
GROUNDING FOR MODEL EXPANSION IN

K-GUARDED FORMULAS WITH INDUCTIVE

DEFINITIONS

Murray Patterson

Bachelor of Computer Science with Honours, Acadia University, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Murray Patterson 2006

SIMON FRASER UNIVERSITY

Summer 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Murray Patterson

Degree: Master of Science

Title of thesis: Grounding for Model Expansion in k-Guarded Formulas with

Inductive Definitions

Examining Committee: Mr. Bradley Bart, Lecturer, Computing Science

Simon Fraser University

Chair

Dr. Arvind Gupta, Professor, Computing Science

Simon Fraser University

Senior Supervisor

Date Approved:

Dr. Eugenia Ternovska, Assistant Professor, Comput-

ing Science

Simon Fraser University

Co-Senior Supervisor

Dr. Andrei Bulatov, Assistant Professor, Computing

Science

Simon Fraser University

Examiner

+"+ SIMON FRASER ti2 ~ ~ ~ v ~ ~ ~ l ~ l i b r a r y a

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible, to any
medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Mitchell and Ternovska [49, 501 propose a constraint programming framework for search

problems that is based on classical logic extended with inductive definitions. They for-

mulate a search problem as the problem of model expansion (MX). In this framework, the

problem is encoded in a logic, an instance of the problem is represented by a finite structure,

and a solver generates solutions to the problem. This approach relies on propositionalisation

of high-level specifications, and on the efficiency of modern SAT solvers. Here, we propose

an efficient algorithm which combines grounding with partial evaluation. Since the MX

framework is based on classical logic, we are able to take advantage of known results for the

secalled guarded fragments and their generalizations. In the case of k-guarded formulas

with inductive definitions under a natural restriction, the algorithm performs much better

than naive grounding by relying on connections between k-guarded formulas and tree de-

compositions.

Keywords grounding; model expansion; guarded fragments; descriptive complexity; induc-

tive definitions

Acknowledgments

First, I would like to thank Eugenia Ternovska, my senior supervisor for her dedication and

teaching me more about what research is like at a professional level. Second, I would like

to thank Arvind Gupta, my senior supervisor for keeping me on track and keeping me from

getting lost in details. I also thank Andrei Bulatov for his helpful comments on the final

document. Finally, I especially thank Yongmei Liu for her insight and knowledge on this

subject. This thesis would not be what it is today without her.

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction

2 Related Work

3 Background: The Model Expansion Framework 15

4 Background: The k-Guarded Fragment 21

5 Grounding Mechanism for Model Expansion 39

5.1 Grounding for Model Expansion . 39

5.2 Extended Relations . 42

5.3 An Algebra for Extended Relations . 46

6 An Algorithm for Grounding First Order Formulas 54

7 Grounding Inductive Definitions 67

8 Conclusions and Future Work 87

. 8.1 Conclusion 87

. 8.2 Future Work 88

Bibliography 90

List of Figures

4.1 formula 4.1 as a hypergraph . 25

4.2 join tree of formula 4.1 . 27

4.3 join tree of formula 4.3 . 28

4.4 query decomposition of formula 4.5 . 31

4.5 query decomposition of formula equivalent to formula 4.5 32

4.6 hypertree decomposition of formula 4.5 . 34

4.7 2-guarded formula semantically equivalent to formula 4.5 35

. 6.1 RGFz formula $' written as a tree 59

vii

Chapter 1

Introduction

The well-known theorem of Fagin states that existential second-order logic (330) captures

the complexity class N P [17]. This implies that any problem in N P can be expressed

in 30 , that is, we are able to encode any computational task with this inherent time

bound. The implication of this theorem and other results in descriptive complexity theory

is logics can be viewed as programming languages for their corresponding complexity classes

(see, e.g. [ls]). While Fagin's theorem, and other results in descriptive complexity are very

meaningful in this way, much remains to be done to make this idea practical, ie., to develop

an approach to declarative constraint programming that is efficient, conceptually clean, and

has good modeling capabilities. This thesis makes a step towards this goal.

The most successful approaches in the past to declarative constraint programming are

propositional satisfiability (SAT), constraint satisfaction problems (CSP), and answer set

programming (ASP).

SAT is the oldest and most developed of the three approaches and today is both the

subject of research and used by industry for solving specific problems. A SAT problem is

simply represented by a boolean formula, where solving it involves determining whether

there is a satisfying assignment to the formula. Since a satisfying assignment in this context

is just a set of truth values for all of the boolean variables that sets the formula to true, the

semantics of SAT is very simple. It is this semantic simplicity that is the key driver in the

success of SAT for modeling problems. A drawback of SAT is that it lacks the modeling

capabilities of logics with quantifiers or recursion. An even bigger drawback of SAT is

the lack of separation between problem instance and problem description. For example,

given the problem of determining whether or not a graph is 3-colorable, and an instance

CHAPTER 1. INTRODUCTION 2

(a graph) we can construct a propositional formula that has a satisfying assignment for

every 3-coloring of the graph (if any exist). However, this representation is specific to this

problem/instance pair. It cannot be reused, or even trivially modified in most cases, to solve

3-colorability for any other graph. This lack of separation leads to conceptual and practical

difficulties.

CSP provides somewhat better modeling capabilities than SAT. One reason for this is

that variables need not be boolean; instead, variables may take values from any specified

finite domain. It also provides some techniques used to solve problems, such as nogood

learning and backjumping methods, which are now central to modern SAT solvers [51].

Solvers for CSP, however, have found practical success primarily as components in constraint

logic programming (CLP) tools. These provide rich problem solving environments, often

used to produce domain-specific solvers for NP-hard problems. However, they are general-

purpose programming languages, and thus not purely declarative.

Another approach to declarative constraint programming that emerged from logic pro-

gramming is Answer Set Programming (ASP) (see [4]). The semantics of ASP are based

on the stable model semantics of Gelfond and Lifschitz [19], and, as such, it is much more

complex than SAT or CSP. ASP was proposed as a programming paradigm in [52, 471. The

main advantage of ASP is that it has a better modeling language than SAT or CSP, e.g., it

allows for some implicit use of quantifiers and has a built-in recursion mechanism. ASP has

a more clear separation of instance and problem description than SAT, but not a complete

separation, as instance and problem description are separate only on the level of methodol-

ogy. The main disadvantage of ASP is that non-determinism can only be imitated formally

via recursion through negation. Because of this, some features of classical logic cannot be

modeled in ASP in a natural way. For example, in classical logic, a boolean variable p is

free to be true or false. However to represent this in ASP, the programmer must introduce

a new atom p', and add rules p t not p' and t not p to represent this same feature.

While results in descriptive complexity suggest that problems of a given complexity can

be expressed in a certain logic, there exists no purely declarative constraint programming

framework for hard problems that is close in syntax or semantics, to the corresponding logics

that can express these problems. This comes as no surprise because it is not obvious how

to build a general-purpose tool for modeling problems in a highly declarative fashion.

However, as a step in this direction, Mitchell and Ternovska [49, 501 proposed a declar-

ative constraint programming framework, which is based on classical logic extended with

CHAPTER 1. INTRODUCTION 3

non-monotone inductive definitions. They cast a search problem as the classical problem of

model expansion (MX), which is the problem of expanding a given structure with new rela-

tions so that it satisfies a given formula. The long-term goal is to develop tools for solving

hard combinatorial search problems for different complexity classes, especially those in NP.

In this framework, the problem description is encoded in a logic and a problem instance

is represented by a finite structure, where some of the predicates in the formula are not

specified in the structure. A solver then generates solutions (if any exist) to a given model

expansion problem by finding structures that expand the instance structure (i.e., provides

interpretations for the initially unspecified, or expansion, predicates) in such a way that

these expansion structures satisfies the formula. To our knowledge, this framework is the

first declarative constraint programming framework to be based on finite model theory and

descriptive complexity.

The MX framework combines the many strengths of SAT, CSP and ASP, as well as ad-

dresses their limitations. Its features include: a high-level modeling language that supports

quantification and recursion, and a clear separation of the instance (a finite structure) from

the problem description (a formula). Most importantly, the framework achieves the goal

of developing a tool for modeling problems with a highly declarative and natural language

based on classical logic extended with inductive definitions. This makes it possible to exploit

the many existing results from finite model theory and descriptive complexity.

Note that in the case of first-order (FO) logic, the MX problem is exactly the same as

model-checking (MC) for 3 0 . In fact, finding interpretations for unspecified predicates in

an MX problem for FO is the same as witnessing 3 for the corresponding 3SO problem. As

such, the MX problem for FO captures NP as an easy corollary of Fagin's theorem. h r -

thermore, since inductively defined properties are hard to represent in FO logic, extending

FO logic with inductive definitions (IDS) to get FO(1D) logic allows for more convenience

in modeling problems. While the MX framework is a general framework that deals with

MX problems for many logics, in this thesis, we obtain results for the FO and FO(1D) cases

only, and as such, we concern ourselves only with these logics. Throughout the thesis, we

may use MX when we mean MX for FO or FO(1D) logic.

The advances in the efficiency of propositional solvers over the past few years has led

researchers to use it as a component in high level solvers, e.g. [8, 9, 141. It has also led

researchers in the area of ASP to build solvers that propositionalize (or ground) the program

and solve these using a propositional solver, for example [43, 451. Since ASP is based on

CHAPTER 1. INTRODUCTION 4

logic programming, and thus resembles the propositional satisfiability problem even less

than FO logic (or even FO(1D) logic) in both syntax and semantics, this is strong evidence

that the MX framework can be made practical by this approach of grounding followed by the

use of a propositional solver. For one thing, with ASP, grounding must be performed over

the Herbrand universe, however, in the MX framework, since the instance to the problem

is a finite structure, it is clear that every term must be an element of the domain of this

structure, i.e., the grounding will always be finite. In particular, for MX, we want to ground

the FO or FO(1D) formula over the structure in a way that this grounding has a satisfying

assignment for every expansion of the instance structure that satisfies the FO(1D) formula

(if any exist). In the case of MX for FO logic, grounding to get a propositional formula is

very straightforward. We can then simply call one of the many efficient modern SAT solvers

for a solution. In the case of FO(1D) logic, the grounding will be a formula of propositional

calculus with inductive definitions (PC(1D)). In this case, we would need to use a solver for

PC(ID), e.g. [53, 481. Essentially, we are reducing MX for FO to SAT, and MX for FO(1D)

to satisfiability for PC(1D).

While there are other techniques that can be used other than grounding in order to

make this declarative constraint programming approach of [?, ?] practical, since the solvers

for propositional satisfiability are so efficient, an efficient grounding algorithm is a major

part of this goal. While a naive approach would give us a polynomial time method for

grounding (the problem description is fixed), which is expected as MX captures NP, the

degree of this polynomial depends on the arity of the predicates, so something more efficient

is needed. This same problem exists for grounding in ASP solvers as well, yet the practice

of using domain predicates is used in some modern systems to overcome this problem. Since

domain predicates are very much like "guards" in a logic program, it suggests that we

could benefit by taking advantage of the guarded fragments (GF) (21 (and possibly their

generalizations [24, 30, 61) to devise an efficient grounding procedures for our framework,

since MX is based on classical logic. We have indeed found these fragments to be useful, as

they are central to the result of this thesis.

The result of this thesis is an efficient grounding algorithm for the MX framework which

combines grounding with partial evaluation. In particular, when the FO(1D) formula is

k-guarded 1241, where all guards are specified by the instance structure, the algorithm runs

in time 0(e2nk) , where e is the length of the formula and n is the size of the structure.

When k is small, this is a huge improvement over the naive time O(ne) approach. One

CHAPTER 1. INTRODUCTION 5

reason that this result is important is that many search and decision problems that occur in

practice can be written as k-guarded formulas, for small k, such that all guards are specified

by the instance structure. This grounding algorithm is an extension of the model checking

algorithm of Liu and Levesque [46], and is also inspired by the system Datalog LITE [21].

An overview of the thesis is as follows. In Chapter 2 we present related work, a set of

implement at ions that are most closely related to the MX framework with this grounding

procedure. Chapter 3 formally outlines the MX framework. We then give background

information on the reasons behind the efficiency of our algorithm in Chapter 4, namely the

notion of tree (hypertree) decompositions, and its connection to the k-guarded fragment of

FO logic. Our contribution of the main result of this thesis begins in Chapter 5, with an

outline of the mechanism of grounding for MX. First, we give a brief explanation of how we

perform grounding and then we define the extended relation, an extension of the notion of

relation from database theory. We then complete this mechanism by defining an algebra for

this extended relation. Chapter 6 provides an algorithm for grounding FO formulas with

expansion predicates over a structure. In the case where the FO formula is k-guarded such

that all guards are specified by the instance structure, this algorithm runs in time 0(e2nk) ,

where C and n are as above. Finally, in chapter 7, we provide the main algorithm of this

thesis, namely the algorithm for grounding FO(1D) formulas with expansion predicates over

a structure. In the case where the FO(1D) formula is k-guarded such that all guards are

specified by the instance structure, this algorithm runs in time 0(C2nk)). This is done by

trivially extending the algebra of Chapter 5 and the algorithm of Chapter 6 for inductive

definitions. We then present conclusions followed by some future work.

Chapter 2

Related Work

In this chapter, we outline some specific declarative constraint programming approaches

that employ grounding techniques that are similar to the one we present.

Since ASP is the latest approach to declarative constraint programming, a few of the re-

lated implementations are ASP systems. In particular, we mention the systems Smodels [55],

Cmodels-2 [43], and dlv [40].

The Smodels [55] system is an ASP system that extends normal logic programs with

cardinality and weight constraints. It also supports arithmetic and function symbols. The

set of domain predicates of an Smodels program is the maximally stratifiable subset of

predicates of the program. A set of predicates (or rules) can be stratified if it can be ordered

in such a way that for any of its predicates p and q, if p is definitionally dependent on q, then

p is on at least as high a stratum as q. Note that all of these definitional dependencies must

be positive, i.e., p cannot depend on the negation of q. Note that if we create a graph for

a stratified set of rules, where we take the predicates as nodes and we introduce a directed

edge for each dependency, that this positive dependency graph would be a directed acyclic

graph.

The idea here is that an Smodels program must be domain-restricted, that is, all variables

of a rule must occur in some positive domain predicate in the body of this rule. This

syntactic restriction guarantees that the interpretations of all predicates are subsumed by

the intepretations of the (natural join of the) domain predicates, thus the set of domain

predicates can be viewed as the guards of the program. This restriction guarantees that

programs are decidable, even when function symbols are used [57]. While determining

whether there exists a solution to an Smodels program is 2-EXP-complete in the general

CHAPTER 2. RELATED WORK 7

case, imposing restrictions such as disallowing any function symbols or fixing the number

of variables used can reduce the running-time significantly [57].

The system Smodels is composed of two independent components, smodels and lparse.

Given an Smodels program, lparse first identifies the domain predicates and then computes

the join of these predicates. It then uses this join to ground the rest of the program. The

component smodels then runs on the ground program to find all of the solutions (or answer

sets, in the context of ASP).

The form of grounding that Smodels employs is very similar to our approach, in that we

both ground high-level programs into propositional programs and then rely on a lower-level

solver to compute the solution. Furthermore, we both rely on the high-level programs having

a certain structure, namely that the programs are guarded in some sense. The difference,

however, is that Smodels is an ASP system so, while the notion of being domain-restricted

is quite similar to being guarded [2], the grounding produced is an answer set program,

not a SAT instance. Moreover, while imposing the same restrictions that we impose on the

input to our grounding algorithm results in similar running times [57], Smodels considers

less restricted cases as well, with the penalty of a much higher running time in these cases.

The system Cmodels-2 [43] is another ASP system that is very similar to Smodels. It

is similar to Smodels in that it uses lparse as a front end to ground the program. It also

requires that the input be domain-restricted in the same sense as Smodels. Cmodels-2

programs can have cardinality and weight constraints as well, however Cmodels-2 uses

methods to convert these into a set of nested rules with auxiliary variables [3]. The main

idea behind Cmodels-2 is that, while the set of answer sets of a general program is a subset

of the models of completion of that program, the models of completion of a stratifiable

program (its entire set of rules is stratifiable) are exactly the answer sets of this program.

We explain the completion of a program below.

Recall that a (nested) logic program II consists of a set of rules of the form

A. +- A1,. . . , Ak, not Ak+l,. . . ,not A,, not not A,+l,. . . , not not A,

where A. is an atom (or the empty symbol), and A1,. . . , A, are atoms, where the list

A1,. . . , Ak is referred to as the positive part of the body [3]. If we assume that II is strati-

fiable, the completion of this program can be formed as follows. First, in the body of every

rule of II replace each occurrence of not with 1 and each comma with A. Second, for every

CHAPTER 2. RELATED WORK

atom A make the list of all rules in II with the head A

and form the equivalence

A G V ~ o d ~ i .
i

Third, for every constraint A' +- B o d y in II, where A' is the empty symbol, form the

negation of its body

-Body.

Note that the completion of a program is a propositional formula, not a propositional

answer set program, therefore SAT can be employed to find the models of this completion.

When the program is stratifiable, SAT will return exactly the answer sets of the program.

When the program is not stratifiable, however, Cmodels-2 performs the computation of loop

formulas [38] by a method quite similar to [45]. This computation of loop formulas makes

the program stratifiable, and now it can be solved using program completion [3].

Grounding for Cmodels-2 resembles our approach to grounding more than Smodels in

that, not only does it ground high-level programs to lower-level programs by relying on

some notion of guardedness, but the low-level program in the case of Cmodels-2 is a SAT

instance, not a propositional answer set program. However, since Cmodels-2 is an ASP

system, the method of grounding to a SAT instance is quite different. In fact, Lierler and

Maratean [43] state that when using certain SAT solvers, they are used in close correlation

with the Cmodels system for obtaining a solution, and not as black boxes. This technique

allows for a more efficient solution, which is one of the advantages it has over Assat [45], a

system that uses SAT as a black box. However, since the framework we consider is based

on classical logic, using SAT as a black box is naturally the most efficient method, because

of the clear separation of instance and problem description.

The system dlv handles disjunctive logic programs, that is rules with heads composed

not of a single atom, but of a disjunction of atoms. This system also considers only safe

programs, ones where for each rule, all variables of the rule are in some positive atom of that

rule. The system dlv also considers weak constraints, which are constraints that need not

be satisfied, however models that satisfy weak constraints are preferred over models that do

not, all else being equal. Each weak constraint is associated with some measure of a "cost"

for dissatisfying this constraint, where models that minimize an overall cost are preferred.

