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ABSTRACT

A numerical study is made of the 't Hooft-Polyakov
monopole and its spherically symmetric generalization to
an SU(3) gauge theory. Also, dyon solutions are investigated
for an SU(2) gauge theory. The nonlinear differential
equations are solved by a collocation method. The masses
(and electric charges of the dyons) are plotted as a function?
of F==21 and it is found that the masses ( and electric
charges ) approach an upper (lower ) bound as fa becomes
asymptotically large. We call this phenomena saturation.
An explanation of this phcnomena is proposcd which in
principle should predict the saturated values of monopole
( dyon ) masses and clectric charges. We.obtain gcod

agreement for the SU(2) dyons.
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Chapter 1

Introduction

Years ago, Dirac! introduced into the theory of electro-

dynamics point particles with magnetic charge, the Dirac

monopole. It was an uncomfortable fit. To make the Dirac
monopole field part of a dynamical theory one must introduce
non-electromagnetic dynamical degrees of freedom, the magnetic
monopole, whose mass and spin are free parameters. Further,
it is necessary to introduce into the vector potential a

line of singularities extending from the monopole to infinity,

the Dirac string. There has been extensive investigation

extending the ideas of Dirac, but these uhpleasant features
remain?.

To put things in perspective we shail take a short but
important digression from the relatively narrow subject of
monopoles.

Reéently there has been a great degl of interest in non-
Abelian gauge theories of the Yang-Millé type as possible
candidates for unifying the theories of stréng, weak, and
electromagnetic interactions®. These theories are not yet

completely understood on a quantum level. However, the

'The original articles are by Dirac (1931, 1948).

2For a nice review of the subject up to 1968 see Amaldi (1968).

3See the articles of Abers and Lee (1973) or S. Weinberg
(1974) .
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classical solutions to the equations of motion have important
implications about the structure of the full quantal theory®.
Of particular interest are stable, finite energy, non-
dissipative solutions to thebclassical field equations.
In other words, we are interested in a stable lump df finite
field energy that does not diffuse into a constant zero-energy
density over all space . These objects, called solitons, are
artifacts of non-linear field theories. The soliton may
achieve its stability® via one of two mechanisms. Thus,

solitons are classified as either topological or non-topologi-

cal solitons. Non-topological solitons achieve their sta-
bility dynamically via time varying field amplitudes and
conserved Noether-currents. We will not be concerned with

such objects in this thesis. The stability of topological

solitons is a result of the existence of a non-trivial

mapping from the manifold of the internal field space onto
the manifold of the real d-dimensional space of ihe theory.
The study of such continuous mappings is called homotopy

theorz7. It turns out that each map is associated with an

I have stolen a number of nice phrases from Marciano and
Pagels (1978).

®The soliton solutions are solutions of the Euler-Lagrange
equations which follows from Hamilton's principle, §&§S=0. A
_solution is stable if it minimizes the action, &S720.

’Appendix E contains an introduction to homotopy theory where
terms like ''mon-trivial mapping'" are defined.
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integer which is in turn associated with a topological

charge®. This means that the soiiton cannot diffuse into a
vacuum with zero topological charge. The topology of the
fields ‘acts as an infinite pbtential barrier making the static
topological soliton stable. There is speculation that the
only static and stable lumps of field energy are topological
solitons. These classical solutions provide the first
approximations for the full quantum theory from which one
can calculate the quantum fluctuations. This is important
because soliton solutions cannot be generated by standard
perturbation theory®?. Thus, we gain a new class of quantum
solutions in our theory. An example of a soliton and a
potentially spectacular confirmation of_these ideas is'the
possible existence of magnetic monopoles.

't Hooft (1974) and Polyakov (1974) discovered
independently a static, finite-energy and stable classical
solution in a spontaneously broken Yang-Mills theory.
Specifically, their theory contains a triplet of scélar
fields along with a triplet of gauge>fie1ds whose interactions

10

are invariant under an SU(2) symmetry With an appropriate

8For each soliton solution we can define a conserved current

that is not a result of a Lagrangian symmetry (i.e.
this is not a Noether current). The corresponding charge is
the topological charge.

°Soliton amplitudes go as the inverse of the coupling constant.

®This barrage of nomenclature is explained in detail in fol-
lowing chapters.
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identification of the electromagnetic fields, this soliton

solution can be interpreted as having the properties of a
magnetic monopole.

I should emphasize at this point that the particles we
shall consider are completely different from the Dirac
monopole. The 't Hooft-Polyakov monopoles are by-products
in theories of non-Abelian gauge fields intéracting with
scalar fields. Unlike the Dirac monopole, the fields are
non-singular with finite energy, there are no new dynamical
degrees of freedom, and all the properties of these monopoles
are determined by the parameters of the original theory of
interacting scalar fields and gauge fields.

Julia and Zee (1974) generalized the 't Hooft and
Polyakov monopole so that the solution could be interpreted
as having both magnetic and electric charges. Such objects
are called dyons, following Schwinger (1969). Since that
time there has appeared in the literature several papers that
generalize the solution of 't Hooft and Polyakov in an SU(2)
theory to larger symmetry groups. The fundémeﬁtal idea

behind these papers is that to produce a spherically-

symmetric ansatz for the fields which reduces the Euler-
Lagrange equations to a set of coupled nonlinear ordinary
differential equations! . There seems to be no complete

analytic solution to these problems, although Prasad and

Bspherical-symmetry is defined and its use is explained in
Chapter 3.




-5-
Sommerfield (1975) and Czechowski (1977) have succeeded in
obtaining analytic solutions in special cases of SU(2) and
SU(3) theories respectively; Any extensive analysis of these
problems requires the use of numerical techniques.
The equations to be solved are boundary valued:problems,
thus numerical solutions cannot be obtained trivially.
Previous numerical studies on monopoles in an SU(2) theory
have been done by Bais and Primack (1976) and Cutler and
Wyld (1976) 2. Bais and Primack infestigated solutions for
values of the parameter faz )/ez ¥ ranging from zero to 10
while Cutler and Wyld extended this range from zero to 100
(while we have solved the case of the SU(2) mbnopole for

ll'5). Until this time there has been no

P 's up to 10
publication of numerical results iﬁvolviﬁg monopoles in an
SU(3) gauge theory.

Chapter 2 is devoted to a brief review of non-Abelian
Yang-Mills theories. In chapter 3 the crucial concept of
spherical-symmetry is defined and then used to produCe simple
ansatz for finding monopole solutions in a theory with a
general compact semisimple gauge group (. Using these
principles the equations of motion for a dyon/monopole

solution in an SU(2) gauge theory are derived in chapter 4.

“Abrief description of their methods is given in chapter 6.

BThese parameters are explained in the following chapters.
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An integral expression 1s given for the energy (mass) which is
later calculated numerically. Further, we identify the
electromagnetic fields and fhefeby show that the solution
may be interpreted as having a point magnetic charge of qvé .
The electric charge appears to be "extended'" and the total
charge is obtained by an integral expression. The electric
charge may vary depending upon the boundary cqnditions applied
to the fields. The fifth chapter is devoted to monopole
solutions in an SU(3) gauge theory. The process is more
involved than the SU(2) case of chapter 4 because of the more
complex nature of the SU(3) groﬁp. There are two types of
monopoles corresponding to the two distinct embeddings of
SU(2) as a subgroup of SU(3). Further, there are two
distinct types of vacuum symmetries, SU(Z)XU(l) and
U(1)xU(1), that lead to corresponding identifications of the
electromagnetic fields and their associated magnetic charges.
Again, an integral expression is given for thc masses of the
various monopoles which is calculated numerically once the
field equationskare solved. Chapter 6 contains an explanation
of the numerical method used in this thesis to solve the

differential equations, collocation. A brief description of

the methods of Bais and Primack and Cutler and Wyld is given.
In practice the differential equations are solved on the
interval,[oﬁ) rather than B%aﬂ on which the problem is
‘originally cast. The corresponding mapping and its
restrictions arc described. The results of the calculations

are given in chapter 7. The fields of dyons in an SU(2)
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theory are calculated for various values of F and 1 .
The corresponding charges and masses are calculated from these
solutions. The fields of the SU(3) monopoles are solved for
a number of values of F . Unféftunately, the case of the
S0(3) embedding could be solved only for the case of fﬁ:O .
For the monopole/dyon cases that were solved there appears an
interesting phenomena. The mass of monopole/dyon monotonically
approaches an upper bound as F becomes asymptotically large.
This upper bound is different for each case considered.
An explanétion of this "saturation'" is given for the SU(2)
monopole/dyon by considering the analytic behavior of the
solutions as F goes to infinity. We find there is a good
agreement between the infinite P model and»the large F limit
of the numerical results. Unfortunately, a similar explanation
could not be made for the other cases of mass 'saturation' of
the SU(3) monopole. This presents the intriguing idea that all

monopole solutions may saturate in this manner.

“j*L is a parameter that determines one of the boundary
conditions on the fields. Increasing has the effect of
increasing the electric charge on the dyon.



gblpter 2

The Lagrangian Density1

The fundamental object_df any field theory is the
Lagrangian denSity'i? which is a function of all the fields
of the theory and their derivatives ¢Jﬁ¢?. The Lagrangian

L is the integral of ;9 over all Euclidean three-space.

L= fdi PP, arqf‘m) , | (2.1)

The equations of motion follow from Hamilton's principle,

t. |
%fLw&zo (2.2

+‘1

for any t, and tz, where the variations of the fields are

1

assumed to vanish at tl’and t,. The condition (2.2) implies

the fields of the theory satisfy the Euler-Lagrange equations:

¥ - o, 8L | C2.3)
s¢> | 8(34) o

In classical field theory £ must be real and Lorentz
invariant, so that one obtains covariant equations of motion.
These conditions are generally obvious by the way L is

constructed.

"1This chapter is a shameless plagiarism of the first section
of Abers and Lee (1973).
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A very powerful observation is that to every continuous
symmetfy of £ there corresponds a conserved current. It 1is
well known that in a Lorentz invariant theory, the energy,’
momentum and angular momentum can be defined and are conserved
(Roman (1969), Barut (1964)). Now we shall extend this idea
to non-classical space-time symmetries, called internal
symmetries. Internal symmetry transformations consist of

linear transformations among the fields of the theory,

do— doo= exp [-1 e"\_“] bao = Ue) oo (2.4)

a.
where <#00 is a column vector and L is a matrix representa-
tion of the generators of a group G. We say the fields come
in multiplets which form a basis for repfesentations of G.

o8

If the transformation parameters 6 are independent of space-

time, (2.4) is called a global gauge transformation or a

gauge transformation of the first kind. Under a global
transformation terms of the form, 43% and ar@a% , are
invariant and a Lagrangian density can be constructed using
these basic units?,

Assuming we start with a Lagrangian density with a global
symmetry, how do we construct a theory that is invariant under

a local gauge transformation where the transformation

o ) . a
parameters © become functions of space and time By 2

§
21t will be assumed for simplicity that the ficlds cb=(?)
are Lorentz scalars.
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The answer 1s that we are forced to introduce a set of

Q
vector fields A, ® called gauge fields that transform in

tl

such a way as to keep 26 invariant under gauge transformations.

Under a local gauge transformation

Ct)('x\ — cb/(x) = U (em) ¢(7Q , (2.5)

the derivatives of the fields transform as,

upeo—=UB 3o + (3,0(6) peo. (2.6)

Consequently, 4&# remains invariant while a¥¢‘aﬁ§ does not.

To resolve this difficulty we introduce a covariant derivative

‘)r4xﬂ which transforms like ¢w0

Dy $eo ——»D; doo = TEDSw 2.7

Thus, terms of the form (I+¢) (Iy¢) are 1nvarlant and so they
replace the role B<¥5n¥ had in the global theory
The covariant derivative E?#mo is defined by introducing

a
a vector field3 /\€13 for each dimension of the Lie algebra,

DT' bwy = (Bt* - 19 L&Arqw> c}:cx) , | (2.8)

3We shall use the terms vector field and gauge field
interchangeably.
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where the coupling constant ¢ is arbitrary.
a
In order to satisfy (2.7) /\rOQ must transform in the

following manner:*

AL—R&-C-U® AT Us .i’(arU(e)) U (29
P P re g

where K. T A L (2.10)

Now we mu%t add a kinetic energy term Q? which contains

only the fields /\;Land thcir derivatives. We shall propose
that Jfo be constructed out of tensors FFVa according to

o va
foz "q‘ Fr” =y i (2.11)

such that it is gauge invariant. We define

b ¢
a o o (2.12)
Fr\v = Br\ Av - av A,.A + %Cabc A‘-‘ Av

where C . = are the structurc constants of the Lie group G.>

“The transformation rule appears to depend upon the particular
represEntatlon of G, but it only depends upon the commutators
[ L*,L°] whose form is independent of representation.

b
5The generators of G satisfy [T% 7] = Lcdxj— as do
any representation of the generators, [L ]"IC
This set of commutation relations defines the Lie a gebra
of G.
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A convenient notation employs the regular representation

matrices

(2.

it
|

o

O

(T &)bc =

abe 9
where we define

Arm = AH&me, ' | (2

and FPV = FPV&'TQ‘ (2.

