National Library of Census

Bibliothlque national d Cense

CAMADAM THEBE ON menoriche

THLDEP CAMAMminns WI MrGorrent

MANE OF AUTHOR/NOM DE L'AUTEUR. \qquad \mathcal{L} AMES Dukarm

TITLE OF THESTS:TITAE DE LA THESE \qquad ALGEBRAIC AND LOCALLY ALGEBRAIC FUNCTOR
\qquad
\qquad
UNIVERSITY/UN/VEAS/TÉ \qquad Fraser \qquad University \qquad
DEGREE FOR WHICH THESIS WAS PRESENTED $/$
GRADE POU㳯 LEQUEL CETIE THÉSE RUT PHESENTÉE \qquad
YEAR THIS DEGREE CONFERAED/ANNEE O'OATENTION DE CE DEGREe \qquad NAME OF SUPERVISOR/ NOM DU DIRECTELM DE THESE \qquad AM. LACHLAN

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend of sell copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or other. wise reproduced without the author" written permission.

DATED CH TV \qquad $1980 \quad 04 \quad 16$ SIGNED/SIGNE

PERMANENT ADORESS/AÉSHENCE FIXZ_CO MATHEMATICS DEPT. SIMON FRASER UNIVERSITY BURNABY, BC. CANADA YEA 156

Biblotheque nationale du Canada
Direction du développement des collections
sur microfiche

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially. if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.
$S^{\prime} \neq$ manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisşer à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir ùne photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

> LA THĖSE A ÉTÉ microfilmée telle que NOUS L'AVONS RECUE

by

```
                    James J. Dukarm
            B.A., Michigan State University, 1969
                M.S., St. Mary's University (Texas), 1973
```

A THESIS SUBMITTED IN PARTIAL FULFILIMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
0
DOCTOR OF PHILOSORHY
in the Department
of
Mathematics
(C) James J. Dukarm 1980
SIMON FRASER UNIVERSITY
April 1980

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

I hereby grant to Simon Fraser University the right to lead my thesis or dissertation (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this thesis for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Title of Thesis/Dissertation:
ALGEBRAIC AND LOCALLY ALGEBRAIC FUNCTORS

Author:
(signature)
James J Dukarm
(name)
19800416
(date)

APPROVAL

```
Name: James J. Dukarm
Degree: Doctor of Prilosopny
Title of Thesis: #lgebraic and Locally Algebraic Functors
Examining Committee:
    Chaimman: S.K. Tnomason
```

 E. H. Lachlan
 Senior Supervisor
 B. S. Thomson
 H. Gerber
 A. R. Freedman
 B. Banaschewski
 External Examiner
 Professor
 Department of Mathematics
 McMaster University
 Date Approved: April 16, 1980

FBSTFACT

functors. Using a category-theoretic formulation of universal algebra
and first-order logic originated by F. W. Lawvere, we obtain algebraic
and logical results concerning functors which correspond to important
kinds of algeoraic constructions--in particular, to Boolean powers and
bounded Boolean powers.

The notion of an equational interpretation of an equational
theory T ' in an equational theory T is introduced and shown to be the
syntactical counterpart to coalgebras. By means of equational interpretations $\mathrm{T}^{\prime} \rightarrow \mathrm{T} \rightarrow$ the representable functors $\operatorname{Mod}(T) \rightarrow \operatorname{Mod}\left(T{ }^{*}\right)$ are shown to be obtainable as T'-algebras defined "within" the underlying-set functor $U_{T}: \operatorname{Mod}(T) \rightarrow$ Set when U_{T} is treated as a T-algebra in

This thesis is respectfully dedieated-to Helena Rasiowa.

ACKNOWLEDGEMENTS

My supervisor, Prof. Alistair Lachlan, has earned my deep appreciation and thanks for his tireless help and friendship over the last several years. Very special thanks also go to Doc. dr. Antoni Wiweger of the Mathematics Institute of the Polish Academy of Sciences, Warsaw, for his valuable help and encouragement during my stays in Warsaw in 1975-76 and in 1977. Prof. Helena Rasiowa arranged my extended stay in Warsaw in 1975-76 and supervised my work at Warsaw University, where I began to be a mathematician instead of a student largely as a result of opportunities which she provided. Countless other young mathematicians have been helped similarly by Rasiowa's
generosity, and the dedication of this thesis to Prof. Rasiowa is a
gesture of appreciation for her help and example to all of us.

The content of this thesis has been affected significantly
by all three of the individuals named above. Prof. Lachlan convinced
me that locally equational classes were worthy of investigation and
also encouraged and helped my study of Boolean powers. Docent Wiweger
also played an important role in directing my attention to categorially
interesting aspects of Boolean powers, and he provided much useful
criticism and many very helpful suggestions concerning my work on those
functors and other algebraic problems. Prof. Rasiowa suggested the
relevance of Cat-Ho Nguyen's generalized Post algebras to my work on

Boolean powers.

Thanks are also offered to the many persons who contributed
references, advice, and opportunities for discussing my research.

Prominent among these people are B. Banaschewski, M. Barr, S. Burris,
F. Linton, M. Makkai, E. Nelson, A. Obtuyowicz, A. Pixley, K. Prikry,
and R. Sokolnicki.

tabie of cantents

APPROVAL ii
ABSTRACT iii
DEDICATION v
ACKONONLEDGEMENTS vi
TABLE OR GONTENTS シ込
CHAPTER i. INTPODUCTION 1
GMAPTER 2. FUNDAMENTALS OF CATEGORY-THEORETIC ALGEBRA 9
CHAPTER 3. MORITA EQUIVALENCE AND ALGEBRAIC FUNCTORS 41
GHAPTER 4. REPRESENTABLE BOOLEAN PGNER FUNCTORS 8 Х
CHAPRER 5. LOCALIY EGUATICNAE CATEGORIES AND LOCALIY ALGEBRAIC FUNCTORS 131
IIST OF REFERENCES 178

$$
\begin{aligned}
& 1 \\
& \text { CHAPTER 1. INTRODUCTION. }
\end{aligned}
$$

The m-valued Post algebras, for finite $m \geqslant 2$, were introduced by P. C. Rosenbloom [38] as "many-valued" analogues to the Boolean algebras in connection with a kind of many-valued propositional logic which was designed to be functionally complete with respect to a semantics of m-valued truth tabies. It was natural for logicians and algebraists to try to determine the extent and nature of the similarities between the Post algebras and the Boolean algebras. In search of "Boolean" properties of Post algebras, p-rings, and other analogues to Boolean algebras, A. L. Foster invented the Boolean power construction and the notion of a nomal subdirect power. One of his
main results was the following theorem.
1.1. Theorem (A. L. Foster [14], [15]). Let A be a primal
i) The equational class generated by A;
ii). The class of all isomorphic copies of normal subdirect
powers of A_{i}
iii) The class of all isomorphic copies of Boolean
powers of A.

Here, a primal algebra (in Foster's terminology, a
"functionally strictly complete" finite algebra) is a finite
universal algebra A, having at least two elements, such that, for
each finite n, every function. $A^{n} \longrightarrow A$ is a polynomial of A.

Foster explicitly recognized that the m-elemf m-valued post algebra
was primal, and in his proof he showed that the Boolean algebra
involved in constructing any given algebra in a primally-generated
equational class was recoverable frow that algebra. Thus, Poster's
proof almost shows that the category of Boolean algebras is equivalent
to the equational category (with algebras as objects and homomorphisms

∞
 as arrows) generated by any primal algebra, with the Boolean power
 construction providing the equivalence functor.

In a subseguent paper [16], Foster generalized the Boolean
power construction, defining "bounded" Boolean powers of an infinite algebra and showing that the bounded Boolean power construction enjoyed properties'which were "localized" versions of corresponding properties of the original Boolean power construction. Much of Foster's work conceming Boolean powers and bounded Boolean powers was tidied up and extended by M. I. Gould and ${ }^{\circ}$. Gratzer [18], with most of the material of the latter paper appearing in Grätzer's book [19].

Foster's notions of "local" properties were studied and refined. in a succession of papers by T. K. Hu, most notably [22], [23], [24],
and [25], in which Hu formulated the definition of a locally equational
class of universal aigebras. Hu's final definition and characterization
of locally equationai ciasses, which appeared in [25], are given at the
beginning of chapter 5 of this thesis. The next theorem, one of Hu's
mosi significant results, seems to have remained soutwhat obscure,
possibly because it never appeared in print with both a correct proof and the final definition of a locally equational class.

> A finitary universal algebra A having at least two elements
is locally primal (see [16]) if, for every finite n and every finite subset ' X of A, each partial function $X{ }^{n} \longrightarrow A$ " is the restriction. of a polynomial $A^{n} \longrightarrow A$ of A :
1.2. Theorem (T. K. Hu [22], [24], [25]). Let K be a locally equational class of finitary universal algebras, regarded as a category whose arrows are all homomorphisms between algebras of K . Then K is equivalent to the category of Boolean algebras if and only \because
if K is generated as a locally equational class by a locally primal $*$
algebra.

```
1.3. Corollary. Iet }K\mathrm{ be an equational class of finitary
```

universal algebras, regarded as a category whose arrows are all
homomorphisms between algebras of K. Then K is equivalent to the a
category of Boolean algebras if and only if K is generated as an
equational class by a primal algebra.

Ha's proof of (1.2) in [22] shows that a locally equational
class K is dually equivalent to the category of Boolean spaces if
and only if K is generated by a locally primal algebra A; then
K is an equational class if and only if A is finite, hence primal.

The functor which provides the dual equivalence assigns to each - ..

Boolean space X an algebra of continuous functions $C(X, A)$, where

A Has the discrete topology. It 'is now well known that, if X is the

Stone space of a Boolean algebra B, then $C(X, A)$ is isomorphic to
the bounded Boolean power $A[B]$, which is an ordinary Boolean power if

A is finite (see Banaschewski and Nelson [3] for details).

Investigations by numerous authors (see Burris [5] and

Banaschewski and Nelson [3] for an extensive bibliography) have shown
that the Boolean power and bounded Boolean power constructions have
extremely nice logical and algebraic properties. Most of the work
done on Boolean powers to date makes use of Foster's original
definition of Boolean powers, Foster's characterization of Boolean powers as normal subdirect powers, the algebra-of-continuous-functions characterization, or a characterization of Boolean powers as a simple
type of sheaf construction.

The important work on Post algebras as lattices done by :

Epstein [13], Traczyk [41], and others, has no apparene connection
with the Boolean power construction. The lattice-theoretic studies of Post algebras express the correspondence between Post algebras and Boolean algebras by describing the m-valued Post algebras as coproducts of an m-element chain with Boolean algebras in the category of bounded distributive lattices, or as chain-based distributive lattices, or as algebras of nonincreasing (m-1)-element chains in Boolean algebras. These constructions are discussed in Balbes and Dwinger [1] and in Rasiowa [37].

F
The results presented in this thesis have their origins in a
study of the functorial properties of the Boolean power construction;
some preliminary results of that study, such as a construction of
"Post algebras" as the Eilenberg-Moore algebras for a Boolean power monad in the category of sets, were presented in seminars at Warsaw University and at the Mathematics Institute of the Polish Academy of Sciences in Warsaw in early 1976 and 1977. The writer's paper [9] on coalgebra-representable Boolean power functors shows that much of the niceness of Boolean powers is attributable to a special relationship between their representing algebras and free algebras in a category of infinitary Boolean algebras.

Chapter 3 of this thesis, on Morita equivalence and algebraic functors, contains improved versions of results originally presented in [10] which generalize the methods and respults of [9]. Equational theories T and T^{\prime} are said to be Morita equivalent if the respective equational categories $\operatorname{Mod}(T)$ and $\operatorname{Mod}\left(T^{\prime}\right)$ of algebras are equivalent as eategories. A functor $G: \operatorname{Mod}(T) \Longrightarrow \operatorname{Mod}(T 1)$ is algebraic if its
composite $\mathrm{U}_{\mathrm{T}}{ }^{\prime} \mathrm{G}$ with the underlying-set functor $\mathrm{U}_{\mathrm{T}} \mathrm{i}^{\prime}: \operatorname{Mod}\left(\mathrm{T}^{\prime}\right) \longrightarrow$ Set is monadie, every algebraic functor is coalgebra-representable. In

Chapter 3 we define an equational interpretation of one equational ~

```
theory in another and show that such interpretations are the syntactical
counterparts to coalgebras. Morita equivalence of equational theories
is characterized syntactically, and a syntactical characterization of
```

algebraic functors is derived.

The construction of m-valued Post algebras as chain-based
lattices provides an example of an equational interpretation of the
equational theory $B A$ of Boolean algebras in the equational theory P_{m}
of m-valued post algebras which witnesses the Morita equivalence of
those theories. Likewise, the construction of m-valued Post-algebras
as lattices of nonincreasing ($\mathrm{m}-1$)-element chains in Boolean algebras
*
is directly related to an equational interpretation of P_{m} in $B A$
which not only witnesses the Morita equivalence of the two theories
but actually gives rise to a representable Boolean power functor.

Much of the material of [9] appears in Chapter 4, which is a
discussion of representable Boolean power functors. It is shown that
the representable Boolean power functors are algebraic, and the
equational theory of generalized Post algebras associated with a
representable Boolean power functor is examined in some detail.

The connection between bounded Boolean powers and locally
equational classes as demonstrateg by Hu's theorem (1.2) suggests that there might be a "local" generalization of algebraic functors corresponding to bounded Boolean powers. The required "locally equational" counterpart to monadicity (also appearing in [11]) is given in Chapter 5 in the form of a functor-theoretic characterization of locally equational categories. Bounded Boolean power functors do turn out to be locally algebraic, and a new proof of the Hu theorem (1.2) is outlined using the results of Chapter 5. One contribution of this study which is not expressible as a theorem is the demonstration that a consistent category-theoretic approach to algebraic constructions, based on Lawvere's analysiș in [29] of algebra-valued functors, can-be a practical-way of obtaining algebraically meaningful results.

CHAPTER 2. FUNDAMENTAES OF CATEGORY-THEORETIC ALGEBRA
The reader is assumed to be familiar with basic notions of
category theory as presented in Mac Lane [32] and with standarduniversal algebra as in Grätzer [19]. The treatment of universalalgebra described in this chapter is similar in spirit to the model-theoretic approach exemplified by Grätzer [19], but is more suitablefor dealing with the interactions of algebraic and category-theoretic
phenomena. In Chapter 3, for example, we find it useful to treat
certain set-valued functors as algebras in a functor category; the
structure and properties of such algebras cannot conveniently be
explained in terms of elements and mappings of elements. This particular
style of category-theoretic universal algebra originated with
F. W. Lawvere's Ph.D. thesis [29] and was adapted by F. E. J. Linton[30] to cover infinitary universal algebra. A good exposition of
finitary category-theoretic algebra is given in Pareigis [36], while Wraith [42] provides a detailed account of the basics of infinitary category-theoretic algebra. The paper [17] by P. Freyd must be included in the canon of the Lawvere-Linton approach to algebra, since it has motivated much of the subsequent research in category-theoretic algebra.

We assume no particular set-theoretic foundation for category theory; since we only discuss functor categories of finite "depth," the type of category theory which we use is no more hazardous than Zermelo-Fraenkel set theory with a few Grothendieck universes added on. For our purposes, then, all the categories (except Cat) which are mentioned below are considered as being objects in a very big category Cat whose arrows are functors.

The category set of se'ts and functions is assumed to satisfy
some form of the Axiom of Choice, and cardinals in set are identified with initial ordinals. The finite cardinals are 0, 1, 2, . . ., while
ω is the smallest infinite cardinal. Note that, for category-theoretic

purposes, the domain and codomain are part of the data which define a function; thus, for example, the identity function $x \rightarrow x$ is distinct from the inclusion map $X \longrightarrow Y$, if X is a proper subset of Y.

1
of all arrows $A \longrightarrow B$ in M is normally denoted by $M(A, B)$;
-
however, this usage is abandoned below in certain cases where the notation would be confusing. The category M is small if the family of all arrows in M is a set, i.e., an object in the category set; M is locally small if $M(A, B)$ is a set, for all M-objects A and B. The identity arrow $A \longrightarrow A$ is $i d_{A}$, or sometimes just $i d$, and the composite arrow $A \xrightarrow{g} B \xrightarrow{f} C$ is $f . g$, or simply fg. If f and g are functions, then the value of $f . g$ at the point $a \in A$ may be denoted by [f.g](a). A subobject of A in M is an object B with a monomorphism- $B \xrightarrow{b} A$; we sometimes write $B C A$ to indicate that B is a subobject of A. If $B \longleftrightarrow A$ and $C \longleftrightarrow C$ are subobjects of A, then $B \leqslant C$ is defined to mean that there is an
arrow $B \xrightarrow{f} C$ with $C . f=b$; in that case, f is a uniquely determined monomorphism. If f is an isomorphism, the subobjects
B and C are equivalent. The category M° is the opposite of M;
the objects of M° are the same as those of M, and the arrows
$A \longrightarrow B$ in M° are in bijective correspondence with the arrows
$B \longrightarrow A$ in M; usually, no confusion will result if the same name is
used for corresponding arrows in M and in M°.

All functors are considered to be covariant, but frequently
a functor $M^{0} \longrightarrow K$ will be described as though it were an arrowreversing transformation defined on M. Note that each functor $G: M \longrightarrow K$ determines a functor $G^{\circ}: M^{\circ} \longrightarrow K^{\circ}$ in an obvious way. The functor category K^{M} has as its objects all functors $M \longrightarrow K$, and as its arrows all natural transformations between such functors. A natural transformation $G \xrightarrow{f} H$ in K^{M} is given as a family (not necessarily a set) of arrows $f_{A}: G(A) \longrightarrow H(A)$ in K indexed by the objects A of M. In general, K^{M} may be a rather large category, but most of the functor categories which we use are of the form Set^{M}, where M is
locally small.

If M is locally small, then each object A determines a
 functor $\underset{A}{A}: M \rightarrow$ Set defined by the following:

i) For each object B, $A(B)$ is $M(A, B)$;
ii) For each arrow $B \xrightarrow{f} C_{r} \underline{A(f)}$ is the function
$M(A, B) \longrightarrow M(A, C)$ which sends each $A \xrightarrow{g} B$ to $A \xrightarrow{f g} C$.

Any functor $U: M \longrightarrow$ Set for which there is an object A such that U is naturally isomorphic to A is called a representable functor, and the object A is said to represent U. Each arrow $A \xrightarrow{f} B$ in M determines a natural transformation $\underline{f}: \underline{B} \longrightarrow \underline{A}$ which acts by
composition with f on the right: for each object C and each arrow $B \xrightarrow{G} C$, we have $f_{C}(G)=g . f$.

The Yoneda Lemma says that the natural transformations $\underline{A} \longrightarrow U$,
for any M-object A and any set-valued functor 4 , M Set, are in
bijective correspondence with the elements of the set $U(A)$. For each
natural transformation $A \xrightarrow{A} U$, the corresponding element of $U(A)$ is
$f_{A}\left(i d_{A}\right)$; for each element a of $U(A)$, the corresponding natural
transformation a is defined by ${\underset{B}{B}}(g)=[U(g)](a)$, for eaeh object
B and each arrow $A \xrightarrow{g} B$. An important consequence of the yoneda
Lemma is that the Yoneda embedding ${ }^{\circ} \mathrm{M}^{\circ} \longrightarrow$ Set $^{\mathrm{M}}$, which takes each
arrow $A \xrightarrow{f} B$ of M to $B \xrightarrow{\underline{f}} A$ in Set M, is a full embedding.
"
The Yoneda embedding preserves limits, i.e., takes colimits of diagrams in M to limits of diagrams in set^{M}.

An equational theory is a locally small skeletal category T
with all products, such that every object of T is a power of one particular object T. An arrow of the form $T^{\mathrm{n}} \longrightarrow T^{\text {MI }}$ in T is called an (m, n)-ary operation. Any (m, n)-ary operation is simply
a product arrow induced by an m-sequence of (1, n)-ary operations.

For any function $\mathrm{m} \xrightarrow{\mathrm{f}} \mathrm{n}$, there is a corresponding operation
$Y^{n} \xrightarrow{f^{*}}$ I m whose composite with the i-th projection $T^{m} \longrightarrow T$ is the $f(i)$-th projection $T^{n} \longrightarrow T$, for each $i<m$. The assignment of $m \xrightarrow{f} n$ in Set to $T^{n} f^{*}$ in T determines a functor
$j_{T}:$ Card $^{\circ} \longrightarrow T$, where card is the fall subcategory in set of all cardinals. There are (up to isomorphism) two exceptional equational theories T, for which the functor j_{T} is not faithful. The first exception is the theory T which has only one object and one arrow. " The second exception is the theory T for which $T^{0} \neq T$, but $T^{n}=T$
for all $n \neq 0$, and where there is exactly on f (1, 0)-ary operation. $A(1, n)$-any operation f is said to be trivial when there is \bigcirc
a function g such that $f=g *$, or when there is an $m<n$ such that f factors as $f=g^{*} h$ for some function $m \rightarrow n$ and some (1, m)-ary operation \cdot. Given any cardinal n, an equational theory

I is said to have rank $(T) \leqslant n$ provided that, for all $m \geqslant n$, there
are no nontrivial (1, m)-ary operations. In particular, T is
finitary if rank(T) $\leqslant W$, and rank (T) is defined to be ∞ if there
is no cardinal n such that rank $(T) \leqslant n$. For any equational theory
T and any cardinal k, the k-ar part of i is the equational theory

7" obtained by deleting all the nontrivial (1, n)-ary operations
from T, for all $n \geqslant k$.

$$
\text { Let } I \text { be ar eruational theory, and let } \because \text { be any category. }
$$

A T-azgebra in 4 is a Eroduct-preserving functor $A: T \longrightarrow M$, and a T-homomompism in 4 is a natural transformation between T-algebras. we soretimes infomainy use the same letter to denote Doth an algebra (or nomomorphism) ard its underlying U-object (or M-arrow). This generalizes the comon practice in universal algebra of ignoring the distinction between an Elgebra (or nomomorphism) and its underlying set (or Eunction). Men we refer to ar M-object A as being a T-algebra, it is to be understoon that there is $a \operatorname{T}$-algebra $h^{\prime}: T \longrightarrow M$ such that $A^{\prime}(Z)=A$ which is being referrea to. Similarly, we might refer to ar H -arrow $\mathrm{A} \longrightarrow \mathrm{B}$ as being a nomomorphism. The category yod (2) is the full subcategory in set^{T} of, ain Eunctors $T \longrightarrow$ Set winch are T-algebras. A category is said to be eguational if it is of the form fod (T), for some equational theory X The set of ail homomoraisms $\therefore \longrightarrow B$ in Hod(T) is hom (A, B). Equational theories, esiationai categories, and algevras (in Set)
orrespond alosely to their comierparts in model-tneoretic universal
algebra. There are some "size differences" which arise because model-theoretic universal algebra does not normally deal with theories : having a proper class of nontrivial operations, and the language-free category-theoretic approach to algebra leads naturally to the consideration and use of entities such as coalgebras (coproductpreserving functors $T^{0} \longrightarrow M$) which are somewhat odd from a modeltheoretic viewpoint. The notion of a T-algebra in, set differs siightly from the model-theoretic notion of an algebra in that the latter requires that, for any algebra A, the operations $A^{n} \rightarrow A$ should be functions from the n-th Cartesian power of the set A into F. The category version of a T-algebra allows the n-th power A^{n} of the underlying set to be any set $X=A\left(T^{n}\right)$ which, relative to some I-sequence of projections $X \longrightarrow A$, is an n-fold product of A with itself in Set in tine category-theoretic sense. Clearly, every T-algebra A in set is canonically isomorphic to a T-algebra. A' in set which is constructed from the Cartesian powers of the setri.
functor $U_{T}: \operatorname{Mod}(T) \longrightarrow$ Set, where for each T-algebra A, we have $U_{T}(A)=A(T)$, while for each homomorphism h we have $U_{T}(h)$ being the T-component of h. In accordance with the informal usage mentioned above, we shall not ordinarily distinguish between A and $U_{T}(A)$, or between h and $U_{T}(h)$ notationally. The Yoneda embedding $T^{\circ} \longrightarrow \operatorname{Set}^{T}$ factors through $\operatorname{Mod}(T)$, so it determines a full
embedding $Y_{T}: T^{\circ} \longrightarrow \operatorname{Mod}(T)$. Since Card is a skeleton of Set, there is an equivalence functor $E:$ Set \longrightarrow Card; let $J_{T}=j_{T} \cdot E^{\circ}$. The composite functor $F_{T}=Y_{T} \cdot J_{T}$ is a left adjoint for U_{T}, i.e., F_{T} is a free algebra functor for $\operatorname{Mod}(T)$. The functor Y_{T} determines an equivalence of categories between T° and the full subcategory in $\operatorname{Mod}(T)$ of free T-algebras.

Every equational category $\operatorname{Mod}(T)$ is small-complete and
small-cocomplete, i.e., has limits and colimits for all small diagrams.

If A is a T-algebra, then $n \otimes A$ is a T-algebra which is an $n-t h$
copower, i.e., a coproduct of n copies of A, in $\operatorname{Mod}(T)$. It will De clear from the context whether A^{n} is an n-th power of the algebra
A in $\operatorname{Mod}(T)$ or the set $A\left(T^{n}\right)$.
气

A regular epimorphism in any category M is an arrow h
such that, for some pair of arrows (u, v), h is a coequalizer of
(u, v). If h has a kernel pair in M, then h is a regular
epimorphism if and only if h is a coequalizer of its kernel pair. ?

In $\operatorname{Mod}(T)$, but not in all categories, any composite of regular
epimorphisms is a regular epimorphism, and a homomorphism h is.a
regular epimorphism if, for some homomorphism g, the composite $h g$
Is a regular epimorphism. This is so because a homomorphism h is a regular epimorphism in $\operatorname{Mod}(T)$ if and only if h is surjective as
a function; a function is a regular epimorphism in set if and only
if it is a surjection. This fact can be summarized by the statement
that U_{T} preserves and reflects regular epimorphisms. The fusctor
U_{T} also preserves and reflects monomorphisms, i.e., h is a
monomorphism in $\bmod (T)$ if and only if h is injective as a function.

A binary relation on an object A in a finitely complete
category M is a subobject $R C \xrightarrow{r} A \times A$. An equivalence relation on

A is a binary relation on A which is reflexive, symmetric, and
transitive in an appropriate sense. One way of characterizing
equivalence relations which is adequate for our purposes is the
approach taken by Pareigis (see [36], p. 99, on monomorphic equivalence
relations). A binary relation $R \xrightarrow{r} A \times A$ is an equivalence relation
in M if and only if $\underline{B}(R) \longrightarrow \underline{B}(A \times A)$ is an equivalence relation in

Set (i.e., equivalent as a subobject of $B(A) \times \underline{B}(A)$, via the canonical
isomorphism $\underline{B}(A \times A) \longrightarrow \underline{B}(A) \times \underline{B}(A)$, to a "real" equivalence relation
on $\underline{B}(A)$, for every M-object B.

