebra of. 2 = described in tr{ef'lma-";(//r«—-w“
3

is the 4image of. the homomorphism r defined in the proof of (4.8); "

£

. o n
for sufficiently large n, ghe algebra ZA is not generated by its

! ato;ns, and then r fails to be surjective. ) i )
Suppose that ¢ is induced by A[-—]n £, Al-], i.e., g E

T o : A £ A -

is obtained in the following way. Let 2 —»n@®2 be the :

h
co~operation representing f£; for each aé€ An, let n®2 —2 4

I T P S TR

be the homomorphism which sends each of the elements si({ai}) to 1

(if n is too large, the atom /\ si({ai}) might not exist, since
: i<n .

BA* might not have an n-ary meet operation). Them g{a)} is that .

element ¢ of A such that'ha.% sends {c} .to 1.

4
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B oo ’ | L
oo n ’ An -
Por each a€A’, _let Py be the; atth. projectio 27 —2,
* S R !

-

£

€
i

_which sends {a} to 1s It is easy to }seé that g is induced by f

-

as exi:lained above if and only if, for each aeAn, we haveY

g

W

Purthermore, we have p,-r, = ha for all .aeAn;

T4

th

—

this can be checked by verifying \phat pP,-T. sends si({ai}) to’ 1,

-

for each 1i<n.

e Ac'laim that g is induced by f if and only if g* = r -f.
+ / ) .
This claim implies the lemma. - ' /

If g is induced by f, then for each a€ A" we have

-+

» . - -
.. L Ts -

jp-a.rn.? = ha-? = pa.g’* as noted above, so it follows that

r i% = _g*. On the other hand, if rn.% = g*, then we have

pa.g* "era'rn'% = ha'%' so g is induced by f. This completes

" the proof of the lemma.

In the last proof we were essentially finding the image of .

the free-generator-preserving mapping A:[rn] from the free P-algebra



9

n n

. A A : R
AIn®271 to the P-algebra AI2" ] AA , the latter being free

when viewed as a TAfaLgebra. The image of A[rn] is a free algebra

of rank n in the full subcategory HSP({A[2]}) of Mod(P).

The fact that the infinitary P-co-operations on the BA*~glgebra
A
2 are not generally inverse-image mappings between powers of 2 1in
Mod (BA*) means that the Foster formula of (4.4), which fully explains

the equational structure of a finitary Boolean power functor, does not

¢

wofk for the kind of Boolean powérs which we ‘are presently discussing,

S N . !

except for isolated cases as described in the next result..
) IS

4.11. Lemma. Let f be an n-ary opeiation in the .

equational structure P of. A[-], where n<k. For any BA*-algebra

5

B which is isomorphic to an m-com'pletei_ field of sets, whére n{m <k,

the éction of,},»%: A[Bln — A[B] 1s described as follows.: - For all

R ’*’i’ TR T T T T T T T T e e e

i . \ . .
u= (u, : 3<n) in 2a[B]" and all céAa,
J E— = I

1/7:\.\:

' . .7 a., : £ = r
sup /\ujg{aj}) (a)

j<n

all

£ ()1 ({ch)



,where the supremum may be computed by an infinitary join operation of

e

BA* if |A"| <k.

S s e - Pyoof— {&ent'rffa—w itho —an—~~m—complete~£ié1<¥o%subset§
. l"‘

of some set I. ,Alsc’> let the coproducf injections 2A ;ﬂnQZA be‘
v(sj : j<r}). 7 Theh forreach j<ﬁ Qe have uj '-e.’u.'sij, if the
‘ n—squé;lce u € A[B]n is identified with 'a"homomoxphis'm n®2A —B
(hote that A[—]n’ is represented by n®2A) . For'each i€ I and

3j <g,. thére Vis exactly one .element aij € A such that i € uj-({a._.}) .

Then we have

j<n j<n,

el Nuap - u(/\ sj({aij})], :

for all i€ I, so it follows that

=

~ Sup ¢

|
|
\
|
|
|
\
|
|
\\\
I
|
gl !
>
i
|
. | '
=
[+1]
[N
Nt
o
m
Ll
[ S
|
’.J

in B. HNow M ' A v
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[u.£1({c}h) -

r's
¢0—1
'S
[+
-
Bvend
=
(e}
—
I

Y

Sgp [u.£] (fc}) A u(/\ sj'({aj}?] : aEA

j<n | S

Sup u(’-f\({c})/\/\,‘s_({a.})‘]: aea™l . - -
j<n J J o

ot

. ~ B ) L - ) c ) T
Note that the meet of £({c})* with s, ({aj}) is nonzero if and
j<n :

only if ’f\({c})z /\ s.({aj}) , since the latter is an atom in n@ZA.

j<n
But for any agn”, %({c}) contains the atom /\ sj'({aj}) if and
' j<n

only if ha.% sends {c} to 1, i.e., if and only if £f'(a) c,

where f' is the operation on A" ihduced by> £. Thus,

Sup u[/\.sj({aj})} . £f'(a) = ¢

'[fB(u)] ({ech
j<n

= swpdf ) us ({a; ) : £'(a) = cp,

j<n

___and the proof is complete. —

4.12. Corollary. Every finitary P-operation f is

determined by its corresponding TA-operation as shown in (4.11).
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A. J. Foster's device in [14] of using a two eléﬁent
"subframe" of the "kernel" algebra A to recover the "core"

Boolean algebra B from A[B] was one of the original inspirations
. T R

fgr the results in aﬁépter 3;77Béfofe énywdf those results had been
discovered by the wgiter, Foster's method was qpépted in Dukarm [9]

for a brute-force proof that the infinitary representable Boolean

poﬁer functors ére monadic. In [9], the results which appear above

as lemmas (4.7) through (4.12) were the basis for a description of
Pfoperations which were strongly reminiscent of Post algebra operations.
We now present a modified versioﬂ of that description, showing that -

the P-algebras are éctually generalized Post algebras as defined by_
Cét—Ho Néuyen [6]. This approach, which is an extension of Foster's
method of';nalyzing Boolean powers, wili then be contrasted with an

analysis based on the results of Chapter 3.

Recall that BA* is an equational’theory of k-complete

Boolean algebras, A 1is a set with l‘<|A1‘<k, and P is the

equational structure‘of gf. = Af[-]: Mod(BA*) — Set.
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Let (ai : igm) be a well-ordering of A, where m is an

ordinal of the same cardinality as A. Thzg:‘ordering of A determines

!

lattice operations A and V on A, relative to which A is.a

e - e e e — - e e [ %

complete linearly-ordered lattice with a least element a, and a
greatest element a . This lattice admits a pseudocomplement

operation -1, where

a , if igj
- a., 1if i>j.

For each successor ordinal 1i<m, define a unary operation Di by

T T TBY (4.12), the operations defined above correspond to uniquely

determined . P-operations which we shall denote by the same symbols as




"operationsqggggd above*satiéfy the same kinds of identities as their,

120

above. Each element Aai of A determines a constant ((1, 0)-ary)
P-operation ei; in particular, we write éo as 0 and em as 1l..

13

It is easy to see from (4.8) and (4.10) that the finitary part of P

is actually isomorphic to the finitary part of T, (see [9]). 1It

<

follows that each P-algebra is, relative to the finitary operations

defined above, a relatively pseudocomplemented bounded distributive
lattice, i.e., a Heyting algebra, in which there is a complete

=

linearly-ordered sublattice ‘constants, which we shall identify -

:
i
)

with A, and some extra unary operations Di. Note that the chain of
N R i . . . .

constants A is actually a copy of the initial P-algebra FP(O). By

examining the corresponding operations on A, we see that the finitary

T . r 3

‘counterparts in a finitary equational theory ?;; - of “m'-valued Post

»

-

y

algebras. -

<

In order for the P-algebras to really look like Pdstﬁalgebras,

there must be a joih operation so that



121

i<m
is-an idgntity of P (expressed in the extended canonical language) . 5
, B L R , e
If A is finite, the join is finitary and easily found. If A is 1__\y‘

infinite, we would like to be able to "lift" the m-ary join from the

complete lattice A and use it as a P-operation, as'ye did with the

finitary "Post algebra" operations. This can be done, since the.m-afy
- .

join in Av satisfies the condition of (4.10). To see this, note that,

for any igm, we have

YO :
(

pea®: V> a;} = U U{beAm * by =al )

j<m i<n

belonging to the image of r . and we can write
TR,

{be An: Vb = ai} = f\{be at :' \/b>ajr} — {be a® \/13 > ai}.

j<i

Thus, ‘the m-ary join on A is induced by an m-ary P-operation
‘ ). There is no guarantee that ) is a true join operation in P, if

7

-



— . !‘
m is infinite, but z hds all the same finitary properties as a

true join operation: the result of regtricting Z' to finitely many

{ . P
distinct arguments is a finitary join operation. Most importantly,

~
L

y

we do have the identity

- . x = ) (D, (x) Ae, ),
i<m ;+1 i+l

since the wnary composite P-operation oﬁsthe right side of the

equation induces the operation :\f: (Di+1(x)/\ ei+1) on A, and it

- I

is éésy to see that the lattef operation is the identity operation on A.

