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ABSTRACT 

The problem of identifying the order types of the countable 

initial segments of the degrees of unsolvability was first tackled by 

Clifford Spector more than 20 years ago, and has since given rise to 

a series of papers, In this thesis a complete characterization of 

these order types is given by proving the following theorem: any 

countable upper semilattice with least element can be embedded as an 

initial segment of the degrees. 
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~ n t r o d u c t i o n  and no ta t ions .  

I n  t h i s  t h e s i s  we prove t h e  fol lowing r e s u l t :  any countable  

upper s e m i l a t t i c e  wi th  l e a s t  element can be embedded a s  an i n i t i a l  

segment of t h e  degrees  of u n s o l v a b i l i t y .  This  r e s u l t  s e t t l e s  t h e  

ques t ion  of  i d e n t i f y i n g  t h e  countable  i n i t i a l  segments o f  t h e  degrees.  

The f i r s t  r e s u l t  i n  t h i s  d i r e c t i o n  was given by Spector  [ 6  I who showed 

t h e  ex i s t ence  of  a  minimal degree ,  which i s  equ iva l en t  t o  t h e  embedding 

of t h e  two element cha in  i n  t h e  degrees.  This  r e s u l t  w a s  extended by 

Titgemeyer E 8 1  t o  t h e  embedding of  a l l  f i n i t e  chains.  Hugi l l  [ l l  

then  obta ined  t h e  r e s u l t  f o r  countable  cha ins  and Lachlan 1 2 1  f o r  

countable  d i s t r i b u t i v e  l a t t i c e s .  A l l  of t h e  work above was based on 

t h e  f a c t  one can o b t a i n  a  n i c e  r e p r e s e n t a t i o n  of d i s t r i b u t i v e  l a t t i c e s .  

Since no such r e p r e s e n t a t i o n  were a v a i l a b l e  f o r  f i n i t e  l a t t i c e s  i n  

gene ra l ,  t h e  method used had t o  be q u i t e  d r a s t i c a l l y  changed. A f i r s t  

s t e p  i n  t h i s  d i r e c t i o n  i s  i n  Thomason [ 7  1.  Then Lerman [ 2 ]  ob ta ined  

a  s u i t a b l e  ' r e p r e s e n t a t i o n  i n  t h e  l i m i t '  of f i n i t e  l a t t i c e s  and w a s  

a b l e  t o  s e t t l e  t h e  embedding problem f o r  t hose  l a t t i c e s .  It  i s  t h i s  

work we extend,  u s ing  t h e  f a c t  t h a t  any countable  s e m i l a t t i c e  i s  t h e  

l i m i t  of a  sequence of  f i n i t e  l a t t i c e s .  

An i n t u i t i v e  d i scuss ion  o f  t h e  necessary r e s u l t s  from 

recu r s ive  func t ion  theory  fo l lows .  Formal d e f i n i t i o n s  can be found i n  

Rogers E 5 I .  

Let N be t h e  s e t  o f  n a t u r a l  numbers. A and B w i l l  b e  

subse t s  of N , and f  and g  w i l l  be func t ions  from N t o  N . 



A function f is recursive if there exists an effective 

procedure which calculates f(n), for n C N . By an effective 

procedure we mean a deterministic procedure that could be carried out, 

for example, by a finite state automata. If a procedure yields results 

on a subset of N only, then the corresponding function f is said to 

be partial recursive. A set A is recursive if its characteristic 

function CA is recursive. A is Turing reducible to B (notation 

A CT 8 )  if there is a procedure that calculates CA which is effective. 

except that at a certain finite number of times it might require 

information about membership in 8 : briefly, knowledge of CB will 

yield knowledge of CA . The central notion of effective procedure 
can be made precise in such a way that we obtain an enumeration of such 

procedures. A procedure is then noted (el if its rank in the 

enumeration is e . The fact that A 5 B is then noted A = {el (Cg) . 
T 

Pn general f 5 g means < f > 5 < g > , where < f > is the 
T T 

graph of f . If both A ZT B and B 5 A then we say A is Turing 
T 

equivalent to B (noted A - B). Intuitively this means that to 
-T 

calculate membership in A or in B is of the same order of complexity. 

It can be shown that this relation is an equivalence relation on P (N). 

P(N)/%~ is the set D of degrees of unsolvabilit~. Note that ZT 
N 

induces an order relation on D : if a 6 D and b 6 D then a T T E  . 
N ry N N IV N 

if there is A 6 a and B 6 b such that A ST B . It is clear that 
N N 

D has a smallest element 0 : it is the degree that contains all 
rV N 

r,ecursive sets. With the ordering given, D is an upper semilattice 
N 

(but not a lattice), i.e. given a and b we can find c such that 
N N N 



e' a c z  b and ( d ?  a and s ?  -+ d d l  c )  w e w r i t e  
P U - ~ r u f  r u - T ~  N T w  T PU T -  

P a V b . An i n i t i a l  segment S of t h e  degrees is a subset  of  t h e  
P U N -  

degrees such t h a t  0 C S and i f  a € S and b ZT a then b € S . 
N N -4 

The canonical index of a f i n i t e  set D = {xl.x 2f . . . .x  1 is  n 
X X 

2 X 
n t h e  na tu ra l  number 2 + 2 + . . . + 2 . A sequence < A i ,  i E N >  

of f i n i t e  sets is s a i d  t o  be s t rpnqly  recurs ively  enumerable (s t rongly  

r.e.) if t h e r e  is  a recurs ive  function h such t h a t  f o r  i € N , h ( i 1  

is  t h e  canonical index of A . i 

Say we have two sets of  functions M and N and a p a i r i n g  

P = { (f ,g) , f € M ,  g N 1 .  Then t h i s  pa i r ing  is  uniform i f  t h e r e  is 

a procedure t h a t  w i l l  y i e ld  g given f s o  t h a t  ( f ,g )  € P: t h a t  is, 

t h e r e  is e € w such t h a t  g = (e) ( f )  f o r  a l l  (f  ,g) E P. 