CHAPTER 2. RELATED WORK 9

Disjunctive logic programming is more expressive than normal (v-free) logic programming,

in that it captures all problems in the complexity class N p N P , or N P with an N P oracle,

while normal logic programming captures all problems in the complexity class N P .

For example, the 3-coloring problem can be expressed in disjunctive logic using the

following rules

rl : color (X, r) V color(X, g) V color(X, b) t node(X),

7-2 : t edge(X, Y), color(X, C), color(Y, C).

Rule 7-1 states that if X is a node, it is colored either red, green or blue, and rule 7-2 states

that it is never the case that two nodes that form an edge have the same color. The answer

sets of this program correspond exactly to the 3-colorings of the graph (node(-), edge(, -)).

The fact that models are always minimal in ASP guarantees that, in every coloring, each

node will have exactly one color [41].

The system dlv is considered state-of-the-art for disjunctive logic programming systems.

The main aspect of dlv that can be compared directly to what we have considered so far

is the methods that d l v uses for grounding its programs. Before running many of its other

routines, dlv employs a routine called the intelligent grounder [40] or (IG), which uses two

techniques which we explain below.

The first technique that IG uses is rule rewriting [16] inspired by the database optimizai

tion techniques of pushing selections and projections as far down the join tree as possible.

Given a rule, one technique is to "project out" a variable that appears in a only a subset of

its atoms. For example, given the rule 7-1,

we notice that variable Z appears only in atoms c and d of rl 's body. In this case, we can

add the rule

f (X, Y, W) +- c(X1 2, W), 42, Y),

and substitute rl by a new rule r i ,

Ground instances for ri are generated faster than for rl , because Z is only involved in the

join of c and d, not of the entire rule. The rewriting has the same effect as projecting out

Z after the join of c and d is performed, as these are the only atoms that contain Z.

CHAPTER 2. RELATED WORK 10

While this technique is not used in Smodels or Cmodels (although it may prove useful

in these cases), it is akin to our technique for grounding. Our grounding algorithm takes

advantage of the k-guarded fragment [24], that is, the input is a k-guarded formula. By

the structure of k-guarded formulas, it has a form in which projections have been optimally

pushed down the join tree (to the extent that no join involves more than k atoms) [46].

While these rewriting rules modify an instance to one where projections and selections are

pushed down as far as possible, the input of our grounding algorithm already has this form.

The second technique used by the IG involves a set of methods for ordering joins in the

(positive) body of its rules [41]. While the natural join of a set of atoms will have the same

value, regardless of the order in which the join is performed, the intermediate sizes of the

join, and therefore the time of computation of the join, can be drastically affected by this

order. In this approach to chose an optimal join ordering, information about the atoms

involved in the join is exploited. With this information, they use several different statistical

measures to estimate the ordering that minimizes the join computation time.

Specifically, the IG employs a greedy algorithm, that at each step i > 1, a greedy choice

is made to select the ith atom given that i- 1 atoms have already been placed in an ordering.

An atom A is chosen as the ith if A is minimal with respect to some selectivity criterion.

They present three different selectivity criteria. The first favors the atom that has the most

variables in common with the join of the i - 1 atoms, and, of these, the one with associated

relation of the smallest cardinality. The second criterion favors the atom A that leads to

the smallest intermediate relation size (the one that minimizes the size of the join of the

i - 1 atoms with A). This intermediate relation size is estimated with the collected statistics

of the atoms mentioned in the previous paragraph. The third criterion takes into account

the size of the intermediate result and the variables that the the ith atom has in common

with the join of the i - 1 atoms. This third (combined) criterion is the one used for join-

ordering in IG, as it has been shown through benchmarking, that it performs the best in

most situations.

Test results show that this technique of join-ordering methods reduces the time of

grounding quite significantly in the general case for dlv programs. This technique of or-

dering joins can be used in normal logic programming such as in the cases of Smodels and

Cmodels. The grounding procedure of dlv has a clear edge over these methods in this re-

gard. In fact, in one of the tests of [41], they compare the IG with the lparse grounder.

In most cases, the IG performs better, especially in cases where the joins are quite large

CHAPTER 2. RELATED WORK 11

(where ordering is important). Since the results of our algorithm rely on the fact that most

practical problems can be written in a k-guarded form for small k, we would not benefit

from join ordering methods in grounding.

The techniques of rule rewriting [16] and join-ordering methods [41] make the IG a strong

point of dlv with respect to other ASP systems. While it works well on general disjunctive

logic programming problems, it even performs better than Smodels and Cmodels on some

normal logic programming problems.

Since k-guarded sentences are those in which projections have been optimally pushed

down the join tree, we can take advantage of this for efficient grounding. In this way, it

resembles the rule rewriting techniques used in dlv in that they are inspired by database

techniques of optimally pushing projections down the join tree. However, in our approach,

we assume the input is already k-guarded, and can thus get an apriori bound (a function of

k) on the running time, given this input.

In summary, the grounding approaches of the three systems mentioned above resemble

our grounding approach, however a common way that they differ is that they are ASP

systems, and not based on classical logic. The properties that all four approaches have in

common is that they all require some notion of safe input, that is, all variables (or free

variables) of a particular rule, or subformula, must be in some positive atom, guard or

domain predicate. This second requirement, in fact, is very important to the efficiency of

grounding (and of producing a solution) in all of these approaches.

Datalog LITE [21] is a model checker that runs in time linear in the program size and

the input, that is, it has linear time combined complexity. Despite the fact that it performs

model checking, and not model expansion, it is quite similar to our approach.

First consider Datalog LIT, the fragment of stratified datalog that is guarded [2] l, and

therefore has linear time model checking. The reason a Datalog LIT program II has linear

time model checking is that the system can go through II, stratum by stratum, and ground

each rule T to a propositional Horn clause, of the form h V l b l V . . . V lb , , where h and

the bi are propositional atoms. Each rule T can be ground in linear time, because each

rule is guarded (all variables take values within the extension of this guard). This yeilds a

propositional Horn program that is linear in the size of II. Since the satisfiability of a Horn

clause can be determined in linear time, the entire process of model checking for Datalog

'or monadic, which we do not discuss as it is outside the scope of our interests

CHAPTER 2. RELATED WORK 12

LIT is linear time.

Datalog LITE, an extension of Datalog LIT, differs only in that it may contain generalized

literals; those of the form Vyl . . . yn(a > p). While generalized literals are more powerful, the

notion of stratification for these literals still has to hold, that is, cr will have to be on a strictly

lower stratum in the program than P. A generalized literal L(y) + V ~ (a (2 , y) > P(z, y)),
can be transformed to a set of regular literals by replacing it with the conjunction

for any tuple d interpreting g . Since the number of tuples d is bound above by the input

size, this replacement will only increase the program size by at most a linear factor. The

routine for Datalog LITE, given program Il, performs this conversion for each generalized

literal, to get a program II' that is linear in the size of II. It then calls Datalog LIT on II',

which does model checking in time linear in the size of Ill, and therefore in time linear in

the size of II.

Datalog LITE most closely compares to our approach in the form of the input, guarded

datalog. Instance and problem description are completely separate in Datalog LITE as well;

Datalog LITE performs model checking for a program II, given a structure A. Thus, the

method of grounding is quite similar as well, involving the extension of the language of

the program II by constant symbols for all domain elements of the structure A. Datalog

LITE has more in common with our work than the systems we have considered so far, and

thus has inspired some of the approaches we take in our grounding algorithm. There are a

number of key differences between Datalog LITE and our approach. First, Datalog LITE

uses logic programming syntax, and grounding involves no partial evaluation. Finally, while

they ground high-level specifications into lower-level specifications, it is for the much simpler

task of model checking, not model expansion.

In the work of [54], the authors present an approach for converting an arbitrary FO

formula into a propositional formula that is satisfiable iff the original FO formula is satis-

fiable. The main result of this paper is a method for propositionalizing FO formulas that

are either in monadic first-order logic (MFOL), or exists-forall first-order logic (EAFOL).

This method requires there to be a fixed number of constants, but does not rely on any

other information, i.e., a structure or even a domain. For handling arbitrary FO formulas,

a routine is provided for converting a FO formula to MFOL or EAFOL, however this relies

on assuming that the domain of the formula is closed.

CHAPTER 2. RELATED WORK 13

In order to get a compact propositionalization for the method of propositionalizing

MFOL and EAFOL formulas, these methods rely on the results of [I]. Given a FO formula

in MFOL or EAFOL, it is partitioned into sets of predicates/constants using the approach [I]

based on tree-decomposition. Each partition can then be propositionalized independently,

resulting in a propositional formula that is satisfiable iff the original MFOL or EAFOL

formula is satisfiable. For classes of formulas of bounded treewidth, this propositionalization

is polynomial in the size of the FO formula, that is, exponentially smaller than than the one

obtained by the naive approach.

This approach of grounding is similar to ours in that it grounds a FO formula into a

propositional formula so that SAT can be used to find a solution. It is also similar to

our grounding approach in that it relies on the notion of tree-decomposition, however the

techniques of [54] differ from our approach more than any of the systems we have mentioned

above. Rather, the techniques rely on the partition-based reasoning of [I], rather than any

notion of guardedness, or safe queries. They do rely on tree-decomposition, however, an

idea that the notion of guardedness comes from, but they actually partition (or decompose)

the formula with a greedy algorithm based on tree-decomposition. Our methods rely on the

notion of tree-decomposition in that we restrict the input to being k-guarded, rather than

performing any sort of decomposition. Finally, this approach concerns determining whether

a, problem is satisfiable, not of finding all satisfying assignments.

The system NP-SPEC is a system for specifying NP search problems in a Datalog-like

syntax, where a compiler SPEC2SAT translates these high-level specifications into a proposi-

tional formula so that a SAT solver can generate solutions.

The system NP-SPEC has its own syntax, where a program consists of a database section

and a specification section. A set of declaration forms are provided with NP-SPEC, where

each specification has to use one of the forms. For example, the Hamilton path problem,

given a graph G = (V, E) could be specified using the Permutation declaration form [9].

That is, a Hamilton path can be specified as a permutation .rr of the vertices V such that

(. ~ r ~ , . r r ~ + ~) E E for all i s.t. 1 5 i 5 1VI - 1. This specification is then converted to an

internal representation (based on simpler declaration forms native to NP-SPEC), and then

finally to a propositional formula.

This syntax of NP-SPEC is restricted to being stratifiable (recursion through negation

is not allowed), which guarantees specifications to be decidable, as in the ASP systems

mentioned above. In addition, there are no cardinality or weight constraints, and no function

CHAPTER 2. RELATED WORK 14

symbols, which is necessary, since the grounding over the Herbrand Universe, unlike our

system and Datalog LITE. Specifications of NP-SPEC are ground using the minimal model

semantics [44]. Other than the semantics being slightly different than in our approach of

grounding, their method of grounding is very similar to ours; they even combine grounding

with partial evaluation.

The system NP-SPEC came out of the idea of specifying NP search problems in a highly

declarative fashion. In fact, NP-SPEC captures the complexity class NP, by appealing to

Fagin's theorem [17]. Both NP-SPEC and our approach combine grounding with partial

evaluation. In contrast, NP-SPEC restricts input to a decidable fragment of programs, not

the guarded fragment. Since there is no complexity analysis given for grounding for NP-SPEC

(only experimental results), it is not clear how it differs from our approach in this vein. In

addition, the fact that NP-SPEC relies on the minimal model semantics, and that grounding

is over the Herbrand Universe set it apart from our approach, which relies on the semantics

of classical logic, and grounds over the domain of the structure.

To conclude, all of these approaches have the same intent, which is to ground high-level

specifications into low-level ones, so that a low-level solver can generate solutions. In all

the systems but Smodels and dlv , this low level solver is SAT. In all of the systems but the

approach of [I], some notion of a safe query or guardedness is used in order to guarantee

decidability or efficiency. The system Datalog LITE resembles our approach most closely, in

that there is a clear separation of instance and problem description. Furthermore, Datalog

LITE considers guarded Datalog, and the problem instance is a structure. As such, Datalog

LITE has inspired some of the techniques we use for an efficient grounding algorithm.

Chapter 3

Background: The Model Expansion

Framework

The model expansion framework was first suggested by [49, 501, as an approach to purely

declarative programming that is based as much as possible in classical logic. Here we fully

present the model expansion framework for FO logic.

The language of the MX framework is simply FO logic. An FO language L: contains of

the set of logical symbols, which consists of

parentheses: (,)

connectives: A, V, 1, 3

variables: X I , 2 2 , .

0 equality symbol: =

and the set of parameters, which consists of

quantifiers: V, 3

predicate symbols: P, Q, . . . (for each positive integer n, we have some set (possibly

empty) of n-ary predicate symbols)

0 constant symbols: cl, c2,. . . (set can be empty)

0 function symbols: f l , f 2 , . . . (set can be empty)

CHAPTER 3. BACKGROUND: THE MODEL EXPANSION FRAMEWORK 16

For example, if FO language C has variables x and y, and a binary relation L, one formula

of this language C is Vx3yL(x, y) V 3xVy~L(x, y). As an illustration, if the variables x and y

range over all people, and L(a, b) is interpreted to mean that "a likes b" , this formula would

say "Everybody likes someone, or there is someone who dislikes everyone".

Formally, to give meaning to the FO language C, we define the class of C-structures for

this language, as well as an object assignment, i.e., a mapping from the set of variables of 4
(which we call V) to elements of the domain. An C-structure A consists of

a A non-empty set A, called the domain (or universe) of A. Variables of C range over

this domain A

a For each n-ary function symbol f E C, a function f A : An + A

a For each n-ary predicate symbol P E C, a n-ary relation pA 5 An

a If C contains = then =A must be the identity relation on A

An object assignment is simply the function

Now we can define A 't= 4 [~] , that is, what it means for a structure A to satisfiy 4 with

object assignment Q. To do this, we formally define 0, an extension of Q to all terms (a term

is a constant or a constant with any number of functions applied to it) of 4 (which we call

T)
Q: T + A

and give the following definitions

Terms

a For each variable x, Q(x) = ~ (x)

a For each constant c, ~ (c) = c d

a If t l , . . . , t, are terms and f is an n-ary function,

then P(f (t l , . . . ,tn)) = fA(Q(tl) , . . . , @(in))

Atomic Formulas

CHAPTER 3. BACKGROUND: THE MODEL EXPANSION FRAMEWORK 17

0 For any n-ary predicate symbol P, A + P(t1, . . . , tn)[e] iff (~ (t l) , . . . , ~ (t n)) E pA

Other Formulas

A + (-+)[el iff -a F +[@I

A + (VX+)[Q] iff for every d E A, we have A + +[e(xld)], where

~ (x l d) is like Q, except at the variable x it assumes the value d (which is the entire domain).

Thus, V means "for all elements of A". Note that all of the other symbols 3, 3,. . . can be

defined by symbols in the above definitions; this gives the semantics of L.
Since all FO languages L have the basic logical symbols, they tend only to differ in

the vocabulary, that is, the sets of predicates, constants and functions. Therefore, we often

refer to formulas + as having a certain vocabulary, rather than being of a certain language.

We use this convention, not mentioning languages again, and we use the symbols a and

E for vocabularies. We also use the convention + E a to mean that + has vocabulary

u , or vocab(+) = a . Furthermore, we only deal with relational vocabularies (no function

symbols) from now on, both in explanation and algorithm implementation, for notational

convenience. Note that since any n-ary function symbol can be replaced with an (n + 1)-

ary relation symbol in a way that the formula has the same meaning, that this is not a

restriction. So in our case, we can describe a language simply as a relational vocabulary a,

and a a-structure as A = (A; ad), where A is the domain of the structure, and ad is the

interpretation of the relations of a.

Let a be a vocabulary, and A be a structure over a, A = (A; ad). Let f3 be a structure

over vocabulary a U e, the vocabulary a extended with some vocabulary e. Structure f3 =

(A ; ad, E*) is over the same domain as A and has the same interpretations of the relations

of a as A, but also contains interpretations of the relations of e. B is an expansion of A.

The MX framework for solving combinatorial search problems is given by

CHAPTER 3. BACKGROUND: THE MODEL EXPANSION FRAMEWORK 18

Definition 3.1 (the model expansion problem). Given a FO sentence 4 with vocabulary

vocab(d), and a finite structure A for vocabulary u C vocab(d), is there a structure B which

is an expansion of A to vocab(d), such that B + 4.

To illustrate this framework and its suitability for solving combinatorial search problems,

we consider the well-known NP-complete 3-coloring problem as a MX problem. The 3-

coloring problem is, given a graph G = (V, E) and three colors, is there a way to assign

colors to the nodes such that for any (a, b) E E, a and b cannot have the same color. Here

we represent the problem instance, the graph G, with the structure G = (V;uB), where

the domain of G is the set of vertices V, and u = {E) consists of the single binary (edge)

relation. Here E~ (the interpretation of the relation E) is symmetric and irreflexive. We

represent the problem description with the following formula 4

where the first line asserts that every node is colored. The second line asserts that no node

has more than one color, and the third line asserts that no two nodes that share an edge have

the same color. Thus, the formula is stated in such a way that every expansion of G that

satisfies 4 will represent a 3-coloring (if any exist). That is RB, yB and B~ will partition

the set of vertices V, representing colors red, yellow and blue. The approach is clear; the

structure represents the instance, and the formula describes the problem in a way that the

set interpretations of the expansion predicates (expansion vocabulary E = {R, Y, B) in this

case) is the witness of the solution. In this way we can formulate the decision problem

as determining whether there exists an expansion of G that satisfies 4, and the assocated

search problem as finding such an expansion.

From here on for model expansion problems, given formula 4 and structure A, we use

the convention that u represents the instance vocabulary, and E represents the expansion

vocabulary or vocab(4) \ u. Note that the model expansion problem where u = vocab(4)

reduces to the problem of model checking, i.e., verifying if A + 4. From here on we focus

on the more interesting case where u is a proper subset of vocab(4). On the other hand,

note that when u = 0, MX coincides with the spectrum problem. The spectrum of a

sentence 4 is the set {n E N I 4 has a finite model of size n). If u = 0 and vocab(4) =

CHAPTER 3. BACKGROUND: THE MODEL EXPANSION FRAMEWORK 19

{Rl , . . . , R,), the spectrum of 4 can be alternatively viewed as finite models of the 3SO

sentence 3R1,. . . ,3&4. In particular, given an instance (4, A) to the MX problem where

a = 0 and the domain A of the structure A is of size n , we can determine if there is an

expansion f? of A such that B /= 4 by determining if n is in the spectrum of 4 and vice

versa.

