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Abstract 

Mitchell and Ternovska [49, 501 propose a constraint programming framework for search 

problems that is based on classical logic extended with inductive definitions. They for- 

mulate a search problem as the problem of model expansion (MX). In this framework, the 

problem is encoded in a logic, an instance of the problem is represented by a finite structure, 

and a solver generates solutions to the problem. This approach relies on propositionalisation 

of high-level specifications, and on the efficiency of modern SAT solvers. Here, we propose 

an efficient algorithm which combines grounding with partial evaluation. Since the MX 

framework is based on classical logic, we are able to take advantage of known results for the 

secalled guarded fragments and their generalizations. In the case of k-guarded formulas 

with inductive definitions under a natural restriction, the algorithm performs much better 

than naive grounding by relying on connections between k-guarded formulas and tree de- 

compositions. 

Keywords grounding; model expansion; guarded fragments; descriptive complexity; induc- 

tive definitions 
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Chapter 1 

Introduction 

The well-known theorem of Fagin states that existential second-order logic (330) captures 

the complexity class N P  [17]. This implies that any problem in N P  can be expressed 

in 30 ,  that is, we are able to encode any computational task with this inherent time 

bound. The implication of this theorem and other results in descriptive complexity theory 

is logics can be viewed as programming languages for their corresponding complexity classes 

(see, e.g. [ls]). While Fagin's theorem, and other results in descriptive complexity are very 

meaningful in this way, much remains to be done to make this idea practical, ie., to develop 

an approach to declarative constraint programming that is efficient, conceptually clean, and 

has good modeling capabilities. This thesis makes a step towards this goal. 

The most successful approaches in the past to declarative constraint programming are 

propositional satisfiability (SAT), constraint satisfaction problems (CSP), and answer set 

programming (ASP). 

SAT is the oldest and most developed of the three approaches and today is both the 

subject of research and used by industry for solving specific problems. A SAT problem is 

simply represented by a boolean formula, where solving it involves determining whether 

there is a satisfying assignment to the formula. Since a satisfying assignment in this context 

is just a set of truth values for all of the boolean variables that sets the formula to true, the 

semantics of SAT is very simple. It is this semantic simplicity that is the key driver in the 

success of SAT for modeling problems. A drawback of SAT is that it lacks the modeling 

capabilities of logics with quantifiers or recursion. An even bigger drawback of SAT is 

the lack of separation between problem instance and problem description. For example, 

given the problem of determining whether or not a graph is 3-colorable, and an instance 
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(a graph) we can construct a propositional formula that has a satisfying assignment for 

every 3-coloring of the graph (if any exist). However, this representation is specific to this 

problem/instance pair. It  cannot be reused, or even trivially modified in most cases, to  solve 

3-colorability for any other graph. This lack of separation leads to conceptual and practical 

difficulties. 

CSP provides somewhat better modeling capabilities than SAT. One reason for this is 

that variables need not be boolean; instead, variables may take values from any specified 

finite domain. It also provides some techniques used to solve problems, such as nogood 

learning and backjumping methods, which are now central to modern SAT solvers [51]. 

Solvers for CSP, however, have found practical success primarily as components in constraint 

logic programming (CLP) tools. These provide rich problem solving environments, often 

used to  produce domain-specific solvers for NP-hard problems. However, they are general- 

purpose programming languages, and thus not purely declarative. 

Another approach to declarative constraint programming that emerged from logic pro- 

gramming is Answer Set Programming (ASP) (see [4]). The semantics of ASP are based 

on the stable model semantics of Gelfond and Lifschitz [19], and, as such, it is much more 

complex than SAT or CSP. ASP was proposed as a programming paradigm in [52, 471. The 

main advantage of ASP is that it has a better modeling language than SAT or CSP, e.g., it 

allows for some implicit use of quantifiers and has a built-in recursion mechanism. ASP has 

a more clear separation of instance and problem description than SAT, but not a complete 

separation, as instance and problem description are separate only on the level of methodol- 

ogy. The main disadvantage of ASP is that non-determinism can only be imitated formally 

via recursion through negation. Because of this, some features of classical logic cannot be 

modeled in ASP in a natural way. For example, in classical logic, a boolean variable p is 

free to be true or false. However to represent this in ASP, the programmer must introduce 

a new atom p', and add rules p t not p' and t not p to represent this same feature. 

While results in descriptive complexity suggest that problems of a given complexity can 

be expressed in a certain logic, there exists no purely declarative constraint programming 

framework for hard problems that is close in syntax or semantics, to the corresponding logics 

that can express these problems. This comes as no surprise because it is not obvious how 

to build a general-purpose tool for modeling problems in a highly declarative fashion. 

However, as a step in this direction, Mitchell and Ternovska [49, 501 proposed a declar- 

ative constraint programming framework, which is based on classical logic extended with 
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non-monotone inductive definitions. They cast a search problem as the classical problem of 

model expansion (MX), which is the problem of expanding a given structure with new rela- 

tions so that it satisfies a given formula. The long-term goal is to develop tools for solving 

hard combinatorial search problems for different complexity classes, especially those in NP. 

In this framework, the problem description is encoded in a logic and a problem instance 

is represented by a finite structure, where some of the predicates in the formula are not 

specified in the structure. A solver then generates solutions (if any exist) to a given model 

expansion problem by finding structures that expand the instance structure (i.e., provides 

interpretations for the initially unspecified, or expansion, predicates) in such a way that 

these expansion structures satisfies the formula. To our knowledge, this framework is the 

first declarative constraint programming framework to be based on finite model theory and 

descriptive complexity. 

The MX framework combines the many strengths of SAT, CSP and ASP, as well as ad- 

dresses their limitations. Its features include: a high-level modeling language that supports 

quantification and recursion, and a clear separation of the instance (a finite structure) from 

the problem description (a formula). Most importantly, the framework achieves the goal 

of developing a tool for modeling problems with a highly declarative and natural language 

based on classical logic extended with inductive definitions. This makes it possible to exploit 

the many existing results from finite model theory and descriptive complexity. 

Note that in the case of first-order (FO) logic, the MX problem is exactly the same as 

model-checking (MC) for 3 0 .  In fact, finding interpretations for unspecified predicates in 

an MX problem for FO is the same as witnessing 3 for the corresponding 3SO problem. As 

such, the MX problem for FO captures NP as an easy corollary of Fagin's theorem. h r -  

thermore, since inductively defined properties are hard to represent in FO logic, extending 

FO logic with inductive definitions (IDS) to  get FO(1D) logic allows for more convenience 

in modeling problems. While the MX framework is a general framework that deals with 

MX problems for many logics, in this thesis, we obtain results for the FO and FO(1D) cases 

only, and as such, we concern ourselves only with these logics. Throughout the thesis, we 

may use MX when we mean MX for FO or FO(1D) logic. 

The advances in the efficiency of propositional solvers over the past few years has led 

researchers to use it as a component in high level solvers, e.g. [8, 9, 141. It has also led 

researchers in the area of ASP to build solvers that propositionalize (or ground) the program 

and solve these using a propositional solver, for example [43, 451. Since ASP is based on 
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logic programming, and thus resembles the propositional satisfiability problem even less 

than FO logic (or even FO(1D) logic) in both syntax and semantics, this is strong evidence 

that the MX framework can be made practical by this approach of grounding followed by the 

use of a propositional solver. For one thing, with ASP, grounding must be performed over 

the Herbrand universe, however, in the MX framework, since the instance to the problem 

is a finite structure, it is clear that every term must be an element of the domain of this 

structure, i.e., the grounding will always be finite. In particular, for MX, we want to  ground 

the FO or FO(1D) formula over the structure in a way that this grounding has a satisfying 

assignment for every expansion of the instance structure that satisfies the FO(1D) formula 

(if any exist). In the case of MX for FO logic, grounding to get a propositional formula is 

very straightforward. We can then simply call one of the many efficient modern SAT solvers 

for a solution. In the case of FO(1D) logic, the grounding will be a formula of propositional 

calculus with inductive definitions (PC(1D)). In this case, we would need to use a solver for 

PC(ID), e.g. [53, 481. Essentially, we are reducing MX for FO to  SAT, and MX for FO(1D) 

to satisfiability for PC(1D). 

While there are other techniques that can be used other than grounding in order to  

make this declarative constraint programming approach of [?, ?] practical, since the solvers 

for propositional satisfiability are so efficient, an efficient grounding algorithm is a major 

part of this goal. While a naive approach would give us a polynomial time method for 

grounding (the problem description is fixed), which is expected as MX captures NP, the 

degree of this polynomial depends on the arity of the predicates, so something more efficient 

is needed. This same problem exists for grounding in ASP solvers as well, yet the practice 

of using domain predicates is used in some modern systems to overcome this problem. Since 

domain predicates are very much like "guards" in a logic program, it suggests that we 

could benefit by taking advantage of the guarded fragments (GF) (21 (and possibly their 

generalizations [24, 30, 61) to devise an efficient grounding procedures for our framework, 

since MX is based on classical logic. We have indeed found these fragments to be useful, as 

they are central to the result of this thesis. 

The result of this thesis is an efficient grounding algorithm for the MX framework which 

combines grounding with partial evaluation. In particular, when the FO(1D) formula is 

k-guarded 1241, where all guards are specified by the instance structure, the algorithm runs 

in time 0(e2nk) ,  where e is the length of the formula and n is the size of the structure. 

When k is small, this is a huge improvement over the naive time O(ne) approach. One 
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reason that this result is important is that many search and decision problems that occur in 

practice can be written as k-guarded formulas, for small k, such that all guards are specified 

by the instance structure. This grounding algorithm is an extension of the model checking 

algorithm of Liu and Levesque [46], and is also inspired by the system Datalog LITE [21]. 

An overview of the thesis is as follows. In Chapter 2 we present related work, a set of 

implement at ions that are most closely related to the MX framework with this grounding 

procedure. Chapter 3 formally outlines the MX framework. We then give background 

information on the reasons behind the efficiency of our algorithm in Chapter 4, namely the 

notion of tree (hypertree) decompositions, and its connection to the k-guarded fragment of 

FO logic. Our contribution of the main result of this thesis begins in Chapter 5, with an 

outline of the mechanism of grounding for MX. First, we give a brief explanation of how we 

perform grounding and then we define the extended relation, an extension of the notion of 

relation from database theory. We then complete this mechanism by defining an algebra for 

this extended relation. Chapter 6 provides an algorithm for grounding FO formulas with 

expansion predicates over a structure. In the case where the FO formula is k-guarded such 

that all guards are specified by the instance structure, this algorithm runs in time 0(e2nk) ,  

where C and n are as above. Finally, in chapter 7, we provide the main algorithm of this 

thesis, namely the algorithm for grounding FO(1D) formulas with expansion predicates over 

a structure. In the case where the FO(1D) formula is k-guarded such that all guards are 

specified by the instance structure, this algorithm runs in time 0(C2nk)). This is done by 

trivially extending the algebra of Chapter 5 and the algorithm of Chapter 6 for inductive 

definitions. We then present conclusions followed by some future work. 



Chapter 2 

Related Work 

In this chapter, we outline some specific declarative constraint programming approaches 

that employ grounding techniques that are similar to the one we present. 

Since ASP is the latest approach to declarative constraint programming, a few of the re- 

lated implementations are ASP systems. In particular, we mention the systems Smodels [55], 

Cmodels-2 [43], and dlv [40]. 

The Smodels [55] system is an ASP system that extends normal logic programs with 

cardinality and weight constraints. It also supports arithmetic and function symbols. The 

set of domain predicates of an Smodels program is the maximally stratifiable subset of 

predicates of the program. A set of predicates (or rules) can be stratified if it can be ordered 

in such a way that for any of its predicates p and q, if p is definitionally dependent on q, then 

p is on at least as high a stratum as q. Note that all of these definitional dependencies must 

be positive, i.e., p cannot depend on the negation of q. Note that if we create a graph for 

a stratified set of rules, where we take the predicates as nodes and we introduce a directed 

edge for each dependency, that this positive dependency graph would be a directed acyclic 

graph. 

The idea here is that an Smodels program must be domain-restricted, that is, all variables 

of a rule must occur in some positive domain predicate in the body of this rule. This 

syntactic restriction guarantees that the interpretations of all predicates are subsumed by 

the intepretations of the (natural join of the) domain predicates, thus the set of domain 

predicates can be viewed as the guards of the program. This restriction guarantees that 

programs are decidable, even when function symbols are used [57]. While determining 

whether there exists a solution to an Smodels program is 2-EXP-complete in the general 
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case, imposing restrictions such as disallowing any function symbols or fixing the number 

of variables used can reduce the running-time significantly [57]. 

The system Smodels is composed of two independent components, smodels and lparse. 

Given an Smodels program, lparse first identifies the domain predicates and then computes 

the join of these predicates. It then uses this join to ground the rest of the program. The 

component smodels then runs on the ground program to find all of the solutions (or answer 

sets, in the context of ASP). 

The form of grounding that Smodels employs is very similar to our approach, in that we 

both ground high-level programs into propositional programs and then rely on a lower-level 

solver to compute the solution. Furthermore, we both rely on the high-level programs having 

a certain structure, namely that the programs are guarded in some sense. The difference, 

however, is that Smodels is an ASP system so, while the notion of being domain-restricted 

is quite similar to being guarded [2], the grounding produced is an answer set program, 

not a SAT instance. Moreover, while imposing the same restrictions that we impose on the 

input to our grounding algorithm results in similar running times [57], Smodels considers 

less restricted cases as well, with the penalty of a much higher running time in these cases. 

The system Cmodels-2 [43] is another ASP system that is very similar to Smodels. It 

is similar to Smodels in that it uses lparse as a front end to ground the program. It  also 

requires that the input be domain-restricted in the same sense as Smodels. Cmodels-2 

programs can have cardinality and weight constraints as well, however Cmodels-2 uses 

methods to convert these into a set of nested rules with auxiliary variables [3]. The main 

idea behind Cmodels-2 is that, while the set of answer sets of a general program is a subset 

of the models of completion of that program, the models of completion of a stratifiable 

program (its entire set of rules is stratifiable) are exactly the answer sets of this program. 

We explain the completion of a program below. 

Recall that a (nested) logic program II consists of a set of rules of the form 

A. +- A1,. . . , Ak, not Ak+l,. . . ,not A,, not not A,+l,. . . , not not A, 

where A. is an atom (or the empty symbol), and A1,. . . , A, are atoms, where the list 

A1,. . . , Ak is referred to as the positive part of the body [3]. If we assume that II is strati- 

fiable, the completion of this program can be formed as follows. First, in the body of every 

rule of II replace each occurrence of not with 1 and each comma with A. Second, for every 
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atom A make the list of all rules in II with the head A 

and form the equivalence 

A G V ~ o d ~ i .  
i 

Third, for every constraint A' +- B o d y  in II, where A' is the empty symbol, form the 

negation of its body 

-Body.  

Note that the completion of a program is a propositional formula, not a propositional 

answer set program, therefore SAT can be employed to find the models of this completion. 

When the program is stratifiable, SAT will return exactly the answer sets of the program. 

When the program is not stratifiable, however, Cmodels-2 performs the computation of loop 

formulas [38] by a method quite similar to [45]. This computation of loop formulas makes 

the program stratifiable, and now it can be solved using program completion [3]. 

Grounding for Cmodels-2 resembles our approach to grounding more than Smodels in 

that, not only does it ground high-level programs to lower-level programs by relying on 

some notion of guardedness, but the low-level program in the case of Cmodels-2 is a SAT 

instance, not a propositional answer set program. However, since Cmodels-2 is an ASP 

system, the method of grounding to a SAT instance is quite different. In fact, Lierler and 

Maratean [43] state that when using certain SAT solvers, they are used in close correlation 

with the Cmodels system for obtaining a solution, and not as black boxes. This technique 

allows for a more efficient solution, which is one of the advantages it has over Assat [45], a 

system that uses SAT as a black box. However, since the framework we consider is based 

on classical logic, using SAT as a black box is naturally the most efficient method, because 

of the clear separation of instance and problem description. 

The system dlv handles disjunctive logic programs, that is rules with heads composed 

not of a single atom, but of a disjunction of atoms. This system also considers only safe 

programs, ones where for each rule, all variables of the rule are in some positive atom of that 

rule. The system dlv also considers weak constraints, which are constraints that need not 

be satisfied, however models that satisfy weak constraints are preferred over models that do 

not, all else being equal. Each weak constraint is associated with some measure of a "cost" 

for dissatisfying this constraint, where models that minimize an overall cost are preferred. 
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Disjunctive logic programming is more expressive than normal (v-free) logic programming, 

in that it captures all problems in the complexity class N p N P ,  or N P  with an N P  oracle, 

while normal logic programming captures all problems in the complexity class N P .  

For example, the 3-coloring problem can be expressed in disjunctive logic using the 

following rules 

rl : color (X, r) V color(X, g) V color(X, b) t node(X), 

7-2 : t edge(X, Y), color(X, C),  color(Y, C). 

Rule 7-1 states that if X is a node, it is colored either red, green or blue, and rule 7-2 states 

that it is never the case that two nodes that form an edge have the same color. The answer 

sets of this program correspond exactly to the 3-colorings of the graph (node(-), edge(, -)). 

The fact that models are always minimal in ASP guarantees that, in every coloring, each 

node will have exactly one color [41]. 

The system dlv  is considered state-of-the-art for disjunctive logic programming systems. 

The main aspect of dlv  that can be compared directly to what we have considered so far 

is the methods that d l v  uses for grounding its programs. Before running many of its other 

routines, dlv  employs a routine called the intelligent grounder [40] or (IG), which uses two 

techniques which we explain below. 

The first technique that IG uses is rule rewriting [16] inspired by the database optimizai 

tion techniques of pushing selections and projections as far down the join tree as possible. 