The notion of recurs ive  function and recurs ive  sets can be 

extended is an  obvious manner t o  functions,  f : N~ + N and subsets  

of Ef . A recurs ive  predicate  i s  a recurs ive  subset  of N ~ ,  f o r  some 

n € N. 



1 .  weak representations and admissible extensions. This section is 

first concerned with an exposition of the fundamental concepts and 

representation theorem from Lerman C21. Then we introduce the notion 

of admissible extension and some lemmas. 

Let (L,3 be a fixed lattice. For any set U let (d(U) , S )  

&note the dual lattice of equivalence relations on U where Ro 5 R1 

if and only if R1 implies Ro . The join Ro V R1 in (d(~),9) is 

Ro & R1, 0 is the universal relation and 1 is the identity relation. 

A w-representation of ( L . 0  is a pair (F,U) such that U is a finite 

set, U f F: (L,5 -+ (&(u) ,5) is a join embedding, F ( 0 )  = 0 and 

~ ( 1 )  = 1. Let (F~u) and (G, V) be w-representations of (L, I). We 

say (G,V) extenas (F,U) written [F,U) c (G,V1 if U c V and if 

for each c € L, F(c) = G(c)f~. (L,S) is said to be sequentially 

representable if there is a sequence < (FiIU4) : i < w > of - 
w-representations of (LIP) such that for all i < w (F U ) extends 

i+lP i+l 

(Fi,Ui) and 

1.1 if a,b,c € L  and a A b = c ,  u O,ul f Ui and 

uoFi(c) ul then there is a sequence ~v0,v1.v2J of elements of Ui+l 

such that uo (a)vO Pi+l (b)vl (a)v2 Fi+l (b) q . 

1.2 if u ,u .v  ,v C Ui and for all b C L uoFi(b) ul 
0 1 0 1  

-lies vo Fi(b) vl then there are wo, and embeddings ho.hl o f 

(FI,uI) in (FI+l,Ui+l) such that h (u = vo. h (u = h (u ) = wo , 
0 0 0 1 1 0  

hlful) = V1 . (The notion of embedding is the obvious analogue of the 

notion of extension). 



THEOREM 1.3. (L15) has a sequential representation. 

proof : ~irst let D = { 1 = c c . . . , c = 01 be a distributive lattice. n 

rind 4 C 6) and C1,. . . .C C C such that ci + Ci is a lattice n 
8 

embedding of (L,S) into the Boolean algebra 2 such that C1 = 8 ,  

cn = B I  and C - ci has power > 1 for all i , 1 < i 5 n . If we let 

is a w-representation of (LIT). But every finite lattice is a sub- 

semilattice of some distributive lattice with the same 0 and 1 ; thus 

we have (FOIUO). 

Suppose (Fi,u.) has been found, that a A b = c in L and 
1 

u F. (c)ul. TO satisfy 1.1 for just one pair <u u > we can 
0 1 0' 1 

take Ui+l = Ui U {vO, v1,v2J where v 0 .v 1 2  . v are distinct and are not 

elements of Ui . For d C L let Fi+l(d) be the least equivalence 

relation on Ui+l extending Fi (d) . including { (uO ,vO). (v1,v2) 1 if 

d 5 a, and including i (v2 .u~). (vO.vl) 1 if d C b . (Note that by 

"least equivalence relationW we mean least as a set of pairs). Then 

Fi+lUi+l) extends (F . . U . ) and satisfies 1.1 for <u0, ul> . Fox 
1 1  

future reference we call such an extension an extension of t y p e  . By 
iteration we can satisfy all pairs <uO,u1> and all triples <a,b,cP . 

Now suppose u ~ , u ~ , v ~ , v ~  are as in the hypothesis of 1.2. 

0 0 1 1  L e t  (Pi, Ui), (Fit U ) ,  be copies of (F..U.) under bijective maps 
i 1 1  

h. i U. -+ U' for j < 2. h t  uiI uiI ui 
3 1 i O be paiwise disjoint except 

that v is to be identified with h (u , h (u ) with hl tug) hl (ul) 
0 0 0  0 1  

With vl L e t  Ui+l = U. U Ui 0 U Ui 1 and for each c C L let Fi+l(~) 
1 

0 1 be the least equivalence relation extending each of Fi (c) . Pi (c) , Fi (c) 



Note that no pair of elements of u 

6. 

i+l 
(c) that is not already 

I 

in F~(c). Indeed such a new pair <x,y> would arise from a situation 

where x Fi(c) Vo and y Fi(c) vl , or x Fi(c) vl and y Fi(c) vo . 
From the hypothesis of 1.2 and the h.(i < 21, being isomorphisms it 

1 

cannot happen that vg Fi+l(c) v1 without vo F~(c) v 1 ' Then 

tFi+l~ 'i+l ) extends (F.,U ) and satisfies 1.2 for 
3. i Uol ull v , v 0 1' 

FOX future reference we call any such extension an extension of type II . 
Again by iteration of this procedure we can completely satisfy 1.2. 

Let CG,W) - and (F,V)  both be w-representations of L with 

CGIW) 3 (F,V), we call (GtW) an admissible extension of (FIV) if 

To put this definition another way: (G,W) 3 (F,V)  is an admissible 

extension of (F,V) means that with each x E W we can associate some 

y € V such that for all a E L, if x is G(a)-equivalent to any arember 

of V it is G(a)-equivalent to y . The purpose of this notion will 
become clear in the next section. 

We write L* c L to mean L* is a sublattice of L with the 

same 0 and 1 . If (G,W) is a w-representation of L and if Lo* c L 

then (G[{L* ,Wf is the obvious w-representation of L* . 
We now list five lemmas ; proofs of lemmas 1.4 and 3.. 6 are given 

in 95. 

LEMMA 1.4. Extensions of types I and XI are achiseible. 

LIEMMA 1.5. If (GIW) is an admissible extension of (F,V) and 

(F,v) is an admissible extension of (H,u) , then (G,W) is an 

arsfssible extension of (H,U) . 



