
Design on Non- Convex Regions: Optimal 
Experiments for Spatial Process Prediction 

Matthew Timothy Pratola 

B.Sc., 2005. 

Brock University 

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR T H E  DEGREE OF 

MASTER OF SCIENCE 

in the Department 

of 

Statistics and Actuarial Science 

@ Matthew Timothy Pratola, 2006 

SIMON FRASER UNIVERSITY 

Summer 2006 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of project: 

hlatthew Timothy Pratola 

AIaster of Science 

Design on Non-Convex Regions: Optimal Experinients 

for Spatial Process Prediction 

Examining Committee: Dr. Carl Schwarz 

Chair 

Dr. Derek Bingham 
Senior Supervisor 
Simon Fraser University 

Dr. Charmaine Dean 
Simon Fraser University 

Dr. Randy Sitter 
External Examiner 
Simon Fraser University 

Date Approved: AW4us f  2. 2006  



?E.: SIMON FRASER 
U N R ~ E R S ~ ~  I bra ry 

DECLARATION OF 
PARTIAL COPYRIGHT LICENCE 

The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection, and, without changing the 
content, to translate the thesislproject or extended essays, if technically possible, 
to any medium or format for the purpose of preservation of the digital work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author. This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the Simon 
Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 

Summer 2006 



Abstract 

Nodeling a response over a non-convex design region is a common problem in diverse 

areas such as engineering and geophysics. Unfortunately, the tools available to model 

and design for such responses are limited. Recently, some success has been found by 

applying the Gaussian Process (GP) model with the so-called water distance metric. 

However, a difficulty is that transformation of the water distances is required to be 

able to model a GP over such regions. The specific questions of exactly how to 

make this transformation, select design points and fit GP models have received little 

attention. In this thesis, we build on existing results to propose a valid transformation. 

A new method for selecting design points with the GP model over non-convex regions 

is then proposed. Optimal designs for prediction are described, and a simulation 

study is used to demonstrate the improvements that are realized. 

Keywords: optimal design; non-convex; spatial; Gaussian; process; ISOhIAP 
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Chapter 1 

Introduction 

1.1 Motivating Applications 

Scientists are often interested in determining the relationship between experimental 

factors and response variables. This is a common endeavour in most areas of scien- 

tific investigation (e.g., engineering and geophysics). For instance, an engineer may 

be trying to maximize the yield of a production process that depends on many ma- 

chine factor settings. Finding the machine settings that result in the maximum yield 

is a difficult problem when considering a high-dimensional factor space, a complex 

response function, the presence of noise in our response measurements and the high 

cost (in dollars or time) of obtaining experimental data. However, if an approximate 

functional relationship between the yield (response variable) and machine factors can 

be found that closely models the true functional behaviour, then one can attempt 

to meet the experiment's goals. Indeed, the approach known as Response Surface 

Methodology (Box and Draper, 1987) from the experimental design literature is such 

a strategy. 

To help establish the relationship between the factors and the response, an ex- 

perimenter needs to obtain values of the response at different factor settings. A 

fundamental statistical consideration is the choice of model used to summarize this 

relationship. Assuming a model can be chosen that represents reality well, the design 

question is to choose settings for the factor variables that best allow the model to 
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help answer the scientific question of interest. 

A common example in the field of designed experiments is that of polynomial 

regression. Typical designs for such models include fractional factorial designs, which 

are used to control run size in a manner that minimizes bias in parameter estimates, 

and optinlal designs which are criterion-based approaches, such as selecting designs 

that minimize the variance of parameter estimates. Once the model is fit to the data, 

we can go forth and attempt to answer questions of interest under the assumed linear 

model. If we have selected an appropriate design and our model fits the data well, 

we can attempt to address the question of interest with reasonable confidence. The 

selection of a design is therefore integral to modeling the response. 

The usual approach to a designed experiment is to select levels of the factors under 

the assumption that these variables are independent of one another. Geometrically, 

this can be interpreted as a rectangular design region. For instance, suppose we 

have the two design factors temperature, in degrees celcius (OC), and pressure, in 

kiloPascals (kPa). If we are interested in the levels (5OC, 10•‹C) for temperature and 

(100 kPa, 104 IcPa) for pressure, then we have defined a square 2-dimensional design 

space 0 E S2.  We could write these levels as (0 , l )  for both variables and obtain, 

say, a 2' factorial design for fitting a linear regression model. However, in practice 

it is not always the case that design variables are independent of one another. That 

is, the geometric region formed by the design factors may not be rectangular. Design 

variable dependence can occur quite naturally in many settings, such as: 

0 inherent physical limitations, also known as bad region avoidance (Taguchi, 

1987; Hamada and Wu, 1995) 

0 modeling of natural phenomena, such as river temperature. 

The bad region avoidance case can occur in industrial experiments where a re- 

sponse of interest can only be measured at certain settings of the design variables but 

not others. An example is shown in Figure 1.1, where design variables XI and x2 have 

a non-linear relationship. We can imagine a response, such as % failed parts, may 

exhibit reasonable behaviour within the design region but which quickly approaches 

100% failure outside the region due to the interplay between the dependent design 
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Figure 1.1: Horseshoe design region R E R2 

variables and the response in question. Or, it may be that measuring the response 

outside of this region is simply impossible due to physical laws. This is represented 

visually by the hypothetical response shown in Figure 1.2. Therefore the bad re- 

gion avoidance rational is motivated by expert knowledge that suggests investigating 

the complete [O, 112 space shown in Figure 1.2 is at best of no interest, or, at worse 

meaningless. In other words, the behaviour here is much different from fitting a linear 

model over [O, 112 and then simply considering the fitted model only over the region, 

0, shown in Figure 1.1. Intuitively, the behaviour of the response should be modeled 

as a function of the region R, thereby suggesting that the coordinate system defined 

by ( x l ,  x 2 )  may not be the natural coordinate system for this problem. Perhaps a bet- 

ter way of modeling a response such as Figure 1.2 is to suggest a contrived coordinate 

system of some sort that is more descriptive of the horseshoe shape of the region. For 

example, we might define the coordinate system x,: the centerline along the horse- 

shoe, and xb: the distance from this centerline. Under this coordinate system, we can 
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Figure 1.2: Response over region of dependent design variables 

extract meaningful information as it would appear that the function increases in x, 

but has little change in xb. 

The intuition for this type of modeling problem becomes more clear when we con- 

sider the case of modeling a natural phenomena such as river temperature. Suppose 

the temperature depends on the distance from the shore and the velocity of the wa- 

ter in the direction of flow. Then it is quite intuitive that fitting a model using the 

(lattitude, longitude) coordinates of points along the river might not make sense. 

In the next two sections, real examples are used from the literature to illustrate 

the problem of modeling over such non-rectangular design regions. The first is an 

engineering application of spot welding and the second example considers ocean tem- 

peratures around a peninsula. 
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Table 1.1: Design Variable Levels for Welding Experiment 

Factors Levels 
A 
B 
C 
D 
E 
F 
G 

1.1.1 Spot Welding Experiment 

Pulse Rate 
Weld Time 
Cool Time 
Hold Time 

Saueeze Time 

2 
Low 

G 
10 
15 

I I I 

In (Chen et al., l984), the authors outline a welding experiment investigating 8 design 

varibles to find an optimum weld strength. A manufacturer of engine support brackets 

was having trouble with weld strength consistency, and the subsequent failure of many 

brackets in the field. Of the 8 relevant design variables, six were investigated at 3 

levels and two at 2 levels, as shown in Table 1.1. In this experiment, the levels of Weld 

Time are dependent on the levels of variable Pulse Rate as shown in Figure 1.3(a). An 

orthogonal array (Hedayat et al., 1999) was used to run a designed experiment, and 

standard ANOVA was done using weld strength as the response. Level 3 for factor 

H in the 3-level orthogonal array was set to equal level 1 since factor H is actually a 

2-level factor. 

Air Pressure 
Current % 

H I Tip Size 

The dependence shown in Figure 1.3(a) is an example of the bad region avoidance 

rational. In this example, it is not feasible to have a weld time of 40 with a pulse 

rate of 4. For instance, a long weld time and high pulse rate may result in the metal 

reaching too high a temperature and melting to the extent that no weld is formed. 

In contrast, too short a weld time with a low pulse rate may not heat the metal 

sufficiently to form a weld of the desired size and strength. The original authors of 

this study (Chen et al., 1984) do not consider the dependence between weld time (A) 
and pulse rate (B), instead modeling the data as if the (low, medium, high) levels of 

B are independent of the level of A. This leads to the question of interpretation for 

4 
Med 

12 
18 
20 

- 

High 
18 
26 
25 

50 
85 
3 f' - 
8 

55 
90 
1 If - 
J 

60 
95 
1 ' f  - 
-1 
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Figure 1.3: (a) Dependence Between Design Factors Pulse Rate and Weld Time for 
Welding Experiment and (b) Recoded Design Factors 

parameter estimates of main effect B and the A x B interaction term considered in 

their model. 

In (Hamada and Wu, 1995), the authors re-analyze this experiment taking into 

account the dependence between factors A and B. They propose a solution to this 

problem by viewing it as  a nested experiment, and performing design and analysis ac- 

cordingly. They noted improvements in finding factor levels which lead to an optimal 

response when re-analyzing the welding experiment. In their paper, the dependence 

of the two related design variables XA and XB must satisfy the following relation: 

where C A  is a centering constant, s~ is a scale constant, cB(XA) is a centering param- 

eter dependent on the level of XA and sB(XA) is a scale parameter dependent on the 

level of XA. This forms a linear relationshp for the dependence between variables XA 
XB-cB(-Y,) - and XB which can be seen by writing XA(Xa) = 

sB(2y.41 - SB(XA)-'XB + KB(XA). 

In words, if we think of the centering and scaling parameters as normalizing a design 

variable to say (low, medium, high) settings, then the relationship (1.1) says that 

the actual values of XB for XA = (low, medium, high) change according to the value 

of XA. This can be viewed pictorially as in Figure 1.3(a) where the dependence be- 

tween factors pulse rate and time is removed by applying the scaling and centering 
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transformatmion to arrive at the re-coded factors shown in Figure 1.3(b). 

Unfortunately, this approach does not provide a predictive model since the values 

of sB(XA), I\-TB(XA) are not thenise11-es modeled. That is, we have no knowledge for 

how the assumed linear relationship between XA and Xg varies for arbitrarily chosen 

XA, or indeed whether a linear assumption is realistic. Instead, a set of conditional 

linear models are formed which depend on the level of XA. Even if we have knowledge 

of the levels of XB when XA = 1 and when XA=2, we still cannot predict the response 

when, say, XA = 1.5. 

Let us examine for a moment the linear relationship outlined above for known 

sB (XA), KB (XA) at a given level of XA4. Then a second order model for E [Y] is 

Ignoring the centering parameter KB(XA) for simplicity, we have, 

since terms involving XB are of interest. The linear model interpretation then follows: 

a 1-unit increase in XB leads to a PBlsB(xA)-'-unit increase in Y, and so on. This is 

in contrast to the usual linear model E[Y]  = PIXl + ,B2X2, in which a 1-unit increase 

in X2 leads to a P2-unit increase in Y, independent of X1. 

The property that Y increases with XB dependent on the value of XA in the pro- 

posed model is referred to as interaction elimination. Interaction elimination means 

we remove the dependence of Y on the joint effect of XA and XB by the transfor- 

mation to X i  and XL, and was proposed by Taguchi (Taguchi, 1987). If the joint 

effect is exactly due to the linear relationship between XA and XB described, then 

modeling on Xj4 and XL need only consider the main effects in these transformed de- 

sign variables. However, as described in (Harnada and Wu, 1995), the assumption of 

interaction elimination when modeling with the transformed variables may not hold, 

in which case one still need consider how Y depends on the joint effect of X i  and 
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We see now that the approach described i11 (Hamada and Wu, 1995) suffers from 

some limitations in handling dependent design variables, namely: 

design factors are limited to a linear dependence structure 

the proposed model is not a predictive model. 

