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ABSTRACT

The extended X-ray absorption fine structure (EXAFS) is calculated
for two models for disordered systems: (1) a continuous-random-network
model for semiconductors; and (2) a dense-random-packing-of-hard-spheres
model for metallic systems. The EXAFS is analyzed via the Fourier Trans-
form. Multiple scattering and asymmetry of real-space distributions are
considered as to their effects on the analysis of the EXAFS.

It is shown that there are serious limitations to the analysis of
the EXAFS which center around the inability to interpret the spectrum for
sufficiently low energies. It is further shown that, because of these
limitations, the technique, using the current methods of analysis, is of
limited usefulness for distinguishing between different structural models

for a particular system.
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Chapter I - Introduction

When a beam of monochromatic X-rays is passed through matter it is
observed that the beam is attenuated with increasing absorber thickness.
With the éssumption that the decrease in intensity of the incident X-ray

beam is proportional to the intensity one obtains the relation
I(x) = I_e™X, (1.1)

where Io is the incident intensity, x the absorber thickness, and 1 the
monochromatic linear absorption coefficient. In general, u is a function
of X-ray energy.

The linear absorption coefficient can be calculated by relating it
to the atomic absorption coefficient Ors which is  divided by the number
density of atoms, i.e. the number of atoms per unit length and per unit

cross-section of the beam:

Thus Or is the total interaction cross-section for absorption.

The absorption spectra of most condensed materials (as a function of
energy) are distinguished by several absorption edges, abrupt rises in the
absorption coefficient at energies just sufficient to eject an inner
electron from its atom. Beyond an edge spectra show a monotonic decrease

until the next ionization energy is reached.
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On closer inspection absorption spectra are seen to deviate from the
simple behavior described above. The abrupt rise in absorption at an
edge is not quite so sharp - and the spectrum on the high-energy side of
an edge exhibits an oscillatory fine structure (Figure 1.1). Beyond about
50 e.v. above the edge this is referred to as the extended X-ray absorption
fine structure (EXAFS).

The history of attempts to understand the EXAFS was reviewed by
Azaroff (1963). 1t was Kronig (1931) who presented the first theory. In
accord with the then recently discoveredxband theory of so]ids; Kronig
proposed that the energy of the emitted photoelectron should correspond to
an allowed or a forbidden transition. The former would Tead to maxima in
the absorption spectrum while the latter would lead to minima. In this
model the photoelectron is described by a Bloch function. In a second
paper Kronig (1932a) used this idea to present a detailed ana]ysi§ of the
problem. He was able to predict energies at which anomalies should occur
in the absorption spectrum,\provided/the average inner potential of the
crystal is known. Agreement with experimental data on Cu is considered
fair.

Kronig's approach is based upon the existence of long-range order (LRO)
in a crystal. Oscillations in the absorption spectrum are seen to result
from the density of states distributions grouped into allowed and forbidden
energy bands. He assumed that the transition probabilities for the
ejected photoelectron did not vary significantly with energy.

In a third paper, Kronig (1932b) took a different approach to the
problem. He analyzed a diatomic molecule, considering the potential field
of the molecule as a whole so that the one-electron approximation could be

used. The transition probabilities for the photoelectron may then be
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calculated. This requires an analysis of the effects of the scattering
of the photoelectron by the surrounding atoms.

Most later theories have followed this short-range order (SRO)
approach. Shiraiwa et al. (1958) pointed out that because of elastic and
inelastic scattering the photoelectron travels only a few lattice spacings
before the amplitude becomes nearly zero. From this point of view only
the nearest neighbors of the absorbing atom need be considered in the theory.

Various theories involving SRO (Peterson, 1933; Kostarev, 1949;

Shiraiwa et al., 1958) have been used to calculate the oscillatory part of

the absorption curves, x, essentially equivalent to

N.

w(k)= - 2 ——%—sin (2kri + 28), (1.3)
i or;
;

th shell at a distance ri from

where Ni is the number of atoms in the i
the absorbing atom; & is the phase of the ejected electron wave. The
idea is very simple. The photoelectron wave is scattered by the atoms
surrounding the absorbing atom. The absorption then depends upon the inter-
ference between the outgoing and incoming photoelectron states at the
absorbing atom. The SRO theories differ mainly in how the potentials of
the scattering atoms are calculated, and in the formalism used to deter-
mine the phases of the scattered waves.

Azdroff (1963) compared the various theories with existing experimental
data and concluded that none of them explained the observed fine structure
in full detail. A difficulty in comparing theories at this time was the

lack of good experimental data beyond a few hundred electron volts above the

edge.
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The most recent and successful theory of the EXAFS is based on SRO
and is due to Sayers et al. (1970). They assume that the oscillatory
behavior of the EXAFS is due solely to photoelectric absorption and cal-
culate, therefore, the photoabsorption cross-section. They treat the
ejected electron as a spherical wave which expands about the absorbing
atom and is partially scattered by the surrounding atoms which are
treated as point scatterers. The EXAFS is determined from the transition
matrix between an initial K state and the final photoelectron state,
neglecting multiple scattering. They arrive at a formula similar to

Egn. 1.3:
w(k) = - ]k E _J__.E— e— J sin(2kr. + 2n(k)), (1.4)
i )

where Y-] is an empirical mean free path parameter (used essentially to
account for multiple scattering effects), n is the phase shift due to the
potential of the absorbing atom, and ojz is the mean square deviation of
the positions of the atoms in the jth shell about their average position
due to thermal disorder. Their theoretical calculations on crystalline
Cu, Fe and Ge produced curves which are in good general agreement with
experimental data over an energy range of 100 - 600 e.v.

More recent theories (Stern, 1974; Ashley and Doniach, 1975; Lee
and Pendry, 1975) are essentially refinements of that of Sayers et al.

In particular, the §-function potentials have been replaced by muffin

tins, and multiple scattering has been treated.
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In a later paper Sayers et al. (1971) showed how to invert Eqn. 1.4
to obtain a model structure function which contains information on the
number, distance to and distribution of atoms surrounding the absorbing
atom. Forty years of research bears fruit! The EXAFS presents itself
as a potentially powerful technique for the investigation of amorphous
materials.

Structural information on amorphous materials comes through X-ray,
neutron and electron scattering measurements. Experimental data is con-
verted into a radial distribution function which is an average over all
atomic species present. The EXAFS, on the other hand, yields a structure
function which contains information on the environment of a single type of
atom. Since absorption edges usually occur at easily separable values of
ionization energy, the structure above each appropriate edge (and thus the
environment of each atomic species) can be separately studied in a complex
material.

The purpose of this thesis is to investigate the usefulness of the
EXAFS as a tool for understanding the structure of disordered systems. In
particular we intend to discover some of the limitations of the EXAFS
analysis by means of model calculations. Since model building itself is
an investigative tool, we can also inquire into the ability of the EXAFS
technique to distinguish between different models. It may then be possible
to use the EXAFS to eliminate inappropriate models.

We begin, in Chapter 2, with the development of the EXAFS formalism
using the Green's function approach. Chapter 3 then discusses the structure
of amorphous materials, dealing particularly with the concept of model

building. 1In Chapter 4 we apply the EXAFS formalism to a continuous-random-



network (CRN) model for amorphous semiconductors. In particular we
investigate the Fourier Transform analysis of the EXAFS, and we make a
comparison with some experimental data. ‘Chapter S‘dea1s with a dense-
random-packing-of-hard-spheres model for metallic systems. Beyond the
Fourier analysis we also consider the effects of multiple scattering
and asymmetric distributions on the analysis of the EXAFS. In the final

chapter we summarize our work and draw some conclusions.
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Chapter 2 - EXAFS Formalism

In this chapter we develop the formalism for calculating the EXAFS
following the approach of Ashley and Doniach (1975). (For a general dis-
cussion of scattering theory see Messiah, 1962, chapters X and XIX or
Roman, 1965, chapters 3 and 4.) In section 2.1 the problem is divided
into two parts: (1) the effect of the potential of the absorbing atom
on the emitted photoelectron; and (2) the behavior of the emitted photo-
electron as it moves through the solid. The normalized oscillatory part
of the absorption spectrum is then calculated in section 2.2 using
Green's functions. In section 2.3 a simple analytic expression is derived
in the high-energy approximation. Attenuation and thermal effects are
considered in section 2.4. Section 2.5 is devoted to the Fourier-
Transform technique for analyzing the EXAFS. Finally, a brief summary is

contained in section 2.6.

