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ABSTRACT

The extension of Scaled Particle Theory (S.P.T.) to the predictions
of the thermodynamic properties of dissolved gases was>first demonstrated
in 1963. Over the intérvening years this theory has been extensively
used and has always been shown to pfovide excellent agreement with
experiméntal data. No modifications of the original theory héve been made
despite the fact that, since its conception, progress in 6ther'theoretical
studies has indicated basic inconsistencies in its formulation.

The purpose of this research was twofold, to test the theory against
experimentally determined solubility data for a range of gases in H20 and
D20 solvents, and to incorporate certain improvements into the structure
of the theory itself and predict thermodynamic properties of dissolved
gases in various organic solvents.

Much data already exists for the solubility of gases in H20.
Suprisingly enough, the S.P.T. is able to predict gquite accurately this
data. It is known that H20 exhibits properties that are unlike thoée of
simple organic solvents and this difference is reflected in gas solubility
data. No adequate theory for the description of the properties of pure
H20 exists and yet it would appear that the S.P.T., despite its simplicity,
‘can predict the properties of gases dissolved in this solvent. DO is a

2

solvent matching the complexity of H,.O and yet known to show a 5 to 10%

2
difference in its gas solubility behaviour. No application of the S.P.T. to
gases dissolved in D20 has been made, primarily due to insufficient aata.
Such a comparison was considered a good test of the S.P.T., so solubility
dgta was obtained for.a range of gases over a 40 oC temperature range

in this latter solvent.

The technique developed for these measurements is novel in that it

iii



allows direct determination of a gas dissolved in a 1/2-ec sample of
D20 and simultaneous determination of the same dissolved gas in a

1/2 cc sample of H20, the latter providing gn internal reference. The
gés chromatographic method developed compareé directly the stripped gas
from the 1/2 cc solvent sample to a pure gas calibration curve'qbtained
under identical conditions, hence eliminating the need for relative
measurements by comparison to known amounts of 'another' dissolved gas
in the same solvent.

The Scaled Particle Theory of gas solubilities is rigorously developed
incorpbrating certain features only appreciated as necessary to.the theory
from theoretical studies performed since its original formulation. From
this development the approximations intrinsic to the original theory are
seen and their validity is tested. Consideration of the limiting (hard
sphere) conditions of the theory show the original development to be
inconsistent. It is found that the more rigorous theory cannot predict
the properties of gases dissolved in H20 and D20 solvents and has only
limited success in the common organic solvents. The reason for the
predictive success of the original Scaled Particle Theory is revealed by
the subsequent examination of a hard sphere version of the S.P.T. It

is shown to be rather fortuitous.
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INTRODUCTION
This thesis is divided into two separate sections, The following
outline summarizes the>topics covered in each section.
Section I details fhe expérimeptal gas chromatographic system which was

designed for the determination of gas solubilities in H_O and D20. " From

2
the solubility values so obtained the enthalpies associated with the

dissolution process were calculated for both H20 and D0 and compared to

2
other experimental data where available. The data for gases dissolved in
D20 were used to test the Scaled Particle Theory (S.P.T.) which had been
previously shown to give godd agreement for gases dissolved in H20. Further
examination of the S.P.T. using transfer coefficients revealed that the
enthalpy expression was & strong function of,the solvent experimental thermal
expansion coefficient and represented a rather simplistic approach for the
calculation of the enthalpy.

In section II the S.P.T. for gas solubility is rigorously developed.
It was noticed that in the original theory the temperature dependence of
the effective hard spheré diameter of the solute and solvent molecules had
been ignored. Use was made of the (extrapolated) properties of a solute
molecule of zero polarizability to determine the need for inclusion of such
a temperature dependence. It was unambiguously shown that the dependence
must be included in the theory. Rederiving the theory to include the
temperature dependence, it was shown that agreement between theory and
experiment (for a wide range of solvents) was now very poor and, in an attempt
~ to further understand the theory, the theory was now derived in a purély
hgrd sphere formulation.

Thé approximations necessary to produce the equations of the original

S.P.T. were then examined. This showed that the originally observed



agreement between theory and experiment was purely fortuitous. Indeed
it is shown that the theory can only be applied to systems wherein’the
behaviour of the solute moleculesiis sufficiently similar to that of a
hard sphere.

The theory is thus shown to be a very simple model of a perturbation

theory in which the reference system is that of a system of hard spheres.



Section I - Introduction

The thermodynamic properties of solutions of gases in water display
anomalies in contrast to the propérties observed in organic solvents.
These are revealed in the unusually‘loﬁ.molar entropies of solution
and large negative molar heats of solution. Correlations of gas
solubilities have beeh attempted using such properties as partial vapour
pressures, surface tension and partial molar volﬁmes in an attempt to
formulate a theory for dissolved gases, but lack of reliable solubility
data has hindered these attempts.

Battino(l)

has tabulated and curved fitted solubility values for
dissolved gases in water to obtain the temperature dependence of the

solubility according to the equation

1nx2 =A + BT—l + Cln(ToK_l) (1)

where A, B and C are coefficients and T is Temperature (°k). The criteria
for selecting the solubility data were based on the reliability of the
experimental method employed, the reproducibility of the worker's own
data and from comparison with data from other sources. Consequently data
for many of the temperature dependent studies consists of'data obtained by
various workers using many different techniques(g).

This research has developed a gas chromatographic technique which,
unlike other techniques, allows an absolute measurement of a dissolved

gas in a solvent. The use of a gas chromatographic

" technique to determine the amount of a gas dissolved in a known
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volume of solvent is widely reported(3'u;5). With appropriate
chromatograéhic conditions, smail solvent samples can be analysed and
.amounts of dissolved gas down to 10-8 moles can be accurately
measured. Most.w0rkers have used the so-called 'stripping!' technique
wherein the chromatograph cafrier gas is bubbled rapidly through
the sample under investigation, the gas is then dried of solvent by
passage through‘an appropriate absorbent, and finally the amount ofv
solute gas stripped from solution is measured using a gas chromatograph(6'7).
The stripping techique has caused most workers to adopt a relative
rather than an absolute measurement of gas solubility(6'8). Thus, the
amount of gas dissolved in a solvent is measured relative to the amount
of 'another' gas dissolved in the same solvent under conditions wherein
the saturation sblubility is well established.

In this research we report a gas chromaographic method which
allows a dissolved gas sampie to be measured against a calibration
response curve obtained using pure gas samples, yet allowing the
calibration curve to be obtained under conditions matching those used

in stripping the dissolved gas.



Solubility of Gases in H20 and D,0
=

CHAPTER I

"Let us learn to dream, gentlemen, then perhaps we shall
find the truth. But let us beware of publishing our

dreams till they have been tested by the waking understanding."

Friedrich August Kekulé
Translated by F.R. Japp
Journal of Chemical Education

35, 21 (1958)



EXPERIMENTAL

Distilled H20 or D0 (99.8% Stohler Isotope‘Chemicals) is degassed
. by a sublimation technique. Twehty mls of the solvent is introduced
into a degassing cell through a Rotaflo valve. Liquid nitrogen is placed
in the cold finger above the degassing cell and the system is evacuated to
10—h torr causing the solvent to freeze. Sublimation is achieved by
placing a heating mantle around the solvent container and subiiming
the frozen solvent onto the cold finger. Once degassing is completed
the saturation cell which is connected to the degassing cell is
evacuated (10-h torr) and the frozen solvent is allowed to melt
under vacuun. Approximately 20 mls of the solvent is then transferred
to the saturation cell under an atmosphere of the gas under study.

Teflon stopcocks are used to prevent grease contamination. No

detectable amounts of gas have been observed in a G.C. analysis (on

maximum sensitivity) upon analysis of the degassed solvent.
Saturation Cell

The saturation cell is maintained in an insulated water bath at
TOC + .OloC. Upon transfer of the solvent from the degassing cell to
the saturation cell the gas under study is dispersed through the solvent
using a fritted disk(s). At the same time the solution is constantly stirred
by a magnetic stirrer (controlled from outside the water bath). The gas
pressure above the sample is maintained at atmospheric pressure, thus
~ preventing supersaturation. Complete saturation is nofmally achieved within
é.ﬁ hrs. This was determined by monitoring gas uptake as a function of '

time for several gases. Before samples are withdrawn  the

bubbling of the gas through the solvent is halted and the
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solution is left stirring for 1 h under one atmosphere of gas to ensure

equilibrium,
Sample Transfer

The saturated sample is transferred to the gas stripping line
using a greaseless gas tight 2.5000 + .0001 ml Gilmont micrometer syringe.
The syringe is initially flushed witﬁ the gas under study to prevent
air contamination of the sample. The saturated sample is withdrawn from the
saturation cell bj inserting the needle of the syringe through a rubber serum
cap fitted on the saturation cell. The syringe is designed such that
the barrel can be filled with 2.5 mls. of solvent extremely slowly, thus
preventing the sample from being placed under a reduced pressure. The
syringe is then withdrawn from the saturation cell; containing

approximatley 2.5 ml of the saturated solvent.
Gas Stripping Line

The gas stripping line shown diagrammatically in FIG. 1 is
constructed of 4mm I.D. Duran 50 glass.

The line is previously evacuated (10‘6 torr) through stopcocks 12
and 13 and then permanently maintained under Helium carrier gas pressﬁre.

Initially, .25 mls of the sample are injected into the gas stripping
cell (Fig. 2) to "wet" the frit since it would appear that some
absorption of dissolved gas occurs on the frit. Then four .500 ml
Sambles are injected sequentially (allowing the previous sample sufficient
time to be stripped) and the stripped gas‘analysed on the C.C. These
samples are injected without the syringe being withdrawn from the

stripping cell, ensuring that no leaks or air contamination occurs. For
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each inject%on the dissolved gas is rapidlj stripped from the
solution by Helium carrier gas dispefsed through the sample by a
-#2 porosity glass frit placed at the base of the stripping cell(g).
The Helium carrier gas flow can be prefereﬁtially directed
into stripping cell #1 or cell #2 using stopcock 7 (3~way).
Closing stopcocks 9 and 10 or stqpcocks 8 and 11 allows each
stripping cell tb be used individually. The stripping cells were
initially evacuated (lO'6 torr) through stopcocks 12 and 13, aﬁd
the line purged with Helium through stopcock 16. | |
The stripped gas is dried by passage through a 50% CaCl2 and
50% CaSOu drying tube before entering the chromatographic column;‘
appropriate columns are used for each gas (see APPENDIX I). The
stripped gas is then analysed in a Varian (Model 90P) dual filament
thermal conductivity detector. The signal from the detector is
integrated on a C.M.C. digital readout (Model 707 BN) frequency
counter and the response is compared directlyAto a calibration plot.
The variation in response being no more than 1.0% amongst the four

injected samples.
GAS CALIBRATION
The solubility value is obtained by a direct comparison with a

calibration plot of moles of gas vs. chromatographic response as

recorded by an on line integrator. ‘The calibration curve is obtained

by observing the chromatogram's response to a known number of moles of

gas contained in the gas sampling 1oop(10) (Fig. 1).
The gas sampling loop (Volume .7076 + .0001 mls) and line are

evacuated (10-6 torr) through stopcock 1 while stopcocks 3, 4, 5 and

6 are open. The line is then isolated from the rest of the vacuum

10
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system'by shutting stopcock 1. Shutting stopcock 5 enables one to
utilize the‘U—tube as a closed end manometer. The gas is introduced

.. into the sampling loop at room temperature from one of the gas bulbs.-
After attaining equilibrium, the temperature of ‘the gas is read and
the pbessure accufately measured on the Hg-manométer. The number of
moles of gas in the sampling loop is theﬁ obtained using the ideal

gas law, To transfer the gas to the detector for analysis‘the sambling
loop stopcock is rotated 90°, The carrier gas transfers the sample
via line A through a stripping cell,_drying tube, and chromatographic
column to the detector. The loop étopcock is then rotated back 90°
to thé original position. Stopcocks 1 and 5 are opened and the system

is then evacuated to 10-0 torr. The process is repeated for various

{
A

gas pressures until the desired number' of calibration points are

obtained.
GAS DETECTION

The gas is detected by a dual filament thermal conductivity
detector with one filament being used as a reference and the other
filament as the gas detector. A flow rate of 75 mls/min for both
reference line and sample line is maintained. A current of 175 ‘mA
is used for detection and the detector block maintained at 110°C,

The signal from the detector is recorded on a 1 mV full scale
Varian chart recorder (Model 9176) and the signal is integrated by an
electronic C.M.C. (Model T7O07BN) digital readout frequency counter.
Usiﬁg this method, a complete calibration curve can be obtained for

the gas under study from 10-8 moles.
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‘The gas flow into the detector is divided into an internal

reference flow and an external carrier flow both maintained at the
same flow rate. The carrier gas always flows through the line and
then to the detector via line B with stopcocks 18, 19 and 16

closed and stopcock 17 open. |

Before the sample is injected 3nto the stripping cell that part
of the vacuum line is evacuated (10-6 torr) through stopcocks 12 and
13. Stopcocks 7, 8, 9, 10, 11, 14 and 15 are open, this enables the
stripping linevand the sampling loop to be completely evacuated.
Stopcocks 12 and 13 are shut off and the line is thofoughly pufged
with Helium through sﬁopcock 16. This process is repeated and the
line is maintained under He carrier gas pressure by opening stopcock
i8 while stopcocks 17 and 19 are closed. Stopcock 16 is closed (to the
Helium tank) and directs the He carrier gas through the
chromatographic column to the detector. Stopcocks 8 and 9 are then
closed, while stopcock 7 (3;way) remains open. This enables the
carrier gas to flow through the gas sampling loop, and through each of '
the two stripping cells. The gas flow is then directed through the
drying column by adjusting stopcocks 14 and 15, and subsequently
through the chromatographic column to the detectér. Each stripping
cell may be used independently by directing the carrier gas with
stopcock 7.

Stripping cell #1 can be used by directing the He carrier gas
through stopcock 7 in the/direction of cell #1 with stopcock 10 open
and shutting stopcock 11, thus isolating cell #2. Similarly cell #2
can‘be used'by turning stopcock 7 180° and closing stopcock 10 while
stopcock 11 is open, thus isolating cell #1 ana maintaining the

carrier gas flow through cell #2. By preferentially isolating each
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cell one can rapidly perform sample analysié on two different
" solvents. In practice, two saturation cells are used simultaneously
" thus allowipg one gas to be studied in two different solvents (eg.
H20 and D20) at identical temperatures and preséures. One can

thus determine the amount of'gas dissolved in H20 in cell #1 and the
samévgas dissolved in D,0 in cell #2. The gas calibration curve is
obtained as previously described.

In practice a calibration response curve is obtéined priof to the
analysié of the dissolved gas samples'('dry‘ calibration) and then
repeated after the analysis. These calibration points obtained after
the 'stripping' of the dissolved gas samples requires the dry gas to be
passed (with Helium carrier gas) through the 2.5 mls of solvent
remaining in the stripping cells. We call these 'wet! calibration
points, serving both tobshow that no instrumental factors have
altered during the time taken for sample analysis and that the
presence of the solvent on top of the fitted disks in the stripping
cells has not caused changes in chromatographic response through a
change in carrier gas flow rate.

Our experiments show that the calibration plot is independent
of the cell used. Our experiments have also shown that‘the
introduction of approximately 2.5 mls of sample into the stripping
cell is not sufficient to retard the carrier gas flow rate, and hence
change the response of the detector. Consequently "dry calibration"
is identical to the "wet calibration". By direct comparison of the
integrator response of the.four stripped samples to the calibration
curve, one obtains the number of moles of dissolved gas. For low

~Solubility géses the injected sample size can be increased from

1/2 cc to 1 cc and the amount of gas can be accurately determined.

o
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Again, no change in detector response is observed for the 1 cc
injections. This experimental technique has been applied to various
dissolved gases in H20 and D20 with an estimated accuracy of 1%
for most gases and 2% for the least soluble gases.
RESULTS AND DISCUSSION

The saturation of the gas into each solvent was carried out
simultaneously and the analysis of the amount of gas dissolved waé
made using one sample cell for H20 and one sample cell for DQO.
Two sets of '"four 0.5 ml injections' were performed on each solvent.
A comparison of the data obtained with that reported in the literature
is made in Table 1. The comparison is seen to be excellent.

