SIMULATCORE MERSUREMENT OF
THE WORK OF BREATHING

FOR UNDEEWATER BREATHING APPAEKATUS
. by

Durcan Mcir Milne

B.Sc. Marire Science
Stockton State College, New Jersey, 1973

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE (KINESIOLOGY)
in the Department
of

Kinesiology

(:) DUNCAN MOIR MILNE 1977
SIMON FRASER UNIVERSITY

December, 1977

All rights reserved. This thesis may not be reprcduced
in whole or ir part, by photocopy or cther means,

without permission of the author.



ii

AFPROVAL
NAME: Duncan Moir Miln-:
DFGRFE: Master of S5Science (Kiu-sioloygy)

TITLE OF THESIS: Respiration Simulator Measurem-n*

of ths Work of Breathing for

Und2rwater Breathiny Apparatus

EXAMINING COMMITTEE:

Chairman: Dr. E. W. Banister

Dr. J. B. #Horrison
Senier Suporvisor

br. T. W. cCalvert

Dr. A. E. CThapmaty
Ext 2rnal Examin=r
Prof2ssor
Simcn Fraser Univarsity

Dat= Approv-4d: \/M /,7 /77§

- - . am S A o e e -



PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right fo lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from tThe
library of any other university, or ofther educational institution, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. |t is understood that copying
or publication of this work for financial gain shall not be ailowed

without my wriftten permission.

Title of Thesis/Project/Extended Essay

Simulator Measurement of the Work of Breathing

for Underwater Breathing Apparatus

Author:

{(signature)

Duncan Moir Milne

(name)

17 January 1978

{(date)



iii
ABSTRACT

In the design of diving equipment, one of the most
important considerations is the underwater br=2athing
apparatus. The need tor revision of the existing operating
standards of breathing resistance for this apparatus is a
topic under current discussion., Orne suggested, but not
established standard for respiratory devices recommended that
the ratio between work of breathing for the apparatus
(kg.m./min.) arnd minute volume (liters/min.) should not

excead one-eighth,

Measurement of the work of breathing for underwat=r
breathing apparatus using a respiration simulator permits
evaluation of apparatus performance in teras of
physiologically acceptable respiratory work rates. The
purpose of such measurement is to establish revised limits
for the work of breathing and consequent increase in diver

comfort, performance, and safety in underwater operations.

The ventilatcry power requirements of two open circuit
demand undervater breathing apparatus were calculated using
steady state flovw measurements and dynamic respiratory
simulations at 1 atmosphere, In calculating the work of
5reathing, flow rates were sinusoidal and in the
physiological range of up to 3 liters tidal volume and

30 cycles/min., respiratory frequency. DynAamic resistive
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work of breathing attained valu2ss as high as 18.56 kg.m./@in.
at 95.9 liters/min. ventilation for a mouth-held demand
requlator., A back-mounted demand regulator attained values
as high as 20,22 kg.m./min. at 80.1 liters/min, dynamic

ventilation.

Approximations of the steady-state work of breathing
consistently underestimated the ventilatory reguirements of
the breathing apparatus, apparently as a result of hysterasis
iosses and exhaust bubble formation in the apparatus.
Steady-state flow testing was thus found invalid as a means
of evaluating the work of breathing in underwater breathing

apparatus.,

The difference in hydrostatic pressure between the
diver's lung centroid and the demand regulator diaphragm of
his open circuit breathing equipment (i.=., the ambient
respiratory pressure) was also m2asured for ten divers.
This was done at several swimming orizntations and in a
working positicn using both mouth-held and back-mounted
demand requlators. Mean values of hydrostatic pressure in
swimming were fcund to be of the form 40.0 sin(a-14.5 ) + 4.3
cme H O with a mocuth-held regulator and 27.9 sin(a+33.8 )

+ 2.9 cm. H O with a back-mounted r=gulator, whers "a"
fepresents the orientation of the diver with respect to the

horizontal, (-90. <a<90. ) In the uprighkt working position



the mean values of hydrostatic pressure differasnce w=ar=
24,1 + 3,7 cm. H O with a mouth-held regulator and

24,7 + 2.6 cm. H O with a back-mount=d regulator. t
This data was used to determine the effect of hydrostatic
pressure imbalance on the lnspiratory and expiratory
conponents cf the total work of breathing. Results
indicate that in the worst cases, hydrostatic pressure
imbalance may cause a two to four fold increase in

inspiratory or expiratcry work,

The results of this study support those of c¢ther
investigations, that even at 1 atmosphere some underwater
breathing apparatus presently in use exceed recommended
respiratory power requirements at ventilatory rates

associated with heavy exercise.
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INTRODUCTION

The ability of man to not only survive, but also to
perform useful work in the ocean has become increasingly
important to scientific, military, and economic interasts.
For the working diver, bottom tims, pressure,
thermal-balance, mobility, ard equipment all represent
physiological challenges whose consideration becomes mors and
more important as his task requirements increase. An
understanding of the relationship be*ween these conditions
and the diver is necessary for increased underwater work
capacity. Additional information on energy expenditures of
divers is needed. Ergonometric tests which reproduce real

conditions must therefore be devisad, (Bradley, 1973.)

In the design of the man/machine system, the most
critical of the diver's equipment is the underwater breathing
apparatus, (UBA)., At presant, howaver, the only breathing
rasistance standards in operation for UBA are U.S. Navy peak
inhalation and exhalation pressure limits f5r open circuit
scuba (Reimers, 1973). The potential importance of simulator
m=2asurement of UBA resistance as done in this investigation

is in providing a means for the assessment of existing units



on a physiological basis with possible incorporation into two
long term aims:

1. Increased diver performance through minimization of the
physiological cost of meeting equipment respiratory demand.
2, Establishment of standards of maximum allowable UBA

resistance.

Finally, an increase in general diver comfort will
favorably affect the efficiency of the diver and thus have a

direct bearing on safety in underwater operations.



RELATED LITERATURE

PART I. RECENT DIVING PRACTICE

Ir order to prolong a diver's stay underwater, he must
be supplied with a breathable gas mixture, This can be
furnished remotely from either an underwater habitat or from
the surface via hose, as with helmet diving, but this has the
disadvantages of restricted mobility and the possibility of
the hose fouling on obstructions., A second method, which
supplies air through personally transported cylinders and is
known as self-contained underwater breathing apparatus,
{scuba), may be one of three typss., Open . circuit scuba
supplies gas through a demand valve system and all expired
gas is exhausted into the water. The semi-closed circuit
scuba delivers nitrogen-oxygen or helium-oxygen mix from the
cylinders to a collapsible breathing bag. Exhaled gas passes
through a carbon dioxide scrubber and returns to the
breathing bag for reuse, A purge valve permits excess gas to
escape from the bag to prevent overpressure, The closed
circuit unit, similar to the semi-closed circuit device,
utilizes the oxygen in the breathing gas mixture without
overpressure purge by measuring the exact amount of oxygan
required for make-up. While extending dive time for a given
amount of gas mixture, this requires reliable oxygen sensors

to insure correct composition for a particular depth.



PART II. FACTORS IN DIVER RESPIRATION

Man's functional capacity in th2 hyperbaric environment
is limited by his respiratory system and suppporting
equipment, The amount of physical work =2xpenditure, the
breathing gas density, and the mechanical rasistance imposed
by his breathing apparatus all create respiratory loads that
the diver must be able to sustain., 1Inadequate lunyg
ventilation resulting from the inability to tolerate such
increased loads leads to elevated alveolar C02 and thus
arterial CO2 distubances, (Lanphier, 1969: and Craig, et.al.,

1970.)

Human simulator testing measures "the critical
performance characteristics cf a piece of esguipment over its
entire intended operational envelope," (Reimers, 1973.) UBA
simunlator testing requires detailed information on diver
respiration, particularly ventilation rate, (VE), and tidal
volume, (VT), collected under field conditions for

constructive evaluation.
A, WORK OF BREATHING

The large ventilation required to meet the metabolic

demands of heavy exercisz result in a considerable increase



in th2 work of breathing., The total physical work of
reathing, which includes both tissu= and gas flow
resistance, by resting subjects at 1 ATA is approximately 0.3
kg.m./min., {McIlroy, et.al., 1954: Otis, 1954: and

Hedstrand, 1969.)