Section 2.1 - Definition of the Problem

The photoelectric absorption cross-section, in the dipole approximation

(Bethe and Salpeter, 1957, secs. 59 and 69), is given by

0y = Fta(hv) D|<flr|i>|% 8(E; +hv-Ep), (2.1)
f

where o is the fine structure constant, hv the photon energy, |i> the

initial core state of the electron, and |f> the final photoelectron state

which must be calculated from a model of the potential. The potential is

represented by a system of spherically-symmetric, hon-over]apping;
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spin-independent muffin tin potentials. The zero of energy is determined
by the (assumed) constant potential between muffin tins.

We pause here to state more explicitly the approximations contdined
in the preceding paragraph. First, this is a one-electron model. It is
not valid close to the edge where many body effects are expected to be
important. This is why one refers to the extended fine structure. Second,
the effect of the potential on the ejected photoelectron is not a static
problem. The ionized atom is in an excited state and a many-electron
relaxation process takes place. If, as in a metal, the relaxation time
is short compared to the lifetime of the excited state, a screened
Coulomb potential may be used. In an insulator the relaxation time is
long and the spectrum will be Coulomb-1like near the edge. We neglect
relaxation effects and take the effective single-particle potential to
be a screened core hole. Phase shift analysis may then be applied.

Since the model potential is spherically symmetric, it is convenient
to use the angular momentum representation. We can then decompose the

electron states into partial wave states. Let
E . ~
or(r) = A'RE(r) Y (V) (2.2)

be a complete set of one-center basis functions. YL(?) are the usual
spherical harmonics and the index L is taken to represent both angular
momentum indices % and m. RE(r) are solutions of the Schrodinger
equation at energy E for the potential of the absorbing atom in the

absence of the other potentials.
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Qutside the muffin tin the radial wavefunctions must be of the form

(Messiah, 1962, p. 390)

Rﬁ(r)

i
)

J'Q(kr‘)cosé2 - ngy(kr) sin §,)
s (2.3)

where j, n, h(°), h(+) are the spherical Bessel and Hankel functions, AQ

—_— )

the normalization constant, k =‘/2mE/'h2, and 8, s the\phase shift due to

the potential. Note that the effect of the potential of the absorbing atom
218

is to introduce a phase difference of e . between incoming and outgoing

waves.

Denote the core state by

2

i Rc(r)vLc(?). (2.4)

—
Y
"
<
a
Camn)
=
N
[

For small values of QC the core state will be highly localized near the

origin. Assume that Rc(r) = 0 beyond the muffin tin radius RMT‘ Then

Rut ),
r2drRe (r) = 1. (2.5)
0 C

Expand the final states in the usual way as

N

|f> = %; o (r)><of ()] > (2.6)

Note that ~
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E = E; +hv. (2.7)
Then we may write Eqn. 2.1 as
_ 4 E
o, = 3Tr Za(hv) ;% <flo (r ><¢L |r‘|¢L (r)>
< E, <o ) |rlop (r)><op. ()| f> 8 (E - E)
Ll
4 2
-3 alhv) Z. <¢|_ Ir|¢|_ ><¢|_ (r lrl‘bl_- r)>
x<¢L. r)| Z|f><s E - Eg)<f|) |q>L (2.8)
The §-function in Eqn. 2.8 may be defined (Messiah, 1962, p. 469) by
1 Tim 1
6(E - Ef) = E- €_*01- Im E—_‘E*f-—_'—_‘_l'g (2.9)

Since |f> are the eigenstate

s of the complete Hamiltonian H, the sum over

f in Egn. 2.8 is the spectral representation of the operator-
- l gtgi Im E——T%;———. And this operator is the Green's function G(+) in
the presence of the full potential (Messiah, 1962, p. 819). Thus
E +

o, = -+1n E MO b ()16 ol (r)> (2.10)

where
core _ 4 2 E
MELT = grlalhv)<ap(r rle, (0><q (r)lele (0)> (2.11)
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The angular integrations in Eqn. 2.11 are easily performed by

expressing r in spherical harmonics. This gives integrals like
m *
fdm ¢ ymyzh0 T (2.12)

which are Gaunt coefficients (Appendix A). These lead to the selection

rules & Let C(L,L') denote the numerical value

,6+ ’(S+ .
oM mc_1,m zc_1,2

of the integral. Then

core _ 472 ' core
MLL' - 3'H G(hV)C(L,L )62,2(:—{_--' 624;21(:1-1 ILLI ’ (2.]3)
where
E
jcore {fﬂdch(r)Ri(r)} {fﬂdch(r)Rl.(r)} : (2.14)

The problem has now been divided into two parts. The matrix elements
of the Green's function G(+) determine the behavior of the photoelectron
outside the central atom as it propagates through the muffin tin system.

The effect of the potential of the absorbing atom on the emitted photo-

Mcor‘e

electron is represented by L

Section 2.2 - Calculation of the EXAFS

The basic mathematical idea we use is the representation of a region
of space (the muffin tin sphere) by a black box, the properties of which
are determined by parameters which describe conditions at the boundary of

the region. For a spherically-symmetric potential these parameters are the
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phase shifts of the partial waves.
We must calculate the Green's function matrix elements of Egn. 2.10.
This problem has been formulated by Beeby (1964). The chief mathematical

tool we employ is the T-matrix defined by
+
<@yl Tloy> = <wb|VIw§ s, (2.15)

where ¢§+) is the stationary solution to the full Hamiltonian with wave

vector k

L% and Py is a plane wave with the same wave vector. Formally

T = V+ V6T, (2.16)

where G° is the free space Green's function.
Consider a system of potentials Va centered on sites Ba . lLet ta be

the T-matrix corresponding to the single potential Va so that

t (oY) = V (x)6(x-y) fsz 6°(x,2)t (z,y) . (2.17)

o _.

The full T-matrix is

= Dt 2 tGotot Dot Gt Gt b . (2.18)
a o a8 o aB B a8 aB B Bv V
B#v

The restrictions on the sums in Egn. 2.18 insure that successive
scattering from the same potential does not occur.

The full Green's function is then
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G, (rsr') = G (r.r') + Bfodmdng;B(L,L])tB(L],Q)va(gz,g')

fffdr dY‘ dY' dY‘ G° B(ﬁsﬁ])ts(ﬁl ’Q)GEG(Q’£3)t<S(r— aM)va(ﬁq_sﬁ')

This represents the propagation from r near Bu to r' near BV. The first
term is the direct free propagation. The second term is the propagation

from r to r' by way of a single scattering by a potential at Bﬁ. The

next term is the double scattering contribution, and so on.

Let denote a coordinate measured relative to Ba so that r = Ba +r

—a

= d

and r' = +r . Further set R =R - R . The free electron Green's
-V —av. v o

function is

o I _ _ b e - —
G°(r,r') = e Wlﬁ-ﬁ'l , (2.20)
! e1k|ra°r 'Bav|
G (ror') = - - porararaE (2.21)
LISV

The Newmann expansion of Egn. 2.21 (Messiah, 1962, p. 497) is

) (2.22)

where
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) = i, k)Y (P,

) = T, Py () (2.23)

A useful identity (Lloyd and Smith, 1972) is

—
3
I
=
~—
il

4n D, C H (-R_)J, (r) ,
L' —owv ‘1 LL]L2 L] -0V L2 -0

172

R (2.24)

where
T fdmL*vL Y,
1t2 152

are Gaunt coefficients. Then Eqn. 2.22 may be written

o i = o *
Goo(rsr') EE- 67, + (RR I ()3, *(r)s (2.25)
where
G° ) (RSR) = -mdk EZ Copp Ry - (2.26)

1

We note here, for future reference, that since for all 2

ikr
€ (2.27)

L]

[1Q‘+]hé(+)(kr)] kr___):o -
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asymptotically we have
eikRuB )
GLLI (BQQB_\)) = ‘4TT (_Tz__> Z CLlL LYL (_RaB) . (2.28)
oB L] 1 1
To evaluate the full Green's function it is obviously convenient to
expand the T-matrix in spherical haromonics which, for a spherically-symmet-
ric potential, may be written
*

toy) = 2t 6y GRY (R () T (2.29)
L

Using Eqns. 2.29 and 2.25 the Green's function (Eqn. 2.19) is

o
——
|-
i~
S

1]

o

r~o

-
:\

<[ Z GE3L'(BB’R )3 (rig )9 (x )]+ e (2.30)

the angular integrations of Eqn. 2.30 give terms like

.1ha [iz]Y (r )]*[izzY (r.)] = 6 (2.31)
B L,V Ly B LysL, ° '

using the orthonormality property of the spherical harmonics.
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Further simplification occurs by defining a momentum space t-function

by the transform

ty(psq) = v/ﬂx2dxy2dyj2(DX)tg(x,y)JQ(qy). (2.32)

