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ABSTRACT

In recent years there have been many advances in the analysis
of directional data expressed as two and three dimensional unit vectors.
The extension of these methods of analysis to p dimensions is presented
in this thesis. Although directions in higher dimensions do not have
a physical interpretation, data which can be recorded as p-dimensional
unit vectors arise in many areas; an example is when the data are in
terms of p continuous proportions.

The von Mises and Fisher distributions have been widely used
in the analysis of directional data in two and three dimensions
respectively; these are described in Chapter 1. The extension of these
distributions to higher dimensions is given in Chapter 2. Tests are
given for hypotheses of interest in the analysis of groups of
p-dimensional unit vectors. In directional uses, a common technique
is a form of analysis of variance introduced by Watson. It is shown
that this technique can be used with p-dimensional unit vectors.
Further, it can be developed also for a two way layout with a natural
extension to a multi-way layout. The analysis of variance can also be
expressed in terms of angles between the vectors and their resultants,
and this is a useful representation with many types of data.

It is also often of interest to examine the clustering of
unit vectors; a simple method of clustering is given in Chapter 3.

The results obtained in the examples are compared to those found by

means of standard algorithms.

¢
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Chapter 4 is a chapter of worked data sets; several examples
are worked through to demonstrate both the p-dimensional ANOVA techniques
and the clustering method.

As a result of working with these techniques, a number of
problems have been identified. These are briefly discussgd in

Chapter 5.

(iv)




ACKNOWLEDGEMENTS

My thanks are extended to the Statistics group of the
Mathematics Department; in particular Dr. C. Villegas and.Dr. K.L. Weldon
who helped me during the course of my studies, and especially
Dr. M.A. Stephens who has supervised this thesis with great patience
and always gave me encouragement during my graduate work.

Thanks to John Spinelli for the friendship and‘interest of
a fellow graduate student.

Ms. Sylvia Holmes typed this thesis with great speed and
accuracy, and I thank her for her tolerance for all the extra bits I
kept giving her.

My final and important thanks are due to the Mathematics
Department, and particularly the two chairmen Dr. Norman Reilly and
Dr. Manohar Singh for supporting me in the Department, and to
Ms. Judy Easton and Ms. Betty Dwyer for their kindness which has-
made my life here as a student most pleasant. I hope my contribution

to the Department has merited the support I have been given.

(v)



TABLE OF CONTENTS

APPYOVAL o ¢« ¢ o o ¢ 4 4« 4 e o s = e s 8 s e v e s e o s e o & o (ii)
ADStract « o o o o o o o o o o s o o o a s o s & o s o o o o « « (iii)
AcknowledgementsS « « ¢ o « o o o o o o o o o o s s & o o o o o o (v)
Table of Contents + o ¢ o o e o o ¢ o o s s s o o » o = o o o &« (vi)
Chapter 1. The von Mises and Fisher distributions . . . . . . . . 1
Chapter 2. The von Mises distribution iﬁ p-dimensions.. . . . . . 9
Chapter 3. CluStering « « « « o o « o o o o o o s = o s o » o » « 45
Chapter 4. EXaAMPlES o « + o o o = o = s = s =« o o s « s« o« o « o« » 55
Chapter 5. Suggestions for further work . . . . « . ¢« . « . « . . 75
Appendix 1l: Datad SEES « o « o « o o o = s = o o « = o « o« =« = « « 80
Appendix 2: Normal approximations to the F-distribution . . . . . 98

Bibliography -« e o « = o o « s « o o o o o o o = o o« =« + o o« « « o 110

(vi)




|

CHAPTER 1

The von Mises and Fisher distributions.

Useful distributions which have been used for the analysis
of directional data are the von Mises distribution in two dimensions,
and the Fisher distribution in three dimensions. In this chapter we
describe the von Mises and Fisher distributions. In Chapter 2, they

are generalized to p dimensions.

1.1. Directional Data.

Suppose the direction taken by a bird when released from
a point O is denoted by a unit vector OP starting at the centre,
O , of a circle of radius one and finishing at a point P on the
circumference of the circle. The vector OP 1is an examplé of a piece
of directional data, in two dimensions. In three dimensions, the point
P would be on a sphere; an example of directional data in three
dimensions is the direction of magnetization of a rock sample.

In higher dimensions, a p-dimensional directional sample
value is denoted by a unit vector OP starting at the centre O of
a hypersphere of radius one énd finishing at a point P on the
surface of the hypersphere. Although a p-dimensional unit vector does
not have a physical interpretation in terms of direction, a set of
vectors whose components are continuous proportions might be
usefully analyzed using techniques for directional data. Examples
of such vectors of continuous proportions are the vector giving the

proportioms of time spent in different activities by a student and




the proportions of a company's production allocated to various

outputs.

1.2. The von Mises distribution.

Let OP be a typical unit vector in two dimensions as
described above, and let OA be a fixed unit vector (it.can be
thought of as pointing to the North Pole); suppose 6 is the éngle
between OP and OA. Then the von Mises distribution for 8 is

given by:

1

£(0)
T o)

exp(k cos 0); -I =6 =1, (1.1)

T on (x)

where I(O)(k) is the imaginary Bessel function of order zero and
argument k .

The density (1.1) is symmetrical, with a mode at 6 = 0;
thus the vector OB is called the modal vector. The constant k is
a precision or concentration parameter; when k is zero, the density
is uniform over the circle, i.e., the points Pi are uniformly
distributed on the circumference. A sample of vectors OPi is then
often said to be randomly distributed over the circle. When k is
large, the vectors are clustered around the modal vector OA .

The density (1.1) can be extended to place its mode along

an arbitrary vector OA at 6 = a;

£(0) = ﬁ—%m)— exp{k cos (6-a)}, -I =<6 <1, (1.2)




If the direction cosines of the vectors OA and OP are (al,az)

and (x ,x2) respectively, the density is given by

1

f(xl,xz) = exp{k(xla + xzaz)}. (1.3)

-1
20 Io(k) 1

The von Mises distribution has found many uses to describe
directional'data clustered around a mode; for example, the flights of
migratory birds mentioned in Section 1.1, or the progress of animals

or insects toward a certain point.

1.3. The Fisher Distribution.

The Fisher distribution is the analogue of the von Mises
distribution when fhe vector OP is in three dimensions, i.e., O
is the centre of a sphere of radius one, and P 1is a point on the
surface of the sphere. The vector OP will be denoted by spherical
polar coordinates (6, ¢). Suppose OA, the modal vector, is the

origin for & . The Fisher distribution for (6, ¢) is given by:

k sin®

- — e e ———_— < < - < <
all sioh(K) exp(k cosB), (0=6=1T; 0= ¢ = 2II) (1.4)

f(e, ¢
where k 1is, as before, the concentration parameter. Note that the
density is symmetrical around 6 = 0. If we wish the modal vector OA
to lie along an arbitrary vector, the description of the density is
much more complicated and it will not be written in full. If the
direction cosines of the vectors OA and OP are (al,az,a3) and

*

(xl,x ,x3) respectively, the density per unit area is given by:

2




k
,x3) = ——— exp(k(xla + x,a, +x

£x,.x = 21 sinh (k) 1 222

1772 a3)) (1.5)

3

i.e., like the von Mises distribution, it is proportional to
exp(k cosb). Fisher suggested that this is a useful distribution in
the earth sciences when doing studies of palaeo-magnetic data and

sedimentary geology.

1.4. Statistics associated with the Fisher distribution.

In the next two sections we give some basic estimation
results and tests derived by Fisher and others for the three
dimensional case; analogous results for the two dimensional case can
be inferred immediately. Suppose a sample of N unit vectors OPi

xil'xiz'xi3) be the

is given on the surface of a sphere; let (
direction cosines of the i-th (i = 1,...,N) observation. The
resultant (denoted by R) of the set of N vectors is defined as

the vector with components:

N N N
R = (Xl,xz,x3) = (‘Z X.q7 .Z X ot .Z xi3) (1.6)
i=1 i=1 i=1
The length R of the resultant is given by
1/2 1/2
r=x2+x’+x5 = (®rH (1.7)

t
where R~ denotes the transpose of R .




The maximum likelihood estimate of the direction of the

modal vector is the direction of the resultant. (Watson, 1956). Let

-~ -~ -~ -~

OA = (al,az,a3) denote the maximum likelihood estimate of the modal

vector OA = (a,,a

1 2,a3); we then have

OA = (al,az,a3) = (X,,X,X)) =R (1.8)

The maximum likelihood estimate k of k 1is a function of R

~

namely, it is the solution of the equation (Watson, 1956):

coth(k) - . (1.9)

A=
2|

The left hand side of (1.9) is a monotonic increasing function of
k and its value changes from 0 to 1 as k runs from 0O to « .

When R/N is near unity, (1.9) has the approximate solution

k = (1.10)

The accuracy of (1.10) is sufficient for practical purposes (Watson,
1956 ), for k > 3 .
When the modal vector is known, the maximum likelihood

~
estimate k of k satigsfies the equation

N
L cos Bi
i=1

coth(k) - (1.11)

A=
|
2|

N




where ei is the angle between the i-th observed vector OPi and

the modal vector, and X is the projectidn of R on the modal vector.

~

Thus here k 1is given approximately by:

(1.12)

1.5. Tests of significance for the Fisher distribution.

Practical application of Fisher's distribution is aided
by a series of significance tests analogous to those in use for the
normal distribution. Some of the tests for the modal vector will be
outlined in this section. More detailed descriptions of these tests,
and of tests concerning the concentration parameter k , are in
Watson (1956) and Stephens (1962, 1967, 1969).

l. Test of a Given Modal Vector.

This test is used when we wish to test that the modal

vector is equal to a particular vector é%) . Let X be the length

of the projection of the resultant on the assumed modal vector éD'

The following identifications are made:

2k (N - X)

dispersion of the sample about AO

2k (N - R)

dispersion of the sample about R .
For large k , Watson (1956) showed that 2k(N - X) and 2k(N - R)

are distributed approximately as respectively.

2 and 2
Xon Xo(N - 1)

By analogy with the identity in normal samples




(x, %) 2 4 NGx-w 2

(xi—ﬂ) 2 _
1

1 i

e~
i~z

we write

2k(N - X) = 2k(N - R) + 2k(R - X) ' (1.13)

. 2 _ 2 2
i.e., XZN = X5 (§-1) + X, (1.14)
and therefore the quotient
(N-1) (R-X)
(N-R) (1.15)

will have the F-distribution with 2 and 2(N - 1) degrees of freedom.
The null hypothesis is rejected if the statistic is larger than the
percentage point corresponding to the F-distribution with 2 and
2(N - 1) degrees of freedom, at the appropriate significance level.
Thus, intuitively, if the direction of R is very different from
that of AO we will obtain a small X which in turn will produce

a large test statistic leading to the rejection of the null hypothesis.

2. Comparison of two modal vectors.

Suppose that samples of size N, and N, are drawn from

two populations and that a test is to be made that their modal vectors

are identical. Let R1 and R2 denote the length of the resultants

of the first and second samples respectively, and as before let R be the



length of the total resultant. Assuming that both

populations have equal values of k , we may write
2k (N-R) = 2k(Nl—Rl) + 2k(N2-R2) + 2k(R1+R2-R) (1.16)

where 2k(N-R), 2k(Nl—Rl) and 2k(N2—R2) are distributed

approximately as 2 2 and 2 res tivel
PP Y X217 X2(v -1) Xa(n-1) Tespectively:
The parallel x2 identity is therefore
2 2 2 2

X2(n-1) ~ X2(Nl-—l) * X2(n,-1) T Xy (1.17)

This suggests that
(N—2)(R1+R2—R)
Z2 = N-Rl—R2 s F2,2(N_2) . (1.18)

The statistic in (1.18) has an immediate intuitive
interpretation; if the mean vectors are very different, Rl + R2 will
be much greater than R and the left hand side of (1.18) will be
large. Hence the hypothesis will be rejected for large 2 . There
is a natural extension to more than two samples, which will be

treated in the next chapter for p dimensions.




CHAPTER 2

The von Mises distribution in p-dimensions.

2.1. The von Mises and Fisher distribution extended to p-dimensions.

The extension of the von Mises and Fisher distributions to
higher dimensions was made by Stephens (1962). This extension is

sometimes referred to as the von Mises distribution in p-dimensions.

The theory of this distribution is as follows, taken largely from

Stephens (1962).

Suppose an observation in p-dimensions is recorded by a unit
vector OP starting at the centre O and finishing at P , on the
surface of a hypersphere of radius one. Let x be the vector OP ,

and suppose X has components:

X = (xl,xz,...,xp).

It is convenient to transform the vector x into polar coordinates;
these are defined by the radius r (here r = 1), and by angles Oi,

components of

8 = (8),0,,.-,0 )

where
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x1 = COoSs 61
0<6. =<1
j-1 L )
X. = cos 6, I sin6, , (3 = 2,...,p~1); (3 =1,2,...,p-2)
J 3 i= .
0=e_ , =2l
p-1 P
x = R sin Si
P iz
o

The von Mises density, for P in p-dimensions or

equivalently of OP 1is given by:
£f (6.,,6.,c-248 ) = C (k)exp(kcos 6 )sinp-ze °sinp—36 «eegin 6 (2.1)
p 1 "2 p-1 P 1 1 2 p-2

where 0=6,=<7w7¥, i=1,...,p~2 ; 0<6®6 < 27 and k > 0 .
. i

The constant term is given by:

KP/2-1
c (k) = when k # 0
e 7] (x) (2m P/ ’
(p/2-1)
where I (k) denotes the imaginary Bessel function of order m

(m)

and argument k . When p 1is odd, Cp(k) can be written as a
function of sinh(k) and cosh(k).

This density function represents a distribution of vectors
symmetrical about the modal vector OA , which lies along 61 =0 .
The general density function for the mode lying along an arbitrary
vector is very complicated. The constant k 1is, again, a

.
concentration parameter; for large k , the vectors are tightly




clustered about OA , and for k = 0 , the distribution is uniform
over the surface of the hypersphere.

The extension of the von Mises distribution to p-dimensions
permits its use in much more general situations, for example the
analysis of any type of data that can be represented as unit vectors
on a hypersphere clustered around a constant vector. In this thesis

we propose to use the distribution for data which can be represented

11

by such a cluster of unit vectors. For these vectors k will be large,

and we now investigate properties of the distribution for this case.

2.2, Properties of the distribution when k is large.

Let v be a unit vector with coordinates (xl,x

2!"'pr)l

and with polar coordinates (61,62,...,6p_1) and r=1.