There is little data reported for gases dissolved in D,0,

2
perhaps due to the quantities of solvent required for experiments.
One of the advantages of our technique is that less than 20 mls of
solvent.is required for saturation and less than .5 mls is required
for analysis for any one temperature, éll of which is recovered.

Using the solubility data in Table I, the gas solubility values
were fitted to equation (1) with a standard deviation reported as a %
5 at
298.15 °k. Table IT summarizes these results and Figure 3 is a typical

difference in the 1nX2 fit compared to the experimental 1nX

0 expressed as 1nX, versus

plot of Argon gas solubility in H20 and D 5

2
/7).

Using the coefficients so obtained from the curve fit, the

enthalpies associated with the dissolution process in H20 and D20

were computed from equation (1) using the following expression:

91nX
A = RT2 2 . -B + (T (2)

oT




Table I 15
Mole Fraction X2 of Gases Dissolved in H20 and D20

Argon (X~10h)

H,O0 . =z DO

2 2
TO (K)/Ref. 4 Present © Present
1 09 @3 (1) Study "~ Study (1)

278.15 .3769 .3788 .3787  .3785 JoT1 L4270
283.15 .3360 .3364 .3352 .3367 .3333 .3731 .3750
288.15 .3019 .3026 .2953 .3025 .2988 .3333 L3341
293.15 .27h2  .2756 .2697 = .27h6  .2722 .3048 .3003
298.15 .2517 .2530 .2kB2 .2516 .2520 .2680 .272h

303.15 .2332 < .228)4 .2326 .2316 .2497 o

Krypton (X- 101‘)

H0 D,0
Present Present
(k) (13) (1) Study Study
278.15 .7533 —— L7526  .7533 .8624
283.15 .6576 .5989  .6498  .6577 .T264
288.15 .5688 .5317 .5680 .5T7k0 .6LhT72
293.15 .5026 .4799 .5025 = .5113 . .55hk
298.15 .h512 . 4305  .Luok k526 .1803
303.15 .4069  .3955 .Lk062  .k180 Lhks51
308.15 .3723 .3606 .3708
313.15 .3362  .3345  .3b17  .3Lé9 .3809

Xenon (X'th)

H,0 D,0
Present Present

(3 {Lh) (1) Study Study
278.15 1.466 1.40k
283.15 1.223 1.188 — _
288.15 .9991 1.039 1.019 —_—
293.15 .8857 .8937 .8840  .88k43 .9058
298.15  .7835 L7785  .7761 ——
303.15 .6878 .6887 .6889  .6847 .7090

" 308.15 .6193 .6163  .61TT :
313.15 .5613  .5558 .5592  .5652 .5605

\
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Table I (continued)

Nitrogen (X'th)

H,0 ' D0

2 . 2
7° (K)/Ref.
v Present Present
(12 (1) (1) Study Study
278.15 L1702 .1680 .1695 .1692 .1862
283,15 .1527 .1507 .1519 .,1513 .1691
288.15 .1387 L1371 .1379 .1372% L1561
- 293.15  .1275 .1254  ,1265 @ .1275 L1467
298.15 .1182 .1162  .1173 .1175 .1335
303.15 .1086 .1098  .1116 .1249
308.15 .1038 .1062 S L1170%
313.15 .0989L4  ,09986 o .1069
Oxygen
H,0 D0
Present Present
(1) (15) (1) Study Study
278.15 .3416  .3458 -, 3LL46 .3729
283.15 .3053 .3025 .3071 .2963 .3332
288.15 .2738 .2708 .2759 .2678 .2950
293.15 .2492  .2L445  ,2505 .2L496 L2673
298.15 .2281 .2221 .2298 .226L4 .2L59
303.15 .2115 .2035 .,2127 .2081 .2263%
308.15 .1988  .1985 .2101
313.15 .1873  .1853 .2000
CH,
H,0 D2O
Present Present
(16) (17) (1) Study Study (1)
278.15 L3977 .3979  .3978 4371 .43k9
283.15 .3360 L3457 .3483  .3L6T 3 .3732 .3782
~288.15 .2968 .3096 .3086 .29h0 (.3187)*% .3328
293.15 .2681  .2754 .2767 .2720 .3006 L2962
298.15 .2h26  .2527 .2507 .2L85 .2655 .266k
303.15 = .2221  .234k1  .2295 .2278 .2382
308.15 .2049 .21k3 2121 .21ho* L2176 —
313.15 .1978 .1943 .2080 s
318.15 .1936 —  ,1860 .1899 - .185hL _



" Table I (continued) 17

: C2H6
H.O : DO
™ (X)/Ref. 2 2
Present " Present
(18) (17) (1) stuay . Study (1)
278.15 ——— ,64k5 6488  .6L483 .7010 .6983
283.15 ——— .5226 .5359 .5226 STT5 .5T48
288.15 .3966  .Lh69  .4506 = .hL38 .4869 .4808
293.15 .3482  .38L9 .3852  ,3832 L1211 .Lko82
298.15 .3079 .3321 .3345 .3330 .3520 .3514
303.15 .2753 .2922  .2948 .2916 .302k4
308.15 .2L98  .2609  .2633
313.15 .2313 2384 —
il
H,0 | _ D0
Present Present
(18) (19) (i) stugy Study
278.15  .09393% .09123 .09164 .09164 .1106
283.15 .07368% .07340 .07335 .0T73LO .07812
288.15 .05780 .06041 .06032 .06035 . 06505
293.15  .04801* .05056 .05088 .05143 . 05465
298.15 .ohkoLT .04393 .0L39k .okk26 .0L829
303.15 .03842 ,03881 .03L486 . .0k280
308.15 ——— .03469 .03L99 .03786 .03960
313.15 ——— .03232 .03218 .03226 .03584
323.15 , .03311
CFLL
H0 D0
Present Present
(1) Study Study.
293.15 '.oh265 .043L49 | : .0L8Th
. 298.15 = .03819 .03750 - .0ko63
; 303.15  .034TT .03k92 .03719
} ¥*
interpolated value
( ) omitted value, clearly in error
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Coefficients in the Equati
Gas/Solvent ' A
Cal Mole ™t ©
Ar/H,0 . =336.
,Af/peo -279.
Kr/H,0 o -308.
Kr/D20 -583.
02/H20 -418.
0,/D,50 -385.
N,/H0 -393.
N,/D,0 10
CH, /H,0 -507.
CHh/DQO -286.
C2H6/H20 -554,
C He /D0 -201.
SF6/H20 -Th2,
SF¢/D,50 -1196.

Table II

on Rinx, = A + B/T + C1ln (T/KO)

B C %o*
K1 Cal Mole™d  Cal Mole ! %kt
5 16452, 2 45.7 .51
1 14317.% 36.9 .ho
T - 16005.4 41.3 .0
5 28350.6 82.3 1.31
5 20059.8 57.9 o
9 18752.4 53.0 .30
6 185hk.7 54,2 .15
.2 846.8 -6.2 .18
5 24361.5 71.0 .92
3 14919.8 37.8 .22
5 27749.5 TT.h .26
7 12680.5 24 1.2
6 36142.5 104.8 .93
6 56244 .3 172.6 .9h

¥ Standard Deviation of Fit 1n X, as a .percentage at 298.15 °K

19



Tablés III and IV summarize these results for various gases in both 20
HZO and D20; The exper;mentalventhélpies of solution compare
~quite favorably with those from Reference (1). One must remember that
the experimental values of the Henry's law constahts from this reference
vere fitted to equation (1) using data from many workers incorporating
different techniques., |

These data can be considered ideal since any values wﬁich deviéted
from the fit by greater than one standard deviation were réjected; hence
only data conforming to the curve fit of equation (1) were used.
From the above Tables of enthalpy Qalues, one can see distinct trends
for both H,0 and D,0: as the temperaturérincreases the enthalpy
decreases, Also one observes a greater enthalpy of solution for the
dissolved gases in D,0 than in H,0. To draw comparison to the
experiméntally determined solubility thermodynamic properties, the
generally accepted practice has been to use the Scaled Particle Theory
(S.P.T.) of gas solubilities, although to date no such comparison for
the solubility of the inert gases in D20 has been made. The next
section of this thesis deals in great depth with the S.P.T. of gas
solubility. To present the predicted gas solubility data for D20
one must introduce the required equations of the theory. - Here, only
a brief description of the theory will be presented to introduce the
equations whilst the reader is referred to the following section for a
detailed discussion. |

The ‘dissolution of a gas into a liquid is considered as a two step
process. The first being the creation of a cavity of suitable size to
accomodate the solute molecule. The second step is the introduction of

the solute into the cavity created. The thermodynamic functions



Table III
Enthalpy of Solution of Gases in H,0 and .umo

H,0 AH (Cel Mo1 1)¥
™ (K) Ar %1% Kr +5% Xe +6% om +13% ZN 1% omr 2% ommm +3% mwm +3% owr
283.15 -3512 ~-4311 Sa— -3665 -3198 -4258 -583L -6468 —_—
298.15 = -2827 -3692 -Lo57 -2797 -2385 -3193 -L673 -4896 -3877
313.15 =214 -3072 — ~1928 ~1572 -2128 -3512 -3324
-] %
umo AH (Cal Mol )
+6% +29 +29 1% +5% +10% +29% +10%
283.15 -3869  -5047 -37h5 -2808  -k217 ~5772 -7373
. 298.15 -3316 -3813 -L327 -2950 -2695 ~3650 -5405 -L478L =L777
313.15 -2762 -2578 —_— -2155 -2788 -3083 -5039 -3488 _—

¥ Error expressed as a function of AH from the derivative of “_.nxm at 298.15 °k




22

Table IV

Enthalpy of Solution of Gases in mmo and umo (Ref. 1)

H,0 AH  (Cal Mol T)
(o] )
T (K) Ar Kr Xe 0, N, CHy, CH, SF¢ CFy,
283.15 -3573 =4h79 -5110 =350 -3283 -4oh1 -5802 -6652 -69
298.15 -2933 -3752 -hlo2 -2882 -2495 -3297 =422 =WTTT -3600
313.15 -2296 ~301h -3695 -2162 . -1698 -255)4 -36L5 -2902 -2238

-1

umo AH  (Cal Mol )

283.15 -3902 | _ —_— 4260 ~5942

298,15 —3271 . —_— —— 23565  -5050




associated with these steps are the reversible work or the Gibbs free 23 .

energy in creating a hard sphere cavity and, after insertion of the

solute, the Gibbs free energy éf solﬁte—solvent interaction. These

steps were described in a series of papers by Reiss et al.(20’21) for

a system of hard spheres, and later extended by.Pierotti for the solubility
of a gas in a real solvent.(22’23'2u) The standard Gibbs free energy

for the process is given by
AG = G, + Ei + RT 1n (RT/V,) -{3)

where ac and Ei describe the above two step dissolution process

and are defined in equations (7) and (17) respectively in the following

section, Vl is the solvent molar volume. The Henry's law constant KH is given by

1nKy = G;/RT + Go/RT + ln (RT/V,) (4)

The corresponding enthalpy of solution is written as

‘ 91 nkK: - -
AE = —RT2(1 H) - § + H -RT + oRT® (5)
3T c i P
P
where R is the universal gas constant, T is the temperature and ap is
the thermal expansion coefficient of the solvent. ﬁc and ﬁi are the
enthalpies associated with cavity formation and interaction respectively.
Tables V and VI give the predicted Henry's law constant (anH)
and the enthalpy associated with the dissolution of selected gases in

both H,0 and D,0 and compares them to my experimentally obtained

values.



Gas

Ar

Xe

CH),

C2H6
SFg

Gas

Ar

Xe
CH),
CoHg
SFg

Table V

Thermodynamic Properties in D,0 at 298.15 °k

lh“KH
exp .«

10.53
9.9k

10.64
10.10
12.24

1n KH
exp.

10.59
10.00
10.60
10.17

12.33

1n KH
S.P.T.

10.39
9.76
9.34

10.08
9.50

11.86

Table VI

1n KH
S.P.T.

10.L4L4
9.80
9.39
10.12
9.55
12.1h

A (cal Mole
eXp o -

~3316
-3813
~-4327
-3650
-5405
-L78L

AH (cal Mole™
exp.

-2827
-3692
~-Los57
-3193
-4825
-4896

1y

D)

"AH (cal Mole

‘S.P.T.

-2612
-336L
-ksks
-3372
-5151
~6586

Thermodynamic Properties in H20 at 298.15 °Kk

AH (cal Mole
S.P.T.

-2425
-3161 1.
-4299
.=3159
-48T1
-5802

1

2

24
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One is amazed at the predictive abilities of the Scaled Particle
Theory: not only does it predic£ reaéonably good AH values, but it also
- predicts a higher enthalpy of solution (56%) for the gases dissolved in
D20, which compares favorably with the~experimeﬁtal difference. One
notes that the Henry's law constants (expressed as anH) are predicted
well for both H20 and D,0, but‘oné recognizes that these predictions
could be rather‘fortuitous since there isylittle difference in the

H20 and D,0 InKy values.

Of interest are the values of the enthalpy 'transfer' coefficients
for the inert gases from H20 to D20, that is the enthalpy associated
with the transfer of one mole of solute from H,0 to D,0. These
are of particular interest since the values of the hard éphere diameter,
the dipole moment and the polarizability of H20 and D,0 are the
same. | This effectively allows the cancellation of the interaction term
in the enthalpy expression (egn. (5)) shown above for the dissolution process.
The enthalpy change accompanying the transfer of a solute from H20

to D20 is
o .
AHtr. = AHgaS(DZO) - AHgas(Hzo) (6)

which, with the cancellation of like terms in equation (5), gives

B = (o220 - o20) (219073 (3(142 002 43050 +(1)?) + BIF] (D)

where ap is the experimental thermal expansion coefficient of the

solvent and y is the fcompactness' factor (a funétion of the molar volume
of the'solvent). Table VII summarizes the experimenfal enthalpy transfer
coefficienté‘for selected gases and compares these to the values

predicted by the S.P.T.
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" Gas MO
Present Study

Ar -L89

Kr : -121

Xe - T0

CH), ~bsT

CoHg ~ =580

(a)

Reference (25)

4+ 4+ 4 1+

= 33w

o
AHtr (

Table VII

cal Mole ) at 298.15 °K

AH,
Ref. 1

-338

_268(a)
-328(a)

AHt?
sS.P.T.

-187
-203
-2L6
-222
-285

26
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bne ebserves from Table VII that the experimental enthalpy
transfer coefficients deerease for the noble gases from Argon to Xenon,
-whilst the S.P.T. predicts an increase. Generally poor agreement is
obtained for the experimental transfer-coefficients when

compared to the Sealed Particle Theory prediction.

One notes that a small difference in either the Hzo or D20

enthalpy values for the gases contributes to a very large difference
in the experimental transfer coefficients. It is also intereeting to
note that the transfer enthalpies predicted by the S.P;T. at other
temperatures actually increase with increasing temperature while the
experimental valﬁes decrease with increasing temperature. One is
surprised at the predicted enthalpies of solution using

the S.P.T. considering the simplicity of equation (7).