1.1.2 Geophysics Example 

Another real world example of a non-rectangular design region can be easily found 

when modeling over natural waterways which tend to form complex shapes. Figure 

1.4 shows Florida (green) which is bounded by the Gulf of Alexico to the west and 

the Atlantic ocean to the east. The waters surrounding Florida naturally form a non- 

rectangular region, and the plot displays surface water temperature. The temperature 

readings are of a fine resolution taken by satellite, with red indicating cooler water 

temperatures and yellow warmer water temperatures. 

Florida is one of the United States' most populated states, and a majority (80%) 

of residents live in coastal regions (Merz, 2001). As the area is well known for its 

tropical storms, predicting the behaviour in this waterway is important for the safety 

of the residents and the protection of property. In this regard, the Coastal Ocean 

Monitoring and Prediction System (COMPS) (Merz, 2001: Weisberg et al., 2002) 

was created with the task of monitoring this waterway. COMPS collects data such as 

surface water temperature, ocean current and sea level, among others, with a network 

of buoys. With this data, COMPS aims to predict various critical behaviours, such 

as storm surges and flooding or industrial accidents such as oil spills to minimize the 

environmental impact. 

One should recognize that modeling such a complex waterway with many depen- 

dent variables affecting the state of any particular response (such as the water tem- 

perature shown) is very difficult. Treating the Florida region as a rectangular design 

region clearly does not make any sense, if only for the fact that ground temperature 

and water temperature are not the same variables, and so shouldn't be treated as one 

in forming a predictive model for the waterway. 
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Figure 1.4: Heatmap of Florida water surface temperature 

Geometric Interpretation of Regression 

At this point, let us clearly define our non-rectangular design regions of interest. For 

any set S, we say that S is convex if for any XI,  x2 E S and for any constant a E [O,1] ,  

we have ax1 + (1 - a)x2 E S. That is, the set is convex if any point x* lying on the 

line segment joining xl, x2 is also in S. Otherwise, we say S is non-convex. Then, the 

region shown in Figure 1.1 is non-convex since it is clear that one can easily select 

two points in the horseshoe region such that the line segment joining these two points 

will partially lie outside of the horseshoe region. The same behaviour can be seen 

if we investigate the Florida region shown in Figure 1.4. The design regions we are 

investigating in this dissertation are non-convex. 

It might be tempting to view the non-convex design region as much ado about 

nothing. For instance, one might believe it is perfectly acceptable to fit a given 



model over a non-convex design region and proceed as normal by only considering 

the predicted response over the region of interest. However, this is not the case. IVe 

consider a more formal argument using the geometric interpretation of regressioii to 

illustrate this point. 

Recall the definition of a vect,or space is the set = {ui = (u. t l ,  . . . , uin), 

vij E 9, i = 1, .  . . , I ) ,  which contains the vector 0 and is closed under addition and 

scalar multiplication. Then, for instance, Rk is a vector space for any k. Consider 

our response vector Y E gn, design region X E 9 P  and residual vector t. Fitting 

the usual linear model, Y = XL? + E ,  can be viewed as projecting the vector, Y, from 

the n-dimensional vector space Rn onto the pdimensional vector space RP spanned 

by the columns of X such that the norm of the residual vector t is minimized. 

Now consider the non-convex subregion of interest, S, such as that shown in Figure 

1.1. Suppose this subregion is contained in the vector space P, and centered at the 

origin so that it contains the vector 0. Denote the function defining the subregion as 

~ ( s ' )  = 1 if s' E S, 0 otherwise. Each point in this subregion is a vector in 9 P ,  hence 

S = {si = (sil, .  . . ,sip), sij E 9, B(si) = 1, i = 1,. . . , I ) .  It is clear that the set S is 

not closed under addition or scalar multiplication, since for bounded S, there exists 

a constant c and vectors sl, s 2  such that csl @ S and/or csl + s2 $ S. Therefore, the 

set S does not form a vector space, and in performing regression on the vectors lying 

in S we are actually regressing onto the subspace 9 P  which only contains S .  

So, the notion of selecting a non-convex design region and fitting a linear model 

to this region is inappropriate as we are actually fitting a linear model to the vector 

space which only contains this region as a subset. Let us refer to this vector space 

which contains our region only as a subset as the ambient vector space. Since we are 

actually fitting the model to the ambient vector space, we are completely ignoring 

the non-convexity of the design region, which is not what we want. Fitting a model 

to this ambient vector space when the actual response is a function of the non-convex 

region and not of this vector space (e.g., Figure 1.2) will result in a model that is 

meaningless with respect to the true response. This is very different from the usual 

case, where if the region were convex, then modeling over this ambient vector space is 

what we want. This is because in the convex case, we fit the model over the ambient 

vector space but simply restrict the region of space where the model is considered to 
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the convex design region of interest. 

1.3 Leverages in Regression 

Another argument against using the usual regression approach is found when consider- 

ing leverages. Recall that projecting the vector Y € P i n t o  the p-dimensional design 

space to obtain a predictive model is accomplished by the so-called hat matrix H. 

Fitting the linear model yields the estimated regression coefficients j = (LYTX)-l 1' 

from which we construct Y = X d  = X ( X T X ) - '  X T Y  = H Y .  So, the projection is 

given by the matrix H = X ( X T x )  -' X T ,  and are have the further interpretation that 

each predicted point is the weighted sum of neighbouring points since 2 = c:=, hgl;. 

The weights {hij) are commonly referred to as leverages, and indicate the contribution 

a point Y ,  has on the prediction of Y,  irrespective of the actual response function. 

A scatterplot of the leverages for the point 110.8,0.1) (denoted by a square) in 

the horseshoe region is shown in Figure 1.3(a). This plot shows that the leverages 

for this point are positive at the ends of the horseshoe, and small or negative near 

the top of the horseshoe. For instance, two points with nearly equal leverage for 

the prediction of ~ o , s , o . l )  occur at (0.6,O.l) and (1.0,O.g) respectively with leverages 

L(o.s,o.l) and Lpo ,o .~ ) .  However, while the point (1.0,O.g) may seem relatively near to 

(0.8,O. 1) in terms of the straight-line (Euclidean) distance between them (see Figure 

1.3(b)), we know from the response function shown in Figure 1.2 that the behaviour 

of the response at these two points is very different, and it would seem unlikely that 

positive leverage should be given to ~ l . o , o . ~ )  when predicting qo.s,o.l). In fact, the 

point (1 .O, 0.9) could be considered the furthest away from (0.8,O. 1) when viewing 

the behaviour of the function along the path formed by the horseshoe region in Figure 

1.2. In this sense, the horseshoe region is somewhat of a worse-case example since 

two points which are near in terms of their Euclidean distance are actually far apart. 

The importance of distance can be seen by noting the relationship between the 

leverages and the Mahalanobis distance measure. Recall that the Mahalanobis dis- 

tance (Ravishanker and Dey, 2002) is essentially a normalized version of Euclidean 

distance, and can be written as dni (xi) = J(zi - plT C-I (xi - p) . In the simplest 
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Figure 1.5: (a) Leverages for point (0.8,O.l) at points (0.6,O.l) and (1.0,O.g) for 
regression over the horseshoe region, (b) the same points in the horseshoe design 
region 

case, one may have C == I N ,  the NxN identity matrix, in which case the distance 

measure reduces to usual Euclidean distance. Consider the point xi in our horseshoe 

region, and the remaining points X(i) = X - {xi). Let us assume that the existing 

points Xi,) are already mean centered, so that z(i) = 0. We can estimate the covari- 

ance matrix by E = S = &X&X(~),  where here S is the sample covariance. Then 

we have dil(xi) - xr X&X(i) xi = hi,, the leverage for point xi. This result ( i-I 
means that the leverage of a new point xi is strongly related to the corresponding 

distance to the centroid. So, the notion that the leverages found do not make sense 

when fitting a linear model to the horseshoe region can be interpreted as a question 

of the validit,y of the distance measure used. 

So far, we have seen in the Welding example an approach that did not allow for 

a predictive model and placed constraints on the way dependent design variables 

could be related. In our second example, we have further seen a problem where the 

relationship between dependent design variables may be very complex, and certainly 

non-linear. However, there are recent approaches that have been used to handle these 

types of problems. In the next chapter, we present these approaches and consider the 

related design of experiments problem. 



Chapter 2 

Met hods 

In this chapter, we start off by outlining the usual Gaussian Process model over a rect- 

angular design region and the corresponding Integrated Mean Squared Error (IMSE) 

optimal design criterion. These are then adapted to non-convex design regions. We 

develop methodology for the GP model in the case of non-convex design regions, and 

present a new form of the IMSE design criterion for this case. Finally, the problem 

of actually constructing designs over non-convex regions is addressed. 

2.1 Gaussian Process Model 

Suppose the response of interest is modeled over the D-dimensional rectangular 

design region R E gD formed by the independent factors F = ( fi ,  . . . , fD). If 

x = (xl, . . . , xD) E 9 is any vector in our region of interest, then we are inter- 

ested in modeling the response as a function of x.  For the Gaussian Process (GP) 

model, we model the response at a particular value of x (denoted Y(x)) as a random 

function with Y (x) = ,LL + Z(x) + E(x), where p is the overall mean response, Z(x) is 

a random function that describes the systematic departure from the mean, and ~ ( x )  

represents measurement error. The random function Z(x) is taken to be normally 

distributed with constant variance a: and unknown correlation Cor(Z(xi), Z(xj)). 

The measurement error term is also taken to be normally distributed where each ~ ( x )  

is independently distributed with equal variance (a:), and are also independent of 
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Z(x). Since we of course do not know the form of Cor (Z(x,), Z(x,)), we make an as- 

sumption of its functional form, for instance COT (Z(x,) , Z(x, )) = r(8,  x, , x, ) .  Then 

the functional form of the correlation indirectly describes the correlation structure of 

the random function. So, we model the correlation structure of the response rather 

than modeling the mean as is done in normal regression. 

To utilize the model, the values of the parameters that define the correlation 

function, as well p ,  a? and 0: mush be estimated. This can be accomplished following 

the usual likelihood framework for finding the parameter values which maximize the 

likelihood of data observed at N sampled points (i.e., MLE). However, let us first 

introduce the form of the covariance function we will use in this thesis. 

One of the most common correlation functions used in Gaussian Processes is 

known as the Gaussian correlation function. Suppose we have two points xi, x j  in 

our region a, and let dijk = lxik - xjkl be the Euclidean distance between xi and x j  

along the k'th dimension, k E 1 . . . D. Then the Gaussian correlation between y (xi) 

and y (xj) is written as: 

where Ok E (0, oo) is a correlation parameter for each dimension. An equivalent and 

perhaps more easily interpreted expression for the correlation is given by: 

where now the parameter pk  E (0 , l )  has the interpretation that p m 0 implies low 

correlation while p m 1 implies high correlation. We will make use of (2.1) mainly in 

presenting formulae in a manner consistent with the literature, while the form (2.2) 

will be used in discussions due to its interpretability. 

