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Abstract 

We investigate a class of resonant instabilities for fluid-structure interaction problems in 

which an elastic fiber is immersed in a viscous incompressible fluid. The instabilities are 

excited via internal forcing driven by periodic variations in the material stiffness. The 

underlying mathematical model is based on the immersed boundary formalism, which we 

linearize by assuming small perturbations of the fiber around a flat equilibrium state. The 

stability analysis makes use of Floquet theory to derive an eigenvalue problem relating the 

key physical parameters. The resulting solution is much simpler than a similar analysis 

performed in [8] for a circular fiber geometry, and we show that the results are consistent 

with this previous analysis. We also uncover an interesting behavior for odd modes, in 

which forcing by a single odd mode generate instabilities that exhibit a combination of wave 

numbers, something that is not observed for even wavenumbers. Numerical simulations are 

presented to verify the analytical results. 
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Chapter 1 

Introduction 

1.1 Overview 

Fluid-structure interaction (FSI) problems have attracted a great deal of interest in recent 

years. FSI is a multi-physics phenomenon, which involves the interaction of a deformable 

structure with a fluid. Problems of this type abound in biological, engineering and industrial 

applications. In engineering, there exist many examples like parachute and airbag dynam- 

ics [14], flow in a pipe with elastic walls [35], and a flapping filament in a soap film [41]. In 

biological fluid dynamics, typical applications include flow of blood in the heart or arter- 

ies [31], platelet aggregation during blood clotting [ll] ,  swimming of aquatic flagellates [9], 

and motion of the basilar membrane in the inner ear [2]. 

The functional interaction between the fluid and solid components leads naturally to a 

coupled system that poses significant challenges for scientists in terms of proposing physical 

models, performing computational simulations, and analyzing the equations mathematically. 

The potential difficulties include the wide variety of possible fluid dynamic effects (compress- 

ibility, viscosity, inertia, gravity, turbulence, etc.) with corresponding numerical solvers; the 

geometric complexity of the solid structure, as well as its time-dependent motion; and the 

nonlinear interaction at the interface between fluid and solid. Various physical models and 

computational methods that address these challenges in FSI were reviewed in [lo] by Dowel1 

and Hall, and by Mittal and Iaccarino [24]. 
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1.2 Modelling and computational methods 

In this work, we consider a fluid-structure interaction problem with the following character- 

istics. The fluid and structure are treated as two separate subsystems, which are computed 

independently yet still linked at the interface. One subsystem is a viscous and incompress- 

ible fluid which is governed by the Navier-Stokes equations in Cartesian coordinates, fixed in 

space. The second subsystem is a deformable solid structure, which is immersed in the fluid 

and represented using Lagrangian variables that move throughout the computation. The 

structure moves along with the surrounding fluid and changes its configuration continuously 

in response to the flow. In turn, the solid is elastic and so any deformation exerts body 

forces back to the surrounding fluid. Hence, there is a two-way interaction between the fluid 

and boundary. This situation is essentially different from traditional exterior problems in 

engineering fluid dynamics wherein fluid motion occurs through or around a rigid structure 

with a well-specified geometry. 

Amongst the problems involving fluid-structure interactions , there are many examples 

from the physical world, and in recent decades there have been a wide range of numerical 

methods developed to simulate them. And among all of these methods, the Immersed 

Boundary (IB) method has distinguished itself by its ability to deal with very complex 

deformable boundaries both simply and efficiently. The IB method was originally developed 

by C.S. Peskin in [26, 27, 291 to simulate blood flow in the heart, and has since then been 

applied to a wide range of fluid dynamical problems in biology. The method is made up 

of three main components. First, the Navier-Stokes equations governing the fluid flow are 

discretized on a fixed Eulerian lattice. Secondly, the immersed solid object is represented in 

Lagrangian coordinates by a set of moving control points. These two sets of discrete points 

do not necessarily coincide during the computation, but the evolution of the immersed 

boundary is constrained such that boundary points move with the fluid according to the 

no-slip boundary conditions. Therefore, the third component is the interaction between 

the fluid grid points and the immersed boundary points, which is mediated by discrete 

approximations to Dirac delta-functions . A very attractive feature of dealing with the 

two subsystems separately is that we can discretize the fluid equations by finite-difference 

methods on a uniform mesh. In this case, the linear system corresponding to the Navier 

Stokes equations may be solved using a fast solver, i.e., the Fast Fourier Transform (FFT). 

This is a major advantage of the IB method. 
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Since 1972 when Peskin first introduced this method, numerous modifications and re- 

finements have been proposed, and now there exist a number of variants of this approach, 

like the immersed interface method [21], the blob projection method [7], the penalty IB 

method [15], and so on. Methods in this category have been successfully used for a wide 

variety of problems including cardiac mechanics [29], cochlear dynamics [2], aquatic animal 

locomotion [9], and suspensions of flexible filaments [41]. 

1.3 Developments in analysis 

In contrast to the extensive literature on IB computations, relatively few works focus on 

the analysis of solutions to the equations governing immersed boundaries. Until now, only 

limited analytical results are available, and these are restricted to simple geometries. Beyer 

and LeVeque [3] first performed an analysis of a flat fiber in one spatial dimension, where an 

analysis was performed of the accuracy and stability of the numerical method. Stockie and 

Wetton [38] investigated the stability of a passive flat fiber in a 2D rectangular geometry, 

and derived asymptotic decay rates and frequencies using linear analysis. There are also 

a number of results available for another common geometry: the circular membrane in 

two dimensions. In [7], a nonlinear analysis for a perturbed circular membrane in inviscid 

flows was performed by Cortez and Varela. These earlier results corresponded to unforced or 

passive fibers, while more recently, a linear stability analysis for an actively forced immersed 

interface was performed by Cortez, Peskin, Stockie and Varela [8]. These authors verified 

the existence of resonance in a circular membrane wherein the active forcing arose internally 

from periodic variations in the fiber stiffness parameter. 

In this thesis, we continue an emphasis on the study of resonance appearing in an 

immersed elastic fiber, but instead focus on a perturbed flat fiber, a geometry that has not 

yet been considered. Because the only forcing in this problem is internal, through a time- 

dependent stiffness parameter, any resonance that appears is called "parametric resonance". 

In fact, parametric resonance is distinct from the usual resonance that arises from an external 

forcing term in the following two ways: 

parametric resonance can lead to unbounded oscillations in the solution even in the 

presence of damping, which is not the case for externally forced problems; and 

the resonant response to a system that is parametrically forced is at twice the forcing 
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frequency, in contrast with externally forced system where the response is close to the 

same frequency as the forcing. 

A previous paper of Cortez and his colleagues [8] has analyzed the parametric resonance 

phenomenon in a circular geometry, which gives rise to complex Bessel functions. This 

thesis performs a similar analysis for a flat fiber which is useful for considering problems 

where the geometry is not circular. We will see later on that the analytical solutions in 

this case are considerably simplified owing to the elimination of the Bessel functions, but 

the results are otherwise consistent with [8]. One of the advantages of this simplification is 

that the analytical technique, based on Floquet theory, is particularly easy to understand. 

We have also uncovered an unusual behaviour in the resonant behaviour of odd-numbered 

modes which differs from that observed in even wavenumbers, which as far as we know has 

not yet been reported in the literature. 

1.4 Chapter organization 

The thesis is organized as follows. In Chapter 2, we present the mathematical structure of 

the immersed boundary method for a flat elastic fiber immersed in a viscous incompress- 

ible fluid, and describe two alternative IB formulations for the problem: one in terms of 

delta-functions, and the other where singular forces are eliminated in favor of stress jump 

conditions across fiber. In Chapter 3, a linearized IB formulation in terms of jump condi- 

tions across the interface is derived for a flat boundary, which is excited by periodic internal 

forcing through the stiffness parameter. We employ Floquet analysis to obtain an eigen- 

value problem which defines a relationship between the amplitude of the perturbation and 

the wavenumber, and use these results to draw conclusions about the resonant instabilities 

in the fiber. Chapter 4 contains details of the discrete scheme proposed in [26, 291, as well as 

corresponding numerical solution algorithms. In Chapter 5, several numerical simulations 

are presented to validate the results of the Floquet analysis, as well as the convergence of 

the IB method. 



Chapter 2 

Mat hemat ical Formulation 

2.1 General IB model 

We propose in this thesis to consider an immersed boundary that is a flat, elastic fiber which 

extends to infinity, and is immersed in a viscous incompressible flow. We restrict ourselves 

to two dimensions so that the fiber is a line which at equilibrium sits along the x-axis. We 

are interested ultimately only in small spatially-periodic oscillations (Fourier modes) and 

so we restrict ourselves to the rectangular domain a (x ,  y) = [0, L] x [-L/2, L/2] and apply 

periodic boundary conditions on all sides. Then, this situation corresponds to a periodic 

array of horizontal fibers that extends to infinity in both vertical directions. 

The immersed elastic fiber is represented by I'(t), and is assumed to be massless and 

incompressible. The restoring force exerted by deforming any two nearby points on the fiber 

is taken to be analogous to that of a linear spring with zero resting length. Therefore, in the 

absence of external forcing, any finite section of the fiber would shrink to a point. In our 

periodic geometry, the fiber remains always under tension and will stay at the equilibrium 

location y = 0 in the absence of any perturbation. 

If small perturbations are introduced in the fiber's position, the fiber will begin to 

oscillate around its equilibrium and the amplitude will gradually decrease to zero (owing 

to viscous damping forces in the fluid) until the fiber again lies along the x-axis. In turn, 

the restoring forces within the fiber will affect the pattern of the flow on either side of the 

fiber, a*. Also, because of the incompressibility condition, it is not possible for the fiber 

to intersect itself and so the fiber will always divide the domain into two sub-domains, a+ 
and a - .  In summary, the model is described as Fig. 2.1. 
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equilibrium 

/ 

Figure 2.1: The two-dimensional model: an elastic flat fiber immersed in the fluid. The 
fiber is perturbed away from its equilibrium state initially and acts as an interface r ( t )  to 
separate the domain a ( x ,  y) into two parts a*. 

The fluid is parameterized in terms of Cartesian coordinates x = (x, y) E as well as 

time t E (0, TI and we denote the relevant fluid quantities for velocity as u(x, t), pressure 

p(x, t)  and fluid body force f(x,  t). The fluid motion is governed by the viscous incompress- 

ible Navier-Stokes equations 

p ( u t + u . V u )  = p n u - V p + f ,  

v - u  = 0, 

where the constants p and p are the fluid density and viscosity. 