Given a rule, one technique is to "project out" a variable that appears in a only a subset of 

its atoms. For example, given the rule 7-1, 

we notice that variable Z appears only in atoms c and d of rl 's body. In this case, we can 

add the rule 

f (X, Y, W) +- c(X1 2, W), 42, Y), 

and substitute rl by a new rule r i ,  

Ground instances for ri are generated faster than for rl ,  because Z is only involved in the 

join of c and d, not of the entire rule. The rewriting has the same effect as projecting out 

Z after the join of c and d is performed, as these are the only atoms that contain Z. 
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While this technique is not used in Smodels or Cmodels (although it may prove useful 

in these cases), it is akin to our technique for grounding. Our grounding algorithm takes 

advantage of the k-guarded fragment [24], that is, the input is a k-guarded formula. By 

the structure of k-guarded formulas, it has a form in which projections have been optimally 

pushed down the join tree (to the extent that no join involves more than k atoms) [46]. 

While these rewriting rules modify an instance to one where projections and selections are 

pushed down as far as possible, the input of our grounding algorithm already has this form. 

The second technique used by the IG involves a set of methods for ordering joins in the 

(positive) body of its rules [41]. While the natural join of a set of atoms will have the same 

value, regardless of the order in which the join is performed, the intermediate sizes of the 

join, and therefore the time of computation of the join, can be drastically affected by this 

order. In this approach to  chose an optimal join ordering, information about the atoms 

involved in the join is exploited. With this information, they use several different statistical 

measures to estimate the ordering that minimizes the join computation time. 

Specifically, the IG employs a greedy algorithm, that at each step i > 1, a greedy choice 

is made to select the ith atom given that i- 1 atoms have already been placed in an ordering. 

An atom A is chosen as the ith if A is minimal with respect to some selectivity criterion. 

They present three different selectivity criteria. The first favors the atom that has the most 

variables in common with the join of the i - 1 atoms, and, of these, the one with associated 

relation of the smallest cardinality. The second criterion favors the atom A that leads to 

the smallest intermediate relation size (the one that minimizes the size of the join of the 

i - 1 atoms with A).  This intermediate relation size is estimated with the collected statistics 

of the atoms mentioned in the previous paragraph. The third criterion takes into account 

the size of the intermediate result and the variables that the the ith atom has in common 

with the join of the i - 1 atoms. This third (combined) criterion is the one used for join- 

ordering in IG, as it has been shown through benchmarking, that it performs the best in 

most situations. 

Test results show that this technique of join-ordering methods reduces the time of 

grounding quite significantly in the general case for dlv programs. This technique of or- 

dering joins can be used in normal logic programming such as in the cases of Smodels and 

Cmodels. The grounding procedure of dlv has a clear edge over these methods in this re- 

gard. In fact, in one of the tests of [41], they compare the IG with the lparse grounder. 

In most cases, the IG performs better, especially in cases where the joins are quite large 
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(where ordering is important). Since the results of our algorithm rely on the fact that most 

practical problems can be written in a k-guarded form for small k, we would not benefit 

from join ordering methods in grounding. 

The techniques of rule rewriting [16] and join-ordering methods [41] make the IG a strong 

point of dlv with respect to other ASP systems. While it works well on general disjunctive 

logic programming problems, it even performs better than Smodels and Cmodels on some 

normal logic programming problems. 

Since k-guarded sentences are those in which projections have been optimally pushed 

down the join tree, we can take advantage of this for efficient grounding. In this way, it 

resembles the rule rewriting techniques used in dlv in that they are inspired by database 

techniques of optimally pushing projections down the join tree. However, in our approach, 

we assume the input is already k-guarded, and can thus get an apriori bound (a function of 

k) on the running time, given this input. 

In summary, the grounding approaches of the three systems mentioned above resemble 

our grounding approach, however a common way that they differ is that they are ASP 

systems, and not based on classical logic. The properties that all four approaches have in 

common is that they all require some notion of safe input, that is, all variables (or free 

variables) of a particular rule, or subformula, must be in some positive atom, guard or 

domain predicate. This second requirement, in fact, is very important to the efficiency of 

grounding (and of producing a solution) in all of these approaches. 

Datalog LITE [21] is a model checker that runs in time linear in the program size and 

the input, that is, it has linear time combined complexity. Despite the fact that it performs 

model checking, and not model expansion, it is quite similar to our approach. 

First consider Datalog LIT, the fragment of stratified datalog that is guarded [2] l, and 

therefore has linear time model checking. The reason a Datalog LIT program II has linear 

time model checking is that the system can go through II, stratum by stratum, and ground 

each rule T to a propositional Horn clause, of the form h V l b l  V . . . V lb , ,  where h and 

the bi are propositional atoms. Each rule T can be ground in linear time, because each 

rule is guarded (all variables take values within the extension of this guard). This yeilds a 

propositional Horn program that is linear in the size of II. Since the satisfiability of a Horn 

clause can be determined in linear time, the entire process of model checking for Datalog 

'or monadic, which we do not discuss as it is outside the scope of our interests 
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LIT is linear time. 

Datalog LITE, an extension of Datalog LIT, differs only in that it may contain generalized 

literals; those of the form Vyl . . . yn(a > p). While generalized literals are more powerful, the 

notion of stratification for these literals still has to hold, that is, cr will have to be on a strictly 

lower stratum in the program than P. A generalized literal L(y) + V ~ ( a ( 2 ,  y) > P(z, y)),  
can be transformed to a set of regular literals by replacing it with the conjunction 

for any tuple d interpreting g .  Since the number of tuples d is bound above by the input 

size, this replacement will only increase the program size by at most a linear factor. The 

routine for Datalog LITE, given program Il, performs this conversion for each generalized 

literal, to get a program II' that is linear in the size of II. It then calls Datalog LIT on II', 

which does model checking in time linear in the size of Ill, and therefore in time linear in 

the size of II. 

Datalog LITE most closely compares to our approach in the form of the input, guarded 

datalog. Instance and problem description are completely separate in Datalog LITE as well; 

Datalog LITE performs model checking for a program II, given a structure A. Thus, the 

method of grounding is quite similar as well, involving the extension of the language of 

the program II by constant symbols for all domain elements of the structure A. Datalog 

LITE has more in common with our work than the systems we have considered so far, and 

thus has inspired some of the approaches we take in our grounding algorithm. There are a 

number of key differences between Datalog LITE and our approach. First, Datalog LITE 

uses logic programming syntax, and grounding involves no partial evaluation. Finally, while 

they ground high-level specifications into lower-level specifications, it is for the much simpler 

task of model checking, not model expansion. 

In the work of [54], the authors present an approach for converting an arbitrary FO 

formula into a propositional formula that is satisfiable iff the original FO formula is satis- 

fiable. The main result of this paper is a method for propositionalizing FO formulas that 

are either in monadic first-order logic (MFOL), or exists-forall first-order logic (EAFOL). 

This method requires there to be a fixed number of constants, but does not rely on any 

other information, i.e., a structure or even a domain. For handling arbitrary FO formulas, 

a routine is provided for converting a FO formula to MFOL or EAFOL, however this relies 

on assuming that the domain of the formula is closed. 
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In order to get a compact propositionalization for the method of propositionalizing 

MFOL and EAFOL formulas, these methods rely on the results of [I]. Given a FO formula 

in MFOL or EAFOL, it is partitioned into sets of predicates/constants using the approach [I] 

based on tree-decomposition. Each partition can then be propositionalized independently, 

resulting in a propositional formula that is satisfiable iff the original MFOL or EAFOL 

formula is satisfiable. For classes of formulas of bounded treewidth, this propositionalization 

is polynomial in the size of the FO formula, that is, exponentially smaller than than the one 

obtained by the naive approach. 

This approach of grounding is similar to ours in that it grounds a FO formula into a 

propositional formula so that SAT can be used to  find a solution. It is also similar to 

our grounding approach in that it relies on the notion of tree-decomposition, however the 

techniques of [54] differ from our approach more than any of the systems we have mentioned 

above. Rather, the techniques rely on the partition-based reasoning of [I], rather than any 

notion of guardedness, or safe queries. They do rely on tree-decomposition, however, an 

idea that the notion of guardedness comes from, but they actually partition (or decompose) 

the formula with a greedy algorithm based on tree-decomposition. Our methods rely on the 

notion of tree-decomposition in that we restrict the input to being k-guarded, rather than 

performing any sort of decomposition. Finally, this approach concerns determining whether 

a, problem is satisfiable, not of finding all satisfying assignments. 

The system NP-SPEC is a system for specifying NP search problems in a Datalog-like 

syntax, where a compiler SPEC2SAT translates these high-level specifications into a proposi- 

tional formula so that a SAT solver can generate solutions. 

The system NP-SPEC has its own syntax, where a program consists of a database section 

and a specification section. A set of declaration forms are provided with NP-SPEC, where 

each specification has to use one of the forms. For example, the Hamilton path problem, 

given a graph G = (V, E )  could be specified using the Permutation declaration form [9]. 

That is, a Hamilton path can be specified as a permutation .rr of the vertices V such that 

( . ~ r ~ , . r r ~ + ~ )  E E for all i s.t. 1 5 i 5 1VI - 1. This specification is then converted to an 

internal representation (based on simpler declaration forms native to NP-SPEC), and then 

finally to  a propositional formula. 

This syntax of NP-SPEC is restricted to being stratifiable (recursion through negation 

is not allowed), which guarantees specifications to be decidable, as in the ASP systems 

mentioned above. In addition, there are no cardinality or weight constraints, and no function 



CHAPTER 2. RELATED WORK 14 

symbols, which is necessary, since the grounding over the Herbrand Universe, unlike our 

system and Datalog LITE. Specifications of NP-SPEC are ground using the minimal model 

semantics [44]. Other than the semantics being slightly different than in our approach of 

grounding, their method of grounding is very similar to ours; they even combine grounding 

with partial evaluation. 

The system NP-SPEC came out of the idea of specifying NP search problems in a highly 

declarative fashion. In fact, NP-SPEC captures the complexity class NP, by appealing to 

Fagin's theorem [17]. Both NP-SPEC and our approach combine grounding with partial 

evaluation. In contrast, NP-SPEC restricts input to a decidable fragment of programs, not 

the guarded fragment. Since there is no complexity analysis given for grounding for NP-SPEC 

(only experimental results), it is not clear how it differs from our approach in this vein. In 

addition, the fact that NP-SPEC relies on the minimal model semantics, and that grounding 

is over the Herbrand Universe set it apart from our approach, which relies on the semantics 

of classical logic, and grounds over the domain of the structure. 

To conclude, all of these approaches have the same intent, which is to ground high-level 

specifications into low-level ones, so that a low-level solver can generate solutions. In all 

the systems but Smodels and dlv ,  this low level solver is SAT. In all of the systems but the 

approach of [I], some notion of a safe query or guardedness is used in order to guarantee 

decidability or efficiency. The system Datalog LITE resembles our approach most closely, in 

that there is a clear separation of instance and problem description. Furthermore, Datalog 

LITE considers guarded Datalog, and the problem instance is a structure. As such, Datalog 

LITE has inspired some of the techniques we use for an efficient grounding algorithm. 



Chapter 3 

Background: The Model Expansion 

Framework 

The model expansion framework was first suggested by [49, 501, as an approach to purely 

declarative programming that is based as much as possible in classical logic. Here we fully 

present the model expansion framework for FO logic. 

The language of the MX framework is simply FO logic. An FO language L: contains of 

the set of logical symbols, which consists of 

parentheses: (, ) 

connectives: A,  V, 1, 3 

variables: X I ,  2 2 ,  . 

0 equality symbol: = 

and the set of parameters, which consists of 

quantifiers: V, 3 

predicate symbols: P, Q, . . . (for each positive integer n, we have some set (possibly 

empty) of n-ary predicate symbols) 

0 constant symbols: cl, c2,. . . (set can be empty) 

0 function symbols: f l ,  f 2 ,  . . . (set can be empty) 
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For example, if FO language C has variables x and y, and a binary relation L, one formula 

of this language C is Vx3yL(x, y) V 3xVy~L(x, y). As an illustration, if the variables x and y 

range over all people, and L(a, b) is interpreted to mean that "a likes b" , this formula would 

say "Everybody likes someone, or there is someone who dislikes everyone". 

Formally, to give meaning to the FO language C, we define the class of C-structures for 

this language, as well as an object assignment, i.e., a mapping from the set of variables of 4 
(which we call V) to elements of the domain. An C-structure A consists of 

a A non-empty set A, called the domain (or universe) of A. Variables of C range over 

this domain A 

a For each n-ary function symbol f E C, a function f A : An + A 

a For each n-ary predicate symbol P E C, a n-ary relation pA 5 An 

a If C contains = then =A must be the identity relation on A 

An object assignment is simply the function 

Now we can define A 't= 4 [ ~ ] ,  that is, what it means for a structure A to satisfiy 4 with 

object assignment Q. To do this, we formally define 0, an extension of Q to all terms (a term 

is a constant or a constant with any number of functions applied to it) of 4 (which we call 

T) 
Q: T + A  

and give the following definitions 

Terms 

a For each variable x, Q(x) = ~ ( x )  

a For each constant c, ~ ( c )  = c d 

a If t l ,  . . . , t, are terms and f is an n-ary function, 

then P(f ( t l , . .  . ,tn)) = fA(Q(tl) ,  . . . ,  @(in)) 

Atomic Formulas 
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0 For any n-ary predicate symbol P, A + P(t1, .  . . , tn)[e] iff ( ~ ( t l ) ,  . . . , ~ ( t n ) )  E pA 

Other Formulas 

A + (-+)[el iff -a F +[@I 

A + (VX+)[Q] iff for every d E A, we have A + +[e(xld)], where 

~ ( x l d )  is like Q, except at the variable x it assumes the value d (which is the entire domain). 

Thus, V means "for all elements of A". Note that all of the other symbols 3, 3,.  . . can be 

defined by symbols in the above definitions; this gives the semantics of L. 
Since all FO languages L have the basic logical symbols, they tend only to differ in 

the vocabulary, that is, the sets of predicates, constants and functions. Therefore, we often 

refer to formulas + as having a certain vocabulary, rather than being of a certain language. 

We use this convention, not mentioning languages again, and we use the symbols a and 

E for vocabularies. We also use the convention + E a to mean that + has vocabulary 

u ,  or vocab(+) = a .  Furthermore, we only deal with relational vocabularies (no function 

symbols) from now on, both in explanation and algorithm implementation, for notational 

convenience. Note that since any n-ary function symbol can be replaced with an (n  + 1)- 

ary relation symbol in a way that the formula has the same meaning, that this is not a 

restriction. So in our case, we can describe a language simply as a relational vocabulary a, 

and a a-structure as A = (A; ad), where A is the domain of the structure, and ad is the 

interpretation of the relations of a. 

Let a be a vocabulary, and A be a structure over a, A = (A; ad). Let f3 be a structure 

over vocabulary a U e, the vocabulary a extended with some vocabulary e. Structure f3 = 

( A ;  ad, E*) is over the same domain as A and has the same interpretations of the relations 

of a as A, but also contains interpretations of the relations of e. B is an expansion of A. 

The MX framework for solving combinatorial search problems is given by 
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Definition 3.1 (the model expansion problem). Given a FO sentence 4 with vocabulary 

vocab(d), and a finite structure A for vocabulary u C vocab(d), is there a structure B which 

is an expansion of A to vocab(d), such that B + 4. 

To illustrate this framework and its suitability for solving combinatorial search problems, 

we consider the well-known NP-complete 3-coloring problem as a MX problem. The 3- 

coloring problem is, given a graph G = (V, E) and three colors, is there a way to assign 

colors to the nodes such that for any (a, b) E E, a and b cannot have the same color. Here 

we represent the problem instance, the graph G, with the structure G = (V;uB),  where 

the domain of G is the set of vertices V, and u = {E) consists of the single binary (edge) 

relation. Here E~ (the interpretation of the relation E) is symmetric and irreflexive. We 

represent the problem description with the following formula 4 

where the first line asserts that every node is colored. The second line asserts that no node 

has more than one color, and the third line asserts that no two nodes that share an edge have 

the same color. Thus, the formula is stated in such a way that every expansion of G that 

satisfies 4 will represent a 3-coloring (if any exist). That is RB,  yB and B~ will partition 

the set of vertices V, representing colors red, yellow and blue. The approach is clear; the 

structure represents the instance, and the formula describes the problem in a way that the 

set interpretations of the expansion predicates (expansion vocabulary E = {R, Y, B )  in this 

case) is the witness of the solution. In this way we can formulate the decision problem 

as determining whether there exists an expansion of G that satisfies 4, and the assocated 

search problem as finding such an expansion. 

From here on for model expansion problems, given formula 4 and structure A, we use 

the convention that u represents the instance vocabulary, and E represents the expansion 

vocabulary or vocab(4) \ u. Note that the model expansion problem where u = vocab(4) 

reduces to the problem of model checking, i.e., verifying if A + 4. From here on we focus 

on the more interesting case where u is a proper subset of vocab(4). On the other hand, 

note that when u = 0, MX coincides with the spectrum problem. The spectrum of a 

sentence 4 is the set {n E N I 4 has a finite model of size n). If u = 0 and vocab(4) = 
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{Rl , .  . . , R,), the spectrum of 4 can be alternatively viewed as finite models of the 3SO 

sentence 3R1,. . . ,3&4. In particular, given an instance (4, A) to the MX problem where 

a = 0 and the domain A of the structure A is of size n ,  we can determine if there is an 

expansion f? of A such that B /= 4 by determining if n is in the spectrum of 4 and vice 

versa. 

Note that symbols in the expansion vocabulary E behave as existentially quantified sec- 

ond order variables. So, in the case of FO logic, we have the same power as 3SO over finite 

structures, that is, MX captures the complexity class N P .  This can be proved using the 

same technique employed in Fagin's Theorem [17]. Formally, we define the following class 

of problems 

Definition 3.2 (expressed by MX(a,  4)). A class of finite a-stmctures K is expressed 

by MX(a, 4) if for any a-structure A, A E K iff there is an expansion B of A such that 

a h: 4. 