Note that symbols in the expansion vocabulary E behave as existentially quantified sec-

ond order variables. So, in the case of FO logic, we have the same power as 3SO over finite

structures, that is, MX captures the complexity class N P . This can be proved using the

same technique employed in Fagin's Theorem [17]. Formally, we define the following class

of problems

Definition 3.2 (expressed by MX(a, 4)). A class of finite a-stmctures K is expressed

by MX(a, 4) if for any a-structure A, A E K iff there is an expansion B of A such that

a h: 4.

Assuming standard encoding of languages by classes of structures, and vice versa (see,

e.g. [42]), we have the following re-casting of Fagin's Theorem. A class of finite a-structures

K is in N P iff for some FO formula 4, K is expressed by MX(a, 4).
Some lower complexity classes can be captured similarily, applying results for vari-

ous fragments of 3SO [27, 391. For example, FO universal Horn MX(a, 4) expresses P

over ordered structures. The C i levels of the Polynomial Heirarchy (PH) are captured by

II:-_,MX(~, 4). Note that MX does not naturally capture II; levels, and this is not just hap-

penstance: If there are some a and 4 so that MX(a, 4) is IIi-complete, then the PH collapses

to its k-th level. In particular, if there are a and 4 such that MX(a, 4) is co-NP-complete,

then N P = co-NP.

The MX framework allows us to consider the problems of model checking (MC), model

expansion and finite satisfiability, all for the same logic. The complexity of MX lies between

MC and finite satisfiability. In the case of FO logic, finite satisfiability is undecidable, MX

is NEXP-complete, and MC is PSPACE-complete. Even in the case where a = 0, MX

is decidable, as a finite structure is still provided. This finite structure has no relations,

but the domain is finite. In fact, the case of the MX problem where a = 0 is equivalent

to the result from (351 that the set X c N is a FO spectrum iff it is in N E X P . To prove

NEXP-completeness for MX, it is a straightforward reduction from Bernays-Schijnfinkel

satisfiability or from the combined complexity of 3SO over finite structures.

CHAPTER 3. BACKGROUND: THE MODEL EXPANSION FRAMEWORK 20

Although the complexity of MX in the general case is impractical, in many cases of the

following parameterized version of the problem, it is practical.

Definition 3.3 (parameterized MX). Fix an unrestricted FO formula 4 and a vocabulary

a c vocab(4). The problem MX(a, 4) is: Given a finite structure A for the vocabulary a , is

there an expansion B of A to vocab(4) such that B + 4.

Since 4 represents problem description, and a-structure A represents instance, if we fix

4, we can solve this particular problem for many instances. For example, once we have

the formulation of the 3-coloring problem, we can solve this problem for many graphs G,

given their corresponding structures G. This class of problems describes the data complexity

of MX, which is NP-complete, which is what we would expect, given that the 3-coloring

problem is NP-complete, not NEXP-complete.

In regards to grounding, in the case where the formula 4 is fixed, any naive grounding

algorithm will produce a propositionalization in time O(ne), where l is the length (141) of

the formula, and n is the size of structure A. Note that this is polynomial in n because 4 is
fixed (which is expected, as grounding is a way to solve NP-complete problems by reducing

MX to SAT). However, the algorithm we present produces a grounding in time 0(12nk)

where l and n are as above. This polynomial can be much smaller than the above O(ne)

when k is much smaller than l . In practice, many problems can be formulated as model

expansion problems where the formula can be written as a k-guarded formula for small k.

This is why the results for this particular fragment of FO logic are useful from a practical

perspective.

Chapter 4

Background: The k-Guarded

Fragment

The guarded fragment GF of FO was introduced by Andr6ka et al. [2]. Here any existentially

quantified subformula 4 must be conjoined with a guard, i.e., an atomic formula over all free

variables of 4. Gottlob et al. [24] extended GF to the k-guarded fragment GFk of FO (which

we refer to as GFk from here on, mentioning explicitly when referring to the k-guarded

fragment of some other logic), where the conjunction of up to k atoms may act as a guard,

and proved that k-guarded sentences can be evaluated in time 0(e2nk) where e is the size of

the formula, and n is the size of the structure. The proof is by transforming GFk sentences

into k-guarded Non-Recursive Stratified Datalog (NRSD) programs. Later, in [46], the

authors show that model checking for a formula 4 E GFk can be carried out in time O(enk),

where e is the length of the formula, and n is the size of the (arbitrary) structure [46] (i.e.,

the combined time complexity is polynomial). I t is the structural properties of k-guarded

formulas that gives rise to these results, i.e., the polynomial time combined complexity of

model checking for formulas in GFk , over the general PSPACE-complete time complexity

for model checking. We show in this thesis that taking advantage of the structural properties

of k-guarded formulas is also beneficial in the case of coming up with an efficient grounding

algorithm. The discovery of this fragment of FO logic has roots in structural graph theory,

namely the notion of tree decomposition [7] and its generalizations.

A tree decomposition is a mapping from a graph to a tree. More specifically,

Definition 4.1 (tree decomposition). Given graph G = (V, E) a tree decomposition of

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 22

G, TD(G), is a pair (7 , X) where 7 = (N, T) is a tree, and x : N + 2V is a mapping from

vertices of 7 to sets of vertices of G. This pair (7 , X) must meet the following constraints:

3. Vv E V, {n E N I v E ~ (n)) induces a (connected) subtree of 7

In this definition, the first rule states that every vertex of G is associated with at least one

vertex of 7 . The second rule states that each pair of vertices of every edge of G is associated

with at least one vertex of 7 . The last rule states that the set of vertices of 7 that each

vertex of G associates with induces a connected subtree of 7 . The tree-width of a given

tree decomposition TD of G is m a x , ~ ~ Ix(n)l - 1, and the tree-width of a graph G is the

minimum width of all tree decompositions of G.

Intuitively, a tree decomposition is an arrangement of the graph as a tree, and the tree-

width of a graph is a measure of how well the graph "fits" to a tree (the better the fit,

the closer to 1, from infinity, the tree-width is). If a graph G that has bounded tree-width,

that is the tree-width of G is some constant k, this fact can be recognized in linear (O(n))

time. Given this, a width k tree decomposition of G can be built in O(n)-time. Since

many NP graph properties become polynomial-time testable (Maximum Independent Set,

3-Colorability, etc.) when the graph is a tree, this is also the case when the graph has

bounded tree-width. This is because, given graph G of tree-width at most k, we can both

recognize this fact, and construct a tree decomposition TD(G) = (x, 7) of G in polynomial

time. Given this, we can then modify the property test to work for the tree 7 in polynomial

time, because each node of the tree contains only a constant amount of information.

Since many problems that can be represented as graphs have small tree-width, this notion

has had much success in practice. However many problems are more faithfully represented

in terms of hypergraphs, rather than graphs. As such, it would be useful if such a notion

of decomposition existed for hypergraphs, so that properties of low "width" hypergraphs

could be tested efficiently. A hypergraph is a generalization of the notion of graph. While a

graph G is a set of vertices and a set of pairs of vertices (or edges), a hypergraph H is a set

of vertices and set of subsets of vertices (or hyperedges). That is, hypergraphs can represent

objects related to each other by not just binary relations, but relations of any arity. For

example, a FO formula

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 23

can be viewed as a hypergraph (Figure 4.1). In this case, the vertices represent the variables,

and the atoms are relations (hyperedges) over these vertices. If there is some valuation for

the variables that satisfies formula 4.1, the variable x will have to take the same value at

all places (in S and in R), so we can represent x as a single vertex. Furthermore each atom

relates the variables within it by requiring that the tuple of valuations actually satisfy the

given atom. Thus, given that each atom is not only binary in general, with hypergraphs is

the best way to represent these entities.

An important property test for formulas (which have a hypergraph structure) is the

model checking problem. The model checking problem is, given a a-formula $ and a a-

structure A, does A t= $. The length t of the formula $ is the number of atoms in the

formula (or the number of variables; from an asymptotic viewpoint, they are the same).

The size n of the structure A is the size of any reasonable encoding of this structure. An

example of a reasonable encoding of a structure is an encoding of the domain of the structure

followed by an encoding of each tuple of each relation interpreted by the structure. A detailed

example of an encoding of a structure can be found in [18], thus n can be used in place of

the size of domain A of A, or the size of the interpretation (table of tuples) of any relation

of A. Given formula 4.1, and structure dl = {sA1 = {(2,6,6), (3,4,5), (5,2,3)), RA1 =

{(2,7,8), (4,5,6)}, = ((6, 1), (6,3), (8,2)}}, A1 satisfies formula 4.1 because the tuples

(3,4,5), (4,5,6), (6,l) satisfy the set of atoms S, R and T respectively, and are consistent

with the variables.

From a computation viewpoint, for formula $ and structure A, checking that A $

involves computing the answer to $ w.r.t. A. To describe the answer to a formula w.r.t. a

structure, we introduce the notion of relation [18] from relational database theory. An X-

relation R is a set of mappings from the set of free variables X of the formula, to the set of

elements A of the domain of the structure, or R = {y : X -+ A). The answer to an atomic

formula w.r.t. a structure is the X-relation that is the set of mappings of the free variables of

the atom to the tuples of the interpretation of the atom in the structure. For example, the

answer to atomic formula S(v, x, y) w.r.t. A1 is {yl : {v, x, y) -+ {2,6,6), yz : {v, x, y) -+

{3,4,5), y3 : {v, x, y) -+ {5,2,3)) or, the following table on the left

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

The Y -projection xy (R) of X-relation R, where Y C_ X is the Y-relation {y 1 y I y E R),
or the tuples of R restricted to the set Y. For example, .rr{,,,)(S(A1)) is the above table on

the right. Note that given that the size JJRJI of X-relation R is its arity times the number

of tuples (in the case of {v, x, y)-relation S(Al), JIS(A1)JJ is 3 . 3 = 9). Given this, the

Y-projection of R involves passing through the tuples once and discarding the columns of

X that fall outside of Y, resulting in a table that is smaller or equal in size to R . Thus

Y-projection is an O(J(R(1)-time operation, or a linear time operation.

The join R W S of X-relation R and Y-relation S is the X U Y-relation {y : X U Y -+

A 1 y Jx E R , y J y E S) . For example, given S(A1) and the fact that R(A1) is the following

table on the left

S(A1) W R(A1) is the above table on the right. When X and Y are disjoint sets, the join

of X-relation R and Y-relation S will be of size I(R((. ((S(J, as every tuple of R is matched

with every tuple of S. Since this is the worst case scenario, the join of R and S is a an

O(IJRJ1 . IJS1J)-time operation. A special case of the join operation is to join X-relation R

and Y-relation S when Y C_ X . In this case, we simply have to sort the tables R and S

according to a lexicographic ordering on A using the linear-time bucketsort (as the domain

A is fixed) [18]. After the sort, the join is the same as merging two sorted lists, as X

subsumes Y. Thus, in this case, join is an O((JR(1 + I(S(1)-time operation. The optimal way

to do model checking, in this case, is to rewrite the formula so that as many joins as possible

are linear time joins.

On the logical level, projections correspond to existential quantifications, and joins cor-

respond to conjunctions. Until we get to the discussion on the k-guarded fragment of full FO

logic, we only discuss the fragment 3FOA,+ of FO logic (FO logic restricted to conjunction

and existential quantification), as this is all that is needed to describe the structure of k-
guarded formulas from a graph theoretic (or hypergraph theoretic) standpoint. This is why

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.1: formula 4.1 as a hypergraph

we only mention projection and join, leaving the definitions of the operations that pertain to

disjunction and negation until the discussion of full FO logic. So the answer to formula 4.1

w.r.t. dl is T (~) (S (A ~) W R (d l) W T(Al)), that is, we join the three conjoined relations,

and then we project to the set {y), as all variables but y are existentially quantified and

thus go out of scope. This computation is as follows: compute S(A1) W R(A1) resulting in

the table above, then we compute S(A1) W R(A1) W T(A1) resulting in the table on the left

This is then projected onto the set {y) to get the above table on the right. Since this table

is not empty, there is a valuation to y of formula 4.1 from structure dl, such that this

formula is satisfied (ie., the structure satisfies the formula under some object assignment).

In the general case, for formula 4.1, model checking involved three join operations, and a

projection at the end, thus the total time is 0 (n3) , as each atomic relation is of size O(n)

and three were joined together to get intermediate relation of size 0 (n3) . Then a linear-time

projection was applied to this intermediate relation for a final relation of size 0 (n3) . In the

general case for positive conjunctive formulas, the time is O(ne), since there are O(C) atoms

in the formula.

A more clever way to do this, however, would be to rewrite the formula 4.1 into

Note that formula 4.2 is semantically equivalent to formula 4.1 (has the same meaning, ie.,

has the same models). This rewriting implies that operations will now be done in the order

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 26

T~~~ ((T{,,~} (S(A1))) W R(A1) W (T{,) (T(A1)))). This computation is as follows: compute

T{,,,) (S(A1)) resulting in the following table on the left

Then compute (T{,,~)(S(A~))) W R(A1) resulting in the above table on the right. This

is an instance of the special case of join, since it is the join of a {v, x, y)-relation and a

{x, y)-relation. Next is to compute the join of the above relation with T{,)(T(A~)). Since

T{,) (T(A1)) is the following table on the left

The join (~ { , , ~) (S (d l))) W R(A1) W (T{,)(T(A~))) results in the above table in the center.

This is also an instance of the special case of join as it is a join of a {x, y, 2)-relation and a

(2)-relation. Last is to project this relation onto the set {y), resulting in the above table

on the right. Note that this is same table we got in the case of formula 4.1, which which is

what we would expect, since it and formula 4.2 are semantically equivalent.

This clever rearrangement involved moving projections inward as far as possible in order

to keep intermediate joins small instead of joining large relations, which could produce a

huge relation, and then projecting at the end. In fact, in the above case, projections could

be moved in to the extent that each intermediate join remained of size O(n). In general, for

formula 4.2, this can be seen by the fact that we started with relations all of size O(n), and

that every operation was a linear-time operation. This means that the answer to formula 4.2

w.r.t. dl was computed in time O(n), a big improvement over 0(n3) . In general, when

computing formulas where projections can be moved inwards to the point that every join

can be done in linear time (ie., is a special case join), the time to compute the answer to

t8he formula w.r.t. the structure is O(Cn). This is because we start with relations all of size

O(n) and then there are O(C) linear operations, therefore all intermediate relations remain

of size O(n).

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.2: join tree of formula 4.1

The reason that the above formula 4.1 could be rewritten as formula 4.2 such that the

combined complexity of its evaluation w.r.t. a structure is linear is because formula 4.1 has

a join tree [22]. A join tree for a positive conjunctive formula is an arrangement of its

atoms in a tree such that for every variable of the formula, the set of atoms containing this

variable induces a (connected) subtree of this join tree. Let V be the set of variables of 4
and At be the set of atoms of 4. Since atoms contain variables, we use the notation v E a

to denote that variable v is contained in atom a, and we use v a r (a) to denote the set of

variables of atom a. Formally,

Definition 4.2 (join tree). A join tree for positive conjunctive FO formula 4 is a triple

(7, X , A) where 7 = (N , T) is a tree, x : N 2' is a mapping from vertices of 7 to sets

of variables of 4, and A : N -+ At is a mapping from vertices of 7 to atoms of 4. This

triple (7 , X , A) must meet the following constraints

1. V a E At, 3 n E N s.t. v a r (a) C ~ (n)

2. V a E At , 3 n E N s.t. A(n) = a

3. V v E V, { n E N I v E ~ (n)) induces a (connected) subtree of 7

In this definition the first rule states that every atom is covered by some vertex in tree

7, that is, given an atom of the formula 4, there is some vertex n of 7 such that all the

variables of that atom are associated with n . The second rule states that every atom itself

is associated with some vertex in tree 7. The third rule states that the set of vertices of 7
that each variable of the formula 4 associates with induces a connected subtree of 7 . The

last rule states that for each vertex n of 7, the variables associated with n are exactly the

variables of the atom associated with n. Figure 4.2 shows the join tree for the formula 4.1.

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.3: join tree of formula 4.3

Every formula 4 that has a join tree can be evaluated in O (h) time. This is because

the atoms of 4 can be arranged in a way that join operations are done from the leaves of

the tree to some (arbitrarily chosen) root of the tree. In this computation, for any pair of

atoms cr and p of 4 that are joined by an edge in the tree, where cr is closer to the root,

we only need to consider the variables that P has in common with cu in the join of cr and P.
That is, all of the projections (or existential quantifications) for the variables in the subtree

rooted at j3 that have nothing in common with cr can be pushed below cr into this subtree,

which means that all joins are special case (linear time) joins. For example, the positive

conjunctive FO formula

has the join tree shown in Figure 4.3 (notice that it has the join tree of formula 4.1 as a

subtree). This means that the formula can be rewritten into the positive conjunctive FO

formula

such that it can be evaluated with linear-time combined complexity.

Note the similarity of the definition of join tree for formulas to the definition of tree

decomposition for graphs. In fact a positive conjunctive FO formula 4 has a join tree iff

its associated hypergraph is acyclic. Given a hypergraph H = (V, E), the GYO-reduct [22]

GYO(H) is the hypergraph obtained by applying the following rules as long as possible

1. remove hyperedges that are empty or contained in other hyperedges

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

2. remove vertices that appear in at most one hyperedge

If GYO(H) = (0,0) then H is acyclic. So the definition of a join tree is a decomposition of

the acyclic hypergraph into a tree (where we use vertices of H in place of variables of $ and

hyperedges of H in place of atoms of $, which we do interchangeably throughout, due to

this equivalence).

So just as certain properties of acyclic graphs can be tested in polynomial (actually

linear) time, so is the case for acyclic hypergraphs. While we will only mention satisfiability

in the context of model checking, as it suits our purposes, there are many other examples

(CSP, Homomorphism, etc.). The obvious question is whether the notion of acyclicity

for hypergraphs can be generalized. In other words, is there a measure of acyclicity for

hypergraphs, i.e., a notion of decomposition and bounded width for hypergraphs as there

is for graphs? There is such a notion, as we show in the remainder of this chapter. This

notion is very useful, as it is the basis for the efficiency of our grounding algorithm

The first hypergraph decomposition notion that generalizes acyclicity is the notion of

query decomposition, proposed in [lo]. Like a join tree, a query decomposition of a hy-

pergraph (formula) is an arrangement of its hyperedges (atoms) in a tree. However, with

query decomposition, more than one hyperedge may be associated with each vertex of the

underlying tree, where the connectedness condition still holds for each vertex (variable) in

the hypergraph. Given hypergraph H = (V, E), we use the notation v E e to denote that

vertex v is contained in hyperedge e, and given an edge e E E, we use vertices(e) to denote

the set of vertices of this hyperedge. Given a set of hyperedges El C_ E, we use vertices(E1)

to denote the set of vertices of this set of hyperedges, or UeEE, vertices(e).