Our Yang-Mills® tensor can now be defined by,

F =3 A - 3 A —; A :
i BV v g[ F’Av]’ (2

and transforms as,

/ -1 |
F‘w__.. Ft“’ = UR<9) Fr*” Ua“”, ‘ (2

13)

.14)

15)

16)

.17)

where [LU” is the transformation matrix under the regular

representation,

U, = exe[ -18e-T] - (2.

18)

6Yang and Mills (1954) first studicd local gauge invariance

under non-Abelian groups, for the case of isotopic spin,
SU(2).
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Using this notation we may express Jﬂ, by,

R N L 2.1)

a-b
where Tr(T T )=NS8,L .7 | (2.20)
Gauge invariance is now obvious because under gauge

transformations,

FWFPV—-’- FPIV PP U @ FPVFFVUEB) | (2.21)
and |
Tr (FL F ) = T F{VFIFV) . (2.22)

Gathering everything together, we may write down the form
of the Lagrangian density for a Yang-Mills theory invariant

under a gauge group G,

‘ PN
L= -3 TEF) 4 1OATD -V

where V(P) is a guage invariant potential term.
The form of the potential chosen is extremely important
because it partially determines the configuration of the

a
fields <¢GQ in the vacuum and provides the cause for

7This property is not obvious, but for the groups we will
consider it will be true. For those interested in the gory
details, see Gilmore (1974).
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spontaneous symmetry breaking and the Higgs mechanism®

8 For those unfamiliar with these phenomena, a crude
explanation is provided in appendix A.

B Y R g AP W _ NI EENYF WBIF. o



Chapter 3

Monopoles, Spherical Symmetry and Point Monopoles.

Recently there has been several papers that generalize the
't Hooft-Polyakov monopole solﬁtion of an SU(2) gauge theéry
('t Hooft (1974), Polyakov (1974) to larger gauge grdups
(Bais and Primack (1977), Michel and O'Raighfeartaigh (1977)
Horvath and Palla (1976), Wilkinson and Goldhaber (1977)).
I will show a crude method for producing an ansatz that
generates static, sphericallyFSymmetric monopole solutions
in a theory of a general compact semisimple! gauge group G.
The approach used is based on Bais and Primack (1977) and
Wilkinson and Goldhaber (1977) becausc they use the appcaling
idea of spherical symmctry.

The original monopole solution of 't lfooft and Polyakov
has the distinctive property that the ficlds arc invariant
under combined spatial and isospin rotations, we shall call

this property spherical symmetry. This property allows one

to reduce the equations of motion to ordinary,differenfial
equations in the radial variable. By considering distinct
embeddings of SU(2) in a compact semisimple group G we can
generaiize this notion.

To obtain a concrete definition of spherical symmetry

consider first the effects of a rotation in Euclidean

1Gilmore (1974) provides exhaustive definitions of thesec
terms, however for the purposes of this thesis we may assume
these conditions to hold, since we consider only SU(Z) and
SU(3).
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three-space®. A position will transform as a vector,

r—= x=R@)x x+39xx (3.1)

[PV by

while a scalar field, such as the Higgs field will transform

as,

4)/(&/):4)(“& , | (3.2)

and the gauge field AY(X) wiil transform as a vector field,

*

A= R(Aw) - (3.3)

Defining the change in a field by,

/ B
By @)= W)~ ), (3-4)
we obtain for an infintesimal rotation &8 ,
Sp(x) = — 98- (2& X VCPQ‘J) | (3.5)

SA, (0= -50(x x VA@) + (sexAw), . (-0

We will normally call such operations space rotations which

are a subgroup of the Lorentz transformations whereas the iso-

spin rotations form an SU(2) subgroup of the gauge
transformations.

"

¥ a U F e
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In order to conform with the literature?® we shall use the

rather loose notation,

i

(2% vy@),

[2L° vy ], | (3.7)

where L = %X (——f.V) ] | (3.8)

i,

So we may write,
Sbx) = -£ SBL[LL, 4><2£)] , (3.9)

and  8A (&)= - 80°[ LY, Ay ] + €, 80 A (3.10)
Now consider the generators of an SU(2) subgroup of
our general group G, which we will denote by (T') i = 1,2,3.

An isospin rotation on the Higgs field can be written,

4

F— 3= exe[-18T] & exe[+1 -] (3.11)

k)

or @/(2&): U(e) @Q&)U—(‘B) ) | | (3.12)

Bais and Primack (1977), Wilkinson and Golhaber (1977) and
many other authors have adopted this notation.

“For notational simplicity we shall use the regular
" representation of the Higgs field, defined by =7 ,
a=1,2,...,dimG. It is not hard to show that under gauge
transformations & transforms as in (3.11) 1f one considers
infintesimal transformations.
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where 5-T= 67T 48T +6T, ' (3.13)
U = exp[-218T] . (3.14)

Under the same transformation the gauge field becomes,

/ - . -
—_ = [J(® - + (o,U(B
At‘ Ar, U )ArU(B) . ( T‘U( VU, (3.15)

we will consider only global transformations so that the

second term in (3.15) vanishes. Under an infintesimal isospin

rotation we see,
8% = _;ge°[‘r°,§]) | (3.16)

and SAJ__: _Laet[—‘-t’ AJ]- (3.17)

Now we shall define fields as spherically symmetric if

they are invariant under a combined space and isospin'rotation.
By considering (3.9), (3.10), (3.16) and (3.17) we define

spherically symmetric fields as those that satisfy,

[ L"-\-T", Aj]= f.e'._j'k A\z . (3.18)
[L+T5 3l=0. (3.19)

To construct spherically symmetric monopole solutions,

one uses the most general ansatz satisfying (3.18) and (3.19)
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for each embedding of an SU(2) subgroup in G. The specific
form of these ansatz must be such that they‘conform to the
boundary conditions of the theory.
As the radius becomes asymptotically large thevHiggs
field should approach its lowest possible energy configuratidn,

the vacuum. These conditions can be expressed by,

DI'g—20 o, | | (3.20)
&V _rm . (3.21)

8%

A configuration of fields which satisfies theée conditions
everywhere in sbace except at the origin is known as point
monopole. Obviously, a knowledge of all the possible point
monopoles of a theory would be useful in detérmining the
boundary conditions of our fields. In fact, Wilkinson and
Goldhaber (1977) have shown a method for obtainiﬁg all the
point monopoles of a theory using group theory techniques.
They use these point monopoles as the starting point for
defining the ansatz for a general finite-energy, static and
spherically symmetric monopole solutions. |

In this thesis we use the opposite approach; where we
start with the most general spherically symmetric ansatz and
_then force it to confirm to a monopole solution as the radius

goes to infinity.

L Y NN _

83 B ERFREF % Fg
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Chapter 4
Dyons in an SU(2) Gauge Theory

The dyon is a particle with both magnetic and electric
charge and has been discussed previously by Schwinger (1969)
and Zwanzinger (1968). Julia and Zee (1974j have extended
the arguments of 't Hooft (1974) and Polyakqv (1974) by
showing the possibility of constructing classical solutions
having both magnetic and electric charges.

We shall start with a Yang-Mills theory (under an SU(2)
gauge group) with symmetry breaking. Then, we choose a
spherically symmetric ansafz for our fieids thereby reducing
the equations o motion to ordinary differential equations in
the radial variable. A suitable definition of the electro-
magnetic field is given so that the electric and maghetic
charges become clearly defined. The t' Hooft-Polyakov mono-
pole may then be identified as the special case of such a dyon
with zero electric charge.

The Lagrangian density for an SU(2) gauge theory with

a triplet of scalar fields is given by,

L=-%Tr (FTLVFPV) + Tr <Dr@Dr@> - V(@), (4'1)\

where
3

= 4;“-(’“ (4.2)

)
Ap= /\;Ta’, (4.3)
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= 3 -9 ~te L A y : L 4)
Fiw= 3A - 3A, e[‘ o Al (4.4)

“ | (4.5)

3

and Tz 71
a =123,

The matrices T', T?, Ta are the 2x2 Pauli spin matrices so

that the representation matrices T2 have the following

properties: |

[T°, T°]- Pey T R

3

(i.e. they form a representation of the generators of SU(2))
a_b |
and T (TT°)= % S . | (4.7)

Further, one may show that the covariant derivative (2.8) may

be expressed as
= — 1 1 o ,
D.3=133-1e[A,, 3], | (4.8)

From the discussion of appendix A we choose a symmetry

breaking potential of the form (l¢i=Vv minimizes V ),

It

V@ = 2 (2T &%)

N PG
,4 .
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At this point we propose a spherically symmetric ansatz

for the Higgs field @ and the gauge field,Ar;

A= e, UZHO) T (4.10)
L ) er .
) = Fo T (4.11)
er
i=12,3 a=1,23 3 n'= =

o
Under rotation A has the same Lorentz transformation

properties as § so,

A, (%) = Jw e T | | (4.12)

It is a straightforward computation to show that ‘ALCE)
satisfies (3.18) while ®@) and Ap(.z&) satisfy (3.19), nieaning
that the fields are indeed spherically symmetric. In fact,
Weinberg and Guth (1976) prove. that this is the only finite
energy and spherically symmetric ansatz in an SU(2)>gauge
theory.

It should be noted that in (4.10j, (4.11) and (4.12)
the angular dependence of the fields is displayed explicitly
while the unknowns are functions of the radius only. ‘
Additionally there is no time dependence because we are
assuming static solutions.

- Substituting (4.10), (4.11) and (4.12) into (4.1), then

integrating over all space, we obtain for the Lagrangian
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~_1_ (H D IH _ (-9
ok rz o2
d \2 2
( a‘r_ ) —i ( F ~ ezvzpz)) 3 ] (4=13)
r2 2r2 yr*
where Fa R ; d= e ~ (4.14)
a* un RF

The equations of motion result from extremizing this integral.
However it is advantageous to convert to dimensionless

variables first. Let,

= eur, (4.15)
hat L= - My 4.16
so t z.lt' L — }(F"U ) (4.16)
where N = evu ! B (4.17)
W 3
dz a 2 2\ 2 2
an i( N y= clz_ H' (H -—\) J H
? q. + “‘;;;‘ - 2%
[}
2 2
(23-3)° , FH  GFE) g (F—z’)2>,
2z* z* 22* 4z
(4.18)

1 M,is the mass of the vector boson obtained by way of the
liiggs mechanism. For a crude explanation sec appendix A.

2Tl-is a parameter that determines the asymptotic behavior of
J(r). See appendix B for details.



where f= dz -
Extremizing Y by use of the Euler-Lagrange equations gives

the following ordinary differential equatiohs in z,
" 2 2 a2 |
2H= HH™- T +F 1), ' (4.19)
i 2
=J"'= 200, (4.20)

Vi 2 R -2

2 = -

The boundary conditions on H,J and F are discussed in detail
in appendix B. The criteria we use for deciding these
conditions are that the energy be finite and that the fields
approach the point monopole solutions in the asymptotic limit.
I shall simply state the result here:

Hy=1, H=o,

P

0, T —— 1Nz, (0sm <1},

]

J (o)

(4.22)
Foy=o, F=Zz,

J

The gauge invariant Hamiltonian density is given by,

3

®= FF" +Do*Do* - L. (4.23)

3This formula is not obvious but it does reduce to our normal

" definition in the casc of an Abelian theory. [lor further
details see Julia and Zcc (1974), Prasad and Sommerficld
(1975) or Coleman (1975).