Assuming standard encoding of languages by classes of structures, and vice versa (see, 

e.g. [42]), we have the following re-casting of Fagin's Theorem. A class of finite a-structures 

K is in N P  iff for some FO formula 4, K is expressed by MX(a, 4). 
Some lower complexity classes can be captured similarily, applying results for vari- 

ous fragments of 3SO [27, 391. For example, FO universal Horn MX(a, 4) expresses P 

over ordered structures. The C i  levels of the Polynomial Heirarchy (PH) are captured by 

II:-_,MX(~, 4). Note that MX does not naturally capture II; levels, and this is not just hap- 

penstance: If there are some a and 4 so that MX(a, 4) is IIi-complete, then the PH collapses 

to its k-th level. In particular, if there are a and 4 such that MX(a, 4) is co-NP-complete, 

then N P  = co-NP. 

The MX framework allows us to consider the problems of model checking (MC), model 

expansion and finite satisfiability, all for the same logic. The complexity of MX lies between 

MC and finite satisfiability. In the case of FO logic, finite satisfiability is undecidable, MX 

is NEXP-complete, and MC is PSPACE-complete. Even in the case where a = 0, MX 

is decidable, as a finite structure is still provided. This finite structure has no relations, 

but the domain is finite. In fact, the case of the MX problem where a = 0 is equivalent 

to the result from (351 that the set X c N is a FO spectrum iff it is in N E X P .  To prove 

NEXP-completeness for MX, it is a straightforward reduction from Bernays-Schijnfinkel 

satisfiability or from the combined complexity of 3SO over finite structures. 
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Although the complexity of MX in the general case is impractical, in many cases of the 

following parameterized version of the problem, it is practical. 

Definition 3.3 (parameterized MX). Fix an unrestricted FO formula 4 and a vocabulary 

a c vocab(4). The problem MX(a, 4) is: Given a finite structure A for the vocabulary a ,  is 

there an expansion B of A to vocab(4) such that B + 4. 

Since 4 represents problem description, and a-structure A represents instance, if we fix 

4, we can solve this particular problem for many instances. For example, once we have 

the formulation of the 3-coloring problem, we can solve this problem for many graphs G, 

given their corresponding structures G. This class of problems describes the data complexity 

of MX, which is NP-complete, which is what we would expect, given that the 3-coloring 

problem is NP-complete, not NEXP-complete. 

In regards to  grounding, in the case where the formula 4 is fixed, any naive grounding 

algorithm will produce a propositionalization in time O(ne), where l is the length (141) of 

the formula, and n is the size of structure A. Note that this is polynomial in n because 4 is 
fixed (which is expected, as grounding is a way to solve NP-complete problems by reducing 

MX to SAT). However, the algorithm we present produces a grounding in time 0(12nk) 

where l and n are as above. This polynomial can be much smaller than the above O(ne) 

when k is much smaller than l .  In practice, many problems can be formulated as model 

expansion problems where the formula can be written as a k-guarded formula for small k. 

This is why the results for this particular fragment of FO logic are useful from a practical 

perspective. 



Chapter 4 

Background: The k-Guarded 

Fragment 

The guarded fragment GF of FO was introduced by Andr6ka et al. [2]. Here any existentially 

quantified subformula 4 must be conjoined with a guard, i.e., an atomic formula over all free 

variables of 4. Gottlob et al. [24] extended GF to  the k-guarded fragment GFk of FO (which 

we refer to as GFk from here on, mentioning explicitly when referring to the k-guarded 

fragment of some other logic), where the conjunction of up to k atoms may act as a guard, 

and proved that k-guarded sentences can be evaluated in time 0(e2nk) where e is the size of 

the formula, and n is the size of the structure. The proof is by transforming GFk sentences 

into k-guarded Non-Recursive Stratified Datalog (NRSD) programs. Later, in [46], the 

authors show that model checking for a formula 4 E GFk can be carried out in time O(enk), 

where e is the length of the formula, and n is the size of the (arbitrary) structure [46] (i.e., 

the combined time complexity is polynomial). I t  is the structural properties of k-guarded 

formulas that gives rise to  these results, i.e., the polynomial time combined complexity of 

model checking for formulas in GFk ,  over the general PSPACE-complete time complexity 

for model checking. We show in this thesis that taking advantage of the structural properties 

of k-guarded formulas is also beneficial in the case of coming up with an efficient grounding 

algorithm. The discovery of this fragment of FO logic has roots in structural graph theory, 

namely the notion of tree decomposition [7] and its generalizations. 

A tree decomposition is a mapping from a graph to a tree. More specifically, 

Definition 4.1 (tree decomposition). Given graph G = (V, E )  a tree decomposition of 
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G, TD(G), is a pair ( 7 ,  X) where 7 = (N, T) is a tree, and x : N + 2V is a mapping from 

vertices of 7 to sets of vertices of G. This pair ( 7 ,  X) must meet the following constraints: 

3. Vv  E V, {n E N I v E ~ ( n ) )  induces a (connected) subtree of 7 

In this definition, the first rule states that every vertex of G is associated with at least one 

vertex of 7 .  The second rule states that each pair of vertices of every edge of G is associated 

with at least one vertex of 7 .  The last rule states that the set of vertices of 7 that each 

vertex of G associates with induces a connected subtree of 7 .  The tree-width of a given 

tree decomposition TD of G is m a x , ~ ~  Ix(n)l - 1, and the tree-width of a graph G is the 

minimum width of all tree decompositions of G. 

Intuitively, a tree decomposition is an arrangement of the graph as a tree, and the tree- 

width of a graph is a measure of how well the graph "fits" to a tree (the better the fit, 

the closer to 1, from infinity, the tree-width is). If a graph G that has bounded tree-width, 

that is the tree-width of G is some constant k, this fact can be recognized in linear (O(n)) 

time. Given this, a width k tree decomposition of G can be built in O(n)-time. Since 

many NP graph properties become polynomial-time testable (Maximum Independent Set, 

3-Colorability, etc.) when the graph is a tree, this is also the case when the graph has 

bounded tree-width. This is because, given graph G of tree-width at most k, we can both 

recognize this fact, and construct a tree decomposition TD(G) = (x, 7) of G in polynomial 

time. Given this, we can then modify the property test to work for the tree 7 in polynomial 

time, because each node of the tree contains only a constant amount of information. 

Since many problems that can be represented as graphs have small tree-width, this notion 

has had much success in practice. However many problems are more faithfully represented 

in terms of hypergraphs, rather than graphs. As such, it would be useful if such a notion 

of decomposition existed for hypergraphs, so that properties of low "width" hypergraphs 

could be tested efficiently. A hypergraph is a generalization of the notion of graph. While a 

graph G is a set of vertices and a set of pairs of vertices (or edges), a hypergraph H is a set 

of vertices and set of subsets of vertices (or hyperedges). That is, hypergraphs can represent 

objects related to each other by not just binary relations, but relations of any arity. For 

example, a FO formula 
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can be viewed as a hypergraph (Figure 4.1). In this case, the vertices represent the variables, 

and the atoms are relations (hyperedges) over these vertices. If there is some valuation for 

the variables that satisfies formula 4.1, the variable x will have to take the same value at 

all places (in S and in R), so we can represent x as a single vertex. Furthermore each atom 

relates the variables within it by requiring that the tuple of valuations actually satisfy the 

given atom. Thus, given that each atom is not only binary in general, with hypergraphs is 

the best way to represent these entities. 

An important property test for formulas (which have a hypergraph structure) is the 

model checking problem. The model checking problem is, given a a-formula $ and a a- 

structure A, does A t= $. The length t of the formula $ is the number of atoms in the 

formula (or the number of variables; from an asymptotic viewpoint, they are the same). 

The size n of the structure A is the size of any reasonable encoding of this structure. An 

example of a reasonable encoding of a structure is an encoding of the domain of the structure 

followed by an encoding of each tuple of each relation interpreted by the structure. A detailed 

example of an encoding of a structure can be found in [18], thus n can be used in place of 

the size of domain A of A, or the size of the interpretation (table of tuples) of any relation 

of A. Given formula 4.1, and structure dl = {sA1 = {(2,6,6), (3,4,5), (5,2,3)), RA1 = 

{(2,7,8), (4,5,6)}, = ((6, 1), (6,3), (8,2)}}, A1 satisfies formula 4.1 because the tuples 

(3,4,5), (4,5,6), (6,l) satisfy the set of atoms S, R and T respectively, and are consistent 

with the variables. 

From a computation viewpoint, for formula $ and structure A, checking that A $ 

involves computing the answer to $ w.r.t. A. To describe the answer to a formula w.r.t. a 

structure, we introduce the notion of relation [18] from relational database theory. An X- 

relation R is a set of mappings from the set of free variables X of the formula, to the set of 

elements A of the domain of the structure, or R = {y : X -+ A). The answer to an atomic 

formula w.r.t. a structure is the X-relation that is the set of mappings of the free variables of 

the atom to the tuples of the interpretation of the atom in the structure. For example, the 

answer to atomic formula S(v, x, y) w.r.t. A1 is {yl : {v, x, y) -+ {2,6,6), yz : {v, x, y) -+ 

{3,4,5), y3 : {v, x, y) -+ {5,2,3)) or, the following table on the left 
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The Y -projection xy (R) of X-relation R, where Y C_ X is the Y-relation {y 1 y I y E R), 
or the tuples of R restricted to the set Y. For example, .rr{,,,)(S(A1)) is the above table on 

the right. Note that given that the size JJRJI of X-relation R is its arity times the number 

of tuples (in the case of {v, x, y)-relation S(Al), JIS(A1)JJ is 3 . 3 = 9). Given this, the 

Y-projection of R involves passing through the tuples once and discarding the columns of 

X that fall outside of Y, resulting in a table that is smaller or equal in size to R .  Thus 

Y-projection is an O(J(R(1)-time operation, or a linear time operation. 

The join R W S of X-relation R and Y-relation S is the X U Y-relation {y : X U Y -+ 

A 1 y Jx  E R , y J y  E S ) .  For example, given S(A1) and the fact that R(A1) is the following 

table on the left 

S(A1) W R(A1) is the above table on the right. When X and Y are disjoint sets, the join 

of X-relation R and Y-relation S will be of size I(R(( . ((S(J, as every tuple of R is matched 

with every tuple of S. Since this is the worst case scenario, the join of R and S is a an 

O(IJRJ1 . IJS1J)-time operation. A special case of the join operation is to join X-relation R 

and Y-relation S when Y C_ X .  In this case, we simply have to sort the tables R and S 

according to a lexicographic ordering on A using the linear-time bucketsort (as the domain 

A is fixed) [18]. After the sort, the join is the same as merging two sorted lists, as X 

subsumes Y. Thus, in this case, join is an O((JR(1 + I(S(1)-time operation. The optimal way 

to do model checking, in this case, is to  rewrite the formula so that as many joins as possible 

are linear time joins. 

On the logical level, projections correspond to existential quantifications, and joins cor- 

respond to conjunctions. Until we get to the discussion on the k-guarded fragment of full FO 

logic, we only discuss the fragment 3FOA,+ of FO logic (FO logic restricted to conjunction 

and existential quantification), as this is all that is needed to describe the structure of k- 
guarded formulas from a graph theoretic (or hypergraph theoretic) standpoint. This is why 
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Figure 4.1: formula 4.1 as a hypergraph 

we only mention projection and join, leaving the definitions of the operations that pertain to 

disjunction and negation until the discussion of full FO logic. So the answer to formula 4.1 

w.r.t. dl is T ( ~ ) ( S ( A ~ )  W R ( d l )  W T(Al)),  that is, we join the three conjoined relations, 

and then we project to the set {y), as all variables but y are existentially quantified and 

thus go out of scope. This computation is as follows: compute S(A1) W R(A1) resulting in 

the table above, then we compute S(A1) W R(A1) W T(A1) resulting in the table on the left 

This is then projected onto the set {y) to get the above table on the right. Since this table 

is not empty, there is a valuation to y of formula 4.1 from structure dl, such that this 

formula is satisfied (ie., the structure satisfies the formula under some object assignment). 

In the general case, for formula 4.1, model checking involved three join operations, and a 

projection at the end, thus the total time is 0 (n3) ,  as each atomic relation is of size O(n) 

and three were joined together to get intermediate relation of size 0 (n3) .  Then a linear-time 

projection was applied to  this intermediate relation for a final relation of size 0 (n3) .  In the 

general case for positive conjunctive formulas, the time is O(ne), since there are O(C) atoms 

in the formula. 

A more clever way to do this, however, would be to rewrite the formula 4.1 into 

Note that formula 4.2 is semantically equivalent to formula 4.1 (has the same meaning, ie., 

has the same models). This rewriting implies that operations will now be done in the order 



CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 26 

T~~~ ((T{,,~} (S(A1))) W R(A1) W (T{,) (T(A1)))). This computation is as follows: compute 

T{,,,) (S(A1)) resulting in the following table on the left 

Then compute (T{,,~)(S(A~))) W R(A1) resulting in the above table on the right. This 

is an instance of the special case of join, since it is the join of a {v, x, y)-relation and a 

{x, y)-relation. Next is to compute the join of the above relation with T{,)(T(A~)). Since 

T{,) (T(A1)) is the following table on the left 

The join ( ~ { , , ~ ) ( S ( d l ) ) )  W R(A1) W (T{,)(T(A~))) results in the above table in the center. 

This is also an instance of the special case of join as it is a join of a {x, y, 2)-relation and a 

(2)-relation. Last is to project this relation onto the set {y), resulting in the above table 

on the right. Note that this is same table we got in the case of formula 4.1, which which is 

what we would expect, since it and formula 4.2 are semantically equivalent. 

This clever rearrangement involved moving projections inward as far as possible in order 

to keep intermediate joins small instead of joining large relations, which could produce a 

huge relation, and then projecting at the end. In fact, in the above case, projections could 

be moved in to the extent that each intermediate join remained of size O(n). In general, for 

formula 4.2, this can be seen by the fact that we started with relations all of size O(n), and 

that every operation was a linear-time operation. This means that the answer to formula 4.2 

w.r.t. dl was computed in time O(n), a big improvement over 0(n3) .  In general, when 

computing formulas where projections can be moved inwards to the point that every join 

can be done in linear time (ie., is a special case join), the time to compute the answer to 

t8he formula w.r.t. the structure is O(Cn). This is because we start with relations all of size 

O(n) and then there are O(C) linear operations, therefore all intermediate relations remain 

of size O(n). 



CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 

Figure 4.2: join tree of formula 4.1 

The reason that the above formula 4.1 could be rewritten as formula 4.2 such that the 

combined complexity of its evaluation w.r.t. a structure is linear is because formula 4.1 has 

a join tree [22]. A join tree for a positive conjunctive formula is an arrangement of its 

atoms in a tree such that for every variable of the formula, the set of atoms containing this 

variable induces a (connected) subtree of this join tree. Let V be the set of variables of 4 
and At be the set of atoms of 4. Since atoms contain variables, we use the notation v E a 

to  denote that variable v is contained in atom a,  and we use v a r ( a )  to denote the set of 

variables of atom a. Formally, 

Definition 4.2 (join tree). A join tree for positive conjunctive FO formula 4 is a triple 

(7, X ,  A) where 7 = ( N ,  T )  is a tree, x : N 2' is a mapping from vertices of 7 to sets 

of variables of 4, and A : N -+ At is a mapping from vertices of 7 to atoms of 4. This 

triple ( 7 ,  X ,  A) must meet the following constraints 

1. V a  E At, 3 n  E N s.t. v a r ( a )  C ~ ( n )  

2. V a  E At ,  3 n  E N s.t. A(n)  = a 

3. V v  E V, { n  E N I v E ~ ( n ) )  induces a (connected) subtree of 7 

In this definition the first rule states that every atom is covered by some vertex in tree 

7, that is, given an atom of the formula 4, there is some vertex n of 7 such that all the 

variables of that atom are associated with n .  The second rule states that every atom itself 

is associated with some vertex in tree 7. The third rule states that the set of vertices of 7 
that each variable of the formula 4 associates with induces a connected subtree of 7 .  The 

last rule states that for each vertex n of 7, the variables associated with n are exactly the 

variables of the atom associated with n. Figure 4.2 shows the join tree for the formula 4.1. 



CHAPTER 4. BACKGROUND: THE K-GUARDED FRAGMENT 

Figure 4.3: join tree of formula 4.3 

Every formula 4 that has a join tree can be evaluated in O ( h )  time. This is because 

the atoms of 4 can be arranged in a way that join operations are done from the leaves of 

the tree to some (arbitrarily chosen) root of the tree. In this computation, for any pair of 

atoms cr and p of 4 that are joined by an edge in the tree, where cr is closer to the root, 

we only need to consider the variables that P has in common with cu in the join of cr and P. 
That is, all of the projections (or existential quantifications) for the variables in the subtree 

rooted at j3 that have nothing in common with cr can be pushed below cr into this subtree, 

which means that all joins are special case (linear time) joins. For example, the positive 

conjunctive FO formula 

has the join tree shown in Figure 4.3 (notice that it has the join tree of formula 4.1 as a 

subtree). This means that the formula can be rewritten into the positive conjunctive FO 

formula 

such that it can be evaluated with linear-time combined complexity. 

Note the similarity of the definition of join tree for formulas to the definition of tree 

decomposition for graphs. In fact a positive conjunctive FO formula 4 has a join tree iff 

its associated hypergraph is acyclic. Given a hypergraph H = (V, E), the GYO-reduct [22] 

GYO(H) is the hypergraph obtained by applying the following rules as long as possible 

1. remove hyperedges that are empty or contained in other hyperedges 
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2. remove vertices that appear in at most one hyperedge 

If GYO(H) = (0,0) then H is acyclic. So the definition of a join tree is a decomposition of 

the acyclic hypergraph into a tree (where we use vertices of H in place of variables of $ and 

hyperedges of H in place of atoms of $, which we do interchangeably throughout, due to 

this equivalence). 