Proof: Say x € W, z € U, a € L and xG(a)z . By hypothesis we 

know there is yo E v s. t. (v) cV (b) EL (xG(b)v -t xG (b) yo) . Since 

U C V we have xG(a)yo. Then yoFCa) z and by hypothesis we can find 

1 
€ u such that ('IvCu (b) bCL(yo F (b) v + yo F (b) yl) I and thus 

yo ~ ( a ) y ~  . But then xG(a)yl . Since yl is independent of a and 

z , we are done. 

LEMMA 1.6. Let (G,W) and (HIU) be extensions of (F,V) 

such that (G,W) is an admissible extension of (PIV) and W n U = V . 
Define V' = W U U and for each a € L let F' (a) be the least 

equivalence relation on V' which includes G (a) and W (a) . Then 
(Ft,V') is a w-representation of L . (F1,V') is an admissible 

extension of (H,U) and is an extension of (G,W). Further, if (H,U) is 

also an admissible extension of (F,V)r then (F',V1) is an admissible 

extension of !F,V!, 

LF,m 1.7. If (GI W) and (F, V) are w-representations of L 

and (GtW) is an admissible extension of (FfV) and L* c L then 

(G~[L*,w) is an admissible extension of (FIIL*,v) . 
Proof: Immediate. 

LEMPllA 1.8. Let (GrW) and (FIV) be w-representations of L 

with W n V = $. Then they have a common admissible extension. 

Proof: Let U = W U V . If a E L and a # O let H(a) be the least 

equivalence relation on W U V extending both F(a) and G(a) . Let 
N(0) be the universal relation on U . Since 

r 

t (x) cw (Y cv (xH(a V b) y ++ a = b = 0 * %H(a)y S; x~(b)y), 
f 



of both ( G t W  and (F ,V)  . Since (x)~~,, (y)CV (xH(a)y -+ a = 0) it 

follows that ( H f  U) is an admissible extension of (FIV). Similarly 

for (G,W). 

92. Representation of a countable lattice by an array of w-representations 

of finite sublattices. Say we are given a countable upper semilattice 

with eero tLwrz) i we may suppose it has a greatest element, otherwise 

weaddone. Then (Lw,5) =lim (Lir5) where <(Lir5): i < U >  is 
i- 

an ascending sequence of finite lattices each with the same 0 and 1, 

such that "join" in *[L ) extends "join" in (Lj,5) . i+l8- 

In this section we show how to build an array 

where e ( 0 )  = 0 and t ( k )  6 t(k + 1) fox all k satisfying the 

following conditions: 

(C1) For each j the sequence < (F .) : C(j) 5 k < w > is 
kIjl *k13 

almost a sequential representation of ( L j . 9 )  meaning that 

there is a strictly increasing sequence t ( j )  = n(0) < n(l)< ... 

(C2) For each pair 

for all u,v, in Ui .+l and for each c f L , 
1 3  j 

UPi.j+l (c) v - uFi, (c) v . 



( ~ 3 )  Each column is recursive, i . e .  f o r  each j there  is  a b i jec t ion  

g from U f  Ui : 8 ( j )  5 i < w} onto w such t h a t  

<g (U .) : i < w > is a strongly r.e. sequence of f i n i t e  
i.+&(j) 

- 1 -1 sets, and g 
'y+e(j) r j  

(c)  g (z)  is a recursive predicate 

of x,y and z fo r  each c C L . 
j 

Assume the  columns of the  array before the  kth have already 

been constructed so  t h a t  C1,  C2 and C 3  a r e  s a t i s f i e d  and so t h a t  f o r  

n = k - 1 the  nth column has the  following embeddinq propartx with 

respect  t o  in . If i E C(n). (FIV) c (FiInI UiIn , and (G,W) 

is an admissible extension of (FIV) then there  e x i s t s  j > i and 

anembeddingof (G,W) i n  (F U which is  the  i den t i t y  on 
j rnv  j ,n  

(FIV). The commutative Diagram 1 i l l u s t r a t e s  the  embedding property. 

I n  the  diagram 5 s ign i f i e s  an in jec t ion  and Z s i g n i f i e s  an 

embedding. 

Diagram 1 



Now we shall show how to effectively construct the kth 

c0lUrnn such that C1, CZ and C3 remain satisfied. and the kth column 

has the embedding property with respect to Lk . 
We shall only treat the case k > 0; the modifications required 

when k = 0 will be readily apparent. 

We first show how to obtain (FC (k) UC ,k) . The commutative 
Diagram 2 reflects the argument. Let (G,W) be a w-representation 

expans ion 
U 

Diagram 2 



of Lk such that w ll u = pj . ~emrna 1.8, we can find 8 (k-1) f k-1 

(H,U) an admissible extension of both ( F ~  (k-l) , k-l I U8 (k-l) , k-l 1 

and (G~~IJ,-~, W) . By the induction hypothesis there is an embedding 
U of (HIU) in @j,k-ll j,k-l ) , for Some j > 8 (k-1) , which is the 

identity on U8 (k-1) ,k - l  . L e t  (PI , U* ) be the copy of (GII%-~, W) 

0 
within F , U - 1  . Expand it to (F', U ) a w-representation 

0 0 
of L~ . Then take (F . U 1 as ( F ~  (k) UC (k) ,k) . 