-25-

Since all time derivatives vanish, the total energy is
interpreted as the mass of the dyon. Making the appropriate

substitutions we obtain:

M = f"&%(:&)£= _M&_\y_ Ceemp, (420

where
@1 = 2 WD (T E)
CF’L E[JE(H * 2z* + : :;’:
L @I (zF F) _‘s_(\: _2)" (4.25)

2z*
Having solved (4.19), (4.20) and (4.21) this can be calculated.
In order to determine the electric and magnetic charge
of the object we have constructed, we must identify the
v :
electromagnetic fields EFF. Any choice of 3: must satisfy the
following conditions:
g |
1. F transforms as a 2-contravariant tensor.
P :
2. ¥ must be gauge invariant.
3. If we make a gauge transformation on the Higgs field @ R
in some region, such that it points only in one direction
in isospin space, T3 say, the fields should reduce to the

usual definition,

T Br A, — d, At’3 . (4.26)

The last condition recquires an cxplanation. Ordinary

electrodynamics is a gauge theory, a spetial case of the
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general formalism presented in the second chapter. The
symmetry group of electrodynamics is G=U(1). Under the U(1)
group, a complex field wili transform as,

-2 B
o 1

beny — d'ooy =

b0, (4.27)

while a real (Hermitian) field is invariant,

-29000) rq B ‘
o= = e 1 0 e oy (4.28)

The corresponding transformation of the single gauge field

is given by,

A (ﬂ—*AI W =A ) - 179 9('#); (4.29)
s t P e |
which should look familiar to those acquainted with the co-
variant formulation of electromagnetism. Since all U(1)
transformation commute (i.e. U(l) is an Abelian group) the
structure constants Cijk vanish and thus the Yang-Mills tensor
(2.12) becomes the ordinary gauge invariant definition of the

electromagnetic field tensor,

F vv = ?r\v: BrAv ~B-v Ar. . (4.30)
In this light, the third criterion for the generalized
definition of '3}vshou1d make more sense. The gauge transfor-

mation in some region will pictorially do something like this:
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——
- —

T
/
' T //1
transformation M T
to a new gauge the scalar field is in

the T>direction everywhere
within the region

spherically-symmetric
gauge

Fig.4.1 A gauge transformation to a U(l) symmetry

In this new gauge the scalar fields may be expresscd as,
3 ‘
o= doo T, (4.31)
and are invariant under the U(1l) subgroup of transformations,

U = Exp[él b T?] . | (4.32)

If we consider only these transformations the gauge fticld

A}bq has the same transformation propecrties as A?IB did

¥
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in (4.29), and we have the corresponding gauge invariant

tensor

Fp = 34 0 3, A, (4,59
Finally, the vacuum of this theory has a U(1l) symmetry®. Thus
the Higgs mechanism leaves one vector field massless which

we 1ldentify as the electromagnetié field®. The.gauge trans-
formation shown in Fig. 4.1 makes the U(1) syﬁmetry and the
corresponding massless field obvious (T3 and A3), thus we
demand the third criterion.

The electromagnetic field tensor suggested by 't Hooft

(1974) is,

rth“’ = 3°FL -4 eqpe $° qua , 8¢, (4.34)
where $* = &, (4.35)

or in matrix language,

22T (3 Ft“’) (@[R@ DV@D (4.36)

“This U(1) symmetry is made obvious in Chapter 5.

SThis Higgs mechanism is discussed in appendix A.
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This definition indeed satisfies the three criteria. Upon

substituting the ansatz (4.10), (4.11) and (4.12) into (4.34)

we obtain

s '- (4.37)

(4.38)

- 4(2)

The corresponding electric and magnetic fields are given by,

=-1e. . F. = n (4.39)

1

er

‘E,=‘3-,=-—RLA <3j- (4.40)
L oL - :
dr
It appears we have a point monopole of strength C*%) whereas

the electric charge is extended. The magnetic and electric

charges are obtained using Gauss' law:

Qn= § B fde= ux,

= (4.41)
S>>

Q.= ¢ E-fda= [(vESL
531 o fv X

[ A

" from equation (4.20) and integrating by parts we obtain,
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Q.= - & @7, (4.42)

where

S = fdz Q‘}_’%H_El . (4.43)
(4]

The result of this thesis is the solution F,J and H and the
calculation of C(P,YL) and C({B,TL)

The magnetic monopole of 't Hooft and Polyakov correspond
to a special case of the dyon whére Ao(x) = (0, which

corresponds to’m?o
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Chapter 5

Magnetic Monopoles in an SU(3) Gauge Theory

In this chapter we shéll deal only with the essential
ideas needed to obtain the differential equations of the
fields. For further details I suggest the reader to consult
Sinha (1976) or Corrigan, Olive, Fairlie and Nuyts (1976)'
whose papers provide the basis for this chapter.

There are two fundamental differences between SU(2Z) and
SU(3) with respect to the classification of monopole solutions.
First, octet vectors of equal length cannot, in general, be
Sli(3) rotated into each other whereas triplet vectors of equal
length can always be SU(2) rotated into each other. Second,
there are two distinct ways of embeddihg SU(2) in SU(3).

Weinberg and Guth (1976) proved thaf the 't Hooft-Polyakov
ansatz is the only spherically symmetric monopole of finite
energy in an SU(2) gauge theory, so the classification of
these monopoles is a trivial matter. However, SU(3) is a more
complicated animal having more than one type of monopole
solution. “

We shall represent our fields by 3x3 traceless Hermitian

matrices:

$= 7 Nt (5-
o 3

Al = LAY (5.2)

'Hereafter we shall use the abbreviation Corrigan et al.
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et aa ha
Fr*v ZX&FPJ BrAV _vaV eYAr,Av_l, (5.3)

(5.4)

The A-matrices form a convenient representation of the
generators of SU(3). Following the convention of Gell-Mann?

these matrices have the following properties:

TaXe) = 2 8,4, | (5.5)

[M,Nﬂ = 20The Ac l (5.6a)

5.6b

(Ao AbY= 4851+ d (5.6D)
(anticommutator)

where the structure constants fabc are real and totally anti-

symmetric while d bc are real and totally symmetric.

abpc

An SU(3) rotation is a unitary transformation,

day = Fey = UB) Bo U—(\B), | (5.7)

Unue=1, detUr=1, (5.8)

and so the eigenvalues of @yare invariant. Thus, §'s with

different cigenvalues cannot be SU(3) rotated into cach other,

2The eight matrices and their properties are listed in appendix

D. The source used was Gell-Mann and Ne'eman (1964).

Ll o BV Bt 2l

[ S T S W AN o B A i
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they lie on distinct SU(3) orbits. Hence, one classification

~scheme of monopole solutions would be to distinguish the eigen-
values of the Higgs field @ in the vacuum. Further, these
eigenvalues identify the symmetry H of the vacuun.

It is the scalar potential V(@ ) that determines the
eigenvalues of § in the vacuum. Consider the most general .

renormalizable gauge invariant potential (having at most a

quartic term in @ ),

V@)= -2 T & + M@+ o &+ constont, (5.9

Since & is a traceless Hermitian matrix, it can be

diagonalized by a unitary transformation such that

/ =~ O ] \
o -exe) o

¢ — K | (5.10)
(o]

Q S

61, Ez are real,

and we obtain
<
Tr & = 2(e*+e7+6¢), (5.11)
2 o
and Tr 3" = ~3ee, (6+€,). (5.12)

Substituting (5.11) and (5.12) into the potential (5.9) we

‘obtain,
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2
\/= "ZF(GT_"G‘ e.;‘+e,e2) T H>\(63+e:+e‘e"\

- 3&36\62 (G)'\' eq_\ + CO“S*CLYT\- . (5 . 13)

The vacuum (or point monopole values of the eigenvalues are

such that V is minimized,

N - ¥V = o - ‘ (5.14)
e, V€ ’

which yields,

0= (26,+&,) (-2 + BN (g ree, +€2) = 33 €a)) (5.15)
and
o= (2¢,+e) (-—21"’- +BA (6P +ee t &) ~ Edge,) . (5.16)
These equations have several solutions, but many are redundant
because they correspond to permuting eigenvalueé along the
diagonal in (5.10), only one of the permutations need be
considered. Suppose,
2€+€,=0, : (5.17)

then from (5.16),

e C= | (5.18)
2ule’ - 3%, € —2p =0, | 5.
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which has the solutions,

o 2
€ = oy + o+ G PN (5.19)

d
b\

where we choose the sign that minimizes V. So the vacuum

value of the Higgs field has the diagonal form,

i @) (@]
@ = e, o \ o (5.20)
vo.C
@) O -2
which is a multiple of the eighth Gell-Mann matrix,
A
3 @) o
A o & 0
= 3 i :
8 (5.21)
o o “F
In the 1limit of the cubic term vanishing ( &, 0), »
o0 (Ry L . i:_lﬁ_
€ ——> hN PYES 243’ | (5.22)
d = 4+ Y 5.23
an : évo.c - 2 )\3 7 . ( )
where = FA[- . (5.24)
A

‘(We shall conventionally choose the plus sign.) Using the

general potential (5.9) we obtain a vacuum value of the Higgs
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field that is called Ahg-like, for obvious reasons. We may
now determine the symme;ry of such a vacuum. From appendix D
we see that )% commutes only with %1’ AZ’ AB and >%. Thus
évac is invariant under transformations involving an
exponentiation of these four matrices. From the commutation

relations,
Lre, N 1=0, (5.25)
N A 1= L E .
[?’?] i “Jk)gk’ (5.26)

i,j,k =1,2,3
one concludes %8 generates a U(1l) subgroup of SU(3) while
N, A A ’
()ﬁ’ 2.5 %ﬂ generates an SU(2) subgroup. We say that the

unbroken symmetry group or the little group of @ is

SU(2)XU(1) (i.e. isomorphic with U(2)),

H= U@) > SUR)XUG). o (5.27)

Corrigan et al. use the general potential (5.9) and thus
the vacuum in their theory has a U(2) symmetry. However, Sinha

3
chose a less general potential of the form

V(@) = %(ﬂ? F-v), e

8This is a special case of the general potential (5.9) where

the cubic term is removed, 1i.e. ds =0
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The vacuum value of the Higgs field has the diagonal form,
€ o o
é =*{ o (~%+%W) o

o 0 (g-t=se))” Y

o< eg H&S s

plus permutations along the diagonal. A neat way of expressing

(5.29) 1is,

¢

va.c

= 3 (an+B2), (5.30)
where a}d-bz=1 . (5.31)

For most choices of a and b, & of (5.30) will commute only

vac
with AS and %B and thus the unbroken symmetry group is

generally"®,

H=Unx U

It is of interest to note that for SU(2) the vacuum has

the form,

'e) -€ (5.32)

“There are choices of a and b that make ®yac Ag-like and
H = U(2); eg. (a,b) = (0,1), (B/2,-%), but these arc
exceptions to the rule.
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which commutes only with the single SU(2) generator

3 \ (9
T>- 1 > (5.33)
2 <o )7 |

so the vacuum of an SU(2) theory has a U(l) symmetry.

The main objective of this thesis is to compute and
compare the monopole solutions of SU(2) and SU(3). In order
tb do this we must use an equivalent Higgs potential in all

cases, namely
V(@) = z‘q(qfq;a—u")z: —Z‘—\'(zTr@l—U") (5.35)

(Ssu(2): a =1,2,3: SU(3): a=1,2,...,8).

As we Have shown, this potential is coﬁsistent with two
types of vacuum symmetries in SU(3). Consequently, we must
be clear in every case as to the properties of the vacuum
because it is important in the identification of the electro-
magnetic field.

It has been.shownnby Bais and Primack (1977) that there
are two distinct ways of embedding an SU(2) subgroup in SU(3).

The generators for each of these embeddings are given by:

SU(2): <T‘>Tz> TB) = (—%. .)\‘ > J?:>\1: J2_.>\3)
S0(3): (T‘) Tz) TB) = <>\7- 3->\5 ) >\=~> -

As the label indicates, the second case is really an SO(3)
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embedding in SU(3)3%. However, no harm is done, because
the generators obey the commutation rules for SU(Z).

At this stage wé are ready to construct a spherically
symmetric ansatz for the scaiar fields . There are eight
independent scalar fields ¢§'which transform as an octet
representation of SU(3). The question we must answer is how
do these fields transform under the embedded subgroups?®
The fundamental representation of SU(3) is a three-by-three

matrix acting on a three dimensional vector space,

x x = Li=|%] . (5.36)
x » » (L‘ q,_»

The action of one of the subgroups on such a vector space can

be written

Exp [-1 9-):] L= UWB) |q.] . | (5.37)
A %

*Properly speaking SO(3) is a 2-1 homomorphlc image of -SU(2)
(Gilmore (1974)).

