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Abstract

This paper examines the relationship between expected
future rates of inflation and movements in nominal rates of
interest, known as the PFisher Effect. The interest rates
selected for the study were six monthly Canadian nominal bond
series, spanning a period of twenty-three years,1955-1978. The
sample of bond rates was chosen so as to include two short term
Treasury Bill rates, two longer term éverages of government bond
rates, and two private Finance Company bond rates.

For the purposes of this study, the "real" rate of
interest, determined by equilibrium conditions in the capital,
goods and bonds markets, was taken to be a constant over the
period examined. Empirical estimates of anticipated inflation
were generated via two theories, "adaptive expectations" and
"rational expectations", and regressed upon the above-mentioned
nominal bond rates. Also included in the regressions was a
constant term, which, under the assumptions outlined, served as
an estimate of the "real" component of the bond rate under
consideration.

The coefficient associated with each estimate of
anticipated inflation was of major interest to the study, since,
in theory, its value should always fall between zero (complete
rejection of the Fisher Effect hypothesis), and one (peffect

compensation for expected inflation, as Fisher postulated). In
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fact, values of greater than one were found on occasion, but
after adjusting the model slightly to account for taxation
éffects, in no case was the coefficient found - to be
significantly different from oﬁe.

After testing the selected rates of interest undér the very
different assumptions of the "adaptive" and "rational"
expectations hypothesis statistical evidence, obtained via the
Box-~Jenkins procedure, was presented as a means of showing why
both theories should be expected to yield similar predictions
with respect to future inflation. A demonstration was made
showing how the eStimated autoregressive structure underlying
Canadian rates of inflation renders the theories
indistinguishable under reaéonable assumptions about the
economy's functioning.

The overall conclusion arising from the study is that the
Fisher Effect hypothesis appears valid from the sample of

Canadian nominal bond rates examined.
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A. Introduction

Through much of‘ the twéntieth century, the PFisher Effect
has been regarded as a theoretically logical, but émpirically
unimportant determinant of nominal bond rates in North America.
Indeed, during long periods of relative price stability,)such as
the 1950's and early 1960's, the consequences and predictions
arising from Fisher's theory were all but forgotten by
government and private sector 1lenders and borrowers. The
experience of +the 1970's, however -~ specifically prolonged
inflation accompanied by the expectation throughout the economy
of continued price level increases ~-~ has'changed the view that
the Fisher Effect may be disregarded. In fact, it has become an
important consideration to anyone currently involvéd in
forecasting or analyzing interest rate movements.

According to Fisher, the nominal interest rate associated
with a bond should conceptually be divisible into twd distinct
components; a "real" component, which he believed would be
basically stable with respect to time, and an
inflation/deflation premium to compensate the holder for a
rise/fall iﬁ the real value of the asset during its period to
maturity.

In the case of a government bond, for example, the "real"

cdmponent of the nominal interest rate would, in equilibrium,



reflect the opportunity cost of (i.e. the foregone return on)
investment 1in the capital market, adjusting for period to
maturity, risk factors, and so on. During a period of expected
price stability, said return would leave the investor
indifferent to buying a capital asset or bond. if the real
return to the capital asset were expected to rise, however, due
to an increase in the money value of its output relative to the.
original price of capital purchase, as 1in the case of an
inflationary period, the investor would no longer be indifferent
to the capital versus bond alternative. Equilibrium between the
two markets would only be restored when return to the bond again
matched the opportunity cost of investing in the capital market
-~ in other WOPdS, if a premium were paid to the bond holder,
over and above the real rate, equal to the expected price level
rise during the period to maturity of the instrument.

In one sentence, then, the Fisher Effect, at the
theoretical 1level, postulates a perfect positive relationship
between expected future rates of inflation/deflatidn and one
component of nominal interest rates.

The purpose of this paper will be to statistically examine
the influence of the Fisher Effect over a recent period, 1955 -
1978, witﬁ respect to Canadian nominal rates of interest. The
period 1955-1978 was selected for two reasons; first, data for
this period was readily available for several bond series, but

sebond, and more importantly, such a time span captures a broad



range of inflationary experience. Since this paper deals
primarily with the 1inflationary expectations component of
nominal bond rates, a variety of actual observed inflation rates
would seem a major criterium iﬁ the selection of sample data.

Perhaps the most difficult issue encountered when
undertaking a study of the Fisher Effect is the choice of method
one should employ when attempting to statistically generate the
inflationary expectations of bond holders. Such a decision rests
upon the nature of expectations formations, and the process
whereby expectations are formed is far from clear. In fact, the
two leading hypotheses put forward regarding expectations
formation differ dramatically in approach.

The first, which has come to be known as the "adaptive
expectations hypothesis", holds that future beliefs regarding
inflation result from an extrapolation process with respéct to
the behavior of a key economic variable, or variables. The bond
holder, it 1is postulated, believes at a given time "t", that
inflation in period "t+1" will follow some trend_established in
periods "t", "t~1", "t-2" and so on. If the actual rate of
inflation in period "t+l1" differs from that anticipated,
perception of the "trend" is altered in the bond holdey's mind,
leading to a change in expectations for the next, future period.

In basic terms, then, a bond holder is assumed to
concentrate upon information gathered from the present value and

past behavior of a critical economic variable, over some time



frame, when generating inflationary expectations. Not
surprisingly, such a variable commonly cited is the observed
rate of inflation itself. The behavior of additional variables
over time might also be of ihterest to a bond holder under the
adaptive expectations assumptions, provided that serles
contained information which would normally be incorporated into
the behavior of the inflation rate, but, perhaps due to the
existence of lags, 1s not.

The second approach to expectations formation has been
termed "rational expectations". This hypothesis revolves about
the notion that a rational bond holder, at time period "t", will
wish to wuse all relevant information about the future which is
available, when predicting the rate of inflation in time period
"t+1l". If the bond holder perceives some relationship between
present behavior of a variable, and future changes in the rate
of inflation, i1t 1s assumed his estimate of future inflation
would incorporate said knowledge. It is important to recognize
that such information may or may not be transmitted difectly via
the past behavior of a key variable. As such, the past behavior
of the inflation rate might be of remote interest to a bond
holder under rational expectations, in marked contrast to the
adaptive expectations theory.

The approach suggested by each hypothesis was deemed
different enough that a decision was made to test the Fisher

Effect under each set of assumptions separately. As a result,



this paper 1is divided into two parts, where similar tests are
carried out. As will be seen, however, the findings differ
dramatically depending upon the expectations component employed.

Before detailing the eduations used to simulate each
approach, one important point should be made. Throﬁghout this
paper 1t will be assumed, for simplicity, that the real
component of nominal bond rates has remained stable over time,
as Fisher hypothesized.1 A rise or fall in nominal bond rates
willl therefore be assumed to be in response to changes in the
second component, inflationary/deflationary expectations. This
assumption allows the constant term in a regression equation to
act as an estimate of the real rate of return to a given bond,
as will be seen, and would not seem to distort the models to any
major extent. Nonetheless, it should be recognized that
constraining the real rate of return to remain constant over

time could introduce a possible source of error into the
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There have been, in fact, good arguments made as to why the
real rate of interest might be expected to fall during an
inflationary period. Robert Mundell, for example, (in Monetary
Theory: Inflation, Interest and Growth in the World Economy.
Goodyear Publishing Company, Santa Monica, California, 1971. pp.
14-~22), shows that a fall in desired holdings of real cash
balances during an inflationary period will cause the real rate
of interest to decline.

Also, empirical estimation of the stability property of the
real rate of interest has been undertaken. See, for example,
Eugene Fama, Short Term Interest Rates as Predictors of
Igflation, American Economic Review, June 1975, Vol 60, #3. P.
269.




results.?

Mathematically, the Fisher Effect may be written as

follows:
(1) BNt = RRt + P#¥t
where RNt = nominal rate of return to the bond at
time "t"
RRt = real rate component associated with bond
at time "t
P*t = expected rate of inflation at time "t"
5 _________________

Specifically, such an error in measurement will result in a
biased estimator "b", as follows, where "B" 1s the. true
estimate:

B (var P*¥t) + cov (v,P¥t)

var (P*¥t) + var (u)

expected rate of inflaﬁion
as of time "t"

where P#¥*¢t

var = variance associated with

cov = covariance associated with

v = measurement error assoc -~
iated with "RRt"

u = measurement error assoc -~

iated with "pP#g"

The problem comes when "cov (v,P¥t)", assumed to be
negative, plays a significant factor. The assumption in this
paper 1is that such a term is very small, but it should be noted
that a source of downward bilas is present.



Both expectations theories mentioned attempt to explain how
values of P¥t are generated. Since the first hypothesis -~
édaptive expectations -~ posits a form of error learning, or
extrapolation of perceived treﬁds in a critical series or set of
series, an equation based upon (2) will be used iﬁ the first
part of this study. It is assumed that the observed rates of
present and past inflation act as the key variable when

inflationary trends are being generated.

(2) P*¥t = F(Pt,Pt-1,Pt-2...,Pt-n; Ot)

Pt = actual rate of inflation in percentage
change between period "t-1" and "t"
Ot = other factors than price 1levels entering

formation of expectations adaptively at
at time "t", based upon information from

time series in addition to past inflation

Equation (2) states that expectations of future inflation,
as of time "t", are generated via two means - extrapolation of
trends derived solely from past price level changes encompassing
some period "t-n", and through consideration of additional
factors which should affect present inflation rates, "Ot", but

do not due to lags in the economy of some known length.



Assuming a constant real rate componient of nominal bond
interest rates (RRt), substitution of equation (2) into (1)

yields:
(3) RNt = a+ f(Pt,Pt"l,Pt"2-oo.o,Pt"n;Ot)

which 1s the general form of the equation statistically tested
when adaptive expectations assumtions were employed.

Not surprisingly, the rational expectations hypothesis
takes a very different mathematical form. Rather than relying
upon past and present values of key variables, rational
expectations postulates the inclusion of all relevant
information about the future which is available at time "t".

The rational expectations model we will employ may be
written as follows: |

o
P¥t = (1/ v+1)“=z° Et [(M t+j+1 -~ M t+j) -

(Y t+3+1 -~ Y t+j)] * (v/ v+l) exp J

where P¥t expected future rate on inflation in

periods t+l, t+2, ..., as of period "t"

v = Partial income elasticity with respect
to interest

M = Natural log of money supply M1l

Y = Natural log of real output, measured



by Peal G.N.P. N

Although the above expression might appear complex, it
states simply that the expeétation of inflation in the period
"t+1" depends upon expected weighted increases iﬁ the money
supply, over and above real growth in all future periods "j",
which are being examined.

The paper 1is divided into two central Parts, with a Data
section preceding, and a Conclusions section following, the main
presentation of the study's findings in Parts I and II. The
format followed in each of the two Parts is identical. First, a
published American model of expectations formation is reviewed,
and the model's major assumptions examined. Secondly, each model
is tested for Canadian data. Next, an alternative model
suggested by the intitial study is presented and testéd for
Canadian data. Finally, another model, consistent with the
assumptions of each Part, but differing significantly from the
major model's structure, will be detailed and tested using
Canadian data.

Part I of this study tests the Fisher Effect under the
assumptions of ‘Adaptive Expectations. The specific model
detailed and tested is based upon a 1969 study by William Yohe

and Dennis Karnosky, published in the St. Louls Federal Reserve



Bulletin.3 The model, (and as such, most of Part I) is "single
variable" in nature, as defined earlier -~ i.e. expectations
formation 1is solely dependent wupon the behavior of a single
variable over time, Testé of a M"multivariable adaptive
expectations" model will also be presented in Part I.v

Part II of the study 1is centered wupon approaches to
expectations formation suggested by the Rational Expectations
hypothesis. The first model set out and tested in this part
follows from a paper by Michael Mussa, published in the Journal
of Monetary Economics, in 1975.% Also included in Part II is an
attempt, using Rational Expectations assumptions, to explain the
success of earlier models employing the hypothesis of Adaptive
Expectations. As will be shown, at least in the case of Canada,
both theories are compatible to a surprising degree.

As mentioned, the 1last section of the paper contains a

brief set of conclusions, arising from the study.

o E e R TR U ve T N PR P YR e

3 Yohe,W and Karnosky, D. Interest Rates and Price Level
Changes, 1952-69. Federal Reserve of Bank of St. Louis ReView,
1969. P. 18.

4 Mussa, Michael. Adaptive and Regressive Expectations in a
Rational Model of the Inflationary Process. Journal of Monetary
Economiecs, Vol. I. 1975.
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B. The Data

Six series of nominal interest rates were examined over the
period studied; two Treasury Bill rates, two government bond
rates, and two Finance Company Paper rates. The short term

interest rates used, and the periods of data availability were

1)Y3O day Finance Company Paper rate;

1961 ~ 1978, Cansim # = B 140395

2) 90 day Finance Company Paper rate;

1957 =~ 1978, Cansim #

B 14017

/3) 3 month treasury bill rate;

1955 -~ 1978, Cansim # B 14007

“ﬁ) 6 month treasury bill rate;
1955 ~ 1978, Cansim # = B 14008

The long term bond rates were

LR R R R R e o ]

5 m"Cansim numbers" are the codes associated with data series
from Statistics Canada, available for access with computer
programs such as "Massager 1973".
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/' 5) 1-3  year government  bonds
average interest rate; 1955-1978,

Cansim # = B 14009

Q//6) 3-5 year  government bonds
average interest rate; 1955-1978,

Cansim # = B 14010

A1l data were in monthly form. Monthly changes in the
Consumer Price Index (not seasonally adjusted), were selected as
the measure of 1inflation, due primarily to the fact that the
C.P.I. receives much publicity, and as a result is widely
regarded as "the" inflation rate by most consumers. When used in
regression analysis, this change in the index was calculated

using the formula:
Pt = ((CPI - CPI(-1))/CPI(-1)) * 100

to represent the percentage change in inflation per month.

When rational expectations tests were run, money supply and
real economic growth data were necessary. The money supply
series selected were "M1" (total Canadian dollars held in demand
deposit accounts plus total currency), and "M3" ( M1l plus time

and other deposits ). Real economic growth was represented by

12
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three 1Indices =~ Real Gross National Expenditure, the Index of
Industrial Production, and Real Domestic Product, all base year
1961.

For the period 1955—1974, Ml was not recorded under a
Cansim number. For the purposes of this study, therefére, it was
calculated by adding total dollars in Canadian currency and
total Canadian dollars in demand deposits for each given month.
After 1975-1, +the Bank of Canada Review published M1l data

directly. The additional series used, then, were

6) Money supply M1; 1955 -~ 1978,
= total Canadian currency (Cansim
# = B 2001 ) plus total Canadian
deposits in dollars ( Cansim #

= B 459)

7) real Gross National Expenditure
( G.N.E. indexed) ; 1955 -~ 1978,

(Cansim # = D 40476)

@//»8) Index of Industrial Production ,

1955 -~ 1978, (Cansim # = D 5760)

9) Real Domestic Product, (indexed),

1955-1978, (Cansim # = D 100215)

13



C. The Fisher Effect Under the Adaptive Expectations Approach to

Expectations Formation

I. The "Single Variable" Model

As mentioned in the introduction, two forms of the Adaptive
Expectations process may be tested from an equation such as (3),

reproduced below as (3a)
(3a) RNt = a + f(Pt,Pt-1,Pt-2,....Pt-n;0t)

In section I.4, where a multivariable model will be used,
factors "Ot" will be explicitly recognized in regression'form.
Throughout the majority of the present part, however, we will
test only a single variable form of inflationary expectations
generation, thus ignoring "Ot". |

The decision to purposely omit said information rests upon
the reasoning that present and past price level changes already
convey all information relevant to the estimation of future
inflation rates. This is a rather strong assertion, since it
implies that changes in nominal and real variables at any given
time are immediately translated into changes in price levels.

Nohetheless, proponents of the one variable hypothesis would

14



argue that adjJustment may be assumed fast enough, given present
communication methods, that it is correct to be concerned only
with current and past price level behavior.

A different argument leéding to the same conclusion might
be that regardless of whether present and past inflétion rates
actually do incorporate all necessary information for accurately
generating expectations or not, it is reasonable to assume that
the average bond buyer forms expectations primarily upon past
and present rates, due to the low information costs associated
with such a method. A one variable approach would therefore
yield good estimates of the inflation/deflation component of the
nominal interest rate on bonds, at least from the demand related
forces pushing nominal bond rates toward equilibrium.

In either case, proponents of the one variable hypothesis
argue that expectations' in period "t" (P¥t) are genérated
adaptively through weighted emphasis on past price level

changes:

(4) P*t = blPt + b2Pt-1 + Db3Pt-2 +

buPt"3 + e o0 0000 0o +ant"(n"1)

where Pt = % change in price level from period
"t-1" to period "t",
bn = weight associated with period

"t-(n-~1)" 's past inflation rate

15



Recent inflation rates are believed to be assigned

rélatively large weights, generally declining such that:
(5) bi> bi+l (i= l,2,oooo.n"l)

It 1is argued that beyond some point in time "t~(n-~1)" the
influence of more distant price level changes 1is so
insignificant as to be ignored; statistically, the coefficient
becomes unstable to the point where "bn" cannot be shown
different from zero with 95% probability.

