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SOME TERNARY FRAMES 

ABSTRACT 

This paper has three objectives: 1) to give a general 

account of the relationship between logics, systems, semantics 

and philosophy; 2 )  to investigate one specific structure - 
(0-structures) in one kind of semantics (neighborhood of --- 

- - 
Scott-Montague semantics); and 3) to show completeness for 

certain logics proved sound with respect to 0-structures and 

to look briefly at some revisions in the structures themselves. 

Chapter I compares syntactic considerations in developing 

a logic (i.e. the relationship between primitive constants, 

axioms and theorems) with semantic considerations (the 

provision of model conditions for formulae and the notion of 

semantic validity) and explains why it is desirable for a 

logic's syntax and semantics to correspond in an exact fashion. 

To flesh out these general remarks, the propositional calculus 

(PC) is shown to be sound and complete with respect to PC 

semantics. Soundness and completeness for modal logics is 

then taken up. Modal logics differ from PC in containing 

constants that are non-truth-functional in nature. For this 

reason modal logics require semantics that incorporate a 

feature permitting the characterization of truth conditions 

for these formulae. Two kinds of modal semantics are 

explored: relational and neighborhood semantics. 

Chapter 11 investigates one specific structure (an 

0-structure) in neighborhood semantics. An 0-structure is 

iii 



2 
a pair<u,0> where U # $ and 0 is a function: U + Z(U ) .  

The expression xoUy reads "x is . . . . . than y for u" where 

" ..... " takes any transitive, irreflexive relation. An 

initial truth condition for is defined and it is shown 

that under this condition, 0-structures can be made to yield 

the logics U.Con, KD and others. Three philosophical 

interpretations for in U.Con and KD are elaborated. The - -. 

first is borrowed directly from the literature; the others 

are developed from remarks by Quine. 

Chapter I11 shows completeness for KD and T, looks 

at two other truth conditions for and suggests an 0-structure 

refinement that redresses one intuitive deficiency in two of 

the interpretations for explored in Chapter 11. An 

0*-structure is defined as the pair <u,o*) where 0*: u3 - J. 
Finally, 0* structures are used to show that a notion of 

"degrees of belief" developed by F.P. Ramsey is a notion 

that preserves [KJ and [DJ. 
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CHAPTER ONE 

LOGICS AND SEMANTICS 

1) General Features 

Logics are to be distinguished from formal systems that 

generate logics1. A logic L is a set of formulae called - 
theorems. A formal system is an ordered triple S = <L,'A,R> 

where L - is a language, A - a set of axioms and - R a set 

of rules called transformation rules (or rules of inference). 

To say that a formal system generates a logic is to say that 

L is the closure of A - (expressed in L) under R. The - - 
terminology in this work differs slightly from conventional 

presentations. It is customary to distinguish between 

primitive theorems (axioms) and derived theorems (theorems) 

of a logic and to use the generic term "thesis" to refer 

indiscriminately to members of either set. However, for 

purposes of this paper "thesis" and "theorem" will be used 

interchangeably. "Axiom" identifies primitive theorems 

or theses. 

A language L - in turn is a triple <A~,K,F> - - -  where At 

is the set of atomic formulae of the language, K the set - 
of primitive logical constants and F - the closure of At - 
under a set of formations (or formation rules). The set 

of formations of a logic is given with reference to the set 

K .  F is the set of well-formed formulae. "Formation" will - - 
be used to identify both the rule and the results of applying 

the rule (i.e., the formation result). 



Logic as Theory 

Logic may be thought of as an analytic/explanatory 

theory or as a theory of meaning. Conceived as an analytic/ 

explanatory theory (like chemical theory for example), a 

logical theory analyzes or explains the propeaies of 
-. 

formations proper to the theory, in terms of the theory's 

fundamental theoretic elements. The fundamental theoretic 

elements of a formal system are the set of atomic formulae 

(or atoms) and the set of primitive logical constants. 

Formations (or results of formations) have two kinds 

of properties: the syntactic property of derivability and 

the semantic property of holding in a class of models. 

Both of these notions will be covered in detail later. 

Suffice it to note for now that a particular formation's 

having or lacking the property of derivability in a logic 

is explained by reference to the set of axioms and 

transformation rules of the system generating the logic. 

And the set of axioms, as shall also be seen shortly, is 

definitionally connected with the logical constants of the 

system. By the same token, a formation's having 

the semantic property of holding in a model depends upon the 

characterization of primitive constants and atomic formulae 

in that model. Because complex formations are constructed 

from primitive formations in accord with formation rules, 

their having the syntactic or semantic properties that 

they do have is to be explained in terms of the properties 



of their primitive components. 

Alternatively a logic may be thought of as elaborating 

a theory of meaning for its primitive constants, the 

elements of - K. Logical theories on this view state 

conditionally that if primitive constants are defined in 

certain ways, certain consequences will follow'with respect 
-. 

to the way in which formations containing those constants 

may enter into our reasoning. Axioms, in this view, provide 

a syntactic specification of the meaning of primitive 

constants by instantiating formations which reflect the 

logical properties of those constants. The addition or 

deletion of axioms to a specification can identify different 

properties for those constants. 

The Notion of Atomicity 

The notion of (explanatory) atomicity employed here is 

theory-relative. The theoretical elements of one theory 

may be non-atomic to another. The elements of the 

propositional calculus (or PC) for example, are, 

propositional letters and truth-functional constants. PC, 

consequently, is not capable of explaining how it is that 

formations containing quantifiers or non-truth-functional 

operators have the semantic or syntactic properties that 

they have. The predicate calculus, by contrast, is a 

logical theory adequate to the analysis of formations 

containing quantifiers while the set of modal logics is 



capable of ana lyz ing  format ions  w i th  o t h e r  non- t ru th - func t iona l  

o p e r a t o r s .  The p r i m i t i v e s  of  p r e d i c a t e  c a l c u l u s  a r e ,  

minimally,  p r e d i c a t e  c o n s t a n t s  and i n d i v i d u a l  v a r i a b l e s  and 

t h e  s e t  of p r i m i t i v e  format ions  f o r  modal l o g i c s  c o n t a i n  

non- t ru th- func t iona l  c o n s t a n t s  t h a t  a r e  no t  con ta ined  i n  PC. 

I n  a d d i t i o n ,  p r i m i t i v e  c o n s t a n t s  designat'ed as a tomic - -. 

t o  a  theory  a r e  n o t  even a b s o l u t e l y  atomic t o  t h a t  t heo ry  

because o t h e r  c o n s t a n t s  i n t e r d e f i n a b l e  wi th  t h e  d e s i g n a t e d  

c o n s t a n t s  may t a k e  t h e i r  p l a c e  as p r i m i t i v e s .  The 

format ions  normally des igna t ed  atomic i n  PC, f o r  example 

If II and I1 l l  , can be r ep l aced  by " 7 "  and " A  ", " 7 "  and "+",  

t h e  S h e f f e r  s t r o k e  " / I '  o r  o t h e r  combinations.  

Constants ,  Systems and Logics 

I f  developing a l o g i c  i s  conceived a s  developing t h e  

i m p l i c a t i o n s  of  a  t heo ry  of meaning sketched f o r  t h e  l o g i c ' s  

p r i m i t i v e  c o n s t a n t s ,  t hen  axioms and t r ans fo rma t ion  r u l e s  

c o l l e c t i v e l y ,  can be  thought  of i n  t h i s  c o n t e x t  as p rov id ing  

j o i n t  d e f i n i t i o n s  f o r  t h o s e  c o n s t a n t s .  That  is ,  t h e  axioms 

and r u l e s  r e p r e s e n t  some o r  o t h e r  i n t e r p r e t a t i o n  of  t h o s e  

c o n s t a n t s  by i n s t a n t i a t i n g  some o r  o t h e r  of t h e i r  l o g i c a l  

p r o p e r t i e s .  Hence, a l though  axioms and r u l e s  cannot  be s a i d  

i n  any s t r a i g h t f o r w a r d  sense  t o  be  wrong, t hey  can be  s a i d  

t o  succeed o r  f a i l  a t  r e p r e s e n t i n g  c e r t a i n  d e s i r e d  p r o p e r t i e s .  

I f  t h e  s e t  of axioms and t r ans fo rma t ion  r u l e s  r e f l e c t  

e x a c t l y  t h e  l o g i c a l  p r o p e r t i e s  of a  s e t  of c o n s t a n t s  r e l a t i v e  



t o  a  p a r t i c u l a r  i n t e r p r e t a t i o n ,  t h e  de r ived  theorems of t h e  

l o g i c  r e p r e s e n t  e x h a u s t i v e l y  a l l  t h e  ways i n  which t h o s e  

c o n s t a n t s  ( a s  i n t e r p r e t e d )  may be used i n  reasoning .  I n  a  

ve ry  impor tan t  sense ,  a  l o g i c  may be s a i d  t o  m i r r o r  t h e  

l o g i c a l  p r o p e r t i e s  of i t s  c o n s t a n t s .  Every p rope r ty  of  

every i n t e r p r e t e d  c o n s t a n t  i s  r e f l e c t e d  i n  a  theorem s e t  - -. 

adequate  t o  t h e  i n t e r p r e t a t i o n  of t h o s e  c o n s t a n t s .  

Soundness, Consis tency and ~ o m ~ l e t e n e s s *  

A g iven  ax ioma t i za t ion  may m i s s  i t s  mark i n  two ways: 

it may be t o o  r e s t r i c t i v e  o r  it may be  t o o  l i b e r a l .  I f  t o o  

r e s t r i c t i v e ,  t hen  some axiom o r  t r ans fo rma t ion  r u l e  w i l l  b e  

miss ing  and t h e  s e t  of t h e s e s  w i l l  no t  complete ly  r e f l e c t  

t h e  in tended  i n t e r p r e t a t i o n  of  t h e  t h e o r y ' s  c o n s t a n t s .  I f  

t o o  l i b e r a l ,  t h e n  some axiom o r  t r ans fo rma t ion  r u l e  w i l l  b e  

p r e s e n t  t h a t  pe rmi t s  d e r i v a t i o n s  t h a t  do n o t  r e f l e c t  t h e  

in tended  i n t e r p r e t a t i o n .  

An analogy wi th  t h e  ph ra s ing  of  l e g a l  s t a t u t e s  i s  

i n s t r u c t i v e .  The p o i n t  of  l e g i s l a t i o n  i s  t o  r u l e  o u t  c e r t a i n  

forms of  conduct  (as n o t  permissab le )  and t o  admit  o t h e r s .  

The t a s k  of t h e  l e g i s l a t i v e  draughtsperson  i s  t o  c a p t u r e  

t h e  s p i r i t  o r  i n t e n t  of t h e  l e g i s l a t i o n  i n  phras ing  t h e  

s t a t u t e  s o  t h a t  a l l  a c c e p t a b l e  a c t s  a r e  l e g a l i z e d  and a l l  

unacceptab le  a c t s  a r e  made i l l e g a l .  The s t a t u t e  can  go 

wrong by being t o o  r e s t r i c t i v e  and f a i l i n g  t o  r u l e  i n  a l l  

admissable  a c t s  o r  by being t o o  l i b e r a l  and admi t t i ng  a c t s  



t h a t  a r e  n o t  c o n s i s t e n t  wi th  t h e  i n t e n t  of t h e  l e g i s l a t i o n .  

~ a i l u r e  i n  t h e  former d i r e c t i o n  can  be c h a r a c t e r i z e d  a s  

in ten t - incomple teness ,  and i n  t h e  l a t t e r  a s  i n t e n t -  

i ncons i s t ency  o r  in tent-unsoundness .  Overly r e s t r i c t i v e  o r  

incomplete l o g i c s  a r e  d e f e c t i v e  i n  t h e  s e n s e  t h a t  t h e y  a r e  n o t  

s t r o n g  enough t o  permi t  t h e  d e r i v a t i o n  of  a l l - d e s i r a b l e .  -. 

formulae.  Excess ive ly  l i b e r a l  o r  unsound o r  i n c o n s i s t e n t  

l o g i c s  on t h e  o t h e r  hand a r e  t o o  s t r o n g  i n  t h e  s e n s e  t h a t  

t hey  permi t  d e r i v a t i o n s  which they  should  no t .  

Detec t ing  Theory Inadequacy - The Semantic Po in t  

The on ly  way i n  which t h e  l e g i s l a t o r  can determine 

whether t h e  l e t t e r  of  t h e  law c a p t u r e s  t h e  s p i r i t ,  i s  t o  l e t  

it l o o s e  upon t h e  l a n d  t o  see i f ,  i n  f a c t ,  t h e  laws a r e  t o o  

r e s t r i c t i v e  o r  t o o  l i b e r a l .  A d e f e c t i v e  s t a t u t e  may t a k e  

y e a r s  t o  be d i scovered .  The l o g i c i a n  provided w i t h  on ly  an 

axiomat ic  v e r s i o n  of a  p a r t i c u l a r  l o g i c  i s  i n  e q u a l l y  d i f f i c u l t  

s t rai ts  when it comes t o  de te rmin ing  t h e  adequacy o f  a  system. 

I f  t h e  on ly  method i s  by t e s t  o f  d e r i v a t i o n ,  it could  t a k e  

yea r s  t o  t u r n  up an incons i s t ency .  Even worse,  f a i l i n g  t o  

t u r n  up anything f o r  y e a r s  would gua ran tee  no th ing  because 

t h e  number of  p o s s i b l e  d e r i v a t i o n s  i n  a l o g i c  i s  i n f i n i t e .  

S i m i l a r l y ,  showing t h a t  a  g iven  a x i o m a t i z a t i o n  y i e l d s  a l l  

d e s i r a b l e  theorems r e q u i r e s  a  l i s t  of  d e s i r a b l e  theorems and 

a  proof f o r  each e n t r y  on t h e  l i s t .  S ince  t h i s  l i s t  would be  

i n f i n i t e ,  t h e  l o g i c i a n  encounte rs  t h e  same s o r t  o f  problem 



f o r  completeness. 

Providing a  semantics f o r  a  l o g i c  provides an a l t e r n a t e  

way of s t i p u l a t i n g  t h e  meaning of t h e  l o g i c ' s  p r imi t ive  

cons tants .  Ins tead  of g iv ing  t h e  meaning of a  term 

o p e r a t i o n a l l y ,  p r i m i t i v e  cons tants  a r e  def ined  i n  a  semantics 

by present ing  condi t ions  i n  a  model. I n  most -cases, seman-tic 

condi t ions  a r e  t r u t h  condi t ions  b u t  t h i s  does not  have t o  be 

t h e  case.  There a r e  no r e s t r i c t i o n s  on t h e  s o r t s  of models 

o r  t h e  s o r t  of model condi t ions  t h a t  may be employed, j u s t  

so long a s  t h e  semantics i s  capable  of cha rac te r i z ing  t h e  

requi red  p r o p e r t i e s  of modelled formations.  