We note here that the t-function is related to the phase shifts (Messiah,

1962, p. 818) by

t (k,k) = t (k) = --%sin&le . (2.33)

2 2

G (ﬁ’ﬁ') = Z GLL'(

av

BQ,BV)JL(ra)JL.*(rv), (2.34)

where

2 2 6% (RLR)t, (k,k)GP 8 .
gl LT, 1 L1L2(BB’Bﬁ)t22(k’k)GL2L'(Bﬁ’Rv)
S#B
T (2.35)
= o B °
Go (R LR)) + ééi E: GLL](BQ,BB)tQ](k)GL]L.(BB,Bv), (2.36)
1
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Since we have assumed that the core state is highly localized near the
. . ! . .

origin, Eqn. 2.36 is evaluated at r = 0. The des1red\matr1x elements are

then

The first term gives the atomic photoelectric effect (no scattering). The

second term represents an outgoing L wave which returns as an incoming L'

wave after being scattered by atoms located at BB' The effect of the

absorbing atom is to shift the phase between the outgoing L wave and

incoming L' wave by N, * ngr. (The phase shift of the absorbing atom will be

denoted by n to distinguish it from the phase shifts & of undisturbed atoms.)
We can now evaluate the cross section (Eqn. 2.10) and calculate the

absorption coefficient. We calculate the normalized oscillatory bart of

the spectrum by

u-u 5 -0 atomic
x(k) = —=2 = 22— (2.38)
Ho Oaa omic
i(ng+n,i)
core 2 My, B/ \po
Im 3 My e 2. 2 Gy (RyR)E P(K)G] 4 (RgHR,)
Mo sMp B#a L] 1 1 1
= (2.39)

Here we have assumed that the core state is an's wave so that QC = 0. The

dipole selection rules (Eqn. 2.13) require £ = &' = 1.
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To evaluate the denominator of Eqn. 2.39 we employ the Newmann

expansion (Eqn. 2.26) to give

) 2.+]
g atomic _ o § Mﬁ?re {-4nk > Crpq i 1 Y (ﬁ)h£+)(0)} .
1

a
mg,mg. L] 1

The Gaunt coefficient C]L 1 is non zero only if Q] is 0 or 2 (Eqn. A.2).
1
Since

hH (ery = jglkr) + ing (kr), (2.41)

and 2] is even,

atomic _ core . N
m m, m
2,8 2
core
= - . 2.42
k,nz%1 Mt ( )
[

To simplify the analytical evaluation of Eqn. 2.39 we Essume that,
asymptotically, the photoelectron is spherically symmetric about the
agforbing atom so that G]L becomes G0L . Then my = Mgy = 0, the sums over

1

COr€ cancels. The normalized oscillatory part of

m, and Mo disappear, and M]]

the X-ray absorption spectrum is then

21
x(k) = - ]F Im {e ™ 3% ZL:GOL(Ba,gB)_tE(k)GEO(gB,Ba)} . (2.43)

We’emphasizeihere that scattering to all orders is included in Egn. 2.43

through the full Green's function GOL'
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Section 2.3 - High Energy Approximation

The amount of scattering at a given site, as represented by the
t-function, decreases with increasing energy (Eqn. 2.33). Thus for
sufficiently high energy (determined by such factors as atomic species and
structure) the dominant contribution to the EXAFS is that of singly-
scattered waves.

We obtain the single-scattering contribution to the EXAFS by replacing
the full Green's function G in Eqn. 2.43 by the free Green's function G°:

21n] 8
mfe | ¥ 5 6 (R LRt (k)GEO(BB,Bﬂ)}. (2.44)

The asymptotic form of G° (Egn. 2.28) can be used. The smallest inter-
atomic distance we encounter is r = 2.5A° so for k > 4A°-1 (E2 60 e.v.)
this will be a good approximation. Egn. 2.44 then becomes

21'kROLB

W - ITgle™m ye (am2 P (k) e, Y, (R )
X kK ‘Mie 2 3 LL.0'L, " Rap
R#a. RaB I

x g: COLZLYLZ(‘RBu)} . (2.45)
2

Using the properties of the Gaunt coefficients (Egn. A.3) we have

5 1(2n1+2kR ,5) ) )
x(k) = - % Im QB/;(:X ¢ . 4nZL:tE(k)(—1)mYQ,m(~ aB)YQ’_m(—Rm)}
B (2.46)
i(2n7+2kRyq)
= %vlm { PR 5 > tég(k)(22+1)P2(c05n)} R (2.47)
R#a RaB '3
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applying the addition theorem for spherical harmonics (Messiah, 1962,

p. 496)
PR = o S )™y, (Y, (7). (2.48)

Finally, we express tz(k) in terms of the phase shifts (Egqn. 2.33) and

) .
define the scattering amplitude in the usual way (Messiah, 1962, p. 386),

id

f(0) = %,E: (22+1)e RsindkPR(coso), (2.49)
'3
to obtain
i(2n1+2kRaB)
- 1 e
x(k) = - Im {E 5 f (n)} . (2.50)
B
B#a RGB

/
If the magnitude and phase of the backscattering ampiitude are expressed

as
(ﬂ)le B s (2.5])

we obtain the particularly simple expression

)

sin(2kR
& B~ . (2.52)

(m)]| i

B 2
B#a RaB

+2n]+e
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Section 2.4 - Attenuation and Thermal Effects

Sayers et al. (1970), in their point-scattering theory, introduce an

empirical damping factor e R/

to attentuate the amplitude of the outgoing
photoelectron wave. The parameter A is the mean free path of the electron.
They find that, in the high-energy region of interest, X = 3A° gives the
best fit to their data. Inelastic scattering mechanisms are expected to
give A = 10A° so that elastic mechanisms are assumed to dominate. The
damping parameter thus functions chiefly as a multiple scattering correction.
This formulation has the éisadvantagg of containing an adjustable
parameter. Ashley and Doniach (1975) have shown how to calculate an
attenuation coefficient. To see this, consider a crystalline structure so
that we may\view'each atom as being surrounded by spherical shells j. A

spherically-averaged transmission function may be calculated for each shell

by
To(k) = 1- 42—, (2.53)

where Nj is the number of atoms in shell j, at distance Rj from the central
atom, and o1 is the total scattering cross-section, including elastic and
inelastic effects.

The probability of reaching a given shell without scattering is given
by the product of the transmission functions for the intermediate shells.

The attenuation coefficient is then

A(k) = n T , (2.54)

where A](k) = 1. Note that A is, in general, energy dependent.
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For the purpose of this thesis the simpler expression of Sayers et al. is used.

-2k252(T)

/
Sayers et al. also use a factor e to account for the thermal

2 is the (temperature-dependent) mean square

motion\ofthe atoms, where o
relative displacement of an atom about its average distance from the central
atom. This factor will be discussed further in the next section. Account-
ing for attenuation and thermal effects, Eqn. 2.52 becomes

-ZRGB/A -2k202 (T)

x(k) = %—é;i fo(m] &——— e B sin(2kR g+2ni+0,). (2.55)

/

“Eqn. 2.55 is the basic formula for the EXAFS.

Section 2.5 - Radial Structure Function

Working with a formula similar to Eqn. 2.55 based on their point-
scattering theory, Sayers et al. (1971) showed how the experimental data
may be inverted to obtain a radial structure function ¢(r). With

e-Yrd _%oz_kZ

N
x(k) = - fﬂf) > e T I sin(@kegran(). (2.56)
joors

J

they take the Fourier transform

o(r) = -V2n S kf t sin(2kr+2n(k))dk
O
-yr;
1 N.e 9 -2(r—r.)2/o.2 .
= 3 3 J2 e J J (2.57)
INT5%

The sum is taken over shells j. A Fourier transform of the experimental data
yields a function which represents a series of normal gaussian functions

centered at each shell radius.
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2 2
2k"o is based on

Here it is seen that the use of the disorder term e~
the assumption that the real-space distribution function is gaussian.