Combining equation (4) into (l)‘ and again assuming a
constant real rate component, we can statistically estimate the

equation:

(6) RNt=a+ blPt + b2Pt"l + e e 000000

+ bnPt-(n-1)

where again RNt = nominal rate of return to the
bond at time "t"

Pt

% change in C.P.I. from

period "t-1" to "g"

16



Two considerations become important when an equation such
as (6) 1is being dealt with: first, the time period, "t", over
which changes in the price level are to be measured (i.e.weekly,
monthly, quarterly, yearly, étc.); and secondly, the length of
lag to be included in the regression (how large a vélue of "n"
would Dbe appropriate). The latter problem appears one which the
data itself can settle -~ inclusion of all significant variables
in conjunction with a "stable" R2 (R squared) value would seem
108i031-6 As we shall see 1n section I.1l.1, however, the
significance of variables depends in this case upon the length
of lag chosen, meaning this simple rule is not an operational
one.

The '"best" period over which to measure price changes is
also non-obvious, but a recent study by William Yohe and Dennis
Karnosky7 suggested that past monthly changes in price levels

yield good explanatory power for monthly levels of U.S. nominal

T TN TR P T TR TR M TN TS e ew T e

6 By "stable" we mean that no significant increase in R2 can be
obtained from the inclusion of extra variables. Obviously RZ2
will never be truly stable in such a case, since the addition of
variables will always increase R2 - it is the relative "jump" in
R2 associated with each extra variable which will be of
interest.

"Significant" variables are those whose coefficient values
can be shown different from zero with a statistical probability
of 95%.

T Yohe W, and Karnosky, D. Interest Rates and Price Level
Changes, 1952-69. TFederal Reserve Bank of 3t. Louls Review,

1969. P. 18. Hereafter, references references to Yohe and
Karmosky will follow from this paper.

17



bond rates. Since data were available for Canada in monthly
form, there would seem nothing gained by aggregating the data to
quarterly or yearly form; hence monthly changes in nominal bond
and inflation rates were sélected for this study. Periods of
less than a month (i.e. weekly) were not testéd due to
non-availability of data.

The above mentioned study by Yohe and Karnosky also found
evidence of two important characteristics with respect to length
of past lag (time horizon) in formation of inflationary
expectations over the period 1952 - 1969. These findings were 1)
a lag of only 24 months in past inflation rates needed to be
taken into account for a satisfactory explanation of
expectations generation. The addition of further lagged
variables of the inflation rate beyond "t-24" months led to only
minor increases in R2 values; and 2) the length of lag éhosen
had almost no 1impact wupon coefficient values ( the "b"'s in
equation (6) ). Further, beyond a 24 month lag, coefficients
tended to be small and insignificant. Both points lead to the
important conclusion that expectations of future inflation are
drawn from very recent past price changes, in contrast with
earlier studies.8

——————————————————

8 A mean lag of approximately twenty years was found in one
study by David Meiselman ("Bond Yields and the Price Level : The

Gibson Paradox Regained" in Deane Carson (ed.) Banking and
Monetarz) Studies. Homewood, Illinois, R.D. Irwin, 1963. pp.

18



This assumption was not carried into the Canadian
counterpart of Y and K 's study for reasons outlined in section
I.1.1 which follows. A second major facet of the Y and K study
was 1incorporated 1into testing for Canada, though, and this was
with repect to the method employed when constraining the "b"
coefficients, as a means of avoiding multicollinearity problems,
in the statistical estimation of an equation such as (6). Before
the procedure, known as Almon Lagging, was adopted for Canadian
data, however, properties of the weighting coefficients
generated via such a technique were examined (and outlined in
section 1I.1.2) to ensure that the coefficients were being
constrained in a theoretically sensible manner.

After establishing the optimal number of lagged price level
changes, "t-n-1", to be included in a regression such as (6),
(section I.1.1), and that the Almon Lag procedure does indeed
generate a satisfactory decay weighting system ( section I.1.2),
the details and results of testing the Fisher Effect for Canada,

using a model similar to Y and K's, are outlined in section I.2.

Lok alalakakelelelalabololelaleleRalkal

8(cont'd)Yohe and Karnosky (op. cit.) also mention two studies,

the first by Milton Friedman and Anna Jacobson Schwartz (Trends

in Money, Incomes and Prices, 1867-1966, unpublished manuscript,
National Bureau of Economic Research, Nov. 1966. Chapter 2, pp.
110-~143) which found a mean lag of some twenty-five to thirty
years, and a second study done by Suraj B. Gupta (Expected Rate

of Change of Prices and Rates of Interest, unpublished
dissertation, University of Chicago, 1964) which found a mean
lag of around sixteen years.
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L.1.1. The Optimal Time Horizon of Past Price Level Changes

Before presenting the empirical results arising from a
Canadian counterpart of the Y énd K model, shown earlier as (6),
it would seem instructive to "side-~step" for the moment into a
very brief discussion about one assumption made in the U.S.
study regarding the number of coefficiénts "™ which are
relevant.

For convenience, the Y and K model is reproduced below as

(6a):

(6&) RNt = a + blPt + b2Pt"2 + e o0 000

+ b25Pt-24

Such a diversion would seem warranted on the grounds that
the impact of an expectation proxy may well vary dramatically in
a one variable case depending upon the variable's length of lag
considered. Yohe and Karnosky determined that a 2M'month lag
captured the important effects of formulation of expectaions. As
will be shown, such does not appear to be the case for Canada
over the same period.

Unfortunately, exact duplication between studies was not
achieved due to non-~availability of nominal bond rates prior to
1955 (and 1later in some cases =~ see Data section, Page 11

eaflier), but the non-inclusion of data in the early 1950's
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would not seem to dangerously distort the comparability between
monthly Canadian and American results. For reference, Y and K 's
begression results are reproduced in Chart I of the Appendix.
Data for Canadian nominél bond rates were chosen so as to
include both private sector and government rates, whéreas Y and
K dealt exclusively with private sector bond rates. Rather than
selecting a representative short term and long term bond rate to
correspond to Y and K's two rates, ‘all six Canadian bond rates
were run separately as left hand side variables in equation (6).
Lags in percentage change of the consumer price index for 24, 36
and 47 months? were regressed upon each short and long term

rate. Mathematically these regressions took the form:

(8) BNt = a + blPt + b2Pt-1 + ....
oo 060 0 + b25Pt"24
¢ o 0060000 +b37Pt"36
(10) RNt = a + blPt + b2Pt-1 + ....

ceeseccseess + DUBPL-U4T

VTR R T T P TN Ue TR e g TR PR e T e e e

9 Another slight non-~comparability factor between studies
entered due to the computer program's inability in the Canadian
study to process more than 49 R.H.S. variables. Hence, only 47
(rather than the desired 48) lagged variables plus current
inflation rate plus a constant were run.
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If Y and K 's contention, (that only "t-24" variables
matter) is correct, the coefficients attached to all "t-(24 +1i)"
-~ Where i = 1,2,¢4..23 - bcoefficients should be very small
and/or not significant. Graphically, each set of céefficients
from the "t-24","t-36" and "t-47" monthly runs on a given
interest rate appear plotted on the same graph (X axis = lag, Y
axis = coefficient) in Charts III ~ VIII in the appendix. These
charts are directly comparable to Y and K's Chart I.

Significant "b" values are shown in Chart III to VIII as a
'.' and iﬁsignificant values as a 'Q', although the reader
should be aware that due to multicollinearity these "t" test
values may be unreliable.

Two 1mportant observations may be drawn from the Canadian
results 1in Charts III -~ VIII with respect to varying the length
of time horizons in the one variable model. First, the length of
lag chosen seems to have a great effect upon the magnitudes of
certain coefficients, and generally upon R2 values‘(although
autocorrelation makes R2 and ten statistics somewhat
unreliable). For example, Chart III, and to a lesser extent IV,
correspond roughly to Y and K's Chart I. Charts V to VIII,
however, all 1indicate strong and significant coefficients from
roughly t-25 to t-~36 months on the 36 month lag. These are so
large in the case of the 3 month treasury bill rate and 1-3 year

goVernment bond average rate that the coefficients during the
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t-25 to t-36 month period are of the same magnitude to
expectations as those found in the first twelve months.

The second point worth noting in comparing Canadian and
U.S. studies 1s the differénce in R2 statistics, and in the
Canadian case, the small Durbin-Watson statistic; Yohe and
Karnosky argue that increasing the lag from 24 to 48 months
boosts the R2 from only .498 to .536 on the long term rate, and
from .591 to .630 on the short term rate. Little explanatory
power is gained, then, by looking back further into the past for
expectations formation. The U.S. study does not mention a
Durbin-Watson statistic.

With the exception of Chart III, all Canadian regressions
show a marked increase in R2 values attributable to increasing
the lag from 24 to 47 months (Charts IV and V show an almost
doubling, for example). Even more importantly, however, in all
cases the Durbin-Watson statistic 1is so 1low that severe
autocorrelation 1is indicated, making all R2 values unreliable.
It would seem 1likely that Y and K would also have ehcountered
this problem, although no mention is made of it.

The conclusions arising from the Canadian -~ U.S. data
comparison are two-fold. First, a two year lag in price level
changes does not appear adaquate in terms of explanatory power
("stability" of R2 as lag increases), nor able to
satisfactorally generate coefficients (where "stability" of

coefficients regardless of whether longer lag terms are added is
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desired).l0 Rather, in the case of Canadian data, a 47 month lag
appears superior on these grounds,

The second conclusion concerns statistical problems
encountered 1in the one variable lag procedure undertaken.
Autocorrelation proved severe in the monthly data. Bqually
problematic was multicollinearity, causing very unstable
coefficients to be generated from an equation such as (6).
Solutions to these problems differ, of course, but it might be
mentioned that first differencing the raw data failed in several
instances to satisfactorally remove autocorrelation.

As a result of testing, then, equation (6) appears to be in
need of modification to remove multicollinearity. The method
employed for such a task by Y and K in their study was to impose
a constraint upon the weights (coefficients in (6)), generated
via the Almon Lag procedure. In the following sectioﬁ, the
weighting coefficients generated by such a procedure are
examined for Canadian past rates of inflation, over a period
longer than "t-24" months (which is the period Y ande select)

for reasons outlined above.

L R R N R el R N R

10 Hepre we refer to stability primarily in the sense of the
magnitude of "b" values with respect to the lag chosen. If

increasing the 1lag dramatically changes the weight of a given
past price price 1level change, we cannot be satisfied with
arbitrarily cutting off the lagging experiment at that point.
Rather, the 1lag should be extended until relative stability is
reached.
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I.1.2 Almon Lags and Canadian Interest Rates

Irving Fisher believed an arithmetically declining
weighting system for past ievels of price changes would be
adequate with respect to generating an expectations.function -
i.e. a weight of 9 for period t-1l, 8 for t-2 and so on, divided
by the sum of the weights, to yield coefficient constraints for
past price variables. The problems with such a method
conceivably arise due to the approach's need for the arbitrary
choosing of some time period over which to apply the weights,
and, in a different vein, the uncertainty as to whether in fact
arithmetically declining weights accurately capture the
expectations generating process. It might be argued, for
example, that exponentially decaying, or for that matter, almost
any decay pattern would be "a priori" as reasonable a weighting
system from theory as an arithmetic decay process.

Fortunately, the Almon Lag procedure offers a solution to
the 1latter of these problems. By selecting a weightiﬁg pattern
which maximizes explanatory power vis-a-vis changes in the left
hand side variable, the Almon Lag method ensures that the
weights imposed are at 1least optimal from the standpoint of
impact of independent variables upon that variable which is to
be explained. The arbitrary choice decision is not eliminated,
however, as the lengths of lag selected, and the degree of

poiynomial must be specified. The Almon Lag procedure also

25



raises the uncomfortable possibility that the weights selected
by such criteria might not even decline generally over time. 1l

The question of choosing the best lag period "t-n-1" was
discussed for Canadian data‘ in the last sub-section of this
paper. A time horizon of 47 months was selected on ﬁhe grounds
of stability of coefficient values and on the vrelative
steadiness of R2 values with such a lag. When applying the
computer program,12 however, a maximum of only 45 lagged values
could be included. This restriction would not seem an important
problem -~ in fact the variables lost are in all cases small and
insignificant.

The "correct" degree of polynomial as a postulated decay
pattern is a much more difficult selection task, since theory is
of 1little help in this matter. A degree 1 polynomial can likely

be rejected on the grounds that some recognition lag exists, and

Ll T R N Y R ha]

11 For example, a degree 2 polynomial might appear as follows:
Hb" 1'

lag

12 1pe program alluded to 1is the "Massager 1973" progam. In
addition, a constraint of b=0 must be imposed as the last
coefficient of any Almon Lag. Hence only 44 non-zero values were
obtained.

26



thus the weights of decay coefficients might well rise before
declining over some range. Yohe and Karnosky decided upon a
degree 6 polynomial in their study; indeed a reasonable
rationale could likely be fouﬁd for most degrees, including the
largest possible which the computer program will hahdle, since
this is the least arbitrary (most responsive) option.

This study followed Y and K's decision as to a degree 6
polynomial, however, for two reasons. First, using the same
polynomial decay pattern Increased the comparability between
studies, which was deemed desirable. More importantly, though, a
degree 6 polynomial "fitted" the unconstrained coefficients well
(see Charts IIT - VIII, for example) and allowed good
flexibility in choices of "b" patterns.

Having selected the shape and length of decay for weighting

a regression such as (11)
(11) RNt = a + blPt +b2Pt-1 + ......bU45Pt-U44

we are in a position to analyze whether the Almon Lag procedure,
which Y and K incorporated into their study, gives rise to
theoretically sensible results when applied to Canadian data. In
particular, we should be examining the results for two features.

First, the shape of decay weighting function should be
markedly different for shorter versus longer term bond rates.

This 1is so because in the case of short term bonds, most recent
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price level changes are far more .likely to affect a bond
holder's expectations than would be the case with the holder of
a longer term bond, whose returns during maturity of the bond
will be subject to inflation rete changes over a greater period.

Secondly, the magnitudes of "t" scores in the ionger term
bond rates should Dbe noticeably different from shorter term
rates as more distant inflation rates are considered. Over a
long 1lag there will always be some correlation between changes
in distant price levels and current movements in a nominal bond
rate. However, 1in the case of longer term bonds, the relevant
past horizon should be longer than is found with shorter term
bonds, as was argued above. As such, the same distant inflation
rate change may have miniscule relevance to a short term bond
over repeated samples, while having a distinct effect on
expectations for a longer term bond.

As an example, consider a change in price level occurring
24 months in the past. To a short term bond buyer of 90 days or
less, this change would likely be unimportant ~- ceftainly in
relation to changes within the past year. To a potential buyer
of a five year bond, on the other hand, this change may be Qf
substantial impact to the premium demanded as compensation for
inflation over the next five years. The same movement in
inflation during period "t-24" months, then, is theoretically of
only trivial importance to the inflationary component of a term

bohd, while being an important determinant in the nomimal
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interest rate of a 1longer term bond. Statistically, such a
relationship over repeated sampling should be evidenced by an
insignificant coefficient "b25" for the short term bond, but a
significant coefficient "b25“ for the longer term bond, quite
apart from the magnitude of each respective "b25" coefficient.