Let p, q be the projections $A \times A \longrightarrow A$; then $R \xrightarrow{r} A \times A$
is a congruence relation on A if and only if there is an arrow
$A \xrightarrow{h} B$ such that (p.r, q.r) is a kernel pair of h; here, h may
be Eaken to be a coequalizer of (p.r, q.r); if one exists.- It is
easy to show that every congruence relation in M is an equivalence
relation in M, but the converse is not true in general.

In Set and in $\operatorname{Mod}(T)$, however, the congruence relations and the equivalence relations coincide; furthermore, the categorytheoretic notion of congruence relation agrees with the usual one in universal algebra. If $A \xrightarrow{h} B$ is a homomorphism with kernel pair (u, v), where u and v are homomorphisms $R \longrightarrow A$, then the induced homomorphism $R \xrightarrow{I} A \times A$ is a monomorphism which embeds R in $A \times A$ as a congruence relation, the kernel congruence ker (h) of h. If $A \xrightarrow{G} C$ is a coequalizer of (u, v), then there is a canonical isomorphism $C \longrightarrow A / \operatorname{ker}(h)$ such that $A \rightarrow C \longrightarrow A / \operatorname{ker}(h)$ is the canonical projection. The functor U_{T} preserves and reflects congruence relations, i.e., $R \xrightarrow{r} A \times A$ is a congruence in $\operatorname{Mod}(T)$ if and only if it is a congruence relation in set.
2.1. Theorem (Iinton [30]). A category M is equivalent to $\operatorname{Mod}(T)$, for some equational theory T, if and only if M has all kernel pairs and coequalizers, and there is a functor $U: M \rightarrow$ Set such that:

```
i) U has a left adjoint;
ii) U preserves and reflects congruence relations and regular epimorphisms.
```

An object A in a category M is tractable if all powers of A exist in M and, for all cardinals m and n, there is only a set of arrows $A^{n} \longrightarrow A^{m}$. If A is a tractable object of M, the equational structure of A is an equational theory T_{A} which is a skeleton of the full subcategory in M of all powers of A. The dual notions, cotractability and equational costructure, are also important.

The two-element set 2 is a tractable object in Set; its equational structure T_{2} is an equational theory of rank ∞, and $\operatorname{Mod}\left(\mathrm{T}_{2}\right)$ is equivalent to the category of all complete atomic Boolean algebras, with complete homomorphisms. The finitary part of T_{2} is

```
    the equational theory }BA\mathrm{ of finitary Boolean algebras; Mod(BA) is
    equivalent to the category of ald Boolean algebras, with Boolean
```

 homomorphisms.
 For any equational theory T, the free T-algebra $F_{T}(1)$ on
one free generator is cotractable in $\operatorname{Mod}(T)$; for each $n, F_{T}(n)$ is an n-th copower of $F_{T}(1)$. The equational costructure of $F_{T}(1)$ is T. Since the Yoneda embedding $\operatorname{Mod}(T){ }^{\circ} \longrightarrow$ Set $^{\operatorname{Mod}(\mathbb{T})}$ takes coproducts in $\operatorname{Mod}(T)$ to products in $\operatorname{Set}^{\operatorname{Mod}(T)}$, and since, for each n, the functor $U_{T}{ }^{n}$ is represented by $F_{T}(n)$, it follows that the functor U_{T} is a tractable object in $\operatorname{set}^{\operatorname{Mod}(T)}$ whose equational structure is T; thus, U_{T} is; in the informal sense, a T-algebra in $\operatorname{Set}^{\operatorname{Mod}(T)}$. The latter observation is fundamental to our results in Chapter 3.
P. Freyd's approach to algebra-valued functors in [17] is based on the notion of a coalgebra, or a coproduct-preserving functor $T^{\circ} \xrightarrow{A} M$, where T is an equational theory and M is a category. The M-object $A(T)$ is the underlying M-object of the coalgebra, and
for each T-operation f, the arrow $A(f)$ is a co-operation of the
coalgebra. The same kind of informal usage as used for algebras applies
as well to coalgebras; thus, for example, $F_{T}(1)$ might be said to be

a T-coalgebra in $\operatorname{Mod}(T)$, although technically the coalgebra which is referred to is $Y_{T}: T^{0} \longrightarrow \operatorname{Mod}(T)$, which we obtained above by factoring the Yoneda embedding.

Given a coalgebra $A: T 0 \longrightarrow M$, there is a corresponding
functor $A: M \longrightarrow \operatorname{Mod}(T)$, which is said to be represented by A.

For each M-object B, the T-algebra $\underline{A}(B)$ is the functor
$T \rightarrow M^{0} \longrightarrow$ Set obtained by composing $M^{\circ}(B,-)$ with A^{0}. Freyd proved the following two useful theorems.
2.2. Theorem (Freyd [17]). Let M be a small-complete
category, and let T be an equational theory. A.functor
$G: M \longrightarrow \operatorname{Mod}(T)$ has a left adjoint if and only if G is represented by a T -coalgebra in M .

Freyd originally stated the theorem above only for finitary
T, but his proof works for all equational theories. T.

Let k be an infinite cardinal; a k-directed set is a small
partial order (regarded as a category in the usual way) in which every
set of fewer than k elements has an upper bound. A monomorphic $\underline{k-d i r e c t e d ~ s y s t e m ~ i n ~} M$ is a functor $D: I \longrightarrow M$ such that I is a k-directed set and, for every $i \longrightarrow j$ in I, the arrow $D(i) \longrightarrow D(j)$
in M is a monomorphism. A colimit of a monomorphic k-directed
system is called a k-directed union: If $k=\omega$, then the prefix " ω-"
on all these terms is omi
2.3. Theorem (Freyd [17]). Let T and T ' be finitary
equational theories. Then a functor $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ is
represented by a T^{\prime}-coalgebra in $\operatorname{Mod}(T)$ whose underlying T-algebra
is generated by a set of fewer than k elements if and only if G
preserves products, equalizers, and k-directed unions.

Note that the identity functor $\operatorname{Mod}(T) \longrightarrow \operatorname{Mod}(T)$ is
represented by the coalgebra Y_{T}. oMuch interesting material on
coalgebras and-coalgebra-representable functors is presented in Wraith's
monograph [42]. We shall return to the subject of coalgebra-representable
functors after taking a look at Linton's adaptation [30] of Lawvere's
fundamental results concerning algebra-valued functors [29].

The equational theories are the objegos in a category ET
in which an arrow $T \rightarrow T^{\prime}$, called a mapping of theories, is a
product-preserving functor $g: T \longrightarrow T^{\prime}$ such that $g(T)=T^{\prime}$. The induced functor $g^{*}: \operatorname{Mod}\left(T^{\prime}\right) \longrightarrow \operatorname{Mod}(T)$, which acts by composing T'-algebras with g, is called a reduct functor. A functor
$G: \operatorname{Mod}\left(T^{\prime}\right) \longrightarrow \operatorname{Mod}(T)$ has the property that $U_{T} G=U_{T}$ ("preserves
underlying sets") if and only if there is a mapping of theories g
such that $G=G^{*}$. Since the category set itself is equivalent to

Mod (Card ${ }^{\circ}$), where Card $^{\circ}$ is the opposite of the full subcategory of
all cardinals in Set, regarded as an equational theory, the functor
$\mathrm{U}_{\mathrm{T}}: \operatorname{Mod}(\mathrm{T}) \longrightarrow$ Set may be identified with the reduct functor $j_{\mathrm{T}}{ }^{\star}$,
where $j_{T}:$ Card $\longrightarrow T$ is the functor defined earlier in this chapter.

Every reduct functor is faithful and has a left adjoint.

The tractable set-valued functors form a category TF in
which an arrow $U \longrightarrow V$ is a comatative triangle V.G $=\mathrm{U}$. We
define a "structure" functor STR: TF $\longrightarrow E T^{\circ}$ which assigns to each tractable set-valued functor U its equational structure T_{U}. To see what $S T R$ does to arrows, let $V . G=U$ be an arrow $U \rightarrow V$ in. TF. Note that for every n we have $(V G)^{n}=V^{n} \cdot G=U^{n}$. If $\quad V^{n} \xrightarrow{f} V^{m}$ is an operation in $T V$, then $V^{n} \cdot G \xrightarrow{f G} V^{m} \cdot G$ is an (m, n)-ary operation in T_{U}. The assignment of $f G$ to each T_{V}-operation f defines a mapping of theories $T_{V} \longrightarrow T_{U}$ which is the image under $S T R$ of the arrow V.G $=\mathrm{U}$ from U to V in $T F$.

Now define a "semantics" functor SEM: ET" $\longrightarrow T F$ which
sends each equational theory T to the corresponding underlying-set functor U_{T}, and each mapping of theories $g: T \longrightarrow T$ to the
commutative triangle $U_{T} \cdot G^{*}=U_{T}{ }^{\prime}$ (which is an arrow $U_{T}, \longrightarrow U_{T}$ in the category TF).

It is a remarkable fact that $S T R$ is left adjoint to SEM;
this "structure-semantics-adjointness" is the category-theoretic
counterpart to the Galois connestion between sets of identities and
classes of algebras which is known in universal algebra. The unit
${ }^{3} d_{T F} \longrightarrow$ SEM.STR is a natural transformation whose U-component, for every tractable functor $U: M \rightarrow$ Set, is a commutative triangle $U_{T} \cdot E_{U}=U$, where T is the equational structure of U; the functor
$E_{U}: M \longrightarrow \operatorname{Mod}(T)$ is called the comparison functor for U. Since every component of the unit of an adjoint pair is a universal arrow, it follows that the comparison functor E_{U} has the following universal property: for each functor $G: H \rightarrow \operatorname{Mod}\left(T^{\prime}\right)$ such that $U_{T}, G=U$, there is a unique mapping of theories $T^{\prime} \xrightarrow{g} T$ such that $G=g^{\star} \cdot E_{U}$. The practical meaning of this is that, to study any algebra-valued functor $G: M \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ whose set-valued component $U_{T^{\prime}} \cdot G^{\prime}$ is tractable, it is sufficient to investigate U_{T}. G and its equational structure T. That is, in order to understand G, we should examine the T^{\prime}-reduct of the T-algebra $U_{T} . G$, which lives in Set^{M}.

Suppose that G is represented by a $T^{\text {r-coalgebra } A \text { in } M . ~}$

Then $U_{T} M^{-G}$ is isomorphic to $A\left(T^{T}\right): M \rightarrow$ Set, whose equational
structure T is the equational costructure of the M-object $A\left(T^{v}\right)$.

Thus, studying the T^{\prime}-coalgebra in M is equivalent to studying
the representable functor $A\left(T^{\prime}\right)=U_{T}, G$ as a T'-algebra in Set M. The technique of treating a functor as an algebra in a functor category has the big advantage of being applicable to both representable and non-representable functórs.

Although the Lawvere-Linton approach to universal algebra is nominally language-free, every equational theory T is associated with a language L_{T} which corresponds to the first-order language $\mathrm{I}(\tau)$ described in Gratzer [19]. The language L_{T} is the many-sorted canonical language for the category T, in the terminolbgy of Makkai and Reyes [33]. Our description of I_{T} and its interpretation follows 1
[33] quite closely, with minor omissions and adaptations appropriate
to the special nature of an equational theory T as a category.

The language I_{T} consists of the following items:
i) For each arrow of T, there is an operation symbol f;
it is assumed that $f \neq g$ whenever $f \neq g$.
ii) For each cardinal n, there is an infinite set of
n-arl free variables and an infinite set of nary bound variables; it
is assumed that no free variable is a bound variable and that no n-ary variable is an mary variable if m $\neq n$.

```
iii) There are an iaentity symbol =, an infinitary
```

disjunction syubci $\quad \mathbb{V}$, ar i infinitary conjunction symbol $/ \mathbb{A}$, a negation symbol ${ }^{\boldsymbol{*}} \rightarrow$, an implication symbol \rightarrow, an existential quantifier symbol \exists, \bar{a} unversai quantifier symbol \forall, and
parentheses ! ;

The terms of I_{I} are defined as follows:

t_{2}) If $=$ is an (m, n)-ary term and, f is a (k, m-mary
serration, then $t=;$ is a (k, n)-ari term.
${ }_{3}{ }^{\prime}$ a string of symbols of in is a term if and only if it
ar be contefucted by finitely many applications of t_{1} and t_{2}.

$$
\text { Ire formulas of } I_{i} \text { win we require constitute only a small }
$$

fragment of the language described by Makkai and Reyes. For a more 2 s
compiete discussion of the formulas, the reader is referred to [33].
"e shall use only equations and conjunctions and disjunctions of
equations. An (m, n)-ary equation is an expression of the form
$r=s$, where both n and s are (m, n)-ary terms. If s is any
set of equations such that there are only finitely many free variables
occurring in the members of S, then W and $A S$ are formulas. A sequent is an expression of the form $S \Rightarrow S^{\prime}$, where both S and S^{f} are finite sets (which may be empty) of formulas, and where \Rightarrow is a new symbol. In practice, we shall allow S and. s^{\prime} to be,
single formulas instead of sets of formulas.

Let M be any finitely complete category. A many-sorted
structure for L_{T} in M is a morphism of graphs $A: T \longrightarrow M$ (in the
sense of Mac Lane [32]). In other words, A sends objects of T to
-ojects of 4 anc arrons of T to arrows of M preserving domains
and codomains of arrows, but not necessarily preserving composition "of
arrows, and not necessarily sending identity arrows to identity arrows.

Let X be the k-tuple $\left(x_{0}, x_{1}, \cdot . \cdot, x_{k}\right)$, where x_{i} is an n_{i}-ary free variable, for $i=0,1, . . ., k$. Let t be a term whose (only) free variable is x_{j}. If t is x_{j}, then the interpretation ${ }^{[t]} A, X$ of t in A relative to X is defined to be the j-th , projection

$$
A\left(T^{n_{0}}\right) \times . . \times A\left(T^{n_{k}}\right) \longrightarrow A\left(T^{n_{j}}\right)
$$

If t is $f(r)$, where r is an (m, n_{j})-ary term whose interpretation ${ }^{[r]}{ }_{A, X}$ is already defined as an arrow $A\left(T^{n_{0}}\right) \times \ldots \times A\left(T^{n_{k}}\right) \longrightarrow A\left(T^{m}\right)$,

equalizer of the arrows $\left[{ }^{[r]} A_{1} X\right.$ and $[s]_{A, X}$. As we see from the

diagram

$$
\begin{gathered}
{[r=s]_{A, X} \longrightarrow \prod_{i<k}\left(T^{n_{i}} \longrightarrow A\left(T^{m}\right),\right.} \\
{[r=s]_{A, X} \text { is a subobject of } \prod_{i<k}\left(T^{n_{i}}\right) . \text { If } S \text { is a set of }}
\end{gathered}
$$

equations such that all the free variables occurring in members of s are among those of X, then $\left[\mathbb{A S}_{\mathrm{A}, X}\right.$ is defined to be the intersection, if it exists, of the subobjects of $\prod_{i<k} A\left(T^{n} i\right)$ corresponding to the equations belonging to S, while $\left[\mathbb{W} S_{A, X}\right.$ is defined to be the supremum, if it exists, of those subobjects. The interpretation of each formula of L_{T} in the structure A relative to X, if there is such an interpretation, is a subobject of the product $\prod_{i<k} A\left(T^{n}\right)$. Note that the interpretations of terms and formulas as defined above are specified only up to canonical isomorphism in the category M; this fact is discussed in [33]. Now suppose that S and S^{\prime} are finite sets of formulas such that all the free variables occurring in the members of SUS are among those of the k-tuple X given above. Then the structure
A satisfies the sequent $S \Rightarrow S^{\prime}$ if and only if the following sonditions are satisfied:
i) Every formuia in sUS' has an interpretation in A d
relative to X.
ii) The intersection $\bigwedge_{F \in S}[F]{ }_{A, X}$ and the supremum $\bigvee_{G \in S},{ }^{[G]}{ }_{A}, X$ both exist among the subobjects of $\prod_{i<k} A\left(T^{n}{ }^{n}\right)$ in M.
iii) In the natural quasi-order of the subobjects of
$\prod_{i<k}\left(T^{n_{i}}\right)$, we have $\underbrace{}_{F \in S}[F]_{A, X} \leqslant \bigvee_{G \in S}[G]_{A, X} \cdot$

We write $A \vDash S \Rightarrow S^{\prime}$ to say that the structure A satisfies the sequent $s \Rightarrow s^{\prime}$.

A T-algebra is obviously a rather special kind of structure for L_{T}, in that it satisfies all the identities of T, i.e., all the sequents of the form $\} \Rightarrow f(g(x))=h(x) ;$ where f, g, and h are operations such that $f . g=h$ in T. It is useful to distinguish家
structures resembling T-algebras in this respect in which the
projections and other trivial operations are well-behaved. We shall
say that a structure $A: T \longrightarrow M-$ for L_{T} is a many-sorted T-algebra
in M if A is a functor and if, for all cardinals \dot{m} and n and
for all (m, n)-ary terms r and s, the structure A satisfies
the sequent

$$
\mathbb{M}\left\{p_{i}(r)=p_{i}(s): i<m\right\} \Rightarrow r=s,
$$

where for each $i<m$ the symbol \bar{p}_{i} corresponds to the i-th projection $T^{\mathrm{m}} \xrightarrow{\mathrm{P}_{\mathrm{i}}} T$ in T. These conditions are necessary and , sufficient for every (m, n)-dry equation $r=s$ to be equivalent to the conjunction of the corresponding set of $(1, n)$-any equations
$p_{i}(r)=p_{i}(s)$ in every many-sorted T-algebra. We shall write $T \neq S \Rightarrow S^{\prime}$, to say that, for every many-sorted T-algebra A in which the necessary interpretations exist, we have $A \neq S \Rightarrow S^{\prime}$. It is common practice in universal algebra to specify an equational theory by means of a set of equations in a language over a similarity type (see [19]); in the category-theoretic context, this amounts to providing a presentation of the equational theory. Both

Lawvere [29] and Wraith [42] discuss the category-theoretic
technicalities of presentations, but we shall say informally that a
presentation of an equational theory T is given by specifying a
family of distinguished T-operations and describing their behaviour

* sufficiently that the category ${ }^{*} T$ is determined up to isomorphism.

Por example, a presentation of the finitary equational theory BA of Boolean algebras might name the constant 0 , the meet operation \boldsymbol{N}, and the complement operation \neg, and provide a list of axioms describing the behaviour of these operations in Boolean algebras.

Another presentation of $B A$ might list the ring operations $0,1,+$, -, and •• and describe how they work in a Boolean ring. The difference
between Boolean ríngs and Boolean algebras is, from the standpoint of category-theoretic algebra, not a difference of algebras at all but rather a matter of distinct presentations of the one theory BA.

At about the same time that the Lawvere-Linton approach to
universal algebra wás taking shape, category-theoretic investigations
of-adjointness gave rise to the notion of a monad (or "triple") and
of a monadic functor. Both Mac Iane [32] and Pareigis [36] provide
detailed expositions of the basic theory of monads, so we shall only ".
say enough about them to establish notation and to state some results which will be referred to in later chapters. Given categories M and K and functors $U: M \longrightarrow K$ and $F: K \longrightarrow M$ with F left adjoint to U, the monad in K determined by U and F will be called H. The category of all Eilenberg-Moore algebras over H in K is K^{H}, andits "forgetful" functor and free algebra functor are respectively $U^{H}: K^{H^{\prime}} \longrightarrow K$ and $F^{H}: K \longrightarrow K^{H}$. The canonical comparison functor for the monad H is $C: M \longrightarrow K^{H}$. We shall say that the functor $U: M \longrightarrow K$ is strictly monadic if C is an isomorphism of categories, and monadic if C is a category equivalence. Note that, whether U is monadic or not, F^{H} is left adjoint to U^{H}, and the monad in K determined by U^{H} and F^{H} is just H. The canonical comparison functor C is unique sfor that $U^{H} \cdot C=U$ and $C . E=F^{H}$.

```
With U, F, and H as given above, the Kleisli category for
```

it is K_{H}, and its associated functors are $U_{H}: K_{H} \longrightarrow K$ and
$F_{H}: K \longrightarrow K_{H}$ Here, F_{H} is left adjoint to U_{H}, and the monad in K
determined by U_{H} and F_{H} is just H again. The Kleisli functor
$C^{\prime}: K_{H} \longrightarrow M$ is unique with the property that $U . C^{\prime}=U_{H}$ and
$C^{\prime} \cdot F_{H}=F$.

We shall cite two results which illuminate the connection
between equational theories and monads. The first result is a theorem adapted from Pareigis [36], p. 135, which shows that when H is the monad in set determined by \dot{U}_{T} and F_{T}, where T is an equational theory, the Kleisli category Set $_{H}$ for H is equivalent to the full subcategory in $\operatorname{Mod}(T)$ of free T-algebras.
2.4. Theorem [36]. Let T be an equational theory, and let H be the monad in set determined by U_{T} and F_{T}. Then there is an equivalence of categories $Q: \operatorname{Set}_{H}{ }^{\circ} \longrightarrow T$ such that $Q \cdot F_{H}{ }^{\circ}=J_{T}$.

The second result is a special case, for monads in set, of
a theorem of Linton (Theorem 9.3, p. 41 of [31]) which explains the
connection between Eilenberg-Moore algebras and T-algebras.
2.5. Theorem (Linton [31]). Let $U: M \longrightarrow$ Set be a functor with a left adjoint; let T be the equational structure of U, and let $E: M \longrightarrow \operatorname{Mod}(T)$ be the comparison functor for U. Also let H be the monad in Set determined by U and its adjoint, and let $C: M \longrightarrow$ Set H be the canonical comparison functor for H. Then there is an equivalence of categories $R: \operatorname{Mod}(T) \longrightarrow$ Set H such that the following diagram commutes:

In particular, U is monadic if and only if its comparison functor
$E: M \longrightarrow \operatorname{Mod}(T)$ is a category equivalence.

CHAPTER 3. MORITA EQUIVAIENCE AND ALGEBRAIC FUNCTORS

A natural question arises in connection with equational
theories: given an equational theory T, for what other equational
theories T^{\prime} is the category $\operatorname{Mod}\left(T^{\prime}\right)$ equivalent to $\operatorname{Mod}(T)$?

Theories T and T^{\prime} such that $\operatorname{Mod}(T)$ is equivalent to $\operatorname{Mod}\left(T^{\prime}\right)$
are said to be Morita equivalent (see [42], p. 54).

The classical Morita theorem [35] of module theory, which is
the motivation for the notion of Morita equivalence of equational
theories, provides necessary and sufficient conditions on rings R
and S for the categories $R-m o d$ and $S-m o d$ of left modules to be
equivalent (see Pareigis [36] or Cohn [7] for a detailed exposition of
the Morita theorem). Since $R-m o d$ and $S-m o d$ are equivalent to

equational categories, the Morita theorem provides a characterization
of Morita equivalence for equational theories of the kind which Wraith
[42] calls "annular." T. K. Hu's result (1.3) also provides some
nontrivial examples of Morita equivalent equational theories. For
any finite set X having m elements, where $m>l$, the finitary part of the equational structure T_{X} of X is an equational theory P_{m} such that every m-element P_{m}-algebra belonging to $\operatorname{Mod}\left(P_{m}\right)$ is primal and Mod(P_{m}) is identifiable with the equational class generated by an m-element primal algebra. In keeping with the remarks in Chapter 2 on presentations of the theory $B A$ of Boolean algebras (note that $B A=P_{2}$), we shall call P_{m} the equational theory of m-valued Post algebras, and we shall refer to P_{m}-algebras as m-valued Post algebras. Hu's result (1.3) says that the theories P_{m}, for all finite $m>l$, are precisely the finitary equational theories which are Morita equivalent to BA.

It should be noted that there are various category-theoretic
generalizations of Morita equivalence which apply to categories which
are not necessarily equational theories. The relevance of some recent
papers on category-theoretic Morita equivalence to the more strictly
algebraic results discussed here or in Wraith [42] is commented upon
later in this chapter.

One of our main results is a syntactical characterization
(3.8). of all the equational thedries T ' which are Morita equivalent to a given equational theory T; this result is an improved version of the main result of Dikarm [10]. We also provide syntactical
characterizations of coalgebra-representable functors (3.4) and of
algebraic functors, i.e., algebra-valued functors with monadic
set-valued component (3.14).

When are equational theorles T and T^{\prime} Morita equivalent?
Suppose that $E: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ is an equivalence functor; let
$U=U_{T}, E$ be the set-valued component of E, and let T^{14} be the
equational structure of U . The composite L. F_{T} of the left adjoints
I of E and F_{T} of U_{T}, is a left adjoint for U; it follows
that U is represented by the T-algebra $A=I\left(F_{T^{\prime}}(1)\right)$. Since L is

0
an equivalence functor, it is full and faithful and presperves
coproducts, so for every n we have $n \Delta A \cong L\left(F_{T},(n)\right)$, and the
equational costructure T " of A is isomorphic to the equational
costructure T^{r} of $F_{T},(1)$. follows that E is actually the

comparison functor for U. But then by (2.5) U is monadic, since.
its comparison functor is a category equivalence.

Now we can reformulate the original problem as follows: find
all the monadic functors $\dot{M} O d(T) \longrightarrow$ Set, and characterize their
equational structure theories.

Let M be an arbitrary nonempty category. An object A of
M is regular-projective in M if, for every regular epimorphism
$B \xrightarrow{f} C$ and every arrow $A \xrightarrow{h} C$ there is an arrow $A \xrightarrow{g} B$ such
that $f . g=h$. A regular generator in M is an object A such that
for every object B there is a cardinal n and a regular epimorphism
n n $\longrightarrow B$. A regular-projective regular generator is called a
regular progenerator. These definitions are, with minor variations,

```
standard in the literature. We also define two objects A and B
of $4 to be retract-ecuivalent if each one is a retract of some
```

power of the other, and dually retract-equivalent if each one is a
retract of some coroner of the other. In any equational category
Mod(T), the regular progenerators are precisely the r-algebras which
are dually retract-equivaient to the free T-algebra $F_{T}(1)$.