Eisenberger and Brown (1978) have recently discussed the consequences
of non-gaussian distributions. They show that if the distribution has

asymmetric components with respect to ﬁ& , an additional phase will be

B
introduced into the sine function of Eqn. 2.55. No real distribution is
purely gaussian so that this has implications for the analysis of experiment-
al data.

One more point needs to be mentioned here. Experimental data represents
an averaging over many atoms. In an amorphous material, the environment of
each atom is unique and, therefore, the averaging procedure makes an
additional contribution to the probability distribution that is structural
in origin. If this is also assumed to be gaussian, then there is a

-2k2g_2
S . C ey s 2 . _—
term e implicit in Eqn. 2.55, where o§ is the structural contribu
tion to the disorder. As discussed above,‘if this distribution is
asymmetric an additional phase will be introduced into Eqn. 2.55.

In actual practice (Stern et al., 1975) the transform taken is

1 “max n 2ikr

oplr) = 5= k' x(k)e dk , (2.58)
™ Jk

min

where n = 1 or 3. Stern (1974) has related the n = 1 transform to the

spatial variation of a scattering matrix and the n = 3 transform to a

‘pseudocharge/density. Stern et al. claim the most satisfactory results with

n = 3. There are two reasons for this. On the one hand n = 3 preferentially

weights the high-energy part of the absorption spectrum where Eqn. 2.55

. /
is a better approximation. Secondly, there is a difficulty in defining
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precisely at what energy with respect to the edge the origin of k should

be located. This uncertainty affects most the Tow-energy part of the
spectrum. The n = 3 transform de-emphasizes this uncertainty and is much
less sensitive to the choice of kmin'

There is an additional reason for choosing to do the above transform.
Lee and Beni (1977) have shown that, 'provided fhe real space distribution
js gaussian, the real part of the transform passes through zero at
the peak position. Thus the magnitude peaks at the same position as
the imaginary part. This assumes that the location of k = 0 is known.

The point made by Lee and Beni is that a priori knowledge of the

complex phase shifts enables one to determine k = 0 by comparing the
magnitude with the imagninary part of the transform. Taking the magnitude
of a complex transform also has a smoothing effect, which becomes
important if the k-space range is narrow.

The function ¢n(r) contains information on the number, distance to and
distribution of atoms surrounding the absorbing atom. Stern et al. (1975)
have discussed in detail how to éxtract such information using the Fourier
transform technique) They also show how to extract such parameters as the

electron scattering amplitudes, mean free paths, disorder terms and phase

é shifts.

Section 2.6 - Summary

Using Green's functions and the T-matrix formalism, the normalized
oscillatory part of the X-ray absorption spectrum was calculated (Eqn. 2.43).

\ /
The one-electron approximation was used and it was assumed that the poten-

tials of the atoms could be modeled by muffin tins. It was further assumed
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that relaxation effects could be ignored and that the absorbing atom could
be represented by a screened core hole. Eqgn. 2.43 is the starting point
for a multiple scattering treatment of the problem.

An analytic expression was then derived in the high-energy approxi-
mation (Eqn. 2.52). Accounting for attenuation and thermal effects led to
the basic formula for the EXAFS, Egn. 2.55.

The Egns. 2.43 and 2.55, along with the Fourier transform, Eqn. 2.58,

are the primary tools we will employ in this investigation.
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Chapter 3 - Structure of Amorphous Materials

In this chapter we consider the structure of amorphous materials. In
section 3.1 we present a general description of the amorphous state and
introduce the structural model. In section 3.2 we deal with the parti-
cular case of the continuous-random-network models for amorphous semi-
conductors, while we treat the dense-random-packing-of-hard-spheres models

for metallic glasses in section 3.3.

Section 3.1 - The Amorphous State

To describe the amorphous state we begin with the concept of a
disordered system. Two general classes of disordered systems are encountered
in solid state physics. On the one hand we may have a periodic array of
atoms of different types, the different types being randomly distributed
throughout the lattice. We shall call this "substitutional" disorder.

On the other hand we may have an array of identical atoms which are not
periodically positioned. This latter class of “positionally” disordered
systems provides a model for amorphous solids. If a positionally dis-
ordered system has everywhere the same coordination of nearest neighbors
we say that it is "topologically" disordered. This classification scheme is
illustrated in Figure 3.1. In general, of course, most real amorphous
materials are both substiutionally and positionally disordered, since

they contain atoms of more than one kind.

A crystalline structure is specified by the few relative coordinates of
the atoms comprising the unit cell. These coordinates are accessible

through X-ray diffraction experiments. Such a characterization of an



(d)

Figure 3.1

Various types of disorder encountered in
solid state physics: (a) perfect order;
(b) substitutional disorder; {(c) positional
disorder; (d) topological disorder.

[After Weaire and Thorpe (1971).]
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amorphous system is neither convenient nor accessible. A description
which is useful and accessible (X-ray, neutron and electron scattering
experiments) is given in terms of an Sverage radial density function]

The average radial density function (ARDF) is the number of atoms
at distances between r and r + dr from some atom chosen as origin averaged
over the surface of a sphere (4wr2), further averaged by taking each atom
in turn as the origin. In a system where more than one atomic species
is present the ARDF can be thought of as a Tinear combination of density
functions centered about atoms of a single type. (Recall from Chapter 2
that this is the type of density function that is available via analysis
of the EXAFS.) It is the composite ARDF that is accessible through conven-
tional diffraction experiments.

One approach to the understanding of amorphous structure has been to
create structural models which will reproduce such experimentally accessible
features of a system as the ARDF or its vibrational spectrum. It is clear
that the binding forces between atoms in a solid should be similar whether
the structure is.crysta11ine or amorphous. Thus, even in the amorphous case,
short-range order (SRO) over a distance of a few atomic radii will generally
be present. This suggests that a useful characterization of an amorphous
solid might be provided by the coordinates of a few hundred
or a few thousand atoms. Much research has been devoted to developing such
models.

Two general classes of models for amorphous solids may be distinguished.
The microcrystalline models are those in which most of the atoms are

arranged in small microcrystals which are randomly oriented with respect

to each other. Thus these models feature abrupt structural discontinuities.
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This approach has not, in general, met with much success and we will not
consider these models further.

The other models are those in which the individual atoms are arranged
in a continuous random way without the abrupt discontinuities of the
microcrystalline models. These are of two types; the continuous-random-
network (CRN) models for amorphous semiconductors, and the dense-random-
packing-of-hard-spheres (DRPHS) models for metallic glasses. The former
are suitable for small coordination numbers (2,3,4) while the latter are

appropriate for the higher coordination numbers found in metallic systems.

Section 3.2 - Continuous-Random-Network (CRN) Models

Zachariansen(1932) first proposed the concept of a non-periodic
random network as a general model for glasses. The first quantitative
success of this model was obtained by Bell and Dean (1966). Their ball-and-
stick model of SiO4 tetrahedra, arranged according to certain rules,
yielded distribution functions in agreement with experiment.

The most extensive modelling using the CRN concept has been for the
amorphous tetrahedrally-coordinated semiconductors Si and Ge. In these
models each atom has four neighbors in an approximately tetrahedral
arrangement (topological disorder). Variation in the tetrahedral angle
and relative rotation of adjoining tetrahedra lead to non-crystallinity.

The first of these models was hand-built by Polk (1971) and consisted
of 440 atoms. (Comparison of this model with experiment is shown in
Figure 3.2.) This structure was later enlarged to 519 atoms (Polk and
Boudreaux, 1973) to increase the size of the cluster and make it more nearly

spherical. The coordinates of the atoms were measured by an accurately
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positioned laser beam. Computer techniques were then used to determine
new coordinates which would reduce the variation in bond lengths
(distances between nearest neighbors) to nearly zero. The ARDF of this
structure is in good agreement with experiments.

The refinement of this 519-atom model has been taken a stage further
by Steinhardt et al. (1973). The atom positions were systematically
adjusted so as to minimize the Keating (1966) expression for the elastic
energy of a tetrahedrally-bonded solid in terms of the bond lengths d

and bond angles:

2

—

.3 a . 22,38 . 1 2
' 6 5 2 (ryyrry-d) '8 E) (rgi = o5 +347)

a
=
»
-

(3.1)

Here a and B are bond-stretching and bond-bending force constants where

B/a was taken as 0.2, whichis in a range of plausible values indicated by
phonon frequencies for diamond cubic Si and Ge. The first sum is over all
atoms 2 and their four neighbors i; the second sum is over all atoms and

h

pairs of neighbors; r . is the vector from £ to its it neighbor. This

21
model is referred to as being "fully relaxed", the relaxation procedure
accounting for a nearly 40% decrease in the total stored energy in the
unrelaxed model due to a decrease in the rms angular deviation.