We now proceed with the general step in the construction of 

the kth colWtn; by convention we write Fnl Un for FnIk U 
n,k 

respectively. So suppose we have (F,V) c (Fn, Unf and (G,W) an 

admissible extension of ( F , V ) ,  where without loss of generality we 

can assume W n Un 7 V . To follow the argument the reader should 

look at the comutative 

(Fn, U 1 following the 
n 

is a suitable successor 

Diagram 3. Let (HfU) be obtained from 

procedures of theorem 1.3, such that (HIE) 

for (Fnr U 1 in a sequential 
n 



Diagram 3 



representation of Lk . By lenmas 1.4 and 1.5, (HIU) is an admissible 

extension of (Fnr On) where without loss of generality we can assume 

W n U = V . By lemmas 1.6 we form (F',V1) a common extension of 

(Fn,Un) and (GIW) with V9 = u U W; from lemma 1.6. (F' .V' is an 
n 

admissible extension of (Fn.Un). Applying lemma 1.6 again to (H,U) 

and (FS,V') seen as admissible extensions of (F ,U ) we obtain n n 

(F" ,V" ) . a common extension of (H,U) and (F V ) . Further (F" pV" ) 

will be an admissible extension of (Fn,Un) by the last sentence of 

lemma 1.6. Now by l e m  1.7, ( F ~ ~ I I L ~ - ~ . V ~ * )  is an admissible extension 

of (~~114-~~~~). Also by the induction hypothesis (C2) we have 

U ( F ~ ~ ~ L ~ - ~  lun) (Fn , k-l t n , k-1 1 . Since by assumption the (k - 1) -th 
row has the embedding property we can find j > n and an embedding of 

(~"ll$-~,~") in (Fj ,k-lrUj .k-1 ) which is the identity on Un . Let 
(F8' ,V" ' be the corresponding copy of (F" I ~ L ~ - ~  .v" in (Fj #k-l'uj fk-l' 

0 0 Expand (F" ' ,V8*' ) to (F ,V ) a w-representation of Lk, such that 

0 0 
there is an isomorphism of (FW,V") onto (F ,V ) which is the identity 

on U . Extend the k-th column by letting 
0 0 

n (FjlklUj,k) be (F ,V 

and letting (Filk,UiIk ) be (Fn,Un) for each i, n < i < 1. Notice 

0 0 that (F ,V ) is a suitable successor of (FnlU ) in a sequential 
R 

representation of Lk because there is an embedding of (HrU) in 

0 0 
(F ,V which is the identity on Un . Further there is clearly an 

0 0 ernbedding of (GIW) in (F ,V ) which is the identity on V . 
We have shown how to ensure that the kth column has the 

embedding property with respect to (F.V), (Fnrk,U ) , and (G,W) and we 
n,k 

have extended the kth column by a finite number of rows in the process. 



If (F* ,v*) c ( F ~ , ~ , u ~ ,  k) and (G* .W*) is an admissible extension of 

(F* ,V*) , then (F* ,v*) c (F U ) I whence by further extending the 
j,k' j,k 

kth column we can satisfy the embedding property with respect to 

(F* ,V*) . (PnI kIUn, k) , and (G* ,W*) . Since in•’ initely many stages are 
available it is easy to ensure that the kth column when completed ' 

satisfies the embedding property completely. 

03. The trees corresponding to sequential representations. This 

section is concerned with the concept of tree and related definitions. 

Again all of this is contained, implicitly or explicitly,in Lerman Ill. 

Let <(FiIUi) : i < w > be a sequential representation of a finite 

lattice (LIZ), where U c w for i < w . Further let 
i 

<(F.,Ui) : i < w > be recursive in the sense that.for each c 6 L. 
1 

xFifc!y is 3 recursive predicate of x i and y and the cardinality 

of Ui is a recursive function of i . Relative to this representation, 
a tree is a pair < where is a strictly increasing recursive 

function, q(0) = 0 and QI is a 2-ary recursive partial function such 

that,for all i,j,k, 

and, for all kol kl, i t  - 

II, 6 w - is on T if there exists 0 6 w called the signature of $ 

such that, for all i, j , 



r(T) denotes the set of all such $ . We say 0 E < w is on T if 

< w  there exists 9 € w called the signature of o such that 8h (0) = 

v(Ch(8)) and 

3" " ( T )  denotes the set of all such a . 
Let c denote the lexicographical order of signatures,i.e. 

8 a 9' if and only if 

Let qO, " 1 '(T) and go, be the respective signatures of . 
Let c C L . We say JIO and $l are equi$alent mod c . written 
$o ET $l (mod c), if Oo(i) Fi(c) Bl(i) for all i < . 1 f 

T* = < r$*, r)* > and T = < $, r) > are trees relative to the same 

representation then T* is an acceptable subtree of T if 

rng(rt*) c rng(rl), $(T*) c $(T), and for all c, dtl C F(T*) -+ 

- 
(q0 zT+ (nod C )  C+ $* ZT (mod c) ) . From the form of the 

definition the notion of being an acceptable subtree is transitive. 

<w Let T = < 4, r) > be a tree, a 1 3  (TI , and Ch(0) = rt(m). 

Then T' is to be the unique tree , ) such that qa(i) = IIh + i) 

for all i > 0 k = j if k € Uo and j < q(m) and r$'(k,j) = 

a 4) (k, j whenever j 2 rt (m) and 4 (k, j is defined. We may observe 

El 
that TO is an acceptable subtree of T . let ' IO, lfll C 3 ( ~  ) ,  eO. 



0 
be the respective signatures of $ in T and 8;. el be the 

respective signatures of JI $ in Td . Then 8  Irn = e l l m  , 
0' 1 0 

0 0 
el(i) = Og(i + m) for i < w , and 0 = e l  + m for i < W . 

equivalence follows from (Fi + mrUi + m 1 being an extension of 

Let $ be on the tree T = < $, T) > . For c C L define 

'T,C to be the member of (T) equivalent to 1C, (mod c) whose 

signature 'T,c is least possible with respect to a . 
The following lemmas are due to Lerman. The proofs of 

lemmas 3.2 and 3.3 are deferred until section 5. The trees and 

subtrees are of course a11 relative to the same sequential representation 

of L , say <<Fi,Ui> : i < w > . 

LEMMA 3.1. ff T is an acceptable subtree of T then 
0 

given c € L there exist i and j such that $T = {ilP$T,C) and 
otc 

'T, c = ij}(yT ) for all9 C J(T) . 
0,c 

Note. We use interchangeably the notations f el* and (el ($) , where 
W * 

e € w and $ € w ; {el (n) and (el ($,n) will then also be 

alternate notations. 

