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Abstract 

Current methods for conducting exact inference for logistic regression are not capable of 

handling large data sets due to memory constraints caused by storing large networks. We 

provide and implement an algorithm which is capable of conducting (approximate) exact 

inference for large data sets. Various application fields, such as genetic epidemiology, in 

which logistic regression models are fit to larger data sets that are sparse or unbalanced 

may benefit from this work. We illustrate our method by applying it to a diabetes data set 

which could not be analyzed using existing methods implemented in software packages such 

as LogXact and SAS. We include a listing of our code along with documented instructions 

and examples of all user methods. The code will be submitted to the Comprehensive R 

Archive Network as a freely-available R package after further testing. 

Keywords: conditional inference, exact test, logistic regression, Markov chain Monte Carlo, 

Metroplis-Hastings algorithm 
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Chapter 1 

Introduction 

1.1 Why Exact Inference? 

Asymptotic inference is often unreliable when modelling rare events, or dealing with data 

sets that are small, or data sets that are imbalanced or sparse. Typically, statistical in- 

ference for logistic regression models involves large sample approximations based on the 

likelihood function. Unfortunately, asymptotic methods become inadequate when sample 

sizes are small or the data are sparse or skewed. With sparse data, one or more of the 

parameter estimates may lie on or near the boundary of the parameter space. In other 

words, the estimated probabilities are close to 0 (or 1) and resulting logit coefficients are 

effectively minus (or plus) infinity. Conceptually there is insufficient information in the data 

to distinguish whether the true parameter value is in the interior or on the boundary of the 

parameter space. This uncertainty is reflected in the large standard errors for the parameter 

estimates. When the true parameter values lie on the boundary of the parameter space, the 

large-sample theory is invalid; when they lie near the boundary, the large-sample theory is 

unreliable unless the sample size is very large. If prior distributions for the parameters can 

be specified, a Bayesian perspective may be adopted allowing exact inference to be based on 

the posterior distributions of the parameters given the observed data. Cox (1970) proposed 

a frequentist alternative to large-sample inference which utilizes the exact distribution of 

the sufficient statistic for the parameters of interest, conditional on the sufficient statistics 

for the other "nuisance" parameters in the model. Exact logistic regression refers to exact 
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conditional inference for binomial data modelled by a logistic regression and is reliable no 

matter how small or imbalanced the data set. As sample size grows and/or the data become 

better balanced and less sparse, the solution obtained using the conventional large sample 

approach will coincide with the solution obtained by the exact approach. 

1.2 Binomial Response Model 

In logistic regression, the binary response variable is modelled as a binomial random variable 

with the logit link function. Let Y,  be the response of the ith subject with 

Yi N binomial (mi, pi) 

and 

where, ,/3 is a vector of nuisance parameters corresponding to the first p explanatory variables 

(wil,wi2,. . . , ~ i ~ ) ~  and y is a vector of parameters corresponding to the last q explanatory 
T variables (zil,zia,. . . , ziq) on subject i .  We are not interested in making inferences on P; 

however, including the wi's in the model reduces noise and provides better inference on 

the regression parameters, y, of interest. Ultimately, we are interested in studying the 

relationship between p = (pl , ..., p,) and z. For example, we might want to compare 

Ho : logit ( p )  = Wp ( y  = 0,  ,B arbitrary) 

U S .  

HI  : logit (p) = Wp + Z y  (y # 0, p arbitrary), 
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1.3 Sufficient Statistics for P and y 

Exact conditional inference is based on the distribution of the sufficient statistic T for 

the parameters of interest, y, given a sufficient statistic S for the nuisance parameters 

p. Equivalently, inference is based on the conditional distribution of Y given S. The 

conditional distribution of Y given S does not depend on P since we are conditioning on 

the sufficient statistic for p. The joint density of Y is 

= [Q (r ) ] exp {. yi log ( pi (p7 ) ) ex. {x mi log 11 - iii ( ~ 7  T)I 
1 - Pi (P7 7 )  

2 1 

where 

Notice that, 

and similarly, 
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By the factorization theorem, T = zTy is sufficient for y and S = WTy is sufficient for P. 

Suppose S = wTy = s. Let C (s) = {y* : S (y*) = s} = {y* : wTy*= s) .  Then, 

In order to make exact (i.e. small-sample) inference for y based on f (y IS = s) ,  we 

need to be able to evaluate this distribution. Approximate exact inference for y is based 

on an estimate of f (ylS = s )  obtained by sampling from the distribution. However the 

computation of the proportionality constant is infeasible for most applications, because it 

requires enumeration of the support C (s) of the conditional distribution f (ylS = s),  which 

is not always attainable. Fortunately, Markov Chain Monte Carlo (MCMC) approaches 

only require knowledge of f (ylS = s)  up to a proportionality constant, which is exactly 

what we have. 

1.4 Rationale for Undertaking this project 

Exact inference for logistic regression is based on generating variates from the conditional 

distribution of the sufficient statistics for the regression parameters of interest given the 

sufficient statistics for the remaining nuisance parameters. A recursive algorithm for gen- 

erating the required conditional distribution is implemented in the software LogXact [lo]. 
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However, the algorithm can only handle problems with modest samples sizes and numbers 

of covariates [3]. To increase the size of problem that can be analyzed, Mehta et al. (2000) 

developed a Monte Carlo method for (approximate) exact inference and implemented it 

in LogXact. Their method represents the support of the conditional distribution of the 

binomial response given the sufficient statistics for the nuisance parameter by a network of 

arcs and nodes. The network consists of n layers (or levels) of nodes, where n represents 

the length of the response vector. The nodes at the ith level of the network correspond to 

the possible values of the sufficient statistics for the parameters of interest based on the 

first i observations in the response vector. The arcs connecting nodes in level i - 1 to nodes 

in level i of the network represent possible values of the ith component of the response 

vector. Arcs are placed between nodes at each level so that a path through the network 

corresponds to a unique response vector consistent with the observed values of the sufficient 

statistics for the nuisance parameters. To avoid traversing all possible paths through the 

network, they describe how to randomly sample paths with the appropriate probabilities. 

The limiting factor for their Monte Carlo approach is the size of the network, which must 

be stored in memory. Forster, McDonald, and Smith (1996) attempted to circumvent this 

difficulty by developing a Gibbs sampler to generate the Monte Carlo samples. A Gibbs 

sampler would sample from the conditional distribution of a particular sufficient statistic 

given the observed values of the sufficient statistics for the nuisance parameters and the 

current values of the sufficient statistics for the remaining parameters of interest. In exact 

conditional inference for logistic regression, conditioning on too many sufficient statistics 

can greatly restrict the set of support points for the conditional distribution, making the 

distribution highly discrete or even degenerate. This "overconditioning" problem is partic- 

ularly acute when conditioning on sufficient statistics associated with continuous covariates 

in the logistic regression model. In the context of Gibb's sampling, such degeneracy due to 

overconditioning could lead to poor mixing or even a degenerate conditional distribution for 

the complete vector of sufficient statistics of interest. This view is supported by the general 

observation that the Gibb's sampling approach of Forster, McDonald, and Smith (1996) 

is only effective for logistic regression problems with equally spaced covariate values and 

moderately large covariate groups [12]. Our experience with the Gibb's sampling method, 
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as implemented in LogXact, also supports this view. As described in Chapter 3, we ob- 

tained a degenerate conditional distribution for the complete vector of sufficient statistics 

when we tried to apply the approach to our data. For "large" problems, in which storage of 

the network is not possible and the Gibbs sampler proves unreliable, Forster et al. (2003) 

propose an alternative method that makes use of the Metropolis-Hastings algorithm. The 

focus of this project is to both improve and implement their alternative approach for large 

logistic regression problems. 



