COUNTABLE INITIAL SEGMENTS OF

THE DEGREES OF UNSOLVABILITY

by

Robert Lebeuf

B.Sc., Université de Montréal, 1969

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department

of

Mathematics

(©) ROBERT LEBEUF 1977
SIMON FRASER UNIVERSITY

August 1977

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.




APPROVAL

NAME : Robert Lebeuf
Degree: Master of Science
Title of Thesis: Countable initial

of unsolvability.

Examining Committee:

Chairman: Dr. E.

(Mathematics)

segments of the degrees

Pechlaner

Dr. S.K. Thomason
Senior Supervisor

Dr. A.H. Lachlan

Dr. D7 Ryeburn

Dr. R.D.VRussell

External Examiner

(ii)

Date Approved: )4’\»«\8( s 22 / 77




PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend
my thesis or dissertation (the title of which is shown below) to users
of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from thellibrary
of any other university, or other educational institution, on its own
behalf or for one of its users. I further agree that permission for
multiple copying of this thesis for scholarly purposes may be granted
by me or the Dean of Gfaduate Studies. It is understood that copying
or publication of this thesis for financial gain shall not be allowed

without my written permission.

Title of Thesis/Dissertation:

CGUnNTABLE vrhal SEGABRAYT oFf 7w DEGA=A[

Author:

(signafﬁre)

Russr (=peyr

(name)

22 /5 / 77
(date)




ABSTRACT

The problem of identifying the order types of the countable
initial segments of the degrees of unsolvability was first tackled by
Clifford Spector more than 20 years ago, and has since given rise to
‘a series of papers. In this thesis a complete characterization of
these order types is given by proving the following theorem: any
countable upper semilattice with least element can be embedded as an

initial segment of the degrees.
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Introduction and notations.

In this thesis we prove the following result: any countable
upper semilattice with least element can be embedded as an initial
segment of the degrees of unsolvability. This result settles the
question of identifying the countable initial segments of the degrees.
The first result in this direction was given by Spector [6 ] who showed
the existence of a minimal degree, which is equivalent to the embedding
of the two element chain in the degrees. This result was extended by
Titgemeyer [ 8] to the embedding of all finite chains. Hugill {1]
then obtained the result for countable chains and Lachlan [ 2] for
countable distributive lattices. All of the work above was based on
the fact one can obtain a nice representation of distributive lattices.
Since no such representation were available for finite lattices in
general, the method used had to be guite drasticaliy changed. A first
step in this direction is in Thomason [7 ]. Then Lerman {2 ] obtained
a suitable ‘representation in the limit' of finite lattices and was
able to settle the embedding problem for those lattices. It is this
work we extend, using the fact that any countable semilattice is the
limit of a sequence of finite lattices.

An intuitive discussion of the necessary results from
recursive function theory follows. Formal definitions can be found in
Rogers [ &5 1.

Let N be the set of natural numbers. A and B will be

Subsets of N , and f and g will be functions from N to N .




A function £ is recursive if there exists an effective
procedure which calculates £(n), for n € N . By an effective
procedure we mean a deterministic procedure that could be carried out,
for example, by a finite state automata. If a procedure yields‘results
on a subset of N only, then the corresponding function £ 1is said to

be partial recursive. A set A is recursive if its characteristic

function CA is recursive. A 1is Turing reducible to B (notation

A ET B) if there is a procedure that calculates CA which is effective,
except that at a certain finite number of times it might require
information about membership in B : briefly, knowledge of CB will

yield knowledge of C The central notion of effective procedure

~
can be made precise in such a way that we obtain an enumeration of such
procedures. A procedure is then noted {e} if its rank in the
enumeration is e . The fact that A ST B is then noted A = {e}(CB).
In general £ ET g means < f > ST <g>, where < f > is the
graph of £ . If both A ST B and B 5T A then we say A 1is Turing
equivalent to B (noted A = B}. Intuitively this means that to

calculate membership in A or in B is of the same order of complexity.

It can be shown that this relation is an equivalence relation on P (N).

P(N)/&T is the set D of degrees of unsolvability. Note that <=

T
induces an order relation on D : if a € D and b € D then a ET B .
~ ~s ~s ~e ~ ~s ~
if there is A € a and B € b such that &2 ST B . It is clear that
‘2 has a smallest element O : it is the degree that contains all

recursive sets. With the ordering given, D 1is an upper semilattice

(but not a lattice), i.e. given a and b we can find ¢ such that

~ ~s

)




ZT a5 ZT b and (4 ZT a and dz b -+ 42 ’g) we write

2a

T T

avb. An initial segment S of the degrees is a subset of the

2a
]

degrees such that 0 € 8 and if a € 5 and b Sp @ then b €s .

The canonical index of a finite set D = {xl,xz....,xn} is
x x, x
the natural number 2 ~ + 2 “ 4+ .. + 2 . A sequence < Ai, i€eN?>

of finite sets is said to be strongly recursively enumerable (strongly

r.e.) if there is a recursive function h such that for i € N , h{i)
is the canonical index of Ai .

Say we have two sets of functions M and N and a pairing
P=1{(f,g), £ €M, g €N}. Then this pairing is uniform if there is
a procedure that will yield g given f so that (f,g) € P: that is,
there is e € w such that g = {e}(f) for all (f,q) € P.

The notion of recursive function and recursive sets can be
extended is an obvious manner to functions, £ : N" > N and subsets
of N . A recursive predicate is a recursive subset of Nn, for some

n € N.




§1. Weak representations and admissible extensions. This section is
first concerned with an exposition of the fundamental concepts and
representation theorem from Lexman {[2]. Then we introduce the notion
of admissible extension and some lemmas;

Let (L,S) be a fixed lattice. For any set U let (6(6),5

aenote the dual lattice of equivalence relations on U where Ro = Rl

if and only if R, implies R, . The join R, V R. in (&W),s) is

1 0 0 1

R, & R 0 1is the universal relation and 1 is the identity relation.