3.1. Theorem. $i \in t T$ be an equational theory. For any
functor $U: \operatorname{Mod}(T) \longrightarrow$ Set, tie Eolioning are equivalent:
i). U is monacid;
ii) U is represented by a regular progenerator;
iii)' U and U_{z} are retract-equivalent in Set $^{M o d(T)}$.
proof. suppose that U is monadic; then U has a left
adjoint F, and J is represented by the T-algebra $A=F(1)$. It
Follows that is tractate, and the equational structure F^{2} of :
\because is the same as the eqiational sostructure of A. Since 0 is.

```
monadic, its comparison functor E: Mod(T) }->\mathrm{ Mod(T') is an
equivalence functor, by (2.5). The comparison functor }\textrm{E}\mathrm{ ( is
represented by A, where A is viewed as a T'-coalgebra in Mod(T),
and E(A) is isomorphic to the free 'T'-algebra F FT,
a regular progenerator in Mod(''). Since E is an equivalence
functor, it is easy to see that A is a regular progenerator in
```

Mod(T): This proves that i) implies ii). Before showing that ii)
implies i), we shall prove that ii) and iii) are equivalent.
If U is represented by a regular progenerator A, then A
is dually retract-equivalent to $F_{T}(1)$, which represents U_{T}, so U
is retract-equivalent to U_{T}.
Suppose that U is retract-equivalent to U_{T}; we shall show
that U is represented by a regular progenerator. Let $U_{T}{ }_{T} \xrightarrow{r} U$
be a retraction, and let $U \xrightarrow{S} U_{T}{ }^{n}$ be a coretraction, with r.s $=i d_{U}$.
$* *$
Then 5 is an equalizer-of-r-and-id-- Since the yoneda embedding
3
is fill and faithful, there is a homomorphism $F_{T}(n) \xrightarrow{h} F_{T}(n)$ such

```
that s.r = h. Let F}\mp@subsup{F}{T}{}(n)\xrightarrow{}{t}A\mathrm{ be a coequalizer of }h\mathrm{ and id
in Mod(T). The Yoneda embedding takes }t\mathrm{ to an equalizer of s.r
and id in Set }\mp@subsup{}{}{Mod(T)}\mathrm{ ; but then }\underline{A}\mathrm{ and }U\mathrm{ are isomorphic, i.e., A
represents U. Since U\cong\cong
UT, it follows that A is dually retract-equivalent to }\mp@subsup{F}{T}{}(l),\mathrm{ i.e.,
A is a regular progenerator. This completes the proof that ii) is
equivalent to iii).
To finish the proof of the theorem, we must show that ii)
implies i). Assuming that }U\mathrm{ is represented by a regular progenerator
A, we shall use (2.1) in combination with (2.5) to show that }U\mathrm{ is
monadic. Since U is represented by A, U has a left adjoint F,
which sends each set }X\mathrm{ to an X-indexed copower of A in Mod(T).
ft is immediate from the definition of a regular-projective object
that U preserves regular epimorphisms. Now suppose that B\xrightarrow{}{f}C}
is given such that }|(f)\mathrm{ is a regular epimorphism. Let F.U P
```

be the co-unit for the adjoint pair (F, U) ; we claim that, since A
is a regular generator, every component of p is a regular
epimorphism. If this is so, then we have f. $p_{B}=p_{C} \cdot F(U(f))$, where the right side of the equation is a composite of regular epimorphisms in $\operatorname{Mod}(T)$ and, hence, is a regular epimorphism, so $f . p_{B}$ is a regular epimorphism, which implies that f is a regular epimorphism, and we have shown that U reflects regular epimorphisms.

Why is P_{C} a regular epimorphism? The algebra $F(U(C))$ is a copower of A indexed by $U(C)$, i.e., by the set $\operatorname{hom}_{T}(A, C)$.
, For each homomorphism $A \xrightarrow{h} C$, let h^{\prime} be the coproduct injection" $A \longrightarrow F(U(C))$ corresponding to $h \in \operatorname{hom}_{T}(A, C)$. The co-unit p is constructed so that $P_{C} \cdot h^{\prime}=h$ for each h. By hypothesis, A is a regular generator, so for some m there is a regular epimorphism $m \otimes_{A} \xrightarrow{g} C$. Let g_{i} be the composite of g with the $i-t h$ coproduct injection $A \longrightarrow m \otimes A$, for each $i<m$. The homomorphisms

with $t_{i}=g_{i}^{\prime}$ for each $i<m$. Then $p_{C} . t=g$, as can be checked by

```
composing with coproduct injections, so p}\mp@subsup{p}{C}{}\mathrm{ is a regular epimorphism
as claimed.
Now we must show that \(U\) preserves and reflects congruence
relations. Preservation is obvious, because U preserves kernel
pairs, since U is representable. Both in Set and in Mod(T),
it happens that every equivalence relation is a congruence relation,
    O
so we need only verify that U reflects equivalence relations.
Suppose that we are given two homomorphisms \(u\), \(v\) from \(R\) to \(B\) in \(\operatorname{Mod}(T)\) which induce a product homomorphism \(R \longrightarrow B \times B\) such that \(U(h): U(R) \longrightarrow U(B \times B)\) is an equivalence relation in set.
The functor \(U\) is faithful, since it is represented by a generator, so it reflects monomorphisms, hence \(h\) is a monomorphism in \(\operatorname{Mod}(T)\). Using the equivalence of ii) and iii) established above, we may assume that, for some \(n, U_{T}\) is a retract of \(U^{n}\). Let \(U^{n} \xrightarrow{r} U_{T}\)
```

be a retraction, and let $U_{T} \longrightarrow U^{n}$ be a coretraction, with r.s $=$ id.

It is easy to see that any nontrivial power of an equivalence relation
in set is an equivalence relation, so $U^{n}(R) \longrightarrow U^{n}(B \times B)$ is an equivalence relation. Using the natural transformations r and s, we shall show that $U_{T}(R) \longrightarrow U_{T}(B \times B)$ is an equivalence relation. Without loss of generality, we may identify $U^{n}(R) \rightarrow U^{n}(B \times B)$ with an equivalence relation $R^{\prime} \subseteq B^{\prime} \times B^{\prime}$ in the ordinary sense, i.e.; a set of ordered pairs which is reflexive, symmetric, and transitive. We also write $U_{T}(R) \longrightarrow U_{T}(B \times B)$ as $R \subseteq B \times B$, in keeping with our informal practice of ignoring the distinction between the algebras and their underlying sets, and identifying h with an inclusion map. The natural transformations $U^{n} \xrightarrow{r} U_{T}$ and $U_{T} \xrightarrow{s} U^{n}$ are here considered to be such that \mathcal{S}_{B} is the inclusion map for $B \subseteq B^{\prime}$ and such that r_{B} is a function $B^{\prime} \longrightarrow B$ with $r_{B}(b)=b$ for all $b \in B$. Then $S_{B \times B}$ is the inclusion map for $B \times B \subseteq B^{\prime} \times B^{\prime}$, and S_{R} is the inclusion map for $R \subseteq R^{\prime}$. The retraction $r_{B \times B}$ is just the product function $r_{B} \times r_{B}: B^{\prime} \times B^{\prime} \longrightarrow B \times B$, and r_{R} is the restriction of $r_{B} \times r_{B}$ to $R^{\prime} \subseteq B^{\prime} \times B^{\prime}$.

Suppose $b \in B$. Then since R^{\prime} is reflexive, (b, b) $\in R^{\prime}$, so $\left(r_{B}(b), r_{B}(b)\right)=(b, b) \in R$, hence R is reflexive. If $(a, b) \in R$, then $(a, b) \in R^{\prime}$, and by symmetry of R^{\perp} we have $(b, a) \in R^{\prime}$, so. $\left(r_{B}(b), r_{B}(a)\right)=(b, a) \in R$, hence, R is symmetric. If (a, b) and (b, c) belong to R, then they belong to R^{\prime}; by transitivity of R^{\prime}, (a, c) belongs to R^{\prime}, so we have $\left(r_{B}(a), r_{B}(c)\right)=(a, c) \in R$, hence R is transitive. This proves that $R \longrightarrow B \times B$ is an equivalence relation in Set, so it is also a congruence relation in Set. But U_{T} reflects congruence relations, so $R \longrightarrow B \times B$ is a congruence relation in Mod(T). This completes the proof that U reflects congruence relations.

「
We have shown that, if U is represented by a regular
progenerator, then U has a left adjoint and preserves and reflects
congruence relations and regular epimorphisms. By (2.1) and (2.5),

U, is monadic. This completes the proof of the theorem.

```
The equivalence of i) and ii) in (3.1) is apparently
part of the "folklore" of category theory. Lawvere's version of the
characterization theorem for finitary equational categories (see [29],
*
p. 79) explicitly states that the underlying-set functor is represented
by a regular progenerator. Remarks by Wraith in [42], p. 54, and a
theorem in Herrlich and Strecker [2l]; p. 245, also indicate that
(3.1) is not a new result. In a conversation with the writer in
March 1978, Michael Barr explained that he and several other category
theorists had been stimulated by the Morita theorem [35] to investigate
Morita equivalence of equational theories and had soon realized that
all equivalences between equational categories were comparison functors
represented by regular progenerators. From a category theorist's
point of view, the general result lacked any novel features or
interesting departures from the original Morita theorem, so the matter
was dropped.
There is considerable logical interest in Morita equivalence, \(\rangle\)
however, and by shifting our attention from the regular progenerators
```

to the functors they represent, we shall derive a syntactical characterization of Morita equivalent equational theories which is new.

Let M be any nonempty category, and let $U: M \longrightarrow$ Set be -
a functor which is tractable in set^{M}. If T is the equational structure of U, then U is, in the informal sense, a T-algebra in Set ${ }^{M}$. If f and g are (m, n)-ary operations of T, then the interpretation $[f(x)=g(x)]$ of the equation $f(x)=g(x)$ in the T-algebra U relative to the variable x is an equalizer in Set^{M} of the arrows $£$ and g as shown in the diagram below.

$$
[f(x)=g(x)] \longrightarrow U^{\mathrm{n}} \longrightarrow \underset{\mathrm{~g}}{\mathrm{E}} \mathrm{U}^{\mathrm{m}}
$$

Thus, $[f(x)=g(x)]$ is a subfunctor of U^{n}. For any object B of M, the set $U(B)$ inherits T-operations from U and is the underlying set of the T-algebra $E_{U}(B)$, where $E_{U}: M \longrightarrow \operatorname{Mod}(T)$ is the comparison functor for U. The value of the functor $[f(x)=g(x)]$ at B is the
solution set of $f(x)=g(x)$ in the n-th power $U^{n}(B)$ of the underlying set $U(B)$ of the T-algebra $E_{U}(B)$. Every subfunctor $G \longrightarrow U^{n}$ which is an equalizer of a pair of operations in the equational structure of U will be said to be equationally definable.
3.2. Lemma. For any equational theory T and any
cardinal H, a functor $G: \operatorname{Mod}(T) \longrightarrow$ Set is represented by^a

T-algebra which is generated by n or fewer of its elements if and only if G is an equationally definable subfunctor of U_{T}^{n}.

Proof. Let A be a T-algebra which is generated by a set . X of cardinality n or less. Then there is a regular epimorphism
$F_{T}(n) \xrightarrow{P} A$ which sends the free generators $\left\{x_{i}: i<n\right\}$ of $F_{T}(n)$
onto x. For each $i<n$, let $p\left(x_{i}\right)=a_{i}$. Every element of $\dot{F}_{T}(n)$
is of the form- $f(x)$, where- f is a $(1, n)$-ary T-operation-and
$x=\left(x_{i}: i<n\right) ;$ likewise, every element of A is of the form $f(a)$,
where f is a $(1, n)$-ary T-operation and $a=\left(a_{i}: i<n\right)$; so we
have . $p\left(f\left(x_{i}\right)\right)=f(a)$ for every $(1, n)$-ary operation f. Let
$\left(f_{j}: j<m\right)$ and $\left(g_{j}: j<m\right)$ be sequences of $(1, n)$-ary operations
such that, for each $j<m$, we have $f_{j}(a)=g_{j}(a)$, i.e.,
$\left(f_{j}(x), g_{j}(x)\right) \in \operatorname{ker}(p)$. Also assume that, for each pair $(u(x), v(x))$
in $\operatorname{ker}(p)$, there is $a j<m$ such that $u=f_{j}$ and $v=g_{j}$. For
each $(1, n)$-arr operation u, let $F_{T}(1) \xrightarrow{\widehat{u}} F_{T}(n)$ be the (unique)
homomorphism which sends the free generator of $F_{T}(1)$ to $u(x)$ in
$F_{T}(n)$; then \hat{u} is the cooperation $Y_{T}(u)$ of the T-coalyebra
$Y_{T}: T^{0} \longrightarrow \operatorname{Mod}(T)$ which was defined in Chapter 2 , and which is
informally identified with $F_{T}(1)$ as noted in Chapter 2. Let f be
the (m, n)-ary operation which is induced in T by the sequence
$\left(f_{i}: i<m\right)$ of $(1, n)$-arr operations; then $F_{T}(m) \xrightarrow{\hat{f}} F_{T}(n)$ is the
coproduct homomorphism -induced by the sequence $\left(\hat{\mathrm{f}}_{i}: i<m\right)$ of
homomorphisms; \hat{f} sends the j-th free generator of $F_{T}(m)$ to
$f_{j}(x)$ in $F_{T}(n)$. Define g and \hat{g} similarly with respect to the
sequence ${ }^{\circ}\left(g_{j}: j<m\right)$. It is easy to see that $F_{T}(n) \xrightarrow{p} A$ is a coequalizer of (\hat{f}, \hat{g}) in $\operatorname{Mod}(T)$. An alternative construction of \hat{f} and \hat{g} which makes this obvious is to let $F_{T}(m) \xrightarrow{h} \operatorname{ker}(p)$ be - -
a regular epimorphism from a free algebra onto $\operatorname{ker}(\mathrm{p})$, which is a subalgebra of $F_{T}(n) \times F_{T}(n)$, and take \hat{f} and \hat{g} to be the composites of h with the projections $\operatorname{ker}(p) \longrightarrow F_{T}(n)$; those projections are a kernel pair of p, and p coequalizes its kernel pairs, fince p is a regular epimorphism.

The Yoneda embedding $\operatorname{Mod}(T)^{\circ} \rightarrow \operatorname{Set}^{\operatorname{Mod}(T)}$ takes
$F_{T}(n) \xrightarrow{p} A$ to $A \xrightarrow{\underline{P}} U_{T} n$ which is an equalizer of f and g in Set ${ }^{\operatorname{Mod}(T)}$. This proves that every representable functor is equationally
definable as stated in (3.2).

If U is an equationally definable subfunctor of $U_{T}{ }^{n}{ }^{n}$, then
there is an equalizer diagram $U \rightarrow U_{T}{ }^{n} \xrightarrow{f} U_{T}^{m}$ which witnesses
that fact. The arrows f and g correspond, via the Yoneda embedding,
to homomorphisms $\hat{f}, \hat{g}: F_{T}(m) \longrightarrow F_{T}(n)$. Let $F_{T}(n) \xrightarrow{p} A$ be a
coequalizer in $\operatorname{Mos}(T)$ of $(\hat{\mathrm{S}}, \hat{\mathrm{g}})$; then $\xrightarrow{\mathrm{A}} \xrightarrow{\mathrm{P}} \mathrm{U}_{\mathrm{T}}^{\mathrm{n}}$ is an equalizer of $\left(\mathrm{f}^{\prime}, \mathrm{g}\right)$, so $\mathrm{U} \cong \mathrm{A}$, i.e., U is represented by a T-algebra 7

A which, as a homomorphic image of $\mathrm{F}_{\mathrm{T}}(\mathrm{n})$, is generated by n or
fewer of its elements. This completes the proof of (3.2).

Note that the proof of (3.2) illustrates several "tricks"
which are applied frequently below without being spelled out in detail.

Also note that (3.2) depends heavily on the fact that $F_{T}(1)$ is
a regular generator in $\operatorname{Mod}(T)$. Now that we know that every
representable functor $U: \operatorname{Mod}(T) \rightarrow$ Set is definable in a power of
U_{T} in a nice way, we describe how the equational structure of U
relates to the equational structure T of U_{T}.

Let T and T be equational theories, and let n be a l
nonzero cardinal. An equational interpretation of T^{\prime} in T of
rank n is given by a morphism of graphs $t: T>T$ and an
(m, n)-arg equation $f(x)=g(x)$ of L_{T}, called the universe of the
interpretation, satisfying conditions i) - iv) below.

Let $E_{1}^{\prime}(x)$ be the equation $f(x)=g(x)$, and for each $k>1$
let $E_{k}(y)$ be the formula $A\left(f\left(f\left(p_{i}(y)\right)=g\left(p_{i}(y)\right)\right.\right.$ in $\left.i<k\right\}$ where,
for each, $i<k, p_{i}$ is the i-th projection $\left(T^{n}\right)^{k}=T^{n \times k} \longrightarrow T^{n}$.

For each operation u of T^{\prime}, let u^{t} be the operation symbol of L_{T}
which corresponds to $t(u)$. The conditions which must be satisfied by t and $f(x)=g(x)$ are as follows.
i) For each (j, k)-ary T'operation u, $t(u)$ is. an
($n \times j, n \times k$)-dry T-operation.
ii) For each (j, k)-ary T'-operation, u, we have

$$
T F E_{k}(y) \Rightarrow E_{j}\left(u^{t}(y)\right)
$$

iii) For each k we have

$$
\left.T \neq E_{k}(y) \Rightarrow / \Delta p_{i}(y)=q_{i}^{t}(y): i<k\right\}
$$

where $T^{\prime k} \xrightarrow{q_{i}} T^{\prime}$ is the $i-t h$ projection in, T^{\prime}.

$$
\text { iv) For all-T'-operations } u, v, w \text { such that } u, v=w \text {, where }
$$

* is (j, k)-ary, we have

$$
\mathrm{T} F E_{\mathrm{x}}(y) \Rightarrow u^{t}\left(v^{t}(y)\right)=w^{t}(y)
$$

3.3. Lemma. Let $A: T \longrightarrow M$ be a T-algebra in a

smali-comelete category M, and let $t: T * \longrightarrow T$ be an equational
interpretation of F^{*} in F of rank n with universe $f(x)=g(x)$.
Then there is a $T^{\prime}-a \underline{\text { Dobra }} B: T^{\prime} \longrightarrow M_{1}$, with $B\left(T^{\prime}\right)=[f(x)=g(x)]_{A, x^{\prime}}$
such that, for every T^{\prime}-operation $u, \mathrm{~B}(\mathrm{u})$ is the restriction to

Proof. To simplify notation, we write $\left.A(u): A\left(V^{n}\right) \rightarrow A C^{m}\right)$
as $A^{n} \xrightarrow{u} A^{m}$ for every (m, n)-arr T-operation u. Also let
$H(x)=G(x)]_{A, x}$ de $E \xrightarrow{E} A^{n}$ and let $\left[E_{k}(y)\right]_{A, y}$ be $E_{k} \xrightarrow{e_{k}} A_{A^{n_{k}}}$.
First we shall show that E and E^{k} are equivalent as subobjects of $A^{n k}$. When $k=0,1$, there is nothing to prove, so assume $k>1$.

For each $i<k$, let $\left.G^{n}\right)^{k}=n^{n k} \xrightarrow{P_{i}} T^{n}$ and $\left(T^{m}\right)^{k}=2^{m \times k} \xrightarrow{r_{i}} T^{m}$
be the respective i-th projection operations. Note that for any

of the suboojects $E_{x_{i}, i}=\left[E_{i}(\underline{y})=z\left(y_{i}(y)\right]_{A, y} \longrightarrow A^{n \times k}\right.$, we can
prove $E^{k} \leqslant E_{k}$ by showing that $E^{k} \leqslant E_{k, i^{\text {b }}}$ for each $i<k$. But for
e each $i, E_{k, i} \longrightarrow A^{n \times k}$ is an equalizer of (fop $p_{i}, g \cdot p_{i}$), and $\pm \cdot p_{i} \cdot e^{k}=r_{i} \cdot f^{k} \cdot e^{k}=r_{i} \cdot(\text { fee })^{k}=r_{i} \cdot(g \cdot e)^{k}=r_{i} \cdot g^{k} \cdot e^{k}=g \cdot p_{i} \cdot e^{k}$, so indeed $E^{k} \leqslant E_{k, i}$ for each i, hence $E^{k} \leqslant E_{k}$. Products and equalizers commute, so $E^{k} \xrightarrow{e^{k}} A^{n \times k}$ is an equalizer of $\left(f^{k}, g^{k}\right)$.

Also note that, $f \cdot \dot{P}_{i} \cdot e_{k}=g \cdot p_{i} \cdot e_{k}$. because $E_{k} \leqslant E_{k, i}$. Then we rive $r_{i} \cdot f^{k} \cdot e_{k}=f \cdot p_{i} \cdot e_{k}=g \cdot p_{i} \cdot e_{k}=r_{i} \cdot g^{k} \cdot e_{k}$ for each, $i<k$, so
$f^{k} \cdot e_{k}=g^{k} \cdot e_{k}$, which implies that $E_{k} \leqslant E^{k}$. This completes the proof that E_{k}, and E^{k} are equivalent and permits us to identify B^{k} and E_{k} with E^{k}.

Condition ii) of the definition says that, for any (j, k)-any
T'-operation u, the restriction 0 . $\left[u^{t}(y)\right]_{A, y}$ to $B^{k} \longrightarrow A^{n \times k}$. factors through $B^{j} \longrightarrow A^{n \times j}$ as in the diagram below.

We define $B(u)$ to be the arrow $B^{k} \longrightarrow B^{j}$ which completes the diagram; since e^{j} is a monomorphisp there is only one such arrow. Condition iv) guarantees that B peserves composition of T-operations, even though perhaps t does not. Thus, B is a functor $T^{\prime} \longrightarrow M$. According to condition iii), for each projection operation $T^{\prime},{ }^{q_{i}} T^{\prime}$ the interpretation $A\left(t\left(q_{i}\right)\right)$ coincides with the projection $A^{n \times k} \xrightarrow{P_{i}} A^{n}$ on $B^{k} \longrightarrow A^{n \times k}$. But then in the commutative diagram

the bottom arrow $B\left(q_{i}\right)$ has to coincide with the "real" i-th
projection $B^{k} \longrightarrow B$, since the composite of the latter with the
monomorphism e is equal to $p_{i} \cdot e^{k}$. This shows that B is a product-preserving functor $T^{\mathbf{r}} \longrightarrow \mathrm{M}$, i.e., a T -algebra in M . The
proof of (3.3) is now complete.

If $t: T T^{\prime} \rightarrow T$ is an equational interpretation of T^{\prime} in
T of rank n with universe $f(x)=g(x)$, then applying (3.3) to U_{T}, viewed as a Tralgebra in $\operatorname{Set}^{\operatorname{Mod}(T)}$, we see that the interpretation defines a subfunctor U of $U_{T}{ }^{n}$ which is a $T^{\prime}-a l g e b r a$ in $\operatorname{Set}{ }^{\operatorname{Mod}(T)}$; this means that U is the set-valued component of a functor. 4
$\operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ which we shall denote (a little ambiguously) by t^{*}.

Note that any mapping of theories $t: T ' \longrightarrow T$ is an equational
interpretation of rank l with universe $x=x$; in this case,
$t *: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right) \quad$ is the reduct functor.
3.4. Theorem. A functor $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ is
coalgebra-representable if and only if there is an equational
interpretation $t: T^{\prime} \longrightarrow T$ such that $G \cong t *$.

Proof. Let $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ be represented by a.
coalgebra $A: T^{\prime \circ} \longrightarrow \operatorname{Mod}(T)$. In accordance with our informal usage,
we identify A with its underlying T-algebra, equipped with

T'-co-operations. By (3.2), there is, for some m and n, an (m, n)-any equation $f(x)=g(x)$ of L_{T} such that the set-valued
functor $G_{T}, G \cong \underline{A}: \operatorname{Mod}(T) \longrightarrow$ Set can be identified with .
$[f(x)=g(x)] \longrightarrow \mathrm{U}_{\mathrm{T}}^{\mathrm{n}}$. This means that in $\operatorname{Mod}(T)$ there is a coequalizer diagram $\mathrm{F}_{\mathrm{T}}(\mathrm{m}) \xrightarrow{\hat{\mathrm{g}}} \mathrm{F}_{\mathrm{T}}(\mathrm{n}) \xrightarrow{\hat{p}} A$, so that p is a regular epimorphism. Because copowers commute with coequalizers, every copower $\mathrm{F}_{\mathrm{T}}(\mathrm{n} \times \mathrm{A}) \xrightarrow{\mathrm{k} \otimes_{\mathrm{p}}} \mathrm{k} \otimes_{A}$ of p is a regular epimorphism.

- Now let u be any (j, k)-any $T^{\prime \prime}$-operation, and let $j \otimes_{A} \xrightarrow{\hat{u}} k \otimes_{A}$ be the corresponding co-operation. Consider the following diagram:

If $j>0$, then $F_{T}(n \times j)$ is regular-projective, so there is a homomorphism \hat{h} as shown which completes the diagram. If $j=0$,
then both $F_{T}(n \times j)$ and $j \otimes A$ are isomorphic copies of the algebra $\mathrm{F}_{\mathrm{T}}(0)$ of constants, which is an initial object in Mod(T), so the diagrom commutes with \hat{h} being the embedding $F_{T}(0) \longleftrightarrow F_{T}(n \times k)$. Define a morphism of graphs $t: T^{\prime} \longrightarrow T$ by setting $t(u)$ equal to
h for each (j^{\prime}, k)-ary operation u of T^{\prime}, where h is any $(n \times j, n \times k)$-ary operation of T such that $\left(k \otimes_{p}\right) \cdot \hat{h}=\hat{u} .\left(j \otimes_{p}\right)$. This morphism of graphs defines an equational interpretation of T^{\prime} in. T with universe $f(x)=g(x)$.
of the T-co-operations $\hat{f}, \hat{g}: F_{T}(m) \longrightarrow F_{T}(n)$. By pulling the T^{\prime}-algebra operations of $U_{T}, t^{*} \cong A<U_{T}{ }^{n}$, back through the Yoneda embedding, we endow A with T^{\prime}-co-operations which make A a T'-coalgebra in Mod(T). It is obvious that $t *$ is represented by this coalgebra A. Tnis concludes the proof of the theorem.
syntactical counterparts of coalgebras. In this connection it is
interesting to note Wraith's observation in [42], p. 62, that a
coalgebra is a kind of generalized mapping of theories. The syntactical
description of a coalgebra-representable functor in terms of an
equational interpretation of theories enables us to investigate the
logical properties of the functor without recourse to ultraproducts or modifications of the Feferman-Vaught Theorem as employed, for example, in Burris [5] or Banaschewski and Nelson [3]. In particular,
it is immediately obvious that the representable functor t *
corresponding to an equational interpretation $t: T^{\prime} \longrightarrow T$ will
preserve any logical properties which the definable substructures
provided by the interpretation (see (3.3)) inherit from the "parent"

T-algebras.
3.5. Lemo. Iet A and B be tractable objects in a category M, and let T be the equational structure of A. Then B is a retract of A^{n} if and only if there is an idempotent (n, n)-ary

T-operation $A^{n} \xrightarrow{u} A^{n}$ such that B is isomorphic to the subobject $[u(x)=x] \longrightarrow A^{n}$.