The Gaussian correlation function shows that the correlation between two ob- 

served values is given by the products of independent correlation functions for each 

dimension. The correlation along each dimension is given by a parameter which is ex- 

ponentially decayed according to the squared Euclidean distance between the points 

in the region S2 along that dimension. Hence, if the distance between xi and x j  is 

small, the correlation will be high and so large weight will be given to response y(xj) 
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if we were interested in predicting 2' (x,). If the distance is large, the correlation will 

be low, and so small weight will he given to response y(x,) in predicting 1' (x,). So, 

the rate at  which the correlation changes is modeled by the parameter, pk (or &.), 

independently in each dimension. The behaviour of the response function can then 

be thought as being modeled by the correlation structure in the direction of each 

dimension forming the region R. 

Some further clarification can be found by examining (2.2) if we momentarily 

ignore the possibility of measurement error (i.e., a: = 0) and consider D = 1 and 

62 = [O, 11. Suppose two response values y (xl)  and y (x?) are taken such that dl2  = i. 
1 2  

Then 1 . 1 ~  = p"12' = p4(7) = p, which means that in this example, a distance of 

1 is the distance that gives a correlation of exactly p between the corresponding 2 

responses. If instead we consider d12 = 1, then 1.1~ = P4(1)' = P4, and since this is the 

maximum distance allowed between two points in this example, it follows that p4 is 

the minimum correlation between observations. Finally, if d12 = 0, then rl2 = 1, and 

our two responses are equal, as we would expect when there is no measurement error. 

The overall behaviour of the correlation function is shown in Figure 2.1 for p = 0.1, 

p = 0.5 and p = 0.9. Suppose we wanted to predict the value of the response at a 

point x and are interested in how y(xl) will affect the predicted response ~ ( x ) .  If the 

distance between these points is small (say 0.1), then large weight will be given to the 

prediction ~ ( x )  for both p = 0.1 or p = 0.9. If instead the distance between these 

points were large (say 1.0) then large weight will be given to the prediction Y (x) for 

p = 0.9 as the correlation function decays very slowly in this case, but if p = 0.1 then 

almost zero weight will be given to the prediction Y (x). 

Let us now proceed to show how we can fit the model to data in order to estimate 

the G P  parameters. Suppose we have a design of N points given by X = (xl, . . . , xN), 

where each xi = (xil, .  . . , xiD) E 0. The corresponding responses are given by 

YT = (y(xl), . . . , y(xN)), where y(xi) = p + Z(xi) + E ( x ~ )  are realizations of the 

random function Y (x). Then Z(X) N(0, C) and &(X) N(0, azI). Let 1 be the 

N x 1 vector of one's, C = a2R, i' = a1R + o:I, and f: = R + 2I , where R = [ru] ( 7 
is as defined in (2.1). The log-likelihood for the GP model is then given as: 
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distance 

Figure 2.1: Correlation between two responses y (xl) ,  y (x2) as a function of distance 
for p = 0.1 (solid), p = 0.5 (dashed) and p = 0.9 (dotted). 

The estimate of the mean can be found as: 

and substituting our estimate for the mean back into the log likelihood, the remaining 

parameters (i;2, cfZ2 and the vector 6 (or ,6) can be found numerically (Wolfinger et al., 

1994). 

Since the GP model predicts the response as a weighted function of the responses 

observed at the design points, the usual predictor considered is of the linear form 

aT(x) y (Sacks et al., 1989a) where aT(x) are the weights given to  the y's for predicting 

the response at a new location x. The best linear unbiased predictor (BLUP) of this 

form at the new location x can be shown to be Y (x) = rT(x)g-I (y - I,&) + f i  (see 

Appendix B) , where rT (x) = (r(x, xl), . . . , r(x,  xN)) is the vector of correlations 

between the new point x and all the design points xl ,  . . . , x ~ .  The Mean Squared 
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Error (MSE) of this predictor is: 

(see Appendix B). A more convenient form for our purpose is: 

since terms involving x are separable from the remaining terms. We will show later 

that this is necessary in formulating our design criterion. 

2.1.1 Design for Gaussian Processes 

There are numerous approaches and criteria to consider when constructing optimal 

designs. For instance, a common design-based approach are the "space-filling" designs, 

such as (Johnson et al., 1990). Model-based designs are typically found by selecting 

design points that maximize or minimize an appropriate optimality criterion. Our 

interest lies in prediction, so we will consider the I-Optimal criterion, or Integrated 

Mean Squared Error (IMSE) optimal designs. This criterion minimizes the average 

squared prediction error by minimizing the integral of the MSE over the design region 

0. This makes sense when we are interested in prediction, as one would like to 

minimize the average error when predicting the response at  any point x E R. 

In the usual case of independent design variables, the selection of I-Optimal design 

points can be stated formally as: 

where xi E X C 0. It is customary in the literature (Sacks et al., 1989a; Sacks 

et al., 198913) to in fact minimize the IMSE normalized by nz. Minimizing the IMSE 

instead of only the MSE makes sense since integrating the MSE over the region takes 

into account the correlation structure of the GP model as including a point x in the 
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design not only reduces the error at that point, but also reduces the error at, nearby 

neighbouring points. So, the design problem becomes: 

arg min J (0, a:, a:) , 
X 1 , X 3 , . . . , X ~  

2 
where J (0, a:, a:) = $ E [(i7(x) - ~ ( x ) )  ] dx. Let us write nf = 3. Then, 

with some algebra (see Appendix C), we can write the a:-normalized form of the 

IMSE as: 

7. (x) 
J (0, a?) = (1 + a:) - trace 

This form is different from that presented in the literature, since for instance (Sacks 

et al., 1989a; Sacks et al., 198913) assume a: = 0 which simplifies the design problem. 

This simplification is useful in computer experiments where there is no measurement 

error in the response. Here we consider the effects of both a: and a: by consider- 

ing the ratio of these variabilities in formulating J, which just so happens to be a 

generalization of the a:-normalized form given by (Sacks et al., 1989a; Sacks et al., 

1989b) if we consider a: # 0. As mentioned earlier, the terms involving x are sep- 

arable which eases the integration. Since the design variables are independent, the 

integration terms can be solved analytically because the correlation function is also 

separable, hence 

where @ (.) is the standard normal CDF. 

Note that (2.4) is also a function of the parameters 0 and a:. This is problematic, 

as our design criterion is dependent on exactly the parameters that we would fit 

via maximum likelihood given a design! The parameter 8 is often handled (Sacks 

et al., 1989a; Sacks et al., 198913) by performing a robustness study where designs 

are constructed at  a number of assumed values of 8, and then compared using the 



relative efficiencies of these designs. Let us follow this approach for our purposes, and 

define the relative efficiency of two designs in the following manner: 

where QT is the true value of the parameter, X(OT) is the set of optimal design points 

found under knowledge of Or, and $,,,, (X(OT)) is the fitted response under the 

optimal design for OT, while X(QA) is the set of optimal design points found under an 

assumed Qa # OT with corresponding fitted response (X(QA)). 

So, the numerator in (2.5) is the minimum IhlSE that can be expected since we 

have constructed the design under knowledge of the true value of the parameter 8, 

while the IMSE denoted in the denominator is likely larger since we have assumed an 

incorrect value of 8 in constructing our design. Hence, the relative efficiency lies in 

the range [0,1], where a value close to 1 indicates that the design constructed under 

the assumed OA gives performance nearly equivalent to a design constructed under 

knowledge of the true parameter value, while a value close to 0 indicates that the 

design constructed under OA performs very poorly as compared to the optimal design 

constructed under knowledge of Or. 

A robust design is a design constructed under an assumed which gives good 

performance under a wide range of Or's. Stated formally, a robust 8 is found as: 

Selection of the robust OR can be done by performing a simulation study using designs 

constructed with various 0A7s and OT's and then selecting the particular 8a that 

maximizes the minimum relative efficiency observed under assumption of OA. This is 

exactly what will be done in later sections. However, at this point we need to also 

consider the parameter a;. 

Since the IMSE is computed normalized to o:, the parameter CJ; can be thought 

of as the ratio of large-scale (ie functional) variation versus small-scale (ie noise) 

variation. If we assume that the total variation of the response vector y is scaled 

so that gi = 1, and we expect most variability to be due to the functional pattern 
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present in the y's, a reasonable assumption is to expect the value of a: to be close 

to 1 and a: close to 0. Accordingly, we can take a Model Averaging approach and 

place inverse gamma priors centered at 0.9 for 0; and 0.1 for a: as motivated in 

(Chipman, 1997; Linkletter et al., 2005) in order to model a:. We then average our 

design criterion over this distribution, ie: 

J (0) = {(I + a:) - trace [( ) ( r (XI (x) r (x) ) dX] } , 
and use the form (2.7) in performing the robustness study to select an appropriate 

OR that is optimal in the sense of (2.6). We propose this new approach to extend the 

construction of I-Optimal designs to the general case of a: # 0. 

2.2 Gaussian Processes and Non-Convex Domains 

The GP model can be viewed as performing local fits to form a global estimate of 

the response. This is very different from our usual linear model, which performs a 

global fit to the data. The global approach has a notable limitation in the case of 

dependent design variables as we saw earlier, while the local approach will enable 

greater flexibility in considering dependent design variables. This is particularly true 

in practice where we may not know the exact relationship (in functional form) between 

the design variables. 

In order to fit a GP  model, the pairwise distances between design points are 

required. Typically the distance measure used is simply Euclidean distance, however 

since the model only depends on pairwise distances, one can use alternative distance 

metrics (subject to some constraints). It is this ability to change the distance metric 

used in defining our process that will allow easier consideration of dependent design 

variables. 

Using the Euclidean distances between points ignores the relationship that exists 

between the design variables in non-convex regions. Recently, researchers in geostatis- 

tics have utilized the so-called water distance, or more generally, geodesic distance as 
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Figure 2.2: Euclidean (dotted) vs. Geodesic (dashed) distances between points A and 
B in a dependent design variable region 

an alternative distance metric (Rathbun, 1998; Loland and Host, 2003). We will refer 

to the geodesic distance between xi and x, as dg(xi, x,) = d,,. The geodesic distance 

between two points lying in a connected region of arbitrary shape is simply the length 

of the shortest path connecting these two points such that the path lies completely in 

the region of interest. Figure 2.2 shows the geodesic distance between points A and 

B lying in a design region formed by dependent variables. Recall that such a region 

is non-convex because the straight line joining two points may not entirely lie within 

the region of interest, as is the case for the points A and B shown. Formally, suppose 

now that we consider the new space '3 embedded in the ambient Euclidean space 

OD with geodesic distance metric dgii For instance, the horseshoe region shown in 

Figure 2.2 is embedded in the ambient Euclidean space g2. We map our design space 

from 0 to tB by substituting the geodesic distance dgij for the Euclidean distance dij. 

We make this mapping as a means of handling the non-convexity of St. 
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In the geodesic space, we define the correlation function as 

where we now only have the single parameter Q0 instead of the vector considered 

before. This follows since the geodesic distance is essentially dimensionless no matter 

what the dimension of the ambient Euclidean space. As before, we can fit the model by 

maximizing the likelihood (2.3) with the appropriate substitutions in the calculation 
- 

of C. Since the correlation function is now integrated over our lion-convex region, 

we must estimate the integral J ~ d x  numerically. Accordingly, we will calculate our 

design criterion using hlonte-Carlo integration (Press et al., 1992): 

where G = {GI, . . . , GNG) is a sample of NG points from '3 

Modeling in 9-space has been discussed previously (Rathbun, 1998; Loland and 

Host, 2003), however design for non-convex regions, to the best of our knowledge, is 

new. Yet despite the simplicity suggested by (2.9), there are numerous difficulties in 

actually being able to construct designs in non-convex regions. The most significant 

problem lies with the very assumption of using the geodesic metric itself, since mod- 

eling a GP using the geodesic metric can lead to a correlation matrix R that is not 

positive semi-definite (Rathbun, 1998). We now outline a novel approach that allows 

us to resolve this issue. 