Definition 4.3 (query decomposition). A query decomposition of hypergmph H =

(V, E) is a triple (7, X, A) where 7 = (N,T) is a tree, x : N + 2V is a mapping

from vertices of 7 to sets of vertices of H , and X : N + 2E is a mapping from vertices of

7 to sets of hyperedges of H . This triple (7, X, A) must meet the following constraints

3. Vv E V, {n E N I v E ~ (n)) induces a (connected) subtree of 7

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 30

In this definition the first rule states that every hyperedge is covered by some vertex in tree

7, that is, given a hyperedge of H , there is some vertex n of 7 such that all the vertices

of this hyperedge are associated with n. The second rule states that every hyperedge itself

is associated with some vertex in tree 7. The third rule states that the set of vertices of

7 that each vertex of H associates with induces a connected subtree of 7. The last rule

states that for every vertex n of 7 , the set of vertices associated with n are exactly the set

of vertices of the set of hyperedges associated with n. The query-width of a given query

decomposition is max,~N JX(n)J, and the query-width of a hypergraph H is the minimum

query-width of all query decompositions of H. The query-width of a formula is the query-

width of its associated hypergraph. Note that the only difference in this definition from that

of a join tree is in the second rule, that is, more than one hyperedge may be associated with

a vertex of 7 . Because of this, not just acyclic hypergraphs have query decompositions (all

hypergraphs do), however the ones that are "close" to being acyclic will have low query-

width. In fact, acyclic hypergraphs have query-width one, that is, each node of 7 has

exactly one hyperedge associated with it, and thus query decomposition coincides with join

tree on acyclic hypergraphs.

As an example, positive conjunctive FO formula

3sxx1cf syylcl flzj(A(sl x , x', c, f) A B(s, y, y'c'f') A C(c, c', z) A D(x, z) A E (y , z)

A F (f , fl, zl) A G(xl, 2') A H(yl, z') A J (j , x, y, x', y'))
(4.5)

has the query decomposition shown in Figure 4.4. This is a minimal query decomposition

for this formula, and thus formula 4.5 has query-width 3. Note that here, regarding model

checking of a structure A of size n with 4 of length l, since the largest number of atoms

associated with any vertex is 3, joining the atoms at any vertex of 7 will take time 0(n3) .

After the joins at each vertex, we have a join tree of size O(l) such that all relations are of

size 0(n3), thus formula 4.5 can be evaluated in 0(ln3)-time. So while acyclic formulas can

be evaluated in O(ln)-time, formulas of query-width k can be evaluated in O(lnk)-time.

The number of atoms, not the number of variables, associated with each vertex of the

tree 7 determines the complexity of model checking for formula 4, since there are interpre-

tations for atoms (and not variables) in a structure. Note that many of the other hypergraph

properties are efficiently testable when we restrict vertices of 7 in terms of hyperedges of H

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.4: query decomposition of formula 4.5

instead of vertices of H (CSP, Homomorphism, etc.). This is why query decomposition con-

siders the number of atoms associated with a vertex of 7, and not the number of variables.

There is a notion of tree decomposition for hypergraphs as well. The Gaifmann graph (or

primal graph) of a hypergraph H = (V, E) is the graph G = (V, E ~) , where E~ = {(u, v) (u

and v are both in some hyperedge of E). In other words, it is the graph obtained by taking

the vertices V of H and introducing a clique on any set of vertices that are related by a

hyperedge in H. A tree decomposition of a hypergraph H = (V, E) is a tree decomposition

of its primal graph, and the tree-width of H is the tree-width of its primal graph. While this

notion is useful, ie . , model checking for a formula of bounded tree-width has polynomial

time combined complexity, the converse is not always true. That is, if model checking for

a class of formulas has polynomial time combined complexity, this need not be the class of

formulas of bounded treewidth. For example, an acyclic formula with an atom of arity k

has tree-width k - 1.

Query decomposition for hypergraphs, while a natural extension of the definition of tree

decomposition for graphs does not serve quite the same function as tree decomposition. For

one reason, it is NP-complete to decide whether or not a hypergraph has query-width 4,

i.e., hypergraphs of bounded query-width are not recognizable in polynomial time. Fur-

thermore, query decompositions of hypergraphs are not optimal. Evidence of this fact is

that formula 4.5 can be replaced with a semantically equivalent formula that has the (min-

imal) query decomposition of size 2 shown in Figure 4.5. From this query decomposition, it

should be clear how this formula has been constructed from formula 4.5, it is a modification

of formula 4.5 by introducing the six new variables a, P, y, 6, E , y and reusing atom J. Since

all of the original atoms (constraints) are there and these new variables appear in no other

atom, i.e., no new constraints are introduced, this new formula is semantically equivalent

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.5: query decomposition of formula equivalent to formula 4.5

to formula 4.5. This means that essentially, we can do model checking for formula 4.5 in

0(.h2)-time as opposed to 0(!n3)-time. Fortunately, it turns out that the high complexity

of determining bounded query-width is not, as one might expect, the price for the generality

of the concept. Rather, it is due to some peculiarity in its definition [23]. Next we present

a notion that is just as general and does not suffer from such problems.

The notion of hypertree decomposition was first proposed in [24], and is a notion that

generalizes tree decomposition, acyclicity (or the concept of a join tree), query decomposition

and is tractable. In fact formula 4.5 has a minimal hypertree decomposition of hypertree-

width 2, which is why it can be evaluated w.r.t. model checking in 0(tn2)-time. Formally,

Definition 4.4 (hypertree decomposition). given hypergraph H = (V, E), a hypertree

decomposition for H is a triple (7, X, A) where 7 = (N, T) i s a rooted tree, x : N -, 2'

is a mapping from vertices of 7 to sets of vertices of H, and X : N -+ 2 E is a mapping

from vertices of 7 to sets of hyperedges of H. If 7' = (N1,T') i s a subtree of 7 , we define

x(T') = UnEN, ~ (n) . For any n E N, Tn denotes the subtree of 7 rooted at n. This triple

(7 , X, A) must meet the following constraints:

3. Vv E V, {n E N I v E ~ (n)) induces a (connected) subtree of 7

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 33

In this definition the first rule states that every hyperedge is covered by some vertex in tree

7 . The second rule states that every hyperedge itself is associated with some vertex in tree

7 . The third rule states that the set of vertices of 7 that any vertex of the H associates with

induces a connected subtree of 7 . It is these last two rules that sets hypertree decompositions

apart from query decompositions. The fourth rule states that for every vertex n of 7, the set

of vertices associated with n can be a subset of the set vertices of the hyperedges associated

with n, instead of the sets having to be equal. This relaxation allows hyperedges to be

"reused" in vertices of 7 with only a subset of their vertices, in order to achieve a smaller

width. The fifth rule states that for every vertex n of 7, the set vertices associated with the

subtree rooted at n that is in common with the set of vertices of the hyperedges associated

with n must be a subset of the set of vertices associated with n. In other words, for a

given vertex n of 7, a vertex v of V can be a member of vertices(X(n)), but not a member

of ~ (n) , i.e., it is a member of vertices(X(n)) \ ~ (n) , as long as it is not a member of

any ~ (n ') for any vertex n' of 7 in the subtree 7,. Again the hypertree-width of a given

hypertree decomposition is m a x , ~ ~ IX(n)l, and the hypertree-width of a hypergraph H is

the minimum hypertree-width of all hypertree decompositions of H.

While the definition of hypertree decomposition seems less natural than that of query

decomposition, this more powerful notion is the decomposition method for hypertrees that

is more analogous to tree decomposition for graphs in terms of function. That is, hyper-

graphs of bounded hypertreewidth are recognizable in polynomial-time, and therefore, a

bounded width hypertree decomposition for a hypergraph of bounded hypertreewidth can

be constructed in polynomial-time. Hypertree decompositions differ from query decompe

sitions only in these final two rules. Rule four in the definition of hypertree decomposition

is a relaxation of rule four in the definition of query decomposition that allows for smaller

widths in general (for example, in formula 4.5). Rule five in the definition of hypertree de-

composition is a constraint that is needed for polynomial-time recognizability. In fact, there

is a notion of generalized hypertree decomposition that is the same as the notion of hypertree

decomposition but without rule five. However, like query decomposition, it is NP-complete

t'o decide whether or not a hypergraph has generalized hypertree-width 4 (Gottlob, personal

communication). So it seems that rule five is needed for tractability.

Note that formula 4.5 has hypertree-width 2 because it has the minimal hypertree d e

composition of width 2 shown in the image above. Notice how atom J is "reused" with

a subset of its variables in order to achieve the hypertreewidth of 2 over the query-width

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.6: hypertree decomposition of formula 4.5

3 by this relaxation provided by rule four. The blanks in each node n of 7 are the ele-

ments of vertices(A(n)) \ ~ (n) Note that it is this hypertree decomposition that implies

that formula 4.5 can be replaced by the semantically equivalent formula of query-width 2.

This semantically equivalent formula is obtained by pushing projections down to the ap-

propriate level of the formula as dictated by the hypertree decomposition, and then putting

"anonymous variables" where the blanks are, that is, new variables that appear nowhere in

formula 4.5 (i. e., in Figure 4.6). In general, this is the case, that any formula 4 that has

hypertree-width k can be replaced by a semantically equivalent 4' such that model checking

for 4' can be done in time 0 (l n k) where n is the size of the structure. Conversely, any

formula that has the structure of a hypertree decomposition of width k (i.e., all existentials

are pushed inwards in a way that no join will involve more than k atoms) obviously has

hypertree-width k. In fact, there is a fragment 3FOA,+ (the fragment of FO logic that has

only conjunction, and existential quantification) that pertains to exactly all of the formulas

of 3FOA,+ of bounded hypertree-width, namely the k-guarded fragment GFk(3FOA,+) [2].

Definition 4.5 (the k-guarded fragment of 3FOA,+). The k-guarded fragment of

3FOA,+, or GFk(3FOA,+), is the smallest set of 3FOA,+ formulas such that

1. GFk(3FOA,+) contains atomic formulas;

2. GFk(3FOA,+) is closed under Boolean operations;

3. GFk(3FOA,+) contains 3 5 (G 1 ~ . . . A G , A ~) , provided that the Gi are atomic formulas,

m 5 k, r$ E GFk(3FOA,+), and the free variables of 4 appear in the Gi. Here GI A

. . . A G, is called the guard of 4.

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT

Figure 4.7: Zguarded formula semantically equivalent to formula 4.5

This is simply the recursive definition for a tree-like formula, where no more than k atoms

(or hyperedges) are associated with any vertex of this tree. If we view the formula as a tree,

it is all of the internal vertices of the tree that are guards. Figure 4.7 shows the Zguarded

formula that is semantically equivalent to formula 4.5 (the one whose query decomposition

is shown in Figure 4.5) written as a tree, where rectangular internal nodes stand for guarded

existentials, circular internal nodes for conjunctions, and leaves for literals. So to restate,

if formula 4 has hypertree-width k, it means that it can be replaced by a semantically

equivalent k-guarded 4'. Conversely, if 4 is a k-guarded formula, it has hypertree-width k.

Note that we have only mentioned 3FOA,+ throughout this entire chapter. However,

in [24] the authors lift the expressibility of the k-guarded fragment to full FO logic by a

proof technique involving stratified datalog that is inspired by [18]. That is, they show that

model checking for formulas of the k-guarded fragment of FO logic, GFk, can be done in

polynomial-time.

Definition 4.6 (the k-guarded fragment). The k-guarded fragment, or GFk, i s the

smallest set of FO formulas such that

1. GFk contains atomic formulas;

2. GFk i s closed under Boolean operations;

3. GFk contains]?(GI A . . . A G, A +), provided that the Gi are atomic formulas, m 5 k,

4 E GFk, and the free variables of 4 appear i n the Gi. Here G1 A . . . A G, i s called

the guard of 4.

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 36

Note here that these formulas may contain negation, and disjunction (and thus universal

quantification, etc.), however the guards must still be positive conjunctive.

In [46], the authors propose a recursive algorithm for evaluating formulas in GFk w.r.t.

~t~ructures (model checking) that has time O(Cnk). Specifically, this algorithm takes formulas

of the strictly k-guarded fragment SGFk.

Definition 4.7 (the str ict ly k-guarded fragment). The strictly k-guarded fragment,

or SGFk, are the formulas of GFk of the form 33(G1 A . . . A Gm A $).

The degenerate cases where 3 is empty, m = 0 or 4 is true fall in to this class as well. Note

that any k-guarded sentence is strictly k-guarded. The algorithm is as follows. Note that

there are two Eva1 procedures, but since one has two parameters and the other has three,

there is never an ambiguitiy in which one is being used

Procedure Eval(A, 4)
Input : A structure A and a formula 4 E SGFk

Outpu t : 4(A)

suppose 4(2) = 3jj(G1 A . . - A Gm A $)

return n,{Eval(A, G1 (A) W . . . W G,(A), $I)) where $I is the result of pushing i s in $

inwards so that they are in front of atoms, equalities, or existentials.

Procedure Eval(A, R, 4) is defined recursively by:

1. If 4 is an atom or an equality, then

Eval(A, R, 4) = R w +(A);

2. If 4 is negation of an atom or an equality, then

Eval(A, R, 4) = R WC +(A);

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 37

where join (W) and Y-projection (.rry) have the same meaning, but there are three new

operators, join with complement (Wc), intersection (n) and union (U). These three new ones

are here because of negation and disjunction. Note here that they present an algorithm for

evaluating strictly k-guarded formulas instead of just k-guarded formulas. The reason they

considered this is because their algorithm is recursively defined. In fact, the polynomial time

combined complexity results (0(C2nk) by Gottlob et al., and this one only applies to strictly

k-guarded formulas not k-guarded formulas in general. To see why, by the definition of

GFk, l R (x , y, z) is a 1-guarded formula, but it cannot be evaluated in O(n) time. However,

since most problems in practice are sentences, restricting formulas to the strictly k-guarded

fragment is not a drawback.

The join with complement R WC S of X-relation R and Y-relation S is the X U Y-

relation {y : X U Y + A I ylx E R , yly $! S} . This pertains to an atom conjoined with

the negation of another atom, more precisely, if R is q51(A) and S is 42(A), then R WC S is

(41 A 7h2)(A). Join with complement is an O(JIRJ1. (1SJJ)-time operator, but when Y C X , it

is an O(I(Rll+ IIS())-time operator for a similar reason as with join. When a join needs to be

performed between two X-relations, it is the same as a list intersection (which is obviously

linear time as it falls under the special case of join, i.e., X C X). It is this case that the

intersection operator refers to. Finally union handles disjunction. The union R U S of X-

relation R and X-relation S is the X-relation {y : X + A (y E R or y E S} . This is also

just the merging of two sorted lists, and thus is an O(((R(1 + JIS)I)-time operator. From the

definition of SGFk and the form of the procedure Eval it can be seen that all join operations

fall under the special case of join, that all negated atoms are "guarded", that is all joins

with complement fall under the special case as well, and that all disjunctions are between

X-relations and X-relations (and can therefore be handled by the union operator). In other

words, Eval returns the correct answer $(A), and furthermore, since all operators are linear

time, model checking for a strictly k-guarded formula can be done in time O(Cnk) by using

the same argument as with query decomposition. Namely, evaluating each guard (where

guards correspond exactly to the vertices 7 of the hypertree decomposition), involves doing

no more than k joins. Now we have to do a series of O(t) linear time operations on relations

of size O(nk), which means that all intermediate relations will be of size O(nk). Thus the

overall time is O(Cnk). It is this model checking algorithm for GFk that we use as a basis

for our grounding algorithm for model expansion.

On a related note, earlier in the chapter we mentioned that 3FOA,+ formulas of tree-width

CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 38

k can be evaluated with polynomial-time combined complexity (w.r.t. model checking), that

is, in time O(Cnk). In fact, it has been shown in [36] that the set of formulas of bounded

tree-width have a corresponding logic, namely the set of 3FOA,+ formulas that use no more

than k-variables. It is the expressibility of the k-variable fragment that the authors of [18]

lift to full FO logic using the proof technique involving stratified datalog. That is, they

show that model checking for k-variable FO logic, or F O ~ , can be done in polynomial-time.

Chapter 5

Grounding Mechanism for Model

Expansion

In this chapter, we outline our approach to solving model expansion problems. Essentially

we obtain a propositionalization (or grounding) of the FO formula over the structure that

has a satisfying assignment for every expansion structure that satisfies the FO formula. We

then use a propositional satisfiability solver to find satisfying assignments for the grounding

(if any exist), which determines which expansion structures satisfy the FO formula (if any).

For this, in Section 5.1, we present this approach in comparison to the related approaches in

general. In Section 5.2, we give the representation that we use for the grounding of a formula

over a structure. Finally, in Section 5.3, we provide an algebra for these representations:

a way to combine representations for each connective of FO logic. As such, with this

mechanism, we can now develop recursive algorithms for computing the grounding of a

formula. This is done by starting at the representations of the atomic subformulas of a

formula, and working inductively on the structure of the formula, combining representations

according to the connectives of the formula in order to arrive at such a representation for

the entire formula, i.e., a grounding of the formula over the structure.

5.1 Grounding for Model Expansion

An approach to solving a problem specified in a high-level language is to "compile" it into

a lower level language in a way that there is a one to one correspondence between solutions

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 40

to the problem specified in the high-level language to solutions to the compilation in the

lower level language. Then we use an optimized efficient low-level solver to obtain solutions

to the lower level compilation, i.e. solutions to the original problem. In the context of

model expansion, given a FO formula and a structure, this is done by propositionalizing

(or grounding) the combination of problem instance and description in such a way that

the satisfying assignments of this grounding correspond exactly to the expansion structures

that satisfy the FO formula. We then use one of the many efficient solvers for propositional

satisfiability for obtaining solutions. Given the efficiency of modern SAT technology (511, all

that is needed is a an efficient grounding algorithm; this is a practical approach to solving

model expansion problems. This is the main topic of this thesis, our main contribution is

an efficient grounding algorithm for the model expansion framework.

Grounding for any high-level language is the process of eliminating variables (and quan-

tifiers) by replacing them with constant symbols. The approach of grounding is taken in

ASP and logic programming in general, however this approach differs from ours. The ap-

proach of ASP and logic programming uses Herbrand models, which is done by taking the

Herbrand universe and then creating ground instances over this universe. The Herbrand

universe of a logic program has an element for every term of the logic program. So if a is

some term of the program, and f is some function, then the Herbrand universe contains

a , f (a), f (f (a)), f (f (f (a))), . . . , so in general, this universe can be infinite, causing satisfia-

bility to become undecidable. Thus, for ASP and logic programming, restrictions must be

put in place when function symbols are used, in order to guarantee decidability.