Proof. This lema is a thinly-disguised version of a well-known fact about retracts. First, suppose that B is a retract of A^{n}. Then we have arrows $B \xrightarrow{s} A^{n}$ and $A \xrightarrow{r} B$ with $r . s=i d_{B}$. The composite s.r is an idempotent (n, n)-ary T-operation, since s.r.s.r $=$ s.id ${ }_{B} \cdot r=$ = s.r. Furthermore, it is easy to verify that s is an equalizer of s.r and id. Letting $u=s . r$; we have $B \cong[u(x)=x]$ as required. Now suppose $A^{n} \xrightarrow{u} A^{n}$ is given with $u . u=u$ and with $B=[u(x)=\sim] \leadsto A^{n}$. The arrow s is an equalizer of u and $i d$, but u itself satisfies $u . u^{\prime}=i d . u$, so there is a unique arrow $A^{n} \xrightarrow{r} B$ such that s.r $=u$. But s, being an equalizer, is a
monomorphism, and s.r.s = u.s = id.s = s.id ${ }_{\mathrm{B}}$, so it follows that r.s $=i a_{B}$, i.e., B is a retract of A^{n}.

```
    We shall say that an equational interpretation of T' in T
    is strong if the morphism of graphs t: T' \longrightarrowT preserves composition
    of arrows and if the universe of the interpretation is }u(x)=x
    where u is the interpretation under t of the (1, l)-ary identity
    operation of T'. Let f' be a (j, k)-ary T'-operation, and let
    f=t(f'). Then we have }\mp@subsup{u}{}{j}.f.\mp@subsup{u}{}{k}=f\mathrm{ . Let f', g', and }\mp@subsup{h}{}{\prime}\mathrm{ , be
    T'-operations whose interpretations in T are f,g, and h
respectively, Then because the morphism of graphs t preserves
composition of arrows, any identity f'.g' = h' in T' will
correspond to an identity f.g = h in T.
        Given an equational theory }T\mathrm{ . with an idempotent'(n, n)-ary
operation }u\mathrm{ , we define a new equational theory }T|u\mathrm{ , the restriction
of T to u, as follows. Say that an ( }n\timesj,n\timesk)\mathrm{ -ary operation g
of T is a u-operation if u}\mp@subsup{u}{}{j}\cdotg.\mp@subsup{u}{}{k}=g\mathrm{ . Note that a composite of
```

u-operations is a u-operation. The equational theory $\mathbb{T} \mid u$ is the
category whose arrows are the u-operations of T and whose identity
arrows are the powers (which may be computed in T) of the operation
u. The verification that $T \mid u$ is actually an equational theory is contained in the proof of lemma (3.6) below. The inclusion $T \mid u \longrightarrow T$, 1
together with the equation $u(x)=x$, defines a strong equational
interpretation of $T \mid u$ in T of rank n; obviously, a strong
equational interpretation of any equational theory T^{\prime} in T with
universe $u(x)=x$ will always take the form of a morphism of graphs
$T^{\prime} \longrightarrow T$ which/factors as a mapping of theories $T^{\prime} \longrightarrow T / u$ followed \rangle
by the inclusion morphism $T \mid u \longrightarrow T$.
3.6. Lemma. Let A be a tractable object with equational
structure T in a small-complete category M. Let u be an idempotent
(n, n)-arr operation in T. Then $[u(x)=x\}$ tractable object
nose equational structure is isomorphic to $T \mid u$.

> Proof. Let $B=[u(x)=x]$; then by. (3.5) B is a retract of
> A^{n}. Let $A^{n} \xrightarrow{r} B$ and $B \xrightarrow{s} A^{n}$ be arrowsysuch that $r . s=$ id B
and s.r $=u$. Let T^{\prime}, be a skeleton of the full subcategory in M
of powers of B. Define a morphism of graphs $t: T^{\prime} \longrightarrow T \mid u$ as
follows. For each arrow $B^{k} \xrightarrow{g} B^{j}$ of T^{\prime}, let $t(g)$ be the
($n \times j, n \times k$)-ary T-operation $s^{j} \cdot g . r^{k}$; it is easy to see that $t(g)$
is a u-operation of T, and it is also easy to see that t preserves
composition of arrows and takes the identity arrow $B^{k} \longrightarrow B^{k}$ to ${ }^{*} u^{k}$,
for each k. Hence, $t: T^{\prime} \longrightarrow T \mid u$ is a functor and is surjective
on objects. Because powers preserve retractions and coretractions,
every power of. r is an epimorphism and every power of s is a
monomorphism, so it follows that t is faithful. Finally, t is
full, since for any ($\mathrm{n} \times \mathrm{j}, \mathrm{n} \times \mathrm{k}$) -ary u-operation f of T we have $f=u^{j} \cdot f \cdot u^{k}=s^{j} \cdot r^{j} \cdot f \cdot s^{k} \cdot r^{k}=t\left(r^{j} \cdot f \cdot s^{k}\right)$. We have shown that t
is an iscmorphism of categories, so $B=[u(x)=x]$ is a tractable
object, since $T \cong T \mid u$ is locally small. This proves the lemma.
3.7. Lemma. Let A and B be tractable objects in a
of A. Then A and B are retract-equivalent, with B being a retract of A^{n} and A being a retract of B^{m}, if and only if T satisfies the following conditions:
i) There is an idempotent (n, n)-ary T-operation u such that $B \cong[u(x)=x] \longrightarrow A^{n}$;
ii) There is an ($n \times m, 1$)-ary T-operation d such that
$u^{m} \cdot d=d ;$
iii) There is a ($1, n \times m$)-ary T-operation p such that p. d $=$ id.

Proof. By (3.5), condition i) is necessary and sufficient for B to be a retract of A^{n}. Suppose that A and B are retractequivalent as described above. Then we have $B \xrightarrow{S} A^{n}$ and $A^{n} \xrightarrow{r} B$ with r.s $=i d_{B}$, and we also have $A \xrightarrow{h} B^{m}$ and $B^{m} \xrightarrow{g} A$ with $g: h=i d_{A}$ The operations called for by the theorem are $u=s . r$, $d=s^{m} \cdot h$, and $p=g \cdot r^{m}$. On the other hand, now suppose that conditions i), ii), and iii) are true. We may suppose that $u=s . r$,
where s and r are as above. Consider the arrows $A \xrightarrow{m} r^{m} d$ and $B^{m} \xrightarrow{\text { p.s }}{ }^{m} A$; using ii) and iii), wè compute

$$
p \cdot s^{m} \cdot r^{m} \cdot d=p \cdot u^{m} \cdot d=p \cdot d=i d_{A},
$$

i.e., A is a retract of B^{m}. This completes the proof. *

Combining (3.1), (3.6), and (3.7), we now have a syntactical characterization of all the equational theories ' T ' which are Morita equivalent to a given equational theory T.
3.8. Theorem. Equational theories T and T are Morita 1
equivalent if and only if, for some cardinals m and n, the following conditions are satisfied:
i) There is an idempotent (n, n)-ary T-operation u such that T^{\prime} is isomorphic to $T \mid u$;
ii). There is an ($n \times m, 1$)-ary T-operation d such that $u^{\text {m }} \cdot d=d ;$.
iii) There is a ($1, n \times m$)-ary T-operation p such that
p.d $=$ id.

```
A strong equational interpretation t:T' }\longrightarrowT,with
```

(n, n) -ary universe $u(x)=x$ will be calłed a spanning equational $;{ }_{3}^{*}$
interpretation if t determines an isomorphism of T^{\prime} and $T \mid \dot{u}$,
and if conditions ii) and iii) of (3.8) are satisfied. It is
evident that $G: \operatorname{Mod}(T) \rightarrow \operatorname{Mod}\left(T^{\prime}\right)$ is an equivalence functor if and
only if there is a spanning equational interpretation $t: T \mathbf{T} \longrightarrow T$
such that $G \cong t^{*}$.

There is a category-theoretic generalization of Morita
equivalence which has been studied in various forms and for which
some partial characterizations have been published. Given a fixed
base category M, two small categories A and B are Morita 3
equivalent over M if the functor categories M^{A} and M^{B} are
equivalent.
H. Knauer [27] has characterized Morita equivalence of monoids
over Set; his Theorer 6.2 is actually a special case of (3.8), since
each monoid A is identifiable with an equational theory A wich

```
features a monoid of unary operations isomorphic to A, so that the
category Set }\mp@subsup{}{}{A}\mathrm{ of "left A-acts" is identifiable with Mod(A').
```

According to Knauer, Banaschewski [2] contains similar results on
ϑ
monoids.

0

A related paper is Elkins and Zilber [12], in which Morita
equivalence of arbitrary small sategories over Set is characterized
in a way which is obviously strongly related to our (3.8). In the
terminology of [12], a weak functor is a composition-preserving
mợrpism of graphs. A weak equivalence. A \rightarrow B is a weak functor
satisfying conditions analogous those which define a category
*
equivalence. Theorem 4.4 of [12] geates that, for small categories
A and B, the functor categories Set A and Set B are equivalent if
3
and only if there is a weak equivalence $A \cdots B$.
It should also ne noted that Freyd [17] contains a syntactical
characterization of autóequivalences $\operatorname{Hod}(T) \Longrightarrow$ Kod T, for finitary
equational theories $\%$.

Next we present a few corollaries to (3.8).
3.9. Corollary. Retract-equivalent tractable objects in a category M have Morita equivalent equational structures. * 4
3.10. Corollary. If A is a tractable object in a small-complete çategorf M, and if the equational structure of A is Morita equivalent to T, then A is retract-equivalent to some object B whose equational stmacture is isomorphic to T.

The significance of the next lemma is that, if we are interested only in finitary equational theories, the cardinals m and : mentioned in (3.8) may be taken to be finite. part i) of (3.11) is certainly not new, but part ii) might be.
3.15. Fenea. iet ${ }^{2}$ be a finitary equational theory, and let A be a T-algebra belonging to Mad(T). Then:
i) If A is finitely generated, then the equational
costructure of A is finitary;
ii) If A is a regular progenerator whose equational
costructure is finitary, then A is finitely generated.

Proof. If A is finitely generated, then it is evident
from the proof of (3.4) that there is an equational interpretation of
finite rank of the equational costructure T^{\prime} of A in T, so it follows that T^{1} is finitary: On the other hand, suppose that A is a regular progenerator whose equational costructure T^{\prime} is finitary.

Then by (3.1) the comparison functor $E: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ for \underline{A} is an equivalence functor, so by (2.3). A is finitely generated.

This completes the proof of the lemma.

Note that the converse of condition i) above is not valid.

If A has no proper endomorphisms, then the equational costructure

A is the trivial theory, i.e., the theory Card whose operations
are all trivial, wich is ceztainly a finitary theory. An example of
an algebra with no proper endomorphisms but which is not finitely
generated is constructed by equipping a countably infinite set X
with a sequence $\left(u_{i}: i<\omega\right)$ of unary operations, each of which is a
permutation of X with a single fixed point, with each point of X
being fixed by at least one of the operations, and with the operations chosen so that, for each point a of X, the set $X=\left\{u_{i}(a): i<\omega\right\}$ is infinite.

Applied to finitary theories. (3.8) obviously has great
potential for transferring logical properties such as categoricity, stability, decidability, and so on. For the moment we shall content *
ourselves with two logical corollaries to (3.8). A finitary equational
theory T is countably presentable if there is a presentation of T

- - - -

ir. terms of countably many equations and countably many distinguished
oferations. An equational theory T is locally finite if, for each

```
m ana a, there are only Einitely many nontrivial (m, n)-ary
```

3.12. Corollary. A countably presentable finitary equational theory is Morita equivalent to exactly ω different finitary equational theories, and they are all countably presentable.
3.13. Corollary. Every finitary equational theory which is Morita equivalent to a finitary and locally finite equational theory is locally finite.

The canonical language I_{T} of an equational theory T, while adequate for technical purposes, is inconvenient for informal discourse \rightarrow because all of its operation symbols are formally unary, which makes it necessary to employ a multitude of operation symbols for projections and argument-shuffling operations. We shall frequently resort to a self-explanatory notation, employing variables in the familiar way,
when discussing the operations of an equational theory T. In the
teminology of Makkai and Reyes [33], we are using the extended canonical language of The following examples, using the extended
language, may help to provide an intuitive understanding of how the operations u, d, and p mentioned in (3.8) determine an equivalence of categories.

Recall that, for finite $m>1, P_{m}$ is the finitary equational theory of m-valued Post algebras, which was pointed out at the beginning of this chapter as being Morita equivalent to the finitary

equational theory $B A$ of Boolean algebras. A survey of basic
lattice-theoretic results concerning Post algebras is given in Babes and Dwinger [1] and in Rasiowa [37]. Rasiowa provides a presentation of $P_{\text {m }}$ in terms of:
i) Constants $e_{0}, e_{1}, \cdots, e_{m-1}$
ii) Unary operations $7, D_{1}, D_{2}, \ldots, D_{m-1}$
iii) Binary operations $A, V,+$
iv) A list of equational axioms $\left(p_{0}\right),\left(p_{1}\right), \ldots,\left(p_{8}\right)$.

The equational axioms ensure that every Il-valued post algebra
is a Heyting algebra with respect to $e_{0}, e_{m-1}, \neg, \wedge, V$, and \rightarrow, with e_{0} being the "zero" and e_{m-1} being the "one." The operation D_{1} can be proved to coincide with "double negation,"
i.e., $D_{1}(x)=\neg \neg x$ (see [37], p. 137).

The operations u, d, and p required for a spanning equational interpretation of rank 1 of $B A$ in P_{m} are as follows:

$$
\begin{aligned}
& \text { i) } u \text { is the (1, 1)-ary "double negation" operation } \\
& \qquad u(x)=\neg \neg x
\end{aligned}
$$

$$
\text { ii) d is the (} \mathbb{m}-1,1) \text {-ary operation }
$$

$$
d(x)=\left(D_{1}(x), D_{2}(x), \ldots, D_{m-1}(x)\right)
$$

$$
\text { iii) } p \text { is the }(1, m-1) \text {-ary operation }
$$

$$
p\left(x_{1}, \ldots, x_{m-1}\right)=\left(e_{1} \wedge x_{1}\right) \vee\left(e_{2} \wedge x_{2}\right) \vee \ldots \vee\left(e_{m-1} \wedge x_{m-1}\right)
$$

The identities which u, d, and p are required to satisfy are given in $\left\{37\right.$) as $\left(P_{5}\right)$, which takes care of both i) and ii) of (3.8), and $\left(p_{7}\right)$, which corresponds to condition iii) of (3.8). The operation u picks out the subset of all complemented, or "Boolean,"

```
elements of any m-valued Post algebra. The operation d decomposes
each element of the Post algebra into a chain of Boolean elements
wnich can be re-assembled by p to recover the original element.
The u-operations of gm are precisely the operations which preserve
Boolean elements; it is easily seen (see [37], p, 136) that the
Boclean elements of any Post algebra form a Boolean algebra with
respect to the operations which preserve them. Thus, the analysis
of Post algebras as cnain-based distributive lattices by Epstein [13]
and Traczyk [41] corresponas precisely to the syntactical conditions
cosed by (3.8) for }\mp@subsup{P}{m}{}\mathrm{ to be Morita equivalent to.the theory BA of
Boolean algebras.
```

 The representation of the m-valued Post algebras as lattices
 1
 of nonincreasing (x-1)-element chains in Boolean algebras (see
Rasiowa [37], pp. 143-144 for details) provides a spanning equational
interpretation of rank $m-1$ of F_{E} in $B A$. In this case, the three
BA-operations which detenwine the spanning interpretation are:
i) An (m-1, m-1) -ary idempotent operation
$u\left(x_{1}, \ldots, x_{m-1}\right)=\left(x_{1}, x_{1} \wedge x_{2}, \ldots, x_{1} \wedge \ldots \wedge x_{m-1}\right)$
ii) The ($0-1,1)$-try diagonal operation

$$
a(x)=(x, x, \ldots, x)
$$

iii) The (1, ㅍ-1)-ary projection operation

$$
p\left(x_{1}, \ldots, x_{m-1}\right)=x_{1} .
$$

For the next example, let T be any equational theory, and *
let k_{T} be the full subcategory in T of powers of T^{k}; then ${ }^{k} T$ is an equational theory, called the k-th matrix theory of T for reasons explained in Wraith [42]. Since k_{T} is the equational structure of T^{k}, which is retract-equivalent in T to $T_{\text {. }}$ it follows by (3.9) that K_{T} is Morita equivalent to T. A spanning equational interpretation of rank k of ${ }^{k_{T}}$ in T is given by the inclusion functor $k_{t}: k_{T} \longrightarrow T$, which is not a mapping of theories ,
unless $k=1$. The operation u in this case is the identity arrow of T^{k}, while d is the diagonal arrow $T \longrightarrow T^{k}$ and p is any

```
                        ?
projection T T
    Another significant example relevant to (3.8) is provided by
    #
the, role of idempotents in the endomorphism ring,i.e., equational
.costructure, of a free module in defining Morita contexts (see Cohn
[7]. pp. 46-47); the counterparts to \(d\) and \(p\) do not seem to be Fointed out in cohn's discussion, however.
```

Lawvere [29] defines an algebraic functor to be any functor
of the forif $g^{*}: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{*}\right)$, where T and T are equational
and $g: T^{\prime} \longrightarrow T$ is any product-preserving functor. The degree of
such an algebraic functor g^{*} is that cardinal n such that
$U_{T} \cdot G^{*}=U_{T}{ }^{n}$.

Let $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T^{\prime}\right)$ be any functor such that
$U_{T} \cdot G=U_{T}{ }^{n}$. Then U_{T}, G is represented by $F_{T}(n)$, and the
equational structure of U_{T}, G is isomorphic to ${ }^{n} T$. Consider the
Following commtatifo diagram.

Here, g is a uniquely-determined mapping of theories, and the comparison functor E for $U_{T}{ }^{n}$ is the equivalence functor ${ }^{n} t$ *, where ${ }^{n} t:{ }^{n} T \longrightarrow T$ is the spanning equational interpretation of n_{T} in T discussed above. Thus, we have $G=g^{*}{ }^{n}{ }^{n}{ }^{*}=\left({ }^{n} t . g\right) *$, so G is an algebraic functor of degree n, in Lawvere's terminology.

Now let $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T{ }^{\prime}\right)$ be any functor whose
set-valued component $U=U_{T}, G$ is monadic; then U is represented by a regular progenerator, and the equational structure $\mathrm{T}^{\prime \prime}$ of U is

Morita equivalent to T. Consider the following commutative diagram.

Here again the comparison functor E is an equivalence functor, and C
g is a uniquely determined mapping of theories. In this case, $E=t^{*}$, where $t: T^{H} \longrightarrow T$ provides a spanning equational interpretation of $T^{\prime \prime}$ in T as demanded by (3.8). Note that t factors as $T^{\prime \prime} \longrightarrow{ }^{n} T \longrightarrow D_{1}$ where n is the rank of the interpretation. Thus, we have $G=, g^{*}, t^{*}=$ " (t.g)*, where g is a mapping of theories and t is a spanning equational interpretation of rank n. The foregoing considerations suggest a broadening of

Eawrere's definition. Say that a functor, G: Mod $(T) \Longrightarrow \bmod (T)$ is
algebraic if G is represented by a regular progenerator.
3.14. Theorem. For any equational theories T and T and

3" any functor $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}(T)$, the following are equivalent:
i) G is algebraic;
regular epimorphisms:
iii) G factors as an equivalence functor followed by a
redact functor;
iv) The set-valued component U_{T}, G of G is monadic;
$v) G \cong(t . g)^{*}$, where $g: T>T^{n}$ is a mapping of
equational theories and $t: T^{\prime \prime} \longrightarrow T$ is a spanning equational
interpretation.

Note that ii) is used as the definition of the term
"algebraic functor" in Herrlich and Strecker [21], except that the $>$
domain of an algebraic functor as defined by them need not be an .
equational category. The role of regular progenerators in representing
algebraic fünctors is explicitly pointed out in [21], Theorem 32.21.

The equivalence of conditions iii) and iv) above is implied by Linton's result (2.5). The syntactical characterization v) ís new. Define the rank of an algebratic functor $G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}(T!)$
to be the smallest cardinal n such that the regular progenerator
which represents G is generated by n elements. If. G has rank
n, then n is the smallest cardinal k for fhich $U_{T}{ }^{+} G$ is a
retract of, $U_{T}{ }^{k}$, and for which the spanning, interpretation t
mentioned in condition v) above factors through k_{t}. Note that, by
(3.11), the equational structure of U_{T}, G is finitary if and only if

G has finite rank.

1

CHAPTER 4: REPRESENTABLE BOOLEAN PONER FUNCTORS

The notion of the Boolean extension $A[B]$ of a finitary

universal algebra A by a Boolean algebra B was introduced by
A. L. Foster [14] as a device for making structural comparisons
between Boolean algebras and other kinds of algebras such as p-rings.

One of Foster's principal results was that, when A is primal, i.e.,
finite and nontrivial, having all possible finitary operations, the equational class generated by A is the class of all isomorphic copies
of Boolean extensions of A (see [14], [15]). From our point of view,

Foster, without the help of category theory, defined and studied a
class of functors, showing that certain of those functors were
category equiválences. Our goal in this chapter is to prove some
results about Foster's functors which would be difficult to formulate
without using category-theoretic concepts, but which have algebraic
import. In showing that these results carry over to infinitary
algebra, we prove an infinitary version of Foster's theorem cited
above which could not be proved by directly extending Foster's
original method. Our analysis of Boolean power functors as algebraic
functors provides a useful alternative to the topological or sheaf-theoretic approach as expmplified by Burris [5] and Banaschewski and Nelson [3].

We begin with a naive search for all the monadic functors

Mod (BA) \longrightarrow Set whose equational structure is finitary. Such a search
would be motivated, if we did not already have other reasons for it,
by the fact that $\operatorname{Mod}(B A)$ is an important and comparatively
well-understood equational category which enjoys an abundance of
interesting and easily-studied coalgebras. As (3.11) informs us, our
search is equivalent to the problem of identifying all the finitely-
generated regular progenerators in Mod (BA). Since BA is a locally
finite theory, all finitely generated Boolean algebras are finite. The finite regular progenerators in Mod(BA) are rather easy to find. -
4.1. Lemma. Every finite Boolean algebra having more than two elements is a regular progenerator.

Proof. Every finite Boolean algebra is a power of a two-e'lement Boolean algebra; the free algebras are the ones of the form $2^{2^{n}}$, where n is the number of free generators. Obviously, for $k \geq 2$ the free algebra $F_{B A}(1) \underset{\cong}{ } 2^{2}$ is a retract of the algebra 2^{k}; furthermere, for sufficiently large, finite $n, 2^{k}$ is a retract of $2^{2} \cong F_{B A}(n)$. Thus, every finite Boolean algebra having more than two elements is dually retract-equivalent to $F_{B A}$ (1), hence is a regular progenerator.

In fact, every countable Boolean algebra having more than
two elements is a regular progenerator in Mod(BA); not much is known about the uncountably infinite Boolean algebras which are regular
progenerators (see Balbes and Dwinger [1], p. 107).

4.2. Lemma. For any finite $m>1$, the equational
costructure of the Boolean algebra 2^{m} in $\operatorname{Mod}(B A)$ is isomorphic to the finitary part of the equational structure of an m-element set, i.e., to the equational theory P_{m} of m-valued Post algebras.

Proof. Since 2^{m} is finitely generated, its equational
costructure is finitary, by (3.11). Thus, it is sufficient to verify
that the finitary parts of the two theories cited are isomorphic. For
all finite n, the Boolean algebra $2^{m^{n}}$ is an n-th copower of 2^{m} in $\operatorname{Mod}(B A)$, and the assignment of $2^{m} \xrightarrow{f^{\star}} 2^{\mathrm{m}^{\mathrm{n}}}$ to each finitary operation $m^{n} \xrightarrow{f} m$ establishes the required isomorphism.

Thus, if the set A has $m>1$ elements, then the
representable functor $\underline{2}^{A}: \operatorname{Mod}(B A) \longrightarrow$ Set is an m-valued Post algebra
in $\operatorname{Set}^{\operatorname{Mod}(B A)}$; the corresponding comparison functor $\operatorname{Mod}(B A) \longrightarrow \operatorname{Mod}\left(\mathrm{P}_{\mathrm{m}}\right)$
is a category equivalence, since 2^{A} is a regular progenerator. By
combining (3.1), (3.11), (4.1), and (4.2), we have a proof of T. K. Hu's result (1.3).

If A is a finite set having at least two elements and B
is a Boolean algebra, the Boolean power $A[B]$ is the set of all

A-indexed partitions of unity in $B, i, e .$, the set of all functions
u from A into the underlying set of B such that:
i) For $a \neq b$ in A, we have $u(a) \wedge u(b)=0$ in B;
ii)

$$
V_{a \in A} u(a)=I \text { in } B
$$

The definition above is A. L. Foster's (see [14]). For each
homomorphism $B \xrightarrow{h} C$, let $A[h]$ be the function which sends each
partition u in $A[B]$ to the partition h.u in $A[C]$; we have now
defined a set-valued Boolean power functor $A[-]: \operatorname{Mod}(B A) \longrightarrow$ Set.
4.3. Lemma. The functor $A[-]$ is represented by the

Boolean algebra $2^{\text {A. }}$.

Proof: It is easy to see that the restriction of any
homomorphism $2^{A} \longrightarrow B$ to the atoms of 2^{A} determines an A-indexed partition of unity in B, and that each partition u belonging to $A[B]$, regarded as a function from the atoms of 2^{A} into B, has a unique extension to a homomorphism $2^{A} \rightarrow B$. More formally; the isomorphism $2^{A} \longrightarrow A[-]$ in the functor category set ${ }^{\text {Mod (BA) }}$ corresponds, by the Yoneda Lemma, to an element of $A\left[2^{A}\right]$ or, in Mac Lane's terminology, to a universal element of $A[-]$. That element is the partition $A \longrightarrow 2^{A}$ defined by the insertion of the
atoms.

The representability of $A[-]$ does not seem to have been directly exploited before to any significant extent, although

Banaschewski and Nelson $[3]$ treat $A[-]$ as a contravariant
algebra-of-continuous-functions functor $C(=$, A) from topological
spaces into ISP (A), and it is pointed out that $C(-, A)$ has an "adjoint on the right,"

Foster's definition of $A[B]$ in [14] includes a formula which shows how each finitary operation $: A^{n} \xrightarrow{f} A$ can be transmogrified into an operation $A[B]^{n} \xrightarrow{f^{\prime}} A[B]$. If A is a
finite algebra in some finitary equational category $\operatorname{Mod}(T)$, then the Boolean algebra 2^{A} is a T^{\prime}-coalgebra in $\operatorname{Mod}(B A)$; each finitary operation $A^{n} \xrightarrow{f} A$ determines a cooperation $2^{A} \xrightarrow{\text { d }} 2^{A^{n}}$ By exploiting the fact that every Boolean algebra B has an embedding into a power of a two-element Boolean algebra, we can show that both Foster's formula for f^{\prime} and the cooperation f^{*} yield the same natural transformation $A[-]^{n} \rightarrow A[-]$. (Note that from now on we shall often identify $A[-]$ with 2^{A}, in light of (4.3)).