In a study of many-véluedAinfinitary propositional logics f6],.

- Cat-Ho Nguyen defined and investigated é class of generalized Post

algebras. As wé shall see, our P-algebras are generalized Post algebras
Y

of the kind which Cat-Ho Nguyen studied, and irr fact the P-algebras

correspond to the Lindenbaum-Tarski algebras of the propositional 1ogics

characterization ([6], Theorem 1.6) of his generalized Post algebras;
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we have specialized it to the case where the cons ts form a

well-ordered chain, and we, are using the result as a definition, since

»

the original definition given in [6] is much too br63d for our purposes.

Let m be a nonzero ordinal. A generalized Post algebra of

I
type m is'a universal algebra C such that:
i) C 1is a Heyting algebra relative to operations 0, 1, -1,
A r V r and >

ii) The constants in C form a chain (ei :igm) of order
+
type m+l, where e =0 and e = 1, and where each family of

constants has a supremum in C which is a constant;

iii) There is a family (Di+l: i<m) of-(l,,l)-ary operations

§ . .
'such that, for every element: ¢ of C, 4we have ¢ = Sup {Di+l(c)ﬁ\ei+l};
, i<m

1

iv) The following identities hold in C:

e e DAy} = D} ADy— -

Di(xvy) = D, (x)V D (y)

~

D.x)V—aD.(x}) =-1
1 1



4.13. Theorem. Let BA* be an equational theory of

.

k-completéBooleanaigebrasf and let P be the equational structure

of the Boolean power functof al-1, ‘where '% is a set with' 1'<|A|‘<k.
Then for every ordinal i with ]m+1[j='[A| there is é presentation

of P relative to Qﬁich evéry P-algebra is a genera;izéd Post algebra
of,tyﬁe m.

t

Proof. It is clear from the foregoing discussion that we -
need only verify the parts of conditions ii) and iii) of (4.13)

pertaining to suprema. The pseudojoin z is constructed so that it

-]
induces a true join operation on the subalgebra A of constants. Then .

in A we have the identity y A ] e. = Z (y[&giJ), which has
j<m 3 j<m

only one free variable and thus also holds in P; ‘this identity says

\
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4

that Z e .

‘ is less than or equél to each upper bound of
j<m I ’

{ei. : j<m}. It follows that condition ii) .is satisfied in every
J ’ : .

P-algebra, since z ei_ is an uﬁper bound of'{ei‘—: j<m} and
j<m 3 . J .

belongs to the algebra of constants.

<7 ) . )
—~ A similar trick works for condition iii). The following
- - : ! -

<

finitary equations hold in A, and therefore are identities of P.

Dy (XIAe; ) AiEm(Di+l(X)/\ei+l) = Dy WALy,
YA L@ Ae ) = ] (YAD I &)

-

i<m i<m
The equations of the first kind collectively assert that
2 (Di+l(x)/\ ei+l) is an upper bound for the.i set {Di+l(x)/\ei+l: i <m},
1<m :
while the equation in the second line says that it is a least upper

bound. This concludes the proof of the theorem.

\\

ébove can be used to show that the pseudojoin operation 2 induces



a true join operation on the Boolean elements of any P-algebra; the
same can be shown by diagram-chasing in Mod(BA*); however, this’

- approach to describing P is rather inefficient for treatiné in ahy

detail the infinitary properties of the infinitary P-operations. In

particular, it seems to be difficult to show that the P-algebras can

be presented as generalized Post algebras with k-complete lattice
operations.
Using the results of Chapter 3, we can find a familiar-looking

presentation of the P-algebras as generalized Post algebras. Taking a

cue from (3.8), we seek a spanning equational intérpretation of P 1in

" BA*; such an interpretation is provided by the retraction FBa*(m)'—zL’Z

. A .
and coretraction 20-—§+ FBA?(m) given as follows.

For each i<m, the retraction r sends the i-th free

generator x, of (m}) to the set A —-{aj : 3€i} (viewed as an

F
Ba*

~ element of the BA*-algebra ZA), while the coretraction s sends that

-

set to..//\\ xj in FBA*(m)' Here, we are assuming that A is
jsi :
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well-ocrdered as (ai : igm). The idempotent (m, m)-ary BA*-operation

*r.s = us U —>» 0 _." determine ‘avs anning equational -
2 * “Ba* BA* s asp 9 equats

interpretation p: P — BA* analogous to the "nonincreasing chains”

'

&&";&m‘ﬁ,‘mvmwwri?ﬁﬁﬁ;Eé’[ii!ﬁzﬁgw o

<

interpretation ‘of the finitary theory of Post algebras in BA which

was given as an example in Chapter 3. . Because p 1is.a spanning

/ S

interpretation, the P-operations are the BA*-operations which are

+ . =

u-operations, i.e., the ones which preserve nonincreasing m-indexed

chains in every BA*-algebra.

The presentation of BA* in terms of 0, 1, - , -+, and the

5

n-ary join and meet oﬁzjgtims, for all n <k, thusprovi%\

L)

presentation of P  in terms of those basic Boolean operations together
with u. In particula.r, the finitary and infinitai‘y lattice operations
of P are given by m—sequences of~copies of the corresponding

_operations of BA*; for example, the binary join operatiom of P is

-

e ke o b Lot b bl bl w«;w,m.ﬁzhm‘;ﬁ.ﬁ&‘1i‘s«t;éh‘»ﬁ£?:€\l’?-w«’f@

interpreted in BA* as an m-sequence of binary joins; in symbols,

(xi : i<m)V{yi : i¢m) = (;ivyi : i<m).
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Thus, it is evident that the "nonincreasing chain™ spanning

£ interpretation of P in BA* yields a presentation of P as an

- -
N

v

equational theory of generalized Post algebras which are k-complete

as lattices.

: *

P

The interpretations of the other "Post operations” of P in
BAY* ére as follows. Por each 1igm, the constant ei is the

chaia (cj : j<m} in which cj=l for all j<i, and cj=0 for

all j>»i. PFor each 1i<m, the operation 'Di+'1 is given by
\
\w\' - Di+l(xj : j<m) = (xi, X, IR Xio0owo- s ).

The pseudocomplement is

- {x] : ](E) = €_‘J‘1 "'I‘,xor .+ w ¥ —1x0. . - . )r
while the relative pseudccomplement 1is

I . jcm) = (/\(x. ) v icgm).
ij jemb > lyy 2 3¢ ) 3775

jgi
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The possibility of representing generalized Post algebras as lattices
of nonincreasing chains of elements in Boolean algebras is discussed

in {6]; the representation mentioned there is essentially the one we

have obtained by means of the spanning equational interpretation
p: P —>» BA*, except that there is an error in [6] which we have

corrected here.
For any equational theory T, the action of a representable

Boolean power functor A[-]: Mod(BA*) —> Mod(T) can be described

=

conveniently in terms of the spanning interpretation p: P —> BA* _

—

AL

defined above, since by (3.14) we have A[-] £ (p.t)*, where

t: T—» P is an ordinary mapping of theories. To compute A[B],
*

Kl

just .construct the Post algebra of nonincreasing m-indexed chains in

8 and forget some of the Post operations, as directed by t.