The immersed elastic fiber is represented in Lagrangian variables using a curvilinear 

coordinate s which parameterizes the fiber. The choice of the fiber parametrization is 

somewhat arbitrary, and so we will select s to lie in the interval [O, I ) ,  after the non- 

dimensionlization in the next section. At time t, the configuration of the fiber is described 

by a set of control points X(s, t )  in Lagrangian variables and F(s,  t)  corresponds to the force 

density of immersed boundary. 

Using this notation, the interaction between the fluid and the immersed boundary will 

be represented in two separate equations, which couple the fluid and fiber and transfer the 

key physical quantities (namely, velocity and force) between them. First of all, since the 



CHAPTER 2. MATHEMATICAL FORMULATION 7 

fluid and fiber together satisfy the no-slip boundary condition at the interface, the velocity 

of the fiber must be given as 

ax - 
a t  = u(X(s, t), t)  = ~ ( x ,  t)S(x - X(s, t))dfi. 

Secondly, any deformation of the elastic fiber introduces a corresponding contribution to the 

fiber force density, which is then distributed to the surrounding flow, which we can write as 

the following convolution: 

f (x, t) = F(s,  t)S(x - X(s, t))ds. 

It is clear that in the interactions between the fluid and fiber in (2.3)-(2.4), the Dirac 

delta function S(x) plays an important role. It is important to note that the delta functions 

above are two-dimensional delta functions 6(x) = S1(x)S2(y). Later we will see that the 

numerical approximations to the delta function is an essential part of the IB method. 

We now have four equations describing the FSI problem in hand, but are still missing 

a definition of the fiber force density F(s,  t). In the natural world, there exist a variety 

of linear and non-linear elastic forces within deformable solids. As is usual in immersed 

boundary simulations, we choose here to study the simplest forcing of linear models, using 

Hooke's Law for linear springs. In addition, we assume that the only source of Lagrangian 

forcing arises from stretching of the fiber and that there are no bending or surface tension 

forces. Hooke7s law for the tension force T(s, t)  within the fiber can be written 

where ~ ( s ,  t)  denotes the stretching stiffness, which may be a constant, but could in general 

depend on the both the fiber location s and time t. In this thesis, we are particularly 

interested in the parametric resonance of an immersed boundary wherein the stiffness is 

restricted to be a function of time only, ~ ( t ) .  In particular, we take 

where K, is a stiffness constant, wo is the modulating frequency, and E denotes an amplitude 

parameter. Our model excludes the cases with spatially varying stiffness. Nonetheless, such 

cases do exist in natural biological organs such as the basilar member in the inner ear, which 

has a stiffness that is known to vary exponentially along its length. 
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In order to express the force density, we first need to define the unit tangent vector to 

the immersed boundary, 

Together with (2.5)-(2.6), the local force density per unit length is then given by 

See Peskin [28] for a derivation. Noting that the resting length of the fiber is equal to zero, 

we can obtain the fiber force density as 

which depends linearly on the fiber configuration X. The force (2.9) points purely in the 

normal directions, and can be reduced from (2.8) too by substituting (2.5) and (2.7) in it 

and setting the resting length to zero. According to our earlier assumptions, the thickness 

and mass of the fiber are negligible; hence, we ignore the effects of gravity and buoyancy of 

the structure, and so the fluid body force f(x, t)  arises solely from the integral of the fiber 

force density in (2.4). 

In conclusion, equations (2.1)-(2.4) and (2.9), represent a coupled system that describes 

the motion of the fluid and fiber. These equations will be discretized in Chapter 4. 

2.2 Non-dimensionalizat ion 

For the purpose of the stability analysis in the next Chapter, and in the interests of reduc- 

ing the number of physical parameters, we non-dimensionalize the system by scaling the 

variables as follows 
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where variables with a tilde are dimensionless. The last two expressions are based on the 

following scale for the velocity 

Now we apply these scalings to the IB formulation in Section 2.1, and derive an equivalent 

system in dimensionless form 

u t + u . v u  

v . u 

f (x, t) 

Xt = u (X, t) 

F(s, t) 

In terms of dimensionless variables, 

= lo F(s, t)6 (x - X) ds, 

the time-dependent stiffness introduced above becomes 

From now on, we will deal with only dimensionless variables and so we will drop the tilde 

notation. 

By considering the IB model in dimensionless form we obtain some advantage. For 

example, the computational domain has been transformed to a standard unit square [O, 112. 

Also, the physical parameters appearing in the PDE system have been reduced to two 

dimensionless parameters only, 

where v is the reciprocal of the Reynolds number and a the square of the ratio of the natural 

and driving frequencies. 

2.3 Jump condition formulation 

In the dimensionless system (2.10)-(2.16), the singular nature of the delta functions can 

frustrate the analysis. So it is more convenient to introduce an alternate formulation in 

terms of jump conditions across the fiber. This formulation of the IB method in terms of 
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jumps has been used before by Stockie and Wetton [38] to investigate IB stability, and by 

LeVeque and Li [21] to develop the immersed interface method. 

In general, solutions of the fluid equations in (2.10) and (2.11) will be continuous on 

either side of the immersed interface. However, they may be discontinuous or non-smooth 

when crossing the fiber owing to the singular distribution of the fluid body force f(x, t)  

in (2.12). These discontinuities in the solution or its derivatives are what give rise to the 

jump conditions at the interface. Please refer to the literature [19, 22, 181 for more details 

about the derivation of those jump conditions. 

Figure 2.2: An illustration of the jump conditions across the interface, e.g. the pressure 
[[p]]. Also the normal n and tangent T vectors are given at one point of the interface I?. 

Since the immersed fiber is assumed to satisfy no-slip boundary conditions, no fluid 

can pass through. Some quantities are continuous across the interface, such as the velocity 

[[u]] = 0, where [[a] ]  = (.) l r +  - ( a )  l r -  denotes the difference between a physical quantity 

on either side of the boundary. In addition to the tangent vector T as defined in (2.7), we 

denote the normal vector by n, at  each physical point in the boundary I'(t), as shown in 

Fig. 2.2. 
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Because of the singular forces, the derivatives of velocity and the pressure may be dis- 

continuous across the interface, and obey the following jump conditions 

v r [[n- Vu]] = - 0,- (y), 

where ( ~ ( s ,  t ) / l E  1) gives the force per unit length measured at each boundary point. 

Further simplification can give rise to the second equation (2.18), if we notice the impress- 

ibility (2.11) in Navier-Stokes equations. It  follows that the term n . [[n . Vu]] = 0 will 

disappear automatically. 

At this point, we have now eliminated the delta functions appearing in the Section 2.2 

by three jump conditions, which link the fluid and fiber across the interface. The resulting 

"jump" system will be used to analyze the stability of immersed fiber in Chapter 3 

Ut + u - V U  = VAu- Vp, 

V - u  = 0, 

F(s ,  t )  . r 
v re [[n. Vu]] = - a ax , 1x1 

The expressions for the linear force density (2.14) and time-dependent stiffness (2.15) com- 

plete the jump formulation of the IB method. 



Chapter 

St ability Analysis 

In contrast with the large body of literature on numerical simulations for immersed bound- 

ary problems, relatively few publications have appeared that analyze the stability or other 

properties of solutions to the IB equations. The first paper to perform such an analysis 

was by Beyer and LeVeque [3], where they studied the IB model in one spatial dimension 

and analyzed the numerical method to show the limitations of the IB method in terms 

of accuracy due to the choice of discrete delta function. Their results demonstrated that 

it was possible to optimize the spatial accuracy using an appropriate approximate delta 

function. For two dimensional problems, it is much more of a challenge to derive general 

results regarding solutions of the IB equations owing to complications from geometry and 

the singular nature of the applied forces. 

Up to this point, analytical results have been limited to problems with simple geometry. 

For example, Cortez and Varela performed a nonlinear analysis for a perturbed circular 

membrane in inviscid flow [7]. Their immersed structure was passive, and only generated 

forces under elastic deformation in response to the motion of surrounding flow. Several 

years later, Cortez and colleagues investigated the stability of the viscous case for both a 

passive and active circular membranes [8]. In this work, the fiber was excited via a time- 

dependent internal forcing appearing as a periodic variation of the fiber stiffness parameter. 

This situation is a prototype for problems which abound in biological applications such as 

the beating heart and flagellated cells. 

Besides the circular membrane, another important configuration to consider is a flat 

fiber, which also appears in many applications such as the basilar membrane in the inner 

ear [2], suspended pulp fibers [37], and flapping filaments [41]. An analysis of the stability 
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of perturbations to a flat fiber in two dimensions was studied by Stockie and Wetton in [38]. 

In this paper, the authors investigated the linear stability of the fluid-fiber interaction 

under small sinusoidal perturbations and obtained asymptotic expansions of the resulting 

frequency and decay rates for the excited modes of oscillation. 

There has as yet been no attempt to extend the results of Cortez et al. [8] to consider a 

flat fiber subjected to internal parametric forcing. In this thesis, we will address this issue 

and analyze the stability of a flat fiber immersed in a viscous incompressible Navier-Stokes 

flow. We will see that the parametrically forced system can give rise to resonance, in the 

sense that the amplitude of oscillation in the linearized system can become unbounded even 

in the presence of viscous damping. These results show that the flat fiber exhibits very 

similar behavior to the circular fiber considered in [8]. 

3.1 Linearization 

According to the description in Chapter 2, we consider a flat immersed boundary which 

has an equilibrium state along x-axis (y = 0) initially, and the resting length is L = 1 (in 

the non-dimensional system). A perturbation to the equilibrium state is introduced and 

represented in Eulerian variables as (J(s, t) ,  q(s, t)) so that the perturbed fiber position is 

given by 

X(s, t) = (s + J(s, t) ,  q b ,  t))  , (3.1) 

where s E [0, 1). The perturbations J and q are understood to be small and are assumed to 

have continuous derivatives up to second order. Following the development in [36], we aim 

next to perform asymptotic expansions and omit higher order terms in J and q. 

First of all, we need to derive some basic linearized quantities for later use. The unit 

stretching length 1 1 involved in the jump conditions (2.23) and (2.24) is approximated 

from (3.1) expanding in a Taylor series and neglecting higher order (non-linear) terms in J, 

7 and their derivatives: 
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Similarly, based on the definition (2.7), we obtain linear approximations for the tangent and 

normal vectors 

Next, we will derive the linearized version of the jump formulation of the IB equations. 