These "Polk-type" models are generally consistent with X-ray diffraction
data. They have also been used to obtain the vibrational density of states
and the Raman and infrared spectra of Si and Ge. These results compare

favorably with experimental measurements (Alben et al., 1975). It is the

fully-relaxed Polk model that we explore further in Chapter 4 as a model

for amorphous Ge.
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It remains to be pointed out that since Polk's original model, CRN
models have been built solely by computer techniques (for example,
Shevchik and Paul, 1972). Refinement of these models is an active field

of research.

Section 3.3 - Dense-Random-Packing-of-Hard-Spheres (DRPHS) Models

The DRPHS was first proposed by Bernal (1959), as a model for liquids.
(The spheres are considered dense in the sense that the structure contains
no internal holes large enough to accommodate another sphere.) It was
Cohen and Turnbull (1964) who suggested that the model was appropriate for
a monatomic glass.

The first DRPHS models were built by kneading and squeezing a bladder
filled with ball bearings. The most ambitious such effort was the
8000-ball-bearing cluster of Finney (1970). Cargill (1970) has pointed out
that the agreement between the structure of this model and X-ray results
from amorphous Ni-P alloys is remarkable (Figure 3.3).

The first computer-generated DRPHS was constructed for single-size
spheres by Bennett (1972). Bennett-type structﬁres are generated by
starting with a small seed cluster. The cluster is examined to determine
all possible sites for which an added sphere would be in hard contact with
three spheres already in the cluster. Then a site is chosen according to
some\criterion{ Bennett investigated a "global" criterion by which the new
atom was added at the site closest to the center of the original cluster,
and a "local" criterion by which the new atom was added at the site having
the least distance from the plane of its three neighbors. These computer-

generated clusters are similar in many ways to those built with ball-bearings.
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As mentioned above, a single-size DRPHS has been shown to agree
favorably with data obtained on Ni-P alloys. (The diameters of Ni and P
differ by less than 3%.) In Chapter 5 we use a computer-generated single-
size DRPHS as a model for amorphous Ni-P.

The model has subsequently been generalized (Polk, 1973) to include
spheres of two different sizes for binary metal-metal alloys where the
components differ significantly in size. We conclude by pointing out
that the DRPHS model has been used to investigate the equilibrium density,
binding energy, and elastic constants of amorphous metals (Weaire et al.,
1971), the vibrational spectrum of a metallic glass (Heimendahl and
Thorpe, 1975), and the magnetic properties and Mossbauer absorption spectra
of amorphous metallic alloys of rare earths and transition metals

(Cochrane et al., 1974).
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Chapter 4 - Analysis of a CRN Model

In this chapter we apply the EXAFS formalism to the 519-atom, fully-
relaxed, tetrahedrally-coordinated, continuous-random-network (CRN)
structure discussed in Chapter 3. We use the particular case of
germanium with a bond length of 2.453. We have two reasons for doing
this. First of all, a model calculation of the EXAFS allows us to explore
the usefulness of the EXAFS as a technique for structural investigation in
an ideal way. We shall have no experimental noise nor temperature effects
to worry about. Nor need we be concerned about many-body effects or
other problems which invalidate the theory near the absorption edge.
Secondly, as discussed in Chapter 3, model building is a useful way of
exploring atomic structure. We hope to shed some Tight on the usefulness
of the EXAFS as a means of choosing between competing structural models.

In Section 4.1 we look at the model in some detail by generating a
histogram of the average radial density function. The EXAFS function CHI
is calculated and discussed in Section 4.2. In Section 4.3 radial density
functions are generated by the Fourier Transform technique. Some Timitations
on this technique are discussed. We use this technique to obtain information
about the disorder of the nearest neighbor distribution in Section 4.4,
In Section 4.5 some recent experimental data is presented and discussed.

Section 4.6 contains a summary and some conclusions.

Section 4.1 - Analysis of the Model

A histogram of the average radial density function (ARDF) is con-
Structed as follows: count the number of atoms at distances between

rand r + Ar from some atom chosen as origin. Average this by taking each
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atom in turn as origin. Divide by 4ﬂr2

to obtain the average radial
density.

GE (for convenience we give the model a name) is approximately spheri-
cal and contains 519 atoms. Those on the surface have less than four
nearest neighbors; i.e. dangling bonds exist. Some care must be taken to
ensure that these surface atoms do not "contaminate" the calculations. We
wish to examine the density function as far as r ::7.53 (3 bond lengths).
This means that we must have a 7.53 "sphere" of atoms surrounding each of
the atoms over which we wish to average. In this case "contamination" is
expected to be minimal and will certainly not affect the statistics on the
first few nearest neighbors. This condition Timits us to a central group
of 80 atoms.

To construct the histogram we chose Ar = j%—th of a bond length. In
order to investigate possible size effects histograms were constructed with
10, 20 and 40-atom central groups as well as with 80. The results for
the 40 and 80-atom averages are shown in Figure 4.1.

Before discussing these histograms we present some additional data on
GE which were calculated from the known atomic positions. Table 4.1 gives
the mean positions and mean square deviations, 02, of the first and second
nearest neighbor distributions, averaged over 10, 20, 40 and 80 atoms.

The most outstanding feature of the histograms (Figure 4.1) is the very
sharp, isolated peak representing the nearest neighbor distribution. A
smaller broader peak at about 43 indicates a fairly well-defined second
neighbor distribution. Beyond this the features become less distinct.

The most notable difference between the two histograms is the sharpening

of the peaks at 4.0A and 4.8A when 80 atoms are used. But the general
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Figure 4.1a. ARDF for GE averaged over 40 atoms.
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Figure 4.1b. ARDF for GE averaged over 80 atoms.
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features (peak positions and relative heights) are quite similar. Table 4.1

f, but a monatonic decrease in 022, as the

shows some fluctuations in o
number of central atoms increases. We can draw no conclusions from this.
However, we are confident that enlarging the structure would not signifi-

cantly alter the general features of Figure 4.1b.

Section 4.2 - Calculation of the EXAFS

We now calculate the EXAFS function CHI for GE via Eqn. 2.55. Since

the atoms are all of the same atomic species the magnitude of the back-

scattering amplitude, T(k), may be taken out of the sum. We set oz(T) =0
indicating that the system is taken to be at 0°K. Then we have
-2R. /X
x(k) = Tk) 2 € sin(2kR, + &.(k)), (4.1)
k - 2 J J
i R,
J
where we have written
Gj(k) = zn](k) + oj(k). (4.2)

The sum is over all atoms within 7.5A of the central atom.
A constant value of A = 4.6A was used for the mean free path of the
photoelectron (Stern et al., 1975). A Tlinear form was used for the phase

= shift (Ashley and Doniach, 1975),
§(k) = 4.5 - 0.41k. (4.3)

The magnitude of the backscattering amplitude has been calculated
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(Teo et al., 1977) and fitted to the form

T(k) = ’3
1 +8B

, 4.4
02 (4.4)

with A = 0.601, B = 0.1716 and C = 8.230 for germanium. The parameters in
Egns. 4.3 and 4.4 requre k to be expressed in Al

Figure 4.2 shows CHI (weighted with k because of the 1/k divergence at
low k) averaged over 80 atoms. Figure 4.3 is the nearest-neighbor-only
contribution to k-CHI. There are two interesting features of these plots
which we would like to point out. First, from Egqns. 4.1 and 4.4 we expect
to see an oscillatory function with a Lorentzian envelope peaked at
8.2303']. In fact the envelope of Figure 4.2 is obviously not Lorentzian
and both figures show peaks at k < 83’]. This shift in the peak position
is explained by the averaging procedure. As discussed in Chapter 2, since

the environment of each atom is different, the averaging procedure intro-

-2k202
, into Eqn. 4.1 due to the structural

duces an implicit damping term, e
disorder of the system. This shifts the peak position towards lower k.