' ®The argument presented here is my "hand-wavy'" version of
Corrigan et al. (1976). More sophisticated group thecoretical
approaches are presented in Bais and Primack (1977) and
Wilkinson and Goldhaber (1977).
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>

For the SU(2) embedding the transformation takes the form,

1, q
U (e) (17. = CL: b (5.38)

3VER)
s %

where (%%) transforms as a two component-isospinor under this
SU(2) rotation while (is) is unaffected. The three component
vector may be regarded as the sum of an isospin-%- and
isospin-0 state, symbolically

(3) = (2) + (). o (5.39)

The standard method of constructing an octet representation
of SU(3) is well known® to be the direct product of the
fundamental representation with the contragradient representa-

tion,
(3) @ (3) = (8) & (1). _ ‘ (5.40)

But, if we restrict ourselves to the SU(2) subgroup of

transformations, (5.40) becomes our familiar Clebsch-Gordan

" ’See the form of )1,'%2,:K3 in appendix D.

8For those as ignorant as I was, see Fonda and Ghirardi (1970)
for details.
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direct product®. Now we have,

GG = (@+0) @ ((D+ W)
= Q@ e My (VM@ M@

= 3B Mo (),
(5.41)

so we may write for the SU(2Z) embedding,

@)= Mo YYD . : (5.42)

Which means that we may construct the Higgs field & with
components that transform under the SU(Zj subgroup as
isospin-1, % ,% and isospin-0 states respectively. All of
these components cannot be used because we must‘require

to satisfy the spherical symmetry criteria.

In the fundamental representation the SO(3) subgroup

transforms the three-dimensional vector as

CL‘ Clll
U cj-z = (1: s (5.43)

S0 ,
1, 1,

‘where ( ﬂ; ﬂ;, q;) transforms as an isovector (isospin-1 state)

%See Gottfried (1966).
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under an SO(3) rotation. So in this case our vector decomposes

as,
(3= ). | (5.44)
The corresponding decomposition for the octet of fields is,
@)= G)Ya®), i (5.45)

providing a clue as to the form of the ansatz for D .
Corrigan et al. use the following ansatz for the Higgs

field:
SU(2) Embedding:

@)= afrp + baony, (5.46)

where F(r) and g(r) are real functions of the

radius while a and b are real constants chosen

such that,
aF+b =1, | (5.47)
and n s 7‘7q3ﬂ,

3 e i

. \
= ), 2tn 5.48
\F1 =1 4 k¢ ( )
"y, = _Z;__z_ ] (5.49)

2.

WThere is no time dependence because we are assuming static
solutions.
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SO0(3) Embedding:

D)= Amg + Bog,, (5.50)

Aw, Bime R,

where

-(551)3- = nn’) - 1”36‘3 > (5.51)

ko
<¢z>\‘.3==. ie%\zﬂ 5 o (5.52)

i,j,k =1,2,3.
One may check that @ satisfies the spherical symmetry require-

ment,

| ]
.
+

T 3]=o0 (5.53)

where it is understood that T are the appropriate generators
of the SU(2) or SO(3) subgroups of SU(3).
We must now choose an ansatz for the géugé fields" /\VCX)

which satisfy the corresponding spherical symmetry requirement,

[L+TH A L= ie.h_.\k Ay - (5.54)

! Corrigan et al. show that these are the mos t general
ansatz for the gauge fields.
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I shall attempt to provide a motivation for the
choice of the various ansatz used for the scalar and gauge
fields. The basic guide is thét the tfansformation properties
under simultaneous gauge and space rotations, where the scalar
fields should be invariant while the gauge field transforms
as a vector. The SU(Z) embedding is very simple because the
scalar field has components of the form (5.48) and (5.49)

XA,

which are obviously invariant. The gauge field (5.56) has the

form
-—,
X % N

which will transform in the proper manner.

For the SO(3) embedding the generators Al? %3, )4, >%, %8
or more appropriately some linear combination transforms as a
quadrupole moment tensor under the SO(3) subgroup of SU(3).
To make an invariant quantity under simultaneous rotation we
simply constract it with a real space quadrupole moment tensor,
thus (5.51). The form (5.52) is simply 1"\\3\, where 3\,‘-'(}7_\)\5,)\,_)’
which is invariant. The gauge fields (5.57) ‘are combinations of
Céntractions and derivatives to give a quantity which transforms

as a vector under simultaneous rotations.
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SU(2) Embedding:

Aﬁcms (1= he) B\u(}) , (5.55)
3 )\ j
where B (%)= — ..; E !*“J'EF s (5.56)

(€pg is the usual € symbol for rx=1,2,3 and €ogj = 0);
SO(3) Embedding:
eA =1 (- OIS 29 I-mels 2], .5

With some algebraic manipulation one may show that these
ansatz for the gauge fields do indeed satisfy the criterion
of spherical symmetry.

The covariant derivative of the Higgs field (5.4) takes

12
’

the form

SU(2) Embedding:

q@ = 2%1 [7‘&" nk(nj xﬁ] "\(r)'FCr) ,

+ anh€£r)£'%)_ + ‘) }f;nk%/(r), (5.58)

SO(3) Embedding:

D& = (3,2)(AR+BD) + (3 4)(AD, +BD)
crg Ay B (5:59

‘mMany of the algebraic manipulations involved in producing
these terms are very tedious. For those interested in the
details see Corrigan et al. (1976).
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The Higgs potential (5.35) takes the form:

SU(2) Embedding:

. 2
V@)= % (€ + B g - ), (5.60)
SO0(3) Embedding: »
2 2.
N(@) = .}(%Acrer\Bzcr)— uﬂ. | (5.61)

We shall assume all time derivatives vanish and that the
gauge is such that AO = 0 ¥, 1In this case the Hamiltonian

density is simply the negative of the Lagrangian density,
W(x) = - Lery (5.62)

and the equations of motion follow from minimizing the total

energy. Applying the variousansidtze to the Lagrangian density,
v ’ |
L=y T (FLF?) 4 Ti(D2 De)- V@), (569
we obtain:

SU(2) Embedding:

Hey= - Lo =_| [ hm—ﬂ ]

ezr.z

r;z.

.‘._[ ﬁr)"\(r).\. (&l +\')g(r)3] ZL\?( 'F(r)-p-b%(,.) 1:) (5.64)

B 1t is always possible to choose such a gauge; see Coleman
(1975). '
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SO(3) Embedding:

2
(DPr + D 1) 4 12D (DI 1

Y4 12 b
Wry=-— fgr): Py [D‘ @ +D e+ YT

Iz /2
+ (_A_.(:-)_\- BC‘”)>
)
o[ (R Bl + (oD Bener)” |
‘—-z

2

2 = i
-+ %( -L-.;- " 4 L-}B(r)-—uz> ] (5.65)

The total energy or mass of the monopole 1is then,

N\= JM(&)fx = Lm‘fr"}}@cr)c\r . (5.66)
[+ o

The mass integrals are simplified by.thé following

substitutions:

z=eur, (5.67)
SU(2) Embedding:
£2uF, q=v G, h=H, (5.68)
SO(3) Embedding:
DR, , D= f#,, A=vF, B= v, (5.69)

together with the convention that a prime indicates a

derivative with respect to z we obtain:

SU(2) Embedding:

M= Mw C(F,an), (5.70)
ol
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C(g,o.,‘o)= féz{Hﬂ—\- gll;;; + & FH

R ) 2 / 2t |22 2
+;;<03'F + b G )+{Z_z (RF+BG-1) ] 5

(5.71)
S0(3) Embedding:
M= My C(FD, (5.72)
oL
«© 2 2. V@ 2
Clpd= faz{%ﬂ:z-» oy (Arpz-)+nH f-\:')
3 2z*
2 2. 2
+ 2E2<%_I + b,?-) 4 H((Bﬂ“\'ﬁﬂi\) +(3-H7_+ nﬂ\) )
2 > 2 2
Z (R F+4d -1 . ‘ (5.73)
+ 4 (13 ) l
where = =_§?_:_ = A . (5.74)
My=ev, o . Pt

The equations of motion follow from minimizing the C's

by way of the Euler-Lagrange equations.

SU(2) Embedding:

2H = H (R + o2 2-\)’ (5.75)
(22FY= F(2W*+ Paz (F '+ BG-1Y), (5.76)

(26" = Pzz(azF2+ bsz—\)a (5.77)
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SO(3) Embedding:

I 2> - 2 2 ) :
2 =8 1I-1) + 2 (8 (a) + 238 ¢), (5.78)
R = f—li(ﬁ:ﬂﬂf—\) + 2(f, (8 + 238 ), (5.79)
@F= @@ r2ntn) + e FEFruE), (5150

@Y= 2B ) 200 3) + 2D E T E) . (5.80)

The boundary conditions that we use for these functions

are.

SU(Z2) Embedding:

Hey=1, He=o,
G'ww=0, Gw=, (5.82)
Fco):o, Fyr=o0,

SO(3) Embedding:

Heor=1 Hio= Yz
Ha=0 ,  Hoem)y = - Vg, (5.83)
Fwory=0, Foy= Ty,

HDd=0, QA= =)y,

>

The explanation of these boundary conditions is given in
appendix C. The criteria used for deciding these boundary
‘conditions were that:

1. The mass integrals must be finite.

2. The radial functions F(z), G(z), ...etc. must be bounded
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everywhere including z=0.
3. The scalar field ® must approach a form such that its

eigenvalues are the same as (5.30),

@, = T (ax+ b)) Erb=1.
The fields will approach point monopole solutions as a result
of the criteria above.

One of the results of this thesis is the numerical
solution of the differential equations and the computation
of the corresponding mass integral.

Identifying the electromagnetic field is a more compli-
cated matter in SU(3) than it was in SU(2). The vacuum of
SU(2) has a U(1l) symmetry and so the Higgs mechanism permits
only one massless vector field which is identified with the
electromagnetic field. However, we have shown that an SU(3)
theory may have either a U(2) or U(1)xU(l) vacuum symmetry,
depending on the form of the Higgs potential.

For U(1)xU(1l) there are two massless Véctof fields /{;
and A;. Thus Sinhé %(1976) identified two corresponding
electromagnetic fields. |

As in SU(2), S;V must be gauge invariant and reduce to °
the usual definitions (i.e. to B‘,AVB—B‘,A? and BrAf-*B\,AF )
when the scalar field is transformed to point in one direction

: " . . . .
f()s say, i.e. ¢“==Smx) in some regilon. 'he electromagnetic

“The identification of the electromagnetic fields are taken
from Sinha's paper. ‘
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fields are identified by Sinha as:

To = §°F, - E6.. 4" DI DF

(5.84)

vz f. c’\B"‘(\C’b%m $3 b&&"‘)(ﬁnf)q; D, &‘,P) ’

€ ‘omn

3’ - & d, 4% (F +ie, Db D$> (5.85)

‘where & = c\p“/w .

The only cases we shall consider ® with a U(1)xU(1l) vacuum are

from the SU(2) embedding (5.46),

Px)= o.:cm \h + \b%crnrz

for the cases (a,b) = (1,0), (é:,{%). Substituting in the

ansatz for (a,b) = (1,0) into (5.84) and (5.85) we obtain,

@ h

(2,b) = (1,0): ?t“’ = - E&ukn’ (580
, er*
@)

and ¥ =o0 (5.87)

P k

BThis thesis was set up to calculate the monopole solutions
proposed by Sinha and Corrigan et al. Corrigan et al.
started with the general potential (5 9) and so their vacuum
symmetry is U(2). On the other hand Sinha used a symmetric
potential (5.28) allowing both U(2) and U(1)xU(1l) vacuum
symmetries. Sinha considered only the SU(Z) embedding (5.46)
for the cases (a,b) = (1,0), (%,BA), B ,-Y%2); the latter
represents U(2) which was also produced by Corrigan et al.
while the former two correspond to U(1)xU(1l) vacuum.
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where ﬁwh is the usual & symbol for Fp@k =1,2,3, and

zero for ‘gv = 0. Thus we have a '"point'" magnetic monopole
£ )

with magnetic charges G%,=’Aq“ﬁa and Qa =0 . For the

' &
case (a)\>3= (é , 3/2) we have,

R
3;‘——— ~ k" [ ofer (1-Frs)

er? Qu

" 5%&)( 2.) '-l\'\cr) mccr)> ]’ | (5.88)
CQ(F) CQ(r) ‘

and

®
?‘w _e.r.!\l:‘_ [?:_9'_\3_..'2%9? (1- \w-))_,‘_ ﬂﬁr_\)ﬁ%m ,—1«-)1 (5.89)
er Q ) Q"l(r)

where Q(r) = (azfz(r) . bagz(r))%. The flelds, in this case,
correspond to an "extended'" spherically-symmetric magnetic

charge density. The total magnetic charges are obtained from
the asymptotic values of the magnetic fields along with Causs'

@)
law. We find Q.= % ("g') and Q(g).—_— % L—'g) .

m

When the symmetry of the vacuum is U(2) (generated by
)1, 7&, )3 and )8) there are four massless vector fields. It
is assumed that the U(1) subgroup generated by XS corresponds
to the gauge group of the electromagnetic fields while the'm
SU(2) subgroup corresponds to a triplet of-SU(Z) Yang-Mills

fields ®. The gauge invariant electromagnetic fields are

®5inha defines the corresponding Yang-Mills tensor and non-
Abelian magnetic charges. We shall not deal with these
objects in this thesis.
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defined such that they reduce to the usual definition

=) &3] _ ~
B‘AAV -Bv/\r in some region when the scalar field Cba“
~a . . .
is transformed to q>==SQ9 in that region. The electromagnetic

fields are then given by,

F - $F, - 2 £,.4"D4 DI, (5.90)

v T 3e Ta

with the usual definition of electric and magnetic charge.
Two cases with a U(2) vacuum are investigated in this thesis

(corresponding to the ansatz presented by Corrigan et al.).