2.2.1 ISOMAP 

In (Tenenbaum et al., 2000), the authors propose an approach to project an intrin- 

sically low-dimensional surface located in a high-dimensional ambient space into a 

low-dimensional embedding space in order to recover the underlying geometry of the 

surface. We will see in a moment how this method, known as ISOMAP, will be useful 

to us. First, let us understand this method and the problem it was originally designed 

to solve. The basic steps are: 
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fill the surface lying in high-dimensional space with a grid of points 

coiistruct a neighbourhood graph 

compute the shortest paths between points 

construct a low dimensional embedding of the higher dimensional surface. 

The ISOh4AP algorithm begins by filling the region 5Y with a grid of points and 

then constructing a graph over these points by connecting the €-nearest points to 

one another. These nearest neighbours are connected according to their Euclidean 

distance in the ambient space LPD. Based on this graph, the geodesic distances 

between the grid of points are approximated by computing the shortest paths along 

the graph defined by the grid of points. The shortest paths are found by solving the 

all-pairs shortest path problem by applying Floyd's algorithm (Cormen et al., 1990). 

This is essentially done by adding up the Euclidean distances along short hops between 

neighbouring points that lie on the path joining two points of interest. Although 

calculating geodesic distances in this way yield only an approximation dependent 

on the parameter E ,  for simplicity we still refer to these calculated distances as the 

geodesic distance d,. 

Using a grid of 63 points filling the horseshoe region in equally spaced intervals 

of 0.1 units, the geodesic and Euclidean pairwise distances were calculated. Figure 

2.3 shows the scatterplot of pairwise Euclidean distances versus pairwise geodesic 

distances for the horseshoe region. One can notice that the two distance metrics 

quickly become unequal for points that are geodesically further apart, as we would 

expect. Since the correlation structure that we model is directly dependent on these 

distances, this graph shows that the correlation structure for the horseshoe region 

will be incorrect if we do not consider the non-convexity of the region. 

The pairwise geodesic distances calculated using Floyd's algorithm can be taken 

as dissimilarites and a new embedding space for these dissimilarites can be found 

by applying Metric Multidimensional Scaling (Cox and Cox, 2001) to the matrix of 

geodesic distances computed. In this manner, a Euclidean embedding space can be 

found such that the distances between points in the embedding space approximate or 
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Euclidean Distance 

Figure 2.3: Euclidean Distance d(.,  .) vs. Geodesic Distance d,(., .) for Non-Convex 
Horseshoe Region 

equal the geodesic distances found from the graph constructed over 9. Multidimen- 

sional Scaling (MDS) works as follows. Suppose we have the matrix of squared pair- 

wise Euclidean distances D2 with entries [D:] = d;'. Let A = - iD2 and B = HAH, 

where H = I - !lT1 is a centering matrix. Applying H to A in this manner is the 

same as mean-centering our matrix of squared distances. It can then be shown that 

the resulting B is actually the inner product matrix B = XTX, and by writing it 

in terms of its spectral decomposition B = VAVT, then the original coordinates can 

be recovered as X = V A ~ .  Hence MDS provides a way to reconstruct the Euclidean 

coordinates given only the matrix of Euclidean pairwise distances. 

The ISOMAP approach replaces dij  with the geodesic distance calculated over 

the surface of interest, dgi j .  If the resulting matrix B is positive semi-definite, then a 

representation of points in a possibly lower dimensional Euclidean space & has been 

found such that the Euclidean distance in G equals the geodesic distance, as required. 
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Figure 2.4: (a) The original swiss roll and (b) ISOhSAP's low-dimensional embedding 

The classical example discussed in (Tenenbaum et al., 2000) is the swissroll surface 

shown in Figure 2.4(a). We can see that the swissroll is essentially a 2-dimensional 

plane that has been curled and placed in a 3-dimensional ambient Euclidean space. 

Hence, the actual vectors that define the swissroll lie in 9 Z 3 .  In order to recover the 

true 2-dimensional plane, the authors sample 1000 points from the swissroll, construct 

an adjacency graph based on this sample and then approximate the geodesic distances 

between points in the swissroll using the constructed graph. Applying MDS to the 

geodesic distances then recovers an embedding for the swissroll. The authors note that 

the eigenvalues of the embedding quickly drop to nearly zero for 2 or more dimensions. 

Therefore, the appropriate dimensionality of the embedding is 2-dimensions, and the 

original plane, which we know is 2-dimensional, has been recovered as shown in Figure 

2.4(b). 

Unfortunately, not every non-convex region can be easily embedded. It is quite 

common for the non-convex regions we are interested in to form a matrix B that is not 
1 

positive semi-definite. In this case, we can view the reconstruction x~ = &A; and 

the resulting distance dt, as a further approximation of the geodesic distance (since 

d, is itself the approximate geodesic distance) by using some of the positive (eigen- 

vector,eigenvalue) pairs from the spectral decomposition of B, denoted by (Vl, Al) 

respectively. Using this approximation, the resulting B1 will be positive semi-definite, 
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hence giving us the approsimating Euclidean space embedding needed 

Although the authors of ISOAIAP were clearly interested in dimensionality reduc- 

tion to uncover simplified forms of surfaces located in a high dimensional space, our 

insight stems from viewiiig the ISOAIAP approach in the opposite light of projecting 

a surface into a potentially higher dimensional embedding space. V7e will provide an 

intuitive argument for this reasoning. First, it should be recognized that if our surface 

of interest is convex and in an ambient Euclidean space, then the geodesic distance 

measured between points on this surface is simply the Euclidean distance between 

these points. In this case we have already shown that the exact low-dimensional 

embedding can be found. Since the embedding will be exact, the distances in the 

embedding space will equal the geodesic distances measured in the original space, in 

which case we say that the embedding is isometric. If instead we have a problem 

such as the swissroll example shown and an isometric embedding is found, then it 

must be a lower dimensional embedding by assumption. However, there is a third 

case that can occur, which is motivated by the horseshoe region shown earlier. In 

this instance, we have a 2-dimensional surface lying in a 2-dimensional ambient space. 

Since the inner product matrix B in this case is not positive semi-definite, then the 

geodesic distances constructed over the horseshoe are not isometric to a Euclidean 

space. Therefore, we know that no appropriate lower-dimensional Euclidean embed- 

ding space exists for the horseshoe. However, we can still embedded our region in 

a Euclidean embedding space of possibly equal or higher dimensionality than the 

ambient space. The question is then of selecting the appropriate dimension. 

There are two obvious approaches (Cox and Cox, 2001) to selecting the correct 

embedding dimension when using MDS. In the classical application of MDS where 

one is usually interested in dimensionality reduction, one would choose the dimension 

of the embedding space that captures the greatest proportion of variability in the 

embedded points. This is known as the maximum variability criterion, where the 

variability of the embedded points along each dimension of the embedding space is 

given by the eigenvalues from the matrix B: 

where k = 1 . . . p. 
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Figure 2.5: Relative Empirical h4ean Squared Error of geodesic distance approxi- 
mation (EMSE,.,) for 0.10 spaced grid (solid) and 0.05 spaced grid (dashed) in the 
horseshoe region 

Another approach is the mean squared error criterion: 

n9 n9 

In fact the criterion of maximizing the variability of the embedding (2.10) is the 

same as minimizing the reconstruction error of the embedding (2.11) in the Eu- 

clidean distance case. Consider the case of Euclidean distances calculated from n 

pdimensional points X,  and the resulting inner product matrix B = X X T  where 

the rank r(B) = r(XXT) = r (x)  = p. Since B is positive semi-definite with rank p 

and hence has p positive eigenvalues and n - p zero eigenvalues, the corresponding 

spectral decomposition can be written as 
n P 
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since (A,+1, . . . , A,,) = 0. The criterion of maximuni variation would lead to one taking 

all p (eigenvector,eigenvalue) pairs in the reconstruction, while the reconstruction 

error criterion would also require one to take all p (eigenvector,eigenvalue) pairs since 

this reconstructs the original points exactly, hence giving the minimum (zero) error. 

In contrast, for the geodesic distance case of interest, we typically do not have a 

positive semi-definite matrix B,  and hence an exact distance preserving embedding 

in pdimensional Euclidean space cannot be found. In this case, the two criteria may 

not agree exactly. However, applying the reconstruction error criterion would seem 

more appropriate since our model of interest directly depends on the accuracy of our 

distance measure. Applying this criterion will approximate the geodesic distances 

with the greatest accuracy by finding a Euclidean space & that is as close to being 

isometric to 99 as possible. 

We can compute the empirical mean squared error of the projection for varying 

values of k = 1. .K,  with K being the number of positive eigenvalues of our inner 

product matrix B.  The value of k that minimizes EMSE,C, is then used in constructing 

the projection of our points into the embedding space 8. Figure 2.5 shows how the 

values of EMSE,$ change for varying k and grid densities. This result suggests an 

embedding space of 3 or 4 dimensions is appropriate for the horseshoe region. 

In terms of modeling and design for the Gaussian Process, if the Euclidean dis- 

tances in the embedding space equal the geodesic distances, then the embedding space 

& is isometric to the original space 99 and use of the raw geodesics in forming the 

correlation matrix R is valid. Otherwise, we use the approximation which will also 

lead to a valid correlation matrix. We can investigate the error introduced by this 

approximation by looking at the difference between dg  and d:, in more detail. 

It is natural to ask how many points need to be taken in our region of inter- 

est to form good estimates of the geodesic distance. Unfortunately, the calculation 

of geodesic distances is limited by computational complexity. Solving the all-pairs 

shortest path problem for n, points using Floyd's algorithm requires O(n:) computa- 

tions, and is therefore not amenable to extremely large ng. SO in practice, one would 

estimate dg and hence dt, using a reasonably small subset of points. We can nonethe- 

less get an idea of how sensitive this procedure is by comparing the true geodesic 
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Approx. Geodesic D~stance (0.05 grid) 

Figure 2.6: Approximated Geodesic Distance dr (., .) using 0.05 grid vs. Approxi- 
mated Geodesic Distance d,c, (., .) using 0.10 grid for the Non-Convex Horseshoe Re- 
gion 

distances and those computed with a grid density 0.10 and 0.05. 

(0.05) The scatterplot in Figure 2.6 was generated by computing d ,  (., .) for 247 points 

using a 0.05 grid spacing and comparing these distances to those computed using the 
(0.10) distances dC5 (., .) found using 63 points with 0.10 grid spacing. In order to compare 

the approximated geodesic distances using these two embeddings based on 0.05 and 

0.10 grid spacing, we need to further approximate 247-63=184 distances for the 0.10 

grid spacing case, which we do using the method described in the next section. For 
(0.10) (0.05) now though, it is sufficient to see that the distances d, (., .) and dt (., .) roughly 

coincide, although there is a noticeable overestimation of large distances when using 

the 0.10 grid spacing. This is somewhat expected since points which are nearby in 

97 have distances which are nearly Euclidean and hence will not change greatly with 

increasing point density. However, as we look at points further apart, their distances 
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Geodesic D~stance 

Figure 2.7: Geodesic Distance d,(. , .) vs. Approximated Geodesic Distance d,. (., .) 
for Non-Convex Horseshoe Region 

are reflected by the shortest path length connecting them, which we approximate 

as the sum of piecewise line segments on the approximate shortest path given the 

resolution of our grid. It follows that the longer the path length, the greater the 

number of perturbations away from the minimum path we will have and hence the 

decreased accuracy for distant points. Increasing the grid density allows the true path 

to be better approximated, thereby reducing this error. 