If the modal vector is along the North pole, xl is the
component of v on the modal vector and 61 is the angle bétween
v and the modal vector. For large k , the vectors are tightly
clustered around the modal vector, and hence there is a high

probability of small 61 . So cos 61 1l -~ 612/2 and sin 61 ~ 0

1

The density of 61 becomes:
2 p-2
£(6)) m C » exp(k)exp(-k8,7/2)67 7, 0=6, =T . ©(2.2)

The quantity kelz has approximately a chi-sguared distribution with

p-1 degrees of freedom, i.e. :




12

2

2
kel = 2k(1l - cos 61).V Xp—l (2.3)
Since cos 61 =%, this may be written
k(L - x) & X2 (2.4)
1 N Xpy o : '

Because of the symmetry around the central vector, the other coordinates

xj + 3 2 2 , have identical normal distributions:

Y v 3 = 2,..44P ’ (2.5)

~ =

xj:¥ N(O,

2.3. Notation for a sample.

There will frequently be cases where there are several
samples of the unit vectors, so we first give the notation for a
sample.

Suppose a sample of N wunit vectors consists of vectors

OP, =V. i=1,...,N; a typical vector v, has components

(xil'xiz""’xip) and its polar coordinates are (eil,eiz,...,ei(p_l)).
The resultant (denoted by R) of the set of N vectors

has components !

(I e -1
"

(Xl,Xz,...,Xp) = (L x, xiz,...,

1 i

it~ =

+The length of the resultant is given by
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2.4. Estimates of k and of the modal vector.

The maximum likelihood estimator of the concentration

parameter k 1is given by the equation

™ r
(k)

R
N

Tp/251

for k large this equation becomes

If the modal vector OA 1is known, R 1is replaced by X ,

the component of R on OA . The maximum likelihood estimator of OA is

the direction of R as described in Section 1.4 for three dimensions.

2.5. Distributions of statistics derived from a single sample.

In this section we investigate some distributions of
sample statistics, for large k . For a typical vector OP, =V,
i —i

as shown below, let ei be the angle between OPi and OA , the

modal vector, and let ¢i be the angle between OPi and the

resultant R , which estimates OA.
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" Diagram of population and sample vectors.

Figdre 2.1.

Figure 2.1 shows a vector v , , the modal vector OA and the
—i

resultant R . Let distance Osl = N along OA, and let X = Os2 be

the projection of R on OA and let OS3 be the same length as R .

Then clearly N-X = S and N-R = S s3, and both these quantities

1%2 1
are measures of the dispersion of the set of vectors. For large k ,

we have from (2.4)

N
. 2k (N-X) = iil 2k (1 - xil) ~ X N(p-1) (2.7)
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N
Further, X, = L

xij ~ X(0, N/k), for 3 = 2,...,p, from (2.5).
i .

1

2
Hence xj ~ N Xlz/k (3 = 2,...,p) and

b N
R2—x2= b3 x.xxz_l o
or
k 2 2 2
N (R =X N Xpe1
2

Since R~ X & N , this becomes 2k(R-X) = X Watson's identity is

p-1

2k (N-X) = 2k(N-R) + 2k(R-X) (2.8)

corresponding to:

2 2 2
= + . .
X (p-1n = X (p-1) (8-1) T X (p-1) (2.9)
This leads to the approximation for the statistic Zl ’
(N-1) (R-X)
=28 U F - 2.10
%) (N-R) (p-1) , (p-1) (N-1) (2.10

This result can be put in terms of the angles ei and ¢i ; we have

— 2 -
= X (p-1) (N-1)’

k L. 82 = 2

2
1 %X pryn 24 K Iy 4;
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the first equation comes from (2.7) and the second from (2.9); these

are comparable in normal theory (with ¢ = 1) to

2
N

2

- 2
and Zi(xi—X) = XN-1 7

Zi(xi-u)2 =¥
in each case the second expression replaces the mean by i£s estimate,
and there is a corresponding drop in degrees of freedom of x2 .

Z1 is used in testing that a given Ao is the modal vector,
analogous to the test in Section 1.5. The left hand side of (2.10) is
calculated as the test statistic and compared with the F-distribution

with (p-1) and (p-1l) (N-1) degrees of freedom. Large values will lead

to rejecting the given Ao as the modal vector.

2.6. Notation for several samples.

When several samples of unit vectors are given, questions
might arise whether they have the same modal vectors, same con-
centration parameters, etc. Let the i-th group (i =1,2,...,q9)
have modal vector OAi , and concentration parameter ki . Let
Eiij , J = 1,...,Ni , be the set of unit vectors in the i-th group,
so that Ni is the number of vectors in the group, and let ﬁi be
the length of the resultant vector Bi of the group. Let N = ZiNi R

and let R be the length of the resultant R of all the vectors

treated as one large group.
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2.7. Comparison of several modal vectors.

Suppose q different groups (samples) of unit vectors are
given and we wish to test whether all the samples come from populations
with the same modal vector, assuming they have the same value of k..

The following results come from (2.9);

2

2k(Nl-Rl) N X (p-l)(Nl-l)

2

2R INy™RY) B X (p-1) (v -1)

2

Zk(N =R %X (1) v -1)

and

2
ZRINTR) & X (5o1) (9-1)

We write the identity

- = - - .o - +R,_ +...4+R -R
2k (N-R) 2k(Nl Rl) + 2k(N2 Rz) + + 2k(Nq Rq) + 2k(Rl + Rq )

2

and, again by analogy with the analysis of variance we obtain

2k(Rl+R (2.11)

1y

2
+...+¥R -R
2 Ry R N X (p-1) (g-

hence the quotient

*
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(N~q) (Z.R, -R)
7 = 1 1 .
2 (g-1) (N-Z.R,)
1 1

(2.12)

will have approximately the F distribution with (p-1)(g-1) and
(p-1) (N~g) degrees of freedom. Therefore to test whether the
different groups have the same modal vector, the statistic Z2 is
calculated and compared with this F distribution. Large values of
Z2 will be significant, indicating that the 55_ vectors point in
different directions.

The above analysis is essentially a one-way Analysis of

Variance which can be set up in the usual tabular form;

Table 2.1

ANOVA table in terms of resultants.

Sum-of squares- d.f. test
Between groups ZiRi~R (p-1) (g-1) Z2
Within groups N—-‘)..':.LR.i (p-1) (N—-q@)

Total N-R (p-1) (N-1)

Note that throught the table, 2k has been omitted before
the terms under "Sum of Squares"; since only ratios will be used for
tests, this does not affect the calculations. This is analogous to

2
omitting o throughout an ANOVA table.
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2.8, Examples of ANOVA for resultants.

In the first set (Table A.l.1, found in Appendix 1) Qe have
the hours of time spent in eight different activities by 130 studenés
of Simon Fraser University. The data were requested for one day only
and do not represent the overall activity pattern. However, it is used

here as an illustration of the general methodology.

An activity pattern is converted to a unit vector as follows.
The hours are first converted to proportions P, for the i-th activity

and then x, = Vpi is the i-th component of the unit vector.

Analysis

1. We first examine whether there are differences in activity patterns
due to the sex of the students. The data is split into two groups;
Group 1 for women and Group 2 for men. The total resultant R for

the 130 students is 117.1987; other results are shown in Table 2.2.

The test statistic 22 is less than 1 so we do not reject the
hypothesis that there isno difference in activity pattern between the
sexes. Whenever 22 is greater than 1, the statistic is converted to
a standard normal variable. Several transformations have been examined

in detail in Appendix 2 of this thesis. The three most accurate are

those of Peizer and Pratt (1968), Carter (1947) and Paulson (1942).

2. The activity patterns were next examined according to the age

of the students. The results are in Table 2.3.



" Table

2.2

" 'Results for test between sexes.

Group Sex N, k, R,
: i i i
1 Female 56 35.664 50.5041
2 Male 74 35.744 66.7540
ANOVA TABLE
Sum of squares da.f.
Between groups ZiRi-R =  0.0601 7 Z2 = 0.5980
Error N-ZiRi = 12,7412 896
Total N-R = 12.8013 903 |
Table 2.3
Results for test between age groups.
R
Group Age Ni ki 5
1 less than 21 47 36.2069 42.4567
2 21 - 25 61 36.8403 55.2047
3 more than 25 22 38.1845 19.9835
ANOVA Table
Sum of Squares d.f.| Test Statistic
Between groups ZiRi—R = 0.4462 14 Z2 = 2,2931
Error N-ZiRi = 12.3551 889
Total N-R = 12.8013 | 903

20.
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The test statistic is 2.2931 with 14 and 889 degrees of
freedom, and the corresponding Z-score ié 2.6241 (Peizer and Pratt),
2.6265 (Carter) or 2.6173 (Paulson). At the .05 level of significance,
we reject the null hypothesis that the students‘in the different

age groups have similar activity patterns.

2.9. One way ANOVA for angles.

Watson's one-way ANOVA leads to a test based on the group
resultants and total resultant, as described above. We now show the
analogous test based directly on the angles between the group
resultaﬁts and the vectors in the corresponding groups, and between
the vectors and the total resultant.

ILet N be the total number of unit vectors OPi (i=1,...,N)
starting at the centre and finishing on the surface of a p-dimensional
hypersphere. Let g be the number of groups in which the vectors
are split. Let’ iiij be the jth vector in group i , let ¢ij
denote the angle between the total resultant R and !”.. , and |

ij 1

let aij denote the angle between !ij and the resultant 51

of the i-th group. When k 1is large, ¢ij and aij are very
small, and so, using the approximations azij ~ 2(1 - cos aij) and

2 .
¢ i ™ 2(1 - cos ¢ij)' we obtain

™~
&R

2Z.. (l1-cos a,.) = 2(N-Z.. cos a,.)
ij ij ij ij

and .
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™
s
1
Q
4

2Eij(cos aij - cos ¢ij)

As Eij cos ¢ij is the sum of projections of all N vectors on
their resultant and Ej cos aij is the sum of the projections of

the vectors in the i-th group on the resultant of the i-th group,

it follows that:

.. cos ¢ij = R

and

Ej cos aij = Ri s, 1=1,...,9 .

‘Substituting these results in

2
2k(N"R) & X (p-1) (8-1)

2
2k (N"?iRi) x X (P__l) (N—q)

2

We obtain

‘ 2 2
2k (N-L. . 0..) ~ L..07.,./2) ~
( i3 cos lJ) 2k ( i3 lJ/ ) X (p-1) (N-1)
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2 2
2k(N-Z,. cos a,.) ~ 2k(ZX,. . ./2)
‘ ( ij C alJ) ~ ( ij a lJ/ ) X (p_l) (N-q) ,

2k Z,.(cos B6,, - cos a,.) Q;2k2..(62../2-a
1) 1] 1) 1] ij

2 2
1372 ™ X (p-1) (g-1) °

Then Watson's test statistic

_ (N-q) (ZiRi—R)
2 (g-1) (N—ZiRi)

becomes, in terms of angles,

. 2 - 2
L (N-q){Zij(¢ 5570 ij)}

2
(g-1) (Ziju ij)

Z; will therefore have an F-distribution with (p-1) (g-1) and
(p~-1) (N~q) degrees of freedom. The null hypothesis that the g
modal vectors are equal is rejected if the test statistic F is
greater than the percentage point of the F-distribution with
(p-1) (g-1) and (p-1) (N-q) degrees of freedom, at the appropriate

significance level. 1In terms of angles, the ANOVA table is shown in

Table 2.4.
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Table 2.4

ANOVA table in terms of angles.

Sum of Squares d.f. test
Between groups I (¢2 - a2 ) (p-1) (g-1) Zl
groups ;¢ ;5 - @y | prDla 2
Within groups I a2 (p-1) (N-q)
in group i % i3 P q
Total | )X ¢2 (p-1) (N-1)
ij ? i3 P

2.10. Examples for one way ANOVA with angles.

The following examples will illustrate the one way ANOVA
for angles. The groups compared are the same as in Section 2.8 so

that both results may be compared.

1. The one way ANOVA table for angles to test for difference between

women and men is shown in Table 2.5.

Table 2.5

ANOVA table for difference between sexes.

Sum of Squares d.f. test
Between groups I,.(¢2,.-a°,.) = . .1256 7 Izl = L6161
ij ij ij 2
Error Z..az. = 26.1101 | 896
1 1]
Total I, .<b2. . = 26.2357 {903
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The test statistic is .6161 with 7 and 896 degrees of
freedom. The corresponding normal score is -0.6523 (Peizer and
Pratt), -0.6492 (Carter), or -0.6579 (Paulson). At the .05 level
of significance, we do not reject the null hypothesis that women

and men spend the time in a similar way.

2. The one way ANOVA for angles to test for difference between the

three age groups is given in Table 2.6.

Table 2.6

ANOVA table of difference between age groups.

Sum of Squares d.f. test

2 2 1
Between groups Eij(¢ i3 ] ij) .9434 14 Z2 = 2.3686

Error 25.2923 889

Total L,.¢ 26.2357 903

The test statistic Z; is 2.3686 with 14 and 889 degrees
of freedom. The corresponding normal score is 2.7310 (Peizer and
Pratt), 2.7410 (Carter), or 2.7286 (Paulson). At the .05 1level

of significance we reject the null hypothesis that the students in the

different age groups have the same activity pattern.
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2.11. Two way ANOVA.

In the above, the sample was classified into groups by one
criterion, and a one-way ANOVA made to examine whether activity
patterns differ between groups. This analysis will now be extended
to classification by two criteria. Suppose the sample itéms are
classified in two ways, by classification 1 with I groups and
classification 2 with J groups. If a sample item (for illustration,
a student) falls into group i of classification 1 and group j of
classification 2, the associated vector of activity proportions will
be placed in cell (i, j) in row i , column j , of a two way table.
Extending our previous notation, we write :!ijk for the k-th vector
in cell (i, j). Let Nij be the number of vectors in cell (i, j) and
let Rij be the length of the resultant in this cell. Let Ri- Pe
the length of the resultant of all vectors in row i , i.e., of all
items in group i of the first classification and similarly let R-j

be the resultant of all vectors in column Jj . Suppose the total

resultant has length R,  ; a table may be constructed as in Table 2.7.
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Table 2.7

Resultants for two-way classification.

Classification 2

{Columns)
1 2 3 4 ... J | Total
Ll R Ry Ryz Ryg -0 Ry | Ry
Classification 1
. e . R

{(rows) 2 R21 R22 R23 R2J 2°

3 R31 « o o

I RIl c o RIJ RI'

Tot~- R‘l R.2 R-J R..

al

The following can be written

2k(N - R,,)) = 2k[(N11 - Rll) + (le - R12) + .. + (NlJ - 1J)] +
- + - + L.t -
* 2N = Rpy) (Rpy = Rpp) Mg = Rpg)]
- + ... -
+ 2k[(Ry; + Ryy + oo # RO - R )+ (R, + Ry, + Ry, - Ry)

.e + - + + + ... + - R .
+ . + (Rj:l R12 + + R RI-)] 2k(R1- Rz._ RJ: ")

I1J

The results obtained in equations (2.8) and (2.9) now give

*
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2
2k (N - R ) m X (p-1) (N-1)

2

(LR 5 = Ry XX (po1y (3-1)

13 1.