To repeat, then, "a priori" we should expect two features
of a desirable weighting pattern. First, coefficients on short
term expectations should be large with respect to recent past
price 1level changes, decreasing rapidly. Long term expectations
should be generated over a longer past horizon, and weighted
more evenly. Hence, we would expect smaller coefficients over a
longer period for 1long term bond rates. Secondly, we would
expect more non~relevant correlation with short term
expectations and more distant lags than would be the case for
longer term expectations. Statistically, for lags of the same
length, this should appear as larger "t" scores with longer term
bonds than would be found with shorter term bonds, especially in
the more distant past. |

Table I shows the first thirty-six coefficient lag values
from equation (11), for each of the six nominal interest rates
selected. Due to autocorrelation, a Hildreth-Lu modification was

applied after generation of coefficients, meaning the "t" scores
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Table I

RNt = f(Almon P t....P t-47); Hildreth-Lu; 1955-78

30 day 90 day mon 3 mon 6 year 1 year 3
277(2.7) 238(2.5) .171(2.4) 232(3.0) .269(4.0) .227(3.9
.423(3.6) .336(3.0) .248(2.9) 271(3.0) .264(3.4) .253(3.8
.514(4.0) .402(3.3) .278(2.9) .277(2.8) .241(2.8) .246(3.3
.568(4.0) .443(3.3) .295(2.8) 277(2.5) .221(2.4) .237(2.9
.591(4.0) .462(3.3) .301(2.8) .275(2.4) .205(2.1) .226(2.7
.589(4.1) .463(3.3) .299(2.7) .269(2.4) .191(2.0) .213(2.5
.568(4.0) .450(3.3) .290(2.7) .261(2.3) .179(1.9) .200(2.4
.531(3.9) .426(3.2) .277(2.6) .252(2.3) .168(1.8) .185(2.3
LUB84(3.7) .394(3.0) .261(2.5) .242(2.3) .159(1.8) .171(2.2
.440(3.8) .358(3.0) .275(2.8) .259(2.6) .172(2.1) .186(2.6
.383(3.3) 318(2.7) .256(2.6) 248(2.5) .165(2.0) .172(2.4
.324(2.7) .276(2.3) .238(2.4) .239(2.3) .159(1.9) .158(2.1
.265(2.2) 235(1.8) .221(2.1) 229(2.2) .154(1.7) .144(1.9
.211(1.6) .195(1.5) .206(1.9) 221(2.0) .149(1.6) .132(1.6
.161(1.2) .159(1.2) .194(1.8) .214(1.9) .145(1.6) .120(1.5

116(.86) .126(.93) .183(1.7) 207(1.8) .142(1.5) .109(1.3
LO77(.57) .097(.72) .175(1.6) 202(1.8) .138(1.5) .100(1.2
+O046(.35) .073(.55) .170(1.6) 197(1.8) .135(1.5) .092(1.2
.021(.16) .055(.42) .168(1.6) .193(1.8) .134(1.5) .086(1.1
.004(.03) .ob2(.33) .168(1.7) 190(1.8) .132(1.5). .083(1.1
.007(-.1) .033(.27) .170(1.7) 188(1.9) .130(1.6) .080(1.1
«011(~.1) .029(.25) .174(1.8) 187(1.9) .129(1.6) .079(1.1
.010(-.1) .030(.26) .180(1.9) 185(1.9) .128(1.6) .080(1.1
.004(~.0) .035(.30) .186(1.9) 183(1.9) .128(1.6) .082(1.1
.005(.04) .044(.36) .194(1.9) 181(1.8) .128(1.5) .086(1.2
.018(.15) .055(.44) .201(2.0) 179(1.7) .128(1.5) .091(1.2
.034(.26) .069(.54) .209(2.0) 176(1.6) .129(1.4) .098(1.2
.050(.38) .085(.64) .215(2.0) 173(1.6) .130(1.4) .105(1.3
L067(.49) .101(.75) .220(2.0) 168(1.5) .131(1.4) .113(1.4
.083(.61) .134(.86) .224(2.0) 163(1.4) .132(1.4) .122(1.5
.097(.73) .147(.98) .225(2.0) .156(1.4) .133(1.4) .131(1.6
.108(.83) .160(1.1) .224(2.0) .148(1.3) .134(1.5) .139(1.7
.166(.92) .169(1.2) .220(2.1) .139(1.3) .134(1.5) .147(1.9
.121(.99) .175(1.3) .214(2.1) 128(1.2) .134(1.6) .154(2.0
.122(1.0) .177(1.4) .204(2.0) .116(1.1) .134(1.6) .160(2.1
J117¢.97)  L174(1.5) .191(1.9) 103(.99) .132(1.6) .163(2.2
.109(.88) .167(1.4) .175(1.8) 089(.84) .129(1.5) .l64(2,2
Sum=7.95 Sum=8.06  Sum=8.72 Sum=7.67  Sum=b.35  Sum=6.16
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(shown in brackets) should be reliable.l3 As may be seen, Almon
Lag generated coefficients stand up well in relation to the "a
priori" conditions outlined. Short term rates, especially the 30
day and 90 day rates, do in féct show associated large "recent"
coefficients which quickly drop to below the .100 le&el (t-17).
By contrast, the 1-3 year average government bond rate is still
above the .100 level after "t-36" months. The 3-5 year rate, in
fact, shows significant coefficients greater than .150 at "t-36"
months. The first condition, then, that shorter term rates be
assoclated with larger early coefficients, dropping in magnitude
quickly compared with longer rates, appears satisfied generally.
In the case of the 3 month treasury bill rate , however, it
might be noted that the coefficients do not decline as rapidly
in weight as might be expected.

The second feature of Table I worth noting is that "t"

scores react generally as predicted with respect to type of bond

R R R R N o Rkl e haka]

13 We noted only that "t" scores "should" be reliable since the
Durbin-Watson statistic for these runs could not be tested, due
to the 1lack of significance tables for large numbers of
variables and observations, The largest values commonly
calculated are for 5 explanatory variables and 100 observations
- this study used 44 explanatory variables and 200+
observations. The boundaries for k=5, n=100 case are
D.W.(upper)= 1.65 and D.W.(lower)= 1.44 at the 1% certainty
level. Calculated Durbin-Watson statistics in this study were:
30 day finance co. paper rate = 1.84 ; 90 day finance co. paper
rate = 1.65 ; 3 month government bond rate = 1.42 ; 6 month
government bond rate = 1.50 ; 1-3 year government bond rate =
1.42 ; and 3-5 year government bond rate = 1.39 . Therefore, the
"t" value shown in brackets in Table I should almost certainly
be, accurate.
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and 1length of 1lag of inflation. For shorter term rates, only
recent weights are subject to small standard errors, while in
the 1longer term rates, coefficients retain significance further
into the past. Again, howevér, the 3 month treasury bill rate
did not conform to expectations. The 1-3 year bond rate also
showed surprisingly short lived significant coefficients .

To this point we have attempted to establish the
appropriateness of two assumptions which are incorporated into
the rest of Part I of this study =~ that a period "t-n-1" should
be of no less than 47 months, and that the Almon Lag procedure
generates estimates of "b" coefficients for equation (11) which
are compatible with theory. The next three sections outline the
testing, and conclusions arising from, the Fisher Effect
relationship be tween Canadian nominal interest rates and
inflationary expectations, based wupon the trends deduced from

rast behavior of an economic series or series.

1.2 Empirical Results of Testing Canadian Nominal

Interest Rates Under the Modified Y and K

Assumptions

When testing Y and K 's constraint weighted model,
mathematically represented earlier as equation (11), and

reproduced below for convenience as (lla):
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1la) RNt = a + blPt + b2Pt-~1 + ....

+ bUSPt-~44

two separate runs were made in addition to testing the data for
the period 1955-1978. The data were split into pre-~1969 and
post~1969 groups, since thevpefiod 1969-78 might be hypothesized
as belng subject to stronger, or at least larger, expected
inflation rates than the period 1955-1968. The results of these
runs are shown in Chart IX of the Appendix. Table II lists the
same data after the Hildreth-Lu modification was applied to
remove autocorrelation. ‘

The most interesting facet of Table II may well be the
value of "a", which is the constant variable in equation (11).
Since the one variable hypothesis suggests that only price'level
changes affect nominal interest rates, this constant becomes an
estimate of the "real rate" component of nominal bond rates for
the periods shown. |

Excluding the two treasury bill rates momentarily, an
interesting pattern emerges when scanning the colums of Table
II vertically. In all cases the values of "a" increase with the
length to maturity of the bond. This finding supports the
argument that the real return on a longer term investment should

be greater than on a shorter term, to compensate the holder for
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30
day

90

day

mon

year

Table II

1955-1968 1969-1978 1955-1978
a = 2.106 (5.39) a 3 62 (2.47) a = 3 141 (5.17)
R2 . 931 R2 . 913 R2 . 952
P = 790 P = .913 P = .911
D.W.e = 1.77 D.W. = 1.82 D.W. = 1.83
a = 2.395 (1.80) a = 4,001 (2.70) a = 3.319 (4.78)
R2 = .917 R2 = .917 R2 = .949
P = 957 P = .917 P = .929
D.W. 1.47 D.We = 1.79 D.W. = 1.65
a = 1.87 (2.30) a = 2.294 (1.37) a = 2.34 (3.34)
R2 = .879 R2 = ,971 R2 = .966
P = .903 P = ,976 P = ,950
D.W. = 1.67 D.W. = 1.04 D.W. = 1.42
a = 2,266 (4.21) a = 2.833 (1.80) a = 3.005 (4.89)
R2 = ,871 R2 = .963 R2 = ,960
P = .831 P = ,964 P = 935
D.W. = 1.67 D.W. = 1.25 D.W. = 1.50
a = 2.686 (4.72) a = 4.793 (4.89) a = 3.632 (7.85)
R2 = 877 R2 = .924 R2 = .955
P = .885 P = .925 P = .924
D.W. = 1.59 D.W., = 1.32 D.W. = 1.42
a 3.14 (5.52) a = 5.402 (6.93) a = 4.04 (9.39)
R2 . 896 R2 = .916 R2 = .960
P = .915 P = .910 P = .931
D.W. = 1.46 D.W. = 1.39 D.W. = 1.39
where a = constant
R2 = explained variation from residuals
P = rho
D.W. = Durbin-Watson Statistic
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the inconvenience of illiquidity. The reason treasury bills were
excluded 1is that they are held largely by banks as reserves. By
law these institutions must hqld treasury bills; hence the real
return on these instruments is most likely influenced by factors
other than the "cash -~ 1illiquidity" choice which the public
faces.

A second feature of interest in Table II comes from reading
across the columns horizontally. In all cases, the value of "a"
is greater in the post-1969 than pre-1969 period. This could be
because, 1in fact, the real rate of return has increased over
time, but this seems unlikely. Rather, it would seem plausible
to interpret this rise to non price-explanatory variables which
are missing from equation (11). In other words, if factors other
than past inflation rates have become increasingly important
since 1969 in determining expectations, the influence ofvthese
variables could show only in the constant term. If such were the
case, the real rate need not have increased, (indeed it may have
even decreased), but the one variable hypothesis can attribute
"non-~lagged inflation variation" only to the constant in this
model. We will return to this possibility later in the paper,
when considering the multivariable alternative of _.adaptive
expectations, and in the Conclusions section, where the effects
_of changes in taxation are considered.

Finally, it 1is worth noting that Y and K found constant

values similar to those in Canada in their U.S. study over the

35



same period. For the years 1952-1969, Y and K calculated a
constant for the short term rate of 2.283, and a long term rate
constant of 3.090 over an unconstrained , 48 lagged (inflation
rate) regression. These values appear quite close to Canadian
results in the similar period, as theory would predicﬁ.

While the Almon Lag method employed by Y and K yields
useful information about the constant term in equation (11), an
important consideration remains unexplored, and this is the
relative 1impact which a change in past prices has directly upon
nominal interest rates. For example, if expectations are fully
captured 1in 1Interest rates we would expect a coefficient value

of "¢ = 1.00" in equation (12)
(12) Rnt = a + cP#*¢

where P¥%¥t is the "best guess" at the expected rate of inflation
at time "t". If expectations are conversely not translated into
nominal 1interest rates at all, "c¢" should have a value of zero.
It might be noted, as an aside, that equation (12) is simply
equation (1) written in statistical estimation form.

In the next section of Part I, an equation such as (12)
will Dbe estimated. Separate runs will be made, as before, for

the periods 1955-1978, 1955-1968, and 1969-1978.
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I.3 Indirect Almon Lags and Nominal Interest Rates

Before an equation such as (12) could be estimated, a
variable P¥¥t was needed. This "best guess" as of time "t" at
the expected inflation rate should be generated, aécording to
the one variable model, from changes in present and past price
levels. Given the desirable characteristics of Almon Lag
determined coefficients outlined earlier, a suitable method for
obtaining an estimate of P¥¥tf would seem to be via regressing
present inflation rates upon past weighted rates, and using the
"P  hat" value (calculated inflation rate) as P¥#*t, This was, in
fact, the procedure undertaken.

The results of estimating equation (12) are shown in Chart
X of the Appendix. Table III shows the Same results after the
Hildreth-Lu modification was used, again to remove
autocorrelation. The major difference between these two exhibits
is the 1large change in "c¢" values -~ from magnitudes of greater
than 5.00 1In Chart X to approximately 1.50 in Table III. The
magnitudes of "c¢" in Table III should be more reliable than in
Chart X, however, since the "tracking" of residuals causing
autocorrelation may lead to serious distortions in a given
sample, such as appears in Chart X. Once this "tracking " ‘has
been corrected, as in Table III, the coefficient should assume a

more accurate statisical estimate of the true relationship.
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Table III

RNt = a + bP¥t

(where Pt = dlPt + Ad2Pt-1 ..... d4spPt-44)
1955-1969 1969-1978 1955-1978
30 a = 4,720(5.81) a = 6,081(6.06) a = 5.442(6.01)
Day b = 1.111(1.11) b = 2.524(2.10) b = 1.984(2.46)
R2 = .917 R2 = .909 R2 = .947
P = .962 P = .936 P = .965
D.W. = 1.74 D.W. = 1.79 D.W. =1.79
a = 4,564(4,95) a = 6.542(6.33) a = 5.518(5.12)
Day b = 1.139(1.31) b = 2.089(1.78) b = 1.636(2.20)
R2 = .898 R2 = ,912 R2 = .941
P = ,971 P = .943 P = .974
D.W. = 1.36 D.W. = 1.74 D.W. = 1.60
a = 4,025(6.32) a = T7.211(.000) a = 5.,535(.000)
mon b = 1,028(1.09) b = 1.049(1.54) b = .966(1.71)
T.B. R2 = ,863 R2 = .967 R2 = .955
P = ,949 P = 1,00 P = 1.00
D.W. = 1.60 D.W. = .961 D.W. = 1.32
a = 4,225(7.79) a = 6,628(4.36) a = 5.393(5.27)
mon b = 2,096(2.07) b = 1,271(1.69) b = 1.622(2.67)
T.B. R2 = .863 R2 = ,961 R2 = .959
P = ,932 P = .984 P = ,978
D.W. = 1.63 D.W. = 1.21 D.W. = 1.49
. 1-3 a = 4,527(7.42) a = 5.869(9.22) a = 5.154(6.20)
year b = 1.082(1.43) b = 2.371(3.25) b = 1.800(3.42)
R2 = .861 R2 = .920 R2 = .947
P = .959 P= ,942 P = .977
D.W. = 1.58 D.W., = 1.22 D.W. = 1.43.

(Table III con't next page)
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Table III (con't)

6. 3-5 a = 4,912(4.78) a = 6.557(11.64) a = 5.650(.000)
year b = 1.052(1.77) b = 1,759(2.66) b = 1.331(2.94)
R2 = ,872 R2 = .909 R2 = ,954
P = .985 P = #939 . P =1.00
D.W. = 1.44 D.W. = 1.28 D.W.e = 1.37
where a = constant
b = slope coefficient
R2 = explained variation from residuals
P = correlation coefficient
D.W. = Durbin-Watson Statistic

As mentioned, the value of "c¢" should not exceed 1.00 in
the long run. Information taken from Table III, then, would seem
to 1indicate consistent undershooting of expectations, or an
inadequate expectations variable P¥¥t, Consistent undershooting
(i.e. demanding, on average, a lower inflation premium to bond
holding than 1is actually provided ) over as long a period as
twenty-three years seems highly unlikely.

A solution to this problem might well bé thét price change
variables alone are not adequate in explaining how expectations
are formed. If other variables enter the generation of
expectations function, the variable P¥*¥t will never be éorrectly
estimated =~ 1t may be either too large or too small. Combined
with the evidence presenfed in the last sub-~section of Paft I,

that variables other than price appear missing (increased

39



constant values over time from the Almon regressions), such an
explanation -~ 1i.e. that  the "single variable" model 1is
inadequate for explaining generation of expectations ~-~ appears

promising. In the 1last section of Part I a version of the

multivariable adaptive expectations model will be tested for

Canada. As will be seen, however, the addition of time series
variables other than price , (at least in the cases tested),
does not succeed 1in removing the puzzling undershooting
phenomenon alluded to,l4

In defence of the one variable adaptive expectations model,
however, it should be pointed out that that no value of "e¢" in
Table III can be shown significantly different from 1.00 with
95% certainty. Thus, even though each coefficient but one is
greater in magnitude than 1.00, it should not be forgotten that
the varilable P¥¥t may actually be a legitimate estimate 6f the
expectations component of the nominal rates shown, but due to
the small number of samples (18), values greater than 1.00
appeared. The mean value of "c¢" might, in fact be. less than 1.00
~ statistically it is conceivable, though improbable.

It might also be mentioned that the constant term values of

R A R E Em Em E .-

14 Examination of the "rho" values in Table II will also show
the modification comes very near to first differencing, at which
" point the constant term loses all meaning. It may be that this
factor alone 1is responsible for the behavior of the constant
estimates after removal of autocorrelation.
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Table III are large by comparison with Table 1I1.15 This also
seems most likely attributable to the poor explanatory power of
the single generated variable P¥#¥*t, rather than to a different
real rate component of nominal bond rates being indicated by
comparison to Table II. The estimates are not different enough,
however, to indicate that measurement error cannot logically

account for the differences between the two Tables.

I.4 Empirical Tests of the Multivariable Adaptive Expectations

Model

The final test of the Adaptive Expectations hypothesis
which we will employ on the selected Canadian nominal bond rates
is of the "multivariable", rather thén "single variable"
variety. The desirability of testing such a model follows from
an observation noted in the preceding section -~ i.e. that the

"c" coefficient in equation (12), reproduced below as (12a):
(12a) RNt = a + cP¥¥t + ut

was found to have an unexpectedly high value. One explanation

for this finding could be that the variable P¥¥t was
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15 This "problem" will be dealt with in the Conclusions section
of the paper, where a plausible solution follows after inclusion
of taxation considerations presently outside the model.
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significantly bilased due to the non-inclusion of information
which bond holders do in fact use adaptively, but which is not
transmitted via present and past inflation rates.

It might be recalled that P¥%¥t was statistically derived

from a process described by equations (13) and (13a) below:

(13) Pt = a + d4lPt-1 + d2Pt-2 +

e s 000 + duSPt"’uS + ut

(13a) P#*t = Pt - ut

where Pt = % change in C.P.I. from period
"g~1" to "¢
P¥¥t = inflationary expeétation over
period to maturity of bond
ut = estimated unexplained error as
of time "t" from O.L.S.
regression
dl = Almon weighted coefficient for

variable lagged "1" period

In words, equation (13a) states that the best guess as to
future inflation comes, over time, from forming a single
variable estimate, P¥#¥t, which minimizes the error between the

predicted value of inflation, as of period "t-1", and that
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observed in period "t".