So just as certain properties of acyclic graphs can be tested in polynomial (actually 

linear) time, so is the case for acyclic hypergraphs. While we will only mention satisfiability 

in the context of model checking, as it suits our purposes, there are many other examples 

(CSP, Homomorphism, etc.). The obvious question is whether the notion of acyclicity 

for hypergraphs can be generalized. In other words, is there a measure of acyclicity for 

hypergraphs, i.e., a notion of decomposition and bounded width for hypergraphs as there 

is for graphs? There is such a notion, as we show in the remainder of this chapter. This 

notion is very useful, as it is the basis for the efficiency of our grounding algorithm 

The first hypergraph decomposition notion that generalizes acyclicity is the notion of 

query decomposition, proposed in [lo]. Like a join tree, a query decomposition of a hy- 

pergraph (formula) is an arrangement of its hyperedges (atoms) in a tree. However, with 

query decomposition, more than one hyperedge may be associated with each vertex of the 

underlying tree, where the connectedness condition still holds for each vertex (variable) in 

the hypergraph. Given hypergraph H = (V, E), we use the notation v E e to denote that 

vertex v is contained in hyperedge e, and given an edge e E E, we use vertices(e) to denote 

the set of vertices of this hyperedge. Given a set of hyperedges El C_ E, we use vertices(E1) 

to denote the set of vertices of this set of hyperedges, or UeEE, vertices(e). 

Definition 4.3 (query decomposition). A query decomposition of hypergmph H = 

(V, E) is a triple (7, X, A) where 7 = (N,T)  is a tree, x : N + 2V is a mapping 

from vertices of 7 to sets of vertices of H ,  and X : N + 2E is a mapping from vertices of 

7 to sets of hyperedges of H .  This triple (7, X, A) must meet the following constraints 

3. Vv E V, {n E N I v E ~ ( n ) )  induces a (connected) subtree of 7 
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In this definition the first rule states that every hyperedge is covered by some vertex in tree 

7, that is, given a hyperedge of H ,  there is some vertex n of 7 such that all the vertices 

of this hyperedge are associated with n. The second rule states that every hyperedge itself 

is associated with some vertex in tree 7. The third rule states that the set of vertices of 

7 that each vertex of H associates with induces a connected subtree of 7. The last rule 

states that for every vertex n of 7 ,  the set of vertices associated with n are exactly the set 

of vertices of the set of hyperedges associated with n.  The query-width of a given query 

decomposition is max,~N JX(n)J, and the query-width of a hypergraph H is the minimum 

query-width of all query decompositions of H. The query-width of a formula is the query- 

width of its associated hypergraph. Note that the only difference in this definition from that 

of a join tree is in the second rule, that is, more than one hyperedge may be associated with 

a vertex of 7 .  Because of this, not just acyclic hypergraphs have query decompositions (all 

hypergraphs do), however the ones that are "close" to being acyclic will have low query- 

width. In fact, acyclic hypergraphs have query-width one, that is, each node of 7 has 

exactly one hyperedge associated with it, and thus query decomposition coincides with join 

tree on acyclic hypergraphs. 

As an example, positive conjunctive FO formula 

3sxx1cf syylcl flzj(A(sl x ,  x', c, f )  A B(s, y, y'c'f') A C(c, c', z)  A D(x, z )  A E ( y ,  z) 

A F ( f ,  fl, zl) A G(xl, 2') A H(yl, z') A J ( j ,  x, y, x', y')) 
(4.5) 

has the query decomposition shown in Figure 4.4. This is a minimal query decomposition 

for this formula, and thus formula 4.5 has query-width 3. Note that here, regarding model 

checking of a structure A of size n with 4 of length l, since the largest number of atoms 

associated with any vertex is 3, joining the atoms at  any vertex of 7 will take time 0(n3) .  

After the joins at  each vertex, we have a join tree of size O(l) such that all relations are of 

size 0(n3),  thus formula 4.5 can be evaluated in 0(ln3)-time. So while acyclic formulas can 

be evaluated in O(ln)-time, formulas of query-width k can be evaluated in O(lnk)-time. 

The number of atoms, not the number of variables, associated with each vertex of the 

tree 7 determines the complexity of model checking for formula 4, since there are interpre- 

tations for atoms (and not variables) in a structure. Note that many of the other hypergraph 

properties are efficiently testable when we restrict vertices of 7 in terms of hyperedges of H 
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Figure 4.4: query decomposition of formula 4.5 

instead of vertices of H (CSP, Homomorphism, etc.). This is why query decomposition con- 

siders the number of atoms associated with a vertex of 7, and not the number of variables. 

There is a notion of tree decomposition for hypergraphs as well. The Gaifmann graph (or 

primal graph) of a hypergraph H = (V, E)  is the graph G = (V, E ~ ) ,  where E~ = {(u, v) ( u 

and v are both in some hyperedge of E).  In other words, it is the graph obtained by taking 

the vertices V of H and introducing a clique on any set of vertices that are related by a 

hyperedge in H. A tree decomposition of a hypergraph H = (V, E )  is a tree decomposition 

of its primal graph, and the tree-width of H is the tree-width of its primal graph. While this 

notion is useful, ie . ,  model checking for a formula of bounded tree-width has polynomial 

time combined complexity, the converse is not always true. That is, if model checking for 

a class of formulas has polynomial time combined complexity, this need not be the class of 

formulas of bounded treewidth. For example, an acyclic formula with an atom of arity k 

has tree-width k - 1. 

Query decomposition for hypergraphs, while a natural extension of the definition of tree 

decomposition for graphs does not serve quite the same function as tree decomposition. For 

one reason, it is NP-complete to decide whether or not a hypergraph has query-width 4, 

i.e., hypergraphs of bounded query-width are not recognizable in polynomial time. Fur- 

thermore, query decompositions of hypergraphs are not optimal. Evidence of this fact is 

that formula 4.5 can be replaced with a semantically equivalent formula that has the (min- 

imal) query decomposition of size 2 shown in Figure 4.5. From this query decomposition, it 

should be clear how this formula has been constructed from formula 4.5, it is a modification 

of formula 4.5 by introducing the six new variables a,  P, y, 6, E ,  y and reusing atom J. Since 

all of the original atoms (constraints) are there and these new variables appear in no other 

atom, i.e., no new constraints are introduced, this new formula is semantically equivalent 
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Figure 4.5: query decomposition of formula equivalent to formula 4.5 

to formula 4.5. This means that essentially, we can do model checking for formula 4.5 in 

0(.h2)-time as opposed to  0(!n3)-time. Fortunately, it turns out that the high complexity 

of determining bounded query-width is not, as one might expect, the price for the generality 

of the concept. Rather, it is due to some peculiarity in its definition [23]. Next we present 

a notion that is just as general and does not suffer from such problems. 

The notion of hypertree decomposition was first proposed in [24], and is a notion that 

generalizes tree decomposition, acyclicity (or the concept of a join tree), query decomposition 

and is tractable. In fact formula 4.5 has a minimal hypertree decomposition of hypertree- 

width 2, which is why it can be evaluated w.r.t. model checking in 0(tn2)-time. Formally, 

Definition 4.4 (hypertree decomposition). given hypergraph H = (V, E),  a hypertree 

decomposition for H is  a triple (7, X, A) where 7 = (N, T )  i s  a rooted tree, x : N -, 2' 

is  a mapping from vertices of 7 to  sets of vertices of H, and X : N -+ 2 E  is  a mapping 

from vertices of 7 to sets of hyperedges of H. If 7' = (N1,T') i s  a subtree of 7 ,  we define 

x(T') = UnEN, ~ ( n ) .  For any n E N,  Tn denotes the subtree of 7 rooted at n. This triple 

( 7 ,  X, A) must meet the following constraints: 

3. Vv E V, {n E N I v E ~ ( n ) )  induces a (connected) subtree of 7 
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In this definition the first rule states that every hyperedge is covered by some vertex in tree 

7 .  The second rule states that every hyperedge itself is associated with some vertex in tree 

7 .  The third rule states that the set of vertices of 7 that any vertex of the H associates with 

induces a connected subtree of 7 .  It is these last two rules that sets hypertree decompositions 

apart from query decompositions. The fourth rule states that for every vertex n of 7, the set 

of vertices associated with n can be a subset of the set vertices of the hyperedges associated 

with n, instead of the sets having to be equal. This relaxation allows hyperedges to be 

"reused" in vertices of 7 with only a subset of their vertices, in order to achieve a smaller 

width. The fifth rule states that for every vertex n of 7, the set vertices associated with the 

subtree rooted at n that is in common with the set of vertices of the hyperedges associated 

with n must be a subset of the set of vertices associated with n. In other words, for a 

given vertex n of 7, a vertex v of V can be a member of vertices(X(n)), but not a member 

of ~ ( n ) ,  i.e., it is a member of vertices(X(n)) \ ~ ( n ) ,  as long as it is not a member of 

any ~ ( n ' )  for any vertex n' of 7 in the subtree 7,. Again the hypertree-width of a given 

hypertree decomposition is m a x , ~ ~  IX(n)l, and the hypertree-width of a hypergraph H is 

the minimum hypertree-width of all hypertree decompositions of H. 

While the definition of hypertree decomposition seems less natural than that of query 

decomposition, this more powerful notion is the decomposition method for hypertrees that 

is more analogous to tree decomposition for graphs in terms of function. That is, hyper- 

graphs of bounded hypertreewidth are recognizable in polynomial-time, and therefore, a 

bounded width hypertree decomposition for a hypergraph of bounded hypertreewidth can 

be constructed in polynomial-time. Hypertree decompositions differ from query decompe 

sitions only in these final two rules. Rule four in the definition of hypertree decomposition 

is a relaxation of rule four in the definition of query decomposition that allows for smaller 

widths in general (for example, in formula 4.5). Rule five in the definition of hypertree de- 

composition is a constraint that is needed for polynomial-time recognizability. In fact, there 

is a notion of generalized hypertree decomposition that is the same as the notion of hypertree 

decomposition but without rule five. However, like query decomposition, it is NP-complete 

t'o decide whether or not a hypergraph has generalized hypertree-width 4 (Gottlob, personal 

communication). So it seems that rule five is needed for tractability. 

Note that formula 4.5 has hypertree-width 2 because it has the minimal hypertree d e  

composition of width 2 shown in the image above. Notice how atom J is "reused" with 

a subset of its variables in order to achieve the hypertreewidth of 2 over the query-width 
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Figure 4.6: hypertree decomposition of formula 4.5 

3 by this relaxation provided by rule four. The blanks in each node n of 7 are the ele- 

ments of vertices(A(n)) \ ~ ( n )  Note that it is this hypertree decomposition that implies 

that formula 4.5 can be replaced by the semantically equivalent formula of query-width 2. 

This semantically equivalent formula is obtained by pushing projections down to the ap- 

propriate level of the formula as dictated by the hypertree decomposition, and then putting 

"anonymous variables" where the blanks are, that is, new variables that appear nowhere in 

formula 4.5 (i. e., in Figure 4.6). In general, this is the case, that any formula 4 that has 

hypertree-width k can be replaced by a semantically equivalent 4' such that model checking 

for 4' can be done in time 0 ( l n k )  where n is the size of the structure. Conversely, any 

formula that has the structure of a hypertree decomposition of width k (i.e., all existentials 

are pushed inwards in a way that no join will involve more than k atoms) obviously has 

hypertree-width k. In fact, there is a fragment 3FOA,+ (the fragment of FO logic that has 

only conjunction, and existential quantification) that pertains to exactly all of the formulas 

of 3FOA,+ of bounded hypertree-width, namely the k-guarded fragment GFk(3FOA,+) [2]. 

Definition 4.5 (the k-guarded fragment of 3FOA,+). The k-guarded fragment of 

3FOA,+, or GFk(3FOA,+), is the smallest set of 3FOA,+ formulas such that 

1. GFk(3FOA,+) contains atomic formulas; 

2. GFk(3FOA,+) is closed under Boolean operations; 

3. GFk(3FOA,+) contains 3 5 ( G 1 ~ .  . . A G , A ~ ) ,  provided that the Gi are atomic formulas, 

m 5 k, r$ E GFk(3FOA,+), and the free variables of 4 appear in the Gi. Here GI A 

. . . A G, is called the guard of 4. 
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Figure 4.7: Zguarded formula semantically equivalent to formula 4.5 

This is simply the recursive definition for a tree-like formula, where no more than k atoms 

(or hyperedges) are associated with any vertex of this tree. If we view the formula as a tree, 

it is all of the internal vertices of the tree that are guards. Figure 4.7 shows the Zguarded 

formula that is semantically equivalent to formula 4.5 (the one whose query decomposition 

is shown in Figure 4.5) written as a tree, where rectangular internal nodes stand for guarded 

existentials, circular internal nodes for conjunctions, and leaves for literals. So to restate, 

if formula 4 has hypertree-width k, it means that it can be replaced by a semantically 

equivalent k-guarded 4'. Conversely, if 4 is a k-guarded formula, it has hypertree-width k. 

Note that we have only mentioned 3FOA,+ throughout this entire chapter. However, 

in [24] the authors lift the expressibility of the k-guarded fragment to full FO logic by a 

proof technique involving stratified datalog that is inspired by [18]. That is, they show that 

model checking for formulas of the k-guarded fragment of FO logic, GFk, can be done in 

polynomial-time. 

Definition 4.6 ( the  k-guarded fragment). The k-guarded fragment, or GFk, i s  the 

smallest set of FO formulas such that 

1. GFk contains atomic formulas; 

2. GFk i s  closed under Boolean operations; 

3. GFk contains ]?(GI A .  . . A G, A +), provided that the Gi are atomic formulas, m 5 k, 

4 E GFk, and the free variables of 4 appear i n  the Gi. Here G1 A . . . A G, i s  called 

the guard of 4. 
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Note here that these formulas may contain negation, and disjunction (and thus universal 

quantification, etc.), however the guards must still be positive conjunctive. 

In [46], the authors propose a recursive algorithm for evaluating formulas in GFk w.r.t. 

~t~ructures (model checking) that has time O(Cnk). Specifically, this algorithm takes formulas 

of the strictly k-guarded fragment SGFk. 

Definition 4.7 ( the  str ict ly k-guarded fragment). The strictly k-guarded fragment, 

or SGFk, are the formulas of GFk of the form 33(G1 A . . . A Gm A $). 

The degenerate cases where 3 is empty, m = 0 or 4 is true fall in to this class as well. Note 

that any k-guarded sentence is strictly k-guarded. The algorithm is as follows. Note that 

there are two Eva1 procedures, but since one has two parameters and the other has three, 

there is never an ambiguitiy in which one is being used 

Procedure  Eval(A, 4) 
Input :  A structure A and a formula 4 E SGFk 

Outpu t :  4(A) 

suppose 4(2) = 3jj(G1 A . . - A Gm A $) 

return n,{Eval(A, G1 (A) W . . . W G,(A), $I)) where $I is the result of pushing i s  in $ 

inwards so that they are in front of atoms, equalities, or existentials. 

Procedure  Eval(A, R, 4) is defined recursively by: 

1. If 4 is an atom or an equality, then 

Eval(A, R, 4) = R w +(A); 

2. If 4 is negation of an atom or an equality, then 

Eval(A, R, 4) = R WC +(A); 
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where join (W) and Y-projection (.rry) have the same meaning, but there are three new 

operators, join with complement (Wc), intersection (n) and union (U). These three new ones 

are here because of negation and disjunction. Note here that they present an algorithm for 

evaluating strictly k-guarded formulas instead of just k-guarded formulas. The reason they 

considered this is because their algorithm is recursively defined. In fact, the polynomial time 

combined complexity results (0(C2nk) by Gottlob et al., and this one only applies to strictly 

k-guarded formulas not k-guarded formulas in general. To see why, by the definition of 

GFk, l R ( x ,  y, z )  is a 1-guarded formula, but it cannot be evaluated in O(n) time. However, 

since most problems in practice are sentences, restricting formulas to the strictly k-guarded 

fragment is not a drawback. 

The join with complement R WC S of X-relation R and Y-relation S is the X U Y- 

relation {y : X U Y + A I ylx E R ,  yly $! S} .  This pertains to an atom conjoined with 

the negation of another atom, more precisely, if R is q51(A) and S  is 42(A), then R WC S  is 

(41 A 7h2)(A). Join with complement is an O(JIRJ1. (1SJJ)-time operator, but when Y C X ,  it 

is an O(I(Rll+ IIS())-time operator for a similar reason as with join. When a join needs to be 

performed between two X-relations, it is the same as a list intersection (which is obviously 

linear time as it falls under the special case of join, i.e., X C X). It is this case that the 

intersection operator refers to. Finally union handles disjunction. The union R U S  of X- 

relation R and X-relation S is the X-relation {y : X + A ( y E R or y E S} .  This is also 

just the merging of two sorted lists, and thus is an O(((R(1 + JIS)I)-time operator. From the 

definition of SGFk and the form of the procedure Eval it can be seen that all join operations 

fall under the special case of join, that all negated atoms are "guarded", that is all joins 

with complement fall under the special case as well, and that all disjunctions are between 

X-relations and X-relations (and can therefore be handled by the union operator). In other 

words, Eval returns the correct answer $(A), and furthermore, since all operators are linear 

time, model checking for a strictly k-guarded formula can be done in time O(Cnk) by using 

the same argument as with query decomposition. Namely, evaluating each guard (where 

guards correspond exactly to  the vertices 7 of the hypertree decomposition), involves doing 

no more than k joins. Now we have to do a series of O(t)  linear time operations on relations 

of size O(nk), which means that all intermediate relations will be of size O(nk). Thus the 

overall time is O(Cnk). It is this model checking algorithm for GFk that we use as a basis 

for our grounding algorithm for model expansion. 