The mechanisms which control frequency and tidal volume
with variations in ventilation are not completely clear, but
an optimal frequency of breathing exists for a given rats of
ventilation and is sensitive to external resistances,
(McIlroy, 2t.al., 1954 & 195b: and Crosfill & widdicombe,
1961.) Otis, (1954), suggested that frequency was adjust=d
to minimize the work of breathing, while Mead, (1963), put
forth least average muscle force as the determining factor
for breathing rate, Hey, et.al., (1966), found a linear
r=lationship between VE and VT up to a VT of about half vital
capacity., Further increases in VE were a result of increased
respiratory frequency while VT remained constant. This
"break point" variation in VT has been reported by other
investigators during underwater swimming trials and
hyperbaric chamber tests to 4 ATA, ({(Bradner, 1953: and
Morrison, et.al., 1976.) Tidal volume, {liters), is plotted
as a function of ventilation, (liters/min.), in Fiqure 1 from

Holmgren, et.al., (1973): and Morrison, et.al., (1976.,)



Figure 1 Ventila*ion, (liters/min.), as a
function of tidal volume, (liters), at
1 and 4 ATA breathing air. rom
Holmgren, et.,al., (1973), and
Morrison, et.al., (1976.)
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Elevated end tidal C02 and marked slower and deeper
breathing with long post-inspiratory pauses has been not=d in
trained underwater swimmers when compared to sadentary and
athletic non-divers, (Goff, & Bartlett, 1957: Morrison &
Florio, 1971: and Lally, et.al., 1974.) This has been
suggested as being partially the r=2sult of a significantly
lower oxygen ventilation squivalent, (the ratio of
ventilation to oxygen consumption), in trained subjects,
(Goff & Bartlett, 1957.) No specific advantage has been found
for intermittent negative-pressure breathing, or
"skip-breathing," sometimes performed by divers, (Daigle,

1975.)

Physiological dead space, the vclume of inspiratory air
remaining unmixed in the airways and alveoli, has been found
during heavy exercise to b2 approximately twice resting values
as a result of larger tidal volumes, (Asmussen § Nielsen,
1956: Hedenstierna, 1972: and Sidorenko, 1972.) During
maximal expiratory effort airway resistance also increases
mainly because of the collapsing of larg2 airways due to
elasticity, frictional pressure losses, and Bernoulli effect,
{Clement, et.al,, 1974: and Zamel, =t.al., 1974.) Thus,
beyond a certain point flow becom=2s effort-independent and
additional expiratory effort does not increase expiratory

flow, (Miller, et.al., 1971.)



The breathing cospon=snt of underwater work, the
vantilatory power requirement, is commonly measured in
kg.m./min, The tvo components of this effort result from

external resistance and hydrostatic pressure imbalance,

Computer mcnitoring of the m2chanics of breathing,
including tidal volume, respiratory frequency, and work of
breathing, has been developed by several authors to greatly
facilitate the analysis of pulmonary function, (Fletcher,
et.al., 1966: and Lewis, et.,al., 1966,) Inspiratory and
expiratory phases were separated at points of zero flow.
Digitized flow values were then multiplied by corresponding
differential pressures and the product intregrated to obtain

work,

B. PHYSICAL WORK LOAD

One of several factors affecting diver respiration, and
thus UBA design considerations for breathing gas delivery, is
the amount of work exerted by the diver. Respiratory rate,
amplitude, and minute volume all vary with changes in the
work rate, (Silverman, et.al., 1951.,) Divers wearing lead
soled shoes are usually unable to reach high levels of oxygen
uptake except while working in deep mud, where values of

approximately 2 liters/minute hava been reported, because of
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the r=2latively passive rol2 played by his legs, (Donald &
Davidson, 1954.) The oxygen uptake of 'finned' underwater
sWwimmers, however, attains values of 2.5 to 3.0 liters/min.,
and is representative of levels for othar athletic
activities, (Donald & Davidson, 1954: Carroli, 1370: and

Morrison, 1973.)

While physical work load alone is significant in
affecting diver respiration under optimum conditions in
shallow water, the additional factors discussed in the
following sections are present in increasing amounts with

incr=2asing depth and operating difficult+y,

C. GAS DENSITY

Hith increased barometric pressure respiration at reast
becomes slower and deeper, probably an adaptation to minimize
the increasing work of breathing dense gas., Decreases in
both respiratory minute volume for a given ergonometric
work 1oad and maximum voluntary ventilation have been
reported by several investigators, (Hesser & Holmgren, 1959:
Mais> & Parhi, 1967: Hesser, et.al., 1968:; Bradley, 2t.al,,
1971: Morrison & Florio, 1971: and Schaefer, et.al., 1871.)
Decreasing respiratory rates during rest and moderate

exercise with increasing pressure were also found, (Hesser &
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Holmgren, 1959: Russell, 1971: and Morrison, et.al., 1976.)
Figure 1 illustrates the increas=2d tidal volume, (decreased
raspiratory rate), for a given ventilation at 4 ATA compared
to 1 ATA, (Morrison, =2t.al., 1976.) In trained surface
swimmars, however, increased minute volumes and oxygen uptake
and decreased swimming times were reported with cxy-helium
breathing, (decreased gas density), compared with
oxy-nitrogen or oxy-argon mixtures during maximal

performance, (Kebkalo & Ponomarev, 1971.)

For gas densities less than six, relative to air at 1
ATA, maximum inspiratory and expiratory flow both vary
inversely with approximately the square root of gas density,
primarily due to turbulent flow in the airways, (Buhlmann,
1963: and Wood & Bryan, 1971.) Increased airway resistance
and reduced maximum breathing capacity are also effects of
high pressure caused by the increas2d density of the
breathing gas, (Marshall, =2t.al., 1956: Dougherty &
Schaefer, 1968: Schaefer, =t.al., 1971: and Morrison & Butt,
1972.) High molecular weight gases of equal density have been
found to produce similar respiratory changes, (Lord, et.al.,

13966.)

This progressive increase in expiratory resistance and

decr<zasing maximal expiratory flow with depth, rather than
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the increased oxygen cost of breathing, has been suggested as
the limiting respiratory fac+tor in diving, (Glauser, et.al.,

1967: and Varene, eot.al., 1974.)

Added non-e=lastic breathing resistance has been founrnd teo
result in an increased respiratory cycle time, particularly
for the expiration phase, with accompanying decreased peak
expiratory flow, (Cain & Otis, 1949.) The relatively
shortened inspiratory phase with resulting higher peak
inspiratory flows, may thus cause inspiratory work to be
greater than expiratory work for equal resistances. This is
supported by Silverman's findings, (1951), that exercise
tolerance is less with expiratory resistance than with an
aqual inspiratory resistance, 1In addition, the mechanical
efficiency of extra work is less in expiration than
inspiration and the expiratory reserve volume increases with
increasing resistance, favoring the muscles of expiration,
{Cain & Otis, 1949.,) 1In a study by Campbell, (1957),
unconscious patients made no expiratory =effort with
expiration resistances of 15-20 cm, H20, rather, the depth of
inspiration was increased until the elastic recoil of the

chest and lungs cvercame the added rssistance.
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D. EXTERNAL RESISTANCE

At 1 ATA reduction in work capacity, oxygen consumption,
and pulmonary ventilation with the addition of external
resistance to breathing have been reported by several
investigators, {(Silvermar, et,al., 1951: Cooper, 1960a:
Craig, et.al.) At U ATA Morrison, et.al., (1976), found
lower oxygen uptakes for given work loads while breathing
from UBA than without external breathing resistance. This is
an opposite effect to that resulting from the internally
generated resistance2 of increased gas density described
earlier, and increased oxygen recovery consumption values
have been recorded that may partially =xplain this, (Thompson

& Sharkey, 1966.)

Adaptations to external resistance have been noted by
several authers, (Goff & Bartlett, 1957: Doughterty &
Schaefzsr, 1968: and Watson, 1972.) Maximal tolerable
inhalation resistance has been given as 75 cm. H20, (Freedman
& Campbell, 1970.) Under prolonged conditions, Janney,
{1958) , recommended exhalation and inhalation resistances of

5 cm. H20/(liters/sec) at 1 ATA and twice that at 5 ATA.
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E. ADDITIONAL FACTORS

"There is a tremendous difference betWween a diver in the
(dry) chamber and a diver in water," (Bradley, 1971.) The
cause2s for this are ccld, hydrostatic pressure, wet
immersion, suppecrtive difficulty in jobs r=quiring force
application in an essentially weightless environment, and

psychological factors relevant to environmental hazards.

The first of these, cold, is probably the most important
additional factor. One of the bcdy's responses to excessive
heat loss is an increase in metabolic rate. O0xygen uptake
increases from 0.5 liters/min, to 1,5 liters/min. during
sever2 shivering at rest, and continues as long as skin and
core temperatures remain low, (Arthonisen, 1969.) On land,
warming may be accomplished through exercise, but underwater,
exercise may actually increase cooling as a result of water
flushing through or past the diver's suit, (Hayward, et.al.,
1975.) This heat loss occurs because the conduction of heat
through water is 20 times greater than that of air at the

surface, (Keatinge, 1969.)