0 1’

A w-rqg;esantation of (L,=) 4is a pair (F,U) such that U is a finite

set, u# ¢, F:(L,=) > (8(U),= is a join embedding, F(0) = 0 and
F(l1) = 1. Let (F,U) and (G,V) be w-representations of (L, <). We
say (G,V) extends (F,U) written (F,U) € (G,V) if U CV and if

for each ¢ € L, F(c) = G(c)iU. (L,=) is said to be sequentially

representable if there is a sequence < (Fi,Ui) : 1 <w> of

w-representations of (L,<) such that for all i < w (Fi l) extends

+1'Y5+
(Fi,Ui) and

1.1 if a,b,c €L and aAb=c¢c, u,,u

0'% € Ui and

qui(c) u then there is a sequence 1{v.,v.,v.} of elements. of u.,

0"'1° 2 1

such that u Fi+l(a)v0 Fi+ (b) u

0 p PIvy Fipy @V, Foy 1

1.2 if uo,ul,vo,vl € Ui and for all b € L us

implies vy Fi(b) v, then there are Wo and embeddings ho,h1 of

Fi(b) uy

Fi+l'Ui+l) such that ho(uo) = Vor ho(ul) = hl(uo) =Wy

hl(ul) = vl . (The notion of embedding is the obvious analogue of the

notion of extension).




THEOREM 1.3. (L,<) has a sequential representation.
pProof: First let D = {1 = cl,cz,...,cn = 0} be a distributive lattice.

Find £ € w and C ,...,Cn C £ such that c; > Ci is a lattice

1

embedding of (L,<) into the Boolean algebra 28 such that Cl = £,

c, = #, and & - c;, has power > 1 for all i, 1 <i=n. Ifwe let
U=£¢ and F(cj) be {(k,k) : k < 2} U ((& - cj) x (& - cj)) then (F,U)
is a w-representation of (L,=). But every finite lattice is a sub-
semilattice of some distributive lattice with the same 0 and 1 ; thus
we have (FO,UO).

Suppose (Fi’Ui) has been found, that a A b = ¢ in L and

. i . j i < >
qui(c)u1 To satisfy 1.1 for just one pair uy.u,>  we can

take U = Ui U {v

i+l 'V ,vz} where vo,vl,v2 are distinct and are not

01

elements of u, - For d €L let Fi+l(d) be the least equivalence

relation on Ui+ extending Fi(d), including {(uo,vo), (vl,vz)} if

1
d < a, and including {(Vzlul), (Vo.vl)} if d=Db . (Note that by
"least equivalence relation" we mean least as a set of pairg). Then
(Fi+1'ui+l) extends (Fi,Ui) and satisfies 1.1 for <u,su,> . For

future reference we call such an extension an extension of type 1 . By

iteration we can satisfy all pairs <u0,ul> and all triples <a,b,c> ,

Now suppose u are as in the hypothesis of 1.2.

0'"1'V0' "1
0 0 1 1 . :
Let (Fi' U (Fi, Ui)' be copies of (Fi,Ui) under bijective maps

hj : 0, > Uz for j < 2. Let U, Ug, Ui be pairwise disjoint except

that v_ j identified wi i
o is to be identified with ho(uo). ho(ul) with hl(uo). hl(ul)

with Vi« Let U = Ui U Ug U Ui and for each c € L 1let F {c)

i+l i+l

be the least egquivalence relation extending each of ‘Fi(c), Fg(c), Fi(c).




6.

Note thét no pair of elements of Ui is in Fi+ (¢) that is not already

1

in Fi(c). Indeed such a new pair <x,y> would arise from a situation

where X Fi(c) Yo and vy Fi(c) vy s OF x Fi(c) vy and y Fi(c) vy -

From the hypothesis of 1.2 and the hi(i <-2), being isomorphisms it

cannot happen that v (c) v without v Fi(c) v Then

o Fi+1 1 0 1

{F,

i+1” Ui+l) extends (Fi'ui) and satisfies 1.2 for u_, u

0 r V . V

1 0 1

For future reference we call any such extension an extension of type II .

Again by iteration of this procedure we can completely satisfy 1.2.
Let (G,W) -and (F,V) both be w~representations of L with

(G,W) > (F,V), we call (G,W) an admissible extension of (F,V) if

) e BV ey @),y (@) (XG(@)Z > xGla)y) .

v ZEV. atL

To put this definition another way: (G,W) 2 (F,V) is an admissible
extension of (F,V) means that with each x € W we can associate some
y € V such that for all a € L, if x is G(a)~equivalent to any member
of Vv it is G{a)~equivalent to y . The purpose of this notion will
become clear in the next section.

We write L* C L to mean L* is a sublattice of L with the
same 0 and 1. If (G,W) is a w-representation of L and if IL* C L
then (GIL*,W) is the obvious w-representation of IL* .

We now list five lemmas; proofs of lemmas 1.4 and 1.6 are given
in §5.

LEMMA 1.4. Extensions of types I and II are admissible.

LEMMA 1.5. If (G,W) 1is an admissible extension of (E,V) and
(F,V) is an admissible extension of (H,U), then (G,W) is an

admissible extension of (H,U) .

.I;




Proof: Say x € W, z € U, a € L, and xG(a)z . By hypothesis we

know there is Yo €V s.t. (b) (xG(b)v xG(b)yo) . Since

V) ey €L

U € vV we have xG(a)yo. Then yOFfa)z and by hypothesis we can find

+
Yy € U such that (v)vEU(b) (y0 F(b)v Y F(b)yl), and thus

beL _
y0 F(a)y1 . But then xG(a)y1 . Since Yy is independent of a and

z , we are done.

LEMMA 1.6. Let (G,W) and (H,U) be extensions of (F,V)
such that (G,W) is an admissible extension of (F,V) and W U =V .
Define V' = WU U and for each a € L. let F'(a) be the least

equivalence relation on V' which includes G(a) and H(a) . Then

(F',V') 1is a w-representation of L . (F',V') 1is an admissible
extension of (H,U) and is an extension of (G,W). Further, if (H,U0) is
“also an admissible extension of (F,V), then (F',V') is an admissible

extension of (F,V).