The scatterplot shown in Figure 2.7 plots the true geodesic distances calculated via 

Floyd's algorithm to the approximation found with ISOMAP. We see that the large 

distances are identical, but the approximation has some error for smaller distances, 

which tend to be overestimated. 
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From this discussion of ISOhIAP, we can note that 

0 We can project a low-dimensional non-convex region into a new Euclidean space 

of typically higher dimension by conserving approximate distance measure equal- 

ity 

Although the appropriate hIDS criterion for finding this embedding is the A4SE 

of the approximated distance, it is clear that there is some bias in the approxi- 

mation 

0 The bias in distance approximation will decrease at the expense of denser sam- 

pling and higher computational cost 

The computational cost can be a significant barrier to the calculation of geodesic 

distances. For instance, the ISOnlIAP algorithm implemented in (Tenenbaum et al., 

2000) comfortably handles 1,000 points in estimating the geodesic distances for the 

swissroll example. However, in a much higher dimensional space, the computational 

problem would soon become the limiting factor. Nonetheless, this approach allows 

modeling the GP over a non-convex design region without any problems by transform- 

ing the region to an approximating Euclidean space. The model should be markedly 

better than ignoring the non-convexity of the design region by modeling over the 

original Euclidean space. 

2.2.2 Out of Sample Extension 

Given that we are computationally limited to n, points in calculating our geodesic dis- 

tances D, = [d,  (. , . ) I ,  and the resulting approximation of these distances D,: = [d,{ (. , .)I 
found with the pdimensional embedding of points X, we may be satisfied with the 

approximation found as measured by EMSE,:. However, in subsequently applying 

our design criterion, we will need to estimate the integral (2.9) using Monte Carlo 

integration as the sum of the MSE over NG points sampled in our region of interest. 

In typical cases, we will have n, < 200, while it will almost always be the case that we 

will require NG >> 200 to approximate the integral. So, using only N, = ng points 

in estimating (2.9) will be insufficient to get a good estimate of the IMSE. 
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Additionally, calculating the IAISE requires finding r(x), Vx E {G), where r(x) 

is the vector of correlations between a point x and all the points in the design 

= { x  x .  This requires knowledge of the geodesic distances 

dg(x, xl ) ,  . . . , d,(x, xx) ,  which are unknown. A natural approsimation one might 

make is: 

' I  9 

d,(x, xj)  lnin Z=I d,(x, xi) + d,: (xi, x,), 

which is nothing but the geodesic distance between x and xi plus the approximated 

geodesic distance between e(xi) and e(xj) calculated in the embedding space. How- 

ever, it was observed that using this approximation can result in negative hlSE values. 

It also does not make sense to calculate r (x)  in this way as the distances would not 

be consistent with those used in calculating R since for that purpose we use the 

embedding space approximate distances. 

Both of these issues can be resolved by projecting the additional (Ng - n,) points 

lying in te - space into the embedding space 8 in a manner consistent with the pro- 

jection already found using the sample of ng points. The ability to project additional 

out-of-sample points in this manner is shown in (Bengio et al., 2003) as: 

Therefore, we can deal with out of sample points by projecting them into the 

embedding space in a manner consistent with the original embedding found using n, 

points. 
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Constructing Designs on Non-Convex Regions 

We now look at how I-Optimal designs can actually be constructed. The basic steps 

one need take are: 

Construct €-grid of size n, over design region R of interest and calculate geodesic 

distances 

Construct family of d = 1 . . . D dimensional embeddings Gd 

Apply (2.11) to find the best distance preserving embedding Fk 

Project NG points from G E '3? to the embedding space 8'" using (2.12) 

Draw N,? values from the distribution for a: 

Choose the assumed value(s) of p (or 8 )  and the number of desired design points 

nx 

Search for I-Optimal design 

At this point we have shown how to calculate the geodesic distances and select 

a distance preserving embedding as well as using the out of sample formula for em- 

bedding additional points for the purpose of estimating the integral over the design 

region. We then can construct our designs using the IMSE criterion by performing 

the Monte Carlo integral over the design region and taking the expectation with re- 

spect to a specified distribution for a:. However, before making use of the criterion 

in actually constructing designs, we must make the important distinction of which 

representation, in terms of space, of the design region are we taking the integral with 

respect to. That is, since we now know that the distances calculated in '9 are ap- 

proximated by the usual Euclidean distances in Gk, we must consider which space we 

will use in constructing our designs. 
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2.3.1 Model 1: Distance Approximation Approach 

If we simply consider the embedding space & as providing a valid distance approsi- 

mation for 9 by making the simple substitution &(., .) % d,c (. , .), then our criterion 

becomes: 

where G = {GI, . . . , GNG) is a sample of NG points from 3, n:i is the 9th draw from 

the distribution for a: giving 

Pi = R + O:~I  

In other words, when we view the problem as finding a k-dimensional Euclidean 

embedding space Gk that best approximates the geodesic distances 3 then we still 

model over the space 3 only we will have the single parameter Bo (or po) since we 

only have one modeling dimension in 9. This approach has not been considered in 

the literature, and means that we model the correlation structure as if it decays at 

the same rate in all directions. This allows the nice property that when we view the 

problem as a distance approximation, we don't need to make any assumptions on the 

true dimensionality of the response. However, if instead the true response does lie 

in a multidimensional space, then modeling the response in this way is not the right 

thing to do. 

2.3.2 Model 2: Embedding Space Approach 

An alternative view is to suppose that the distance preserving space gk is the true 

underlying space that the response is a function of, in which case we view the response 

as being parameterized by a k - dimensional independent variable. In this case, our 
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criterion will be: 

J. (8) = (1 + 3) - t ~ a c e  
0 l 1  

EE,' l;~ (x) 1',~ (x)1',. ( x ) ~  

where E = {El,. . . , ENG) is a sample of iVG points from 8, o:z is the i'th draw from 

the distribution for a: giving 

2, = R + oa,~  

In this approach, the embedding & preserves both the distance and true dimensional- 

ity of the design region for the response. This allows greater flexibility in the types of 

functions we can fit due to the k-vector 0 (or p) parameterizing the correlation func- 

tion, a t  the cost of making an assumption on the true dimensionality of the design 

region. This has a number of consequences, namely: 

1. Assessing the true dimensionality of the design region may not be easy, as 

suggested by Figure 2.5. 

2. We must take the points E as being the embedding of points G, hence 

E = {e(Gl), . . . , e(GN,)). However, while the set of points G may be an equally 

spaced grid in 9?, it is unlikely that the resulting points E are equally spaced 

in &. 

3. In the case that = O2 = . . . = Ok, then this model degenerates back to 

the distance approximation approach (Model 1) described above, as one might 

expect. 

In fact, the assumed ISOMAP mapping will certainly give us an embedding space of 

some sort, but it is still an assumption. 

Figure 2.8(a) shows an equally spaced grid of points projected from %'-space to 

g3-space. One can notice that the projected points in Figure 2.8(b) no longer appear 

to be equally spaced, particularly in the four "tail" sections which have a much denser 
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Figure 2.8: (a) Equally spaced points in the Horseshoe region, (b) their embedding in 
g3 when geodesics are calculated on a 0.10 grid and (c) their embedding in g3 when 
geodesics are calculated on a 0.05 grid 

packing of points than the rest of the embedded region. This is not unexpected 

since the embedding of the horseshoe region only conserves approximate distances. 

The situation can be improved somewhat by doubling the density of points used in 

calculating the geodesic distances in 97-space which result in a better approximation 

and lead to the improved embedding shown in Figure 2.8(c). Nonetheless, there is 

still a noticeably higher density of points in the "tails" in this embedding. 

When we are designing over the embedding space G (e.g., again we are now 

assuming that 8 is the true space rather than g), we would like to have a set of 

equally spaced candidate points in &-space. However since the embedded points may 

not retain the equal spacing, we should select a new set of candidates which are 
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equally spaced in &-space in order to find our design. Ifye handle this issue with a 

simple approach: 

Project a much denser grid of equally spaced points from 9 + 8 

Use a space-filling algorithm such as (Johnson et al., 1990) to select a smaller 

candidate set of points from those projected to 8. This candidate set is now an 

equally-spaced set of points covering 8. 

Finally, one can note that when O1 = . . . = Ok, then the correlation fimction is 

r(( (x) = e-X!=l - - e-00': ( X ~ X J )  = ?,/ (X) ,  

in which case the problem degenerates to the distance approximation approach. 

2.4 Exchange Algorithm 

The actual construction of I-Optimal designs is no trivial matter. We make use of the 

popular exchange algorithm (Silvey, 1980; Muller, 2001) to construct approximate 

optimal designs. This is a computational method that searches for the best subset of 

points over a finite grid covering the design region of interest. Suppose we start with 

a set g E '3 of ng points covering our design region '3 and we want a design X E g of 

size nx. The basic steps of the exchange algorithm are then as follows: 

1. Split the set g into g = gay U ijy where g x  is a candidate design of size n= 

2. Calculate the optimality criterion J(g.y). 

3. Construct the set of candidate designs {g;)  that result from all possible 

nx x (n, - nay) one-point exchanges between g-y and gx. 

4. Calculate the optimality criterion for each candidate design in {g;). 

5. Replace g x  with the ith design from {gL-) whose criterion J({g5)i) < J(gx-). 

6. Repeat steps 2-5 until no further reduction in the criterion is possible. 
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The exchange algorithm is then of order O(knay(n,  - nAy)) where k is the number of 

repetitions required until convergence. Typically, the number of repetitions required 

for the types of designs constructed in this thesis ranged from k = 3 to k = 5. 

So, while convergence seems reasonably fast, it becomes increasingly burdensome for 

larger designs. As well, one needs to keep in mind that at each stage of the algorithm, 

the calculation of the optimal criterion requires the hIonte Carlo integration over 3 

and a:. In the types of designs constructed in this thesis, runtimes were generally in 

the range of a few hours for smaller designs (say nx < 20) up to a few days for larger 

designs (nAy % 50). 

Typically the initial design g - ~  in step 1 is found by just a random selection of n s  

points from g. It is important to note that we use the same draw of Nu: points from 

the distribution for a: whenever calculating the criterion in the exchange algorithm. 

If instead we draw a new sample from the distribution for a: at each repetition of 

steps 2-5, then the criterion value for a given design g-y will not be the same between 

repetitions and therefore the algorithm will not be able to converge. In addition, even 

upon convergence of the algorithm, we are unlikely to have achieved the true optimal 

design allowed by our candidate points because of the random starting design or the 

possibility that the simultaneous exchange of two or more points would allow us to 

minimize the criterion further (Silvey, 1980). Therefore, the exchange algorithm can 

be independently replicated a number of times with a different random starting point 

and draw of Nu: points from the distribution of a: to attempt to overcome any local 

optimality. We can then take the design with the minimum criterion over all these 

replicates as our best I-Optimal design. 

2.5 Summary of Methods 

Let us now summarize the approach presented for both modeling and performing 

optimal design for non-convex regions. The steps to model our response using the 

distance approximation approach are: 

1. Fill the design region fl with n, points and calculate the n, x n, matrix of 

geodesic distances. These points and their geodesic distance now form a sample 
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of points g E 92 from 92-space. 

2. Project the g points from 9-space into &-space using ISOAIAP and fiiid the 
dimension k such that projection into G%ninimizes (2.11). 

3. Replace the geodesic distances computed in step 1 with the approximation found 

using the embedding space from step 2. 

4. Construct a grid G E 3 of size & points and project these points into Gk-space 

using (2.12). These will be our prediction points. 

5. Assume we have a set X E 3 of n-y observation points with corresponding 

response vector y. 

6. Project the points X into Gk-space using (2.12) and denote the embedding 

e w .  