Our grounding approach, however, relies on the fact that in the MX framework, there is

a separation of instance and problem description. That is, the instance, a finite structure,

provides the domain onto which every term falls. That is, if a is some term of the formula,

and f is some function, then a , f (a), f (f (a)), f (f (f (a))), . . . , all fall onto the domain A

of the structure A = (A; aA). So in our approach, the universe is the domain of the

structure, and thus, there need not be any restrictions on functions. That is, instead of using

Herbrand models, in grounding, we bring domain elements into the syntax by expanding

the vocabulary and associating a new constant symbol with each element of the domain.

For domain A, we denote the set of such constants as A. We define a grounding as

Definition 5.1.1 (grounding for MX). Formula @ is a grounding of formula q5 over

a-stmcture A = (A; aA) if

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION

1. 1C, is a ground formula, i.e., there are n o FO variables in 1C,

2. 1C, is over vocab(4) U A; and

3. for every expansion structure B = (A; aA, E ~) over vocab($), 23 /= 4 iff ((B, A8) /= $,

where (t3 , jB) is the structure obtained by expanding B by interpretations of the new

constants A.

While obtaining the above is the intent of our approach, there are many ways of obtaining

a grounding of this type as well. The most naive algorithm for grounding a FO sentence 4
over a structure A is to first re-write 4 in prenex normal form, 4 = Qlxl . . . Q,x,8, then

to recursively construct 1C, = G(4) as follows

The time required by this algorithm is ~ (n l $ l) , where n is the size of structure A. While

this time is exponential in the length of the formula, it is also the upper bound on the size

of the grounding itself. While there are ways to improve the running time and grounding

size, such as restricting the form of the formula, the bound of this naive algorithm will be

the asymptotic bound of the grounding for any approach for grounding a FO formula over

a finite FO structure.

To make this approach practical, we want to simplify the grounding as much as possible,

before we pass it to a SAT solver for solution. While the definition above states that a

grounding 1C, is over vocab(q5) U 2, there is no need for any grounding to contain symbols of

a, as the truth value for ground atoms of a can be determined by the structure (without

having to resort to the SAT solver). It is thus favorable to "evaluate out" these "known"

parts of the formula, leaving a ground formula in the expansion vocabulary only, which we

call a reduced grounding.

Definition 5.1.2 (reduced grounding for MX). Let 1C, be a grounding of 4 over

a-structure A. Then 1C, is a reduced grounding if i t only contains symbols of A and of the

expansion vocabulary E (i.e., no symbols of a) .

Given a grounding as defined above, this can be transformed into a reduced grounding

using a straight-forward, but brute-force method. For each k-ary instance relation R and

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 42

each k-tuple 5 over A, if f E RA, (resp. f # RA), replace each occurrence of R(f) in 4
with true (resp. false). Recursively eliminate occurrences of true and false by replacing

($ A true) with ($), etc. In implementing our approach of combining grounding with

partial evaluation, however, it would be best to remove the contributions of a during the

construction of $. While doing so does not change the asymptotic time or size bound in

general, it is a good practice. The mechanism we show for grounding FO formulas in the rest

of this chapter has partial evaluation built into it, so any algorithm using this mechanism

will do this automatically, to produce a reduced grounding.

5.2 Extended Relations

In this section we describe how to represent the grounding of a FO formula over a finite FO

structure. In order to have a recursive algorithm for grounding a formula 4 over structure A

(computing the representation for the entire formula), we first compute representations for

all atomic subformulas of 4 (w.r.t. A), ie. , we can represent formulas with free variables.

Then we need a way of combining representations according to the different connectives of

FO logic, or an algebra, which is explained in the next section. Once we have all of this, we

then have a mechanism for grounding formulas over structures. An algorithm for grounding

is then a recipe that uses this machinery to generate a representation for the entire formula.

In the next chapter, we present such an algorithm; specifically, our algorithm is defined in

such a way that if the formula has a certain form, the algorithm, using this mechanism, is

guaranteed to produce a representation (grounding) within a certain time bound.

We use extended relations for representing the grounding of a formula over a structure,

which is an extension of the notion of relation from database theory. Recall from chapter 4

that we used the notion of a relation for representing solutions to model checking problems.

In the examples of model checking problems, given a formula 4 and a structure A, testing

if A t= 4, we computed relations for each atomic subformula of 4. We then combined these

representations according to the algebra for relations, the set of operations corresponding

to each connective of the formula. In this vein, our approach is very similar, only the

difference is that since in our case there are expansion predicates in the formula, instead of

producing a set of solutions at each step, we are producing a set of groundings at each step.

More specifically, for model checking, a relation for a formula 4 w.r.t. structure A is a set

mappings from the free variables of 4 to the domain elements A (of structure A). What

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 43

this is, is the set of valuations of the free variables such that the formula is satisfiable in the

structure. On the other hand, for model expansion, the extended relation is defined as

Definition 5.2.1 (extended X-relation). Let A = (A;aA) , and X be the set of free

variables of formula 4. An extended X-relation R over A is a set of pairs (y, $) s.t.

1. $ is a ground formula over E U t? and y : X -+ A;

2. for eve? y, there i s at most one $ s.t. (y, $) E R .

As with an X-relation, an extended X-relation R has a set of mappings y from the set

of variables X to the set of domain elements A. But furthermore, extending the notion of

X-relation, extended X-relation R is a unique mapping from all possible instantiations of

variables in X to ground formulas $. So, for model expansion, an extended relation for a

formula 4 w.r.t. structure A is a set of mappings from the free variables of 4 to the domain

elements of A, and for each of these mappings, there is an associated ground formula $.

Note that for mappings y not appearing in R , the associated formula is false. For extended

X-relation R , we will simply write y E R to mean that there exists a $ such that (y, $) E R .

Formally, the mapping represented by R is

Definition 5.2.2 (mapping represented by R). Let R be a n extended X-relation over A.

Th,e unique mapping represented by R, denoted by bR, i s defined as follows. Let y : X -+ A.

Then

The following is an example of an extended { x , y, 2)-relation R , where we will take

(0,. . . ,9) as our domain A (where E would be a member of the expansion vocabulary E)

I ! ! ! I

Here, R is a unique mapping from all possible instantiations of variables in {x, y, 2) to

ground formulas in that it maps (1,2,3) to E(1,2) A E(2,3), that is, if y = (1,2,3) (we

use a tuple to represent a particular y) then 6(y) = E(1,2) A E(2,3). It maps (3,4,5) to

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 44

E(3,4) A E(4,5), and otherwise, d(y) = false. As a convention, we refer to the columns of

the table concerning the variables as the "relation part" of the extended relation, and the

column concerning the formulas as the "formula part".

Note that the y other than (1,2,3) or (3,4,5) are not even represented in R . This is

due to the fact that we write y E R to mean that there exists $J such that (y,$J) E R.

Since we created this example, the above table is the most compact way to represent R
(we represent these sets of mappings with tables), however in general, our definition of an

extended relation R allows the possibility that for some y appearing in R, the associated

formula is the propositional symbol false or is equivalent to false. For example, the

following is an example of an extended {x, y, z)-relation S , where A = (0, . . . ,9)

however, it is easy to realize that S is equivalent to R according to the definition of extended

relation.

Also, for extended relations, note that for some y appearing in R, the associated formula

is the propositional symbol true. In fact, an ordinary relation can be represented as an

extended relation where the formula associated with each mapping y in the relation is true,

(where the rest are false). Also, a single ground formula $J can be represented as an

extended relation where the set of variables is empty and the formula associated with this

single empty mapping is $J.

As mentioned earlier, given a formula 4 in a U E with free variables X and a a-structure

A, we will use an extended X-relation to represent a reduced grounding of 4 over A under

each possible instantiation of variables. We will call such an extended relation an answer

to 4 w.r.t. A, which we now formally define. Let y : X -+ A. We will use 4[y] to denote

the result of instantiating free variables in 4 according to y.

Definition 5.2.3 (answer to 4 w.r.t. A). Let 4 be a formula i n a U e with free variables

X, A a a-structure with domain A, and R an extended X-relation over A. We say that R

is an answer to 4 w.r.t. A if for any y : X -+ A, we have that dR(y) is a reduced grounding

of 4h1 over A.

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 45

Note that this is analogous to the notion of answer in the ordinary relational context, where

we are given a formula 4 in a with free variables XI A a a-structure with domain A, and

R an X-relation over A. We say that R is an answer to 4 w.r.t. A if for any y : X -+ A,

4[y] = true.

As a special case of the above definition for extended relations, an answer to a sentence

4 consists of a single formula, which is a reduced grounding of 4. While we can represent an-

swers to formulas in the general case, we focus on this special case because we are interested

in doing grounding for FO sentences, and passing this grounding (the single formula) to a

propositional satisfiability solver for solution. We now give an example of the production of

a reduced grounding of a sentence to better illustrate the notion of extended relation and

how it represents the answer to a formula w.r.t. a structure.

Let 4 = 3x3y3z[P(x1 y, z) A E(x, y) A E(y, z)], a = {P), and E = {E). Let A be a

a-structure such that P* = {(1,2,3), (3,4,5)). Then the extended relation R shown in the

table above is an answer to 4' = P(x, y, z) A E(x, y) A E(y, z) w.r.t. A. It is easy to see, for

example, that E(1,2) A E(2,3) is a reduced grounding of #[(I, 2,3)] = P(1,2,3) A E(1,2) A

E(2,3) = true A E(1,2) A E(2,3) = E(1,2) A E(2,3), and false is a reduced grounding

of $'[(I, 1, I)]. Next, the following extended relation is an answer to 4" = 3z[P(x, y, z) A

Here, for example, E(1,2) A E(2,3) is a reduced grounding of 4"[(1,2)] = 3z[P(1,2, z) A

E (l , 2) ~ E(2, z)] = P(l ,2 ,3) A E (l , 2) ~ E(2,3) = true^ E (l , 2) ~ E(2,3) = E (l , 2) ~ E(2,3),

and false is a reduced grounding of #'[(I, I)]. Finally, the following is an answer to 4, where

the single formula is a reduced grounding of 4

Now that we have defined what we use to represent an answer to a formula w.r.t. a

structure, namely an extended relation, we need simply to define the algebra for extended

relations in order to have a mechanism for grounding an FO formula over a structure. We

define this algebra and explain it in full in the next section.

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 46

5.3 An Algebra for Extended Relations

In the previous section, we have defined the extended relation, which extends the notion of

relation from database theory. Just as relations have an algebra, ie., a set of operations

whose semantics correspond to the connectives of FO logic defined on them, we define an

algebra for extended relations, since we want to develop algorithms for model expansion

(grounding), similar to the existing algorithms for model checking.

In traditional relational algebra, there are the operations join, join with complement,

projection, union and intersection, which correspond to conjunction, conjunction with a

negated atom, existential quantification, disjunction, and a special case of conjunction re-

spectively. Detailed algorithms and proofs of the operations join and projection can be

found in the appendix of [18], and for the rest of the operations it follows quite easily. The

essential idea here is to encode the domain elements appearing in the input relation using

the bucket sort algorithm (which is possible, since the domain is fixed for a given instance

of the problem). Next, we compute a join, projection, union, etc. of the encoded input

relations. Finally we sort (if necessary) the encoded output relation, and then decode this

result. It can be shown that each of the operations in the ordinary relational algebra can be

done in time linear in its operands, with the exception of join and join with complement.

However, in the case where the first operand is an X-relation and the second operand is a

Y-relation, join and join with complement can be done in time linear in these operands if

Y c X .

In this section, we develop an algebra for extended relations which consists of these five

operations, where each of these has the same semantics as in traditional relational algebra. In

the following, we present each operation, state its semantics, and give the time complexity.

We will show that each of these operations can be done in time linear in its operands,

excluding join and join with complement. We show that join and join with complement, if

the operands meet the same criteria for extended relations as above for ordinary relations,

the time of these operations is quadratic it their operands. However, after presenting the

details of the algorithm in the next chapter, we show how to modify the algorithm in order to

avoid any size blow-up from these operations. The major difference between the algebra we

present, and the ordinary relational algebra, is since we are dealing with extended relations

(those where formulas are associated with each mapping), we must define our operations

in terms of these formulas, and thus copy formulas from the input relations to the output

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 47

relation.

While a notion of the size of a relation [18] is needed in order to prove bounds for the

complexity of any operation in the relational algebra, we also give a measure of the size of

an extended relation. Let R be an extended X-relation. The size of R, denoted by IIRII, is

the sum of the size of each tuple (y, ha(?)) in R. Each tuple is of size 1x1 + I(ba(y) 1 1 , where

)lhR(y)((is the size of the formula associated with y. Thus IlRll = lXllRl + x7,, IJbR(y)I(,

where 172.1 is the number of tuples in R. We now define the five operations of the algebra

for extended relations starting with join and join with complement.

Definition 5.3.1 (join, join with complement). Let R be an extended X-relation and

S an extended Y-relation, both over domain A. Then

1. the join of R and S is the extended X U Y-relation

2. the join of R with the complement of S is the extended X U Y-relation

As an example of the operations join and join with complement, let R be the extended

{ x , y , 2)-relation

7 7 9 C V D w
and S be the extended {y, z)-relation ({y, z) is a subset of { x , y, z))

1 3 \ 4 1 F A B 1

The join of R and S, R W S, is the extended { x , y, z)-relation

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION

The join of R with the complement of S, R WC S, is the extended {x, y, 2)-relation

The following proposition states the semantics of these operations.

Proposition 5.3.2. Suppose that R is an answer to dl and S is an answer to $2, both

w.r.t. structure A. Then

1. R W S is an answer to A 4 2 w.r.t. A;

2. R WC S is an answer to $1 A 1 4 2 w.r.t. A.

Proof: (1) Since R is an answer to 41 w.r.t. A, then for any instantiation yl of the variables

X, &(TI) is a reduced grounding of 41[yl]. Since S is an answer to $2 w.r.t. A, then for

any instantiation y2 of the variables Y, bs(y2) is a reduced grounding of 42[72]. Firstly,

&.(TI) A b ~ (y 2) is a ground formula over E U A, since both dR(yl) and ba(y2) are ground

formulas over E U A. Secondly, since bR(yl) is such that for every expansion structure

B1 = (A ; U ~ , E ~ ~) over v o ~ a b (4 ~) (or even a superset of this vocabulary), Bl t= 41[yl] @

(B1, Aul) + bR(y1), and bs (72) is such that for every expansion structure B2 = (A; ad, E * ~)

over vocab(42), B2 + 42[y2] e~ (B2,ABz) + bS(y2), it follows that for every expansion

structure B3 = (A ; U ~ , E * ~) over ~ o c a b (4 ~) U ~ o c a b (4 ~) , B3 /= 41[yl] and B3 + 42[y2] iff

(a3, AB3) + &(TI) and (133, AB3) + bs(y2). By the semantics of "A", it follows that for

every expansion B3, B3 + 41 [TI] A 4 2 [y2] @ (B3, AB3) + ba(yl) A 6 ~ (7 ~) , and therefore

dn(y1) A bs(y2) is a reduced grounding of (41 A 42)[73] where 73 I X = 71 , y3 I Y = 72. Thus

R W S is an answer to 41 A 42 w.r.t. A. (2) Since for every expansion B2 over v0cab(q5~),

B2 k 4 2 [~ 2] eJ (B2, ABz) + 6 ~ (~ 2) , for every expansion BL over v ~ c a b ($ ~) , Bh 42[y2] e~

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 49

(Bh, ABb) 6s (72). Thus, by the semantics of "1" , for every expansion Bh over v0cab(q5~),

Bh + 1 4 2 [~ 2] H (& , P i) + dS(y2) . Therefore, by the semantics of "A", it follows that

for every expansion Bi over v o ~ a b (4 ~) U vocab($J2), B$ + 41[yl] A l q 5 2 [~ 2] H (B$, AB;)
6 ~ (7 1) A + (~ 2) , and therefore 6R(y1) A 16s(y2) is a reduced grounding of ($1 A 1q52)[-y3]

where 7 3 1 ~ = 71. Thus R WC S is an answer to A 1 4 2 w.r.t. A. w

The following proposition states the time complexity of any reasonable implementation

of the operations join and join with complement in the case where Y S X. We only consider

the complexity for this case because in the main algorithm we present in the next Chapter,

this will always be the case for join and join with complement.

Proposition 5.3.3. For extended X-relation R and extended Y-relation S, when Y & X ,

jwin (R W S) and join with complement (R MC S) both have time complexity O(JIRJI . IISII)

Proof: Since R and S are over a fixed finite domain A, they can be sorted according to

some total order on A in time O(IJRll) and O(I/S(I) respectively, using bucket sort. Now

the join (join with complement) of the sorted R and S can be computed in a fashion

similar to merging two sorted lists. Start at the beginning of R and S . Which ever entry

y of R or S has the higher lexical value according to the total order, move down the

opposite extended relational table, computing any possible matches of tuples in each table

until an entry with a higher lexical value is reached. Then move down the other extended

relational table in the same fashion. Repeat this procedure until both tables have been

traversed. In general, this procedure will generate an extended X U Y-relation of size

o(lxllRl + EYER I I ~ R (Y) I I + IRI . EYES I I ~ s (Y) I I) L O(llRll . IISII).

While the complexity of join and join with complement is O(I(RI(. I(SJ1) for input R and

S, in the next section, after we present the main algorithm, we will show that, by modifying

this algorithm slightly, any size blow-up from the operations join and join with complement

can always be avoided.

We now present the projection operation.

Definition 5.3.4 (Y-projection). Let R be an extended X-relation and Y c X. The

Y-projection of R, denoted by ny (R), is the extended Y -relation

((7'. 10) 1 7' = Y(Y for LX3me 7 R and 10 = V ~ R (Y) .
~YERIYIY=Y')

We take for our example of the projection operation, a part of the example of the previous

section, namely, let R be the extended {x, y)-relation

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION

The @-projection of R, .rr@(R), is the extended helation

Given the following proposition of the semantics of the projection operation, it should

now be clearer how the process of grounding this sentence 4 = 3 ~ 3 y 3 z [P (x , y , z) A E (x , y) A

E (y , z)] in the previous section proceeds. For this previous example, we started with answer

to 4' = P (x , y , z) A E (x , y) A E (y , z) and projected it onto the set { x , y) for the answer to

4'' = 3 z [P (x , y , z) A E (x , y) A E (y , z)] . We then projected this answer onto the set 0 (as in

the above example) for the answer to 4.