To conclude this Chapter, we note that the infinitary

counterpart to Hu's result (1.3) would be to find all of the regular
" <

progenerators in Mod{BA*} which are generated by fe&er than k



elements. This problem seems to be a rather ‘difficult one, since

. for infinitary equational theories BA* of k-complete Boolean 4igebras

I3

it is possible for Mod(BA*) to contain regular progenerators,

géqgratéd by fewer than k elements; which are not powers of 2; for
exampr, some free algebras of rank n <k will usually faii to bg
powers of 2. 1In many cases, the préciSe solution to the problem
seems to depend upon proberties‘of the category - Set corresponding to
the Generalized Continuum Hypothesis, the existence or nonexistence

of various kinds of exotic large cardinals, and so on.

v

fd

o '
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 CHAPTER 5. LOCALLY EQUATIONAL CATEGORIES

AND LOCALLY ALGEBRAIC FUNCTORS

13

The notion of a locally equational class of finitary
universal algebras originated in the work of A. L. Foster [16] and
was further developed in a series of investigations by T. K. Hu

‘culminating in’'a 1973 paper [25] in which a characterization of

S~

locally equational classes is given in the style of Birkhoff's
"HSP" characterization of equational classes (see [19] for an
exposition of Birkhoff's result). In this Chapter we provide

necessary and sufficient conditions for a category to be equivalent

to some locally equational category (i.e., to a full subcategory of a

fufiinita;yfequatianalgcategoryfAnheregtbegobjectsgofgthegsubgatggory

form a locally equaticnal class). Our category-~theoretic



r

characterization of locally equational categories is analogous to

Linton's result (2.1) for equational categories, but the proof of 6ur

result is very different from the proof of (2.1) sketched in Linton‘s

paper [30]. The characterization of locally equational categories i

i
leads naturally to the notion of a locally algebraic functor,'ﬁgd we
. ° b },
) L .
show that bounded Boolean powers can be regarded as locally algebraic

P
= pa

functors. Finally, we sketch a new proof of Hu's result (1.2)
characterizing Mod(BA) among all locally equational categories.
The characterization theorem (5.3) and the claim that bounded Boolean

powers are "locally monadic" appear in Dukarm [11]. Definitions and

~

)

results cited from Hu [25] are adapted to our category-theoretic ‘.

frame of reference. @g

Iet T be a finitary equational theory, let A be an algebra

belonging to Mod(T), and let X ke a subset of A. For any  n, we

Y

«

g(z) in the language L, is

say that a (1, n)-ary equation [(z)

an identity of X provided that " is a subset of [ffz) = g(z)}A'x.
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For each n, the set of all (1, n)-ary equations which are

»

identities of X is called Idn(X).

The locally equational closure of a class K of algebras

_'belonging to Mod(T) is the full subcategory L{(K) of Mod(T) whose

—_____obTécts are all the algebras A héving the following property. For

each finite subset X of A, there are a finite sequence

'S

Bl, . e ey Bn of algebras in K end a finite subset Y of the

algebra l lBi such that Idm(Y) EEIdw(X). A full subcategory K of
i

Mod(T) 1is said to be a locally equational category if K is the

locally equational closure of the class of all algebras which are

objects of K. These definitions are adapted from Hu [25].

“

As evidence that the concept of a locally equational category

is of algebraic interest, we cite a few examples. Hu points out in
\

~{25] that, if T is finitary, the category Mod(T) itself is -

locally equaticmal, as are its full subcategories of locally finfte

algebras or locally simple algebras. It should “Interesting to

4



logicians that, for every infinite k, fhe category of all locally

finite-dimensional cylindric algebras of dimension k (see Henkin,

“‘Monk, and Tarski (20], P. 231) iéilocally équational, but not

equatlonal these cyllndrlc alg%i&as are;the Llndenbaum-Tarskl algebras

&

of first-order theories. d - b

' 5.1. Theorem (T. K. Hu [25]). Let T be a fij?tary

equational theory, and let M be a full subcategory of Mod(T).
Then Mhﬂis locally equational if and only if M is closed under

the formation ofyairected.unions, homomorphic images, subalgebras,

and finite products.

In his paper [25], Hu points out that certain algebras,
called homogenecusly generated algebra lay an rtant roie in

locally equational categories which is ilar in some respects to

the role of the free algebras in an equational category. Let T be

|4

a finitary equatiomal theory, and let X be a subset of an algebrqﬁgb

F



which belongs to Mod(T). Then X is homogeneous if it has the
following property: for each finitary equation f(z) = g(x) in Lo, -

if A [flx) = g(m)]Ax is nonempty, then. f(x) = g(x) is an

" identity of X. The algebra A is said to be homogeneously

generated of rank n if there is an n-element homogeneous subset of

2 iwhich generates A.

5.2. Theorem (T. K. Hu [25]). Iet X be a set of generators

for an algebra A .in Hod{T). Then the following are equivalent:
i) X 1is homogeneous;

ii) Every function X —» X has a unique extension to

-
an endomorphism pf ¥

iiij If ¥ is a subset of an algebra B which belongs to
]

Mod (T}, and Idn(x} 14 Idn(‘f} for every n<ix}, then every function
. - ‘




Let X be a subset of A, and let m be any cardinal.
. ~ SR
Then define Hx(m) to be the subalgebra of A which is generated

by the projections Xt —>a. It is not difficult to verify that

H:( (m) is homogeneously generated by those projections and Ehat, for
any subset Y of an algebra B with Idw(Y) = Idw(x), we’have

HX (m) = HY(m) . Furthermore, :Lf X 1is a homogeneous gene;rating set
for A, then & = 'Hx(m), where m is the cardinal of X. The proof
of ?e characterization theorem (5.3) will show in precisely what sense
<e homogeneously generated algebras in a locally egquational category

#

are analogous to the free algebras in an egquational’ category.

A An inverse system in a category M 1is a diagram of the fomm

D: I° —* M, where I 1is a directed set; the inverse systemJD is
egiﬁomk_z_ic if, for each arrow f of I, the arrow D(f) 1is an

epimorphism. A limit of an inverse system is called an inverse limit.

let D: I° —» M Le an inverse system. Application of the Yoneda

b . . M
fm?eﬁﬁ&g M> —=+ 3et”” yields a directed system D: I —>»M° —> Set
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of representable functors in Set . If D is an epimorphic inverse

system, then D is a monomorphic directed -system, and we say that

the fuhctor U = Colim D is locally represented by the epimorphic

inverse system DU. & functor U: X —> Set 1is said to be locally

representable if there is an epimorphic inverse system D: I° —» M

Colim B; by the Yoneda Lemma, it follows that U is

B}

such \:chat U
locally re;;;esentable if and only if U 1is a directed union of
representable subfunctors.

If U 1is represented by an object A, i.g., U= A, "then
the Yoneda Lemma says that the assignment ab—>»a defines a bijectivg
correspon%ce between the elements of >U(A) and the natural
transformations U — U. Correspondingly, it is not ‘hard to see

that there is a bijective correspondence between the "global elemepts"

1 — U.D {where 1: I® —= Set has the constant value "one”} and

the natural transformations U —» U when U: M — Set. is locally

represented by D. We say that D is coherent, and that U ¥ Colim D is



coherently locally represented by D, if the following condition is

satisfied.

Coherence condition. PFor every i€ I and every element

a of U(Di), there is a giobal element t: 1 — U.D such that
ti: 1 ———’U(Di) is the constant function which picks out the

element a.

2

5.3. Theorem. A category M 1is equivalent to a locally

equational category if ahdronly if M is finitely complete, with
directed unions and coequalizeré éf kernel pairs, and thefe is a
functor U: M — Set such that:

i) Por every finite n, the functor U': M —>» Set is

coherently locally representable;

[l
~

ii}) © preservés and reflects congruence re;atioﬁs and

regular epimorphisms;

iii} U preserves directed unions.



Proof. First we shall prove that M as specified above,.
‘with a functor U: M —> Set. satisfying i), ii), and iii), is

equivalent to a locally equational'caAtegory, To do this we show, by

-

&ﬂ&iﬁ%&wmfirrj:tarrcomparison*‘fmrc;td‘r—lﬁ“ﬁ“:*T;bf{('rh
where T is the finitary paz;t. of the equa_tional structure of U, is
e::cact; 7full, andrfaiithrful; Vthen, using Hu'é résﬁlt (5.1), wer shéw
that the closure of the image category E(M) in Mod(T) under the
formation of. isomorphic copies is a 1ocaily equational category.

According to cdndition i), we may assume that for each
finite n there is a coherent epimorphic inverse system
H(n):_I(n)°® —> M. which locally repreéents U". Let H(n) send

| h,.

each i —>»3j in I(n) to Hj (n) *——J'J—'Hi(n) in M. For each

i€I(n), the colimit injection Hi(n) ‘——vUn is hi’ where hi

belongs to Un(Hi(n)); l1.e., hi = (hiIO' hi,l’ 7 hi,n—l) s

g3

an n-tuple of elements of U(H, ().