Chapter 2 

Met hods 

2.1 Review of Markov Chains 

Before introducing the Metropolis-Hastings algorithm a brief review of Markov chains, 

adapted from [15], is necessary. The sequence Y Y2,  .. . , Y, is a Markov chain if the 

transition probability between any two different values in the state space depends only on 

the current value of the Markov chain. Thus, in a Markov chain the only information re- 

quired to generate the value of the next state is the value of the current state; knowledge 

of the values of earlier states do not change the transition probabilities. Throughout, we 

consider Markov chains with a finite discrete state space \k = ($1, $2, ..., $ k ) .  In a Markov 

chain, the probability of moving from state $i at  time t to state $j at  time t + 1 is 

This conditional probability is called the transition kernel. The properties of a Markov 

chain depend heavily on the chosen transition kernel. 

Let .jlrt (+) denote the probability that the chain is in state + at time t ,  then .jlrt+l ($) 

is obtained by summing over the probability of making a transition from any state $i (at 
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time t)  to state $ (at time t + 1): 

A chain is irreducible if every state is accessible from every other state. A chain is said 

to be aperiodic when the number of transitions needed to  move between any two states 

is not required to be a multiple of some integer greater than one. Aperiodicity prevents 

the chain from having a cycle of fixed length between any two states. A chain with a finite 

state-space is ergodic if it is both irreducible and aperiodic. 

A Markov chain may reach a stationary distribution T, where the probability of being 

in any particular state is independent of the initial condition. A Markov chain is said to 

have reached a stationary distribution (or steady state) by time t if ~ t + l ( $ )  = T ($) 

for all $ E \k. Once a stationary distribution is reached, all subsequent realizations of the 

chain are from the distribution. It can be shown that if a Markov chain is ergodic, then it 

is guaranteed to reach a unique stationary distribution T. 

The Ergodic Theorem states that if Yo, Y1, ... are realizations from an ergodic Markov 

chain, the mean value of any function, h, under the stationary distribution of the Markov 

chain can be obtained by taking the average of h(Yi) over an arbitrarily large number, n, 

of realizations Yo,Y1, ..., Y, of that Markov chain. The Ergodic Theorem can be viewed 

as a Markov chain law of large numbers. 

2.2 The Metropolis-Hastings Algorithm 

Suppose that we are interested in calculating 

for a random vector Y with density 7r (y) and a specified function h (y). If we have a 

sequence y l ,  ya, ..., y, of iid realizations from the density T (y), then 
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is a consistent estimate of 19. 

There are occasions when it is not possible to generate independent random vectors 

with density T .  This is particularly the case when T is only known up to a multiplicative 

constant (i.e., we can write T (y) = C . g (y) where g (y) is ascertainable but C is not). An 

alternative procedure is to generate a Markov chain sequence y l ,  yz, ..., y, with stationary 

density T (y). If the Markov chain is ergodic, then, by the Ergodic Theorem, (2.1) is still a 

consistent estimate of 13 [15]. 

The Metropolis-Hastings algorithm constructs a Markov chain with a stationary distri- 

bution equal to T .  To ensure that T is a stationary distribution, it is sufficient for T and 

the transition kernel to satisfy the detailed-balance equation 

However, the chain must be ergodic for T to be a unique stationary distribution and the 

Ergodic Theorem to apply. The algorithm requires, as input, a mechanism that allows one 

to move from one state to another. This mechanism is called the proposal distribution. The 

proposal distribution, which we will denote as q (y*ly), should be easy to generate from. 

In the algorithm, a transition from one state to another is done as follows. Suppose that 

the current state of the Markov chain is y .  Then the next state of the Markov chain, y', 

is obtained by generating a "proposal" random vector y* q and an independent uniform 

random variable u on the interval (0 , l )  and setting 

We refer to rnin { " , ' ~ ) ) ~ ~ ~ ~ /  , 1 as the acceptance probability and denote it by u(y, y*). 1 
In order to implement the Metropolis-Hastings algorithm we must compute 

In the case where 
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with g (y) known but C unknown, 

can be calculated using the known values of g (y*) and g (y) alone. Hence, the algorithm 

only requires knowledge of the target distribution n up to a constant of proportionality. 

In order for the Metropolis-Hastings algorithm to produce a chain with a as a stationary 

distribution, the detailed-balance condition (2.2) should hold. To verify this, it suffices to 

restrict attention to the case y # y' because condition (2.2) trivially holds when y = y'. 

For y # y', the probability of moving from state y to state y' = y* is 

Therefore, 

Notice that when a(y, y*) = min {$$)):[:lg/. 1) = 1, so that a (y*) q (yjy*) = a (y) q (y*ly) , 

either one of these terms in equation (2.4) can be used interchangeably and so there is no 

ambiguity. Interchanging y and y* (2.4) we have 
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Hence, the detailed-balance condition holds and so the target distribution ~ ( y )  is a 

stationary distribution of the Markov chain. 

2.3 Algorithm Proposed by Forster et al. (2003) 

denote the stationary probability of state y in a Markov chain. In our case, the stationary 

probabilities T (y) correspond to (1.1); i.e., 

Therefore, if we use a Metropolis-Hastings algorithm to construct a Markov chain with 

stationary distribution (1.1) and this chain has the additional property of being ergodic, 

we may extract dependent samples whose distributions converge to the required conditional 

distribution. 

The Metropolis-Hastings algorithm proposed by Forster et al. (2003) involves generating 

proposals y* of the form y* = y + d . v, where v is a vector of coprime integers such that 
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n 

lvil 5 r for a given even integer r and d is an integer such that 0 5 yi + dvi 5 mi for 
i=l 
i = 1, ..., n. The proposal distribution q(y*ly) is chosen so that the acceptance probabilities 

are identically 1, as shown below. Hence, from now on, we do not distinguish between the 

proposal y* and the next state y' of the Markov chain. Since y* = y + dv, where w T v  = 0, 

the sufficient statistics for the nuisance parameters are maintained. To see why, suppose 

the Markov chain is currently on its jth iteration and denote the corresponding value of the 

response vector by y(j), then 

where y(j+l) denotes the value of the response vector for the ( j  + I )  st iteration of the 

Markov chain. 

So far, we have given a recipe to move from one y to another y* where y* is guaranteed 

to lie under the support of the required distribution. All we need now is to figure out a way 

to make the stationary probabilities conform to (1.1). The proposal distribution involves 

sampling of v and d given y. Sampling proceeds in two steps. In the first step, v is sampled 

unconditionally, without regard to y .  Then, in the second step, d is sampled conditionally 

on the realized value of v and y. In the first step, v is uniformly selected from among the 

vectors with coprime elements (i.e., greatest common divisor of any pair of elements is 1) 

that satisfy (2.5) and the additional constraint that 

for a given r ,  chosen so that the enumeration of such vectors is feasible. Usually the vector 

of ones is in the column space of W, as a constant (intercept) term is included in the linear 

model. and so 

n 
therefore, C lvil in (2.6) must be even. Large values of r would be desirable as they 

i=l 
allow for larger transitions in the Markov chain and a potentially quicker exploration of the 

conditional distribution of Y  given S = W ~ Y .  On the other hand, since the size of the set 

n 
T v :  C i v i l  5 r a n d  vi coprime for i =  1, ..., n,  W v = O  

i=l 
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increases with r ,  smaller values of r will help to keep the size within feasible limits. Ad- 

ditionally, the chosen value of r affects the second-stage sampling of d conditional on the 

realized value of v and y. Large values of r will increase the chance that d = 0 is the only 

integer satisfying the constraints (2.9). If d = 0 with high probability the Markov chain 

will mix poorly as this represents a "transition" to the current state. Forster et al. (2003) 

suggest choosing r to be 4,6, or 8. Small values of r correspond to more transitions to new 

states, but the Markov chain may remain trapped in a local neighborhood. 