The crucial assumption under the single variable hypothesis
is, of course, that the error term "ut" cannot be made
significantly smaller in a coﬁsis@ent fashion over time through
the inclusion of added variables into an equation such as (13).
If such a decrease were in fact possible, a better value of P¥#t
could be determined through the addition of said information ~-
which 1is precisely the postulate of the Multivariable Adaptive
Expectations hypothesis. The fact that the coefficient attached
to P¥¥t appeared to be surprisingly large, then, suggested that
a better explanation of nominal interest rate movements might
come from explicit consideration of variables in addition to
past and present rates of inflation.

There would seem 1little argument ﬁhat, in the long run,
inflation 1is a result of excess money creation over and above
increases 1in the real growth of an economy. The single variable
adaptive expectations model assumes that such a relationship
holds 1in the very short run as well -- i.e. that_no significant
lag exists between excess money creation and price level
adjustment. As such, the most accurate inflationary trend is
transmitted via the inflation rate itself.

If a lag in the transmission of such information were, in
fact, to exist for Canada, it would seem reasonable to assume it
to be a very short lag, given present communication methods,

government disclosure of money creation statistics, and the
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rents available to anyone outguessing the market (which would be
assumed, under adaptive expectations, to be relying upon a
single variable hypothesis). Perhaps the best argument could be
made ‘'for a lag of one monthlpefore monetary and real growth
shocks 1impact fully upon the inflation rate, since é one month
delay exists before "accurate" monthly data is published by
government for a given monthly period. Until that point, only
guessing as to government actions can take place, and one might
expect significant portions of the market only to react to
"hard" information.

To be safer, however, it was assumed that some monetary
and/or real growth information is not transmitted to price level
change for a period of up two months and longer. The
multivariable hypothesis test took the maﬁhematical form, then,

of equation (14) below:

(14) RNt = a + glM¥t + g2M¥*¥t-1 + ...
ee T grM¥t-r-1 + Almon (Pt+n)'
where M¥t = excess money creation over real
growth between periods "t-1"
and "t" in percentage form
Almon = dlPt + d2Pt-1 + .... + dnPt-n-1
(Pt+n) from equation (13)
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Two series were selected for the monetary creation
variable, M1 and M3, as defined in the Data section earlier,
P.11., Real growth was taken,pd be a constant for a given month,
equal to one third the percentage growth in G.N.E. over the
three month reported period.

Besides wusing two estimates of "M¥t", separate equations
were run including "M¥t-1", "M¥t-2" etc, and then re-run
excluding the furthest lagged "M¥" term in the previous
regression, for comparison of explained variation (R2)
statistics. Both M1l and M3 runs yielded similar results, and as
such, only the M3 runs are listed, in the Appendix, as Charts XI
and XII. The same results are listed after the Cochrane- Orcutt
procedure was employed to remove as mﬁch autocorrelation as
possible, in Tables IV and V. In addition, Table VI lists the
result of running "M¥t" and "M¥t-1" using M1 rather than M3 as a
measure of monetary activity. No results are presented for
regressions including lagged "M¥t" terms more distant than
"t-1", since the conclusions arising from such runs are no
different than can be deduced from Tables IV, V, and VI.

In short, the findings presented in Tables IV, V, and VI
give little 1f any credence to the existence of lagged
information having a noticeable impact upon nominal rates of
interest, via inflationary expectations. In all cases the "M¥"

coefficients are small (at the largest ".01"), suggesting on
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Table IV

Cochrane Orcutt : RNt = a + gl M3*t + Almon (Pt,...Pt-n)
(1955-78)

1) Day30t = 3.58 -~ ,002M3*%t + Almon (Pt,...Pt-n)
(3.80) (~.720h)

R2 = .95 rho = .915 D.W. = 1.83
2) Day90t = 3.35 -~ .004 M3%t + Almon (Pt,...Pt-n)
(5.06) (-1.28) '
R2 = .96 rho = .918 D.We = 1.73
3) Mon3t = 2.60 - .003 M3*t + Almon (Pt,...Pt-n)
(3.08) (-1.59)
R2 = .97 rho = ,.957 ' D.W. = 1.40
4) Monbt = 2.93 -~ .003 M3*¥t + Almon (Pt,...Pt-n)
(1.99) (-1.52) ’
R2 = .97 rho = .974 D.W., = 1.32
5) Yearlt = 3.80 -~ .006 M3%¥t + Almon (Pt,...Pt-n)
(6.13) (-2.86)
R2 = .96 rho = ,939 D.W. = 1.43
6) Year3t = L4.27 =~ .002 M3*t + Almon (Pt,...Pt-n)
(9.39) (-1.29)
R2 = .97 rho = .930 D.W. = 1.43

where M3¥t = % increase in M3 growth above % real’

growth from "t-1" to "t"
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Table V

Cochrane Orcutt : RNt = a + gl M3%t + g2 M3%¥t-1 + Almon (P)
(1955-78)

1) Day30 = 3.59 -~ .002 M3*t + ,003 M3*¥t-1 + Almon (P)

(3.81) (-.711) (.786)
R2 =.94 rho = ,915 D.W. = 1.83
2) Day90t = 3.35 -~ .004 M3%t + ,002 M3¥t-1 + Almon (P)
(5.06) (-1.27) (.465)
R2 = .96 rho = ,917 D.W.e = 1.73

3) Mon3t = 2.62 - .003 M3*t + .002 M3%*¥t-1 + Almon (P)
(3.12) (-1.58) (.664)
R2 = .97 rho = .957 D.W. = 1.40

4) Mon6bt = 3.04 -~ ,003 M3¥%¥t + ,001 M3*¥t-1 + Almon (P)

(1.82) (-1.49) (.343)
R2 = .97 rho = .975 D.W. = 1.32
5) Yearlt = 3.80 -~ .006 M3*t -~ ,000 M3*t-1 + Almon (P)
(6.11) (~2.85) (~.019)
R2 = .96 rho = .939 D.W. = 1.43

6) Year3t = 4.27 - .002 M3%t - .000 M3%t-1 + Almon (P)
(9.38) (-1.28) (~.118)
R2 = .97 rho = .930 D.W. = 1.43

% increase in M3 above % increase
in real growth between periods
"E.2M gnd "t"

where M3¥t-1

Almon (P) dlPt + d2Pt-1 + .... d46Pt-45
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Cochrane Orcutt :

1)

2)

3)

4)

5)

6)

where

Table VI

M1¥t = % increase in M1 above % increase

a+ gl M1*¥t + g2 M1%¥t-1 + Almon (P)

RNt =
3.55 + .010 M1¥t - .016 M1¥t-1 + Almon (P)
(3.67) (.673) (-1,12)
= ,9}4 rho = ,918 D.W. = 1.83
3.32 + .006 M1%t - ,007 M1%¥t-1 + Almon (P)
(4,.80) (.457) (.533)
= ,96 rho = ,921 D.W. 1.79
2.62 - ,005 M1¥t - ,001 M1*t-1 + Almon (P)
(2.85) (-.529) (~.141)
= .97 rho = .960 D.W. = 1.39
3.16 ~ .005 M1%t - .007 Ml*¥t-1 + Almon (P)
(1.86) (-.544) (~.732)
= .97 rho = ,977 ~ D.W. = 1.36
3.85 + ,001 M1%¥t - ,004 M1%*t-1 + Almon (P)
(5.37) (.137) (~.397)
= .96 rho = .949 D.W. = 1.36
4,28 - .000 M1%¥t + ,001 M1*t-1 + Almon (P)
(8.83) (-.006) (.191)
= .97 rho = .933 D.W. = 1.4

in real growth between "t-1" and "t"

d46Pt-45
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average a one percent 1increase 1in excess money creation
transmits an impact of léss_than 1/200 of a percent directly to
nominal bond rates, and even then, in a negative direction.

In only three cases out of eighteen are the coefficients of
"M¥t" and "M¥t-1" significant, and in no case 1is the éoefficient
significant when associated with lags of more than one month.
The "R2" statistic (explained variation) is increased slightly
with the addition of extra explanatory variables (for example,
compare Tables III and IV), but such is virtually always the
case as more right hand side variables are added, and the
increase is modest at best.

Perhaps most damaging to the assumptions of the
multivariable hypothesis is the sign of the lagged excess money
variables. They are negative, which wéuld seem to suggest a
temporary lowering of nominal rates following monetary
expansion. This effect 1is theoretically sensible in the short
run, but should not be included as part of the Fisher Effect,
which deals with a situation where all markets have adjusted in
real terms to a monetary shock. The small size and general
insignificance of the coefficients, however, suggests that the
success of a policy designed to 1lower interest rates
significantly through monetary expansion was very modest, and
short 1lived over the period examined, 1if employed for that

reason.
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As might be recalled, the major criticism of the single
variable hypothesis was that, on average, it underpredicted the
size of the inflationary premium of nominal bond rates, if
anything. The finding that a multivariable model would leave the
prediction unchanged, then, and in addition would suggest a very
small decrease In nominal rate, does nothing to encourage the
view that the multivariable adaptive expectations model -~ at
least 1in the form tested ~-- yields a more credible estimate of
the Fisher Effect.

The evidence from Tables IV, V and VI -~ especially the
tiny and often insignificant coefficient associated with "M¥t"
-~ would seem to indicate that monetary information is
translated quickly, if not immediately, into the inflationary
component of nominal bond rates. Whilé such a finding is of
interest to the adaptive expectations model, the real impact of
such a situation (assuming it to be the case), falls on the
hypothesis to be tested in Part II, "rational expectations".
Indeed, the rapid incorporation of mone tary information into
price 1level changes is a critical assumption to that theory. We
will return to this, and related assumptions, in Part II, but
before leaving the discussion of adaptive expectations, a few

general remarks might be made in closing.
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I.5. Summary of Part I .

In this part of the paper, aspects of the Adaptive
Expectations hypothesis webe tested for Canada. It was
determined that a lag of 47 months in price level Changes was
superior to shorter time horizons (in contrast to the U.S.
findings of Yohe and Karnosky) on grounds of stability of R2 and
coefficient magnitudes, and by examination of "t" scores, with
respect to generating inflationary expectations.

Almon Lag estimated coefficients were examined to ensure
that weights selected conformed generally to theory. This was
important since the procedure weights the independent variables
according to maximum explanatory power of the dependent
variable, and as such almost any weighting pattern may emerge
from the process. It was determined, however, that in this case
the generated coefficients declined in a manner well suited to
theory. As a result the technique was employed in constraining
the impact of past inflation rates upon expectations géneration.

Constant values were estimated for‘ Canadian nominal
interest rates, which under the adaptive expectations model
should correspond  roughly to the "real rate" component of said
nominal rates. This of course assumes that real interest rates
have remained constant over time, a simplifying assumption
incorporated into this study. Estimates of Canadian real rates

of 1interest were found to be close to published American real
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bond rate findings.

Evidence was found that the real rate of return tends to
increase with the 1length to maturity of the asset - which one
might predict from theory, asSuming that more liquid assets are
preferred to less liquid assets.

Inconclusive evidence was found with respect to the impact
of expectations entering nominal interest rates =~ in no case was
an expectations coefficient value found significantly different
than 1.00, or perfect adaptation, but at the same time estimates
of this coefficient were consistently greater than one. The lack
of estimated values less than 1.00 lead to the strong suspicion
that the generated variable, P¥¥t, derived solely from past
price 1levels changes, was less than satisfactory; as such a new
expectations hypothesis, termed the mﬁltivariable adaptive
expectations hypothesis,v which took explicit account of
information besides past and present inflation rates, was
tested.

It was determined that the postulate,_of'information not
already 1incorporated into past and present inflation rates, but
shaping expectations of inflation, was not statistically sound.
Rather, it would seem that information is rapidly transmitted
from the monetary sector to price 1level changes, which is
consistent with the single variable hypothesis.

One statistical point might also be made. Throughout Part

I, the phenomenon of autocorrelation persisted when estimates of
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the FPisher Effect were run. Such a problem is not unusual in
time series data, but the inability of either the Hildreth-Lu
(H-L) or Cochrane-Orcutt (C-0) techniques to remove said
autcorrelation to a safe extent on several occasions, led to a
question of why the problem was so0 severe. In an attempt to shed
light in this area, the Box-Jenkins (univariate) technique16 was
applied to residuals from regressions undertaken, as well as to
the nominal rates of interest themselyes.

Analysis of the vresiduals 1led to no new answers. The
remaining autocorrelation after H-L or (-0 was applied, was
picked up by the Box-Jdenkins technique, but no autoregressive
structure could be 1dentified whose constant or moving average
terms were statistically significant from zero at the 95%
confidence interval.

Analysis of the autoregressive structures of the ndminal
bond rates themselves proved interesting, however. Table VII
displays the best structural autoregressive equations estimated
for each bond rate.l7 Tne important point to note from Table VII
is that the error structure for all nominal bond rates except
the 30 Day rate 1s of the moving average variety. The 30 Day

nominal rate is first order autoregressive, (AR(1)), structured,

e M EE R R R R R ...

16 Box,G. and Jenkins,G. Time Series Analysis, Forecasting and
Control, Holden-Day, San Francisco, 1976.

17, The procedure used was "ESTIMATE" from the Econometric
Software Package program.
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1)

2)

3)

4)

5)

Table VII

RNt Subjected to Box-Jenkins Analysis

Day30t = .121 + .980 Day30t-1 + et
(1.55) (82.85)
R2 = .947 Chi squared (12) = 26.2 (10 d. of f.)
squared (24) = 46.3 (22 d. of f.)
Day90t = ,000 + 2 Day90t-1 - Day90t-2 + .989et-~1 + et
(.110) (669.4)
R2 = .950 squared (12) = 27.7 (10 4. of f.)
squared (24) = 52.4 (22 4. of f.)
Mon3t = .000 + 2 Mon3t-1 - Mon3t-2 + .776 et-1 + et
(.079) (20.64)
R2 = .961 Chi squared (12) = 26.1 (10 d of.f )
Chi squared (24) = 49.5 (22 d. of f.)
Mon6t = ,001 + 2 Mon6t-1 -~ Mon6t-2 + ,680 et-1 + et i
(.711) (21.81) :
R2 = .974 Chi squared (12) = 4.9 (10 d. of f.)
Chi squared (24) = 21.3 (22 4. of f.)
Yearlt = .000 + 2 Yearlt-l -~ Yearlt-2 + .612 et-1 + et
(.723) (78.53)
R2 = .965 Chi squared (12) = 15.0 (10 d. of f.)
Chi squared (24) = 30.8 (22 d. of f.)

(Table VII con't next page)
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Table VII (con't)

6) Year3t = .018 + Year3t-1l + .272 et-1 + et

(1.07) (4.56)
R2 = ,987 Chi squared (12) = 15.1 ( 9 d. of f.)
Chi squared (24) = 28.1 (21 d. of f.)

where hypothesis rejection (of sighificant remaining
autocorrelation) falls at:

Chi squared = 16.92 for 9 d. of f.
Chi squared = 33.92 for 22 d. of f.

making it strongly autoregressive in a form where ( ut = ru(t-1l)
+ et ) -~ i.e. the "classic" assumed first order autocorrelation
structure, where "r" = rho, and "et" is assumed distributed with
mean zero and finite variance. Not surprisingly, then, the
residuals from such regressions of the 30 Day rate behaved well
in the Hildreth~ Lu or Cochrane-Orcutt techniques, which
estimate "r" and perform the subtraction shown to obtain "et".
Review of the Tables in Part I will show a satisfactory
Durbin-Watson statistic for this rate after correction for first
order autocorrelation, as would be expected.

The remaining five nominal interest rates, however, show a

structural autoregressive form consistent with MA(l) - a one
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period moving average error pattern. Such a structure implies an
infinitely declining series 1in autoregressive format, after
successive "et-i" 's (1i=1,2,3,...) are substituted for. We will
deal 1in depth with such a substitution in the final section of
Part II, so it will not be discussed further here; except to
note that given a declining series error structure, the
inability of the Hildreth-~Lu and Cochrane-Orcutt procedures is
not surprising. They estimate one term "r" which must
approximate an infinite series of declining coefficients, and
hence will never fully capture, and remove autocorrelation
ideally. Again, the Tables 1in Part I reflect this estimating
inability of the H-L and C-0 techniques by a low Durbin-Watson
statistic after correction has been undertaken.

At the time of writing, a multivariaté Box-~Jdenkins computer
package ~- which would be wuseful in dealing with such an
autocorrelation situation -- was not available for use. As such,
data were adjusted to remove first order autocorrelation, and
the results reported. One should be aware, however; that the
swings 1in coefficient estimates before and after H-L or C-0
procedures were applied, may be, in part, a reflection of the

underlying autocorrelation structure itself.
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D. The Fisher Effect Under Rational Expectations Assumptions

1T1.1 Introduction

In this part of the study, models falling under the heading
of "rational expectations" will be wused to statistically
generate estimates of the inflationary expectations component of
nominal bond rates, "P¥*t" in equation (1). The major model of
Part II will be detailed in the next section of the paper, but
before becoming immersed in specifics it would seem prudent to
briefly clarify the critical differehces between the family of
models known as rational expectations,. and those which are
classified wunder the heading of adaptive expectations. This
section will also serve to outline the more important
assumptions incorporated into all of the models which we will be
testing in this part.