We start by linearizing the force density. As we discussed earlier, we will consider internal 

forcing through a periodically varying stiffness parameter ~ ( t )  in (2.15). By substituting 

the perturbed fiber position (3.1) into the non-dimensionalized force density (2.14), the 

linearized form of the fiber force is given as 

For the purposes of convenience to our analysis, the stiffness ~ ( t )  is rewritten in terms of 

complex variables as 

Next, we will treat the jump conditions in IB formulation in a similar way. The con- 

dition (2.24) involves the difference in pressure p across the fiber, which is related to the 

normal component of force density per unit length. Using the above expressions, we linearize 

the pressure jump as follows 

In the tangential jump condition (2.23), the nonlinear term [[vs El] is negligible in compar- 

ison to [[$]I in the jump [[n - Vu]]. Once we take the tangential component of this jump, 

r. [[$]I, the contribution from the component of horizontal velocity [[%]I is more significant 

than that of the vertical one %[[%I]. Therefore, the left hand side of this jump condition will 

be dominated by the derivative of the horizontal velocity with respect to vertical variable. 

The condition (2.23) then reduces to 

The last two jump conditions expressing continuity of the velocity across the fiber remain 

unchanged: 
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We next consider the equation (2.21) which governs the evolution of the fiber. Using 

Taylor expansions, it can be simplified as 

= u (s, 0, t) . (3.8) 

Finally, we would like to linearize the Navier-Stokes equations (2.19) by ignoring the 

nonlinear inertial term u . Vu while still retaining the time derivative ut, which yields the 

unsteady Stokes equation: 

Our use of the unsteady Stokes equations (as opposed to simply the steady Stokes equations) 

requires some justification, since it is more often the case that both inertial terms are of 

similar magnitude and so must be dropped together. In the previous chapter, we chose to 

base our velocity scale U = Lwo on the fiber forcing frequency, which is not necessarily 

representative of the actual fluid velocity engendered by the fiber motion. If we leave the 

velocity scale undetermined for the moment, then the Navier-Stokes equations (2.19) can 

be written in non-dimensional variables as: 

where Re = = $ is the Reynolds number, and = $ is the Stokes number, based on 
CL 

the time scale T = &. In computations reported later in Chapter 5, we compute values 

of the fluid velocity which can be used to determine that the ratio = Lwo/U (which is 

known as the Strouhal number) typically lies in the range [lo, lo2]; hence, it is clearly not 

the case that the two inertial terms are of equal size and so we are justified in dropping only 

the nonlinear inertial term. We will therefore consider the unsteady Stokes equation (3.9) 

in the remainder of this work. 

In conclusion, the linearized version of the IB equations includes the following compo- 

nents. The elastic fiber, under small perturbations, evolves according to (3.7). The fluid 

is divided into two sub-domains by the immersed boundary, which are separately governed 

by unsteady Stokes' equations (3.9) and (3.10). Moreover, four interfacial jump conditions 

(3.4)-(3.6) are given in the linearized form and help to link two subdomains of the fluid 

separated by the immersed fiber r ( t )  as shown in Fig. 2.1 and Fig. 2.2. 
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3.2 Fourier transformation 

We can now move on to our primary goal of demonstrating the existence of parametric 

resonance in the immersed boundary. That is to say, we will show that the fiber becomes 

unstable owing to the periodic internal forcing in the stiffness parameter (3.3). Naturally, 

we want to predict instabilities by looking for a relationship between wave modes p and 

oscillation amplitude E ,  with respect to given system parameters v and a in (2.16). Our 

analysis is based on a general approach from the Floquet theory. Many problems in fluid 

mechanics have been studied by applying similar procedures, such as the horizontal interface 

between two fluids with different densities [17], the previous analysis of parametrically forced 

circular elastic membranes immersed in fluid [8]. Our work here will parallel the methods in 

these two publications. Finally, we will see that the eventual results yield similar stability 

diagrams to those presented in [8]. 

We assume that solutions to the linearized IB system can be expanded in the form of 

Fourier series as follows 

where i = is the imaginary unit, p > 1 is the integer wavenumber, and ext is the 

Floquet multiplier with the complex number X := a + iP  (a  and P are assumed real). 

Then we apply the transformation (3.11) to the fluid equations (3.9) and (3.10) so as 

to obtain relationships for the Fourier coefficients. For example, from the incompressibility 

condition (3.10), we obtain the following equation 

which defines a relationship between the Fourier coefficients z ( y )  and Z ( y )  that is satisfied 

for any indices n. Here, we will use (3.12) as a constraint to cancel out the unknowns 

and G in the system that is obtained by applying the Fourier transformation (3.11) to 

the fluid momentum equations (3.9). It gives a second order ordinary differential equation 
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(ODE) with respect to the pressure coefficient g ( y )  as follows 

When taken together with boundedness conditions at infinity, y + f oo, solutions of the 

pressure are given on both sides "f" of the fiber in terms of 

where A; are as yet undetermined constants. 

We next substitute the pressure solutions (3.14) into the transformed momentum equa- 

tions from (3.9) to obtain another two ODES involving the velocity Fourier coefficients G. 
By imposing the same boundedness conditions as before, we have 

where ~ , f  and C,f are constants and we introduce a new parameter 8, given by o2 := 

( 2 ~ p ) ~  + F. At present, we make the assumption that (A + in) # 0, and consider the 

special case (A + in) = 0 later on. 

We next deal with the evolution equations of the immersed fiber (3.7) in the same way, 

by using the transformations (3.11) and solutions (3.14)-(3.15). Without introducing any 

additional unknowns, the Fourier coefficients for the fiber position are given by 

The superscripts "f" refer to the solutions on the separate domains R*, which are 

determined by the two sets of unknowns {A,, Bn, cn)(*) respectively. There remains the 
A 

question of which set of unknowns we should use to express the positions J, and at the 

immersed interface. Indeed, the particular choice is somewhat arbitrary and either or 
A 

"-" coefficients can be used to express J, and in (3.16), owing to the incompressibility 

conditions we will derive in the next section. We therefore chose the "+" coefficients here, 

and will address this issue further in the next section. 

3.3 Linear system 

Once the constants A;, B,f, C$ are determined, the solutions of the linearized IB system 

will be given explicitly, based on the expressions of Fourier coefficients (3.14)-(3.16) and 
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transformations (3.11). In order to determine the six unknowns of each wave mode, we need 

to derive a linear system of six equations relating the coefficients. Four of the equations 

are obtained from the jump conditions (3.4)-(3.6) and the remaining two come from the 

incompressibility condition (3.10) applied on either side of the fiber. Furthermore, if we 

notice that our efforts focus on the motion of the fiber, a simpler system can derived ulti- 
A 

mately, which is made up of two equations that involve only the unknowns &, and $. This 

system can be viewed as an eigenvalue problem where the vector of fiber Fourier coefficients 

represents an eigenvector, and the forcing amplitude E is the corresponding eigenvalue. 

In the end, numerical methods are applied to calculate the eigenvalues of the system, 

from which we can predict the unstable regions in parametric plane; that is, the fiber 

is excited to produce resonance rather than decaying in time. Depending on the values 

(A + in) being trivial or not, the character of solutions displays differently. Hence, we will 

consider these two cases separately. 

3.3.1 Case (A + in) # 0 

By substituting the coefficients of fluid velocity (3.15) into the transformed incompressibil- 

ity (3.12) on both sides of the fiber, we get the first two equations of the linear system 

The continuous jump conditions for the fluid velocity (3.6) result in another two equations 

On looking at these last two equations, it is clear why the "+" coefficients {A;, B;, C:) 

in (3.16) can be replaced by those "-" coefficients without any contradiction. The continuity 

conditions of velocity (3.6) facilitate the symmetric proposition of two groups of unknowns 

in (3.18), which validates the equivalence discussion after (3.16) in the end of previous 

section. 

There remain another two jump conditions, (3.4) and (3.5), which give rise to the last 
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two equations for the linear system 

Equations (3.19) appear complicated compared with the earlier equations, partly be- 

cause they don't simply relate coefficients with indices "n", but rather couple them to- 

gether the adjacent modes having indices "n + 1" and "n - 1". The reason for wave modes 

in (3.19) drifting left and right is owing to time dependence of the stiffness ~ ( t )  in (3.3). 

When we apply the Fourier transformation (3.11) to the jump condition (3.4) or (3.5), 

its left hand side involves a multiplication of the stiffness, ~ ( t ) ,  which employs the time- 

dependent form (3.3) and modulates the current time mode eint to another two adjacent 

ones ei(,+lIt and The coupled time modes introduce various fiber coefficients as 

{A,(,,), Bn(*,), Cn(*,)) in (3.19). This is also the main difference between present work 

with the publication [38], where Stockie and Wetton studied the model of unforced fiber. In 

their model, constant stiffness leaded to an homogenous system, which depended on the n-th 

modes only. Hence, their system was well-determinant and asymptotic expansions could be 

derived for the decay rates and frequencies explicitly. 

Notice at this point that for each n ,  we have six equations in (Xl'i'), (3.18) and (3.19). 

These six equations relate together the six unknown coefficients, A;, B,f, and c;, with 

the neighboring coefficients (having indices n + 1 and n - I) ,  and so we now have sufficient 

equations to close the system. However, it is still not possible to solve this system because 

it is infinite-dimensional, and so our approach is to truncate at some finite value In1 5 N, 

and then calculate the eigenvalues of the system approximately. This approximation makes 

sense if we assume that the coefficients tend to zero in magnitude for large In[; this is a 

claim that we cannot verify a priori, but which we will investigate later on when we actually 
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compute the eigenvalues. 
h 

We will now reduce the resulting system into one involving the coefficients Jn and % 
only, which we will see it later eases the computation of eigenvalues tremendously. For this 

purpose, we express the unknowns A;, B:, C: in terms of the fiber Fourier coefficients 

J^, and ii;l in turn. This can be realized, by combining the equations of the system (3.17), 

(3.18) with the fiber solutions (3.16) and noticing that wave modes of single index n are 

involved in these equations, and finally, we get 

Now, since we have assumed that (A + in) # 0, by substituting the expressions (3.20) 

into equations (3.19), we obtain the final simplified system as 

These expressions contain all the information we need about the relationship of the Fourier 

coefficients to analyze the stability of the immersed boundary problem. 

3.3.2 Case (A + in) = 0 

This case only occurs when both n = 0 and X = 0, and it corresponds to the trivial solutions 

for u, v ,p ,  which imply the Fourier coefficients to be zero in expressions (3.14) and (3.15). 