To illustrate enumeration of V ,  consider r = 2 and 

There are (3 choose 2) = 6 elements of V:  v l  = (0,1, -1,0, O),  v2 = (0, -1,1,0, O), v3 = 

(0,1,0,-1,0), v4 = (0,-1,0,1,0), v5 = (0,0,1,-1,0), and v6 = (0,0,-1,1,0). In general, 

one can never find a W such that the only vector v satisfying w T v  = 0 is the vector of 

zeroes. To see this, note that W is an n x q matrix specifying the columns of the design 

matrix for the nuisance parameters, where q < n. The set of all v such that w T v  = 0 is 

the null space of W and contains the set V as well as the vector of zeroes. Suppose the 

null space of W is composed of the zero vector only (so that V must be an empty set). 

Then the only vector in Rn that is orthogonal to the column space of W is the zero vector; 

i.e. W is of rank n, which contradicts q < n. That said, it is still possible for the set V to 

be empty for certain values of r .  For example, take 

and r = 2. The possible vectors in the set V are all permutations of (-1 1 0 0). Hence, in 

order that w T v  = 0 for some v E V ,  each row of wT must have at least two entries of 

equal value. As this does not hold for this wT, V is empty. It can also be shown that V 

is empty for r = 4 and 6. However, if we take r = 8, the vector v = (-4,l ,  O,3) satisfies 

WTv = 0 and the other restrictions for V, and so V is non-empty in this case. In fact, 

Forster et al. (2003) state that for large enough r their Markov chain is irreducible, which 

implies there are enough directions (i.e. vectors) in V to move the Markov chain from 
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any one point in the state space to any other. Assuming that the conditional distribution 

of interest is non-degenerate, so that the state space of their Markov chain contains more 

than one point, this irreducibility implies that V must be non-empty. When V is found to 

be empty in their algorithm, it would make sense to notify the user that there is either a 

degenerate distribution or that a bigger value of r is required. 

Assuming V is non-empty and its enumeration is feasible, the algorithm selects one of 

the possible v from V with equal probability and then generates a d using 

where the support of q (dlv, y )  is given by 

for all i. We introduce the additional notation 7 (dlv, y )  to remind the reader that we 

are working with the density q (dlv, y )  up to a constant of proportionality. According to 

equation (2.3), the Markov chain will have the target distribution as a stationary distribution 

if we include an acceptance probability a (y,  y*) for moving from y to y* such that 

a (y,  y*) = min 

We now show that the acceptance probability in (2.10) is one. The proposal distribution is 

where 6 is an integer that satisfies equation (2.9), v E V and f (v) = 1/IVI is the uniform 

distribution over the set V ,  described earlier. The sum simplifies to 

for some d satisfying (2.9) and some v E V because of the restriction that all the vectors 

in the set V have coprime elements. Consequently, the acceptance probability of (2.10) is 

a (y, y*) = min 
71- (y*) [q (-dv,  Y*) f (v) + q (4 - v,  Y*) f (-v)l, I 
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For a fixed vector v ,  let Nv (y) = {u : 0 5 ui < mi and u = y + 6v for some integer 6). 

Then, from equations (2.8) and (2.9), the normalizing constant for q (dlv, y )  is 

By definition, Nv (y) = N-, (y) and, for y* = y + dv, NV (Y) = NV (Y*). Hence, for 

y* = y + dv, the distributions q (elv, y )  , q (.I - V, y )  , q ( . I v ,  y*) and q ( - 1  - V, y*) all have 

the same normalizing constant. Since f (v) = 1/ IVI, we therefore obtain 

A summary of the resulting Metropolis-Hastings algorithm is: 

1. Enumerate the set V = {v : Cy=l lvil 5 r and vi coprime for i = 1, ..., n, w T v  = 0).  

2. Select a v E V with uniform probability. 

3. Find all integers d such that 0 5 yi + dvi 5 mi. Let k denote the number of values 

of d that were found. 

k 
4. Calculate C 7) (dilv, y )  and assign P(di) = P(~""'Y) i = 1,2, .  . . , k 

i=l C ~ ( d j l v , ~ )  
j = 1  

5. Choose a d according to the probabilities assigned to each di in Step 4. 

6. Set y* = y + dv 

7. Let y = y*, go to Step 2 

As was mentioned earlier, a limitation of this algorithm is that complete enumeration of 

the set V is required. In the next section we describe a modification to the algorithm that 

circumvents the need to enumerate V .  
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2.4 Modified Algorithm 

The Forster et al. (2003) algorithm proposes uniform sampling from the set 

by enumerating and storing it in memory. However, these authors provide no guidance for 

how to enumerate and store V in practice. One important difference between our method 

and theirs is that we sample uniformly from a subset VA of V whose vectors satisfy the 

additional constraint that lvil 5 mi for all 1 5 i 5 n. We use VA to improve mixing, as 

vectors for which some lvil > mi will only satisfy constraint (2.9) if d = 0, so that y* = y 

with probability one. A second way in which our method differs is that we sample vectors 

uniformly without enumeration from the larger set 

and then reject all vectors that are not in VA.  This amounts to rejecting all v for which 

either wTv # 0 or lvil > mi for some 1 5 i 5 n. Our algorithm rejects on average, a 

proportion of 1 - IVAI/IV'I realized v E V'. In section 2.7, we discuss how this additional 

rejection-sampling step of the modified algorithm affects its speed. 

To uniformly sample from V', consider r-dimensional vectors in the set 

where r 5 n. Classify as equivalent two vectors in R if one can be obtained as a permutation 

of the other. We start by enumerating a seed set R of representative vectors from the 

resulting equivalence classes on R. To obtain the seed set R we do the following: 

1. List all positive integers 5 r/2 and mutually coprime with one another. For example, 

if r = 6, we obtain 1,2,3. 

2. For 1 5 j 5 7-12, list all possible combinations of size j taken from the list in step 1. 

For example, if r=6, we obtain 

for j=l: {I}, {2}, {3} 
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for j = 2 : {1,2), {1,3), {2,3) 

for j = 3 : {1,2,3). 

3. For each combination of size j above, prefix 0 5 k 5 r - j ones to form vectors of 

size 5 r. For example, if j=2 above, the combination {2,3) would lead to vectors: 

(2,3), (1,2,3), (1, 1,2,3),  (L l , l ,  2,3), and ( L L  1,1,2, 3). 

4. Remove all vectors for which xi ri > r or for which xi ri is odd. For instance, of the 

five vectors listed in the example of step 3, all but (1,2,3) would be removed. Also, 

remove any duplicate vectors. 

5 .  Enumerate all the possible ways that negative signs can be assigned to the elements 

of the remaining vectors so that they sum to zero. The seed set R is the list of 

vectors that results after appending the appropriate number of zeros so that there are 

r elements. 

Conceptually, V' can be obtained by uniformly assigning the non-zero components of 

each vector in the seed set R to an empty n-dimensional vector, and then filling in the 

remaining empty components with zeros. Each seed vector r in R thus represents 

vectors in V', where the Ais denote the number of occurrences of each distinct non-zero 

value of the components of the seed vector. [For example, if r = (1,1,1,0,0,  - 1, - 1, - 1) 

12! - 18480.1 Hence, and n = 12, then XI = Az = 3 and m(r )  = (12-3-3)!3!3! - 

To avoid enumerating all the vectors in V', we then select seed vectors r E R with proba- 

bility 

Each vector in V' can only be obtained from one seed vector in R. For a given v E V', 

denote the corresponding seed vector by r*. Then 

1 m(r*) 1 
P (v )  = P ( v  1 r) x P ( r )  = P ( v  / r*) x P( r*)  = - - x - - -  

rER I v ' I  I v ' I  
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and so sampling from the set V' is uniform, as claimed. 

