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Abstract 

In this thesis, we investigate a model for periodic phase separation. The model con- 

sists primarily of a modified Cahn-Hilliard equation which is simply a gradient flow 

for a nonlocal energy functional. This functional was introduced to  model microphase 

separation of diblock copolymers. Numerical experiments are performed, both to test 

certain hypotheses as well as to explore the complex energy landscape of the nonlocal 

functional. The numerical method used is a split-step pseudo-spectral method. We solve 

the modified Cahn-Hilliard equation in two steps: first we solve the linear part of the 
- 

equation and then advance the solution according to  the nonlinear part. The nonlinear 

term is treated pseudo-spectrally. 
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Chapter 1 

Introduction 

1.1 Periodic Phase Separation 

According to experiments, many physical systems exhibit periodic phase separation 

(Figure 1.1) on a fixed scale which is much less than the sample size. Depending on 

the composition, different periodic structures have been observed, like lamellar, spheric, 

cylindric and gyroid (shown in Figure 1.1). A density functional theory, first introduced 

by Ohta & Kawasaki ([16]) to study the microphase separation of diblock copolymer, 

entails the minimization of a free energy functional of nonlocal type. This functional 

takes the form: 

We refer to this functional as the nonlocal Cahn-Hilliard energy functional (1201 [21]), 

whereby the standard Cahn-Hilliard energy functional is augmented by a long-range in- 

teraction term. This term is proportional to an interaction material parameter related to 

the length of the copolymer chain. This nonlocal functional is a mathematical paradigm 

for energy-driven pattern formation associated with short and long-range interactions. 

Heuristically, we know that minimization of the nonlocal term prefers oscillation. 

Thus it is reasonable that periodic or nearly periodic structures are expected to  emerge 

a s  the value of a increases. Actually, in one space dimension, the nonlocal Cahn-Hilliard 
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double double 
spheres cylinders gyroid diamond liynellae 

Figure 1.1: Periodic phase separation. Figure taken from reference [ll] 

functional reduces to a functional proposed by Miiller ([18]) as a toy problem. It has been 

proven that its minimizers are periodic. In higher space dimensions, there is evidence 

to support the contention that minimizers are at least nearly periodic. However, the 

precise nature of the geometry of minimizers within a periodic cell remains an open 

problem. 

Minimizing structures depend on different volume fractions m. In two dimensional 

phase separation, strips are expected for m = 0, while circles are expected for m # 0. 

When the role that a plays is considered, we hope to see more strips or circles as the 

value of a increases. Numerical experiments are performed to test these hypotheses. 

F'rom the numerical results shown in Chapter 5, we will see how the value of m controls 

the minimizing structures and how a affects the periodicity. 
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Thesis Layout 

This thesis is organized as follows. We start in Chapter 2 by discussing the physical 

problem and the nonlocal Cahn-Hilliard energy functional. Where is it from? What 

is this equation for? What effects do the terms in energy have in minimization? We 

then briefly summarize the derivation of a density functional theory which was recently 

given by R. Choksi and X. Ren ([g]). The energy functional is derived as an offspring 

of the self-consistent mean field theory ([9]) and all parameters are connected to the 

fundamental material parameters. 

In Chapter 3 we consider evolution equations induced from gradient flows. As we will 

see, under different Hilbert spaces, different evolution equations will be obtained from 

the nonlocal Cahn-Hilliard functional. But taking the physical aspect of the problem 

into account, only when a specific Hilbert space, namely H-', which is the zero-average 

subspace of H-', is considered, the mass of the system is conservative. Under this 

Hilbert space, we arrive at  the modified Cahn-Hilliard equation. 

From Chapter 4, we will concentrate on the numerical aspects of this problem. 

The numerical method we use is the Split-Step Pseudo-Spectral Method. The evolution 

equation is the one under H-l, which conserves mass. This partial differential equation 

is separated into a linear part Lu and a nonlinear part N(u) .  The linear and nonlinear 

equations are then solved in sequential order to approximate the solution of (3.15), in 

which the solution of one subproblem is employed as an initial condition for the next 

one. The fast Fourier transform is used for the spatial discretization, since we consider 

periodic boundary conditions. As for the cubic term in the nonlinear equation, we apply 

a pseudo-spectral method. Other numerical methods for Cahn-Hilliard equation and its 

nonlocal form can be found in [I], [4] and [14]. 

Numerical results in all three spatial dimensions are given in Chapter 5, in which the 

evolutionary procedures of phase separation and different minimizing structures related 

to the mean value m, as well as the role that a plays, are clearly shown. We conclude 

in Chapter 6 with some remarks and future work. 



Chapter 2 

The Physical Paradigm and the 

Nonlocal Cahn-Hilliard Energy 

Functional 

In this thesis we consider a free energy functional which was introduced to describe the 

microphase separation of diblock copolymers. The functional has a resealed, nondimen- 

sional form as a function of u. I t  takes the following form: 

where m denotes the average of u over D, i.e., 

As we will explain later, u represents the density difference between the mass fractions 

of monomers A and B. 

In this chapter, we examine the nonlocal energy functional (2.1) in some detail. 
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The Physical Problem 

A physical paradigm for periodic phase separation is provided by microphase separation 

of diblock copolymers ([2]). The simplest and most studied structure is the linear AB 

diblock copolymer, which consists of a long sequence of type A monomers covalently 

linked to a chain of type B monomers (Figure 2.1 (a)). A homogeneous mixture (Figure 

2.1 (b)) of AB diblock copolymers is usually formed at a relatively high temperature 

TI, which is greater than the critical temperature T,. At this high temperature, the 

binary mixture is stable with mean composition m. Suppose now that the temperature 

is quenched (rapidly reduced) to a temperature Tf, lower than T,. Experimentally, 

one observes that the concentration u of the mixture changes from the uniform mixed 

state to that of spatially separated two-phase structure, denoted by I and 11 (Figure 

2.1 (c) and (d)). It is known experimentally that the uniform mixture u = m is very 

unstable, and that the growth of instabilities results in phase separation, during which 

some of the mixture becomes phase I with u = u1, and the rest becomes phase 11 with 

u =up.  The phase separation is on a mesoscopic scale, much less than the domain size 

of diblock copolymers. Macrophase separation, however, like the separation of water 

and oil, cannot happen because the chains of copolymers are chemically bonded. 

The phase separation is observed to be periodic both numerically and theoretically. 

Different types of periodic structures depend on the composition. These ordered struc- 

tures make diblock copolymers of great technological interest. 