7. Denote the matrix D,: k as the n-y  x n . ~  matrix of approximate geodesic distances 

between observation sites found from the embedding e (X) .  

8. Denote the matrix d,: li as the NG x n-x matrix of approximate geodesic distances 

between prediction sites G and observation sites X. 

9. Given the response vector y observed at X E 9? and the approximate distances 

from step 7, find the MLE's of a:, a: and O0 by maximizing (2.3). 

10. Find the BLUP ~ ( x ) ,  b'x € G, where r (x )  is approximated using d,', from 

step 8. 

If instead we are interested in predicting the response in the embedding space, the 

steps required become: 

1. Fill the design region Q with n, points and calculate the n, x n, matrix of 

geodesic distances. These points and their geodesic distance now form a sample 

of points g E 3 from 3-space. 

2. Project the g points from 9-space into &-space using ISOMAP and find the 

dimension k such that projection into gk minimizes (2.11). Alternatively, one 

could specify a particular dimension k. 
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3. Construct a grid G E '3 of size :VG points and project these points into Gk-space 

using (2.12). Denot,e the embedded set as E. These will be our prediction points. 

4. Assume we have a set X E 9 of n - ~  observation points with corresponding 

response vector y. 

5. Project the points X into Gk-space using (2.12) and denote the embedding 

6. Given the response vector y observed at e ( X )  E G, find the MLE7s of o:, a: 

and 0 = (&, . . . , Ok) by maximizing (2.3) in Gk-space. 

7. Find the BLUP ~ ( e ) ,  'Ye E El  where ~ ( e )  is of course computed in Gk-space. 

8. From the mapping of points G + E, use the reverse mapping to reconstruct 

the predicted response ~ ( x )  in 9-space. 

The overall procedure to search for the optimal design with the distance approxi- 

mation approach is: 

1. Fill the design region R with n, points and calculate the n, x n, matrix of 

geodesic distances. These points and their geodesic distance now form a sample 

g E 9 from 9-space. These will be our candidate points. 

2. Project the g points from 9-space into &-space using ISOMAP and find the 

dimension k such that projection into Gk minimizes (2.1 1). 

3. Replace the geodesic distances computed in step 1 with the approximation found 

using the embedding space from step 2. 

4. Construct a grid G E '3 of size NG points and project these points into Gk-space 

using (2.12). These will be our integration points. 

5. Set the number of NR replicate designs to find (e.g., NR = 20) and construct 

NR draws of size No? from the prior distribution of CT; and NR random initial 
designs of size n ~ .  
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6. For each i = 1 . . . NR, run the exchange algorithm described above with the 

set of candidate points g, the ith random starting design drawn from g, the 

ith draw of li,? points from the prior distribution of a$ to approximate the 

integral of a:, the set G to approsimate the integral over 92' and the correlation 

matris R and vector r(x) calculated using the distance approximation from the 

embedding space. 

7. Of the ~VR resulting designs, take the design with minimum Ih4SE as the optimal 

design. 

If instead we are interested in finding the optimal design using the embedding space, 

the steps required become: 

1. Fill the design region fl with n, points and calculate the n, x n, matrix of 

geodesic distances. These points and their geodesic distance now form a sample 

of points g E 9 from $!?-space. 

2. Project the g points from 9-space into &-space using ISOMAP and find the 

dimension k such that projection into gk minimizes (2.11). Alternatively, one 

could specify a particular dimension k. 

3. Construct a grid G E 9 of size NG points and project these points into gk-space 

using (2.12). Denote the embedded set as E. These will be our integration 

points. 

4. Select n, points in E that are space filling in gk, and denote this set as e. These 

will be our candidate points. 

5 .  Set the number of NR replicate designs to find (e.g., NR = 20) and construct 

NR draws of size NCg from the prior distribution of a: and NR random initial 

designs of size nx. 

6. For each i = 1. .  . NR, run the exchange algorithm described above with the 

set of candidate points e ,  the ith random starting design drawn from e ,  the ith 

draw of NC: points from the prior distribution of a: to approximate the integral 

of a:, and the set E to approximate the integral over gk. 
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7. Of the n;k resulting designs, take the design with minimum IJISE as the optimal 

design. 

8. From the mapping of points G -+ E, use the reverse mapping to reconstruct 

the optimal design in 2?-space. 

With the basic algorithmic steps outlined, we proceed in Chapter 3 to investigate 

I-Optimal designs on non-convex regions with a simulation study and an applied 

example of these procedures. 
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Results 

In order to evaluate the effectiveness of the proposed design methods on prediction 

error, a number of examples are investigated. We first perform a number of simulation 

studies for functions over the horseshoe region. The horseshoe region makes for a good 

example since it is somewhat of a worse-case scenario. This is because points at the 

end of the horseshoe are nearby in terms of their Euclidean distance, but actually 

very far apart in terms of the geodesic distance. We consider random functions that 

are drawn from the GP under Model 1 (97-space) or Model 2 (&-space). A subsequent 

study considers functions constructed from a second-order linear model in &-space. 

Finally, we investigate the real-world example of the Florida region and temperature 

data. In this case, we consider a large design constructed under Model 1 and compare 

its performance to a reasonable alternative. 

3.1 Simulation Study in 9-Space 

We investigate the performance of I-Optimal designs of the form (2.13) and (2.14) 

by drawing random functions jq from Model 1 (i.e., GP in 9?-space) and comparing 

the performance of I-Optimal designs to randomly selected points and space filling 

designs (Johnson et al., 1990). That is, our response in this case is drawn from Model 

1, but we consider designs constructed under Models 1 and 2. The basic outline for 

the study is then: 
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Construct designs of size n - ~  points using criteria (2.13) and (2.14) 

Draw 3,000 realizations from the Gaussian Process and fit the model by m u i -  

mum likelihood 

0 Compute the empirical mean square error for each fitted model and report the 

aver age. 

We consider designs of size nx = 16 that are selected from a candidate set of n~ = 63 

points that fill the horseshoe region in a (0.10 x 0.10)-spaced grid. The candidate set 

was constructed by first filling the [O, 112 region with the (0.10 x 0.10) grid and then 

from this grid selecting only those points that lie in the horseshoe region. The geodesic 

distances were also computed using a (0.10 x 0.10)-spaced grid, and based on the 

distance approximation errors shown in Figure 2.5, the distances were approximated 

in the embedding space g3. Since in this case we are drawing random functions in 

2?-space, we will only have one parameter po (we refer to the correlation parameter 

p rather than 8 from this point onwards due to the easier interpretation of p as 

discussed in Section 2.1). The random functions were constructed with mean p = 0 

and covariance matrix C parameterized by po and a: = 0.9 and defined on the n~ 

points. We use the predicted response given this correlation matrix as our "true" 

response surface and added the normally distributed measurement error with mean 

0 and variance a: = 0.1 to obtain the observed response values. 

A grid of NG = 2,239 points were selected for computing the Monte Carlo integral 

in evaluating the optimality criterions. This was done by filling the [O, 112 region with 

a grid of 4,096 points, and then selecting those points which lie in the horseshoe 

region. A sample of size Nn2 = 2,048 was drawn from the prior distribution of a:. 

We assumed that the variance of the response var(Y)  = 1 (we can scale our response 

accordingly) and that 90% of this variability is systemic while 10% is measurement 

error, which is what would be expected for the generation of the random functions 

described above. Under this assumption, we placed inverse gamma prior distributions 

on a: and a: centered at 0.9 and 0.1 respectively (the latter being truncated at 0.15) 

as motivated by (Chipman, 1997; Linkletter et al., 2005). The prior on a: was 

constructed by taking the ratio 3, and a histogram of this prior is shown in Figure 

3.1. 
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Figure 3.1: Prior distribution for a: 

We then consider five possible design constructions: 

Designs constructed in '3-space using Model 1 (distance approximation ap- 

proach) 

Designs constructed in g2-space using Model 2 (embedding space approach) 

Designs constructed in F3-space using Model 2 (embedding space approach) 

A space filling design in 9-space 

A random design in '3-space 

Designs constructed under Model 1 ('3-space) use the original 63 regularly spaced 

grid points as a candidate set, from which 16 design points will be selected. In 

contrast, designs constructed under Model 2 (g2-space and g3-space) use 63 points 
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Figure 3.2: 10 Realizations of the Gaussian Process with (a) p = 0.2, (b) p = 0.4 and 
(c) p = 0.6 

from their respective embedding spaces as candidate sets for selecting the 16 design 

points. Note that designs constructed in g2-space are done under a more erroneous 

distance approximation. 

In order to compare the effectiveness of these I-Optimal designs, two additional 

procedures for selecting design points were considered as a baseline: random designs 

and a space-filling design. The random designs are simply 16 randomly selected points 

from 3 which are selected independently for each replicate of the study. Essentially, 

this gives the worse behaviour one would expect to do when selecting 16 points. 

The space-filling design selects 16 points in 3 which minimizes the geodesic distance 

between these points and the unselected points remaining in '3 (Johnson et al., 1990). 

In other words, this design is space-filling in 3-space. Comparing to the space-filling 

design shows the improvement that can be realized by an I-Optimal design over a 

simpler method likely to be used by a practitioner. 

We consider 3 settings for the correlation parameter in drawing our responses: 

po = 0.2, po = 0.4 and po = 0.6. To better understand what these functions might look 

like, Figure 3.2 shows 10 realizations at each of these values of p for the 1-dimensional 

Gaussian Process. The general behaviour one might notice is that functions with 

p = 0.2 are fairly complex, while as p increases, the realizations become less so. 
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The results of the sirnulation study responses drawn from Model 1 (referred to as 

f, ) are show11 in Tables 3.1, 3.2, 3.3 and 3.4. Table 3.1 contains the averaged empirical 

mean squared prediction errors for all three I-Optimal designs as well as the random 

designs and the space-filling design. As expected, the E M E  for the random designs 

was noticeably higher than all other approaches. Space-filling designs appear to do 

well, typically performing only slightly worse than the optimal designs. 

Table 3.2 contains the relative efficiencies of the optimal designs for each level 

of po investigated. Reading column-wise for each design model, a relative efficiency 

of 1.0 will occur in the column j/;,,=, when pdesiglz = PO, since this is the best we 

should be able to do. By comparing the efficiency of designs in each column (and for 

each design model separately) we can see how the efficiency of designs change when 

pdesign # po. Then, by comparing across columns, we can see which design is robust 

in the sense of maximizing the minimum efficiency. For the I-Optimal designs we see 

that pdeszgn = 0.4 gave the greatest robustness while for the 2-D I-Optimal designs 

fdesign = 0.2 was best, and finally for the 3-D I-Optimal designs, pdesiglz = 0.2 was 

again robust. 

We compare the random and space-filling designs to the best optimal designs for 

the three types of response functions. The efficiency of random designs relative to 

optimal designs is shown in Table 3.3, and confirms the uniformly poor predictive 

ability of randomly selected points, ranging from a low of 60% efficiency for more 

complex responses (small po), to as high as 79% efficiency for simpler responses (large 

p o )  It is clear that the more complex the response (e.g., as po decreases), the lower 

the efficiency of randomly selected points. 