In  semantics concerned with t r u t h  condi t ions ,  modelled 

formations can be seen t o  possess  o r  l ack  t h e  proper ty  of 

v a l i d i t y .  Very genera l ly ,  a  formation i s  v a l i d  i n  a  

semantics i f f  t h e  formation holds i n  a l l  models ( i s  

u n i v e r s a l l y  t r u e )  f o r  t h e  l o g i c .  Hence, t h e  l o g i c i a n  may use  

semantics t o  show: 1) t h a t  any given formation i s  a  theorem 

by showing it t o  be t r u e  i n  a l l  models (no t  f a l s e  i n  any 

model); 2 )  t h a t  a  system i s  sound by showing t h a t  i t s  axioms 

a r e  v a l i d  and t h a t  i t s  t ransformat ion  r u l e s  preserve  v a l i d i t y ;  

and 31 t h a t  a  system i s  complete by showing t h a t  every v a l i d  

formula i s  a  t h e s i s .  

In  terms of t h e  metaphor with l e g a l  s t a t u t e s ,  semantics 

can show t h a t  t h e  phrasing of a  s t a t u t e  p r o t e c t s  t h e  i n t e n t  

of t h e  l e g i s l a t i o n  ( i . e .  is  sound) and t akes  t h e  i n t e n t  f a r  

enough ( i . e .  i s  complete) .  Having t h e  s e t  of t h e s e s  

correspond t o  t h e  s e t  of v a l i d  formulae guarantees  t h a t  t h e  



r e f l e c t i o n  of t h e  c o n s t a n t s  i n  t h e  l o g i c  matches t h e i r  

r e f l e c t i o n  i n  t h e  semant ics .  Both t h e  s y n t a c t i c  and semant ic  

i n t e r p r e t a t i o n s  of t h o s e  format ions  p ick  o u t  t h e  same l o g i c a l  

p r o p e r t i e s .  

2 )  Generat ing t h e  P r o p o s i t i o n a l  ~ a l c u l u s  (PC) and -. 

PC Semantics 

Turning from a ve ry  g e n e r a l  d e s c r i p t i o n  o f  l o g i c s  and 

systems t o  a  p a r t i c u l a r  case, t h e  p r o p o s i t i o n a l  c a l c u l u s  can 

be  gene ra t ed  by a p l u r a l i t y  of systems.  One system, PM ( f o r  

P r i n c i p i a  M a t h e m a t i ~ a ) ~ ,  c o n t a i n s  a s  a  language,  t h e  fo l lowing  

e lements  : 

AT a  set of a tomic formulae des igna t ed  by lower c a s e  -PM ' 

l e t t e r s  from t h e  middle p o r t i o n  of  t h e  a l p h a b e t  ( t h e  

p r o p o s i t i o n a l  l e t t e r s  p ,  q ,  r ,  e t c . ) .  Semant ica l ly  t hey  tend  

t o  be  t r e a t e d  a s  p r o p o s i t i o n s ,  i . e .  a s s igned  e x a c t l y  one of 

two d i s t i n c t  v a l u e s ,  t r u e  o r  f a l s e .  

K . a  s e t  o f  fo rmat ions  f u n c t i o n a l l y  complete w i t h  -PM ' 

r e s p e c t  t o  a  t r u t h - f u n c t i o n a l  i n t e r p r e t a t i o n .  The set  o f  

fo rmat ions  is complete i n  t h e  s ense  t h a t  a l l  t r u t h - f u n a t i o n s  

can be expressed i n  LpM. The two c o n s t a n t s  normal ly  

des igna ted  a s  p r i m i t i v e  a r e  nega t ion  (7 ) , r e a d  "not"  and 

d i s j u n c t i o n  (v )  , r e a d  "o r " .  

F p r e d i c t a b l y ,  t h e  c l o s u r e  o f  ATw under SM. -PM ' 

sM may be de f ined  r e c u r s i v e l y  a s  t h e  s m a l l e s t  set s a t i s f y i n g :  

F 1) g P M c K P M  2 )  \la, a C g p M = ~ a ~ - p M  



The s t anda rd  a d d i t i o n a l  l o g i c a l  terms a r e  d e f i n e d  i n  

terms of "4"  and "v" a s  fo l lows:  

Def. A :  a  i f f  ~ ( ~ a v ~ p )  I ' A "  i s  r ead  "and" - . -. 

Def. +: a+f3 i f f  l a  v  p "+I1 i s  r e a d  " i f . .  . t hen . .  . I 1  

Def. ++: a-p i f f  1( ~ ( 7 a v p ) v  . (,p v a ) )  "-" i s  read  

" . . . i f  and on ly  i f . . . "  

R and fipM --PM 

The PM t r ans fo rma t ion  r u l e s  a r e :  

1) Uniform S u b s t i t u t i o n  [US] 

For any complex format ion  a ,  i f a  i s  a  PM t h e s i s  and p 
i s  t h e  r e s u l t  of  s u b s t i t u t i o n  some member of  gpM f o r  every  

occur rence  of some p r o p o s i t i o n a l  l e t t e r  of  a ,  t h e n p  i s  

a l s o  a  t h e s i s .  

2 )  Modus Ponens [MP] 

I f  a  i s  a PM t h e s i s  and a  + p i s  a  PM t h e s i s ,  t h e n  p i s  

a  t h e s i s  of PM. 

A s  noted e a r l i e r  t h e r e  a r e  a l t e r n a t i v e  axiom b a s e s  f o r  

PC, each adequate  f o r  t h e  g e n e r a t i o n  of a l l  t a u t o l o g i e s .  

The , fo l lowing  base  is  a t r u n c a t i o n  of t h e  axiom set of  PM*: 



Semantics for PC 

- 
A PC model is a non-empty set U and a valuation -V. - 

The elements of U (designated by lower case letters from 

the end of the alphabet - u,v,w, etc.) may be thought of 
intuitively as points which eventually function in a PC 

model to make certain propositions true and certain 

propositions false. V associates with each PC atomic 

formula a set of points in U. The set of points assigned by 

V to some formula a in a model (in symbols v (a)% ) is 

the truth set of a in % (in symbols //ally) . V may be 

conceived either as a function from At -+ @(u) or from - 
At + 2'. In terms of the power set of U, Q (U) , V associates - - 

each atomic formula with some set of points in U. Considered 

exponentially, V associates each atomic formula with an 

element in the set of functions from U into 2, i.e. the - 
set {0,1}. Each formula is assigned a value 0 or 1 at each 

point in U. 

As there are an infinite number of ways of assigning 

formulae to points, there are an infinite number of PC 

models. There are no minimal restrictions on the sorts of 

constructible PC models except that U # $. In the simplest 

case U is a unit set {x] and a model, call itv*, gives 

to each atomic wff. the value 1 or 0 at x (and mention of 



11 

x can be suppressed) .  More complex models might be thought 

of a s  non-empty c o l l e c t i o n s  of models i n  t h i s  s imples t  sense.  

Every p o i n t  i n  a PC model i s  i t s e l f  a  model i n  t h e  s imples t  

sense.  

Truth condi t ions  f o r  a l l  PC formations a r e  def ined 

recurs ive ly  a s  fol lows:  

For any a and any 

w model , t h e  t r u t h  s e t  of a  i n  7 ( / / a l l  ) i s  def ined:  

Where U and fl des ignate  s e t  union and s e t  i n t e r s e c t i o n ,  

t r u t h  condi t ions  f o r  PC formations may be defined a s  fol lows:  

Theoremhood, PC D e r i v a b i l i t y  and Independence 

A formula a i s  a  theorem of a  l o g i c  L i f f  a i s  

de r ivab le  i n  L. A s  t h e  concept of d e r i v a b i l i t y  p lays  a 

c e n t r a l  r o l e  i n  what fo l lows,  it would be t imely t o  shed 

some l i g h t  on t h e  not ion  a t  t h i s  poin t .  Let  a s i g n i f y  
PC 



t h a t  a i s  de r ivab le  i n  PC.  a may be de r ivab le  from a  

s e t  of hypotheses,  Z , o r  it may be der ived  from t h e  

n u l l  s e t ,  + . D e r i v a b i l i t y  from a  s e t  Z of hypotheses 

is  defined a s  fol lows:  Z F a  i f f  t h e r e  i s  a  f i n i t e  sequence 
PC 

of wffs.  p l -  - such t h a t  a = p~ p N  and f o r  every p i :  1 < i < 
P i  i s  a  s u b s t i t u t i o n  ins tance  of a  PC axiom'or a  member 

of C o r  fol lows from two e a r l i e r  members of t h e  sequence 

by [MP]. I f  a  i s  an axiom, then  a i s  de r ivab le  from 

i t s e l f  o r  de r ivab le  s i m p l i c i t e r .  This  i s  represented  by 

s e t t i n g  Z = +  i . e .  4 k a  

Defined i n  t h i s  way t h e  not ion  of PC d e r i v a b i l i t y  has  

5 
i n  a d d i t i o n  t h e  fol lowing proper ty :  Z U { a ) b c p  - Z b c a  + p . 
This means t h a t  i f  p i s  d e r i v a b l e  from a  f i n i t e  sequence 

of wffs.  Z '  conta in ing  a then  a + p i s  d e r i v a b l e  i n  

t u r n  from 2 (where Z '  = z U {a}). 

The not ion  of d e r i v a b i l i t y  e n t e r s  i n t o  a  proof t h a t  

t h e  axiom s e t  of a  l o g i c  L i s  independent. I f  any 

formula a i s  de r ivab le  from a s e t  Z ,  /lZ/lcllall(ll~ll n l l p i l ~ * ( p i t C ) )  

Hence, t h e  proof t h a t  a i s  not  de r ivab le  from 2 i n  L i s  

t h e  proof t h a t  t h e r e  e x i s t s  some p o i n t  u  i n  a  model f o r  

L where PZ and #a . An axiom s e t  {Axl, AxZ, Ax3} 

of t h e  l o g i c  L then is  independent i f f :  



Soundness, Consistency and Completeness for PC 

A classical logic L is consistent if no formula of 

the form aA-ra is a theorem of L and sound if every 

L-theorem is valid. The notion of soundness is usually 

stronger than that of consistency, since if a iogic is . .. 

sound (all theorems are valid) it cannot contain an 

irlconsistent formula (a formula that is false at all points 

in all models) as a theorem. However, every consistent 

formula need not be valid so consistency does not guarantee 

soundness. This essay will be concerned with the stronger 

notion of soundness. The proof that a logic is sound, as 

noted earlier, is the proof that each axiom is valid and 

each transformation rule is validity preserving. Every 

derived theorem must be valid under these conditions. 

Recall that a logic is complete iff every formula valid 

in the semantics for the logic is a thesis of the logic. 

If a logic L is incomplete, then, some formula a will be 

valid (true at all points in all models) but not a theorem 

of L. a is valid iff l a  is false at all points in all 

L-models . a is not a theorem iff t a  is not L-inconsistent, 

i.e. ,a is L-consistent. If it can be shown that all 

consistent formulae of a logic are true at some point in 

a model, the logic is shown to be weakly complete. 



proving Soundness and Completeness for PC 

1) Soundness 

APC 

1) if (pvp) -, p is not valid 3u in some PC model: 

%f % 
2) if pvp, then p contrary to assumption, 

u 

3) therefore @vp) -+ p 

And similarly for axioms 2, 3 and 4. 

~odus Ponens: k a  -+ B and a  , then &B 

1) if a -+ B is PC valid, IlaIl I I P I I  - in all PC models, 

2) if a  is PC valid, then llall = U in all PC models, 

3) therefore l ( p I I  3 U in all PC models, i.e. l l p l l  = U - PC 

4) and p is therefore valid in PC. 

1 ? ,.> $2 
, , 

Uniyeial Substitution: 

Assume a  is valid. Form P from a  by substituting 

the wff. y for every occurrence of some atomic formula, 



say p in a . If p is not valid, 3u in some PC 

model: EP . We can create another PC model on U such 

that every propositional letter qi in a other than p: 

11 qi 1 1 ~ '  = 1 1  qi 118 and 11 p I/*' = 1 1  v /Ilk. In this case 

@'a , contrary to the hypothesis that a is PC valid. 
u 

2) Completeness 

Completeness proofs at present tend to follow a model 

provided by Leon   en kin^ utilizing the notion of a maximal 
consistent set. A set of formulae is consistent iff for any 

formula a in the set, 7a is not also in the set and 

maximal iff every wff. a not in the set is inconsistent 

with the set. A formula a is inconsistent with a set Z 

iff 2 v 12 ) k1 . Hence, there are a number of maximally 
L 

consistent sets (maxi-sets) constructible for every logic 

with negation since for every atomic formulae a there exists 

a wff. 7a , inconsistent with a but consistent in the 

logic and thus an element of another maxi-set. A formula a 

is consistent in a logic L iff ,a. 

Maxi-sets so constructed have a number of crucial 

properties. Every L-consistent set of wffs. will have a 

maximally consistent L-extension. L-inconsistent formulae 

will be in no maxi-set because they are L-inconsistent 

and hence consistent in no L-set. All L-theses will be in 

all L-maxi-sets since the only formulae inconsistent with 

L-theses are L-inconsistent formulae and these, as noted, 



are absent from all L-maxi-sets. Every non-thesis will be 

missing from at least one L-maxi-set (i.e. all those sets 

containing the negation of that non-thesis). If some wff. a 

is derivable from a set of wffs. C , every maximally 
consistent extension of Z will contain a . Otherwise, 

it must contain 7a (or fail to be maximal) and fail to be - -. 

consistent. 

Maxi-sets work in completeness proofs as points in the 

special PC model (U , V ) called the canonical model. 
PC PC 

What is special about this model is that its universe is 

the set of PC maxi-sets and its valuation assigns to each 

atomic formula a of PC the set of maxi-sets containing a. 

With this sort of model we can prove PC to be complete by 

showing that any PC consistent formula will be true at at 

least one point in U 
PC' 

If so, then there exists no PC 

consistent formula false at all points in all models and 

therefore no valid non-theorem of PC. 

Informally: if PC is not complete 3a : a is a non- 

theorem of PC, valid in PC semantics. 

1) If valid in PC semantics, then a is true at all 

points in all PC models, 

2) If a is true at all points in all PC models, 

7a is false at all points in all PC models, 

3) If a is a non-theorem of PC, 7a is consistent 

in PC, 



4 )  Take the canonical model <upC, vpC> where UpC = the 

set of all PC maxi-sets and VpC the function: AtpC - Z ~ ~ C ,  - 
5)  By 1) because <upCt vpC> is a PC model, Yu C UpC, 

2 € u, 

6) If 7a is PC consistent, ,a has a maximally consistent 

extension, i.e. 3x C UpC: 7a C x. By 5) a + x ,  therefore - -. 

a A 7a C x, 

7) But x is consistent by construction. Therefore 

PC is complete. 

Formally : 

TO prove PC completeness is to prove that the 

characterization of truth at a point in the canonical model 

extends to every PC wff. That is, we must prove that VpC 

(a function from AspC - 2 such that Ya C AtpC, Wu C U PC 

PPCa - a C u) extends to all PC formulae. This proof is 
u 
called the proof for the fundamental theorem and it goes by 

mathematical induction on the structure of PC wffs. beginning 

with *C: Ya C FpC, Wu C UpC, ~ P C  - a C u. 