The transfer enthalpy coefficients actually give one an
insight into the Scaled Particle Theory's method of differentiating
between H,0 and D,0, as shown in equation (7). Upon examination
of the bracketed term in equation (7), one sees that, for the gas
Argon, this term represents approximately a 1% difference, while the
difference in the solvent thermal expansion coefficients represents
approximately 25% (0§20= 2.57:;:10—h OK.l; agzo =1,918x 1o'h ox™ 1)
at 298.15 °Kk. From Tables V and VI one can see approximately a‘6%‘
difference in the predicted enthalpies for the various gases in H20
and D20. This difference in predicted enthalpies.appears to be a reflection
of the differences in the experimental thermal expansion coefficients
of HZO and D20, which also suggests why there is no apparent difference

in the predicted 1nKy values, since G, is not a function of the

expansion coefficients of the solvents. This then appears to be a

rather simplistic approach to the prediction -of the thermodynamic

27



28
properties associated with the dissolution process for these two

complex systems. It suggests that this theory is in fact overspecified
since both y (compactness factor) and ap are functions of solvent molar
volume, and also since the temperature and pressure of the system is
specified. At this point it is interesting to examine the S.P.T. in
depth to determine what in fact allows one to predict with such apparent
success the thermodynamic properties associated with the dissolution

of a gas into a liquid.
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Gas

Ar

CH

02, Kr

SF

CoHg

‘Xe

"~ APPENDIX I

Column

6°x1/4" Silical Gel

30/60 Mesh

5°x1/4" S1lical Gel

30/60 Mesh

6°x1/4" Molecular Sieve 5A

40/60 Mesh

6°x1/4" Molecular Sieve 5A

40/60 Mesh

5°x1/4" Silical Gel

40/60 Mesh

6°x1/4" Silical Gel

30/60 Mesh

8°x1/4" Molecular Sieve 5A '

30/60 Mesh

30"x1/4" Molecular Sieve 5 A

30/60 Mesh

Temperature

0°¢

0°c

0°¢c

0°c

120°c

120°¢C

-28%¢
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Section II- Introduction 32

Over the years much work has been done to develop a theory in an attempt

(1)

to predict gas solubility data. Sisskind and Kasarnowsky R stud&ing Argon
solubility in various solvents, showed that the energy of solution consisted
of two terms. The first term was déscribed by the increase in surface area of
the cavity created (upon insertion of the solute) times the sufface tension of
the solvent. The second term being the molecular solute-solvent interaction.
Uﬁlig(z) derived thermodynamic equations which expressed the solubility
of a gas as a function of its molecular radius and the surface tension of
the solvent. Unfortunately, solute-solvent interactions are rather complex
and at that time not well understood, hence only a qualitative representation
could be made. Also, the concept of using macroscopic parameters to describe
microscopic phenomena is a poor assumption. Uhlig had tﬁe right idea in
considering the dissolution process as & two step process: the energy of
cavity formation and the complex interaction energy. Lack of accurate
solubility data and of an understanding of solute-solvent interactioﬁs made
the development of a theory a formidable task. Even so, these calculations
yielded an insight into the anomolous behaviour of water when compared to
organic solvents. |

Eley(3)

considered a model in which the number of gas molecules
dissolved was interchangeable with the same number of water molecules

in a quasi-lattice. Eley concluded that this was energetically
unfavourable and that the available points must in fact be cavities which
could easily be enlarged to accomodate a gas molecule. An approximate

partition function was constructed which took into account the effect

of the gas upon dissolution. Again, gross approximations were made
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regardiﬁg solute-solvent interactions.
In a series of papers, Reiss, Frisch, Lebowitz(h) and Helfand(S)

developed a statistical mechanical theory of rigid spheres, based upon an
ekact radial distribution function, which could be applied to real
fluids., From this theory it emerged that, for hard sphere particles,
the only part of the radial distribution function which contribﬁted to
the chemical potential of the fluid was the part which determined the
number density of particles in contact with the hard sphere particle.
Hence, the calculation of the entire radial distribution function was
not required. The theory yields an approximate expression for the
reversible work required to introduce a spherical particle into a
fluid of spherical particles. The particles in solution obey a
pairwise additive potential and, upon addition of anothér.particle tcthis
system, the particle obeys the same potential by a procedure of distance
scaling. A necessary condition for this Scaled Particle Theory (s.p.T.)
is that the solvent molecules be approximately spherical with effecti§ely
rigid cores for both the solvent and solute. Assuming the solvent-solute
interactions are described by a Lennard—-Jones 6-12 potential, Reiss et al.(ﬁ)
calculated Henry's law constants for systems which satisfied the above
criteria for the theor&. Satisfactdry agreement was fouﬁd for Helium in
Benzene and Helium in Argon.

| The development of this theory provided the foﬁndation for Pierotti
to formulate a theory of gas solubility - using the soft potential as a
_perturbation to the treatment of hard spheres. Using the expressions of
Reiss et al. for fhe reversible work required to introduce a spherical

particle‘into a fluid of spherical particles and by a method of

extrapolation using experimental data, Piesrottiwas able to predict



3y
(6)

thermodynamic properties for the dissolution of gases in organic solvents

(7,8)

and water The major drawbacks in Pierotti's Scaled Particle Theory

are the basic assumptions inherent in the'treatment, which will be

. .
discussed later. In light of the assumptions made, it seemed appropriate
to redo the Scaled Particle Theory extending the hard sphere treatment as

(4,5)

was originally developed by Reiss et al. incorporating the concept of
temperature dependent hard sphere diameters. An extension of the Scaled

Particle Thedry is presented incorporating a more comprehensive hard sphere

treatment for the dissolution of a gas into a liquid.
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CHAPTER II

Scaled Particle Theory of Gas

Solubilities
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Thebry aﬁd Development 36
If one considers a system of N sphefically symmetrical molecules
possessing an effective rigid core of diameter oy with the neceséary
pressure to maintain the system at a constant volume and, if one excludes
the centres of all N molecules from a spherical region of space of radius
r in the volume, then one has created a cavity in the fluid. Tt is -
convenient to consider the process of introducing the solute molecule into
the real solvent as consisting of two steps. The first step being the
creation of a cavity in ﬁhe solvent of suitable size to accommodate the
solute molecule, assuming the reversible work or partial molecular
Gibb's free energy gc is identical with that of charging the hard sphere
of the same radius as the cavity into the solution.

The second step is the introduction into the cavity of a solute
molecule which interacts with the solvent according to some potential
law. The reversible work gj is identical with that of charging the
hard sphere or cavity introduced in step one to the required potential.
If the cavity size chosen in step one was suitable, there'should be no
change in size upon charging.

The standard equation for the chemical potential of é ndndisso—

(L)

ciative solute in a very dilute solution is given by

- 3
Uy = K +PT, KTLok,, ¢ KT1n(N,/V) (1)

—X2 is the potential of the solute molecules in the solution relative to

infinite separation, P is the pressure, v, the partial molecular volume

2
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of the solute, Ag and )p are the partition functions per molecule for

the translational and internal degrees of freedome for the solute, Ng .

is the number of solute molecules in solution, and V is the volume of
solution. The sum of the first two terms on the right represents the
.reversible work required to introduce a solute molecule into avsolufion
of volume NQ/V. These terms can be replaced by (éi + éc ) for the two
step process, assuming that the solution is sufficiently dilute to ignore
solute-solute interactions. Replacing Né/V by xz/vl yields the chemicél
potential of the solute in the liguid phase

I — 3
U,” = & *+* &, -KTinip, ¥ KT]11(x2/vl) (2)

The chemical potential of the solute in the gas phase (assumed ideal)
is given by

U®& = —KT1n (A5

) 2)p) *+ KDln (P,/KT) (3)

Assuming the internal degrees of freedom of the solute are not affected

by the solution process, equating equations (2) and (3) one:obtains

P, = éi/KT + éc/KT + ln(KT/vl) + 1nX, "' (L)

X . . - . '
Uslng Henry's law (defined as P2 KHXQ’ where KH is the Henry's law

constant), equation (4) becomes, for partial molar gquantities,

Ink, = Gi/RT + GC/RTI + ln(RT/Vi) (5)
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The molar heat of solution is

91nK = = 2 '
AH_, = H = H, +H -~ RT + T (6)
S ( a ('l'/R' 'T) )F } 1 C (pr

where Op is the thermal expansion coefficient.

The Partial Molar Gibbs free energy of cavity creation was derived

(%)

by Reiss et al. ° for a system of hard spheres. They obtained

where the K's were evaluated to be

K, = RT{-1n(1-y) + 9/2[y/(l—y)]2} - NﬂPal3/6 ' (Ta)
K, = -(8T/a) ) {[6y/(1-y)] + 18[y/(1-y)1°} + NrPa,” (o)
K, = (BT/alz){EIQy/(l—y)] + 180y/(1-y)1°} - 2NPa, (Te)
Ky = (4/3)nPN - (74)

The K's are functions of density, molar volume %nd diameter of the solvent
Ta, °N
through the compactness factor y, where y = —E%—— . The radius of the

cavity created is equivalent to inserting a hard sphere of radius

a.,. = (a

12 + a2)/2 (excluding the centers of solvent molecules), Whereara2

1

. is the diameter of the cavity to be created.
The Gibbs Free Energy of interaction (5i) was derived by Pierotti(6)in

the following fashion. The reversible work for the charging process is

g. =e, +Py, - TS, =h, - TS, (8)
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where éi is the molecular énergy and ;i’ §i are the partial molecular
volume and entropy. The P;i term for the change of state of the solute
at normal pressures is considered negligible compared to the energy of
the system ahd the entropy will be small and negative in the charging

process. This term will bhen be assumed small, hence

G, = &, ' (9)

He
[

If the interaction energy of a solute moleéule with a given solvent mole-
cule is Qi(r), then the interaction per mole of solute will be Ei' Since
Ei is approximately Hi from equation 8, hence onecan.détermine éi'

Approximating the repulsive and dispersive interactions by a Lennard-

1012 6— 012 12 and
r r

the inductive interaction for a nonpolar solute in a polar solvent by

Jenes 6-12 pairwise additive potential(gq U(r).,. = <he_
dis 12

2 6 . . .
U(r)ind = Ul a2/r , the interaction energy per solute molecule described

by inductive, dispersive and repulsive forces is given by

_ -6 6 =12 =6
e. = =C._. %Krp =015 rp ) - Cind%;rp » (10)

where rp is the distance from the center of the solute molecule to the

center of the ~pth' solvent molecule and ¢ is the distance of closest

12
approach of the solute and solvent molecule hard sphere diameters. The
Lennard-Jones force constant is approximated for the interaction of two
- molecules, viz 612 = (6162)%; Ul is the dipole moment of the sqlveﬁt
and s the polarizability of the solute. Evaluation of equation (10)

requires that the solute molecule be immersed in the solvent and completely

surrounded by the solvent which is assumed to be infinite in extent.
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The number of solvent molecules in a spherical shell between r and
(r + dr) is equal! to g(r)hﬂrzpdr, where g(r) is the radial distribution
function and_p is the number density of the solvent. Replacing the

summation with an integration in (10), the total interaction energy yields

oy = -6_56 p-12_ L -6]h 2 d
E; (1) = [}Cdis S;ol(rp %2 T2 CindJ;oirp e Cpg (r)dr (11)

The integrationof'this[3nergyrequiresinformationrggarding'theradialvdigtri;
bution function, which is generally not known. A reasonable value can be
approximated from x-ray studies on liquids. Generally o¢he assumes that

g(r) = 1 outside the radiuslr,'feébgnizing that common solvents behave

as Van der Waals type fluids. Suﬁé%itution‘fof'thé various éoné%ants

vields

_ o =k 6 -10 v -
Ei(R) = -hcdisnpr T + 0., rp dr - cindhnpﬁf rp dr (12)

"wheré Ris the distance from the center of the solute molecule to the centre

of the nearest solvent molecule, the integration yields

_ -3 6_-9 |
Ei(R) = —h/3np(Cdis + ind)r + h/91rpCdiSO12 r . _ (13)
. * 3
Introducing e, = CiTrp/6012 and R' = R/O12
, * * - * - .
E (R = -8leg;_ + & R 34 8/3¢, R' 9 {1b)

where R' is found by differentiating equation (14) and equating to zero

to obtain the minimum valuve of E_ with variation of R'. The result being
i
% * -6
+ = 1Y
€ais T Fina T FaisR (15)
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Since €, is small compared to €,
dis

ind » -.then R' 1s approximately unity.

Substitution for R' into equation (1k4) and noting. from equation (8) that

@i X E; vields the required equation

Ei/RT = ;16/3(€Zis/KT) - 8€§n /KT : (16)

d

- 8 .
This equation is in exact agreementwith that of Pierotti(’), noting that
the dipolar interactions have been omitted since they are not required in

this thesis. Also, Cind = U12a2 for a nonpolar solute and a polar solvent

= 6 . -
and CdiS = helgglg-wherecl and 02 are the solute 'and solvent Lennard-Jones

parameters and Oip = (012‘32) “ These values are defined when the L.J.

6-12 potential. is zero. One then assumes that-dlmaﬁd 0o “can be replaced

-

by &1%and a5 .

The enthalpy of interaction defined in equation (16) can be further

reduced by direct substitution of the appropriate constants, hence

3

5 (17)

S LR 2 oo _a memsadd 2
E; =H;= Gi— —3.555&wp012(€le/K) - 1.333prUla2/Kol

16

where K is the Boltzman constant = 1.3805 x 10 erg OK-l, R is the gas

constant = 1.987 cal mole--l oK_l,and p is the number density of the solvent

which is the only term that implicitly accounts” for different solvent

structures. U1 is the dipole moment of the solvent in esu-cm,

'012 as previously defined has units of cm, the polarzability of the

solvent a has units cm3 molecule—l, and Elg/K’ as previously defined,

has units oK.



ho
The enthalpy of solution was defined in equation (6) as the

[

derivative of anH, which entails the derivatives of Gi and ;s the

c
Gibbs free‘energy of interaction and cavity formation. It was assumed in
equation (9) that Gi = ﬁi’ hence only the temperature derivative of ac, as
defined by equation (7) is required. .~In this present derivation, éhe hard
sphere diaﬁeter of the solvent is assumed to be temperature dependent. As
the temperature of the solvent molecules increases the root mean square
(r.m.s.) kinetic energy increasés, which allows the molecules to penetrate.
It will be shown later that obtaining the solvent hard sphere diameter a

1

from Henry's law coefficient shows a. to decrease with increasing

1

temperature.
An effective hard sphere or rigid sphere is defined by the

potential energy of interaction with another molecule.

U(r)

1
8
a3

u(r) (18)

]
o
a}

A\
L}\n—l
—~~
o
+
o
~—

where r is the separation between the centers of a solute and solvent

molecule of diameter ay and a2.
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= s s . . 3Gz /RT _ = X
To obtain Hc’ the derivative of GC is required, 3(1/RT) = Hc » which

entails differentiating all the K's, equations (7a-7d). One can

simplify the problém with the following procedures. The substitution of

—dT/RT2 for 3(1/RT). Hence

oG /RT s 4 :
_¢ _RT2«dGc/RT = H (19)

3(1/RT) .

Next divide Ec by RT and group the first set of terms in KO; Ki and K2

together, then group the last term in KO, Kl and K2 with K3 and evaluate

these groups separately.'