The remarkable property of diblock copolymers is their ability to self-assemble in 

the melt into a variety of ordered structures with mesoscale periodicities. These struc- 

tures can be precisely controlled by varying, for example, the composition of the diblock 

copolymers or the segregation between blocks (via temperature or degree of polymeriza- 

tion). One of the strategic goals for these self-assembling materials is to experimentally 

control the resulting structures, which leads to their utilization in diversiform fundamen- 

tal and technological applications including electron transport in confined and periodic 

geometries. The controllable architectures of these materials may lead to their use in 

electronic and magnetic microstructures via selective decoration of individual diblock 
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Figure 2.1: (a) A diblock copolymer molecule; (b) Above some temperature T,, A and B 
subchains mix to make a uniform disordered phase; (c) Below temperature T,, the subchains 
A and B begin to segregate into A-rich (phase I) and B-rich (phase 11) regions in which the 
length of subchains is equal; (d) The subchains A and B begin to segregate into A-rich and 
B-rich regions in which the length of subchains is unequal. 
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components with either conductive or magnetic particles. 

2.2 Cahn-Hilliard Energy Functional and the Re- 

lated Equation 

As an introduction to the nonlocal Cahn-Hilliard functional, let us give a brief review of 

Cahn-Hilliard energy functional and the related Cahn-Hilliard equation (131 [4])  in this 

section. 

In order to  model the physical phenomenon of the phase separation discussed above, 

Cahn and Hilliard first introduced a free energy functional 

in 1958 ([5]). The first gradient term in this integral is a quantity representing the 

surface energy of the interfaces separating phases. W ( u )  is a smooth and nonnegative 

function with two equal minima at  u = ul and u = u2. At this level, any double-well 

function would do. 

The functional derivative of 3 ( u )  gives us the generalized potential @ 

and the mass flux is given by -V@. Thus the evolution equation for the process of 

phase separation is 

which can be equivalently 

This fourth order in space 

written as 

au - = A(-c2au + W1(u)).  
at (2.3) 

and nonlinear time-dependent partial differential equation is 

the well-known Cahn-Hilliard equation. This equation is supplemented with boundary 

conditions on the boundary dR, which are normally taken as the natural boundary 

condition 
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and the no mass flux condition 

The no mass flux boundary condition implies that the total amount of mass must remain 

constant, equal to the original amount. This means equation (2.3) is subject to the 

constraint, mass conservation, 

The simplest form of W ( u )  having the double-well potential is 

It is in this form of W that the Cahn-Hilliard equation has been widely studied. In 

chapter 3 we will see how to obtain our modified Cahn-Hilliard equation as a gradient 

flow. The Cahn-Hilliard equation (2.3) conserves mass. This property will be shown in 

sectjon 3.4. 

2.3 The Nonlocal Cahn-Hilliard Energy Functional 

Various mean field theories have been introduced to model and capture aspects of the 

process of phase separation. One of the most successful theories is the self-consistent 

mean field theory developed and applied over years. In this mean field theory the effect 

of monomer interactions is stimulated via external fields acting separately on the A and 

B monomers. 

The Cahn-Hilliard energy functional of nonlocal type was introduced to describe the 

microphase separation of diblock copolymers. Mathematical results, however, pertaining 

to (2.1) can only be meaningful if they are complemented with an understanding of 

where this functional comes from. Originally this functional was derived by Ohta and 

Kawasaki (1161) using the theory statistical mechanics. More recently, Choksi and Ren 

(191) re-examined the derivation of the Ohta-Kawasaki density functional theory and 

provided a detailed derivation of the nonlocal Cahn-Hilliard energy functional. 
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A summary of the main steps in deriving the energy functional is given here t o  show 

some idea of how such a functional can be obtained from statistical physics. Details 

are provided by [9]. The derivation, which is based on the statistical physics of block 

copolymer, contains three main steps. The first is what is known as the self-consistent 

mean field theory. The second step entails writing the free energy entirely in terms of 

the macrophase monomer density. And the last step is to reduce the functional to a 

scalar order parameter and derive the rescaled nonlocal Cahn-Hilliard functional. 

The copolymer melt is modeled with a phase space of n continuous chains. Each 

chain ri has N total monomers, and it is a Brownian process in the function space 

If we assume the Wiener measure of the Brownian motion is dP ,  then the space ri is 

equipped with the measure dp, = dx x dP. Since there are n chains in the material, 

the space of diblock is 

And the product measure is 
n 

j=1 

The total number of monomers in the melt is nN.  We let IA = [O, NA] denote the 

interval occupied by the A-monomers and IB = [NA, N] denote the interval occupied by 

the B-monomers. Then we introduce the Hamiltonian of this copolymer H ( r )  as well 

as the associated Gibbs canonical distribution D ( r )  and partition function 2. Finally, 

we can write the free energy of this system in terms of the partition function 2. 

If we define the microscopic densities 
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then in terms of the microscopic densities p(x,r) ,  the macroscopic densities of the 

monomer units should be given by 

and the Hamiltonian can be written as 

where vkm represents the interaction parameters and is taken to be positive, and po = 

is the average monomer number density. k and m take on the values of either A or IQI 
B. There is an implied summation over k and m. 

Because of the complexity of the interaction Vkm, (pk(x)) can not be obtained di- 

rectly from the distribution D. A variational principle which the self-consistant mean 

fielatheory is based on, however, makes it possible to approximate the true free energy 

by a minimization over a class of distributions generated by a pair of external fields 

U = (UA, UB), acting on the A and B monomers respectively. Then the Hamiltonian 

of this system is 

The induced Gibbs cannonical distribution and partition fuunction are given by 

where ,L? is the reciprocal of the absolute temperature with Boltzmann's constant taken 

to be I. Taking into consideration the variational principle ([9]) which D satisfies, 
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may be considered as an approximate free energy of the original system under the 

distribution Du of the external fields. S(Du) denotes the statistical entropy associated 

with the distribution Du, and is in the form 

For convenience of notation, qk(x) = ( ~ ~ ( x ) ) ~  is used to denote the expectations with 
2 

respect to DU(r)dp. We then rewrite the approximate free energy 3 as a functional of 

the external fields U: 

Now begins the second step whose main purpose is to write this free energy (2.5) 

entirely in terms of the macroscopic monomer densities qk(x). As we can see, the first 

term in (2.5) is already written in terms of the monomer densities. So we only need to 

turn the -T S ( D u )  term in the free energy as a functional of %(x). 

Since the expectations qk(x) with respect to the external fields U are given by the 

solutions to the forward and backward parabolic differential equations associated with 

the Feynman-Kac integration theory, we can find qk(x), ZU and most importantly F(U) .  

With the help of calculating the derivative of 3 at U, one can find the following equation 

Based on this equation, we can find S(DU) in terms of qk by integrating PU, if PU can 

be written as a function of qk. Actually PU can be expressed in terms of r h  through 

In this expression, 
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and a = NA/N denotes the molecular weight of A monomer and 1 denotes the'Kuhn 

statistical length which measures the average distance between two adjacent monomers. 
k m  K A A  = 1 K B B  = 1 K A B  = K B A  = 0. The ,,me Actually, Kkm = Ck Em K , a '  1-a' 

idea applies to Lkm. The operators (-A) and (-A)-' come from the inverse Fourier 

transform in the step to obtain (2.7). The main step involves the inversion of the 

relationship between the dependence of qk on PU via the linearization around ,B = 0. f j  

is the dominant term in the linearization. Integrating (2.7), we arrive at the following 

expression for S(DU) : 

Then the approximate free energy (2.5) can be fully written as a functional of 77, 

We-dropped the constant S(Do) and introduced the operator (-A)-$ in the above 

functional. 