The efficiency of space-filling designs relative to optimal designs is shown in Table 

3.4, and indicates that space-filling designs retain good efficiency, ranging from 88% to 

100%. Nonetheless, we again observe the trend that as the complexity of the response 

function increases, the efficiency of space-filling designs relative to optimal designs 

decreases. In terms of model comparison, we see that designs constructed under 

Model 1 gave better performance in terms of both relative efficiency and empirical 

prediction errors. This was to be expected since our response model was also Model 

1. Optimal designs constructed with the mis-specified distance under Model 2 in 

8'-space demonstrated the worse performance of the optimal designs considered in 
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Table 3.1: Average Empirical hIean Squared Error over 1000 Simulated Response 
Surfaces drawn from $4 in the Horseshoe Region 

terms of both relative efficiency and prediction errors. 

f'/;,p=o.6: 
0.0781 

Space Filling 
Model 1 

(I-Optimal) 

Model 2 
(2-D I-Optimal) 

I 

Model 2 
(3-D I-Optimal) 

Finally, there is some error present that results from performing Monte Carlo inte- 

gration in constructing our designs as well as fitting the models using maximum like- 

lihood. This can be seen by the relative efficiencies that were found to be marginally 

above loo%, which cannot actually occur. Nonetheless, the behaviour of our different 

design models is still evident from these results. An unexpected result occured for 

designs constructed with po = 0.6 under Model 2 in F2-space. Here we see relative 

efficiencies of the designs for po = 0.2,0.4 being much higher than would be expected. 

In turns out that the design for po = 0.6 under Model 2 was the only design con- 

structed that had a replicate point, which lead to a much higher prediction error 

resulting in high relative efficiency seen for the alternative designs constructed with 

po = 0.2,0.4. In this case, it would seem that constructing a design with mis-specified 

distance lead to the introduction of a replicate design point when likely none should 

have been present. 

Design 
Random 

f'//,p=0.2 
0.151 

f d e s z p  
- 

- 

0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 

$4',p=o.d 
0.107 

0.103 
0.0923 
0.0911 
0.0975 
0.101 
0.105 
0.126 
0.0965 
0.102 
0.110 

0.0758 
0.0690 
0.0675 
0.0698 
0.0751 
0.0762 
0.106 
0.0773 
0.0760 
0.0765 

0.0595 
0.0557 
0.0540 
0.0549 
0.0611 
0.0600 
0.0917 
0.0632 
0.0625 
0.0612 



CH4PTER 3. RESULTS 

Table 3.2: Relative Efficiencies of Optimal Designs over 3000 Simulated Response 
Surfaces drawn from J r  in the Horseshoe Region 

Design + 

Table 3.3: Efficiency of Random Designs Relative to the Best I-Optimal Design over 
3000 Simulated Response Surfaces drawn from fq in the Horseshoe Region 

\ I I I I Model 2 13-D I-O~timali 1 0.64 1 0.71 1 0.78 1 
Model 1 (I-Optimal) 

Model 2 (2-D I-O~timall 

Table 3.4: Efficiency of Space-Filling Designs Relative to the Best I-Optimal Design 
over 3000 Simulated Response Surfaces drawn from fq in the Horseshoe Region 

0.60 
0.67 

Design 
Model 1 (I-O~timali 

0.63 
0.70 

\ A 

Model 2 (2-D I-Optimal) 
Model 2 (3-D I-Optimal) 

0.69 
0.77 

f ~ , p = 0 . 2  

0.88 
0.98 
0.93 

fq,p=o.4 

0.89 
. f ~ , ~ = o . 6  

0.91 
0.99 
1.00 

1.00 
1.03 
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3.2 Simulation Study in 8'-Space 

Here we investigate the performance of I-Optimal designs constructed under Alodels 1 

and 2 by drawing random functions f,: 2 from the Gaussian Process under llodel2 and 

again comparing the performance of I-Optimal designs to randomly selected points 

and space filling designs. We construct designs of size n-y = 16 that are selected from 

a candidate set of n~ = 63 points that fill the embedding in G2-space. The geodesic 

distances were computed using a 0.10-spaced grid. Since in this case we are drawing 

random functions and constructing designs in G2-space, we have two parameters 

pl, p2. However, since we are assuming pl = p2 in this study, we will simply refer 

to these correlation parameters as p. Responses drawn from this model consider the 

case where the response is a function of the embedding space, but not the one we 

would expect (i.e., not the distance-preserving embedding G3). The random functions 

were again constructed with mean p = 0 and covariance matrix C parameterized by 

p and a: = 0.9 defined on the n~ points. We use the predicted response given this 

correlation matrix as our "true" response surface and added the a: = 0.1 measurement 

error to obtain the observed response values. All other parameters remained as above, 

and we again consider the same five possible design constructions. 

The results of the simulation study for the functions of type f6z are shown in 

Tables 3.5, 3.6, 3.7 and 3.8. Table 3.5 contains the averaged empirical mean squared 

prediction errors for all three I-Optimal designs as well as the random designs and the 

space-filling design. The EMSE for the random designs was again noticeably higher 

than all other approaches while space-filling designs continue to perform only a little 

worse than the optimal designs, particularly at larger values of p. 

Table 3.6 contains the relative efficiencies of the optimal designs for each level of 

p investigated. For the Model 1 I-Optimal designs we see that Pdesign = 0.4 gave the 

greatest robustness. For the Model 2, 2-D I-Optimal designs, Pdesign = 0.4 was also 

best, and finally for the Model 2, 3-D I-Optimal designs, Pdesign = 0.2 was robust. 

We compare the random and space-filling designs to the best optimal designs for 

the three types of response functions. The efficiency of random designs relative to 

optimal designs is shown in Table 3.7, and confirms the uniformly poor predictive 

ability of randomly selected points, ranging from a low of 63% efficiency to 82% 
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Table 3.5: Average Empirical Alean Squared Error over 1000 Simulated Response 
Surfaces drawn from f,, 2 in the Horseshoe Region 

(I-D I-Optimal) I 0.0836 0.0609 0.0562 
0.109 0.0951 0.0823 

Model 2 0.0844 0.0681 0.0565 
(3-D I-Optimal) 0.0875 0.0699 0.0561 

0.6 0.0850 0.0701 0.0549 

Design 
Random 

Space Filling 
Model 1 

(I-Optimal) 

efficiency. It is again clear that as p decreases, the lower the efficiency of randomly 

selected points. 

frf ',p=0.2 
0.128 

Pdeszgn 
- 

The efficiency of space-filling designs relative to optimal designs is shown in Table 

3.8. These designs again demonstrate reasonably good efficiency with values ranging 

from about 86% to 100%. As before, as p decreases, the efficiency of the space-filling 

design degrades. We again saw that optimal designs constructed under Model 1 gave 

comparable performance to designs constructed under the true model, which in this 

case was Model 2 in G2-space. Designs constructed under Model 2 in G3-space gave 

the worse performance of the optimal designs. 

- 

0.2 
0.4 
0.6 

3.3 Simulation Study in d3-Space 

f(' ?,p=o.~ 
0.0834 

Here we investigate the performance of I-Optimal designs constructed under Model 

1 and Model 2 by drawing random linear functions modeled in G3-space. This is 

motivated by two reasons. The first is to consider a response model similar in spirit 

to the assumed linear model from the Welding example discussed earlier. Second, it 

makes no sense to consider a GP response modeled in g3 as this will construct the 

f,' ',p=0.6: , 
0.0698 

0.0934 
0.0807 
0.0827 
0.0891 

0.0659 
0.0636 
0.0607 
0.0638 

0.0528 
0.0508 
0.0518 
0.0519 
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Table 3.6: Relative Efficiencies of Optimal Designs over 1000 Simulated Response 
Surfaces drawn from f,!2 in the Horseshoe Region 

Design 

(I- Optimal) 

Table 3.7: Efficiency of Random Designs Relative to the Best I-Optimal Design over 
1000 Simulated Response Surfaces drawn from f , : ~  in the Horseshoe Region 

Table 3.8: Efficiency of Space-Filling Designs Relative to the Best I-Optimal Design 
over 1000 Simulated Response Surfaces drawn from f , : ~  in the Horseshoe Region 

Design 
Model 1 (I-Owtimal) 
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same responses from the study of Section 3.1 because 8 5 s  the embedding space used 

in approximating the geodesic distances. 

We consider a second order model where the true response is given by 

and the observed response will be 

where the error term is simply N(0 ,  a,"). We make KT,, a random function by drawing 

the p's from normal distributions and requiring the interaction terms to be bounded 

below the main effect terms with high probability i11 order to preserve the effect 

ordering principle. 

We will again compare our I-Optimal, random and space-filling designs on this 

model. Designs of size nx = 16 that are selected from a candidate set of nc = 63 

points that fill the embedding in G3-space. The geodesic distances were computed us- 

ing a 0.10-spaced grid. In this study, we are using the distance-preserving embedding, 

but our true response lies in G3-space rather than 9-space. All other parameters re- 

mained as in the first two studies, and we again consider the same five possible design 

constructions. 

The results of the simulation study for the linear functions fr:3,LM are shown 

in Tables 3.9. This table contains the averaged empirical mean squared prediction 

errors for all three I-Optimal designs as well as the random designs and the space- 

filling design. The EMSE for the random designs was again noticeably higher than all 

other approaches while in this example Space-filling did not offer great performance. 

Among the optimal designs, both the Model 1 I-Optimal and Model 2, 3-D I- 

Optimal designs gave better performance than the Model 2, 2-D I-Optimal design. 

The best overall design was the Model 2, 3-D I-Optimal design with p = 0.2, which 

is expected given the true model of our random responses. The relative efficiency of 

the space-filling design to this best optimal design was quite low at 58%. The relative 

efficiency of the best Model 1, I-Optimal design to the best overall design was about 

81% while the relative efficiency of the best Model 2, 2-D I-Optimal design to the 

best overall design was about 55%. 
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Table 3.9: Average Empirical Mean Squared Error over 1000 Simulated Response 
Surfaces drawn from f,:3,LAI in the Horseshoe Region 

Design 
Random 

3.4 Florida Study 

Space Filling 
Model 1 

I-Optimal 

Model 2 
(2-D I-Optimal) 

Model 2 
(3-D I-Optimal) 

To demonstrate our method on a real-world example, we return to the Florida water 

temperature shown in Figure 1.4. The well recognized Florida state is shown in green 

on the right side of the figure, while the black area to the left indicates an area that 

we aren't interested in modeling as the task in mind is modeling the behaviour of this 

waterway along the Florida coastline. 

P d e s z p  
- 

Using a grid of 0.05-spaced points, we constructed the geodesic distances and 

searched for a design of size n = 50 points. We considered an optimal design con- 

structed under Model 1 with correlation parameter p = 0.4, and a space-filling design 

constructed in $!?-space. We assumed the value of p = 0.4 for constructing the optimal 

design based on the results of our simulation study. 

frf ?,LAI 

0.275 
- 

0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 

The space-filling design was taken after 100 iterations of the software, and is shown 

in Figure 3.3. We took the best design of 20 replicates as the I-Optimal design, which 

is shown in Figure 3.4. The differences between the two designs are visually quite 

recognizable. The pattern of design points for the space filling design is fairly equally 

spaced as would be expected. The pattern for the optimal design instead has variable 

spacing between points, with some being closer together forming small groups, with 

0.162 
0.121 
0.116 
0.125 
0.181 
0.170 
0.247 
0.0939 
0.129 
0.111 
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Figure 3.3: A 50 point space-filling design for the Florida coastal waterway 

larger spaces separating these groups of points. There are also a number of replicated 

points, denoted by stars. This behaviour is not unexpected as having different spacing 

between points allows the optimal design to detect components of the response surface 

that have differing frequency, as well as being able to better estimate the measurement 

error with the introduction of some replicated points. 

The prediction error for the space filling design was found to be about 0.0279 while 

for the optimal design the error was 0.0260, so in this example the optimal design 

reduced prediction error by about 7%. This improvement seems reasonable given the 

results found in our simulation study. With the design found, an applied researcher 

could use these points as locations to place buoys along the Florida coastal waterway 

for data collection and modeling of the waterway, as is done by (Merz, 2001; Weisberg 

et al., 2002). 