This case needs to be considered separately because some constraint conditions are automat- 

ically satisfied, such as the velocity continuity (3.6) conditions and incompressibility (3.10). 

The remaining two jump conditions in terms of the fiber coefficients J and q in (3.4) and (3.5) 

are significantly simplified and rewritten as 

Notice, that these two equations also follow from the expressions in the case (A + in) # 0 if 

we set X = 0 and n = 0 in (3.21) and (3.22). 
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3.4 Floquet analysis 

3.4.1 Truncated linear system 

In previous sections, we obtain the linear system that describes the evolution of the immersed 

boundary in terms of the Fourier coefficients. Now we will perform the stability analysis for 

equations (3.21)- (3.24) using the techniques of Floquet theory. 

The equations (3.21)-(3.22), which couple multiple Fourier coefficients, are derived from 

the jump conditions for the pressure (3.22) and the tangential component of the normal 

velocity derivative (3.21). In general, each of the coefficients & and ii;; can be complex 
A 

valued. By taking & = & + ilk, the equation (3.21) becomes 

- - - 
(4; + W ( E  + 2 2 )  + 2 4 - 1  + it;+l - - it;-l), 

where we have used 4, := &+i& to denote the complex form of the coefficients (2 (:) ( A +  

in)(e + 27rp)* + 1) in (3.21). By setting the real and imaginary parts equal to zero 

separately, we have 

Re : { i m :  

In addition to these equations, 

equations 

a similar treatment of (3.22) leads to the additional two 

by setting i);; = + i$ and the coefficients (2 (:) (A + in)(B + 27rg)&s + 1) to its 

complex form $, := $; + i$i in the equation (3.22). 

Now combining all four equations together, we can build up a linear system by defining 

the vector v = (. . . , v-N, - . . , v-1, v0, v1, - . - , VN,  - - - )T with an infinite number of entries. 

Each vn has 4 components and is denoted by v, = [ ~ e ( & ) ,  ~ m ( & ) ,  Re(%), Im(ii;;)lT. In 

general, it is plausible for us to truncate the infinite system at some finite number N, say 

-N 5 n 5 N, because it turns out in practice that the magnitudes of Fourier coefficients 

decrease as the index In1 increases (which will be checked later on). The truncated linear 

system may now be written: 
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3.4.2 Derivation of eigenvalue problem 

The expression ext = e("+@It in (3.11) is usually referred to as the Floquet multiplier. The 

standard approach to analyzing stability is to determine the marginal stability boundaries 

corresponding to a = 0, for which the Floquet multipliers are ext = eiPt. These stability 

boundaries decompose the parameter space into regions where the solution is stable (a < 0) 

and those where it is unstable (a > 0). These results will be of great benefit to us in 

predicting the behavior of immersed fibers under the influence of periodic variations in the 

stiffness parameter. 

We focus on the marginal boundaries at a = 0, for which the modes e(x+in)t = ei(b+n)t 

whose values must be either real or occurrent in complex-conjugate pairs. Furthermore, P 
can be restricted to the interval [0, a] as we will describe next. We rewrite the modes as 

ei(@+n)t = ei2"(P+n)(t12n) .- . - ei2"(b+n), where time t can be considered modulo 27r because 

the internal forcing through the dimensionless stiffness in (2.15) is a 27r- periodic function 

of time. Meanwhile, we can restrict ourselves to the range 0 <_ P 5 a only for two reasons. 

First of all, 0 is modulo 1 in ei2"(b+n), otherwise, any integer multiples greater than one 

will be absorbed into n; moreover, the modes for i < P < 1 have a complex-conjugate that 

corresponds to a P in the range 0 < P < i .  As a result, all # 0 or i can be disregarded 

because they lead to values of e(x+in)t with non-zero real part of complex number A. They 

are of no interest in determining the stability boundaries. From the definition ei2"(b+n), we 

list all possible cases easily. Every real Floquet multipliers correspond to two situations: 

positive number with p = 0, called harmonic case ; negative one with P = i, called 

subharmonic case . 
We observe here that the solution to (3.21)-(3.24) (or the truncated system (3.27)) 

could very well be complex, although physically, only real values of the fiber positions e(s, t) 

and q(s, t) make physical sense. Consequently, we must impose "reality conditions" on the 

Fourier coefficients & and ij;;. Following [17], we specify the following conditions: 

Harmonic Case (p = 0): = &*, - A* 

17-n = qn ; 

Subharmonic Case (P = i): 
where a superscript "*" refers to the complex conjugate. 

By applying these reality conditions, the expressions for all unknowns (3.11) can be 

rewritten in terms of the non-negative Fourier coefficients (for n 2 0). Consequently, the 
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truncated linear system (3.27) is reduced to a problem of size 4(N + 1) x 4(N + 1). The - "* 
reality conditions correspond to a lower boundary condition with 6-1 = for the harmonic - "* 
case, or 6-1 = to for the subharmonic case (and similarly for the 5j variable). 

Finally, we come to the stage of constructing an eigenvalue problem from the forgoing 

equations. The matrix A(€) in (3.27) is linear in E, and so can be written as A(€) = D + EC, 

where D and C are (4N + 4) x (4N + 4) matrices. This is more naturally written in the 

form 

wherein it is clear that $ can be considered as an eigenvalue, and v the eigenvector. 

3.5 Analytic results 

In this section, we study the stability of the flat immersed fiber by investigating the 

eigenvalue plots obtained from the problem (3.28), and discuss the influence on these figures 

by varying the system parameters. To compute the solution to the eigenvalue problem, we 

select values of the parameters v and a and then vary the wavenumber p, determining a 

sequence of eigenvalues 1 / ~  corresponding to each wavenumber p. Only real values of E have 

any physical interest, and so we select the largest real eigenvalue 1 / ~  in the problem (3.28), 

which corresponds to the smallest positive amplitude E. By plotting these eigenvalues as 

points (p, E), we can then trace out the boundaries of the stability region in parameter 

space. We maintain the separation between harmonic and subharmonic solution modes, 

and note also that it is sufficient to truncate the series solution at N = 60 terms, for which 

the magnitude of the neglected coefficients is sufficiently small. 

As shown in Fig. 3.1 for the fixed values of v = 1.5e - 4 and a = 5e - 6, the blue 

dots represent the eigenvalues of the harmonic modes, and the red dots are those of the 

subharmonic modes. The corresponding marginal stability boundaries are traced out by 

the colored lines composed of these eigenvalues for both cases. The areas enclosed above 

and inside the marginal stability boundaries represent regions of instability, and are also 

known as "fingers" or "tongues" because of their characteristic shape. We see that there are 

multiple, non-overlapping tongues moving out to the right as p increases, which alternate 

between harmonic and subharmonic modes. 
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1 2 3 4 5 6 7 8 
wave number, g 

Figure 3.1: Stability diagrams, depicting the fiber amplitude E as a function of wavenumber 
p, for holding parameters a and u defined in (2.16). The marginal stability boundaries are 
traced out by individual eigenvalues. The red points correspond to the harmonic modes and 
the blue ones to subharmonic modes. A zoomed-in view of the regions of instability is given 
in Fig. 3.2. 
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It is essential to keep in mind that instability (i.e., resonance) can only occur within the 

portion of the tongue lying below the line E = 4, which corresponds to the fiber stiffness 

being positive in (2.6) for any value oft .  Fig. 3.2 enlarges the first two regions of instability 

for a selected harmonic mode (at p = 4) and successively a subharmonic one (around 

g = 5.2), which is obtained by zooming in the Fig. 3.1 and based on the same parameters 

as before. 

Another restriction on parameters is that we can only consider those tongues of instabil- 

ity that impinge on integer values of p, since only integer wavenumbers make any physical 

sense in our situation. In the eigenvalue plot given in Fig. 3.1, we see that only the first 

tongue represents a physical instability, corresponding to a harmonic mode with wavenum- 

ber g = 4; all other tongues "touch down" at non-integer wavenumbers. These results 

are quite similar qualitatively to those reported in [8] for a circular immersed boundary. 

However, our analysis leads to a much simpler linear system (3.21)-(3.24) that avoids the 

presence of complex Bessel functions. 

Next, we consider the effect on the shape and location of the tongues by varying the 

values of parameters in the system. When we adjust the parameters a (stiffness K,) or 

v (viscosity p ) ,  the tongues move in a predictable fashion, as indicated in Fig. 3.2. For 

example, as v decreases, the tongues will move downward; on the other hand, the tongues 

shift horizontally in response to variations in stiffness 0. 

In order to demonstrate that changes in parameter values yield results that are consistent 

over all eigenvalue plots, another two examples will be considered here, that will be used 

to describe the effect of parameter changes to the stability diagram. These results will also 

be compared with numerical results computed in Chapter 5. Fig. 3.3 depicts the stability 

diagram for a = 9.9e - 4 and v = 2.2e - 4 (which we refer to as "case II"),  where we see 

that the first (and only) unstable mode is p = 2. Fig. 3.4 is generated for a = 1.8e - 4 and 

v = 9.8e - 5, and illustrates the situation where the p = 4 mode is unstable (we call this 

one "case IV"). 

At first, we consider the impact of changing stiffness on the position of the tongues. As 

depicted in Fig. 3.2, we know that 

when stiffness K, (or a) is increased, the fingers will move towards the left, and vice 

versa. 

Fig. 3.5 shows more clearly the influence of the changes in the stiffness parameter. As K, 
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wave number, &, 

Figure 3.2: Stability diagram obtained by zooming in on Fig. 3.1 near the first two unstable 
modes in respect to a Harmonic (H) and Subharmonic (S) case. The shaded areas correspond 
to the instability in the parametric plane. The shift in location of tongues in response to 
changes in parameters a(n,) and v(p) is also indicated. 

is increased from 10000 to 40000, the unstable tongue moves towards left. There is initially 

no physical instability, until n, increases above 20000, at which point the p = 2 mode 

becomes unstable. As n, increases beyond 30000, the p = 2 mode stabilizes and resonance 

no longer occurs. At the same time, as the tongues move to the left, they also migrate 

slightly downward. This behavior is due to a destabilizing effect of increasing stiffness. Now 

the internal forces are being faded out gradually and the system is dominated by the effect 

of viscous damping, so that every physical wave modes of instability are stabilized in the 

parametric plane. 

Secondly, we investigate the effect of changes in the viscosity on the vertical motion of 

the tongues, and we have that 

when viscosity p (or v) is increased, the fingers will move upwards vertically, owing 

to the stabilizing effect of viscous forces. 