4.4. Lemma. Let $A^{n} \xrightarrow{f} A$ be a finitary operation on a
finite set A having at least two elements, and let $f^{\prime}=f^{*}$ be the corresponding operation on the set-valued functor $A[-]$. Then for any Boolean algebra B, the action of $f_{B}^{\prime}: A[B]^{n} \longrightarrow A[B]$ is described as follows. For any $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ in $A[B]^{n}$ and any $C \in A$, we have

$$
\left[f_{B}^{\prime}(u)\right](c)=\sum_{f(b)=c} \sum_{j<n}\left(b_{j}\right)
$$

Proof. Each of the partitions u_{j} corresponds to a homomorphism $v_{j} *: 2^{A} \longrightarrow 2^{I}$ which factors through $B \longrightarrow 2^{I}$; these homomorphisms collectively induce a coproduct homomorphism $2^{A^{n}} \xrightarrow{V^{*}} 2^{I}$ which factors through B and corresponds to ut $A[B]^{n}$. To simplify the notation, we identify elements of B with subsets of I. Then

$$
\left[f_{B}^{\prime}(u)\right](c)=\left[f_{B}^{*}\left(v^{*}\right)\right](\{c\})
$$

$$
=\left[y^{*} \cdot f^{*}\right](\{c\})
$$

$$
\begin{aligned}
& =\left\{i \in I:[f \cdot v](i)^{\prime}=c\right\} \\
& =\left\{i \in I: f\left(v_{0}(i), \ldots, v_{n-I}(i)\right)=c\right\} \\
& =\underbrace{}_{f(b)=c}=\underbrace{}_{j<n} \underbrace{}_{u_{j}\left(b_{j}\right)}{ }^{*\left(\left\{b_{j}\right\}\right)}
\end{aligned}
$$

Note that (4.4) only serves to show that our viewing $A[-]$
as a representable functor does not conflict in any respect with Foster's original definition of the Boolean extension construction; the computation upon which the proof is based is, with minor variations depending on context, widely known (see [3], p. 5, for example), and was probably used by Foster himself to derive the formula given in (4.4). Indeed, since $A[-]$ is representable, it preserves products and monomorphisms, so if $B \longleftrightarrow 2^{I}$ we have $A[\beta] \longrightarrow A\left[2^{I}\right] \cong A^{I}$. The function $I \xrightarrow{V} A^{n}$ in the proof above is
equivalent to an n-tuple of elements of A^{I}, and the composite
$\xrightarrow{v} A{ }^{n} \xrightarrow{f} A$ corresponds to the result of applying f "coordinate-
wise" to that n-tuple in the familiar way. This is how one, shows
that Boolean powers of an algebra A are isomorphic to certain ,
subdirect powers of A which Foster defined in [14] and called
"normal" subdirect powers.

There is one fact which has apparently never been pointed
out before that can be derived from (4.4) together with (4.3) and
(4.2), namely, that the Boolean power functors $A[-]$, where A is
finite, have finitary equational structure, i.e., they are incapable
of carrying nontrivial infinitary operations, so that in fact every
nontrivial operation which $A[-]$ admits is of the kind described by

the formula in (4.4).

The set-of-continuous-functions version of $A[-]$, featured in -
[3], is recoverable from our representable functor version quite asily.

Let X be the Stone space of B; then B is the subalgebra of clopen
sets in 2^{X} (identifying 2^{X} with the power set algebra of X).

Informally, we have a chain of correspondences

$$
\begin{aligned}
& A[B] \leftrightarrow \text { homomorphisms } 2^{A} \longrightarrow B \\
& \leftrightarrow \text { homomorphisms } 2^{A} \longrightarrow 2^{X} \text { which factor } \\
& \text { through } B \longrightarrow 2^{X} \\
& \leftrightarrow \text { functions } X \xrightarrow{f} \text { such that } f *(\{a\}) \in B \\
& \\
& \text { for all } a \in A
\end{aligned}
$$

$$
\leftrightarrow \text { continuous functions from } X \text { to the }
$$

discrete spaçe A.'

$$
\text { We shall refer to any functor } \operatorname{Mod}(B A) \longrightarrow \operatorname{Mod}(T) \text {, where } T
$$

is equational, as a representable Boolean power functor if it is
represented by finite Boolean algebra with more than two elements.

The next result is really just a restatement of (4.1) in more
impressive language.
4.5. Theorem. For any equational theory T, the algebraic
functors $\operatorname{Mod}(B A) \longrightarrow \operatorname{Mod}(T)$ of finite rank are precisely the
representable Boolean power functors.

$$
98
$$

The definition of the functor $A[B]$ given above depends upon the finiteness of the set A to guarantee that the join in condition i i) of the definition is an operation in the Roolean algebra B, rather than just an order-theoretic supremum, so that partitions will be preserved by composition with homomorphisms: For infinite A, there are two versions of the Boolean power $A[B]$ to choose from one version, which remains faithful to the set-of-continuous-functions approach, is called a bounded Boolean power and uses only partitions $u: A \longrightarrow B$ for which $u(a)$ is nonzero for only finitely many $a \in A$; bounded Boolean powers are discussed in Chapter 5: The other way of defining $A[B]$ when A is infinite is to require that B be a complete Boolean algebra, so that the definition of $A[B]$ given above still works, with the join in condition ii) being an infinitary one. This approach has a serious
disadvantage, from a category-theoretic point of view: the category of complete Boolean algebras with complete homomorphisms (needed to
preserve partitions) is not an equational category and even lacks
some desirable features such as coproducts of infinite families of
algebras. Rather than struggle with functors defined on such an
unpleasant domain category, we may restrict the domain of $A[-]$ to an equational category of Boolean algebras which are sufficiently
complete to have A-indexed joins. this approach is not unknown in the literature (see Karatay [26], for example), but is not common, f
since many investigators like to treat the Boolean power construction
as a bifunctor, with both the set A and the Boolean algebna being A
variable; the Boolean algebras are required to be complete in order to
accomodate arbitrarily large sets. A. It seems likely that a serious
functor-theoretic investigation of Boolean powers as bifunctors would
best proceed by restrictingato sets of bounded cardinality (a
well-behaved category) and to Boolean algebras belonging to some
equational category of infinitary Boolean algebras as defined below.

Let k be an infinite regular cardinal. A finitary Boolean
algebra B is k-complete if every family of fewer than k elements
has a supremm and an infimum in B relative to the customary
partial order. A k-complete Boolean homómorphism is a Booleax
homonorphism which preserves the suprema and infima of families of fewer than k elements: We deviate fromisikorski's usage in [40] to avoid having to refer continually to algebras which are "m-complete \rightarrow 为
 category k-Bool of alf k-complete Boolean algebras with k-complete homomorphisms has a representable underlying-set functor u with a left adjoint. F, i.e.; a free algebra functor.
4.6. Lemma, The category k-Bool is monadic over Set, i.e.,
there'is an underlying-set-preserving. equivalence of cateǵories
$k-B O O l \rightarrow M o d(k-B A)$, where $k-B A$ is the equational structure of the mderlying-set functor $\mathrm{U}: \mathrm{k}-\mathrm{BoOl} \xrightarrow{+}$ Set.
Proof. We shall use (2.1), to prove the theorem. It *
follows from Sikonski [40], 131 ff. that u has a left adjoint (the free algebra functor). According to R. Lagrange [28], a k-complete homomorphism $B \xrightarrow{f} C$ is an epimorphism in- k-Boole if and only if $\mathrm{U}(\mathrm{f})$ is surjective. In particular, if f is a regular epimorphism, then it is an epimorphism, so $U(f)$ is surjective. Thus, U* preserves regular epimorphisms. To show that U reflects regular epimorphisms, -
suppose that $U(f)$ is surjective: Form the kernel congruence
$D \subseteq U(B) \times U(B)$ of $U(f)$ in Set, ie., $D=\{(a, b): f(a)=f(b)\}$. Then the two projections $D \rightarrow U(B)$ are a kernel pair for $U(f)$, and U(f) is coequalizer for them in Set. By routine calculations, it can be verified that D is a k-complete subalgebra of $B \times B$, that
 the kernel pair in set lifts into k-Boole as a kernel pair of f, and that f coequalizes its kernel pair. since U is representable
(by the free algebra $F(1)$), it preserves congruence relations. To show that 1 U reflects congruence relations; let $A C \longrightarrow B \times B$ be a
k-complete subalgebra such that $U(C)$ is an equivalence relation on $U(B)$. Then by routine calculations check that $U(B) / U(C)$ is a
$k-$ complete Boolean algebra with the obvious operations, and that the projections $C \longrightarrow B$ are a kernel pair for the projection $B \longrightarrow B / C$. There are no surprises in any of these computations, because the fact that the filter $f^{\star *}(\{1\})$ for any k-complete homomorphism f is a 1 k-filter and that the quotient of any k-complete Boolean algebra by a k-filter is a k-complete Boolean algebra ([40], §21) guarantees that everything works as it. should.

Lemma (4.6) should be regarded as à "folklore" result; see Manes [34] for related examples:

It is intuitively helpful to have a convenient presentation -
of the equational theory $k-B A$ of k-complete Boolean algebras. As one would hope, it suffices to distinguish the constants 0 and 1 , the complement-operation 7 , and the m-ary join operations, for every, $m<k$. That this works follows from the fact that a Boolean algebra
is k-complete if and only if it admits these operations, and that a Boolean homomorphistis k-complete if and only if it preserves these operations. From now on, a k-complete Boolean algebra is identified with a k-BA-algebra in set, i.e., a Boolean algebra with infinitary operations which pick out the flaprema and infima of families of fewer than k elements.
Note that there are obvious mappings of theories
$B A \longrightarrow k-B A \longrightarrow T_{2}$, where T_{2} is the equational structure of a two-element set, otherwise known as the equational theory of complete atomic Boolean algebras. Define an equational theory T to be an equational theory of k-complete Boolean algebras if T is a quotient
theory of $k-B A, i . e .$, if there is a full mapping of theories
$\mathrm{k}-\mathrm{BA} \longrightarrow \mathrm{T} . \quad$ The corresponding equational category $\operatorname{Mod}(\mathrm{T})$ will be F
called an equational category of k-complete Boolean algebras. Note
that, if T is a quotient of $k-B A$, then $\operatorname{Mod}(T)$ is a full
subcategory of $\operatorname{Mod}(k-B A)$ which is closed under H, S, and P.

Intuitively, an equational theory of k-complete Boolean algebras is the result of adding distributivity axioms to $k-B A$.

For the rest of this chapter, let $B A^{*}$ be a fixed equational theory of k-complete Boolean algebras.
4.7. Lemma. If A is a set of cardinality less than k, but greater than 1 , then 2^{A} and all of its copowers in $\operatorname{Mod}\left(B A^{*}\right)$ are regular progenerators in $\operatorname{Mod}\left(B A^{*}\right)$.

Proof. Every nontrivial copower of a regular-projective
object is regular-projective, and every $B A^{*}$-algebra with more than two elements has $F_{B A^{*}}(1) \cong 2^{2}$ as a retract, so to prove the lemma it is sufficient to show that 2^{A} itself is regular-projotive. Let
$B \xrightarrow{f} C$ be a regular epimorphism, and let $2^{A} \xrightarrow{h} C$ be any homomorphism.
We shall construct a homomorphism $2^{A} \xrightarrow{g} B$ such that $f . g=h$. Since
$|A|^{-}<$, the $B A *-a l g e b r a \quad 2^{A}$ is generated by its atoms, so it suffices
to describe what g does to the atoms.

$$
\text { Let }\left(a_{i}: i \leqslant m\right) \text { be a well-ordering of } A \text {, and let } g\left(\left\{a_{0}\right\}\right)
$$

be any element b_{0} of B such that $f\left(b_{0}\right)=h\left(\left\{a_{0}\right\}\right)$; b_{0} exists,
because $U_{B A^{*}}(f)$ is surjective. (Note that we are identifying
the elements of 2^{A} with the subsets of -A). If $0<i<m$, and
$g\left(\left\{a_{j}\right\}\right)$ is defined for each $j<i$ so that $f\left(g\left(\left\{a_{j}\right\}\right)\right)=h\left(\left\{a_{j}\right\}\right)$
and so that for all $j^{\prime}<j$ we have $g\left(\left\{a_{j}\right\}\right) \wedge g\left(\left\{a_{j}\right\}\right)=0$, then
let $g\left(\left\{a_{i}\right\}\right)=b_{i}-\bigvee_{j<i} g\left(\left\{a_{j}\right\}\right)$, where b_{i} is an element of B such that $f\left(b_{i}\right)=h\left(\left\{a_{i}\right\}\right)$. The foregoing suffices fo define $g\left(\left\{a_{i}\right\}\right)$ for all $i<m$. Finally, let $g\left(\left\{a_{m}\right\}\right)^{\prime}=\neg \bigvee_{i<m}\left(\left\{\left\{_{i}\right\}\right)\right.$.

Lemma (4.7) provides an important example of how an equational
category of k-complete Boolean algebras, for uncountable k, differs
from the category of finitary Boolean algebras. In the latter

category, no infinite power of 2 is regular-projective. Indeed, no
infinite complete finitary Boolean algebra is even embeddable in a free
finitary Boolean algebra (see Sikorski [40], p. 67).
4.8. Lemma. When $\left|A^{n}\right|<k$, the $B A^{*}$-algebra $2^{A^{n}}$ is a retract of the n-th copower $n \otimes 2^{A}$ of 2^{A} in $\operatorname{Mod}\left(B A^{*}\right)$. If n is finite, then the retraction is an isomorphism.

Proof. Each projection $A^{n} \xrightarrow{p} A$ induces a (complete)
homomorphism $2^{A}{ }^{p^{*}} 2^{A^{n}}$, which we shall call a coprojection; the " n coprojections induce a coproduct homomorphism $n \otimes 2^{A} \xrightarrow{r}{ }_{n} 2^{A^{n}} \cdot B y$ hypothesis, $\left|A^{n}\right|<k$, so $2^{A^{n}}$ is generated by its atoms and is a regular progenerator in $\operatorname{Mod}\left(B A^{*}\right)$, by (4.7). For each $i<n$, the i-th coprojection $2^{A} \longrightarrow 2^{A^{n}}$ sends $\{c\}$ to $\left\{a \in A^{n}: a_{i}=c\right\}$. For any given $b \in A^{n}$, we have $\{b\}=\int_{i<n}\left\{a \in A^{n}: a_{i}=b_{i}\right\}$, so clearly each atom $\{b\}$ of $2^{A^{n}}$ is in the image of r_{n} but then r_{n} must be surjective, hence it is a retraction since $2^{A^{n}}$ is regular-projective. If n is finite, then $n \otimes 2^{A}$ is atomic, and r_{n} is bijective on atoms. To see this, let $\left(s_{i}: i<n\right)$ be the coproduct injections : $2^{A} \longrightarrow n \otimes 2^{A}$ Each homomorphism $n \otimes 2^{A} \longrightarrow-2$ is induced by an n-sequence of homomorphisms $2^{A} \longrightarrow 2$, each of which sends a single
atom of 2^{A} to 1 . If the i-th homomorphism in the sequence sends $\left\{a_{i}\right\}$ to 1 , then the induced homomorphism $n \otimes 2^{A} \longrightarrow 2$ sends
$\int_{i<n} s_{i}\left(\left\{a_{i}\right\}\right)$, to 1 on the other hand, any homomorphism $n \otimes_{2}{ }^{A} \xrightarrow{b} B$ which sends $\bigcap_{i<n} s_{i}\left(\left\{a_{i}\right\}\right)$ to l must be such that $\left[h . s_{i}\right]\left(\left\{a_{i}\right\}\right)=1$ for all $i<n$. This means that h. S_{i} factors through $2 c B$, for all $i<n$, so h does too. But then it follows that
 \boldsymbol{j}^{s} an atom in $n \otimes_{2}^{A}$. It is easy to see that the homomorphism r_{n} defined above establishes a bijective correspondence between the atoms of $n \otimes 2^{A}$ and of $2^{A^{n}}$; if we show that $n \otimes 2^{A}$ is complete and atomic; then it follows that r_{n} is an isomorphism. (Here, a complete $B A^{*}-a l g e b r a$ is one which has a supremum and an infimum for every family of elements; obviously, the BA-reduct of a complete atomic BA*-algebra is complete and atomic in the ordinary sense, hence is isomorphic to a power of 2).

First, note that $n 2^{\mathrm{A}}$ is complete because it is a
k-complete Boolean algebra which is generated by fewer than k elements.

It is atomic because the join of its atoms is 1 (see [40], p. 59). We prove this by induction on n, using the fact that $\left(n \otimes 2^{A}\right) \mu 2^{A}$ is isomorphic to $(n+1) \otimes 2^{A}$. First, note that $0 \otimes 2^{A} \cong 2$ is atomic. Suppose that $n \otimes 2^{A}$ is atomic; to show that $(n+1) \otimes 2^{A}$ is atomic, we compute

$$
=1 \wedge_{a \in A^{n}} \bigwedge_{i<n} s_{i}\left(\left\{a_{i}\right\}\right)
$$

$$
=1 \wedge 1=1
$$

It should be noted that, if n is infinite, r_{n} is not
generally on isomorphism. For example, if $k>2{ }^{\omega}$, the free k-complete Boolean algebra $\omega \otimes 2^{2}$ is not isomorphic to 2^{2}, by
[40], Proposition 31.3. If the equational theory $B A^{*}$ imposes

$$
\begin{aligned}
& \bigvee_{a \in A^{n+1}} \bigwedge_{i<n \neq 1} s_{i}\left(\left\{a_{i}\right\}\right)=\bigvee_{b \in A}\left(s_{n}(\{b\}) \wedge \bigwedge_{i<n} s_{i}\left(\left\{a_{i}\right\}\right)\right) \\
& =\bigvee_{b \in A}\left(s_{n}(\{b\}) \wedge \bigvee_{a \in A} \bigwedge_{i<n} s_{i}\left(\left\{a_{i}\right\}\right)\right)
\end{aligned}
$$

sufficient infinitary distributivity conditions on its algebras, then j for some infinite values of n the algebra $n \otimes 2^{A}$ is atomic, and r_{n} is an isomorphism (see [40], Proposition 24.5).

Let A be a set with $1<|A|<k$. The set-valued Boolean power functor $A[-]: \operatorname{Mod}\left(B A^{*}\right) \longrightarrow$ Set is defined as follows. -
i) For each $B A^{*}$-algebra $B, A[B]$, is the set of all

A-indexed partitions of unity in B;
ii) For each homomoxphism $B \xrightarrow{h} C, A[h]$ is the function $A[B] \rightarrow A[C]^{\prime}$ which sends each partition u ' in $A[B]$ to h.u in $A[C]$. - .
4.9. Lemma. The functor $A[-]$ is represented by the $B A *-a l g e b r a \quad 2^{A}$.
-

Proof. Identical to the proof of (4.3).

On the basis of (4.9), we shall refer to all algebraic functors of the form $G: \operatorname{Mod}\left(B A-\rightarrow \operatorname{Mod}(T)\right.$, where $U_{T} \cdot G \cong 2^{A}$ for -

```
some A, as representable Boolean power functors.
```

At this point we can begin to appreciate an important
difference between the infinitary Boolean powers $A[-]: \operatorname{Mod}(B A *) \longrightarrow$ Set
which we are now discussing and the finitary ones $A[-]: \operatorname{Mod}(B A) \longrightarrow$ Set.

In the finitary case, taking $A=2-$ the-Boolean power functor $2[-]$
is represented by the finitary free Boolean algebra $2^{2} \cong \mathrm{~F}_{\mathrm{BA}}(1)$, i.e.,
$2[-]$ is isomorphic to the underlying-set functor $U_{B A}$, and its
equational structure is just the finitary theory $B A$, which is the
finitary part of the equational structure of a two-element set. In
the infinitary case, it is similarly true that $2[-]: \operatorname{Mod}(B A *) \longrightarrow$ Set is represented by the $B A^{\circ}$-algebra $2^{2} \cong F_{B A *}(1)$, so that $2[-]$ is isomorphic to the underlying-set functor $U_{B A *}$ and has equational
structure $B A^{*}$. When $B A^{*}$ is an equational theory of k-complete

Boolean algebras, where $k \geqslant \omega^{+}$, it is not generally true that $\mathrm{BA*}$
is isomorphic to a theory of operations on'a two-element set, i.e., to
a subtheory of T_{2}, since $B A^{*}$ may lack necessary distributivity
properties. The "image" of the mapping of theories. $B A * \rightarrow T_{2}$ is the equational theofy $k-R B A$ of k-representable k-complete Boolean algebras; $\operatorname{Mod}(k-R B A)$ is identifiable with the full subcategory HSP (\{2\}) of Mod $\left(B A^{*}\right)$. Thus, we cannot count on being able to extrapolate from operations on the set 2 to describe the equational structure of $2[-]$, and yet it is evident that the infinitary operations admitted by 2[-] are an important feature of the functor and should not be ignored.

Such considerations indicate that the infinitary Boolean
power functors $A[-]$ will generally have infinitary equational
structure which is somehow not fully expressible in terms of
operations on the set A; the Foster formula (4.4) cannot be relied
upon unless we resort to draconian measures: either throw away the
infinitary structure of the functors, which so far has been the usual
practice in studies of Boolean powers, of drastically restrict the
domain of the functors. Karatay [26] does both in order to describe

A[-] as a "normal subdirect power" construction.

In the remainder of this Chapter we shall show how, for any
equational theory BA^{*} of k -complete Boolean algebras, the representable Boolean power functors with domain $\operatorname{Mod}\left(\mathrm{BA}^{*}\right)$ can be. analyzed by means of the results of Chapter 3.

The functor $A[-]$ is sometimes called a Boolean extension functor because each Boolean power $A[B]$ contains a copy of the set A, namely $A[2]$. An element a of. A is represented iñ $A[B]$ by the unique homomorphism $2^{A} \longrightarrow B$ which sends $\{a\}$ to 1. Evidently, each natural transformation $A[-]^{n} \xrightarrow{f} A[-]$ induces a function $A^{n} \xrightarrow{f} A$ corresponding to the 2 -component $f_{2}: A[2]^{n} \longrightarrow A[2]$ of f. The assignment of f^{\prime} to f defines a mapping of theories $P \longrightarrow T_{A^{\prime}}$ where P is the equational structure of $A[-]$, i.e., the equational costructure of 2^{A} in $M o d\left(B A^{*}\right)$, while T_{A} is the equational structure of the set A. In the case where $|A|=2$, this gives us the standard mapping $B A^{*} \longrightarrow T_{2}$.
4.10. Lemma. A function $A^{n} \xrightarrow{g} A$ is induced on A by a p-operation $A[-]^{n} \xrightarrow{f} A[-]$ if and only if; for each $c \in A, g^{*}(\{c\})$ belongs to the $B A^{*}$-subalgebra of $2^{A^{n}}$. which is generated by the
family of all subsets of A^{n} of the form $\left\{a \in A: a_{i}=c\right\}, i<n$.

Proof. The $B^{\star \pi}$-subalgebra of $2^{A^{n}}$ described in the lemma \square
is the image of the homomorphism r_{n} defined in the proof of (4.8); for sufficiently large n, the algebra $2^{A^{n}}$ is not generated by its atoms, and then x_{n} fails to be surjective.

Suppose that g is induced by $A[-]^{n} \xrightarrow{f} A[-]$, i.e., g
is obtained in the following way. Let $2^{A} \xrightarrow{\hat{f}} n \otimes 2^{A}$ be the cooperation representing $f_{;}$for each $a \in A^{n}$, let $n \otimes 2^{A} \xrightarrow{h} 2$
be the homomorphism which sends each of the elements $s_{i}\left(\left\{a_{i}\right\}\right)$ to 1 (if n is too large, the atom $\bigwedge_{i<n} s_{i}\left(\left\{a_{i}\right\}\right)$ might not exist, since

BA* might not have an nary meet operation). Then $g(a)$ is that.
element c of A such that $h_{a} \cdot \hat{\tilde{f}}$ sends $\{c\}$ to 1 . Which sends fay to 1 : It is easy to see that g is induced. by f as explained above if and only if, for each $a \in A^{n}$, we havel
$p_{a} \cdot g^{*}=h_{a} \cdot \hat{f}$. Furthermore, we have $p_{a} \cdot r_{n}=h_{a}$ for all, a $\in A^{n}$; this can be checked by verifying that $p_{a} \cdot r_{n}$ sends $s_{i}\left(\left\{a_{i}\right\}\right)$ to l, for each $i<n$.

If g is induced by f, then for each $a \in A^{n}$ we have $P_{a} \cdot I_{n} \cdot \hat{f}=h_{a} \cdot \hat{f}=p_{a} \cdot g^{*}$ as noted above, so it follows that $r_{n} \hat{f}=g^{*}$. on the other hand, if $r_{n} \cdot \hat{f}=g *$, then we have $p_{a} \cdot g^{*}=p_{a} \cdot r_{n} \cdot \hat{\mathbf{f}}=h_{a} \cdot \hat{\mathbf{E}}$, so g is induced by f. This completes the proof of the lemma.
$A\left[n \otimes 2^{A}\right]$ to the P-algebra $A\left[2^{A^{n}}\right] \cong A^{A^{n}}$, the latter being free when viewed as a T_{A}-algebra. The image of $A\left[r_{n}\right]$ is a free algebra of rank n in the full subcategory $\operatorname{HSP}(\{A[2]\})$ of $\operatorname{Mod}(P)$.

The fact that the infinitary P-co-operations on the $B A^{*}-a l g e b r a$ 2^{A} are not generally inverse-image mappings between powers of 2 in Mod (BA*) means that the Foster formula of (4.4), which fully explains the equational structure of a finitary Boolean power functor, does not work for the kind of Boolean powers which we are presently discussing,
 except for isolated cases as described in the next result.
4.11. Lemma. Let f be an n-ary operation in the
equational structure P of $A[-]$, where $n<k$. For any $B A *-a l g e b r a$
B which is isomorphic to an m-complete field of sets, where $n<m<k$, the action of, $f_{B}: A[B]^{n} \longrightarrow A[B]$ is described as follows. For all
$u=\left(u_{j}: j<n\right)$ in $A[B]^{n}$ and all ce,

$$
\left[F_{B}(u)\right](\{c\})=\sup \left\{\int_{j<n} u_{j}\left(\left\{a_{j}\right\}\right): f^{\prime}(a)=0\right.
$$

where the supremum may be computed by an infinitary join operation of $B A^{*}$ if $\left|A^{n}\right|<k$.