Hence

. 2 3

G = K + a. K + a K (20)
c/ 12 “2/pn 12 3/RTV

a. K
RT o/ g 1271 oo

x a
15% Tern= -1n(1-y) + 203/ (=317 - 22{16y/(1-y)1 + 181y (1-y)17)
- 1

ap° 2 |
+ =5 {02y/(1-y)1 + 181y (1-y)17} - (21)
1
3 3 2 2
L %PﬂPNalg _ NnPa, 4 808 PN 2WPaja, (22)
RT ERT RT RT
Then let Z = [6y/(1-y)] + 18[y/(l—y)}2 and a1, = 8y + 8, .
a2_ 2
A= P The first and second term reduce to
1
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15% erm= ~1n(1-y) + g—ly/(l-y)]g - 5(1+ A)z + k(1+2a+A%) (2 + 6y/(1-y)) (23)

nd NTTPag

2 Term= “ERT (24)

The expression for the first term can now be further simplified

3 2 .
15% Tern= -1n(1-y) -F-g— '[y/(l—y)]e— -g- - -Z-2A + %_ + 2_ZI;A— +%’-<]6—_%>(1+2°HA2)
2
=_% + A [%+ h(:?{ry)] + h(:6LB—ry)'+h:ﬁ—.y) - 1n(1-y) +§[y/l(l—y)]2 (25)

Resubstitution for Z yields

= Ag{g-[y/(l—y)l2 + 3y/(1-y)} - %[y/(l—y)l2 - 1n(l-y) + g[y/(l—y)2]

3yA

MR

- P2/ n® /) vy - mly) L (26)

Inclusion of the second term yields the simplified expression for (_}C/RT

3
= -] V2, 3 A _ _ NrPag™
G,/RT = AS{Zly/(1-y)1° + Ti'?y)} + %yi:y) n(1l-y) + ——-  (27)

The derivative of (_}c involves the derivative of A and since both aland a,

are assumed to be temperature dependent and the derivative of A

yields A(22_2'1)’ where L4 is introduced as the hard sphere temperature

da; '
dependence 1/aj (al/dT)P s then the following assumption
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is made: %%-= . Typical values of —21 for organic solvents are(lo)
_ .
.13 to .16 x 1073.°%k71 and a typical value for -4, for Argon(ll) is

-0 -
.16 x 10 3""K lso, using the above values, the assumption is valid.

Hence

Be/BT (209 a4 [y/(1-y)° . 3d(y/1-y) 8) @ 1n(1v)+ NTP 4 825
T_A {5'5@‘ + 37 }+3Aagﬁ1_(y/ly)_a_fln§1?r)f—6R_ﬁ_—T—
- a2ffav\fox \| v 1 Qi 3y 3
‘A{(dT 1-y) |2 T ) T e \ae T ) f
3
4 -3y ., 3°- 1 dy , NmP 53a22 dap  2p-
* E%'Ag(l-y)Z +(1—y)z+l—y ar * Tér | T 4T T 2 %

Further simplification yields

dG,/RT _ b2 3 43 da
5 e - wh - A e Ay TR (B2} e
6RTZ

TT3.13N
Since y = v
3n av . d
dy . _ MmN 4V 2 dap M
- Then s ar cv2  dT ¥ Td 6 (29)

: 1
The thermal expansion coefficient a? is defined as /V<;V/dT>P .

Since one is dealing with a hard sphere system, it seems.:.appropriate to
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H.S.
introduce ap as a hard sphere (H.S.) expansion coefficient (aP ).

Substituting both the hard sphere.temperatﬁre dependence coefficient 21

and the H.S. thermal expansion coefficient yields

dy _ _n H-S.
. . dy . . .

Substitution for m into equation (28) yields
ac 3

c/RT H.S. - 2 NTP
—SBT - (30,0 F 50 ) (1) 33102y A2 ¢ 3(1pA + (1) %)+ BTER

daT 1

6RT2

) = 2dGe /RT ) . .

Since Hc = -RT T one obtains the enthalpy of cavity formation as

C

(31)

The thermal expansion coefficient substituted in the equation for the

enthalpy of cavity formation, ﬁc’ was previously defined as a hard sphere
term and, hence, should be defived from an equation of state for a system

of hard spheres. The equation of state for a hard sphere system derived

(12,13)

by Carnahsn and Starling serves as a starting point

PY | ltytyi-yO
'RT (1-y)3 (32)

(312,-1)

; 3
B = yRT? (0" 5°-30 ) (1-y) T2 {3(1+2y)A% + 3(1y)A + (1-y)%)- T222- (31e,-1)
6
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Differentiating equation (32) for V yields

: o 3
V) _Rll+y+y -y}, RT[[fdy dy 2 dy a1 _ )3
AdT)P P[ (1y)3 ]+ 5 [(dT + 2y ar - " 3p) 3 =)

vy Py 3% ™ (33)

Substitution of equation (32) for g— and %?— followed by division with V

yields

- 2 _
o F5 l(%) Lo Qreeyn) L &g (g
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Further simplification yields

ay W+ hy- 2y®) e
" ar (1-y) (L+y+ yP-y3) » )

Fé?
»aI||—:

Substitution of equation (30) for —X-followed by suitable rearrangement
yields

2 3
H.S. H.S. 2 .3y _ 1 3% (ky+ by©-2y”)

(1-y) (l+y+ v2—y3) (1-y) (1+y+ y°=y3)

=l

With sufficient manipulation, one obtains an expression for the thermal

expansion coefficient for a system of hard spheres

a8 =1 (-2y+y") + o1, (2t 2v%) (37)
T 2 4 1 — 37
(l"l‘ )-ly"l' )-ly —-)-I-y3+y ) (l+ )-ly+ )-ly2- )-‘-y3+ yh)
"This is ‘similar . to the expression obtained by Wilhelm(lh) presuming

that a typographic error exists in the latter half of equation (17) in

Wilhelm's(lh) paper.

A good test for any theory is the ability to predict the partial molar
(15)

volumes of the solute , which is defined as

SOL
= 3U2,
v, = > (38)
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Hence, from (2)

3G; ) 3G 3RT

- 3 9 .
7 = + 2oc - 1n(A3).) + 2= RT 1n(x,./v.) (39)
2 aP TN oP TN aP . 2’2 TN oP 21 TN (-
- - = 14V ‘
= + + —_—
therefore, V, =7V, + 7V +RT ( = d_P) . (ko)
' . ystaio . 1 av
where the isothermal compressibility is defined as B, = - = s
T vV 4P T i
substitution for this term yields
V =V, + vV +
V=7, 0+ T, B RT (k1)

This equation clearly shows that the partial molar volume of the solute is
both ; function of the cavity formation and solute solvent interaction'upon
cEarging. Using equation (17), one can deduce quite readily the Vi term,
ggi)T . . Since Gi i; a function of the density or the partial molar

s

volume of the solute in both "terms of the egquation, then

Ei = %- (constants A - constants B) .and
- 0G4
Vi = 5§}) = - }E- %%) (const. A - const. B) (42)
T,N v T

Substitution for BT yields for a system of hard spheres

S _  9Gs = ;
v, = 551) = B | (43)
T,N

The determination of VC involves the derivative of the more complex

— G
function Gc' A good starting point is the simplified version of c/RT
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from equation (27) where 5 is defined as

S 3
5 - [/ :] ] , ®BTA . Nipap
G, = RTA® (1-y) R4 y)% * oy ~ BT In(1-y) + —¢ (Lk)
Hence
¥ = A = 2 RrA° ‘_"2 éL) & L,y 4y . '
c oP TN 2 Al-y dP 1-y (1 —y)2 dp ~
3 9}1 i + _ﬁ__ dy + RTA 9}_’. 1 + _ gx
@ (1~-y) (1-y)2 dP 3 dP 1-y (1-y)2 @P
RT gx N N’nag?’ (hs)
l1-y 4P 6
i i f &y = y(B, + ) and introduci 1 % the
Substituting or ap T =y i 3Ql and introducing Ql as al ap. °

solvent effective H.S. diameter pressure dependenece, one obtains with suitable

p

manipulation and collection of terms

e _ i N
5?2) = yRT(B, + 30;)(1-y)7 36yA2 + A% - Ay + <1-y)2}+- 22 (u6)
TN | . O 6

Finally,

V= yRe(m, S+ 3Ql)(l—y)—3{3A2(l+2y) + A(ly) + (1y)2 }+ Tee” O

c

term is that for a systemof hard spheres

(11)

and as sué¢hmust be derived from the Carnahan-Starling equation of .state

N . H.S.
equation (32) as a starting point and the definition of BT

2 3
e - 2 [ (1ereter) (u8)
¢ | P (l--y)3 ,

The isothermal compressibility

. Using

one obtains




Then
av =_1+3L9x+B_T_(l_+_2z-_3ﬁ)gx (49)
ar T P l-y ap P (i—y)3 ap
Substituting y(BT + 3Ql) for %%) yields
; T
1 av _ 1 3Y(BT + 3Q]_)) (1+ 2y - 3y2)
TV dP)T ~ P _( (1-y) 1 N Y(BT ¥ 3Ql) (1+y+ y2-y3) (50)
Rearrangement yields
1 by - by%4 2y
-—=—B+(B+3Q)[ L= ] 1
P T T 1 1- 2y3+ y)-# - (51)
L1 ~Ly - h12+ 2y3J) [—hy- hy2+ &3
- — = - - 2
L, o[- by® + 2Y3J - B ( 1 +hy + by® = by s yh) (53)

Finally, the isothermal compressiblility is given by

g H-8. 1 12 vy j -3Q(5V+”y2‘2y3 ) (54)
T Pla+ by+ by2 - hy3 +yh Tliehys byPo b3+ yt ‘

where one recognizes that the pressure P is now for a system of hard spheres
and is calculated from eguation (32). Typically for organic solvents the

pressure required to maintain the system of hard spheres at a constant

51
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temperature and volume resembling that of the real fluid system is 103 atm.

The partial molar volume of the solute for the dissolution process is given by

= - - ~ + +
v, BrG, + YRT (B + 3Ql)(l y) 33(l+2y)A + 3(1-y)A+ (1-y) 3 BRT
(55)
One notes the similarity between the equations‘(h?) for Vc and equation (31)
for ﬁg . Substitution for the bracketed term in Vc with the equivalence of
that term in ﬁc, yields for 72
- - 1 [Bpt 3Q9\ {_ NnPa 3 NﬂaQB é
Yo T Bht (e T | Bt B (BMpm 1))+ BRT 4 5 (56)

Using the original concept of the Scaled Particle Theory, as presented by
(5)

Reiss.etal. , the thermodynamic equations for the dissolution process and
the corresponding hard sphere parameters were derived incorporating an
equation of state for a system of hard spheres. Using these equations the
Pierotti S.P.T. will be examined and a pure hard sphere theory‘will be

presented and considered as an alternate method for the calculation of

the thermodynamic properties for the dissolution process.
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The dissolution process of a gas into a solvent is now considered as a

 four step process: (1) the gas solute is discharged to that of a hard sphere
with no attractive potential; (2) a hard sphere cavity is then made in
the solvent of suitable size to accommodate the solute; (é) the hard
sphere solute is placed in the cavity atua constant pressure and
temperature; and (4) the solute is then recharged, thus allowing
solute-solvent interactions. The thermodynamic steps considered in
this model are the reversible work in creating a cavity in a real
fluid as given by the S.P.T. acterm. The second is the solute-solvent
interaction in the recharging process; thié can be written in terms
of some potential of interaction and the radial distribution function
of the solvent and expressed as Ei' |

In this section four cases of the above model for the dissolution
of a gas in a liquid will be considered. For Case I, only the
solute has been discharged to that of a hard sphere and the solvent
always retains its normal potential of interaction, even so the solute-~
solvent interaction in forming the cavity is étill that of a pair of
hard spheres. A consequence of letting the solvent retain its real
potential of interaction ié that the 0, and BT values are those of |
the real solvent and a temperature dependence on the solvent effective
hard sphere diameter must be incorporated. | Case II is as
above, but excluding the temperature dependence on the solvent and solute
effective hard sphere diameters, as was assumed in the original model
used by Pierotti.

For case III not only is the solute discharged to that of é hard
sphere; but so is the solvent. A consequence of thié is that one must use

pressures calculated from an equation of state for a system of hard
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spheres (typically 10 atm.vfor‘organic solvents) to maintain the

system at the volume and temperature of the real system. Hence,

the Op and BT values will now be those valﬁes calculated from an
equation of state for a system of hard spheres. In this particular
case the temperature dependence of the effective hard sphere diametef

of the solvént and solute will be included. Finally, inFCase Iv,

both the solvent and solute temperature dependence of the.effective hard
sphere diameter will be excluded. Hence, Case IV is the hard sphere
equivalence of the original Pierotti Theory.

For the inert gases dissolved in a given solvent, one is able to plot
any solubility thermodynamic property as a function of the gas polarizability
and obtain a smooth curve. Extrapolation of this curve to zero
polarizability yields the value of that thermodynamic property for an
inert gas type hard sphere dissolved in that particular solvent. Figure 1
is a plot of the effective hard sphere diameter of the inert gases versus
their respective polarizabilities. A smooth extrapolation yields a value
of 2.55 2 for the effective hérd sphere diameter of the inert gas type
hard sphere having no attraction potential, EE/K:O, which defines the solute
hard sphere 1limiting case. o

If a similar plot of the Henry's law constant (for the inert gases in
a given solvent) against the solute polarizability is extrapolated to zero
polarizability, one obtains a value for the Henry's law constant anHO of

o
the hard sphere gas (al=2.55 A, E/K=0) in that solvent. The extrapolated

-anHO value can be equated to equation (5) to obtain

lim InK, = 1nKH6 = GC/RT + 1n (RT/V) (57)

o0
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_ FIG. 1

INERT GASES
HARDSPHERE DIAMETER (A) vs POLARIZABILITY (cmé/molec)
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One notes that Ei becomes zero when O =0, This is easily seen since
the inductive constant C; ., which is a function of the solute
polarizability becomes zero. Also, since the attractive well depth
potential for a hard sphere is zero (E2/K = 0), then the dispersive
constant C4; . is zero. This hard sphere limit value of lnKy was
originally used by Pierotti to establish the effective hard sphere
diameter value for various solvents at 298.15 Ok, This concept
was_later used by Wilhelm(1°) at other temperatures, thus
establishing a finite temperature dependence for the effective hard
sphere diameter ofva wide range of soi@ents. Since the interaction
term is zero for a hard sphere, one simply equates equation (57)to
the extrapolated anH° values obtained for the inert gases in a
given solvent over a temperature range, and solves for al at the various
temperatures (incorporating the equation for Ec), Using our data we
illustrate in Figures 2 and 3 for H,0 and D,0 the method of graphical
extrapolation to obtain 1nKH° values over a temperature range. For
these graphs my experimental solubility data was supplemented with Helium
~ and Neon solubility data from Battino(1®) in H,0 and Abrosimov(17) in
- Dzd., The curves were fitted using a cubic polynomial, Table I

?éiVes the coefficients.
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FIG. 3
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- 29

Coefficients in the equation anH = A + Ba + Ca2 + Da3

0k
283.15
293.15
303.15

313.15

283.15
298.15

308.25

A

BX10-24

H20

12.0857 -1.2291 6.889

12.0698
12.0679

12.0319

12.1084
12.0157

11,944

-0

-0

-0

9764 -2.767
.8679 -3.732[
.6917 -8.0515
D,0
.5184  30.49
.7563 -13.94
.2179 -45.80

1

2

cx10-46  px1p=T0
.007
542
.485

.820

.63
7
.24

ag( D
.01
-.04

-1

13

.01
~-.06

.10

(1) Percentage standard deviation from experimental anH values

for helium.

Setting the polarizability to zero in the cubic polynomial-for'.anH

yields the anHo values at a given temperature. Hence

Lim A + Ba +C0? 4+D03 = A = Inky°

ar 0

(58)

Substituting the anHo values in equation (57) one obtains

InKy° = Azf%fy/(1—y) 21+ 3y/(1-y) } + 3yNM(1-y)

-1n (1-y) + pra23 + 1n (RT/V)

6RT

(59)
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Recognizing for the Pierotti treatment that P = 1 atm and using

60

o «
a, = 2.55 &, one is able to solve this equation for aq, the solvent

effective hard sphere diameter of the solvent.
Table II summarizes the extrapolated anH9 values for a hard
sphere solute of 2.55 X, and the respective hard sphere diameters

obtained from solving equation (59) for'Hzo and D,0.
Table II

Solvent Effective Hard Sphere Diameters

H,0 D0
TOK  1nKy°® a; (})  1nK®  aq (a) ’
283.15 12.086 2.785 . 12.108 2.795
293.15 12.070 2.781 =mmmmm  —mee-
298.15  =-mmmm - 12,016  2.777
303.15  12.067 2.779 =mmmm=  w—eeee
308.15  =mmmmm  —mme- 11.944  2.766
313.15  12.032  2.775 =mmmm- —

Using this data one obtains a #1-value (23 = 1/a da1/dT) of

~12x 1073 % for H,0 and ~42x 1073 %k for D,,0.