Rational Expectations models are based upon the idea that a
decision maker at a given point in time "t" will formulate an
estimate about the behavior in a variable as of period "t+1",
based wupon information relevant to his future decision which is
availlable at time "t". The decision maker is "rational", then,
in the sense of recognizing that the occurence of some event

during period "t", will lead to a predictable outcome in period
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"t+1" (subject, of course, to some probability, since the future
is never perfectly certain). Ideally, a decision maker would
want to collect all such possible indicators of the future, but
costs associated with the coliection and interpretation of data
would dictate that information be collected only to the point
where the marginal value of collection would equal expected
marginal value of a correct prediction.

This assumption differs  sharply from the adaptive
expectations method of examining "trends" in past values of a
variable or variables, Current information is included under
these models only if already incorporated into the behavior of a
key variable, and even then, its predictive power is diminished
greatly when the value of the key vériable is weighted by a
coefficient 1less than one. It is interesfing to note, however,
that in a situation where no information about the future
existed, (or where the collection and/or interpretation of data
was so expensive that the cost of even the first unit of
information exceeded 1its expected marginalrvalue), a rational
person would incorporate no current information apart from
trends in the variable of interest ~~ in other words, rational
expectations would become adaptive expectations.

In an attempt to further clarify the differencé between
approaches in the two theories, the following example might be
offered. Suppose a baseball game is being played under cloudy

skies. In the second inning rain begins to fall and the game is
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halted. A decision must be made as to waiting and attempting to
finish the game or calling it off completely. (Thus, as of time
"t", a decision must be made regarding "t+1l" -~ in this case "t"
being equal to perhaps one hbur.) Under adaptive expectations,
one would weight the fact that it had not rained in‘any of the
previous forty-eight hours, and a decision would be arrived at
using some weighting scheme for that information. Under rational
expectations, one would want to knpw the wind conditions, the
probability of clearing 1in the area an hour after the rain
started (based on past observations) or a weather forecast,
which would incorporate all such infor'mation.l8

The decision reached, be it to wait or postpone the game
will always have a probability of being the correct or incorrect
one. It would seem reasonable to assume; however, that in the
majority of cases, the decision dictated by rational
expectations would be that followed by most decision makers.
Such reasoning 1is based wupon the logic that weather can be
predicted fairly accurately one hour in _advance based upon
current information about the future.

The problem with predicting inflation during period "t+1"
from period "t" -~ which is the nature of the Fisher Effect ~-
is clearly‘ not as straightforward as was the baseball example.

TN TN P e T A PR e e e N TR TS e e e e

18 The weather forecast is an example of an economy of scale,
with regard to collecting, analyzing and distributing current
information. Such services are available in many prediction
areas, Including of course, inflationary forecasting.
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For one thing, the period of prediction (one month, in this
study) dictates a lower probability of being correct than a
period ahead of only an hour, as was the earlier case. Secondly,
one cannot "see" inflation coming over the horizon as easlly as
clouds or sunlight. Our measuring devices are somewhat more
suspect in relation to future inflation than weather. Thirdly,
it 1is arguable whether the average person understands how to
"rationally™ predict inflation; i.e. there is a question as to
the decision makers' ability to correctly perceive the relevant
information to his decision. [One could argue, for example, that
in a situation where no one understands why an event occurs,
that adaptive expectations might well be the method employed
when forecasts of another such event occuring are made. ]

As a means of dealing with thesé and other potential
problems arising from the rational expectations approach, two
major assumptions will explicitly be made about the Canadian
economy Wwhen testing is undertaken. First, we will assume that
information about the activity of government -~ ;pecifically in
the money c¢reation areas, is current, and feported accurately
enough that decision makers can collect such information
confidently. Further, we will assume the cost of collection 1is
not prohibitive. Neither of the above assumptioﬁs seems
unrealistic, but without them, the theory of rational

expectations becomes suspect.
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Secondly, we will assume for the purposes of this paper
that enough decision makers understand the economy, that no
consistent misunderstanding of signals occurs. Thus, we assume
that an increase in money creation over and above real growth in
the economy will be viewed as an inflationary pressufe. This is
similar to an assumption that markets clear instantaneously,
including capital markets, or that prices are perfectly
flexible. Given the evidence of Part I, (that increases in
excess money creation over real growth 1led to a virtually
insignificant effect upon bond rates outside of the effect upon
current inflation rates themselves), this assumption, too, seems
not to be a dangerous one.

With these overall assumptions in mind, we turn in the next
section to the specific model employed whére Canadian data were

tested.

II1.2 The Rational Expectations Model

The model tested in this section of Part II follows closely
from work published by Michael Mussal9 (Journal of Monetary

Economics, 1975). We begin by assuming a money demand function

——————————————————

19 Mussa, Michael. op cit. Adaptive and Regressive Expectations
in a Rational Model of the Inflationary Process.
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employed by Phillip Cagan20 and others:
(15) MDt = Yt + Pt - vP*¥t

where MDt = log of money demanded at npn
Yt = log of real economic growth as
of time "t¢"
Pt = log of price level as of time "t"

P¥g

expected rate of inflation as of
time period "t"
v = partial income elasticity with

respect to interest ratesel

20 Cagan, Phillip. The Monetary Dynamics of Hyperinflation, in
M. Friedman ed. "Studies 1in the Quantity Theory of Money",
University of Chicago Press, Chicago. 1956.

el The elasticity may be derived from equation (15):

MDt ~VP¥¢
= Yt e

Pt

Taking natural 1logarithms and differentiating, and then
dividing both sides by "d 1n P¥t"; and finally multiplying and
dividing the R.H.S. by " M/P " and " P "(dropping time
subscripts for convenience)

~(M/ P) P¥t
v = X
/\
( P*t ) (M / P)
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Since inflation 1s the expected percent change in price
levels between "t" and "t+l1", and since at a given time "t" a

certain information set exists, we can write:
(16) P¥t = Et [ Pt+l -~ Pt § It ]

where 1t = information set as of time "t"

Et [] = expectated value operator as

of time "t"

Assuming markets clear continuously (i.e. money supplied =
money demanded), and dropping the information set symbol for

convenience, substitution of (16) into (15) yields:
(17) Mt = Yt + Pt -~ v Et [ Pt+l - Pt ]
By manipulating (17), we obtain:
(18) Pt = 1 / 1+v ( Mt - Yt + E£ L ft+1 1)
Since an equation for period "t" exists, it fol%ows that

period "t+1l" relationships between price level and right hand

side variables would be generated identically:

R N N N N R akel

21(cont'd)where "A" represents "percentage change".
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(19) Pt+l =1 / 1+v (Mt+l - Yt+1 +

Et+l [ Pt+2]
Assuming Et Et+l = Et

(20) Et [ Pt+l1l] =1 / 1+v Et [Mt+l -~ Yt+l

+ Et [ Pt+2]]

Using the identity established in (18), one can subtract
the 1left side of (18) from the left hand side of (20), and the
right hand side of (18) from the right hand side of (20); and
keeping in mind that "Et [Mt] = Mt" , and "Et [Yt] = Yt", we

obtain:

(21) Et [Pt+1 -~ Pt ] =1 / 1+v Et [ (Mt+l
- Mt) - (Yt+1 -~ Yt)

+ Et [Pt+2 - Pt+1]]

Updating (20) continuously (i.e. for "t+2", "t+3" and so
on) and substituting into the right most component of (21), "Et
[Pt+1+i -~ Pt+i}" (i = 1,2,...), we can obtain an expression
stretching infinite periods into the future. We assume, however,
that after some point "t+r" the weighted expectation of future

increases in excess money creation over and above real growth
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"Et [(Mt+r+l -~ Mt+r) ~ (Yt+r+l - Yt+r)]" becomes insignificant.
After such infinite substitution for "Et [ Pt+l+1 ~ Pt+il" (i =
1,2,.....), Equation (21) expands to:

o

(22) Et [P+l - Pt] = 1/14v Z Bt [ (Mt+ g+l

-~ Mt+3) ~ (Yt+j+l -

Yt+3)] (v/v+l) exp J

Equation (22) states that the expected percent change in
inflation between periods "t" and "t+1l" is determined from a
welighted average of current beliefs about future increases in
money created above real economic growth. The weighting term
"(1/1+v) * (v/v+1l) exp j" can be seen to diminish rapidly as "J"
becomes large, suggesting that only neaf future activities in
excess monetary creation play an important role in expectations
formation; i.e. that "t+r" is not a distant future horizon.

To this /point nothing has been said with regards to how a
decision makef/ might arrive at an empirical estimate of "Et
[Pt+1 =~ Ptl". 1Indeed, unless something is known about the
process by which "Mt+1l" and "Yt+1" are generated, the theory is
of little practical importance. Fortunately, knowledge 1is
available about both terms; "Mt+l" is known to be a fugction of
the monetary authority's decision regarding how large the money
supply should be at time "t+1", and "Yt+1" can be shown (and

will be shown later) to follow a distinct, and to a large extent
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predictable, path through time.
To follow Mussa's reasoning, an equation describing

mone tary growth might appear as follows:

(23) Mt+l - Mt = mt+l + Amt+l - yet + et+l

where mt+1l long term monthly growth
decided upon by the mon-

etary authority

A mt+l change in long term growth

rate as of time "t+1",

assumed to be distributed

normally with mean zero

and finite variénce

yet = deviation of actual growth
in the money supply from
the target "mt + mt",
partially compensated for
in period "t+l1l" by a frac-
tion "y"

et+l = random error term as of
time "t+1", distributed

- normally with mean zero

and finite variance
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Equation (23) has four major right hand side components and
each deserves comment. First, " mt+l" represents the long term
growth rate decided upon by the monetary authority, and as such,
could equal " mt ". This long term target growth rate'may or may
not be announced, but, as will be seen, it can be inferred
statistically from behavior of the money stock over time.
Second, the term Bmt+1" represents a decision as of period "t+l1l"
to alter the long term growth rate of the money stock. This term
is not easily measured, since it is indistinguishable from the
last term " et+l " -~ both of which are assumed random normal
variables, with mean zero and finite variance. The remaining
term " et " represents the error, known to the monetary
authority, 1in achieving the desired groﬁth rate in period "t"
("mt +amt"). It is assumed under this model that some portion of
this error, "y", 1is compensated for by the monetary authority
during the ”subsequent period "t+1l", This term should also be
statistically/detectable, even if unannounced.

An equation for "Yt+l" can similarly be postulated.

Logically, such an equation would seem to fit one of two forms:
(24) Yt+l - Yt = bt+l + ut+l

or

(25) Yt+l -Yt = bt+l + dut + ut+l
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Equation (24) characterizes the general assumed behavior of
real G.N.P. growth =~ i.e. a random walk over time about a
constant growth trend. Equation (25), on the other hand,
displays cyclical behavior 1in percentage increases in real
growth, where an error 1in expected growth tends to be
consistently carried over into future growth rates, until such
time as factors outside the equatipn cause a negative " ut ",
which then passes on into " Yt+l " as a recessionary influence.
As will be seen, monthly measures such as the Industrial Index
of Production and Real Domestic Product display behavior similar
to (25).

Knowing the hypothesized structure of " Mt+l " and " Yt+1 "
allows a great simplification of equaﬁion (22) to be made.
Assuming, as mentioned, that beyond some future period "t+r",
the 1mpact of future changes 1in monetary and real growth
activity are 1inconsequential, the final term of interest in

v

equation (22) becomes:

(26) 1/v+1 Et [ (Mt+r+l - Mt+r) - (Yt+pr+l -

Yt+r)] (v/v+l) exp r

Substituting the behavior of monetary and real growth

hypothesized in equations (23) and (24), into (26), leads to:
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(27) 1/v+l Et [(Mt+r + mt+r+l + A mttr+l -

yet+tr + et+r+l

-~ Mt+r)

-~ (Yt+r

+ bt+r+l + dut+r + ut+r+l ~ Yt+r)]

¥ (v/v+l) exp r

By assumption:22
1)
2)
3)
4)
5)
6)

7)

Et

Et

Et

Et

Et

which means the final term

[A mt+r+l]
[ yet+r ]
[ dut+r ]
[ et+r+l ]
[ ut+r+tl ]
L ]

mt+r+l

[ bt+r+l ]

solves to

1]

0

y Et [et+r] = 0

1]
o

d Et [ut+r]
0

0

N

mt + r Et [ mt]
Tt

A .
bt + r Et [ A bt]

A
bt

(28) 1/v+1 (‘mt - Bt ) * (v/v+l) exp r

TR TR TN RPN TR T R TR N v e TR

= 0 ", but the term bt+r+l was deleted from equation (27) due to
the assumed constant growth nature of G.N.E.
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Applying expression (27) vrecursively for each of the
remaining "r-1" terms, and employing similar logic that all
expected future values of " mt+i", "et+i", and "ut+i", (where i
= 1,2, ..."r-1") would be .equal to zero at time "t", the

solution to (22) appears as follows:

ol

1/v+1 §% Et [( mt+l -
p

yet) ~ bt+l ) (v/v+l) ¥

(29) Et [Pt+l - Pt]

exp J

which further simplifies to:

A A ”~
( mt -~ (1/v+1l) yet) - btl

(30) Et [ Pt+l -~ Pt]

Equation (30) represents the statistical equation we will
employ when generating the inflationary expectations component
of nominal bond rates, in the next section of this study. The
reasoning underlying such an equation is straight-forward: the
rational decision maker expects 1inflation in future to be a
reflection of government's 1long term excess monetary growth
decisions compensated by a correction factor if desired monetary
growth was not equal to average growth for the preseﬂf period.
It should be noted that the terms "ﬁt", "gt", and "jgt" are not
necessarily known values, they represent the decision makers

best estimate of the true parameter, based upon experience
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and/or current information.

II.3. Empirical Estimates as to the Behavior of Monetary and

Real Growth Rates Over The Period 1955 - 1978

In the preceding section, equations such as (23), (24), and
(25) were suggested as possible processes for explaining the
movements over time in the monetary and real growth sectors of
an economy. As a first step towards testing the Fisher Effect
for Canada, two series of monetary aggregates (M1l and M3,
standardly defined) and three indices of real growth (G.N.E.,
Index of 1Industrial Production and Real Domestic Product, all
base year 1961) were subjected to the Box-Jenkins technique to
determine the autoregressive structure embddied in each series.

Tables VIII and IX present the statistical results of those
runs. All data wefe arbitrarily broken into separate sub-series
representing pre-June 1, 1970 and post-June 1, 1970. It was
decided that the Canadian monetary authority's decision to
change from a fixed to floating dollar as of that date was
significant enough to warrant separate analysis, and from
examination of the coefficients on both the constant aqd moving
average terms, such a decision appears valid. It might be noted
that results for the G.N.E. index are not listed. No significant
break was found in this series before and after June 1, 1970;

the autoregressive structure of the index over the entire period
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1955 - 1978 appeared as follows:
(31) Yt+l1 -~ Yt = 1.834 + ut

Since G.N.E. data is published in quartérly form,
converting "Yt+l -~ Yt" into monthly estimates was accomplished
by assuming a constant monthly trend in growth, "gt", equal to
one (third that of the constant quarterly growth estimate, 1.834
percent, or "gt = ,612",

As Table VIII shows, the selected monetary aggregates
behaved 1in a fashion very similar to that predicted by Mussa's
theory. "M3" for example, exhibited a strong constant growth
component over the two time series examined, as well as a one
period adjustment term, where "y" =.1423 and .289 for the periods
1955-1970(5) and 1970(6)-1978 respectively. The Chi-Square
statistics indicate that during the previous twelve month
period, almost no significant autocorrelation remains
unexplained by the equation listed.

The monetary aggregate "M1", however, exhibited behavior
less well predicted. For the period 1955-1970(5), a strong
constant and one period lag correction component were ;solated,
but a two period lagged error term whose coefficient value was
positive and significantly different from zero, was also found
to be present. With respect to the 1latter M1 sub-period,

1970(6)-1978, +two 1lagged error terms were again found to be
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. Table VIII

Autoregressive Structure of Monetary Aggregates

1) 1955 ~-

M1t

2) 1970(6)

ZM1t

R2 =

3) 1955 --

ZM3t

R2 =

4) 1970(6)

M3t

R2 =

1970(6) :

= .381
(2.69)

. 109

-~ .289 et~1 + 179 et-2 + et

(-3.97) (2.46)

Chi squared (12)
Chi squared (24)

-~ 1978 :

= ,955
(8.18)

. 069

101.6 (9 d. of f)
193.4 (21 4. of f)

+ .037 et-1 + 422 et-2

(4.04) (4.56)

Chi squared (12)
Chi squared (24)

1970(6) :

= .568
(6.69)
.139

~ 423 et-1 + et
(-~6.29)
Chi squared (12)
Chi squared (24)

-~ 1978 :

= 1,320
(12.72)

. 056

- .289 et-1 + et
(~2.84)

Chi squared (12)
Chi squared (24)
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Table IX

Autoregressive Structure of Growth Indices

1) 1955 =~ 1970(6) :

#IIPt = .551 + ,228 et-1 + 449 et-2 + et

(8.42) (4.22) (6.88)
R2 = .255 Chi squared (12) = 117.5 (9 d. of f.)
Chi squared (24) = 229.4 (21 4. of f.)

2) 1970(6) - 1978 :

FIIPt = 494 + 442 et-1 + .356.et—2 + et
(5.12) (4.74) (3.76)

R2 = .259 Chi squared (12)
Chi squared (24)

66.7 (9 d. of f.)
157.2 (21 d. of f.)

3) 1955 - 1970(6) :

%RDPt = 1.065 + ,982 et~1 + et
(33.54) (96.36)

R2 = .415 ' Chi squared (12)
Chi squared (24)

90.6 (10 d. of f.)
157.2 (22 d. of f.)