Proposition 5.3.5. Suppose that R is an answer to 4 w.r.t. A, and Y is the set of free

variables of 3E4. Then ry(R) is a n answer to 324 w.r.t. A.

Proof: Let 7 1 , . . . , y, E R be the set of mappings that are equivalent to some y when re-

stricted to the set Y , i.e. y l l y = . .. = ymly = y . Since R is an answer to w.r.t. A for each

l i E 71,. . . , ym, bR(yi) is a reduced grounding of 4 [y i] , it follows that b a (y l) , . . . , b a (y m)

are over E U A, which means that b,,p)(y) = & (y l) V . . . V b n (y m) is over E U A. Secondly,

by the fact that R is an answer to 4 w.r.t. A, it follows that for each y i , bn(yi) is such that

for every expansion structure 23 = (A; a*, E') over vocab($), 23 + +[yi] * (23, A') + b ~ (y i) .

For every expansion structure 23 = (A; oA, E') over vocab(@), 23 + 32$[y] for some valua-

tion v of tuple Z in domain A of A, B [z : v] + $ [T I , by the semantics of "3". 23[2 : v] b $[y]

for some v of E * 23 4 [y i] for some E yl . . . y, s.t. yi(E) = v (as these are the map-

pings that are equivalent to y when restricted to Y) , where we extend the mapping y from

variables to tuples of variables in the obvious way. 23 +[yi] @ (23, A') + bR(yi) . Fi-
nally, by the semantics of "V", (23, A') + bR(yi) for some Ti E 7 1 , . . . , y m * (23, A') b

V . . . V hR(ym) = bny (a) (7). Thus 6,, (a) (7) is a reduced grounding of 3E+[y] and

therefore ny(R) is an answer to 3 2 4 w.r.t. A. w

The following proposition states the time complexity of any reasonable implementation

of the projection operation.

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 5 1

Proposition 5.3.6. The projection operation has time complexity O(l(Rll).

Proof: First make a pass through extended relational table R to eliminate the columns

from the relation part of R that correspond to the variables in tuple 2, which takes time

O((lR((). Since R is over a fixed finite domain A, we sort this intermediate table in time

O(llR(I) using bucketsort. Now we pass through this sorted intermediate table, where for

each set of tuples that are duplicates w.r.t. their relation parts (they will all be in one

contiguous block now that the structure has been sorted), we replace it with one tuple that

has this relation part, and a formula part that is the conjunction of the set of formulas

corresponding to this set of duplicate tuples. This can also be done in time O(((R(]) , and

thus projection is a linear time (O(((RI() time) operation.

Finally, we present the operations intersection and union of two extended relations with

the same set of variables. Again we only consider this case because, in our algorithm in the

next section, this will always be the case for intersection and union. Note that intersection

is a particular case of join.

Definition 5.3.7 (intersection, union). Let R and S be extended X-relations. Then

1. the intersection of R and S is the extended X-relation

2. the union of R and S is the extended X-relation

As an example of the operations intersection and union, let R be the extended { x , y, 2)-

relation

and S be the extended { x , y, 2)-relation

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION

The intersection of R and S, R n S, is the extended {x, y , 2)-relation

The union o d R and , S, R U S, is the extended {x, y , 2)-relation

The following proposition states the semantics of these operations.

Proposition 5.3.8. Let $1 and 4 2 be formulas with the same set of free variables. Suppose

that R is an answer to and S is an answer to 4 2 , both w.r.t. A. Then

1. R n S is an answer to A 4 2 w.r.t. A;

2. R U S is an answer to V 4 2 w.r.t. A.

Proof: (1) Since the intersection operation is a special case of the join operation where

X = Y, correctness follows directly from the correctness of the join operation. (2) Since R

is an answer to c#q w.r.t. A, then for any instantiation yl to the variables X, bn(y l) is a

reduced grounding of $1 [y l] . Since S is an answer to $2 w.r.t. A, then for any instantiation

yz of the variables Y, bs(y2) is a reduced grounding of q52[yz]. Firstly, bn(y l) V bs(y2) is a

ground formula over E U A, since both bR(y l) and bS(y2) are ground formulas over e U A.
Secondly, since ba(y l) is such that for every expansion structure Bl = (A ;uA ,eB1) over

CHAPTER 5. GROUNDING MECHANISM FOR MODEL EXPANSION 53

vocab(4l), Bl + $l[yl] H (Bl, AB1) &(TI), and bs(y2) is such that for every expansion

structure B2 = (A ; U ~ , E ~ Z) over v0cab(4~), B2 + q52[72] @ (B2,AB2) + bS(72)1 it follows

that for every expansion structure B3 = (A; ad, cB3) over v o ~ a b (4 ~) ~ v o c a b ($ ~) , B3 + &[yl]

or B + $ 2 [~ ~] iff (B3, AB3) 6R(71) or (B3, AB3) + ~5.5(7~). By the semantics of "V", it

follows that for every expansion B3, B3 + 41 [Y ~] v $2[72] @ (B3, AB3) + bR(71) v ~ s (Y ~) , and

therefore bn(yl) V bs(72) is a reduced grounding of V 4 2) [~ ~] where 73 = yl or 73 = 72.

Thus R U S is an answer to 41 V 42 w.r.t. A.

The following proposition states the time complexity of any reasonable implementation

of the operations intersection and union.

Proposition 5.3.9. Operations intersection and union have time complexity O(JIRII + \IS(().

Proof: Since R and S are over a fixed finite domain A, they can be sorted according to

some total order on A in time O((IRl1) and O(((SIJ) respectively, using bucket sort. Now the

intersection (union) can be computed in a fashion similar to merging two sorted lists, as

with join and join with complement. In the case of intersection, this procedure generates,

in general, an extended X-relation of size O((X(I RI + EYER ((bR(7)(I + EYES I(bS(7)IJ) I

O(I(Rll + ((S(1). In the case of union, this procedure generates an extended X-relation of

size O(lXl . (P I + IS\> + EYER Ilbdr)ll + E Y E S II~s(Y)II) I O(IlRll + IISII).

Now that we have defined these five operations for extended relations, we now have a

grounding mechanism for model expansion problems, much like the mechanism of relations

for solving model checking problems. As such, we can use this representation, the extended

relation, and its algebra to develop algorithms for grounding model expansion problems.

We present such an algorithm in the next section, which is the main result of this thesis.

Chapter 6

An Algorithm for Grounding First

Order Formulas

In the previous section, we presented a mechanism (a representation and an algebra) for

producing a reduced grounding of a FO formula over a FO structure. As such, we can

now develop recursive algorithms for producing a reduced grounding of a formula over a

structure. In this section we present such an algorithm; specifically, we present an algorithm

for grounding k-guarded sentences under the restriction that all guards are initially specified

(by the structure), the main result of this thesis. Because, like [46] we take advantage of

the structural properties of k-guarded formulas, this algorithm runs in time 0(12nk). In

fact, our algorithm is an extension of this model checking algorithm of [46] for grounding.

While Liu and Levesque consider grounding for strictly k-guarded formulas (those formulas

in SGFk), due to the fact that their algorithm is recursively defined, our recursive algorithm

considers grounding for a restricted form of strictly k-guarded formulas, (those formulas in

the fragment RGFk) .

Definition 6.1 (RGFk). RGFk denotes the set of strictly k-guarded fomulas such that no

expansion predicate appears in any guard.

Note that the restriction that "no expansion predicate appears in any guard" is necessary

for a polynomial time grounding algorithm. Indeed, there is no polynomial time grounding

algorithm even for 1-guarded sentences; otherwise, we would have a polynomial time reduc-

tion to SAT for MX for 1-guarded sentences, and hence the combined complexity of this

problem would be in N P . However, this problem is NEXP-complete [37]. Considering only

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 55

strictly k-guarded formulas is not as restrictive, however, because, as with model checking,

for most model expansion problems in practice, the formula is a sentence, and all k-guarded

sentences are strictly k-guarded formulas.

It is easy to see that any F O ~ formula can be rewritten in linear time into an equivalent

one in RGFk, by using atoms of the form x = x as parts of the guards when necessary. For

example, the formula 3z3yE(x, y) can be rewritten into 3z3y[x = x A y = y A E(x, y)]; and

the formula 3z3y[R(x) A E(x, y)] can be rewritten into 3z3y[R(x) A y = y A E(x, y)], where

R is an instance predicate, and E is an expansion predicate. Since, by the result of [18] that

F O ~ has the same expressive power as FO formulas of treewidth at most k, a FO formula

with treewidth at most k can be put into an equivalent one in RGFk. In practice, most

formulas have a small treewidth, and thus can be put into RGF with small k.

We now present the main result of this thesis, the grounding algorithm. This algorithm

is the same as that of [46] except that it uses extended relations and operations on them.

Note that, as with Eval, there are two Gnd procedures, but one has two parameters and

the other has three. If 4 is an atomic formula R (9 , we use 4(A) to denote the extended

relation ((7, true) I fir] E R ~ } .

Procedure Gnd(A, 4)
Input : A structure A and a formula 4 E RGFk

Outpu t : An answer to 4 w.r.t. A

Suppose 4(3) = 3g(G1 A . . . A G, A $). Return .rrzGnd(A, R , $I), where R is G1 (A) W . . . W

G,(A), and $' is the result of pushing negation symbols in $ inward so that they are in

front of atoms or existentials.

Procedure Gnd(A, R , 4) is defined recursively by:

1. If 4 is a positive atom from the instance vocabulary,

then Gnd(A, R , 4) = R W 4(A);

2. If 4 is +I, where 4' is an atom from the instance vocabulary,

then Gnd(A, R , 4) = R WC 4'(A);

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 56

:In the algorithm of [46], every operation except for the join G1(A) W . . . W G,(A) of

up to k guards (m 5 k) can be done in time linear in size of its input. The algorithm we

presented differs from the one of (461 in that it does grounding for model expansion, not

model checking. As such, formulas are being copied over in every operation here. For this

reason, the running time of Gnd will be greater than that of [46], because join can no longer

be done in linear time in its input relations (Proposition 5.3.3).

As an example, let 4 be the 1-guarded formula 3x[R(x) A 3y(S(y) A E(y))], where E is

an expansion predicate, and let A be a structure such that R~ = (2i + 1 I 0 5 i 5 m), and

sA = (2i I 0 5 i 5 m). The algorithm Gnd with input (A, 4) takes the following steps in

the following order

1. Evaluate guard corresponding to R(x) with respect to A or R(A), which results in

Now we need to compute the answer to the subformula 4' = 3y(S(y) A E(y)) with

respect to A before we go any further, so recursively (steps 2 to 4) we

2. evaluate guard correponding to S(y) with respect to A, or S(A), which results in pi
2m true

CHAPTER 6. AN ALGORJTHM FOR GROUNDING FIRST ORDER FORMULAS 57

3. Evaluate S(A) W E(A). Since E is an expansion predicate, this results simply in

4. Now we evaulate the @-projection of the table obtained in the previous step, or

nO(S(A) W E(A)), which results in

This table is the answer to 4' with respect to A that we want for the next step (we

refer to this answer as +'(A) for convenience). Now we can compute the remainder of

+ with respect to A. Next we

5. Evaluate the join of R(A) with +'(A), or R(A) W +'(A), which results in

6. We then evaluate the @-projection of the table obtained in the previous step, or

7r0(R(A) W +'(A)), which results in the following

So here, the formula VEo E(2i) is the answer to + w.r.t. A, ie., it is a reduced grounding

of 4 over A, and it has size O(n) (n being the size of A). However, in the computation of

+ w.r.t. A by Gnd, the intermediate extended relation computed in step 5, corresponding

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 58

to the subformula R(x) A 3y(S(y) A E(y)) has size 0 (n2) . To solve this problem, we let

IGnd be the algorithm which is the same as Gnd, except for the following: After each

projection operation, we replace each formula in the resulting extended relation by a new

propositional symbol. We also save the definitions of these new propositional symbols. The

output of the algorithm is the final extended relation together with the definitions of all the

new propositional symbols.

For instance, in the above example, in step 4 we will introduce a new propositional

symbol p and save the definition p = VEo E(2i). Then the intermediate extended relation

computed in step 5, corresponding to the subformula R(x) A 3x(S(x) A E(x)) will be as

follows, and it has size O(n)

This modification, in this case, ensures that no intermediate extended relation is larger

than O(n) in size. In general, for k-guarded formulas, in Gnd (by the structure of formulas

in RGFk), after a projection, the resultant table or its complement is always joined with

a guard. This modification ensures that, even though join and join with complement are

quadratic time operations (Proposition 5.3.3), the table after a projection always has a form

such that this join or join with complement remains of size O(enk), where e is the size of

the formula and n is the size of the structure. It turns out that this is enough to allow the

algorithm to still be a polynomial time algorithm in e and n. This is explained in detail in

the complexity theorem at the end of this chapter.

Note also, that this modification is to the projection operation only. However, this

modification allows the projection operation to still have the same (linear time) complexity,

as in Propositon 5.3.6, as the replacement of each formula with propositional symbols in an

extended relation requires only one pass of the extended relation.

To illustrate the grounding algorithm IGnd with a full example, let 4 be the formula

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 59

Figure 6.1: RGF2 formula 4' written as a tree

where T and E are expansion predicates. Let A be the structure with domain A = (0,. . . ,9)

over vocabulary {R, S, A, B, C, D) (note that T and E are not in the vocabulary because

they are expansion predicates), where

Then 4 E RGF2, where the underlined parts are guards. The grounding algorithm IGnd

with input (A, 4) takes following steps in the following order. First it pushes negation

symbols inward until they are in front of atoms or existentials. Figure 6.1 represents the

resulting formula (which we call 4') by a tree, where rectangular internal nodes stand for

guarded existentials, circular internal nodes for disjunctions or conjunctions, and leaves for

literals.

Now the algorithm processes existentials from bottlom to top in the following steps:

1. Evaluate guard corresponding to R(x, y, z) A S(z, u, v) (call it G1) with respect to A,

or G1(A) = R(A) W S(A). Since R(A) and S(A), the first two tables respectively, are

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 60

then G1(A) is the above table on the right.

2. Evaluate GI (A) WC T(A). Since T is an expansion predicate, this results simply in

Now we need to compute the answer to the subformula 4' = 3 fgh.A(x, y, f) ~ B (z , g, h) ~

[-C(f , z) V D(x, g) A E(y, h)] with respect to A before we go any further, so recursively

(steps 3 to 9) we

3. Evaluate guard corresponding to A(x, y, f) A B(z, g, h) (call it G2) with respect to A,

or G2(A) = A(A) W B(A). Since A(A) and B(A), the first two tables respectively,

are

1 5 9 true

2 3 4 true

3 7 5 true

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 61

then G2(A) is the above table on the right.

4. Evaluate G2(A) WC C(A). Since C(A) is the following table on the left

the join of the guard G2(A) with the complement of C(A) is the above table on the

right.

5. Evaluate G2 (A) W D(A) . Since D(A) is the following table on the left

the join with the guard G2(A) is the above table on the right.

3

3

3

6. Evaluate G2(A) W E(A). Since E is an expansion predicate, this results simply in

S h

4

4

4

@
true

true

true

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 62

7. Now we evaluate the intersection of the tables obtained in steps 5 and 6, or (G2(A) W

D(A)) n (G2(A) W E(A)), which results in

8. Now we evaluate the union of the tables obtained in steps 4 and 7, or (G2(A) WC

C(A)) U ((G2 (A) W D (A)) n (G2 (A) W E (A))), which results in

9. Now we evaluate the {a , y, z)-projection of the table obtained in the previous step,

or XI,,^,^) ((G2(A) WC C(A)) u ((G2 (A) W D(A)) n (G2 (A) W E(A)))) which results in

the following table on the left

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 63

Now, after this projection, in order to keep intermediate tables from becomming larger

than O(lnk) in size, we introduce abbreviations for each formula in this table. So here,

we replace true with pl, E(2,4) with p2, true with p3, E(O,4) with p4, and true with

p5. This results in the above table on the right, where we save the definitions pl to

P5.

This table is the answer to +' with respect to A that we want for the next step (we

refer to this answer as +'(A) for convenience). Now we can compute the remainder of

+ with respect to A. Next we

10. Evaluate the join of G1(A) with the complement of +'(A), or G ~ (A) MC +'(A), which

results in

1. Then we evaluate the union of the tables obtained in steps 2 and 10, or (G1(A) WC

T(A)) U (G1(A) WC +'(A)), which results in the table

CHAPTER 6. A N ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 64

12. We then evaluate the (2)-projection of the table obtained in step 11, or .rr(,) ((GI (A) WC

T(A)) U (G1 (A) WC +'(A))), which results in the following table on the left

Again, to avoid size blow-up, after this projection, we introduce abbreviations for each

formula in the table, that is we replace lT(l ,O, 2) V 7pl V 7T(1,2, 5) V 7p2 V 7T(1,3,9)

with ql, and 7T(7,2,5) V 7p4 V 1T(7,3,9) with 92. This results in the above table on

the right, where we again save the definitions of ql and 92.

Now that the algorithm is finished, this table resultant of the final step is indeed the

answer to the original 4 with respect to the structure A, as for the two instantiations 1

and 7 of x, the corresponding formulas (namely those represented by ql and q2) are reduced

groundings of 4 with respect to A. That is,

ql ~ ~ (1 , 0 , 2) V ~ p ~ V ~ T (1 , 2 , 5) V ~ p ~ V ~ T (1 , 3 , 9)

7T(1,0,2) V false V 7T(1,2, 5) V 7E(2,4) V 7T(173,9)

= lT(l ,O, 2) V 7T(1,2,5) V 7E(2,4) V 7T(1,3, 9)

Both of these are satisfiable, in fact they have many satisfiying assignments as each formula

is a disjunction of literals.

Theorem 6.2. Given a structure A and a formula 4 E RGFk, IGnd returns and answer to

+ w.r.t. A. Hence i f 4 is a sentence, IGnd returns a reduced grounding of 4 over A.

Proof: We can rewrite 4 into an equivalent formula 4' as follows: first push negation

symbols inward so that they are in front of atoms or existentials (by using DeMorgan7s laws

and the Double Negation law), then push each guard inward so that it is in front of each of

the literals, existentials, or negated existentials that it guards (by using the Distributive law

and Idempotence law). Now we can prove by induction that IGnd returns an answer to 4'.

To prove the base case, consider the conjunction of a guard and a literal. By the definition

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 65

of IGnd, and the correctness of the join and join with complement operations, it returns an

answer to this formula. The induction step follows from the three correctness propositions

in the previous chapter.

Theorem 6.3. Given a structure A and a formula 4 E RGFk, IGnd runs in time 0(C2nk),

where C is the size of 4, and n is size of A.