It is difficult to make a quantitative assessment of all the possible
sources of error involved with the determination of %-values. Wilhelm
estimated the error to be %30% using the graphical extrapolation

method(10) | The f-value obtained for H,0 is in good agreement




3

. 61
with that reported by Wilhelm(19) of .08 x 103 °k='.  The

%~value obtained for D,0 appears unusually high with respect to
water and other solvents. This is directly attributable to the

. 3
InKy values of Helium and Neon suggesting that the data of Abrosimov

(Ref. 17) is unreliable. As can be seen from Figure 3, these values
deviate considerably from the smooth curve which is expected when‘compabed
to the H,0 curves. It is interesting to note, however, that this

method of extrapolatiion yields an effective hard sphere diaﬁeter for

both H,0 and D,0 of 2.78 2 at 298.15 9K, which is the average

value used by most workers.

If one plots the enthalpies of solution for the inert gases in a given
solvent versus the gases' polarizability and extrapolates to the hard
sphere limit, one obtains AH® for a hard sphere in that solvent.

Equating these hard sphere enthalpies and recognizing that the‘ﬁi term

in equation 6 is zero, one obtains

lim AH = Hy - RT + @ ,RTZ (60)
a~>0 :
where Hc is defined in equation (31). Since y is a function of

aq, which has previously been obtained from the anH° vaiues;
equation (60) can be solved for £1 at the hard sphere limit. The
g~value obtained with the AHC extrapolation can be compared to the
l-value obtained from the anHo values, thus producing a self
consistent check for 21. Using the original concept of the scaled
particle theory as in Case I, aPH'S° in equation (30) is replaced by
the experimental value of o, for a given solvent, and leaving %4

as an undeﬁermined variable, equation (60) can be solved to obtain

the temperature dependence 1/a da/dT of the solvent effective hard
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sphere diameter. The following table compares for selected solvents

the £, values obtained by 1nKy°® and AH® extrapolations.

Table 111

Extrapolated Solvent Diameter Temperature Dependence

MO (cal Mol™h) ARC (cal Mol™Y) 21x103 o=l 21x103 g1
exp. extrap. eqn.(60) £,=0  eqn.(60) ‘eqn.(59)
H,0 275 -90 -.08 -.08
CgHg 2750 1929 -.15 -.16
C-C¢Hqp 2550 1807 -. 14 : -.13

n'C6H1H 2250 1446 -.19 ~-.13

Included in the above table are the AH® values obtained from equation (60)
with &, having a value of zero as in the case of the original Pierotti
formulation, it is seen that these values are nowhere near the values
obtained from the experimental extrapolations. One is amazed at the
remarkable agreement between the temperature dependence of the solvent

effective hard sphere diameter obtained from the AHC and 1nKH° extra-

polations. Whilst there was never any doubt as toe the temperatureb
dependeﬁee, this points out unambiguously that the original Pierotti
formulation should in fact contain a term reflecting the temperature
dependence of the solvent effective hard sphere diameter.

An extrapolation of a plot of the entropy of solution for the inert
gases in given solvent against the gases' respective polarizability
té the hard sphere limit will yield AS® values. The values so

obtained can be compared to the theoretical entropy given by

AS = MH -~ AG = (ASO for a solute of 2.55 &) (61)
T
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The method of obtaining ASO from equation (61) is rather fortuitous
since from the assumptions in the theory itself one is not

required to deliberately set the ﬁi and Ei terms equal to zero. The
enthalpy of solution AH is given by equation (6) and the Gibbs free '

energy of solution AG is given by

AG = RT InKy = G, + G; + RT 1n (RT/V,) (62)

Hence the entropy of solution is

_ T = 2 = =
AS = H, +.H -RT + aRT" - G, - G, +RT ln(RT/vl) (63)

T

So, using our previous assumption that ﬁizai, then

AS = H, - RT + OpRT2 - Gy + RT 1n (RT/Vy) = Ag° (64)
T

H.eAnc e
AS® = AH® ~ RT anHo (65)

T

which is identical to equation (61). The AS® values obtained from
equation (65), when compared to the hard sphere extrapolated values,
prbvide a good éelf consistent check for both the 21 and aq values

used for calculations of the thermodynamic propérties of the dissolution
process. The following table gives a summary of extrapolated

thefmodynamic data using the hard sphere solute as the limiting case

63
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for selected solvents.

Table IV

Extrapolated Thermodynamic Hard Sphere Data at 298.15 ©K

As® As® As° 1nKH?
(calMol‘l QK_l). (_calMol~l °K‘l) » -(calMol—l °K‘l) EU
SOLVENT Experimental Eqn. (65), Case I Experimental Eqn.(59)
C6H6 -10.25 _ -10.22 2750 9.84
n—06H1u - 9-49 - 9-50 2250 -
n"C7H16 - 9-9 - 909 2250 70,",4
C-C6H12 -9.1 -10.1 2550 8.56

H,0 -23.0 -23.33 275 12.07

P
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Scaled Particle Theory

The S.P.T., although severely criticised, yields remarkably good Henry’s

law constants for both organic solvents and water. This is rather
unexpected since this theory treats HZO like any other solvent ;nd

does not take into accoun£ any fundamental differences (such as those
due to H-bonding). The hard sphefe equations derived in the theory
section above (taking into account temperature and pressure dérivati?es
of the solvent effective diameters) will now be shown equivalent to the

equations obtained by Pierotti.

The Henry’s law constant for the dissolution process can be calculated

via equation (5) with the 51 term given by equation (17). The
free energy cavity formation aé was shown to be

G./RT = A2 {9/2[y/(1-y)1% + 3y/(1-y) } + 3yA/(1-y) - ln (1-y) + NmPa,>

| 6RT
For Case I and 11, where P = 1 atm., the last term in the e#pression is
negligible (5;5 x 1074 for a typical gas, Argon, at 298 °K). 1In
calculating the enthalpy of solution, A H, equation (31) describes the

contribution due to cavity formation as

i - yRTzﬁag'S”‘f321)(1‘y)—3{3(1+2y)A2 + 3(1-y)a + (1-y)°)

3
- "2 (314,-1) (31)

6
Again for Case I and II, the last term is small (z.3 cal mol~l for
argon at 298 °K) and may be assumed negligible. In order to obtain

the expression for Hc given by Pierotti, it is necessary to replace

ap hard sphere by the experimental value of ap. We will write H, as

ﬁc = yRTz(aPEXP— 321)(l—y)'3{3(1+2y)A2 + 3(1-y)Aa + (1—y)2} (66)

(27)
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which 24=0 (though, as we have shown above, this is a poor approximation).

The partial molar volume for the dissolved solute is derived in equation (56)

using hard sphere diameter temperature and pressure derivatives. For

Case I, replacing hard sphere ap and BT values with experimental

values, V, at 1 atm. reduces to

3
N1Ta2

_ - » 1 fBp t 3Q1 -
G. + =[{——=—}{8) + BTRT +
2 T i T (o&, - 321 c

where Q1 was previously introduced as the pressure
dependence on the effective hard sphere diameter Q1 = 1/a1 da1/d§)T
and has been estimated to be of the order 10~ a m- , an order

(18)3

of magnitude less than the Zl—values

In order to assist in the computations of the thermodynamic properties
for the dissolution process, a PLI program labeled 'Hard Sphere'! (see

Appendix I) ﬁas developed incorporating all the required equations for
Cases I and III where Cases II and IV are obtained by setting

21 = 22 = 0. Computer calculations for the systems: inert gases Oé, N2

CHh and SF6 in H O D O C6H6, CClh, n-C 16’
C-CgHqo, and n-CgHqy over the temperature range 273.15 %K to

323.15 9K, were carried out to find the thermodynamic properties

for the dissolution process. Tables V and VI summarize all solute and
solvent parameters at 298.15 YK required for thé calculations. For
convenience, only the 298.15 ©k valueé are given for(xP, BT and

densities with the appropriate references containing other temperature

values.

(67)
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Table V

Properties of the solutes at 298.15 °k

H.S.Diameter(P) Polarizability(b) L-J Force Const.(2)

Gas o, x 108 a x 1024 E,/K
(cm) (cm3/molecule) . (°K)
Hard Sphere 2.55 0 ' '- 0
He 2.63 | 204 ' 6.03
Ne 2.78 | .393 34.9
Ar 3.40 1.63 122
Kr 3.60 2.46 171(P)
Xe 4.06(c) 4.00 221(b)
N, 3.70 1.74 95
0, 3.46 1.57 118
CH, 3.70(¢) 2.70 ( 157
SFg 5.51(¢) 4.48 201

(a) Ref. 19, (b) Ref. 7, (c) Ref. 20

The following tables present thermodynamic data at 298.15 °Kk for the

dissolution process incorporating the temperaure dependence Case I

(&) = 1/a, da;/dT) of the solvents as previously determined

at the hard sphere limit.
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Table VI

Properties of the Solvents at 298.15 °K

Solvents .07x10° U, mp\&mv és, /aTx 1011(8) g x HowAmv Bpx 104 opx 103 D
(em)” (D) (%) (em/K) (ok-1) (atm=1) (°x~1) (em/cm)
H,0 2.76(e) 1.84(P) g5 3(b) -.22 -.08 u583(1) 257(R) .997075' ™)
CeHe 5.2604) o 53 ~.8k -.16 .9808(?) 1.235(1) .g738(1)
h-C i 6.258) o 513 -.81 -.13 1.443(0) 1.247(%) 6796
cc1), mjqumv 0 536 _.75d) —anfd g e () 1,221 1 sa(®)
C-CH. , 5.65 4 o 589 .73 ~.13 1.125(") 1.21(7) 7738(1)
n-Cgh,  5.92 0 517 -7 .13 1.6270) 1.30(%) .6550(1)
D0 2.76¢) 1.84  85.3% . 0% -.08% 709 f) ,Honon 1.10445()

*

Properties assumed to be identical

to those of H

2

0

(a) Ref. T, (b) Ref. 8, (c) Ref. 21, (d) Ref. 22, (e) Ref. average values, (f) Ref. 23, (g) Ref. 10,

(h) Ref. 24,25, (i) Ref. 26, (1) Ref. 27, (r) Ref. 9



(cal Mol™1) (cal Mol %)

AH

GAS - Cale.

Hard Sphere
He
Ne
Ar
Kr
Xe
0y
Ny
CH4

SF6

(a) Reference 16

284

~56

=554

-1764

~2432

-3402

~1726

-1562

~2395

~4618

Table VII
H20 Case I

f7= -.08 x 10

Ax

Exp.

-182

-896
-2933
-3752
-4402
-2882
-2495
-3297

=-4777

anH

Calec.

11.64

11.10

10.44

9.80
9.39
'10.65
11.53
10.12

11.95

(a)‘.

1nKHv

Exp.

11.82
11.72
10.59
10.01

9.46
10.68
11.35
10.59

12.35



Table VIII

Celg Case.I

f1= -.15 x 107> %kt

AH AH .
{cal Mo1™1) (cal Mo1™ 1) Ink, 1nKH(a)
GAS Calc. Exp. . - Cale. Exp.
Hard Sphere 2768 ' — — ' —

He 2400 | 2396 9.08 9.47
Ne 1889 1984 8.05 9.09
Ar 1465 297 6.57 7.03
Kr 1119 ~431 5.71 5.90
Xe 1048 ~1695 4.89 4.45
0, 1595 409 6.71 7.11
N, 2265 1016 - 7.50 7.71
cH, 1404 ~305 6.05 6.18
SFg 3177 -778 5.73 5.94

(a) Reference 16

70



Table IX

. c--C6H12 Case I

g =-.14 x 1075 %1
AH ) O ,
(cal Mol™') (cal Mo1™}) 1nk, Ink,
GAS Calc. | Exp. Cale. Exp..
Hard Sphere 2566 - m—— ————
He 2186 2421 8.69 9.01
Ne 1655 1461 765 8.63
Ar 1161 -218 6.13 6.52
Ke 798 -831 5.27 5.37
Xe 684 — ———— —_—
0, 1282 58 6.26 6.69
N, 1915 511 . 7.03 7.18
cH,, 1068 —— — —

SFg 2620 -1377 5.23 _ 5.22




Table X T2

H-C6H14 Case I

2, = -.19 x 107> %7}
AH AH
(cal Mol™!) (cal Mo1™1) 1nk 10K,
GAS Calec. Exp. balc.‘ Exp.
Hard Sphere 2238 i —— — -_—
He 1913 1920 7.94 8.25 h
Ne 1461 1348 7.04 7.90
Ar 1052 —646 5.69 5.99
Kr 751 ~1130 4.94 4.97
Xe 672 ~2556 4.21 3.65
0, 1157 — — —
N, 1698 — — —
CH, 983 -539 5.21 5.29
ST 2366 —- — -

One can see from the above tables that the theory predicts quite well
the Henry’s law constants and relatively poor agreement is obtéined for
the enthalpies of solution as one deviates further from the inert gas
type hard sphere. Aé previously shown, the entropies of solution
provide a good self consistency check for the 21-va1ues. The
following tables compare calculated entropies for the dissolution process

of the inert gases in selected solvents at 298.15 °g.




Table XI 13

AS(cal Mole~l °K'1)H20 Case 1

2, = -.08 x 1of3 ox~
Calc. Egn.(65) 7 Exp.
Hard Sphere -23.15 ———
He -23.31 ~24.2
Ne -23.92 -26.29
Ar -26.66 -30.88
Kr -27.64 ~32.48
Xe -30.06 ~33.57
Table XII

As(cal Mole~l °K'1)~C6H6 Case I

8, = -.15x 1073 %7t
Calc. Egn.(65) Exp.
Hard Sphere ~10.14 ——
He ' - 9.98 -10.79
Ne - 9.66 | ;11.42
Ar - 8.14 ~-12.98
Kr - 7.59 -13.17
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Table XIIl

AS(cal Mole=! Og-1) c-CgHqo Case I
B, = -1bx 1070 %K
Hard Sphere Calc._$%?69(6§) ' ‘Ff?;
B - 9.9% - 9.79
Ne - 9.65 -12.24
Ar - 8.29 -13.68
Kr - 7.79 -13.45
Xe - 6.53 -14.76
Téble XIv
AS(cal Mole=1 9g-1y n-CgHqy Case I
2, = -.19 x 107 %
Calc. Egqn. (65) Exp.
Hard Sphere -9.50 -
He : -9.36 - 9.96
Ne v | © =9,08 -11.18
Ar -7.78 -14.06
Kr ~7.30 ~13.66
Xe - =6.11 -15.84

From the above tables it is clear that the entropies are predicted

relatively well for H20, whilst the organic solvent entropies are
generally low and also decrease in value while the experimental values
increase.

It is interesting to note that the hard sphere entropies calculated from

equation (65) are in good agreement with the hard sphere (extrapolated)
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limit of the experimental entropy values, which again supports the concept

of a temperature dependent hard sphere diameter.

In light of the rather poor agreement obtained for the enthalpies and

entropies of solution, these thermodynamic properties were recalculated

excluding the temperature dependence of the effective hard sphere

diameters. The following tables summérize these results for the inert

gases in the same solvents for Case II.