Respiratory heat losses, especially during Helium/Oxygen
divirg operations also play an important role which may not

be adequately reflected in chamber tests when combined with
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immersion heat loss, Cold air inhalation results in a
significant increase in inspiratory resistance, probably as a
result of mild local airway cbstruction, (Guleria, =t.al.,
1969.) In Arctic Helium diving, masking of the onset of
shivering was found to occur during heavy work loads. In
some cases contirued sxposure resulted in inadequate

ventilation due to pulmonary edema, (Nuytten, 1973.,)

Althocugh minimizing heat loss during immersion has
received much attention, (Keating=s, 1969: Webb, 1975: and
Hayward, et.al., 1975), it remains a problem for the working
diver. Although a particular UBA may not be found to be
restrictive at normal work levels during chamber tests, use
of such apparatus by a cold, shivering diver could result in
performance impairment even at low work locads as a result of

C02 retention or dyspnea, (Anthonisen, 1969.)

A second important additional factor is hydrostatic
pressure, Open circuit demand underwater preathing apparatus
supplies breathing gas to the diver at the ambient pressura
sensed by the diaphragm of the requlator. Because this
pressure is usually not equal to the external ambient
pressure at the level of the lung centroid, the center of
pressure of the lungs, this imposes a hydrostatic imbalance

upon the diver's respiratory system in addition to the
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resistive loading of the breathing apparatus., Correction in
work of breathing calculations must be made for this
additional external load which varies with diver inclination
from the horizontal, This correction has an important
consequence, Although the effect of hydrostatic pressures on
inhalation and exhalation pressures is =2qual and opposits,
and thus does not alter the total work of breathing, it may
cause a large distortion in the balance of inspiratory and
expliratory work, and an increase in the actual work of the
respiratory muscles, In addition, excessive levels of
negative pressure breathing may result in adverse pulmonary
effects in the fcrm of atelectasis, apparently as the result

of airway closure, {Lundgr=n, 1973.)

The effect of immersion on intrapulmonary pressure was
studied by Jarrett, (1965). Subjects were supplied breathing
gas via an oral-nasal mask. The center of pressure of the
immersed chest, (the lung centroid), was found to lie 19 cnm,
below and 7 cm. posterior to the supra-sternal notch. A
datermination of tha most comfortable breathing gas supply
pressure during immersion, termed the 'eupnoeic pressure,!
was made by Paton and Sand, (1947.) Subjects were supplied
with breathing gas using mouthpiece and noseclip. The
eupnoeic pressure was found to be at the level of the

supra-sternal notch for prone and supine positions., 1In the
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vertically upright position the eupnoic pressure was above
the notch at rest but increased to approach the notch at
higher ventilation rates, Without the supportive assistance
of the oral-nasal mask positive mouth pra2ssure with
mouthpiece alone did not allow simultan=ous complete chest
relaxaticn and retenticn of the mouthpiece, accounting for

differences in test results, (Jarrett, 1965.)

Thompson and McCally, (1967), investigated this
preference of immersed subjects to breathe at a nagative
prassure relative to the chest, rather than at a mean
external thoracic pressure and confirmed Jarrett's findings.
Subjects breathing through mouthpiece, facemask, and helmet
with intrapulmonary pressure variations found large
transthoracic pressur2 gradients subjectively more
comfortable than slight increases in transpharyngeal
pressure, These differences are thus a result of the
influence of pressure sensations in the upper airways on the

subjective selection of comfortable pressura,

As it is not possible to position the demand valve at
the lung centroid, the inhalation and exhalation effort
experienced by a diver varies as a function of his
o;ientation. O'Neill, (1970), calculated the hydrostatic

imbalance imposed by rebrzathing apparatus as a function of
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diver orientation. 1In addition, he designed a counter-lung
breathing system with two sensitive relief valves on the
chest and back at lung centroid level to give minimum

hydrostatic imbalance at all diver orientations.

There has been no comparable work to quantify
hydrostatic pressure effects of open circuit breathing
apparatus. In testing of apparatus, only the pressure-flow
characteristics have normally been considered while
inspiratory and expiratory work, and hydrostatic pressure
imbalance have generally been igrnored., Sterk, (1973), has
emphasized the need for underwater breathing apparatus
testing in situ, The inclusion of hydrostatic pressure
values in work of breathing calculations is essential in
calculating the relative contribution of inspiratory and
expiratory work to the total respiratory work demanded by the
underwater breathing apparatus and in development of

satisfactory physiological design criteria.
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PART ITI. BREATHING APPARATUS EVALUATION

The various types of UBA all have one built-in
disadvantage; resistance to gas flow, (Sterk, 1973.) While a
certain amount of resistance can be tolzrated by the diver,
the fact that it is an additional stress makes its
minimization desirable to 2nsure that respiratory flow is
limited primarily by the diver's lungs, (Bradley, 1973.) This
is complicated by the fact that what see2ms acceptable at the
surface may not be so at depth, and tests 2f UBA must be

adjusted according to worst case employment.

A, SOURCES OF MECHANICAL RESISTANCE

Major sources of UBA impedence are a result of poor
check valve design, inadequate orifice size, and radical
redirecticn of flow. Significant variations in the ease of
breathing through units of the same model, apparently the
result of inadequate fabrication control, have been noted,

{Bradl=sy, 1973.)

If it is assumed that the gases involved in the diver's

breathing supply behave as ideal gases, then;
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P* VY =mnH*RHX¥XT

where P = absolute pressure of the gas

V = gas voluma
L = total number of moles of the gas
R = universal gas constant

T = absoluta t

li"]

mperaturs of ths gas

Ideally, for the conditions of constant body and
environmental temperature at depth, gas density is an
approximately linear function of total pressure, P. The gas
density, in turn, affects the Reynold number which governs
whether turbunlent or laminar flow conditions =xist for a
particular situation:

Nr = @ % 4 * v/u

where Nr = Reynold Number

p = gas density

v = linear tube velocity of the gas
d = tube diameter

M = gas viscosity

The large airway cross-sectional areas and low peak
flows of gas mask and filter type respiratory protective
devices make their resistance directly proportional to the
air flow rate through the canister, Small tube diameters and

higher peak flow rate for scuba units, however, cause their
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flow characteristics tc be essentially turbulent even during
gquiet respiration, The pressure caused by the elasticity of
rebreathing bags found in closed and semi-closed circuit
scuba further adds to respiratory resistance, (Cooper,
1960a.,) Suggested methods of rasistance reduction in the
latter have included the preovision for a second breathing bag
and placement of the sxhaust valve as close to the mcuthpiece

as possible to reduce flow locsses, (Riegel, 1970.)

In the presence of thz2 turbulent flow conditions
encountered in UBA, respiratory work increases with minute
volums and absolute pressure, Demand inhalation from
orifice-type SCUBA regulators essentially delivers constant
mass flow per unit time for a given valve opening. Thus
volume delivery at depth compared to surface volume delivery
will be the reciprocal of the absolute depth pressure ratio.
Because UBA exhaust valves are not simple orifices,
expiration resistance at depth is more difficult to estimate

from surface values,

A reduction in inhalation resistance is achieved in many
UBA through venturi action to increase demand valve pressure
drop relative tc the mouth prassura, The initial opening

resistance, however, is not affected by the venturi.
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Perhaps the most important UBA development from studies
to specifically minimize d2mand regulator breathing
resistance at depth has been the pilot valve regqulator, which
utilizes a small downstream pilot valve to generate air flow
for air supply valve activation, (Christianson, 1975: and
Scubapre, 1976.) Such cptimally designed regulators have
dynamic inhalation and exhalation pressures with little
hysteresis, stable inhalation resistance without freeflowing,
and inhalation pressure essentially independent of operating

depth.

If the work of breathing becomes limiting to man in the
sea, mechanically assisted inspiration, considerably
diminishing respiratory impairment at depth by decreasing
inspiratory work, may be an even better solution than a
simply passive UBA, (Wood & Bryan, 1971: and Uhl, et.al.,

1972.)

B. TESTING AND STANDARDS

Until recently, evaluation of diver breathing apparatus
was limited to the often unreliable subjective responses of
divers, (Bradner, H., 1953: Bradl=y, 1973: and Hughes, M.,
1974,) Because of adaptation by the diver to the sanm=

variations in breathing work as those besing investigated,
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this has been useful cnly for the noting of gross
deficiencies in respiratory demand and not for the
comparative measurement cf such resistance, {Doughterty &

Schaefer, 1968: and Goff 5 Bartlett, 1957.)