1) [~t]: by definition of VpC, the theorem holds for 

all atomic wffs., 

2) [ I :  let a = ~ p ,  where f3 A P C  & q 3  a 7B C u 

a) Assume ,p p u. Therefore ,p is inconsistent with 

u and p C u because u is maximal. By the induction hypothesis 

w ,  +PCP, therefore #=pc7p contrary to the assumption, fk~. 
u 
Therefore 7p C U. 78 C u ~ P C T B  



a- % 
bl &P.c,p therefow ~ P C P  therefore by the induction u ' 

hypothesis P C u therefore 76 f u (u is consistent). 

- 
a) Assume pvy % u, then p f u and y f u. If p f u, -. 

5% 
then ~ P C B  by the induction hypothesis. If y f u, then 

4tf  % ~ P C ~  by the induction hypothesis and ~ P C B V ~ .  

b) Suppose f3vy 6 u therefore P C u or y C u (u is 

9n maximal) therefore by the induction hypothesis ~ P C $  or 

sh r)r 
/=Pc~ therefore kpvy. 
u 

Since all PC wffs. are reducible to wffs. of the form 

a ,  T a r  a v p  the fundamental theorem holds for all wffs. of 

PC and PC is complete. In this way, then, providing a 

semantics for a system can determine whether the logic 

generated by the system is sound and complete. 

3) Modal Logics 

A modal logic is a logic whose underlying language 

contains the constant " o n .  Each of the modal logics considered 

in this paper include PC. These logics, then, are not in 

any sense alternatives to PC but extensions of PC. A 

logic L '  is an extension of another logic L iff { a : b a )  
L 

c { a :  k , a } ,  L f  is said to include L if L t  is an extension - 



of L. 

PC was seen to be a logical theory capable of reflecting 

certain properties of "1" and "v" and the complex terms 

A 1 11*'1 
and "++" . As this interpretation is truth-functional 

7 in nature, PC is described as the theory of truth-functions . 
Modal constants are not truth-functional so a System - -. 

capable of generating a logic adequate to modal terms will 

have to undergo some alterations. 

The Generic Modal Formation l o '  

More than one species of modality has been identified. 

Familiar in this class are the alethic modalities (necessity, 

possibility and contingency), epistemic/doxastic modalities 

(knowledge and belief), deontic modalities (obligation, 

permission) and the temporal modalities (always, sometimes). 

This list is by no means exhaustive. To simplify proceedings, 

the operator ' 0 '  will be treated as a general modal formation, 

interpretable in any mode depending upon the system under 

study. The idea of using l o '  generically to represent a 

range of modal notions is a comparatively recent development 

in the history of modal logic. Seeing modality more 

generally has been of important heuristic advantage both to 

the study of specific modal concepts and to the study of 

mod.al logics as a discipline in itself. 

The business of providing natural language interpretations 

for modal concepts characterized in different logics is 



complicated. It appears doubtful, even at this late date, 

that any of the standard modal logics sit completely 

comfortably with interpretations proposed for them. Logicians 

should be continually cautioned against accepting too readily 

the suggestion that a particular logic reflects some everyday - 
notion in its entirety. Which modal logics go with whieh -. 

interpretations is an important and difficult question for 

the philosophically minded logician. 

Some Simple Modal Extensions of PC 

A simple modal logic can be constructed from PC by 

adding the modal rule of inference [RE] (the rule of 

extensionality) : (a - p) = (oa ++ up) , this is 
Segerberg's system E* and although, % = A , {a: ba)~{a: h a )  -PC 
Hence E contains PC. To take a trivial example, t- q (a+ ) t-m (,avp ) 

E 

which is not a PC thesis since o(a + p) is not a PC wff. 

Systems extending, in turn, from E are established 

by adding additional modal transformation rules and axioms. 

The other standard modal transformation rules are the Rule 

of Regularity [RR] , (a+p) ;. (oa+op) and the Rule of 

Necessitation [RN], F a  3 Foa. Two characteristic modal 
L L 

axioms are [D] koa -+ 7o7a and [KJ  t o  (anp)-+(oan.p). These L 

rules and axioms combine to generate additional logics as 

follows : 

Base + R + A - 
9 - - System 

E [ RRj C 



Segerberg has identified several other systems in 

addition to E, C and K' and an infinite class of logics 

10 weaker than K but stronger than C has been discovered . 
-. 

It is not clear which bits of English, if any, these latter 

logics can be taken to represent. 

4 )  Relational Semantics for Modal Logics 

The introduction of non-truth-functional formations 

creates a problem for a semantics that defines truth 

conditions only in terms of combinations of truth-values 

of atomic components. The task facing the modal semanticist 

is the construction of a semantic condition that will specify 

truth conditions for non-truth-functional formations and 

guarantee the validity of desired modal principles. 

Development in the semantics for modal logics received a 

major impetus from the works of Saul ~ r i ~ k e l l  and Jaakko 

~intikkal*. It is the work of these logicians which has 

focused attention upon the sequence of systems mentioned 

above since the Kripkean and Hintikkan approaches force 

us to accept the basic principles of these systems, EK], 
[RR 1 and [RN 1. 

Kripkefs-semantics utilize a notion of "possible 

worlds" which has historical precursors in ~eibnizl~ and 



wittgenstein14. For Leibniz, our world or (monad) , was the 

best of the many possible monads that God could have brought 

into existence. Leibniz uses the idea of "possible worlds" 

in this context to show that man has free will. Adam, 

according to Leibniz, did not have to sin because the monad 

in which Adam does not sin is a possible, thouGh not actual 

monad. That he did not sin is purely a contingent feature 

of this monad. Hence, Adam was not committed to sinning for 

any reasons of logic. 

Although Leibniz uses the notion of possible worlds in 

this way to support his doctrine of free will, it is rather 

curious to note that he did not make more of the connection 

between the ideas of presence in all, at least one, or 

absence from all possible monads and the ideas of "necessity", 

"contingency" and "self-contradiction". Necessary 

propositions were propositions with contradictory denials. 

Contingent propositions could be denied without contradiction. 

But Leibniz never exploited the ties between these ideas 

and the notion of truth or falsity in a class of possible 

worlds15. 

Wittgenstein, by contrast, although not using the 

notion of "possible worlds" per se to distinguish truths 
7 

of logic (tautologies) from truths of science (accidentally 

true propositions), did employ a similar notion in the 

Tractatus specifically to make this distinction. For 

Wittgenstein, a proposition determines a place in logical 



space (3.42). Tautologies leave all space to actuality. 

contradictions fill all logical space (4.463). Wittgenstein's 

notion of logical space or, more specifically, a set of places 

in logical space, correlates with the notion of "possible 

worlds". The whole of logical space could be regarded set - 
theoretically as the union of the set of possible world' - -  

contexts (i.e. points in a model prior to valuation). A 

place in logical space is a context which would verify a 

proposition if that context happened to be an element of 

the set of facts comprising the world (1.0). 

The notion of a possible world in Kripke/Hintikkaan 

semantics is indexical in character. That is, "possibility" 

is a two-place predicate capable of characterization in 

terms of the usual stock of relational properties, i.e. 

reflexivity, transitivity, etc. In specifying properties 

for this relation, as we shall see, different logics, and 

hence, different logical properties for modal constants, 

are specified. 

Kripke 

Kripke takes the set K of possible worlds and selects - 
an element G as the real world. Any set of possible worlds 

in - K is only possible relative to some index world (it may 
or may not beAG) if they stand in the relation R with 

that world. Given any two worlds HlRH2 (read H2 is possible 

relative to HI), every proposition true in H2 is possible 



in HI but not vice versa. Not every proposition possible 

in HI is true in HZ but true in some Ht such that HIRHt. 

If a is necessary in H a must be true in all worlds H t  1 ' 
such that HIRH1. 

The relation R can have many properties but it cannot 

fail to have reflexivity in Kripke's view. ~ a G h  world musk. 

be possible relative to itself since if some formula is true 

in a world it is at least possible in that world. Hence, each 

world must be possible relative to itself and R in all 

Kripke structures is reflexive. And this means, as we shall 

see, that the principle [TJ : op -t p is inescapable in Kripke 

semantics. In fact the weakest logic that can be modelled in 

a Kripke structure is the system T. 

More formally, a normal Kripke structure is a triple 

(G, 5,  - R )  where K - # 9 and G € K - and - R - c K ~ .  A model on a 

normal Kripke structure is the quadruple (G, - K, 5, cp) where 

cp : ( PxH} -t IT, F} . P is the set of atomic sub-formulae of 

a and H the set of elements of K. - That is, for every atomic 

sub-formula of a, cp (p, H) = T - or cp (P,  H) = F. <GI K t  'P) 

may be "extended" to all wffs. of PC by replacing P with a 

variable that ranges over all formulae of the system and 

defining T  or F conditions as follows: 

[cp~A: Vp  E At, - VHCK, - cp (p, H) = T or cp (p, H) = F 

[cp,] : cp (,p , H) = T iff cp (p , H) = F, otherwise 

cp ($3 , H) = F 

[cpvJ: cp(pvy, H) = T iff cp@, H )  = T o r  cp(y, H) = T  



The rules for "v", "+" I "-" are derived in the usual 

manner. q is defined: [qo]: ~ ( n p ,  H) = T iff t / ~ v  c K: 

HRH', q(p, HI) = T. 

a is true for Kripke if q(ar G) = T, false if q(a, G )  = F. 

A formula a is satisfiable if q(ar H )  = T for some H in at 

least one model and valid if q(a, H) = T for all H in all - - 
models. 

How R Works to Provide Semantics for Different Modal 
Sys tems 

Because the relation R defines the truth conditions for 

o, imposing conditions on R in certain cases affects the set 

of valid principles. In this way, the character of R alters 

which modal formulae will be theorems. The effect of imposing 

certain standard conditions, as the following diagrams show, 

is to add or delete elements to the set designated possible 

relative to a given index world. This means that certain 

formulae will hold in certain worlds under different R 

conditions. To preserve the connection with Kripke, we will 

identify the index world in each diagram as the world "G". 

In a Kripke structure, of course, there may be an 

infinite number of sets of possible worlds relative to a 

particular index world. GR1 is represented diagrammatically as: 



a )  1f R has no properties at all (and this structure 

would not be a Kripke structure because R is always reflexive), 

the set of alternatives to G = (1, 2, 31 and the total set of 

pairs in the R relation is ((G, 1 G 2 (G 3 , 1 4), 

(2, 5), (3, 6>1 = R. 

all relational models regardless of the imposed properties: 

Proof: 1) Assume LK] does not hold, cp(op, 6) = T, 

cp(oqt 6) = Tt cp(o(pAq)t 6) = F 

2) If a(op, 6) = T and ~ ( o q ,  6) = T, VH1: GRH', 

cp(p, H') = T and q(q, H') = T 

3) If cp (o(pAq), 6) = F, 3H1cK: GRH' and cp (p, H') = F 

or ~ ( q ~  H ' )  = F 

Which is inconsistent with 2), hence [K] must hold in 

all relational models. 



b )  I f  R i s  ref lexive,  s e c o n d u r n  K r i p k e ,  <G, ~ ) f  l3, 

<1, 1 ) c  5, ...... , (6,  6 )  f R  and [ T J :  o p  -p ,  holds:  

P r o o f  : 

1 )  If ~ ( o p ,  6)  = T ,  ~ ( p ,  6 )  = T  because <G, G ) C  R 
- 

H e n c e  t h e  w e a k e s t  l o g i c  m o d e l l a b l e  i n  K r i p k e ' s  s t r u c t u r e s  

i s  t h e  log ic  T .  

c )  I f  R i s  t r a n s i t i v e  on ly ,  t h e  set  of a l t e rna t ives  

t o G a l s o i n c l u d e s  ( 4 ,  5 ,  6 1 ,  i .e .  - R =  {(G, l), (G, 2 ) ,  

<G, 3). (G, 4 h  <G, 5), <G,  0, (1, 0, ( 2 ,  5>, (3 ,  6)1* 

[K] m u s t  hold. [T) f a i l s .  T h e  d i s t i n g u i s h i n g  f o r m u l a  of S 4 :  

u p  + o o p ,  holds:  

P r o o f :  

1 )  I f  cp ( o p t  G )  = T ,  V H ' :  GRH'  cp ( p ,  H I )  = T 

2 )  I•’ c p ( o o p ,  G )  = F ,  3 H ' :  GRHt  and cp ( u p ,  H I )  = F 

3 )  I f  c p ( o p ,  H ' )  = F ,  3 H " :  H ' R H '  and cp ( p ,  H w )  = F 

4 )  B u t  if R i s  t r a n s i t i v e  and GRH' and H I R H " ,  GRH" V H " :  

H 'RH" 

5 )  T h e r e f o r e ,  3 H " :  q ( p ,  H " )  = F a n d c p ( p ,  H " )  = T 

w h i c h  i s  not  possible.  

d )  If R  i s  s y m m e t r i c a l  t h e  B r o u w e r  f o r m u l a  holds:  

p +, o O p  and {0, 6 ) ,  ( 2 ,  6  ), <3, 6>, < 4 ,  I), <5 ,  2 ) ,  ( 6 ,  3)}c R 

1 )  I f  c p ( o O p ,  G )  = F ,  3 H ' :  GRH' a n d c p ( Q p ,  H I )  = F 

l a )  I f  cp ( Q p ,  H ' )  = F ,  v H " :  H t R H "  cp ( p ,  H " )  = E' 



21 If GRH'  and R is symmetrical, then H'RG, i.e. 

G c H" 

3 )    here fore cp (p, GI 0 F and cp (p, G) = T (by 

hypothesis) so kp -. o9p. 

el And finally if R is an equiyalence rehtion - -. 

(reflexive, transitive and symmetrical) the distinguishing 
- - 

formula of S5 is valid: Op -+ oOp 

1) If cp(o6p, G )  = F, then 3Hq : GRH' and cp(Op, HI) = F 

2) If cp(Op, H') = F,VH": HIRH", ~ ( p ,  HI1) = F 

3) If cp(Op, G) = T 1 3 ~ 1 1 1 :  GRH1* and ~ ( p ,  H"') = T  

4) But WH" ' : GRH" ' , H'RH" because R is equivalent. 

5) Therefore ~ ( p ,  H"') = F (by 2), which is impossible. 

Hence, [ 5 ]  holds under equivalence. 

Altering the R relation alters which worlds are possible 

relative to a given world and hence alters which modal 

formulae must be true in which worlds. Letting the 

shaded circles represent non-alternativeness to G, the 

spectacle in a simple visual representation looks as 

follows : 

1) No properties 



21 Ref lexiyity 

4 )  Symmetry 

5) With equi~alence each circle is connected to all 

other circles by f . Each circle is alternative to itself 

and no circle is shaded. 