The other interesting point to notice is the similarity between
Figures 4.2 and 4.3. For k 2 8A~! the two functions are virtually
identical, major differences occurring only for k < 53' . This obviously
means that at sufficiently high energy only the nearest neighbors contribute
to the EXAFS. This point is further illustrated by Figure 4.4 which shows
the second neighbor contribution. Notice that this contribution is quite
small above 53-]. Reference to Table 4.1 indicates why this might be
expected. The disorder (02) of the second neighbor distribution is much
greater than that of the first. Thus the second neighbor oscillations are

damped out much more quickly. Second neighbor effects are further reduced
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'ZR/A. Thus, even below SK'], the second

by the attenuation term e
neighbor oscillations have considerably less amplitude then those due to
the first neighbor distribution.

We pause here to emphasize the point made in the preceding paragraph.
EXAFS is a tool for the investigation of atomic structure. To gain useful
information about structure beyond the nearest neighbors it is necessary
to have, and be able to interpret, Tow k information. But, as previously
discussed, the assumptions which went into the development of the EXAFS
formalism are not valid for sufficiently low energies. This point has
implications for the investigation of models. If competing models differ
significantly only beyond the nearest neighbor distribution, lack of Tow k
information may make it impossible to distinguish between such models with

the EXAFS technique. We shall have occasion to consider this further.

Section 4.3 - Fourier Transform Analysis, Part I

As discussed in Chapter 2 the magnitude of a Fourier transform of the
EXAFS function CHI yields a radial density function for the structure in-

volved. The transform taken is

k
max .
o (r) = —1 S K™ x(k)eZTKT gy, (4.5)

k.
min

where n = 1 or 3.
A Fourier transform is an integral from 0 to . Integrating over a
finite range means that the integrand has been convoluted with a "window"

function, one which takes the value 1 over the desired integration range

and 0 elsewhere. The effects of this are easy to analyze:
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k .
S max dk e2ikr | sinl{kpay¥nin)"] ’ _ (4.6)

r
km1'n ‘

This function has the periodicity

i1
AY = e (4.7)
kmax kmin

Figure 4.5 shows how this affects a transform. This is the n =1
transform of the nearest neighbor contribution to CHI over the range
.375—24.]25A-]. (A11 transforms discussed in this paper were taken with

k and kmax being chosen as points where CHI = 0 and such that

min
an integral number of oscillations of the function were included.) We
expect to see a fairly sharp peak at the nearest neighbor distance of
2.45&, shifted by —.2053 because of the linear phase shift of Eqn. 4.3.
We do in fact see this (the peak is located at 2.25&). But the peak is
accompanied by a series of periodic oscillations decreasing in amplitude
away from the peak. These oscillations are due to the finite transform.
Eqn. 4.7 predicts a periodicity Ar = .]33, and this is what is observed.
Transforms were taken of the full function CHI over the range .275-
24.1253“ for both n = 1 and n = 3. These are shown in Fiqure 4.6. There
are two important things to notice here. Both figures show a strong peak
at r = 2.253 as expected. However, the k and k3 weightings have markedly
different effects for r 2 33. As pointed out in Section 4.2, information
about structure beyond the nearest neighbor distribution is contained in
the low k region of the EXAFS. MWeighting with k3 de-emphasizes this

part of the spectrum more than weighting with k. Hence, as seen in

Figure 4.6b, this results in less information about the structure at larger r.
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This point is made very clear in Figure 4.7 where the transform of

Figure 4.6a is compared with the histogram of Figure 4.1b. The transform
has been shifted by +.205 to cancel the effect of the linear phase shift.
Clearly the second peak of the n = 1 transform corresponds very well with
the second peak of the histogram. However, Figure 4.6b shows that the n = 3
transform washes out most of this information. In fact, the position of

the second peak in the n = 1 transform corresponds to a minimum in the

n = 3 transform!

Clearly n = 1 is to be preferred over n = 3. Because of the
uncertainty in the location of k = 0, n = 3 is preferred in the analysis
of experimental data (Stern et al., 1975). This is less sensitive to the
choice of kmi than n = 1. But the procedure yields less information.

n
We note that the second peak of the n = 1 transform occurs at

i

r = 3.73A. The corresponding peak of the histogram is centered at

3.95A, the width being .063. Because of the nature of histograms there

r
is some ambiguity in the shift of the "peak" position. The distribution
is asymmetric and there may be a shift due to this asymmetry.
Eisenberger and Brown (1978) state that if oz/ﬁ'and oz/A < .013 then the
effects of the asymmetry are negligible. This is the case here (see
Table 4.1).

It is of iterest to look at the n = 1 transform to determine the

effects of varying kmi and kmax' A number of transforms were taken over

n
various ranges. Some of these are shown in Figures 4.8 - 4.10.

There is no need to comment on these figures in detail. They all
show the characteristic oscillations, with periodicity given by Eqn. 4.7,

which are arfifacts of the finite-range transform. Notice that reducing
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the transform range broadens the nearest neighbor peak. The peak occurs

at 2.253, as expected, except for the narrowest range transforms. The peaks
of Figures 4.8a and 4.9a occur at 2.233 and 2.213 respectively. This is

an artifact of the narrowness of the window function. The most important

[e]
point, however, is that when k is as large as 3 or 4 Al structure beyond

min
the nearest neighbor distribution becomes difficult to distinguish from the
artifacts of the transform. A1l that we have said above about low k

information is recalled.

Section 4.4 - Fourier Transform Analysis, Part 11

The Fourier transform technique may be used to evaluate the structural
disorder of the nearest neighbor distribution. If Eqn. 4.1 is multiplied
by k/T(k), the only explicit k-dependence remaining is the oscillatory
sine term. However, as previously discussed, the oscillations are damped
due to the disorder of the system. If the average density function for
the nearest neighbor distribution is gaussian, the oscillations are

2 2
2k"a

damped by e A plot of the logarithm of the envelope of k-CHI/T(k)

(LNENV) wvs. k2 will then have slope -20]2

This analysis was first applied to the nearest-neighbor-only contri-
bution to CHI. LNENV vs. k& is shown in Figure 4.11a. The linearity of
this plot indicates the appropriateness of the gaussian assumption. We

2 . .00091A2, in excellent agreement with Table 4.1

obtained P
To apply this technique to analyzing a Fourier transform, such as
that of Figure 4.6a, requires isolating the first peak. A glance at

Figure 4.5 and 4.6a shows that, because of transform artifacts, there is
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no place where the first peak ends and the second one begins {(unlike
Figure 4.1b). This means that a small amount of first peak information
is lost, and a small amount of leakage from the second and higher peaks
is present in any effort to isolate the first peak.

It was found that the best results were obtained by considering the
first peak as extending from r = 0 to the minimum (the lowest) just
beyond 33 (Figure 4.6a). The reverse transform of this peak was taken to
isolate the first neighbor contribution to CHI. LNENV vs. k2 for this
function is shown in Figure 4.11b. It is approximately linear. Since
there is second neighbor contamination deviation from linearity is
expected, especially for low k. Loss of some first neighbor information
is also expected to contribute to this. A linear fit was done excluding
the first three points. We obtained 012 = .0009432, in excellent
agreement with the above calculation and Table 4.1.

It is thus possible to obtain accurate information on the structural
disorder of the nearest neighbor distribution via the Fourier analysis of
the EXAFS. Since the disorder due to thermal vibrations can be calculated
for a model structure (J.C. Rehr, to be published), nearest neighbor
disorder provides a basis for comparison of model with experiment.

Since models are more distinguishable at larger r, it is of interest
to look at what remains after isolation of the first peak. The Fourier
transform of what remains is shown in Figure 4.12a. For comparison, the
transform of CHI minus the calculated first neighbor contribution is shown
in Figure 4.12b. Clearly not too much information has been lost by the

process of isolating the first peak.
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Figure 4.12b. N = 1 transform of CHI minus the nearest
neighbor contribution. (Range: .225 - 24 .425A-1.)
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These figures are nice from an academic point of view, but
unrealistic from the experimental side. For comparison of models, trans-
forms like Figure 4.6a wouldbeexcellent. However, as we have seen several
times now, revelation of this much structure results fromlowk information.

For sufficiently low energies EXAFS data is not interpretable.