LEMMA 1.7. If (G,W) and (F,V) are w-representations of L
and (G,W) is an admissible extension of (F,V) and L* C L then
(GllL*,W) is an admissible extension of (FllL*,v) .

Proof: Immediate.

LEMMA 1.8, Let (G,W) and (F,V) be w~-representations of L
with W v = g. Then they have a common admissible extension.
Proof: Let U=WUV. If a€L and a# 0 let H(a) be the least
equivalence relation on W U V extending both F(a) and G(a) . Lgt

H(0) be the universal relation on U . Since

(x) (xH(a VD) y«>a=Db=0<+«*xH(ad)y & xH(b)Y},

aw Yy

(H,U) is a w-representation of L and by construction it is an extension




<< (F.
. i,

of both (G,W) and (F,V) . Since (x) (Y)EV (xH(a)y » a = 0) it

€w\v

follows that (H,U) is an admissible extension of (F,V). Similarly

for (G ’ w) .

§2. Representation of a countable lattice by an array of w—repreéentations
of finite sublattices. Say we are given a countable upper semilattice
with zero (Lmrf); we may suppose it has a greatest element, otherwise

v , _ <.
we add cne. Then (Lm,i = limi+w (Li,i where <(Li,_). i<w?> is
an ascending sequence of finite lattices each with the same 0 and 1,

such that "join" in 1Li+l,5) extends "join" in (Li,§ .

In this section we show how to build an array
Yt Oy =i<w >, ..., <L

'U.‘

i,0 Y &(k) S i<w>, ...>,

0 FooxViLk

where £2(0) =0 and £(k) = £(k + 1) for all k ,.satisfying the

following conditions:

{Cl) For each j the sequence < (F ) 2 £(j) Sk <w> is

P |
k,3' “k.j

almost a sequential representation of (Lj,f) meaning that
there is a strictly increasing sequence £{3j) = n{0) < n(l)< ...

such that <(F ) : k <w> is a sequential

n(k),3° Pnik) .3

representation of (Lj,f) and,for all k,

n(k) S & <nlk+ 1) > (Fy o0 Uy )= (F o0 o0 Uy g)

(C2) For each pair <i, j + 1> such that i > £(3 + 1) and i,j < w,

and fof each ¢ ¢ L, ,

for all wu,v, in Ui,j+1 3

U .

>
i,j Ui,j+1 & uF

<>
i3+l (c) v UFi,j(C) v .




(c3) Each column is recursive, i.e. for each j there is a bijection

g from U{Ui P £(3) = i < w} onto w such that
R r

<g (U,

1+8(j),j) : 1 <w> is a strongly r.e. sequence of finite

sets, and g_l(x) F (c)g—l(z) is a recursive predicate

Y"'g(j)rj
of x,y and =z for each c¢ € Lj .

Assume the columns of the array before the kth have already
been constructed so that Cl, C2 and C3 are satisfied and so that for
n=%k -1 the nth column has the following embedding property with
respect to L_ . If i = ¢y, (F,V) C (Fi'n, Ui'n), and (G,W)

is an admissible extension of (F,V) then there exists j > i and

an embedding of (G,W) in (F ) which is the identity on

. s U,
Jj.n Jn )
(F,V). The commutative Diagram 1 illustrates the embedding property.

In the diagram C signifies an injection and = signifies an

embedding .
; .
(F, V) - Y(E; U )
a = |
d |
o i
1 I
s |
S |
i ]
b |
1 |
S ~ v
(GW) — —— = ——— -~ 9> (Fj'n, Uj'n)

Diagram 1




10.

Now we shall show how to effectively construct the kth

column such that Cl, €2 and C3 remain satisfied, and the kth column

-

has the embedding property with respect to Lk

We shall only treat the case k > 0; the modifications required
when k = 0 will be readily apparent.

We first show how to obtain ( The commutative

Fom.x' Y200 .

Diagram 2 reflects the arqgument. Let (G,W) be a w-representation

(G.W)r (F g (k-1) k-1 U2 (k-1) ,k-1]
e a |
S d
c t cfj m
S =1 i
i 5
c 8
N i
. b
o 1
J, n c v e

admissible

1N

(F', U") ?(FO,UO) = (Fs(k)' U&(k))

expansion

Diagram 2




g
b
&
i
]
|3
i
!
4
4
£
L
&
‘

11.

of L. such that W N U By Lemma 1.8, we can find

L(k-1) k-1 - ¥ -

(H,U) an admissible extension of both )

(Fy e-1) k=1" 8 (k-1) k-1
and (G”Lk_l' W) . By the induction hypothesis there is an embedding

of (H,U0) in (F k-l)' for some 3j > £(k-1), which is the

j,k-1' Y3,

identity on U Let (F', uU') be the copy of (G"Lk—l' W)

£{k~1) ,k-1"

within ) . Expand it to (FO, Uo) a w-representation

Fyx-1 95,51

of L . Then take (Fo, UO) as ) .

U
K Fem) k' “E(k) ,k
We now proceed with the general step in the construction of

U

th . -
. 4 F
the k~ column; by convention we write an Un for nk’ Yn,k

regspectively. So suppose we have (F,V) C (Fn' Un) and (G,W) an
admissible extension of (F,V), where without loss of generality we
can assume W u = V . To follow the argument the reader should
look at the commutative Diagram 3. Let (H,U) be obtained from
(Fn, Un) following the procedures of theorem 1.3, such that (H,U)

is a suitable successor for (F, Un) in a sequential




E
e
h o b
c ; admissible
(F,V)—> (F 0 )—— (H,0)
a a a
d d d
m m m
i i i
cCls < s €l s
s s s
i i i
b b b
1 1 1
e e e
v ¢ ¥ ¢ ¥ c - v
(G,W)-—"’(F',V')-—-——-)(F”,V")-——-—-—-—)(F"ﬂLk_l,V")“"“)(Fj x-1"94 x-1)
admissible restriction ' ~ Js
>~ C
4 .
0 0., expansion .
- Vlll
(Fj’k,Uj 'k) (F,U )% T (F ' )

sl

12.