With the aim towards design improvement, standards for
allowable resistance of respiratory protective and life
support devices were suggested in 1945, (Silverman, et.al.,
1951,) In a later study, Cooper, (1960b), found that human
ra2spiration during respiratory work against an external
resistance closely approximates a sine wave, and thus human
simunlation using a sine wave pump, instead of physiological
testing, 1is possible, Such studies form a useful basis for
similar ccmparative evaluation of UBA, Pressure and volume
measurements of breathing apparatus when ventilated by a sine
wave pump give valid estimates of the external respiratory
work otherwise performed by the diver, {(Cooper, 1960a.) Most
of these simulators have relied upon cam driven piston and
cylinder arrangements. This has the advantage of being able
to produce either uniform sine waves or allow for pauses in
the breathing cycle, (Adams, et.al., 1950: Nelson, et.al.,

1972: and Wilson & Harrod, 1956.)

The only breathing resistance standards for UBA in

operation are peak inhalation and 2xhalation pressure limits
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for open circuit SCUBA astablisha2d in the early 1950's by
U.s, Navy MIL-R-24169A and MIL-R-1955A. Test protocol for
these limits uses a respiratory simulator at a tidal volume
of 2 liters and 20 bresaths per minute under hyperbaric
chamber dyramic wet conditions to measure peak inhalation and
exhalation pressures., Resgulators m=eting U.S. Navy
specifications must lie within the acceptance band of peak
pressure as a function of depth to 199 feet sea water, as
shown in Figqgure 2. A need for downward revision of the
established limits and possible replacement with standards of
external work of breathing, a valu=z which has especially
greater significance with the neck seal helmets currently
used in commercial oil field diving, has been noted by

several authors, (Cooper, 1960a: and Reimers, 1973,)

Cooper's standards sp=2cified that the maximum work of
breathing for the apparatus, (kg.m./min.), should not exceed
one-fourth of the minute volume, (liters/min.) The
recommended rate of raspiratory work was one-half of this,
Expiratory work percentage of the total work of breathing
should not be more than 50% at high minute volumes, Tests
were to be performed using sinusoidal ventilation on the
apparatus with tidal volumes of 1, 2, and 3 liters and
rgspiratory frequencies of 20, 25, and 33.3 breaths per

minute respectively.



Figure 2
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U.S. Navy MIL-R-24169A (SHIPS)
underwater breathing apparatus
acceptance criteria, Peak inspiratory
and expiratory resistance, (mmn H20),
as a function of depth, (FSW.)
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D2spite the present limited criteria for evaluation, UBA
submitted to the U.,S, Navy and the commercial diving industry
for consideration and adoption continue to be unacceptable
when subjected to dynamic wet tests at depth, (Gibson, 1975 &
1976.) Measured ventilatory power requirements for a recent
semi-clesed circuit UYBA have excseded Coop=2r's standards even
at low ventilations, (Sterk, 1973.) The piiot valve regulatcer
described earlier represents an achievement in minimizing

diver respiratory work requirements,

The combined effacts of cold, exertion, and carborn
dioxide retention must be included in establishing
exparimental limits for respiratory work, (Anthonisen, 1969:
Guleria, et.al., 1969: Lindbergh, 1967: Morrison, 1973: and
Nuytten, 1973.) Subjects studied in hyperbaric environments
without using breathing apparatus 2 xhibited pulmonary
responses suggesting that divers breathing oxy-helium gas
mixture at a pressure of 2,000 FSW, (an atmosphere about ten
times as dense as surface air), may successfully perform
moderate exercise, (Anthonisen, =t.al., 1971.) This is, of
course, provided that the diver's equipment does not
complicate his existing stress. Performance in the field has
shown that the ideal UBA has yet to be attained. W®ithin the
last few years commercial diving requirements have extended

to depths greater *than 1,000 FSW at offshores oil rigs,
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{Hughes, 1974: and Huguenin, 1973.) Many previously
acceptable UBA designs have conseguently become at best
marginal due to insufficient delivery volume or unacceptable

resistance, (Bradley, 1973: Lindbergh, 1967: MacInnis, 1966:

and Morrison & Butt, 1972.)



29

METHODS & APPARATUS

PART I: RESISTIVE WORK/STATIC TESTS

Mouthpiece pressures were measured for ste2ady state flow
rates of, where possible, at l=ast 325 litzs=rs/min. for a
Poseidon single hose open circuit demand regulator, (Poseidon
Mfg.), and a Trieste II two hose open circuit demand
regulator, (Voit Mfg.), in both dry and water immersion
tests, Using the Fortran program listed in Appendix A this
permitted work of breathing simulations for sinusoidal flow
patterns with minute volumes of up to approximately 100

liters/min.

The UBA was moun*ted either in air, for dry static tests,
or in a water tank at a depth of 20-30 cm., for wet static
tests., The demand valve was oriented as for operation in the
horizontal swimming position for both regulators, This
placed the exhaust valve in the vertical position for the
Poseidon single bose and in th2 horizontal down position for
the Trieste II two hose UBA, A static tube for differential
pressure measurement was affixed to> the mouthpiece of ths
r=2gulator. This in turn was connected to a respiration
meter, {Parkinson Cowan , Eng.), via flexible tubing. A

3-way control valve joined the flowmeter to either a low
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pressure air supply or to a vacumn cleana2r nozzle for

inhalation or exhalation measur2ments respectively.

The static head tube was 5 1/2 in. in length with an
internal diameter varying from 1 to 1 3/8 in. At its
midlength there were e2ight 1/8 in, diameter holes equally
spaced around the circumference and leading into a collar of
ractangular cross section 3/8 in. X 1/8 in, The collar
outlet was a 1/8 in. tubing fitting which connected to the

differential pressure transducer,

In order to correct for the air flow resistance of the
static head tube, the pressure drop across the tube was
subtracted from the measured differential pressure values.
This correction was small compared to the resistance of the
parts tested, (0.5% worst case), and is in accord with values

for a similar correction by Cooper, (1960a.)

Inspiratory and 2xpiratcry pressure-flow data for the
wet and dry static tests were plotted for both UBA tested.
Air flow values in liters/min. were selected at 30 =2gually
spaced intervals up to maximum recorded flows. Corrasponding
instantaneous differential pressures were obtained from the
plots, These pressure-flow paired values formed the computer

program test data.
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ridal vclumes cf from 1.0 to 3.0 liters were used in
simulated work of breathing calculations. Corresponding
raspiratory frequencies at 1 ATA were determined from tha
formula VE = -7,2 + 21,8 ¥ VI where VE = Ventilatory Flow and
VT = Tidal Volume, from Morrison, (1976.) A sinusoidal flow
pattern was generated by the computer program, {(Appendix 1),
with maximum flow equal to7} times breathing frequency times
the tidal volume, Flow valuss were sampled at thirty equal
time intervals throughout one generated breathing cycle and
differential pressure values were obtained from

interpclations of the test data.

Work of breathing was simulat=d by suamation of the
incremental products of flow rate times interpolated
differential pressure times the time intervai for one
complete inspiration or expiration respectively. Total work
of breathing and inspiratory and expiratory work percentages

of the total work of breathing were also calculated.
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PART TI: RESISTIVE WORK/DYNAMIC TESTS

Flow and pressure data was collected using a mouth held
Pos2ideon regulator and a back mounted Trieste II regulator at
five different breathing lzvels representative of
physiological requirements based upon studies by Morrisor,
et,al., (1976), shown earlier in Figure 1, These levels wers
approximately 1 liter VT at 10 breaths per minute, (BPM), 2
liter VT at 15 BPM, and 3 liter VT at 20, 25, and 30 BPH,
resulting in minute volumes cf 10, 30, 60, 75, and 90
liters/minute respectively., Breathing fregquencies were

selected as being physiologically in accord with ventilatory

flows as described in static test methods.

In addition to the UBA being tested, the apparatus
consisted of a prneumatic motor, (L2ar/Romec No., RD-7440-3);
20:1 gear reduction unit, {(Boston Gear Cat. 310-20-01);
plexiglass piston-cylinder unit of 7.75 inch bore x 3.1 inch
maximum stroke with "O" ring seal, flexible hose connections,
water bath fcr UBA immersion, and wood and metal support
assemblies, Side and end views of the simulator are shown in
Figures 3 and 4, Additional external eguipment included one
0-1 psi differential pressure transducer, (SE Labs Eng., Ltd.
Type SE1150/0.5964.258G); a #6 inch displacement transducer,

(SE Labs Type SE353/150MM); transducer/converter, (SE Labs
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Figure 3 Side view of respiration simulator and
asscciated apparatus.