Proof. Identify B with an m-complete field of subsets of some set I. Also let the coproduct injections $2^{A} \longrightarrow n \otimes 2^{A}$ be $\left(s_{j}: j<n\right)$. Then for each $j<n$ we have $u_{j}=u_{i} s_{j}$, if the n-sequence $u \in A[B]^{n}$ is identified with a homomorphism $n \otimes 2^{A} \longrightarrow B$ (note that $A[-]^{n}$ is represented by $n \otimes 2^{A}$). For each $i \in I$ and $j<n$, there is exactly one element $a_{i j} \in A$ such that $i \in u_{j}\left(\left\{a_{i j}\right\}\right)$. Then we have

$$
i \in \bigcap_{j<n} u_{j}\left(\left\{a_{i j}\right\}\right)=u\left(\bigwedge_{j<n} s_{j}\left(\left\{a_{i j}\right\}\right)\right),
$$

for all iE I, so it follows that

$$
\sup \left\{u\left(\bigwedge_{j<n} s_{j}\left(\left\{a_{j}\right\}\right)\right]: a \in A^{n}\right\}=1
$$

$$
\begin{aligned}
& \cdots+ \\
& {\left[f_{B}(u)\right](\{c\})=[u \cdot \hat{f}](\{c\})} \\
& =\sup \left\{[u \cdot \hat{f}]\left(\{[c\}) \cap u\left(\bigwedge_{j<n} s_{j}\left(\left\{a_{j}\right\}\right)\right\}: a \in A^{n}\right\}\right. \\
& =\sup \left\{u\left[\hat{f}(\{c\}) \wedge \bigwedge_{j<n} s_{j}\left(\left\{a_{j}\right\}\right)\right\}: a \in A^{n}\right\} .
\end{aligned}
$$

Note that the meet of $\hat{f}(\{c\})$ with $\bigwedge_{j<n}\left(\left\{a_{j}\right\}\right)$ is nonzero if and only if $\hat{f}(\{c\}) \geqslant \bigwedge_{j<n} s_{j}\left(\left\{a_{j}\right\}\right)$, since the latter is an atom in $n \otimes 2^{A}$. But for any $a \in A^{n}, \hat{f}(\{c\})$ contains the atom $\int_{j<n}\left(\left\{a_{j}\right\}\right)$ if and only if $h_{a} \cdot \hat{f}$ sends $\{c\}$ to 1 , i.e., if and only if $f^{\prime}(a)=c$, where f^{\prime} is the operation on A induced by f. Thus,

$$
\begin{aligned}
{\left[f_{B}(u)\right](\{c\}) } & =\sup \left\{u\left(\bigcap_{j<n} s_{j}\left(\left\{a_{j}\right\}\right)\right): f^{\prime}(a)=c\right\} \\
& =\sup \left\{\bigcap_{j<n} u_{j}\left(\left\{a_{j}\right\}\right): f^{\prime}(a)=c\right\}
\end{aligned}
$$

and the proof is complete.
4.12. Corollary. Every finitary p-operation f is

```
A. J. Foster's device in [14] of using a two felement "subframe" of the "kernel" algebra A to recover the "core" Boolean algebra \(B\) from \(A[B]\) was one of the original inspirations. for the results in Chapter 3. Before any of those results had been discovered by the writer, Foster's method was adapted in Dukarm [9] for a brute-force proof that the infinitary representable Boolean power functors are monadic. In [9], the results which appear above as lemmas (4.7) through (4.12) were the basis for a description of P-operations which were strongly reminiscent of Post algebra operations. We now present a modified version of that description, showing that the P-algebras are actually generalized Post algebras as defined by Cat-Ho Nguyen [6]. This approach, which is an extension of Foster's method of analyzing Boolean powers, will then be contrasted with an
analysis based on the results of Chapter 3.
```

Recall that $B A^{*}$ is an equational theory of k-complete

Boolean algebras, A is a set with $l<|A|<k$, and P is the
equational structure of $\underline{2}^{A}=A[-]: \operatorname{Mod}\left(B A^{*}\right) \longrightarrow$ Set.

Let $\left(a_{i}: i \leqslant m\right)$ be a well-ordering of A, where m is an ordinal of the same cardinality as A. This ordering of A determines lattice operations \wedge and V on A, relative to which A is a
complete linearly-ordered lattice with a least element ${ }^{a_{0}}$ and a
greatest element a_{m}. This lattice admits a pseudocomplement
operation 7. where

$$
\neg a_{i}= \begin{cases}a_{m}, & \text { if } \\ i=0 \\ a_{0}, & \text { if } i \neq 0\end{cases}
$$

A relative pseudocomplement operation \rightarrow is defined by

$$
a_{i} \rightarrow a_{j}=\left\{\begin{array}{lll}
a_{m}, & \text { if } & i \leqslant j \\
a_{j}, & \text { if } & i>j
\end{array}\right.
$$

For each successor ordinal $i<m$, define a unary operation D_{i} by

$$
D_{i}\left(a_{j}\right)= \begin{cases}a_{m}^{\prime} & \text { if } \\ i \leqslant j \\ a_{0} & \text { if } \\ \text { i>j }\end{cases}
$$

By (4.12), the operations defined above correspond to uniquely
determined. P-operations which we shall denote by the same symbols as
above. Each element, a_{i} of A determines a constant ($(1,0)$-ary $)$ p-operation e_{i}; in particular, we write e_{0} as 0 and e_{m} as 1 . It is easy to see from (4.8) and (4.10) that the finitary part of P is actually isomorphic to the finitary part of T_{A} (see [9]). It follows that each P-algebra is, relative to the finitary operations defined above, a relatively pseudocomplemented bounded distributive
lattice, i.e., a Heyting algebra, in which there is a complete
linearly-ordered sublattice df constants, which we shall identify
with A, and some extra unary operations D_{i}. Note that the chain of constants. A is actualiy a copy of the initial P-algebra $F_{P}(0)$. By examining the corresponding operations on A, we see that the finitary operations cited above satisfy the same kinds of identities as their counterparts in a finitary equational theory P_{m}, of $\boldsymbol{m}^{-\quad} \mathrm{m}^{\prime}$-valued post algebras.

In order for the P-algebras to really look like Post algebras,

[^0]$$
x=\bigvee_{i<m}\left(D_{i+1}(x) \wedge e_{i+1}\right)
$$
is an identity of P (expressed in the extended canonical language).

If A is finite, the join is finitary and easily found. If A is
infinite, we would like to be able to "lift" the m-ary join from the
complete lattice A and use it as a P-operation, as we did with the finitary "Post algebra" operations. This can be done, since the mary ,
join in A satisfies the condition of (4.10). To see this, note that,
for any $i \leqslant m$, we have

$$
j\left\{b \in A^{m}: V_{b}>a_{i}\right\}=\bigcup_{j<m} \bigcup_{i<n}\left\{b \in A^{m}: b_{j}=a_{n}\right\}
$$

belonging to the image of r_{m}, and we can write

$$
\left\{b \in A^{m}: \bigvee_{b}=a_{i}\right\}=\bigcap_{j<i}\left\{b \in A^{m}: \bigvee_{b}>a_{j}\right\}-\left\{b \in A^{m}: \bigvee_{b}>a_{i}\right\}
$$

Thus, the mary join on A is induced by an mary P-operation
[. There is no guarantee that \sum is a true join operation in P, if

$\overline{\mathrm{m}}$ is infinite, but \sum hays all the same finitary properties as a true join operation: the result of restricting \sum to finitely many
we do have the identity

$$
x=\sum_{i<m}\left(D_{i+1}(x) \wedge e_{i+1}\right)
$$

since the unary composite P-operation on the right side of the equation induces the operation
 $\left(D_{i+1}(x) \wedge e_{i+1}\right)$ on A, and it is easy to see that the latter operation is the identity operation on A.

In a study of many-valued infinitary propositional logics [6],

Cat-Ho Nguyen defined and investigated a class of generalized Post
algebras. As we shall see, our P-algebras are generalized Post algebras ,
of the kind which Cat-Ho Nguyen studied, and in fact the P-algebras correspond to the Lindenbaum-Tarski algebras of the propositional logic which Cat-Ho Nguyen worked with. The following is a version of his characterization ([6], Theorem 1.6) of his generalized Post algebras; "
we have specialized it to the case where the constapts form a well-ordered chain, and we. are using the result as a definition, since the original definition given in [6] is much too broad for our purposes.

Let m be a nonzero ordinal. A generalized Post algebra of
type m is a universal algebra C such that:
i) C is a Heyting algebra relative to operations $0,1,7$,
\wedge, \vee, and \rightarrow;
ii) The constants in C form a chain ($e_{i}: i \leqslant m$) of order +
type $m+1$, where $e_{0}=0$ and $e_{m}=1$, and where each family of constants has a supremum in C which is a constant;
iii) There is a family $\left(D_{i+1}: i<m\right)$ of (1,1) -ary operations
"such that, for every elementi c of c, we have $c=\operatorname{Sup}_{i<m}\left\{D_{i+1}(c) \wedge e_{i+1}\right\}$;
iv) The following identities hold in C :

$$
\begin{aligned}
& D_{i}(x \wedge y)=D_{i}(x) \wedge D_{i}(y) \\
& D_{i}(x \vee y)=D_{i}(x) \vee D_{i}(y) \\
& D_{i}(x) \vee \neg D_{i}(x)=1
\end{aligned}
$$

$$
\begin{aligned}
& D_{i}\left(D_{j}(x)\right)=D_{j}(x) \\
& D_{i}\left(e_{j}^{\prime}\right)= \begin{cases}1, & \text { if } \quad \text { i } \\
0, & \text { if } \quad{ }_{i>j}\end{cases}
\end{aligned}
$$

4.13. Theorem. Let $B A^{*}$ be an equational theory of
k-complete Boolean algebras, and let P be the equational structure of the Boolean power functor $A[-]$, where A is a set with $1<|A|<k$. Then for every ordinal m with $|m+1|=|A|$ there is a presentation of P relative to which every P-algebra is a generalized Post algebra of. type m.

Proof. It is clear from the foregoing discussion that we: need only verify the parts of conditions ii) and iii) of (4.13.) pertaining to suprema. The pseudojoin Σ is constructed so that it induces a true join operation on the subalgebra A of constants. Then in A we have the identity $y \wedge \sum_{j<\text { II }} e_{i_{j}}=\sum_{j<\text { III }}\left(y \wedge e_{i_{j}}\right)$, which has only one free variable and thus also holds in P; this identity says
that $\sum_{j<m} e_{i j}$ is less than or equal to each upper bound of $\left\{e_{i j}: j<m\right\}$. It follows that condition ii) is satisfied in every
p-algebra, since $\sum_{j<m} e_{i_{j}}$ is an upper bound of $\left\{e_{i_{j}}: j<m\right\}$ and
belongs to the algebra of constants.

5 A similar trick works for condition iii). The following
finitary equations hold in A, and therefore are identities of P.

$$
\begin{aligned}
& \left(D_{j+1}(x) \wedge e_{j+1}\right) \wedge \sum_{i<m}\left(D_{i+1}(x) \wedge e_{i+1}\right)=D_{j+1}(x) \wedge e_{j+1} \\
& y \wedge \sum_{i<m}\left(D_{i+1}(x) \wedge e_{i+1}\right)=\sum_{i<m}\left(y \wedge D_{i+1}(x) \wedge e_{i+1}\right)
\end{aligned}
$$

The equations of the first kind collectively assert that
$\sum_{i<m}\left(D_{i+1}(x) \wedge e_{i+1}\right)$ is an upper bound for the set $\left\{D_{i+1}(x) \wedge e_{i+1}: i<m\right\}$, while the equation in the second line says that it is a least upper
bound. This concludes the proof of the theorem.
a true join operation on the Boolean elements of any P-algebra; the same can be shown by diagram-chasing in Mod(BA*); however, this
approach to describing P is rather inefficient for treating in any
detail the infinitary properties of the infinitary P-operations. In particular, it seems to be difficult to show that the P-algebras can be presented as generalized Post algebras with k -complete lattice operations.

Using the results of Chapter 3, we can find a familiar-looking presentation of the P-algebras as generalized Post algebras. Taking a cue from (3.8), we seek a spanning equational interpretation of P in BA^{\star}; such an interpretation is provided by the retraction $\mathrm{F}_{\mathrm{BA}^{\star}}(\mathrm{m}) \xrightarrow{r} 2^{\mathrm{A}}$ and coretraction $2^{A} \xrightarrow{s} F_{B A^{\star}}(m)$ given as follows.

$$
\text { For each } i<m \text {, the retraction } r \text { sends the } i-t h \text { free }
$$

generator x_{i} of $F_{B A^{*}}$ (m) to the set $A-\left\{a_{j}: j \leqslant i\right\}$ (viewed as an element of the BA*-algebra 2^{A}), while the coretraction s sends that
set to $\bigwedge_{j \leqslant i} x_{j}$ in $F_{B A^{*}}(\mathbb{I})$. Here, we are assuming that A is
well-ordered as $\left(a_{i}: i \leqslant m\right)$. The idempotent (m, m)-ary $B A$-operation
$\underline{r} \underline{\underline{s}}=u: \mathrm{U}_{B A^{*}}^{\mathrm{m}} \rightarrow \mathrm{U}_{B A^{*}}^{\mathrm{m}}$ determines a spanning equational \cdot
interpretation $p: P \longrightarrow B A *$ analogous to the "nonincreasing chains"
interpretation of the finitary theory of Post algebras in $B A$ which
was given as an example in Chapter 3. Because p is a spanning
interpretation, the P-operations are the BA*-operations which are u-operations, i.e., the ones which preserve nonincreasing m-indexed chains in every BA*-algebra.

The presentation of $B A *$ in terms of $0,1, \neg, \rightarrow$, and the $-$
n-ary join and meet operations, for all $n<k$, thus proviges presentation of $P^{\text {º }}$ in terms of those basic Boolean operations together
with u. In particular, the finitary and infinitary lattice operations
of P are given by m-sequences of copies of the corresponding
operations of $B A^{*}$; for example, the binary join operation of P is
interpreted in $B A^{*}$ as an esequence of biriary joins; in symbols,

$$
\left.\left(x_{i}: i<m\right) V_{\left(Y_{i}\right.}: i<\pi\right) \quad=\quad\left(x_{i} V_{i}: i<m\right)
$$

Thus, it is evident that the "nonincreasing chain" spanning

```
interpretation of \(P\) in \(B A^{*}\) yields a presentation of \(P\) as an
``` -
equational theory of generalized Post algebras which are \(k\)-complete
as lattices.
T. The interpretations of the other "Post operations" of \(P\) in *

BA* are as follows. For each \(i \leqslant m\), the constant \(e_{i}\) is the
chain \(\left(c_{j}: j<m\right)\) in which \(c_{j}=1\) for all \(j<i\), and \(c_{j}=0\) for
all \(j \geqslant i\). For each \(i<m\), the operation \(D_{i+1}\) is given by
\[
D_{i+1}\left(x_{j}: j<m\right)=\left(x_{i}, x_{i}, \ldots, x_{i}, \ldots .\right)
\]

The pseudocomplement is
\[
\neg\left(x_{j}: j<m\right)=\left(\neg x_{p}, \neg x_{0}, \cdot \cdot, \neg x_{0} \cdot \cdot \cdot\right)
\]

While the relative psentocouplement is
\[
\left.\left(x_{j}: j<m\right\rangle \rightarrow\left(y_{j}: j<m\right)=\int_{j \leqslant i}\left(x_{j} \rightarrow y_{j}\right): i<m\right)
\]

The possibility of representing generalized Post algebras as lattices
of nonincreasing chains of elements in Boolean algebras is discussed
in [6]; the representation mentioned there is essentially the one we
have obtained by means of the spanning equational interpretation
\(\mathrm{p}: \mathrm{P} \longrightarrow \mathrm{BA}{ }^{*}\), except that there is an error in [6] which we have corrected here.

For any equational theory \(T\), the action of a representable

Boolean power functor \(A[-]: \operatorname{Mod}(B A *) \longrightarrow \operatorname{Mod}(T)\) can be described
conveniently in terms of the spanning interpretation \(p: P \longrightarrow B A^{*}\)
defined above, since by (3.14) we have \(A[-] \cong\) (p.t)*, where
\(t: T \longrightarrow P\) is an ordinary mapping of theories. To compute \(A[B]\),
just construct the Post algebra of nonincreasing m-indexed chains in
\(B\) and forget some of the Post operations, as directed by \(t\).

To conclude this Chapter, we note that the infinitary

\section*{:}
counterpart to Hu 's result (1.3) would be to find all of the regular
- •
progenerators in \(\operatorname{Mod}\left(B A^{*}\right)\) which are generated by fefer than \(k\)
elements. This problem seems to be a rather difficult one, since for infinitary equational theories \(\mathrm{BA}^{*}\) of k -complete Boolean zebras \(^{\text {g }}\) it is possible for \(\operatorname{Mod}\left(B A^{*}\right)\) to contain regular progenerators,
generated by fewer than \(k\) elements, which are not powers of 2 ; for
example, some free algebras of rank \(n<k\) will usually fail to be
powers of 2. In many cases; the precise solution to the problem
seems to depend upon properties of the category Set corresponding to
the Generalized Continuum Hypothesis, the existence or nonexistence
of various kinds of exotic large cardinals, and so on.

CHAPTER 5. LOCALLY EQUATIONAL CATEGORIES

\section*{AND LOCAL工Y ALGEBRAIC FUNCTORS}

The notion of a locally equational class of finitary
universal algebras originated in the work of A. L. Foster [16] and was further developed in a series of investigations by T. K. Hu culminating in a 1973 paper [25] in which a characterization of locally equational classes is given in the style of Birkhoff's "HSP" characterization of equational classes (see [19] for an exposition of Birkhoff's result). In this Chapter we provide necessary and sufficient conditions for a category to be equivalent to some locally equational category (i.e., to a full subcategory of a
finitary equational category, where the objects of the subcategory
```

form a locally equational class): Our category-theoretic

```
characterization of locally equational categories is analogous to

Linton's result (2.1) for equational categories, but the proof of our
result is very different from the proof of (2.1) sketched in Linton's
paper [30]. The characterization of locally equational categories leads naturally to the notion of a locally algebraic functor, and we show that bounded Boolean powers can be regarded as locally algebraic \(\therefore\) :
functors. Finally, we sketch a new proof of Hu's result (1.2)
characterizing Mod(BA) among all locally equational categories.

The characterization theorem (5.3) and the claim that bounded Boolean
powers are "locally monadic" appear in Dukarm [11]. Definitions and \}
results cited from Hu [25] are adapted to our category-theoretic :
frame of reference.

Let \(I\) be a finitary equational theory, let \(A\) be an algebra
belonging to hod(T), and let \(X\) be a subset of \(A\). For any \(n\), we
3
say that \(a(1, n)\)-ary equation \(f(x)=g(x)\) in the language \(I_{T}\) is
an identity of \(X\) provided that \(X^{n}\) is a subset of \([f(x)=g(x)]{ }_{A, x}\)
```

For each n, the set of all (1, n)-ary equations which are
*
identities of }X\mathrm{ is called Id (X).

```
The locally equational closure of a class \(K\) of algebras
belonging to \(\operatorname{Mod}(T)\) is the full subcategory \(L(K)\) of \(\operatorname{Mod}(T)\) whose
gbjects are all the algebras \(A\) having the following property. For
each finite subset \(X\) of \(A\), there are a finite sequence
\(B_{1}\). . . , \(B_{n}\) of algebras in \(K\) and \(a\) finite subset \(Y\) of the
algebra \(\prod_{i} B_{i}\) such that \(\operatorname{Ia}_{\omega}(Y) \subseteq \operatorname{Ia}_{\omega}(X)\). A full subcategory \(K\) of
Mod (T) is said to be a locally equational category if \(K\) is the
locally equational closure of the class of all algebras which are
objects of K . These definitions are adapted from Hu [25].

As evidence that the concept of a locally equational category
is of algebraic interest, we cite a few examples. Hu points out in
[25] that, if \(T\) is finitary, the category Mod(T) itself is
locally equational, as are its Eull subcategories of locally finfte
logicians that, for every infinite \(k\), the category of all locally
finite-dimensional cylindric algebras of dimension \(k\) (see Henkin,

Monk, and Tarski [20], p. 231) is locally equational, but not
equational; these cylindric algebras are, the Lindenbaum-Tarski algebra's of first-order theories. \(\theta\)

5.1. Theorem (T. K. Bu [25]). Let \(T\) be a finifary, equational theory, and let \(M\) be a full subcategory of \(\operatorname{Mod}(T)\).

Then \(M^{\prime}\) is locally equational if and only if \(M\) is closed under the formation of directed unions, homomorphic images, subalgebras, and finite products.

In his paper [25], Hue points out that certain algebras,
called homogeneously generated algebras, play an mportant role in
locally equational categories which is similar in some respects to
the role of the free algebras in an equational category. Let \(T\) be そ
a finitary equational theory, and let \(X\) be a subset of an algebra ,
```

which belongs to $\operatorname{Mod}(T)$. Then $X$ is homogeneous if it has the
following property: for each finitary equation $f(x)=g(x)$ in $L_{T}$,
if $X^{n} \cap[f(x)=g(x)]_{A, x}$ is nonempty, then $f(x)=g(x)$ is an
identity of $X$. The algebra $A$ is said to be homogeneously
generated of nank $n$ if there is an $n$-element homogeneous subset of
A Fhich generates A.

```
5.2. Theorem (T. K. Hu [25]). Let \(X\) be a set of generators
for an algebra \(A\) in \(\operatorname{Hod}(T)\). Then the following are equivalent:
 i) X is homogeneous;
 ii). Every function \(X \rightarrow X\) has a unique extension to
an endomorphism of \(A\);
 iii) If \(Y\) is a subset of an algebra \(B\) which belongs to
Mod \((T)\), and \(I_{n}(X) f I_{n}(Y)\) for every \(n s f X \mid\), then every function
 *
\(\mathrm{Z} \rightarrow \mathrm{y}\) has a unique extension to A homorphism \(\mathrm{A} \longrightarrow \mathrm{B}\).

Let \(X\) be a subset of \(A\), and let \(m\) be any cardinal.
Then define \(H_{X}(m)\) to be the subalgebra of \(A^{X^{m}}\) which is generated by the projections \(X^{m} \longrightarrow A\). It is not difficult to verify that
\(H_{X}(m)\) is homogeneously generated by those projections and that, for any subset \(Y\) of an algebra \(B\) with \(I d_{\omega}(Y)=I d_{\omega}(X)\), we have
\(H_{X}(m) \cong H_{Y}(m)\). Furthermore, if \(X\) is a homogeneous generating set for \(A\), then \(A \cong H_{X}(m)\) where \(m\) is the cardinal of \(X\). The proof of the characterization theorem (5.3) will show in precisely what sense he homogeneously generated algebras in a iocally equational category are analogous to the free algebras in an equational category.
'A An inverse system in a category \(M\) is a diagram of the form
\(D: I^{\circ} \longrightarrow M\), winere \(I\) is a directed set; the inverse system \(\int D\) is
epimorphic if, for each arrow \(f\) of \(I\), the arrow \(D(f)\) is an
epimorphism. A lizit of an inverse system is called an inverse limit.

Let \(D: I^{\circ} \longrightarrow M\) be an inverse system. Application of the Yoneda

```

of representable functors in Set*. If D is an epimorphic inverse
system, then D}\mathrm{ is a monomorphic directed system, and we say that
the functor }U=Colim D is locally represented by the epimorphi
inverse system D. A Eunctor U:M\longrightarrow Set is said to be locally
representable if there is an epimorphic inverse system D: I' }\longrightarrow
such that U}\=\mathrm{ Colim D; by the Yoneda Lemma, it follows that U is
locally representable if and only if }U\mathrm{ is a directed union of
representable subfunctors.

```
 If \(U\) is represerted by an object \(A, i . e ., U \cong A\), then
the Yoneda Lemma says that the assignment \(a \longmapsto\) a defines a bijective
 免
correspondence between the elements of \(U(A)\) and the natural
transformations \(0 \longrightarrow 0\). Correspondingly, it is not hard to see
that there is a bijective correspondence between the "global elements"
\(1 \longrightarrow\) U.D (where \(1: I^{\circ} \longrightarrow\) Set has the constant value "one") and
the natural transformations \(0 \longrightarrow U\) when \(U: M \longrightarrow\) Set is locally
represented by \(D\). We say that \(D\) is coherent, and that \(U \cong\) Colim \(\underline{D}\) is
coherently locally represented by D, if the following condition is
satisfied.

Coherence condition. For every i \(\in I\) and every element
\(a\) of \(U\left(D_{i}\right)\), there is a global element \(t: 1 \longrightarrow U . D\) such that
\(t_{i}: 1 \longrightarrow U\left(D_{i}\right)\) is the constant function which picks out the
element \(a\).
5.3. Theorem. A category \(M\) is equivalent to a locally equational category if and only if \(M\) is finitely complete, with directed unions and coequalizers of kernel pairs, and there is a functor \(U: M \rightarrow\) Set such that:
i) For every finite \(n\), the functor \(U^{n}: M \longrightarrow\) Set is coherently locally representable;
ii) U preserves and reflects congruence relations and
regular epimorphisms;
iii) 0 preserves directed unions.

Proof. First we shall prove that \(M\) as specified above s.
with a functor \(U: M \longrightarrow\) Set satisfying i), ii), and iii), is
equivalent to a locally equational category, To do this we show, by
\(a\) series of lemmas, that the finitary comparison functor \(E: M \longrightarrow\) Mod (I) ;
where \(T\) is the finitary part of the equational structure of \(U\), is
exact, full, and faithful; then, using tHu's result (5.1), we show
that the closure of the image category \(E(M)\) in \(\operatorname{Mod}(T)\) under the
formation of isomorphic copies is a locally equational category.

According to condition i), we may assume that for each
finite \(n\) there is a coherent epimorphic inverse system
\(H(n): I(n)^{\circ} \longrightarrow M\) which locally represents \(U^{n}\). Let \(H(n)\) send
each \(i \longrightarrow j\) in \(I(n)\) to \(H_{j}(n) \xrightarrow{h_{i j}} H_{i}(n) \quad\) in M. For each
\(i \in I(n)\), the colimit injection \(H_{i}(n) \longleftrightarrow U^{n}\) is \(h_{i}\), where \(h_{i}\)
belongs to \(U^{n}\left(H_{i}(n)\right), i . e ., h_{i}=\left(h_{i, 0}, h_{i, 1}, \ldots, h_{i, n-1}\right)\) is
an \(n\)-tuple of elements of \(U\left(H_{i}(n)\right)\).
5.4. Lemma. The functor \(U\) is faithful and preserves and reflects finite limits, monomorphisms, and isomorphisms.