The last step in the derivation is to reduce the functional (2.9) to one scalar order 

parameter and rescale space in order to separate size effects of 0 from shape effects of 

a. 
By setting 

x = PvAB - B(VAA+VBB), 2 which is a constant known as the Flory-Huggins param- 

eter in polymer science, 

$A (x) = @, PO $B (x) = y, ( one assumes that the diblock copolymer is incom- 

pressible in the sense (x) + $B (x) = 1) 
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we finally arrive at 

F ( U )  = vu12dx + L W ( U ) ~ X  + ( -A)-$  (U - m) 12dx7 

which is the nonlocal Cahn-Hilliard energy functional. 

2.4 Description of the Energy 

From (2.1) we see that phase separation in diblock copolymer melts can be modeled by 

three main types of energy, namely the interfacial energy JD I V U ~ ~ ~ X ,  the double-well 

energy JD W(u)dx and the nonlocal interaction energy f JD /(-A)-; (u  - m )  I2dx. Ac- 

tually, these three energies compete with each other in the process of phase separation. 

Here we describe each of these energies and discuss how the nonlocal term introduces 

additional competition with the Cahn-Hilliard portion of the energy. In this manner, 

we can get an intuitive feeling for what these terms like to minimize. 

The Interfacial Energy: The interfacial energy acts much like the usual surface en- 

ergy in two phase fluids. It  penalizes rapid changes in monomer density u. Here, the 

parameter E describes the amount of overlap between the two types of monomers, which 

is the interfacial thickness a t  the A and B monomer intersections, and is given by 

It is easy to see that c2 is inversely proportional to the Flory-Huggins parameter X. This 

interfacial energy concentrates along the transition regions between domains of A and 

B,  and forces the configurations u to have as few transition regions as possible, in other 

words, it prefers large domains of a single monomer. 

The Double-well Energy: W ( u )  represents a double-well energy usually chosen to 

be f (1 - u ~ ) ~ ,  which prefers pure A and B phases (u  = &I) to a mixture. This term 
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penalizes the mixing of monomers, and would prefer a state whereby the system is seg- 

regated into pure A-rich and B-rich domains. 

The Nonlocal Interaction Energy: This is the most interesting part of the energy. In 

the nonlocal term, the parameter a is inversely proportional to N2, and is given by 

A is the Laplacian operator with Neumann boundary conditions. (-A)-$ is actually an 

integral operator. This nonlocal energy prefers to have a uniform density of value equal 

to the average density m, and penalizes densities whose local average are not equal to m. 

Actually, the different subchains are all chemically bonded and the entropic penalty 

due to chain stretching is responsible for the nonlocal long-range interaction term, which 

is the third term. As we can easily see, when the energy functional is being minimized, 
- 

the double-well energy W(u) prefers to segregate monomers into pure A and pure B 

phases, and there is a competition between the interfacial energy term and the nonlocal 

term, assuming that u is close to 1 and -1 off the interface. The interfacial energy 

wants to minimize the area of interface. It prefers large domains of a single monomer. 

But the nonlocal term wants u = m. So if u takes the values of 1 or -1 in a large 

domain, the nonlocal energy does not become small. In order to make the third term 

small, u has to oscillate rapidly around m, which increases the area of interface. 

2.5 Expected Minimizing Structures 

In the last section, we talked about the role of each term in the free energy (2.1). Now 

arises the question: what do we expect to see for minimizers? Actually, structures 

of phase separation which are observed are highly periodic (Figure 1.1), like lamellar, 

spherical, cylindrical and gyroid, depending on the mean composition m. Let us take 

the two dimensional phase separation for example. 
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First of all, we consider the Cahn-Hilliard energy functional (2.2), where d = 0. 

There are two cases, depending on the mean value m. 

m = 0: In this case, the length of the two subchains is equal. We expect to see 

two stripes in equal size. The interfacial surface separating the subdomains is a 

'wall'. 

m # 0: In this case, the length of one subchain is greater than the other one. Two 

possible minimizing structures might be expected. 

1. Two subdomains, A-rich and B-rich, are separated by a 'wall', and one is 

bigger than the other one, shown in Figure 2.2 (a). 

2. Two subdomains are separated by a circle, shown in Figure 2.2 (b). 

The first case cannot happen, however, since the interfacial energy in the free 

energy functional prefers as small surface area as possible. Let us think about it in 

- this way. Assume m + l(or -I), the subdomain of A (or B)  will shrink. In the case 

shown in Figure 2.2 (a), the 'wall' should move in the direction which decreases the 

subdomain of A (or B), without any change in the area of the interfacial surface. 

In the case shown in Figure 2.2 (b), however, with the decreasing subdomain of A 

(or B) ,  the perimeter of the circle is decreasing as well. Thus, circles are preferred 

for the nonzero mean values. The size of circles depends on the value of m. 

Now, we move on to the nonlocal Cahn-Hilliard energy functional (2.1), where a # 0. 

Heuristically, it is not hard to see that the nonlocal term prefers oscillation. Thus, we 

might expect to see periodic or nearly periodic patterns as the minimizing structures. 

We also consider the two cases. 

m = 0: Instead of the structure of two strips in the Cahn-Hilliard case, more 

alternating strips are anticipated as the value of a increases (Figure 2.3 (a)). 

m # 0: Periodic circles (Figure 2.3 (b)). 
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Figure 2.2: Two possible minimizing structures when m # 0, a = 0. (a) The interfacial 
surface is a 'wall', which is rejected on physical grounds. (b) The interfacial surface is a circle, 
which is preferred. 

Figure 2.3: Expected minimizing structures when a # 0. (a) Periodic strips for m = 0. (b) 
Periodic circles for m # 0. 
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In fact, ansatz-driven calculation ([16]), supplemented by rigorous analysis '([lo]) 

through a scaling law suggests that periodicity scales like (:)f. This argument strongly 

supports our expectations of periodic minimizing structures. In Chapter 5, we will see, 

these expected minimizing structures are well in accordance- with our numerical results. 

The nonlocal term not only prefers periodic structures on a small scale, but also 

influences the geometry of minimizers. Generally speaking, it is not always true that 

the phase boundaries of minimizers have constant mean curvature. It means that circles 

in two dimensional phase separation are not smooth. Recently, this observation was 

made by R. Choksi and P. Sternberg using a first variation calculation of a nonlocal 

isoperimetric problem [12]. Numerical experiments related to this issue remain our 

future work. 