2
2k(ZjR2j - RZ-) N X (p-1) (I-1)

2
2k(L.R_. - R ~
E3Rrj = Rp) X (o) (g-1)
2K(E.R. - R ) m x2 ‘
1N oo B X (p-1) (I-1) 1
and 2k (N - R..) ~ 2 ; 1 =1,2 I; j=1,2 J
I e

We obtain

2
Zk{zij(Nij - Rij)} X (p~1) (N-I)

i.e., 2k(N - L. .R,.) ~

2
ijij X (p-1) (N-1J) °

2.12. Test for no difference between rows.

The above approximations can be used, as before for the
one way ANOVA, to give tests for the difference between rows or
between columns within rows. Thus the analysis will be similar

*

to what is usually called a nested analysis of variance.
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Under the null hypothesis that there is no difference

between rows, the gquotient

(N-I3N(Z.R,, - R )
2 = 13t . (2.13)
3 (I - 1) (N - zinij)

has an PF-distribution with (p-1)(I-1) and (p-1) (N-IJ) degrees of

freedom. The null hypothesis is rejected if 2 is greater than the

3

percentage point corresponding to the F-distribution at the chosen level
of significance a .

The quotient

(N - I3 (L.R.. - R, )

- Jij i
4i  (J - 1) (N - I..R,.)
1jJ 13

2 i=1,2,...,I (2.14)
has an F-distribution with (p-1)(J-1) and (p-1) (N-IJ) degrees of
freedom. The null hypothesis that there is no difference between the

columns within row i should be rejected for large values of 2

4i °
With the above analysis, it is not possible in the same table

to decide if there is an overall difference between columns, If this

is to be examined, the nested layout is set up again, but with

the rows nested within columns. Then the difference between rows

within columns, and the difference between columns themselves, will

be tested with F-distributions analogous to the ones described above.



The two way ANOVA table is shown in Table 2.8.

Table 2.8

Two way ANOVA in terms of resultants.

Sum of squares d.f. test
Between rows ziRi' - R_, (p-1) (I-1) ?3
Between columns;
Within row 1 szlj - R, (p-1) (J-1) Z4p
Within row 2 szzj - R,, (p-1) (J-1) Z40
Within row I sz“xj - R, (p-1) (J-1) Zs1
Error N - zinij (p-1) (N-IJ)
Total N -R_, (p-1) (N-1)

2.13. Examples for two way ANOVA in terms of resultants.

When classifying the students according to their age (rows)
and sex (columns), six cells are obtained. The number of students
in each cell and the cell, row and column resultants are given

in Table 2.9.



Table 2.9

Cell sizes and resultants for classification age-sex.

Age

Cell sizes

Age

Sex
Females Males Total
< 21 Nll = 19 le = 28 Nl' = 47
21-25 N21 = 28 N22 = 33 Nz. = 61
> 25 N31 = 9 N32 = 13 N3. = 22
~ Total N.1 = 56 N_2 = .74 N = 130
Resultants
Sex
Females Males Total
< = - =
21 Rll 17.1612 12 25.3094 Rl- 42.4567
21-25 R21 = 25.3636 592 = 29,9985 R2- = 55.2047
> 25 R = 8,2024 = 11.8276 R = 19.9835
31 32 3
Total | R, = 50.5041 - .y = 66.7540 | R, = 117.1987




1. The two way ANOVA table for sex within age is given in Table 2.10.
‘Table 2.10

ANOVA table in terms of resultants for sex within age.

32

Sum of squares d.f. test

Between ages L. R - R 0.4462 14 z3 = 2.2793

Between sexes

Within age group 1 LR-. -R = 0.0139 7 Z = 0.1420
i e 41
Within age group 2 ZR..-R = .1574 7 Z, = 1.1081
323 2 42
Within age group 3 ZR . ~-R = 0.0465 7 zZ,.= 0.4782
i3y 3 43
Error N - IZ,.R., = 12.1373 868
1J 1)
Total N - R = 12.8013 903

Using Peizer and Pratt's, Carter's and Paulson's formulae,
we obtain the following Z-scores for the test statistics:

Z3 rs 2.6023, 2.6044, 2.5958; Z4l;¥ -2.5673, -2.5373, -2.5042;

Z42$¥ 0.3704, 0.3549, 0.3705; Z43:x -1.0397, -1.0283, -1.0439. The

only test statistic which is significant (at the o = .05 level) is
23 . Therefore, we reject the null hypothesis that the different
age groups have a similar activity pattern, but we do not reject the

hypothesis that there is a difference between males and females

within any of the age groups.

.



2. If we now switch rows and columns, the ANOVA table for age

within sex can be constructed as in Table‘2.ll.

Table 2.11

ANOVA table in terms of resultants for age within sex.

33

Sum of squares 4d.f. test

0.6079

Between sexes I R .-R 0.0595 7 2,
J 'J . e

Between age groups.

Within females IR, -R_= 0.2230 14 |z _ =1.1391
itil 1 41
Within males IR, - R _= 0.3815 14 A = 1.9488
1712 *2 42
Error N-TZI,.R,. = 12.1373 | 868
1j 1j
Total N - R = 12,8013 | 903

The Z-scores (using Peizer and Pratt's, Carter's and
Paulson's formulae) are given by: Z3:u -0.6735, -0.6610, -0.6791;
Z4l:% 0.4711, 0.4655, 0,4719; Z42 ~ 2.0756, 2.0720, 2.0745. Z3 is
not significant; we do not reject the hypothesis that males and
females have a similar activity pattern. When considering differences

between age groups, only 2 is significant at the a = .05 level

42
of significance; hence, there is a difference between age groups
within the males.

The two way ANOVA gives a breakdown of the information

contained in the one way ANOVA. 1In Example 2, Section 2.8, we found



that there was a difference between age groups; the difference was
narrowed down using the two way ANOVA, and we can now see that it
is mainly due to a difference within the males.

The two way ANOVA layout can aJ.so be esctended to 3 or

more classifications.

2.14. The two way ANOVA in terms of angles.

It is possible to put the above results again in terms of

angles.

et a, be the angle between vector and the

i3k Tijk
resultant Eij of group (i, j); let ¢ijk be the angle between

V.. and R, , where R. 1is:the resultant of vectors
—ijk —1- —1i-

B—ij r §=1,2,...,J; and let Yijk be the ang;e between zijk

and the total resultant R __ .

The table analogous to Table 2.8 is Table 2.12.

34



" Table 2.12

Two way ANOVA 'in terms of angles.

Sum of squares d.f. test
Between rows z (72 - ¢2 ) (p-1) (I-1) Zl
ijk " Tijk ijk 3
Between columns;
Within row 1 o2 -2y |-y |zt
jk "1k 15k 41
Within row 2 . (¢2.. - al. ) (p-1) (3-1) | =i
ik ¥ 25k 25k 42
Within row I z (¢2 - a2 ) (p-1) (J-1) z1
jk Ik 1k 41
Error .. a° (p-1) (N-IJ)
i3k %19k p
Total 5.y (p-1) (N-1)
i3k YVijk p

Tests of significance are made in a similar way as in

equations (2.13) and (2.14).

2.15. Examples for two way ANOVA in terms of angles.

The following examples will illustrate the two way ANOVA
for angles. The classification into cells is the same as in

Section 2.13 so that the results may be compared.

35
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1. The ANOVA table in terms of angles for the tests corresponding
to the model sex within age is given in Table 2.13.
‘Table 2.13

ANOVA table in terms of angles for sex within age.

Test
Sum of sguares d.f. Statistic
Between ages I ( 2 - ¢2 ) = 0.9434 14 Z1 = 2.3545
g ik Yigk ~ ik : 3
Between sexes
Within age 1 L. (¢2. - a>. ) = 0.0290 7| 2t = 0.1448
3k 713k 1jk ) 41 -
Within age 2 . (¢2. - a>.) = 0.3265 7| 2t = 1.6208
jk 23k 23K 42
C s 2 2 1
Within age 3 L (6. =-a_ ) = 0.0953 7 Z,.= 0.4757
jk  3jk 3ik 43
Error .. a, = 24.8417 | 868
ijkijk
2
Total zijkYijk = 26.2357 903

Peizer and Pratt's, Carter's and Paulson's approximations give

the following Z-scores for the test statistics: Z1 A~ 2.7151, 2.7187,

3
2.7070; Zilsu ~2.5462, -2.5162, -2.4851; Zizsw 1.1587, 1.1388,
1 1 .,
1.1624; 2z ~ -1.0474, -1.0358, -1.0516. Z3 is the only test

43
statistic wﬁich is significant (with o = .05). Therefore, we reject
the null hypothesis that the three age groups have a similar activity
pattern, and we do not reject the hypothesis that there is a difference

between males and females within any of the age groups.



37

2, If the rows and the columns are switched, the ANOVA table for

age within sex is as in Table 2.14.
Table 2.14

ANOVA ‘table in terms of angles for age within sex.

Sum of squares d.f test

2 2 1
Between sexes Zijk(Yijk ¢ijk) = 0.1256 7 Z3 = 0.6269

Between age groups

i 2 2 1
Within females z -« = 0.4681 14 = 1.1683
ik(¢ilk ilk) Z4l 1
s 2 2 1
Within males I (¢ -a, ) = 0.8005 14 |z = 1.9979
ik i2k i2k 42
Error .. a?. = 24.8417 | 868
ijk ijk
Total ) 2 = 26.2357 |903
i3k Yijk .

Peizer and Pratt's, Carter's and Paulson's approximations

give the following Z-scores for the test statistics: Z; ~ -0.6246,

-0.6221, -0.6302; Zl ~ 0.5409, 0.5350, 0.5419; Ziz

a1 ~ 2.1573,

2.1545, 2.1556. The test statistic Z; is not significant; we do
not reject the null hypothesis that males and females have a similar

activity pattern. When considering differences between age groups,

.05 level of significance; we

only Zl is significant at the a

42

reject the null hypothesis that there is no difference between age

*

groups within the males.
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The results given by this method are essentially the
same ones obtained with the two way.ANOVA for resultants. The use
of the two way ANOVA fér angles may be preferred in cases where the
user feels more comfortable.working with angles, or, when it is

possible to give an interpretation to angles in p-dimensions.

2.16. Goodness-of~fit.

The analysis described so far assumes that the observations
satisfy the p-dimensional von Mises distribution. In order to test
whether the data comes from such a population we use the distributional
results described in Section (2. 2). The important two results are the
distribution of the angle 91 between a typical vector and the modal

vector, and the distribution of the component of a typical vector at

right angles to the modal vector. The distribution of 61 is given

by

f(el) = C « exp(k cos 91) si p-2 91 0 =< 91 <7 . (2.15)

Since the modal vector is not precisely known, 61 must be
estimated by ¢1 , the angle between a typical vector and the
resultant R of the sample. The goodness of fit test is then in two
parts: (a) The set of angles ¢1 is tested to come from the
population (2.15)using the usual Pearson x2 test. (b) The (2.15)
components at right angles to the resultant vector are tested to
be uniform on the hypersphere of dimension p-1, using the Rayleigh

test for uniformity, described for example, in Watson (1956) or in



39
a recent survey of such tests by Prentice (1978). For a typical .
sample, let R , the resultant of the N vectors, be defined as

before: R = zi‘—’-i and R be the length of the resultant. Then

u = R/R is the unit vector along R . For a typical unit vector

v, v the component along R is

and the component at right angles to" R is Y; =¥Y.,°P;-

The new vectors '{X_i , i=1,...,8} are such that

Y;*R=0; this gives a useful check on computer calculations.

These vectors lie on the (p-1) dimensional subspace Sp-l which is
orthogonal to R . The Rayleigh test examines whether the directions
of these vectors are uniform over the (p-1)-dimensional hypersphere,
so that they must first be transformed into vectors of unit length
u, = _y_i/yi, i=1,...,N, where Y is the length of Y - The
resultant of this set of unit vectors is T = Zil_l_i; let T be

the length of 7 . On the null hypothesis of uniformity, the test

statistic

is asymptotically distributed as x2 with p-1 degrees of freedom.

Therefore, *the null hypothesis that the vectors -'{gi} are uniformly
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distributed over the surface of the (p-1)-dimensional hypersphere is

rejected if Z is larger than x;_l(a).

The above two tests, the x2 test for the distribution for
61 » and the Rayleigh test for the component at right angles to the.
resultant, together provide a good omnibus test that the vectors
come from the von Mises distribution.

This two-part distributional test is applied to each cell
of the two-way analysis of variance table described in Section 2.11.
This is analogous to applying the test for normality in the usual

two way analysis of variance table.

2.17. Examples.

In Table 2.15 we give the test statistics for the Pearson's
x2 test on the set of angles ¢l and for Rayleigh's test on the
components at right angles to the resultant. Both tests were done
for each one of the cells obtained when classifying the students
according to their age and sex.

The tests for 61 are not significant at a = .1; the Rayleigh
test statistics are extremely small (significant in the lower tail). The
results suggest that the distributional assumptions for 61 are
satisfactory, but it appears that the components around the estimated
modal vector are more regular than expected, or else in groups which
cancel each other and produce a very small resultant. This may be due,

at least in part, to the fact that the modal vector is estimated and

"too good" a fit is obtained. Watson has refered to the robustness of
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the methods and concludes that for large k they appear to be
robust. Intuitively a very small value of Z 1is less worrying

than a very large one; but the subject needs further examination.

Table 2.15

Goodness of fit for classification age-sex.

Cell Pearson's xz d.f. Rayleigh's test d.f.
1,1 3.1005 2 0.5778 7
1,2 2.9083 3 1.1526 7
2,1 6.3231 4 1.3625 7
2,2 1.7856 5 1.8005 7
3,1 1.0925 1 0.6333 7
3,2 1.4501 2 0.8560 7

2.18. Test for constant k .

In the different methods of analysis shown in the previous
sections, the concentration parameter k is assumed to be constant
over all the cells in the table; this is analogous to the assumption
of constant variance in the usual analysis of variance. The null

: 2 2 2 .
hypothesis 01 = 02 = ... = Oq is usually tested using
Bartlett's test; in this section we will describe Bartlett's test

and then show an adaptation that can be used to test the null

hypothesis k1 = k2 = ... kq .



42

In using Bartlett's test we first calculate the joint
, 2 2 2 A ’
estimate S = L,v,S, /L,v, , where S, is the estimate of the
i'ivi i'i i
variance in the i-th sample and v, is its degrees of freedom. The
test statistic is then:

2 2 '
B = (v éns™ - Zivi BnSi ) (2.16)

Q=

where

_Zi(l/vi) - 1/v

= + = L.V, .
C 1 3(=1) and v Zlvl

For values of vi of 5 or more the distribution of B is
approximately x2 with g-1 degrees of freedom. Hence we would
2 2 2

reject the hypothesis 01 = 02 = ce. = oq if the value of B

were greater than X?q—lfa)’ where a 1is the chosen significance
level. The quantity 1/C is less than one since C is always
greater than one; hence, if the value of B 1is not significant

when C = 1, it is unnecessary to include the term 1/C .
The test statistic B is a function of v, and Si;

the sample variances Si are such that Sizx xiy/ég , (i.e.,
A

a chi-square variable divided by its degrees of freedom). From
Section 2.7 we have

5

Zk(N; = Ry) R X (po1) -1

i=1l,...,9 .
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Replacing Si by 2k(Ni - Ri)/(p—l)(Ni—lx and A by (P-l)(Ni-l)

in equation 2.16, we obtain

1 .N'.fziRij 'Ni—Ri
B = E {V 8n(——-v~—-—) - zivi en( v, )} ’
i
where
co1a Zi(l/vi) - 1/v
3(g-1) !
v, = (N,-1) (p-1) and v =L v, = (N-q)(p-1) .