Hintikka and g 

Hintikka adopted a similar approach with the notion of 

a ''special" model system ( g ) composed of configurations 

of model sets (u, y ,  etc.) and the alternativeness relation 

H on these configurations. Model sets in a system are to be 



construed intuitiyely as partial descriptions of states 

of affairs. They are partial in the sense that each model 

set in the system does not evaluate all atomic wffs. of 

the logic. Only those attomic wffs. relevant to the 

particular formation under semantic analysis are evaluated. - 
Hintikka differs from Kripke in dispensing with the notion-. 

of truth and a fortiori truth in the fixed world G in favour - 

of the notion of satisfiability. A formula is satisfiable 

in a model system 52 if it is imbeddable in a model set u 

where u +-51 and 51 is construed under the following conditions: 

k,]:YacA&aC+L1 iff 7 a J i r  

[CV]: (avp) c ~ c , Q i f f  a c  Qc.Dor$c @ €  P 

[CO] : oa c p a SZ iff 'du: PHUC 51 ,a c u 

The notion of the validity of a becomes the non- 

irnbeddability of the negation of ain any p € 5 1  . The 

familiar restrictions of reflexivity, symmetry, transitivity, 

etc. are placed on H alternativeness to create appropriate 

structures for T I  S4, S5, etc. Hintikka also notes that 

the effect of altering conditions on H-alternativeness can 

also be achieved by specifying direct conditions on model 

sets. For example, given C oabove, adding the condition 

C*o, oacpc52 iff a€p , specifies a condition parallel to 
reflexivity in Kripke structures. Conditions on model 

sets parallel to symmetry and transitivity are as follows: 



A Hintikkaan model structure, then, is a pair, (S, H) 

where 52 is a non-empty set and H a relation defined over 52. 

A model on(S2, H) is the triple(S, H, V) where V is a partial - 
function: {~t* x9) -* { St U) , which determines for eakh '. - 
relevant ( * )  atomic formula the value satisfiable, St or 

unsatisfiable U. That is, V ( a ,  C L )  = U or S. That Hintikkaan 

models do not evaluate all atomic wffs. for each $S does 

not represent an inadequacy in any respect. Descriptions 

of pf51 are partial but each can be made relevant to any 

complex wff. V (At) is extended to all members of F through - - 
satisfiability conditions for: 

A Set Theoretic Relational Structure 

Both Kripke and Hintikkaan structures can be seen as 

versions of a general relational structure (u, R) where 

U # 4 and R c u*, where LI2 is the cartesian product of U 

with itself. For any given point u € U, R identifies the 

set of ordered pairs (u, v)€ R or Iv: URV) . A model is a 

triple <U , R ,  v), where V: - At + 2U. V evaluates At, 7 ,  and - 
v as did the structures for PC semantics, ando as follows: 



%f 
[~o]: boa iff VU, v c U, uRy - ga 

u v 

This structure differs from Kripke in eliminating the 

notion of a fixed world G and relieving R of constant 

reflexivity, and from Hintikka in evaluating all members 

of At - at each point. But in the important semantic respects - . -. 
it is equivalent to both. > 

5) Neighborhood or Scott/Montague Semantics for Modal 

Logics 

Neighborhood models are constructed for modal logics 

by adding to PC semantics a feature that makes possible, 

in the same way that the relation R (or H) in relational 

semantics made possible, the specification of truth-conditions 

for non-truth-functional constants. As R (or H) associate 

with each object in the structure some collection of objects, 

the function N in neighborhood semantics associates with 

each object some collection of collections of objects. As 

collections of objects provide the meat of the truth 

conditions for 0 in Kripke and Hintikka, so the collections 

of collections of objects provide the truth conditions 

for in Scott/Montague semantics. 

The Neighborhood Function 

The neighborhood function N: U -c 2 (2U) associates each 

point with a collection of point-sets of U. The collection 



of point-sets for n is the cc 

for u. A neighborhood, then, 

dlection o f  neighborhoods 

is a single subset of U or 

one element of the power set of U, 6) (U) . The function N, 

although single valued, is not necessarily unique. For any 

two points in U say, u and Y ,  it is possible that the 
- 

collection of neighborhoods for u is the collection for-v.- 

A neighborhood in the collection for u may also be in the 

collection for v. That is, it is possible that a CNuflNx - 
for some ac U. -- 

Neighborhood Frames and Models 

The ordered pair <u, N) is called a neighborhood frame 

13). Value assignments on a neighborhood frame are specified 

in the usual manner by the function At -, 2U. The triple - - 
(u, N, V) is a model on the framep. The truth of a formulae 

II at a point in a model q is given by adopting the standard 
PC conditions for truth-functional constants and for o: 

[VD]: &a iff3a f N (u): a ={V:V C U  and #a) 
u - - 

or e o a  iff 3a c PJ (u) : 5 = Ilall f i  - 

A formula a receives the '0' operator at any point in 

the model just in case the truth set of a is an element of 

the collection of neighborhoods defined for that point. To 

be one element in a collection of neighborhoods is, of course, 

to be a neighborhood. 



?. 
A Simple Neighborhood Model 

Consider the simplified neighborhood model 3 ' below, 

values Nf(u), Nt(y) could be indicated by horizontal straight 

arrows from U to - 2 (29 

a is true in 'W1 ' at all points in Ut and the formula $ -t a 

is true at all points (since a is true at all points, -rR v a 

is true at all points). /\fill , i.e. {u ), c llall , i.e. { u, v ). 

The formula oa is true at u or v if and only if the function 

N' selects for u or v some element of 2 (2U) containing 

Ilall= {u, v) . In ' these elements include the sets 
numbered 3, 6, 8, 10, 11, 13, 14, 15. For the formula oat 

the sets 1, 5, 6, 7, 11, 12, 13, 15. Note thatop may be 

true at v without $ being true at v. If oa and op are true 

at u or V, then NV(u) or Nt (v) must contain 6, 11, 13, 15. 



If oa and TOP at u or Y then N ' (n) , N1 (y )  contain 3, 

8, 10, 14. And if oar op, at u but oa andnip at v, N1(u) 

contains 6, 11, 13, 15 and N1(v) contains 3, 8, 10, 14. If 

oa or oP at u or v, then N' (u) or N' (v) is the union of 

the sets satisfying on, a$, into {l, 3, 5, 6, 7, 8, 10, 

1 1  2 ,  3 4 5 And so on for oa+o$ and-ns+oa. - -. 

The effect of placing restrictions on N is illustrated 

in this simplified model by determining the set of possible 

values of N (u) and N (v) . Assume ofl holds at u. Now, if + a 

at all points in this model and if we restrict N' by closing 

it under supersets, then N' (v) must also contain as elements 

all supersets of Ile[l = {v). In M' the only superset of {v) 

is {u, v ). So, if closed under supersets, the possible 

values for N' (u) are limited to 6 1 1 3  5 N u  cannot 

select for any point in U where op holds an element in 2(2U) 

containing IlPll but not Ilall. As conditions on N are frame 

conditions, no matter what model is being considered, where 

N(u) is closed under supersets, [ R R ]  must also hold. The 

collection of neighborhoods cannot contain any set as an 

element without also containing its supersets. If some 

formula implies another at every point in every model in a 

class of frames closed under supersets, if the former is in 

the scope of o at a point, so must the latter. 

The simple model M' is actually a quasi-model since the 
\ 

valuation has not been made in a class of frames but over a 

range of possible classes of frames, each possibility 

b re, 



indicated by a different set of restrictions on N'. In 

addition to closure undez supersets, other standard conditions 

an frame functions required to yield the characteristic modal 

formulae noted earlier on Page 

Characteristic Formulae 

1 

[RE3 (Rule of Extensionality) 

(\-a++)=, (t-oa+-top 

[RNJ (Rule of Necessitation 

/--a =, t-oa 

[K] (i.n honor of Kripke) 

[D] (Deontic Rule) 

UP-+ 107 P 

20 are as follows: 

Frame Condition - 
-. 

N (u) closed under set incl. 

(the weaker condition N (u) # + 
validates [RN] if N(u) is closed 

under supersets) 

N(u) is closed under finite 

intersections 

'da, - b c U ,  -- 'due U, - a, bcN(u) - =, 

Validity in Neighborho~d Structures 

. A formula holds in a particular model if it is true at 

all points in that model. A formula is valid on a frame if 

the formula holds in every model on that frame. Further, a 



formula maX be yalid w e x  a clqss ~f frames if it is ~ a l i d  

on eyery frame in that class. Models in which particular 

formulae fail are known as counter-models for those 

formulae. A given formula may hold in a model but fail to 

hold in a frame or hold in a model and a frame but fail to - 
hold over a class of frames of which that frame is a member. 

> 

Where it holds in a frame it holds for all models on that 

frame. 

Soundness and Completeness in Neighborhood Frames 

As with PC, a proof that the axioms of a logic are valid 

and that the transformation rules #of the logic preserve 

validity in the class of frames for the logic, proves that 

the logic is sound. Similarly for completeness. With 

respect to a class of frames C and a logic L, if every 

formation valid in C is a thesis of L, then L is complete 

with respect tp C. The number of formations valid in a class 

of frames exhausts the number of possible theses for any logic 

with respect to those frames. 

As soundness proofs for modal logics do not differ 

significantly from the proof for PC soundness, the proof is 

omitted. Completeness proofs, however, are more complicated. 

First, because modal logics contain constants that PC does 

not, the initial step towards completeness requires a proof 

that the idea of truth at a point in the modal canonical 

model also holds for modal constants. In addition, a proof 



is required to show that the canonical Xxame constructed 

for the system is in the class of frames for the system. 

This proof consists in the demonstration that the canonical 

neighborhood function has the same properties as all 

neighborhood functions in frames of that class. - - -. 
f 

The Fundamental Theorem for all "~lassical"~~ Modal Logics 

The proof that the concept of truth at a point in the 

canonical model holds for all permitted formations of a modal 

logic is the proof that the fundamental theorem holds for 

all formations of that modal logic. It follows the PC 

proof with the addition of a fourth step, the proof for 

formulae of the form op. 

A canonical neighborhood model for a modal logic L is 

a triple {uL, NLl vL) where UL denotes the set of all 

L-maximal sets of formulae, NL the canonical neighborhood 

function from UL+ 2 (2UL) and VL the canonical valuation 

from A& + 2 . Let I a lL denote the set of maxi-sets in 

UL containing a N defines for each u UL the value: 

NL (u) = {5 : g &UL and for some wff. a, oa + u and 

a - = blL1 
The function VL assigns 

such that: 

each AtL to a set of maxi-sets - 

The fundamental theorem is the proof that for all wffs.: 



The proof is the sane fox 

to show that the theorem holds 

Proof: [vLJ set a - op 
t 

PC with the additional step 

for formulae of the form, op. 

where p is.atonic 

1) Assume ope-u, then by definition of N (u) : 1 1 C NL (u) . L- 

Assume then By the 

induction hypothesis I p I= 11 P  1 1  . By definition NL (u) , if 
a C NL(u), 3y:oy C u and a = l y l .  Thus [ P I =  1 ~ 1 .  Hence, - - 

Now we know that oy C u and we know that b~ " Y. If 

we had licence for the inference fromt-op+-ry to ~ o p t + o y  the 
L L 

proof would be complete for it would follow thatop . c  u. Now 

the one rule that is preserved in all semantics based on 

neighborhood frames is the rule of extensionality. Neighborhood 

semantics is founded on extensional set theory which holds that 

sets with the same members are identical. Equivalent formulae 

have identical truth sets. What holds with respect to the 

elements of the truth sets of one, by extensionality holds 

for the other. Hence, we have the licence for the inference 

and the fundamental theorem for "classical" modal logics 

(logics with [RE]) is proven. 

Suitability in Canonical Models 

In addition to proving the fundamental theorem for a 



logic with respect to a semantics, it is also necessary to 

show that the canonicql model is, indeed, a model in the class 

of frames for that logic. As noted on Page 36, classes of 

frames in neighborhood semantics are determined or defined 

by conditions obtaining for the function that structures 

frames in that class. What properties obtain Tor the fvnction -. 
f 

in a class of frames is determined in turn by the character 

of the relation that determines the truth conditions for q 

in models on those frames. This means, as we shall see in 

Chapter Three, that the relation in the canonical model 

must have the same properties as the relation in all models 

in that class of frames. Which is to say that the canonical 

model must be suitable. 

Relational Frames and Models 

There is a connection between the sets of alternatives 

in relational semantics and the collection of neighborhoods 

in Scott/Montague semantics. The connection, quite simply, 

is this: the neighborhood collection for any point is a 

superset of the alternative set for that point. The 

following illustration makes this clear. Let the simplified 

universe U = (u, v, w, x, y} 

Assume oa, op, o y  at u, v,  w 

. u. a, P Y  



In Kripke relational semantics, if op,oy at u, v, w 

the set of alternatives to u = {u, y, w) but not x and y 
5v 

because e 7 8 ,  y . In neighborhood semantics, - if oa,  

Now, n IIaIl f I lP l l  r Ilrll = t u ,  yt  wl a Ru 

Hence, a Scott/Montague semantics where the neighborhood 

collection is a filter (i.e. non-empty and closed under 

intersection and subsets), will validate formulae exactly 

like relational structures (without reflexivity). We can 

also define N (u) = {a: - uRx 5 a}. The points in fl N (u) are 

just the points which have every a true such that oa is 

true at u. Restricting N(u) in this way is just one way 

of interrelating neighborhood and relational semantics. 

Chapter Two will explore some other ways. 

Summary 

Chapter One has explored in a general way the nature 

of~logics, formal systems and semantics. It has been noted 

that there is a critical connection between the logical 

properties of the primitiye constants of a logic and the 



42 

eventual complexion of the logic itselz. A logic reflects 

the properties given its primitive constants by an 

interpretation. Whether a given axiomatic presentation 

succeeds in capturing a particular interpretation is 

determined by examining the theorem set produced. If the 

constant happens to be a term that operates in-a natural -. 
< 

language, the logic need only be compared with the ways in 

which the term actually operates in that language. We have 

also seen that semantics provides the logician with tools 

to evaluate the adequacy of a presentation from a formal 

point of view. Proving soundness and completeness for a 

system guarantees that that system's presentation meets the 

minimal formal requirements. 

It remains to Chapter Two to draw out more explicitly 

the relationship between semantics and philosophy. Philosophy, 

broadly conceived, is the business of conceptual analysis 

and the business of conceptual analysis is the business of 

stating as nearly as we can the truth conditions for sentences 

containing terms of philosophical interest. Providing a 

formal semantic interpretation for these concepts can 

generate formal systems by rendering certain generating 

principles (axioms and transformation rules) inescapable. 

Hence, semantics produces for philosophy one means of 

determining whether a particular piece of analysis is correct. 

We check the logic against the everyday use of the concept. 

Logics, in a syntactic sense, are generated by systems, and 



in a semantic sense by classes off structuxes. Semantics 

in turn are generated by representing a notion in a model. 