(Table IX con't next page)
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Table IX {(con't)

4) 1970(6) - 1978

ZRDPt = .731 + .909 et-1 + et
(10.53) (24.20)

R2 = . 404 Chi squared (12)
Chi squared (24)

79.0 (10 d. of f.)
139.1 (22 4. of f.)

where %IIP = percent change in Industrial Index of
Production between periods "t" and "t-1"
percent change in Real Domestic Product

between periods "t" and "t-1"

%#RDP

present and associated with coefficients significantly different
from zero. In this 1instance, however, both coefficients were
positive, and not negative as was expected. Further, the
Chi-Square test 1in the 1955-1970(5) series showed that large
amoun ts of autocorrelation remained even after explicit
consideration was made of the second error tefm.23

The presence of positive 1lagged error components in a
monetary aggregate raises a theoretical problem. Thgse terms

LI R N R R R

23 The presence of autocorrelation indicated the need of first
or even second differencing before "strict" stationarity could
be achieved. As will also be the case later, however, the
structure " Mt+l -~ Mt " was deemed desirable enough that some
remaining autocorrelation could be traded off against the added
benefit of having the estimate in percentage change form.
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would seem to suggest a cyclical nature to money creation, where
unexpected growth in the money supply led to even larger future
growth, rather than a "cutting back" by the monetary
authorities. Such variation might be related to the movements of
Canada's floating dollar over the period 1970(6)-1978, but a
satisfactory theoretical solution is difficult to formulate.

Regardless of the theoretical problems suggested by the
latter behavior of the Ml series, one very important point
emerges from Table VIII - each data series followed a consistent
and statistically stable pattern through time, over the period
examined. A rational decision maker as of time "t", then, could
conceivably have arrived at an estimate as to the longterm
growth component and autoregressive structure of each monetary
series, leading to a further estimate regafding " Et [ Mt+1l ]" ,
using only currént information at time "t". This is not to
suggest the estimates would be exact for any period, but, over
time, such behavioral relationships would enable the analyst a
better probability for a correct guess about a Variable's value
as of time "t", than any averaging process would be expected to.
Hence, the Dbehavior of monetary growth in Canada would be
compatible with the rational expectations model as set out to
this point in Part II of the paper.

As Table IX shows, the real growth components of the
economy, over the period examined, also reacted in a

predictable, moving average fashion. All series exhibited a
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positive constant growth trend and at least one significant
moving average coefficient term. 1In the case of real growth
indices, the sign of the moving average term was postulated as

being positive, consistent with observations of business cycles.

In this matter, estimated equations for real growth conformed

well with theory. The only statistical problem in Table IX is
indicated by the Chi-Square statistic, indicating in all cases
shown that some autocorrelation remained unaccounted for by the
structure tested. However, the equations shown are compatible
with the formulation " Yt+l =~ Yt ", and as such, are in a
desirable structure for testing.

As shown, therefore, two monetary aggregates, M1l and M3,
and three real growth indices G.N.E., Industrial 1Index of
Production, and Real Domestic Product, ekhibit characteristics
over time which are condusive to estimating excess monetary
growth 1in period "t+1", subject to some probability of error.24
A problem now presents itself in determining which of the six
potential combinations of M1, M3, G.N.E., I.I.P., or R.D.P., a
rational decision maker would select for estimating future

excess monetary creation -~~ each could act as a suitable
24 The probability of a correct estimate in period "t+1" should
greatly 1increase under such circumstances, compared with an
estimate based solely upon past "trends". The past success of
the adaptive expectations hypothesis in this respect would seem
somewhat puzzling, therefore, but as will be shown later, the
error structure of inflation rates allows comparable accuracy to
be derived from either the adaptive or rational expectations
approaches.
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candidate when testing the Fisher Effect 1in a rational
expectations model such as Mussa suggests. The criterion decided
upon, however, was the past success rate of each predictor,

. .
vis~a~vis observed inflation in period "t+1",

I1.4. Empirical Tests of the Fisher Effect Under Rational

Expectations Assumptions: The Mussa Model

Before the testing of an equation similar to (12) in Part I
could be undertaken, an estimate was required for the expression
"St - (1/1+v) ygt - %t". As mentioned in the previous
sub~section, two monetary aggregates were found to generate
stable values of " %t " and " jgt ", and three real growth
series offered potential terms " Gt " and ’ dﬁt ", |
As a preliminary measure, each of the six combinations?2b
suggested by these findings was regressed against the actual
rate of inflation one period in future, to determine which

estimators performed best in predicting inflation. The

regressions took the form:

”~ A A
(32) CPI(t+l) = a + b( M -~ Y ) + elt+l

"""""""""""""""""" la) ~ N

25 . The six combinati 11ud : 1) M1 = G.N.E,; 2) M1 -
A mbinations alluded, to arg: 1) M ‘N.E,;

I.I.}n ;A3) Ml - RQ'D.P. ; L‘) M3 - G.ﬁ.E'; 5) IVT3 - I.é.P. ; and

6) M3 - R.D.P.
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N ~ ~
where M = M1l and M3 respectively
A ~ A~ o~
Y =G.N.E., I.I.P. and R.D.P.
separateiy
elt+l = random error term in period "t+i",

assumed to be distributed normally

with mean zero and finite variance

One would assume that the estimator which best predicted
inflation over time should be that chosen by rational decision
makers as the most desirable indicator of future inflation.

The results of these six runs are listed in Table X, and
Table XI after removal of autocorrelation. As is clear from
these Tables, Equations (5) and (6) empléying future estimates
of M3 and Ml percentage growth minus expected growth in real
domestic product, do not predict inflation well. The
coefficients attached to the prediction term, in fact, do not
prove statistically different from zero.

On the other hand, future estimates of percent M3 growth
minus the expected real growth term generated by G.N.E. data,
shown as ‘Equation (1), performed well in relation to those
tested. After autocorrelation was removed, for example, the
coefficient corresponding to the prediction term in equation 1,

Table XI, proved some seven times greater than the next largest
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Table X

A -\
OLSQ : #CPIt = a + b ( M -~ Growth)

1955-78

A A

1) %CPIt = .206 + .313 M3EXt + et Y9 M3Ex = f£(M3 - Y)
(6.95) (6.86)

R2 = ,142 D.W.= 1.42

A A

2) %CPIt = .322 + .108 M1EXt + et 99 MI1EX = f(M1 -~ Y)
(13.84) (3.84)

R2 = ,050 D.W. = 1,24

A A
3) #%CPIt = .337 + .034 M3EXt + et 99 M3EX = £(M3 - IIP)
(14.67) (3.12)
R2 = .033 D.W. = 1,10

' A A
) %CPIt = .342 + .028 MIEXt + et 991 M1EX = f£(M1 - IIP)
(14,98) (2.89) ,

R2 = .029 D.W. = 1,09

5) 4CPIt = .U414 + .006 M3EXt + et (Y M3EX = £(i3 - RDP)
(15.82) (1.71)
R2 = .014 D.We = 1.09

AN

6) #CPIt = ,412 + .006 MIEXt + et 99 M1EX = f(M1-RDP)
(15.65) (1.62)

R2 = ,012 D.W. = 1.06

where EXt = excess monetary creation predicted as of
period "t~1" ﬁﬁom aq&pregressive structure
shown as " f( -~ Growth)
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Table XI

A A
Corc: %CPIt = a + b (M - Growth) + et

1955-78

A A
%CPIt = .279 + .147 M3EXt + et 91 M3EXt = £f(M3 - Y)
(6.97) (2.85)
R2 = .23 Rho = .382 D.W. = 2.07

AOA
%CPIt = .339 + .006 M1EXt + et 99 MI1EX = £(M1 -~ Y)
(8.68) (.247)
R2 = .23 Rho = .476 D.W. = 2.15

A A
%CPIt = .339 + .022 M3EXt + et 99 M3EX = f£(M3 - IIP)
(9.07) (2.08) |
R2 = ,23 Rho = . 456 D.W. = 2.14

’ A A
%CPIt = .340 + .015 M1EXt + et 99 M1EX = £(M1 -~ IIP)
(8.93) (1.72)
R2 = ,23 Rho = .469 D.W. = 2.16

A ~
%CPIt = .U413 + .006 M3EXt + et 9% M3EX = f(M3 -~ RDP)
(9.68) (2.07)
R2 = .22 ~ Rho = .55 D.W. = 2.14

AN
%CPIt = .409 + .006 M1EXt + et 91 M1EX =f(M1-RDP)

(9.34) (1.87)
R2 = .23 Rho = . U471 D.W. = 2.10

where EXt = predicted excess monetary creation
as of time "t-1"
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prediction coefficient (.147 vs. .022). Table X also suggests
that in Equation (2), expected percentage increases in Ml
minus expected growth in G.N.E. fared vrelatively well in

testing. In the process of removing first order

autocorrelation via the Cochrane-Orcutt technique,‘however, a

surprising drop occured in both the magnitude and significance
of the prediction term (i.e. .108 in Table X, to .006 in Table
XI).

Another point 1s worth noting about Tables X and XI.
Generally, as one scans equations (1) to (6) vertically, two
trends seem evident, 1) equations employing M3 estimates
outperform those iIncorporating M1 predicted values; and 2)
expected growth in G.N.E. outperforms the Index of Industrial
Production and Real Domestic Product indices as indicators of
future inflation. Performance, in this instance refers to the
measured size and significance of prediction coefficients,
and, before first differencing, explained variation ( R2 ) in
predicting future inflation. 26 It should be reasonable to
assume, therefore, that a rational decision maker, seeking the

best information about inflation in period "t + 1", would be

TR R EEE R R Em T

26 Interestingly, relative success in prediction, attributable
to the estimate of real growth component, appears inversely
proportional to the sensitivity of the output measure
represented by each index. Monthly R.D.P. varied more than
I.I.P. ( 1i.e. variance of % R.D.P. = 96.96; variance of %
I.I.P. = 18.57) and both predicted poorly compared with a
constant expected G.N.E. monthly growth trend.
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most interested in the behavior of M1 and M3, over and above
the expected constant growth rate in G.N.E..
For the remainder of this study, therefore, findings are

not reported when based upbn the assumption that a rational

decision maker would <choose to rely on estimates generated

from I1.I.P. or R.D.P. when forming inflationary expectations.
27
A

Having decided upon the most desirable estimates of "mt",
WGt", and “ygt", based upon the criteria on inflationary
prediction records over time, only one further detail required
attention before testing could be undertaken ~- specifically,
the choosing of an estimate of " v " in Equation (30). It was
decided that rather than assuming one value for this
parameter, (the 1income elasticity of money holding during
inflation), reasonable bounds for possible " v " values should
be established, and tests of Equation (30) be carried out
between these probable "end points'".

The value of " v " should, a priori, be greater than or
equal to zero, since Iincome elasticities are not assumed
negative for normal goods, including money. As such, " v =0 "

was tested as the lower bound. With respect to an upper bound,

the value of "v = 2 " was selected, following reasoning that

——————————————————

27 Testing was carried out using "bt" values generated via
these '"second best" growth series, however, as a check, but

were found to be very erratic due to the volatility of the
I.I.P. and R.D.P. components of " Et [ Pt+l - Pt ]1".
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the true value of such an income elasticity would most likely
fall 1in the inelastic, or at most, unit elasticity region.28
As such, the probability of committing a Type I statistical
error (i;e.) the true parameter value of " v ", falling beyond
the bound established as the upper end point in thevsample was
deemed sufficiently small, for "v =2",

Having specified the method for estimating " P*t = Et

[Pt+l - Pt]", an equation such as (33) was tested:29
(33) RNt = a + blP*t + et

and the results 1listed in Tables XII and Table XIII, where
Table XII shows the results of generating " ﬁf" and "ygt" from
the M1 series, and Table XIII from the M3 series,

Perhaps the most important test statistic reported in
Tables XII and XIII is the Durbin-Watson statistic, which once

again 1indicated strong autocorrelation 1in the regression

——————————————————

28 Realistically, the magnitude of "v" should be very close to
zero. Recalling the two components of "v" are: 1) 4 ( M/P) / 4
P*#t and this is multiplied by 2) ( P¥t ) / (M/P) , the product
should be a small fraction if only because (2) is a small
number.

29 The "hat" values used in the run 1955-1978 were compiled
from pre- and post-June 1, 1970 runs, since under rational
expectations an assumption is made that a rational decision
maker would not use the same inflationary estimation procedure
under significantly different information sets -~ i.e. the
knowledge that currency has been allowed to float in value
rather than remain pegged.
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results. First order autocorrelation was removed via the
Cochrane~Orcutt technique, and the modified equations
presented 1later in the paper, but before leaving Tables XII
and XIII, two points should be made.

First, with respect to the autocorrelation noted, it
might be recalled that such a characteristic is believed not
to 1lead to bias in estimated coefficients over large samples.
While the present examination certainly does not constitute a
large sample case, and bias may well be a problem, there
should be no consistent error expected in the values of " a "
and " bl" as reported. What is anticipated, however, is that
the "R2" and "t" statistics are biased upwards by the
autocorrelation. |

This 1leads to an 1interesting poésibility suggested by
Tables XII and XIII. As was the case in Part I, the estimated
coefficient " bl" in equation (33) should always fall between
zero (no anticipated inflation compensated for by the nominal
bond rate) ~and one (perfect compensation). The " bl" values
from Tables XII and XIII are shown té be almost always
significantly larger than one, but it should be noted that the
"g" statistics are suspect, due to the above mentioned problem
of autocorrelation. If the true "t" value were toybe lower

than estimated, it 1is possible the " bl" coefficlent, in
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OLSQ : RNt =
RNt V=0
. Day a = 5.59 (37.05)
30t b = .971 (5.93)
R2 = ,136
D.W. = .234
. Day a = 5.55 (43.19)
90t b = 1.08 (7.04)
R2 = ,155
D.W. = .247
. Mon a = 4.56 (37.03)
3t b =1,02 (6.86)
R2 = ,143
D.W. = .221
. Mon a = 5.20 (39.83)
6t b = .783 ( 5.43)
, R2 = .113
D.W. = .191
. Year a = 5.11 (50.38)
1t b= .990 (8.01)
R2 = .18
D.W. = .290
. Year a = 5.46 (55.79)
3t b = 1.01 (8.46)
R2 = .203
D.W. = .319
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5.25 (33.42)
1.77 (8.09)
. 227
= .232

5.25 (40.52)
1.93 (9.69)
. 257
= .239

4.30 (34.39)
1.81 ( 9.28)
.235
= ,204

4.95 (36.03)
1.40 (7.91)
. 184
= 179

4.85 (48.57)
1.78 (11.41)
. 317
= .292

5.18 (54.89)
1.84 (12.47)
. 356
= .342

AN
Ml - Y

V =2
a= 5,11 (32.02)
b= 2.10 (8.86)
R2 = ,260
D.W. = .180
a = 5.14 (39.51)
b = 26 (10.65)
R2 = .295
D.W. = .182
a = 4.20 (33-39)
b = 2.12 (10.12)
R2 = ,267
D.W. = .148
a = 4,85 (34.57)
b = 1.65 (7-81)
R2 = .209
D.W. = .136
a'= .75 (47.98)
b = 2.09 (12.72)
R2 = 365
D.W. = .218
a=5.06 (54,85)
b = 2.17 (14.15)
R2 = ,U416
D.W. = .259



OLSQ

RNt
. Day

30¢

. Day
90¢t

. Mon
3t

. Mon
6t

. Year
1t

. Year
3t

Table XIII

= RNt = a + bP¥t + et 1
1955 -~ 1978
v=20 v =1
a=5.09 (25.07) . a = 5,03 (30.36)
b =1.82 (6.37) b =2.46 (9.33)
R2 = ,152 R2 = .278
D.W. = .232 D.W. = .109
a = 5.14 (31.61) a = 5.07 (37.92)
b = 1.81 (7.38) b =2.63 (11.28)
R2 = ,166 R2 = .317
D.W., = .252 D.W. = .108
a= 4,28 (27.07) a = 4,18 (31.91)
b = 1.58 (6.59) b = 2,42 (10.42)
R2 = ,134 R2 = ,278
D.W. = .178 D.W. = .070
a= 4,93 (27.60) a'= 4,81 (32.20)
b =1.27 (5.00) b=1.92 (7.94)
R2 = ,097 R2 = ,212
D.W., = .1l42 D.W. = .076
a = 4,81 (37.27) a = 4,72 (46,20)
b = 1.59 (8.10) b = 2.40 (13.24)
R2 = .189 R2 = .383
D.W. = .257 D.W. = .113
a= 5,07 (42.11) a= 5,01 (53.80)
b =1.75 (9.57) b = 2.52 (15.23)
R2 = ,245 R2 = ,.451
D.W. = .322 D.W. = .117
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AN
= M3 - Y
v =2
a = 5.01 (30.18)
b = 2.51 (9.47)
R2 = ,284
D.W. = .096
a=5.04 (37.81)
b= 2,68 (11.46)
R2 = ,324
D.W. = .094
a= 4,16 (31.81)
b = 2.48 (10.64)
R2 = .286
D.W. = .060
a= 4,79 (32.04)
b = 1.97 (8.13)
R2 = ,220
D.W. = .067
a= 4,70 (46.29)
b = 2.4 (13.59)
R2 = 396
D.W. = .095
a= 4.99 (53.99)
b = 2.57 (15.62)
R2 = .464
D.W. = .094



actual fact would prove not statistically significant, at the
95% certainty level, from one.