Section 2.3 discusses why the Metropolis-Hastings algorithm of Forster et al. (2003) 

has the desired stationary distribution. Their algorithm samples perturbations v of the 

response from the set V ,  whereas ours samples v from V A  c V. Both algorithms have 

an acceptance probability of 1. We argue as follows that our modified algorithm also 

has the desired stationary distribution. Given the way q(dlv, y) is defined in (2.8), only 

one condition on V and one condition on sampling from V are needed to show that the 

algorithm of Forster et al. (2003) has the desired stationary distribution and that the 

required acceptance probability is 1: 

1. The vectors in V are unique in the sense that no vector can be obtained as a scalar 

multiple of another (due to the restriction to coprime elements). 

2. There is uniform sampling from V .  

Thus, to show that our algorithm with acceptance probability 1, has the desired station- 

ary distribution, it suffices to show the same conditions for VA. By definition, the vectors in 

VA have coprime elements and so satisfy the first condition. Our algorithm is constructed 

to sample uniformly from V A  and so satisfies the second condition. Hence our stationary 

distribution is the same as that of Forster et al. (2003). 

2.5 Exact Conditional Inference 

Let S1, ..., Sp denote the sufficient statistics for pl, ..., pp, the parameters not of interest 

(nuisance parameters) in the logistic regression model. Likewise let Tl, ..., T, denote the 

sufficient statistics for yl , ..., y,, the parameters of interest. In this section we describe the 

methods used by our program to conduct hypothesis tests and produce point estimates for 

the parameters of interest. 
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2.5.1 Joint Conditional Inference 

To conduct joint inference on yl, ..., yq our program first produces a sample of dependent 

observations from a distribution with density 

In words, (2.13) is the joint conditional density for the sufficient statistics of interest given 

the observed values, s l ,  ..., sp, under the hypothesis Ho that yl = . - .  = yq = 0. In order to 

test 

Ho : 71 = ... = Yq = 0 

against the two-sided alternative 

we compute an approximate two-sided p-value for the conditional probabilities test. The 

conditional probabilities two-sided pvalue is obtained by summing estimates of (2.13) over 

the critical region 

where t is the observed value of the sufficient statistics for yl, ..., yq and fT is an estimate 

of (2.13). The Monte Carlo standard error of the resulting p-value is computed by the 

batch-means method [7], as described in Appendix A. 

In the future, once we are able to devise an unbiased estimate of E, the variance- 

covariance matrix of (TI, ..., Tq) from (2.13), we plan to implement the conditional scores 

test. The conditional scores two-sided p-value is obtained by summing estimates of (2.13) 

over the critical region 

where p and E are, respectively, the mean and variance-covariance matrix of (TI, ..., Tq) 

from (2.13). We cannot use the sample variance-covariance matrix as an estimate of E, 

because the generated sample is composed of dependent observations. In this case, the 

sample mean is an unbiased estimator of p; however, the sample variance-covariance matrix 
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is not an unbiased estimator of X. Section 4.2 provides a brief discussion of a proposal to 

obtain a less biased estimate of X. 

Point estimates for each parameter of interest are obtained by jointly maximizing the 

conditional likelihood function of fTl ,..., T, (t l ,  ..., tq I S1 = s1, ..., Sp = sp, 71, - . - , yq) . If, 

however, the observed value ti of the sufficient statistic for yi obtains the maximum or 

minimum value of the generated sample, then + is f cc and so does not attain its maxi- 

mum within the boundary of the parameter space. 

2.5.2 Inference on a Single Parameter 

Suppose we are interested in conducting inference on Ti alone. In this case, yl, ..., yi-1, yi+l, ..., yq 

together with P1, ... , Pp would be considered nuisance parameters and according to (2.13), 

inference would be based on generating a sample of dependent observation from 

fTi (ti I Tl = t i ,  ..., z-1 = tipi, Ti+l = ti+l, ..., Tq = tq, S1 = ~ 1 ,  ..., Sp = sp, yi = 0) .  

(2.14) 

If we already have a sample of dependent observations from (2.13) and we would like to 

conduct inference on yi alone, it would be computationally expensive to generate another 

sample of dependent observations from (2.14) from scratch. On one hand, a sample from 

(2.14) can be easily extracted from an already existing sample generated under (2.13). On 

the other hand, the resulting sample can be too small to be practical, as it is difficult to 

adequately estimate the full conditional distribution of a single sufficient statistic from the 

joint conditional distribution of several. The procedure is best explained through a simple 

example, where we are able to explicitly enumerate the exact conditional joint distribution. 

Suppose we have the data shown in Table 2.1 and we would like to find the exact dis- 

tribution of the sufficient statistic, TI, for yl conditional on those for yo, and 72. S u p  

pose also that the joint conditional distribution, shown in Table 2.2, of (TI, T2) given 

the observed value of To is already available. The observed sufficient statistic for yl is 
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7 2  are to = 2 and tg = 1, respectively. The exact conditional distribution of Tl given the 

observed values of To, and Tz, shown in Table 2.3, is simply obtained from Table 2.2 by 

extracting the information for every vector where to = 2 and tg = 1. 

Table 2.1: Example Data 

Observation y xo xl xz 
1 0 1  1 0  

Table 2.2: Tabulation of Possible Response Vectors 

Table 2.3: Extracted Conditional Distribution 

In order to test 

Ho : yi = 0 

t 1 

against the two-sided alternative 

H1 : yi # 0 

Probability 

( P ~ + P S ) / ( P ~ + P ~ + P ~ + P ~ )  

we compute an approximate two-sided p-value for the condit ional  probabilities tes t .  The 

conditional probabilities two-sided pvalue for a single parameter, yi, of interest is obtained 
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by summing (2.14) over the critical region 

where t-i is the observed value of the sufficient statistics for the remaining q-1 parameters of 

interest. The critical region, Ecp, contains all values of the estimated conditional probability 

(ie. the test statistic) that are no larger than the estimated conditional probability at the 

observed value of ti. The Monte Carlo standard error of each resulting p-value is computed 

by the method of batched means. 

In the future we plan to implement the conditional scores test for inference on a single 

parameter. The conditional scores two-sided p-value for a single parameter, yi, of interest 

is obtained by summing (2.14) over the critical region 

where pi and UP are, respectively, the mean and variance of Ti based on (2.14) and ki and 

6: are their estimates. 

2.6 Design and Implementation of Modified Algorithm 

The R function that we provide is called elrm which stands for Exact inference for a Logistic 

Regression Model. The help file for the elrm function is included in Appendix B. The elrm - 

function currently returns an object of class elrm. An elrm object contains the sampled 

values of the sufficient statistics, the joint conditional maximum likelihood estimates of 

the parameters of interest, the pvalue for jointly testing that the parameters of interest 

are simultaneously equal to zero, the full conditional pvalues from separately testing each 

parameter equal to zero, and the Monte Carlo standard error of each p-value estimate. 

The elrm class has a summary method and a plot method. The summary method prints 

a table summarizing the results. The plot method produces both a trace and a histogram 

plot of the sampled values of the sufficient statistics for the parameters of interest. 

We designed our program with two basic goals in mind: minimize computing time and 

optimize scalability. To address our first goal, we implemented our Markov chain algorithm 

entirely in C++, because C++ handles loops much quicker than R and the construction of 
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the Markov chain unfortunately requires the use of nested loops. Our C++ code is called 

within the elrmfunction in R by using the conventional ".C " method. A listing of the C++ 

functions used by elrm is included in Appendix D. The Markov chain produced by our 

C++ program is written to a file, which is then read by R. All inferences are conducted 

in R in order to take advantage of the fast built in methods for matrices supported by the 

R language. This also facilitates future scalability of our program as the generation of the 

Markov chain and inferences are done separately and not all at once on the fly. In the future 

we may wish to add more capabilities and inferential methods to our program and this may 

easily be done by simply appending the required code. 