The advantage of Scott/Montague semantics over relational 

semantics is that philosophical intuitions about the 

meanings of words can be imposed directly onto a semantic - 
model. In relational semantics the R or H relation does -. 

9 

the formal job for a range of systems but the semantic 

structures themselves stand in need of philosophical 

elucidation and interpretation. How R's being reflexive or 

transitive relates to the T and S4 informal interpretations 

of is unclear. But as we shall see in Chapter Two, 

neighborhood semantics have direct and intuitive connections. 



CHAPTER TWO 

TERNARY FRAMES ON STRICT ORDERING RELATIONS: THEIR 

APPLICATIONS TO THE CONCEPT OF BELIEF AND COUNTERFACTUAL 

CONDITIONALS 
- 

f Chapter Two explores one specific Scott/Montague 

structure based on a ternary, strict ordering relation. 

This semantics has been proposed as a semantics for deontic 

1 logic . Here, its application to the concept of belief 

and counterfactual conditionals will be investigated. 

Chapter Three suggests some possible revisions to repair 

intuitive deficiencies for these interpretations and 

investigates the question of completeness proofs for some 

logics explored in this chapter. 

1) A Strict Ordering Relation -0-  

A strict ordering structure is an ordered pair <u, 0) 

where U is a non-empty set and 0 a function: U + 2 (u2 ) 

OU is transitive and irreflexive. The expression xoUy 

is read "x is ........ than y for u" where the " . . . . . . . . I t  

takes any transitive, irreflexive relation (better than, 

greater than, more than, etc.). The set 2 (u2) = (u*) . 
A model on an 0 structure is a triple U, 0, V , where V 

u is a function: At - -+ 2 . Truth conditions 

functional and formulae are as follows: 

for truth 



w 
: J : a iff g a  

u u 

The function @ (u) , in turn, is defined for 
d 

F point u C  U as { a c  U: Wx 'tC a, 3 y  c a and y ~ U x  - - - - 
alternative frame condition for q is defined in 

@ (u) as follows: u C  V(oa1 iff l lall c @ (u). 

each - -. . An 

terms of 

0-Structures as Generalized Relational Structures 

An 0-structure can be seen as a generalized Kripke 

structure in the following way: <u, P) is an 0-type structure 

iff U # pl and P: U + 2 (u~). A Kripke Structure is an 

0-type structure for N = 1. Each u c U is connected with 

a set of singletons in U (Kripke alternatives to u). 

That is, P assigns to each u C U a unary relation pU. A 

model on a Kripke 0-type structure evaluates q as follows: 
4 5% 
k o a  iff Vu, x C U, xpU = k a .  An 0-type structure is an 
0-structure proper when N = 2, i. e. the pair (u, P), where 

1 

Rules of Inference in 0-Structures 

Since the truth conditions in an 0-model for " - "  and 

" A "  are the standard conditions for these operators in the 

PC semantics examined earlier, proofs that modus ponens 



and uniform substitution preserye validity are omitted. 
f 

A proof for the rule o f  extensionality is also omitted 

since all logics on Scott/Montague semantics are obedient 

to [RE]. Proofs for the rule of necessity and the rule of 

regularity are as follows: 
- - -. 

Q [ R N J :  1-a /-ma 

11 
pll 

~f F a  andboa, then for all U C U , ~ ~  and for 
I * 

some u c u k o a  

% 2) ,/$oa iff 3x: e a  , Vy : ,$a and , yOux 

4) Therefore ,3x: g a  , - a fortiori , (3x:& , Vy: 
p a  and ,,,y~ux) contrary to 2). 
Y 

4) @ (u) is closed under supersets: Ya - € @ (u) , 

I 

5% * 
I 6) Therefore pop u whenever koa, contrary to 1. 



0-stxuctures, then vexify the standard K rules of 

inference, [RE], [ R F ~  and [RN]. 

Theorems in 0-Structures 

The formula [con] holds in 0-struct;res with-the. 
-? 

truth conditions for provided. The formulae 1 (the false) - 

is equivalent to any formula of the form, aA~a, i.e. 

5% 
1) If 7 0 1  is false, for some u C U, k o l  

I t  3 ~ & .  and yoUx 
Y 

% 9 therefore _3y 1 , a fortiori , (vx: - 
m $1 , 3 y :  $1 and y~Ux) inconsistent with 3) 

However, the formula [D] fails: op -+ p 

5% # 
2)  If kl(7o7p) then ~ W P  and Vy c IIpIl, 3x f llpil 

u 

and. xoUy 

1) and 2 )  are inconsistent if finiteness conditions 

are placed on points in 11 all and 11 ,all. If these sets 



are infinite it is quite possible that for every point x 

in ll,all there exists a point y in ilall such that y ~ U x  

and for every point y in 11 a\/ there exists some x in 11 ,all 
such that xoUy. If finiteness conditions are imposed and 

Vx ( a, _zoUx and 707U. Hence [D] holds if finiteness - 
conditions are imposed. 

[K] fails where a, b,c o (u) and a fl b = p .  If - - - - 
a fl b = p3, 73y ( a fl b and lyoUx for all x c  (a n b)'. - - - - - - 
IKJ, is also restored if finiteness conditions on points in 
u because the possibility of disjunct sets is ruled out. 

Placing an appropriate restriction on oU also preserves 

[D] and [ K J ,  avoiding the model condition restriction on 

2 points in all models . Before considering other formulae 

it will assist the enterprise in the long run to simplify 

the proof technique for modal formulae of a certain type. 

Proof Technique 

Because @ (u) is closed under supersets , some formula 
a's occurring in the scope of o in the antecedent guarantees 

that Vp: IIPll 5 llallt ~ $ 0  When the o appears both in the 

antecedent and consequent positions in some formulae y, 

y is a theorem if the formulae within the scope of the 

occurrences of q in y are in the appropriate set theoretic 

relation, i.e. Va, V$ llall 5 llPll = (oa -+ o$>. Moreover, 



t h i s  i s  a l s o  a  necessary condi t ion  i E  oa 4 op s i n c e  i f  

11 P 11 2 11 all 08  may not  obta in .  Hence Va, p oa 4 op 

These p r o p e r t i e s  y i e l d  a  proof technique i n  t h e  following 

way : -. - -. 
J - 

1) I f  we assume t h e  antecedent  of a  cond i t iona l  t o  be ... 

t r u e  where t h e  antecedent conta ins  some formula a i n  t h e  

cope of a  modal opera to r ,  c e r t a i n  r e s u l t s  w i l l  fol low f o r  

Vx E I t a l l  and 3y E I)all. 

2 )  I f  some formulae p i n  t h e  consequent i s  i n  t h e  

appropr ia te  r e l a t i o n  t o  a t  i . e .  l l ~ a l l  2 117PIl and 

M L M og w i l l  hold where oa holds.  

3 )  Use a Venn diagram numbered accordingly f o r  

two o r  t h r e e  formulae a s  fol lows t o  p l o t  llali and l l P l l  . 

2 formulae 

4 )  If b l l  t I IP I I  ~ ~ 7 a ~ ~  II7PII s a t i s f y  t h e  

appropr ia te  schema, 1-oa 4 op. I n  each case  t h e  t r u t h  s e t  

of t h e  negated formula i n  t h e  scope of q ( i . e .  11 -rail ) w i l l  

be l i s t e d  f i r s t .  The t r u t h  s e t  of t h e  formula i t s e l f  w i l l  

be. l i s t e d  second. 



Consequent : ( 3 1  t 1 , 2 , 4 1  

Converse : 3 c 

Consequent: t l 1  t 2 , 3 , 4 1  

Schema : F-l 
Required Schema: L 
Converse : 3 c 

(p + q) -t o (7 q -+ 7 p) (Transposition) 

Antecedent: i l l  % 3 , 4 1  

Consequent: t 11 1 2 , 3 , 4 l  
P q 

Schema : 

Required-Schema: 

Conyerse: 



o(p -+ (qrr)) -+ oCp + q )  

Antecedent: i l l  ~ 2 , 3 , 4 , 5 f 6 f 7 , 8 }  

Consequent: { 1 , 5 1  i 2 , 3 , 4 , 6 , 7 , 8 1  
P r 

Schema : 

Required Schema: 

Converse : 

'Jp ' 0 (pvq) 

Antecedent: 

Consequent: 

Schema : 

Required Schema: 

Conyerse: 3 c 

{ 1 , 5 }  ~ 2 , 3 , 4 , 6 , 7 , 8 )  
Antecedent: { 3 , 7 1  ~ 1 , 2 , 4 , 5 , 6 , 8 ~  

U = i 1 , 3 , 5 , 7 }  ~ 1 , 2 , 3 , 4 t 5 t 6 , 7 t 8 ~  
Consequent : { 1 , 2 }  ~ 3 , 4 , 5 , 6 , 7 , 8 )  

Required Schema: - c - 3 

Conyexse: - 3 



Required Schema : c - 

Converse : 3 

Summary - Core Theorems 
Rules/Theorems 

L-REI, LRRL [RNJ 
[con], [K Converse J 

Non-Theorems 

O(P -+ q) -+ a(-q -+ 7p) (0 
transposition) 

Because this logic contains the usual rules of inference 

and the distinctive theorem [con] it has been called U.Con. 

Note that U.Con becomes the logic KD when appropriate 

finiteness conditions are added. 



2) l o 1  as Obligation in 0-Structures 

The key to interpreting '0' is obligation in 0-structures 

lies in the principle of utility which, stated coarsely, 

deems an act good if its advantages outweight its 

3 disadvantages . On this view, the moral agent-; in determining - 
C 

whether a given act is obligatory, is conceived as being 

confronted by a number of different possible states of 

affairs, any of which he may bring about by some or other 

action. To bring about a state of affairs by a specific 

action is in the same stroke to refrain from bringing 

about certain other possible states of affairs. A particular 

-act is obligatory according to this thesis if for every way 

in which the agent may refrain from performing the action 

there exists some way of performing it which will make 

the world a better place. Better worlds are those with 

greater or more numerous advantages or slighter or less 

numerous disadvantages. The judgements made then, on this 

view, are judgements about the comparative advantages and 

disadvantages to be realized as consequences of acting or 

failing to act in a particular way. 

This view is reflected in models on 0-structures in 

the following way: 11 represents all non-contradictory 

ways in which the agent may refxain fxom performing a 

while, llall , represents the set of ways in which a may 

be performed. The structure is a relativistic one, each 

point having associated with it a peculiar ordering of 



points in the universe. yBUx is read " y  is better for u 

than x". B~ as required, is transitive and Ixreflexive. 

What makes some point better than another is either the 

comparatively greater advantages at the one or the 

comparatively fewer disadvantages associated with the other. 

Two points in this account require clarification. - -. 
f 

First, the notion of I1ways of performing an action". Carnapts 

idea of a state description elucidates the notion considerably. 

The ways of performing some act $ correspond to all those 

possible states whose description contain some description 

which entails that some minimal description of q obtains. 

Each element in the set of possibilities represents one way 

of performing $ . A person's stooping on one knee at most 

six inches from the Queen for instance, entails his 

'stooping before the Queen at least as far as every infinite 

part of every other inch between him and the Queen. Hence, 

corresponding to any way of performing 9 there will be an 

infinite set of possible state descriptions containing a $ 

description, each of which may pick out a different way of 

performing $ . 
Secondly, it is safe to assume on this account that if 

an individual correctly determines that every possible way 

of avoiding an action cxeates less good than some 

performance of the action, that individual ought to perform 

that action. .Whether we may make the further assumption 

that moral individuals are as moral as they can be if their 



private determinations, yiyen their native imagination, 

intellectual capacity and the evidential grounds available 

to them, are as correct as they can be under the circumstances, 

i s  not clear from the text. The text professes no interest 

in extending deontic characterizations of acts to agents. 
- - -. 
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Obligation and the Core Theorems 

As noted above, without finiteness conditions on 

0-structures, [con] is retained as a thesis but [K] and 

[DJ do not hold. [con] represents the uncontroversial 

principle that contradictory acts are never obligatory. 

If they were, of course, no agent could discharge his moral 

duty. No person could be thoroughly good. [D], op + ~ o - ~ p ,  

on the other hand, means that it is false that some act and 

its contradictory are both obligatory ( T  (op~o~p) ) and this 

simply does not square with the deontic facts of life. 

Moral dilemmas are constructed of just such stuff. In 

defence of [ D  it might be argued that it is a sine non - - 
of a perfect moral code (or at least a perfectly comfortable 

moral code) that if one out to do p, then it follows that 

one out not perform not-p. Indeed, just this view represents 

4 Sir David Ross' conception of morality . It is the task 

of the philosopher, on Ross' view, to sort out prima facie 

contradictory obligations. All such obligations are only 

prima facie 

in attitude 

on Ross' view. It is a measure of the change 

towards the nature of moral codes and morality 



that CDJ is no longer ,regaded as an unassailable moral 

principle. When obligations are inextricably baund up 

with the religious sanctions of omniscient, mi-benevolent 

gods, the motivation to preserve [Dl as a principle is 

considerably stronger. After all, a god who mnted his 
-. 

subjects in heaven shouldn't even allow the possibility of 

irresoluble moral dilemmas. Construed as guides to social 

harmony that have evolved over centuries of human experience, 

moral codes that do not preclude dilemmas are quite 

understandable. Constructed by comparatively weak-minded, 

muddling individuals with limited experience, it is not 

surprising that not a11 possibilities are clearly envisioned 

in formulating a particular code, Moral conflicts are a 

fact of life. It is a measure of the strength of [K] as 

a principle of deontic logic that it collapses the distinction 

between these enormously different formulae. [con] with an 

aggregation principle as strong as [KJ gives [DJ as a 
principle and [DJ as we have seen, is too strong according 

to current views of the nature of morality and moral codes. 

The only other formulae that might seem strange on 

first deontic reading is o ~ p  -+ o(p +q). However, if " -+ " 

is replaced with "v" and " 7 " ,  the formulae correctly suggests 

that if 7p is obligatory then either 7p or q is obligatory. 

The core theorems off 0-structures, then, are compatible 

with a deontic interpretation of 0, w e n  without finiteness 

conditions. 



3) C, as Justified Belief 

The inspiration for the characterization of belief to 

follow derives from Quine s well-known fabric metaphor5. 

Quine sees the scientist and the layman at par in their 

struggle to come to terms with sense informatiqn, differing 
-. 

only with respect to the relative conceptual sophistication 

and self-conscious attitude characteristic of the scientist 

but not the layman. The "scientific" principles of predictive 

power, conformity to observation, simplicity, consistency 

and familiarity of principle guiding the scientist in theory 

construction are the principles lurking behind the layman's 

dealing with his own "surface irritationv. Quine sees the 

whole of human epistemology as a subtly inter-connected 

collection of theories and beliefs, changing from moment 

to moment as new bits of "irritation" create pressures for 

refinement and alteration within the fabric. New theories 

and revisions are woven into the fabric as they demonstrate 

conformity to the "scientific" principles noted above. 

Dominating the fabric is a criterion of consistency which, 

although indulgent of temporary violations, insists upon 

the ultimate amelioration of intertheory and theory/data 

con•’ lict. 