5.4. Lemma. The functor U is faifhful and ‘preserves and

reflects finite .limits, monomorphisms, énd isomorphisms.

Proof. Each of the representable functors Hi(l) preserves-

limits. Because directed unions in Set commute with finite limits,

«

it follows that U preserves finite limits. Every functor preserves

isomorphisms, and every functor 'whigh preserves finite limits also

preserves monomorphisms, Vso U preserves isomorphisms and monomorphisms.
. To show that U is faithful, let f and 'g be arrows -

A—>B in M with. U(f) = U(g), and let C =5 A be an equalizer
of (f, g9). Then s is a monomorphism, and U(s) - i\g an ecfualizer of

(U{(f), U(g)), since U preserves finite limits. But then Uis)» is
an isomorphism, hence a regular epimorphiém‘, "since U(f) = U(g) .
Bﬁt U re'flects.rreg'ulrar epimorphisms, so s 1is a regqular epimorphism.

Then s is an isomoz;phism, so f = g} this proves that = U is faithful.

>

Faithful functors reflect monomorphisms; since U . reflects

regular epimorphisms,. it rgfle’ct:é monomorphisms which are regular

- - .
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'is a limit of D in M; since U preserves limits of finite

I
epimorphisms, i.e., U reflects isomorpkﬁsms. i
Now we shall show that U refi\ﬁcts limits of finite
~diagrams. . Suppose that D: J —* M is a finite diagram in M, and
- ; DR 3 7 j , - ,

)

U.D in Set. Also suppose that A, with projections id‘j: a— Dj' .

z ks
—

»

.

diagrams, {U(A)- with projections U(d), €T, is a limit of u.D’

in Set. Because U is faithful, and because the functions U(fj)

-

(B)

-~

constitute a cone in Set from U to U.D, - it follows that the

arrows fj are a cone in M fram B ‘to D. Let B —S+a be the
induced arrow; f is unique with the property that dj'f = fj for

all j€J. Since U(d).U(£)~= U(E) for all j€J, the arrow

. 3
U(f): U(B) —>U(A) is a limit arrow in Set; but, since both U(B)

»

and U(A), with their respective projections, arg limits of U.D, the

limit arrow U(f} is an isomorphism. It follows 1’?/1’ i_s\?).

la

. ol A » . ’ / . )
isomorphism in M, which means that B is a limit ofJD in M, so



we conclude that U reflects limits of finite diagrams. This concludes

the proof of (5.4).
~

" Recall that in any category, if (u, v) 1is a kernel pair of

-

€ ,
A —— B, then is a regular epimorphism if and only if f is a

»
».

coequalizer of (u, v). A regular factorization of an arrow h (see

’ Ek.‘.""Cr:i}.le.at: [4]1) is a factbrization of the form h = s.f; where f +is

[l

-

a regular epimorphism and s is a monomorphism. The factorization
h = s.f is unigque (up to cancnical isomorphism) if, for every
regular factorization h = s'.f*, there is an isomorphism g such

‘that f' =g.f and s'.g=s5. If h=s.f is a unique regular

¥

factorization of h, then the subobject B 2. is an image of

h, written im{h}), and 211 images of h are equivalent as subobjects

of C = codom{h).

% <

tegory M has unique regular factorizations, —

Ll




. £ . '
Proof, Given A —>B in M, let (u, v) be a kernel

and let , r be a coequalizer of (u, v). Since f.u = f.v,

pair of f,
there is a unique arrow s such th;t f=2x. In Set we have
- W) = U451~U4I¥TA*Whe£eULI%hs&%exequa&izgref*éke;nel~p%1r
'=U(S),U(r) i; o

(U(u), U(v)) of U(f). This guarantees that U({(f)
in Set. 1In pafticular, U(s) is

"~ a regular factorization of U(f)

a monomorphism, so s 1is too, so. f = s.r is a regular factorization

of f in M. Preservation and reflection of regular factorizations

by ‘U is obvious, since U preserves and reflects both regular

epimorphisms and monomorphisms. Uniqueness of regular factorizations

.in M 1is easily seen from the uniqueness of regular factorizations

in Set, together with the preservation and reflection of regular
@

factorizations and isomorphisms by U.ﬁ/ihis concludes the proof of (5.5).

e g
-

Lemma. Let u and v be arrows A —B in M, and

w

fe. ‘Then“f:u4=‘fTVf‘iSAExact"tffand“ﬁﬁiy“i:

L IR =
el p=3

’ T oif) .ot = Uif).0{v) is exact.
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Proof. This one is obvious, since by definition f.u = f.v
is exact if and only if (u, v) is a kémel pair of £ and f is

& regular epimorphism, but U preserves and reflects kernel bairs

and regular epimorphisms.

- ©© - The'mext-result is a crucial one. It belongs to the genre -

of results known to category theorists as "fill-in" lemmas, and is

-

adapted from Herrlich and Strecker [21], Proposition 32.7.

.

-~/

5.7. Lemma. det r and g be arrows in M, with r being

a regular epimoréhism. If %Tere‘is a function f such that

£.U(r) = U(g), then there %s;a unique arrow f' in M su

u(f') = f.

Proof. let (u, v) bg a kernel pair of r; then r.u=r.v

-

is exact. Since U(g} = f.U{r), it follows that we have

>U(g).U(u) = U(g) .U(v), so by faithfulness of U we have g.u = g.v.

But r is a coegqualizer of (u, v), so thé?%:ﬁs a unique arrow . f°
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such that f'.r = g. Then U{(f").U(xr) = U(g) = f.ué_{:“), so U(f') = £,

[V

since U(r) is an epimorphism. This completes the proof of (5.7).

5.8. Lemma. The functor U is finitely tractable, i.e.,

the full subcategory in SetM‘ of finite powers of U 1is locally small.

o

Proof. Let m and n be finite; there is a bijective
correspondence between at7<z/s " — U™ and cones from H(n) to

Um, since Un = Colim H(n). Since, by the Yoneda Lemma, each arrow

‘Hi {n} — Um corresponds to a uniguely determined element of

x>
Um(Hi (n}), it follows that each arrow Un — Um can be matched with

an element of the set rTUm(Hi(n))-
i

On the basis of (5.8} we know that the functor U has a

__eguational theory whose firritary operations are the arrows—in a —

finitary comparison functor E: M —* Mod(T), where T is a finitary /

N a

skeleton of the full subcategory in Set of all finite powers of U.

This comparison functor is the one described in Lawvere's thesis [29},
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which dealt ex sively with fmitary theories. In keeping with the

viewpoint of our ,Cﬂaapier 3, we can say that U is a T-algebra in

M' .
Set , and that for each object B in M the T-algebra E(B) is

——— -~ the one whose underlying set iz U(B) and which inherits its

T-opérations from U in the obvious way. Lawvere's structure-semantics

P

adjoj;ntness works in the setting of finitary theories, so (as in the
infinitary case} E: ¥ —>» Mod(T) has a universal property similar to
that ascribed to infinitary comparison functors in Chapter 2. Using

the preceding lemmas, together with U = U_.E and the fact that UT

T

o

has all the properties claimed for U, it 1s easy to prdve the

following result.

5.9, Lemma. The finitary coamparison functor E for U

is faithful and preserves and reflects finite limits, direc ‘unions,

monomorphisms, regular epimorphisms, isocmorphisms, cong ce

relations, regular factorizatioms, and exact diagrams.

Iy

-
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5.10. Lemma. The inverse limit of E.H(n) is FT(n).

Proof. First, note that*the inverse limit Lim E.H(n) in
- -

-

Mod(T) is constructed on the underlyindg-set level as the set of all

— * — -

Ycompatible families” o;jklements of the algebras E(Hi(n)), i€ I(n),
with the limit algebra Lim E.H{(n) being a subalgebra of the product
F_FE(ai(n)). The compatible families of elements are identifiable

i

with ﬁhe global elements 1 — U.H(n), as noted in Mac Lane [32],
. 106. )

To prove the lemma, we definé a function p which maps
elements of (n) into elements of Lim E.H(n): it is evident that
p is bi¥ective ané preserves T-operations, hence may be regarded as
an isomorpgism in Mod(T). Hote the following chain of bijective

correspondences.