Section 4.5 - Comparison With Experiment

The EXAFS of amorphous germanium, extracted fromexperimental data taken at
20°C (E.D. Crozier, unpublished), is shown in Figure 4.13a. A comparable por-
tion of the mode1 EXAFS is shown in Figure 4.13b. Comparing the experimental data
with the model spectrum, we make four observations. First, the smoothness of
the experimental data is interupted by some jaggedness at higher k. This is
attributed to background noise in the experimental arrangement (E.D. Crozier,
private communication). Second, below 43'] the oscillations are much reduced
in amplitude. This is the region where the assumptions of the EXAFS formalism
break down, and comparisons cannot be made in this part of the spectrum.
Third, the experimental data also shows reduced oscillations at higher k.
This is expected. The data was taken at 20°C so that there is additional
disorder in the system which leads to additional damping of the oscillations,
as we have discussed previously. Fourth, the periods of the oscillations
of the two spectra are slightly different.

Fourier transforms (n = 1) of the two spectra are shown in Figure 4.14.
The transform ranges were matched as closely as possible, consistent with
the criteria established in Section 4.3. The difference in the oscillation
periods of the two spectra results in different peak positions for the

[e] [e]
nearest neighbor distributions: 2.13A for experiment vs. 2.25A for the model.
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This suggests that the simple form used for the phase shift in the model
calculation (Egn. 4.3) is inappropriate.

We also notice that the experimental peak is broader than the model
peak. This is expected because of the increased disorder due to thermal
vibrations. (To make a proper comparison it is necessary to have the

calculated 02

due to the thermal motion of the atoms.) The only other
significant structural difference we see is the lump at low r in the
experimental data. This is due to incomplete background removal.

This comparison of experiment with the model calculation is incon-
clusive. We are again faced with the now infamous "low k problem". The
structure functions of Figure 4.14 reveal nothing beyond the nearest

neighbor distributions. The best we can say is that our model remains a

possible candidate.

Section 4.6 - Summary and Conclusions

There are two themes upon which this chapter has been developed,
both centering on the usefulness of the EXAFS as a tool for structural
investigation. What are the limitations of this technique? How useful is
it in distinguishing between competing structural models?

We have calculated the EXAFS for the CRN model for amorphous ger-
manium. The Fourier transform was used to generate a radial structure
function which compared favourably with the histogram of the ARDF of the
model. The structural contribution to the disorder of the nearest neighbor
distribution was accurately extracted. But the success of these endeavors
depended upon analyzing the EXAFS spectrum below 43']. When we excluded

this region, in which the theory is not valid, we found that nothing beyond
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the nearest neighbor distribution could be determined. This is due to
the damping of the higher neighbor oscillations which arises from the
increased disorder encountered in an amorphous material. When we made

a realistic comparison with some experimental data we found that nothing
beyond the nearest neighbor distribution could be determined.

We draw two conclusions. First, there is an inherent limitation of
the EXAFS technique due to the inability to interpret the spectrum for
sufficiently low energies. This is critical in a disordered system
becuase of the damping of the oscillations due to the disorder. For an
amorphous material one is Timited to information concerning the nearest
neighbor distribution only.

(This conclusion may be overly pessimistic. Some recent work by
Crozier (private communication) suggests that it may be possible to
extract information about the second neighbor distribution through a
technique which involves the use of the Fourier Transform in conjunction
with curve-fitting procedures.)

Second, because of the "low k problem", the EXAFS technique, as it
has been applied in this work, is of limited usefulness in distinguishing
between competing structural models. Success in doing this is contingent

upon developing better methods for analyzing EXAFS data.
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Chapter 5 - Analysis of a DRPHS Model

In this chapter we apply the EXAFS formalism to a dense-random-packing-
of-hard-spheres model. In particular we choose the amorphous binary system
of Nickel and Phosphorus.

In Section 5.1 we discuss the model. 1In Section 5.2 the EXAFS is
calculated and analyzed via the Fourier Transform. Multiple scattering is
treated in Section 5.3. In Section 5.4 we consider the effects of asymmetric

distributions. A summary and some conclusions are presented in Section 5.5.

Section 5.1 - Analysis of the Model

The diameters of Ni and P are within 3% of each other. As shown by
Cargill (1970) the Ni-P system can be modeled with single-size spheres of
radius r = 1.21A (see Figure 3.3).

A 4000-atom cluster of single-size spheres was generated by a program
like that described in Section 3.3. A random number generator was then
used to label the atoms type 1 (Ni) or 2 (P). The resulting composition is
79%Ni, 217 P, within the composition range that can be prepared in the amorphous state.

Histograms were constructed using central groups of 200, 400, ..., 1200
atoms. There is very little difference in these. The 400-atom average is
shown in Figure 5.1.

This distribution shows less structure than the CRN model. There is a
sharp peak centered at 2 radii (2.423) corresponding to those atoms essential-
ly in direct contact with the central atom. The only other distinctive

feature is the sharp drop in the distribution after the peak at 4 radii

(4.84A) has been reached. The distribution is otherwise bland. Notice that,
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in contrast to the CRN model, the concepts of first and second nearest
neighbors are not well defined. Thus there is no unambiguous way to calcu-

late, say, ﬁi or 012.

Section 5.2 - Analysis of the EXAFS

As before we calculate CHI via

—2Rj/A

sin (2kRj + éj(k)). (5.1)

R.

_ Tk
x(k) = Tkl 20 e
J i

The sum is over all atoms within 7.26K of the central atom.

We again use the Lorentzian parameterization for T(k) (Teo et al.,
1977). To correct for a sin of omission in the preceding chapter we discuss
this more fully here. Teo et al. calculate T(k) by the formalism of Lee
and Beni (1977) who use a complex potential to calculate phase shifts. This
results in complex phase shifts. The backscattering amplitude calculated
this way includes inelastic losses. Our use of the attenuation factor
e'ZR/A is thus strictly a multiple scattering correction. (Since there is
no multiple scattering correction for the first shell a more appropriate
factor is e_Z(R-R])/x, where ﬁi is the first peak position. But this
amounts to a constant scaling factor which we ignore.) We set A = 5.03.

Lee et al. (1977) have calculated phase shifts according to the Lee
and Beni formalism. They parameterized these over the range 4-163']
according to

S() = (ag+by =)+ (ag +by )k + (ay+ by )k + (ag+by) /K3 (5.2)

0
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where a and b represent the absorbing and backscattering atoms respectively.

The parameters for T(k) and (k) are listed in Table 5.1. Values
interpolated from the Lee et al. data are so indicated.

We confine our attention to the central group of 500 atoms, of which
396 are Ni and 104 are P. We calculate the EXAFS averaged over each of
these groups. Figure 5.2 shows the EXAFS for the P K-edge, and the n = 1
Fourier Transform of this data from 4.125 - ]5.]6253’]. (Applying the same
convention as in the preceding chapter, transforms are taken between points
where CHI = 0 such that an integral number of oscillations of the EXAFS
are included.) Figure 5.3 shows the corresponding plots for the Ni K-edge.
The transform range is 3.875 - 15.6253'].

Unfortunately these figures are not very revealing. The two EXAFS
spectra are virtually identical. The transform of the P EXAFS has a peak
at r = 2.]53; that of the Ni EXAFS at 2.1]3. (The actual distribution
peaks at 2.423.) Some difference is expected since the central atom phase
shift is different in both cases. But, looking at Egn. 5.2, it is not
obvious what kind of shift in the peak position we should expect to see.

In either case the shift is less than can be accounted for by the Tinear
term alone.

Beyond the first peak any structure present is buried by the transform
wiggles. This is expected since we have no low k information (recalling
the discussion in Chapter 4). Our analysis ends before it begins. While
we have the spectra of two edges to look at, there is no evidence that we
can distinguish between the different types of atoms in either. Even
though the atoms are the same size, Ni and P have different scattering

properties and we might expect to see something. We don't.
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Table 5.1

Parameters for Ni and P

Backscattering Amplitude (Magnitude).

A(A) | B(A) c(a !y
Ni .65 .187 7.04 (interpolated)
p .747 .2402 3.258

Phase shift due to backscattering atom.

o B 0y byl
Ni 7.0 -.205 0 -97 (interpolated)
p 4.919 | -.3743 .00619 0
Phase shift due to absorbing atom.
e Ja](R) l a,(A%) | a5(A~%)
Ni | 5.0 | -.96 -.0247 25.5 (interpolated)

p .20 | -.84 -.0237 25.0 (interpolated)
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Section 5.3 - Multiple Scattering

Since the hard sphere cluster is closely packed we might expect to
see a significant multiple scattering contribution to the EXAFS. To cal-
culate this requires solving for the full Green's function (Eqn. 2.37) and
using Eqn. 2.43. But this requires matrix inversion techniques (and com-
puter time) beyond the scope of this thesis.