A Species of Belief 

To say that an indiyidual believes something in the 

sense suggested by Quine's metaphor is to say that a certain 



sort of connection between the object of belief and that 

individual's epistemology hqs been made. An individual 

epistemology, in the sense employed here, is a body of 

beliefs reflecting some internal organization. The organizing 

principles are expressed in terms that can be understood 

only against the background of other beliefs c6mprising. -. 
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the individual's epistemology. Personal beliefs and theories 

are constructed in the shadow of private epistemologies and 

reflect the experience, tacit "theory", and logical and 

mathematical vicissitudes of individual believers. New 

candidates for belief are evaluated and admitted if they 

engage and reinforce the existing pattern of beliefs 

satisfactorily. What one accepts, another rejects and both 

may be justified in doing so given the unique complexion 

of their epistemologies. Propositions worthy of some 

individual's belief, on this view, are doxastically 

comfortable to him. They fit in with and reinforce in 

their own way, that individual's epistemology. 

Believable Propositions 

The connection between 0-structures and the sense of 

belief suggested by Quine's metaphor can be brought out in 

the following way. The doxastic agent is depicted as 

choosing between various candidates with respect to the 

degree of doxastic comfort conferred, given the information 

available to him at the time. To determine comparative 



degree of comfort, the agent considers the class of worlds in 

which he imagines a to be false with the cl9ss of worlds in 

which he imagines a to be true. As there are an infinite 

number of propositions true at each world, it is assumed that 

the individual attends only to some relevant subset of 

formulae when making his comparative judgement-between worlds. 
-. 

-i 

If, for every case in which a is imagined to fail, there 

exists a case in which a is hypothesized to hold and it is 

the case that the case where a holds is more comfortable on 

the grounds available to the agent at the time, the agent 

is justified in believing a, otherwise not. To be more 

doxastically comfortable is to be more acceptable or more 

likely (to be true) to the agent on the epistemic grounds 

available to him at the time. 

Ways in Which Propositions may be False 

If some proposition a is false, la is true. The 

contradictory of any proposition a6 is given by the 

disjunction of the set of contraries of a. If 7a is true 

at a point, then some p contrary to a is true at that point. 

Hence, an agent's sorting through cases where ,a is 

imagined to hold is equivalent to his sorting through cases 

where some a-contrary holds. Exhausting every contrary 

in.the range exhausts the range. Determining that a, on 

balance, is more likely true or more doxastically comfortable 

than ,ar is the determination that no worlds containing an 



a-contrary are m w e  likely or doxastically comfortable than 

some world containing a on the epistemic grounds available 

at the time. 

Justified Beliefs and Scientific Hypotheses 

The status of justified belief on the proposed analysis , 

is like the status of hypotheses in scientific discourse. 

Philosophers of science distinguish, if somewhat vaguely, 

between hypotheses of a highly "theoretical" nature and 

hypotheses of the nature of "experimental lawsnt7. Experimental 

laws state relationships between observable characteristics 
lu 

of some subject matter. Hypotheses of this nature are 

constructed as non-demonstrative (i.e. inductive or 

non-deductive) inferences from sets of observation statements. 

Observation statements tend either to support or discredit 

certain hypotheses accordingly as they increase or 

decrease the probability of the hypotheses in question. A 

hypothesis is more probable as its truth is made more likely. 

The measure of probability in the case of experimental 

laws is usually statistical in nature, i.e. the ratio of the 

number of confirming instances to the number of disconfirming 

instances. 

Hypotheses of a highly "theoreticqlV nature, on the 

other hand, da not state relationships between observable 

traits of some subject matter and do not draw their worldly 

support in any narrow statistical sense. These sorts of 



hypotheses (like statements about the molecular constitution 

of mattera) contain fundamental concepts that are utilized 

and retained so long as they prove useful in helping science 

come to terms with sense experience. These fundamental 

notions provide character to sense experience and for this 

reason are liable to modification at the hand bf recalcitrant -. 
7 

sense experience, i.e. experience that is stubbornly 

inconsistent with the theory. Theoretical statements thus 

interact in a very intimate way with the "facts', deriving 

their probability not in the narrow statistical sense of 

"experimental" statements, but in a wider sense which counts 

them as increasingly likely as they prove increasingly (or 

at least steadfastly) useful to science. Hence, although 

theoretical and experimental hypotheses may both be thought 

of as probable in a wide sense of being supported by, (or 

made more likely by) the pattern of worldly events, each 

passes the test of probability in a different way. 

And so it is with justified beliefs. They may be of 

the nature of "experimental laws", susceptible to statistics 

in the same way as experimental laws. My belief that my 

dog is suffering some internal disorder is a case in point. 

Or they may be deeper in nature, functioning as organizing 

principles in an epistemology. Some religious beliefs, I 

presume, are cases of this sort. 

The rigour with which the agent pursues his hypothesis 

is a function of the character of the agent, his inclinations 



at the time and the circumstqnces, As more and more experience 

is brought to bear on a hypothesis over a period of time, 

confidence grows and the putative belief becomes more deeply 

entrenched in the agent's personal fabric. To repeat what 

Quine' s metaphor suggests, justified beliefs are intimately - 
connected with the network of beliefs of their proprietors, 
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An 0-Structure for Belief 

An 0-structure for belief remains an ordered pair 

(u, C) where U is a non-empty set and C a function from 

U into which determines for each point u c U a 

transitive and irreflexive relation cU. The expression 

xcUy is read "x is more comfortable than y on the evidence 

available at v" where comfort is to be taken in a wide sense 

to mean "more likely in a doxastic context". 

This logic of belief will be indexed to individuals 

since the truth conditions for the operator are formulated 

in terms of subjective assignments. However, the logic 

will hold for all individuals so reference to particular 

individuals will be suppressed throughout. 

Core Theorems and Justified Belie$ 

In determining what theorems and inference rules are 

suitable it is important to remember that we are dealing 

with a special sense of belief. Some formulae acceptable 

in this limited sense will not be true of belief in its 



I widest sense. In developing any logic for belief a tension 

arises in trying to preserve certain opaque features of 

belief and to haye at least some formulae holding as theorems. 

Interpreted doxastically, the weakest modal logic E 

(containing only the nodal rule of inference [RE]), commits 

an individual to believing every proposition pzoved equivalent 
-. 

5 
to each proposition he does believe. An operator is opaque 

if it creates contexts which do not always permit the 

intersubstitution of co-designative terms, salva veritate. 

Hence, if o is an opaque operator, there exists some 

proposition a identical to some other proposition $ except 

that a contains a term a* where p contains a term P *  and 

a* and p* are co-designative and oa%op or og 74 oa. 

Hence, [RE] must fail in this case because it fails for a 

and p .  Hence, where q is opaque, the weakest rule of 

inference and the weakest classical logic is ruled out. 

There does not seem to be much hope, therefore, for a modal 

logic for an opaque concept of belief. 

However, there are two approaches that we can try to force 

some middle ground and provide q with opacity and allow at 

least some inference rules. The first yields an inference 

rule weaker than [RE] and requires additional assumptions 

about the beliefs that people hold. The second requires 

reading q in a way that frees the term from "existential 

importn. 

First, the question of additional beliefs. In an 

interpretation of belief that pays the fullest due to 



opacity, one is aware off his beliefs in the sense that 

protesting honestly that he does not believe p when he 

admits to believing a (where a -+ P )  means that he does not 

in fact believe P .  Where q is transparent, of course, 

he believes p despite his heartfelt protestations to the 

contrary. Now, we can create a weaker RE -1iKe rule -. 
v 

that provides a middle ground by including an additional .. 

assumption: namely, that our agent also believes (in the 

wide sense of belief, i.e. not necessarily justified) that 

a- p .  Using a to indicate the wide sense of belief, the 

new r~~]-like principle is stated: ( a - p ) = b  (8 (a-p) + 

(oa-up> 1.  

This suggests more mildly that if a is proved equivalent 

to and - a believes that a is equivalent to p ,  then - a - - 
justifiably believes a iff he justifiably believes p .  

Imposing the second conjunct in the antecedent provides 

an important link between a and p and - a's doxology. It - 
is this sort of link that is alleged to be missing in 

arguments supporting the opaque nature of the concept of 

belief. Arthur may believe that Venus is the morning star 

but disbelieve that the evening star is the morning star 

precisely because he is not acquainted with the vital 

information that "Venus" and "the evening star" are 

co-designative. But provide that information and give a 

reasonable degree of rationality to Arthur and his rejecting 

the identity assertion becomes another matter. 



[RNJ and [RRJ, of couxse, axe also too strong for 

similar reasons. [ R N ~  commits every individual to believing 

every PC theorem and [RRI commits individuals to believing 
all logical consequences of propositions they do believe. 

Certainly a belief that a theorem of PC is true is justifiable 
- 

for any PC theorem but this does not mean that everyone- -. 
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believes all PC theorems, even in the narrow sense of belief 

at issue. What does follow is that if any individual 

believes a PC theorem in the wide sense, then his belief 

will be justifiable. Using IA once again to indicate the 

wide sense of belief, the r~~j-like principle is 

F a  - F ( P P * ~  -+ ma).' [RRJ is too strong for exactly the same 

reasons that [RE] is too strong. A weaker [RRI-like principle 

that is acceptable is t(a -r $ ) *  I- ( B ( a  -+ $ )  -+ ( o a  + o p )  ) . 
All three inference rules, then, are too strong for justified 

belief because they commit individuals to beliefs they might 

not have but all three can be weakened in one way by making 

additional assumptions about what else agents believe in 

the wide sense of belief. 

The second approach yields  RE^, [RRJ and [RN] and 

involves reading formulae of the form o a  in a conditional 

rather than the customary existential mode. Normally, oa , 
where oa represents the sense of "justified belief" 

elaborated here (and reference to individuals is suppressed), 

reads "a - - believes (justifiably) that a". This reading 

clearly entails the existence of some a  believed by a. - - 



Howeyer, i f  we interpret o conditionally, commitment to 

existing a's belieyed by a evaporate, i.e. read as Itif a - - - - 
believed a, 5 would be justified in believing a" or, using - 
just the modal term "would" without the "if.. ..thenn clause, 

"a's - belief in a would be justified". [RE], [RR] and [FW] - 
then become: 

f 

1) [RE] if a is proved equivalent to P .  Then if a's - - 
belief in a would be justified, a's belief in P would be - - 
justified and vice versa. 

2) [RNJ if a is a thesis, then a's belief in a would - - 
be justified. 

3) [RRJ if a -t P then if a's belief in a would be - - 
justified, a's belief in P would be justified. - - 

Changing our way of talking with 0 ,  though grammatically 

awkward, frees o from committing agents to beliefs they might 

not have. Using the modal "would", oa allows us to say 

about certain propositions, precisely because of the 

character of their truth conditions, that they are bound to 

be believed justifiably if they are believed at all. Hence, 

with these modifications,  RE 1, [RNI] and ~RR] though obviously 

false of belief in the widest sense, are at least defensible 

with justified belief. 



In some respects [con] is desirable as a principle 

of justified belief since, nomatter what contradiction is 

at issue, belief in that contradiction cannot be justified. 

Any consistent formula holds a better chance of being true 
-. 

than any formula of the form aA7a . The presence of [con] 
- .  

does not mean that people, in the wide sense of belief 

cannot belieye contradictory propositions. It suggests 

the weaker condition that if they do, their belief cannot be 

justified in the sense specified. However, even this weaker 

condition idealizes the nature of believers. It gives people 

too much credit with respect to their capacity to pick out 

logical fissures in propositions they believe. 

The failure of [K) and [DJ surprisingly, is compatible 

with justified belief. If a logic of belief is to recognize 

the distinction between believing a contradictory 

proposition o(a~ta) and having inconsistent beliefs, 

oaAo7a, [K] or its converse must fail. There is no question 

that people can have justifiable beliefs that are inconsistent. 

Most people have experienced the misfortune of having exactly 

this fact pointed out to them at some time in the heat of 

argument. Howeyer, from having inconsistent beliefs it 

does not follow that one belieyes a contradictory proposition. 

Showing that an individual who believes a and believes la 

is in fact believing two propositions which are inconsistent, 

is usually sufficient to show that his position must be 



abandoned. Quite clearly, if h;is belieying a and believing 

,a meant that he belieyed aA7a , showing that he does 
belieye would not cause him to abandon his position. 

After all, his opponent would be merely pointing out 

something that he already believes. But in no case is it - 
7 

true that he believes the contradiction just because hik " 

beliefs are not consistent. Put another way, if belief 

in two propositions is individually justifiable, it does 

not follow that belief in the propositions conjoined is 

justifiable. [con] insists that inconsistent conjunctions 

cannot be believed with justification. 

The failure of [D] gives individuals the liberty of 

holding inconsistent beliefs. The question to be addressed 

is, how can belief in a and belief in 7a  at the same time 

ever be justified? The answer lies in the subjective nature 

of probability assignments. People can, and do, make 

mistakes and fail to see logical connections between beliefs. 

For any two propositions a and P where (3 -, la, that (3 -+ 7a 

may not be obvious on first or even second or third reading. 

The grounds for defending the dismissal of [K] centered on 

admitting formulae of the form oaAo~a. The loss of [bl 

goes hand in hand with the loss of [KJ and the presence o f  

[con]. In any consistent logic, if [con] obtains then [K] 

obtains iff [DJ obtains. [D) eliminates formulae of the 

form oaAo-ra which, with [KJ, yield o(aA1a) which is 

inconsistent with [con]. 



The other core Zormulae bear up well under interpretation 

of as justified belief if we replace conditionals in the 

scope of modal operators with and "v". The only oddity 

is the absence of transitivity. In the wide sense of belief 

we would not want transitivity but in the narrow sense - - -. 
9 the presence of transitivity does seem to be in keeping 

with the rather ideal nature of believers dictated by the 

extensional character of the semantics. The semantic structure 

idealizes utility and probability judgements of individuals 

as the syntax idealizes the agent's system of beliefs and 

moral judgements. Transitivity nevertheless does fail but 

its loss does not seem serious for a logic of justified belief. 

Other Formulae 

The case for the failure of o to distribute through 

disjunction interprets well for belief. Interpreting 

alethically, a disjunction's being necessarily true does not 

entail either one disjunct or the other's being necessarily 

true. Disjoining any contingent proposition and its negation 

always produces a necessarily true complex proposition. 

Interpreted deontically two acts, neither of which is 

independently obligatory can "disjoin" to become obligatory. 

For example, it is not obligatory for any individual not to 

borrow a book.from a library nor is it obligatory for any 

individual to return a book to a library or pay a fine. 