On a related note, earlier in the chapter we mentioned that 3FOA,+ formulas of tree-width 
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k can be evaluated with polynomial-time combined complexity (w.r.t. model checking), that 

is, in time O(Cnk). In fact, it has been shown in [36] that the set of formulas of bounded 

tree-width have a corresponding logic, namely the set of 3FOA,+ formulas that use no more 

than k-variables. It is the expressibility of the k-variable fragment that the authors of [18] 

lift to full FO logic using the proof technique involving stratified datalog. That is, they 

show that model checking for k-variable FO logic, or F O ~ ,  can be done in polynomial-time. 



Chapter 5 

Grounding Mechanism for Model 

Expansion 

In this chapter, we outline our approach to solving model expansion problems. Essentially 

we obtain a propositionalization (or grounding) of the FO formula over the structure that 

has a satisfying assignment for every expansion structure that satisfies the FO formula. We 

then use a propositional satisfiability solver to find satisfying assignments for the grounding 

(if any exist), which determines which expansion structures satisfy the FO formula (if any). 

For this, in Section 5.1, we present this approach in comparison to the related approaches in 

general. In Section 5.2, we give the representation that we use for the grounding of a formula 

over a structure. Finally, in Section 5.3, we provide an algebra for these representations: 

a way to combine representations for each connective of FO logic. As such, with this 

mechanism, we can now develop recursive algorithms for computing the grounding of a 

formula. This is done by starting at  the representations of the atomic subformulas of a 

formula, and working inductively on the structure of the formula, combining representations 

according to the connectives of the formula in order to arrive at  such a representation for 

the entire formula, i.e., a grounding of the formula over the structure. 

5.1 Grounding for Model Expansion 

An approach to solving a problem specified in a high-level language is to "compile" it into 

a lower level language in a way that there is a one to one correspondence between solutions 
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to the problem specified in the high-level language to solutions to the compilation in the 

lower level language. Then we use an optimized efficient low-level solver to obtain solutions 

to the lower level compilation, i.e. solutions to the original problem. In the context of 

model expansion, given a FO formula and a structure, this is done by propositionalizing 

(or grounding) the combination of problem instance and description in such a way that 

the satisfying assignments of this grounding correspond exactly to the expansion structures 

that satisfy the FO formula. We then use one of the many efficient solvers for propositional 

satisfiability for obtaining solutions. Given the efficiency of modern SAT technology (511, all 

that is needed is a an efficient grounding algorithm; this is a practical approach to solving 

model expansion problems. This is the main topic of this thesis, our main contribution is 

an efficient grounding algorithm for the model expansion framework. 

Grounding for any high-level language is the process of eliminating variables (and quan- 

tifiers) by replacing them with constant symbols. The approach of grounding is taken in 

ASP and logic programming in general, however this approach differs from ours. The ap- 

proach of ASP and logic programming uses Herbrand models, which is done by taking the 

Herbrand universe and then creating ground instances over this universe. The Herbrand 

universe of a logic program has an element for every term of the logic program. So if a is 

some term of the program, and f is some function, then the Herbrand universe contains 

a ,  f (a), f (f (a)), f (f (f (a))), . . . , so in general, this universe can be infinite, causing satisfia- 

bility to become undecidable. Thus, for ASP and logic programming, restrictions must be 

put in place when function symbols are used, in order to guarantee decidability. 

Our grounding approach, however, relies on the fact that in the MX framework, there is 

a separation of instance and problem description. That is, the instance, a finite structure, 

provides the domain onto which every term falls. That is, if a is some term of the formula, 

and f is some function, then a ,  f (a), f (f (a)), f (f (f (a))), . . . , all fall onto the domain A 

of the structure A = (A;  aA).  So in our approach, the universe is the domain of the 

structure, and thus, there need not be any restrictions on functions. That is, instead of using 

Herbrand models, in grounding, we bring domain elements into the syntax by expanding 

the vocabulary and associating a new constant symbol with each element of the domain. 

For domain A, we denote the set of such constants as A. We define a grounding as 

Definition 5.1.1 (grounding for MX). Formula @ is a grounding of formula q5 over 

a-stmcture A = (A; aA)  if 
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1. 1C, is a ground formula, i.e., there are n o  FO variables in  1C, 

2. 1C, is over vocab(4) U A; and 

3. for every expansion structure B = (A; aA,  E ~ )  over vocab($), 23 /= 4 iff ((B, A8) /= $, 

where ( t3 , jB)  is  the structure obtained by expanding B by interpretations of the new 

constants A. 

While obtaining the above is the intent of our approach, there are many ways of obtaining 

a grounding of this type as well. The most naive algorithm for grounding a FO sentence 4 
over a structure A is to first re-write 4 in prenex normal form, 4 = Qlxl  . . . Q,x,8, then 

to recursively construct 1C, = G(4) as follows 

The time required by this algorithm is ~ ( n l $ l ) ,  where n is the size of structure A. While 

this time is exponential in the length of the formula, it is also the upper bound on the size 

of the grounding itself. While there are ways to improve the running time and grounding 

size, such as restricting the form of the formula, the bound of this naive algorithm will be 

the asymptotic bound of the grounding for any approach for grounding a FO formula over 

a finite FO structure. 

To make this approach practical, we want to simplify the grounding as much as possible, 

before we pass it to a SAT solver for solution. While the definition above states that a 

grounding 1C, is over vocab(q5) U 2, there is no need for any grounding to contain symbols of 

a,  as the truth value for ground atoms of a can be determined by the structure (without 

having to resort to the SAT solver). It is thus favorable to "evaluate out" these "known" 

parts of the formula, leaving a ground formula in the expansion vocabulary only, which we 

call a reduced grounding. 

Definition 5.1.2 (reduced grounding for MX). Let 1C, be a grounding of 4 over 

a-structure A. Then  1C, is  a reduced grounding if i t  only contains symbols of A and of the 

expansion vocabulary E (i.e., no symbols of a ) .  

Given a grounding as defined above, this can be transformed into a reduced grounding 

using a straight-forward, but brute-force method. For each k-ary instance relation R and 
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each k-tuple 5 over A, if f E RA, (resp. f # RA), replace each occurrence of R(f) in 4 
with true (resp. false). Recursively eliminate occurrences of true and false by replacing 

($ A true) with ($), etc. In implementing our approach of combining grounding with 

partial evaluation, however, it would be best to remove the contributions of a during the 

construction of $. While doing so does not change the asymptotic time or size bound in 

general, it is a good practice. The mechanism we show for grounding FO formulas in the rest 

of this chapter has partial evaluation built into it, so any algorithm using this mechanism 

will do this automatically, to produce a reduced grounding. 

5.2 Extended Relations 

In this section we describe how to represent the grounding of a FO formula over a finite FO 

structure. In order to have a recursive algorithm for grounding a formula 4 over structure A 

(computing the representation for the entire formula), we first compute representations for 

all atomic subformulas of 4 (w.r.t. A), ie. ,  we can represent formulas with free variables. 

Then we need a way of combining representations according to the different connectives of 

FO logic, or an algebra, which is explained in the next section. Once we have all of this, we 

then have a mechanism for grounding formulas over structures. An algorithm for grounding 

is then a recipe that uses this machinery to generate a representation for the entire formula. 

In the next chapter, we present such an algorithm; specifically, our algorithm is defined in 

such a way that if the formula has a certain form, the algorithm, using this mechanism, is 

guaranteed to produce a representation (grounding) within a certain time bound. 

We use extended relations for representing the grounding of a formula over a structure, 

which is an extension of the notion of relation from database theory. Recall from chapter 4 

that we used the notion of a relation for representing solutions to model checking problems. 

In the examples of model checking problems, given a formula 4 and a structure A, testing 

if A t= 4, we computed relations for each atomic subformula of 4. We then combined these 

representations according to the algebra for relations, the set of operations corresponding 

to each connective of the formula. In this vein, our approach is very similar, only the 

difference is that since in our case there are expansion predicates in the formula, instead of 

producing a set of solutions at each step, we are producing a set of groundings at each step. 

More specifically, for model checking, a relation for a formula 4 w.r.t. structure A is a set 

mappings from the free variables of 4 to the domain elements A (of structure A). What 
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this is, is the set of valuations of the free variables such that the formula is satisfiable in the 

structure. On the other hand, for model expansion, the extended relation is defined as 

Definition 5.2.1 (extended X-relation). Let A = (A;aA) ,  and X be the set of free 

variables of formula 4. An extended X-relation R over A is  a set of pairs (y, $) s.t. 

1. $ is  a ground formula over E U t? and y : X -+ A; 

2. for eve? y, there i s  at most one $ s.t. (y, $) E R .  

As with an X-relation, an extended X-relation R has a set of mappings y from the set 

of variables X to the set of domain elements A. But furthermore, extending the notion of 

X-relation, extended X-relation R is a unique mapping from all possible instantiations of 

variables in X to ground formulas $. So, for model expansion, an extended relation for a 

formula 4 w.r.t. structure A is a set of mappings from the free variables of 4 to the domain 

elements of A, and for each of these mappings, there is an associated ground formula $. 

Note that for mappings y not appearing in R ,  the associated formula is false.  For extended 

X-relation R ,  we will simply write y E R to mean that there exists a $ such that (y, $) E R .  

Formally, the mapping represented by R is 

Definition 5.2.2 (mapping represented by R).  Let R be a n  extended X-relation over A.  

Th,e unique mapping represented by R,  denoted by bR, i s  defined as follows. Let y : X -+ A.  

Then  

The following is an example of an extended { x ,  y, 2)-relation R ,  where we will take 

(0,. . . ,9 )  as our domain A (where E would be a member of the expansion vocabulary E )  

I ! ! !  I 

Here, R is a unique mapping from all possible instantiations of variables in {x, y, 2) to 

ground formulas in that it maps (1,2,3) to E(1,2) A E(2,3), that is, if y = (1,2,3) (we 

use a tuple to represent a particular y) then 6(y) = E(1,2) A E(2,3). It maps (3,4,5) to 
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E(3,4) A E(4,5), and otherwise, d(y) = false. As a convention, we refer to the columns of 

the table concerning the variables as the "relation part" of the extended relation, and the 

column concerning the formulas as the "formula part". 

Note that the y other than (1,2,3) or (3,4,5) are not even represented in R .  This is 

due to the fact that we write y E R to mean that there exists $J such that (y,$J) E R.  

Since we created this example, the above table is the most compact way to represent R 
(we represent these sets of mappings with tables), however in general, our definition of an 

extended relation R allows the possibility that for some y appearing in R, the associated 

formula is the propositional symbol false or is equivalent to false. For example, the 

following is an example of an extended {x, y, z)-relation S ,  where A = (0, . . . ,9) 

however, it is easy to realize that S is equivalent to R according to the definition of extended 

relation. 

Also, for extended relations, note that for some y appearing in R, the associated formula 

is the propositional symbol true. In fact, an ordinary relation can be represented as an 

extended relation where the formula associated with each mapping y in the relation is true, 

(where the rest are false).  Also, a single ground formula $J can be represented as an 

extended relation where the set of variables is empty and the formula associated with this 

single empty mapping is $J. 

As mentioned earlier, given a formula 4 in a U E with free variables X and a a-structure 

A, we will use an extended X-relation to represent a reduced grounding of 4 over A under 

each possible instantiation of variables. We will call such an extended relation an answer 

to 4 w.r.t. A, which we now formally define. Let y : X -+ A. We will use 4[y] to denote 

the result of instantiating free variables in 4 according to y. 

Definition 5.2.3 (answer to  4 w.r.t. A). Let 4 be a formula i n  a U e with free variables 

X, A a a-structure with domain A, and R an extended X-relation over A. We say that R 

is an answer to 4 w.r.t. A if for any y : X -+ A, we have that dR(y) is a reduced grounding 

of 4h1 over A. 
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Note that this is analogous to the notion of answer in the ordinary relational context, where 

we are given a formula 4 in a with free variables XI A a a-structure with domain A, and 

R an X-relation over A. We say that R is an answer to 4 w.r.t. A if for any y : X -+ A, 

4[y] = true. 

As a special case of the above definition for extended relations, an answer to a sentence 

4 consists of a single formula, which is a reduced grounding of 4. While we can represent an- 

swers to formulas in the general case, we focus on this special case because we are interested 

in doing grounding for FO sentences, and passing this grounding (the single formula) to a 

propositional satisfiability solver for solution. We now give an example of the production of 

a reduced grounding of a sentence to better illustrate the notion of extended relation and 

how it represents the answer to a formula w.r.t. a structure. 

Let 4 = 3x3y3z[P(x1 y, z) A E(x, y) A E(y, z)], a = {P), and E = {E). Let A be a 

a-structure such that P* = {(1,2,3), (3,4,5)). Then the extended relation R shown in the 

table above is an answer to 4' = P(x, y, z) A E(x, y) A E(y, z) w.r.t. A. It is easy to see, for 

example, that E(1,2) A E(2,3) is a reduced grounding of #[(I, 2,3)] = P(1,2,3) A E(1,2) A 

E(2,3) = true A E(1,2) A E(2,3) = E(1,2) A E(2,3), and false is a reduced grounding 

of $'[(I, 1, I)]. Next, the following extended relation is an answer to 4" = 3z[P(x, y, z) A 

Here, for example, E(1,2) A E(2,3) is a reduced grounding of 4"[(1,2)] = 3z[P(1,2, z) A 

E ( l , 2 ) ~  E(2, z)] = P(l ,2 ,3)  A E ( l , 2 ) ~  E(2,3) =  true^ E ( l , 2 ) ~  E(2,3) = E ( l , 2 ) ~  E(2,3), 

and false is a reduced grounding of #'[(I, I)]. Finally, the following is an answer to 4, where 

the single formula is a reduced grounding of 4 

Now that we have defined what we use to represent an answer to a formula w.r.t. a 

structure, namely an extended relation, we need simply to define the algebra for extended 

relations in order to have a mechanism for grounding an FO formula over a structure. We 

define this algebra and explain it in full in the next section. 
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5.3 An Algebra for Extended Relations 

In the previous section, we have defined the extended relation, which extends the notion of 

relation from database theory. Just as relations have an algebra, ie., a set of operations 

whose semantics correspond to  the connectives of FO logic defined on them, we define an 

algebra for extended relations, since we want to develop algorithms for model expansion 

(grounding), similar to the existing algorithms for model checking. 

In traditional relational algebra, there are the operations join, join with complement, 

projection, union and intersection, which correspond to conjunction, conjunction with a 

negated atom, existential quantification, disjunction, and a special case of conjunction re- 

spectively. Detailed algorithms and proofs of the operations join and projection can be 

found in the appendix of [18], and for the rest of the operations it follows quite easily. The 

essential idea here is to encode the domain elements appearing in the input relation using 

the bucket sort algorithm (which is possible, since the domain is fixed for a given instance 

of the problem). Next, we compute a join, projection, union, etc. of the encoded input 

relations. Finally we sort (if necessary) the encoded output relation, and then decode this 

result. It can be shown that each of the operations in the ordinary relational algebra can be 

done in time linear in its operands, with the exception of join and join with complement. 

However, in the case where the first operand is an X-relation and the second operand is a 

Y-relation, join and join with complement can be done in time linear in these operands if 

Y c X .  

In this section, we develop an algebra for extended relations which consists of these five 

operations, where each of these has the same semantics as in traditional relational algebra. In 

the following, we present each operation, state its semantics, and give the time complexity. 

We will show that each of these operations can be done in time linear in its operands, 

excluding join and join with complement. We show that join and join with complement, if 

the operands meet the same criteria for extended relations as above for ordinary relations, 

the time of these operations is quadratic it their operands. However, after presenting the 

details of the algorithm in the next chapter, we show how to modify the algorithm in order to 

avoid any size blow-up from these operations. The major difference between the algebra we 

present, and the ordinary relational algebra, is since we are dealing with extended relations 

(those where formulas are associated with each mapping), we must define our operations 

in terms of these formulas, and thus copy formulas from the input relations to the output 
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relation. 

While a notion of the size of a relation [18] is needed in order to prove bounds for the 

complexity of any operation in the relational algebra, we also give a measure of the size of 

an extended relation. Let R be an extended X-relation. The size of R, denoted by IIRII, is 

the sum of the size of each tuple (y, ha(?))  in R. Each tuple is of size 1x1 + I(ba(y) 1 1 ,  where 

)lhR(y)(( is the size of the formula associated with y. Thus IlRll = lXllRl + x7,, IJbR(y)I(, 

where 172.1 is the number of tuples in R. We now define the five operations of the algebra 

for extended relations starting with join and join with complement. 

Definition 5.3.1 (join, join with complement). Let R be an extended X-relation and 

S an extended Y-relation, both over domain A. Then 

1. the join of R and S is the extended X U Y-relation 

2. the join of R with the complement of S is the extended X U Y-relation 

As an example of the operations join and join with complement, let R be the extended 

{ x ,  y ,  2)-relation 

7  7  9 C V D  w 
and S be the extended {y, z)-relation ({y, z) is a subset of { x ,  y, z)) 

1 3 \ 4 1  F A B  1 

The join of R and S, R W S, is the extended { x ,  y, z)-relation 
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The join of R with the complement of S, R WC S, is the extended {x, y, 2)-relation 

The following proposition states the semantics of these operations. 