Y
’(Fn,k-l'Un,k—l

Diagram 3
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representation of Lk . By lemmas 1.4 and 1.5, (H,U) is an admissible

extension of (Fn, Un) where without loss of generality we can assume
WNU=V . By lemmas 1.6 we form (F',V') a common extension of
(Fn’Un) and (G,W) with V' = U U W; from lemma 1.6, (F',V') is an
admissible extension of (Fn,Un). Applying lemma 1.6 again to (H,U)
and (F',V') seen as admissible extensions of (Fn,Un) we obtain
(F",V"), a common extension of (H,U) and (F',V'). Further (F",V")
will be an admissible extension of (Fn,Un). by the last sentence of
lemma 1.6. Now by lemma 1.7, (F"HLk_l,V“) is an admissible extension
of (Fn"Lk-l’Un)' Also by the induction hypothesis (C2) we have

(FnHLk_l,Un) C (F ). Since by assumption the (k - 1)-th

n,k-1""n, k-1

row has the embedding property we can find j > n and an embedding of

(F"”Lk_lrv") in (P ) which is the identity on U . Let

3,k=-1"93,k-1
(F"',V"') be the corresponding copy of (F"Hkal,V") in (Fj k~l'Uj k-1
I ’

Expand (F"',V"') to (Fo,vo) a w-representation of Lk' such that
there is an isomorphism of (F",V") onto (FO,VO) which is the identity

on Un . Extend the k~th column by letting ) be (FOIVO)

F U.
(Fyx'Y4,%

énd letting (F, ) be (Fn,Un) for each i, n'< i < 3. Notice

i,x'Yi,x

that (FO,VO) is a suitable successor of (Fn,Un) in a sequential

representation of L because there is an embedding of (H,U) in

k
(Fo,vo) which is the identity on Un . Further there is clearly an
embedding of (G,W) in (F°,v’) which is the identity on V .

We have shown how to ensure that the kth column has the
embedding property with respect to (F,V), (Fn,k'Un,k)’ and (G,W) and we

have extended the kth column by a finite number of rows in the process.
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If (F*,v*) C (F k) and (G*,W*) is an admissible extension of

n,k'Un,
(F*,v*)}, then (F*,V*) C (Fj ), whence by further extending the

kth column we can satisfy the embedding property with respect to

U.
k' 3.k

(F*,v¥), (Fn k’Un k), and (G*,W*). Since infinitely many stages are
I I .
available it is easy to ensure that the kth column when completed

satisfies the embedding property completely.

§3. The trees corresponding to sequential representations. This
section is concerned with the concept of tree and related definitions.
Again all of this is contained, implicitly or explicitly,in Lerman [1}.
Let <(Fi,Ui) : i < w > be a sequential representation of a finite
lattice (L,=), where Ui Cw for i< w . Further let

<(Fi’ui) : 1 < w> be recursive in the sense that,for each ¢ € L,
xFi(c)y is a recursive predicate of x , i and y , and the cardinality
of Ui is a recursive function of i . Relative to this representation,
a tree is a pair < ¢, n> where n 1is a strictly increasing recﬁrsive
function, n(0) = 0 and ¢ is a 2-ary recursive partial function such

that,for all 1i,3j,k.,
NE) €3 <N+ 1) + [d(k,§) is defined +> k € U}

,k,il

and , for all ko 1

kok, €U > (B (N{) = § <nd + 1) Adlky,J) # ¢ 3.

] E'Q w is on T if there exists 6 € “ w called the signature of ¥

such that, for all 1,3 ,
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ni) £ j <nd +1) >y¢@E) =¢0H),]) .

7 (T) denotes the set of all such ¢ . We say o0 € o ison T if

<
there exists 6 ¢ ~ ¥ called the signature of ¢ such that £h(0) =

n(fh(d)) and

n(i) =3 <n@d +1) +0a(3) = ¢(0(1),3)

<w

g (T) denotes the set of all such O .

Let <« denote the lexicographical order of signatures,i.e.

8« 6" if and only if
(06 =0") v (B1)(6(1) < 0'(d) A (i* < 1)(B(i") = 68'(1))).

Let wo; wl € J(1) and 60, 61 be the respective signatures of wO' wl .

Let ¢ € L . We say wo and wl are equiQalent‘mod c , written

1

L 3 . » < . P
wO o ¢l (mod ¢), if 90(1) Fi(c) 61(1) for all i < w If
T* = < ¢*. N* > and T = < ¢, n > are trees relative to the same

representation then T* 1is an acceptable subtree of T if

rng(N*) < rng(n), 4 (T*) < J(T), and for all c, wo, wl € F(T*) +
(wo g wl (mod ¢) «r wo =p wl (mod c¢)). From the form of the
definition the notion of being an acceptable subtree is transitive.
<
Let T=<¢, n> beatree,0 €J 2(T) , and £h(0) = n(m).

(o o Y (] 0 .
Then T  is to be the unique tree (¢ , N°) such that n (i) =n(m + i)
for all i >0, ¢°(k,3) =0(3) if k €U, and j <n(m and ¢°(k,3) =
${k,3) whenever Jj = n(m) and ¢c(k,j) is defined. We may observe

that T° is an acceptable subtree of T . Let Ve by € 7%, 0, 8,
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be the respective signatures of wo'wl in T , and eg, 67 be the

regpective signatures of 'wo'wl in 1° . Then 8 |m =6 |m ,
g,. . . ag,. . .
61(1) s 90(1 +m for i <w, and 01(1) = 61(1 +m) for i<w.