2.7 Analysis of Modified Algorithm 

The speed of our algorithm is primarily determined by the size of V' relative to VA, which 

in turn depends on the number of nuisance parameters included in the model and the chosen 

value of r .  Here, we define speed as the time it takes our algorithm to complete a fixed 

number of iterations. Recall that the only difference between the two sets VA and V' is 

that the vectors in the larger set V' do not necessarily satisfy the constraints that Ivi I 5 mi 

for i = 1, ..., n and that w T v  = 0, where W represents the design matrix for terms in the 

regression model that are not of interest. Within each iteration our algorithm repeatedly 

samples vectors from V' until the constraints lvil 5 mi for i = 1, ..., n and w T v  = 0 are 

satisfied. On average (1 - IVAI/IV'I) x 100% of sampled vectors are rejected within each 

iteration and the closer the two sets are to one another, the faster our algorithm will run 

as fewer rejections are required per iteration. 

An increase in the number of nuisance parameters included in the model increases the 

size of V' relative to VA resulting in more rejections per iteration. This is attributed to the 

fact that the size of VA decreases for each additional nuisance parameter included in the 

model, as extra constraints need to be satisfied in W*V = 0 whereas the size of V' remains 

unaffected. 

Both the speed and mixing rate of our algorithm are greatly determined by the chosen 

value of r.  An increase in the value of r increases the number of non-zero indices in a sampled 
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vector v E V' which results in more rejections per iteration as constraint w T v  = 0 and 

lvi 1 5 mi for i = 1, ..., n become more difficult to satisfy. An increase in the value of r results 

in slower mixing because the constraint 0 < yi + dvi 5 mi for all i becomes more difficult to 

satisfy for values of d different from zero. However, the Markov chain may remain trapped 

in a local neighborhood if r is chosen too small. 

2.8 Implementat ion Impediments 

2.8.1 Computing Time 

When testing early versions of our program we found that in some cases it took a very 

long time to generate the Markov chain. The slow down was attributed to the number of 

variables that were being conditioned on. Let n be the number of observations and p be the 

number of nuisance parameters. The design matrix, W, for the nuisance parameters was 

rather large in these cases. Recall that to sample from the set VA,  our algorithm samples 

vectors v E V' until the constraints lvi 1 5 mi for i = 1, ..., n and w T v  = 0 are satisfied. 

The matrix multiplication for testing the condition w T v  = 0 for a sampled v from the 

set V' requires 2pn number of flops, where n is usually much larger than p. When the set 

V' is relatively large compared to VA,  our algorithm spends most of its time checking the 

constraint w T v  = 0. For example, the size of the set V' for the diabetes data model that 

we wish to investigate was estimated (by counting the average number of rejections per 

iteration) to be approximately 412,779 times larger than that of the set VA for r = 6. To 

speed up the process of checking the constraint w T v  = 0, we can take advantage of the fact, 

that except for at most r << n entries, the vector v is filled with zeros. By keeping track 

of which entries of a sampled v are nonzero, we are able to check the constraint w T v  = 0 

with at most 2pr flops and check the constraint lvil 5 mi for i = 1, ..., n with at most r 

flops, greatly speeding up the program. 

2.8.2 Memory Constraints in R 

We were not able to store large Markov chains in virtual memory, because the data struc- 

tures used to store these chains require a lot of memory and RAM in a computer is limited. 
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To get around this problem, we generate the Markov chain in a sequence of batches. Each 

batch is then saved to a text file and stored in the hard drive. After a batch is written to 

the text file, the virtual memory allocated for that batch is released by our program. In 

this way, the size of the Markov chain is not restricted by the available amount of virtual 

memory and, given enough time, chains of essentially any size may be generated. Similarly, 

all our inferences are also accomplished by processing the Markov chain in batches to avoid 

having to store the entire Markov chain in memory. 
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Analysis of Diabetes Data 

3.1 Background Information and Data Summary 

Insulin dependent (type 1) diabetes is typically characterized by the presence of antibodies 

to a variety of proteins. Having type 1 diabetes increases the risk for many serious compli- 

cations such as heart disease, blindness, nerve damage, and kidney damage. Antibodies are 

frequently present years before the onset of symptoms and are therefore useful to predict 

future diabetes. Antibodies are not present in type 2 diabetes, and therefore antibody tests 

are useful to distinguish between these forms of diabetes. The data at hand were gathered 

to study the relationship between concentration levels (low and high) of the islet antigen 

2 antibody (IA2A) and several covariates of potential interest in type 1 diabetes patients. 

The covariates of interest that were included in this study are age, gender, and the number 

of copies (0,l or 2) of the HLA-DQ2, HLA-DQ8 and HLA-DQ6.2 haplotypes (nDQ2, nDQ8 

and nDQ6.2 respectively). Information on the variables of interest and the IA2A level of 

669 type 1 diabetes patients was collected. 
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Table 3.1 : Two- Way Contingency Tables Involving IA2A 

IA2A 
low high 

389(100) 280(100) 

IA2A 
low high 

389(100) 280(100) 

low high 
low high 

female 162 (42) 114 (41) 
Gender 

male + 227 (58) 166 (59) 

Two-way contingency tables for IA2A versus nDQ8, nDQ2, nDQ6.2 and gender are 

shown in Table 3.1, with percentages in each IA2A group given in brackets. A boxplot of 

age by IA2A is shown in Figure 3.1. Those cells which have bold numbers are problematic as 

they have expected counts smaller than 5, under the null hypothesis of no association. Notice 

that the data are sparse with a few cells having zero counts. The sparseness arises because 

very few patients have a copy of the "protective7' HLA-DQ6.2 haplotype. Consequently, for 

the diabetes data at hand, any inferences made using methods that rely on large sample 

theory will produce unreliable results. Hence, this is a situation where exact inference is 

needed. 

3.2 Results Obtained from R and LogXact 

3.2.1 Logistic Regression in R 

The investigators were primarily interested in age-specific genetic risks after adjusting for the 

effect of gender (A Lernmark, personal communication). Therefore, the logistic regression 
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Figure 3.1: Boxplot of age by IA2A 

model we chose to work with includes all main effects and two way interactions involving 

genetic effects and age. In R model formula notation, our model was: 

IA2A - age + gender + nDQ2 + nDQ8 + nDQ6.2 + age:nDQ2 + age:nDQ8 + age:nDQ6.2 

The age of each subject was rounded to the nearest year. The results obtained by the glm 

function in R are shown in Appendix C. The estimates returned for terms involving nDQ6.2 

are rather meaningless as they are accompanied by very large variances. The magnitude 

of the effect of nDQ6.2 gives us an indication as to what has gone wrong with the fitting. 

The parameter estimate for the effect of nDQ6.2 appears to be going off to negative infinity 

(and the corresponding fitted probability to zero). This indicates that the true value of the 

parameter could lie on or near the boundary of the parameter space which undermines the 

asymptotic theory for inference. 
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3.2.2 Exact Logistic Regression in LogXact 

When applied to the diabetes data, the exact inference method provided by LogXact quickly 

runs out of computer memory during the network construction phase. As a consequence, no 

results were produced. The alternative Gibbs sampling approach provided by Logxact [5] 

produced a degenerate Markov chain with a single value. 