Secondly, the pattern in coefficient values of both "a" and
"bl"™ when "v" is increased from zero to one, and from one to two
is of interest. Since the " a " value consistently falls, as
expected, and the "bl" value consistently rises, also as would
be predicted from the relationship shown in equation (33) as " v
" 1s 1increased, the "end point" method appears credible.
Depending\ upon one's belief as to the true " v " value,
therefore, an estimate may be drawn in relation to the
monotonically increasing behavior of the " bl " coefficient, and
decreasing behavior of the " a ", or constant term, over the
range " 04v€2 ",

As mentioned, vremoval of first order autocorrelation was
undertaken for equation (33), and these results are presented in
Tables XIV and XV - again where Table XIV corresponds to "ﬁt "
and "gk" estimates derived from M1, and Table XV, to the same
parameters, but estimated from M3. Changes in both cohstant and
coefficient magnitudes between the two previous Tables and the
current results are most noticeable. Table XV, in fact, even
displays negative "bl" coefficient values -- suggesting that
expected increases in excess monetary growth leads on average to
a fall in nominal bond rates. In almost all cases,. the
coefficients derived in Tables XIV and XV cannot be shown

significantly different from zero at the 95% probability level,
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a = 6,80 (6.14)
b = .123 (1.21)
R2 = ,952
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P = .976
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. Day
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RNt = a + bP*t + et | P#*t
v =0 v =1

a = 7.30(4.19) a= T7.32(4.17)

b = ~,190(-2.39) b = ~.253(~.778)

R2 = .950 R2 = .948

D.W. = 1.75 "D.W. = 1.73

P = .982 P = .982

a = T7.51(5.18) a = 7.58(5.24)

b = ~.136(=2.19) b = ~,312(~1.05)

R2 = .95u R2 = ,954

D.W. = 1.66 D.W. = 1.64

P = .981 P = .983

a = 7,98(4,09) a = T.64(4,49)

b = ~.065(-1.37) b = -,146(~.633)

R2 = .971 R2 = .971

D.W. = 1.38 D.W. = 1.35

P = .990 P = ,989

a = 8,51(2.68) a= 8.,27(2.92)

b = ~.131(=2.15) b = ~,202(-.796)

R2 = ,961 R2 = .960

D.W. = 1.49 D.W. = 1.46

P = .,.993 P = .992

a=7.98(5.17) a="T7.72(5.76)

b = ~.038(~.329) b = ~.216(-.977)

R2 = .971 R2 = ,962

D.W. = 1.40 D.W. = 1.39

P = .988 P = .987

a="7.97(5.60) a = T7.72(6.35)

b = ~,013(=.329) b = ~,136(-.727)

R2 = ,971 R2 = .971

D.W. = 1.44 D.W. = 1,43

P = ,989 P = ,988

Table XV

a = T7.55(4.54)
b= ~.082(~.471)
R2 = .971

D 1.35

P .

a = 8.16(2.94)
b = ~.131(-~.699)
R2 = . 950

D 1.46

P 2

(5.77)
9(-~.955)



and the estimated constant component of nominal bond rates rises
in all cases far above any seemingly logical level (i.e. "a =
7.00" 1is the lowest estimate of real return from Table XV over
the period 1955-1978).

It might be noted, as well, that the " rho" Valué chosen by
the Cochrane Orcutt technique is extremely close to one in all
cases. This might help to explain the questionable estimates of
constant values. Even with such large "rho" values, however, the
majority of regression results still exhibit Durbin Watson
statistics 1less that the "1,65" safety margin. As such, many
estimates of "R2" and "t" values in Tables XIV and XV remain
suspect even after the Cochrane-Orcutt procedure was applied.

The results of testing Equation(33), then, would seem truly
inconclusive. On the one hand, Mussa's modél appears to generate
theoretically 1logical results as evidenced in Tables XII and
XIII. Severe autocorrelation was noted as a potential problem,
however. On the other hand, Mussa's theory, at least as tested
here, generated near nonsense results when the.Cochrane—OPcutt
technique was applied. Most disturbing, however, is the drop in
" Dpl" values, from greater than one, to near zero ( and even
below zero in Table XV); The "t" statistics also undergo severe
drops in value =~~~ falls by a factor of ten or more are not
uncommon in these Tables.

Clearly any decisions regarding the Fisher Effect and

rational expectations, based upon the previous tests, would be
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most dangerous. Fortunately, however, fthe assumptions of
rational expectations 1lead to a variation on Mussa's model and
allow additional testing of the relationship be tween

inflationary expectations and Canadian bond rates.

II.5 An Alternate Rational Expectations Model

Mussa's model assumed a decisipn maker would consistently
expect future 1inflation to correspond to an estimate of "'at -
ygt - %t ". In this section we will expand our assumption as to
rationality somewhat, and obtain a different estimate of the
nominal bond rate component "P¥t"., As will be shown, the
statistical results generated by such an estimator will appear
consistent 1In many ways to the findiﬁgs resulting from the
estimates of Equation (12) in Part I.

The additional assumption explicitly made in this section
of the study is that a rational decision maker will, over time,
incorporate into his information set knowledge’ of past
prediction successes and failures. If, for éxample, a decision
maker knows with a 95% probability that his past estimates of
inflation when generated by a specific procedure, were
consistently twice as large as that actually observed, it would
seem sensible to assume that his current estimate of expectation
of inflation, " P¥t" would be adjusted to account for the known

bias of past predictions.
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It would not be difficult to ascertain such a success rate
over past predictions -~ indeed Tables VIII and 1X employed just
such a test of the effectiveness of certain predictors in
estimating future inflation rates. Over time, therefore, we will
assume a rational person would use two kinds of information when
generating variable "P¥t", PFPirst, he would incorporate knowledge
as to the behavior of monetary and real growth aggregates at
time "t" as Mussa argued. Secondly, however, he would temper any
estimate arrived at with knowledge of any consistent (i.e.
statistically significant) deviation in the prediction
coefficient's value from the assumed value of "p=1", from Table
XI.

The Dbest estimate of inflation, inéorporating knowledge of
past success rates could be mathematicaily represented in two

steps below:

A A N
(34) CPIt = a + b2[ mt - (1/v+l)yet -bt] + ut
/N
(35) CPIt = CPIt - ut
where [ ] = expected excess money

creation beyond real growth

in period "t + 1"
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e
CPIt = Qalculated percent change

in CPI which minimizes the
sum of squared error in

0.L.S. regression.

Equation (34) generates an estimate of inflation in the

manner hypothesized by Mussa. Equation (35) tempers the variable
"P¥t" with a fraction of some magnitude, "b2", determined via an
0.L.S. regression between actual percentage changes in C.P.I. on
the right hand side, and the predicted inflationary values on
the left hand side.30

This "modified" estimate, then, consistent with all
assumptions of rationality, could be tested against movemenﬁs in
Canadian nominal bond rates:

A
(36) RNt = a + ¢ CPIt + et

Such a procedure was carried out, and the results listed in
Chart XIII of the Appendix. The same results are shown in Table
XVI after the removal of first order autocorrelation via the

modified Hildreth-~Lu procedure.

T P v P g P e PN TR e TR TR TR TR O e

30 The "hat" values selected were taken fron an O0.L.S.
regression after modified via H-L to remove first order

autocorrelation.
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Once  again, the "rho" value selected to remove
autocorrelation proved trpublesome. The estimates of the
constant real rate of return are greater than would seem
reasonable, and several "t" sﬁatistics appear as ".000", due to
the selection of "rho = 1.00" values.

The " ¢ " coefficients, however, from Table XVI prove
interesting. Although insignificant when "rho" 1is less than
1.00, they fall between values of "0.00" and "1.00" as would be
expected from coefficients associated with the inflationary
component of nominal bond rates. In the cases where " rho " was
selected equal to one the coefficients generally support theory
well, falling in an area between ".200" and "1.00", and showing
significant "t" values.3l The variability associated with O.L.S.
and differenced results throughout the» study serves as a
caution, however, as to the wvalidity of assuming the true
coefficient "ec" is accurately represented by estimates in Table
XVI. As may be seen between Chart XIII and the current Table,
the magnitude and significance of " ¢ " terms, once again
depends dramatically upon whether a brocess -to remove

autocorrelation has been applied or not.

el okl habalalalolalalakalakalal

31 while the "t" statistics proved unreliable throughout much of
Table XVI, the selection of a " rho = 1.00 " value should not
cause bias in coefficient estimation ( assuming, of course, that
the error structure may be approximated by a first order
autoregressive estimate.)

95

I

I



CORC: 1) RNt

2) RNt

RNt

. Day 30t

. Day 90t

3t

. Mon

6t

. Mon

. Year 1t

Table XVI

al + bldA&t + et 1
a2 + b2CPIt + et 1
(1)
al = 6.30 (5005)
bl = .083 (.469)

R2 = ,9U6

D. =1.72

P <977

al = 5.97 (4.08)

bl = .107 (.731)
. R2 = .944

D.W.= 1.57

P . 984

al = 5.13 (.000)

bl = ~,0005 (.000)

R2 = .956

D.W. = 1.28

P = 1.000 ¥

al = 6,17 (4.17)

bl = ,148 (1.13)

R2 = .957

D.W. = 1,46

P . 986

al = 5,11 (.000)

a2 = .260 (2.52)

R2 = 0948

D.W. = 1.34

P = 1,000 #

CPIt
CPIt

= f(MA% /;)
= f(M%t - )

(2)

a2 = 6.55 (4.49)

b2 = .111 (.581)

R2 = ,947

D.W. = 1.70

P = .981

a2 = 6,80 (.000)

b2 = ,168 (1.08)

R2 = ,942

D.W. = 1.53

P = 1.000 #

a2 = 5.75 (.000)

b2 = .050 (.425)

R2 = ,954

D.W. = 1.24

P =1,000 *%

a2 = 7.91 (.000)

b2 = .197 (2.37)

R2 = .952

D.W. = 1.40

P =1.000 %

a2 = 6.13 (.000)

b2 = .267 (2.37)

R2 = .941

D.W. = 1.26

P =1.000 #%

(Table XVI con't next page)
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Table XVI (con't)

6. Year 3t al = 5.57 (.000) a2 = 6,02 (.000)
bl = .222 (2.49) b2 = .216 (2.27)
R2 = .957 R2 = .955
D.W. = 1.41 D.W. = 1.38
P =1.000 # P =1.000 #%

II.6. A Rational Expectations Approach to

Explaining the Historical Success of Adaptive

Expectations

As a final excercise involving rational expectations and
nominal rates of interest, an explanation will be put forward as
to the historic success of the adaptive expectations approach in
generating inflationary expectations proxies. As will be shown,
the inflation rate has historically behaved in a manner such
that the rational expectations and adaptive expectations
approaéhes become indistinguishable statistically -~ and as
such, a rational person, using current information,ocould be
expected, over 1large samples, to arrive at a very similar
expected 1inflation rate in period " t + 1 " to someone using a

weighted average of past rates of inflation.
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To see why such might be the case, let us assume that a
rational decision maker exists, and understands the general
nature of the relationship between future monetary and real
growth, and inflation in period "t+l", Assume, however, that the
data on monetary and real growth is not current, truétworthy or
regularly available to the decision maker. Instead, assume he
has access only to the outcome of past monetary decisions and
real growth - past and present rates of inflation.

Since an autoregressive component is thought to exist in at
least one major determinant of inflation -~ specifically the
money supply process, to follow Mussa's reasoning -~ it might be
sensible to subJect the inflation rate itself to analysis for an
autoregressive structure. In effect, any autoregressive features
of the inflation rate should be nothing mdre than a "shadow" of
the autoregressive structure believed to exist with respect to
the process of excess money creation. A rational decision maker,
therefore, could make future predictions based upon observed
outcomes (i.e. inflation rates), without ever being aware of the
structure of the process (or, in fact, even ﬁhe process itself)
giving rise to that outcome (i.e. excess money creation).

Such analysis of past Canadian inflation rates was
undertaken, and the results listed in Table XVII. As before, the
data was broken into pre- and post- 1970(6) subperiods, since a
rational decision maker would be assumed to realize that a

significant change in monetary activity (again, due to the
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decision to release the "pegged" Canadian dollar) could have a
noticeable impact upon inflation. As well, a single run for the
period 1955-1978 was made and is shown as equation (1), Table

XVII.

Perhaps the most significant result from Table XVII is the

behavior of the Chi-Squared statistic between the 1955-1978 run
and the 1955-1970(5) and. 1970(6)-1978 runs. Equation (3)
captures all significant autocorrelation, even to a lag of 36
periods. Equation (2) 1is not quite as successful in capturing
autocorrelation, but the Chi-Squared statistic for a 12 month
lag 1is not dangerously beyond the safety margin. Certainly by
comparison to equation (1), a break at June 1, 1970 allows each
sub-series to greatly improve upon the explanation of the
autocorrelation structure. As a result of fhis improvement, the
equations (2) and (3) become of prime interest with respect to
inflation. Interestingly, the sign of the moving average
coefficient changes from negative, as theory would predict, in
equation (1), to positive in equations (2) and (3).

For simplicity we will employ equation (3), Table XVII,
(whose constant term is insignificant, and will be ignored), to
illustrate why the Adaptive Expectations hypothesis ?xplains
inflationary behavior well, but equations (1) or (2) could also
have been used. For the present, we will also define Xt = (Pt -
Pt-1); Xt equals the first difference of percentage growth in

inflation. Employing these simplifications, equation (3) from

99

3
i



Table XVII

Autoregressive Structure of the Consumer Price Index

(1)

(2)

(3)

1955 ~ 1978:

%CPIt = . 345 - . 360 et-1 + et
(12.01) - (6.52)

R2 = ,158

Chi squared (12)
Chi squared (24)

182.7 (10 d. of f.)
304.8 (22 d. of f.)

1955 -~ 1970(6):

.001  + .983 et-1

%CPIt =~ %CPIt-1

(2.17) (192.9)
R2 = .387
Chi squared (12) = 33.4
Chi squared (24) = 51,7
1970(6) ~ 1978:
ZCPIt =  .00004 + %CPIt-1 + .887 et-1 + et A
(.957) (17.81)
R2 = ,146
Chi squared (12) = 11.9
Chi squared (24) = 17.6

where %CPIt = percent change in CPI from period "t-1"
to period "t"
and rejection bounds for hypothesis that significant
autocorrelation remains are :
Chi squared = 33.9 (22 d. of f.)
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Table XVII may be written:
(37) Xt = .887et-1 + et
or:
(38) et = Xt - .88Tet-1
Since we have statistically estimated a stable structural
equation such as (38) above, we can backdate both sides of the
equation to solve for "et-1":
(39) et-1 = Xt-1 - ,887et-2
Substituting equation (39) into (37):
(40) Xt = .887( Xt-1 -~ .887et-2) + et
Repeated Dbackdating allows substitutions for "et-i" (i = I
1,2,...n), where the influence of the "n+l th" term is

arbitrarily set equal to zero. The resulting equation derived

under rational expectaions assumptions, therefore, appears:
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(41) Xt = .887Xt-1 ~.787Xt-2 +.698Xt-3
~ . 619Xt-4 + (... 4 (.887)nXt—n
+ et
n L Lt
=& (.887) Xt-1 ¥ (-1)
17
Equation (41) states that rational expectations assumptions
lead to a forecast as of period "t" based on a declining
weighted combination of past values of inflationary increases
over some past time horizon "n" periods into the past. When "Xt"

are re-substituted for in terms of "Pt", Equation (41) becomes:

(42) Pt = 1.887Pt-1 - 1.674Pt-~2 + 1.458Pt-3
m 1e29TPt~l + vieernnernneeanns
+ (.887)" '+ (.887)'Pten + et
N | L o+
=2 (.887) + (.887) Pt-i # (-1)

134

Due to the nature of the autoregressive structure of
inflation, therefore, -~ technically known as "one term moving
average™ -~ the adaptive expectations hypothesis embodies the
essential characteristics of a rational expectations erecast.
Although the hypotheses are dramatically different, the best
inflationary guess as to period "t+1", whether beginning from an
adaptive expectations framework, or the assumptions underlying

rational expectations, appear grounded upon identical
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procedures. It should not be surprising, therefore, that
published studies 1in the ‘past have obtained good statistical
predictions of inflation based wupon adaptive expectations
techniques =~~~ in fact the appfoach could fit equally well under
the heading of rational expectations.

Since the weighting pattern emerging from equation (42)
differed from that used under the Almon Lag procedure in Part I,
one would expect a different value of "P#¥" to be generated than
was the case earlier in the study. As such, equation (12),

(section I.2), reproduced below:
(43) RNt = a + cP#*t

was tested for the newly created variable ﬁP*t".