Chapter 3 

Gradient Flows 

3.1 The Basic Properties of a Gradient Flow 

For a gradient flow, the basic idea is to start with an energy functional defined in a 

Hilhert space, and then write out the gradient flow associated with the functional and 

the Hilbert space, i.e., 
du - = -KgradF(u), 
a t  

where K is some positive constant. From now on, we assume K = 1 for simplicity. ' 

This equation becomes an evolution equation which depends on the choice of Hilbert 

space. Whether it is a good model for the dynamics of the system is determined by the 

physical properties which the system should have. 

As we mentioned earlier, a standard way of letting u evolve such that the free energy 

functional is decreasing in time is to let u evolve in the direction opposite to gradF(u) . 
Actually, this evolution law guarantees that the free energy will not at  least increase in 

time. If we assume u is a solution to (XI), then we have 

under some chosen Hilbert space. (., -)H and I (  - 1 I H  are the inner product and norm in 

the Hilbert space H, respectively. Therefore, F(u( t ) )  5 F(u(0)) for all t 2 0, which 
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means, the energy is not increasing in time. This property makes gradient flows of great 

importance for modeling physical problems. 

3.2 Gradient Flow under L~ 

As we see in (3.2), the inner product and norm are with respect to the chosen Hilbert 

space, and the choice of Hilbert space is crucial. Now let us try to write the gradient 

flow of the nonlocal Cahn-Hilliard energy functional under the L2(R), which is the most 

obvious Hilbert space. 

Recall that the constrained gradient operator g rad3  should satisfy the following 

equation: 
d 
- 3 ( u  + tv) =< grad3(u), v > ~ z  . 
dt 

for any smooth function v(x). Now consider the nonlocal Cahn-Hilliard energy func- 

tional (2.1), we have, 

3 ( u  + tv) - 3 ( u )  
0 

-IV(u + tv)12 + W(U + tv) + 51( -~ ) - i (u  - m + tv)I2dx 
= S,: 

+ID W(u + tv) - W(u)dx 

- Vv) + t21~v12dx + W(U + tv) - W(u)dx 
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Then, 

d 
-F(u + tv) lt=0 = 
dt 

Now using integration by 

follows that 
0 

lim 
F(u + tv) - F ( u )  

t+O t JD r2vu  - Vvdx + lim dx 
t 

parts and applying the boundary condition $ = 0, it 

= L [-r2nu + w'(u) + o(-A)-~(u - m)]vdx 

= < -r2Au + ~ ' ( u )  + a(-A)-'(u - m), v > ~ 2  

Comparing this expression with equation (3.3), we arrive at  the following equation: 

gradF = -r2Au + W' (u) + a(-A)-'(u - m), 

it then follows that the evolution equation under L2 is: 

au  - 
at 

= e2Au - w'(u) - a(-A)-'(u - m). 

This equation is rejected, since it does not conserve mass in general. As we can see, 

using Green's First Identity and the boundary condition, 
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which is not always equal to zero. However, the conservation of mass can be guaranteed 

if we use a subspace of L2 to write the gradient flow ([13]). The evolution equation 

under this subspace is 

au - 
a t  

= e2au  - W1(u) + o(-A)-l(u - m) + ( W ' ( U ) ) ~  - (o(-A)-'(u - m)) D ,  

where (-) is the average over D. This equation is not used to model the process of phase 

separation because the extra terms are not local. Numerically, it is not convenient to 

solve compared with the one which is induced under H-'.  

3.3 Gradient Flow under H-' 

So far, we know L2 space is rejected. Higher order Hilbert space H k ,  k > 0, have the 

same difficulty. However, choosing the zero-average subspace of the dual of H1 produces 

a more reasonable result, which is the modified Cahn-Hilliard equation, as we shall see 

in this section. For convenience, we denote this Hilbert space by H-l, which is different 

from H-l .  

Now let us see what kind of evolution equation is induced from this gradient flow 

under the Hilbert space H-I ([13]). 

Define 

H-I := {v : v  = -Af, f E HI,< v , l  > ~ 2 = 0 ) ,  (3.5) 

and the inner product in H-' 

where vl = -A fl and v2 = -A f2. 

As pointed out already, the constrained gradient operator g r a d 3  should satisfy the 

following equation: 
d 
- 3 (u  + tv) I t = O  =< grad3(u),  v > ~ ; r - ~  - 
dt (3.7) 

Now consider the function v(x) satisfying 

r 
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and the boundary condition 2 = 0. Since (3.8) holds if and only if the homogeneous 

Neumann problem for 

- A  f ( x )  = V ( X )  (3.9) 

has a unique solution f ( x )  satisfying f (x)dx = 0. Using this expression for v and 

carrying out the same calculation as we did before, we can obtain 

= -J, [-e2Au + W f ( u )  + a(-A)-'(u - k ) ] A  fdx 

= -[-e2Au + W f ( u )  + a(-A)-'(u - m)]V f I a D  

The boundary term is equal to zero because of the fact that the normal component of 

V f  is zero. To apply the inner product under H-' as defined above, we require that 

the first field have zero normal component on dS2, which is 
d 

- ( -E~Au + W f ( u )  - a(-A)-'(u - m ) )  = 0. (3.11) 
d n  

Thus, we can obtain the inner product in fi- ' ,  which is 
d 
-F(u + tv)]t=o 
dt  

= < -A[-e2Au + W'(u)  - a(-A)-'(u - m)] ,  - A f  >B-I 

= < -A[-e2Au + W f ( u )  - a(-A)-'(u - m)] ,  v > f i - ~  (3.12) 

Now, take the equation (3.7) into consideration, we have the following equation, 

Therefore, we identify 

The ansatz (3.1) now gives us the evolution law 
du - = A[-e2Au + W f ( u )  - a(-A)-'(u - m)] 
at 

= A[-e2Au + W f ( u ) ]  - a(u - m).  
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3.4 The Modified Cahn-Hilliard Equation 

Based on the evolution equation (3.14) induced under H-',  we can introduce the modi- 

fied Cahn-Hilliard equation. W ( u )  is a double-well potential, normally given in the form 

W ( u )  = $ ( 1  - u ~ ) ~ ,  W 1 ( u )  = u3 - u. SO from (3.14) we arrive at the following modified 

Cahn-Hilliard equation, 

d u  - = -c2A2u - A u  + Au3  - a ( u  - m), 
at 

(3.15) 

which is used in this thesis for numerical simulations. This modified equation conserves 

mass. Let us start with the mass conservative property of the Cahn-Hilliard equation, 

as we mentioned in the previous chapter. 

Boundary conditions are used in the last step. 

As to the modified Cahn-Hilliard equation, we only need to consider the extra term 

a ( u  - m). Actually, 

/ ,O(U - m ) d x  = o( Udx  - m d x )  = o(L udx - m) = 0, 

using (2.4), as well as the fact that D is a rescaled domain of i-2 with volume 1. 