However, it is obligatory that if one borrows a book, one 



returns the book ox pays the zine1O. Using dex. "+" on 

the last statement, it is obligqtoxy that one does not 

borrow a book or one returns a book or pays a fine. Hence, 

deontlc operators align with alethic operators with respect 

to distribution through disjunction. - 
The case of belief aligns with these operators since -- 
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for some girl Cindy unknown to our agent, our agent is -. 

bound (by ~ R N J )  to believe the complex proposition "Cindy 

has red hair or Cindy does not have red hair" without believing 

either that Cindy has red hair or that Cindy does not have 

red hair. o(pvq)+ o p ~  oq is not valid in 0-structures: 

Proof: 

3 )  It is quite possible that Vy c / l p l l  , zcUy and 

Vw c (Jq(J, z'cUw providing that finiteness conditions are 

not imposed, 

4) Therefore 7opA ~ o q  is not inconsistent with the 

assumption. 

The con~erse, opyoq + o(pvq) does hold by [RR]. 



With the converse of L K ~  the qlethic, deontic and 

doxastic operators are alike in that a necessary condition of 

a conjunction's being necessary, obligatory or believable 

is that at least each conjunct be necessary, obligatory or 

believable. If only one is, the other might be impossible, 

forbidden or unbelievable and hence preclude the conjunations 
7 - 

being necessary, obligatory or believable. . -. 

11 In keeping with the non-factiye character of belief , 
the characteristic fomula of the systems T and S4 are 

undesirable. The [TI formula: op -t p renders every 

believable proposition true. [4], op -t oop, makes all beliefs 

transparent to one's intellect and rules out the possibility 

of self-deception. In the simplest case, self-deception 

may be formalized as op~oo7p~7oop. The third rider is 

required to give the self-deceiver's protestation that he 

does not belief p a point since oo7p -t 7nop. If 7oop does 

not obtain, he's not even deceiving himself. By S4 then 

oopAoo7pA~oop and by simplification oopA7oop. But by 

double negation (which holds in 0-structures) and def. 

"+'I , 7 (pA7p). Substituting oop/p, 7 (oopAtoop) . Hence, 

self-deception as described would be impossible with 141. 

The weaker principle IT*) q (up + p) is provocative. 

People do belieye that the propositions they belieye are 

trve but it is going too far to suggest that each individual 

believes that.all of his beliefs are true. Every individual 

has some dark doxological corner containing propositions 



of minimal credibility; propositions which he belives to a 

minimal degree while admitting that he could well be mistaken. 

Hence [T*] is too strong. 

Finally, the paradoxes (like [con]) give too much 

credit to individuals for logical acumen. If the individual - - -. 
understands the notion of 1 1 + "  and he believes that what he 

believes is true, he believes that what he believes follows 

from any proposition whatsoever. However, most people are 

not familiar with this logical characteristic of "+". 

Summary 

0-structures without finiteness conditions provide an 

idealistic interpretation of belief if oa is read "a's - belief - 
that a would be justified". [RE], [RR) and [RN], though 

objectionable if is read with existential import are 

tolerable under the proposed reading. The failure of [K) 

and [DJ was seen as a boon to a logic that distinguished 

between one's having inconsistent beliefs and believing 

contradictions. The presence of [con], though in some 

respects desirable, is even too strong for justified belief. 

It is interesting to note that 0-structures, with 

modifications, can also be used to proyide an epistemic 

interpretation for o. Imposing finiteness conditions, 

as shown, restores [Dl, which is a requirement of epistemic 

logic. In addition, as shall be seen shortly, [T) can be 

validated by replacing the notion of a subjective judgement 



with an objectiye relatian. 

4) Counterfactuals 

What sets the subjunctive conditional apart from the 

conditional, according to ~ u i n e l ~  is not just Che falsity - -. 

of its antecedent but the fact that the conditional can be 

"seriously entertained and affirmed or denied in full 

cognizance of the falsity of the antecedent. Subjunctive 

conditionals depend on dxamatic projection: we feign belief 

in the antecedent to see how convincing we then find the 

consequent". The problem with counterfactuals is that 

construed as standard truth functions (conditionals in the 

indicative mood) all counterfactuals are true for the very 

good reason that, by hypothesis, their antecedents are 

always false. This is problematic because we definitely 

want some, in fact a great many, counterfactuals to be false. 

The proposition "if Socrates were alive today he would be 

Greek" is much more convincing than "if Socrates were alive 

today he would have wings on his back". The first commands 

common assent, except perhaps for the keen historian who 

has discovered that Socrates actually never was a Greek at 

all but a clandestine Phoenician, and the second common 

dissent, except for our historian, an orthopedician on the 

side, who also discoyered that the Phoenician Socrates had 

prepubescent wing buds on the tips of his scapulae. 

The key to interpreting counterfactuals on 0-structures 



Lies in the notion o f  increasing s~ilaxity and a cmparative 

judgement between worlds at which both the antecedent and 

consequent hold (the releyant set of affirming counterfactual 

conditions in a sense of xeleyance to be spelled out shortly) 

and the set of points where the antecedent holds and the 
- 

consequent fails. The structures allow us to construe - -. 
-? 

counterfactuals either subjectively or objectively by -. 

referring to or omitting reference to similarity judgements 

by individuals. To preserve the link with belief, we shall 

construe them first subjectively. 

A Modified 0-Structure for Counterfactuals 

One proposition, a  counterfactually implies another $ ,  

at some point u for some individual - a iff for every - 
hypothesized circumstance x in which - a conceives the - 
conditional to fail (x € IlaATp 1 1 )  , there exists another 

hypothesized circumstance y in which - a conceives the - 
conditional to hold relevantly (y € 1 1  aA$ 1 1  ) , such that the 

circumstance at which the conditional holds relevantly is 

more similar to u in - a's judgement on the grounds available - 
to - a at u. Where "a)  p" is read " a  counterfactually implies 

- % 9l G 
$ " : k a )  $ iff V x : k a n 7 p  , 3 y : F a ~ p  and YS~X. 

Y 
The function s(u) remains essentially the same $ (u) 

{a* - 5 U: Vx f a, 3y c a* and ysUx} where - a* designates the 
releyant set of confirming cases. 



Core Theorems and Modified O+tructures 

Does the relevance factor affect theoremhood in 

modified 0-structures? 

The difference in this approach, of course, lies in 

the notion of a relevant case of confirming contexts for 

counterfactuals. Other analyses h w e  construed counterfactuals 

as follows: o(a - + p )  iff /la + € s ( u )  where 
.- 

I I ~  -+ p i ~  $(u) iff vx I I ~ A ~ ~ I I ,  3y I I ~  + P I ~ ,  ysUx. 

The idea of the releyant case is to keep our counterfactual 
-. 

v 
analyst from sorting through the latter two cases that plainly - .  

do not meet Quine's condition of "feigning belief in the 

antecedent". 

Whether a proposition is counterfactually true or not 

on the subjective analysis is a function of each analyst's 

estimates as to which circumstances are most similar to the 

analyst's conception of his world. In each comparative 

case the constant condition is represented by the truth of 

the antecedent. Competing consequents are projected into 

possible worlds under this condition and the analyst employs, 

exactly as in the case of belief, his own epistemological 

network in making his comparative judgement. A proposition 

counterfactually true to one individual may be counterfactually 

false to another with a different conception of the way 

things are at a given time. Socrates and his wing buds are 

a case in point. 



closed under supersets since if I-( a  -+ p) -t (y -+ 6) and 

Ib + @ I \  f Ih -+ 611t every point outside of ( lyA-6)(  will 

includidg 11 yA6 1 1 .  So LRRI continues to hold: [con] also. 
?' f i  

holds since k o l  iff 3y c l l l j l  , which is not the case. 
u 

[K] and [D] fail counterfactually for the same reason 

they fail in unmodified 0-structures. 

The remaining core theorems diagram as follows (where !: 

indicates the non-relevant cases): 

(pvq r) -+ (p r) 

t l t 2 t 3 1  1 5 t 6 t 7 1  
. . 

Antecedent: . . . . . . . . 
Consequent: { 1 , 2 J  { S t 6 J  

r 

Schema : c c 

Required Schema: - c 

Converse : 2 



Transposition: (p)q) -+ (,q -+,pl 

. . 
Antecedent: (13 (21 . . . . . . 
Consequent: tll t41 

Schema : - - - 
Y - 

SO transposition fails. 

r r 
Antecedent: {1,5} 

Consequent: 

Schema : C 

So transitivity fai 

To sum up the, we can see that modified 0-structures 

transitivity and ( (pvq)) r) -+ (p)r) are ruled out. The loss 

of the last three is a boon to counterfactual logic. The 

loss of [ D ] ,  however, is a serious flaw. We do not want it 

to be the case that one formula p does and does not 

counterfactually imply some other formula q. This is 

rectified by placing finiteness conditions on the modified 

0-structure to. yield [D] and [K] once again. 



Similarity as an Objectiye Relqtion 

A desirable counterf actual theorem is the theorem [TI. 
[TI suggests that if a counterfactual holds between two 

formulae at a point, the conditional in the indicative 

mood holds between these formulae as well. Put another - 
way, it is a necessary condition of any counterfactuals -. 

being true at a point that the corresponding conditional 

must be true at that point. And this makes perfect sense. 

If a conditional is false at a point, no one would argue 

that the counterfactual in question has any plausibility 

given the way things are at all. Conceding the truth of 

the counterfactual amounts to conceding the truth of the 

conditional should circumstances have arisen to permit the 

truth of the antecedent of that conditional. 

However, where the SU relation is subjective [TI does 
not hold since it does not follow that the actual world is 

more similar to every individual analyst's conception of 

the way things are than any other world he may conjure up. 

That is, the condition on3 (u) adequate to validate [TI, 

If we objectivize our truth condition for o, however, 

by dropping reference to the estimates of individual analysts, 

the subjectivity pxoblem dlsappeaxs and [TJ is ~alidated. 

There is no world more similar to a giyen world than that 

world itself. Hence, each index world is an element of its 

own neighborhood collection. Proving [TI with this 



condition is straightf award; 

Proof : If h o p ,  ' then 11 pll c J(ul therefore u C l l p l l  
by the [TI condition. 

This condition also validates [D] as follows: 

It is interesting to note that failure to use the 

releyance condition with an underlying objective relation 

means that no counterfactual can be false at any point. 

The antecedent of every counterfactual is false by definition. 

If irrelevant cases are not ruled out, a counterfactual 

would fail where there exists some case where the antecedent 

holds and the consequent fails more objectively similar than 

every case where the antecedent fails and the consequent 

holds. Now, as seen above, there are no worlds more similar 

to the given world than the given world itself. The 

antecedent of every counterfactual must fail in the given 

world or else it is not a counterfactual. Hence, no 

counterfactual is false since for every case in which it 

fails there exists at least one case where it holds (the 

given world), which cannot be less similar than any point 

where it fails. 



Chapter Two has shown by example how an interpretation 

of the meaning of two concepts can lead directly to the 

development of a formal semantics and to the creation of 

systems for those concepts. In the case of belief, U.Con 

was seen to be a system that offered some advan'tages ovqr -. 
f 

traditional interpretations in freeing the concept from [K]. - -. 

However, even U.Con, as witness the presence of [con), 

still tends to create a somewhat artificial and idealized 

sense of belief. 

The case of 0-structures and counterfactuals, with 

the introduction of a relevant set of confirming cases, 

offers an advantage in relieving the notion of transitivity 

and transposition. It was also shown that replacing the 

subjective character of similarity judgements with an 

objective relation creates a semantics and a system for 

epistemic notions. It remains to Chapter Three to investigate 

the question of completeness for the systems yielded in 

Chapter Two and to suggest some ways of modifying 0-structures 

better to suit the notions of belief and counterfactual 

implication 



CHAPTER THREE 

COMPLETENESS AND 0-STRUCTUJG ADJUSTMENTS 

1) Completeness for KD, T and Alternate Truth Conditions 

for 

a l  Construct the canonical model <uKD, OKD, vKD), 

where UKD designates the set of KD maximal sets and OKD 
2 

is the function: UKD + 2 ( U ~ ~ )  which determines for each 

u u 
u UKD a relation OKD. Vx, Vy, xOKD y iff q (~)ny c (u)n x 

where n(x) = {a:oa € x}. That is, some maxi-set x is the 

left-most member of the OgD relation with another set y iff 

the set of formulae in the scope of at u in y forms a 

proper subset of the set of o formulae at u in x. The 

function aD (u) may be defined as {a: - - -  a c UKD and 

Vy f 5, 3x € - a and xOiD y . 
KD is complete if <uKD, OKD: VKD) is a model in the 

class of frames for KD and the fundamental theorem holds 

';r for the truth conditions for o: $no iff Vx p llall 3~ 

u U and yo,. <uKD, OKDt VKD) is suitable if OKD is irref lexive, 

transitiye and, in additi~n, has some pmperty C*l to 

correspond to the placing o f  Zinfteness conditions on the 

structures. As seen on page 48, if a finiteness condition 

is employed, [KJ and [Dl hold. 



4tl b) The fundmental theorem; k o a  - oa f Y where 

U 
VY f llall, ~7 yOKDx. If { o ( u ~  U t 7 a l l  is consistent, 

iv) but o a f  u by assumptfon and [D] is in u because 

it is a KD theorem, therefore {o(u)U{- ja}  is consistent 

% and k o a I  

By contraposition, oa = oa f U e? 
w Suppose o a f  u  and show k o a ,  i.e. Vx f llall , 
u 

i) consider any arbitrary x f 1 1  all 

ii) show that Cx fl o(u)} U { a 1  is consistent; if 

consistent then k o a  u 

iii) if not consistent, then 3u: {B1.. * p N }  2 {X n 0 (u) 1 

U {a}  is inconsistent 

iv) kD p l . .  . ."pN-+ 7a 

V) by CRRJ and [KJ kD u p l . .  . .upN - o7a 

yi) therefore o7a f u 

vii) but oa f u by assumption and [D] is in u so 

{X n D(U) }U{a} is consistent and f o a  



C) oh is ix,reflexiye. 

If 0; is not irreflexfve, then there could exist some 

maxi-set in U such that xoU&x. If xOiDx then the set KD 

of fomulae q at u in xmust form a proper subset of the 
U 

set of formulae q at u in y (by def. OKD) . In extensional 

set theory, no set can be identical to a propeE subset qf -. 
* 

itself (because identical sets have identical members). 

So OED is irreflexive. 

d) o:, is transitive. 

U u Assume xOgdy and z and ixOKDz. If 7xOKDz, then 
KD 

U 
(o (u) nz p q (ul nx) . But if yOKDz, then q (u) nz c (u) ny. 

If xOiDy, then o(u)ny c q (u)nx. Therefore, because c is 

transitive o(u)nz c o(u)nx, contrary to assumption and 

OiD is transitive. 

Because there are several ways to place finiteness 

conditions on 0-structures, the proof that o:~ has the 

property (*) is omitted. For a version that places this 

condition on the relation out see "A Utilitarian Semantics 

for Deontic ~o~ic"'. 

Construct the canonical node1 for the system T. T is 

complete iff the model <uTt OT, YT) is a model on a frame 

in the class of frames for T. <uT, OTr YT)is such a 

model if 0: is irreflexiye, transitive and in addition, 

possesses a property that gives the structures the 



84 

chqracteristic of "indexical inclusion"; ~ a ,  - 5 c NU u c - a. 