Figure 4 End view of respiration simulator
showing drive train.
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Type SE905); an FM tape recorder, (Hewlatt Packard Model 3960
Instrumentation Recorder); low pass filter, (Rockland Systems
Mcdel 432 Dual Hi/Lo Filter); and air cylinders with control

valves and pressure gauges for pnsumatic motor and UBA

operation.,

The rotary gear type pneumatic motor, rated for 1500
psi, was directly ccnnected to a 7 inch diameter x 1 inch
thick brass flywheel in order to minimize motor spead
fluctuations with variations in the work load and thus
maintain conformity with a sinusoidal flow pattern.
Reduction in the speed of rotation utilized a 20:1 worm gear
reduction assembly which drove two 4 1/2 inch diameter spur
gears through a 1 1/2 inch diameter spur gear for a further
3:1 reduction, resulting in a total 60:1 reduction in output
rpm relative to the motor. Paceplates attached to the two 4
1/2 inch spur gears had holes bored for the placement of
drive pins, A slotted bar attached to the drive pin on each
faceplate and was fixed to the piston connecting rod. With
rotation of the motor at a constant speed, the two # 1/2 inch
spur gears, rotating in opposite directions, caused the
slotted bar to drive the piston in uniform sinusoidal motion
without torque on the connecting rod. The centers cf the
faceplate holes were at 0.82, 1.64, 2,46, 3,29, 4,11, and

4.93 centimeters from centars of rotation, resulting in
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simulater tidal volumes of 0,5, 1.0, 1.5, 2.0, 2.5, and 3.0
liters respectively from the cylinder, depending on placement

of the two drive pins.

A 1 1/2 inch outside diameter plexiglass pipe connected
the cylinder to the *t2st UBA via flexible tubing. An air
cylindér provided high pressure air *to the first stage of the
UBA, which was immersed in a 2' x 2' x 2!' water tank. The
demand valve was oriented as for operation in the horizontal
swimming position for both requlators, This placed the
2xhaust valve in the vertical position for the Poseidon
single hose and in the horizontal down position for the
Trieste II two hose UBA., The differential pressure
transducer measured the prassure at the mouthpiece relative
to atmospheric pressure. Changes in diver position which
result in variations in hydrostatic pressure imbalance at the
lung centroid with respect to the demand valve were reflected
by charging the value of the hydrostatic pressure imbalance
in the computer calculation of the work of breathing. The
displacement transducer, mounted on the connecting rod end of
the piston-cylinder assembly, provided information on piston

velocity and thus on inhalation and exhalation air flow.

A separate air cylinder with low pressure regulator and

control valves requlated the speed of the pnsumatic motor for
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simulation output of respiratory frequencies in the range of
10-30 breaths per minut2, The low pressurs supply was also

connected to the respiratory pump in back of the piston,.

A 1' x 1' x 6" opeu bottom box was immersed in the tank to a
depth approximately equal to that of the demand valve and

was also connected t¢ +the cylinder in back of +ths piston.

s

This provided backpressurzs to offset the hydrostatic load

on the simulator during exhalation, thus minimizing

apparatus speed variations, Fire hazard in a coampressed air
environment during proposed future hyperbaric testing of the
apparatus decided the use of a pneumatic rather than electric

motor.

The choice of this particular mode of sine wave
generation, rather than through the use of cams, was made due
to the difficulty and expense in obtaining accurately milled
cams, although these could be substitued at a later date, as
in a simulator by Nelson, (1972.) Some points of
consideration with both this device and those in previous
works were backlash in the mechanism of the punmp,
fluctuations in motcr rotation with load variation, and
distortion resulting from binding forces., These sources of
error were compensated for by the displacsment transducer in

calculating gas flow rates.



38

A comparisor between actual and predictzd average flow
rat2s was made tc check for leaks around the piston 0O-ring
seal, Actual average flow rates were obtained from flow
meter volume and time measurements. Predicted flow rates
w=re calculated from piston stroke, cylinder bore, and rpm.
Discrapancies of less than 4% at 20 liters/min. ventilation

and 2% at 40 liters/min. ventilation were pnotad.

rransducer outputs for piston displacement and
differential pressure wer=2 collected on an FM tape recorder.
Signal to noise ratios were improved by adjusting the
displacement transducer position to give small positive
signals in the minimum position and zero offsetting the
differential pressure signal using a preamplifier. Th=
pressure signal was filtered using a 10 Hz. cutoff low-pass
filter. The two channels of information were then sampled at
60 times per second and 33 seconds of =ach test, (the maximunm
computer storage capacity), were digitized on a PDP 11
computer, (Digital Equip, Corp.) This permitted analysis of
at least four complete breathing cycles at 1 liter tidal
volume and approximately 10 breaths/min. frequency, the
slowast dynamic setting, Digitizad displacem=nt and pressure
information was then transmitted to an IBM 370 computer for
data storage and processing. Sampling rate was selected to

2xceed twice the frequency of any desired information.
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The computer program, (Appendix B), first set up data
arrays, initialized internal variables, and established a
time increment equal to 1/60 second, (the reciprocal of the
sampling rate,) A five point smoothing formula described by
Lanczos, ({(1967), was used to calculate velocity from
displacement data. Initial inspiratory or axpiratory
incomplete half cycles were rejected by testing for change in
direction of velocity, Complete respiratory half cycles were
identified in the same manner, Corrections for the immersed
depth of the demand valve regulator diaphragm and offsetting
of the differential pressure values were also included.
Swimming position hydrostatic pressure imbalance data fromn
the results of Part III permitted calculation of variations
in inspiratory and sxpiratory work percentages of the total

work of breathing.

D=ad space in the respiration simulator cylinder and
connective tubing to the UBA necessitated an additional
correction factor for the piston displacement values in the
computer program, Compressicn of the air in the dead space
with each pump exhaust, (UBA inhalation), caused a decrease
in the offective initial piston displacement and thus a
skewing of the sinusoidal flow. Pump intake, (UBA
exhalation), resulted in a similar but slightly smaller

effact in the oppoesite direction.
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Work of breathing was calculated using the pressure~flow
data by summation of the incremental products of flow rate
times differential pressure times the time interval. Tidal
volume, respiratory frequency, minute volume, resistive and
hydrostatic work components, and total work of breathing were

also calculated for each simulator run.
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PART IIT: HYDROSTATIC PRESSURE IHBALANCE

The inclusion of representative hydrostatic pressur=
values in work c¢f breathing calculations is essential in
determining of the relative contribution of inspiratory and
2xpiratery werk tc the total respiratory work. Although
studies were made by Patton and Sand, (1947), and Jarrett,
{(1965), on the position of the lung centroid, no previous
investigation could be found for measurement of hydrostatic
pressure values normally encountered by divers using open

circuit demand UBA.

Ten SCUBA divers were photographed while swimming
underwater in five approximate orientations, (horizontal, 45
degrees up and down, and 90 degrezs up and down), and in an
upright work position with head erect, Divers were
photographed breathing from both mouth held single hose and
back mounted two hose demand regulators. The heights and
weights of the ten subjects including one female, (LW), are

shown in appendix C.

A marker was taped to the sternum of sach subject
immediately beneath the supra-sternal notch as a peint of
reference, The SCUBA equipment was adjusted comfortably by

the diver, Markings on ths SCUBA cylinders provided a
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r2farence scale for subsequent measuremant of enlargements of
the photographic slides, (Fiqgures 5 and 6.) Lung centroid
location, Lc, as defined by Jarrett was determined from body
markings on the sternum, shoulder, and hip, and the distance,
R, between lung centroid and the center of the demand
ragulator diaphragm, Hc, was measured for each position. &
bar placed horizontally in the background established the
diver orientation. Body angle, a, was defined as the angle
between the horizontal reference bar and the hip-shoulder
line, Angle & between the hip-shoulder line and the lung
centroid-demand requlator line was also measured. Values of
the hydrcstatic pressure, Hd, could thus be expressed as

HAd = Rsin (a+}).



Figure 5
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Figure 6
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Subject DM in a svwimming orientation
for hydrostatic pressure imbalance
test using mouth-held regulator.
Chest, tank, and horizontal reference
markers are visible,

Subject DM in a vertical working
position for hydrostatic pressure
imbalance test using back-mounted
requlator. Chest, tank, and
horizontal reference markers arse
visible,



44




45

RESULTS

PART I: RESISTIVE WORK/STATIC TESTS Static

pressure-flow data were obtained for both dry and wat
test conditions fcr Poseidon singis hose2 and Trieste II two
hose open circuit demand requlators. At 1 ATA plots of
pressure, {(am H20), as a function of of flow, (liters/min.),
are shown in Figures 7 through 14. Pressure measurements
were made for both increasing and decreasing steady-state
flows in order to record possible hysteresis in the UBA under
test., The greatest variation between increasing and
d=screasing ventilation for all tests up to 325 liters/min.