Pro~f. $ and are equivalent mod c in T . Hence $ and 3, 
T,c 



a re  equivalent mod c i n  To by the  def in i t ion  of acceptable subtree. 

- ) Thus *T ,c - whence is recursive i n  ' 
'T, c 

. Since 
0 (*'3!,~ TOIc 

the  procedure is  uniform there  thus  e x i s t s  i such t h a t  $T = {ij($T,c) 
o n c  

Conversely, given 
'yo c 

we can e f fec t ive ly  compute $* on T 

such t h a t  $* is equivalent t o  $ mod c on T 0 '  
and such t h a t  

$* is l e a s t  possible with respect t o  a on T . Two points are 

important here: F i r s t l y ,  $ 5 (mod c)  which means t h a t  some 

poss ib i l i ty  fo r  $* exis t s .  Secondly, 

where 8* 

on To . 

and OT a r e  the  respective signatures of $* 
o l C  

This means t h a t  there  is  a l e a s t  such $* which can be 

effect ively  computed from $ . Now $J* = $ (nod c r )  since 
TO ' C  -To 

equivalence mod c is t rans i t ive .  Since T is an acceptable subtree of  

recursive i n  q* and hence i n  
* T ~  c 

. Again the  procedure is 

uniform and thus there  e x i s t s  j such t h a t  JIT = { j} ($ ) . 
I C  TO IC  

LEMMA 3.2. If  T is a t r e e ,  b ) c i n  L , and e f w , 

then there  is an acceptable subtree To of T such tha t , fo r  any 

LEMMA 3.3. If To is a t r e e  and e 4 w , there  e x i s t s  an 

acceptable subtree T of To and a F L such t h a t  e i ther , fox a l l  



$J 6 a(T)t {el* is total and {el' has the same degree as or 

el* is total for no $ C a ( T )  . 

94. Proof of the embedding theorem. Let a j-tree be a tree in the 

j j j j sense of (F .U ) ,  (Fi,Ul), ..., where this is the sequential 
0 0 

representation of L obtained from 
j 

deleting repetitions. 

LEMMA 4.1, Given a k-tree 

(k + 1)-tree T = < $,q > such that 

there exist i, j € w such that if 

Proof. Say <(Fi,Ui) : 0 5 i < w > 

the jth-colwnn of the array by 

To = < OD' no > there exists a 

J(T1 Cs(To) and for each c € Lk 

$J 6 .3(T) then $T - {i!($T,c) 
otc 

and < ( G ~ ~ W ~ )  : 0 5 i < W > are 

respectively the sequential representations of Lk and 
Lk + l 

obtained from the kth and (k + 1)-th column of the array (the 

representations have been renamed here). U t  m(-1) = O . For i L 0 

denote by m(i) the first index greater than m(i - If such that 

'i 'm(i) . Then for all u, v 6 W and c E Lk 
i UFm(i) (c) v - 

uGi(c)v . When building the i-th node of T we let n(i + 1) = r+.,(m(i)+l). 

0 
Note that if $0, C J ( T ) .  c C LK and if Bi and El1 (i < 2) 

are the respective signatures of $i(i < 2) on T and To we havetfor 



t h i s  w e  can complete t he  proof by imita t ing the  proof of lesarsa 3.1. 

W e  a r e  now ready t o  exhib i t  an enbedding of Lu a s  an 

i n i t i a l  segment of the  degrees. I n  order t o  do t h i s  w e  s h a l l  construct  
I  I  1 

a sequence of trees To, To. Tlr TI, ... such tha t , fo r  each it T1 is 
1 

an acceptable subtree of Ti, Ti and Ti are  i-trees and T i + l  
I 

comes from T by the canonical method fo r  passing from an i-tree t o  an 1 

(i + 1)- t ree  which is  provided 

be such if I/J C fl  fa^^) 

embedding of the  desired 

we suppose j t o  be the  

: i <  

kind, 

l e a s t  

by Leima 4.1. The sequence w i l l  fu r ther  

w) then t he  map 

where f o r  any c 

number such t h a t  

I/J C Z ( T ~ )  let  $ be $JT c .  Note t h a t  i f  a -  b v  c i n  
C 

j ' 
Lw 

then deg(Jla) = deg(%) v deg(Oc) for any $ F Z  (Ti) where a.b .c C L 
j 

I l l  

8' 0 ebI 8 be the respective signatures of $, $a, $,  31, on T . c j 

NOW e,(i) = wk[kGi (a) 0 (i) 3 and s imilar ly  for  b and c , where 

<(G ,W.) : 0 5 i < W > is the  sequential  representation of L . Hence 
i I. j 

I 1 I 

Thus lya is recursive i n  ($bI$ci. Conversely B b ( i )  = pkfk Gi(b) 6 (i) l = 

I I 1 I 

Hence Jib is recursive i n  Oa and s imilar ly  $Jc is recursive i n  9. . 



20. 

Thus using Lemmas 3.1 and 4.1 we obtain deg(Jla) = deg($b) V deg($c) . 

In par t i cu la r  if b Z c we have deg(qb) 5 deglJlc) . 

Consider w U {< e ,b ,c  > : e b,c 6 L, b C) and suppose 

<Ci : i < w > is  an enumeration of t h i s  s e t  such t h a t  if 

@i 
= < e,b ,c  > then b ,c  a r e  both i n  Li . Now i f  Ci = e we choose 

Ti 
according t o  Lemma 3.3 such tha t ,  f o r  a l l  Jl C T , e is 

e i t h e r  not t o t a l  o r  has t he  same degree as Jla f o r  some a C Li . 
I f  Oi = < e,b,c > it is a consequence of Lemmas 3.1 and 4.1 t h a t , f o r  

a l l  I$ € 3(Ti) ,  t)b i s  uniformly recursive i n  $ is 
T: Ib 

uniformly recursive i n  J . Hence there  ex i s t s  e' such t h a t , f o r  
C 

a l l  $ t 7 ( ~ ~ 1  , $c = {eJYb implies $ = e b). ~ h u s  w e  
Ti'C if 

t 

apply Lemma 3.2 t o  Ti, using e' instead of e t o  obtain TI . This 

over a s  soon a s  we see t h a t  fl {3(Ti) : i < w , i s  not empty. But 

3(T0) can be regarded a s  a product of countably many f i n i t e '  sets of 

in tegers ,  and i f  w e  give each o f  these f i n i t e  s e t  the  d i sc re te  topology 

then J(TO) is compact. But by mnstruct ion each J(Ti) is a closed 

subset of ~ ( T ~ I  : thus fl 13(Ti) : i < o 1 # $ . 