As a tongue moves vertically upward, the result is to shrink the region of instability so 

that some unstable modes no longer lead to parametric resonance at a given amplitude of 

oscillation E .  Therefore, the minimum forcing amplitude E required to excite an instability 
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Figure 3.3: Case 11: stability diagram of the 
first unstable mode ,p = 2 occurring for a = 
9.9e - 4 and v = 2.2e - 4, which will be used 
to show the impact of the changes in the stifl- 
ness on the stability boundaries. The analytic 
results are shown in Fig. 3.5, and numerical 
comparisons are displayed in Fig. 5.13. 

0 
1 2 3 4 5 6 7 8  

wave number, p 

Figure 3.4: Case IV: stability diagram of the 
first unstable mode ,p = 4 occurring for a = 
1.8e-4 and v = 9.8e - 5, which will be used to 
show the impact of the changes in the viscos- 
i ty  to the stability boundaries. The analytic 
results are shown in Fig. 3.6, and numerical 
comparisons are displayed in Fig. 5.14. 

is increased. If the viscosity is increased further, the bottom of the tongue may move above 

the line E = $, at which point resonance is no longer possible. 

On the other hand, if v is decreased, the tongues will move downward vertically as 

depicted in Fig. 3.2. In the inviscid limit, as v + 0, each tongue extends downward to 

touch the horizontal axis, E = 0, at  a single point. Each of these points corresponds to a 

natural resonance in the unforced ( E  = 0 in (2.6)) system. An example will be presented 

in Section 5.3, indicating the behavior of the damped oscillations in an unforced fiber as 

viscosity goes to zero. Fig. 3.6 illustrates the effect on the unstable tongues of varying the 

viscosity p = 0.5, 1.0, 2.0, 3.0 for the given value of a = 1.8e - 4. 

This concludes the analytical part of this thesis. The previous two examples will be 

computed in Chapter 5 to compare with the analytic results. But first, the next chapter 

describes the implementation of the IB method used to compute the numerical results. 
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Figure 3.5: A series of plots showing the impact of the changes in stiffness on the movement 
of stability boundaries in parametric space. The viscosity parameter is fixed at v = 2.2e - 4, 
and four different stiffness parameters are selected: a = 4.9e - 4, 9.8e - 4, 1.5e - 3, 2.0e - 3. 
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Figure 3.6: A series of plots showing the impact of the changes in viscosity on the location 
of stability boundaries in the parameter plane. For fixed stiffness parameter a = 1.8e - 4 
and four different viscosity parameters v = 4.7e - 5, 9.4e - 5, 1.9e - 4, 2.8e - 4. 



Chapter 4 

Computational Method 

In this chapter, we describe the Immersed Boundary (IB) method for simulating the in- 

teraction between an incompressible fluid and an immersed boundary. This method was 

originally developed by C.S. Peskin in [26, 27, 291. Nonetheless, many later works improved 

on the original scheme, such as the IB method with higher-order accuracy [12] and the 

Immersed Interface method [21]. In the present thesis, we will employ the IB method as 

originally formulated in [26], and incorporate with a fast Poisson solver. 

Instead of discretizing the non-dimensionalized equations, we will start from the dimen- 

sional IB equations (2.1)-(2.9) in Section 2.1, which will make it easier for us to compare 

with published results in cgs units [7, 22, 19, 81. The computational domain is a square 

box that is exactly equal to the physical domain in both x- and y-directions, as defined in 

Section 2.1. Periodic boundary conditions are applied in both directions. Both fluid and 

fiber are initially taken to be at rest. Only a small perturbation is imposed on the initial 

position of the immersed fiber, with the maximum amplitude a E O(L/20) measuring the 

distance that the fiber is away from its equilibrium state. Since the amplitude of the os- 

cillations is much smaller than the extent of computational domain in the y-direction, we 

assume that the motion of the fiber does not interfere significantly with the fluid at the 

vertical boundaries (which justifies our use of periodic boundary conditions in y). 

As mentioned in the Introduction, the incompressible viscous Navier-Stokes equations 

are discretized on a fixed uniform Eulerian lattice while the fiber evolution is described by 

a moving Lagrangian array of points. Both sets of points do not necessarily coincide during 

the computation, and information is communicated between them through the assistance of 

smooth approximations to the Dirac delta function. 
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This chapter is organized as follows. In the first section, we review a projection method 

for solving the incompressible Navier-Stokes equations with general external forces. After 

reviewing the fluid solver, we present the aspects of the numerical discretization that pertain 

to the evolution of the fiber and the computation of the force exerted by the fiber on fluid. 

Numerical simulations demonstrating the stability and convergence of the method will be 

discussed in the following chapter. 

4.1 Fluid component 

A wide array of numerical schemes have been proposed for solving the viscous incompress- 

ible Navier-Stokes equations. One especially popular approach is called the fractional step 

method that was introduced by Chorin in [5, 61 and was followed by many other variants in 

the literature [l, 4, 251. These methods are also collectively known as projection methods, 

since they are based on computing an intermediate velocity independent of the divergence- 

free constraint, and then projecting the velocity onto the subspace of divergence-free vector 

fields. In this section, we discuss a particular version of the general projection method 

proposed by Chorin. 

4.1.1 Projection method 

In the method proposed in the initial paper of Chorin, the first fractional step involved 

computing the fluid velocity by ignoring the incompressibility constraint and updating the 

velocity using the viscous and convective terms in the Navier Stokes equations. The partic- 

ular update proposed applied the velocity updates in each coordinate direction independent, 

using alternative direction approach. In the second step, a Poisson equation was solved that 

serves to project the velocity onto the divergence-free subspace. 

The projection step can be written generally in terms of a projection operator P, which 

projects an arbitrary vector field onto the divergence-free subspace. With the use of the 

mapping P, we can then eliminate the continuity constraint V . u = 0 and the pressure 

variable p(x, t )  from the Navier-Stokes equations. Here, we follow the notation of Peskin 

in [26] and define the projection operator P as follows 

wD = P w ,  ( 4 4  



CHAPTER 4. COMPUTATIONAL METHOD 

such that 

V . w D = O  and w = w D + V $ ,  (4.2) 

where $ is a scalar, w and wD are vectors, and wD is divergence-free. From the definition, 

it is easy to verify the following properties: 

(1) P is linear. 

(2) For any scalar $, PV$ = 0. 

(3) For any vector wD such that V . wD = 0, we also have p w D  = wD. 

These properties will be used later on. 

With respect to the fluid equations, we consider the constant-density viscous incom- 

pressible Navier-Stokes (2.1)-(2.2), together with periodic boundary conditions on a square 

domain Q. By applying projection operator P to both sides of the momentum equations 

(with divergence-free velocity denoted uD),  we find that 

p (uf + uD - v u D )  = pAuD + fD. (4.3) 

In equation (4.3), the incompressibility condition (2.2) is satisfied automatically, owing 

to the action of the projection P ,  as long as we also project the force density f onto its 

divergence-free image f D  in (4.3); in other words, f D  = P f .  

An alternative way to formulate the project method, based on the definition of the 

project operator, leads to a simple update scheme for the velocity. From the definition (4.1)- 

(4.2), we can introduce a scalar field, $, that is used to update the intermediate velocity 

to make it divergence free. The projection method can then be written as the following 

t hree-step scheme: 

Step 1. Solving u from p (ut + u . Vu) = p A u  + f ;  (4.4) 

Step 2. Solving $ from A$ = V . u;  (4.5) 

Step 3. Solving uD from uD = u -  V$. (4.6) 

The resulting velocity, uD, satisfies the incompressible Navier-Stokes equations. We will 

show in the next section how the projection method can be discretized explicitly in time so 

that a Fast Fourier Transform (FFT) can be used to solve the Poisson equation (4.5), since 

the domain is rectangular and the coefficients (density and viscosity) are constant. As a 

result, this scheme can be very efficient. 
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4.1.2 Numerical scheme 

Because we have assumed in Section 2.1 that the domain is rectangular, the problem can be 

discretized on a square lattice having h = Ax = Ay as the mesh width. The mesh points 

are denoted as xij = (xi, yj) = (ih, jh)  for 0 2 i, j 5 N - 1. A similar notation can be 

extended to all fluid variables defined on O(X, y), such as uij = u(xij, t)  and fij = f(xij, t). 

Let At  be the length of the time step and n be the index of time step, hence we have 

un = u(x,nAt),  f n  = f (x ,  nAt). Now, supposing that we already have available to us the 

updated force values, fn+' (x), we can present the discrete form of the projection method for 

the Navier-Stokes equations. First, define the difference operators D:, D: , DI, (k = x, y) 

for the first-order derivatives as follows: 

where {ek) (k = x, y) is the standard basis for s2. We can then define additional difference 

operators such as D L D ~ ,  the central difference approximation to the second order derivative 

in each direction; Do = (D:, D ; ) ~ ,  which is the central difference approximation to the 

gradient operator V; D f ,  corresponding to forward and backward approximations of the 

gradient; and D +  . D-,  a five point difference approximation to the Laplacian operator A. 

Now, for example, we can use the notation D o  - u to represent a second order centered 

difference approximation to the divergence of the vector field u. 

Using these definitions, we may now write the fractional-step discretization of the pro- 

jection method in (4.4)-(4.6). The first step is to calculate an intermediate velocity field 

u**, which is not divergence free and comes from solving the following difference equations: 

These equations represent the alternative direction implicit discretization of the convective 

and viscous terms, which are applied separately in the x- and y-directions. By substituting 

(4.8) into (4.7), and ignoring terms of order (At)2, the resulting discretizing scheme is clearly 

consistent with equation (4.4). The difference equations (4.7) and (4.8) involve derivatives 
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in one spatial direction only, and so the respective linear algebraic systems can be written 

in the following form 

which is a cyclic, tridiagonal system because of the periodic boundary conditions. There are 

many stable and efficient numerical algebraic methods to handle systems of this type; for 

example, a combination of the Sherman-Morrison formula 1331 and a diagonal solver [23]. 

We now come to the second step of the projection method that maps the velocity field 

onto the space of divergence-free vector fields. A centered finite difference approximation of 

Poisson's equation can be written 

After we compute the values ?C, from the equation (4.9), we can update the fluid velocity 

using a discrete version of (4.6): 

This completes the specification of the discrete fluid equations on a Cartesian lattice. 