SU(Z2) Embedding: From (5.46)

@( x) = O..‘C(.f‘) \Y\ + \D%U') \1)1 R

where 05E0=({§,‘“i> . The electromagnetic fields are then
given by:
2 5 e .
'} = -€_k n\z Q.‘C(\") (\-\1(,-)) + ‘n(r) a‘QrD = . (5.90)
er*

where Q = (a’£%(r) + b2g?(r))™.

SO(3) Embedding:

From (5.50 the scalar field is givén by,

Fcxr= Amg + Bng .

The corresponding electromagnetic fields are given by,
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" k
’Jr‘w= - STt { _é (2ADD, + B(D>+D))
er+

_le ( 2A (AD,+BD,) (AL + BD,)
Ax> -

+ B(AD,+BD)7),

(5.91)
where Q = <% Azcr)_‘_ L\ Bz(r))yz. .

Both (5.90) and (5.91) represent extended spherically-
symmetric magnetic charge densities. The total magnetic

charges are given by:

SU(2) Embedding:

and

SO0(3) Embedding:

Canzz't 2 (%g) 2

where the sign is a function of what boundary condition we

choose.
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Chapter 6

Numerical Method - Collocation

I cannot take any credit for what follows in this section.
I shall present a very simple-minded explanation of the idea
behind collocation. For those interested in a more detailed
explanation, I suggest they study the papers of U. Ascher,
J. Christiansen and R.D; Russell (1977, 1978) who graciously
allowed me to use their program,

Consider the single second order linecar differential

equation on the interval a g x < b

>

L[y] = {f(x) (6.1)

: 1
where L is a second order linear differential operator ,

L[y] = 7/”+ a‘(x)yl-f o.,(x)y, (6.2)

i

and 7’ Ay/ax - (6.3)

with the boundary conditions,

yccn=A, 7/(\337-5. (6.4) -

LCollocation can solve systems of non-lincar equations of
mixed orders, but we nced not go into the gory detail in
order to obtain an intuitive feel of how collocation works.
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Assuming a well behaved? solution we have something that

might look 1like this

A/\_/B

X=0 x=b
Fig. 6.1 A typical solution

Consider a polynomial

R+ )
P(X)z—. E ok, (X-a) , (6.5)

i=0
which satisfies the differntialequation at k interior points,

{x.}. , a <:xj < b, and has the same boundary conditions

as y. Explicitly,
P(q_): A 5 ‘P(‘D): B’ (().6)
LI P(x—j)] = chj) , (6.7)

where Xj e (a,b), j=1,2,...,k.

2"Well-behaved" is to be interpreted as piecewise continuous
and infinitely differentiable on the pieces. It seems that
functions seen in physics tend to fall in this catcgory.
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This will yield a system of linear equations in the (k+2)
unknown constants o, O, d? ...,ka+1 which can be solved,
in principle. The polynomial should, in some sense, '"look

like" the truec solution y(x).

Fig. 6.2

A polynomial fit of the true solution.

If the solution y(x) has '"interesting" behavior, a large
value of k would be required to make p(x) a good approximation
to the soltuion, thereby forcing one to solve very large and
difficult systems bf linear equations ((6.6),‘(6.7)). This
method would become computationally expensivé and ﬁrone to
roundoff error. A better approach is to use more than one

polynomial by breaking up our interval into subintervals.
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B
|
A \ : {
| \
P ) ?zw 1 { ' ! ()
i %X
} Ly : { i
| [ | f
1 LI ‘ /
{ [ ! / 3%
% gl £N b
§| €N+\

Fig. 6.3

Dividing of the interval [a,b] into
subintervals.

Consider N polynomials pl(x), pz(x), RN pN(x) defined on

the (N+1) points dividing the subintervals El,ﬁl,-'~, §N+I

called the mesh points. As can be seen from Fig. 6.3, the

mesh points are chosen such that,

a.= §‘<;7_< o< B < § =L‘, (6.

N+

Each polynomial 1is (k+1)St degree so we need to solve for
N(k+2) unknown polynomiai coefficients. Consequently, we

impose an equal number of independent conditions.

I. ﬁ(a.\'-': AJ R(L)z B (0.

8)

must

9)
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IT. The function that we produce should be continuous in its

zeroth and first derivatives.

i <§V+‘ = P,,\C&r,f\')) | | 6D

(8 V= p’ r*=2,"',N 6.11
B C5d = i ). o)

I11. The f?s should satisfy the differential equation at

k points within their respective subintervals.

LT PY_C*-F’J-)] = ¥(XM), (6.12)

< X

T e I

These conditions yieid N(k+2Z) linear equations in as many
unknowns. For comparable accuracy, this mcthod yiolds a sct
of ecquations that’arc solved with less trouble than those of
the first method presented.

For technical reaséns the k points in cach subinterval
are chosen to be the points corresponding to the roots of the
kth Legendre polynomial. Explicitly,

)

Pk (pY=0,  j=u k (6.13)
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jj.e[—Biﬂl , these are called the Gauss points. Then one
maps these points linearly from [-1,1] to the mth subinterval,
[ng By |- It has been shown by U. Ascher, J. Christiansen
and R.D. Russell (1977) that this method gives a maximdm
error on the ith subinterval of order h?, where-hi is the
length of the ith subinterval. Collocation has very nice
convergence properties.

For the general case of N non-linear ordinary differential
equations in N unknowns, the coefficients of the N poly-
nomials are determined by the solution of a set of non-linear
algebraic equations using a generalized Newton's method.

Now we will discuss some of the aspects of the numerical
calculation as applied to the solution of the differential
equation developed in chapters 4 and 5.

The differential equations are defined on the interval
0 Z<00 , but collocation rcquirecs a finite interval. To
resolve this difficulty we map Lo®) onto [o1) by means of
the transformation

T —— = = 3 og&<®O, ogx<i (6.14)

1+z

At the same time the differential equations and integrals must

be modified in the appropriate manner so that they are
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expressed in terms3 of x. This transformation is not
generally applicable to all problems. If the solutions on
B%w) are not "extremely smooth'", the problem becomes impossible
on [0,1) . For example, consider a function on D%“» that

looks like the figure below,

Fig. 6.4

Oscillatory bchaviour on [0,0).

after mapping onto D%lv our function would have the form,

Fig. 6.5

Corresponding oscillatory behaviour on [0,1).

*If you do the conversion to the [o,!) interval, you will find
that singularities are introduced at x=1. Fortunately,
collocation is adaptable to this type of singularity on the
boundaries so the equations could be solved.
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which would be impossible to solve numerically. Fortunately,
the functions that characterize monopoles have very smooth
behavior in the asymptotic limit of Z»® and this mapping
procedure is valid. The computer solutions are plotted on
this [0,1D domain so one must be cautious as to what the
function looks like as a function of the radius because of the

distortion due to the mapping.

’-O
=

Fig. 6.6 .

Distortion effects of mapping [0, ) onto
[0,1).

This figure shows the distorting effect which becomes very
severe towards x = 1 ( z»® ). Despite this distortion this
mapping has the advantage of clearly displaying the essentiay
behavior of the fields, i.e. extrema and limiting behavior.
For the SU(2) monopole it was seen that two of the fields

become asymptotically large as =&=-e . Speccifically,

y (6.15)
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Z=-» 00

and N 2 (6.16)

To keep the fields finite (in order to do numerical calcula-

tions) we define G and N such that,

F= (+2) G, (6.17)

J= Q+2) N, | (6.18)

with boundary conditions given by,

Geoy= o , Nwy=o -

2> E-H>®

lim  Gy=1 fim N(a:YL' | (6.19)

The functions plotted will be G(x), N(x) and H(x).

As promised, we shall present a brief description of the
numerical methods of Bais and Primack (1975) and Cutler and Wyld
(1976). It is difficult to compare the merits of various
numerical methods without a detailed investigation on the
programs. Since wé arée not in possession of all the programs,
it would be improper to say that collocation is superior.
However, with collocation a much wider range of solutions 15
investigated than before (Cutler and Wyld have solutions for

; . t.s
%@}S\OO whereas we have solutions for 5@3 <10 ). Also,

in the special cases where analytic solutions exist, there 1is
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very good agreement with out numerical results.

Bais and Primack converted their system of differential
equations to a set of integral equations by separating the

linear and nonlinear terms in the equations,
L.y. = -fi(x,y,y') - (no summation on 1i).

Where y; are the various fields, the fi are the nonlinear terms
in the ith equation, and the Li are the linear differential
operators. They then solve the linear homogeneous equations

with homogeneous boundary conditions

From these solutions they construct the Greens functions where

LiGi(x,x') = —S(x-x').

Then choosing solutions to. the equations of the form,
yi T3tz

where the a, are arbitrary but satisfy the inhomogeneous
boundary conditions of the problem. The a; can be chosen to
be anything although in practice it should be an approximation
of the exact solution Yi- The differential equation is now

in terms of zs which satisfies homogeneous boundary conditions,
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where Pi = Liai which is known. The integral equation becomes,
b .
— / / / ) /
YL('XA = a,‘:(x) + f GL“‘B%) [ﬂ(x} \/(1’),7/(1)) + PL (ﬂ)]c;x,
o.

which 1is solved by iterating this integral equation.
Cutler and Wyld use an approach developed by Henyey et

al. (1959) for astrophysical problems called relaxation.

Consider a system of M differential equations,
V]
Q= \ijqﬂ CP + 8(1)4;) CP/ + \']('X.qu) =0,

with -boundary conditions

(?Qa_}: A R (P(\D)‘—" B)

where Q(x), c?(x), A, B, h(x,q>) are column vectors and f and
g are MxM matrices. Now be discretizing the domain we

obtain a set of difference equations,

Qj = Q(%J)C\D_;)

_ Loy & e aNd
= f¢ &) ﬁ x.+ q(x ,@.ﬁ

x.+ k(wj’(bj) =0,

now approximating the derivatives,



J
@b, - )
dx |y, 20 ) 37
J
with - - '::‘\N
xX CJ \UA‘f‘a) J B)
= Y. 1=
q{) ,4)( j)) J t:hl‘
Substituting these approximations into the expression for
Qj = 0 we obtain MxN nonlinear equations for <¥(xj)_which can

be solved by a generalized Newton's method. This method does
not converge when the differential equation becomes singular
at the origin, where onc is [lorced to constrain the [irst

. . oL
several points to vary like (b(x)d'x
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Chapter 7

Besults

The SU(2) dyon and SU(3) monopole solutions are calculated
over a wide range of the parameter F andq}see chapters 4 and 5).
When the fields along with their associated masses (ahd electric
charges for the dyon) are plotted for various F , we find
that as f& becomes large the changes become small. In other
words, the monopole/dyon fields approach an asymptotic con-
figuration as Faoa and their corresponding mass (and electric
charge) approach an asymptotic value. This process, which we

shall call saturation, is explained for the SU(2) dyon/monopole.