85.  We now attend t o  the  lemmas l e f t  without proof i n  t he  previous 

sections. 

Praof  of Lemma 1.4. The f i r s t  case is when (G,W) is an extension 



21. 

of type I of (F,V). Say W \ V  = fvo, vl, v2} and (G,W) is obtained 

from u Of u1 f: V and a,b,c f: L, by the construction specified in the 

proof of Theorem 1.3 for the satisfaction of 1.1. If voG(e)z for 

z C V, e f: L, then it must be that e 5 a : thus voG(e)uo and we can 

take uo for y in the definition of admissible extension. Similarly 

for v2 . Now if v G(e)z it must be that e 5 a and e 5 b and 1 

thus vlG (el ua: we then take uo for y . 

The second case is when (G,W) is an extension of type 11 of 

(FIT?) ; we use the notation of the final part of the proof of theorem 

j 1.3, except that (G,W) , (F,V) and V (j < 2) replace (Fi+l I Ui+l) I 

0 
(F. ,U ) and U: (j < 2) respectively. Remember that W = V U V U v1 and 
1 i 

that uof ul, v v < V satisfy 
0' 1 

uoF (c)ul -t voF(c)vl, c C L . 
Note that the following implications hold: if a 6 L r 

Thus in the first case pick vo for y in the definition of admissible 

extension; in the second case pick vl . 

Proof of Lenrma 1.6. We first show (F',V') is a w-representation of L . 
Say a,b 4 L, x,y C V', a 5 b and xE"(b)y . Since G(a) I G(b) and 

H(a) 5 H(b), we also obtain F' (a) C F' (b) . We now have to show if 

a,b. € L, x,y € V' then x (F' (a) & F' fbf ) y  implies x Ff (a V b)y . 



know there exist zo,zl C v such that (x G(a)zo and zOH(a)y) and 

(xG(b)zl and zlH(b)y). Since (G,W) is an admissible extension of 

(F,V) we can find z C V such that xG(a)z and xG(b)z : thus 

x F1(a V b)y. By a similar argument we can show (F1,V') is an 

admissible extension of (H,U); that it is an extension of (G,W) i s  

clear. The last part of the lemma is also immediate from lemma 1.5. 

Proof of L e m  3.2. Let e be fixed. It will be sufficient to show 

0 
that there exists o C gCw(T) such that for any $ € F(T 1 , 

SIC # {el 

Remember that << Fit Ui > : i < w > is the sequential 

representation of L we consider. Since Fg is a join embedding of 

(LIZ) in (&u0) ' 5 )  there exist m,n C Uo such that m Fo(b)n but 

not m Fo (c)n . let r, r ' C 7'W(~) be chosen such that their 

signatures are < m >, < n > respectively. Then r and T' are 

equivalent mod b but not mod c in T and we have T = r a  
T,b T,b 

and 

ir T'~,c . Choose j < 17 (1) such that T (j) # ~*~,&j) . 
TIC TIC 

If there is no $ 3 r on T such that {el (qT ,b, j) is defined, let 

o - r . Othemise there exists p € J < ~ ( T )  such that p 2 T and 

(e)(pTPb,j) is defined. If {e)(pTIbIj) f TTIc(j) let 0 -  Q 

I•’ te) tpTIb, j) = T ~ , ~  (j) , let o(k) = T' (k) for k < (1) and 

~ ( k) = p(k) for k > 17 (1). In either case we have ensured that 

G when u is replaced by any JI € 3 (T ) . 



The r e s t  of t h i s  sect ion is  devoted t o  the  proof of Lemma 3.3. 

Suppose t h a t  there  e x i s t s  (3 on To and k 6 w such t h a t  

{e}*(k) is not defined for  any $J on To, JI 3 o . Then we  may take T 

o 
t o  be To . Thus suppose t h a t  f o r  every o on To and k C w there  

JI 
I e x i s t s  $ U such t h a t  {e) (k) is  defined. W e  may construct  an 

I acceptable subtree T of To , such t h a t  fo r  a l l  9 on T e i s  

I t o t a l ,  a s  follows. Suppose ql ( i + l )  has been defined and t h a t  $ (k , j )  

1 has been defined fo r  a l l  k , j  sa t i s fy ing  

Let Uorol , . . . tGm-l  be an enumeration of the  s t r i ngs  on T of length 

Q(i) . For a, 6 6 l e t  a - 6  denote the  s t r i n g  obtained by the  

concatenation of $ t o  the  r i gh t  of a . We can choose T r T , t . . . T  
0 .L m-1 

i n  tu rn  such t h a t  0 j"'ro*... -T is  on To and 
j 

is  defined for  each j < m . Let r = r A . . .  n~ 0 m-1 
. L e t  q ( i  + 1) = 

qo( i*  + 1) where i *  is the  l e a s t  number such t h a t  q ( i )  + & h ( r )  = 

q *  . I f  i 5 j < i *  and k C Ui , define $(k t  j) = T ( j  - ll(i)). 

I f  qO(i*) 5 j < qO( i*  + 1) and k 6 Ui, define $ ( k , j )  = +O(k , j )  . This 

completes the  induction s t e p  i n  the  def in i t ion  of T . It i s  easy t o  

check t h a t  q and and recursive and t h a t  T is an acceptable subtree 

of To . For any 6 Z(T) there  e x i s t s  j < m such t h a t  d c $ , 
j 



Jt whence CT T c $ , whence { e l  (if is defined from t h e  way i n  which 
j 

w e  constructed t h e  ith node. 