In general, the efficiency of the IB method relies on a suitable method for solving the 

Poisson's problem (4.9). Depending on the physical problems of interest, a variety of dif- 

ferent numerical solvers could be used to compute the pressure update, and a variety of 

numerical approaches have appeared in the literature in the context of immersed boundary 

problems. In our case, a massless elastic fiber is immersed in the uniform fluid with constant 

density. The problem (4.9) therefore has constant coefficients, which simplifies considerably 

the resulting linear algebraic system. In particular, Peskin described in [27] how an efficient 

Fourier transform methods works exceedingly well here. For more details about the technical 

implementation and fundamental theory of FFT, please refer to the books of Press 133, 341 

and Strang [39]. 

Recently, many authors have been considering IB problems with variable coefficients, 

involving either massive boundaries or non-uniformly dense fluids. In both cases, the delta 

functions in the immersed boundary method take on the additional role of spreading mass 

within the fluid, and hence they appear in the expression for the fluid mass density. Fourier 

transform methods are not applicable to these problems, and possible alternative solution 

approaches include: (1) applying a multigrid technique to solve Poisson's problem with 
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variable density (see Zhu [41]); (2) retaining an FFT solver by attaching a ghost (or twin) 

boundary onto the physical by way of very stiff strings that distribute the gravitational force 

onto the fluid. This latter technique, called the Penalty Immersed Boundary method, was 

proposed by Kim and Peskin [15], and is very simple and easily transplanted to existing IB 

codes. 

4.2 Immersed boundary component 

4.2.1 Fiber force 

We next describe how to discretize the immersed boundary force density which was intro- 

duced in Section 2.1, first reviewing some basic notation. The symbol s is used to denote the 

parametrization of points along the immersed boundary in Lagrangian coordinates; Xk(t)  

represents the spatial position of control (or marker) points on the boundary associated 

with the discrete immersed boundary point sk, and denoted by index k. We denote by L 

the length of the immersed boundary in its equilibrium state. We also define Nb to be the 

number of Lagrangian points, and As to be the step in the arc-length parameter separation 

each discrete point along the fiber. 

Since our computational domain is periodic in space, the arithmetic on indices is com- 

puted in k, modulo Nb. Based on the form (2.9) of the tension force corresponding to 

springs having zero resting length, we can discretize the second derivatives using centered 

second-order differences to obtain the approximation 

where f i  is the dimensional stiffness defined in (2.6). This form of forcing is very commonly 

used in the literature, but in general, the resting length in the spring force may not be zero, 

for example, denoted to be L, = 1. In this case, we need to discretize equations (2.5)-(2.8), 

which using the usual centered second-order differences can be approximated by 

Using these expressions, the discrete force density is given by 

Tk+;rk+; - Tk-lrk-i 
Fk = IE 

As 
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In this thesis, we will not implement this kind of force density in the computation of reso- 

nance and will restrict our attention to the form (4.11). 

4.2.2 Interaction 

We now come to the equations that connect the fluid and the immersed boundary. The 

internal boundary is moving along with the surrounding flow and changes its configuration 

continuously in time. Meanwhile, the deformation of the immersed boundary exerts a 

singular force onto the nearby fluid particles. As mentioned before, when the problem is 

discretized, the control points on the membrane generally do not coincide with the fluid 

lattice, and so fluid and fiber quantities cannot be transferred directly from one grid to the 

other; instead, the interaction between the two is mediated by Dirac delta functions. This 

feature requires us to give a smooth approximation to the delta function for the purposes 

of the numerical discretization. A typical smoothed delta function in one dimension is given 

as follows: 

The particular reasons for this choice of smoothed delta function are given in [27], and 

relate to the accuracy and stability of approximations for our particular choices of projection 

method and discrete mesh. Two-dimensional discrete delta functions are defined by forming 

products of one-dimensional delta functions as follows 

Dij(x) = bh(X - x)bh(Y - y )  = bh(X - ih)bh(Y - jh), (4.14) 

where X = ( X , Y ) ~  E Z2. 
The role of the 2D delta function in terms of interpolating fiber force densities onto the 

fluid grid points is illustrated in Fig. 4.1. In the left hand picture, an immersed interface 

having a sinusoidal shape is represented by a set of control points '0' in blue. They are 

embedded within a rectangular fluid region discretized on a uniform Cartesian grid, that 

is plotted with grey dotted lines. As shown, the fiber markers need not coincide with the 

fluid grid. When we apply the two-dimensional discrete delta function (4.14) to spread the 

fiber force from a specific fiber point (the filled-in circle in the figure) onto the fluid grid 

points ' x 7  which are within a 4h-by-4h square centered on the fiber point labelled 'e7. A 

two-dimensional representation of the smoothed delta function centered at the indicated 

fibre point is included in the right-hand picture of Fig. 4.1. 



CHAPTER 4. COMPUTATIONAL METHOD 

Figure 4.1: The relation between a control point and nearby grid points (left), and the 
corresponding cosine approximation to V(X) in (4.14) (right). 

Our assumption of periodic boundary conditions requires us to take special care when 

extending delta functions across boundaries. Fig. 4.2 shows a specific example, where the 

fiber point under consideration, marked '*', is within two grid points of the right boundary, 

and so its influence is felt across the periodic boundary to the left side of the domain as 

well, as displayed in the right plot of Fig. 4.2. 

Figure 4.2: An example of a delta function interpolation step in which the periodic boundary 
condition must be taken into account. 

Now we can describe the specific algorithms for computing the interaction terms. The 
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immersed boundary spreads the singular force at fiber points onto the surrounding fluid 

points as defined in (2.4). The force at a specific fluid grid point can be discretized as 

where the fiber density Fk is given in (4.11). 

The delta functions also serve to interpolate the velocity at the marker points Xk on the 

interface using fluid velocities u;. The continuous interpolation formula for the interface 

velocities in (2.3) can be approximated by 

where Uk corresponds to the velocity at the control point sk of the immersed boundary. 

Then, the no-slip boundary condition, which is simply an evolution equation for the im- 

mersed boundary points, can be approximated by 

x;+l= X; + at u,". (4.17) 

We should emphasize that we have chosen time indices in the above discrete equations 

so that the force spreading and velocity interpolation steps are fully explicit. We could 

adjust the time index on certain quantities in the equations (4.15)-(4.17) to obtain a variety 

of other implicit time discretizations. In this thesis, we will consider the explicit algorithm 

only. 

4.3 Computing algorithm 

Assuming that a massless elastic fiber is immersed in a viscous incompressible flow having 

uniform density, the explicit algorithm takes the following form: 

Initially: We assume we have the boundary position Xn at the control points of the 

membrane, and the velocity field un-l of the fluid from the previous time step. 

S t e p  1. Evaluate the fiber force density F i  at each control point X," of the interface, 

using equation (4. l l ) ,  which can be written in the alternate form 
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Step 2. Use F;, to spread the singular fiber force onto the fluid lattice, using the 

discrete delta function (4.14) and the discretization for fiber force (4.15): 

Step 3. Use f n  and un-l, to solve the Navier-Stokes equations with the projection 

method and fast Poisson solver that update the velocity of fluid to obtain a divergence- 

free field {u:) at the next time step. 

Step 4. Interpolate the fluid velocities to obtain velocities U; at fiber points using 

Step 5. Use Un to move the control points on the immersed boundary to their new 

positions: 

This completes a single time step, and the algorithm repeats by returning to Step 1. 
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Numerical Results 

In this chapter, we present numerical results for several test problems that indicate the 

stability and convergence properties of the IB method that we have implemented. We then 

investigate in detail parametric resonances that appear in the forced flat fiber. 

5.1 Stability and convergence 

In order to ascertain the stability and convergence of the IB method, we consider a simple 

test problem consisting of an elliptical membrane under tension that is immersed in a viscous 

incompressible fluid. 

Example 5.1. This example is taken from Tu and Peskin [40], LeVeque and Li 1221, and 

Lee [19], and is illustrated in Fig. 5.1. The initial state of the membrane is an ellipse with 

major and minor axes a = 0.75 and b = 0.5. The elastic membrane has fluid both inside and 

out, and both fluids have constant density p = 1.0. The unstretched state of the membrane 

is taken to be a circle of radius r = 0.5, but because the fluid is incompressible and the 

membrane does not leak, the actual equilibrium state is a circle of radius re = z 0.61237 

(where re is such that the volume is identical to that contained within the initial membrane). 

In our computations, the fluid domain is taken to be the square, [-I, +1] x [-I, +I], 

having periodic boundary conditions. The restoring force is taken of the form (4.12) with 

constant stiffness, 6. In general, the membrane can return to its equilibrium position in 

one of two ways: (1) relaxing monotonically to the equilibrium circular state which happens 
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Figure 5.1: The interface configuration, showing the initial membrane of the initial ellipse 
(red solid line), the circular equilibrium state (green dash-dot line), and the smaller un- 
stretched state (blue dot line.) 

when the Reynolds number Re is small, say Re < 1 (the case of Stokes flow was consid- 

ered previously in [22]); or (2) oscillating around the equilibrium state, when the Reynolds 

number is larger, for instance of Re > 100. For the case of Reynolds number Re falling in 

the middle range, we could not determine the way of the membrane motion because either 

of them could happen here. In this section, we will focus on the latter case involving an 

oscillating interface. 

Fig. 5.2 plots the variation in the radius over time for various choices of the grid resolution 

(indicated by N for an N x N grid) and the number of fiber control points, Nb. Unless 

otherwise specified , our computations assume Nb = N. Let r, and ry be the semi-major 

and semi-minor axes respectively of the elliptical interface at the instant when the maximum 

extension is reached. 

In this example, the Reynolds number is taken to be approximately Re = 105 so that 

both radii, r, and ry, will oscillate about the equilibrium radius re = 0.61237 but eventually 

relax towards this equilibrium state owing the presence of damping. In all cases, we observe 

a problem with loss of volume, which is well-known for the present IB method. The size of 

the volume error can be reduced by refining the mesh, which is clearly seen by comparing 
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to the N = 256 calculation. Peskin and Printz 1321 also suggested a modification to the 

leaking problem by introducing a modified projection operator, but we will not implement 

this here. 

eauilibrium 

0.5' 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

time 

Figure 5.2: A comparison of the computed radius on an N x N grid with Nb = N control 
points in the interface. The solid lines represent the semi-major and semi-minor radius 
and are displayed in colors corresponding to the following pairs of N(co1or): 32(magenta), 
64(blue), 128 (red), 256 (green). 