Therefore, as in the test for the equality of variances, the
null hypothesis k1 = k2 = L.. = kq will be rejected if the test
statistic B 1is greater than xé_l(a) where o 1is the chosen level
of significance.

Example. In Section 2.13 we.had classified the students

according to their age and sex, the k values for the six cells are

given in Table 2.16.

Table 2.16

~

k 'values for age and sex

< 21 21-25 > 25

Females 36.1655 37.1720 39.4926

Sex
Males 36.4224 38.4809 38.8098




s

The test statistic B is equal to 1.7103, which is not
significant when compared with x:; the hypothesis of equality of
the k values is not rejected. In this case, the values of k

are very similar and the test is almost not necessary; however, it

gives an dllustration of the method.

44
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CHAPTER 3

Clustering.

3.1. Introduction.

Clustering techniques can be helpful in the an;lysis of
p-dimensional unit vectors. In this chapter we present a method of
clustering unit vectors which can be performed rather quickly
without the use of a computer. The method is based on the dot products
between pairs of individuals, which is a natural similarity measure
for unit vectors.

The basic problem is as follows. Given a sample of N
subjects, for each of which p variables are measured, a classification
scheme is to be devised for grouping the subjects into g classes such

that the members of any one class are similar to each other.

3.2. Distance Function.

The distance between the unit vectors v, = OPi and
Xj = OPj will be the metric defined by:
d(v,, v.) =0.., where 6,. is the smaller angle between v.,and v..
—1i" —3 ij ij —i —

Since the hypersphere has radius 1, eij is also the shortest (Euclidean)
distance between the two points Pi and Pj on the surface of the

hypersphere, and this angle is a distance.

¥



The i-th and j-th individuals are assigned to the same
cluster (i.e., Y—i_ and X-j are similar) if the distance between the
unit vectors" _\ii and -Y-j is "sufficiently small® and to different
clusters if the distance between the pair of points is "“sufficiently

large".

3.3. Similarity.

As a complement to the notion of distance between v, and
-Y-j , there is the idea of similarity between the two unit vectors. A
non-negative real valued function S(—!i P V. ) = S.. 1is a similarity

J 1j

measure 1if:

(a) 0=<s8(v.,v.) <1 for v.,#v. ;
e B —i® —=j

(b) S(y_i,z ) =1 if and only if v, =Xj ;

46

(¢) S{v,,v.)=8(v.,v,) forallv, ,v. .
-1 =] —J -1 —i’ =3
Let v, ° X.j be the dot product between v, and vy then
p
v,* v, = I X, X.
- - ik jk
T3 g 7Y

There is a direct one to one correspondence between the

distance metric given by eij and the dot product v, !j » given by



As all the coordinates of the unit vectors are positive

we have Ofg_i°y_jf 1, (i,3 =1,...,N). In this case !‘i.!j is

a suitable similarity measure. The pairwise similarities

S(!i."zj ) = Sij can be arranged in the similarity matrix shown in

Figure 3.1.

1 S12 cece S1N
521 1 ces S2N
Lsm SN2 tTt 1
Figure 3.1

Similarity Matrix

We say that the unit vectors v and \_z_j are similar,
and so belong to the same cluster, if the similarity measure S
between them is greater than y , where y is a value less than 1
In the examples given below y takes values between .90 and .95.

We now discuss a procedure to divide a group of subjects into clusters.

3.4, Clustering Procedure.

To start the clustering procedure we select the pair of

individuals, say v and v , having the largest dot product in

1 2

the similatity matrix. The matrix is then examined, and all those

47
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individuals (excluding Xz) having a dot product with Vi greater

than a given value y , are selected. From these we pick the one Q13 ’

if s is greater

say) having the largest dot product withff!l i 32

than vy, Vg becomes a member of this cluster. From the remaining-

previously selected individuals we pick the individual (v say)

4 ’

having the largest dot product with Vv if all the dot products

l;

between v and . the members of the cluster are greater than y , v

4 4

becomes a member of the cluster; Those individuals which have a dot
product with a member of the cluster not greater than y are
eliminated. Once the first cluster is complete {(i.e., all its elements
are such that all the pairwise dot products are greater than y), a new
cluster is started by picking, from the remaining individuals, the pair

of vectors having the largest dot product.

3.5. Examples of clustering.

The second data set consists of consumption of selected foods
in 45 countries. It has been obtained from the U.N. Statistical
Yearbook (1971). Table A.1.2 gives the daily per-capita consumption

of the selected foods in the 45 countries reduced to unit vectors.

a. For y = .95 the following classification is obtained (the two
countries underlined are those having the largest dot product, and were

used to start clusters):



Cluster 1: Argentina, Australia, Austria, Canada, Costa Rica,
Czechoslovakia, Denﬁark, Englénd, Greece, Israel, Italy,
Netherlands;'Né; ééai;na, Poland, Spain, Soviet Union,
United States.

Cluster 2: Cuba, Cyprus, Honduras, Japan, Lebanon, Philippines,

Portugal, Singapore, Turkey, Yugoslavia.

Cluster 3: Bolivia, Brazil, Colombia, Venezuela.

Cluster 4: Algeria, Egypt, India, Mexico, Saudi Arabia.
Cluster 5: China, Kenya.

Cluster 6: South Africa, Yemen.

Cluster 7: Ethiopia, Thailand.

Cluster 8: Congo, Gabon.

Cluster 9: Liberia.

b. With y = .9 we obtain the following clusters:

Cluster 1l: Argentina, Australia, Austria, Canada, Colombia, Costa
Rica, Cuba, Cyprus, Czechoslovakia, Denmark, England,
Greece, Honduras, Israel, Italy, Lebanon, Netherlands,
New Zealand, Poland, Singapore, South Africa, Spain,
Soviet Union, United States, Venezuela, Yugoslavia.

Cluster 2: Algeria, Egypt, Ethiopia, India, Japan, Mexico,

Philippines, Saudi Arabia, Thailand, Turkey.

Cluster 3: Congo, Gabon.

Cluster 4: Bolivia, Brazil, Kenya, Portugal.

Cluster 5: China, Liberia.

Cluster 6: Yemen,
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3.6, ComEarisons.

The results shown in Section 3.5 were compared to those
obtained by means of the CLUSTAN package; a standard system of
clustering algorithms. The package contains several options for the
calculation of distances and for the algorithm or method of clustering.
We used the following three different options for the calculation of

distances between groups in terms of distances between pairs.

a. Nearest neighbour. The distance between two groups is defined

as the distance between their nearest members.

b. Furthest neighbour. The distance between two groups is defined as

the distance between their most remote pair of individuals.

c. Group average. The distance between two groups is defined as

the average of the distances between all pairs of individuals in the

two groups.

For evaluating the distances between pairs in the above
options, there are several similarity and distance measures available.
The dot product is one of them, nevertheless, the Euclidean distance
was the one used in the results.shown in this section.

From the different methods of clustering available in the
package (hierarchic fusion, monothetic division, iterative
relocation, etc.), we chose hierarchic fusion. At the beginning of
this method, each individual is considered as a separate cluster. 1In
the first iteration, the two closest individuals (according to the

distance options previously selected; e.g., nearest neighbour and
L]
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Euclidean distance) are fused into a new cluster. In each one of the
subsequent iterations all pairwise distances between clusters are
recalculated, and the pair of elusters having the smallest distance
is fused. The sets of clusters obtained using the three different

methods to calculate the distances are:

a. Hierarchic fusion/nearest neighbour method - 8 clusters.

Cluster 1: Algeria; Argentina, Australia, Austria, Brazil, Canada,
Colombia; Costa Rica, Cuba; Cyprus, Czechoslovakia,
Denmark; Egypt; England, Greece, Honduras, India, Israel,
Italy, Japan, Lebanon, Mexico, Netherlands, New Zealand,
Philippines, Poland, Portugal, Saudi Arabia, Singapore,
South Africa, Turkey, Soviet Union, United States,
Venezuela, Yemen, Yugoslavia, Spain.

Cluster 2: Bolivia.

Cluster 3: China.

Cluster 4: Congo, Gabon.

Cluster 5: Ethiopia.

Cluster 6: Liberia.

Cluster 7: Kenya.

Cluster 8: Thailand.
b. Hierarchic fusion/furthest neighbour method - results for 8 clusters.

Cluster 1: Algeria, Egypt, Ethiopia, India, Philippines, Saudi Arabia,

Thailand.



Cluster 2:

Cluster 3:

Cluster 4:
Cluster 5:
Cluster 6:
Cluster 7:

Cluster 8:

Costa Rica, Cuba, Czechoslovakia, Greece, Honduras,
Israel, Italy, Japan, Poland, Portugal, Singapore, Spain,
Turkey, Soviet Union.

Argentina; Australia; Austria, Canada, Denmark, Englané,
Netherlands, New Zealand; United States.

Cyprus, Lebanon, Mexico; South Africa, Yemen, Yugoslavia.
Bolivia, Liberia.

China, Kenya.

Brazil, Colombia, Venezuela.

Congo, Gabon.

c. Hierarchic fusion/group average method - results for 4 clusters.

Cluster 1:

Cluster 2:

Cluster 3:

Cluster 4:

Argentina, Australia, Austria, Brazil, Canada, Colombia,
Costa Rica, Cuba, Cyprus, Czechoslovakia, Denmark,
England, Greece, Honduras, Israel, Italy, Japan, Lebanon,
Mexico, Netherlands, New Zealand, Poland, Portugal,
Singapore, South Africa, Spain, Turkey, Soviet Union,
United States, Wenezuela, Yemen, Yugoslavia.

Algeria, Egypt, Ethiopia, India, Philippines, Saudi

Arabia, Thailand.

.Bolivia, China, Kenya, Liberia.

Congo, Gabon.

Although all the results obtained in Sections 3.5 and 3.6

are different, there are some basic similarities.

52
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a. Argentina, Australia, Austria, Canada, Denmark, England,
Netherlands, New Zealand, United States are always members of the

same cluster;
Other groups which are always members of the same cluster are
b. Algeria, Egypt, India, Saudi Arabia.
c. Cyprus; Lebanon and Yugoslavia.

d. Costa Rica, Czechoslovakia, Greece, Israel, Italy, Poland, Spain,

Soviet Union.
e. Colombia and Venezuela.

f. Congo and Gabon. These two countries are always in a cluster

by themselves.

Of all 45 countries, Canada and New Zealand are the closest.

The clustering method introduced in Section 3.4 is essentially
a hierarchical technique using the nearest neighbour method: a
similarity matrix is computed, and at the beginning of the procedure
each individual is considered as a separate cluster; a cluster center
is formed by taking the closest pairs and individuals are agglomerated
to these centers, in an ordered way that depends on how close they are
to the center. The main difference between the method in Section 3.4
and the one used by CLUSTAN is that in the former, the pairwise
similarity measures are not recalculated after each step.

If the aim in the cluster analysis is to look for natural
groupings,in the data, it is not important to pre-determine the number

of clusters wanted in the solution. But it sometimes happens that
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the number of clusters to be obtained is fixed. If this is so, an
appropriate selection of y will generally lead to the desired
number of clusters; it may be that the correct value of y must

be obtained by several trials.

3.7. Comments.

The method of clustering proposed in this section is rather
informal, and we present it as an example of the use of the dot
product as a natural similarity measure for unit vectors. The choice
of the critical value y 1is arbitrary and it will affect the clusters
obtained. 1In more sophisticated algorithms, such as the ones used
in CLUSTAN, it is possible to see how the clustering is affected by

different critical values.
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" 'CHAPTER 4

Examples of directional techniques.

In this chapter we do a more detailed analysis of the data
sets previously introduced; the data on activity patterné of the students
and the datayon consumption of selected foods in 45 countries. Two new
sets of data, products marketed by lumber companies in Canada and a
set of ranked preferences expressed as unit vectors, are introduced
and analyzed using some of the techniques discussed in Chapters 2

and 3.

4.1. Analysis of activity patterns of students.

In order to do a more detailed analysis of the students'
activity pattern, the 130 students were split into groups according to

the following classifications:

a. Sex: 1 - females
2 - males
b. Age: 1l - less than 21
2 - between 21 and 25
3 - more than 25
c. Living arrangements: 1 - students living alone
2 - students living in a marriage like
relationship

3 - other (residence, coop house, etc.)



56

d. Major subject: 1 - Economics and Commerce

2 - Psychology

3 - Geography

4 - Criminology

5 - Mathematics and Computing Science

6 - Not declared

7 - Joint major

8 - Other

e. Job: 1 - students

2 - students

f. Year: 1 - students

2 - students

3 - students

with full or part time job
without a job
in first year
in second year

in third or fourth year.

Table 4.1 gives the cell size, estimate of the concentration

parameter k and resultant for the groups in each of the

classifications.

The activity patterns of the 130 students were analyzed using

the one and two way ANOVA for resultants.

Table 4.2 shows a summary

of some of the results. The left hand side of the table gives the

conclusion obtained from the one way ANOVA to the test for difference

in activity pattern between the groups of

classification 1.

The model for the two way analysis assumes a classification

to be nested within another classification; the right hand side of

the table 9ives the conclusions for the test of difference between



Statistics for classifications of student data.

Table 4.1

Classification Groups N, ﬂ. R,
i i i
Sex females 56 35.6640 50.5041
males 74 35.7440 66.7540,
Age < 21 47 36.2069 42.4567
21 - 25 6l 36.8403 55.2047
> 25 22 38.1845 19.9835
Living alone 18 37.4440 16.3175
marriage 28 34.8764 25.1901
other 84 38.1513 76.2938
Major Econ/Comm. 53 42,1503 48,5991
Psychology 11 43.1244 10.1244
Geography 5 66.8862 4.7384
Criminology 4 44.7705 3.6873
Math/Comp. Sci. 6 98.6914 5.6352
Not declared 24 34.1536 21.5436
Joint major 4 88.2347 3.8413
Other 23 35.8558 20.7549
Job Yes 56 34.1215 50.2558
No 74 39,4952 67.4422
Year First 52 35.5432 46.4911
Second 49 38.4072 44.5347
Third and Fourth 29 42,6957 26.6227
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" Table 4.2

Summary of results for activity patterns of students.