Thus without l o s s  of genera l i ty  we may suppose t h a t , f o r  a l l  

I#J C 2 (To) , {ej* is total. we  make t h i s  assumption below. 

L e t  S(TO) cons i s t  of a l l  b f L which s a t i s f y  

CT 
Without l o s s  of genera l i ty  suppose t h a t  StT*) = S(To) f o r  a l l  

U f T < @ ( T ~ )  . Otherwise replace 
CT 

T, by To f o r  some o C 

CT 
such t h a t  S(To) is maximal with respect  t o  inclusion. 

LEMMA 5.1. I f  a r b ,  C S(TO) and a A b = c then c C SiTO). 

Proof. This is where we use c lause  1.1 of t h e  d e f i n i t i o n  of sequent ia l  

regxesentation. For proof by contradic t ion ~u-p~mse  a A b c, a and 

h are i n  S (TO) and c j? S (To). Choose any 0 C 3*(TO) such t h a t  

(T G 
.ISh(u) > 0. Then c j? S (To) s ince  S (TO) = S (TO) . Therefore the re  

Since T' is an acceptable sub t ree  of T we have $O ET q1 (mod c) .  0 0 

qo $1 
Since t h e r e  must e x i s t  k f o such t h a t  fe) (k) and {el f k )  a r e  

defined and d i s t i n c t ,  we can suppose t h a t  $, and agree except 

a t  a f i n i t e  number of nodes. By in te rpo la t ion  w e  can suppose t h a t  

. and  d i f f e r  on exact ly  one node. say t h e  (i + 1)th node 



oth node of To because Ch(o) > 0 and $o and are both on 

T Let Bo and be the respective signature of qO and on 

To . Then Bo(i + l)Fi + (c) Bl(i + 1) since $ $ (mod c) . Let 
0 To 1 

[nO(i + 1). nO(i + 2 ) )  be the h-th node of T:; then by the definition 

of T: we see that Bo(i + 1). Bl(i + 1) are elements of Uh . Since 

Ch(0) > 0 , h 9 i and hence ah C Ui . It follows that Bo(i + I), 

8 (i + 1) are elements of U and since 1 i (Fi+l,Ui+l) extends (Fi ,Ui) 

we have Bo(i + 1) Fi(c) el(i + 1) . From 1.1 there exist ko.kllk2 fi Ui+l 

such that Bo(i + 1) F~ + (a) kg Fi + (b) kl Fi + fa) k2 Fi + 1 (b) Bl(i -I- 1). 

For each j < 3 let (a be the member of ~ ( T ~ I  whose 
j 

signature 0: agrees with €I0 and B1 except at i + 1 and satisfies 

0 i + 1 = k . Then qc 
3 

$2 %O$J1 (mod b). Since 

'b $2 $0 $1 $2 $1 JIo $1 {el = {el , {el = (el , (el = {el . It follows that {e) = { e )  , 

contradiction. 

From the lemma just proved it Eollows that S(TO) has a least 

member, i.e. least in the sense of (L,S). Below c denotes the least 

@ember of S (To). Since c C S (TO) , if $o $ (mod c) for $Ot 
0 

J, deg((e3 ) C deg($JToIc) because $ " 3, f ,,c (mod c ) .  We now prove 

LEMMA 5.2. There exists an acceptable subtree T of To such 

$ that € T + deg ( 5 deg ( {el ) . 
onC 



Proof. This is where we use clause 1.2 of the definition of sequential 

representation. For induction suppose ql (i + 1) has been defined and 

that ($(k,j) has been defined for each pair < k,j > satisfying 

( ~ h  c i) (n(h) 5 j < n ( h  + 1) & k 6 Uh). Suppose that the definition 

of acceptable subtree has been satisfied so far,i.e. 

(i) mg(nl (i + 1)) c ~ n g  qO , 

(ii) if 0 u are strings of T of length n(i) then 

Go. G1 are strings on To and.for each b € L, 

Oo ZTo GI (mod b) " Go ST G1 (mod b) . 
SuppOse further that an effective method of computing qTt 1 0  (i) from 

9 {el for each 9 on T has already been given. Let {<os, kg, s, k >: 
1,s 

s < t} be an enumeration of all triples satisfying: Gs C J<~(T)~ 

th(Gs) = nfi), kotS and kl, s are members of U and not k F . (c) kl , s. i O1s 1 

I We construct the ith node in t stages numbered 0.1,. . . , t-1. Let 

n(i1 = qofi*). Let 

OO(k, x + n(i)) if x < qo(i* + 1) - ~ ( i )  , 
'0 ,k(X) = / undefined otherwise '.. . 

for k € Ui. Immediately prior to stage s we shall have defined 

strings 'C k C UiI all of the same length such that G U q T  srkF srk 

is on To for each u < t and k C Ui . Further for each a C L we 

shall have 

= T (mod a) t+ k F.(a)m for u < t and k,m € Ui 
'u -'s,k - T ~  u s.m 1 



(This means t h a t  we have not  y e t  v io la ted  t h e  condit ion corresponding t o  

(ii) above f o r  node i + 1 of TI. W e  s h a l l  choose T 3 T 
s + l , k  s t k  

f o r  k ( Ui . After  a l l  t h e  s t ages  s. s < t. w e  s h a l l  l e t  i l ( i  + 1) 

be t h e  common length of a l l  t h e  s t r i n g s  U n T  and w e  s h a l l  def ine  
u t , k  

k I  = T k  - i f o r  a l l  k C Ui and j i n  q ( i )  5 j < q ( i  + 1). 