Chapter 4 

The Numerical Method 

4.1 The Idea of the Split-Step Method 

Consider a general evolution equation of the form 

where L and N are linear and nonlinear operators, respectively. In general, the operators 

L and N do not commute (i.e., L N  # N L )  with each other. For instance, we have 

for the nonlocal Cahn-Hilliard equation. The main idea in the split-step method is to 

approximate the exact solution of equation (4.1) by solving the purely linear and purely 

nonlinear equations in a given sequential order, in which the solution of one subproblem 

is employed as an initial condition for the next subproblem. 

The solution of this equation may be advanced from one time-level to the next by 

means of the following formula 
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where At denotes the time step. In general, it is first order accurate in time. However, 

it turns out to be exact if operators L and N ( u )  are time-independent. In fact, by 

Taylor's theorem we have 

1 
u(x, t + At) = u(x, t) + ut(x, t)At + -utt(x, t)(At)2 + ... 

2! 

e nt(L+N(u))u(z, t) = u ( ~ ,  t )  + A ~ ( L  + N(u))u(x, t) + L ( A ~ ) ~ ( L  + N ( U ) ) ~ U ( Z ~  tf+ ... 
2! 

(4.7) 

Hence, equation (4.1) implies that (4.5) is first order accurate. 

The time-splitting procedure now consists of replacing the right-hand side of (4.5) by 

an appropriate combination of products of the exponential operators entL and enw(u). 

An answer can be found by considering the Baker-Campbell-Hausdorff (BCH) formula 

for two operators A and B given by 

where Zl = A + B and the remaining operators 2, are commutators of A and B, 

commutators of commutators of A and B, etc., The expressions for Z, are actually 

rather complicated, e.g., 
1 

where [A, B] = AB - BA is the commutator of A and B, and 

From this result, one can easily get the first-order (known as Lie splitting) approximation 

of the exponential operator in (4.5) as follows 

Similarly, the second-order (known as Strang splitting) approximation 

In this thesis, we consider the first-order splitting method. 
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It is convenient to view the scheme (4.9) as first solving the linear equation 

then advancing the solution by solving the nonlinear equation 

employing the solution of the former as the initial condition of the latter. Actually, we 

can see this in the following way. Define un(x) to  be the discrete approximation to the 

solution a t  time t = nAt,  and vn(x) to be the intermediate solution from solving the 

linear equation 

un (x) = eAtLun (5). 

Then combining this equation and equation (4.9), we arrive at the approximate solution 

at  time t = (n + l )At ,  using forward Euler method, 

That is, the advancement in time is carried out in two steps, the so called split-step 

method. 

Spatial Discretization: Fourier method 

Since we have periodic boundary conditions, it is possible to  use a Fourier method, which 

has the advantage that the necessary discrete Fourier transform (DFT) operations can 

be computed efficiently using a fast Fourier transform (FFT). 

4.2.1 The continuous Fourier transform 

Suppose f (x) is a complex-valued Lebesgue integrable function defined on R. A Fourier 

transform to  the domain of frequency, w, is given by the function: 
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for every real number w. The function (4.12) is called the Fourier transform off (XI. We 

will refer to f(w) as being defined in the frequency domain and f (x) as being defined 

in the spatial domain. The function f (x) can be recovered from f(w) via the inverse 

Fourier transform, which is given by 

m 

f (x) = / f(w)e"2"wxdw. 

Now, consider f (x) as a continuous, L-periodic function defined on finite interval [0, L], 

Then the Fourier transform and its inverse relations are, respectively: 

and 

4.2;2 The discrete Fourier transform 

Suppose the domain interval we use is [ O , ~ T ] ,  application of the numerical method re- 

quires truncation of the infinite interval into a finite interval. The interval [ O , ~ T ]  is 

divided into N equal subintervals with grid spacing Ax = ~ T / N ,  where the integer N 

is chosen to be even. The spatial grid points are given by x j  = 27rj/N, j = 0,1,2, ..., N. 

The approximation solution to u(xj7 t )  is denoted by Uj(t). The discrete Fourier trans- 

form of the sequence Uj, i.e. 

gives the corresponding Fourier coefficients. Likewise, Uj can be recovered from the 

Fourier coefficients by the inverse of the discrete Fourier transform, as follows: 
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where F denotes the discrete Fourier transform and F-l its inverse. These transforms 

are efficiently computed using a fast Fourier transform (FFT) algorithm. Spatial deriva- 

tives of u may now be computed by first multiplying the Fourier coefficients, ok, by the 

power of ik corresponding to the order of the spatial derivative, and then applying 

the inverse Fourier transform. For example, the second order derivative u,, at (xj, t )  

is computed by FJrl[-k2Fk[Uj]] and the fourth order derivative u,, is computed by 

F.y'[k'Fk[~~]] and so on. 

4.3 Time Integration 

The nonlocal Cahn-Hilliard equation (NCH) is given by 

As we have already mentioned, we consider a split-step method for the NCH equation, 

in which the linear equation is 

and the nonlinear equation is 

ut = Au3 + am. 

These two equations are solved in a given sequential order(in our case, the linear equa- 

tion is solved first) corresponding to the splitting formula given in Section 4.1. 

From time t to the next time-level t + At, the solution of NCH equation may be 

advanced by the following two steps: 

1. Advance the solution using only the linear equation: 

by means of the discrete Fourier transform and its inverse. In order to implement 

the time discretization we define un to be the discrete approximation to the so- 

lution u ( ~ ,  t) a t  t = nAt, n 5 M. M is the number of time steps used. Then 



CHAPTER 4. THE NUMERICAL METHOD 

equation (4.21) gives 
vn = eAtLun 

To implement the spatial discretization using discrete Fourier transforms, we first 

replace unfl and un with their Fourier series. This gives 

where 6," and 2; are the Fourier coefficient of the spatially continuous function vn 

and un given by (4.14). We then replace 2; with its discrete equivalent @ using 

N - 1 points in space. Now equation (4.23) becomes 

Finally, we return the solution to the physical domain by applying the inverse 

discrete Fourier transform to (4.24). This step can be simply expressed as 

where Uy denotes the approximation to u(xj7 nAt). 

2. Advance the solution according to the nonlinear part: 

using the solution obtained from the first step as the initial condition of this 

problem. The nonlinear term u3 in equation (4.26) is handled pseudo-spectrally: 

as the solution in physical space evolves in time, the nonlinear term is computed 

at  each time step by forming the power u3 in physical space using the discrete 

value from the first step, and then applying the Fourier transform and applying 

the Laplacian in Fourier space. Finally transform back to physical space. Then 

the spatial discretization of the nonlinear partial differential equation (4.26) by a 

Fourier pseudo-spectal method can be written as 
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where the superposed dot means differentiation with respect to  time. For the time 

integration of this equation, we use the forward Euler method. Then the idea of 

this step can be summarized as 

From Section 4.1, we know the error in time from the splitting step is first order. Since 

the significant error in integrating from time t to time t+At will be the temporal splitting 

error plus the temporal discretization error of the ordinary differential equations given 

by (4.27). As we know the forward Euler method is O(At). Hence we say, the overall 

scheme is first order in time. 