- average cf the increasing

[

was approximately 10 mr. {20, Th
and decreasing pressure-flow values was used in subsequsnt

computer simulations.

Resistances increased with ventilation for both
regulators during expiration and for the Poseidon regulator
during inhalation. The Triesta ITI two hose regulator,
however, exhibited a nearly constant inspiratory resistance
up to approximately 375 liters/min. in the dry test and 300
liters/min. in the wet test., The highest recorded expiratory
flow for the Trieste II in the dry t=st was 151.5 liters/min.

Greater exhaust flows in the dry condi*ion caused exhaust
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Figure 8

Poseidon dry static inspiratory
resistance, (am H20), as a function of
ventilation, {(liters/min.)

Pposeidon dry static expiratory
resistance, (mm H20), as a function of
ventilation, (liters/min.)
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Figure 9

Figur=s 10
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Poseidon wet static inspiratory
resistance, {amam H20), as a function of
ventilation, (liters/min.)

Poseidon wet static expiratory
resistance, (mm H20), as a function of
ventilation, (liters/min.)
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Figure 11

Figure 12

Trieste II dry static inspiratory
resistance, (mm H20), as a function of
ventilation, (liters/min.)

Trieste II dry static expiratory
resistance, {(mm H20), as a function of
ventilation, (liters/min.)
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Trieste II wet static inspiratory
resistance, (mm H20), as a function of
ventilation, (liters/min.)

Trieste II wet static expiratory
resistance, (mm H20), as a fanction of
ventilation, (liters/min.)
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valve flutter with resultant considerable pressure

fluctuations.

Expiratory pressure increases of approximately 30
Bm H20 were noted with alteration in the orientation of the
Poseidon regulator from the exhaust valve upwards to either
exhaust valve vertical or esxhaust valve downwards, (Figure
10.) The mouthpiece of tha Poseidon is perpendicular to the
exhaust valve which thersefore remains vertical independent of
the inclination of the divar to the horizontal. Expiratory
resistance is thus independent of swimming angle. If the
diver were to roll to cne side, however, expiratory
resistance, and consequently expiratory work of breathing

would be affected accordingly.

Complete results of the work of breathing as estimated
from the computer analysis of the steady state pressure flow
data, together with inspiratcry and =xpiratory work valuss
and percentages of total work, are contained in Appendix D.
Simulated work of breathing, (kg.m./min.), as a function of
sinusoidal ventilation, (liters/min.), are shown in
comparison to dynamic test results for the Poseidon in Figure
21 and for the Trieste II in Figure 22, Also shown are
Cooper's, (1960a) , maximum and recommended standards for

respiratory protective devices,
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PART II: RESISTIVE WORK/DYNAMIC TESTS

one ATA pressure characteristics of a Poseidon mouth
held and a Trieste II back mounted requlator were measured
during sinusoidal ventilations using a respiration simulator
connected to the immersed UBA., Test conditions had tidal
volumes of 1, 2, and 3 liters and ventilatory rates of up to
95.9 liters/min, for the Poseidon and 80,1 liters/min. for

the Trieste II,

Pressure and flow data obtained from the dynamic tests
at a tidal velume of 2 liters are plotted in Figures 16 and
17 for the Poseidon ragulator, and in Figures 19 and 20 for

the Trieste II regulator as a functicn of sample number,

i

(60 /sec,)

Piston displacements from which these pressure and flow
curves are generated are depicted in Figures 15 and 18 for
Poseidon and Trieste II regulators respectively. Data is
shown in cm., as a function of sample number for both

uncorrected and compression corrected displacements.

Complete results of the dynamic work of breathing

.computer calculations are contained in Appendix E for the

Poszsidon regqulator and in Appendix F for the Trieste II
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igure 15 Uncorrected and compression corrected
piston displacement, {cm.), for
Pcseidon regulator. 1 ATA wet
dynamic test at 2.0 liters tidal
volume and 17.7 breaths/min.
respiratory frequency.
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Figure 16

Flow, (liters), as a function of tinme,
(seconds), for Poseidon requlator. 1
ATA wet dynamic test at 2.0 liters
tidal volume and 17.7 breaths/min.
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Figure 17

Pressure, {(mm H20), as a function of
time, {seconds), for Poseidon single
hose regulator. 1 ATA wet dynamic
test at 2.0 liters tidal volume and
17.7 breaths/min.
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Figur= 18

Uncorracted and compression corrected
piston displacement, (cm.), for
Trieste II regulator 1 ATA wet%
dyraric test at 2.0 liters tidal
volume and 20.8 breaths/min.
respiratory frequency.
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Flow, (liters), as a function of tinme,
{seconds), for Trieste II regulator 1
ATA wet dynamic test at 2.0 liters
tidal volume and 20.8 breaths/min.
respiratory freguency.
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Figure 20

Pressure, (mm H2C), as a function of
time, (seconds), for Trieste II two
hose regulator 1 ATA wet dynamic test
at 2.0 liters tidal volume and 20.8
breaths/min. respiratory frequency.
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ragulator. Total werk of breathing, (kg.m./min.),, as a
function of sinusoidal flow, (liters/min.), is plotted in
Figures 21 and 22 respectively. Inspiratory and expiratory
work ccmponents of the total work of br2atning for thes two
regulators are similarly shown as a function of ventilation

in Figures 23 and 24.

The work of breathing was calculated manually for one
test run from the pressure-time and flow-time plots, (Figures
16 and 17, ard 19 and 20), as a check on ta=2 resuits of the
computer calculations. The ccmputer program based
calculations used an equal time interval for work of
breathing appreximaticns according to the cexpression:

K = §p * (dv/ar) * ae

Where W = Kork of Breathing
P = Pressure

V = Volume

t = Time

Manual calculations for the work of breathing, however, ware
derived from the summaticn of ar equal velums incresment times
the differential pressure at each increment interval
throughout the breathing half-cycles according to the
expression:

H=SP*dV
fhe difference between the two methods was 4.8% and was

within the estimated accuracy of the manual calculatiorn.



Figure 21

69

Resistive work cf preathing,
(kg.m./min,), as a function of
ventilation, (liters/min.), for
Poseidon mouth-held open circuit
underwvater breathing apparatus.
Dynamic testing of apparatus immersed
in water., Maximum and recommended
standards by Cocper, (1960a), are also
shown,



s
s

70

.00 25.00 50.00 75.00
LITERS/MIN.

1 RTR U.B.AR. PERFORNANCE
® COOPER WARX. STANDARD
O COOPER RECOMMENDED

& POSEJDON ORY STATIC
® POSEIDON NET STRTIC

& POSEIDON NET OYNAMIC

r
100.00

125.00



L L Dl

Figurw= 22

Resistive work of breathing,
(kg. m, /min,), as a function of
ventilation, (liters/min.), for
Trieste II back-mounted open circuit
underwater breathing apparatus.
Dynamic testing of apparatus immersed
in water. Maximum and recommended
standards by Cocper, (1960a), are also
shcwn.
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Figua 23

Figure 24
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Poseidon inspiratory and expiratory
resistive work of breathing,
(kg,m./min,), as a function of
ventilation, (liters/min.) Dymnanmic
testing of apparatus immarsed in
water.

Trieste II inspiratory and expiratory
resistive work c¢f breathing,

(kg. m./min.), as a function of
ventilation, (liters/min.) Dynamic
testing of apraratus immersed in
water.