Proof. Each of the representable functors \(H_{i}(1)\) preserves
limits. Because directed unions in Set commute with finite limits, it follows that \(U\) preserves finite limits. Every functor preserves
isomorphisms, and every functor which preserves finite limits also \(\ldots\)
preserves monomorphisms, so \(U\) preserves isomorphisms and monomorphisms.

To show that \(U\) is faithful, let \(f\) and \(g\) be arrows
\(A \longrightarrow B\) in \(M\) with: \(U(f)=U(g)\), and let \(C \xrightarrow{S} A\) be an equalizer
of (\(f, g\)). Then \(s\) is a monomorphism, and \(U(s)\) is an equalizer of
\((U(f), U(g))\), since \(U\) preserves finite limits. But then \(U(s)\) is
an isomorphism; hence a regular epimorphism, since \(U(f)=U(g)\).

But \(U\) reflects regular epimorphisms, so \(s\) is a regular epimorphism.

Then \(s\) is an isomorphism, so \(f=g\); this proves that \(U\) is faithful.

Faithful functors reflect monomorphisms; since \(U\) reflects
regular epimorphisms, it reflects monomorphisms which are regular
epimorphisms, i.e., U reflects isomorphisms. Now we shall show that 0 reflects limits of finite
diagrams. Suppose that \(D: J \longrightarrow M\) is a finite diagram in \(M\), and
that \(U(B)\), with projections \(U\left(f_{j}\right): U(B) \longrightarrow U\left(D_{j}\right)\), is a limit af
U.D in Set. Also suppose that \(A\), with projections \(A_{j}: A \longrightarrow D_{j}\) '.
is a limit of \(D\) in \(M^{M}\) since \(U\) preserves limits of finite
diagrams, \(\left(\mathrm{U}(\mathrm{A})\right.\). with projections \(\mathrm{U}\left(\mathrm{d}_{\mathrm{j}}\right), \mathrm{j} \in \mathrm{J}\), is a. limit of U.D
in Set. Because \(U\) is faithful, and because the functions \(U\left(f_{j}\right)\)
constitute a cone in set from \(U(B)\) to U.D, it follows that the arrows \(f_{j}\) are a cone in \(M\) from \(B\) to \(D\). Let \(B \xrightarrow{f} A\) be the induced arrow; \(f\) is unique with the property that \(d_{j} . f=f_{j}\) for
all \(j \in J\). Since \(u\left(d_{j}\right) . U(f) \forall U\left(f_{j}\right)\) for all \(j \in J\), the arrow
\(\mathrm{U}(\mathrm{f}): \mathrm{U}(\mathrm{B}) \longrightarrow \mathrm{U}(\mathrm{A})\) is a limit arrow in Set; but, since both \(\mathrm{U}(\mathrm{B})\)
and \(\sigma(A)\), with their respective projections; are limits of \(O . D\), the
limit arrow, U(f) is an isomorphism. It follows
isomorphism in \(M\), which means that \(B\) is a limit of \(D\) in \(M\), so
we conclude that \(U\) reflects limits of finite diagrams. This concludes the proof of (5.4).

Recall that in any category, if (\(u, v\)) is a kernel pair of

coequalizer of (\(u, v\)). A regular factorization of an arrow. \(h\) (see

Grillet [4]) is a factorization of the form \(h=s . f\), where \(f\) is 5
a regular epimorphism and \(s\) is a monomorphism. The factorization \(h=s . f\) is unique (up to canonical isomorphism) if, for every
```

reg̣ular factorization }h=\mp@subsup{s}{}{2}.f*\mathrm{ , there is an isomorphism g such
that f'=g.f and s'.g= s. If h = s.f is a unique regular

```
factorization, of \(h\), then the subobject \(B \hookrightarrow S\) is an image of
\(h\), written \(i m(h)\), and all images of \(h\) are equivalent as subabjects
of \(c=\operatorname{codom}(h)\).

Proof. Given \(A \xrightarrow{f} B\) in \(M\), let \((u, v)\) be a kernel pair of \(f\), and let; \(r\) be a coequalizer of (\(u, v\)). Since \(f . u=f . v\), there is a unique arrow \(s\) such that \(f=s \times r\). In set we have \(U(f)=U(s) \cdot U(x)\), where \(U(x)\) is a coequalizer-of a kernel pair \((U(u), U(v))\) of \(U(f)\). This guarantees that \(U(f)=U(s), U(r)\) is a regular factorization of \(U(f)\) in Set. In particular, \(U(s)\) is a monomorphism, so \(s\) is too, so. \(f=s . r\) is a regular factorization
of \(\mathbf{f}\) in \(M\). Preservation and reflection of regular factorizations by U is obvious, since \(U\) preserves and reflects both regular epimorphisms and monomorphisms. Uniqueness of regular factorizations
in \(M\) is easily seen from the uniqueness of regular factorizations

3 in Set, together with the preservation and reflection of regular
factorizations and isomorphisms by U. This concludes the proof of (5.5).
\(\therefore\)
5.6. Lemma. Let \(u\) and \(\nabla\) be arrows \(A \longrightarrow B\) in \(M\), and
let \(B \xrightarrow{f} C\). Then \(f_{r a}=f . v\) is exact if and only if
\(\mathrm{O}(\mathrm{f}) \cdot \mathrm{U}(\mathrm{u})=\mathrm{U}(\mathrm{f}) \cdot \mathrm{D}(\mathrm{V})\) is exact.

is exact if and only if (\(u, v\)) is a kernel pair of \(f\) and \(f\) is a regular epimorphism, but \(U\) preserves and reflects kernel pairs
and regular epimorphisms.

The next result is a crucial one. It belongs to the genre of results known to category theorists as "fill-in" lemmas; and is adapted from Herrlich and Streaker [21], Proposition 32.7.
5.7. Lemma. Let \(r\) and \(g\) be arrows in \(M\), with \(r\) being a regular epimorphism. If there' is a function \(f\) such that f. \(U(r)^{\prime}=U(g)\), then there is'a unique arrow \(f^{\prime}\) in \(M\) such that \(U\left(f^{?}\right)=f\).

Proof. Let (\(u, v\)) be a kernel pair of \(r\); then \(r . u=r \cdot v\) is exact. Since \(U(g)=\) f. \(U(r)\), it. follows that we have \(U(g) \cdot U(u)=U(g) \cdot U(v)\), so by faithfulness of \(U\) we have \(g \cdot u=g \cdot v\).

But \(r\) is a coequalizer of (\(u, v\)), so there is a unique arrow f'
such that \(f^{\prime} \cdot r=g\). Then \(U\left(f^{\prime}\right) \cdot U(r)=U(g)=f . U(r)\), so \(U\left(f^{*}\right)=f\), ヘ
since \(U(r)\) is an epimorphism. This completes the proof of (5.7).
5.8. Lemma: The functor \(U\) is finitely tractable, i.e.,
the full subcategory in Set \(^{M}\) of finite powers of \(U\) is locally small. 3

Proof. Let \(m\) and \(n\) be finite; there is a bijective
correspondence between arfors \(U^{n} \longrightarrow U^{m}\) and cones from \(H(n)\) to \(U^{m}\), since \(U^{n}=\) Colima \(H(n)\). Since, by the Yoneda Lemma, each arrow
\(H_{i}(n) \longrightarrow U^{m}\) corresponds to a uniquely determined element of \(U^{m}\left(H_{i}(n)\right)\), it follows that each arrow \(U^{n} \longrightarrow U^{m}\) can be matched with an element of the set \(\prod_{i}^{m}\left(G_{i}(n)\right)\).

On the basis of (5.8) we know that the functor \(U\) has a
finitary comparison functor \(E: M \longrightarrow\) Mod \((T)\), where \(T\) is a finitary
equational theory whose firitary operations are the arrows in a
skeleton of the full subcategory in set of all finite powers of 0.

This comparison functor is the one described in Lawvere's thesis [29],
```

which dealt excessively with finitary theories. In keeping with the viewpoint of our Chapter 3 , we can say that $U$ is a T-algebra in Set ${ }^{M}$, and that for each object $B$ in $M$ the $T$-algebra $E(B)$ is the one whose underlying set is $U(B)$ and which inherits its T-operations from $U$ in the obvious way. Lawvere's structure-semantics adjointness works in the setting of finitary theories, so (as in the infinitary case) $E: Y \longrightarrow \operatorname{Mod}(T)$ has a universal property similar to that ascribed to infinitary comparison functor in Chapter 2. Using the preceding lemons, together with $U=U_{T} \cdot \mathrm{E}$ and the fact that $\mathrm{U}_{\mathrm{T}}$ has all the properties claimed for $U$, it is easy to prove the following result.

```

\subsection*{5.9. Lemma. The finitary comparison functor \(E\) for \(u\)}
is faithful and preserves and reflects finite limits, directed unions,
moncmorphisms, regular epizorphisms, isomorphisms, congruence
relations, regular factorizations, and exact diagrams.

\author{
5.10. Lemma. The inverse limit of \(E \cdot H(n)\) is \(F_{T}(n)\).
} Proof. First, note that the inverse limit Nim E.H(n) in \(\bmod (T)\) is constructed on the underlying-set level as the set of all "compatible families" of elements of the algebras \(E\left(H_{i}(n)\right), i \in I(n)\), with the limit algebra Lime E.H(n) being a subalgebra of the product

TE(Hin \((n)\). The compatible families of elements are identifiable
with the global elements \(1 \rightarrow U . H(n)\), as noted in Mac Lane [32],
E. 106.

To prove the lemma, we define a function \(P\) which maps

an isomorphism in Mod (T). Note the following chain of bijective
correspondences.

Elements \(f\left(x_{0}, \ldots, x_{n-1}\right)\) of \(F_{r}(n)\)
\(\leftrightarrow\) T-operations \(U^{n} f 0\)
\(\leftrightarrow\) cones \(\left(E . h_{i}: i \in I(n)\right)\) from \(\frac{H(n)}{}\) to \(U\)

Define \(p\left(f\left(x_{0}, \cdots, x_{n-1}\right)\right)\) to be \(f\left(\left(h_{i, j}: i \in I(n)\right): j<n\right)\).

Note that the composite of \(F\) with the i-th projection 6

Lime E.H (n) \(\longrightarrow E\left(A_{i}(n)\right)\) is a homomorphism \(p_{i}\) which takes the \(j\)-th
free generator \(x_{j}=0 \grave{n}_{i, j}\), for all \(j<n\). Relative to the family \(p_{i}: i \in I(n)\)) of projections, \(F_{T}(n)\) is an inverse limit of E.H(n).
5.11. Lemma, For each \(i<-\) and each if In), the algebra

Proof. Ne shall show that the projection \(P_{i}\) is surjective.

Let a de any element of \(E_{T}\left(E\left(E_{i}(n)\right)=U\left(H_{i}(n)\right)\right.\), and let
\(a^{\prime}=\left(a, a, \ldots,{ }^{(} a\right)\) belong to \(\tilde{U}^{\prime \prime}\left(A_{i}(n)\right)\). By the coherence

Condition, there is a giodal element \(t: 1 \rightarrow U^{n} \cdot H(n)\) such that
\(t_{i}: I \longrightarrow J^{n}\left(E_{i}(n)\right) p \pm 0 k s\) out \(a^{\prime}\). But \(t\) corresponds to a
compatible family of \(n\)-tuples of elements of the algebras \(E\left(H_{j}(n)\right)\),
\(j \in I(n)\), which in turn corresponds to same n-tuple of elements of
\(F_{T}(n)\) which is sent to \(a^{\prime}\) by \(P_{i}\). This suffices to show that \(P_{i}\)
is suxjective.
5.12. Leman. For every homomorphism \(E\left(R_{i}(n)\right) \xrightarrow{f} E(A)\),
there is an Marrow \({\underset{y}{i}}_{H_{i}}(n) \xrightarrow{f^{\prime}} A\) such that \(E\left(f^{\prime}\right)={ }^{*} f\).

Proof. Let \(=\) be as show above, and let \(a \in U^{n}(A)\) be the n-tuple of elements onto which \(f\) sends the generating \(n\)-tuple \(h_{i} \in U^{n}\left(H_{i}(n)\right) ;\) ie., \(£\left(h_{i, j}\right)=a_{j}\), for all \(j<n\). . since \(v^{n}\) is a directed union of the representable functor \(H_{j}(n), j \in I(n)\), it follows that there is \(a \quad j \geqslant i\) in \(I(n)\) and an \(M\)-arrow \(H_{j}(n) \xrightarrow{g} A\) such that \(g\) corresponds to \(a\) in \(H_{i}(n)(A) \subseteq U^{n}(A)\). Then \(U(g)\) sends \(h_{j}\) onto a. since both \(f \cdot p_{i}\) and \(E(g) \cdot p_{j}\) are homomorphisms \(\bar{F}_{T}(n) \longrightarrow E(A)\) which send the file generators \(\left(x_{0}, \ldots, x_{n-1}\right)\) onto \(\left(a_{0}, \ldots, a_{n-i}\right)\), we have \(e(g) \cdot p_{j}=f \cdot p_{i}=f . E\left(h_{i j}\right) \cdot p_{j}\); but'

is a regular epimorphism, \(E\left(h_{i j}\right)\) is a, regular epimorphism. Thus,
by the fill-in lemma (5.7) there is an Marrow \(f\) ' such that
\(\left.\hat{U}_{\mathrm{I}}(\mathrm{f})=\mathrm{U}=\mathrm{f}^{\prime}\right)\) from which it follows that \(\mathrm{f}=\mathrm{E}\left(\mathrm{f}^{\prime}\right)\). This completes
the proof of (5.12).
5.13. Lemma. For every M-object \(A\) and every finitelygenerated subalgebra \(B\) of \(E(A)\), there is an M-object \(B^{\prime}\) such that \(E\left(B^{\prime}\right) \cong B\).

Proof. Suppose that \(B \subseteq E(A)\) is generated by the set
\(\left\{b_{0}, \cdots, b_{n-1}\right\}\). Since \(U^{n}(A)\) is *a directed union of the sets
\(H_{i}(n)(A), \quad i \in I(n)\), there are \(j \in I(n)\) and an \(M\)-arrow \(H_{j}(n) \xrightarrow{g} A\)
such that \(U(g)\) sends \(h_{i}\) onto the sequence \(b=\left(b_{0}, \ldots, b_{n-1}\right)\).
Since \(\left\{b_{0}, \ldots, b_{n-1}\right\}\) generates \(B\), evidently \(B\) is an image
of \(E(g)\), and by (5.5) it follows that \(B \cong E\left(B^{\prime}\right)\), where \(B^{\prime}\) is an
image in \(M\) of \(g\). This proves the lemma.
5.14. Lemma. For any M-objects \(A\) and \(B\), if \(E(A)\) is finitely generated, then for each homomorphism \(E(A) \xrightarrow{f} E(B)\) there is an \(M\)-arrow \(A \xrightarrow{f^{\prime}} B\) such that \(E\left(f^{\prime}\right)=f\).

Proof. Suppose that \(E(A)\) is generated by a finite number \(n\) of its elements, and that \(E(A) \xrightarrow{f} E(B)\) is a homomorphism. It is clear from the proof of (5.13) that there is a \(j \in I(n)\) and a regular epimorphism \(H_{j}(n) \xrightarrow{g} A\). By (5.72), there is an M-arrow \(H_{j}(n) \xrightarrow{g^{\prime}} B\) such that \(E\left(g^{\prime}\right)=f . E(g)\). Thus, we have \(U\left(g^{\prime}\right)=U_{T}(f) \cdot U(g)\), where \(g\) is a regular epimorphism. By the fill-in lemma (5.7), there is an Marrow \(A \xrightarrow{f^{\prime}} B\) such that \(U\left(\mathrm{f}^{\prime}\right)=\mathrm{U}_{\mathrm{T}}(\mathrm{f})\), from which it follows that \(E\left(\mathrm{f}^{\prime}\right)=\mathrm{f}\). This completes the proof.
5.15. Lemma. The comparison functor \(E\) is full.

Proof. Let \(A\) and \(B\) be arbitrary objects of \(M\), and let
\(E(A) \xrightarrow{f} E(B)\) be a homomorphism. Since \(T\) is finitary, every

T-algebra is a directed union of its finitely-generated subalgebras;
by (5.13) it follows that \(E(A)\) is a directed union of finitely-
generated algebras of the form \(E\left(A_{j}\right) \longleftrightarrow E(A)\), indexed by the elements \(j\) of a directed set \(J\), where \(A \underset{ }{g_{j}}\) A is a subobject of \(A\) in \(M\) which is an image of an \(\operatorname{arrow}_{i}(n) \longrightarrow A\), for some finite \(n\) and some \(i \in I(n) B y(5,9), A\) is a directed union in \(M\) of the subobjects \(A{ }_{j} \xrightarrow{\text { P. }} A\) \(/ f_{j}=f\left(g_{j}\right)\) is of the form \(f_{j}=E\left(f_{j}^{\prime}\right)\), for some Marrow \(A_{j} \xrightarrow{\mathrm{f}_{\mathrm{j}}^{\prime}} \mathrm{B} . \quad\) These arrows in M constitute a cone from the directed system \(\left(A_{j}: j \in J\right)\) to \(B ;\) the cone determines a unique arrow \(A \xrightarrow{f^{\prime}} B \cdot\) such that \(f^{\prime} \cdot g_{j}=f_{j}^{\prime}\) for each \(j \in J\). . Then we have \(\left.E\left(f^{\prime}\right) \cdot E\left(g_{j}\right)=E\left(f_{j}^{\prime}\right)^{\prime}=f\right\} \cdot E\left(g_{j}\right)\), for each \(j \in j_{j}\) which proves that \(E\left(f^{\prime}\right)=\) f. Thus, \(E\) is full.

Lemmas \((5.9)\) and (5.15) jointly imply that \(E: M \rightarrow\) Mod (T)
determines a category equivalence between \(M\) and a full subcategory \(E(M)\) of ' \(\operatorname{Mod}(T)\). Let \(M^{\prime}\) be the closure of \(E(M)\) in Mod (T) under
the formation of isomorphic copies. Clearly, \(M\) is equivalent to \(M^{\prime}\).
- 5.16. Lemma. The category \(\mathrm{M}^{\prime}\) is locally equational.

Proof. We shall show that \(M^{\prime}\) is closed under the formation of directed unions, homomorphic images, subalgebras, and finite products,
and then apply Hu 's characterization theorem (5.1).
Closure under the formation of directed unions and finite
products is obvious from the preceding lemmas. Let \(B\) be a subalgebra of \(E(A)\). Then \(B\) is a directed union of its finitely-generated subalgebras, which are also finitely-generated subalgebras of \(E(A)\)
and, thus, by (5.13), belong to \(\mathrm{M}^{\prime}\). Closure of \(\mathrm{M}^{\prime}\) under directed -
unions enables us to conclude that \(B\) belongs to \(M\); this is sufficient to show that \(M^{\prime}\) is closed under the formation of subalgebras. , Now let \(E(A) \xrightarrow{f} B\) be a surjective homomorphism. The
kernel congruence ker(f) is an object of \(M^{\prime}\), since it is a subalgebra

So far, we have proved that the conditions given in (5.3) are
sufficient to guarantee that \(M\) is equivalent, via the finitary
comparison functor \(E\) of \(U\), to a locally equational category. It
remains to be shown that the conditions are also necessary.

If \(M\) is a locally equationdy full subcategory of a finitary
equational category \(\bmod (T)\), then the functor \(U: M \longrightarrow\) Set required by (5.3) is the restriction to \(M\) of \(U_{T}\). For each finite \(n\), a set of representatives of all the isomorphism types of the algebras in \(M\) which are homogeneously generated by an n-element set forms an epimorphic inverse system in \(M\) in a natural way, and it is easy to check that \(F_{T^{\prime}}(n)\) is an inverse limlt of the system, where \(T^{\prime \prime}\) is the finitary equational structure of \(U\). (In other words, Mod(T')
is the closure of \(M\) in \(\operatorname{Mod}(T)\) under \(H, S\), and \(P\)). The fact* that the limit projections from \(F_{T^{\prime}}(n)\) to the homogeneously
generated algebras of rank \(n\) are surjective guarantees that the
inverse system coherently locally represents \(u^{n}\). The regular
epimorphisms, congruence relations, and directed unions in \(M\) are
the same as in \(\operatorname{Hod}(T)\), and 0 preserves and reflects them, since
\(U_{T}\) does. This completes the proof of (5.3).

There is an obvious way of generalizing the notions of locally equational categories and locally representable functors by allowing an infinite regular cardinal \(k\) to play the role of \(\omega\) in the appropriate definitions; the proof above could be adapted easily
to proride an infinitary counterpart to (5.3).

According to (3.14), a functor \(G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}\left(T{ }^{\prime}\right)\) is
algebraic if and only if its set-valued component \(U_{T}\), \(G\) satisfies
conditions i) and ii) of Linton's characterization theorem (2.1)
for equational categories. Let \(T\) and \(T\) be finitary theories.

We shaIl say that \(G: \operatorname{Mod}(T) \longrightarrow \operatorname{Mod}(T ')\) is locally algebraic if its
set-valued component \(U_{T}, G\) satisfies conditions i), ii), and iii)
of the characterization theorem (5.3) for locally equational categories.

After some remarks concerning locally algebraic functors in
general, we identify a class of locally algebraic functors, the
elementary locally algebraic functors, which offer some promise of
being analyzable syntactically. We prove a theorem giving sufficient
conditions for \(a\) functor to be an elementary locally algebraic -
functor, and then show that bounded Boolean powers can be regarded as elementary locally algebraic functors. The chapter concludes with a sketch of a proof of \(\mathrm{Hu}^{\prime}\) s theorem (1.2) employing our results on bounded Boolean powers.

A syntactical analysis of locally representable functors by the methods of Chapter 3 may be impossible, since it is not clear that a locally representable functor \(U: \operatorname{Mod}(T) \longrightarrow\) Set is necessarily a subfunctor of a power of \(U_{T} \cdot\) Although \(U\) itself is a directed union of representable functors \(D_{i}\), \(i \in I\), which are equationally definable súbfunctors of some sufficiently large power \(U_{T}{ }^{m}\) Lof \(U_{T}{ }^{\prime}\) the natural monomorphisms \(\mathrm{D}_{i} \longrightarrow U_{T} \mathrm{~m}\) might not constitute a cone from \(D: I \longrightarrow \operatorname{Set}^{\operatorname{Mod}(T)}\) to \(U_{T}{ }^{m}\) Let \(A=\) Lim \(D\); if the projections \(A \Longrightarrow D_{i}\) are surjective, then-for some-cardinal \(m\) we can obtain a
cone \(P\) of surjective homomorphisms from \(F_{T}(m)\) to \(D\) by composing
a surjection \(F_{T}(\mathbb{m}) \longrightarrow A\), with the cone of projections \(A \rightarrow D\). In
this case (and only in this case) the monomorphisms \(D_{i} \stackrel{\mathrm{P}_{i}}{\longrightarrow} \mathrm{U}_{\mathrm{T}}\) are a cone from \(\mathrm{D}_{\mathrm{T}} \mathrm{U}^{\mathrm{m}}\), so that U is embedded in \(\mathrm{U}_{\mathrm{T}}^{\mathrm{m}}\) as a union of equationally definable subfunctors of \(U_{T}{ }^{m}\). For each ie \(I\), we then have \(D_{i} \cong\left[E_{i}\right] \longrightarrow U_{T}^{m}\) where \(E_{i}\) is an \(\left(n_{i}, m\right)\)-ary equation in the language \(I_{T}\) or, equivalently, a conjunction of \((1, m)\)-ary equations. since \(D_{i} \leqslant D_{k}\) whenever \(i \leqslant k\) in \(I\), it follows that \(T \neq E_{i} \Rightarrow E_{k}\); thus, the formulas \(E_{i}\), \(i \in I\), form a directed system with respect to implication. Since \(U\) is the union of the functors \(\left[E_{i}\right]\), \(i \in I\), we have \(U=\left[W_{i \in I} E_{i}\right]\) A locally representable functor \(U: \operatorname{Mod}(T) \longrightarrow\) Set which is embeddable in a power of \(U_{T}\) as shown above will be called an elementary locally representable functor.

Finite products commute with directed unions in set., and
limits and colimits are computed "pointwise" in set \({ }^{\text {Mod (T), so it }}\)
follows that finite products commte with directed unions in Set \({ }^{\text {Nod }(T) \text {; }}\)
in particular, \(U^{n}\) is a directed union of the functors \({\underset{i}{i}}^{n}, i \in I\),
for all finite \(n\). But \(\underline{D}_{i}^{n}\) is represented by the algebra \(n \theta D_{i}\).

By taking the \(n\)-th copower in Mod (T) of each of the algebras and connecting homomorphisms in the inverse system \(D_{r}\) we obtain an inverse system \(n \theta D\) winch locally represents \(U^{n}\), and the \(n\)-th copower of the cone \(F_{T}(m) \xrightarrow{p} D\) is a cone \(F_{T}(m \times n) \xrightarrow{n \theta p} n \otimes D\) of surjective homomorphisms which corresponds to the cone of product
monomorphisms \(D_{i}^{n} \longrightarrow U_{T}^{m \times n}\). with \(U\) and its finite powers thus
firmly planted in \(U_{T}^{m}\) and its powers, we would like to be able to
obtain the finitary equational structure of \(U\) by restricting
T-operations, as we did with the representable subfunctors of \(U_{T}^{m}\)
in (3.3) and (3.4).
Let \(U^{n} \xrightarrow{f} \mathrm{U}\) be given; the composites

constitute a cone from ned to \(u^{n}\) corresponding to a cone
\(G: F_{T}(m) \longrightarrow n O D\) in \(\operatorname{Mod}(T)\). If \(g\) could be "lifted" through
\(n \theta p\) to get a homomorphism \(h\) as show in the diagram,

then \(U_{T}^{m \times n} \xrightarrow{\underline{n}} \mathrm{U}_{\mathrm{T}}^{\mathrm{m}}\) would be a T-operation whose restriction to \(U^{n} \longrightarrow U_{T} m \times n\) would induce \(f\). Indeed, for each ic \(I\) this program gah be carried out as show below, since \(F_{T}(m)\) is regularprojective and \(n \theta_{P_{i}}\) is a regular epimorphism.

There seems to be no guarantee, however, that there exists a ingle

\subsection*{5.17. Theorem. Let \(T\) be a finitary equational theory,} [and let \(D: I^{\circ} \longrightarrow \operatorname{Mod}(T)\) be an inverse system of finitely generated regular progenerators such that there is a cone of surjective homomorphisms \(A \xrightarrow{F} D_{\text {, for some } T \text {-algebra } A \text {. Then }}\)

is an elementary locally algebraic functor.

Proof. It is obvious from the preceding discussion that \(U\) is elementary, and that the cone of surjections \(A \longrightarrow D\) presents \(\underline{D}\) as a directed system of equationally definable subfunctors of A. with \(U \leftrightarrow A\) as the union of that system. For each finite \(n\), \(U^{n}\) is locally represented by n*D.