Elements f{x., . . . . x__.}) of F_(n)
L

4 [ % Sl 8

£
s T-ocperaticns aaEEs 3

+*°  cones {f.hi : i€I{n)) from H(n) to U



compatible families (f (hi

O :

of elements of the algebras” E(H, (n))

. e . h,
.07 " i,n-1

++  elements 'f((hi . ¢ 1€I{n)) : j<n) of Lim E.H(n),

"‘j ‘ R j

Define p(f(xo, - e ey xn-l)) to be f((hi

i€I(n}} : j<n).

£ .

14
Note that the composite of p with the i-th projection

,\ B
Lim E.H(n) ——*H{Hi{a)} is a homomorphism By which takes the j-th
free generaf:or xj o b 37 for all j<n. Relative to the family

(pi : i€ I'(n).) cf srojections, E’Tin) is an inverse limit of E.H{n).

- /

5.11. I=mma. For each =n<. and each 1€I{(n), the algebra

E(H (n)) is generated By the set 'f'mi o+ - - s h
]

Procf. WHe shall show that the projection 2 is surjective.
let a be any element of U _(E(H (nr})) = UtH, (n}}, and let

a’ = {a, a, . . . ?a} belong to uﬁ(a; {n}). By the Coherence

. - . s I
Capdition; there is a gizkcal element Tt: 1 — U .B{n) such that

T, 1-—,033(&1._(:1}) picks cut a’'. 3But t corresponds to a




1 ) .
compatible family of n-tuples of elements of the algebras E(Hj {n}),

j €I(n), which in turn corresponds to some n-tuple of elements of

1

‘E’T(n) which is sent to a by pi. This suffices to show that pi

. ... - ds surjeetive, —— ———— o T

5.12. Lerma. For every homomorphism E(Hi(n)) i*1'::(}’1);,

¥

1 -
there is an M-arrow H. {n} ——f——vz-‘s such that E({f'}) = £.

Proof. let ¥ ©Dbe as shown above, and let aé€ Un(A) be the

2

n-tuple of elemenks cnto which f sends the generating n-~tuple
3 -

hie Un(Hi(n)); i.e:, £(h, j) = ay, for all j <n.’ Since v ois a

directed union of the representable functors H.(n), Jj€ I{n), it

follows that there is a 3 »1i in I(n) and an M-arrow Hj {n) “sa

- | /

such that g corresponds to a in Ei(n) {B) EUD(A). Then U{g)

sends hj ento a. 5Since both f.pi and‘E(g).pj are homomorphisms

- N
F_(n} —> E(A} 'which send the fi‘ee generators (xo, A 1 )

iy ! .p. = f.p. = £.E{(h,.).p.; but’
cnto (ao. pa_ie we have E{g) pJ f p; E{ 13) PJ
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—_—
23
/ a

‘p: 1is an epimorphism, so E = f.E(h,.). B i , = .
P:J Plmorp () ( lJ) ut since p, E(hij) Pj
is a regular epimorphism, 'E(hij) is a regular epimorphism. Thus,

by the fill-in lemma (5.7) there is an M-arrow f' such that

J'H\

A8

CTUL(£) = U(f'), from which it follows that ,iiELﬂ)ﬂFIhichampletes__d¥e

r

" the proof of (5.12).

5.13. Lemma. For every M-object A and every finitely-

generated subalgebra B of E(A), there is an M;object B' such

that E(B') ¥ B.

Proof. Suppoée that B € E{(A) is generated by the set

-

{bo, .. ..b .} since U*(A) is”a directed union of the sets

n-1

Hi(n)(A), i€I(n), there are j€ I(n) and an M-arrow Hj(n) ,a

..,b )'

such that(\ U(g) sends hi onto 'the sequence b = (b -1

0" -’

Since {bo, . e - bn—l} generates B, evidently B is an image

r -~

of E(g), and by (5.5) it follows that B = E(B'), where B' is an.

image in M of g. This proves t(xe lemna. o .

™~

Y



5.14. Lemma. For ény M-objects A and B, if E(A) is

finitely generated, then for each homémorphism E(R) —f—)E(B) there

¥
is an M-arrow A—i—bB such tha£ E(f') = f.

Proof. Suppose that E(A) is generated by a finite number .

n of its elements, and that E(A) —£->E(B) is a homomorphism. It is

t

clear from the Qroof of - (5.13) that there is a j€I(n) and a

regular epimorphism Hj (n) ,—l’ A. By (5.12), there is an M-arrow
1

Hj (n) —J » B such that E(g') = £f.E(g). Thus, we have

u(g') = UT(f).U(g) » where g is a regular epimorphism. By the

' )
fill-in lemma (5.7), there is -an M-arrow A —f-—-’ B vsuch that

-

U(f') = UT(f), from which it follows that E(f') = f. This completes
. 4 '

the proof.

~

.

5.15. Lemma. The comparison, functor E is full.

,,:,,,,,,:,,'7, - ,

N

Proof. ILet A -and B be arbitrary objects of M, and let v

E(3) <—f-’E(B)i be a homomorphism. Since T is finitary, every




]

T-algebra is a directed.union of its finitely-generated subalgebras;

23

" by (5.13) it follows that E(A) is a direc¢ted union of ,f_;'Lnitely— e

generated algebtas of the form . E(Aj) ‘-—__"——'»E(A) , indexed by the’ . L
elements j of a directed set J, where TAJ‘C—*—Lbr is a subobject
) - @ s v . o . . - L . o ) o e

R » ‘ &'7 C w

- of A in M which is an image of an arr\ow' Hl(n) —> A, for some L

1. . B,

IR - - _

finite n’ and some i € T(n). By’ (5.9) , ‘A is. a direected union in
s g S .. . °

. ; L gf_'lq e '1‘&. . ) L ‘ S e
M of the subobjects Aj e—dsa. By (5.14),>each of the homomorphisms T

- > A%

jfj ='f.¢é(gj) is of the form* fj = E(f‘j.')),‘,lfdr/some _M-lav.rrow-' '

- ,Aj -—-fJ-I—bB These - arrows inhM cons'ti'i?\.‘fte 'fawc‘:‘on'e from .thewdire_(:téd' -
system (Aj : jE J’)‘ to . B; the_-r‘coné detemine..s’:uniqu(‘a e;rroyy 7 ; . )
A _f_'_.B‘-» 'sgcht’ thaft- -f'\{kgj ‘=‘ f'j' ‘_ for egch’ jedJd. Then we have.:«

E(f') .E(gj) ='E(??j')“yf\fg.ﬁE(g-j) , If'éjz‘"e‘.-;lmch € 3, whlch p;g;res ,1::.hat.

B 2. -
_ ’ - N T ' e
. E(f') = f. Thus, E :is ‘iull. - ' .
R : ’\ =
. T S .. \ ST S '
- ——- : Lemasfﬁ.f%and_(@ﬁ\‘ ) jointly imply<that E: M. —» Mod(T) e
determines a category equivélence' bétw-ee_n -'M and a,'fﬁll Subcategory - Ea -
E(M) of ‘Mod(T). ILet M'  be the closure of E(M) in Mod{T) .under
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the formation of isomorphic copies. Clearly, M :is equivalent to

M'.

4 5.16. Lemma. The category _M' is locally equational. -

Proof. We shall show that M' is closed under the formation

of directed uhions; homomorphié images, sﬁbaigebrés, and finite prbaﬁgté; o

and then apply Hu's characterization theorem (5.1).

- 4
Closure under the formation’ of directed unions and finite
.products is obvious from the precedingblemmas. Let B be a subalgebra
of E(A). Then B is a directed union of its finitely-generated

subalgebras, which are also finitely-generated subalgebras of E(A)

and, thus, by (5.13), belong to’ M'. Closure of M' under directed
. ’ i )

<

unions enables us to conclude that B belongs to M; this is sufficient

to show that M'. is closed under’tga formation of subalgebras.-

= ' » Now let E(A) £+8 bea surjective homomorphism. The -

kerﬁél congruence ker(f)} is an object of M','since it ‘is a subalgebra
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, ‘ ; . , D 3
. of ’ELALJLE{ﬁ). We may assume without loss of generality that ’

ker (f) = E(C), for some object' C of M; since ' E reflects

~ congruence relations, - C is a congruence relation on A&, . i.e.,

il . - j . . . . _ .

there is an /exact diagram

—_— .

o e *Ar—--9 B -
_.__.’
h v .

in M, where f.E(u) = f.E(v) 1is exact in Mod(T). But E preserves -

exact diagrams, so 7E(g).E(u) = E(g) .E(V) .is exact in Mod(T). It
follows that E(B'), is canoﬁiééliy isomorphic in Med(T) to B, so

B belongs to M'. This shows that M' is clpsed.under homomorphic

images and concludes the proof of (5.16).

v

So far, we have proved that the conditions given ?2/(5.3) are

sufficient to guarantee that M is equivalent, via the finitary

- comparison functor E of U, to a locally eqﬁatlonal category. It

remains to be shown that the conditions are also necessary.