VENTILATION

(LITERS/MIN.)

o
o
.-
POSEIDON
—~e
- . ® INSPIRARTION
Z 0
x @ EXPIRATION
~
o
‘e
S5
x
CQ
gc
‘o--
w
>
’—
wa
o]
w
a
o
[=Y
Y T ¥ Y —T —
.00 20.00 40.00 60.00 80.00 100.00
VENTILATION (LITERS/MIN.]
o
=Y
-
TRIESTE 11
-a
z'é_‘ U INSPIRRTION
b
< 0 EXPIRRTION
o
‘e
| G RS
>
5
=1
‘o-..
w
>
—
’—
wa
e
w
a
o
(=Y
Y L A R T B
.00 20.00 40.00 60.00 80.00 100.00

74



75
PART IIT: HYDROSTATIC PRESSURE IMBALANCE

The hydrostatic pressure difference between the diver's
lung centroid and the demand regulator diaphragm of his open
circui* UBA was measured directly from the slides for ten
divars and are shown plottsd r=2lativa to swiamming angle in
degrees for mouth held, (Figqure 25), and back mounted,
(Figure 26), requlators respectively. The mean values of R
and were first determined for =2ach subject in the swimming
position in order to obtain a mean curve, Hd = Rsin(a+ ),
representative of the group. R and values measured in
each position were slightly different. With the two hose
requlator this was du= to small movements of the equipment
relative to the diver, but with the single hose regulator
variations resulted from wmovements of the mouth and head.
The mean R and for all ten subjects were then determined
from individual mean values, Standard deviations were
calculated using the differences, (Hd - Hd ), between ths
mean curve and the individual data points measured from the
slides., The mean value of HA when swimming was defined by
the equaticn:

Hd = 40.0 sin(a-14.5) + 4.3 cm. H20
for mouth held regulators, and

Hd = 27,9 sin(a+33.8 ) + 2.9 cm, H20
1 éor back mounted regulators., These 2quations apply over the
» range of diver orientations -90, <a<90. with respect to the

horizontal.




Figure 25

Variatiocn in vertical distance between
lung cerntroid and demand valve, (cm.),
as a function cf diver orisentation
with respect to thz horizontal for
mouth-held demand regulator,
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Figure 26

Variaticn in vertical distance betweern
lung centroid and demand valve, (cm.),
as a function of diver orientation
with respect to the horizontal for
back~-mounted demand ra2qulator.
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Mean hydrostatic pressure was calculated from the data
for each subject in an upright working position with head
erect. A working position mean value of:

Hd = 24.1%1 ¢ 3.7 cm. H20
was calculated for a mouth held regulator, and
Hd = 24,7 £ 2.6 cm, H20

with a back mounted regulator.

Nearly all open circuit UBA presently available are
similar in the placem=nt of the demand diaphragm relativs to
either mouthpiece for mouth held or cylinder mounting for
back mounted., These results are therefore considered to be
reprasentative of open circuit scuba irrespective of

apparatus manufacturer or model.
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DISCUSSION

Static test calculations of the work of breathing were
greater for the Poseidon requlator during immersion than
during dry testing., Steady state pressure-flow data,
{(Figures 7 through 10), showed this tc be the result of an
increase in exhalation resistance at all ventilations. Large
changes in Poseidon exhalation resistance were noted with
variation in exhaust valve orientation, (Figure 10.) It is
suggested that during immersion, the formation of bubbles and
their subsequent release from the area of the exhaust ports
caused increased expiratory pressure for a given flow rate
compared to the non-immersed condition. Cooper recommended
that the work of breathing for respiratory devices,
(kg.m,/min.), not exceed one-eighth of the ventilatien,
(liters/min,), {1960a.) Steady state immersed wecrk of
breathing at 1 ATA exceeded this at approximately 81

liters/min. for the Poseidon, (Figure 21.)

Trieste II regulator static tasts found inspiratory ard
expiratory resistances, (Figures 11 through 14), and work of
breathing, (Figure 22), to be greater in the dry condition
than when immersed. Differences in expiratory resistance may
have been largely a result of the same exhaust valve

difficulty which abbreviated the dry steady state testing.
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Steady state weork of breathing under wet conditions at 1 ATA
for the Trieste II requlator exceeded Cooper's recommended

standards at approximately 92 litsrs/min,, (Figure 22.)

Dynamic work of breathing at 1 ATA for the Poseidon UBA
excaeded Cooper's recommendations at approximately 51
liters/min. ventilation, plotted in Pigure 21. The Trieste
II UBA under the same conditions exceed2d these values at all
vantilations, PFurther, at the highest flow rate tested, (3
liters tidal volume and 26.7 breaths/min.,), the Trieste II
reachsd Cooper's maximum limit of the work of breathing =2qual

to one-fourth of the ventilation, as shown in Figure 22.

The steady state testing of both regulators was carried
out in conjunction with the dynamic testing in order to
investigate the validity of static determinations of UBA work
of breathing. The obtainmant of similar results would
indicate that UBA performance measurements could be made
without the need for a respiration simulator. However,
static work of breathing values wa2re as much as 23.2% less
than dynamic at 95.9 liters/min. for the Poseidon and 58.2%
lass at 80.1 liters/min. for the Trieste II. Of this
difference, Poseidon static inspiratory work was 42.2% less
than dynamic inspiratory work, while static expiratory work

was only 9.1% less than dynamic expiratory work. For th2
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Trieste II values were 75,9% less and 29.4% lass

raspactively.

The dynamic testing, simulating typical diver employment
of the UBA, cycled the regulators through inspiratory and
expirateory breathing phases with sinusoidal variation in flow
rate, Hysteresis losses due to damping during opening and
and closing cof the tilt valve inspiratory mechanism and water
flow resistance with movement of the demand diaphragm
probably caused increases in work of breathing compared
with static testing estimatiocns, Exhausting of water influx
into the exhaust ports during the first stages of exhalation,
and non-steady state exhaust bubble formation may also have

affected the work of breathing.

Because the differences between static and dynamic tast
results are both large and difficult to correct, it is
concluded that steady state testing is not a valid method for

work of breathing evaluation of UBA.

Hydrostatic pressure imbalance, as shown in Figures 23
and 24, varied with svwimming orientation by approximately
& 40 cm. H20 when using mouth held requlators and & 28 cm.
H20 with back mounted regulators. In addition, hydrostatic

pressure imbalance with mouth held requlators is also
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affacted by head position, the amount of possible variation
ircre2asing as the swimming angle deviates from the
horizontal, This is reflected in the difference betwean
hydrostatic pressure imbalance m=asured when the diver Wis
swimming upward, (+40 cm, H20), and the upright working
position where the diver was looking horizontally, (+2u4

cm. H20.)

Hydrostatic pressure imbalance has a significant effect
upon inspiratory and 2xpiratory work. Figures 29 and 30
illustrate inspiratory and expiratory work as percentages of
the total respiratory work for a mouth held and a back
mounted regulator at 1 ATA at high ventilations plotted with
respect tc swimming angle., The percentages shown without
hydrostatic imbalancz indicate the external respiratory load
that would result if the demand valve were placed in the
ideal position at the lung centroid. Percentages of total
work were determined frcm the pressure-flow measurements made

during the wet dynamic tests,

Negative external expiratory work may result in a
reduction in the total expiratory work and hence a lesser
involvement of the respiratory muscles. Negative hydrostatic
work exceeding the combined internal and external resistive

work, will result in brazkad expiration, and thus cause a



Figurs 27

Figure 28
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The inspiratory work percentage

of the total work of breathing as a
function of diver orientation with
respect to the horizontal. Based on
1 ATA dynamic testing of a mouth-held
open circuit requlator immersed in
water.

The inspiratory work percentage

of the total work of breathing as a
function of diver orientation with
respect tc the horizontal. Bassd on

1 ATA dynamic testing of a back-mounted
open circuit requlator immarsed in
water,
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Figurs 29

Inspiratory and expiratory work
expressed as a percentaqge of the total
work of breathing, The figure shows
work both with and without hydrostatic
imbalance. Bas=2d on 1 ATA dynamic
testing of a mouth-held open circuit
regulator at 75.6 liters/min.
ventilation immersed in water.
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Figure 30

Inspiratory and expiratory work
expressed as a percentage of the total
work of breathing. The figure shows
work both with and without hydrostatic
imbalance, Based on 1 ATA dynamic
testing of a back-mounta2d open circuit
regqulator at 80.1 liters/min.
ventilation immersed in water.
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greater involvement of the inspiratory muscles. This latter
condition imposes an unnecessary r=spiratory load upon the

diver,

Cooper's suggested standards for respiratory protective
devices, (1960a), included the recommendation that at high
ventilation rates the fraction of work donz in expiration
should not be more than 50%. The effect of hydrostatic
imbalance on inspiratory and expiratory work decreases with
the increase in UBA resistive work with either increasing
ventilaticn and or increasing depth, (Figures 27 and 28.)
Comparisons of Figures 29 and 30 show that at 1 ATA the back
mounted two hose requlator provides a greater range of diver
orientaticns havirg expiratcry work less than 50% of total
work of breathing. In terms of balancing the work of
breathing between inspiration arnd 2xpiration the back mounted
regulator may thus be preferable 2specially if the diver's
body inclinaticn is predominately in other than-a horizontal

swimming position during the dive,

Whether the diver should breaths against a positive or
nzgative pressure depends to an e2xtent upon the magnitude of
the inspiratory and expiratory resistive work of the
particular demard regulator in uss., Thus if expiratory

resistive work is larger it is best to breathe against
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negative pressure in order tc shift part of the load to
inspiration, thereby making use of hydrostatic pressure
imbalance to obtain the best ratio of inspiratory and
expiratory work, Considering Cooper's recommendations for
limiting expiratory work, and the comfort indicated pressures
found by Patcn arnd Sand, (1947), and Thompson and McCally,
(1967), it is probably best to incorporate negative pressure

bresathing provided levels are not excessive.
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CONCLUSIONS

The respiration simulator with sinusoidal ventilatiop
used in this investigation enables the determination of the
work of breathing for open circuit demand underwater
breathing apparatus under immersed dynamic conditions. Tast
results thus give estimations of apparatus performance in
terms of physiologically acceptable respiratory work loads
and permit direct comparison between different underwater

breathing apparatus.