(A result in the second column should read

"between classification 1 within classification 2")

Between Within
Classification 1 Conclusion Classification 2 Conclusion
Sex NS
Age S Sex: females NS
males S
Living: alone NS
marriage NS
other NS
Job: Yes NS
No S
Year: First S
Second S
Third and Fourth NS
Living S Sex: females NS
males S
Age: < 21 NS
21 - 25 S
> 25 NS
Job: Yes S
No S
Year: First NS
Second S
Third and Fourth S




Table 4.2
(Continuation)
Between Within
Classification 1 Conclusion Classification 2 Conclusion
Job S Sex: females S
males S
Age: < 21 NS
21 - 25 [
> 25 S
Living: alone NS
marriage S
other NS
Year: First S
Second S
Third and Fourth NS
Major: Econ/Comm. NS
Psychology NS
Geography NS
Criminology S
Math/Comp. Sci. NS
Not declared S
Joint major S
Other S
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Table 4.2
{Continuation)
Between Within

Classification 1 Conclusion Classification 2 Conclusion

Year S Sex: females NS

males [

Age: < 21 S

21 - 25 NS

> 25 NS

Living: marriage S

alone NS

other NS

Job: Yes S

No S

Major S Sex: females S

males S

Job: Yes S

No S
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the groups in classification 1 within classification 2. The
significance level used throughout the taﬁie is d = ,05, and NS and
S stand for "not significant" and "significant" respectively.

It can be seen from Table 4.2 that "sex" is the only
classification where there is not a significant difference between the
groups. For all the other classifications, the two way AﬁOVA shows
in general where the differences lie. For instance, the difference
between the groups in classification "age" can be found to be
significant in the males, in those students who do not have a job and
in the first and second year students. However, it is possible that
a significant difference is found between the groups of classification
1, but the tests obtained in the two-way ANOVA for classification 1
within the groups of classification 2 will not be significant. None
of the test statistics for the analysis of "age" within the groups of

classification "1living" is significant.

4.2. Analysis of consumption of selected foods.

In Chapter 3 we presented clusterings for the data set on
selected foods for 45 countries. We now give a further analysis of

this set of data using the one way ANOVA technique.

Test for difference between regions.

The countries were split into 7 groups defined by
geographical regions. Oceania and North America were pooled into
the same group due to the large values of the concentration parameter
k, (4,858.2 and 2,212.9 for Oceania and North America respectively).

The group obtained after pooling them still had a large value of k
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(1,336.3) when compared to the other groups. Bartlett's test for the
equality of concentration parameters was used and the test statistic
obtained was B = 66.2491 which is significant whenAcompared to

2 .
Xg+ Nevertheless we include the one way ANOVA because 2 is highly

2
significant (see Table 4.3). We reject the null hypothesis that

proportional consumption of foods is similar for the 7 groups.

‘Table 4.3

Statistics and ANOVA table for difference between regions.

Group Region Ni ki Ri
1 Oceania/North America 4 1336.2991 3.9910
2 Latin America 9 44,8009 8.3973
3 Eastern Europe 4 178.8693 3.9329
4 Western Europe 8 78.7312 7.6952
5 Africa 8 16.3001 6.5276
6 Near East 6 105.9430 5.8301
7 Far East 6 108.4621 5.8340

ANOVA Table

Sum of sqguares at test
Between groups ZiRi—R = 42.2082 - 39.5037 = 2.7045 36 Zz= 6.1352
Error N—ZiRi = 45 ~ 42,7018 = 2,7918 | 228
Total " N-R = 45 - 39,5037 = 5.4963 | 264
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Test for difference between protein groups.

The countries were split into three groups according to the

average daily protein consumption. The groups are as follows:

Group 1l: Protein consumption below recommended minimum (less than
51 grammes): Bolivia, Colombia, Congo, Honduras, India,

Liberia, Thailand.

Group 2: Average recommended protein consumption (51 - 70 grammes).
Algeria, Argentina, Brazil, China, Costa Rica, Cuba, Gabon,
Kenya, Lebanon, Mexico, Philippines, Saudi Arabia, Singapore,

Venezuela, Yemen.

Group 3: Protein consumption above average (more than 70 grammes}.
Australia, Austria, Canada, Cyprus, Czechoslovakia, Denmark,
Egypt, England, Ethiopia, Greece, Israel, Itaiy, Japan,
Netherlands, New Zealand, Poland, Portugal, South Africa,

Spain, Turkey, Soviet Union, United Stated, Yugoslavia.

The statistics and ANOVA table are given in Table 4.4. The
test statistic Z2 is significant; we reject the null hypothesis that

the proportional food intake is similar for the three groups.

Another grouping was obtained for daily per capita calorie
consumption and we shall examine these groups also for significant
differences. Note that both the protein and calorie consumption
information was obtained from a different U.N. publication and do not

form part*of the original data.
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Table 4.4

Statistics and ANOVA table for differences between protein groups.

Group Protein consumption Ni ii Ri
1 < 51 grammes 7 20.5857 5.9799
2 51 - 70 grammes 15 27;1992 13.3455
3 > 70 grammes 23 40.2225 21.2845

ANOVA Table

Sum of squares daf test
Between groups ZiRi—R = 40,6010 - 39.5037 = 1.0973 12 22 = 5.2919
Error N—ZiRi = 45 - 40.6010 = 4.3990 |252
Total N~-R = 45 ~ 39.5037 = 5,4963 | 264

Test for difference between calorie groups.

The countries were next split according to the daily per

capita calorie consumption. The three groups obtained are:

Group 1l: Below average recommended (less than 2,001):
Algeria, Bolivia, Honduras, India, Philippines.

Group 2: Average recommended (2,001 - 3,000):
Australia, Brazil, China, Colombia, Congo, Costa Rica,
Cuba, Cyprus, Egypt, Ethiopia, Gabon, Greece, Israel,
Italy, Japan, Kenya, Lebanon, Liberia, Mexico, Portugal,
Saudi Arabia, Singapore, South Africa, Spain, Thailand,

*
Turkey, Venezuela, Yemen.
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Group 3: Above average (moré than 3,000):
Argentina, Austria, Canada, Czechoslovakia, Denmark,
England, Netherlands, New Zealand, Poland; Soviet Union,

United States, Yugoslavia.

Table 4.5 gives the results for the test. We reject the null hypothesis

that the proportional food intake is similar for the three calorie

groups.
" ‘Table 4.5
" ‘Test for difference between calorie groups.
Group Calorie consumption Ni ki Ri
1 < 2,001 5 44 .7467 4.6648
2 2,001 - 3,000 28 25,3749 24.6896
3 > 3,000 12 76.5153 11.5295
ANOVA Table
Sum of squares af test

40.8839 - 39.5037

Il
Il

Between groups ZiRi—R 1.3802 12 Z2== 7.0419

]

45 - 40.8839 4.1161 | 252

i

Exrror N-X.R

Total N-R = 45 - 39.5037 = 5.4963 | 264

4.3. Analysis of lumber companies.

The third data set was brought to the author by Professor
Schwindt of the Department of Economics. The data concerns the

products pioduced by various companies in the lumber industry. There
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are twenty-nine companies in all marketing wood based products in.
Canada. The production; expressed in Canaaian dollars, of the eight
most important products in the forest industry (i.e., newsprint, market
pulp, wrapping paper; paperboard; fine paper, sanitary and tissue
paper, lumber, plywood) is given for each one of the companies. in

Table A.1.3, Appendi# 1. |

Table A.1.3 shows that while some companies are very
diversified (i.e., they produce many of the important wood based
prodﬁcts), other companies limit their products to only one or two
categories. )

The more diversified companies tend to be more vertically
integrated; they are using the output of one stage of production as
an input to the next stage. Therefore, a company that has production
in all eight categories would gain considerable advantages in the
market.

As none of the companies in the sample is diversified to
the extent of marketing all eight products, it was decided to obtain
a "measure of diversification" that would allow the 29 companies to
be compared to an ideally diversified company. For each company the
production in dollars was converted to a percentage of the total, for
each of the eight products. For a typical company, the component in
the i-th direction, x, is the square root of the proportion for the
i-th product, i = 1,...,8. Thus each company is an 8-dimensional
unit vector on the surface of the hypersphere of unit radius. The

ideal company was obtained from the average of the total Canadian
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shipments (for the 8 selected products) over a ten year period. The

similarity measure between a typical company and the ideal company is

then the scalar product between these two companies. If the scalar

product is close to one, the company considered is highly diversified,

while if the scalar product is close to zero, the company is not very

diversified. Table 4.6 shows, in descending order the similarity for

the 29 firms., It can be seen that the large companies (with respect

to the production in millions of dollars) tend to be more integrated

than the smaller companies.

companies do not market many of the products included

and therefore the unit vectors corresponding to these

several zero components.

Table 4.6

Similarity measure between lumber companies and the

This is mainly due to the fact that small

in the analysis,

companies have

ideal company.

(The scalar product is the scalar product between the

the ideal company).

Firm
MACB
CRZE
BCFP
DOMT
CONS
GLPA
ABIT
ONPA
REED
PRCO

Scalar
Product
.9593
. 9465
.9035
.8309
.8151
.8139
.8122
.7835
.7797
.7746

Firm

CRES
CFPR
CIPA
BCAS
NPTI
WEYE
FCOS
CCEL
RAYC
EDDY

Scalar
Product
.7531
. 7465
. 7454
.7253
.7225
.7127
.7113
.6950
.6824
.6810

given company and

Scalar

Product
.6781
.6039
.5737
.5727
.5272
.5272
.5272
.4612
.2366
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Test for difference between Canadian and Foreign owned companies.

The first analysis is to examine whether there was a
difference in the proportions of products marketed by companies
operating with foreign capital (namely CIPA, CRZE, WELD, REED, ONPA,
BOWM, BCAS, SCOT, CRES, KIMB, WEYE; NPTI) and those operating with
Canadian capital. The results appear in Table 4.7. The £est statistic
is not at all significant, so that it appears likely that we can accept
that the proportions of products marketed by companies in the two
groups are the same. This implies that there is no difference in

diversification between the groups.

‘Table 4.7

Statistics and ANOVA table for foreign/Canadian classification.

Group Capital Ni ki Ri
1 Foreign 13 12.1200 9.2459
2 Canadian 16 10.2127 10.5166

ANOVA Table

Sum of squares df test

19.7625 - 19.4463

Between groups ZiRi—R 0.3162 7 Z2= 0.9245

9.2375 | 189

Error N-—ZiRi 29 - 19.7625

Total N-R = 29 - 19.4463 9.5537 | 196

Il
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Test for difference between large, medium and small companies.

The companies were also split into three groups, according
to their production in millions of dollars.

The statistics and ANOVA table are given in Table 4.8. Fér
the test for no difference between groups, the normal app;oximation
for the test statistic Z2= 2.6450 with 14 and 182 degrees of freedom
is 2.9529 (Peizer and Pratt), 2.9577 (Carter), or 2.9431 (Paulson),
thereforezZ2is highly significant. We reject the null hypothesis that
there is no difference in the proportional outputs for the thrée groups
of companies. Bartlett's test for the equality of concentration
parameters gave a test statistic B = 15.8195 which is significant
when compared to the percentage points of the x2 distribution with 2

degrees of freedom, but the Z_  is sufficiently large that the above

2

conclusion is still valid.

Table 4.8

Statistics and ANOVA table for classification "production”.

Group Production N, k, R,
i i i

1 less than 250 18 9.9247 11.6522

2 250 - 500 6 18.7212 4.8783

3 more than 500 5 37.3068 4.5389

ANOVA Table

Sum of squares df test
Between groups XiRi—R = 21.0614 - 19.4463 = 1.6151 14 Z2= 2.6450
Error N-ZiRi = 29 - 21.0614 = 7.9386 182

Total N-R = 29 - 19.4463 9.5537 {196

il
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Clustering.

The companies were clustered using the technique described in

Chapter 3. The following clusters were obtained for y = .8.

Cluster 1: WHON, DOMA,WEST.

Cluster 2: FCOS, CCEL; RAYC, CRES, NPTI, WEYE,
Cluster 3: MACBV,v BCFP, CRZE.

Cluster 4: ABIT‘, CONS, CIPA.,‘ PRCO, REED, ONPA.
Cluster 5: SCOT, KIMB.

Cluster 6: ROLL;

Cluster 7: CFPR, WELD.

Cluster 8: KPNP, BOWM.

Cluster 9: DOMT, BCAS.

Cluster 10: EDDY.

Cluster 11: GLPA.

These clusters correspond to how integrated the companies are.
Cluster 3 contains the three most integrated companies (their dot product
with the ideal company being greater than 0.9); other very integrated
companies are found as members of clusters 4, 9 and 11. Clusters 2, 7

and 10 contain moderately integrated companies and clusters 1, 5, 6

and 8 contain the companies which are not strongly integrated.

4.4. Analysis of data on occuptional prestige.

In this section we do the analysis of a set of sociological
data obtained from Professor Charles Jones of McMaster University. The

*
set originates in the ranks and ratings given by 48 subjects to 16



occupations, according to different criteria. The occupational titles

included are as follows:

10.

11.

12.

13.

14,

15.

16.

Church of Scotland Minister
Comprehensive School Teacher
Qualified Actuary
Chartered Accountantf

Malé Psychiatric Nurse
Ambulance Driver

Building Site Labourer
Machine Tool Operator
Country Solicitor

Civil Servant

Commercial Traveller
Policeman

Carpenter

Lorry Driver

Rail Porter

Barman.

The 48 subjects were asked to rank or rate the occupations

according to 4 different criteria.

first part, subjects were

asked to rank-order the 16 occupations for the criteria "degree of

general standing in the community"” (social
"prestige or rewards which the job-holders

criterion).

standing criterion) and

ought to receive" (rewards

In the rating task, subjects were told to consider each

occupatiom and award them a score according to two criteria:

71
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"ysefulness to society" (social usefulness criterion) and "estimated
income received" (earnings criterion).

Ratings and rank orderings were transformed into 3-dimensional
unit vectors by means of a multidimensional scaling method explained
in Coxon and Jones (1978): The original data can be found in Coxon
and Jones (1979), and the data in terms of unit vectors is given in

Table A.l.4.

The 48 subjects are grouped as follows:

Group 1l: 8 Church of Scotland Ministers
(initial letter A in Table A.l.4)
3 Episcopalian ministers
(initial letter B)
1 school teacher
(initial letter ()

Group 2: 6 actuaries
(initial letter D)
6 chartered accountants
(initial letter E)

Group 3: 2 male psychiatric nurses
(initial letter K)
8 ambulance drivers
(initial letter L)
2 policemen

(initial letter M)
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Group 4: 3 joiners
(initial letter P)
3 plasterers
{(initial letter Q)
5 burner fitters
(initial letter R)
1 ship's joiner

(initial letter 8).

It was desired to test whether the four groups of subjects
gave the same ranks or ratings (according to the 4 criteria) to the 16
occupations. A one way ANOVA for resultants was done for each criterion.
The statistics and results are shown in Table 4.9. None of the test
statistics is significant; we do not reject the null hypothesis that
the 4 groups of subjects give the same ranks and ratings to the 16

occupations.