=

If M is a locally equation§%\full subcategory of a finitary
4

;
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equational category 'Mod(T),,then the functor U:.M —> Set required ) ;;%

Lo . . . ¥

“by (5.3) is the restfiqtion to M of UT. For each, finite n, a -é

set of representatives'of all the iSQﬁorphism types of the algebras %

. : . %

; » : .

in M which are homogeneously generated by an n-element set forms an k

v , -

%

- : - : ’ @

epimorphic inverse system in M in a natural way, and it is easy to - £

check that FT.(n) is an inverse limit of the system, where ‘T is ) é

the finitary -equational structure of U. (In other wbrds, Mod(T') . =
is the closure of M in Mod(T) under H, S, ‘and P}. The fact” )
- . - ;? o 4

Q

that the 1§mit7projections from FT,(n)rfto thg”homQQeqeous}yr '

generated algebras of rank n are=surjéctive éuarantees,thét the é

. R <L
inverse system coherently locally rgp;esents . The regular f
epimorphisms, cengruence relations, and directed unions in M are :
the same as in Mod(T), and U preserves and reflects them, since i

rat

UT -does. This completes the proof of (5.3).

ﬂ
e At T A e el gl U B
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There is an obvious way of generalizing the notions of
. i 4

/
7 - et b L 8

locally equatiqnal categories and locally representable functors by

£

‘ allowing an infinite regular cardinal k to play the role of w in

o
to pravide an infinitary counterpart to (5.3).

According to (3.14), a functor G: Mod(T) —> Mod(T') is

algebraic if and only if its set-valued component UT"G satisfies

l

conditjons i) and ii) of <;;%ton's characterization theorem (2.1)

]

for equstional categories. Let T and T' be finitary theories. :

We shall say that G: Mod(T) — Mod(T') is locally algebraic if it;

set-valued component UT"G satisfies conditions i), ii), and iii)
of the characterization theorem (5.3) for locally equational categories.

After same remarks concerning locally algebraic functors in

' general, we identify a class of locally algebraic functors, the

elementary Jocally algeﬁraic functors, which offer some promise of

[h A

being snalyzable syntactically. We prove a theorem giviné sufficient
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conditiong_fdr'a,functor to be an elementary locally algebraic

functor, and then show that bounded Boolean powers can be regarded - as

elementary locally algebraic functors. The chapter concludes with a

I3

';ubfunctor of a power of U

7

sketch of a proof of Hu's theorem (1.2) employing our results on

Jbounded Baolean‘powers.

- R . N E

‘A syntactical analysis of locally represent%ble functors by

the methods of Chapter 3 may be ippos§ible,.since it is not clear that’

1

a locally representable functor U: Mod(T) — Set is necéssarily a

T. fAlth6ugh U itself is a directed

©

union of representable functors Di' i€I, which are equationally

2

-

definable stbfunctors of‘some sufficiently large power UTmlﬂof UT'

the natural monomérphisms Di‘——bUTm might not constitute a cone

frém D: I —> Set (T) to Uiq. Let A = Lim D; if the prbjectibns

'

4¥ L3

A »D aze~su£jeeti#e7—thenfﬁergsemefcardinalgémAéwe;fﬁérfﬂnﬁxb¥4f4ﬁWAAAﬁAf——

cone p of surjective homomorphisms from FT(m) ‘to D by composing

a surjection FT(m) —>A with the cdneqz;\p;ojections A-—»D. In



7 o Pi
this case (and only in this case) the monomoxrphisms Di‘—--—*UTm

v
m . . ‘m
are a cone from D UT , so that U is embedded in UT as a
. 2

union of equationally definable subfunctors of UTm. For each i€ I,

we then have D, £ [E.] ‘~——9IL:n, where Ei is an (nl. m) —ary
g - 3 3 T ’

E3

- equation in the language ’LT or, equivalently, a conjunction of

-~ {1;-m)=~ary equations. Since D; ?SWDk’ whenever i € k in I, it

followé that T v# Ei = Ek ; thus, the formulas Ei’ i€, form

a directed system with respect to implication. Since U is the union

Y

of the functors [Ei], ig I, we have U = [‘§67%i]' A locally rep-
. jier

resgﬁtéble functor U: Mod(T) —=> Set which is embeddable in a power

of U, as shown above will be called an elementary locally representable

- functor.

Finite products commute with directed unions in Set, and

f © limits and colimits are computed "pointwise" in Set (T), so it

follows that finite products commute with directed unions in Set ;

- n .
in particular, Un is a directed union of the functors Di , 1€1I,

—



.

-
'
o

for all finite n. But Dir1 is represented by the algebra n@Di.
By taking the n-th copower in Mod(T} of each of the algebras and

connecting homomorphisms in the inverse system D, we obtain an

inverse system n®D which locally represents Un, and the n-th

. L
copower of the cone E’T{m} —E—bD is a cone FT(mxrx) n—-P--n@D of
surjective homomorpnisms which corresponds to the cone of product

mxn

T . ®With U and its finite powers thus

. a .
nmonomorphisms Di —— 13

fimly p ted in U = and its powers, we would like to be able to

obtain the finitary eguatiocnal structure of U by restricting

. . . ' m
T-operations, as we did with the representable subfimctors of UT

in {(3.3) and (3.4).

-

Let i ‘—f-*U be given; the composites

m
2 @D, ¢ st® —L apge—y

constitute a cone from o@D to U, corresponding to a cone
&

g: F_(m} —»n@®D in Mod{T}. If g could be "lifted” through
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i j
n®p to get a homomorphism h as shown in the diagram,
n®
PT(m %xn) —27P ,nep
4
}
¥ h t
!
i g.
. e : / , I _
F
T(m)
n
' mxn = = .
then UT -——’E}T would be a T-operation whose restriction to
~
~—
o mxn , . .
‘—7—’UT would induce f Indeed, for each i€ I this
program be carried ocut as shown below, since’ PT(m) is regular-

-

projective and nepi is a regular epimorphism.

n@pi
P _{mxn) ————————-—)n&Di
i .

There seems to be no guarantee, however, that there exists a “single

*h;aalczp%:im h such that, for ali: it1, (n@pi}.h = g;-

We arrive at the comclusiom that each finitary operation



! lel

b 4
£ . . . \ i
U'n —— U 1is given as a cone of partial operations Din ——l’U,

where each partial U-operation fi is the restriction to Hbirl of
h .
mxn -— m

same T-operation UT ‘———+>UT .

. . h I
A more detailed syntactical analysis of elementary locally

representable and locally algebraic functors must wait until the
algebraic and category-theoretic properties of these functors are
better understood. At the time of writing, it is unclear to what
extent locally algebraic functors as defined above are syntactically
analogous to algebraic functors.

~

We shall say that a locally algebraic functor .G 1is an

elementary locally algebraic functor if its set-valued component is
an elementary locally representable functor. Just as a representable
functor whose representing algebra is a regular progenerator is algebraic,

the next result tells us that an elementary locally representable ——

functor which is Iocally represented by an inverse system of regular

3

progenerators is an slementary locally algebraic functor.

o . ~



ﬂ

3:17. Theorem. Let T be a finitary equational theory,

and let D: I° —> Mod(T) be an inverse system of finitely
»

Agenerated regular progenerators such that there is a cone of

surjective homomorphisms A —£»D, for some T-algebra A. Themn

the functdr U: Mod(T) —> Set which is locally represented by D

is am wlementary I16¢ally algebraic functor.
~

Proof. It is obvious from the preceding discussion that

U 1is elementary, and that the cone of surjections A —» D presents

'_D_ as a directed systemlof equationally definable subfunctors of A,

with UesA as the union of that system. For each finite n, U is
locally represented by n@D.