One-dimensional slices can be drawn of the computed velocity to show the stability of 

the IB method in response to grid refinement. For example, in the bottom picture of Fig. 5.3 

we present the u-component of velocity at y = -0.2656 and t = 0.1. The computation is 

based on a 64 x 64 grid and Nb = 64 boundary points. In contrast with what we have seen so 

far of the fluid velocity crossing the interface in Section 2, the profile of u-velocity here is not 

as smooth as might be expected. Fig. 5.3 indicates that on either side of the boundary the 

fluid velocities take on opposite signs, and this singularity owes to the particular choice of 

discrete delta function used in our IB method. If the grid is refined, then the corresponding 

change in the velocity profile can be observed in Fig. 5.4, wherein the singularity in velocity 

is confined to a narrower and narrower band as N is increased. This figure also shows 

that the velocities on both sides of the immersed boundary take the same sign in the cases 

N = 128 and 256. In recent years, several methods have been developed to increase the 

accuracy of the method, such as with the Immersed Interface Method or variants 122, 201. 
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rnn 

Figure 5.3: The plot on top is a surface plots of the u-component of the fluid velocity, and 
the bottom plot shows a 1D slice at y = -0.2656. The grid is chosen to be 64 x 64 and 
t = 0.1 in both cases. 

This approach reformulates the delta function forcing in terms of jump conditions across 

the membrane, but it is significantly more complicated than the IB method, particularly in 

three dimensions. 

Next we investigate the accuracy and convergence properties of the IB method. Since the 

fluid is incompressible, and the immersed boundary obeys the no-slip condition, the volume 

(or area in 2D) enclosed by the interface should be exactly conserved; we can therefore 

use the enclosed area VN computed from the current interface location as one measure of 

the accuracy of the IB method. Table 5.1 shows the relative error in area for a number 

of grid refinement levels. The area enclosed within the boundary on three different fluid 

meshes (of size N x N, with N = 128, 64, and 32) are compared with a finest mesh solution 

with N = 256, and the respective errors are measured in the max-norm using the following 

formula 

Because we are using a 256 x 256 grid to calculate the error instead of using the exact solution 

or a much finer resolved calculation, we do not expect the ratio of successive differences to 

be equal to the standard ratio of 2 for a first order scheme or 4 for the second-order one. 
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Figure 5.4: A series of 1D slices through the u-velocity at y = -0.2656 and t = 0.1. The 
curves with different color and line style correspond to different choices of N x N fluid grid, 
with the value of N reported in the legend. 

Instead, the ratio for a q-th order method will be 

according to the above equation, which for the first order scheme (q = 1) equals = 3 for 

N = 128 and 3 = 2.3 for N = 64 respectively. The computed ratios are listed in Table 5.1 

and displayed graphically in Fig. 5.5, which support the well-accepted conjecture that the 

IB method is first-order accurate in space (similar results have been reported in [22, 20, 301). 

Table 5.1: The relative errors in volume conservation at t = 0.1, demonstrating the first- 

N 
((VN - h56)(maz 

ratio 

order accuracy of our IB method. 

Besides the accuracy measured by volume conservation in the max-norm, we can also 

consider the error of the entire interface location in the 2-norm, which was used in [22]. The 

256 
- 
- 

128 

0.0316 
2.7871 

64 

0.0881 
2.2350 

32 

0.1970 
- 
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Figure 5.5: Grid refinement study showing relative errors in volume conservation at t = 
0.1. The plot accompanies the Table 5.1 to demonstrate the first-order accuracy of our IB 
method. 

error was defined as 

where the set { X } ~ O '  = {(Xi, x)} denotes the positions of control points on the interface; 

(N, Nb) is a pair of the numbers representing the fluid grid and boundary markers, and the 

pair (N*, Nb*) denotes the finest mesh. For the purposes of matching the control points {i) 

on coarse grids (N, Nb) to those {i*) on the finest grid (N*, N l )  exactly, we must require 

that Nb always divides N l  = 256, which allows a direct comparison of control points with 

the finest grid solution. In Fig. 5.6, we plot the relative global errors at  t = 0.1 relative to the 

finest grid (N* = 256, N l  = 256). Other pairs (N, Nb) used here include (32, 32), (32,64), 

(64,64), (32,128), (64, l28), and (128, I%), that correspond to the points '*' sorted from 

right to left in Fig. 5.6. The test results show that the definition e N  provides an appropriate 

error measure for the interface location, and that our IB method converges as expected 

(with first-order accuracy) in this error norm. 

Another thing we can see in Fig. 5.6 is that there is a sharp drop in the error when 

Nb increases from 64 to 128. In comparison to the points (64,64) and (32, l28), both of 
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Figure 5.6: The global error e~ against the refined mesh h = l/dh*as - 1/4-, 
measured along the entire interface at t = 0.1, which demonstrate the expected first-order 
convergence in our IB method. 

them hold the same magnitude of log(h) - 1/212, but the point (32,128) results in much 

less relative error as indicated by the sharp drop in Fig.5.6. It implies that the number of 

control points Nb in the interface is more significant than the number of fluid grid points N 

in the error of IB method. For details, please refer to [22]. In practice, this suggests that 

we must refine both the fluid domain and the interface simultaneously in order to increase 

the accuracy of IB method. 

Before we move on to the next example, we will address the advantages and disad- 

vantages of the IB method. The most outstanding feature of the IB method is its use of 

discrete S-functions to interpolate between grids, and both advantages and disadvantages 

derive from this. In summary, the advantages of IB method are: 

0 simplicity and ease of implementation; 

0 flexibility in dealing with complex geometry; 

and disadvantages: 

0 first-order accurate; 
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errors in volume conservation due to fluid "leaking" between immersed boundary 

points. 

Those limitations were already addressed in the previous example, and corresponding strate- 

gies to overcome these limitations have been discussed. We will nonetheless restrict our 

computations to this simple first order implementation. 

5.2 Unforced circular fiber 

In this section, we look at one of the "standard" examples consisting of an elastic circular 

fiber under the influence of small perturbations. No other applied force is exerted on fiber, 

except for the intrinsic restoring spring force in the fiber, whose force density is given 

as (4.11) with a constant stiffness. This problem was analyzed before in the inviscid case 

by Cortez and Varela in [?I, who derived asymptotic solutions. Cortez, Peskin, Stockie and 

Varela [8], on the other hand, investigated the stability of an unforced fiber in a viscous fluid 

(although the bulk of their results corresponded to the periodically-forced case). These two 

sets of analytical results will be used here to compare with our numerical simulations. 

Example 5.2. We take a closed fiber immersed in a viscous fluid which has an equi- 

librium state that is a circle of radius re = 0.5. We let the resting length be ro = 0 so that 

the fiber would shrink to a point in the absence of fluid lying inside the fiber. An initial 

perturbation is imposed on the circular fiber, given in polar coordinates as 

where r, = re/10 denotes the amplitude of the perturbation, and the wavenumber p is an 

integer. Fig. 5.7 shows a circular fiber perturbed with the wavenumber p = 3. 

In [8], the authors gave an asymptotic expression for the radius of a perturbed circular 

fiber in dimensionless variables 

where E = r,/re and B(t) was assumed to have the form 
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initial 

equilibrium 

Figure 5.7: The circle interface perturbed by a mode with wavenumber g = 3. 

The parameters a and P represent respectively the decay rate and frequency of the resulting 

oscillations in time, and they represent a convenient means to compare the analytical and 

computed results. 

This approach 

location X 

was employed in [8], wherein a linear system was derived for the interface 

where 4 = u2 /a  and X := a + ip is the Floquet multiplier defined in (3.11). In fact, the 

system (5.2) plays the same role as the equations (3.21) and (3.22) in this thesis. A non- 

trivial solution exists if and only if the determinant det (27) = 0, which yields an implicit 

function for X as a function of the other parameters. Instead, we can express the determinant 

condition in the following explicit form 

If we select a specific wavenumber p, then the values a/& and P/fi can be computed 

for a series of parameters 4 by evaluating (5.3) numerically. The results corresponding to 

p = 3 are shown in Fig. 5.8. 
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Decay rate (4 1 a"') 

Frequency ( p I a"') 

Figure 5.8: Plots of decay rate a and frequency P versus q5, for the p = 3 wavenumber. 
The vertical axis gives scaled values of a and B calculated from the dispersion relation, 
det D = 0. The zero-viscosity (4 = 0) limit is also displayed for the frequency, which can be 
shown to reduce to wN(p) = JP(p2 - 1)/2. Two sets of numerically computed results are 
shown for comparison purposes, corresponding to the values q5 = and q5 = 1.6 x lop3. 
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Putting together the asymptotic formula in (5.1) along with our estimates of a and P 
from Fig. 5.8, we can write down an explicit approximation of the radius as a function of 

angle 0 and time t for comparison purposes. The motion of the immersed boundary point 

located at 0 = 0 is plotted in Fig. 5.9 for q5 = and in Fig. 5.10 for 4 = 1.6 x 

The two groups of parameters are listed in Table 5.2. We observe that the computed results 

agree very well with the analytical result in both cases, which confirm the validation of the 

computations in our IB method. 

Group 11 1 2 11 

Table 5.2: Parameters corresponding to the unforced circular fiber considered in Example 
5.2. 

U 

- asymptotic I 1 1 . - .  - .  numerical 1 1 

Fig. 
a 

0.94 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

time 

Figure 5.9: Group 1: Comparison of the analytical and numerical solutions for Example 5.2 
with q5 = 

5.9 
0.85 

5.10 

0.43 

J 
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0.92 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

time 

Figure 5.10: Group 2: Comparison of the analytical and numerical solutions for Example 
5.2 with q5 = 1.6 x 

5.3 Parametric resonance in a flat fiber 

In comparison with the results for the circular fiber just described, we will now present 

numerical results to demonstrate the validity of the Floquet analysis in Chapter 3 and the 

existence of parametric resonance for an elastic fiber that is perturbed fiom a horizontal 

or "flat" equilibrium state. Our computations are performed by implementing the explicit 

algorithm for the IB method described in Chapter 4. Some interesting numerical results 

regarding the resonant modes in the flat fiber are included at the end. 

Example 5.3. Our computational domain is a square box, [O, 11 x [-$, $1, with periodic 

boundary conditions applied in both co-ordinate directions. A horizontal elastic fiber is 

placed in the center of the square box along y = 0, as shown in Fig. 2.1. The fiber is 

initially given a vertical perturbation of the form y = 0.05 cos(2p~x),  where x E [0, 1) and 

p is the wavenumber. Our numerical simulations are performed with a 64 x 64 fluid grid and 

with 192 control points along the interface, and we also compute on a finer grid of dimension 

128 x 128, with 384 immersed boundary points, to ensure the accuracy of the results. The 

time step in all cases is chosen well within the stability restriction imposed by our explicit 

method to avoid any problems with simple numerical instabilities. 