Table 4.9

Statistics and results for occupational prestige data.

Social Usefulness Criterion

ANOVA Table

74

Group Ni ,£i Ri
1 12 5.4068 9,7806
2 12 7.6916 10.4399
3 12 9.6733 10.7594
4 12 4.6393 9.4134

Rewards Criterion

Group Ni ki Ri
1 12 7.1736 10.3279
2 12 10.8301 10.8919
3 12 3.6442 8.7077
4 12 3.6182 8.6834
Social Standing Criterion
Group Ni ki Ri
1 12 5.173 9.6805
2 12 19.3659 11.3804
3 12 33.0498 11.6369
4 12 3.6820 18,7409

Earnings Criterion

Group Ni ;i Ri
1 12 10.1633 10.8193
2 12 49.9144 11.7596
3 12 9.3177 10.7121
4 12 13.4571 11.1083

Sum of squares af test
Between groups 0.7735 6 Z2= 1.4915
Error 7.6067 88
Total 8.3802 94

ANOVA Table

Sum of squares as test
Between groups 0.6873 6 Z2= 1.0735
Error 9.3903 88
Total 10.0776 94

ANOVA Table

Sum of sqgures af test
Between groups  0.2377 6 Z,= 0.5313
Error 6.5674 88
Total 6.7991 94

ANOVA Table

Sum of squres af test
Between groups 0.3777 6 Z2= 1.5383
Exrror 3.6007 88
Total 3.9784 94




75
CHAPTER 5

Suggestions for further work.

In the previous chapters we made several implicit assumptions
for the use of the methodology, namely: |
1. All the cells in the two way ANOVA should have at least
one individual.
2. The unit vectors in a data set should not have many components
equal to zero.
3. The concentration parameter 'k should be constant over the
cells. |
The robustness of the techniques when these assumptions fail needs

further work, and the following comments may be useful.

5.1. Two way ANOVA with cells having zero individuals.

Suppose we have two classifications and we choose to do a
two way ANOVA for classification 2 (columns) within classification 1
(rows). Furthermore, suppose that cell (h, k) contains no individuals
(as shown in Figure 5.1). 1In this case we can use an ANOVA table in
which the degrees of freedom have been adjusted to take into account
a cell with zero individuals (Table 5.1). Similar adjustments

can be made when several cells have zero individuals.



Classification 2

1 2 | k 3
1"y Ny, Ny Nk Nig
2 | Ny .
Classification 1 °

Figure 5.1
Two way classification with zero individuals in one cell,

Table 5.1

Adjusted ANOVA table for "columns within rows”

Sum of squares : Usual d4f. Adjusted df.
Between rows ZiRi—R°- (p-1) (1-1) (p-1) (I-1)
Between columns

Within row 1 - - - - -
Zlej R). (p-1) (J-1) (p-1) (J-1)
Within row 2 - - - - -
Zijj R,. (p-1) (J7-1) (p-1) (J-1)
"Within row ‘h - - - - -
Zthj R, (p-1) (3-1) (p-1) (3-2)
Within row I ZjRIj—RI' (p-1) (J-1) (p-1) (J-1)
E . — — - - — —
rror N Zij Rij (p-1) (N-1J) (p-1) (N-IJ+1)
Total | N-R_, (p-1) (N-1) (p-1) (N-1)

76
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5.2. Unit vectors with components equal to zero.

The effect of zero components is.not known; however it
suggesté that the vectors may lie in a hypersphere of lower dimension.
A solution to this problem is to pool components together. This is'
what was done with the data on activity patterns of students; there
were originally 13 dimensions, but as many_of the components were
zero some components were pooled. The components corresponding to
"family activities", "personal activities"™ and "job"™ were put together
into a new component called "non course activities"; similarly, the
components corresponding to "socializing with a group", "socializing
with a person of the same sex", "socializing with a person of the
opposite sex" and "other" were pooled into a new component called
"socializing”, The one way analysis of variance for the original data
was done, and gave exactly the same conclusions as those for 8 components
presented in Section 4;1.

In the data on lumber companies introduced in Section 4.3
many individuals present several components equal to zero; some
companies have all but one component equal to zero. The original 8
components were pooled into 4 components: "Wrapping paper"”, "Paper
Board", "Fine Paper" and "Sénitary and Tissue Paper" were pooled into
"Paper"; "Lumber" and "Plywood" were pooled into "Wood". The analysis
using 4 components is given in Tables 5.2 and 5.3. The conclusions
are the same as those obtained in Section 4.3, and we give the results
in detail so that comparisons can be made. Further work needs to be

done on the effect of zero components.




Table 5.2

Statistics and ANOVA table for foreign/Canadian classification.

(4 components)

Group Capital Ni ‘fi Ri
1 Foreign 13 5.5998 9.5177
2 Canadian 16 4.4831 10.6465
"ANOVA Table
Sum of squares af test
Between groups ZiRi—R = 20.1643 - 19.9696 = 0.1947 3 Z2= 0.5949
Error N—ZiRi = 29.- 20.1643 = 8.8357 |81
Total N-R = 24 - 19.9696 = 9,0304 | 84
Table 5.3

Statistics and ANOVA

‘table for classification "production".

(4 components)

Group Production Ni ii Ri
1 less than 250 18 4.5070 12,0093
2 250 - 500 6 7.8957 4.8601
3 more than 500 5 14.8239 4.4941
ANOVA Table
Sum of squares af. test
Between groups ZiRi—R = 21.3635 - 19.9696 = 1.3939 6 Z2= 2.3729
Error N—ZiRi = 29 - 21.3635 = 7.6365 178
Total N-R = 29 - 19.9696 = 9.,0304 | 84
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5.3. Failure of the assumption of constant k.

When k is hot constant from cell to cell, the situationis
roughly analogous to a normal-theory analysis of variance with the
error variance varying from cell to cell. It is known that this
hetereogeneity of variance can affect the. results, and various
procedures have been suggested. For example, the cell means are
- sometimes weighted in proportion to the residual variance estimates,
or a transformation is made of the original data. For vectors, it
does not appear that straightforward adjustments can be made. Thus,
when the tests are done in the usual way, the apparent conclusions
should be interpreted with reserve, according to the degree of
hetereogeneity of the k values. This too is a subject which needs

further investigation.
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Aggendix 1

‘Data sets.

The four sets of data used in this thesis are given in

Tables A.l.1 - A.l.4.

Table A.1l.1
Time in hours spent in eight activities by 130
students at Simon Fraser University.

The activities considered are:

I. Sleeping.
II. Travelling to school (includes waiting for bus, looking for
a parking space, etc.).
III. Attending lectures (seminars and tutorials).
IV. Studying (library, writing papers, reading for a course, etc.).
V. Sports.
VI. Socializing.
VII. Eating meals.
VIIT. Non-course activities (personal activities, family/household

activities, job).

The students were assigned codes according to the following

characteristics:

Column 1l: Sex: females =1

*

males = 2



Column

Column

Column

Column

Column
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Age: less than 21 =1
between 21 and 25 = 2
more than 25 = 3
Living arrangements: living alone = 1
marriage-like relationship = 2
other = 3 .
Job: students who have a job =1
students who do not have a job = 2
Year: first year =1
second year = 2
third or fourth year = 3/4
Major: Economics/Commerce = 1
Psychology = 2
Geography = 3
Criminology = 4
Mathematics/Computing Science = 5/6
Not declared = 7
Joint major = 8

Other = 9



NN

- NN

NN

—t
w W

j=

7.25
4.50
7.76

0.75
0.50
0.7
1.00
0.75
0.52

0.75

0.25

2.37

0.50

0.0

Table A.1l.1

Activities

I

3,00 5.50
3.00 4.00
4.717 4.71
2.25 17.50
4.00 4,00
2.09 4,87
6.00 7.25
3.00 7.00
3,00 5,00
.44 5.33
0.75 4.50
2.97 3.96
2,00 2,00
2,00 2.00
7.00 6.00
4,00 5.00
3.00 4.00
2,00 4,00
3.00 3.00
2.00 3.00
2.75 0.25
3.00 2,00

1.18
0.75
1.00

0.70

0.75
0.75

3.00
0.0

3.00
0.25
6.00
1.00
0.0

5.25

3.00

VII

2,50
6.00
1. 18
0.75
4.00
6.95
2.00
0.0

1.00
1.77
0.75

1.73

0.0

2.50
7.00
2.00
0.0
0.0
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1.39
1.75

0.0



NN

3

3

w W

N

N W W W w

Codes

jH

7.00
8,91
7.85
8.00
7.38
7.00
8.00
6.00
5.00
6.00
6.50
6.72
3.96
10.00
7.00
7.00
.00
8.00
7.00
10.00
4.00

8.00

Table A.1.1
(Continuation)
Imomr W
1.00 4,00 6.00
0.25 2.97 4.35
1.31 0.65 0.87
0.50 2.50 6.00
0.46 2.77 4.62
0.50 4,00 7.50
0.50 1,00 2.00
2,50 2,00 5.00
1.00 5.00 5.00
0.50 2.00 11.00
0.50 3.00 4.00
1.92 3.84 4.32
0.25 0.0 14.85
0.0 0.0 4.50
0.50 0.0 4.00
0.50 3,00 1.00
1.25 0.0 4.00
0.25 3.50 19,00
0.50 4.50 1,00
1.00 1.00 2.00
2,25 0.0 4.00
0.50 2.00 7.00

|<

1.00
0.49
1.75
0.75
1.38
1.75
1.00
2.00
0.25
0.0

2.00
1.44
0.99
2,00
1.00
0.50
0.75
1.50
1.00
1.00
0.75
1.00

B

1.98
5.23
1.00
1.38
2.00

2.50

0.0

1.00
1.00
3.00
0.25
6.00
1.00
0.0

1.50

VII
0.50
1.48
4, 37
0.0

3.00
3.50
1. 50
3.00
3.00
0.0

1. 00
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virz
4.50
.2.97
1.396
5.25
0.92
0.50
5.00
3.00
7.25

3.00

5.00
13.00

3.00
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NN

w w w
N

w w
L)

NN W

N O ®

|H

7.50
7.00
7.50
8.00
6.50
8.00
3.00

Table A.l.1.

{(Continuation)
II I Iy
1.50 2,75 4.25
1.00 4.00 5.00
.50 4.00 5.00
0.0 3.00 4.00
2.50 6.00 3.00
1.00 4.00 2.00
0.75 2.00 3.00
0.24 4.85 0.37
2.00 3.00 5.00
1.18 2.82 1.88
0.22 1.54 3.52
0.50 5.00 6.50
0.0 0.0 5.00
0.25 3.50 1.50
0.25 0.0 4.00
1.94 2.31 6.73
0.96 2.88 9.60
0.23 3.62 8.15
1.25 3.00 5.00
0.25 2.50 10.00
0.25 1.00 2.00
1.00 3.00 8.00

|<

1.25
1.00
1.50
1.00
1.00
1.00
1.00
1.34
1.00
0.7
1.76
1.50
2.00
1.00
1.00
2.42
1.92
0.45
2.50
0.50
2.00

1.00

1.50
0.0

1.00
0.25
1.00
3.00
3.00
3.88
2.50
4.70
1.54
1.50
1.50
2,00
0.0

0.0

0.48
0.68
0.50
0.25
1.00

1.00

VII

1.75

0.50

84



Codes

2 31

w W

w w W

N

5.00
5.00
6.00
7.84
8,00
10.00
10. 00
9.00
8.00
8.00
6.00
7.00
4.76
5.18
5.76
6.50
9.00
8.00
9.00
8.50
8.50
8.52

Table A.l.1

(Continuation)
oI oW
0.75 0.0 2,50
1.00 5,00 6.00
1.00 5.00 7.00
2.45 1,96 4.90
1.25 4,00 0.75
0.50 5.00 4.00
0.25 5.50 4.00
1.00 4,00 2.00
0.50 4,00 6.00
1.00 4.00 7.25
0.50 4.00 8.00
0.50 2.00 6.00
0.60 3.17 3.17
0.24 1.41 2.82
0.38 7.68 1.73
0.25 5.00 5.00
0.50 4,00 5.00
0.50 4,00 8.00
0.50 4.00 2.75
1.00 3.00 7.00
1.00 3,00 6.00
0.90 3.53 1.79

1.00
2.00
2,00
2.94
1.25
2,00
2,25
1.50

0.25

0.30

VI
8.00
2,75
2.00
1.96
3.00
0.0

0.0

1.00
0.75

2. 25
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VIII

6,25

0.25

0.50

0.25

1.12



w W

NN W W

N

w W
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i+

5.00
6.00
6.37
7.00
7.50
6.50
7.00
8.00
6.37
7.32
7.50
5.00
6.00
5.50
8.00
5.00
6.00
5.00
7.00
6.50
7.50

7.00

Table A.l.1l.

(Continuation)

oo W

.00 2,00 9.00
0.50 4.00. 4,00
0.49 2,94 2.934
1.00 3.00 2.00
0.50 2.00 6.00
2.00 3,00 . 0.0

1,00 3.00 5.00
2.00 2.00 2.00
0.49 4,90 5,88
0.7 1.38 1.98
0.75 3.00 6.50
2.50 1.00 6.50
2,00 2.00 4.00
2,50 0.0 4.50
0.50 3.00 4.00
0.50 5.00 6.00
0.50 2.50 2.50
0.75 2.75 2.75
0.75 4,00 7.00
0.50 3.00 4.00
0.75 2.00 7.00
2,00 4.00 4.75

2,00
1.00
0.98
1.48
1.00
1.00
0.0

0.0

1.25
0.50
1.00
1.00
2.00
1.75
1.00

0.75

\'28
2.00
0.50
2.45
4.00
1.00
1.50
0.50
2,00
1.96
0.0
0.75
0.50
3.00
2.00
4.25
3.00
1.25
1.25
1.75
3.50
1.75
0.0

V11

3.50

0.98

2.50
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1.50
0.0



© Codes

2 31

NN

[ ]

W N W

NN W

NN -

N

NN

NN

w

4.83
6.93
7. 11
7.18
6.92
6.61
7.60
8.08
9.00
7.71
4.00
6.00
7.50
6.00
5.00
8,00
7.50
5.00
5.70
5.50

Table A.1l.1l.
(Continuation)

I omr W
1.63 4.51 2,26
2.97 5.44 2.97
0,22 1.56 3.56
0.22 1.57 3.59
0.43 1.51 3.46
0.66 1.76 2.64
1.90 2.85 7.60
0.95 2.85 7.60
1.00 2.00 6.00
0.86 3.43 1.71
1.00 2.00 7.00
0.42 3.00 3.00
0.75 3.00 6.00
2,00 1.00 5.00
2.50 1.00 3.50
0.50 6.00 3.00
0.75 3.00 5.00
2.50 1.00 6.00
1.90 1.90 4.28
2.50 0.50 4,50

3.63
0.99
1.78
1.79
1.73
1.76

0.95

0.0

vi

3.63

0.99

Vit
2.64
2,72
8.22
8.30
8. 44
8. 36
2. 14
1.43
2.00
4.08
2.50
3.00
2.75
1.75
4.50
1.50
2.175

1.00

87

VII

v

0475

0.99

0.0
0.0
0.0
0.22
0.0
0.0
2.00
2.15

5.00
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Table A.1.2

Daily per capita consumption in grammes of selected foods

in 45 countries during 1968-1969 , converted to unit vectors.