Since Di is finitely generated, Di preserves directed
N

o /

unions, for all i1i€I, so U preserves directed unions. Each of the

functors Di' i€ I, preserves limits, so it follows that U preserves

finite limits. In particular, U preserves kernel pairs, so U

rreserves congruernce relations. It remains to be shown that U



preserves regular epimorphisms and r%’i'lects regular epimo

N

congruence relations, and that, for each finite n, n@®D is

isms and

coherent.

wWhengver it is convenient, we shall treat the colimit

-V

injections Di ¢~ U as though, for each T~algebra B, the

B~component - Di (B} == U(BJ  were an inclusion map.

Suppose%at B b, C is a regular epimorphism. If ueU(C),

we may identify it with an element of Di(C) = U(C), for some 1€ 1I.

But Di is regular-projective, so Di preserves regular epimorphisms.

Then Di(h) : ‘Di(B) —>Di(C) is surjective, so there is some
v £ Di(B) = U(B) such that h.v = u. This suffices to show that
U(n) 1is surjective, so U preserves regular epimorphisms.

To prove that U reflects regular epimorphisms, suppose that

B —2»C is given with U(h) surjective. Then every element of

Di{C} S U(C) 1is a U(h)-image of some element of U(B), i.e., for

v
sach Di—u>C there is 3 3»i in I and an arrow Dj — B such

-
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d..
that h.v = u.dij, where Dj —-—]'LbDi is the connecting arrow.
{(This amounts tc viewing u as an element of a bigger piece .I.)_i(C)

of U(C), where 3 1is chosen éo that the pre-image v of u l}ves

P.

in D.(B) € U(B)). Since d,,.p, = p., where A ——>D, 1is
73 i3°F5 i i

surjective, it follows that dij is surjective. But Di isi

regular-projective, so there is Di -—s—*Dj with dij.s = idD . )But .
i

L

then u = u.dij.s = h.v.s, which shows that the function Di(h) is

surjective; since Di is a regular generator, it follows that h 1is

3

Surjective. P » :

/

) Now we must show that U( reflects congruence relations.
- 7 -

—

Suppose that C<—»BxB 1is given such that . in Set’

»

U(C) =™ U(B xB) = U(B) xU(B) is isomorphic to a congruence relation

(i.e., an equivalence relatiom in the ordinafy sense). For any i€ I,

let (u, ¥): Di —3B xB be the homomorphism whose composites with

the projections B xB —» B are respectively u, v: Di -—>B. The

s
v

Elements of Di (C) are in bijective correspondence with the arrows
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(u, v): D, —* BxB which factor through ‘Ce—>B. Let i€I be

~ fixed; we shall show that D;(C) =D, (BxB) =D, (B) XD, (B) is an

equivalence relation. N ' ' ' ~

i . %a - . _ D

Let Di —> B be giyen. Since U(C) is reflexive; there -

e ‘, -
is jv'>,i in I such that (u', W) factors through C, where
u' = u"dij' As we have pointed out, 'dij _has' coretraction .s, so . ,17

{(u', u').s = (u'.s, u'.s) = (u, u) factors throug C, so Di(C) is

reflexive.

Now suppose that (u, v): Di —» BXB 1is given which. fa'ctbr;s
. _

through C. -Since U(C) ' is symmetric, for some j2i in I we have

»

{(v', u'): Dj —> BXB which factors through C, where - v' = V.dij ,

}
and u' =u.d,.. Then (v', u').s = (v'.s, u'.s) =,(V" u) factors

ij v
through C, so D,(C) is symmetric. . 7 A

L4

The same trick shows that Di(C) is transitive, so it is an

equivalence relation, i.e., a congruence relation-in Set. Since D‘i

'is a regqular progénerator, Di reflects congruence relations, by

[



~

(3.1), so C 1s a cor;gruende relation in Mod(T). ’;‘his proves ,'th

Ve .

a

v & reflects cqngi%ﬁence relations.

3

finite . thWn%fiﬁmerentffff*\md~mlfyfif—,—fer—eaeh

I

N

Finally; we shally show that n®D is coherent, fdr all

at

-

i€ I, the projection (Lim ®.n®D) --}—bUn(n®Di) is surjective.

By hypothesis we have a cone n®A

- n @,,,, V,

n®D of surjec'{_:j.'c')'ns';!

since U preserves surjections, v" does too, and U (n®p) is a

cone of surjections from U"(a) to U".n®D. Let

U‘}(A) —ible Un.n D be the induced arrow. For each i€ I, we have

that di.f = Un(n @pi) is surjective, sé di is surjecrtive. This

-

completes the proof that U is an elementary locally algebraic

functor.

Let A be any set having at least two elements. The

-
3

~ set~valued bounded ‘Boolean power functor: Afl-]1: Mod(BA) —> Set is h

_defined as follows. %

i) For each Boolean algebra B, A[B] is the set of all
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vA-indexed partitions of ‘unity u: A —*B “such that the set
{a€a : u(a) # 0} is finite.

ii) For each Boolean homomorphism B i’ C, let

P

A[hl: A[B] — A[C] be the function which sends each u € A[B] to

*

-h.u € A[C].

An algebra-valued béﬂed Boolean power functor - is ahy / 7

functor of the form G: Mod(BA) —»Mod(T), where U,.-G Z a[-1, for

some set A.

When A 1is finite, the bounded Boolean power fun’c’:tor".A[—]'
coincides with the finitary representable Boolean power functor defined
in Chapter 4. The bounded Boolean power construction was introduced

by A. L. Foster [16] and has been studied extensively in conjunction

with Boolean' powers. Major references on bounded Boolean powers are

= : ‘f&;ggﬁéyfmshmmmma

‘\‘Q\ /

Boolean powers' admit convenient representations as "bounded noxmal

subdirect powers" (see [18]) and as algebras of continuous functions



(see [3]); Our treatment of bounded Boolean powers as elementary

locally algebraic functors seems to be new..

5.18. Theorem. Every bounded Boolean power functor is anm

’

' elementary locally algebraic functor; furthermore, every locally -

algebraic functor of the form G: Mod(BA) —»Mod(T) is a bounded

Boolean power functor.

Proof. Since a functor is or is not an elementary locally

algebraic functor by virtue of the properties of its set—valued‘

: componéft, it is sufficient to consider only set-valued functors.
; First, we shail prove bthvat A[‘-] : Mod(B;T&) — Set is an elementary.
locally algebraj;c functor. Let I be the directed systt—::m of all
finite subsets of the set‘ A, with inclusiox;x mgés as connecting

arrows. BAssigning to each X J—*Y the corresponding Boolean

V *
" homomorphism ﬁ%xi, ~we obtain an inverse system

such that:

t P: I° — Mod(BA)
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i) All connecting homomorphisms 2Y — 2X are ,surjéctivé ;

‘b ' a Px

ii) The surjections 2 ——’ZX', corresponding to XA

for all X€I, constitute a cone p from 2® to P

For each finite n, we have an inverse system

n@®P: I° —> Mod(BR) of quotients of n921}; n®@P sends each

Xe=—>»Y of I to 2Yn——v2xn in Mod(BA). The conditions i) and

ii) above are satisfied, mutatis mutandis, by n@®P.
- We claim that P locally represents A{-1. Por each X€1I,
Ix

a natural transformation 2_% —> A[-] is defined as follows. For

i

each homomorphism 2% —th,r let 9y B(h) be the partition u: A —B
R - - x

i)

defined by ufa) = h.px({a}) for all a€ A. Obviously, for each
Boolean algebra B, the arrow g, . is an injective function which
‘ X, 7 ;

embeds 2°(B) in AIBl. In fact, g = (g, : X€I) is a come of

monomorphisms from P to  Al-]. To show that A[-] is a directed /

i

¥
o

-union of the functors __Z_X_, X€I, let B be any Boolean aléebza, and

let u be any element of A[B]. Iet X = {a€ea : ula) ¥ 0}, and



- ) ;\ -
at
. ) L }70
V N
v /_-— ’ .
. X _h ' e i ' '
: fet 2 ~—— B "be the Boolean homomorphism.which sends {a} to wuf(a),
for each " a€X. Then 9y B(h) = u.' This shows that A[B] = Coii.m i(B)
o o x€1 -
‘for each B, so. A[-] = Colim g_}i = Colim g ‘It is imediate that,
'  X€1I ' : -
for eagh finite n, A[~1" is locally represeaqted by n®p. ‘By
(5.17)~(«*@ is an elementary locally algebraic functor.
o L R ['s § . ' - i ‘
) — ’ Now suppose }:hEET'U:'YIO’d-TBKT == Sgt is locally representable:— - -
g Let D: I° —»—> Mod(BA) ‘be an epigpréhic inverse system which locally
& - . R - .1
: _represents U. . Epimorphisms in Mod(BA) are surjective, so all the
! N = . di " : B . 5
g i connective arrows Dj -f-l*Di are surjective. Suppose that Di is
: iy S ' o B

not finitely generated; then neither is D, for amy j»i’ in 1,

< 2

" ’ ~ so we may as well suppose that n'one“ of the algebras in the inverse

g T syétem D is ‘finitely generated. Let i€I be fixed, and let the ;

finitely geneiate&‘subalgebras of Di be Bk"—;pi , - where those

subalgebras are indexed by an appiopriate directed set K so that weF
-  tan write the directed system of finitely gemerated subalgebras of D
» ‘as B: K —>Mod(BA). Of course, Colim B = D, since BA -is akr
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finitary equational theory. . We shall show that U does not preserve

the directed union Colim B = Di'
. " - * ma ‘
LU .