Results of this test are listed in Chart XIV and, after
removal of first order autocorrelation, in Table XVIII. It is
interesting to note the similarities in both estimated constant
and coefficient terms between Charts XIV and X, and Tables XVIII
and III, where variables P#*t were created from different
weighting coefficients being applied to the same lagged price
level changes. ]

Perhaps the only important difference between Tables XVIII

and III 1is the observation that in the 1latter case, the
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Table XVIII

CORC: RNt = a + b(CPIHATt) + et
1955-1978

( where CPIHAT were taken from 1955 - 1970,
1970-1978 runs )

(1) Day 30t 5.77 + 2.01 CPIHATt + et

" (5.03) (2.05)

R2 = .95 Rho = .970 D.W. = 1.76
(2) Day 90t = 5.96 4+ 2.13 CPIHATt + et
(6.15) (2.40)
R2 = .95 Rho = .971 D.W. = 1.66
(3) Mon 3t = 6.09 + 1.41 CPIHATt + et
(5.11) (2.02)
R2 = .97 Rho = .985 D.W., = 1,37
(4) Mon 6t = 6.14 + 1.58 CPIHATt + et
(3.78) (2.05)
R2 = .96 Rho = .987 D.W. = 1,47
(5) Year 1t = 5.45 4+ 2.59 CPIHATt + et
(7.82) (4.71)
R2 = .97 Rho = .974 D.W. = 1.38
(6) Year 3t = 5.91 + 2.04 CPIHATt + et
(9.03) (3.71)
R2 = .97 Rho = .977 D.W. = 1.44
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coefficient associated with "P¥" 1is in no case significantly
different from a value of "1.000" at 95% probability levels. One
of Table XVIII's coefficients, on the other hand -~ that
associated with the 1-3 year‘average bond rate (equation 5) --
proves statistically different from "1.000",

As was the case in Part I, (section 1I.3), a strong
suspicion lingers that, even though it is statistically possible
that the true valge of five of the coefficients estimated in
Table XVIII equals "1.000", and sampling error accounts for the
"p" greater than one recordings, the consistent appearance of
values greater than "1.000" suggests that the structure of
equation (43) -~ or equation (12) in Part I -- overly restricts

the behavior of variable "P#¥t",

I1.7 Summary of Part II

Tests of the Fisher Effect and Canadian nominal bond rates
were carried out in Part II under the assumption that Rational
Expectations postulates were 1in effect during the period
1955-1978. Specifically, bond holders were assumed in this part
to understand the process of inflation, and have access to data
necessary for the generation of inflationary predictions. The
data were also assumed inexpensive and accurate enough that the
benefit of 1improved inflationary predictive power equalled the

cost of data collection and interpretation at the margin.
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The Mussa model for generating "P#¥t" (Et [ Pt+l - Pt]), was
presented, and assumptions made as to the theoretical structure
underlying monetary creationvand real components of inflation.
Two series of monetary aggregates, M1l and M3, were analyzed
using the Box-Jdenkins procedure, leading to a statistical
estimate of the autoregressive components of each series. Three
indices for real growth ~- G.N.E., I.I.P., and R.D.P., base year
1961 ~- were similarly analyzed using the Box-~Jenkins technique,
and each was found to embody a stable autoregressive structure
over time.

The selection of the most efficient monetary and real
growth information, (which a rational decision maker would wish
to use when estimating future inflation), was decided upon using
the historical success rate of each predictor as of period "t",
and the actual rates of inflation observed in period ﬁt+l".
O.L.S. regression showed that the expected value at "t" of M1l
and M3 minus one-third the constant expected quarterly growth
rate in G.N.E., yielded the best statistical fit for inflation
during period "t+1l". Nominal bond rates were therefore tested
against " Et [ MIlt+l =~ G.N.E.t+1 ] " and " Et [ M3t+l -
G.N.E.t+1 1" as right hand side variables, again assuming the
real rate of interest to be constant over the period 1955-1978.

Separate regressions were run assuming different values of
"V“, the partial income elasticity with respect to interest. End

points of "v = 0" and "v = 2" were chosen, and a run of "v = 1"
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reported, althouth the true value of "v'" was deemed very close
to zero.

The effectiveness of these "P¥" measures was difficult to
ascertain due to autocorrelation removal problems. From 0.L.S.
regression, the coefficients associated with "P%t" were
generally significantly /different from "1.000", but the "t"
statistics supporting that conclusion were believed Dbiased
upwards due to autocorrelation. When the H-L or C-0 tecniques
were used to remove first order autocorrelation, however,
coefficient values dropped dramatically, and in the " Et [ M3t+1l
-~ G.N.E.t+l J" case, changed sign, becoming negative. The
problem was due to a "rho" value being selected very near one in
each case.

Due to the inconclusiveness of testiﬁg the Mussa model as
presented, the working definition of rationality was expanded,
and knowledge of past successes 1in predicting inflation was
assumed incorporated into the information set as of time "t".
The expected values arising from Mussa's model were Weighted,
then, by a coefficient "z", producing a prediction term "é;I"
equal to "b2 ¥ Et [ ﬁ - Q]“.

This new predictor for inflation was regressed against
nominal bond rates and the estimates of constant and "P¥t"
coefficients analyzed. It was noted that those estimates
corresponded closely with estimates obtained in Part I of the

study. Removal of autocorrelation again proved troublesome --
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"rho" values were set close or equal to one ~-- and as a result
the constant term rose tQ unacceptably large estimates (on
theoretical grounds) of the real rates of return. The "b"
coefficients tended to fall between "0.000" and "1.000" as would
be expected but the magnitudes of the coefficients were much
lower in value than found in earlier parts of the study, and
often proved statistically insignificant.

As a final test of the rational expectations theory, an
assumption was made that a rational decision maker would chose
to examine observed inflation rates, due to uncertainty about
the processes underlying the creation of money and/or real
growth. It was postulated that any autoregressive moving average
component of inflation would merely follow from the effect of
earlier, autoregressive movements in the méney creation process.
A stable moving average strucutre was estimated for past rates
of inflation via Box-Jenkins.

It was shown that through substitution, the rational
expectations model could be set in terms Qf an adaptive
expectations framework, which suggested a solution to the
question of why earlier adaptive expectations models predicted
inflation well. The new "P¥t" variable generated uvia the
autoregressive structure -~ different from "P¥t" determined
earlier due to a slightly different weighting scheme -~- was
regressed upon nominal bond rates. After removal of

autocorrelation, the "c¢" coefficients were found to be not
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significantly different from one in five of six cases, but
greater than one in magnitude in all cases, as was true of the
"p¥gn coefficient estimated when adaptive expectations
assumptions were employed. As was the case earlier in Part I,
doubt was raised as to the 1likelihood of bond holders
consistently being compensated for more inflationary losses than
they would expect or demand -~ the conclusion following from '"c
greater than 1.00" findings.

As,will be argued in the Conclusions section which follows,
however, the consistent overestimation of "P¥t" coefficients is
quite compatible with theory, but explicit account must first be

taken of a bias as yet not compensated for in this paper.
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E. Conclusions

Throughout the paper, éstimates of the two nominal bond
rate components, RRt (the real rate of return) and P¥t (the
compensation for the expected rate of inflation) were sought.
Since the real rate was assumed constant, the major emphasis of
the study concerned generating alternate values of P¥t, and

estimating equations of the form:
(4d) RNt = a + bP¥t

Estimates of the real rate of return varied but when
excluding results found after the H-L of C-~0 modification was
applied and '"rho" wvalues were chosen very close to "1.00" ~-
since the constant term ceases to correspond to an estimate of
the real rate of 1interest wunder such a situation -~ the
magnitudes of the various terms centered in an area between
"3.00" and "4.00" percent annually. For example, eight such
terms are listed in Table XIX, selected from Tables and Charts
throughout the study. With the exception of Columns (3) and (4),
representing the estimates drawn from running the Muss; model's
"Et [P t+l1 ~ Pt]" as "P¥t", the variance of generated real rates

for a given bond is not large.
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Table XIX
Summary of "a" Estimates

TABLE II Iv XII XIII CHART XIII XIV
IX

1. Day 30 3.41 3.58 5.59 5.09 3.32 3.59 3.29
2. Day 90 3.31 3.35 5.55 5.14 3.38 3.69 3.49
3. Mon 3 2.34 2,60 4,56 4,28 2.88 2.89 é.61
b, Mon 6 3.01 2.93 5.20 4,93 3.16 3.54 3,22
5. Year 1 3.63 3.80 5.11 4.81 3.76 3.52 3.45

6. Year 3 4.04 4,27 5.4 5.07 4.15 3.89 3.83

The magnitude of these real rate estimates appears
unusually high, however. In past times of 2zero expected
inflation, (and hence nominal rates equalling real .rates of
return), the market did not generate interest rates above three
percent for bonds of similar risk or maturities to those shown.
In fact, the nominal rates were generally found in the

neighborhood of between two and three percent annually.
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The estimated value of the "b" coefficient in Equation (44)
also appeared upward biased from this study. Some very large
estimates of the P¥t coefficient from 0.L.S. regressions can be
disregarded, however, as almost certainly being biased, due to
autocorrelation in the small sample case. (for eXample see
Charts X ad XIV, where calculated "b" terms exceed "6.00" with
great regularity.)

Some estimates of the "b" coefficient were also found,
which, after the H-L or C-0 modifications were applied seem
unusually low and proved statistically not significantly
different from zero (i.e. Tables XIV, XV, and XVI) and as such
would not seem representative of the overall study. However,
arising from both the adaptive expectations, and modified Mussa
model approaches, several "b" estimates weré generated with very
similar magnitudes proving significantly different than zero
with 95% probability. Some of these values are shown in Table
XX, again compiled from Tables and Charts throughout the study.

As was alluded to in the Summary sections of Parts I and
II, "b > 1" values are theoretically most unlikely over a period
as long as twenty three years. Coupled with the observation that
real rate estimates appear unusually high as well, the most
logical conclusion would seem to Dbe that some critical bias
factor has not been taken account of satisfactorally in any of

the regression equations outlined.
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Table XX

Summary of "b" Estimates

TABLE I1I XII XIII XVIII XIIa

1. Day 30t 1.984 . 971 1.82 2.01 1.77
2. Day 90t 1.636 1.08  1.81 2.13 1.93
3. Mon 3t .966 1.02 1.58 1.41 1.81
4, Mon 6t 1.622 . 783 1.27 1.58  1.40
5. Year 1t 1. 800 .990 1.59 2.59 1.78
6. Year 3t 1.331 1.010 1.75 2.04 1.84

One such factor excluded from this study was the effect of
taxation wupon the behavior of nominal bond rates. As work by
Michael Darby32 has suggested, such an effect will lead to the
over estimation of the true values of "RRt" and the true "b"
coefficient we shall designate as "B". As will be shown, when

account is explicitly taken of taxation effects, "a" values fall

R R R Y

32‘ Darby, Michael R. The Financial and Tax Effects of Monetar
Policy on Interest Rates, Economic Inquiry, June 1975 P. - .
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well within the expected neighborhood (annual rates of about

2.5%) and "B" coefficients fall In magnitude very near a value

of one. ' .
Since taxation is appliéd to nominal returns from bond

holding, both the real rate of return and the compensation for

expected inflation are affected. The return a bond holder

receives, then, can be shown as:
(45) RNt (1 -~ T) = RRt.+ P¥t
or: (46) RNt = (1 / 1-T) RRt + (1 / 1-T) P*t
where T = marginal tax rate.
When estimating the coefficients "a" and "b" in this study,

no account was taken of the fact that logically "a" and "b"

should represent the following relationships:

(47) a =1/ (1-T)
or: RRt = a (1-T)

(48) b =1/ (1-T) B
or: B =b (1-T)
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where B = true coefficient associated with P¥t

What 1is being suggested; then, is that bond holders are
aware of taxation, and further, that before undertaking current
investment they demand compensation for said losses of income
via taxation. If the real rate component is established where
the market clears (i.e. supply of investment funds demand for
funds, conditional wupon different internal rates of discount),
the real rate demanded should include compensation for tax
losses. Similarly, a person demanding compensation for inflation
will expect such a premium to be in effect after taxes and not
before, or the compensation would not truly keep the bond holder
insulated from inflation.

The magnitude of "T" in Equations (47) and (48) may be
taken as Dbeing between ".20" and ".50", for Canada, depending
upon the income received, and the bond holder's other income, 33
Assuming some mid point, however, of ".35" as_representative of
the tax faced by the "average" bond holder, Equations (47) and

(48) would become, for example:

(49) RRt = .65(a)

VYR N VR PV TR PR TR P T e TR e P T e

33 These figures were calculated from the taxes payable per
income bracket. Source: 1979 Canadian Tax Guide.
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(50) B = .65(b)

In other words, when dccount is taken of taxation, the
estimates of "a" and "b" no longer appear inappropriate. The
figures 1listed 1in Tables XIX and XX, after adjusting for
taxation effects, 1indicate values of the real rate of return
being near 2.5% annually, and in no case shown is "B"
significantly different from "1.000" -~ the estimates generally
fall below, but very close to that number.

The major findings of this study may be summed up,
therefore, into one sentence ~- every indication isvthat bond
holders do 1indeed understand the process of, and demand
compensation for, inflation. This concluéion is not surprising
-~ 1In fact, 1if anything else were the case one would likely
become suspicious. Nonetheless, at a time when governments
continue to generate expectations of inflation by monetary
actions, while at the same time publicly_promising a future
lowering of 1interest rates, the point is ceftainly far from an

irrelevant one.
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Chart I

Yohe and Karnosky Regression Coefficients

Ordinary Least Squares: 1961 -~ 1969
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Chart II

Yohe and Karnosky Regression Coefficients

Almon Lag Coefficients: 1961 - 1969

Short-Term Interest Rates
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Chart III
30 Day Finance Co. Paper Rate

Olsq coefficients: 1961 =~ 1969
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Chart IV
90 Day Finance Co. Paper Rate

Olsq coefficients: 1961 -~ 1969
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Chart V

3 Month Treasury Bill Rate

Olsq coefficients: 1961 - 1969
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Chart VI

6 Month Ireasury Bill Rate

Olsq coefficients: 1961 - 1969
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Chart VII

1 - 3 Year Average Bond Rate

Olsq coefficlents: 1961 - 1969
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Chart VIII

3 -~ 5 Year Average Bond Rate

Olsq coefficients: 1961 ~ 1969
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Chart X

OLSQ: RNt = a + bP¥t + et

i 1955~1968: 1969-78 1955-1978
. 30 a=1.87(10.62) a= 3.770(9.91) a = 2.926(18.86)
day b = 12.42(16.35) b = 6.55(10.01) b = 7.958(23.03)
R2 = ,716 R2 = .465 R2 = ,704
D.W. = .660 D.W. = .194 D.W. = .226
. 90 a= 2.,75(13.51) a = 4,038(10.69) a = 3.357(22.88)
day b = 10.07(11.15) b = 6.432(9.89) b = 7.544(22,.45)
R2 = .507 R2 = ,.459 R2 = .678
D.W. = .324 D.W. = .188 D.W. = .206
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Mon Db = 7.796(8.67) b = 6.392(9.89) b= 6.77(20.61)
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R2 = .490 R2 = ,.435 R2 = ,707
D.W. = .370 D.W. = .155 D.W. = .193
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Chart XI

PDL: RNt = a + DbEXt +
195578
Day 30t = 3.88 =~ .0l4 M3Rt +
(20.30)  (=~1.68)
R2 = .69 D.W. = .230
Day 90t = 3.74 =~ ,018 M3Rt +
(27.49) (=~2.33)
R2 = .76 D.W. = .227
Mon 3t = 2.96 =~ .024 M3Rt +
(24,51) (=3.19)
Mon 6t = 3.20 =~ .,020 M3Rt +
(19.77) (~2.67T)
R2 = .72 D.W. = .155
Year 1t = 3.80 =~ .022 M3Rt +
(39.48) (=~3.68)
R2 = .77 D.W. = .235
Year 3t = 4,18 =~ ,012 M3Rt +
(49.42) (=~2.25)
R2 = .80 D.W. = .196
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Chart XII

PDL: RNt = a + bEXt + cEXt-1l + Almon(Pt,
1955-1978
Day 30t = 3.88 ~ .014 M3Rt ~ .001 M3Rt~1 +
(20.19) (~1.68) (~.125)
R2 = .69 D.W. = .232
Day 90t = 3.75 ~ .019 M3Rt =~ .005 M3Rt~1 +
27.30) (=~2.36) (.453)
R2 = .76 D.W. = .233
Mon 3t = 2.97 ~ .024 M3Rt -~ .028 M3Rt~1 +
(24.96) (=~3.27) (~1.25)
R2 = .75 D.W. = .211
Mon 6t = 3.22 ~ .021 M3Rt ~ .012 M3Rt~1 +
(19.82) (=~2.76) (~1.18)
R2 = .73 D.W. = .183
Year 1t = 3.80 =~ .022 M3Rt ~ .006 M3Rt-~1 +
(39.40) (~3.73 (~.789)
R2 = .77 D.W = .243
Year 3t = 4,18 ~ .012 M3Rt ~ .004 M3Rt~1 +
(49.24) (-~2.28) (~.517)
R2 = .80 D.W. = .199
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6. Year 3t
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Chart XIV

CORC: Rnt = a + b(CPIHATt) + et
1955-1978

(where CPIHAT were taken from 1955-1970,
1970~1978 runs )

(1) Day 30t 3.29 + 6.90 CPIHATt +

(19.44) (19.33)
D.W. = .154

R2 = .62
(2) Day 90t = 3. 49 + 6,90 CPIHATt +
(25.41) (21.85)
R2 =
(3) Mon 3t = 2.61 + 6,73 CPIHATt +
(19.80) (21.86)
R2 = .63 D.W. = .092:
(4) Mon 6t = 3.22 + 6.00 CPIHATt +
(21.11) (18.36)
R2 = .59 D.W. = .110
(5) Year 1t = 3.4 + 5,86 CPIHATt +
(32.32) (23.51)
D.W., = .114

R2 = .66

(6) Year 3t = 3.83 + 5.74 CPIHATt +
(38.52) (24.77)

R2 = .68 D.W. = .100
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