The selected foods are:

Cereals:

Starchy foods:

Sugar:

Seeds:

Meats:

Milk:

Fats:

flour and milled rice.

potatoes, sweet potatoes, cassava, manioc flour,
potato - flour, and other root flour. It also
includes plantains and bananas when considered staple
foods.

refined sugar, crude sugar, syrups, honey and other
sugar products.

including also shelled equivalent for nuts, pulses
and cocoa beans.

poultry and game; expressed in terms of dressed
carcass weight, including edible offals.

milk and milk products excluding butter.

fats and oils.
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13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

Algeria
Argentina

Australia

‘Austria

Bolivia
Brazil
Canada
China
Colombia
Congo
Costa Rica
Cuba
Cyprus
Czechoslovakia
Denmark
Egypt
England
Ethiopia
Gabon
Greece
Honduras
India
Israel
Italy
Japan
Kenya
Lebanon
Liberia
Mexicos

Netherlands

(ALG)
(ARG)
(aAUS)
(AUT)
(BOL)
(BRA)
(can)
(CHI)
(coL)
(CON)
(CSR)
(CUB)
(cYp)
(CZE)
(DEN)
(EGP)
(ENG)
(ETH)
(GAB)
(GRE)
(HON)
(IND)
(ISR)
(ITA)
(JAP)
(KEN)
(1EB)
(LIB)
(MEX)
(NET)

Table A.1.2
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Cereals Starches Sugar 'Seeds ~ Meat Milk Fats

0.8045 0.2775 0.2806 0.1433 0.1940 0.3361 0.1602
0.4501 0.4282 0.2844 0.0817 0.4889 0.5001 0.1926
0.4053 0.3273 0.3050 0.0877 0.4388 0.6409 0.1561
0.4317 0.3771 0.2603 0.1051 0.3741 0.6337 0.2254
0.5293 0.7025 0.2421 0.1082 0.2674 0.2629 0.1234
0.4309 0.6393 0.2904 0.2656 0.2716 0.4057 0.1102
0.3484 0.3724 0.3026 0.0814 0.4097 0.6627 0.1857
0.7202 0.5754 0.1157 0.2286 0.2510 0.1098 0.0968
0.4459 0.5752 0.3465 0.1211 0.2724 0.4993 0.1091
0.1853 0.9553 0.0787 0.1232 0.1186 0.1006 0.0855
0.5159 0.3819 0.3619 0.1846 0.2749 0.5633 0.1726
0.5385 0.4571 0.3630 0.1900 0.3292 0.4592 0.1169
0.6195 0.3258 0.2711 0.2049 0.3582 0.4866 0.1707
0.5132 0.4725 0.2792 0.0778 0.3555 0.5191 0.1825
0.3533 0.3777 0.2986 0.0679 0.3350 0.6896 0.2255
0.8196 0.1922 0.2548 0.1892 0.1979 0.3665 0.1296
0.3677 0.4329 0.2972 0.1097 0.3704 0.6310 0.2037
0.7822 0.3356 0.1054 0.2912 0.2715 0.3006 0.1236
0.1624 0.9460 0.0765 0.0733 0.2286 0.0988 0.0733
0.5243 0.3656 0.2156 0.1954 0.3036 0.6099 0.2058
0.6273 0.4187 0.2860 0.2162 0.2250 0.4821 0.1395
0.7695 0.2468 0.2622 0.2766 0.0790 0.4257 0.1185
0.5157 0.2913 0.3045 0.1529 0.3845 0.5818 0.2112
0.5535 0.3301 0.2520 0.1493 0.3353 0.5815 0.2192
0.6573 0.4409 0.2814 0.2375 0.2218 0.3950 0.1800
0.6299 0.5684 0.1863 0.2733 0.2406 0.3276 0.0725
0.6493 0.2548 0.2787 0.1854 0.3070 0.5196 0.1922
0.5424 0.7987 0.0833 0.0833 0.1530 0.1381 0.1062
0.6725 0.2043 0.3606 0.3031 0.2561 0.4328 0.1761
0.3556 0.4085 0.2991 0.0970 0.3271 0.6719 0.2216




31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45.

New Zealand
Philippines
Poland
Portugal
Saudi Arabia
Singapore
South Africa
Spain
Thailand
Turkey
Soviet Union
United States
Venezuela
Yemen

Yugoslavia

(NW2)
(PHI)
(POL)
(POR)
(SAU)
(SIN)
(sar)
(spa)
(THA)
(TUR)
(uss)
(usa)
(VEN)
(YPR)
(YUG)

90

Cereals Starches Sugar Seeds Meat Milk Fats
0.3606 0.3555 0.2749 0.0777 0.4295 0.6690 0.1721
0.7570 0.3823 0.2881 0.1680 0.2672 0.2910 0.1152
0.4942 0.4704 0.2500 0.0798 0.4966 0.5933 0.1597
0.5773 0.5195 0.2479 0.2008 0.2772 0.4169 0.2102
0.8252 0.0995 0.2439 0.1676 0.8299 0.3941 0.1149
0.6288 0.3669 0.3535 0.1961 0.3002 0.4385 0.1550
0.6796 0.2141 0.3293 0.1208 0.3432 0.4811 0.1407
0.4774 0.5135 0.2490 0.1671 0.3237 0.5211 0.4047
0.8309 0.3097 0.2154 0.2725 0.2393 0.1669 0.0879
0.7063 0.3448 0.2077 0.1919 0.2026 0.4801 0.1747
0.5261 0.4944 0.2618 0.1108 0.2618 0.5548 0.1461
0.3465 0.2887 0.3110 0.1238 0.4488 0.6635 0.2066
0.4934 0.5667 0.3187 0.1831 0.2786 0.4400 0.1695
0.6490 0.1628 0.3662 0.1424 0.2678 0.5328 0.2052
0.6493 0.3882 0.2364 0.1483 0.2806 0.4877 0.1817
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Table A.1.3

Production of the 29 largest forest product firms in
Canada for 1977. (The proportional production of the "ideal

company" is also given at the bottom of the table).




Table A.1.3

" Products (in Million dollars)

Company , 1 2 3 4 5 6 7
1. MacMillan Bloedell (MACB) 420 200 é 34 15 0 221
2. Abitibi Paper Co. (ABIT) 342 39 0 32 104 0 19
3. Domtar Ltd. (DOMT) 122 133 81 98 188 0 20
4. Cons. Bathurst (CONS)- 345 80 33 127 0 0 16
5. Canadian Int. Paper (CIPA) 344 147 0 114 0 0 0
6. B.C. Forest Products (BCFP) 82 188 0 0 0 0 145
7. Crown Zellerbach (CRZE) 78 86 17 12 0 0 85
8. Canadian Forest Prod (CFPR) 0 61 (o] 0 0 0 141
9. Weldwood of Canada (WELD) o] 39 0 0 0 0 29
10. Price Co. (PRCO) 323 6 22 21 0 i.5 34
11. Reed Paper (REED) 106 48 27 36 3 0 0
12. Ontario Paper (oNPA) 252 57 o] o] o] 0 0
13. Great Lakes Paper (GLrpa) 131 155 0 0 0 0 15
14. Fraser Companies (FCOS) 0 66 0 10 0 0 12
15. Kruger Pulp & Paper (KPNP) 164 0 0 23 0 0 0
16. Eddy Paper Co. (EDDY) 0o 53 15 7 90 43 25
17. Bowater (BOWM) 184 0 0 0 0 10 2
18. Boise Cascade (BCcasS) 78 30 0 0 110 0 4
19. Canadian Cellulose (CCEL) 0 155 0 4] o] 0 54
20. Rolland Paper (ROLL) 0 o] o] o] 65 0 o]
21. Rayonier Canada (RAYC) 0 192 0 0 0 0 51
22, Whonnock Ind. {(WHON) 0 0 0 0 0 0o 56
23. Scott Paper (scoT) 0 66 0 0 0 78 2
24. Doman Ind. (DOMA) 0o 0o 0 0 0 0 59
25. West Fraser Timber (WEST) o] 4] o] 4] 4] 4] 91
26. Crestbroak (CRES) 0 44 0 0 0 0 30
27. Northwood Pulp & T. (NPTI) 0O 89 0 0 0 0 133
28. Kimberley Clark Can. (KIMB) 0 133 0 0 0 52 18
29. Weyerhauser (WEYE) 0 133 0 0 0 0 74
Ideal Company (Proportion) (IDEA) .27 .25 03 .07 .05 .01 .28
1. Newsprint (NEWS) 2. Market Pulp (PULP)
3. Wrapping Paper (WRAP) 4. Paper Board (PBOA)
5. Fine Paper (FINE) 6. Sanitary and Tissue Paper (TISS)

7. Lumber (LUMB) 8. Plywood (PLYW)
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8 Total

160
0

36
56
33
115

[
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o
wm

1058
536
642
601
610
451
334
235
253
407.5
220
327
301

88
187
233
196
222
209

65
243

56
146

59

91

80
222
203
207



Table A.l.4

Occupational prestige.

Table A.l.4a gives the unit vectors for the criteria
"Social Usefulness" and "Rewards". Table A.l.4b gives the unit
vectors for the "Social Standing Criterion" and the "Earnings

Criterion”.
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Subject

201
A02
A03
AOY
A05
206
207
208
BO9
B10
B11
c12
D13
D14
D15
D16
D17
D18
E19
E20
E21
E22
£ 23
E 24

Social Usefulness

1
-0, 033
0.397
0.623
0.780
0.048
0.454
-0.226
-0.052
0.861
-0.335
-0.074
0.804
0.582
0.330
0.051
0.398
0.913
0.837
-0.068
0.221
0.284
0.736
0% 952
0.370

II
0.995
0.562
0.322
0.621
0.971
0.854
0.916
0.846
0.505
0.786

0.397

"0.573

0.768

0.944

- 0,999

0.407
0.228
0.816
0.883
0.955
0.6u45
0.303
0.574

Table A.l.4a

III.

0.03¢
-0.726

-0.713
0.081
-0.234
-0.252
0.333
-0.531
0.066
-0.520
0.034
0.136
-0.269
0.018
0.004
-0.613
-0.038
-0.49%
-0.574
-0.415
0.087
-0.208
1 0.028
~0.730

 Rewards

I

0.787.

0.631
0.133
0.441
0.690
0.935
0.264
0.753

0.862

0.241

0.668
0.958
0.338
0.868

0.921

. 0.943

0.979
0.828
0.953
0. 1742
0.826
0.857
0.993
0.934

i,
0.595
0,734
0.950
0.872
0.588
0.051
0.961
0.487
0.487
0.920
0.710

~0.282
0.055
0.382
0.376
0.330
0.200
0.373
-0.302
0.925
0.514
0.441
0.103

0.113

II1

-0.164
-0. 251
0.281
0.212
-0.423
0.087
0.088
-0.442
-0.140
-0.310
-0.221

0.049

0.011

0.317
0.039
-0.044
-0.0u45
- 0.413
-0.012
-0.353
0.232
-0.266
0.061
0.010
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K25
K26
127
128
129
130
L31
L32
133
L34
M35
M36
P37
P38
P33
Q40
QU1
Qu2
RU43
RU4U
RUS
RUG6
RU4T

su8

IR

0.702
0.732
0.357
0.228
0.757
=0.145
0.962
0.407
-0.210
0.397
0.033
0.626
0.617
0.558
-0.248
-0.279
0.711
0.778
0.718
0.736
0.306
0.884
-0.284

0.469

0.672
0.670
0.883
0.972
0O.6u4
0.350
0.271
0.913
0.977
0.308

0.979

0.744

0.780
0.741
0.301
0.896
0.622
0.547
0.688
0.466
-0.300
0.467
0.897
0.883

Table A.l.4a

(Continuation)

IIT L il 11T
-0.235 0.31% 0.325 0,237
.0.123 0.836 0.511 -0.200

0.305 0.051 0.349 0.311
0.065 0.772 0.614 -0.166
0.113 0.960 0,143 0.239
0.276 -0.577 -0.758 0.303
-0.026 0.390 0.121 -0.073
-0.021 0.3933 0.102 -0.052
-0.036 -0,027 0.356 0.233
0.135 0.861 0.503 0.072
0.204 0.854 0,489 -0.175
-0.233 0.363 0.253 ~0.0834
-0.103 0.919 0.390 0.056
-0.373 0.8396 -0,438 0.070
0.355 0.897 -0.438 0.065
0.345 -0.171 0.317 0.361
-0.329 -0.006 0.9501 0,433
0.311 0.955 0.229 0.191
-0.102 0.674 0.673 -0.306
-0.491 0.408 0.856 -0.318
0.239 0.380 -0.799 0,014
-0.021 0.817 0,557 0,151
0.338 -0.140 0.961 0.240
0.010 0.746 0.665 0.046
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Subject

A01
402
A03
AOY
A05
A06
A07
A08
B0O3
B10
B11
ci12
D13
D14
D15
D16
D17
D18
E19
E20
E21
E22
E23

E24

Social Standing

.'I

0.669

0,333

0,307
0.104
0.826
0,938
0.010
0.334
0.9345
0.979
0.375
0.877
0.972
0.384
0.307
0.968
0.399
0.941
0.993
0.322
0.664
0.892
0.939

0.988

=
0.681
0.073
0.0
0,961
0.564
-0.342
0.986
-0.354
~0,274
0.173
0.181
0.479
-0,232
0. 104
0.421
0.221
0.034
~0.107
-0.049
0.357
0.747
0. 450
0.332

-0.116

Table A.l.4b

III
-0.299
0.092
-0.421
0.257
0.016
-0,048
0.167
0.044
0.180
-0.106
-0,132
-0.027
0.041
0.142
-0.013
0.121
-0.003
-0.320
-0.108
-0.143
0.022
-0.049
-0.087

0.106

0.957 -0.258
0.656 =-0,501
0.800 -0.598
0.864 -0.321
0.833 -0.553
0.8u44 -0.535
-0.104 0.055
0.896 -0.421
0.8935 -0.446
0.903 =0.427

oJeqz,-o;51&

0.926 -0.329
0.767 -0.567
0.853 -0.508
0.749 -0.661
0.924 -0.370
0.831 =0.452
0.914 =0.406
0.913 .-0.373
0.842 -0.529
0.873 -0.474
0.875 -0.u83
0.814 -0.572

0.831 -0.374

ITI

‘0. 129

-0.565
-0.033
-0.386
-0.018
0.036
-0.933
-0.139
0.013
-0.054
-0.147
-0.187
-0.301
-0.123
0.058
0.100
0.034
-0.025
0.167
0..108
0.114
0.024
0.094

-0.’412
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Subject
K25
K26
L27
128
L23
L30
L31
L32
L33
L34
M35
336
P37
F38
P39
Quo0
oul
Qu2
RU3
RUY
RU5
RU6
RU7

su8

0.330
0.866
0.373
0.731
0.303
0.781
0.962
0.991
0.397
0.893
0.857
0.3u8
0.306
0.896
0.897
-0.115
0.905
0.890
0.601

0.584

0.994
0.804
-0.449

0.847

0.143
0.482
0.143
0.535
0.404
0.617
0.250
0.109
-0.056
0.449
0.514
0.263
0.418
-0.438
-0.438
0.928
-0.122
0.409
0.760
0.732
0.035
0.539
0.6U45

0.433

Table A.l.4b

(Continuation)
111, 1 bod
-0.007 0.769 -0.638
0.137 0.459 -0.882
0.182 0.621 -0.759
-0.142 0,712 0.346
0.144 0.928 -0.357
-0.097 0.936 0,153
c.110 0.995 0.046
-0.077 0.937 -0.322
-0.061 0.835 =0.430
-0.009 0.888 -0.,459
0.039 0.809 -0.481
0.181 0.969 -0.219
0.064 0.773 -0.594
0.070 0.875 -0.480
0.065 0.888 -0.456
0.354 0.874 -0.478
-0.407 0.819 =0.553
0.200 0.983 -0.173
-0.247  0.964 -0.255
-0.177 0.983 0.175
0.106 0.395 -0.081
-0.251 0.836 -0.540
0.618 0.825 -0.551
0.309 0.737 0.535

III
0.040
0.109
0.197

-0.611
0.105
-0.318

0.084
0.137
0.117

-0.013
~0.339
~0.114
0.223
0.067
0.066
0.085
0,153
0.061
~0.075
0.045
-0.065
0.101
0.127

"0-“1“
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Appendix 2

Normal approximations to the F-distribution.