3.3 Results Obtained by ELRM 

3.3.1 Calling ELRM on the Diabetes Data 

Here we assume the same model as before and include all main effects and two way interac- 

tions involving genetic effects and age (rounded to the nearest year). We are interested in 

testing the hypothesis that the regression coefficients for all model terms involving nDQ6.2 

are zero. To investigate the effect of varying r on the properties of the sampler we ran the 

elrm method for several values of r (2,4,6, and 8). The program was run on a pentium D, 

3.2 GHz PC. The time it took to complete a sample of 1000 is shown in Table 3.2 along 

with the estimated size of V' relative to VA,  the number of unique response vectors sam- 

pled and the corresponding number of unique sufficient statistic vectors sampled. There 

was a considerable overlap in the sampled vectors obtained using the value of r = 4 with 

those obtained using the values r = 2,6 and 8. Irrespective of the sample size, the value 

of r = 2 produced Markov chains with the exact same set of response vectors suggesting 

that a reducible Markov chain is produced for this value of r .  In the case of r = 8, very 

poor mixing was obtained. Apart from the noticeable jump in completion time between 

r = 4 and r = 6 there is a significant drop in the number of unique vectors sampled by 

the program. For these reasons, we chose to use the value of 4 for r .  Results are based 

on a sample of 1000,000 (after a burn in of 2,000 iterations). Autocorrelation plots of the 

sampled sufficient statistics are shown in Figure 3.2. The burn-in period required may be 

calculated by looking at the time it takes for the autocorrelation to decay to a negligible 

level [7] such as 5 5 percent. In the multivariate scenario, the burn-in period required 

may be calculated as the maximum time needed for the autocorrelation of each covariate 

to decay to a negligible level. From the plots in Figure 3.2, a burn-in of 2000 iterations 
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appears to be reasonable for the autocorrelation to decay below 0.05. 

Table 3.2: Time Required to Generate a Sample of 1000 

r Time V / V Unique # of Unique # of Sufficient 
(minutes) Visited States Statistic Vectors 

2 0.32 4,730 8 8 
4 0.43 17,713 198 14 
6 5.37 412,779 84 6 
8 52.03 3,934,130 6 2 

Figure 3.2: Autocorrelation Plots of the Sampled Sufficient Statistics 

The function call to elrm is shown below and required approximately 6 hours to com- 

plete. 

diabetes.elrm = elm(formula=IA2A/n-age+gender+nDQ2+nDQ8+nDQ6.2+age:nDQ2+age:nDQ8+age:nDQ6.2, 

zCols=c (nDQ6.2, age : nDQ6.2) , 

r=4, 

iter=1002000, 

dataset=diabetes 

burnIn = 2000) 
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Trace plots and histograms of the sampled sufficient statistics (TI, T2) for the regression 

parameters of interest, y = (yl, y2), corresponding to nDQ6.2 and age:nDQ6.2, respectively, 

are shown in Figures 3.3 and 3.4. The plots were obtained using the plot.elrm method with 

sampling fraction p = .20. The plots pertain to the conditional distributions of TI and of T2 

given the vector S of sufficient statistics observed for the remaining nuisance parameters, 

under the null hypothesis that y = (0,O). Therefore, the histograms approximate the 

distributions of (TIIS, y = (0,O)) and (T21S, y = (0,O)). The plots show that the two 

distributions take on more than a single value and so are not degenerate. 

In Figure 3.3 a multimodal distribution is to be expected because the sufficient statistic 

is of the form Cy=l yi x agei x DQ6.2i. To see this, consider the simplest case of a binary 

response vector y. Index the 11 patients who carry DQ6.2 by 1 to 11. Suppose their 

ages range from 10-33 years. In the sum, the random response vectors y generated by the 

Markov chain may be viewed as selecting a random subset of ages of random size from these 

11 subjects. Suppose that our 11 patients who carry DQ6.2 have yl = . . . = yll = 0 so that 

the size of the random subset of ages from these patients is zero. Then the distribution of the 

sufficient statistic must be a point mass at  0. Now suppose that exactly one of yl through 

yll is 1 and that all the rest are zero, so that the size of the random subset of ages is 1. Then 

the distribution of the sufficient statistic has support from 10-33 years. Continuing, suppose 

that exactly two of yl through yll are 1 and that all the rest are zero, so that the size of 

the random subset of ages is 2. Then the distribution of the sufficient statistic has support 

from 20-66 years. Continuing the argument, we see that the distribution of the sufficient 

statistic shown in Figure 3.3 is a mixture of component distributions corresponding to age 

subset sizes as low as zero and as high as 11. The apparent multimodality of the distribution 

shown in Figure 3.3 arises from the mixture property of this distribution. 

The p-value estimate obtained for the joint effect of the parameters of interest is 0.914. 

The Monte Carlo standard error of the p-value estimate (using batch-means) is 0.00444. 

Looking at the the histogram of the joint distribution (TI, T2 IS, yl = y2 = 0) shown in 

Figure 3.5, one can see that the probability of observing (TI, T2) = (0,O) is relatively large 

compared to the other possible values, producing a large p-value for the joint test that the 

regression parameters corresponding to nDQ6.2 and age:nDQ6.2 are both zero. 



CHAPTER 3. ANALYSIS OF DIABETES DATA 32 

When testing each parameter separately, we must also condition on the sufficient statis- 

tics for the remaining parameters of interest. Thus, the approximate two-sided p-values, 

for separately testing the effect of each parameter, are obtained using a subset of the sam- 

ple produced to test their joint effect as described in Chapter 2, Section 2.5. In our case, 

the subsets were quite small (35,630) resulting in a significant loss of accuracy. Taking a 

closer look, we also found that the extracted samples were comprised of only the observed 

value (i.e., were degenerate). In fact, we expect the distributions of (TI IT2, S, yl = 0) and 

(T21T1, S, 7 2  = 0) to be degenerate, because the test statistics for TI and T2 are 

and the summands in these expressions are all greater than or equal to zero. Hence TI = 0 

if and only if all summands are zero and similarly for T2. It follows that TI = 0 implies 

T2 = 0. Furthermore, since age is greater than zero for all patients, T2 = 0 implies TI = 0. 

Thus TI = 0 if and only if Tz = 0. In other cases, where the conditional distributions of each 

sufficient statistic are not degenerate and more accuracy is required, one can simply run 

elrm over again and generate chains of the desired length for each conditional distribution 

of interest. 

Maximum likelihood estimates for the parameters of interest were negative infinity and 

so did not fall within the boundary of the parameter space. The observed value of the 

sufficient statistic for each parameter of interest was the minimum possible value of zero. 
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Figure 3.3: Plots for nDQ6.2 
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Figure 3.4: Plots for age:nDQ6.2 
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Figure 3.5: Histogram for (nDQ6.2, age:nDQ6.2) 

lW i. 



Chapter 4 

Conclusions and Future Work 

4.1 Conclusions 

The modified version of the Forster et al. (2003) algorithm developed in this work was 

found effective for performing exact inference for binomial regression models for large data 

sets. Instead of sampling from the set V used in the Forster et al. (2003) algorithm we 

sample from the set VA to promote better mixing. The main advantage our algorithm has 

over the one described by Forster et al. (2003) is that we uniformly sample from the set VA 

without having to enumerate it. This allows us to provide (approximate) exact inference 

for logistic regression models with response vectors of large length and further grouping of 

the predictor variable data are not needed. 

In addition to running our program on the diabetes data set, which could not directly 

be analyzed by Logxact, we tested our program on several other data sets where reliable 

estimates may be obtained using Logxact. In all cases elrm provided estimates which were 

in close agreement with those produced by Logxact's exact method. In one particular case, 

elrm was able to produce accurate results where the Gibbs sampler method implemented 

in Logxact failed. We also compared results obtained by elrm on the diabetes data, but 

using smaller models that Logxact was able to handle. In most scenarios, age needed to 

be discretized into three or four categories so that Logxact did not run out of memory. In 

each case, the results obtained by elrm were in close agreement with those obtained using 

Logxact 's exact method. 
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In the near future, to facilitate the use of this inferential approach, we plan to sub- 

mit our method, called 'elrm', as an R package to the Comprehensive R Archive Net- 

work. In the meantime our program is available for both Windows and Unix users at 

http : //WWW.S f U.CQ/-dzamar. 