We choose four sets of parameters that the analysis in Section 3.5 suggests will lead to 
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parametric resonance. The parameters are chosen in such a way that a different wavenumber 

p = 1, 2, 3, 4 is excited in each case (numbered respectively I, 11, 111, IV); all parameter 

values are listed in Table 5.3. In computations, we vary only the frequency w o  of the 

modulating stiffness (2.6) and hold all other parameters fixed. The dimensionless parameters 

a and v are calculated from equations (2.16), and can be used to draw the eigenvalue plots. 

For example, Figs. 3.3 and 3.4 presented earlier in Chapter 3 depict the stability regions 

for Cases I1 ( p  = 2) and IV ( p  = 4). In both of these cases, the first unstable tongue 

corresponds to the harmonic mode of oscillation. 

In Fig. 5.11, we present numerical evidence to support the existence of parametric reso- 

nance in the four cases. In this figure, the plots are arranged in the following order within 

each row: 

1. Left plot: the initially fiber position, perturbed in the pth wavenumber 

2. Middle plot: eigenvalue plot from the Floquet analysis which determines the lowest 

unstable mode. 

3. Right plot: numerically computed amplitude of the unstable pmode. 

Table 5.3: Parameters for four resonant cases, having a lowest unstable mode with wavenum- 
ber p varying from 1 to 4. 

I Case I I I I1 I I11 I IV ( 

W o  [ 1700 1 4500 1 7500 1 10600 

In each case, the plots indicate that when internal forcing is applied via periodic varia- 

tions in the stiffness parameter - where the frequency is chosen to be the resonant frequency 

suggested by the analysis - then the amplitude of oscillation grows far beyond that of the 

L 1 .o 
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initial perturbation, 0.05 crn. Although the immersed boundary motion never becomes un- 

bounded, the fiber does exhibit sustained, large-amplitude oscillations. There are a number 

of explanations for why the fiber motion remains bounded instead of exhibiting true insta- 

bilities: 

0 The artificial viscosity introduced by the first-order scheme damps the amplitude of 

oscillations in the interface. 

0 The equations are linearized in the analysis, that drops out the non-linear convection 

terms as well as the nonlinearities in the fiber force. The simplified system becomes 

more stable. 

The analysis assumes the domain is infinite in the vertical direction, but computations 

assume periodic boundary conditions. As a result, periodic copies of the fiber may 

interfere with each other and so reduce the oscillations. 

Despite these discrepancies, the numerical computations still match the analytical results 

very well, which supports the existence of parametric resonance. For comparison purposes, 

we present the amplitudes of the unforced fiber for each cases in Fig. 5.12. 

-0.05L I 
0.005 0.01 0.015 

time 

Figure 5.12: The amplitude of the unforced fiber for all cases in Table 5.3. 

Next, we aim to validate the results of our analysis in Chapter 3 by investigating nu- 

merically the migration of the unstable tongues when we vary system parameters. This 
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will provide convincing evidence that the resonant behavior found earlier actually does arise 

from parametric resonance. Consistent with our earlier discussions in Chapter 3, we have 

chosen to consider Cases I1 and IV, so that numerical simulations are based on the same 

values of a and v as in the stability diagrams in Figs. 3.5 and 3.6. 

At first, we vary the value of K, in the Case I1 to see the influence of changes in fiber 

stiffness on the amplitude of oscillation. As we saw in Fig. 3.5, the unstable p = 2 mode 

moves out of the unstable tongue whenever we increase or decrease the stiffness, K,, in which 

case 2-mode can no longer be excited and the perturbed fiber becomes stabilized. Fig. 5.13 

exhibits the expected behavior as oscillations die out when we vary the stiffness significantly 

away from the resonant value. 

Alternatively, if the viscosity is increased in Case IV, the oscillations should either de- 

crease in amplitude or stop altogether, as suggested by the eigenvalue plots in Fig. 3.6. On 

the other hand, a decrease in viscosity might serve to increase the amplitude of the resonant 

oscillations. The respective numerical results are given in Fig. 5.14. 

For Case I, Fig. 5.15 displays the effect of varying the stiffness perturbation amplitude, 

E, on the resulting amplitude of oscillation. When E 5 3.0, there is no longer any sustained 

resonance in the flat fiber. 

In summary, the Floquet analysis suggests a very well-defined resonant frequency that 

results in a sustained, large-amplitude oscillation in numerical simulations. Furthermore, 

the corresponding instability can be predicted using the eigenvalue plots obtained from the 

Floquet analysis. 

Before we finish this section, we would like to describe an interesting phenomenon that 

happens for odd unstable modes, and in particular for ,p = 3. As shown in Case I11 of 

Fig. 5.11, the resonant oscillations depart from the equilibrium state and no longer oscillate 

symmetrically about y = 0. This is different from resonances appearing in the other three 

cases, where the immersed interface exhibits large amplitude oscillations that are centered 

symmetrically about the equilibrium state. Refined computations are performed on a 128 x 

128 fluid grid, with 384 fiber points (thereby doubling the computational time). A plot of 

the resonant amplitude versus time is shown in Fig. 5.16 with the ,p = 3 unstable mode. We 

observe that the motion of the interface appears to be composed of a mixture of the predicted 

,p = 3 mode along with a number of other lower wavenumber modes. The boundary points 

are still oscillating at the high frequency predicted by the analysis, but there are additional 

lower-frequency oscillations not predicted by the analysis that are superimposed on the ,p = 3 
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- 
K ,  = 20000 (Case 11) 

Figure 5.13: A series of plots showing the impact of the changes in stiffness on the amplitude 
of oscillation for the Case I1 with resonant stiffness, K ,  = 20000. The various stiffness values 
are chosen to be the same as in Fig. 3.5. 

p = 0.5 p = 1.0 (Case IV) p = 2.0 p = 3.0 

Figure 5.14: A series of plots showing the impact of changes in viscosity on the amplitude 
of oscillation for Case IV. The values of viscosity, p, are chosen to be the same as those in 
Fig. 3.6. 

E = 0.45 (Case I) E = 0.35 E = 0.30 E = 0.25 

Figure 5.15: A series of plots showing the impact of changes in stiffness perturbation ampli- 
tude on oscillations of the fiber for the Case I. As the forcing is reduced, the amplitude of 
the resonant oscillation also diminishes. 
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0 0.05 0.1 0.1 5 0.2 
time 

Figure 5.16: The amplitude of the resonant g = 3 mode on the refined 128 x 128 fluid grid 
with 384 boundary points. Besides the large-amplitude, high-frequency oscillations, there 
are also lower frequency oscillations superimposed on the interface motion. 

mode and which cause the boundary to vary significantly from the analytical prediction. The 

forced fiber begins to oscillate in the g = 3 mode, then reduces to something approaching 

a wavenumber g = 1 oscillation near time t = 0.07. The g = 3 mode appears to be nearly 

recovered by time t = 0.16. 

In the forced circular fiber, resonance at the odd unstable mode was not reported in [8], 

and so we don't know whether the oscillations with this transfer between modes could 

happen in the circular membrane or not. At present, we only display the numerical evidence 

of this interesting phenomenon and leave its analysis for future work. 
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Figure 5.17: Resonant immersed boundary at the p = 3 wave mode for the Case 111, 
computed on the refined 128 x 128 fluid grid with 384 boundary points. In the resonant 
oscillation, the unstable mode transfers from p = 3 to p = 1 at time = 0.07, then recovers 
back to p = 3 mode at time = 0.16, which indicates the existence of mode transformation 
in parametric resonance of the flat fiber. 
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Conclusions and Outlook 

6.1 Thesis contribution 

The key contribution of this thesis is to study the instability of parametric resonance arising 

in a flat elastic fiber immersed in fluid governed by the 2D Navier-Stokes equations. This 

extends other previous work that had studied the stability of immersed boundaries in a 

circular geometry. The parametric resonance is driven by internal forcing that arises from 

periodic variations in the material stiffness parameter. The underlying mathematical model 

employs the linearized IB method, formulated in terms of jump conditions across the bound- 

ary. Assuming a horizontal interface with small perturbations, a Floquet analysis leads to 

an eigenvalue problem whose solution is similar in form to that for the circular interface 

but is nonetheless significantly simpler in its details. The stability of the solution is rep- 

resented by regions in parameter space whose boundaries we derive analytically. Changes 

in parameters cause the stability regions (or "tongues") to migrate in the plane in a very 

predictable way. We also demonstrate numerically a phenomenon which is not predicted by 

the analysis wherein an odd resonant mode (with wavenumber p = 3) spontaneously gen- 

erates additional lower-wavenumber modes and leads to much more complicated motion. 

Numerical simulations are presented to verify the existence of parametric resonance in a flat 

fiber. 

The results in the thesis demonstrate that Floquet analysis is an extremely useful tool 

in examining parametric resonance and the unstable behavior of a broad class of problems 
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in fluid-structure interaction. Simultaneously, the consistency between numerical and ana- 

lytical results for both flat and circular interface geometries has shown that the immersed 

boundary method is an efficient approach to capture not only the deformations of the elastic 

structure but also the motion of the surrounding fluid. 

6.2 Future work 

There are two main avenues for future research: one being in extending the stability analysis 

to other more complex problems in fluid-structure interaction; and the other is to applying 

the results to specific applications from the real world. We plan to extend the analysis to 

more realistic immersed boundary model, including a spatially-dependent stiffness, ~ ( s ,  t ) ,  

which is an important extension for dynamics of certain biological systems (such as the heart 

or the basilar membrane in the inner ear). However, this form of stiffness complicates the 

Floquet analysis significantly by coupling together the various wavenumbers, and therefore 

would require an extension of the current analytical method. 

One of the most promising applications of this modified analysis is to the basilar mem- 

brane in the cochlea, which has a stiffness that varies exponentially along its length and so 

can react to a large range of sound frequencies [16]. The ability of the ear to amplify in- 

coming sounds is still not understood, and is believed at present to derive solely from active 

mechanical forcing from outer hair cells lying adjacent to the basilar membrane. Fluid- 

mechanical contributions to this amplification mechanism have not yet been considered, 

and so we plan to investigate the stability of the basilar membrane and whether resonances 

can play a role for the parameter values of interest. Modelling the ear's ability to actively 

amplify sound is necessary in understanding the basic hearing mechanisms, and might also 

lead to improvements in devices and techniques for mitigating hearing impairments. 
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