We obtain the asymptotic field configurations, masses and
electric charges for infinite F by requiring the energy
(mass) finite. This assumption means that the scalar fields
must be at their vacuum value everywhere (except perhaps the
origin). The agreement between this method and the numerically
obtained asymptotic values is very good. Saturation is
observed for the SU(3) monopole (SU(2) embedding) but‘the
asymptotic values could not be obtained for‘infinite /5
because the equations resisted solution. Unf{ortunately the
SU(3) monopole (SO(3) embedding) could be solved only for
values of/5 very close to zero. This was the most massive of
all the monopoles investigated.

The equations and definitions of the fields associated
with the SU(2) dyon are presented in detail in chapter 4 (with

some modifications made in chapter 6). The SU(2) monopole
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(a dyon with zero electric charge) may be considered as a
special case of the family of SU(3) monopoles, so we will
present its results as part of the discussion of SU(S).

We plot the fields H(x), N(x) and G(x) on the interval

o< ¢! . Where X is defined by
z=
XE oza’ (7.1)
where = eur, (7.2)

so X=0 corresponds to the origin and X=1 corresponds to
r=»ec . It is helpful to remember that H governs the
behaviour of the spatial components of the gauge fields. N
géverns the time component of the gaugefields and is closely
associated with the electric charge of the dyon. Finally,vG
controls the scalar fields. These functions ére smooth and

bounded with boundary values:

H(r=o)=1, H(r=o)=o,

N (r=0)= 0, N (r=) = 1,
(7.3)

Gr=o) =0, Glr=x)=|
oL N <1,

where Q-is a free parameter which governs the behaviour of

the time components of the gauge fields in the asymptotic limit.
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Qualitatively, the higher the value of T , the greater the dyon
charge (the ?fC) case corresponds to the zero electric charge
monopole).

FIG. 7.1, FIG. 7.2 and FIG. 7.3 show the fields for
? = 1.0 and various values of q_ ranging from 0.1 to 0.99.
It is of interest to note that the scalar fields cpa, as
governed by G, is insensitive to changes in 1 - The qualita-
tive behaviour of the fields for various 1. is similar if F3 is

held at a different fixed value.
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Fig.7.1 SU(2) dyon gauge fields (H) for various TL
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SU(2) dyon gauge fields (N) for various YL



-72~

Fig.7.3 SU(2) dyon scalar fields (G) for various Yl.
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An extremely interesting phenomena is seen in figures
7.4, 7.5 and 7.6 where we plot the fields for n < 0.9 and
several F>'s ranging from zero up to 105. As FZ becomes large,
the fields approach a constant configuration. In terms of

the scalar field G seems to approach the function

= X
G@Hm ’ (7.4)

while H and N do not have an obvious analytic form in the
@—»GD limit. Similar results are obtained for values of
other than 0.9.

Using the definition of the electric field (4.40) along

with Gauss' law we obtain the electric charge density }9
e 2

2
Yo = -2 I - _2My NH
fg e = X

Figure 7.7 shows the electric charge density to behave as %T
near the origin and vanish as the radius becomes large. The
electric charge is extended but finite. The curves shown are

representative of all
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0.91
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Fig.7.4 SU(Z) dyon gauge fields (H ) for various [5
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Fig.7.5 SU(2) dyon gauge fields (N ) for variousle
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Fig.7.6 SU(2) dyon scalar fields (&) for various (s
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]
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Fig. 7.7 Electric charge density of
the SU(2) dyon.
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The mass and charge of the dyon solutions are calculated

from the values of the fields. Recall,
PJ\== Mw Ci(l?’ﬂ? ,
oL
where C(F,TL) is given by equation (4.25),
. .. 8K ‘
Q.= — % C’Cr-wp

where §(€,QP is given by equation (4.43). Figures 7.8 and
7.9 plot Q(F>q? and C(? q-) for various values of and ?-
The results are nearly in agreement with those obtalned

by Bais and Primack (1975).
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Fig.7.8 SU(2) dyon electric charge (S ) for various

F.andrl-
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Fig.7.9 SU(2) dyon mass (C ) for various

F and rL
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As F becomes large the mass and charge of the dyon
"saturates" at finite values. Considering the behaviour of
the fields for large F , this result should not be unexpected.

Hereafter this phenomena shall be referred to as saturation.

We say as F becomes large the dyon fields along with their
associated masses and charges saturate. To explain this effect

we must go back to our expression for the action, equation

(4.18).

Reg, =
fAZ[HIZJr -éz(Hz~\>z—— Hy_ (2353)

2 2% 22*

2 -NZ ‘ 7—
W (RFSF) £ 7

Consider the limit as F‘?m . In order to minimize the action,

or even keep it finite, the function F(z) must approach the

form,

F @@=z (7.6)

(a-—aoo .

This means that ( takes the fornm,

G~ () = quoo () = Zz = A
pre I+ Z [+2

This process is displayed beautifully in FIG 7.6. Now consider
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the limiting form of the action,

- -
U JAE PN G BT i o i D T (7.7)
pe 5 +.—E£;~_ 2= 27> + .

which yields the following differential equations,

22H" = H(Hl-jlfz"‘«\), | (7.8)
223" = 2 THT
(7.9)

. These equations were solved numérically and the corresponding
mass and charge were calculated. The values obtained correspond
extremely well with the limiting values for large fg .. Consider

the following values obtained for the mass of the SU(2) dyon:

1

’L 0.1 0.3 0.5 0.7 0.9 0.99

P“?OO 1.791 1.815 1.866 1.954 2.103 2.207

P = 105 1.789 1.813 1.864 1.952 2.101 2.205 .

Table 7.1 SU(2) dyon mass in the large and infinite F

1limit for variou5'[

Similarly, the values of the charge show good agreement:

Iy
Il
)
Iy
W!
L
L
;

iy



¢
1 0.1 5 .7 .99
> L0290 .1522  .2252 .3174 .3726
> 1522 .2252 .3174 .3726

? =10 .0290

Table 7.2 SU(2) dyon charge in the large and infinite

F 1limit for various 1

Chapter 5 derives and explains the equations of the

monopole solutions in an SU(3) gauge theory.

There are two

distinct embeddings of the subgroup SU(2) within the symmetry

group of the Lagrangian density, SU(3).

Corresponding to

each of the embeddings there are different ansatze for the

fielacs of the theory (for details see chapter 5). A crude

summary of the various fields is given in the following table:

Embedding Field

Controls

Boundary Conditions

SU(2) F scalar fields Fwy= o Flo) =
o, &, ¢’ ’
G scalar field Gwy=o, Gw)=I
¢ﬁ .
H gauge fields Hey=1, H@®=0
Aer Aps Ay
SO0(3) 3 scalar fields Jo=o0, ooy = A3y
1
ba) scalar fields Boy=o , Buw=E/y.
P,
H, - gauge fields Her=1 | Hw= YfE
Ha gauge fields H.tor=o0, H,wm=-Yg
Table 7.3 SU(3) fields and their boundary conditions -
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The equations of motion are obtained by minimizing the
mass integrals (5.71) and (5.73). The SU(2) embedding is
investigated for the three cases obtained by‘Sinha (1976):

UM xu)

3 0L=5£Q b=1§—} U

~ The mass for the SU(2) embedding is given by the expression,

Clp,o,0) = f dz KH'Z L (W) @t FH

Eiz
v £(@Fs )

B (e e ] 7.1

The first case (where a =

=1 and b = 0) has the same mass and

fields (to within a factor of z) as the SU(2) monopole’. We

1THe SU(2) monopole is a special case of the SU(2) dyon and,
strictly speaking, has little to do with the monopole

corresponding to the SU(2) embedding in the gauge group
SU(3).
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have

Clp.10)= fdz[ W EJ\— H*)>

+ FH” 2 E”
xL
+ E’—f— (Fz-—\)z] (7.11)

From chapter 4, the SU(2) monopole is obtained by setting

J(z) = 0 everywhere and the equations of motion now may be

. obtained by minimizing the mass integral (4.25),

Cpreor = [da [We 4o (W)
2 2 / 2-
';i,_:z H ‘F +2";_=.(2‘F"F>

+‘f?:; (F°- 1)7_] o (7.12)

Now making the substitution,

Te@=zF@ (7.13)

the two expressions for the mass become identical?,

’The expressions are identical because the boundary conditions
for F(z)(F(0)=0, Fg5ez), transforms to F(0) = 0 and F@®) =1
which are the proper conditions for the SU(3) fields.
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C(E,\,o) = CC?,Q=0). (7.14)

Thus in viewing the results of the a=1, b=0 case one may im-
mediately apply these results to the SU(2) monopole.

It is interesting to note that exact solutions have been
discovered for the SU(2) embedding for the special case of

F,= 0. The mass is given by,

oo
2 2 2
/ { 2 2
C(o)OLJ\D)z {dz[l——l “+ E—.;_(\—H> —\-o__FlH
z V2l » 7.15
+% (aF s e ] (7.15)
which yields the following equations of motion,

==H"= p(n*+ a"lez—\)l
@EFY-= 2 FH” (7.16)

(22.6!)/ = 0,

Using the boundary conditions from table 7.3 this set

of .equations has the analytic solution:
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Hoy= 2%,

sw*la%.
F@y= cothaz — E\E ()
GEY=1\,

This solution was discovered by Prasad and Sommerfield (1975)
for the SU(2) monopole (a=1, b=0) and later CzechoWski~(1976}
extended the solution to the SU(2) embedding case (a={§)]3=-?%.

Substituting (7.23) into the mass integral (7.14) we obtain,
Clo,a,9)= \al. | (7.18)

This solution provides a nice check for the numerically calcu-
lated results.

The fields of the SU(2) embedding in SU(3) are plotted for
various F5 on figures 7.10 to 7.17. Notice in particuiar the

saturation of the fields for large (8
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1.07
008'
0'6‘
O.44
0.2

-2 < o 1

P = 0,10, 10, 10,10,

i

&%, 10°, 10% 10"5

0.0 0z o4y 06 0.8 O

Fig.7.10 SU(3)/SU(2) monopole gauge fields (H) for variousF
(SU(2) embedding: q=1 b=o )
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§
10
10°
-l
162
p=°
04
0.2
o‘o_oo ¥ o"z . L o"q v 0.'6 L 0:8 V L3 N ‘.I"o

X .

Fig.7.11 SU(3)/SU(2) monopole scalar fields (F ) for

variousf ( SU(2) embedding: a=1, b=o )
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0.8 1
0.6
1
_ -2 o~ o
0.21 F" 0,10, 10,10,
\ 2 2 L)
10, o, 07, i0
d
0.0 * v -
0.0 0.2

Fig.7.12 SU(3) monopole gauge fields (H ) for

variousF ( Su(2) embedding:a,—*—'%:)b:%-)
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=2 =l 0
0,10,10, 10,

0, 10% 10%, 10*

Fig.7.13

SU(3) monopole scalar fields (F) for
VariousF ( SU(2) ewbedding: 0.=-‘!'—,_ b=

>
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1,08
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o208

.00 0.10 0.20 0. 30 0.40 0.50 0.80 0.70 0.80 0.90 1.00

xX ——r

Fig.7.14  SU(3) monopole scalar fields (G) for

variousf ( SU(2) embedding: o.=%_ ;&Ei.)
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Fig.7.15 SU(3) monopole gauge fields (H) for

‘various F, ( SU(2) embedding: O.=I,E , \3=':2‘—_)

1.0
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1.01

081

Q61

o4

0.2

Fig.7.16 SU(3) monopole scalar fields (F ) for

variousF ( SU(2) embedding: a=-l,§ R b=‘-—‘-‘2— )
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1.0
0.0

Fig.7.17 SU(3) monopole scalar fields (G) for

: e A= ——l Y
VarlousF ( SU(2) embeddlng.q-% )b~ E>_—)
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The various masses of the monopole solution are displayed
~on Fig. 7.18. Because of the logarithmic nature of the plot,
the masses for P =0 are not plofted. It turns out that the
humerically calculated mass confirms the analytically predicted
value (equation (7.18)) to one part in 106 in each casé. This
is a nice endorsement of collocation as an integration scheme.
One may see that the mass saturates in each case.