Now,for each c € L,wo ET ¢1 (mod c) +* (i) (eo(i) Fi(C) Bl(i)) >

. Py . . o,. ag,.
(1)i > m (90(1) Fi(c) 61(1)) > (i) (60(1) Fi + m(c) 91(1)) hig

(1) (85 (1) F,(0) 8](1) < Y sToq;

1 (mod c¢), where the next to last

equivalence follows from (F, U, ) being an extension of
i+m i+m

(F.,0,).
i'7i
et y be on the tree T =< ¢, n>. For c € L define

v,

p, o to be the member of 4 (T) equivalent to Y (mod c) whose
’

signature *GT c is least possible with respect to <« .
’
The following lemmas are due to Lerman. The proofs of
lemmas 3.2 and 3.3 are defexred until section 5. The trees and
subtrees are of course all relative to the same sequential representation

of L , say <<Fi,Ui> s 1 <w >

LEMMA 3.1. If T is an acceptable subtree of: TO. then

given c € L there exist i and 3j such that ¥ = {il(y_ ) and
IOIC T,c
¥ = {31y ) for all ¢ € J(T) .

T,c
! 0,c

Note. We use interchangeably the notations {e}w and {e}l(y) , where
e €w and P € Yo ; {e}w(n) and {e}l(¥,n) will then also be

alternate notations.

Proof. ¥ and wT c are equivalent mod ¢ in T . Hence { and WT c
14 4
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are equivalent mod ¢ in T by the definition of acceptable subtree.

0]

= when is recursive in . Since
Thus wTO,C (wT,c)To,c hence wTO,C wT,c

the procedure is uniform there thus exists i such that wT c
r

= {i}, ).
0 T,c

Conversely, given wT c we can effectively compute Y* on T
Ol
such that yY* is equivalent to WT c Wdc on TO » and such that
. o’

P* is least possible with respect to < on T . Two points are

important here: Firstly, ET wT c {mod ¢) which means that some
o "o :

possibility for Y* exists. Secondly,

V* =L Uy (med @) «x (1) (8%(i) File) 8, . (1))

o 0 o'

where 06* and 6 are the respective signatures of P* and

T wT <

0'C 0

on T0 . This means that there is a least such Y* which can be

effectively computed from . Now y* = ¢ (mod ¢) since
T ,C T
0 0
equivalence mod ¢ is transitive. Since T is an acceptable subtree of

Tgr Y* Sq¥mod c) which means Y, = (Y*), . Thus Y, is

T,c T,c

recursive in Y* and hence in WT c Again the procedure is
OI

uniform and thus there exists j such that Y = {3}y ) .
T,c Torc
LEMMA 3.2, If T 1is a tree, b $c in L, and e €uw,

then there is an acceptable subtree T0 of T such that, for any

vegy, y # lebuy )

LEMMA 3.3. If TO is a tree and e € w , there exists an

acceptable subtree T of TO and a &€ L such that either, for all
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Y € J(T):{e}w is total and {e]*kp has the same degree as MT
{e}w is total for no Y € J(T) .

§4. Proof of the embedding theorem. Let a j-tree be a tree in the

3

0), (Fg,Ui), ..., where this is the sequential

sense of (F%,U
representation of Lj obtained from the jth-column of the array by
deleting repetitions.

LEMMA 4.1. Given a k-tree To = < ¢0, no > there exists a

tk + 1)-tree T = < ¢,n > such that JF(T) an(TO) and for each c € L

there exist i, j € w such that if Y € J(T) then wT = {i} (g )
O,C T,c
and wT,c = {3}(wT ,c) .
0
Proof., BSay <(Fi’ui) : 0<i<w> and <(Gi,Wi) : 0<i<w?> are
respectively the sequential representations of Lk and Lk +1

obtained from the kth and (k + 1l)~th column of the array (the

representations have been renamed here). It m{-1) = ¢ . For i=0
denote by m(i) the first index greater than m(i - 1) such that-

, (c) v

W. €U ,,. . Then for all u, v € wi and ¢ € L (i)

x ' uFm

uGi(c)v . When building the i-th node of T we let n(i + 1) = no(m(i)+1).

If si{t) is the least element of Ui' where n(i) < t < n(i+l), then we

define ¢ (£,t) = ¢0(s(t),t) when n(i) = t < no(m(i)) and £ € W,, and

i
p(L,t) = ¢0(8,t) when no(m(i)) St<n{i+1) = no(m(i) +1).

Note that if Y, ¥, €J(T), c €L and if 6, and eg (i< 2)

K

are the respective signatures of wi(i <2 on T and TO we have,for
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each i ¢ w, Go(i) Gi(c) Ql(i) « 68 (m(1)) F (c) 92 (m(i)). Using

m(i)

this we can complete the proof by imitating the proof of lemma 3.1.

We are now ready to exhibit an embedding of Lm as an

initial segment of the degrees. 1In order to do this we shall construct

. such that, for each i, Tl is

¢+ T ., T,, T

]
a sequence of trees T0 o 1 1’

an acceptable subtree of T., T, and T, are i-trees and T,
: i i i i+l

L]
comes from Tl by the canonical method for passing from an i-tree to an

(i + 1)~tree which is provided by Lemma 4.1. The sequence will further
be such if ¥ €N {JWTi) : i < w} then the map ¢ + deg (WT G isan
jl

embedding of the desired kind, where for any c¢ ¢ Lw = U{Li : i < w}

we suppose j to be the least number such that c € Lj' For any

. Note that if a=b Ve in L

P eF(Tj) let Y, be ¥ "

Tj,C
then deg(y ) = deg(y) v deg(y_) for any EJ'MH) where a,b,c € L -

] ] [ .
Indeed let wa' wb' wc denote and let

T ,a' wT.,b' wT.,c'
;| j 3
1

1 [ ]
0, Sa, 0 Gc be the respective signatures of Y, wa' P, wc on Tj .

bl
Now Ga(i) = uk[kGi(a) 8(i)] and similarly for b and c ; where

<(Gi,Wi) : 0 1i<w?> is the sequential representation of Lj . Hence

Ga(i) = Uk{k Gi(b) B(i) & k Gi(c) 8(i)]1 = ukik Gi(b) Bb(i) & k Gi(c) ec(i)].