Thus t h e  s t r i n g s  on T of length  q ( i  + 1) w i l l  be j u s t  a l l  those  of 

t h e  form uu n T~ ,k . Our aim i n  def in ing Ts+lrk f o r  k € Ui is  t o  

code i n  {el* f o r  on T an e f f e c t i v e  way of d is t inguishing 

between $'s which extend Gs n T and $'s which extend 
s + 1, kOIS 

Stage s. To simplify t h e  nota t ion we w r i t e  G I  ko and k1 f o r  Us, kols  

and kl . Let U fi T , 0 A T  be denoted T and T' 
I S s t k o  s 1 5  

respect ively .  Assume C ~ ( T )  > 0; t h i s  requires  a t r i v i a l  modificat ion 

of  t h e  construction when i = 0,  i.e. when we a r e  const ruct ing t h e  0 
t h 

node of T . L e t  b be t h e  g r e a t e s t  element of L such t h a t  koFi(b)kl. 

Notice t h a t  c $ b . whence b f S ( T O )  We can now f ind  e f f e c t i v e l y  

T T and k t  such t h a t  T f i r  0 ' T r\? 1 J < ~ ( T ~ ) .  Eh('Co) = E ~ ( T ~ ) .  

{ e ) ( T  -TO. k t )  and e l  k a r e  both defined and d i f f e r e n t ,  

and T T (mod b). Further w e  may suppose T - To and 1 

T T d i f f e r  only i n  t h e  ( p  + 1)- th  node of To by in te rpo la t ion .  

Let T fi  TO. T n T agree with A x @0 (q0.x) . A x $0 (ql, X) respec t ive ly  1 

on t h e  ( p  + 1)- th  node of To; then qo Fp + (b) q1 . Thus, f o r  a l l  a C L , 



f o r  a l l  a C L we have ko F (a)kl  + q0 F (a)ql.  By 1 .2  t h e r e  e x i s t  
P 

embeddings ho, hl : (F 
Up) + (Fp + l. Up + PI  

) such t h a t  

= h  (k 1 ,  h ( k )  = h l ( k o ) I  hl(kl) = q l .  For j < 2 and r < 2  qo 0 0  0 1  

l e t  r - r j  be t h e  same a s  T - r except t h a t  T - T  is t o  agree r r r 

with A x $ ( h .  (kr) ,XI on t h e  ( p  + 1 ) - t h  node of To . W e  may suppose 
0 I 

j t h a t  { e ) ( r  r\ r r , k l )  is defined f o r  each j < 2 and r < 2 ; otherwise 

we may extend each of r and T i n  exact ly  t h e  same way u n t i l  t h i s  
0 1 

supposit ion is  j u s t i f i e d .  From t h e  equations above w e  have 

0 0 1 1 
T*"\T T o  T = T n T  T h T  = T - T  

0 1 0 ' 1 1 '  
Also, a s  w e  have 

noted above, e T n r k ) and e (T - T I  k 1 a r e  defined and 

d i f f e r e n t .  

I t  follows a t  once t h a t  f o r  some j < 2 I 

{ e l  (T -T;. k t )  and e (r , k a r e  defined and d i f f e r e n t .  

Fix such a j . We may suppose t h a t  e T t  T kt ) is  defined f o r  r ' 
r < 2 . We now def ine  T s + 1,k  

f o r  k C Ui . 

Case 1. { ( T I  k )  # {e} ( T  , k t .  Then l e t  Ts + 

5 

.r e d  f o r  a l l  k c ui . 
s,k 1 

Case 2. Otherwise. Then l e t  T be t h e  s t r i n g  on To which is  
s + 1.k 

exact ly  t h e  same as T~~~ -rO (and r -r ) except t h a t  on t h e  s , k  1 

(p + 1) - th  node of To it is t o  agree with A x 41 (h .  (k) ,x) .  I n  t h i s  
0 J 

way '6 + 1.k is f ixed f o r  a l l  k C Ui . Note t h a t  i n  every case 

{e}(o " T ~  + l , k o  
. k and r S  + . k are defined and 

unequal. Further we s h a l l  have 0 = Ou-T u n T s  + 1.k - T ~  s + 1 . m  (mod a) +-+ 



k Fi(a)m f o r  a l l  a C L, u < t and k, m C u . This completes s tage  
i 

S and t h e  construction of T . Recall t h a t  a f t e r  t h e  l a s t  s t age ,  namely 

s t age  t - 1, we def ine  l l ( i  + 1) t o  be t h e  common length of a l l  t h e  

s t r i n g s  u -T 
u t , k  and l e t  @ ( k , j )  = T t l k  1 - n f i )  fo r  a l l  k C ui 

and j i n  ~ ( i )  5 j < Q(i + 1). 

How do w e  compute $J from e f o r  $ C ~ ( T ) ?  For 
TI c 

induction w e  may suppose t h a t  w e  have a l ready computed , . Let 

k be t h e  unique member i n  Ui such t h a t  agrees with 1 x 4 (k,x) i n  

[ i + 1 it s t l f f ices  t o  compute k mod Fi(c) .  Recall from t h e  

<W 
d e f i n i t i o n  of c t h a t  i f  $ C J(T) ,  T C 3 T I ,  e k  is defined. and 

* $ extends T mod c i n  T , then { e  k = e T k .  For any koI  kl i n  

* i which a r e  inequivalent  mod Fi(c)  w e  can f ind  s such t h a t  

< Us, koIs1 klIs > = < I"i). kol kl > . Suppose t h a t  k C {kol kl}; 
Tt c 

then $ extends e i t h e r  's n T s  + l , k o  
o r  0 -'L mod c on T . 

s s + l , k L  

Thus by looking through t h e  const ruct ion of T t o  s tage  s of t h e  

I * formation of node i , and by comparing { e l  (k' ) with 

'e*'*~ C . T ~  + l ,kO ' 1  and { ~ ) ( o ~ A T ~  + l,kl , k we can t e l l  

I whether k = ko o r  k = kl . By looking a t  a l l  p a i r s  
kl 

'I) inequivalent  mod Fi (c) w e  can thus  compute k ntod Fi (c) from { e l  . 
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