Proposition 5.3.2. Suppose that R is an answer to dl and S is an answer to $2, both 

w.r.t. structure A. Then 

1. R W S is an answer to A 4 2  w.r.t. A; 

2. R WC S is an answer to $1 A 1 4 2  w.r.t. A. 

Proof: (1) Since R is an answer to 41 w.r.t. A, then for any instantiation yl of the variables 

X, &(TI) is a reduced grounding of 41[yl]. Since S is an answer to $2 w.r.t. A, then for 

any instantiation y2 of the variables Y, bs(y2) is a reduced grounding of 42[72]. Firstly, 

&.(TI) A b ~ ( y 2 )  is a ground formula over E U A, since both dR(yl) and ba(y2) are ground 

formulas over E U A. Secondly, since bR(yl) is such that for every expansion structure 

B1 = ( A ; U ~ , E ~ ~ )  over v o ~ a b ( 4 ~ )  (or even a superset of this vocabulary), Bl t= 41[yl] @ 

(B1, Aul ) + bR(y1), and bs (72) is such that for every expansion structure B2 = (A; ad, E * ~  ) 

over vocab(42), B2 + 42[y2] e~ (B2,ABz) + bS(y2), it follows that for every expansion 

structure B3 = ( A ; U ~ , E * ~ )  over ~ o c a b ( 4 ~ )  U ~ o c a b ( 4 ~ ) ,  B3 /= 41[yl] and B3 + 42[y2] iff 

(a3,  AB3) + &(TI) and (133, AB3) + bs(y2). By the semantics of "A", it follows that for 

every expansion B3, B3 + 41 [TI] A 4 2  [y2] @ (B3, AB3) + ba(yl) A 6 ~ ( 7 ~ ) ,  and therefore 

dn(y1) A bs(y2) is a reduced grounding of (41 A 42)[73] where 73 I X  = 71 , y3 I Y  = 72. Thus 

R W S is an answer to  41 A 42 w.r.t. A. (2) Since for every expansion B2 over v0cab(q5~), 

B2 k 4 2 [ ~ 2 ]  eJ (B2, ABz) + 6 ~ ( ~ 2 ) ,  for every expansion BL over v ~ c a b ( $ ~ ) ,  Bh 42[y2] e~ 
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(Bh, ABb) 6s (72). Thus, by the semantics of "1" , for every expansion Bh over v0cab(q5~), 

Bh + 1 4 2 [ ~ 2 ]  H ( & , P i )  + dS(y2 ) .  Therefore, by the semantics of "A", it follows that 

for every expansion Bi over v o ~ a b ( 4 ~ )  U vocab($J2), B$ + 41[yl] A l q 5 2 [ ~ 2 ]  H (B$, AB;) 
6 ~ ( 7 1 )  A + ( ~ 2 ) ,  and therefore 6R(y1) A 16s(y2) is a reduced grounding of ($1 A 1q52)[-y3] 

where 7 3 1 ~  = 71. Thus R WC S is an answer to A 1 4 2  w.r.t. A. w 

The following proposition states the time complexity of any reasonable implementation 

of the operations join and join with complement in the case where Y S X.  We only consider 

the complexity for this case because in the main algorithm we present in the next Chapter, 

this will always be the case for join and join with complement. 

Proposition 5.3.3. For extended X-relation R and extended Y-relation S, when Y & X ,  

jwin (R W S) and join with complement (R MC S) both have time complexity O(JIRJI . IISII) 

Proof: Since R and S are over a fixed finite domain A, they can be sorted according to 

some total order on A in time O(IJRll) and O(I/S(I) respectively, using bucket sort. Now 

the join (join with complement) of the sorted R and S can be computed in a fashion 

similar to merging two sorted lists. Start at the beginning of R and S .  Which ever entry 

y of R or S has the higher lexical value according to the total order, move down the 

opposite extended relational table, computing any possible matches of tuples in each table 

until an entry with a higher lexical value is reached. Then move down the other extended 

relational table in the same fashion. Repeat this procedure until both tables have been 

traversed. In general, this procedure will generate an extended X U Y-relation of size 

o(lxllRl + EYER I I ~ R ( Y ) I I  + IRI . EYES I I ~ s ( Y ) I I )  L O(llRll . IISII). 

While the complexity of join and join with complement is O(I(RI( . I(SJ1) for input R and 

S, in the next section, after we present the main algorithm, we will show that, by modifying 

this algorithm slightly, any size blow-up from the operations join and join with complement 

can always be avoided. 

We now present the projection operation. 

Definition 5.3.4 (Y-projection). Let R be an extended X-relation and Y c X.  The 

Y-projection of R, denoted by ny (R),  is the extended Y -relation 

((7'. 10) 1 7' = Y(Y for LX3me 7 R and 10 = V ~ R ( Y ) .  
~YERIYIY=Y') 

We take for our example of the projection operation, a part of the example of the previous 

section, namely, let R be the extended {x, y)-relation 
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The @-projection of R, .rr@(R), is the extended helation 

Given the following proposition of the semantics of the projection operation, it should 

now be clearer how the process of grounding this sentence 4 = 3 ~ 3 y 3 z [ P ( x ,  y ,  z )  A E ( x ,  y )  A 

E ( y ,  z ) ]  in the previous section proceeds. For this previous example, we started with answer 

to 4' = P ( x ,  y ,  z )  A E ( x ,  y )  A E ( y ,  z )  and projected it onto the set { x ,  y )  for the answer to 

4'' = 3 z [ P ( x ,  y ,  z )  A E ( x ,  y )  A E ( y ,  z ) ] .  We then projected this answer onto the set 0 (as in 

the above example) for the answer to 4. 

Proposition 5.3.5. Suppose that R is an answer to 4 w.r.t. A, and Y is the set of free 

variables of 3E4. Then  ry(R) is a n  answer to  324  w.r.t. A. 

Proof: Let 7 1 , .  . . , y,  E R be the set of mappings that are equivalent to  some y  when re- 

stricted to the set Y ,  i.e. y l l y  = . .. = ymly = y .  Since R is an answer to w.r.t. A for each 

l i  E 71,. . . , ym, bR(yi)  is a reduced grounding of 4 [ y i ] ,  it follows that b a ( y l ) ,  . . . , b a ( y m )  

are over E U A, which means that b,,p)(y) = & ( y l )  V  . . . V b n ( y m )  is over E U A. Secondly, 

by the fact that R is an answer to 4 w.r.t. A, it follows that for each y i ,  bn(yi)  is such that 

for every expansion structure 23 = (A; a*, E') over vocab($), 23 + +[yi] * (23, A') + b ~ ( y i ) .  

For every expansion structure 23 = (A; oA, E') over vocab(@), 23 + 32$[y]  for some valua- 

tion v  of tuple Z in domain A of A, B [ z  : v ]  + $ [ T I ,  by the semantics of "3".  23[2 : v ]  b $[y]  

for some v of E * 23 4 [ y i ]  for some E yl . . . y,  s.t. yi(E) = v  (as  these are the map- 

pings that are equivalent to y  when restricted to Y ) ,  where we extend the mapping y  from 

variables to tuples of variables in the obvious way. 23 +[yi] @ (23, A') + bR(yi) .  Fi- 
nally, by the semantics of "V",  (23, A') + bR(yi)  for some Ti E 7 1 , .  . . , y m  * (23, A') b 

V  . . . V  hR(ym) = bny (a) (7). Thus 6,, (a) (7) is a reduced grounding of 3E+[y] and 

therefore ny(R) is an answer to 3 2 4  w.r.t. A. w 

The following proposition states the time complexity of any reasonable implementation 

of the projection operation. 
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Proposition 5.3.6. The projection operation has time complexity O(l(Rll). 

Proof: First make a pass through extended relational table R to eliminate the columns 

from the relation part of R that correspond to the variables in tuple 2, which takes time 

O((lR((). Since R is over a fixed finite domain A, we sort this intermediate table in time 

O(llR(I) using bucketsort. Now we pass through this sorted intermediate table, where for 

each set of tuples that are duplicates w.r.t. their relation parts (they will all be in one 

contiguous block now that the structure has been sorted), we replace it with one tuple that 

has this relation part, and a formula part that is the conjunction of the set of formulas 

corresponding to this set of duplicate tuples. This can also be done in time O(((R(]) ,  and 

thus projection is a linear time (O(((RI() time) operation. 

Finally, we present the operations intersection and union of two extended relations with 

the same set of variables. Again we only consider this case because, in our algorithm in the 

next section, this will always be the case for intersection and union. Note that intersection 

is a particular case of join. 

Definition 5.3.7 (intersection, union). Let R and S be extended X-relations. Then 

1. the intersection of R and S is the extended X-relation 

2. the union of R and S is the extended X-relation 

As an example of the operations intersection and union, let R be the extended { x ,  y, 2)- 

relation 

and S be the extended { x ,  y, 2)-relation 
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The intersection of R and S, R n S, is the extended {x, y ,  2)-relation 

The union o d R and , S,  R U S, is the extended {x, y ,  2)-relation 

The following proposition states the semantics of these operations. 

Proposition 5.3.8. Let $1 and 4 2  be formulas with the same set of free variables. Suppose 

that R is an answer to and S is an answer to 4 2 ,  both w.r.t. A. Then 

1. R n S  is an answer to A 4 2  w.r.t. A; 

2. R U S is an answer to V 4 2  w.r.t. A. 

Proof: (1) Since the intersection operation is a special case of the join operation where 

X = Y, correctness follows directly from the correctness of the join operation. (2) Since R 

is an answer to c#q w.r.t. A, then for any instantiation yl to the variables X, bn(y l )  is a 

reduced grounding of $1 [y l ] .  Since S is an answer to $2 w.r.t. A, then for any instantiation 

yz of the variables Y, bs(y2) is a reduced grounding of q52[yz]. Firstly, bn(y l )  V bs(y2) is a 

ground formula over E U A, since both bR(y l )  and bS(y2)  are ground formulas over e U A. 
Secondly, since ba(y l )  is such that for every expansion structure Bl = (A ;uA ,eB1)  over 
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vocab(4l), Bl + $l[yl] H (Bl, AB1) &(TI), and bs(y2) is such that for every expansion 

structure B2 = ( A ; U ~ , E ~ Z )  over v0cab(4~), B2 + q52[72] @ (B2,AB2) + bS(72)1 it follows 

that for every expansion structure B3 = (A; ad, cB3) over v o ~ a b ( 4 ~ ) ~ v o c a b ( $ ~ ) ,  B3 + &[yl] 

or B + $ 2 [ ~ ~ ]  iff (B3, AB3) 6R(71) or (B3, AB3) + ~5.5(7~). By the semantics of "V", it 

follows that for every expansion B3, B3 + 41 [ Y ~ ]  v $2[72] @ (B3, AB3) + bR(71) v ~ s ( Y ~ ) ,  and 

therefore bn(yl) V bs(72) is a reduced grounding of V 4 2 ) [ ~ ~ ]  where 73 = yl or 73 = 72. 

Thus R U S is an answer to 41 V 42 w.r.t. A. 

The following proposition states the time complexity of any reasonable implementation 

of the operations intersection and union. 

Proposition 5.3.9. Operations intersection and union have time complexity O(JIRII + \IS((). 

Proof: Since R and S are over a fixed finite domain A, they can be sorted according to 

some total order on A in time O((IRl1) and O(((SIJ) respectively, using bucket sort. Now the 

intersection (union) can be computed in a fashion similar to merging two sorted lists, as 

with join and join with complement. In the case of intersection, this procedure generates, 

in general, an extended X-relation of size O((X(I RI + EYER ((bR(7)(I + EYES I(bS(7)IJ) I 

O(I(Rll + ((S(1). In the case of union, this procedure generates an extended X-relation of 

size O(lXl . ( P I  + IS\> + EYER Ilbdr)ll + E Y E S  II~s(Y)II) I O(IlRll + IISII). 

Now that we have defined these five operations for extended relations, we now have a 

grounding mechanism for model expansion problems, much like the mechanism of relations 

for solving model checking problems. As such, we can use this representation, the extended 

relation, and its algebra to develop algorithms for grounding model expansion problems. 

We present such an algorithm in the next section, which is the main result of this thesis. 



Chapter 6 

An Algorithm for Grounding First 

Order Formulas 

In the previous section, we presented a mechanism (a representation and an algebra) for 

producing a reduced grounding of a FO formula over a FO structure. As such, we can 

now develop recursive algorithms for producing a reduced grounding of a formula over a 

structure. In this section we present such an algorithm; specifically, we present an algorithm 

for grounding k-guarded sentences under the restriction that all guards are initially specified 

(by the structure), the main result of this thesis. Because, like [46] we take advantage of 

the structural properties of k-guarded formulas, this algorithm runs in time 0(12nk).  In 

fact, our algorithm is an extension of this model checking algorithm of [46] for grounding. 

While Liu and Levesque consider grounding for strictly k-guarded formulas (those formulas 

in SGFk), due to the fact that their algorithm is recursively defined, our recursive algorithm 

considers grounding for a restricted form of strictly k-guarded formulas, (those formulas in 

the fragment RGFk) . 

Definition 6.1 (RGFk). RGFk denotes the set of strictly k-guarded fomulas such that no 

expansion predicate appears in any guard. 

Note that the restriction that "no expansion predicate appears in any guard" is necessary 

for a polynomial time grounding algorithm. Indeed, there is no polynomial time grounding 

algorithm even for 1-guarded sentences; otherwise, we would have a polynomial time reduc- 

tion to SAT for MX for 1-guarded sentences, and hence the combined complexity of this 

problem would be in N P .  However, this problem is NEXP-complete [37]. Considering only 
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strictly k-guarded formulas is not as restrictive, however, because, as with model checking, 

for most model expansion problems in practice, the formula is a sentence, and all k-guarded 

sentences are strictly k-guarded formulas. 

It is easy to see that any F O ~  formula can be rewritten in linear time into an equivalent 

one in RGFk, by using atoms of the form x = x as parts of the guards when necessary. For 

example, the formula 3z3yE(x, y) can be rewritten into 3z3y[x = x A y = y A E(x,  y)]; and 

the formula 3z3y[R(x) A E(x, y)] can be rewritten into 3z3y[R(x) A y = y A E(x, y)], where 

R is an instance predicate, and E is an expansion predicate. Since, by the result of [18] that 

F O ~  has the same expressive power as FO formulas of treewidth at most k, a FO formula 

with treewidth at most k can be put into an equivalent one in RGFk. In practice, most 

formulas have a small treewidth, and thus can be put into RGF with small k. 

We now present the main result of this thesis, the grounding algorithm. This algorithm 

is the same as that of [46] except that it uses extended relations and operations on them. 

Note that, as with Eval, there are two Gnd procedures, but one has two parameters and 

the other has three. If 4 is an atomic formula R ( 9 ,  we use 4(A) to denote the extended 

relation ((7, true) I fir] E R ~ } .  

Procedure  Gnd(A, 4) 
Input :  A structure A and a formula 4 E RGFk 

Outpu t :  An answer to 4 w.r.t. A 

Suppose 4(3) = 3g(G1 A .  . . A G, A $). Return .rrzGnd(A, R ,  $I), where R is G1 (A) W . . . W 

G,(A), and $' is the result of pushing negation symbols in $ inward so that they are in 

front of atoms or existentials. 

Procedure  Gnd(A, R ,  4) is defined recursively by: 

1. If 4 is a positive atom from the instance vocabulary, 

then Gnd(A, R ,  4) = R W 4(A); 

2. If 4 is +I, where 4' is an atom from the instance vocabulary, 

then Gnd(A, R ,  4) = R WC 4'(A); 
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:In the algorithm of [46], every operation except for the join G1(A) W . . . W G,(A) of 

up to k guards (m 5 k) can be done in time linear in size of its input. The algorithm we 

presented differs from the one of (461 in that it does grounding for model expansion, not 

model checking. As such, formulas are being copied over in every operation here. For this 

reason, the running time of Gnd will be greater than that of [46], because join can no longer 

be done in linear time in its input relations (Proposition 5.3.3). 

As an example, let 4 be the 1-guarded formula 3x[R(x) A 3y(S(y) A E(y))], where E is 

an expansion predicate, and let A be a structure such that R~ = (2i + 1 I 0 5 i 5 m), and 

sA = (2i I 0 5 i 5 m). The algorithm Gnd with input (A, 4) takes the following steps in 

the following order 

1. Evaluate guard corresponding to R(x)  with respect to A or R(A), which results in 

Now we need to compute the answer to the subformula 4' = 3y(S(y) A E(y)) with 

respect to A before we go any further, so recursively (steps 2 to 4) we 

2. evaluate guard correponding to S(y) with respect to A, or S(A), which results in pi 
2m true 
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3. Evaluate S(A) W E(A). Since E is an expansion predicate, this results simply in 

4. Now we evaulate the @-projection of the table obtained in the previous step, or 

nO(S(A) W E(A)),  which results in 

This table is the answer to 4' with respect to A that we want for the next step (we 

refer to this answer as +'(A) for convenience). Now we can compute the remainder of 

+ with respect to A. Next we 

5. Evaluate the join of R(A) with +'(A), or R(A) W +'(A), which results in 

6. We then evaluate the @-projection of the table obtained in the previous step, or 

7r0(R(A) W +'(A)), which results in the following 

So here, the formula VEo E(2i) is the answer to + w.r.t. A, ie., it is a reduced grounding 

of 4 over A, and it has size O(n) (n being the size of A). However, in the computation of 

+ w.r.t. A by Gnd, the intermediate extended relation computed in step 5, corresponding 
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to the subformula R(x) A 3y(S(y) A E(y)) has size 0 (n2 ) .  To solve this problem, we let 

IGnd be the algorithm which is the same as Gnd, except for the following: After each 

projection operation, we replace each formula in the resulting extended relation by a new 

propositional symbol. We also save the definitions of these new propositional symbols. The 

output of the algorithm is the final extended relation together with the definitions of all the 

new propositional symbols. 