Thus §_ is recursive in {W;,wé}. Conversely eb(i) = uklk G, (p) f(i)] =

vk ik Gi(b) 9a(i)] since Ga(i) Gi(a) B8(i) implies Qa(i) Gi(b) 8(i) .

v [ 1] 1
Hence wb is recursive in wa and similarly wc is recursive in wa .
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Thus using Lemmas 3.1 and 4.1 we obtain deg(wa) = deg(¢b) \ deg(¢c) .
In particular if b = ¢ we have deg(wb) > deg(wc) .
Consider w U {< e,b,c > : e € W, b,c € L, b # c} and suppose

Qci : i <w > is an enumeration of this set such that if

61 = < e,b,c > then b,c are both in Li . Now if (}i = e we choose

. ]
Ti according to Lemma 3.3 such that, for all ¥ € JYTl), {e}w is

either not total or has the same degree as wa for some a € Li .
Ifai = < e,b,c > it is a consequence of Lemmas 3.1 and 4.1 that, for

all ¢ ¢ JlTi), wb is uniformly recursive in and wT is

Ti’b i,c

uniformly recursive in wc . Hence there exists e' such that, for

: ¥
a1l ¢ €J(r), ¥ _ = {e} P implies Y, _ = {e' '}y ). Thus we

Ti' Ti'b

apply Lemma 3.2 to Ti, using e' instead of e to obtain Tl . This
‘ ' wb
step ensures that,for all ¥ €.7(Ti), wc # {e} ¥ . Now the proof will be

over as soon as we see that {JTTi) : i <w> is not empty. But

JXTO) can be regarded as a product of countably many finite sets of
integers, and if we give each of these finite set the discrete topology
then JTTO) is compact. But by construction each JXTi) is a closed

subget of 31T0) : thus fl {JﬂTi) ci<wl #¢.

§5. We now attend to the lemmas left without proof in the previous
sections.

Proof of Lemma 1.4. The first case is when (G,W) is an extension
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of type I of (F,V). Say W\V = {VO' V.o v2} and (G,W) is obtained

1l

from uyr Uy €V and a,b,c € L, by the construction specified in the

proof of Theorem 1.3 for the satisfaction of 1.1. 1If vOG(e)z for

z € V, e € L, then it must be that e < a : thus v G(e)u

o 0 and we can

take u0 for y in the definition of admissible extension. Similarly

for v2 . Now if le(e)z it must be that e < a and e =b and

thus le(e)uO: we then take u, for vy .

0]
The second case is when  (G,W) is an extension of type 11 of
(F,V) ; we use the notation of the final part of the proof of theorem

1.3, except that (G,wW), (F,V) and V3 (j < 2) replace (Fi+l' U, ..).,

i+l

(Fi'Ui) and Ui (j < 2) respectively. Remember that W=V U vo U vl and

that u., u

0 ' v

y V. € V satisfy

1 0 1

uOF(c)u1 > VOF(c)vl, c €L .

Note that the following implications hold: if a € L .
0
((x €V & xG(a)z & =z € V) ~+ zG(a)vO]
l .
[(x €V & xG(a)z & z € V) + zG(a)vll .

Thus in the first case pick v for y in the definition of admissible

0
extension; in the second case pick v1 .
Proof of Lemma 1.6. We first show (F',V') 1is a w-representation of L .
Say a,b €L, x,y € V', a<b and xF'(bly . Since G(a) = G(b) and
H(a) < H(b), we also obtain F'(a) = F'(b). We now have to show if

a,b €L, x,y € V' then x (F'(a) & F'(b))y implies x F'(a V bly .

The only non-trivial case is when x € W\V and y € U\V . We then
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know there exist 2z _,=z

0'%1 € V such that (x G(a)z0 and zOH(a)y) and

(xG(b)zl and le(b)y). Since (G,W) is an admissible extension of
(F,V) we can find =z € V such that xG{a)z and xG(b)z : thus
x F'(a V b)y. By a similar argument we can show (F',V') 4is an
admissible extension of (H,U); that it is an extension of (G,W)‘ is

clear. The last part of the lemma is also immediate from lemma 1.5.

Proof of Lemma 3.2. Let e be fixed. It will be sufficient to show

that there exists 0 € ng(T) such that for any 1y € F(TU),

Yp,c # {e}(wT,b)'

Remember that << Fi, Ui > :+ i <w> 1is the sequential
representation of I we congider. Since FO is a join embedding of

(L,=) in (6H%Q,E there exist m,n € U such that m Fo(b)n but

0
< ,
not m Fo(c)n . Let T, T' € J'w(T) be chosen such that their

signatures are < m >, < n > respectively. Then T and T' are

eguivalent mod b but not mod ¢ in T and we have T = T' and
, T,b T,b

‘ , - . < . 1 3 .
Tr,e ¥ Tp,c + Choose 3 <n (1) such that T, (3} #7T'p .(3)

If there is no ¥ 2 T on T such that {e}(wT b,j) is defined, let
' - ’

<w -
O = T . Otherwise there exists p €S w(T) such that p 2 T and
{e}(pT,b'J) is defined. If {e}(pT’b,J) # TT,c(J) let 6 =p.
1f {e}(DT’b,J) =Ty (), let O(k) =T'(k) for k <7 (1) and
O(k) = p(k) for k=1 (1). 1In either case we have ensured that
{e}(oT p'}) is defined and # 0 (j). Thus the same will be true
- r 1

when ¢ 1is replaced by any ¢ E'J(TO) .
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The rest of this section is devoted to the proof of Lemma 3.3.