Proof: First, we rewrite 4 into an equivalent RGFk formula 4' by pushing negation symbols

inward so that they are in front of atoms or existentials. This takes time O(C) as it requires

one pass of the formula.

Now we compute the join of all the guards in 4'. Since 4' E RGFk, each guard is

composed of at most k ordinary relations and thus each join has size O(nk).

Now, whenever a join R M S of any guard R with an extended relation S, or the join

R MC S of any guard with the complement of an extended relation S is performed, it is

always the case that the set of variables of S is a subset of that of R. This follows simply by

the fact that 4' is k-guarded, that is, R guards the set of free variables of any subformula

(represented by S) below it, and therefore has a set of variables that is a superset of the set

of variables in S. Furthermore, it is always the case that every formula in R is true (since

R is a guard composed of ordinary relations), and every formula in S is of size O(C). To see

why the latter holds, we consider the three cases. (1) S represents an atomic subformula.

In this case each formula in S is just true and is thus of size O(C). (2) S represents an

atomic subformula that is an expansion predicate. In this case, S is just an extended 0-
relation composed of this single atomic subformula, which is of size O(C). (3) S represents

an existential, (a subformula 4" E RGFk). Because, with the projection operation, each

formula is replaced with a propositional symbol, each formula in S is just a propositional

symbol, and is thus of size O(C).

Since each guard is an ordinary relation of size O(nk), and whenever the join of a guard

with an extended relation, or the join of a guard with the complement of an extended

relation is performed, the properties described in the above paragraph hold, it follows that

any resultant relation will have size O(Cnk).

Now that we have exhausted all cases where a join or a join with the complement occurs,

the rest of the computation of 4 over A involves only the operations projection, union and

intersection. These operations are all linear time operations, by the complexity propositions

of the previous section. Since there are O(l) such operations (the length of the formula is

CHAPTER 6. AN ALGORITHM FOR GROUNDING FIRST ORDER FORMULAS 66

l) , and each intermediate relation has size O (l n k) from the join of each guard with the

extended relation representing the subformula below it, it follows that this algorithm runs

in time 0(12nk) where l is the length of the formula and n is the size of the structure. H

Chapter 7

Grounding Inductive Definitions

In the previous chapter, we described an algorithm for grounding first order formulas over

first order structures that runs in time polynomial in the length of the formula and the

size of the structure. This is a good tool for solving model expansion problems, where

the formula is a first order formula. MX for FO captures N P , i.e., every problem in N P

can be expressed as an MX problem for some FO formula. However, inductively defined

properties like the transitive closure of an edge relation, which are important for modelling

applications, are not easy to express in FO logic. For this, we use FO(ID), which is FO

augmented with inductive definitions [ll, 131, a language which makes the axiomatization

of certain problems much more convenient and natural.

The syntax of FO(1D) is that of FO extended with one additional rule stating that an

inductive definition (ID) is a formula. That is, FO(1D) is defined by

a If X is an n-ary predicate symbol, and t l , . . . , t, are terms, then X(t l , . . . , t,) is a

formula;

a If A is an inductive definition, then A is a formula;

a If 4 and 1C, are formulas, then so are (74) and (4 A $);

a If 4 is a formula, then 3x4 is a formula, where x is any FO variable.

An inductive definition A is a set of rules of the form V Z (X (~ + +), where X is a

predicate symbol, f is a tuple of terms, and is an arbitrary FO formula. The connective t is

called the definitional implication, and is distinct from material implication, for which we use

C K 4 P T E R 7. GROUNDING INDUCTIVE DEFINITIONS 68

3. A rule Vz(X(f) c 4) in a definition does not correspond to the disjunction Qz(X(f) v+)
although it implies it. Intuitively, definitional implication should be understood as the "if"

found in rules in (informal) inductive definitions, such as "14 is a formula if 4 is". In the

rule Qlc(X(Q e 4), X(Q is called the head and 4 is the body. A defined predicate of an

FO(1D) formula is a predicate symbol that occurs in the head of a rule in an ID; the rest of

the predicate symbols are called open.

The semantics of FO(1D) is that of FO extended with one additional rule saying that a

structure A satisfies an ID A if it is the Zvalued well-founded model of A, as defined in the

context of logic programming [58]. That is, the semantics of FO(1D) is defined by

A + 3x4 if for some value v of x in the domain dom(A) of A, A[x : v] + 4;

More specifically, this extra rule states that a structure A satisfies an ID A if doing induction

in two "directions" from two different start points leads to the same (unique) fixpoint.

Details of this extra rule can be found in [13].

The model expansion problem for FO(1D) is exactly the same as that for FO except that

we consider formulas 4 E FO(ID), and the semantics of + is that of FO(1D). As an example,

the problem of finding the transitive closure of a graph can be conveniently represented as

an MX problem for FO(1D). The formula consists of a defintion with two rules defining the

predicate T. The instance vocabulary has a single predicate E, representing the binary edge

relation.

The two rules of this ID state that the transitive closure of the set E of edges is the least

relation containing all edges and closed under reachability. In this example, the expansion

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 69

vocabulary includes all the defined predicates. We will assume that this is always the case,

in developing methods for solving MX problems for FO(1D).

If we are going to express problems as MX for FO(ID), naturally, we will want to produce

groundings of FO(1D) formulas over structures. The notions of grounding and reduced

grounding are analagous to that for FO logic, the only difference is that the semantics of

+ is that of FO(1D). The extended relation and its algebra is the mechanism used for

grounding a FO formula over a structure. This can be used for grounding a FO(1D) formula

over a structure as well, all we need to do is to allow extended relations to contain ground

FO(1D) formulas in addition to ground FO formulas. Given this, the notion of an answer

to a FO(1D) formula with respect to a structure is also analagous to that of FO logic in the

same way, and the correctness and complexity of the algebra still applies to this more general

form of extended relation. We can thus extend the mechanism we have for grounding a FO

fornlula over a structure to a mechanism for grounding a FO(1D) formula over a structure.

Note, however, that we will not be reducing MX for FO(1D) to SAT, as with FO logic,

anymore. Rather, we are reducing MX for FO(1D) to the satisfiability problem of proposi-

tional calculus with inductive definitions (PC(1D)). This follows simply from the fact that

we allow extended relations to contain ground FO(1D) formulas in addition to FO formulas.

As such, the set of reduced groundings represented by any extended relation in this case

will be PC(1D) formulas. Currently, two prototypes of such solvers have been developed:

one [53] reduces satisfiability of PC(1D) to SAT, and the other [48] is a direct implementa-

tion that incorporates SAT techniques. While both solvers deal with a restricted PC(1D)

syntax, and are somewhat efficient, a solver for the general syntax (which the output of our

grounding algorithm for FO(1D) is part of) is under construction in our lab.

If we want to produce a reduced grounding of an FO(1D) formula over a structure then we

always assume that the expansion vocabulary includes all of the defined predicates. Indeed,

if defined predicates were in the instance vocabulary, "evaluating them out" of the heads

of ground IDS of the formula would produce a PC(1D) formula where true or false occur

as heads of rules in its inductive definitions, which is meaningless in PC(1D). Nonetheless,

some important problems are represented as MX for FO(1D) where some defined predicates

are in the instance vocabulary. The interpretation of these defined predicates is used to

apply restrictions on the possible interpretations of the expansion predicates. In such a

cast:, we will first do grounding treating all defined predicates as expansion predicates if

they are inside IDS (we still evaluate out any atom of a provided predicate outside of the

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 70

IDS as this does not cause a problem). Let 1C, be the resulting ground formula. We then add

to 1C, an extra constraint that encodes the interpretation of the defined predicates. Suppose

G is the set of ground atoms of interpreted defined predicates that appear in 1C,. Let cp be

the conjunction of atoms of G that are true according to the interpretation. Then 1C, A cp is

the final ground formula to be passed to the satisfiability solver. Thus we can restrict our

attention to grounding where all defined predicates are expansion predicates.

Since we are able to extend our previous mechanism to one for grounding a FO(1D)

forrnula over a structure, we can now develop recursive algorithms for grounding FO(ID)

forrnulas over a structure, similar to that of Chapter 6. Not surprisingly, we can extend the

algorithm of the previous chapter in order to have an efficient algorithm for grounding a

FO(1D) formula over a structure. In order to have a polynomial time algorithm for grounding

FO(1D) formulas, we consider the fragment IGFk of FO(1D) formulas

Definition 7.1 (IGFk). IGFk is the extension of RGFk with inductive definitions such

that for each rule, the body is i n RGFk and all free variables of the body appear i n the head.

As with RGFk, any FO(1D) formula with at most k distinct variables can be rewritten

in linear time into an equivalent one in IGFk. Here we show how to rewrite each rule so

that it satisfies the restriction of the above definition. First, for each x that appears in the

head but not in the body, add x = x to the body. Now, since the body still uses at most k

distinct variables, it can be rewritten into RGFk.

Extending the grounding algorithm of the previous section for grounding IGFk formulas

in polynomial time involves building a procedure to ground inductive definitions in poly-

nornial time, and then simply making this procedure a subroutine of the algorithm of the

previous section. Here, we present such a procedure for grounding IDS

Procedure GndID(A, A)

Input: A structure A and an ID A E IGFk

Output : An answer to A w.r.t. A

For each rule r of A, suppose r is V?(X(f) +- $), let AT be {X(f)[y] +- 1C, I (y,1C,) E

IGnd(A, 4)) . Return UTEA A,.

To illustrate the procedure, let A be the ID

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

where T is an expansion predicate. Let A be over domain A = {1,2,3) where E~ =

{(1,2), (2,3)). Then A E IGF2. Note that this ID is the example of the transitive closure

of an edge relation given above, only we have added y = y to the body of rule 2 in order for

it to be guarded. GndID(A, A) would proceed as follows

1. Call IGnd(A, E(x, y)) to get extended {x, y)-relation E(A)

which we will call R

2. Call IGnd(A, 3z(y = y A E(x, z) A T(z, y))). This involves first evaluating the guard

corresponding to y = y A E(x, z) (call it GI) with respect to A or Gl(A) = (y =

y)(A) M E(A). Since (y = y)(A) and E(A), the first two tables respectively, are

then G1 is the above table on the right. Then we evaluate G1(A) M T(A). Since T is

an expansion predicate, this results in the following table on the left

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

Then we evaluate the {z, y)-projection of the previous table, or T(, , ,~G~(A) W T(A),

which results in the above table on the right. We will call this {x, Y)-relation S .

3. Replace rule 1 with {T(x, y)[y] t 11, ((y, +) E R), which results in the following set

of ground rules

T(1,2) t true

T(2,3) t true

4. Replace rule 2 with {T(x, y) [y] t + I (y, +) E S), which results in the following set

of ground rules

Finally, return the ID that is the union of all the sets of ground rules generated, namely

the sets generated in steps 3 and 4. Thus, the resulting ground ID that is output by

GndID(A, A) is

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

Here, this ground ID states that the transitive closure T is {(1,2), (2,3), (1,3)), which is

indeed the least relation containing all edges and closed under reachability with respect to

the graph defined by the edge relation E* = {(1,2), (2,3)). Next we formally prove that

this algorithm is correct, and give its time complexity.

Lemma 7.2. Given a structure A and an inductive definition A E IGFk, GndID returns

an answer to A w.r.t. A.

Proof: Let inductive defintion A be such that each rule of A is of the form V3(X(Q t 4).
Since free variables in the head that are not in body have no effect on the function of a rule

of A and by the definition of IGFk, w.l.o.g., for each rule of A, 4 E RGFk, where the set of

free variables of 4 is 3. As such, if we call IGnd to get the answer R to 4 w.r.t. A, we get a

reduced grounding of 4 for every valuation y of the tuple 3. That is, by the correctness of

IGnd (Theorem 6.0.2) and by the definition of a reduced grounding, for every valuation y, we

have that 4[y] - ba(y) with respect to the semantics of FO(1D). By the semantics of V, the

rule V?(X(f) + 4) means "for all valuations y of 2 , X(f)[y] t 4[y]". Thus V?(X(f) + 4)

is equivalent to {X(Q[y] t 4[y] (y is a valuation of 3). This is equivalent to {X(Q[y] +

ba(:y) 1 y is a valuation of 21, which is equivalent to {X(Q[y] t $ ((7, $) E IGnd(A, 4))
under the semantics of FO(1D). Note that any y @ IGnd(A, +), its corresponding formula is

false, so all X(Q[y] t $ s.t. y @ IGnd(A, 4) is implicitly in the ground ID as well (since

it has no affect on the ground ID). Clearly, since A is the union of its set of rules, that

the union of sets of ground rules equivalent to each rule will also be equivalent to A. Thus

GndID is correct.

Lemma 7.3. Given a structure A and an inductive definition A E IGFk, GndID produces

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 74

a reduced grounding of size O(enk) and runs in time 0(e2nk)), where e is the size of A, and

n is the size of A.

Proof: First run IGnd on the body 4 of each rule r E A to produce extended relation

R. By the complexity of IGnd (Theorem 6.0.3), this will take time 0(e?nk), where er
is the length of rule r . Furthermore, since in the run of IGnd, no itermediate extended

relation will be larger than O(ernk) in size, R has size O(ernk). Now, constructing the set

{X(E)[y] t 111 I (7,111) E IGnd(A, 4)) of ground rules for rule r , or {X(E)[y] t b ~ (y) I y E

R) will take time O(llRll), as it requires one pass of R . This process creates something

of size O(llRll), as the set of ground rules is just the set containing each formula bR(y) of

R with a constant-size header X(E)[y] t appended to the front of it. So, since for each

rule r of A, it takes time 0(e;nk) to generate its set of ground rules w.r.t. A, and this set

of ground rules is of size O(ernk), it follows that producing the set of ground rules for all

rules of A takes time O(CrEA e?nk), and generates something of size O(CrEA ernk). Since

CrEA er = e, producing the set of ground rules for all rules of A takes time 0(e2nk), and

generates something of size O(enk). Finally, taking the union of all the sets of ground rules

for reach rule r of A to form the ID that is the output of GndID requires one pass of the

sets of ground rules, and thus takes time O(enk), and generates something of size O(enk).

Thus GndID produces a reduced grounding of size O(enk) and runs in time 0(e2nk), where

e is the size of A, and n is the size of A.

Now that we have a subroutine for grounding IDS, we can simply make it a subroutine of

the grounding algorithm of the previous section. We do this by adding the following clause

to IGnd

0. If 4 is an ID A or its negation l A , then IGnd(A, R , 4) = {(y,p) I y E R) or {(y, l p) I
y E R), where p is a new propositional symbol with the definition p == GndID(A, A).

We introduce a new propositional symbol for the result of a call to GndID, for the same

reason that we do so for the result of a projection operation, to ensure that each intermediate

extended relation is of size O(enk) in the entire grounding process, where e is the length of the

formula, and n is the size of the structure. Adding this rule to IGnd extends this polynomial

time grounding algorithm for the fragment RGFk, to a polynomial time grounding agorithm

for the full FO(1D) fragment IGFk. We call this extended algorithm 1Gnd+. To illustrate

1Gnd+ with a full example, let 4 be the FO(1D) formula

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 75

where T, P and N are expansion predicates. let A be the structure with domain A =

(0,. . . ,9) over vocabulary {A, B, D, E, F, S), where

Then 4 E IGF2, where the underlined parts are guards. First we push negation symbols

inward until they are in front of atoms, inductive definitions or existentials. This results in

the following equivalent formula

Now the algorithm processes the formula from bottom to top. Algorithm IGnd' with

input (A, 4) takes the following steps in the following order

1. Evaluate guard corresponding to A(a, b) A B(c,d) (call it GI) with respect to A, or

G1(A) = A(A) M B(A). Since A(A) and B(A), the first two tables respectively, are

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

then G1(A) is the above table on the right.

2. Evaluate G1(A) WC D(A). Since D(A) is the following table on the left

true

true

true

true

true

true

then G1(A) WC D(A) is the above table on the right. Now we need to compute the

join of G1(A) with the complement of the first ID of the formula 4.

3. Call GndID(A, A), where A is

Since this ID A is the same as in the example given above to illustrate GndID, it

produces the following ground ID

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

Here we let propositional symbol p = GndID(A, A), where we save this definition of

p. Since A is a negated ID, the join of the result of GndID with the guard is the table

Now we need to compute the answer to the subformula q5'

with respect to A, so recursively (steps 4 to 8) we

4. Evaluate the guard corresponding to F(c, e, f) with respect to A, or F(A), which is

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 78

5. Evaluate F(A) W P(A). Since P is an expansion predicate, this results simply in

Now we need to compute the join of F(A) with the second ID of 4 (or the only ID of

4').

6. Evaluate GndID(A, A) where A is

The run of GndID(A, A) takes the following steps to give the following solution

(a) Call IGnd(A, h = 0) to get (h = O)(A)

0 true El
which we will call R.

(b) Call IGnd(A, 3g(S(g, h) A N(g))) which involves evaluating guard S(A), which

results in the table on the left, then computing S(A) W N(A), which results in

the table in the middle

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

and then computing + ~ r (~) (S (d) W N(A)), which results in the above table on the

right, which we will call S.

(c) Replace rule 1 with {N(h)[y] t 1C, ((y, 1C,) E R), which results in the following

set of ground rules

N(0) t true

(d) Replace rule 2 with {N(h)[y] t 1C, I (y, $) E S), which results in the following

set of ground rules

Thus the output of GndID(A, A) is

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

Here we let propositional symbol q = GndID(A, A), where we save this definition of

q. The join of the result of GndID with the guard is the table

7. Evaluate the union of the tables obtained in step 5 and the previous step, or (F(A) W

P(A)) U {(y, q) I y E F(A)), which results in

8. Evaluate the {c)-projection of the table obtained in the previous step, or rI,)((F(A) W

P(A)) U {(y, q) I y E F(A))), which results in the following table on the left

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

After this projection operation, we introduce the abbreviations rl = P(4,7) V q, r;! =
P(5,9) V q, r3 = (P(6,4) V q) V (P(6,8) V q) and r 4 = P(9,O) V q. This results in the

above table on the right, where we save the definitions of rl, . . . ,r4. This table is the

answer to the subformula $' w.r.t. A, which we call $'(A) for convenience.