4.2 Future Improvements 

4.2.1 Inverting the Test to Produce Confidence Intervals 

In the future we plan to include confidence intervals for our parameter estimates. To obtain 

a confidence interval for yp we may invert the test from section 2.5.2. To obtain a level-a 

confidence interval, (y-, y+) for yi, we invert the conditional probabilities test for yi. Let 

t,in and t,, be the smallest and largest possible values of ti in distribution (2.14). The 

lower confidence bound, y-, is such that 

where t-i are the observed values of the sufficient statistics for the remaining parameters 

of interest. Similarly the upper confidence bound, y+, is such that 

4.2.2 Testing Other Hypotheses 

Our program is currently only able to test the hypothesis that all the parameters of interest 

are equal to zero versus the alternative that at least one of the parameters is different from 

zero. We plan to extend elrm to allow for the testing of any hypothesis of the form: 

Ho : Yl = ?1, . . .  ,yq =?q 

'US. 

HI : 3 y i # ? i ,  i = 1 ,  . . . , q  
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where ,jll, - . . , $ are possibly nonzero values, by weighting the generated sampled frequen- 

cies of (2.13). This allows one to adjust the sampled frequencies under Ho : y = 0 to obtain 

sample frequencies under Ho : y = +. Suppose we wish to test Ho : y = +, then the cor- 

responding sample frequencies, f+, needed are obtained from the sampled frequencies, fo, 

under Ho : y = 0 as follows: 

4.2.3 Interlaced Estimator of the Variance 

The univariate score test requires one to estimate both the mean and variance of the test 

statistic under the null hypothesis. In our case, the distribution of the test statistic is 

non-trivial and we are forced to approximate it using a sample of correlated observations 

generated via Markov chain Monte Carlo. The sample mean of dependent observations 

remains an unbiased estimate of E[Xi ]  = p: 
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However, the sample variance is not an unbiased estimate of V(Xi) = a2. The expected 

value of the sample variance, Lf2 is 

which is smaller than a2 if the covariance between Xi, and Xj is greater than zero for 

all i # j .  In the future, we would like use an interlaced variance estimator [l] which is 
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less biased than the sample variance for time-dependent correlated data. The interlaced 

variance estimator is calculated as follows: 

1. Find the smallest integer k such that the lag k autocorrelation of the sample is smaller 

than a chosen constant e ,  where -1 5 E 5 1. Usually E is chosen close to zero. The 

lag k autocorrelation of a sample, denoted as r k ,  is computed as follows: 

2. Extract the following (less correlated) sub-samples: 

3. Calculate the sample variance, S:, for each sub-sample: 

S: = Var (Ui) ,  i = 1, ..., k . 

4. Finally, the interlaced estimate of a2 is computed by summing up the values of 5': 

and dividing by k: 

The interlaced variance estimator can also be used in the multivariate scenario to obtain 

an unbiased estimate of the variance-covariance matrix by defining the lag k autocorrela- 

tion function as the maximum lag k autocorrelation among all pairs of components in the 

multivariate vector. 



Appendix A 

Monte Carlo Standard Error via 
Batch Means 

The following description is adapted from the online-notes of Charlie Geyer (http://www. 

stat.umn.edu/geyer/mcmc/talk/mcmc.pdf) and Murali Haran (http://www.stat.psu.edu 

/-mharan/MCMCtut/batchmeans.pdf). Suppose that our Markov chain consists of n ob- 

servations XI ,  X2, ..., X, and we would like to obtain an approximately unbiased estimate 

of the variance of fin = Cyzl Y,, where Y,  = g(Xi) for some function g. In Section 2.5 

we used the batch means estimator to compute the variance of a pvalue estimate obtained 

via Markov chain Monte Carlo. In this case, g(x) = I [fk(x) 5 f (xObs)], where f k  (x) is the 

frequency of z in the kth batch and f (xobs) is the frequency of the observed value of the 

sufficient statistic in the Markov chain. By 

lim &(fin - 
n'm 

where 

the Markov chain central limit theorem (CLT) 

d 
P> + ~ ( o l a ~ ) ,  

(see Chan and Geyer, 1994, for details). Therefore, 

a2 
var (fin) -. n 

Unfortunately, a2 as given in (A.l) is difficult to estimate directly. To remedy this problem, 

the batch means approach splits the Markov chain into k batches of size b and forms the 

batch averages: 
. b 
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By the Markov chain CLT, we have 

&(K (b) - p) 5 N ( o , ~ ~ ) ,  i = I ,  ..., k 

Hence, for large b, 

b (K  (b) - p)2 a2 x2(1), i = 1, ..., Ic .  

Since the mean of a x2(1) random variable is 1, we can approximate a2 by averaging the 

left-hand side over several batches. Thus, 

But since we don't know p, we replace it by fin and divide by k - 1 rather than k. Hence 

a2 may be approximated by 

and the Monte Carlo standard error of f in is therefore 

An important application aspect is the choice of batch size, b. The idea is to take b 

large enough so that the first-order autocorrelation of batch means is negligible. A popular 

approach is to calculate the autocorrelation between batch means for increasing batch sizes 

and stop when the autocorrelation falls below a given threshold (e.g., 0.05). Since this rule 

is implemented with empirical autocorrelations that are subject to sampling variability, it 

sometimes results in standard errors that are too small as the autocorrelation may rise again 

for larger batch sizes. Moreover, for Markov chains of finite size, the correlation between 

the batch means will always be positive resulting in residual dependence among the batch 

means. 
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ELRM Help File 

Exact Logistic Regression Model 

Description: 

'elm' implements a Markov Chain Monte Carlo algorithm to approximate 
exact conditional inference for logistic regression models. Exact 
conditional inference is based on the distribution of the sufficient 
statistics for the parameters of interest given the sufficient statistics 
for the remaining nuisance parameters. Users specify a logistic model and 
a list of model terms of interest for exact inference. 

Usage: 

elrm(formula, zCols, r=4, iter=1000, dataset, burnIn=iter/lO) 

Arguments: 

formula: a formula object that contains a symbolic description of 
the logistic regression model of interest in the usual R 
formula format. One exception is that the binomial response 
should be specified as 'success'/'trials', where 'success' 
gives the number of successes and 'trials' gives the number 
of binomial trials for each row of 'dataset'. See the 
Examples section for an example elm formula. 

zCols: a vector of model terms for which exact conditional inference 
is of interest. 

r: a parameter of the MCMC algorithm that influences how the 
Markov chain moves around the state space. Small values of r 
cause the chain to take small, relatively frequent steps 
through the state space; larger values cause larger, less 
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frequent s t eps .  The value of r must be an even in teger  l e s s  
than or  equal t o  t h e  length of t he  response vector .  Typical 
values a r e  4 ,  6 or  8. See the  References f o r  f u r t h e r  d e t a i l s .  

i t e r :  an in teger  represent ing the  number of Markov chain 
i t e r a t i o n s  t o  make (must be l a r g e r  than o r  equal t o  1000). 

da t a se t :  a data.frame object  where the  da t a  a r e  s tored .  

burnIn: t he  burn-in period t o  use when conducting inference.  Values 
of t he  Markov chain i n  t he  burn-in period a r e  discarded. 

Details: 

Exact inference f o r  l o g i s t i c  regression is  based on generating t h e  
condit ional  d i s t r i b u t i o n  of t he  s u f f i c i e n t  s t a t i s t i c s  f o r  t he  
regression parameters of i n t e r e s t  given the  s u f f i c i e n t  s t a t i s t i c s  
f o r  t he  remaining nuisance parameters. A recursive algorithm f o r  
generating the  required condit ional  d i s t r i b u t i o n  is  implemented i n  
s t a t i s t i c a l  software packages such a s  LogXact and SAS . However, 
t h e i r  algorithms can only handle problems with modest samples s i z e s  
and numbers of covariates .  ELM is an improved version of t he  
algorithm developed by Fors te r  e t .  a1  (2003) which is capable of 
conducting (approximate) exact inference f o r  la rge  sparse da ta  s e t s .  