Suppose that there exists ¢ on T0 and k € w such that

{e}w(k) is not defined for any Yy on Ty ¢y 2 0. Then we may take T
to be Tg . Thus suppose that for every ¢ on T0 and k € w ‘there

exists Y 2 0 such that {e}w(k) ~is defined. We may construct an

acceptable subtree T of T, , such that for all § on T {e}w is

0
total, as follows. Suppose n|(i+l) has been defined and that ¢(k,J)

has been defined for all k,j satisfying

(Bi* < i) IN@") = j<n@i' +1)ske€eu,,l.

il

Let ©,,0 be an enumeration of the strings on T of length

0% -1

<
Y let o “~B denote the string obtained by the

ni) . For o, B €

concatenation of B to the right of o . We can choose T.,T,,...T
4

4] m—-1

in turn such that Gj"‘TO ~ ... "Tj is on T0 and

{e}(o,. ~T. ~... ~7T.,i
( 3 0 j )

ig defined for each j <m . Let 1T = TO ~ ... ,\Tm—l . Let n{i + 1) =
no(i* + 1) where i* is the least number such that n¢i) + &h(T) =
nO(i*) . If n{i) =3 < no(i*) and k € U.l , define ¢(k,3j) = T(3 - n(i)).

If ny(i*) S 3 <ng(i* + 1) and k € U, define ¢(k,3) = ¢5(k,3) . This

completes the induction step in the definition of T . It is easy to

check that n and ¢ and recursive and that T is an acceptable subtree

of T, . For any ¥ € 4(T) there exists j < m such that 9 c ¢,
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whence Gj" 1 € ¥ , whence {e}w(i) is defined from the way in which

we constructed the ith node.

Thus without loss of generality we may suppose that, for all

Y E.?(TO) p {e}w is total. We make this assumption below.
Let S(TO) consist of all b € L which satisfy

1",0 l"Jl
() (b)) (hgr¥y € TAT) & ¥ =g ¥y (mod b1~ {ef 7 = (e} )

Without loss of generality suppose that S('I‘O)'= S(Tg) for all

by T0 for some G € J ()

0 0 0

<
o €% ). Otherwise replace T,

such that S(Tg) is maximal with respect to inclusion.

LEMMA 5.1. If a,b, € S(TO) and a Ab=c¢ then c € S(TO).
Proof. This is where we use clause 1.1 of the definition of sequential
representation. For proof by contradiction suppose a A b =c¢, a and

b are in S(TO) and c f S(TO). Choose any O € J<w(T0) such that
th(c) > 0. Then ¢ £ S(Tg) since S(TO) = S(Tg) . Therefore there

ist ¢, V. €T(T) htht{}woi‘{}wl d Y, 50 ¢, (mod c)
exis o' Y1 o) suc a e e an Q‘"To 1 c).

0 0°’T

Since T0 is an acceptable subtree of T we have Y = wl {mod c).
’ 0

Since there must exist k € @ such that {e} 0(k) and {e} 1(k) are
defined and distinct, we can suppose that wo and wl agree except
at a finite number of nodes. By interpolation we can suppose that

wo .and W1 differ Qn exactly one node, say the (i + l)th noée

[no(i + l),’no(i + 2)). ({(Note that wo and wl cannot differ on the
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0th node of TO because £h(0) > 0 and wo and wl are both on

Tg). Let 90 and Bl be the respective signature of wo and wl on

0 T wl (mod c). Let

T0 . Then Bo(i + l)Fi +r1(c) Gl(i + 1) since VY o

[ﬂo(i + 1), ﬂo(i + 2)) be the h-th node of 2 ; then by the definition

0

of T we see that Go(i + 1), Gl(i + 1) are elements of U Since

0 h °

th(o) >0, h=4i and hence Uh c Ui . It follows that 90(1 +1),

91(1 + 1) are elements of Ui and since (F ) extends (Fi'ui)

i+17%541

we have 60(1 + 1) Fi(C) 61(1 + 1) . From 1,1 there exist kO'kl'kz € Ui+1

such that 6,(i + 1) F, ., 1@ kg F, (®) k) F,  ,(a) k, F 1 @) 8, (i +1).

071+ 1 i+

For each j < 3 let ¢j be the member of JKTO) whose

signature 63 agrees with 60 and Bl except at 1 + 1 and satisfies

Gj(l +1) = kj . Then wo ET ¢O and ¢l Zp ¢q (mod a) and ¢2 =g ¢1

0 0 3
- . Yo 0
¢, =, ¥, (mod b). Since a,b € S(T,) we deduce that {e} ~ = {e}
2 Al 0

and

@72 2, 10" - @', @ 2 @ 1 sotiows that (00 = (o
contradiction.

From the lemma just proved it follows that S(TO) has a least
member, i.e. least in the sense of (L,S). Below ¢ denotes the least

plember of S(TO). Since c € S(TO), if wo ET 7

(mod c) for wo,
0

1
0 lj)l y
¢1 € JKTO), then {e} ~ = {e} ~. Therefore € J(TO) +

deg({e}w) =< deg (¥ ) because P =_ (mod ¢). We now prove
T.,C T T.,cC
‘ 0 0o 0
LEMMA 5.2. There exists an acceptable subtree T of TO such

that ¢ € (1) » deg(y, ) = deg({e}V).
0'
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Proof. This is where we use clause 1.2 of the definition of sequential
representation. For induction suppose n](i + 1) has been defined and
that ¢(k,j) has been defined for each pair < k,j > satisfying

(Eh < i)(nth) = j <n(h + 1) & k € Uh). Suppose that the definition

of acceptable subtree has been satisfied so far,i.e.
(i) Rag(|(i + 1)) < Rng N,

(ii) if o, O

o' 01 are strings of T of length n(i) then

0., O. are strings on T, and,for each b € L,

0’ 1 0

00 :TO ol (mod b) < 00 =n 01 (mod b).