4.4 Test of the Laplacian in the Nonlinear Term 

The nonlinear term in the Cahn-Hilliard equation is solved pseudo-spectrally as we 

discussed in the previous section. Since we do not want to magnify too much the 

error from spatial discretization, it is important to test the method of dealing with 

the Laplacian on the cubic term. The function we use for tests is the two dimensional 

function 

f(x1y) = e  
cos(3x) sin(2y) (4.29) 

The exact value of Laplacian on f and f 3  are 

A f = 9 sin (2 y) eC0S(3x) sin(2y) [sin2 (32) sin(2 y) - cos (3x)l (4.30) 

+4 Cos (3x) e ~ 0 s ( 3 ~ )  ~ i n ( 2 ~ )  [cos2 (2 y) cos (32) - sin (2 y )] 

A f = 27 sin(2 y) e3 c0s(3x) ""(2y) [3 sin2 (32) sin(2 y) - cos(3x)l (4.31) 

+ 12 cos (3a : ) e3~~~(3~)  s i n ( 2 ~ )  [3 cos2 (2 y) cos (32) - sin(2 y)] , 

respectively. 

As we can see from Figure 4.1, the errors decrease very rapidly until around 10-14. 

Spectral accuracy is achieved when the nonlinear term is calculated pseudo-spectrally. 
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(a) Error of A j (b) Error of A j 

Figure 4.1: Errors when A f is treated pseud~spectrally for various N 

4.5 Stability Analysis 

The problem of stability is pervasive in the numerical solution of partial differential 

equations. Since our scheme is composed of two partial differential equations, the sta- 

bility of each part is sufficient to show that of the overall scheme. 

As we know, given a time dependent problem, firstly it is discretized with respect to 

space, which generates a system of ordinary differential equations. Then the system of 

ordinary differential equations is solved by a finite difference method in time. In order 

to  investigate the eigenvalue stability of this process, we should consider the follow- 

ing question: under what conditions are the eigenvalues of the spectral diferentiation 

operator contained i n  the stability region of the t ime discretization formula? 

In the first step of the process of solving the Cahn-Hilliard equation, a linear time 

dependent equation is solved in Fourier space, which is, 

In fact equation (4.32) gives us the amplification factor 
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According to Von Neumann condition, the formula as described is stable if the amplifi- 

cation factor satisfies IA(k)  1 5 1. This indicates, 

The last inequality gives us a restriction on the parameters E, a and the wavelength 

k ,  not on A t .  Therefore, this step only, as long as (4.34) holds, is stable with any 

choice of time step A t .  This condition determines the stability of u = 0 under small 

perturbations. The modes k such that (4.34) is not satisfied will grow leading to pattern 

formation. 

Now let us switch to the second step, solving the nonlinear equation. The forward 

Euler method is used in time to deal with the system of ordinary differential equations. 

The stable region for forward Euler method is shown in Figure 4.2, which was obtained 

using the recurrence relation ( [25]) .  Then the problem becomes to determine the eigen- 

values of the spectral differentiation matrix. First, we quote a theorem by Trefethen 

( [25I ). 

Theorem 1. For a periodic problem with spatial domain [O,  ZT), suppose the grid points 

N is even, and m denotes the order of spatial diflerentiation. 

If m is odd, the mth-order spectral diflerentiation matrix D(") is a skew-symmetric 

matrix with eigenvalues [-i(& - l)", i(& - l)"], and norm 

If m is even, D(") i s  a symmetric matrix with eigenvalues (-l)? x [0, (&)"I, and 

norm 

Applying this theorem to our equation ut = Au3 + am, whose spectral differenti- 

ation matrix is D:), the eigenvalues are all real and given by [-(z)2, 01. Take into 
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Figure 4.2: The stable region for forward Euler method, which is a circle centered at (-1, 0) 
with radius 1. 

Figure 4.3: Eigenvalues of D$), superimposed on the stable region for forward Euler method, 
for N = 32. 
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consideration the stability restriction, all these eigenvalues should lie in the circle. In 

this case, it should be the real axis within the circle in Figure 4.2. Hence, we arrive a t  

the following stability condition, 

which is equivalent to 

(4.37) 

Figure 4.3 shows the eigenvalues of D!) when N = 32. They are within the stable 

region for forward Euler method. In conclusion, in order to keep our method stable, 

r2k4 - k2 + o > 0, and, At 5 (-$) ( ~ r ) ~  (4.38) 

should both be guaranteed. 



Chapter 5 

Numerical Results 

An initially homogeneous disordered phase separates into ordered structures when the 

temperature is quenched below a critical value. The modified Cahn-Hilliard equation 

models this process. As we know, the parameter a is inversely proportional to the 

square of the total chain length N of the copolymer. The number N is in general quite 

large, hence a is very small. 6 represents the interfacial thickness at the bonding point 

assumed to be sufficiently small. In the numerical experiments, we do not want 6 to 

be either too small or too large, otherwise, the property of phase separation can not be 

well captured. So we should choose a suitable value for 6 (6  = 0.08 is a good one for 

numerical tests). The average m E [-I, 11 stands for the ratio of components of two 

homopolymers. 

Depending on the ratio of two subchains of diblock copolymer (i.e., m) , there appears 

a variety of morphologies for the asymptotic steady states of the modified Cahn-Hilliard 

equation (3.15). For instance, it is confirmed experimentally that a double-diamond 

structure appears near m = 0 besides lamellar and cylindrical structure, and many 

other types of morphologies could be discovered even for the same values of m. This 

suggests the coexistence of multiple stable steady states, although the basin of attraction 

of each morphology changes depending on m. From previous discussions, we know from 

the competition of the three parts in the free energy, there is a possibility that the free 

energy may have local minimizers which correspond to metastable states of the physical 
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system. 

We take as initial condition a random perturbation of a uniform mixture as follows: 

where the random variable r(x) is uniformly distributed in [-1,1] and has zero mean 

([17]). m is the constant concentration of the uniform mixture. C is taken as 0.05 

throughout our experiments. The domain is [O., 2.rrIn, where n = 1,2 or 3 is the space 

dimension. 

5.1 Conservation Property 

One important property of Cahn-Hilliard system is its mass conservation, 

To examine the conservation property of the split-step scheme, we calculate the discrete 

analogue of the conserved quantity I. The relative error denoted by 6 is defined by 

where f and ft represent the calculated values of the conserved quantity I at initial time 

and terminating time. The trapezoidal rule is used for the numerical quadrature of the 

integral. 