9. Now we evaluate G1(A) W $'(A), which results in

10. Evaluate the intersection of the tables computed in step 3 and the previous step, or

((7, l p) I y E GI (A)) n (Gl(A) W $'(A)), which results in

11. Evaluate the intersection of the tables computed in step 2 and the previous step, or

(G1(A) Wc D(A)) n (((7, l p) I y E Gl(A)) n (Gl(A) W $'(A))), which results in

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

Evaluate the {b)-projection of the table computed in the previous step, or T { ~) ((GI (A)

Wc D(A)) n (((7, l p) I y E G1 (A)) n (G1 (A) W q5'(A)))), which results in the following

table on the left

After this projection operation, we introduce the abbreviations s l = (lpAr2)~(1pAr3) ,

s2 -- i p A r3 and s3 = l p A rs. This results in the above table on the right, where we

save the definitions of s l , s2 and s3.

Now that the algorithm IGndt is finished, this table resultant of the final step is indeed

the answer to q5 w.r.t. A, as for the three instantiations 2, 4 and 6 of b, the correponding

formulas sl , s2 and s3 are reduced groundings of q5 w.r.t. A. That is,

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

N(0) t true

N (l) '-- N O)
N (2) + N O)

N(3) N(2)

N(4) N(3)

N(5) N(4)

N(6) '-- N(5)

N(7) N(6)

N(8) N(7)

N(9) N(8)

N(0) e true

N O) N(O)

N(2) N(1)

N(3) N(2)

N(4) + N(3)

N(5) N(4)

N(6) N(5)

N(7) N(6)

N(8) N(7)

N(9) N(8)

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS

N(0) t true

N (l) N O)
N(2) N(1)

N(3) N(2)

N(4) N(3)

N(5) N(4)

N(6) N(5)

N(7) N(6)

N(8) N(7)

N(9) N(8)

Both of these are satisfiable because each atom or ID has sets of truth assignments that

both satisfy and dissatisfy it, and the rest comes from easy inspection of the above PC(1D)

formulas. To see why each ground ID has sets of truth assignments that both satisfy and

dissatisfy it, the first ID

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 85

has the satisfying assignment {T(1,2), T(2,3), T(1,3)) (the rest are false), and the dissatis-

fying assignment 0. The second ID

has the satisfying assignment {N(O), . . . , N(9)), and the dissatisfying assignment {N(O),

N(3) 7 N(7)).
Note that if T was provided by the instance structure, for example T~ = {(1,2), (2,3),

(1,3)) in the above illustration, that we would run the example exactly as we did above,

(still treating T as an expansion predicate). But then we would conjoin to each formula

s l , s2 and s3, the conjunction T(1,2) A (2,3) A (1,3) (since all of these atoms appear in

each of sl, s 2 and s3), which encodes the interpretation T ~ . That is to say, any satisfying

assignment to sl, s 2 or s3 will have to satisfy T(1,2) A (2,3) A (1,3) and thus takes into

account T ~ . Next, we prove correctness of IGnd+ and give its time complexity.

Theorem 7.4. Given a structure A and a FO(ID) formula 4 E IGFk, I G ~ & returns an

answer to 4 w.r.t. A.

Proof: We can rewrite 4 into an equivalent formula 4' as follows: first push negation sym-

bols inward so that they are in front of atoms, inductive definitions or existentials (by using

DeMorgan's laws and the Double Negation law), then push each guard inward so that it is

in front of each of the literals, inductive definitions, negated inductive definitions, existen-

t i a l~ , or negated existentials that it guards (by using the Distributive law and Idempotence

law:). Now we can prove by induction that IGnd returns an answer to (6'. We now have

two bases cases, the conjunction of a guard with a literal, and the conjunction of a guard

CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 86

with an inductive definition or a negated inductive definition. Correctness of the first base

case follows from the defintion of IGnd and the correctness of the join a join with comple-

ment operations. Correctness of the second base case follows from the correctness of GndID

and the correctness of the join and join with complement operations, since a propositional

symbol and a negated propositional symbol are both literals. Given that the base cases are

correct, the induction step follows from the three correctness propositions in Chapter 5.

Theorem 7.5. Given a structure A and a FO(ID) formula 4 E IGFk, lGn& runs in time

O(l%tk), where l is the length of the formula, and n is the size of the structure.

Proof: For each inductive definition A E 4, run GndID(A, A) and save this answer as a

propositional symbol or a negated propositional symbol, depending on whether A is negated

or not. By the complexity of GndID, this takes time 0(l;nk) and produces a reduced

grounding of size O(lAnk) , where la is the length of the inductive definition A. Since

CAE41A 5 l, this takes time 0(12nk), and the set of data that the new propositional

symbols represent is of size O(lnk). Since propositional symbols are atomic FO formulas,

this procedure has reduced 4 to a new formula 4' E RGFk. By the complexity of IGnd, we

can find the answer to 4' w.r.t. A in time 0(12nk), where this answer is of size O(lnk). We

now add to this answer the size O(lnk) data set corresponding to the propositional symbols

for each ID A E 4, for an answer to 4 w.r.t. A of size O(lnk) , which requires one pass of

the answer to 4 w.r.t. A, which takes time O(lnk). Since we do a constant number of time

O (l h k) tasks, 1Gnd' runs in time 0(12nk), where l is the length of the formula, and n is

the size of the structure.

Chapter 8

Conclusions and Future Work

8.1 Conclusion

Classical logic is perhaps the most natural language for axiomatizing and solving computa-

tional problems. It has a long history, and sophisticated techniques have been developed,

which lend themselves to proving correctness of axiomatizations and finding efficient frag-

ments. Classical logic has intuitive and well-understood semantics, convenient syntax, and

it is widely used by both theoreticians and practitioners. We therefore believe that tools

based on classical logic to the highest degree possible will have a strong appeal.

The model expansion framework of Mitchell and Ternovska [49, 501 is a constraint pro-

gramming framework based on classical logic extended with inductive definitions. Conceptu-

ally, this framework is very close to ASP in that problem instance is given as input (problem

description is fixed), and the intention is to find interpretations of unspecified predicates

through models of the combined program. However, the approach of the MX framework is

to directly work on model expansion without the overhead of logic programming, but rather

to rely on classical logic augmented with inductive definitions.

Since ASP systems (and many of the systems presented in Chapter 2) compute a ground-

ing of the problem description over the instance, efficiency of these systems relies on an ef-

ficient grounding procedure, and an efficient solver for these ground programs. In our case,

since there exists efficient solvers for SAT and PC(ID), an efficient algorithm for grounding

an FO or FO(1D) formula over a structure to produce a PC or PC(1D) formula is an asset

to solving MX problems efficiently.

This paper represents an important progress in making the MX framework practical by

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 88

developing an efficient grounding algorithm. In this paper, we have proposed an algorithm

for grounding k-guarded FO sentences with inductive definitions under the restriction that

all predicates in the guards are initially specified. Our algorithm runs in time 0(e2nk)

where e is the length of the formula, and n is the size of the structure. To this end, we

have extended the concept of relation in database theory to the concept of extended relation

and defined an algebra on extended relations. As such, we extend the algorithm of Liu and

Levesque [46], which uses relational algebra to do model checking, to an algorithm that uses

extended relational algebra in order to do grounding. As with [46], the essence of our work

is to do efficient grounding by exploiting the structure of FO formulas: Indeed k guarded

formulas have the same expressive power as formulas with hypertreewidth at most k.

8.2 Future Work

Current work includes an implementation of this grounding algorithm in the C programming

language, as part of the MX system. There are several future directions that we can take in

regards to grounding. We have shown that taking advantage of the structural properties of

the formula is advantageous, however, taking advantage of the structural properties of the

instance structure might also allow us to ground efficiently.

While currently this algorithm treats all defined predicates as expansion predicates,

many problems in practice include interpretations of the defined predicates in the instance

structure. In these cases, symbols of the provided defined symbols will appear in the ground

formula. It would preferable if the grounding algorithm could evaluate out these symbols

as well. In the case of FO formulas, the symbols of the instance vocabulary are evaluated

out during grounding whenever it is determined that a particular ground atom of that

vocabulary is true or false. This is how it would be approached in evaluating out defined

symbols as well. Thus the grounding algorithm would have to understand the semantics of

FO(1D) logic, and therefore perform some form of induction during grounding.

Many interesting problems are much more naturally expressed in extensions of FO,

such as FO extended with cardinality or weight constraints, as well as FO extended with

arithmetic. Since we were able to extend our grounding algorithm for a FO formula, to

one for grounding a FO(1D) formula, perhaps we could also devise algorithms for these

extensions of FO logic as well.

Also, the techniques used to build an efficient grounding algorithm for FO (with inductive

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 89

definitions) might also apply to grounding for higher order logics (second order), logics

that capture complexity classes larger than NP. As the results in other efficient low level

solvers appear (i.e., QBF), grounding to SAT or an extension thereof, may not always be

necessary. In this case, it would also be interesting to see if similar techniques could be used

for grounding second order logic to QBF, for example. We believe that if we take advantage

of the structure of the formula in general, that the results will be positive.

Finally, while this grounding algorithm is efficient when the formula is k-guarded, the

question arises: if the formula is not given in the k-guarded form, can it be put in this

form for k less than the number of variables in the formula. This amounts to computing

a hypertree decomposition of the graph associated with the formula of width as small as

possible. While it is known that for graphs of bounded treewidth and hypertreewidth,

this can be determined in polynomial time, and that a minimal width tree decomposition

(hypertree decomposition) can be constructed in polynomial time (in the number of vertices

in the graph), there exists a linear time algorithm for determining treewidth, and computing

a minimal width tree decomposition. It would be interesting to see if the techniques used

here could be applied to hypergraphs, to come up with a recognition (and construction)

algorithm that is as efficient as possible. If so, this could be useful to the overall goal of

efficiently grounding FO formulas.

Bibliography

[I] Eyal Amir and Sheila McIlraith. Partition-based logical reasoning for first-order and
propositional theories. J . Artif. Intell., 162(1-2):49-88, 2005.

[2] H. Andrkka, J . van Benthem, and I. Nkmeti. Modal languages and bounded fragments
of predicate logic. J. Phil. Logic, 49(3):217-274, 1998.

[3] Yuliya Babovich and Vladimir Lifschitz. Computing answer sets using program com-
pletion. unpublished draft, 2003.

[4] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Univ. Press, 2003.

[5] Kenneth A. Berman, John S. Schlipf, and John V. Franco. Computing well-founded
semantics faster. In Logic Programming and Non-monotonic Reasoning, pages 113-126,
1995.

[6] D. Berwanger and E. Gradel. Games and model checking for guarded logics. In Proc. of
the 8th Int. Conf. on Logic for Programming and Automated Reasoning, LPAR, 2001.

[7] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:l-23,
1993.

[8] M. Cadoli and Andrea Schaerf. Compiling problem specifications into SAT. In Proc.
of the European Symp. On Programming (ESOP), pages 387-401, 2001.

[9] Marco Cadoli and Andrea Schaerf. Compiling problem specifications into SAT. J .
Artif. Intell., 162:89-120, 2005.

[lo] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Proceedings
of the 6th International Conference on Database Theory, volume 1997 of Lecture Notes
in Computer Science, pages 56-70, 1997.

[ll] Marc Denecker. Extending classical logic with inductive definitions. In Computational
Logic - CL 2000, First International Conference, London, UK, July 2000, Proceedings,
volume 1861 of Lecture Notes in Artificial Intelligence, pages 703-717. Springer, 2000.

BIBLIOGRAPHY 91

1121 Marc Denecker. Extending Classical Logic with Inductive Definitions. In Proc. of the
8th Int. Workshop on Nonmonotonic Reasoning NMR, pages 1-10, 2000.

[13] Marc Denecker and Eugenia Ternovska. A logic of non-monotone inductive definitions
and its modularity properties. In In Proc. of Logic Programming and Nonmonotonic
Reasoning (LPNMR), pages 4740, 2004.

1141 D. East and M. Truszczynski. Predicate-calculus based logics for modeling and solving
search problems. ACM Trans. Comput. Logic, 2004.

[15] Heinz-Dieter Ebbinghaus and Jorg Flum. Finite Model Theory. Springer, 1999.

[16] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using database optimization techniques
for nonmonotonic reasoning. In Proc. of the 7th Int. Workshop on Deductive Databases
and Logic Programming (DDLP), pages 135-139, 1999.

1171 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
Complexity of Comput., pages 43-73, 1974.

1181 Jorg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions.
J. ACM, 49(6):716-752, 2002.

[19] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991.

[20] E. Gonqalvks and E.Grade1. Decidability issues for action guarded logics. In Proceedings
of 2000 International Workshop on Description Logics - DL2000, pages 123-132, 2000.

[21] Georg Gottlob, Erich Gridel, and Helmut Veith. Datalog LITE: a deductive query
language with linear time model checking. ACM Trans. Comput. Logic, 3(1):42-79,
2002.

[22] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic con-
junctive queries. J. ACM, 48(3):431-498, 2001.

1231 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions: A
survey. In MFCS '01: Proceedings of the 26th International Symposium on Mathemati-
cal Foundations of Computer Science, pages 37-57, London, UK, 2001. Springer-Verlag.

[24] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards:
game theoretic and logical characterizations of hypertree width. In Proc. of the 20th
ACM-SSS Symp. on Principles of Database Systems (PODS), pages 195-206, 2001.

[25] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579427, 2002.

BIBLIOGRAPHY 92

[26] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards:
game theoretic and logical characterizations of hypertree width. J . Comput. Syst. Sci.,
66(4):775-808, 2003.

[27] E. Gradel. Capturing Complexity Classes by Fragments of Second Order Logic. Theo-
retical Computer Science, 101:35-57, 1992.

[28] E. Griidel. Guarded fragments of first-order logic: a perspective for new description
logics? In Proceedings of 1998 International Workshop on Description Logics DL '98,
Trento. 1998. Extended abstract.

[29] E. Gradel. The decidability of guarded fixed point logic. In J . Gerbrandy, M. Marx,
M. de Rijke, and Y . Venema, editors, JFAK. Essays Dedicated to Johan van Benthem
on the Occasion of his 50th Birthday. Amsterdam University Press, 1999.

[30] E. Gradel. On the restraining power of guards. J . Symbolic Logic, 64:1719-1742, 1999.

[31] E. Gradel. Guarded fixed point logic and the monadic theory of trees. Theoretical
Computer Science, 288:129-152, 2002.

[32] E. Gradel, C. Hirsch, and M. Otto. Back and forth between guarded and modal logics.
In Proceedings of 15th IEEE Symposium on Logic in Computer Science LICS 2000,
pages 217-228, Santa Barbara, 2000.

[33] E. Gradel, C. Hirsch, and M. Otto. Back and Forth Between Guarded and Modal
Logics. ACM Transactions on Computational Logics, 3(3):418 - 463, 2002.

[34] E. Grade1 and I. Walukiewicz. Guarded Fixed Point Logic. In Proceedings of 14th IEEE
Symposium on Logic in Computer Science LICS '99, Trento, pages 45-54, 1999.

[35] N. D. Jones and A. Selman. Turing machines and the spectra of first-order formulae
with equality. volume 39, pages 139-150, 1974.

[36] P hokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and con-
straint satisfaction. In Proc. of the 17th ACM-SSS Symp. on Principles of Database
Systems (PODS), pages 205-213, 1998.

[37] A. Kolokolova, Y. Liu, D. Mitchell, and E. Ternovska. Complexity of expanding a finite
structure and related tasks, 2006. Presented at the 8th Int. Workshop on Logic and
Comput. Complexity (LCC).

[38] J. Lee and V. Lifschitz. Loop formulas for disjunctive logic programs. In Proc. of the
19th Int. Conf. on Logic Programming (ICLP), 2003.

[39] D. Leivant. Descriptive characterizations of computational complexity. J. Comput.
Syst. Sci., 39(1):51-83, 1989.

BIBLIOGRAPHY 93

[40] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV system for knowledge representation and reasoning. Technical Report 1843-02-14,
Institut fiir informationssysteme, TU Wien, 2002.

[41] Nicola Leone, Simona Perri, and F'rancesco Scarcello. Improving ASP instantiators
by join-ordering methods. In Proc. of the 6th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR), pages 28CL294, 2001.

[42] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[43] Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-based answer set solver enhanced
to non-tight programs. In Proc. of the 9th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR), pages 346-350, 2004.

[44] Vladimir Lifschitz. Computing circumscription. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence (IJCAI), pages 121-127. Morgan Kaufmann,
1985.

[45] Fangzhen Lin and Yuting Zhao. ASSAT: computing answer sets of a logic program by
SAT solvers. J. Artif. Intell., 157:115-137, 2004.

1461 Yongmei Liu and Hector J. Levesque. A tractability result for reasoning with incomplete
first-order knowledge bases. In Proc. of the 18th Int. Joint Conf. on Artzf. Intell.
(IJCAI), pages 83-88, 2003.

[47] V. W. Marek and M. Truszczynski. Stable logic programming - an alternative logic
programming paradigm. Springer-Verlag, 1999.

[48] Maarten Marien, Rudradeb Mitra, Marc Denecker, and Maurice Bruynooghe. Satis-
fiability checking for PC(1D). In Proc. of Logic for Programming, Artif. Intell., and
Reasoning, (LPA R), pages 565-579, 2005.

[49] D. G. Mitchell and E. Ternovska. Model extension as a framework for solving NP-Hard
search problems, 2005. Presented at the 7th Int. Workshop on Logic and Comput.
Complexity (LCC).

[50] David Mitchell and Eugenia Ternovska. A framework for representing and solving NP
search problems. In Proc. of the 20th National Conf. on Artif. Intell. (AAAI), pages
43CL435, 2005.

[51] David G. Mitchell. A SAT solver primer. Bulletin of the European Assoc.for Theoretical
Comput. Sci. (EATCS), 85:112-132, 2005.

[52] I. Niemela. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artif. Intell., 25(3,4):241-273, 1999.

BIBLIOGRAPHY 94

[53] Nikolay Pelov and Eugenia Ternovska. Reducing inductive definitions to propositional
satisfiability. In Proc. of the 2lst Int. Conf. on Logic Programming (ICLP), pages
221-234, 2005.

[54] Deepak Ramachandran and Eyal Amir. Compact propositional encodings of first-order
theories. In Proc. of the 20th National Conf. on Artif. Intell. (AAAI), pages 34&345,
2005.

[55] T. Syrjanen and I. Niemela. The smodels system. In Proc. of the 6th Int. Conf. on
Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 434438, 2001.

[56] Tommi Syrjanen. Implementation of local grounding for logic programs with stable
model semantics. Technical Report B18, Helsinki University of Technology, Digital
Systems Laboratory, Espoo, Finland, October 1998.

[57] Tommi Syrjanen. Omega-restricted logic programs. In Proc. of the 6th Int. Conf. on
Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 267-279, 2001.

[58] A. van Gelder, K. A. Ross, and J. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):62&650, 1993.

[59] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the 7th
International Conference on Very Large Data Bases, pages 82-94, 1981.