Table XV
H20 Case II
AH AH .Y:
-1 -1 -1 o -1
(cal Mol1™™) (cal Mol *) (cal Mol ~ “K )
Eqn.(6) Exp. Eqn. (61)
Hard Sphere - 90 —_— -24.58
He -1486 - 182 -24.78
Ne -1026 - 896 -25.49
Ar ~ohol -2933 -28.88
Kr-: -3160- -3752 -30.09 =~
Xe -4299 -Lho2 -33.07
Table XVI
C6H6 Case II
AH AH AS
(cal Mol'l) (cal Mol™l) (cal Mol™t %k™%)
Eqn. (6) Exp. Egn. (61)
Hard Sphere 1929 —_——— -13.00
He 1521 _ 2396 -12.94
Ne 931 1984 -12.87
Ar 149 297 -12.55
Kr - 325 -431 -12.43

Xe - 716 -1695

-12.11

15
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Iable XVI1

c"C6H12 Case II

AE " AH AS
(cal Mol_}) (cal Mol-l)
Eqn. (6) Exp. Eqn. (61)
Hard Sphere 1807 —— —12.64
He 1391 2421 © ~12.60
Ne 791 1461 -12.55
Ar - 22 ~218 ;12.26
Kr | =499 -831 ~-12.14
Xe -897 ——— -11.83

(a) Ref. 7, (b) Ref. 19, (c) Ref. 35, (d) Ref. 36

Table XVIII

n-C6H14 Case II

AH AH AS
-1 -1 : ’
(cal Mol ™) (ecal Mol ™)
Eqn. (6) Exp. Eqn. (61)
Hard Sphere 1446 ———— -12.16
He 1084 1920 ~12.14
Ne 563 1348 -12.09
Ar - 166 - 646 -11.86
Kr - 581 . -1130 -11.76

Xe - 944 -2556 -11.53
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One can see from the above Tables that, for Case II (excluding a
temperature dependence on the solvent effective H.S. diameter), the
predicted enthalpies of solution for.the organic solvents are generally
poor Qhen compared to fhe appropriate experimental enthalpies. It is
not surprising, however, to see good agreement between the predicted and
experimental enthalpies for H,0 using this Pierotti formulation. In
this formulation the Lennard Jones force constant E1/K for Hzo was
obtained by equating the experimental anH valﬁes for the inert
gases to the expression containing Ei and solving for the variable
parameter E1/K. Since Ei = ﬁi and ﬁi is the dominant term in the
enthalpy expression (one notes for He and Ne the -RT term cancels
the ﬁc term, leaving ﬁi as the dominant term), one expects good
agreement fér the predicted enthalpies. For Argon and Krypton the ﬁ;
values are 707 cal Mole-! éndv797 cal Mole~! respectively, while the
respective ﬁi values are -2585 cal Mole~! and -3394 cal Mole~1l.

Upon examination of the entropies, one observes all the calculated

organic entropies to be generally low and have decreasing values from
"Helium to Xenon, whilst the experimental values actually increase.

Figure 4 is a plot of the calculated entropies for Cases I, II and III

and the experimental entropies of the noble gases in Benzene solvent versus
the gas polariiability. It is clear from this graph that the remarkable
difference in the calculated entropies observed for cases I and II is
directly attributable to the solvent effective H.S. diameter temperature
dependence. One notes, however, that inclusion of an f£-value (Case I)
enables the calculated entropy to have the same hard sphere limiting case

interception point as was obtained with the experimental entropy values.
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At this point it is interesting to compare Case I and II with the

pure hard sphere treatment which incorporates pure hard sphere pressures
and GP and BT values calculated from the Carnahan Starling equation
of state. Table XIX summarizes the pure hard sphere thermodynamic

parameters used in the calculations.

Table XIX

Hard Sphere Properties at 298.15 °K

H,0 CeHg c-CgHy o n-CcH,
Px1073(atm) 7.841 3.887 . 3.426 2.368
an103(° ) 1.085 .737 .717 .770 \
anlO3(°K'l) .923 .386 .387 .332
Bpx10 h](atm -1y La13 .564 624 .968
BTxlgh?atm-l) 413 .564 .624 .968 -
g=0;

Tables XX to XXIV compare the hard sphere treatment using the
appropriate calculated values from the equation of state for
cases III and IV for the inert gases in HZO’ CeHe s C-CgHjo»

and n—C6H14 for the dissolution process at 298.15 °K.
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Hy0 Case III and IV

AH AH AS AS , 1nK
(cal Mol—l) (cal Molf})“’(cal Mol'10%415f (cal Mol;i—i)
=-.08x1073 k™% 2=0 =-.08x1073 o™t 2=0
He 2429 2088 -18.64 -19.78 13.48
Ne 2263 - 1885 -18.78 -20.05 13.27
Ar 2756 2206 ~19.39 ~21.23 1441
Kr 2757 2144 -19.60 -21.66 14.52
Xe 3572 2802 -20.11 -22.69 16.15
Table XXI
C6H6 Case III and IV
AH An AS AS lhKH
(cal Mol™%)  (cal Mol™l) (cal Mol Lgp-1y (cal Mol_lOA 1
- K~
2=—.15x10(?K_1) 2=0 =—.15x10"3 oK-l 2=0
He 1382 1088 -15.21 -16.20 9.99
Ne 833 511 -15.35 -16.43 9.13
Ar 319 -138 -15.92 -17.45 ' 8.55
Kr - 31 -536 -16.10 -17.79 8.05

Xe - 50 -677 -16.56 ~18.66 8.25
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Table XXII

C—C6H12 Case III and‘IV

AH AH AS AS 1‘nKH
(cal Mo1™')  (cal Mo171¥ {cal Mo1™ k1) (ca1 Mo1™t k1)
- -— ) / —-— —
p=—.1kx10 30g1 020 f=-.1hx1073 °5y; 2=0
He 1192 934 -14.88 -15.74 9.50
Ne 622 339 -15.00 -15.95 8.60
Ar 18 -382 -15.58 -16.91 7.87
Kr -358 -801 -15.77 -17.25 7.33
Xe -454 -1002 ~16.23 -18.06 7.40
Table XXIII
n-C¢H;, Case III and IV
AH AH AS AS 1nKy
R o - - - - -
(cal Mo1™™)  (cal Mol™}) (cal Mo1™t k1) (cal Mo1™t %1y
=-.19x1073 %kL g=0 2=-.19x1073 %kl g=0
He 896 644 -13.86 -14.71 8.49
Ne 393 118 -13.96 -=14.88 7.69
Ar -203 -585 ~14.37 -15.65 6.89

Kr ~552 -973 -14.51 ~15.92 6.37

Xe ~-715 -1231 -14.84 ~16.57 6.26
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Examination of the enthalpies for the dissolution process using the har
sphere theory reveals that the expected trend, when compared to experimental
values, exists. ‘For organic solvents, although the enthalpies are
generally low, the values decréase from Helium to Xenon, which is the
experimental trend. The effect of including a solvent effective hard spher
diameter temperature dependence for the pure hard sphere theory is not as
pronounced. One notes that the enthalpies- for Hy0 are predicted all |
positive, which is due in part to the large pfessure term in ﬁc‘
Subsequently with the inclusion of the pressure term the value of ﬁc is

pqsitive and approximately twice as large as the'Hi term. (For Argon,

ﬁc is 6697 cal mole! and ﬁi is -3394»cal mole~l.) Ohe further

notes that the predicted anH values for Hy0 increase from Heliﬁm to

Xenon while the experimental values decrease, whilst the 1nKy values

for organic solvents, although high, display the correct trend. Examination
of the entropies reveals that these values are predicted high for organic
solvents and low for H,0 but, unlike the previous cases, they increase

in value from Helium to Xenon like the experimental values. Although
generally poor agreement is obtained using the hard sphere theory, it

is interesting to see that this theory treats H20 like organic solvents

but, unlike the original formulation, has no predictive success.
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DISCUSSION

PiOt& of the experimehtal'entropy and calculated entropy for the inert
gases in H20 and CgHg versus the gas polarizability for Cases I, 11
and III are shown in Figures 4 and 5. One notes that the experimental
entropy curve and the Case I entropy‘curve (with an"21 value) intersect
at the hard sphere limit. As one deviates from‘the hard sphere limit, it
becomes apparent that a‘rather large entropy associated with the charging
process is required to bring agreement between the entropies from Case I
and the experimental entropies.

As previously mentioned, one of the inherent assumptions of the S.P.T.
is that ﬁi was assumed to be Ei’ a consequence of this being that the
calculated entropy is in fact not a function of the interaction term.
Examination of equation (64) reveals that the major contributors to
the entropy are the 60 and ﬁc terms. For Xe in Beﬁzene Case II,

_ﬁc :4800_ca1 Mole‘1, inclusion of a temperature dependence as in -
Case I yields a value for ﬁc of 9400 cal Mole~!, hence contributing
an extra 15 cal Mole~! Ok=1 to the entropy, which creates the
large difference in the calculated entropy curves for the inert gases in
Benzene (Figure 4) for Cases I and II.
| It is interesting to note that, for the original Pierotti formulation,
in Case II that the ﬁc term is almost identical to the G, term for the
inert gases in organic solvents. Typically, for Argon in Benzene,
ﬁc and Ec, have values of 3612 and 3659 cal Mole'1 respectively.
Remembering that Ei equals éi, then the entropy term for the Pierotti
_ formulation is essentially a function of constants with the major contri-
bution being Rln(RT/Vl)- As a result the calculated entropies when ' o

plotted‘against the inert gases' polarizability are almost a straight

line for organic solvents. For H,0, though, the ﬁc values are much
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less that the G, values, and hence one obtains a large negative
contribution to the entropy term through Ec resulting in a curve which

looks similar to the experimental plot shown in Figure 5.

For Case III (withA21 and QZ values), typically for Argon in Benzene
-1

the H, and G, terms have values of 3281 and 4828 cal Mole
respectively; thus the major contribution to the entropy is from these
terms, This is typical for all organic solvents and presehts é more
realistic method for calculating the entropy associated with the
dissolution process. From these graphs it is also clear that a large
entropy (Ei) contribution is required to bring agreement between the
calculated and expefimental entropy values.

At this point it is instructive to examine the magnitude of the inter-
action term for the dissolution process. Plots of the experimental anH
values for the inert gases in a solvent, with calculated (1nKy-G;/RT)
values, versus the inert gas polarizability yield in;ight into the
magnitude Of the ai term. Exclusion of the ai/RT term from 1lnKy
for the inert gases presents a "pure hard sphere" theory, a theory
whereby one can include solute and sblvent values in the EC term,
which allows one to examine the interaction term for the real system by
comparison with experimental anH values for ihe dissolution process.
Figures 6 and 7 are such plots for the inert gases in Benzene and Hzo
respectively. One notes that the experimental anH values are
identical to the anH-ai/RT values at the hard sphere solute value
of 2.5 ﬁ. As one deviates from the hard sphere limit, clearly the
‘interaction term becomes increasingly more significant. Typically
for Argon in Benzene the‘c_}i value fequired is approximately -3970
cai Mole~) as compared to a calculated value of -3088 cal Mole~!1 to

bring agreement between the hard sphere theory and experimental values.
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If one plots AH-ﬁi and_AH experiﬁental for the inert gases in a %
given solvent versus the soluté effective hard sphere diameteb, one can
clearly see the magnitude of the enthalpy of interaction required to
bring agreement between the calculated hard sphere enthalpies and the
experimental enthalpies. Figures 8 and 9 are plots of the calculated
and experimental enthalpies for the inert gases in H20 and Bénzene
respectively. It is clear from these graphs that inclusion of a
solvent effective hard sphere diameter temperature dependénce does not
produce as pronouﬁced an effect as it did for the case of the original
Pierotti formulation (Tables VII and VIII), although a large interaction
enthalpy is required to bring agfeement with the experimentally observed
values. It is interesting, however, to note that there are no parameters
in the ﬁi term which account for this difference.

Another method for the examihation of the interaction term entails
varying the solvent_effectivg hafd sphere diameter and using a hard sphere
solute value of 2.55 E, thus eliminating the’ﬁi ternm. One notes that,
in the expression for 1nKy, the partial molar volume 52 of the
solvent carries the solvent temperature dependence through ée to Ee
when one differentiates InKy to obtain A H. As a result an interesting
observation is made when one plots AH-ﬁi for a hard spheré solute of
2.55 X, calculated from the expression for AH, and AH obtained from

dlnK
the derivative of 1nkK Ag= ~RT? e |

g T equation (6)), as

a function of the solvent effective hard sphere diameter. Figure 10

clearly shows for this plot of A values for the hard sphere solute in
_Benzene an intersection point exists for the two_curves at a solvent diametgr
of 4.13 X when £.=0,=0 (Case IV). Also included on this graph is the

same plot for AH values obtained by the two methods of calculation using
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Case I (i-values) and the original Pierotti formulation, Case II. Remembering
at the hard sphere limit with 31298=5.26 X the extrapolated experimental
M° value was only obtained for Case I (see Table III). It is also

seen that in the calculation of AHC from the 1nKy values, the
extrapolated experimental AH° value‘is only obtained if the 1nKy values
are calculated recognizing that a, is a function of temperature. Clearly,
this temperature dependence is required to raise the AH-ﬁi curves of

Case II to those of Case I (as shown in Figure 10) to obtain the correct
values. One observes that these sets of curves for both cases are almost
identical and never intersect; this could in fact be due to the experi-
mental error associated with Benzene solvent % values. A change in the
Op value of approximately 3 to 5% will bring agreement between these two
curves. This agreement does not eliminate the possibility of a solvent
effective hard sphére temperature dependence, nor does it affect the
extrapolated AH® values used in the determination of a solvent H.S.
temperature dependence.

Both of the preceeding trends are also observed for all organic sclvents.
Figure 11 is the same plot of the AH values calculated by the two
methbds, but this time for Case III, with the inclusion of a hard sphere
solute and Benzene solvent effective hard sphere diameter temperature
dependence. Also included on this graph are the same blots, but this time
with a different solute effective hard sphere diameter, 3.55 X. Clearly
comparison of these two‘plots shows that the solute size has no effect
on the intersection value of 4.55 X obtained using the two methods of
calculating AH values. One notes that this Benzene solvent effective hard
sphere diameter of'4.55 R is different from the value of 4.13 X obtained

without a solvent hard sphere diameter temperature dependence (Figure 10).
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The significance of these hard sphere diameter values is shown by examigf;g
plots o% the calculated thefmai expansion coefficient (with £1=0 and

L= =.15 x 1073 °k~1, eqn. (37)) as a function of solvent effective

H.S. diameter. It can be seen froﬁ Figure 12 that a solvent hard sphere
value of 4.13 X (obtained from the intersection of the two AH curves)
calculated for the case when £1=22$0, gives an @ value of

1.23 x 10~3 %k-1 for Benzene. This value is identical to the

experimental thermal expansion coefficient for Benzene,at'298.15 oK.

For a hard sphere value of 4.5 R (obtained from the BOH curves using the
appropriate £1 values), the Op curve calculated with-l1: -.15 x 10'3 °K'1,
again gives an Gp value equal to the Benzene experimental thermal

expansion coefficient. Obtaining the experimental value of ap for Benzene
clearly suggests that the experiméntal thermal expansion coefficient

values are required to obtain self consistency between OH and anH,»

This trend is observed for alllorganic solvents and, as shown in‘Figure 11,
the a; value obtained from the intersection of the two AH curves is
independent of the solute hard sphere diameter. In calculating anH,
experimental values of solvent molar volumes at a given temperature are
used. Hence, one must input these same experimental valués in the
expression for the AH term which includes the expansion coefficient. This
explains why in the original Pierotti formulation (Case II) that comparison
of the AH values calculated from both the anH and the AH expreséion
yielded similar values. This is the case for all solvents considered and

is directly attributable to the use of the experimental expansion coefficient.
For Cases III and IV, however, the calculated hard sphere AH values for‘Hzo

using the two methods never. intersect at a realistic aq value.
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Typically for the hard sphere solute in H20’ as one decreases the a?7value
from 2.78 A to 2.38 X, the .AHQHi values decrease from 2400 to 1100
cal Mole'1, whilst the AH values'calculated from anH decrease from 150 to
-270 cal Mole~! and one never obtains the éxperimental op value.
Hénce, the hafd sphere will never work for H20 sincé one cannot
obtain self consistency through the.thermal expansion coefficieqts and,
as such, H20 cannot be treated like a typical organic solvent; thus the
theory has no predictive success with H20, This is how £he hard sphere
tﬁéory differentiates organic solvents from H20, since self consistency
can be obtained for organic solvents. The net result of this being that
a smaller solvent effective hard sphere diameter is required for organic
solvents effectively to make the Qp value calculated from the
equation of state to be equal to the experimental value. The following
table summarizes solvent effective hard sphere diameter values required
to bring agreement between the calculated and experimental thermal

expansion coefficients for selected solvents obtained by the calculation

of AH by the two methods previously described.
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Table XXIV

Solvent Effective Hard Sphere Diameters at 298.15 °K.