Table 5.1: The conservation error 6 of three different mean values, in one, two and three-space 
dimensional cases. E: = 0.08, a = 0. 

Dim 
1D 

61m=0 61m=o.4 61m=o.5 time 
1.36963-15 2.97473-13 5.05353-15 800 
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The relative errors b are given in Table 5.1. We consider one, two and as well & three 

spatial dimensions, with mean values m = 0, m = 0.4 and m = 0.5. The terminating 

time is chosen to make sure that the final state is stable. a is set to be zero in all these 

cases, so the nonlocal term is excluded. The results show that. the conserved quantity is 

extremely well preserved for the split-step scheme. As to the case where a is not zero, 

the same conclusion can be drawn. 

5.2 One Dimensional Phase Separation 

One dimensional phase separation is not physically realistic. But with no doubt it gives 

us a basic idea on what the minimizers look like and how the order parameter evolves 

with time. And as well we can more or less extrapolate the minimizing structures in 

two dimensional separation, but not the three dimensional separation because of the 

complexity of the patterns. 

(a) m=O (b) m=0.4 

Figure 5.1: Metastable states of u with mean values m = 0 and m = 0.4, respectively. 
N = 1024, a = 0, E = 0.08. 

We know m denotes the mean value of the order parameter. As might be expected, 
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the final stable state should be given by alternating values of 1 and -1. As a simple 

illustration, consider a symmetric diblock copolymer melt with m = 0, which means 

the two subchains are of equal length. The domain size of u = 1 and u = -1 should 

be the same. Whereas if m # 0, say, m = 0.4, the domain size of u = 1 should be 

greater than that of u = -1. Figure 5.1 shows metastable structures of these two cases. 

In this example, we consider a spatial mesh of 1024 points, a = 0 and E = 0.08. The 

results with a nonzero are shown in Figure 5.2. Take into consideration of the role of 

the nonlocal energy in nonlocal Cahn-Hilliard functional, we know, the bigger the a is, 

the more oscillations we will see. 

5.3 Two Dimensional Phase Separation 

The resolution we use for 2D phase separation is 64 x 64 or 128 x 128. In our first example 

we consider a = 0 which is the Cahn-Hilliard case, and m = 0 which corresponds to the 

case-of equal sized subchains A and B. 

Figure 5.3 shows snapshots of the solution plotted as filled contours with mean value 

m = 0. The lightest phase corresponds to u = 1 and the darkest one to  u = -1. 

The homogeneous mixture undergoes a fast separation followed by a slow coarsening 

procedure. This figure together with Figure 5.4 exhibit the minimizing structure which 

shows nice stripes. This result agrees with our expectation. Evolution of u with mean 

value m = 0.4 is shown in Figure 5.6. Figure 5.5 and Figure 5.7 are the cases where a 

is nonzero. 

5.3.1 The role of m 

Different ratios of the two subchains give different stable patterns. From the results we 

obtained in one dimensional separation, we may conjecture, in two dimensional phase 

separation, equal-sized strips for m = 0, and unequal-sized ones for m # 0. However, 

when m # 0, as we discussed in Chapter 2, circles are much more preferred than strips 

because they have lower energy. In two dimensional separation, there are normally two 
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(b) a = 0.8 

Figure 5.2: Stable state of u with mean value m = 0 but different values of a: (a)a  = 
0.1, (b)a = 0.8,(c)a = 6.4.N = 1 0 2 4 , ~  =0.08. 
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Figure 5.3: Evolution of u with mean value 
time: (a ) t  = 0.0019, (b)t  = 5.78, (c) t  = 48 
0.0019. The lightest phase corresponds to u 
Figure (d) shows a metastable state of m = 

I m = 0 ,  represented in filled contours, at different 
.25, (d ) t  = 386. N = 6 4 , a  = O , E  = 0.08,At = 
= 1 and the darkest phase corresponds to u = -1. 
0 .  
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Figure 5.4: Evolution of u with mean value m = 0, represented in filled contours, at different 
time: (a)t = 0.00024, (b)t = 14.4, (c)t = 28.8, (d)t = 156. N = 128,a = 0 , ~  = 0.08, At = 
0.00024. The lightest phase corresponds to u = 1 and the darkest phase corresponds to 
u = -1. Figure (d) shows the stable state of m = 0. 
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Figure 5 .5:  Evolution of u with mean value m = 0, represented in flooded contours, at  
different time: (a) t  = 0.00024, (b)t = 2.39, (c)t = 23.93, (d)t = 203.42. N = 128, a = 3 . 2 , ~  = 
0.08, At = 0.00024. Figure (d) shows a metastable state of m = 0 and a = 3.2. Since a is 
not equal to zero, more than two strips are expected to see as the stable state, which can be 
obtained if we add some noises on this metastable state. 
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Figure 5.6: Evolution of u with mean value m = 0.4, represented in flooded contours, at 
different time: (a)t = 0.0019, (b)t = 7.71, (c)t = 92.53, (d)t = 443.9. N = 64,a = 0 , ~  = 
0.08, At = 0.0019. The phases enclosed by circles correspond to u = -1 and the phases 
outside circles correspond to u = 1. One circle with periodic boundary condition is shown in 
Figure (d) as the stable state. 
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Figure 5.7: Evolution of u with mean value m = 0.4, represented in flooded contours, at 
different time: ( a ) t  = 9.62, (b)t  = 65.38, (c ) t  = 90.38, (d) t  = 192.31. N = 64,a = 0 . 1 , ~  = 
0.08, At = 0.0019. The phases enclosed by circles correspond to u = - 1 and the phases outside 
circles correspond to u = 1. In Figure (d), which shows the stable state of m = 0.4, a = 0.1, 
all circles are uniform. 
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kinds of globally stable state. One is the lamellar structure with m = 0, shown in Figure 

5.3, and the other is the circle pattern shown in Figure 5.6, whose mean value m # 0. 

Note that because of the competition of those three energy terms, metastable states do 

exist. 

5.3.2 The role of a 

In this section, we consider the role of a. The role of a plays is clearly shown here: the 

nonlocal term prefers oscillation between domains of each monomer. In other words, as 

the value of a increases, we should see finer structures. Now let us examine carefully 

the relationship of a and the periodicity. I t  has been shown that the domain width or 

periodicity scales like (J) i (see [lo] and the references therein). Then, roughly speak- 

ing, if we want to double the periodicity (when the mophology is stable, i.e., lamellar, 

cylindrical, spherical), we should have, 

This indicates a relationship of the value of a ,  E and the periodicity. 

Figure 5.8 shows the stable patterns with an increasing a. In each of these cases, 

random initial condition is chosen, and the volume fraction is m = 0.4, which implies the 

'round7 case, as shown in the figures. The stable states shown here are well assembled 

periodic structures. 