A.2.1. Intréduction. -

When the one way and two way ANOVA for resultants and
angles are calculated the test statistics obtained require the percentage
points of the F-distribution with degrees of freedom laréer than those
usually tabulated.

In the examples shown here it can be seen that n the number

_2’
of degrees of freedom in the denominator, is very large, while ny the
number of degrees of freedom in the numerator, is small. This indicates

that the percentage points of the F-distribution can be approximated by

using a x2—distribution with n, degrees of freedom:
F(n,,n.; o) = 2(n ; a)/n
157 ~ X 17 a 1

However, in the general case, when p , the number of dimensions, is
very large, the degrees of freedom in the numerator will also be large
and the x2-approximation can not be used. It was therefore decided

to find an approximation to the F-significance points for this situation.
We report on eight methods that have appeared, over a span of many
years, in the literature. All the methods considered take a value F
and convert it to a new value z; if F has the F(nl, n2) distribution,

z will have, to a good approximation, a standard normal distribution.

Of particular interest is to see if the upper tail points of F(nl, n2)
I
taken from the tables, convert accurately to the standard normal i

points. Results were compared only for values n, and n, greater
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than or equal to 20. Other comparisons have been given by Peizer

and Pratt (1968) and Ling (1978).

A.2.2. Transformations from F to Standard Normal Values.

The eight transformations examined are listed below.

a. Abramowitz and Stegun (1967) list three approximations. Two of

these are zz and Z3 below, but they also give the following

approximation recommended for use with large values of n, and n,:

n

F- n E2
. -,

VA =.
1 /2{n.+ -§$ *
._n2 .Anl !’12
n2—2 nl(n2—4)

b. The square root approximation (ZZ) is a modification of an

approximation suggested by Pinkham (1957) after investigation of the

first four moments. It is given by

c. The cube root approximation given by Paulson (1942) is
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932 9nl
_ -
Z3 > . = 373 , for n, = 3.
9n1 9n2

If it is desired to use the lower tail of the F distribution n,

should also be greater than or equal to 3 (Paulson, 1942).
Mudholkar and Yogendra (1976) use the cumulants of (-log X) where
X has a Beta distribution with parameters (p, q): these
cumulants are approximated by a chi-square variable, as was done
by Patnaik (1949) or Pearson (1959); This is in turn subjected
to the Wilson-Hilferty cube root transformation to obtain a normal
approximation for (-log X): A direct three moment normal
approximation for (-log X} can also be constructed (Sankaran,
1959) ., If X has the Beta distribution with parameters (p, q),
the r-th cumulant of (-log X) is

g-1

K = (r-1)! I e+ 5, r=1,2,... .

j=
If F has P-distribution with (nl, n2) degrees of freedom then
X=(1+ an/nZ)—l has the Beta distribution with parameters (p, q),
where p = n2/2 and g = n1/2 . If ny is odd the cumulants are
approximated.by

g-3/2

K= (==1)! I (pd) "+ (1/2) (prq-1/2) "%, r = 1,2,... .
j=0

*

The approximation of Pearson type has the form
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/3 ~1/2

1
_ - (logX+b) _ 2 2
Z4v— [{———;Rr———J (1 ER?J(ERﬁ '
where B = K3/K23/2, v = 8/B2
) 12 .
a-= (K2/2v) , b= Kl va .

The Sankaran approximation involves the determination of a
constant h such that the leading term in the third cumulant of

{(-1log X)/Kl}h vanishes. It is given by

{(-Tog %) /K, Yp
z2_ = .
5 g

2
where h=1- K1K3/3K2
=1-K
M 1 3h/6K1K2
2 2
6 =nh K2/K1 .

The approximation obtained by following Patnaik's method becomes

5 -1/2

_ -log X 1/3
= (2= ) '

2
6 v ) - (1 - 539}(

where a= K2/2Kl

<
1

2
2K1 /K2 .

Peizer and Pratt (1968) give a normal approximation to the

Beta Aistribution and its relatives, in particular the binomial,
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. . . . 2
Pascal, negative binomial, F, t, Poisson, Gamma and ¥
distributions. The approximate normal deviate for the F

distribution is

ltag(Sy £ pglmy /2
AN d'{ np i nq } |
7 (n+tl/6)pq |
where § = (n2 -1/2, T=(n, -1)/2 ;

1
P = nz/(an + nz), q=1l-p

- 2)/2

(n) +n,

o)
]

dl

S+ 1/6 - (n + 1/3)p

and g(x) = (1 ~ x)-2 (1 - x2 + 2x log x). |

Transformation 2Z_, the one used in the comparisons, is a refinement

7'

of 2} usingd=gq'+ .02{q/(5+.5) -p/ (T+.5) +(g-.5) /(n+1) } instead

of d'. The function g(x) is tabulated in Peizer and Pratt's

paper so that the approximation can be calculated quickly.

Carter (1947) gives a normal approximation based on approximations
to the third and fourth cumulants. He recommends its use for
large values of n1 and n, and beyond the range of the published

tables. Carter actually gives F from 2z, but inverting we

calculate z from F as follows. First calculate
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s = 1/(n;-1) + 1/(n,-1) and t = 1/(n,-1) - 1/(ny~1) then
a = t2/36 - s2/24;
b = Qt/3 + t2(1-s)/9 - s/2+s>/8;

and c = 20t(1-s)/3 + t2(1-s)2/9 + @2, with Q = log F .

Finally the normal variable is

Z_, = (—1)p{(-b—lb2—4ac)/2a}1/2;

8

p =0 if F is in the upper tail, and p =1 if F is in the lower tail.

A.2.3. Comparisons.

The eight approximations where compared for a wide range of
degrees of freedom and upper and lower tail probabilities (0.001,
0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25). The degrees of freedom

examined consisted of all possible combinations with nl, n2 = 20,
30, 40, 60, 120.

,n;a)=

Because of the well-known identity F(n1 5

l/F(nz, n 1-a) where F(nl, n.; a) refers to the upper tail a-level

1’ 2

percentage point of F with n., (numerator) and n, (denominator) degrees

1 2

of freedom, it is not strictly necessary to examine the lower tail
separately; this was however done as a check on calculations. Our
reported results below refer to the upper tail points. The technique

of comparison followed was to insert a known F(nl, n2; a) as F in

the formulae, and calculate Zl,...,Z the values were then compared to

8;

the standard normal values. The exact percentage points of F were
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taken from Biometrika Tables for Statisticians, Vol. 1, Table 1. A

typical set of results is shown in Tables A.2.1 and A.2.2. From

these and similar tables (25 in all) the conclusions are as follows.

Table A.2.1.

Normal approximations for F(60,60;a); o = 0.250, 0.100, 0.050, 0.025.

a = 0.250 0.100 0.050 0.025

True

z-score 0.67449 1.28155 1.64485 1.95996
Zl 0.57162 1.31510 1.82306 2.30635
22 0.67372 1.27711 1.63546 1.94420
Z3 0.67463 1.28179 1.64482 1.95959
Z4 0.67444 1.28153 1.64472 1.95980
25 0.67440 1.28126 1.64416 1.95886
Z6 0.67281 1.28240 1.64776 1.96511
z, 0.67438 1.28156 1.64482 1.95997
ZB 0.67438 1.28152 1.64474 1.95984




Normal approximations for F(60,60;a); a = 0.010, 0.0050, 0.0025, 0.0010.

b.
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Table A.2.2

a = 0.0100 0.0050 0.0025 0.0010
True .
z—-score 2.32635 2,5783 2,80703 3.09023

Zl 2.92459 3.38381° 3.83974 4.44194
22 2.30012 2.54026 2,76104 3.02910
2 2.32529 2.57403 2.80433 3.08625
Z4 2;32614 2.57552 2.80658 3.08973
25 2.32459 2.57344 2,80393 3.08625
Z6 2.33447 2.58615 2.81950 3.10564
z, 2.32639 2.57583 2,80695 3.09016
Zg 2.32621 2.57562 2,80671 3.08992

Seven of the eight statistics examined give very good approximations;
the exception is Zl. The extent to which Zl differs from the
others in accuracy is illustrated by, for example, the values for
F(60,60;.10) shown in Table A.2.1. It can be seen that in all

the comparisons the error in Zl is noticeably greater than

for the other statistics.

Thelcomparisons corresponding to a-values 0.25, 0.10, 0.05 and 0.025

are listed apart from those corresponding to a-values 0.01, 0.005,

0.0025 and 0.001. Thus the more used significance levels may be
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compared separately from the extreme tail levels. For each
combination of (nl, n2) and a , the stétistiés were ranked 1 (the
best), 2 and 3 by the values [zi - Zg where z, was the

expected normal value. Table A.2.3 gives the number of times each
statistic was ranked 1, 2 of 3, for a-values in the upper tail. The
table is divided into four parts, corresponding to sméller and larger
‘'values of n1 and n,- An approximation with rank 1, 2 or 3 is given a
score of 3, 2 or 1 respectively. S is the sum of these scores.

Table A.2.3

Ranks for normal approximations.

n, = 20,30,40 n, = 60,120
a 1 2 3 s 1 2 3 s
zg |26 8 2 |96 zg |31 5 o |103
z, | 7 8 10 |47 z 3 17 16 59
Q
Sflzg [0 1 2|4 Z, o o 4 4
g |2 1 o 6 | o Zg o o 1 1
z, | 1 o 11 |32 z, 2 14 14 48
o lelzs |1 10 5 |28 Z., o o0 1 1
< (o'}
3 z, | o o o o z,, 0o 0 o© 0
[}
(9]
! z {19 3 1 |ss 7 6 8 0 64
o~ — 8 8
18
lz, 2 2 4 |1a z, 7 16 1 54
Q |z 1 3 3 |12 z 0o o0 10 10
8 6 [5)
lzs o 3 7 |13 % o 0 o 0
wn
S|z o 1 1| 3 7 o o 4 4
. 4 4
37y |2 12 18 48 Z, o 0 9 9
z, | o o o |o z, 1 o0 © 3




Table A.2.3.

(Continuation)
n, = 20,30,60 n, = 60,120
n, o 1l 2 3 S 1 2 3 S
Z8 17 5 1 62 Z8 22 2 0. 70
Z7 1 7 2 19 Z7 2 16 6 44
un
o
2] Z6 0 0 1 1 Z6 0 o o o
0 Z5 1 o o 3 Z5 0 o 11 11
- Z4 4 3 11 29 Z4 o 6 7 19
o < Z3 1 9 9 30 Z3 o 0 0 o
S 14
S I I/ o o o o z 0 o o o
3 2 2
]
AN Z8 6 4 3 29 Z8 14 1 1 45
3
R Z7 1 6 3 18 Z7 1 16 0 35
un
1z 0 0 0 0 Z 0 0 1 1
o 6 6
o Z5 1 4 1 12 Z5 o 0 2 2
o
o
. Z4 4 2 3 19 z, 1 0 9 12
5'z3 4 0 6 18 Z 0 0 3 3
Z2 0 o 0 0 Z2 0 o o o
It can be seen that the best approximations are Z8 and Z7;

those two statistics appear frequently in Table A.2.3. Statistic

Z3 and Z

appeared only once, and statistics

e

rarely,

4

also appear very often.

At the other extreme, 22

2

5

and 2

6

appeared only

107
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Overall, it is clear that Z and Z8 are to be preferred, for

the relatively high values of n, and n, which we consider;

they are convenient if good computing facilities are available
since the formulae are complicated.
A very useful result is the accuracy of the older approximation

23 ;, since this is easily computable on a hand - or desk -

calculator; although it is not often the best approximation, it
often places in the best three all along the tail, and will be
accurate enough for most practical purposes.

Most of the approximations were devised to give points in the
upper tail of F . If points are needed in the lower tail, the
question arises whether the approximations should be used as

given, or whether the well known identity F(nl, n,, o)

2

1/F(n2, n 1-a) should be used. The implication of this

17

identity is that if Zf is the value obtained by any one of the

i a), and if 2%¥

approximations above, corresponding to F(nl, n 5

2

is a value obtained corresponding to G = 1/F(n2,n1:1—a), then Z;

should equal ~Z*. Thus for a small value of F , one could either

2°
*

calculate 2* directly, using the approximation, or calculate 22

1

and take its negative. Statistics Z_, ZS' b

2 and ZB have the

7

property that either method will give the same result, and this

adds to the appeal of approximations Z3, Z7 and ZB' We have

investigated for the whole range of ny and n, considered

here, these two methods for the other approximations. For

approximation 2 it appears to be almost always better to use
L]

4’
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G and -Z¥, rather than to calculate Zi directly. For

approximation Z_, the results are somewhat inconclusive. It

6’

appears to be better to use G whenever ny = n, but to use the

lower tail directly, if n, >n, .

The overall pattern of this examination suggests that when computing
facilities are available, Z8 or Z7 are to be preferred; but when

a hand calculator or desk calculator is used, Z3 gives very good

results indeed.
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