We can hope to get some physical insight into this problem by con-
sidering the case of s-wave-only (& = 0) scattering. (This is the approach
Ashley and Doniach (1975) take for the crystalline case.) In this case

Egqns. 2.37 and 2.43 reduce to

. 0
6 = Gy * Z GowthvB , (5.3)
21in
_ 1 1 0
x(k) = klm{ BZ#: GaBtBGBa} . (5.4)

where we have dropped the angular momentum indices to simplify the notation.

As we have seen before only the closest atoms contribute to the EXAFS.
We therefore evaluate Egn. 5.4 for the EXAFS due to those atoms within
4.84& of the absorbing atom. This particular choice of cutoff is suggested
by the sharp drop in the distribution at this point (see Figure 5.1).

Within this range are approximately 50 atoms.

While the solution of Egn. 5.3 is easy to set up, it requires a great
deal of computer time. Since we require an averaging over some significant
number of atoms we had to abandon this approach. Instead we chose to
calcuiate on]} the single and double scattering contributions (XS and XD)

by iterating Eqn. 5.4 by Egn. 5.3. To further simplify we set t(k) = 1/k
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for both atomic species. This leads to the simple analytic expression

+ Zn])

ks(k) + xg(k) = -1/KE T R1— sin (2R,

Bfa

3 1 .
1k Y ———sin [k(R ,+R_+R ) + 2n.].
B\ ROLBRB\) Vol of Rv Vo, 1

(5.5)

This was calculated, averaging over the 104 P atoms mentioned above. An
attenuation factor with X = 105 was included.

Figure 5.4a shows the single scattering contribution, while Figure 5.4b
shows the single plus double scattering contribution to the EXAFS. Any
difference is not clearly visible. In fact there is only the slightest
difference below 7&']. The corresponding n = 1 transforms are shown in
Figure 5.5. Here again the differences are small. The first peaks are
identical (at r = 2.233) while some slight differences occur at large r.

It appears that, at least for the energy range above 45'], multiple

scattering is not important in this system.

Section 5.4 - Asymmetry

It is clear from Figure 5.1 that the first neighbor distribution, no

matter how it is defined, is asymmetric. Eisenberger and Brown (1978) have

shown how to expand CHI about the mean first neighbor separation r:
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k) = MR 200 4 a2(0]

whe re

tan_] A(k

and
A(k) = .gww (r + x) sin 2kx dx
S(k) = sa; r + x) cos 2kx dx
Here x = r -

and 6(k) are defined as before.

sin(2kr + &(k) +

b

v, g is the first neighbor distribution function, and T(k)

An attenuation factor may be included in g.

In general, of course, the distribution function is not known. In

our case we know the exact distribution, but we can consider this in a

more ideal way by looking at some simple analytic expressions for g. We

can calculate CHI by

[00]

x(k) = S g(r) sin2kr dr ,
o

neglecting the scattering parameters.

We consider two cases:

(5.10)
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(1) g(r) = 10, 1.9<r<2.1
1, 2.1 <r<C

0, elsewhere (5.11)

where we let C vary from 2.1 to 4.1;

(2)  g(r)

W
—_
-

1
-
~—
12

-
-

v
-

0 s r<r_ . (5.12)

To examine the effects of asymmetry we calculate CHI by Egn. 5.10,
Fourier Transform CHI and Tocate the peak. Then we calculate E:(k) by
Eqns. 5.7 - 5.9 and examine this in terms of Eqn. 5.6.

For case 1 both the magnitude and imaginary part of the Fourier
Transform peak at r = 2.0 for any value of C considered. There is no
shift in the peak position. For C = 4.1, D>_(k) is practically linear in
k with a coefficient of —1.10&. From Egn. 5.6 we expect to see a peak at
¥ - .55A, and this is what we see (F = 2.55A).

The asymmetry of case 2 is more extreme. Using Eqn. 5.10 we get

(1-4Kk?) sin 2kr, + 8k cos 2kr,

(k) =
* (1 + ak2)°

sin (2krg + 205(K) (5.13)

1+ 4k2 i

where
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S (k) = tan”! <—~ik—~> . 5.14
2 1 - 4k° (5.14)

The function g(r), given by Egn. 5.12, peaks at ro *+ 1, and r = ro + 2.
While the imaginary part of the Fourier Transform peaks at "o + 1, the
magnitude peaks at o ¥ .31; (r - 2.0 + .31). > (k) is practically linear
with a coefficient of -4.03. Thus, from Egqn. 5.6, we expect a peak at
r-2.0 (ro). We reach a similar conclusion by looking at Egns. 5.13 -
5.14. The phase shift }:2(k) is linear for small k (= .53_]) and
approaches zero like -1/k.

This last case gives us an important result, especially since Egn. 5.12
is a physically realistic distribution. First, for a sufficiently
asymmetric distribution, the magnitude of the Fourier Transform shows a
shift in the peak position due solely to asymmetry. Second, the magnitude
and imaginary part of the Fourier Transform do not peak in the same place.
Recalling the discussion of Section 2.5 we see that, in this case,
knowledge of the phase shifts cannot be used to determine k = 0. Both of

these points indicate that further analysis of the effects of asymmetry on

the EXAFS is required in order to properly analyze experimental data.

Section 5.5 - Summary and Conclusions

In this chapter we have calculated the EXAFS for the DRPHS model for
amorphous NiP. The Fourier Transform was used to generate a radial structure
function. As we have come to expect, the lack of low k information makes it
impossible to extract meaningful information about structure beyond the

nearest neighbour distribution. We found that, even with two absorption edges
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to Took at, we could not obtain any information regarding, say, the P-P or
P-Ni distributions.

Complications regarding the analysis of the EXAFS involve possible
multiple scattering effects and the effects of asymmetric distributions. HWe
calculated the s-wave double scattering contribution and found that it was
not important in this system. We also calculated the effects of asymmetry
for some model distributions. Qe found that while the position of the first
peak of the Fourier Transform may be shifted, the shift appears to be much
smaller than expected (Eisenberger and Brown, 1978))

We conclude that the problems to be encountered in the analysis of the

EXAFS are formidable.
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Chapter 6 - Summary and Conclusions

We have calculated the EXAFS of two structural models for disordered
systems; a CRN model for semiconductors, and a DRPHS model for metallic
systems. In both cases the EXAFS was analyzed via the Fourier Transform
Technique.

In a disordered system the degree of disorder increases as a function of
r. As we have seen, increased disorder leads to increased damping of the
oscillations of the EXAFS as a function of energy. We find that information
about the distribution beyond the first neighbors is effectively damped out
for k 2:4-2']. But the existing formalism is a high-energy approximation
which is valid only in this range. We conciude that, for the investigation
of disordered systems, the EXAFS technique is lTimited to obtaining infor-
mation about nearest neighbor distributions. Because of this we further
conciude that the analysis of the EXAFS will not be of much use in investi-
gating the appropriateness of particular structural models.

Even in the case of the nearest neighbor distribution there are diffi-
culties with analysis. The position of the peak in the Fourier Transform of
the EXAFS depends upon the actual peak position, and the effects of the phase
shifts. To extract the actual peak position requires a thorough analysis of
the phase shifts involved.

In principle, one can calculate the phase shifts due to the absorbing and
back scattering atoms once one has a model for the potentials involved. But
we have seen that there may be an additional phase shift due to asymmetry in
the real-space distribution. This requires further investigation.

We conclude that while the EXAFS does contain structural information,

considerable difficulties remain in analyzing EXAFS data.
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APPENDIX A

GAUNT COEFFICIENTS

For a general discussion of the Gaunt coefficients, the reader is
referred to Rose (1957, Chapter 3).
The Gaunt coefficients are defined in terms of the integral of three

spherical harmonics:

C _ fdm * (0,0)Y, (050)Y, (6,0). (A.1)
Lalol, Ly Lo Ly

These coefficients vanish unless:
3 5 Mptm,

(2) 23 ta, t 2] is an even integer ,

(3) o3 - 29 <8, <fog+ 8] . (A.2)

2 3

Obviously, if one of the Ls is zero, orthonormality of the spherical

harmonics leads to

]
B 5
L3t,0 VI A3k My,

_ (- 8 8 . (A.3)
Ololy o Lys%p TMysMy
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