Now let us consider another case in which a different initial condition is adopted to  

see the role of a. Suppose the domain considered is L x L. And 

u = -1, if x < $, y E [0, L] 

u = 1 ,  if X > $ , ~ E [ O , L ]  

is set to  be the initial condition instead of the random condition, which is mostly used 

for our numerical simulations. Actually, the domain is divided into two equal parts by 

setting one part equal to  -1 and the other part 1. By this preposed condition, one side 
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Figure 5.8: Stable state of u with mean value m = 0.4 but different a: (a)a = 0.1, (b)a = 
0.8, (c)a = 3.2, (d)a = 6.4. N = 64, E = 0.08:At = 0.0019. The phases enclosed by circles 
correspond to u = -1 and the phases outside circles correspond to u = 1. From these figures 
we can tell the larger the a is, the smaller the periodicity is. 
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is all A (or B) monomers, and the other one is all B (or A) monomers. Figure 5.9 (a) 

shows this kind of initial condition. In fact it is also the stable state of the Cahn-Hilliard 

equation (a = 0), since the two types of monomers are already fully separated at the 

very beginning. With increasing a, more strips with samewidth (mean value m = 0) 

are generated. 

5.4 Three Dimensional Phase Separation 

We now turn to three dimensional simulations of phase separation. First we take the 

mean value m = 0 and a = 0 and render the isosurface of separation of the two types 

of monomers at u = 0. Figure 5.10 gives representative snapshots of the isosurface of 

separation. Notice that the complexity of the patterns cannot be extrapolated from the 

one dimensional or two dimensional counterparts. 

Figure 5.11 and Figure 5.12 present the two stages of the phase separation. The 

first-stage is a fast separation process during which the formation of the phases can be 

observed. And the second one is a stage of coarsening which takes much longer. During 

the first stage, Figure 5.11, the uniform structure becomes a fine-grained mixture of 

two different phases, each of which corresponds to a stable concentration configuration. 

This stage usually takes a relatively short time. When the phase regions are formed, the 

evolution of the concentration enters the second stage, phase coarsening, during which 

the configuration of phase regions is coarsened, the originally fine-grained structure 

becomes enlarged, and the geometric shape of the phase regions become simpler and 

simpler, finally tending to regions of minimum surface area. 

5.4.1 The role of m 

As mentioned by Ohta and Kawasaaki [16], the earlier work done by Kampf et al. for the 

system polystyrene-polybutadiene(S-B) plus styrene, the following structure is reported: 

0 - 25% S for S spheres in a B matrix, 25 - 40% S for an S cylinder in a B matrix, 

40 - 60% S for lamellar structures, 60 - 85% S for a B cylinder in an S matrix, and 
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Figure 5.9: Stable state of u with mean value m = 0 but different a: (a)a = 0, (b)a = 
0.8, (c)a = 3.2, (d)a = 6.4. Equation (5.4) is used as the initial condition. N = 64, m = 0, E = 
0.08, At = 0.0019, T = 200. 
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Figure 5.10: Evolution of u represented by the isosurfaces of separation of the two types of 
monomers at u = 0 at different time: (a) t  = 0.00469, (b)t = 7.57, (c) t  = 45.42, (d) t  = 98.41. 
The mean value m = 0 , N  = 3 2 , ~  = 0 . 0 8 , ~ ~  = 0 ,A t  = 0.0015. 
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Figure 5.11: Evolution of u in the first stage, during which the phase regions are formed, at 
different time: (a)t  = 0.6525, (b)t = 0.6979(c)t = 1.0159. The mean value u = 0.4, N = 32, E = 
0.08, a = 0, At  = 0.0015. 
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Figure 5.12: Evolution of u in the second stage, during which the configuration of phase 
regions is coarsened, at different time: (a)t = 3.029, (b)t = 15.14(c)t = 99.92. The mean value 
u = 0.4, N = 3 2 , ~  = 0.08, a = 0, At = 0.0015. 
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85 - 100% S for B spheres in an S matrix. 

The simplest of these ordered structures is the lamellar phase which is observed 

to occur when the volume fractions of the two monomers are comparable, Figure 5.13 

(a). If the volume fraction of one monomer becomes larger than that of the other, the 

minority component is observed to form cylinders, Figure 5.13 (b). With increasing 

asymmetry in the volume fractions, spheres are generated. 

The ordered phases are not limited to these structures. Later, several new phases 

were detected. However, it was not clear whether these new phases were thermodynam- 

ically stable. 

5.4.2 The role of a 

Figure 5.14 shows the results with an increasing a for the case of m = 0 and that 

of m = 0.4. For the case of zero mean value, we see, more lamella are shown in the 

minimizing structure when a increases. The same happens in the case of nonzero mean 

values. The property that the nonlocal term favors oscillation is well validated by these 

numerical results. 
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Figure 5.13: Stable state of u with different mean values: (a)m = 0, (b)m = 0.4, (c)m = 0.5. 
N = 32, E = 0.08, a = 0. 
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Figure 5.14: Stable states of u with different mean values and a: (a)m = 0, a = 0.1, (b)m = 
0, a = 0.8, (c)m = 0.5, a = 0.1, (d)m = 0.5, a = 1.6.N = 32, E = 0.08, At = 0.0015. 
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Conclusions 

In this thesis, we have studied the periodic phase separation numerically through the 

modified Cahn-Hilliard equation. This evolution equation was induced as a gradient 

flow for the nonlocal Cahn-Hilliard energy functional. The role of the three terms in 

this energy functional was discussed. The interfacial energy prefers small transition 

regions, while the double-well energy prefers pure phases to a mixture. The nonlocal 

term, however, favors oscillations around the mean value m. These three terms compete 

each other while the total energy is being minimized. Based on the role of each term 

and the mean value m, we examined the minimizing structures. Theoretically, periodic 

or nearly periodic structures are expected. And these anticipated periodic structures 

agree well with our numerical results. 

The split-step pseudo-spectral method we used for numerical simulation is first order 

in time. This kind of time-splitting method is known as Lie splitting. Higher order split- 

step method like Strung splitting, which is second order in time, can also be considered. 

Our numerical scheme works well to some extend. However, we came up with blowups 

or unexpected results when the value of a is too large. In fact minimizing structures in 

3D are very complicated ([24]). Our code can only generate some simple structures. It 

is not powerful enough to  capture all possible cases. 
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Future Work 

There are many other interesting problems left to be investigated. The geometry of 

minimizing structures is affected by the nonlocal term as well. It has been theoretically 

pointed out, through the first variation of a nonlocal isoperimetic problem ([12]), that 

in two dimensional phase separation, except strips, minimizers will not have constant 

mean curvature. Numerical tests on this problem will be our future work. For the 

Cahn-Hillard equation, the asymptotic growth law of the characteristic domain size at 

late stages was found to be t1I3 ([22] [23] [6] [?I). But for the nonlocal Cahn-Hilliard 

equation, the asymptotic growth law remains to be investigated. 
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