CHAPTER 3. RESULTS 

Varl 

Figure 3.4: A 50 point I-Optimal design for the Florida coastal waterway 
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Discussion 

The results obtained in the simulation study provide some interesting insights into 

how the I-Optimal designs we have constructed behave with changes in the response 

surface. In particular, we saw that 

0 designs constructed with smaller pde,ig, tended to be more robust 

designs constructed under Model 1 (distance-preserving approach) behaved well 

in almost all circumstances, even though there is only the single po parameter 

0 designs constructed in the wrong embedding space often gave the worse perfor- 

mance. 

The notion that designs constructed for smaller f d e s i g n  have greater robustness 

might be expected. For instance, the behaviour of a flat plane response can be easily 

discerned from a small sample of points, but a highly variable response would require 

many strategically placed points to learn. 

Although we could only investigate three design and modeling spaces in our study, 

there was some indication that designs constructed under Model 1 (distance preser- 

vation) would always perform reasonably well while designs constructed using Model 

2 in the incorrect embedding space might not perform well. This was particularly 

true in the linear model example. This example also gave a strong indication that 

space-filling designs might not always give acceptable performance. 
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A notable liniitation to the robustness study approach is the computational burden 

involved in constructing such a study. A practitioner might not look forward to weeks 

of computations to investigate the design properties for his/her non-convex region of 

interest under a few assumed values of the correlation parameter. It might be much 

nicer if, for instance, the practitioner could simply specifiy a prior distribution on the 

parameter p and achieve robustness in that way. This is an approach we would like 

to investigate in future work, however given the form of (2.13) and (2.14), we note 

that integration over 9? and a: were readily achievable since they are separable, but 

with integration over p this is not the case. So, the computational burden will be 

much higher than the criterions discussed in this thesis. 

Finally, although we have made use of ISOMAP in deriving our approach to 

handling non-convex design regions, not all non-convex regions can be handled with 

ISOMAP. For instance, shapes such as rings or donuts result in eigenvalues that 

oscillate from being positive to negative when performing the eigendecomposition on 

the squared distance matrix. Since the eigenvalues no longer have intrinsic order, 

the criterions for selecting the appropriate embedding (2.10) and (2.11) no longer 

have meaning. This raises the question of what mapping is used in constructing the 

embedding of the design region. In fact, this is an active area of research, and other 

mappings (Roweis and Saul, 2000; Donoho and Grimes, 2003) would serve as good 

candidates for future investigations. 

4.1 Conclusions 

In this thesis we considered the problem of optimal design for Gaussian Processes over 

non-convex design regions. We considered Integrated Mean Squared Error Optimal 

(I-Optimal) designs when the question of interest is response surface prediction. We 

first extended existing results for the convex case by introducing a new formulation 

that allows one to consider the effect of measurement error in the construction of 

the designs. We then introduced a distance measure, the geodesic distance, whch is 

gaining popularity in existing literature for modeling over non-convex regions. How- 

ever, it is known that direct use of the geodesic distances in the correlation function 
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is not always valid. We then propose the novel approach of using a dimensionality 

reduction technique known as ISOMAP as a means to project our non-conves design 

region into a possibly higher dimensional Euclidean space with the requirement that 

the Euclidean space distances closely approximate the true geodesic distances. Since 

the correlation function is well defined for any Euclidean space, this allows us to both 

model and construct designs over the non-convex region. 

As a result of this embedding space approach, we can take the view of designing 

over a "correct" embedding space, or simply using the embedding space for the pur- 

pose of geodesic distance approximation. In the former approach, the correlation of 

the response is assumed to behave along the axis of the embedding space. So, this 

allows more flexibility in the correlation function due to the increased number of pa- 

rameters (one for each dimension), although it may not be valid if the assumption is 

incorrect. In the latter approach, we assume the correlation structure of the response 

is the same in all directions as our correlation function has only one parameter. 

A simulation study was performed to investigate these issues by evaluating the 

robustness of designs at three levels of the correlation parameter and three differ- 

ent types of response functions. In addition, random and space-filling designs were 

constructed to serve as a comparison point. The simulation study revealed that 

lower values of the correlation parameter usually resulted in more robust designs in 

the range we considered. Designs constructed under distance preservation tended 

to perform reasonably well in all circumstances while designs constructed under an 

assumed embedding space sometimes performed noticeably worse when the assump- 

tion was incorrect. Space-filling designs often performed very well, and are certainly 

more computationally feasible. However, their performance tended to degrade as the 

response function complexity increased, and in the case of the linear model example, 

they did not perform well at all. 

We also investigated a real world example involving surface temperature in the 

waters surrounding Florida. In this example we investigated the space filling design 

and the distance-approximating I-Optimal design. The I-Optimal design modestly 

reduced prediction errors as compared to the space-filling design. 

There are notable areas that would make for interesting extensions and future 
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work. First, the process of performing a robustness study in the manner done for 

this thesis is quite computationally intensive, and yet does not give a fine enough 

resolution to answer all the questions we have on the effect of the correlation parani- 

eter in constructing our designs. A nice alternative would be to investigate designs 

constructed with prior distributions specified for the correlation parameter, although 

it is noted in our discussion that this will be computationally difficult to achieve. A 

final area for future study is the investigation of alternative embedding algorithms 

that may handle a larger class of non-convex regions than the ISOhlAP approach 

considered in this thesis. 



Appendix A 

Gaussian Process Model 

Let Z ( X )  N ( p ,  oi)R), E ( X )  N ( 0 ,  g:I),  C = oZR, 2 = o ~ R + o ~ I ,  R = [ rO] .  Then, 

y ( X )  = Z ( X )  + E ( X )  -- N ( ~ , C ) ,  

where 

with pd = exp-fed. Since 0 E (O,oo), then p E ( 0 , l ) .  
T - -1 

The likelihood is L = e y  (Y-''), or taking the log, we find the 
( 2 4 3  p$ 

log-likelihood as: 

n 1 1 T - 
logL = --log(2a) - -10~121 - 5 ( y  - l p )  CP1 ( y  - l p )  

2 2 
1 1 

z --loglCI - - ( y  - lIL)T 2-I ( y  - l p )  
2 2 

The maximum likelihood estimates are: 
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= 0 

T- -1  * -1 c (y  - l p )  - (y - lP lT  -2-ll = 0 

* /.j = 1 T - p l  ( 1 - I  lT2- ly  

and the remaining parameters 8, a: and a: need be found numerically, except in 

the case when a: = 0, where it is possible to determine G: directly: 

n T -1 

* - - + O +  (Y - l P )  R (Y - 1 P )  
= 0 

0: (a:) 
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Best Linear Unbiased Predictor 

(BLUP) 

The GP model is y(xi) = x, Ph fh(xi) + Z(xi) + &(xi), a realization of the pro- 

cess Y (x) = f (x)P + Z(x)  + ~ ( x ) .  In our case, h = 1 and we simply have 

Y ( x ~ )  = p  +Z(xi)  L e t F =  [[fl(xI),.  . .  ,fl(xn)]',. . . , [ f h ( ~ l , -  - ,  fh(xn)lT] = 

1 (in our case), and y = [yl , . . . , y,IT, Z = [Z(xl), . - . , Z(xn)IT, E = [&(xl), . . . , &(xn)IT 

Consider predicting Y(x) at some new point x by the linear predictor 

~ ( x )  = aT(x) y = aT (x) (FP + Z + E )  = aT (x) (PI+ Z + E )  . Then, the Best Linear 

Unbiased Predictor (BLUP) Y (x) will satisfy: 

Then, 

E ( ~ ( x ) )  = E (aT(x)y) = a T ( x ) ~ ( y )  = a T ( x ) ~ P  = ~ ~ ( x ) ~ l  
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and 

which gives our constraint, and, 

+ 2E { ( f T ( x )  - a T ( x ) F ) ~ ( Z ( x )  + ~ ( x ) )  

- E {aT(x) (Z  + E ) )  + ( Z ( X )  + F ( X )  - a T ( x ) ( 2  + E ) ) ~ )  

= [ ( f T ( 4 B  - aT(x)F) @ I 2  + E [ ( ~ ( x )  + E ( x ) ) ~ ]  

- 2E [ ( ~ ( x )  + ~ ( x ) )  (aT ( x )  z + aT ( x ) ~ ) ]  

+ E [aT(x)(Z + E) (Z  + E ) ~ ~ ( x ) ]  

= [ ( f T ( x ) B  - aT(x)F) P ] ~  + E ( Z ( x ) Z T ( x ) )  + ~ E ( ~ ( x ) E ( x ) )  

+ E ( E ( x ) E ~ ( x ) )  - 2 a T ( x ) ~ ( Z ( x ) Z )  - 2aT(x)E(&Z(x))  

- 2aT(x)E(&(x)Z) - 2 a T ( x ) ~ ( & ( x ) & )  + aT(x)E(2ZT)a(x)  

+ 2aT ( x )  E (2cT)  a(x) + aT ( x )  E ( E E ~ )  a(x)  

= [ ( f T ( x ) @  - a T ( x ) ~ )  /312 + Var(Z(x) )  + 2 C o v ( Z ( x ) , ~ ( x ) )  

+ Var ( ~ ( x ) )  - 2aT ( X ) C O U  ( ~ ( x )  , Z )  - 2aT ( x )  cou ( ~ ( x )  , 2) 

- 2aT ( x )  cou (E (x )  , E )  + aT ( x )  Cou (Z)a(x )  + 2aT ( x )  ~ o v ( 2 ,  E )  

+ aT ( x )  ~ o v ( ~ ) a ( x )  

= [ ( f  T ( ~ ) B  - aT(x)p)  @] + Var(Z(x) )  + V a r ( ~ ( x ) )  

- 2aT ( x )  C O V ( Z ( X )  , 2) + aT ( x )  cou (2) a(x)  
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where bTar(Z(x)) = a:, Cov(Z) = azR = C, Cov(Z(x), 2) = ~r;r(x), 

COV(E) = I ,  V a r ( ~ ( x ) )  = 4, and Cov(Z(x ) ,~ (x ) )  = C o u ( ~ , Z ( x ) )  = 

COV(E(X), 2) = COV(E(X), E )  = Cou(2, E) = 0. Since, under our constraint, 

we then have: 

We can then minimize our expected mean square error subject to the constraint 

of unbiasedness using the method of LaGrange multipliers, ie, 

min E [ (Y - '1 4 ~ )  

subject to 

which is equivalent to  

min a: (1 - 2aT (x)r  (x) + aT (x) ~ a ( x ) )  + o: (1 + aT (x) la (x) )  
4x1 

subject to 
T a (x)l-1 = O .  

Solving using LaGrange multipliers, 
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and plugging into (*), we solve for a(x): 

Plugging this result back into our expected mean square error, we can (after some 

algebraic manipulation) arrive at: 



APPENDIX B. BEST LIn'EAR UNBIASED PREDICTOR (BLLTP) 

which, when a: = 0 simplifies to: 

If we let a? = 2, then factoring out o:, we will have 2 = 0 i p  = a:(R + 0: I ) ,  

and so our hISE can now be written as: 

In a similar fashion, we can solve for the BLUP: 

and again by factoring out a:, we arrive a t  

Y ( X )  = T ? ' ( x ) % - ~  ( y  - 1ji) + f i  



Appendix C 

IMSE Design Formulations 

When searching for designs, we typically deal with the a?-normalized version of the 

expected mean square error, hence 

or, in the deterministic case (0; = 0), this reduces simply to 

It can be shown (Sacks et al., 1989a; Sacks et al., 1989b) that this can be expressed 

in the much nicer form below. 

= L ldx - trace 
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which we then alter accordingly for the two models discussed in this dissertation. 
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