The mass of the SU(2) monopole (a=1, b=0) as plotted in
Fig. 7.18 corresponds extremely well with the results given by

Cutler and Wyld (1974) for the range 0.1 < B < 100.
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.5 ¢
]
/
]
1.0 1
a.=§;_
0.3 b= §
2
4 -3 -2 -1 6 i 2 3 4 s

Fig.7.18 SU(3) monopole mass (¢ ) for variousF
( SU(2) embeddings )
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The explanation of the saturation follows the same
argument as presented for the SU(2) dyon. Recall the integral

expression for the mass (7.10),

_ 3 12 | _\? z =
C(FJO)B)— Jaz[H + —iz—_:_(\ H) + a F H
L2 (e F e B e
>

+ B (@F et Y]

In the limit as Frva> the fields must conspire to eliminate
the last term in the integral (in fact it was found numerically
- that this term becomes small as ‘5 becomes large). This implies
that F and G are no longer independent and they must be such

that,

"

| poren: cF @ + b G =1, (7.19)

At this point we express Gy in terms of F, , substitute back
into C aqd then solve the corresponding Euler-Lagrange
equatioﬁ;. Unfortunately we could not obtain a solution for
the equations. But, I feel this approach is correct and the
technical difficulties assbciated with obtéining a solution\
wiil be overcome in the future. However, the case of the SU(2)

monopole (a=1l, b=0) is explained. The mass integral (7.11),
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C<$,«,o)= féz {H’i s (=W + FOHT

+-§ =7 F—% (F""—\)Z]

has the corresponding Euler-Lagrange equations,

il

2H =1 (W« cf‘z"\:z—-\))

(z*F) = F (ZHl—r@z"‘ (\51—\)),

In order to keep the mass finite as FuaOD , the last term in

the integral must be supressed. The solution
F(z) =1
is not acceptable because it violates the boundary condition

F(0) = 0. So we propose a solution of the form,

F~ \-e S A (7.20)

Substifuting this form into the differential equation for F

we get,
(;_‘F')' r wz(2—dz) e~ 20 (1 - &)

+ Fgc\-—e-“)[—zé""i g
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Assuming H = O(‘e") we find that for «2»\ we must have,

2

L=26 = A= 5_/5 (7.21)

—-.Fz"F'z

F=1i-e

This function becomes very sharp as F—)oo -

Fig.7.19 Large{e form of SU(3)/SU(2) monopole
scalar fields (F )

( SU(2) embedding: a=\ b=o )
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From Fig. 7.11 this seems to be an appropriate description for
the behaviour of F for large € . Substituting the form (7.21) -
in the mass integral and taking the limit as Fawb we find

all terms involving F vanish. The limiting mass integral is

given by,

CCF*“".% 0) = j[ M = (1) + HZJAE (7.22)

To explain saturation physically consider the form of the
scalar potential as F=.§g2 becomes large. Recall that the

symmetry -breaking potential takes the form,

V) = %-( $*- )

{
<E;P
~~
cle
%
!
Z

where N\w = ey

and e, the coupling constant are considered fixed constants.

The scalar potential looks something like this,
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F»l

F~l

W

1 v
Fig.7. 20 Largefi form of the scalar potential Y

As P»oo the scalar field becomes restricted to its vacuum
value by a huge potential barrier. If the boundary condition
- on the field at the origin is not the vacuum value then the
field will'decay very quickly (instantaneously as F-un ) to

. the vacuum value. It seems we obtain a finite energy version of
the point monopole. So, as F; becomes large the scalar field
becomes more restricted and the change in the field should
become smaller. This is exactly what is observed. There are
several questions one may ask about saturation. Is this
phenemena restricted to monopole solutions aldne?- What are
the implications to a full quantum theory? Is there any
physical significance? These questions are not answered here.

: The SU(3) (SO(3) embedding) is solved only for values of
near zero. The corresponding fields are shown in figures
7.21, 7.22, 7.23 and 7.24.‘ The second gauge field f41

has an extremum at a point other than the boundaries. This
is unique among all the fields we have plotted. This phenomena

is not explained as yet. The mass is calculated from equation
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(5.73) and we find,

Ceor = 3.3u234a8

This monopole is certainly the most massive of any investigated.
We feel that solutions to the SO(3) embedding can be solved for
larger P with some modifications of the numerical method.

I am sure that we will again encounter saturation.
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0.8 4

0.2 1

0.0 02 - OH 0.6 0.8 0

Fig.7.21 SU(3) monopole gauge fieldS‘(f{ } for Iszo
( SO(3) embedding )
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t -O.i« f"o'
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Fig.7. 22 SU(3) monopole gauge fields (%) for F-—-o
( SO(3) embedding )
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Fig.7.23

0.2 o4 0.6 0.8 1.0

SU(3) monopole scalar fields (3 ) for(a=o
( SO(3) embedding )
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Fig.7.24 SU(3) monopole scalar fields (B ) for F,=O
( SO(3) embedding )
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Chapter 8

Conclusions

In this thesis we have determined all the spherically-
symmetric SU(2)-dyon and SU(3)>monopole solutions using a
numerical method known as collocation. The various solutions
and their properties (masses and electric charges) are
determined for a wide range of (—'3=%\-.z (where _?*; is the coef-
ficient of the quartic term in the scalar potential and e 1is
the gauge coupling constant). Previously, only SU(2) monopole
and dyon solutions have been investigated numerically. Bais
and Primack (1975) considered SU(2) dyon solutions for
0 < Fﬂ& 10, while Cutler and Wyld (1976) considered SU(2)
monopole solutions for 0 = (Sé 100. In 'thAese ranges of/ﬁ our
results are in substantial agreement with these computations.
However, we have extended the range of for the SU(2)
monopole and dyon to 0 < F 41011'5. To our knowledge this
thesis represents the only numerical investigation of SU(3)
monopole solutions so far.

All physical results depend on the value of the mass of
the intermediate vector boson, Mw' This particle has not
been observed. 't Hooft (1974) points out that in models by
Geogi and Glashow Mw1$-53GeV. Assuming that this is a
reasonable estimate we now have a mass and length scale for

our solutions. The mass is expressed as,

M= Mw (8.1)
o |



-109-

where d=1/137. From our results we find that,
o5 < C g4,

so we find that the monopoles could have a mass of the order

4

of 10 GeV which could soon be within experimental reach. The

length scale for our solutions are expressed in terms of z

(later mapped to x) where,

(8.2)

~18
o = A EEE; 2 H*x10 m,
M,, Mo

Thus, our scale of length for the monopole is much smallef than
the nuclear radius. |

The SU(2) dyon is a point magnetic pole with magnetic
charge ?% . The electric charge density behaves as 12 near
the origin and decays to zero as the radius becomes large.
The total electric charge is finite and we find a continuum
of values for each value of /5.

There are various types of SU(3) magnetic monopoles which
qie distinguished by: 1. which of two distinct embeddings
of the SU(2) subgroup of SU(3) they correspond to; 2. the

symmetry of the vacuum. The two embeddings are referred to
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as SU(3) and SO(3) while there are two possible vacua,
U(1)xU(1) and SU(2)xU(1). We consider the SU(2) embedding for
both the U(L)xU(1) and SU(2)xU(l) vacua for 0 < p< 10°.
The SO(3) embedding is solved for the SU(2)xU(1) vacuum only
fox‘F=0. The distinctions between the various monopoles are
discussed in detail by Corrigan et al. (1976) and Sinha (1976).
We use their ansdtze as a basis for our calculations.
- We find that as(& becomes large? the solutions along
with their corresponding masses (and electric charge) change
very little. We call this effect saturation‘and it is observed
for both SU(2) monopole/dyon and SU(3) monopole solutions. A
physical explanation of saturation is given. From the
explanation we obtain a set of equations that are independent
of which, in principle, can be solved td obtain the infinite
F monopole/dyon solutions. These equations are solved for
the SU(2) monopole and dyon and give an extremely good agree-
ment to the corresponding large F solutions.
Saturation allowé us to give lower and upper bounds to
monopole and dyon masses and electric charges. For example,

the SU(2) momopole mass is found to lie in the range,

M
(.00 £ < .79

(Muw/ol) ?

The SU(2) embeddings of SU(3) have the mass spectrums,

o,5os_._N_\__~ < 0.53 (U(1)xU(1) vacuum),
(M, /o
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N .
and 0.%7< <N\ /OQ< 1.03 (SU(2)xU(1) vacuum).

The monopole corresponding to the SO(3) embedding has a mass
for F =0 of |
M

_— = 334
(M /et)

We have shown that the mass of a monopole is a good
indication of the symmetry group to which it corresponds.
The experimental observation of magnetic monopoles would
certainly confirm at least the qualitative corfectness of

these spontaneously broken theories.
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Appendix A

Symmetry Breaking and the Higgs Mechanism!

Consider the simple example of a Lagrangian density of the

form,
£ OO - F e w15 wo
where,

Drl<i>'-= BFCF — ieArCF, v v (A.2)

I I

Under local gauge transformations:

Fo= 3uA - QAL | e

) — q>/(m = Exp[-18cn] b,

g\i"(ac) — ¢ txy= Exp [+26m] 43*‘7")7 (A.4)

Arcx) —_— A;Lcw) = AY“) - .éa Bx)

while i? is invariant under this U(1l) symmetry.
> %
If we had written -|-% 434\9 in f instead, the Higgs

potential would have had a potential term V((b) of the form,

!This whole appendix borrows heavily from Abers and Lee (1973).
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V) = + £ 6% + 3 (4%, (A.5)

which would be represented by,

¢

Fig. A.1

A non-symmetry-breaking scalar potential.
and the vacuum expectation value of 1$| would be zero.

This is the Lagrangian density for charged scalar electro-

dynamics. However the potential in (A.1) has the form,

V@)= —_E: $"d + % (4)"‘43)) (A.6)
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Fig. A.2

A symmetry-breaking scalar potential.

S
where v = _t_ .

(A.7)
A

The vacuum expectation value of {¢| would be U .

We could
choose the vacuum in some region to be,

¢ =V, ve R,

(A.8)

Consider small perturbations about this vacuum value,

b= (U+ &) expl 3 ‘S'/U_X

(A.9)

™ U4 € + Lg + higher order terms.
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The exponential in (A.9) corresponds to a guage transforma-

tion of the vacuum value of the scalar field 4) .2 The
vac"

vacuum 1s not invariant under the U(1l) symmetry of the

Lagrangian density and we say that we have a spontaneously

broken U(l) symmetry. ;é? can now be written,

L= =% FuFI"+ 5 36 de e + £ 3000

+ SOA A‘* - evA, 2% + hihor order

terms .

(A.10)

The € field has massa.l'ir\ , but the fields A!, and E
have been mixed up, making interpretation difficult. To

clear this up, consider the following gauge transformation:

— L%
¢<x) — c{:(x) L ¢ = (u+e), (A.11)

Ar—a. Ali = Al*_ = R ®.12)

~'fis invariant under these transformations so we may write,

’We will often use the word vacuum in place of the vacuum value
of the scalar field.

3The Lagrangian density producing a Klein-Gordon equation for
a real scalar particle of mass m is

t- £y -oiq)

which gives (Da-m"')cf-o.
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v/ , o
N \:VFV ridede + 5 A ALY
2 N v
4 Jy-_e"/\’ e (2v+e)d) — )\e.zu"(\-i-;_e;}z. | (A.13)

P

In this gauge there are no coupling terms of the form A,PB‘,E
so the masses may be read off the quadratic terms. There is
a scalar € -meson, with mass Et)\ , @ massive vector meson A;, s
with mass hAw==e1r, and no particle corresponding to §

which has been gauged away. From equation (A.12) we see

has disappeared into the longitudinal component of the vector
field in the new gauge.

In this example, we started with a Lagrangian density
‘invariant under a U(1l) group of symmetry transformations with
a corresponding single gauge field. In the vacuum the
symmetry was completely broken and the vector field acquired
mass ev .

Now we shall look at the general fecatures of a spontane-
ously-broken gauge model. Consider a Lagrangian'density
invariant under local gauge transformations of some group
G of dimension N. There are n scalar fields which transform
>under an n-dimensional representation, along with N gauge
fields*. Suppose the symmetry breaking leaves the vacuum

invariant under an M dimensional subgroup H of G. Thus,

l’I shall give only the features of the Higgs mechanism. For
those interested in a general proof see Abers and Lee (1973).
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there are M generators satisfying I_GQR&fCD . Under the
Higgs mechanism we will then have M massless vector fields,
(N-M) massive vector fields and (n-(N-M)) scalar mesons
(these objects do not include the monopole).

In the previous example we have N=1, M=0, n=2 giVing
the proper results.