Solvent Pure Hard Sphere Experimental
calculated %) | (%)

n-C7H16 5.31 6.25

C-CgHy» 4.88 5.65

n-CgH ) 4.98 5.92

cc1y 4.68 5.37

CeHg 4.54 5.26

Since exact agreemént between AH calculated by the two methods is
obtained for a hard sphere solute in Hzo for Case II, it is surprising
that, upon inclusion of the interaction term and real solute values,
better.agreement is not obtained for both the AH values and anH
values when cémpared to experimental values. Also inclusion of the
interaction term generally gives poor agreement for the inert gases in
organic solvents. One must remember that the only other variable in these
calculations of both the 1nKy and AH values is the interaction term, |
which affects both of these calculations identically. At this point it
is instructive to examine actual values of this interaction term and to
check the Validity of the assumption that H; = Gj.

It was previously shown that the entropy expression was a good test
for both the 21 and a; values used. This same e#pression was
derived with the assumption that Ei was equal to ﬁi, but subsequent

plots for the entropy (Figures Y4 and 5) revealed that a large interaction

term §i was required to bring agreement between the calculated and



eiperimental entropies. It appears that, for some of the cases »
considered, the assumption.regarding Ei and Ei might be |
incorrect. The validity of this assumption can be determined by a
seriés ofvself consistency checks.incorpobating experimental values and
ﬁhe derived equations of anH and AH for the dissolution process.
These values thus obtained for the ﬁi ahd Ei terms can be compared'
to the original expression for ﬁi'

Using the inert gases in a given solvent, the expefimental anH values
can be equated to equation (5) to obtain Ei for these gases. These
values can be compared to the Ei values obtained by equating the
experimental enthalpies of the inert gases to equation (6) for the same
solvent, These values can then be compared to the values obtained
from the éxpression for Ei (equation(17)), thus determining the validity
of the originél assumption that Eizﬁizéi' The following tables
summarize these results for the inert gases in H20 and C6H6

calculated for all four cases considgred.

Table XXV
H20 at 298.15 °K Interaction Terms for Case 1 aBd I1 =
(cal 1-1) Hi(cal Mo1~1l) Eji(cal Mol~1l) _ Ei(cal mol )
(53" Eqn. (6) _ Ean. (6) Eqn. (17)
2120 - 27 = -.08x10-3 -
He - 294 ~ 96 - 526 - 399
Ne - 617 - 854 _ -1326 - 984
Ar -2497 -3093 -3753 ~-2585
Kr ~-3272 -3985 -4713 -3394

- Xe -4670 -4816 ' -5713 -4713




CeHg at 298.15 9K

G; (cal Mo1™t)
Eqn. (5)
e - 288
Ne - 708
Ar -2819
Kr -3805
Xe ~544Y

H,0 at 298.15 °K

He

Ne

Ar

Kr

Xe

- = -1y = -
g, (cal Mol 1) g;(cal Mo1™!) H;(cal Mol

Eqn. (5)

-1383
~-1903
-4849
-6065
-8675

Table XXVI

- . - ~1
H; (cal Mol 1y Hi(cal Mol )

Eqn. (6) _Eqn. (6)
21=0 £,=-.15x10"
+ 356 - 524
- 270 -1228
-2941 -4250
~4021 -5465
-6161 -7925

Table XXVII

Interaction terms for Case I and Case II

£. (cal Mo1™t)
i S

Egn. (17)
- 519
-1322
-3088
-3916
-5181

Interaction terms for Case II1 and Case IV

Eqn. (6)

21=O

-2669
-3765
~7723
-9290
-11917

1)

Eqn. (6)
3

2;;-.08x10_
-3010
~4143
-8274
-9902

-12688

- -1
E; (cal Mol )

Eqn. (17)

- 399
- 984
-2585
-3394
-4713

100



Table XXVIII 101

CeHg at 298.15 °Kk Interaction terms for Case III and Case IV

G, (cal Mo1™") H, (cal Mo1 ™ty , (cal Mo1 ™) -Ei(cal Mo1™%)
Eqn. (5) Eqn. (6) ~ Ean. (6) ~ Eqn. (A7),
He - 829 17 768 21:1'i%§10-3 - 519
Ne -1347 + 151 ' - 171 : -1322
Ar ~3989 -2654 -3110 -3088
Kr  -5192 ~3811 C -B316 -3916
Xe -T434 ~6200 -6826 -5181

Examination of Tables XXV through XXVIII reveals why the hard sphere

theory does not work, the assumption that Ei = Hi = Gi does not

hold true. The effect of including an 2, value on the H; term

(‘;10%) is negligible when compared to the large difference in the

éi and éi terms. For Cases I and II, inélusion of an £ -value creétes
approximately a 30% difference in the ﬁi term, which generally

invalidates the assumption. Clearly for the original Pierotti formulation,
Case II, the assumption is also not valid, although the differences in‘the
in the interaction terms are much less than the hard sphere‘treatment

differences. It is interesting to note that the agreement between E.
i

and @i for the inert gases in Hao is just an inherent artifact of the

method employed, as previously outlined, for obtaining E/K.



CONCLUSIONS 102
A novel approach for the treatment of gases dissolved in liquids,

utilizing the concepts of a pure hard sphe;e treatment has been examined.
The hard sphere treatmeﬁt results suggested that this theory is in fact a
perturbation theory in which the real system is approximated by a hard sphere
equivalence. This entailed the use of the Carnahan Starling equation of
state to obtain the necessary hard sphere values for the thermodynamic
properties. The recharging term appears as the real part correction and the
calculated thermodynamic properties were shown to deviate from experimental
thermodynamic properties as one increased the magnitude of the interaction
term. The hard sphere theory was shown to have no predictive success for
the treatment of gases dissolved in H20. The theory effectively treated
H20 as a typical organic solvent but, due to fundamental differences in the
.molecular properties (small E/K, al) and calculated hard sphere properties
(small aP and large P), and effects due to hydrogen bonding, the theory was
not capable of making valid thermodynamic predictions for the dissolution
process. For the treatment of gases dissolved in organic solvents,
a remarkable parallel was shown to exist between +the predicted
enthalpies and those predicted by the original Pierotti formulatibn.
The Henry's law constants for organic solvents typicaliy gave agreement
for Helium and Neon solutes, whilst deviating substantially as one increased
the solute value of E/K. Using the hard sphere treatment the calculated
entropies were shown to parallel the experimental values, unlike the
original Pierotti formulation. - Since no interaction term exists in this
‘calculation and the pressure terms from both the §c and ﬁc terms
effectively cancelled, this suggested that the Hc term was in fact
a valid approximation for the enthalpy of cavity formation. The disparity

observed in the numerical predictions of the entropies is a reflection
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of the poor choice of thermal expansion coefficients and was exemplified

by observing - the differences in AH»ﬁi calculated from both the derivative
of 1nKy and the expression for AH for the inert gases.

The original Pierotti formulation appeared po predict with limited
success the thermodynamic préperties fbf the dissolution of a gas in
H;0 and organié solvents, which is due in part to the use of the
experimental thermal expansion coefficient. It was also shown unambiguously
that the assumption 21=0 was in fact wrong. As was shown in the
Experimental section (eqn. (7)), the thermal expansion coefficients
accounted for the transfer coefficients of a solute from H20 to
D20, which further substantiates the choice of thg experimental thermal
expansion coefficients used in the calculation of the enthalpies. One

"also notes that inclusion of a solvent effective hard sphere diameter
temperature dependence does not affect the calculation of the transfer
coefficients. The predictive success of this theory in H20 was due
to ﬁhe fitting procedure used to obtain the low value of E/K for H20,
effectively fixing the interaction term. Agreement in organic solvents
(typically Benzene) was shown to be fortuitous.in the original Pierotti
formulation predictions, as in the case of the entropies, where the calcu-
‘lated entropies only crossed over the experimental entropy gurQe for the
inert gases for a solute with molecular properties typical 6f Argon gas.
A good test of this theory was the predictions of limiting case at hard

isphere limit. The theory was shown to be inconsistent.

The solvent effective hard sphere diameter temperature dependence
was obtained at the hard sphere 1imi§ and compared eitremely favourably

with the value obtained using extrapolated enthalpy and anH values.
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Although generally poor thermodynamic agreement was obtained upon inclusion

of this 2—valhe, it suggested that the ﬁ; term was correct aﬁd that the
assumption E;=H;=G; was invalid. Figure 13 is a plot of the
difference in the experimental enthalpies of the inert gas in Benzene
calculated from the original Pierotti formulation and Case I (inclusion
of an f2-value) versus the solute effectivelhard sphere diaméter. Clearly.
inclusion of the f%-value gives better agreement for the small solutes
and deviates about the same as does the original Pierotti formulation
for the larger solutes.

One would not expect a theory of gas solubilities to predict the
thermodynamic properties associated with the diésolution of a gas in
both B,0 and organic solvents that does not take into account fundamental
differences. At this point the hard sphere treatment yields encouraging
results for the trestment of organic solvents.

A novel gas chromatographic technique was developed which ailowed
direct détermination of gases dissolved in H20 and D50 by comparison
of the stripped gas with a gas calibration curve obtained under conditions '
matching those of the stripped gas. This technique is rapid and
efficient, requiring minimum amounts of solvent, of which all is
recovered. The system also has a built in standard, thus allowing

for the determination of the solubility of a gas in both H20 and

D20 simultaneously under identical conditions.
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APPENDIX I

'"HARDSPHERE PROGRAM'
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//CAB JOB (0022, 05013),'733 01 -4039',TINE=0001

/¥JOBPARN PSWD=COS

// EXEC PLIXCG,CPARM='NRA,NX, NAG, NOP',REGION-180K

//SYSIN DD * ;

HARDSP :PROC OPTIONS (MAIN) ; -
4/****** #********************* *******************************/

i E N DBCLARATIONS L L */ .
Vi ' y . . %
/% YHCT' : ENTHALPY OF -CAVITY PORMATION, ., . . x/. .
/% YHI' . : ENTHALPY OF INTERACTION BETWEEN THE SOLYENT - ®f
/¥ ~ AND THE SOLUTE.. . */
/% 'YGI' . : GIBB'S FREE ENERGY.OF INTERACTION BETWEEN THEV*/
/* ' . SOLVENT AND THE SOLUTE.. . */
/* '6C' . : PARTIAL MOLAR GIBB'S FREE. ENBRG! OF cavxrx */
Vi FORMATION. , = . L o U 7
. /% 'P' 3 PRESSURB.. . .
/¥ 'T*  : TENPERATURE( DEGREES KELVIR ). S X/
/%¥ 'Yt : COMPACTNESS FACTOR OF THE SOLVENT.. . x/
/% 'AP'  : THERMAL EXPANSION COEFFICIENT OF THE SOLYENT. .*/ .
/% 'YAPX*' : EXPERIMENTAL THERMAL EXPANSION COEFFICIENT. x/
/* _ OF THE SOLVENT.. . . NS V2
/% '¥V1*  : PARTIAL MOLAR VOLUHNE. OF THE sonvauT.w“.m . */
/% 'V2' . : PARTIAL MOLAR VOLUME OF THE SOLUTE. L */
SV4A ERD L : MASS. ., - . . L _ */
/% 'D*  : DENSITY.. /.
/% 'A1%  : EFFECTIVE HARD SPHERE DIAMETER OF THE SOLVENT */.
/% VA2 : EFFECTIVE HARD SPHERE DIAMETER OF THE SOLUTE. .*/
/% 'L1' : LINEAR EXPANSION COEFFICIENT OF THE EFFECTIVE */
/* " HARD SPHERE DIAMETER OF THE SOLVENT.., . */ .
/% 'SG'  : RATIO OF THE HARD SPHERE DIAHETERS. OF THE */
/¥ ‘ SOLUTE OVER THE SOLVENT.. */
/%  1'SG12° : HARD. SPHERE RADIUS OF A SPHERE HHICH EXCLUDES */
Vi '~ THE CENTERS OF SOLVENT MOLECULES, (A1+A2/2), */.
/* '~ WHERE 'A2' AND 'A1% ARE DEFINED ABOVE, . . */
/* 'A1S' : EFFECTIVE HARD SPHERE DIAMETER OF THE. SOLVENT */
/¥ " AT S.T.P.. . 74
/* 'DAIDT': THE TEMPERATURE DEPENDENCE OF 'A1Y, . */
/* 'E1K' : MAGNITUDE OF THE FORCE POTENTIAL . DUE TO THE */
/* ‘ INTERACTION BETWEEN TWO SOLVENT MOLECULES,. */
/* ,  DIVIDED BY THE BOLTZMAN'S CONSTANT 'K'.. */
/% 'E2K' : MAGNITUDE OF THE FORCE POTENTIAL DUE TO. THE */
/¥ _ INTERACTION BETWEEN TWO SOLUTE MOLECULES, . */
/* . DIVIDED BY THE BOLTZMAN'S CONSTANT 'K', */
/*¥ 'E12K' : SQUARE ROOT OF THE PRODUCTAOFI'E]K?.ANDM'EZK' */
/% 'DPM1' : DIPOLE MOMENT OF THE SOLVENT.. . _ . .. . _ */
/* 'YP0O2' : POLARIZABILITY OF THE SOLUTE.. . = . . . 74
/*¥ 'RO! : NUMBER DENSITY OF THE SOLVENT. . o */
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/* V'LEKH' : NATURAL LOGORITHM OF HENRY'S LAW CONSTANT, x/
/¥ BT : ISOTHERMAL COMPRESSIBILITY OF -THE SOLVENT., */
/* 'BTX' : EXPERIMENTAL ISOTHERMAL COMPRESSIBILITY OF. *x/
/7* . THE SOLVENT. . . */
/% 'DHS' . : TOTAL ENTHALPY OF THE DISSOLUTION OP . THE *x/
[k "’ SOLUTE INTO THE SOLVENT.. . . */ .,
~ /% 'sSU'. . : INPUT/OUTPUT ARRAY TO HOLD. THE SOLUTE. VALUE.W,!/._
/% . 'SY' . : INPUT/QUTPUT ARRAY 10 'HOLD THE SOLVEHT YALUE, .*/
/%. 'R* . .z IDEAL GAS. consrAur. U R 24
/% 'N' 3 AVOGADRO'S NUMBER.. .. . .. . 72
/% YK, . : BOLTZMAN'S consrAur.# SR ) 4
/¥ 'PI'. ,¢: CONSTANT. . e */
/*__'3'1” : . 'SYSIN' PLAG. . I VA
/% 'I'  : ARRAY SUBSCRIPT. . . %/
/*:7'SPECS':,INPUT SPECIFICATIONS VARIABLE . */
/% . YOUT1'. : ARRAY TO STORE THE FIRST SET OF OUTPUT. DATA.. */
/% 'OUT2' : ARRAY TO STORE THE SECOND SET OF OUTPUT DATA..*/ -
/% 'TABLE': ARRAY TO STORE THE DESIRED INPUT DATA WITH. . */.
Wi : THE COLUMN HEADINGS( T , D(BZO) + APX (H20).¥ */.
V4 : .. BTX(H20) ., D(BZ). ., APX(BZ)., BTX(BZ) }.. . */
/% */ .