Since \(D_{i}\) is finitely generated, \(D_{i}\) preserves directed unions, for all ieI, so \(U\) preserves directed unions. Each of the functors \(D_{i}\), ieI, preserves limits, so it follows that \(U\) preserves
finite linits. In particular, 0 preserves kemel pairs; so \(U\)
preserves congruence relations. It resains to be show that \(U\)

Whenger it is convenient, we shall treat the colimit
injections \(D_{i} \longleftrightarrow U\) as though, for each \(T\)-algebra \(B\), the
\(B\)-component \(D_{i}(B) \longrightarrow U(B)\) were an inclusion map.

Suppose that \(B \xrightarrow{h} C\) is a regular epimorphism. If ucu(C),
we may identify it with an element of \(D_{i}(C) \subseteq U(C)\), for some i \(\in I\).

But \(D_{i}\) is regular-projective, so \(D_{i}\) preserves regular epimorphisms.

Then \(D_{i}(h): D_{i}(B) \rightarrow D_{i}(C)\) is surjective, so there is some
\(\nabla \in D_{i}(B) \subseteq U(B)\) such that \(h . v=u\). This suffices to show that
\(U(n)\) is surjective, so \(U\) preserves regular epimorphisms.

To prove that \(U\) reflects regular epimorphisms, suppose that
\(B \xrightarrow{h} C\) is given with \(U(h)\) surjective. Then every element of
\(D_{i}(\bar{C}) \leq U(C)\) is a \(\bar{U}(\bar{h})-i m a g e\) of some element of \(U(B), i . e\). for
each \(D_{i} \xrightarrow{u} C\) there is \(j \geqslant i\) in \(I\) and an arrow \(D_{j} \xrightarrow{V} B\) such
that \(h . v=u \cdot d_{i j}\), where \(D_{j} \xrightarrow{d_{i j}} D_{i}\) is the connecting arrow. (This amounts to viewing \(u\) as an element of a bigger piece \(D_{j}\) (C) of \(U(C)\), where \(j\) is chosen so that the pre-image \(v\) of \(u\) lives in \(\left.D_{j}(B) \leqq U(B)\right)\). Since \(d_{i j} \cdot p_{j}=p_{i}\), where \(A \xrightarrow{p_{i}} D_{i}\) is surjective, it follows that \(d_{i j}\) is surjective. But \(D_{i}\) is regular-projective, so there is \(D_{i} \xrightarrow{s} D_{j}\) with \(d_{i j} . s=i d_{D_{i}} \cdot\) But . then \(u=u . d_{i j} \cdot s=h . v . s\), which shows that the function \(D_{i}(h)\) is surjective; since \(D_{i}\) is a regular generator, it follows that \(h\) is 1
surjective.

Now we must show that \(U\) (reflects congruence relations.

Suppose that \(C \longrightarrow B \times B\) is given such that, in Set
\(U(C) \longrightarrow U(B \times B)=U(B) \times U(B)\) is isomorphic to a congruence relation
(i.e:, an equivalence relation in the ordinary sense). For any iEI,
let \((u, v): D_{i} \longrightarrow B \times B\) be the homomorphism whose composites with
the projections \(B \times B \rightarrow B\) are respectively \(u, v: D_{i} \rightarrow B\). The

Elements of \(D_{i}(C)\) are in bijective correspondence with the arrows
\((u, v): D_{i} \longrightarrow B \times B\) which factor through \({ }^{\prime} C \longrightarrow B\). Let \(i \in I\) be fixed; we shall show that \(\underline{D}_{\underline{i}}(C) \longrightarrow \underline{D}_{i}(B \times B)=\underline{D}_{D_{i}}(B) \times \underline{D}_{i}(B)\) is an equivalence relation.

Let \(D_{i} \xrightarrow{u} B\) be given, Since \(U(C)\) is reflexive, there is \(j \geqslant i\) in \(I\) such that (\(u^{\prime}\), factors through \(C\), where \(u^{\prime}=u \cdot d_{i j}\). As we have pointed out, \(V_{i j}\) has \({ }^{\text {a coretraction }} s\), so 20 \(\left(u^{\prime}, u^{\prime}\right) . s=\left(u^{\prime} . s, u^{\prime} . s\right)=(u, u)\) factors through \(C\), so \(D_{i}(C)\) is reflexive.

Now suppose that \((u, v): D_{i} \longrightarrow B \times B\) is given which factors through C. Since \(U(C)\) is symmetric, for some \(j \geqslant i\) in \(I\) we have \(\left(v^{\prime}, u^{\prime}\right): D_{j} \longrightarrow B \times B\) which factors through \(C\), where \(v^{\prime}=v . d_{i j}\)
and \(u^{\prime}=u . d_{i j}\). Then (\(\left.v^{\prime}, u^{\prime}\right) . s=\left(v^{\prime} . s, u^{\prime} . s\right)=(v, u)\) factors
through \(C\), so \(D_{i}(C)\) is symmetric.

The same trick shows that \(\underline{D}_{i}(C)\) is transitive, so it is an
equivalence relation, ie., a congruence relation in Set. Since \(D_{i}\)
is a regular progenerator, \(\mathrm{D}_{i}\) reflects congruence relations, by
(3.1), so \(C\) is a congruence relation in Mod(T). This proves, that , \(\lambda\) reflects congruence relations.

Finally, we shall show that \(n \otimes D\) is coherent, for all
finite \({ }^{--}\). Note that \(n \otimes_{D}\) is coherent-if and only-if, for each \(i \epsilon I\), the projection \(\left(\operatorname{Lim} U^{n} . n \otimes D\right) \xrightarrow{d_{i}} U^{n}\left(n \otimes D_{i}\right)\) is surjective. By hypothesis we have a cone \(n \otimes_{A} \xrightarrow{n \otimes_{p}} n \otimes_{D}\) of surjections; since \(U\) preserves surjections, \(U^{n}\) does too, and \(U^{n}(n \otimes p)\) is a cone of surjections from \(U^{n}(A)\) to \(U^{n} \cdot n \otimes D\). Let
\(U^{n}(A) \xrightarrow{f}\) Lim \(U^{n} \cdot n \otimes D\) be the induced arrow. For each \(i \in I\), we have that \(d_{i} . f=U^{n}\left(n \otimes_{p_{i}}\right)\) is surjective, so \(d_{i}\) is surjective. This completes the proof that \(U\) is an elementary locally algebraic functor.

Let \(A\) be any set having at least two elements. The set-valued bounded'Boolean power functor \(A[-]: \operatorname{Mod}(B A) \rightarrow\) Set is \({ }^{\text {m }}\),
defined as follows.
i) For each Boolean algebra \(B, A[B]\) is the set of all

\title{
*A-indexed partitions of unity \(u: A \longrightarrow B\) such that the set \(\{a \in A: u(a) \neq 0\}\) is finite. \\ ii) For each Boolean homomorphism \(B \xrightarrow{h} C\); let \\ \(A[h]: A[B] \longrightarrow A[C]\) be the function which sends each \(u \in A[B]\) to h.u \(\in A[C]\).
}
\%

An algebra-valued bornted Boolean power functor is any
functor of the form \(G: \operatorname{Mod}(B A) \longrightarrow \operatorname{Mod}(T)\), where \(U_{T} \div G \cong A[-]\), for some set A .

When \(A\) is finite, the bounded Boolean power functor \(A[-]\) coincides with the finitary representable Boolean power functor defined in Chapter 4. The bounded Boolean power construction was introduced by A. L. Foster [16] and has been studied extensively in conjunction with Boolean' powers. Major references on bounded Boolean powers are . Gratzer [19], Burris [5], and Banaschewski and Nelson [3]. Bounded

Boolean powers admit convenient representations as "bounded normal
subdirect powers" (see [181) and as algebras of continuous functions
```

(see [3]). Our treatment of bounded Boolean powers as elementary
locally algebraic functors seems to be new.

```
5.18. Theorem. Every bounded Boolean power functor is an:
elementary locally algebraic functor; furthermore, every locally
algebraic functor of the form \(G: \operatorname{Mod}(B A) \longrightarrow \operatorname{Mod}(T)\) is a bounded

Boolean power functor.

Proof. Since a functor is or is not an elementary locally
algebraic functor by virtue of the properties of its set-valued
component, it is sufficient to consider only set-valued functors.

First, we shall prove that \(A[-]: \operatorname{Mod}(B A) \longrightarrow\) Set is an elementary
locally algebraic functor. Let \(I\) be the directed system of all
finite subsets of the set \(A\), with inclusion maps as connecting
arrows. Assigning to each \(X \xrightarrow{f} \mathbf{Y}\) the corresponding Boolean
howonorphism \(2^{\mathrm{I}} \xrightarrow{\mathrm{f}^{*}} 2^{\mathrm{X}}\), we obtain an inverse system
\(P: I^{\circ} \longrightarrow \operatorname{Mod}(B A)\) such that:

1
i) All connecting homomorphisms \(2^{Y} \longrightarrow 2^{X}\) are surjective;
ii) The surjections \(2^{A} \xrightarrow{P_{X}} 2^{X}\), corresponding to \(X \longleftrightarrow A\)
for all \(X \in I\), constitute a cone \(p\) from \(2^{A}\) to \(P\).

For each finite \(n\), we have an inverse system
\(n \otimes P: I^{\circ} \longrightarrow \operatorname{Mod}(B A)\) of quotients of \(n \otimes 2^{A} ; n \otimes P\) sends each \(X \longrightarrow Y\) of \(I\) to \(2^{Y^{n}} \rightarrow 2^{X^{n}}\) in \(\operatorname{Mod}(B A)\). The conditions i) and
ii) above are satisfied, mutatis mutandis, by \(n \otimes P\).

We claim that \(F\) locally represents \(A \mathbb{I}-1\). For each \(X \in \mathbf{I}\), a natural transformation \(2^{X} \xrightarrow{g_{X}} A[-]\) is defined as follows. For each homomorphism \(2^{X} \xrightarrow{h} B\), let \(g_{X, B}(h)\) be the partition \(u: A \rightarrow B\) defined by \(u(a)=h \cdot P_{X}(f a)\) for all afA. Obviously, for each Boolean algebra \(B\), the arrow \(g_{X, B}\) is an injective function wich embeds \(\underline{2}^{X}(B)\) in \(A[B]\). In fact, \(g=\left(g_{x}: X \in I\right)\) is a cone of
monomorphisms frow \(\underline{p}\) to \(A[-]\). To show that \(A[-1\) is a directed
mion of the functors \(2^{X}\), \(X I\), let \(B\) be any Boolean algebra, and let \(u\) be any elenent of \(A[B]\). Let \(x=\{a \in A: u(a) \neq 0\}\), and

Let \(2^{X} h\) be the Boolean homomorphism which sends \(\{a\}\) to \(u(a)\), for each \(a \in x\). Then \(g_{X, B}(h)=u\). This shows that \(A[B]=\underset{X \in I}{\operatorname{Colim}} 2^{x}(B)\) for each \(B\), so \(A[-]=\underset{X \in I}{\operatorname{colim}} 2^{X}=\operatorname{Colim} \underline{P}\). It is immediate that, for each finite \(n, A[-]^{n}\) is locally represented by \(n \otimes P\). By
(5.17) is an elementary locally algebraic functor.
-
Now suppose that \(\mathrm{U}: \operatorname{Mod}(B A) \longrightarrow\) Set is locally representable:

Let \(D: I^{\circ} \longrightarrow \operatorname{Hod}(B A)\) be an epiporphic inverse system which locally
represents U. Epimorphisms in Mod(BA) are surjective, so all the connective arrows \(D_{j} \xrightarrow{a_{i j}} D_{i}\) are surjective. Suppose that \(D_{i}\) is not finitely generated; then neither is \(D_{j}\), for any \(j \geqslant i\) in \(I\), so we may as well suppose that none of the algebras in the inverse
system \(D\) is finitely generated. Let \(i \in I\) be fixed, and let the
finitely generated subalgebras of \(D_{i}\) be \(B_{k} \longrightarrow D_{i} \therefore\) where those
subalgebras are indexed by an appropriate directed set \(k\) so that we
can write the directed system of finitely generated subalgebras of \(D_{i}\)
as
finitary equational theory. We shall show that \(U\) does not preserve the directed union Colima \(B=D_{i}\).

produces a cone of monomorphisms U.B \(\longrightarrow \mathrm{U}\left(\mathrm{D}_{\mathrm{i}}\right)\), so obviously the directed union colim U.B is embedded in \(U\left(D_{i}\right)\) by the induced arrow \(\mathrm{Colim}_{i} \mathrm{U}, \mathrm{B} \longrightarrow \mathrm{U}\left(\bar{D}_{i}\right)\) The functor \(U\) preserves the directed union Colima \(B=D_{i}\) if and only if the embedding Colin \(U . B \longrightarrow U\left(D_{i}\right)\)
is an isomorphism. If \(D_{i}\) is not finitely generated, however, the element of \(U(D)\) represented by, the identity arrow in \(D_{i}\left(D_{i}\right) \subseteq U\left(D_{i}\right)\). has no counterpart in Colin U.B, so the embedding of Colim U.B. in \(U\left(D_{i}\right)\) is not an isomorphism, and \(U\) does not preserve directed unions.

The preceding argument shows that if the functor

U: Mod \((\mathrm{BA}) \longrightarrow\) Set is locally algebraic then all of -the algebras
\(D_{i}\), iE, mast be finitely generated, since \(U\) preserves directed
unions. But then each algebra \(\dot{D}_{i}\) is a finite power \(2{ }^{\frac{1}{i}}\) of a
two-element Boolean algebra. Each of the surjective connecting homomorphisms \(2^{X_{j}} \xrightarrow{d_{i j}} 2^{X_{i}}\) is induced by an injection \(X_{i} \xrightarrow{\prime} X_{j}\), and it is easy to see that \(U \cong A[-]\), where \(A\) is the directed union in set of the directed system of finite sets \(X_{i}\), if. This completes the proof of (5.18).
5.19. Theorem. Let \(A\) be a set having at least two elements.

The finitary equational structure of \(A[-]: \operatorname{Mod}(B A) \rightarrow\) Set is
isomorphic to the finitary equational structure of the set \(A\).
proof. If \(A\) is finite, this result is a consequence of
(4.2) and (4.3). Suppose that \(A\) is infinite, and let \(P: I^{\circ} \rightarrow \operatorname{Mod}(B A)\)
te the inverse system, defined in the proof of (5.18), which locally
: represents \(A[-]\). Recall that \(P: 2^{A} \longrightarrow P\) is the obvious cone of surjections, and that \(g: P \longrightarrow A[-1\) is the cone of colimit injections.
Given a finitary operation \(A[-]^{n} \xrightarrow{f}\{-1\), consider the composite

where \(r\) is the colimit arrow induced by the cone \(\underline{E}: \underline{P} \longrightarrow \underline{2}^{A}\).
This composite corresponds to a cone \(2^{A} \underset{\sim}{ } \longrightarrow \mathrm{n} \otimes \mathrm{P}\), in \(\operatorname{Mod}(B A)\) and, hence, to a homomorphism \(2^{A} \xrightarrow{£^{\prime}} 2^{A^{n}}\), since \(2^{A^{n}}=\) Limn n \(\otimes P\). To verify that fr really does induce \(f\) on A[-], in some reasonable sense, observe that there is a natural transformation \(A[-]^{n} \longrightarrow 2^{A^{n}}\) which, for each Boolean algebra \(B\), embeds \(A[B]^{n}\) in nom \(\left.B A{ }^{\left(2^{A^{n}}\right.}, B\right)\) as the set of all homomorphisms \(u\) which factor, for some \(x \in I\), as \(2^{\mathrm{A}^{\mathrm{n}}} \xrightarrow{\mathrm{q}_{\mathrm{X}}} 2^{\mathrm{X}^{\mathrm{n}}} \xrightarrow{\mathrm{u}^{\prime}} B\), where \(q_{X}\) is the projection induced by \(x^{n} \hookrightarrow A^{n}\). The action of \(f\) on an element \(u\) of \(A[B]^{n}\) (viewed as an arrow \(\left.2^{\mathrm{A}^{\mathrm{n}}} \longrightarrow \mathrm{B}\right)\) is as follows.
\[
\left[r_{B} \cdot f_{B}\right](u)=\left[r_{B} \cdot f_{B} \cdot\left[0 g_{X, B}\right]\left(u^{\prime}\right)=\left[\dot{q}_{X} \cdot f^{\prime}\right]_{B}\left(u^{\prime}\right)=u^{\prime} \cdot q_{X} \cdot f^{\prime}=u \cdot f\right.
\]

Since u.f' is an element of hor \({ }_{B A}\left(2^{A}, B\right)\) which represents
an element of AlBi, it must factor as \(2^{A} \xrightarrow{P_{Y}} 2^{Y} \xrightarrow{\mathrm{~V}} \mathrm{~B}\), for some Y I and some homomorphism \(v\). This means that of' is a complete homomorphism.

We claim that \(f^{\prime}\) is a complete homomorphism, i.e., that
\(\mathrm{f}^{2}=h^{\star}\), for same function \(\mathrm{A}^{\mathrm{n}} \xrightarrow{h}\) A. The claim is true because, if
f' is not complete, the original operation \(f\) is not well-defined
on \(A[2]\). To see this, let \(A_{0} \geq A_{i} \geq \ldots\). \(\geq A_{m} \geq \ldots\) be \(a\) descending chain of subsets of \(A\) such that \(\bigcap_{i} A_{i}=0\) while \(\bigcap_{i} f^{\prime}\left(A_{i}\right) \not{ }^{\prime} 0_{i}\) such a chain must exist if \(f^{\prime}\) is not complete. Let \(b \in \bigcap_{i} f^{\prime}\left(A_{i}\right)\), and let \(u: 2^{A^{n}} \longrightarrow 2\) be the homomorphism
 For each of the sets \(A_{i}\) we have \(\left[u . f^{f}\right]\left(A_{i}\right)=u\left(f^{\prime},\left(A_{i}\right) \geqslant \geqslant u(\{b\})=1\right.\). Thus, \(\bigcap_{i}\left[u . f^{\prime}\right]\left(A_{i}\right)=1 \neq 0\), so u.f' is not a complete homomorphism and, hence, not an element of \(A[2] \subseteq \operatorname{hom}_{B A}\left(2^{A}, 2\right)\).

So far, we have established that each finitary operation
\(A[-]^{n} \xrightarrow{f} A[-]\) is induced by a finitary operation \(A^{n} \longrightarrow\) A. But \(\cdot\)
the Foster formula for bounded Boolean powers
\[
\left[f_{B}(u)\right](c)=\sup \left\{\bigwedge_{j<n} u_{j}\left(b_{j}\right): f(b)=c\right\}
\]
for all \(c \in A\) and \(u \in A[B]^{n}\) (derived as in (4.4)), shows that every
finitary operation on \(A\) induces an operation on \(A[-]\), and that
no two distinct A-operations induce, the same \(A[-]\)-operation. It
follows that \(\mathrm{A}[-]\) and A have isomorphic finitary equational
structure. This completes the proof of (5.19).

The new content of (5.19) is simply that Foster's formula is sufficient for bounded Boolean powers; \(A[-]\) is incapable of ת
carrying any finitary operations which are not inherited from A.
The proof of (5.19) is interesting, in that it shows that, while (as noted earlier in this Chapter) the operations on A[-] are not directly representable as restrictions to \(\left.A[-]^{n} \subseteq \underline{(2}^{\mathrm{A}}\right)^{\mathrm{n}}\) of operations in the equational stricture of the functor \(2^{A}\), the

A[-]-operations are obtainable as restrictions of operations in a
many-Bortad \(T_{A}-a l g e b r a\) in \(\operatorname{set} \bmod (B A)\), namely, the functor which sends each function \(A^{m} \xrightarrow{h} A^{n}\) to \(h^{n}: 2^{A^{m}} \longrightarrow 2^{A^{n}}\) This suggests a possible means of avoiding the difficulties in the syntactical
analysis of locally representable functors, as pointed out in the
discussion preceding (5.17).

Finally, note that (5.18) and (5.19) together can be used to
prove Hu's theorem (1.2). The finitary equational structure of a set

A is the equational theory \(T\) of a locally primal algebra \(A^{+}\)whose
underlying set is A. Tneorems (5.18) and (5.19) together show that

Mod(BA) is equivalent, via the comparison functor for the bounded

Boolean power functor \(A[-]\), to the locally equational subcategory
\(L\left(\left\{A^{+}\right\}\right)\)of \(\operatorname{Hod}(\mathrm{T})\) generated by the locally primal algebra \(\mathrm{A}^{+}\).

Given any algebra \(A^{\prime}\) whose underlying set is \(A\) and which belongs
to an equational category \(\operatorname{Hod}\left(T^{n}\right)\), let \(T^{\prime}\) be the finitary equational
theory of the algebra. \(A^{\prime}\) (i.e., look at \(A^{\prime}\) itself as an equational
theory; \(\operatorname{Mod}\left(T^{\prime}\right)\) is essentially just \(\left.\operatorname{HsP}\left(\left\{A^{\prime}\right\}\right) \subseteq \operatorname{Mod}\left(T^{\prime \prime}\right)\right)\). The
the inclusion \(T!\longrightarrow T\). is a mapping of theories. The ccimposite
\(T^{\prime \prime} \longrightarrow T^{\prime} \longrightarrow T\) determines a reduct functor \(U: \operatorname{Mod}(T) \longrightarrow \operatorname{Hod}\left(T^{\prime \prime}\right)\)
which establishes a category equivalence between \(L\left(\left\{A^{+}\right\}\right)\)and \(L\left(\left\{A^{\prime}\right\}\right)\) exactly when \(A^{\prime}\) is locally pyimal.
;

LIST OF REFERENCES
[i] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri 2974.
[2] B. Banaschewski, Functors into categories of M-sets, Abh. Math. Sem. Univ. Hamburg 38 (1972), 49-64.
[3] B. Banaschewski and E. Nelson, Boolean powers as algebras of continuous functions, Manuscript, McMaster University 1976.
[4] M. Barr, P. A. Grillet, and D. H. Van Osdol, Exact Categories and Categories of Sheaves, Lecture Notes in Mathematics 236, Springer-Verlag, Berlin-Heidelberg 1971.
[5] S. Burris, Bcolean powers, Algebra Universalis \(\underline{5}\) (1975), 341-360.
[6] Cat-Ho Nquyen, Generalized Post algebras and their application to some infinitary many-valued logics, Dissertationes Mathematicae 107 (1973).
[7] P. M. Cohn, Morita equivalence and duality, Queen Mary College Mathematics Notes, London 1968.
[8] A. Day, Injectivity in equational classes of algebras, Canadian. Journal of Mathematics 24, No. 2 (1972), 209-220.
[9] J. J. Dukarm, Weakly monadic Boolean extension functors, Fundamenta Mathematicae (to appear).
[10] J. J. Dukarm, Morita equivalence of varietal theories, Manuscript, Simon Fraser University 1978.
[11] J. J. Dukarm, A characterization of locally equational categories of algebras, Manuscript, Simon Fraser University 1978.
B. Elkins and J. A. Zilber, Categories of actions and Morita equivalence, Rocky Mountain Journal of Mathematics 6, No. 2 (1976), 199-225.
G. Epstein, The lattice theory of Post algebras, Transactions of the American Mathematical Society 95 (1960), 300-317.
A. L. Foster, Generalized "Boolean" theory of universal algebras (I) ; Mathematische Zeitschrift 58 (1953), 306-336.
[15] A. L. Foster, Generalized "Boolean" thegry of universal algebras (II), Mathematische Zeitschrift 59 (1953), 191-199.
[16] A. L. Foster, Functional completeness in the small, Mathematische Annalen 143 (1961), 29-58.
[17] P. Freyd, Algebra-valued functors in general and tensor products in particular, Colloquium Mathematicum 14 (1966), 89-106.
[18] M. Gould and G. Grätzer, Boolean extensions and normal subdirect powers of finite universal algebras, Mathematische Zeitschrift 99 (1967), 16-25.
[19] G. Grätzer, Universal Algebra, D. Van Nostrand Co., Inc., Princeton 1968.
L. Henkin, J. D. Monk, and A. Tarski, Cylindric Algebras (I), North-Holland Publishing Co., 1971.
[21] H. Herrlich and Giz. Strecker, Category Theory, Allyn and Bacon, Boston 1973.
[22] T. K. Hu, Stone duality for primal algebra theory, Mathematische. Zeitschrift 110 (1969), 180-198.
T. K. Hu, on the fundamental subdirect factorization theorems of primal algebra theory, Mathematische Zeitschrift 112 (1969), 154-162.
[24] T. K. Hu, on the topological duality for primal algebra theory, Algebra Universalis 1 (1971), 152-154.
[25] T. K. Hu, Locally equational classes of universal algebras, Chinese Journal of Mathematics (Taiwan) 1, No. 2 (1973), 143-165.
[26] A. B. Karatay, A generalization of the characterization theorem of Boolean extensions, Algebra Universalis 4 (1974), 185-189.
U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3 (1971-72), 359-370.
[29] F. W. Lawvere, Functorial semantics of algebraic theories, Ph.D. Dissertation, Columbia University 1963.
[30] F. E. J. Linton, Some aspects of equational categories, Proceedings of the La Jolla conference on categorical algebra, Springer-Verlag, Berlin, 1963, pp. 84-94.
[31] F. E. J. Linton, An outline of functorial semantics, Lecture Notes in Mathematics 80 , Springer-Verlag, Berlin-Heidelberg 1969, pp. 7-52.
[32] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer-Verlag; New York 1971.
[33] M. Makkai and G. E. Reyes, First Order Categorical Logić, Lecture Notes in Mathematics 611, Springer-Verlag, Berlin-Heidelberg 1977.
[34] E. G. Manes, Algebraic Theories, Graduate Texts in Mathematics 26, Springer-Verlag, New York 1976.
[35] K. Morita, Scientific Reports of Tokyo Tyoiku, Daigaku, Sect A 9 (1965), 40-71.
[36] B. Pareigis, Categories and Functors, Academic Press, New York 1970.
[37] H. Rasiowa, An Algebraic Approach to Nonclassical Logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam, and Państwowe Wydawnictwo Naukowe, Warsaw 1974.
[38] P. C. Rosenblode, Post algebras I. Postulates and general theory, American Journal of Mathematics 64' (1942), 167-188.
[39] J. R. Shoenfield, Mathematical Logic, Addison-Wesley Publishing Co., Reading, Massachusetts 1967.
[40] R. Sikorski, Boolean Algebras (third edition), Springer-Verlag, New York 1969.
[41] T. Traczyk, Axioms and some properties of Post algebras, Colloquive Mathematicum 10, No. 2 (1963), 193-209.
[42] G. C. Wraith, Algebraic Theories, Lecture Notes Series No. 22, Matematisk Institut, Aarhus Universitet, February 1975.```

[^0]: there must be a join operation so that