In chapters 4 and 5 we use this general result to deter-
mine the number of massless vector fields to be expected in

the various vacuua.
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Appendix. B

Boundary Conditions on the SU(2) Fields

This section is devoted to an explanation of the boundary
conditions (4.22). A useful approach is to demand that the
mass be finite. Recall equation (4.25),

2% Z 2%

+ —E (F*=)" ]

since each term in the integrand should give a finite contri-

bution as z goes to zero, the second and third term in the

integrand implies:

Hoy = x1 (8.1)
(we shall use +1) and

Jwy= o,  3.2)

Foy=o. (B.3)
At large radii the solutions must satisfy the point monopole

conditions (3.20) and (3.21). The scalar field must be such

‘that the potential is a minimum so (4.9) implies,

¢°¢1_:£L,Ui
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substituting in (4.11) gives,

F 2® " (B.4)

—_—— eyl = -j_—z’

(we shall use +z).

The third term in C then implies that,

H—2" o~ o | (B.5)

The differential equation for J (4.20) in the limit of 2z-w

has the form,

Jd —o

J

so Jd 5 "F,

ZHy®

where il is a constant. Now we see that (4.19) has the form,
n B-900 2
H —— (-T)H

in order for H to decay to zero we must have q?<1 . Thus,

the final boundary condition is given by,

J T—~—"1%, (B.6)

Zo

Il <1,

(we shall choose 1r»o ).
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Appendix C

Boundary Conditions on SU(3) Fields

First consider the SU(2) embedding with mass integral

(5.71),

Clpabdr= | Az[Hi HY, @ FH 2P Ee)
3 2z

2 2 z
+Pz"(o.°‘F +BG ) .
= (C.1)
The second term in the integrand implies,

Hey= =1 - (c.2)

where we shall choose the positive value. The last term in

(C.1) implies,

2 2 2 :
a2 F(oo) + 13 G ~|=o0,

together with (5.47)

af+b=1,
gives Fw) = %\, (C.3)
and Gy = x, (C.4)

where we shall use +1 in both cascs. Now the third term in
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(C.1) requires,
He=o. , (C.5)

Assuming our solutions are regular at the origin we may

expand them in a power series:

H= 1 +hz +h 2>+ -

/

F=f+£fz + 'F;_12+--- (C.6)

7

G= qo* g2 + g2+,

Substituting in the differential equations (5.75), (5.76) and

(5.77) we find to second order in z,

H=1+h=2"

-~ (c.7)
F=~ £z, |
G = +» >
%0 %12"
/S0 we obtain our final boundary conditions
Fwy=0 : (C.8)

G'tor= o, (C.9)

The SO(3) embedding requires a more extensive investigation.
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From (5.50) and (5.69) we see that the scalar field has the

form

( .
"= 1) o IR Bren‘*—-mr%\
F= v |- IBd  IT-F) Firt+ Lo (C.10)

| Fried w20 Faipn e =)

with eigenvalues,

vy, -v(§en)

From the discussion in chapter 5 we demand that these approach,

in the asymptotic limit, the same eigenvalues as +%£7kg,.

R U S VR ¥ ) ich impli
1.e.2‘E YR B Which implies,
3’(6)).——- E B(w):: -'-1—3- ' ‘ (C.11)
L, N : , :
o,  Fy= B, Be=o0, (C.12)

We will have to distinguish between these cases later.
The mass integral that we wish to minimize (and be finite)

is (5.73),
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Cer= | Az[ 4 (ﬂ’i G ) BN ﬂi)
> ' * 2z"
2 g_lz 2 |
+ 22 (Faw’) |
4 < (&ﬁ\+nﬂ,)"+(’3ﬂ_z+nﬂ.3‘>
2 2 2z
+ %?_ (53_'3'+ \m-\)"]. (C.13)
To minimize C, the term |

) |
e (B8 -) 2 | | (C.14)

must approach its minimum value as -0 . The extrema of ‘H

are given by

Y, @) @ H
(o] (o) 1
o T4

+ o ©
\
+T +
L I o
L i ¥R
Table C.1

Possible asymptotic values for the SU(3) gauge
fields (SO0(3) embedding) and their contribution to

the monopole mass.
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We reject the H = 1 case because it does not minimize C.

Also we reject the H = 0 case because we required

additionally that,
TP + ReyH, =0
and J H o) + D H, )=0

These conditions cannot be satisfied for (C.11)

. 1S
under the ¥ = 0 conditions. Tor H = 16 the only

set of conditions is (C.11),
REY
H®) = b(.d))= —LT 7

and 'f-\‘ @)= - ‘f—\z(oo)= +

Al

where we will choose the plus sign.

As 2-0 we must have,

Hieo Hoar=0,

and oo+ Hor= 1

f which has the solutions:

(C.15)

(C.16)

or (C.12)

acceptable

(C.17)

(C.18)

(C.19)
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Tq‘(o) qu(o)

i+

O

Table C.2

Possible boundary conditions for the SU(3) gauge
fields (SO(3) embedding) at the origin.

Not all of these are compatable with (C.17). Consider
the following "hand-wavy'" argument.
It is reasonable that to minimize C, the functions
{4}%0 and fQJE) should approach their respeCtive asymptotic
values as close to the origin, as possible. This principle
will favour some boundary conditions over others. Consider
the following two situations:

(i) 'f-\|co>=\ s T—l1cao)= +

oAl

H toy= —

-

(ii) ﬂ,( o) =1

)

i which are depicted on the figure below,

Fig. C.1
Two possiblc combinations of boundary
conditions for the SU(3) gauge fields
(SO(3) embedding).
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It may be argued that (i) will be of lower energy than (ii)

because:

1. A solution like (i) will be closer to its asymptotic
limit, on average, than (ii).

2. The derivative contribution to C will tend to be larger
for (ii) than (i).

On the basis of these arguments we reject}boundary conditions

of type (ii). We choose
= = =
.ﬂ|(03 = | ] ﬂ‘(m) ﬁ )

(C.20)

= = —
H, =0 , H, o I

Expanding “the functions near the origin in four power

series we find from the differential equations that:
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and so we require
Jeor= Peod=0 __ - (C.21)

There are many other boundary conditions that would yield the
same energy due to the fact that C is invariant under a number

of transformations, eg.

33
B
H > -4,
Hoe > —Ha

etc.
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Appendix D

The Gell-Mann Matrices (see Gell-Mann (1964))

>/
-J:-y =
" i
/‘_\
= o o = o
o =
—
\/
>/ >
w to
1 0
{;\oowo
[]
o o o o o H
]
SRS
a N/ >
0 i
> T o
i
o o r o
A

>~/

-

it
N
H OO O
o B O
~ =

o<>>/

It
o o'q}ﬂ-
o}o
ulh o o
\/

[ 2, XJ] = Ziﬂjk AL (Lie Product)

{ XL , )\j} = -’;— 5.1 + de.jk >\k (Anticommutator)
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ik 55k ik d;5x
123 ! 118 Y 3
147 7% 146 Y2
156 -2 157 V2.
246 Y2 228 I}
257 V2 247 Yo
345 Y2 256 Y2
367 V2 338 - YE
458 /2 344 VY2
678 B2 355 /7
366 ~Y2
377 ~V2
448 “Y23)
558 ~l/(27%)
668 -1/243)
778 -\/(23)
888 k)

Table D.1

SU(3) structure constants fi'k and anticommutator
coefficients dijk' J
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Appendix E

Homotopy Theory

This entire section is a summary of a very nice review
by Marciano and Pagels (1978). We shall present a very terse
and incomplete introduction to this subject.

Suppose we have two manifolds X and Y with a set of

continuous maps from X into Y,

(E.1)

or §(x) = vy, x e X, ye Y.

Two mappings are called homotopic if they can be continu-
ously distorted into each other. In other'words, there exists
a set of maps F(x,t) (parameterized by t, 0 ¢ t £ 1) called
a homotopy which is continuous in both x and t, such that

F(x,0) = fo(x), F(x,1) = fl(x). | (E.2)

‘We say fo is homotopic to f1 which we shall denote by,

It is trivial to show ~ is an equivalence relation, i.e. if

fdfv f1 and flfv f2 then foﬁu f2‘ Homotopically equivalent
maps form a class denoted by {f}.

Suppose X is the closed interval I = [0,1] with the



g
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endpoints identified. This space is topologically equivalent

to a circle S1 withva reference point X, identified with 0 and
1. Consider continuous maps where f(0) = f(1) = yol(a fixed
point in Y), then the equivalence classes of maps {f}, {g},

from Sl——vY form a group. The identity {e} is the class of maps

homotopic to the constant map C,

c(x) =y, Y xex. ey
The inverse of {f} is {f-l}, where

£ 1) = £1-x) - (E.4)
Group multiplication is defined by,

{f} * {g} = {f-g} | (E.S5)

feg(x) = f(2x) 0sx%x ¢

o

1 (E.6)
g(2x-1) 5<% s 1

We call this the first homotopy group of Y denoted by
T, 0.

As an example, consider the space

Y = RZ- (0,0)
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(the real plane with a hole in it). A grdup multiplication

looks 1like,

g (] \ i

Fig. E.1

Homotopy group multiplication.

Loops that do not enclose (0,0) can be shrunk continuously to
the point Yor These maps belong to the class of the identity
{e} = {0}, while loops that encircle (0,0) n times clockwise
belong to a separate class denoted by {n} (cbunterclockwise

loops belong to {-1}, {-2}, ...). So we have,
2
T|'1 CR' - L°'°)) = Z (the set of integers) (E.7) -

with addition representing the group product. The integef n

(from {n} is called the winding number.

We may generalize the mapping to X=S" (the n-dimensional

sphere) so the classes of mappings with one fixed point
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£(x,) = ¥, form the nth homotopy group denoted by T&(Y).

Mathematicians have studied this subject for some time.
Two well-known results important to the theory of monopoles

are:
msh =2, | (E.8)

also, if G is a simply connected compact Lie group and H is a

subgroup of G, then
T, (6/m) =T, (1) (E.9)

where G/H is the space of cosets. Coleman>(l975) has

shown that equation (E.9) is useful in deciding whether or not
a particular non-abelian gauge theory may contain topologically
stable soliton solutions (magnetic monopoles). That is, if
TTZ(G/H) is non—;rivial then the theory has the possibility
(but no guarantee) that a topologically stable soliton exists.
However, if'ﬂé(G/h) is trivial then no soliton will exist.

Consider the following examples used in this thesis:

G = SU(2), H = U(1), (E.10)

T (su(2)/u()) = T = Z (E.11)

which means there is the possibility of an infinite variety of
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monopoles (only one has been found).

G = S8U(3), H

then TI,(G/H) = 7T1(H)

and G = SU(3), H

then T,(G/h) = Z+2,

Su(2)xu(1),
= T (su(2))+ M) = 24

U(1)xu(1),

(E.12)

(E.13)

(E.14)

(E.15)

which implies SU(3) contains two different monopoles corres-

ponding to the different vacua.
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Appendix F

Notation Conventions

Throughout the text we shall be using natural units

defined by

The dimensions of the fundamental quantities become;

[E] = [M] = [L]-1 = [T]—1 = (unit energy) and [Q] = 1;
(electric and magnetic charge are dimensionless). Also, we
shall use the natural system of electromagnetic units where

Maxwell's equations take the form,

BY‘(}‘ = J.. - (F.2)
I Y

An important result of these conventions is that the fine

structure constant takes the form,
o= € = | : ' (F.3)

Space-time points of Minkowski space will be represented by

the contravariant ccordinates,

.sz (.xo, Xt) 7('7.) XS)E (Xo, .2&) (F.4)

where

X=t, x=x, x‘.—.y) X=2. (E.5)
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The metric tensor will be taken to be,

goo:: —8’112 ‘811=—833=1 (F.6)

grf o (p*V).
As a general rule Greek indices P’ v,AN, ... run from zero to
three, while the Latin indicéé i,j,k, ... run from one to
three. Any repeated index will be summed over its range
unless stated otherwise.
Vectors in Euclidean three-space shall Be denotéd by a
"squiggle'", X, . The directional cbsines are written,

L C L
n = = X

L %) .J xJ %

A

. (F.7)

We may have vectors in another vector space a 'color-
space". The components of this space shall be denoted by the
indices a,b,c, ... etc. A vector in this space is denoted by

an arrow on top,

Sometimes a matrix notation is simpler. We convert to
matrix notation by summing the components of a color-vector
with the matrices of a representation of a group G whose

dimension is equal to the dimension of the color-space.
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D= - = L (E.8)

=A .= A%" (F.9)
A7 p -

where a=\,---Mn a= dim G"

2

a
and L are finite dimensional matrices.
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