A t y p i c a l  pred ic tor  has t he  form "response/n"tems" where 'response' 
is the  name of t h e  ( in teger )  response vec tor ,  'n '  is the  column name 
containing the  binomial s i z e s  and 'terms' is a s e r i e s  of terms which 
spec i f i e s  a l i n e a r  pred ic tor  f o r  t h e  log  odds r a t i o .  

A spec i f ica t ion  of t he  f  o m  ' f i r s t  : second' ind ica tes  t he  
in te rac t ions  of t he  term ' f i r s t '  with t h e  term 'second'. 

Value: 

'elrm' re turns  an object  of c l a s s  ' " e l m " ' .  

An object  of c l a s s  '"elrm"' is a list containing the  following 
components: 

es t imates:  a vector  containing the  parameter est imates .  

p.values: a vector  containing t h e  estimated p-value f o r  each 
term of i n t e r e s t .  

p .values.se:  a vector  containing t h e  standard e r r o r s  of t h e  
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estimated p-values of each term of interest. 

mc: a data.frame containing the Markov chain produced. 

sample.size: a vector containing the number of states from the 
Markov chain that were used to get each conditional 
distribution for testing each individual parameter. 

call: the matched call 

References: 

Forster J, McDonald J, Smith P. Markov Chain Monte Carlo Exact 
Inference for Binomial and Multinomial Logistic Regression Models. 
Statistics and Computing, 13:169 177, 11 2003. 

Mehta CR, Pate1 NR. Logxact for Windows. Cytel Software Corporation, 
Cambridge, USA, 1999. 

Zamar David. Monte Carlo Markov Chain Exact Inference for Binomial 
Regression Models. Master's thesis, Statistics and Actuarial 
Sciences, Simon Fraser University, 2006. 

See Also: 

'summary.elrm' 'plot.elrm'. 

Examples: 

# Example using the urinary tract infection data set 
uti . dat=read. table (%ti . txt" , header=T) ; 

# call the elrm function on the urinary tract infection data with 
#'dia' as the single parameter of interest 
uti.elrm=elrm(formula=uti/n"age+oc+dia+vic+vicl+vis, zCols=c(dia), 

r=2, iter=50000, dataset=uti . dat , burnIn=100) ; 
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Summarizing Exact Logistic Regression Model Tests 

Description: 

These functions are all 'methods' for class 'elm' objects. 

Usage: 

summary (object) 
plot (x, p=0.2, breaks='Sturges ' ) 

Arguments: 

object: 'elrm' object, typically result of 'elrm'. 

x: 'elrm' object, typically result of 'elrm'. 

p: the sampling fraction of points to be plotted. 

breaks: one of: 

* a vector giving the number of cells to use for the histogram 
of each sufficient statistic of interest. 

* a single number giving the number of cells for each 
histogram. 

* the character string naming an algorithm to compute the 
number of cells (see Details) . 

Details: 

'summary.elrm7 formats and prints out the results of an elrm object. 
These include coefficient estimates for models terms of interest, 
their corresponding p-value and MCMC standard error of the p-value 
as well as the sample size each inference is based on. 

'plot.elrm7 produces both a trace and histogram of the sampled 
values of the sufficient statistics for each parameter of interest 

The default for 'breaks' is '"Sturges"': see 'nclass.Sturges'. Other 
names for which algorithms are supplied are '"Scott"' and '"FD"'. 
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References: 

Forster J, McDonald J, Smith P. Markov Chain Monte Carlo Exact 
Inference for Binomial and Multinomial Logistic Regression Models, 
Statistics and Computing, 13:169 177, 11 2003. 

Mehta CR, Pate1 NR. Logxact for Windows. Cytel Software Corporation, 
Cambridge, USA, 1999. 

Zamar David. Monte Carlo Markov Chain Exact Inference for Binomial 
Regression Models. Master's thesis, Statistics and Actuarial 
Sciences, Simon Fraser University, 2006. 

Examples: 

# Example using the urinary tract infection data set 
uti . dat=read. table ("uti . txt ", header=T) ; 

# call the elrm function on the urinary tract infection data with 
#'dia' as the single parameter of interest 
uti . elrm=elrm(f ormula=uti/n~age+oc+dia+vic+vicl+vis , zCols=c (dial , 

r=2, iter=50000, dataset=uti.dat, burnIn=100); 

# call the summary method 
summary (uti . elrm) ; 

# plot a random sample of size 10000 from the Markov chain generated. 
# the observations chosen remain in the order in which they were generated. 
plot(uti.elrm,0.20); 
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Diabetes Data GLM Output 

Call : 
glm(formu1a = IA2A/n - age + gender + nD92 + nD98 + nD96.2 + 

age:nDq2 + age:nDQ8 + age:nDq6.2, family = "binomial", weights = n) 

Deviance Residuals: 
Min 19 Median 39 Max 

-2.3268 -0.8601 -0.2893 0.8323 2.4584 

Coefficients: 
Estimate Std. Error z value Pr(>lzl) 

(Intercept) 8.551e-01 4.284e-01 1.996 0.045938 * 
age -8.162e-02 2.373e-02 -3.440 0.000582 *** 
gender 1.901e-01 1.732e-01 1.098 0.272340 
nD92 -9.233e-01 3.340e-01 -2.765 0.005696 ** 
n W 8  3.489e-01 3.524e-01 0.990 0.322216 
nD96.2 -1.758e+01 3.021e+03 -0.006 0.995357 
age:nDQ2 1.614e-02 1.947e-02 0.829 0.407270 
age:nDQ8 6.904e-03 1.981e-02 0.349 0.727464 
age:nDCj6.2 7.779e-02 1.102e+02 0.001 0.999437 
--- 
Signif. codes: 0 I***' 0.001 '**I 0.01 I* '  0.05 ' . I  0.1 ' '  1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 407.21 on 284 degrees of freedom 
Residual deviance: 307.99 on 276 degrees of freedom 
AIC: 507.15 

Number of Fisher Scoring iterations: 15 
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C++ Code Listing 

Files Functions Description 

binomMCMC.cpp Matrix nextV(Matrix, Matrix, Choose a vector from the set 
Array2D<int>, int) V' with uniform probability. 

int getd(Matrix, Matrix, Matrix) Choose an integer d according 
to  the probabilities assigned to 
each di. 

void writeToFile(ofstream& , Write the buffered Markov chain 
Matrix*, int) chain output to a file and clear the 

buffer. 

extern "C" void MCMC(int*, Function called by elrm t o  generate 
int*, int*, int*, int*, int*, int*, the Markov chain. 
char**, int*) 

functions.cpp void swap(int*, int, int) Swap two entries of an integer array. 

double factorial(doub1e) Calculate the factorial of an integer 
number stored as a double. 

double nCk(double, double) Combinatorial calculator. 

void randPerm(int*, int) Randomly permute an array 
of integers. 

void rsample(int*, int*, int, int) Takes a random sample of a specified 

size from the elements of an integer 
array without replacement. 
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Files Functions 

49 

Description 

functions. h 

List .h 

matrix.h 

int permute(int*, int) 

void quicksort(int*, int) 

List<int*> unique(List<int*>, int) 

Array2D<int> findR(int, int) 

List<List<double>*> readDataFile(char*) 

double* getWeightings(Array2D<int>, int) 

rand-int (int ) 

Obtain the next (nonrandom) 
sequential permutation of an 
array of integers [9]. 

Sort an array of integers from 
smallest to largest [14]. 

Find all unique integers in a 

list of integers. 

Find all vectors in the seed set R. 

Read a data file. 

Obtain weightings for vectors in 
the seed set R. 

Obtain a random integer between 
0 (inclusive) and N (exclusive). 

Header file of functions.cpp. 

List template class. 

Matrix template class [16]. 
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