Suppose further that an effective method of computing wT C‘n(i) froﬁ
r

k >3

{e}w for each ¥ on T has already been given. Let {<0_, k. _,
s O,s 1,s

' <
s < t} be an enumeration of all triples satisfying: O € J'M(T),

) = n(i .
h(ds) n(i), kO,s and kl,s are members of Ui and not ko,s Ei(c)kl,s

.t .
We construct the 1 h node inn t stages numbered 0,1,...,t-1l. Let

n(i) = no(i*). Let

f”¢0(k, x + n(i)) if x < no(i* + 1) - n{i) ,

TO,k(x) = ? undefined otherwise

~.

for k € Ui.v Immediately prior to stage s we shall have defined

strings T_ ., k € U, s all of the same length such that o, NNT

s,k s,k

is on T0 for each u < t and k € Ui . Further for each a € L we

shall have

g T = g ~T
u s,k T. u s

{mod a) <> k F.(a)m for u < t and k,m € U, .
0 Im 1 i
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(This means that we have not yet violated the condition corresponding to

ii) above for node i + 1 ). o1
(ii) o o , of T) We shall choose TS + 1,k s,k

for k € Ui . After all the stages s, s < t, we shall let n(i + 1)

be the common length of all the strings Gu f\Tt " and we shall define
L4

¢(k,j) = (3 - n(i)) for all k €U, and j in n(i) < j < (i +1).

Ttk
Thus the strings on T of length n(i + 1) will be just all those of

the form Uurﬂ T . Our aim in defining T for k € Ui is to

t,k s+l,k

code in {e}w for ¥y on T an effective way of distinguishing

between Y's which extend Os ~T and Y's which extend

s + 1, kO,s

g ~T
s s + 1, kl,s

Stage s. To simplify the notation we write G, kO and k1 for os' ko s
’

and k . Let Oo~T , O ~NT be denoted T and T
1l,s s,ko s,kl

respectively. Assume £h(T) > 0; this requires a trivial modification

, . . : : , h
of the construction when i = 0, i.e. when we are constructing the Ot

node of T . Let b be the greatest element of L such that koFi(b)kl.

Notice that ¢ Z b , whence b £ S(To). We can now find effectively

<
T, T, and k' such that T ~T, T~T, fJ-‘*’(TOT), th(t,) = ¢n(1 ),

o' "1 0
{e}(t ~T., k') and {e}(T ~7T,, k') are both defined and different,
0 1

and T "TO :TO T ,\Tl

differ only in the (p + 1)-th node of T

(mod b). Further we may suppose T T, and

T~T, 0 by‘interpolation.

Let T"TO, T "\Tl

on the (p + l)-th node of Toi then 9 Fp + 1(b)q1 . Thus, for all a € L,

agree with A =x ¢0(q0,x), A x ¢0(ql,x) respectively

, . .
? k0 Fp + 1(a)k1 + q, Fp + 1(a)ql. Now 1 < p whence ko, kl € Up '

and £h(T) > 0 whence 94y’ 94 € UP. Since (Fp 1’ UP + l) 2 (Fp, Up)'
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for all a € L, we have k . . i
a o Fp(a)kl > 9, Fp(a)ql By 1.2 there exist

, U ) such that

ings h_, h, : (P
embeddings o’ My ( o’ UP) > (Fp s1' %1

= = = j <
9, ho(ko), ho(kl) hl(ko), hl(kl) d; - For j 2 and r < 2

let T ’\TJ
r

J

be the same as T f\Tr except that T r\Tr is to agree

with A x ¢0(hj(kr),x) on the (p + 1)~th node of T We may suppose

o0
that {e}(T f\Ti,k') is defined for each j < 2 and r < 2 ; otherwise

we may extend each of TO and Tl in exactly the same way until this

supposition is justified. From the equations above we have

o 0 1 1
Tr'\To = T»-\To, Tr\"rl = Tr'\To, T’\Tl = T'\Tl . Also, as we have

noted above, {el}(t f\To, k') and {el}(t f\Tl, k') are defined and

different.

It follows at once that for some j < 2,

{e}(t ’\Tg, k') and {el}(t '\Ti, k') are defined and differernt.

Fix such a - j . We may suppose that {e}(T'f\Tg, k') is defined for

r < 2 . We now define Ts for k € Ui .

+ 1,k

~— J ) 1 J 1] 1 =
case 1. {el}(t YTy k") # {e}(t T3, k'). Then let T_ 1.k

T NT

J
s,k 1 for all k € Ui .

Case 2. Otherwise. Then let T be the string on T, which is

s + 1,k 0

~ ~
exactly the same as Ts,k TO (and Ts,k Tl) except that on the

(p + 1)-th node of T

o it is to agree with A x ¢o(hj(k),x). In this

vay Tg 4 1,k is fixed for all k ¢ Ui . Note that in every case

. k') and {el(oc~T , k') are defined and

{el(g~1
s + 1,k s+ 1,k

T (mod a) **

[ . 11 ~ =
unequal Further we sha have Uu Ts + 1,k To Uu s + 1,m
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k Fi(a)m for all a € L, u<t and k, m € U, - This completes stage
s and the construction of T . Recall that after the last stage, namely
stage t - 1, we define nN(i + 1) to be the common length of all the

strings o, T and let o¢(k,j) =T

t,k jJ - n(i) for all k € qi

t,k
and j in n(i) 3§ < n(i + 1).

How do we compute wT,c from {e}w for Y €J(T)? For
induction we may suppose that we have already computed wT,c n(i) . Let
k be the unique member in v, such that VY agrees with A x ¢(k,x) in
[nti), n(i + 1)); it suffices to compute k mod Fi(c). Recall from the
definition of o that if ¥ € (T), T € 7 (1), {e} (k') is defined, and

k in

Y extends T mod ¢ in T , then {e}w(k') = {e}r(k'). For any k.,
0 1

Ui which are inequivalent mod Fi(c) we can find s such that

< > = <
Us, kO,S' k Y

l,S n(l)l k

> ;
T, 0 kl . Suppose that k ¢ {ko, kl}

i ~~ ~ » T .
then VY extends either os TS + 1'ko or o Ts + 1'k1 mod ¢ on

Thus by looking through the construction of T to stage s of the
formation of node i , and by comparing {e}w(k') with

{e}(cs ~T k') and {e}(os-’*T , k') we can tell

s + l,ko' s + 1Ikl

whether k = k., or k = k., . By looking at all pairs k

0 1 K

0 1

inequivalent mod Fi {(c) we can thus compute k mod Fi(c) from {e}w.
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