Where oU has the property of "yqnity" , i. e. Vx, Vu c U, -xoUu, 

the structures will have EndexAcal inclusion, The fundamental 

theorem holds for T because the truth conditions for q remain 

unaltered. <uT, OT , VT) is suitable : 
- - - 

f a) 0: is irreflexive and transitive by the steps 

c) and d) for KD above. 

b) Assume that 3x: xoUu. Then 3p C x: op € u and 
T 

p f u. If $ f u then 7P u because u is maximal. But 

because [T] holds, {a :oa  C u)c - u. Therefore, p € u and 

7f3 c u, contrary to u's being consistent. Therefore, oU 
T 

is vain and the canonical function has "indexical inclusion". 

The logic T, then, is complete with respect to the 

class of frames on strict ordering relations where oU is vain. 

It is interesting to note that altering truth conditions 

for by replacing the existential quantifier with a 

universal quantifier also yields a semantics that. preserves 

LK], [D], and IT] (where oU is vain) without imposing a 

finiteness condition. Truth conditions for o become: * 
k o a  iff vx + IMI t vy c It ail t yoUx. 

Strengthening the truth conditions for a in this way 

has the effect of totally oxderAng the collections of 

neighborhoods ;fox each point by set inclusion. 



a c @u = 3y E a - b: vw E b, woUy a)  - - - - 
b) b - C@U 32 c b - a: V W C  5, woUz - - 
cl but y E a and z E b - - - - -. 

Y d) therefore zoUy y ~ U z  which is impossible because 

oU is asymmetric. Therefore, neighborhoods under the Vx, 

Vy condition are totally ordered by set inclusion. 

Substituting these conditions affects the core theorems 

and inference rules. @ (u) is no longer closed under supersets. 

This means that [RRI fails to hold although [RE] and [RN] 

(vacuously) remain. 

Theorems under the new conditions vary considerably. 

[KJ, [OT] and [TI (where oU is vain) remain. [con] and [D] 

are omitted. 01, the [RR]-like principle 1-oa 1-up F a  -+ p 

or t-p+a and the principle 1-aor +,a or F7(oaho7a ) are 

added. 

[ o  T, 01 , con]: oT holds vacuously. 01 also holds 
vacuously: 



[K] holds  because : 

b)  e i t h e r  ria, - & f $ and na ,  b  C- @ (u) o r  - - 
C I  na ,  - I ? # $ .  B u t $  €@(u) .  There fo re , I t a ,  - b € @ ( u )  - - -. 

Y 
and [K] holds .  

I n  t h e  normal case a s e t  and i t s  complement cannot be 

i n  t h e  subse t  r e l a t i o n .  However, when a  = U and a '  = $, - - 
a  - a '  c @u and - a  - 1 - a ' .  So [DJ f a i l s .  Note t h a t  o T  and [D] 

( i f  [D] he ld )  would y i e l d  707T = 701 when 01 holds 

vacuously. 

The [ ~ ~ J - l i k e  p r i n c i p l e  holds because i f  oa and oj3 

a t  a l l  p o i n t s  i n  a l l  models, llall c l l j 3 l l  O r  l lBl l  C llall 

a t  a l l  p o i n t s  i n  a l l  models under t h e  'dx, 'dy condit ion.  

The p r i n c i p l e  1-a o r  k - r a  O r  l(oaAo3a) holds because i f  some 

a r b i t r a r y  s e t  - a  # U o r  $, then a  and a '  a r e  not  both i n  - - 

@(u) 

I n t e r p r e t i n g  ep i s t emica l ly  under Vx, Vy provides 

a  concept of knowledge with some degree of opaci ty  s i n c e  

i n d i v i d u a l s  a r e  no longer  committed t o  knowing t h a t  c e r t a i n  

formulae a r e  t r u e  j u s t  because they axe e n t a i l e d  by o t h e r  

formulae known t o  be t r u e  by t h a t  ind iv idua l .  



Moweyex, x ,  Vy i s  epistemicaLly awkward on the 

traditional concept of knowledge. If the truth if a is 

a necessary condition of anyone's knowing a, no one could 

know any a of the form ( 3 A ~ p .  The presence of 01 
would be even more embarrassing if [RRJ held. Because 

contradictions entail all propositions, everyone would know - -. 
7 

everything. 

The presence of both 01 and oT suggests that a more 

plausible interpretation for might be some notion of 

non-contingency. Tautologies and contradictions are 

non-contingent. [KJ and the ~RR]-like principle are both 

requirements under this interpretation, as is the absence of 

[D] and [con]. The absence of [RRJ accords with this 

interpretation as well, since [RR] doesn't make sense when 

a, Q are contingent and a -+ Q -  The problem with the 

interpretation of o as'non-contingency is that it is possible 

for some - a: - a € @ (u) - a # U - a # $. Non-contingent 

formulae are either tautologies or contradictions. However, 

some non-logical notion of non-contingency might be appropriate. 

The only truth condition quantifier combination that 

has not been experimented with is 3x, 3y. Defining in 

this way means that [RE] holds but [RN] and [RR] both fail. 

[RN] fails because 73x f llall when 1-a and [RR] because 

superset closure fiqils. [cQ~J continues to hold because 1 
is still impossible at a point, Transposition also holds 

but the other core theorems fail. This logic might be 



considexed a b e t t e x  1ogi.c $ox j u s t u i e d  b e l i e f  because 

[RR] and [RN] do not  p r e v a i l .  Becquse t h e  usual  inference  

r u l e s  do no t  o b t a i n ,  c a l l  t h i s  l o g i c  E.Con. 

2 )  Degrees of ~ e l i e v i n g  and Counterfactual  Implicat ion - - -. 

On t h e  s t r u c t u r e s  presented ,  t h e  sense  of b e l i e f  and 

coun te r fac tua l  impl ica t ion  presented commits some 

propos i t ion  a t o  b e l i e f  o r  coun te r fac tua l  impl ica t ion  j u s t  

s o  long a s  t h e r e  i s  some po in t  i n  Ilalj o r  llall * more 

comfortable o r  more s i m i l a r  than  every po in t  where a does 

no t  obta in .  This  c e r t a i n l y  seems fa r fe tched  i n  cases  where 

t h e  p o i n t s  i n  llall on balance a r e  j u s t  s l i g h t l y  b e t t e r  

of f  i n  comparison with t h e  p o i n t s  i n  I17all. We can we l l  

imagine an a g e n t ' s  b e l i e f  being "suspended" i n  c e r t a i n  cases.  

The s t r u c t u r e s  would be of g r e a t e r  phi losophica l  i n t e r e s t  

i f  they could provide a  measure of s t r e n g t h  of b e l i e f  and 

coun te r fac tua l  impl ica t ion  and i f  they  could be made t o  

provide some middle ground t h a t  i s  doxastically/counterfactually 

n e u t r a l .  For t h e  sake of perspecui ty t h i s  approach w i l l  be 

developed f o r  t h e  concept of b e l i e f  only. What goes f o r  

b e l i e f ,  however, goes f o r  I' ) " a s  wel l .  

A Degree Function 

What i s  requi red  i s  t h a t  t h e  s t r u c t u r e s  be a l t e r e d  t o  

a t  l e a s t  r e f l e c t  degrees  of b e l i e f .  Let 0* be a  funct ion:  



u3 + J, which assigns to each point triple in U a value 

in the closed unit interval 0 .  For every pair of points 

related to every index point in U, 0* provides a value which 

indicates the degree to which one point is more comfortable 

(relative to some given point) than another. 

O* not only yields values of comparative comfort for - -. 
7. 

each point pair relative to each point in U but can also 
- 1  

yield a value of absolute comparative comfort for a proposition 

at a point. As we have seen, a proposition may be false in 

an infinite number of ways. All of these ways, however, are 

not equally comfortable for an agent with a given bank of 

evidence. Some will be more comfortable than others. The 

degree to which some proposition will be believed the, is 

at most, the degree to which that proposition is more 

comfortable than its nearest competitor. Degree of absolute 

5% 
comparative comfort is defined: B: Vy yy 11 all, 

NO'' reads "a is believed 3x C llall : cO(xI y))/ N where "Ba 

to NO" and " ~ ~ ( x ,  y)" reads "degree to which x is more 

comfortable than y". 

Each point will yield a degree of absolute comparative 

comfort for each formula believed at that point (i.e. for 

each formula in the scope of at that point). This factor 

is not the only factor in determining how much confidence 

an individual is willing to place in a beHef. It may be 

true about some a that a is much more comfortable to a on - 
# - 

the basis of the evidence but - a may still refrain from - 



placing confidence in a because - a is not sure that all - 
relevant evidence is in or that the evidence is suspect or 

that his calculations are accurate. A more complete account 

of a degree function would build in these factors in 

describing how degree of comfort determinations are made. 

Let us assume some such account for O* so that-value of - -. 
absolute comparative probability really does reflect degree 

-. 

of agent confidence in a proposition. 

Believable, Credible and Unbelievable Propositions 

0* would yield doxastically neutral territory if we 

selected a mid-range in (0-l), the upper value to indicate 

belief threshold and the lower indicating disbelief threshold. 

The area between would indicate the neutral zone peculiar 

to those propositions that we neither believe nor disbelieve 

at a given time. Propositions in this zone may be christened 

credible (because not disbelieved). Credible propositions 

yield absolute comparative J-values above the threshold of 

disbelief. If - a disbelieves a, he does not find a - 
credible. If a is not believed by - a, a may be credible or - 
a may not be credible. The level of individual thresholds 

is relative to individuals. Some individuals make doxastic 

commitments on evidence where others refuse. Some people 

are more easily duped than others. The relationship between 

disbelief, credibility and belief suggested here, parallels 

the relationship between impossible, possible, and necessarily 



true propositions. Where T~ = threshold of belief, T~ = 

threshold of disbelief, - a believes a iff B0 ) TB, disbelieves - a 

a iff BO ( TD, is doxastically neutral towards a iff 
a 

D B T ,( B: ,( T , finds a credible iff B: )/ TD and finds a 

dubitable iff B: 4 T ~ .  

I - 

Theoremhood in 0* Structures 

Theoremhood in 0* structures will be determined by 

methods of computing degrees of belief for complex propositions. 

I?. P. ~ a m s e ~ ~  has suggested computations where f orrnulae are 

evaluated in the range (0-1) with a doxastically neutral 

ground at mid-point: 

BO (-,a) = 1 - B0 (a ) 

B0 ( ~ A Q  ) = B0 (a ) x B0 (P, given full belief in a) 

Belief in Q, given a, is to be understood as the 

amount of confidence an agent would place in on the agent's 

assumption that a is true. According to Ramsey's scheme, 

the agent has full belief (degree 1) in all propositions 

assumed by him to be true. Ramsey makes an assumption about 

the rationality of believers in assuming that if a is assumed 

to be true by some agent, the agent's degree of belief in 

-a will therefore be 0. This does not have to hold for all 

believers (as witness the preceding objections to [con] as 

too, strong a principle for doxastic logic). 



Ramsey's suggestions indicate that the notion of 

belief operating in his account differs from the notion of 

justified belief as elaborated in Chapter Two. The suggested 

calculations not only verify [con] but also [DI. 

-?' 

a) a believes a iff Boa ) T B - - 
B b) Va, - T ) .5 (on Ramsey's scale . 5  is neither - 

belief nor disbelief) 

C )  Va: a = (BA,B ) B: = B' x BO (781 given full B 
belief in $) 

d) B ~ ( ~ $ ,  givenBO=l) = O  B 
e) therefore Vat 701 

E 

a) if [Dl fails then oaA oTa is possible 

b) oa-c~;) .5  

d) BO(,a ) ( . 5  and ~'(7a ) ( T~ 

e) a ,  - Va, ~ ( o a A  o ~ a )  - 

Interestingly, [KJ fails where the individual's belief 

in two individual propositions is independent and minimal: 

a) assume BO(a ) = . 5+ min. , B O ( ~  ) = .5+ mino 

b) because the product of two numbers u, m: 0 <n, m (1 

is always less than either number, B o  ( aAp) = B '(. 5' x .5+ = .25+) 



[K] in fact, fails for all independent beliefs whose 

sums are, for example, less than 1.4 because the product of 

any two numbers summing to 1.4 will always be less than .5 

(i.e., 1 x .4 = .4, .7 x . 7  = .49, .8 x .6 = . 4 8 ,  etc.). 

As the threshold rises, individuals must have close to full 

belief in propositions before they can accept <he conjunction 
?' 

of those propositions. [K] will hold in certain cases where 

thresholds are low while failing with higher cases. 

To make 0* yield [D], [con] and [K] some revisions 

will have to be made. However, BO(,a ) is to be characterized, 

it cannot be the case that B0 (7a ) = 1 - BO (a). If a is 

barely more comfortable, on balance, than -rat B0 ( 7a ) will 

approximate 1 as closely as BO(a) approximates 0. Because 

oU is asymmetrical, if some point y, on balance, is more 

comfortable to any degree than another x, 7 xoUy to any degree. 

This consideration requires restricting the value of ,a as 

follows: (BO (a) ) 0 = (BO ( ,a ) = 0) . This restriction 

B gives [DJ providing T ) 0. Adopting Ramseyt s suggestion 

for " A " ,  [KJ is yielded in all cases provided, as above, 

B that T > 0 (because the product of two numbers greater 
than 0 must itself be greater than 0). [con] holds because 

of the restrictions imposed on "7 ". Defining a threshold 
of belief greater than 0 will have no effect on [D] or [con] 

but will rule out [KJ in certain areas. 

I 



Although O* can be made to yield 1 ~ 1 ,  CDJ and [~onj, 
models on the structure do not yield corresponding degrees 

of disbelief. This can be rectified by altering the range 

of 0* so that 0*: U' + (-1, 1). This will provide 

corresponding degrees of disbelief and the definition of T ~ .  

Summary 

We have seen that completeness can be shown in 0-structures 

under certain conditions with the logics KD and T and 

that altering the truth conditions for yields other logics 

(not yet proved complete). It has also been shown that 

Ramsey's notion of belief is at least a D notion and, in 

certain cases, a KD notion. Altering 0-structures by 

redefining O* as: u3 -+ J or u3 -+ (-1, 1) can preserve [D 1, 

[K] and [con] and in addition permit a definition of the 

notions of belief threshold and disbelief threshold. 
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13. Leibniz Selections ed. by Philip P. Wiener. 

14. Tractatus Logico Philosophicus. 

15. Quine, in From a Logical Point of View (p.20) notes 
that Leibniz at least saw this connection. 

16. Segerberg defines a "classical" modal logic as a logic 
containing [RE] as an inference rule in An Essay in 
Classical Modal Logic, p.7. 
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pp. 445-456. 
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Ref. 1, p. 448. 

Van F raas sen  i n  "Values and t h e  Heart's Command", 
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T h i s  example i s  from G.H.  von Wright. 
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Word and Ob jec t ,  p. 222. 
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