For instance, in the above example, in step 4 we will introduce a new propositional 

symbol p and save the definition p = VEo E(2i). Then the intermediate extended relation 

computed in step 5, corresponding to the subformula R(x) A 3x(S(x) A E(x)) will be as 

follows, and it has size O(n) 

This modification, in this case, ensures that no intermediate extended relation is larger 

than O(n) in size. In general, for k-guarded formulas, in Gnd (by the structure of formulas 

in RGFk), after a projection, the resultant table or its complement is always joined with 

a guard. This modification ensures that, even though join and join with complement are 

quadratic time operations (Proposition 5.3.3), the table after a projection always has a form 

such that this join or join with complement remains of size O(enk), where e is the size of 

the formula and n is the size of the structure. It turns out that this is enough to allow the 

algorithm to still be a polynomial time algorithm in e and n. This is explained in detail in 

the complexity theorem at the end of this chapter. 

Note also, that this modification is to the projection operation only. However, this 

modification allows the projection operation to still have the same (linear time) complexity, 

as in Propositon 5.3.6, as the replacement of each formula with propositional symbols in an 

extended relation requires only one pass of the extended relation. 

To illustrate the grounding algorithm IGnd with a full example, let 4 be the formula 
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Figure 6.1: RGF2 formula 4' written as a tree 

where T and E are expansion predicates. Let A be the structure with domain A = (0,. . . ,9 )  

over vocabulary {R, S, A, B,  C, D) (note that T and E are not in the vocabulary because 

they are expansion predicates), where 

Then 4 E RGF2, where the underlined parts are guards. The grounding algorithm IGnd 

with input (A, 4) takes following steps in the following order. First it pushes negation 

symbols inward until they are in front of atoms or existentials. Figure 6.1 represents the 

resulting formula (which we call 4') by a tree, where rectangular internal nodes stand for 

guarded existentials, circular internal nodes for disjunctions or conjunctions, and leaves for 

literals. 

Now the algorithm processes existentials from bottlom to top in the following steps: 

1. Evaluate guard corresponding to R(x, y, z) A S(z, u, v) (call it G1) with respect to A, 

or G1(A) = R(A) W S(A). Since R(A) and S(A), the first two tables respectively, are 
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then G1(A) is the above table on the right. 

2. Evaluate GI (A) WC T(A). Since T is an expansion predicate, this results simply in 

Now we need to compute the answer to the subformula 4' = 3 fgh.A(x, y, f ) ~ B ( z ,  g, h ) ~  

[-C( f ,  z) V D(x, g) A E(y, h)] with respect to A before we go any further, so recursively 

(steps 3 to 9) we 

3. Evaluate guard corresponding to A(x, y, f )  A B(z, g, h) (call it G2) with respect to A, 

or G2(A) = A(A) W B(A). Since A(A) and B(A), the first two tables respectively, 

are 

1 5 9 true 

2 3 4 true 

3 7 5 true 
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then G2(A) is the above table on the right. 

4. Evaluate G2(A) WC C(A). Since C(A) is the following table on the left 

the join of the guard G2(A) with the complement of C(A) is the above table on the 

right. 

5. Evaluate G2 (A) W D(A) . Since D(A) is the following table on the left 

the join with the guard G2(A) is the above table on the right. 

3 

3 

3 

6. Evaluate G2(A) W E(A). Since E is an expansion predicate, this results simply in 

S h  

4 

4 

4 

@ 
true 

true 

true 
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7. Now we evaluate the intersection of the tables obtained in steps 5 and 6, or (G2(A) W 

D(A)) n (G2(A) W E(A)), which results in 

8. Now we evaluate the union of the tables obtained in steps 4 and 7, or (G2(A) WC 

C(A)) U ((G2 (A) W D (A)) n (G2 (A) W E (A))), which results in 

9. Now we evaluate the {a ,  y, z)-projection of the table obtained in the previous step, 

or  XI,,^,^) ((G2(A) WC C(A)) u ((G2 (A) W D(A)) n (G2 (A) W E(A)))) which results in 

the following table on the left 
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Now, after this projection, in order to keep intermediate tables from becomming larger 

than O(lnk)  in size, we introduce abbreviations for each formula in this table. So here, 

we replace true with pl,  E(2,4) with p2, true with p3, E(O,4) with p4, and true with 

p5. This results in the above table on the right, where we save the definitions pl to 

P5. 

This table is the answer to +' with respect to A that we want for the next step (we 

refer to this answer as +'(A) for convenience). Now we can compute the remainder of 

+ with respect to A. Next we 

10. Evaluate the join of G1(A) with the complement of +'(A), or G ~ ( A )  MC +'(A), which 

results in 

1. Then we evaluate the union of the tables obtained in steps 2 and 10, or (G1(A) WC 

T(A)) U (G1(A) WC +'(A)), which results in the table 
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12. We then evaluate the (2)-projection of the table obtained in step 11, or .rr(,) ((GI (A) WC 

T(A)) U (G1 (A) WC +'(A))), which results in the following table on the left 

Again, to avoid size blow-up, after this projection, we introduce abbreviations for each 

formula in the table, that is we replace lT( l ,O,  2) V 7pl V 7T(1,2, 5) V 7p2 V 7T(1,3,9) 

with ql, and 7T(7,2,5) V 7p4 V 1T(7,3,9) with 92. This results in the above table on 

the right, where we again save the definitions of ql and 92. 

Now that the algorithm is finished, this table resultant of the final step is indeed the 

answer to the original 4 with respect to the structure A, as for the two instantiations 1 

and 7 of x, the corresponding formulas (namely those represented by ql and q2) are reduced 

groundings of 4 with respect to A. That is, 

ql ~ ~ ( 1 , 0 , 2 ) V ~ p ~ V ~ T ( 1 , 2 , 5 ) V ~ p ~ V ~ T ( 1 , 3 , 9 )  

7T(1,0,2) V false V 7T(1,2, 5) V 7E(2,4) V 7T(173,9) 

= lT(l ,O,  2) V 7T(1,2,5) V 7E(2,4) V 7T(1,3, 9) 

Both of these are satisfiable, in fact they have many satisfiying assignments as each formula 

is a disjunction of literals. 

Theorem 6.2. Given a structure A and a formula 4 E RGFk,  IGnd returns and answer to 

+ w.r.t. A. Hence i f  4 is a sentence, IGnd returns a reduced grounding of 4 over A. 

Proof: We can rewrite 4 into an equivalent formula 4' as follows: first push negation 

symbols inward so that they are in front of atoms or existentials (by using DeMorgan7s laws 

and the Double Negation law), then push each guard inward so that it is in front of each of 

the literals, existentials, or negated existentials that it guards (by using the Distributive law 

and Idempotence law). Now we can prove by induction that IGnd returns an answer to 4'. 

To prove the base case, consider the conjunction of a guard and a literal. By the definition 
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of IGnd, and the correctness of the join and join with complement operations, it returns an 

answer to this formula. The induction step follows from the three correctness propositions 

in the previous chapter. 

Theorem 6.3. Given a structure A and a formula 4 E RGFk, IGnd runs in time 0(C2nk), 

where C is the size of 4, and n is size of A. 

Proof: First, we rewrite 4 into an equivalent RGFk formula 4' by pushing negation symbols 

inward so that they are in front of atoms or existentials. This takes time O(C) as it requires 

one pass of the formula. 

Now we compute the join of all the guards in 4'. Since 4' E RGFk, each guard is 

composed of at most k ordinary relations and thus each join has size O(nk). 

Now, whenever a join R M S of any guard R with an extended relation S, or the join 

R MC S of any guard with the complement of an extended relation S is performed, it is 

always the case that the set of variables of S is a subset of that of R. This follows simply by 

the fact that 4' is k-guarded, that is, R guards the set of free variables of any subformula 

(represented by S) below it, and therefore has a set of variables that is a superset of the set 

of variables in S. Furthermore, it is always the case that every formula in R is true (since 

R is a guard composed of ordinary relations), and every formula in S is of size O(C). To see 

why the latter holds, we consider the three cases. (1) S represents an atomic subformula. 

In this case each formula in S is just true and is thus of size O(C). (2) S represents an 

atomic subformula that is an expansion predicate. In this case, S is just an extended 0- 
relation composed of this single atomic subformula, which is of size O(C). (3) S represents 

an existential, (a subformula 4" E RGFk). Because, with the projection operation, each 

formula is replaced with a propositional symbol, each formula in S is just a propositional 

symbol, and is thus of size O(C). 

Since each guard is an ordinary relation of size O(nk), and whenever the join of a guard 

with an extended relation, or the join of a guard with the complement of an extended 

relation is performed, the properties described in the above paragraph hold, it follows that 

any resultant relation will have size O(Cnk). 

Now that we have exhausted all cases where a join or a join with the complement occurs, 

the rest of the computation of 4 over A involves only the operations projection, union and 

intersection. These operations are all linear time operations, by the complexity propositions 

of the previous section. Since there are O(l) such operations (the length of the formula is 
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l ) ,  and each intermediate relation has size O ( l n k )  from the join of each guard with the 

extended relation representing the subformula below it, it follows that this algorithm runs 

in time 0(12nk)  where l is the length of the formula and n is the size of the structure. H 



Chapter 7 

Grounding Inductive Definitions 

In the previous chapter, we described an algorithm for grounding first order formulas over 

first order structures that runs in time polynomial in the length of the formula and the 

size of the structure. This is a good tool for solving model expansion problems, where 

the formula is a first order formula. MX for FO captures N P ,  i.e., every problem in N P  

can be expressed as an MX problem for some FO formula. However, inductively defined 

properties like the transitive closure of an edge relation, which are important for modelling 

applications, are not easy to express in FO logic. For this, we use FO(ID), which is FO 

augmented with inductive definitions [ll, 131, a language which makes the axiomatization 

of certain problems much more convenient and natural. 

The syntax of FO(1D) is that of FO extended with one additional rule stating that an 

inductive definition (ID) is a formula. That is, FO(1D) is defined by 

a If X is an n-ary predicate symbol, and t l , .  . . , t, are terms, then X( t l , .  . . , t,) is a 

formula; 

a If A is an inductive definition, then A is a formula; 

a If 4 and 1C, are formulas, then so are (74) and (4  A $); 

a If 4 is a formula, then 3x4 is a formula, where x is any FO variable. 

An inductive definition A is a set of rules of the form V Z ( X ( ~  + +), where X is a 

predicate symbol, f is a tuple of terms, and is an arbitrary FO formula. The connective t is 

called the definitional implication, and is distinct from material implication, for which we use 
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3. A rule Vz(X(f) c 4) in a definition does not correspond to the disjunction Qz(X(f) v+) 
although it implies it. Intuitively, definitional implication should be understood as the "if" 

found in rules in (informal) inductive definitions, such as "14 is a formula if 4 is". In the 

rule Qlc(X(Q e 4), X(Q is called the head and 4 is the body. A defined predicate of an 

FO(1D) formula is a predicate symbol that occurs in the head of a rule in an ID; the rest of 

the predicate symbols are called open. 

The semantics of FO(1D) is that of FO extended with one additional rule saying that a 

structure A satisfies an ID A if it is the Zvalued well-founded model of A, as defined in the 

context of logic programming [58]. That is, the semantics of FO(1D) is defined by 

A + 3x4 if for some value v of x in the domain dom(A) of A, A[x : v] + 4; 

More specifically, this extra rule states that a structure A satisfies an ID A if doing induction 

in two "directions" from two different start points leads to the same (unique) fixpoint. 

Details of this extra rule can be found in [13]. 

The model expansion problem for FO(1D) is exactly the same as that for FO except that 

we consider formulas 4 E FO(ID), and the semantics of + is that of FO(1D). As an example, 

the problem of finding the transitive closure of a graph can be conveniently represented as 

an MX problem for FO(1D). The formula consists of a defintion with two rules defining the 

predicate T. The instance vocabulary has a single predicate E, representing the binary edge 

relation. 

The two rules of this ID state that the transitive closure of the set E of edges is the least 

relation containing all edges and closed under reachability. In this example, the expansion 
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vocabulary includes all the defined predicates. We will assume that this is always the case, 

in developing methods for solving MX problems for FO(1D). 

If we are going to express problems as MX for FO(ID), naturally, we will want to produce 

groundings of FO(1D) formulas over structures. The notions of grounding and reduced 

grounding are analagous to that for FO logic, the only difference is that the semantics of 

+ is that of FO(1D). The extended relation and its algebra is the mechanism used for 

grounding a FO formula over a structure. This can be used for grounding a FO(1D) formula 

over a structure as well, all we need to do is to allow extended relations to contain ground 

FO(1D) formulas in addition to ground FO formulas. Given this, the notion of an answer 

to a FO(1D) formula with respect to a structure is also analagous to that of FO logic in the 

same way, and the correctness and complexity of the algebra still applies to this more general 

form of extended relation. We can thus extend the mechanism we have for grounding a FO 

fornlula over a structure to a mechanism for grounding a FO(1D) formula over a structure. 

Note, however, that we will not be reducing MX for FO(1D) to SAT, as with FO logic, 

anymore. Rather, we are reducing MX for FO(1D) to the satisfiability problem of proposi- 

tional calculus with inductive definitions (PC(1D)). This follows simply from the fact that 

we allow extended relations to contain ground FO(1D) formulas in addition to FO formulas. 

As such, the set of reduced groundings represented by any extended relation in this case 

will be PC(1D) formulas. Currently, two prototypes of such solvers have been developed: 

one [53] reduces satisfiability of PC(1D) to SAT, and the other [48] is a direct implementa- 

tion that incorporates SAT techniques. While both solvers deal with a restricted PC(1D) 

syntax, and are somewhat efficient, a solver for the general syntax (which the output of our 

grounding algorithm for FO(1D) is part of) is under construction in our lab. 

If we want to produce a reduced grounding of an FO(1D) formula over a structure then we 

always assume that the expansion vocabulary includes all of the defined predicates. Indeed, 

if defined predicates were in the instance vocabulary, "evaluating them out" of the heads 

of ground IDS of the formula would produce a PC(1D) formula where true or false occur 

as heads of rules in its inductive definitions, which is meaningless in PC(1D). Nonetheless, 

some important problems are represented as MX for FO(1D) where some defined predicates 

are in the instance vocabulary. The interpretation of these defined predicates is used to 

apply restrictions on the possible interpretations of the expansion predicates. In such a 

cast:, we will first do grounding treating all defined predicates as expansion predicates if 

they are inside IDS (we still evaluate out any atom of a provided predicate outside of the 
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IDS as this does not cause a problem). Let 1C, be the resulting ground formula. We then add 

to 1C, an extra constraint that encodes the interpretation of the defined predicates. Suppose 

G is the set of ground atoms of interpreted defined predicates that appear in 1C,. Let cp be 

the conjunction of atoms of G that are true according to the interpretation. Then 1C, A cp is 

the final ground formula to be passed to the satisfiability solver. Thus we can restrict our 

attention to grounding where all defined predicates are expansion predicates. 

Since we are able to extend our previous mechanism to one for grounding a FO(1D) 

forrnula over a structure, we can now develop recursive algorithms for grounding FO(ID) 

forrnulas over a structure, similar to that of Chapter 6. Not surprisingly, we can extend the 

algorithm of the previous chapter in order to have an efficient algorithm for grounding a 

FO(1D) formula over a structure. In order to have a polynomial time algorithm for grounding 

FO(1D) formulas, we consider the fragment IGFk of FO(1D) formulas 

Definition 7.1 (IGFk). IGFk is the extension of RGFk with inductive definitions such 

that for each rule, the body is i n  RGFk and all free variables of the body appear i n  the head. 

As with RGFk, any FO(1D) formula with at most k distinct variables can be rewritten 

in linear time into an equivalent one in IGFk. Here we show how to rewrite each rule so 

that it satisfies the restriction of the above definition. First, for each x that appears in the 

head but not in the body, add x = x to the body. Now, since the body still uses at most k 

distinct variables, it can be rewritten into RGFk. 

Extending the grounding algorithm of the previous section for grounding IGFk formulas 

in polynomial time involves building a procedure to ground inductive definitions in poly- 

nornial time, and then simply making this procedure a subroutine of the algorithm of the 

previous section. Here, we present such a procedure for grounding IDS 

Procedure GndID(A, A) 

Input:  A structure A and an ID A E IGFk 

Output :  An answer to A w.r.t. A 

For each rule r of A, suppose r is V?(X(f) +- $), let AT be {X(f)[y] +- 1C, I (y,1C,) E 

IGnd(A, 4) ) .  Return UTEA A,. 

To illustrate the procedure, let A be the ID 
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where T is an expansion predicate. Let A be over domain A = {1,2,3) where E~ = 

{(1,2), (2,3)). Then A E IGF2. Note that this ID is the example of the transitive closure 

of an edge relation given above, only we have added y = y to the body of rule 2 in order for 

it to be guarded. GndID(A, A) would proceed as follows 

1. Call IGnd(A, E(x, y)) to get extended {x, y)-relation E(A) 

which we will call R 

2. Call IGnd(A, 3z(y = y A E(x, z) A T(z, y))). This involves first evaluating the guard 

corresponding to y = y A E(x, z) (call it GI) with respect to A or Gl(A) = (y = 

y)(A) M E(A). Since (y = y)(A) and E(A), the first two tables respectively, are 

then G1 is the above table on the right. Then we evaluate G1(A) M T(A). Since T is 

an expansion predicate, this results in the following table on the left 
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Then we evaluate the {z, y)-projection of the previous table, or T(, , ,~G~(A) W T(A), 

which results in the above table on the right. We will call this {x, Y)-relation S .  

3. Replace rule 1 with {T(x, y)[y] t 11, ( (y, +) E R), which results in the following set 

of ground rules 

T(1,2) t true 

T(2,3) t true 

4. Replace rule 2 with {T(x, y) [y] t + I (y, +) E S), which results in the following set 

of ground rules 

Finally, return the ID that is the union of all the sets of ground rules generated, namely 

the sets generated in steps 3 and 4. Thus, the resulting ground ID that is output by 

GndID(A, A) is 
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Here, this ground ID states that the transitive closure T is {(1,2), (2,3), (1,3)), which is 

indeed the least relation containing all edges and closed under reachability with respect to 

the graph defined by the edge relation E* = {(1,2), (2,3)). Next we formally prove that 

this algorithm is correct, and give its time complexity. 