Application of U to the cone of inclusions B —’Di

.~

___produces a cene of mﬁ:rphisms .8 —>U(D.), so obviously the

directed union Colim U.B is embedded in U(Di) by the induced

P - e .
.
-

union Colim B = Di if and ~only if the embedding Colim U.B ——$U(Di)

is an isomprphism. If Di is not finitely genexated, however, the

element of U(D) represented by.the identity arrow in D (D,) = U(Di) .

has ‘no counterpart in Colim U.B, so the embedding of Colim U.B /

in U(Di) _is not an ‘isomorphism, and U " does not preserve directed

unions.

the preceging argument shows that if the functor

s Hod{mx) ——»Set is locallyyc then all of-the algebras

D, i€, must be f.mztely generated, sijce U px(erve.s dlrected

unions. But then-each algebra D, is a finite power 2;?1

ofa

-r



two-element Boolean algebra. Each of the surjective connecting

i

X d.. X-‘
homomorphisms 2 } —2d, 2" s induced by injection xi=——~xj,

and it is easy to see that U 2 A[-], where ] is the directed

union-in- Set of the-directed system of finite sets X,., 1i€I. This
- i

completes the proof of (5.18).°
/

5.19. Theorem. Let A be a set having at least two elements.

" The finitary equational structure of A[-]: Mod(BA) —> Set 1is

isomorphic to the finitary equational structure of the set A.

Proof, If A is finite, this result is a consequence of

w
-

(4.2) and (4.3). Suppose that A is infinite, and let P: I° —» Mod(BA)

™

be the inverse system, defined in the proof of (5.18), which locally

: A
represents A[-}. Recall that p: 2 —>P is the obvious cone of

syrjections, an® that g: P — Al[-] is the cone of colimit injectioms.
' - b ¥ .

¥

Given a finitary operation A{#-.}n *_f’bi-] , consider the composite

- n P _ﬁg—_’h[-]n;_f._;hl-] _I_*—Z—A-’

S— -
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where r 1s the colimit arrow induced by the cone p: P —bZ_A_ .

This composite corresponds to a cone 2%;—-—-” n®P in Mod(BA) aﬁd, v

A £ A" - at - :
hence, to a homomorphism 2 —» 2" , since 2 = ‘Lim n®P." To

verify that f' really does induce f on A[-] in some reasonable
> ' . .

An

. . n
sense, observe that there is a natural transformation A[-}" —> 2

- n

which, for each Boolean algebra B, embeds A[B]" in. hcxmBA(ZA , B)

as the set of all homanorphisﬁs u which fact'or, for some XE I, as/

A % X : : n
2 ——>»2 ——>B, where 9y is the projection induced by X <A,
The action of f on an element u of A[B]" . (viewed as an arrow

- o

AD .
2 —»B) 1is as follows.

£
o

[rB.f-Bl'(u) = [;B.fB.‘n;agx'B] gy = [qx.f']B(u‘) = u'.qx.f' = u.f!

o
~ —

-

»

Since u_.f’ is an eleﬁe’n_t of hﬁBA(ZA,-,B) which represents

»
. . o : Py -
% . ) A 7Y Y
an element of - A[BY, it must factor as 2 —=»2 irB, for some
t I ) -
Y &I WWSWWW

homomorphism.

"\
S s

o

Lt
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We claim that f' 1s a complete homomorphism, i.é. , that

f' = h*, for some function An -l-)A. The claim is true because, if

f' is not complete, the original operation £ is not well-defi_x}ed

on A[2]. To see this, let AO‘E.’ Ai‘a. . 'E‘Am;' . . bea

descending chain of subsets of A such that / YA =0 while
i

f\ f‘(Ai) # 0; such a chain must exist if f' is not complete. '
i :

. o A0 _
Iet b € f\ f'(Ai) , and let wu: 22 —2 be the hamomorphism

i : -
n

which sends {b} to L‘:/E:leariy, u belongs to f\@{Z]nghomBA(zA , 2).
"'For each of the sets’ A ' we have [u.f'](A;) = u(f'(A}) »u({p}) = 1.
Thus, /\ £u.f'I(Ai) = 1 # 6, so u.f' _is not a complete
~u i ' - o
. 7 . . - A
homomorphism and, hence, not an element of A[2] & homBA(Z , 2).

’ . ) - “’ t
So far, we have established that each finitary operation “
,A["]n —f—*hi-] is induced by a fini:tary‘operation A" —»a. But -
£_(u)](c =Su"/\u.(b.):f(b)=c o T
.[ B( 1) Py 33 , S
j<n . , )
’ ’ N El -
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for all c€A and u€A[B]" (derived as in (4.4)), shows that every

finitary operaticn on A induces an operation on A[-]}, and that

oy

no two distinct A-operations induce. the same A[-}-operation. It

follows that &[-] and A have isomorphic finitary equational

structure. This completes the proof of (5.19).

The new content of {(5.19) is simply that Fostetfé formula
! :

is sufficient for bounded Boolean powers; A[-] 1is incapable of
carrying any finitary operatioms which are not 'inherited from A.
The proof of {5.19) is interesting, in that it shows.fﬁat, whiiév

(as noted earlier in this Chapter) the operations on Af-] are not

»

directly representable as restrictions to. A[-]" Eé(gf)rl of

¢

L X L ' A
operations in the equatiomnal structure of the functor 2 , .the

-

‘A[~)-operations are cbtainable ag'reétrictions‘bf operatibns in a

¥od {BA)

manyéaarted T_-algebra in Set | R ﬁamely, the‘fhnctor wnicn."
h - = A" a

sends each function 2" 22" to h:2 —»2

. This suggests

%

<[‘ -

a possible means of avoiding the difficulties in the syntactical -.
~, ST .
A i



analysis of locally representable functors, as pointed out in the

. :
discussion preceding (5.17).

Y

Finally, note that {5.18) and (5.19) together can be used to

prove Hu's theorem {1.2). The finitary equatigmal structure of a set

' +
__A_is the equational theory T of a locally primal algebra A _ whose

'underlying set is A. Theorems (5.18) and (5.19) toqeth.er show that

Mod (BA} 1is equivalent, via the comparison functor for the bounded . (

s

Boolean power functor Al-}, to the locally* equational subcategory
Ltia’}y of  Hod(m) generated by the locally primal algebra 'Af.'

 Given any algebra A' whose underlying set is A and which belongs ?JI »

to an equaticnal‘ categoxry Mod(T"), let T' be the finitary equatlpnal
. : . <
tbéo:y of the algebra A' (i.e., lock at A’ itself as an equational
- . N ’ , . . .

theory; 7&:&(‘!,'”') is es.smtially just IBP(‘{A‘}).C-_M(T")). The B

R
-

L i

- the inclusion T!<—T.is a mapping of theories. The composite
B ' . S
T" —= T' —> T "determines a reduct functor U: Mod(T) —» Mod(T")
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. . o~ . +
which establishes a category equivalence between L({A'}) and L({a'})

¥ .
! exactly when A' is locally p%imal.
- 1‘ *
,ffJ
L‘\
5
F /Y“ {
+ B
AN
»
\
o~ =~
_/\ 3 b : R
’ ) * oy
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