/****** ****t*** ***** dkkdok #****t*****#*************** ***#****/
DCL (HCT,HI,GI,GC,T,Y,AP,APX,¥1,V2,H,D,A1,A2,L1,12,5G,5612,A1S,
DA1DT, E1K, E2K, E12K, DPM1, P02, RO, LNKH,BT, BTX, DHS, DA2DT) .
FLOAT DECIMAL(5), - :
(SU,SV) CHAR(10), L

R FLOAT DECIMAL({S) -INIT(1.987), .. .. ... . _.

P PLOAT DECIMAL(5) INIT(0), ' ;

N FPLOAT DECIMAL {5). INIT(6.0225E+23),
K FLOAT DECIMAL{5) INIT(1.38054E-16),
PI FLOAT DECIMAL(5) INIT(3.14159),

S BIT(1) INIT('0°'B), -

I FIXED(1), SPECS FIXED(1),

0UT1(7,6) FLOAT DECINAL(S),
0UT2(7,6) FLOAT DECIMAL(S),
TABLE(7,22) FLOAT DECIMAL(5);

/% LOAD THE ARRAY 'TABLE' */
GET LIST {TABLE) ; .

/* SET 'SYSIN' FLAG 'S' TO '1'B IF END OF FILE */. .
ON ENDFILE(SYSIN) S = '1'B; L o

/% OBTAIN VALUES FOR THE SOLVENT AND THE SOLUTE */
GET EDIT(SV,SU) {COL(1),A(10),A(10)); .. . o



/* LOOP THROU
/% 'SYSIN' FL
DO WHILE( S =

~ s# SELECT THE
SELECT (SU) ; .

/* WHEN THE
WHER (' HE')

/% WHEN THE
WHEN (' NE')

/*  WHEN THE
WHEN (*AR")

/¥ WHEN THE
WHEN (KR ')

/* WHEN THE
WHEN (' XE')

, 111
GH THE INPUT SPECIFICATIONS WHILE THE */
AG 'S' IS EQUAL TO '0O'B */ .
10'B ) . _ :

APPROPRIATE SOLUTE 'SU' FROM THE INPUT */

SOLUTE IS 'HELIUN' . */.

.DO; .
SU = 'HELIUM'; -
A2 = 2,63E-08; :
E2K = 6.03;:
P02 = ,204E~-24;
SOLUTE.IS ' NEON'  */.
DO;
SU = 'NEON'; : -
A2 = 2,78E-08; . _
E2K = 34,3; .
P02 = ,393E-24; _
END; S L
SOLUTE IS *ARGON' . */ _
DO; : .
SU =. "ARGON'; .
A2 = 3.40E-08; -
B2K = 122; .
P02 = 1.63E-24; .
END; , .
SOLUTE IS 'KRYPTON' . %/
DO; .
SU = 'KRYPTON';  _
A2 = 3.60E-08; . L *
E2K = 17%1;
PO2 = 2,46E-24;
END;
SOLUTE IS 'XENON'  */ .
- DO; - ' A
SU = YXENON'; .
A2 = 4,06B-08;  _
E2K = 221; . .
P02 = U4,00EB-24; . S S
END; - o

/* WHEN THE
WHEN (' N2')

SOLUTE IS ! NITROGEN! . */.

. DO;




SO
A2
E2K
P02
END

/* WHEN THE SOLUTB 1s

wuzu('oz-) DO;
su
A2 :
. E2K
_ PO2

_END; .-
/% WHEN THE SOLUTE IS

H "

QHEK('CHQ') DO3..

SU
A2
. E2K
P02
END;

/* WHEN THE SOLUTE IS .

HHEN('SFG') DO; -

SU
. A2
E2K
P02

END;

/% THE INPUT VALUE FOR SOLUTE

OTHERWISE

PUT SKIP(2) LIST (*** ILLEGAL SOLUTE **t,SU).,'Q]f L

END;

/* CALCULATE DAT
DO SPECS =

/* SELECT THE APPROPRIATE SOLVENT

SELECT(SV) ;

0 TO 1%;

A

o

112
" NITROGEN®';
95; ‘
‘.7UE’2u’;
"OXYGEN' _*/. ..
TOXYGEN'; - .
3,46E-08; - e
118 | ,
1.57E=-24; -

YMETHANE' . %/ .
*METHANE': L
3,70E-08; . . o

157; . |
2.7OE,2¢r;,

'S-HEXA-F' . */. . _ _ . _ ...
' S-HEXA-P'; .
5.51E-08;

201;

'SU' WAS ILLEGAL */
FOR BOTH INVESTIGATORS */
'SY' FROM THE INPUT */

DO CALCULATIONS FOR THE */

/* WHEN THE SOLVENT IS *H20!

/* ENTIRE TEMPERATURE RANGE, _ L %/
WHEN ('H20') . ]
DOI =1TO 7;

M = 18.0154;

D = TABLE(I,2):



. BTX

: 113
A1S = 2.,765E-08;

DPM1 = 1.84E-18;
APX = TABLE(I,3):
BTX = TABLE(I, u).
IF SPECS = 0
THEN DO;

ELSE DO; - S
- L1 = -,08E-03;. ,
DAIDT = -.2223-11'"-
EIK = 85°'
END; _ '
~ CALL CALC;
ENDS -

/%  WHEN THE SOLVENT IS *'BZ ' DO CALCULATIONS FOR THE */
/* ENTIRE TEMPERATURE RANGE. ., . 4
WHEN('BENZERE') = .
DO I = 170 7;
N = 78 114 - .
D = TABLE(I, 5).
A1s = 5, 26E-08;
DPN1 = 0;
APX TABLE (I, 6),:
TABLE(I,7);
. E1K 531;.
IF SPECS = 0
THEN DO; - }
Lt = 0;
DAIDT = 0O; .
END;
ELSE DO; . .
~ Lt = -,15E-03;
DAIDT = ~,7893E-11;
END; ‘
CALL CALC; .. . .
END;' o

([T}

WHEN('N-C7TH16') -
DO I = 1.T0 7; . L e
100.21; ) A e
TABLE(I,8) ;.

W ou

M
D




, DPH! = 0'

- 1IF SPECS = 0

114
AlS = 6, 25E-08;

DPM1 = 03
APX = TABLE(I,9);
BTX = T&BLE(I,!O).. o R , ;
EIK = 573-~' , | E e
- IF SPECS = 0. : . o e
THEN Do-f y,‘ , I e e o
S L1.= 0. . e e e
DAIDT = 0. r o . : e
END; . . . : e

BLszlpo;,_
Ll = -.13E- 03.,
DA!DT "'QB‘E ,"'
END; .

CALL CALC; .

END{ H i

WHEN (*CCL4") :

DOI=1T07;.

M= 153.82;. . . . o , L

D = TABLE(IL 11) 3. . L
 A1S = 5,37E-08; | e e
APX = TABLE(L, 12); .

BTX = TABLE(I, 13),7 |
E1K = 536; . S o

THEN DQ.a
S Lt.=0

,DA‘DT

END; -
ELSE DO; . o

L1«= ‘.1“E-03;’

DAVDT = -,75E-11;

END; . o - .
CALL CALC; . ' . e
END: o : .

03

WHEN(*C~HEXANE!) -
DO I = % T0 7;

M = 84,16 .

D = TABLE(I,14);
A1S = 5,65E-08;
DPM1 = 0; .

APX = TABLE(I,15);




- APX

BTX = TABLE(I,16); .

E1K = 5893

IP SPECS = 0

THEN DQ3 .

L1 =0

DA1DT
END; .

ELSE DO; .
L1«=~‘01“Ef03;r
DAIDT = -,79E-11; -
END; .

CALL CALC; .

'END; ;-

O;i.

WHEN('N-HEXANE')
DO I =1TO0 7; .
M = 86,18; .
D = TABLE(I,17): -
A1S = 5,92E-08; .

DPM1 = 0; = .

APX = TABLE(I, 18);

BTX = TABLE(I,19); -

ElK = 517 . .

IF SPECS =.0

THEN DO; . :
L1 = 0; .
DAYDT = 0; .

. END; -
ELSE DO; ..

L1 = -clgngB;.

DAIDT = -1,125E-11; .

END; .
CALL CALC;
. ENDg

WHEN('D20') -

DOI =1T07;.

M= 200028;:. .

D = TABLE(I,20)::
Als = 2,7658~08;
DPM1 = 1,84E-18;
TABLE(I,21) ;-
BTX = TABLE(I,22);
IP SPECS = 0

THEN DO;

115




116

ELSE DO; L .- .
L’ . 0122"‘03' N R e
DkiDT = =,33B-11; ... _
EVK = 85; .. .. . . . .. L
END; - , . : o e -

. CALL CALC"‘ - -

END; - T

/% THE IHPUT YALUE FOR SOLVEHT 'SV' WaS ILLEGALA x/.

OTHERWISE o .

PUT SKIP(Z) LIST('** ILLEGAL SOLVENT **',SV).,;,.M

END; . L o -

/* OUTPUT THE DATA STORED FOR THE SPECIFIED SOLVENT */
/* AND THE SOLUTE,. . o %y
CALL OUTPUT; : .. o e
END;

. /*  GET THE NEXT VALUES FOR SOLVENT AND SOLUTE,. */ _
 GET EDIT(SV, sn)(COL(i) 3(10) 5(10)).w

END;. : '

/7* CALCULATIONS FOR THE OUTPUT . */.
CALC:PROCEDURE; .. . . '

T = TABLE(I,1); .. | , I

Y1 .= M/D; .. . , . L

RO = B/V1; .

DA2DT=-5,.44E-12; .

L2 = DA2DT/A2; .

A1 = A1S+DA1DT* (T-298. 15),.M

56 = A2/A1S5; .

5G12 = (A1+A2)/2-‘

E12K = ({E1K*E2K)**0.5) ; .

Y = (PI*(A1%%3) ¥N) /(6%V1); . _
i CHOOSE THE DESIRED 'AP'  */ _

IF L1 = 0
THEN AP = APX;
ELSE AP = (1/T)*(1-2% (Y#¥3)+ (Y**4)) /

(1+u*y+u*(y**2)—u*(z**3)+x**uj'* L




(BXL 1) * ((2%Y+2% (Y*%2) -Y*%3) / 117
(1+q*zfa*(z**2)-u*(z**3)+x**u)):_
IF L1 = 0 I

THEN P = 03 .

ELSE P = 82. 0575%T/V1* (14Y+ (1%%2) = (1%*3)) 7 ( (1-1 ,**3,-

HCT = (Y*R* (T#**2)* (AP-3%L1)* ((1=Y) **=3) % 3

(3% (142%Y) % (SGH*2) +3% (1-1) *SG+ ({1-X) *+2)))
 (R*B*PI*P*(A2%¥3) % ((3*¥T*L2)-1))/(6%82. 0575).v,,Am
BI = =3,555%R¥PI¥RO¥ (SG12¥%3) ¥E12K =< -
' '1,333%R/K*PI*RO* (DPM1%%2) ¥P02/ (SG12%%3) ;

/%* LIST CALCULATIONS OB ARRAY 'OUT1' FOR LATER PROCESSING .*/

CALL LIST1; . o o o

6I = Btz . . . o y

IFLL=0 |

THEN P.= 03 .

ELSE P = P . .

GC.= R¥T*(SG*¥2)* (9/2% ((T/ (1-Y) )**2) +3%Y/(1-Y)). .® .
3%Y#SG¥R*T/(1-Y) ~B*T*LOG ((1-Y)) *. - o
N*PI*P*(AZ**3)*R/(6*82.0575),ﬂ D

.~ LYNKH = GI/(R*T)+GC/(R*T)+LOG((82 057S*T/V1)). R
/* cuoosn 'THE DESIRED 'BT' %/

"IF L1.= 0 L L A.;“ o
THEN BT = BTX; -
ELSE BT = (1/P)*(1-2%(Y#¥3)+ (1*¥4)) -/ .

| (T+U*T+U % (THK2) =4k (TH53) +Y*EL) 5 . .

V2 = BT/ (AP-3*%L1) *HCT/T*82, 0575/R+BTX*GI*82 0575/R +
BTX#82,0575%T +N*PI* (A2%%3) /6 . .

DHS = HI+HCT-R*T+APX*R* (T**2); . _ )

/% LIST CALCULATIONS OF ARRAY 'OUT2' FOR LATER PROCESSING */

CALL LIST2; . S , S

END; .

/* PROCEDURE TO STORE THE FIRST SET OF OUTPUT CALCULATIONS */
LISTl :PROCEDURE; . . : . . :

OUTi1(I,1) = T; ..
OUT1(I,2) = Al;.
oUT1(I,3) = .Y; .

- OUT1(I,4) = AP
OUTI(I,5) = HCT; .. .
OUT1(I,6) = HI; .
END; ’

/* PROCEDURE TO STORE THE SECOND SET OF OUTPUT CALCULATIONS */
LIST2:PROCEDURE; o | | S
00T2(I,3) = T; .




0UT2(I,2) = DHS; - ' 118
OUT2(I,3) = GC;

OUT2(I,4) = LNKH; .

oUT2(X,5) = BT;. . -
OUT2(1,6) = V2;.: )

ERD; .

/* PROCEDURE TO OUTPUT THE DATA STORED IN THE OUTPUT %/
/* ARRAYS 'OUT1' AND °'OUT2' WITH.A SPECIFIED SOLVENT . */ .
/* AND SOLUTE AND °'L1‘ VALUE.. . L %y
OUTPUT 2 PROCEDURE‘;QH. e ; - '
IF L1.= 0.
THEN . PUT PAGE LINE(Q) EDIT('R;,A.,PIEKOTTI"S DATL')
" (COL(6),A);
ELSE PUT PLGE LIKE(“) EDIT('B.(lo‘COSGROYE"S DATA')
 (COL(6) ,A); .
PUT LINE(8) EDIT('SOLVENT = ';SV,'SOLUTE ,SU,'Ll = ', LY) .
T (COL(6) sA, B, X(12) LA, A, X(13) , A, E(12,5))
PUT SKIP(2) EDIT('TEMP!, 'A11,0YY, VAP, VECT?, 'HI') .
(COL(7),A,X(9) ,A,X(14),A, X(13) ,4,X(13) A, X(12) ,A); . .
PUT SKIP(Z) EDIT(' ='_:===:,===_==-_‘===?======_==?============:=:=-,
) ) :::::::::::::::::::::;::::::;::::;:::;;: H
- ~ (COL(6) ,A, 1) ; . e
DO I = 1ToO Y HE
POT SKIP(Z) EDIT(OUT 1(I,1) ,00F1(I,2),0UT1(I,3),
,  O0UT1(I,4),0UT1(L,5),0UT1(I,6)) . .
(COL (6) F (6,2) »X (3) +E(12,5) +X (3) LE (12,5) ,X(3) &
"E(12,5), 1(3) E(12,5),X(3) ,E(12,5)); ..
END; . ’ , S
PUT LINE(32) EDIT('TEHP' *pHS?, 'GC' 'LNKH' 'BT' 1var)
(COL (T) sA, X (9) s 2, X(12) JhoX(12) , B, X (12) »R,X(13) ,A) 5.
PUT SKIQ(Z) EDIT(! :::::;:::::::::::z::.t::::::::::::::::;:::"

~ {COL(6) ,A,B);
DO I=1T07;.
PUT SKIP(Z) EDIT(OUTZ(I 1) ,00T2(1, 2) OUTZ(I 3),
ouT2(1,4) ,0U0T72(1,5),00T2(1,6))
(COL (6) ,P (6,2) ,X (3) 3(12 5) « X (3) 3(12,5) X(3) ¢
E(12,5),X(3) ,E(12,5),X(3) ,E(12,5)) ;.
END; o T e

END;.j