Lemma 7.2. Given a structure A and an inductive definition A E IGFk, GndID returns 

an answer to A w.r.t. A. 

Proof: Let inductive defintion A be such that each rule of A is of the form V3(X(Q t 4). 
Since free variables in the head that are not in body have no effect on the function of a rule 

of A and by the definition of IGFk, w.l.o.g., for each rule of A, 4 E RGFk, where the set of 

free variables of 4 is 3. As such, if we call IGnd to  get the answer R to 4 w.r.t. A, we get a 

reduced grounding of 4 for every valuation y of the tuple 3. That is, by the correctness of 

IGnd (Theorem 6.0.2) and by the definition of a reduced grounding, for every valuation y, we 

have that 4[y] - ba(y) with respect to the semantics of FO(1D). By the semantics of V, the 

rule V?(X(f) + 4 )  means "for all valuations y of 2 ,  X(f)[y] t 4[y]". Thus V?(X(f) + 4) 

is equivalent to {X(Q[y] t 4[y] ( y is a valuation of 3). This is equivalent to {X(Q[y] + 

ba(:y) 1 y is a valuation of 21, which is equivalent to {X(Q[y] t $ ( (7, $) E IGnd(A, 4)) 
under the semantics of FO(1D). Note that any y @ IGnd(A, +), its corresponding formula is 

false, so all X(Q[y] t $ s.t. y @ IGnd(A, 4) is implicitly in the ground ID as well (since 

it has no affect on the ground ID). Clearly, since A is the union of its set of rules, that 

the union of sets of ground rules equivalent to each rule will also be equivalent to A. Thus 

GndID is correct. 

Lemma 7.3. Given a structure A and an inductive definition A E IGFk, GndID produces 
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a reduced grounding of size O(enk) and runs in time 0(e2nk)), where e is the size of A, and 

n is the size of A. 

Proof: First run IGnd on the body 4 of each rule r E A to produce extended relation 

R.  By the complexity of IGnd (Theorem 6.0.3), this will take time 0(e?nk),  where er 
is the length of rule r .  Furthermore, since in the run of IGnd, no itermediate extended 

relation will be larger than O(ernk) in size, R has size O(ernk). Now, constructing the set 

{X(E)[y] t 111 I (7,111) E IGnd(A, 4)) of ground rules for rule r ,  or {X(E)[y] t b ~ ( y )  I y E 

R )  will take time O(llRll), as it requires one pass of R .  This process creates something 

of size O(llRll), as the set of ground rules is just the set containing each formula bR(y) of 

R with a constant-size header X(E)[y] t appended to the front of it. So, since for each 

rule r of A, it takes time 0(e;nk) to generate its set of ground rules w.r.t. A, and this set 

of ground rules is of size O(ernk), it follows that producing the set of ground rules for all 

rules of A takes time O(CrEA e?nk), and generates something of size O(CrEA ernk). Since 

CrEA er = e, producing the set of ground rules for all rules of A takes time 0(e2nk),  and 

generates something of size O(enk). Finally, taking the union of all the sets of ground rules 

for reach rule r of A to form the ID that is the output of GndID requires one pass of the 

sets of ground rules, and thus takes time O(enk), and generates something of size O(enk). 

Thus GndID produces a reduced grounding of size O(enk) and runs in time 0(e2nk), where 

e is the size of A, and n is the size of A. 

Now that we have a subroutine for grounding IDS, we can simply make it a subroutine of 

the grounding algorithm of the previous section. We do this by adding the following clause 

to IGnd 

0. If 4 is an ID A or its negation l A ,  then IGnd(A, R ,  4) = {(y,p) I y E R )  or {(y, l p )  I 
y E R),  where p is a new propositional symbol with the definition p == GndID(A, A). 

We introduce a new propositional symbol for the result of a call to GndID, for the same 

reason that we do so for the result of a projection operation, to ensure that each intermediate 

extended relation is of size O(enk) in the entire grounding process, where e is the length of the 

formula, and n is the size of the structure. Adding this rule to IGnd extends this polynomial 

time grounding algorithm for the fragment RGFk, to a polynomial time grounding agorithm 

for the full FO(1D) fragment IGFk. We call this extended algorithm 1Gnd+. To illustrate 

1Gnd+ with a full example, let 4 be the FO(1D) formula 
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where T,  P and N are expansion predicates. let A be the structure with domain A = 

(0,. . . ,9)  over vocabulary {A, B, D, E, F, S), where 

Then 4 E IGF2, where the underlined parts are guards. First we push negation symbols 

inward until they are in front of atoms, inductive definitions or existentials. This results in 

the following equivalent formula 

Now the algorithm processes the formula from bottom to top. Algorithm IGnd' with 

input (A, 4) takes the following steps in the following order 

1. Evaluate guard corresponding to A(a, b) A B(c,d) (call it GI) with respect to A, or 

G1(A) = A(A) M B(A). Since A(A) and B(A), the first two tables respectively, are 
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then G1(A) is the above table on the right. 

2. Evaluate G1(A) WC D(A). Since D(A) is the following table on the left 

true 

true 

true 

true 

true 

true 

then G1(A) WC D(A) is the above table on the right. Now we need to compute the 

join of G1(A) with the complement of the first ID of the formula 4. 

3. Call GndID(A, A), where A is 

Since this ID A is the same as in the example given above to illustrate GndID, it 

produces the following ground ID 
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Here we let propositional symbol p = GndID(A, A), where we save this definition of 

p. Since A is a negated ID, the join of the result of GndID with the guard is the table 

Now we need to compute the answer to the subformula q5' 

with respect to A, so recursively (steps 4 to 8) we 

4. Evaluate the guard corresponding to F(c, e, f) with respect to A, or F(A), which is 
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5. Evaluate F(A) W P(A). Since P is an expansion predicate, this results simply in 

Now we need to compute the join of F(A) with the second ID of 4 (or the only ID of 

4'). 

6. Evaluate GndID(A, A) where A is 

The run of GndID(A, A) takes the following steps to give the following solution 

(a) Call IGnd(A, h = 0) to get (h = O)(A) 

0 true El 
which we will call R. 

(b) Call IGnd(A, 3g(S(g, h) A N(g))) which involves evaluating guard S(A), which 

results in the table on the left, then computing S(A) W N(A), which results in 

the table in the middle 



CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 

and then computing + ~ r ( ~ ) ( S ( d )  W N(A)), which results in the above table on the 

right, which we will call S. 

(c) Replace rule 1 with {N(h)[y] t 1C, ( (y, 1C,) E R), which results in the following 

set of ground rules 

N(0) t true 

(d) Replace rule 2 with {N(h)[y] t 1C, I (y, $) E S), which results in the following 

set of ground rules 

Thus the output of GndID(A, A) is 
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Here we let propositional symbol q = GndID(A, A), where we save this definition of 

q. The join of the result of GndID with the guard is the table 

7. Evaluate the union of the tables obtained in step 5 and the previous step, or (F(A) W 

P(A)) U {(y, q) I y E F(A)), which results in 

8. Evaluate the {c)-projection of the table obtained in the previous step, or rI,)((F(A) W 

P(A)) U {(y, q) I y E F(A))), which results in the following table on the left 



CHAPTER 7. GROUNDING INDUCTIVE DEFINITIONS 

After this projection operation, we introduce the abbreviations rl  = P(4,7) V q, r;! = 
P(5,9) V q, r3 = (P(6,4) V q) V (P(6,8) V q) and r 4  = P(9,O) V q. This results in the 

above table on the right, where we save the definitions of rl, . . . ,r4. This table is the 

answer to the subformula $' w.r.t. A, which we call $'(A) for convenience. 

9. Now we evaluate G1(A) W $'(A), which results in 

10. Evaluate the intersection of the tables computed in step 3 and the previous step, or 

((7, l p )  I y E GI (A)) n (Gl(A) W $'(A)), which results in 

11. Evaluate the intersection of the tables computed in step 2 and the previous step, or 

(G1(A) Wc D(A)) n (((7, l p )  I y E Gl(A)) n (Gl(A) W $'(A))), which results in 
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Evaluate the {b)-projection of the table computed in the previous step, or T { ~ )  ((GI (A) 

Wc D(A)) n (((7, l p )  I y E G1 (A)) n (G1 (A) W q5'(A)))), which results in the following 

table on the left 

After this projection operation, we introduce the abbreviations s l  = ( lpAr2)~(1pAr3) ,  

s2 -- i p  A r3 and s3 = l p  A rs. This results in the above table on the right, where we 

save the definitions of s l ,  s2 and s3. 

Now that the algorithm IGndt is finished, this table resultant of the final step is indeed 

the answer to q5 w.r.t. A, as for the three instantiations 2, 4 and 6 of b, the correponding 

formulas sl ,  s2 and s3 are reduced groundings of q5 w.r.t. A. That is, 
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N(0 )  t true 

N ( l )  '-- N O )  
N (2 )  + N O )  

N(3)  N(2 )  

N(4)  N(3 )  

N(5)  N(4)  

N(6 )  '-- N(5)  

N(7 )  N(6)  

N(8)  N(7)  

N(9)  N(8 )  

N(0)  e true 

N O )  N(O) 

N(2)  N(1)  

N(3)  N(2)  

N(4)  + N(3)  

N(5)  N(4 )  

N(6)  N(5)  

N(7)  N(6)  

N(8 )  N(7 )  

N(9)  N(8)  
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N(0)  t true 

N ( l )  N O )  
N(2)  N(1)  

N(3)  N(2)  

N(4)  N(3)  

N(5) N(4)  

N(6)  N(5)  

N(7)  N(6)  

N(8)  N(7)  

N(9)  N(8)  

Both of these are satisfiable because each atom or ID has sets of truth assignments that 

both satisfy and dissatisfy it, and the rest comes from easy inspection of the above PC(1D) 

formulas. To see why each ground ID has sets of truth assignments that both satisfy and 

dissatisfy it, the first ID 
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has the satisfying assignment {T(1,2), T(2,3), T(1,3)) (the rest are false), and the dissatis- 

fying assignment 0. The second ID 

has the satisfying assignment {N(O), . . . , N(9)), and the dissatisfying assignment {N(O), 

N(3) 7 N(7) ). 
Note that if T was provided by the instance structure, for example T~ = {(1,2), (2,3), 

(1,3)) in the above illustration, that we would run the example exactly as we did above, 

(still treating T as an expansion predicate). But then we would conjoin to each formula 

s l ,  s2 and s3, the conjunction T(1,2) A (2,3) A (1,3) (since all of these atoms appear in 

each of sl, s 2  and s3), which encodes the interpretation T ~ .  That is to say, any satisfying 

assignment to sl, s 2  or s3 will have to satisfy T(1,2) A (2,3) A (1,3) and thus takes into 

account T ~ .  Next, we prove correctness of IGnd+ and give its time complexity. 

Theorem 7.4. Given a structure A and a FO(ID) formula 4 E IGFk, I G ~ &  returns an 

answer to 4 w.r.t. A. 

Proof: We can rewrite 4 into an equivalent formula 4' as follows: first push negation sym- 

bols inward so that they are in front of atoms, inductive definitions or existentials (by using 

DeMorgan's laws and the Double Negation law), then push each guard inward so that it is 

in front of each of the literals, inductive definitions, negated inductive definitions, existen- 

t i a l~ ,  or negated existentials that it guards (by using the Distributive law and Idempotence 

law:). Now we can prove by induction that IGnd returns an answer to (6'. We now have 

two bases cases, the conjunction of a guard with a literal, and the conjunction of a guard 
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with an inductive definition or a negated inductive definition. Correctness of the first base 

case follows from the defintion of IGnd and the correctness of the join a join with comple- 

ment operations. Correctness of the second base case follows from the correctness of GndID 

and the correctness of the join and join with complement operations, since a propositional 

symbol and a negated propositional symbol are both literals. Given that the base cases are 

correct, the induction step follows from the three correctness propositions in Chapter 5. 

Theorem 7.5. Given a structure A and a FO(ID) formula 4 E IGFk, lGn& runs in time 

O(l%tk), where l is the length of the formula, and n is the size of the structure. 

Proof: For each inductive definition A E 4, run GndID(A, A) and save this answer as a 

propositional symbol or a negated propositional symbol, depending on whether A is negated 

or not. By the complexity of GndID, this takes time 0(l;nk) and produces a reduced 

grounding of size O(lAnk) ,  where la is the length of the inductive definition A. Since 

CAE41A 5 l, this takes time 0(12nk),  and the set of data that the new propositional 

symbols represent is of size O(lnk).  Since propositional symbols are atomic FO formulas, 

this procedure has reduced 4 to a new formula 4' E RGFk. By the complexity of IGnd, we 

can find the answer to 4' w.r.t. A in time 0(12nk), where this answer is of size O(lnk).  We 

now add to this answer the size O(lnk) data set corresponding to the propositional symbols 

for each ID A E 4, for an answer to 4 w.r.t. A of size O(lnk) ,  which requires one pass of 

the answer to 4 w.r.t. A, which takes time O(lnk).  Since we do a constant number of time 

O ( l h k )  tasks, 1Gnd' runs in time 0(12nk),  where l is the length of the formula, and n is 

the size of the structure. 



Chapter 8 

Conclusions and Future Work 

8.1 Conclusion 

Classical logic is perhaps the most natural language for axiomatizing and solving computa- 

tional problems. It has a long history, and sophisticated techniques have been developed, 

which lend themselves to proving correctness of axiomatizations and finding efficient frag- 

ments. Classical logic has intuitive and well-understood semantics, convenient syntax, and 

it is widely used by both theoreticians and practitioners. We therefore believe that tools 

based on classical logic to the highest degree possible will have a strong appeal. 

The model expansion framework of Mitchell and Ternovska [49, 501 is a constraint pro- 

gramming framework based on classical logic extended with inductive definitions. Conceptu- 

ally, this framework is very close to ASP in that problem instance is given as input (problem 

description is fixed), and the intention is to find interpretations of unspecified predicates 

through models of the combined program. However, the approach of the MX framework is 

to directly work on model expansion without the overhead of logic programming, but rather 

to rely on classical logic augmented with inductive definitions. 

Since ASP systems (and many of the systems presented in Chapter 2) compute a ground- 

ing of the problem description over the instance, efficiency of these systems relies on an ef- 

ficient grounding procedure, and an efficient solver for these ground programs. In our case, 

since there exists efficient solvers for SAT and PC(ID), an efficient algorithm for grounding 

an FO or FO(1D) formula over a structure to produce a PC or PC(1D) formula is an asset 

to solving MX problems efficiently. 

This paper represents an important progress in making the MX framework practical by 
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developing an efficient grounding algorithm. In this paper, we have proposed an algorithm 

for grounding k-guarded FO sentences with inductive definitions under the restriction that 

all predicates in the guards are initially specified. Our algorithm runs in time 0(e2nk)  

where e is the length of the formula, and n is the size of the structure. To this end, we 

have extended the concept of relation in database theory to the concept of extended relation 

and defined an algebra on extended relations. As such, we extend the algorithm of Liu and 

Levesque [46], which uses relational algebra to do model checking, to an algorithm that uses 

extended relational algebra in order to do grounding. As with [46], the essence of our work 

is to do efficient grounding by exploiting the structure of FO formulas: Indeed k guarded 

formulas have the same expressive power as formulas with hypertreewidth at most k. 

8.2 Future Work 

Current work includes an implementation of this grounding algorithm in the C programming 

language, as part of the MX system. There are several future directions that we can take in 

regards to grounding. We have shown that taking advantage of the structural properties of 

the formula is advantageous, however, taking advantage of the structural properties of the 

instance structure might also allow us to ground efficiently. 

While currently this algorithm treats all defined predicates as expansion predicates, 

many problems in practice include interpretations of the defined predicates in the instance 

structure. In these cases, symbols of the provided defined symbols will appear in the ground 

formula. It would preferable if the grounding algorithm could evaluate out these symbols 

as well. In the case of FO formulas, the symbols of the instance vocabulary are evaluated 

out during grounding whenever it is determined that a particular ground atom of that 

vocabulary is true or false. This is how it would be approached in evaluating out defined 

symbols as well. Thus the grounding algorithm would have to understand the semantics of 

FO(1D) logic, and therefore perform some form of induction during grounding. 

Many interesting problems are much more naturally expressed in extensions of FO, 

such as FO extended with cardinality or weight constraints, as well as FO extended with 

arithmetic. Since we were able to extend our grounding algorithm for a FO formula, to 

one for grounding a FO(1D) formula, perhaps we could also devise algorithms for these 

extensions of FO logic as well. 

Also, the techniques used to build an efficient grounding algorithm for FO (with inductive 
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definitions) might also apply to grounding for higher order logics (second order), logics 

that capture complexity classes larger than NP. As the results in other efficient low level 

solvers appear (i.e., QBF), grounding to  SAT or an extension thereof, may not always be 

necessary. In this case, it would also be interesting to see if similar techniques could be used 

for grounding second order logic to QBF, for example. We believe that if we take advantage 

of the structure of the formula in general, that the results will be positive. 

Finally, while this grounding algorithm is efficient when the formula is k-guarded, the 

question arises: if the formula is not given in the k-guarded form, can it be put in this 

form for k less than the number of variables in the formula. This amounts to computing 

a hypertree decomposition of the graph associated with the formula of width as small as 

possible. While it is known that for graphs of bounded treewidth and hypertreewidth, 

this can be determined in polynomial time, and that a minimal width tree decomposition 

(hypertree decomposition) can be constructed in polynomial time (in the number of vertices 

in the graph), there exists a linear time algorithm for determining treewidth, and computing 

a minimal width tree decomposition. It would be interesting to  see if the techniques used 

here could be applied to  hypergraphs, to come up with a recognition (and construction) 

algorithm that is as efficient as possible. If so, this could be useful to the overall goal of 

efficiently grounding FO formulas. 
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