Steady state bench testing was found to be not a valigd
m2thod for underwater breathing apparatus evaluation as a
ra2sult of non-replication of dynamic inspiratory and

2xpiratory resistances.

Hydrostatic pressure imbalance as determined for various
diver orientations using both mouth held and back mounted
demand regulators was a significant factor in inspiratory
and =xpiratory work psrcentages of the total work of

breathing.

Respiration simulator measurements of the work of

breathing for the underwater breathing apparatus tested
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axceeded earlier recommendzd standards even at 1 ATA at
ventilations within the physiological range of working

divers.
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EXDIX C: dHydrostatic Pressdr=2 fmbaialce Subject pata

HYDROSTATIC PRESSURE IMBALANCE SUBJECT DATA

Subiject Height (ca.) Height (kg.)
TB 182.9 8.1
MC 172.7 03.6
eH 186.1 4.1
DH 162.6 69.1
DM 173.1 12.5
JHN 182.9 71.4
NS 181.6 79.5
LT 177.8 74.8
HW 179.7 90.0
LW 165.1 54.8

MEAN 177.1 & 7.8 74.4 & 10.5



Appendix

Stead
of Br
Two H
VT =

RESPH

VENTHM

Wl =

WIM =

WE =
WENM =

WM =

PEREX

PERIN

Yy Stats Estimations of the Work

eathing for Single Hose and

ose Regulators, where:

Tidal Volume in liters

Z = Respiratory Frequency in

breaths/min.
= Minute Ventilation in
liters/min.

Work of Inspiration in

kg.m./breath
Minute Work of Imnspiration in
kg.m./min,

Work of Fxpiration in kg.m./breath
Minute Work of Expiration in
kg.m,/min,.

Total Minute Work of Breathing in

kg.m./min.

= Expiratory Work Percentage of
Total Work of Breathing

= Inspiratory Work Percentage of
Total Work of Breathing



118
POSEIDON DRY STATIC TEST DATA WORK OF BREATHING ESTIMATIONS

VT RESPHZ VENTHM Wl WIin WE WEN WI'M PEREX PERIR
1.00 14.60 14,60 0.02 0.35 0.01 0.711 0.47 24.34 75.66
1.50 17.00 25.50 0,04 0.60 0.02 0.26 0,85 29,98 70,02
2,00 18.20 36,40 0.05 0.95 0.03 0.47 1,42 33.00 67.00
2,50 18,90 47.25 0.07 1.35 0.04 0.73 2,09 35.22 64.78
3.00 19,40 58.20 0.10 1.85 0.06 1.08 2.93 36.88 63.12
3,00 22,00 66.00 0,10 2,30 0.06 1.38 3,67 37.49 $2.51
3.00 26,00 78.00 0.12 3.23 0.07 1.94 5,17 37.54 62,45
3.00 30,00 90.00 ©0.15 4,37 0.09 2,63 7.00 37.55 62.45
3.00 34,00102.00 0.17 5.66 0.10 3.45 9,11 37.92 62.08

POSEIDON WET STATIC DATA WORK OF BREATHING ESTIMATIORS

VT RESPHZ VENTM WI WiM HE WEN WTH PEREX PERIN
1.00 14,60 13,60 0.01 0.07 0.04 ©0.59 0.67 89.00 11.00
1.50 17,00 25,50 ©0.01 ©0.21 0,08 1,28 1.48 86,06 13.94
2.00 18,20 36.40 0.02 0.43 0,12 2.15 2.58 83.34 16.66
2.50 18.90 47.25 0.04 0.75 0.17 3.20 3.95 80.94 19,06
3.00 19.40 58.20 0.06 1.21% 0.23 4.39 5,59 78.45 21.55
3.00 22,00 66.00 0.07 1.65 0.24 5.30 6.95 76.28 23,72
3.00 26,00 78,00 0.10 2.51 ©0.26 &.89 9,39 73.32 26.68
3.00 30,00 90.00 0.13 3.76 0.29 8.69 12.45 69.79 30.21
3.00 34.00102.00 0.16 5.41 0.32 10.71 16.12 66.46 33.54



TRIESTE II

VI RESPHZ

1.00
1.50
2.00
2.50
3.00

14,60
17.00
18.20
18.90
19.40

TRIESTE II

¥T RESPHZ

1,00
1.50
2.00
2.50
3.00
3.00
3.00
3.00
3.00

14,60
17.00
18.20
18.90
19.40
22,00
26.00
30.00

DRY STATIC DATA WORK OF

VENTHM
14.60
25.50
36.40
47.25
58.20

WET STATIC DATA WORK OF

VENTH
14.60
25450
36.40
47.25
58.20
66.00
78.00
90.00

34 .,00102.00

WY
0.06
0.09
0.13
0.16
Flow

WY
0.0u4
0.06
0.08
0.10
0.12
0.1
0.11
0.11
0.13

HIN
0.84
1.55

2.28

2.97

WE
0.01
0.03
0.05
0.10

119

BREATHING ESTIMATIONS

¥EHN

0.13
0.43
0.97
1.92

WTH

0.97
1.98
3.24
4,89

PEREX
13.62
21.67
29.84
39.28

rate exceeds approximation

Wi

0.62
1.05
1.48
1.87
2.26
2.52
2.93
3.43
4.31

WE
0.01
0.02
0.05
0.08
0.13
0.15
0.19
0.25
0.32

¥EM
0.12
0.38
0.85
1.52
2.47
3.31
5.00
7T.40
10.99

WTH
0.74
1.43
2.33
3.39
4.73
5.83
7.93
10.83

15.29

PEREX
15.90
26.53
36.55
nu'??
52.17
56.73
63.04
68. 34
71.84

PERIN
86.38
78.33
70.16
60.72

BREATHING ESTIMATIONS

PERIN
84.10
73.47
63.45
55.23
47.83
43.27
36.96
31.66
28,16
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Poseidon Single Hose Dynamic Work of

Breathing Calculations including

Inspiratory and Expiratory Work

Variations with Changes in Diver

Orientation, where:

TIDVOL Tidal volume in liters

RESPHZ Respiratory Frequency in
breaths/min.

VENTM = Minute Ventilation in
liters/min.

WIM = Minute Work of Inspiration in

kg.m./min.

WIRM = Minute Inspiratory Resistive
Wwork in kg.m,/min,
WIHM = Minute Inspiratory Hydrostatic

Work in kg.m./min.
WEM = Minute Work of Expiration in
kg.m./min.
WERM = Minute Expiratory Resistive Work
in kg.m./min.
WEHM = Minute Expiratory Hydrostatic
Wwork in kg.m./min.
WIM = Total Minute Work of Breathing in
kg.m./min.
PEREX = Expiratory Work Percentage of
Total Work of Breathing
PERIN = Inspiratory Work Percentage of
Total Work of Breathing
HC = Hydrostatic Pressure Imbalance in
Cm.
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Appendix F

Trieste II Two HosS=2 Dynamic Work of

Breathing Calculatiorns including

Inspiratory and Expiratory Work

Variations with Changas in Diver

Orientation, where:

TIDVOL = Tidal Volume in liters

RESPHZ = Respiratory Frequency in
breaths/min,

VENTM = Minute Ventilation in
liters/ain.

WIM = Minute Work of Inspiration in

kg.m./min.

WIRM = Minute Inspiratory Resistive
Work in kg.m./min.
WIHM = Minute Inspiratory Hydrostatic

Work in kg.m./min.
WEH = Minute Work of Expiratiomn in
kg.m./mnin,

WERM = Minute Expiratory Resistive Work
in kg.m./min,
WEHM = Minute Expiratory Hydrostatic

Work in kg.m./min.
WTM = Total Minute Work of Breathing in
kg.m,/min,
PEREX = Expiratory Work Percentage of
Total Work of Breathing
PERIN = Inspiratory Work Percentage of
Total Work of Breathing
HC = Hydrostatic Pressure Imbalance in
cam.
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