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Abstract 

A dominating set in a graph G is a set of vertices D such that each vertex is either in 

D or has a neighbour in D. A partition of V(G) such that each class is a dominating 

set in G is called a domatic partition of G. 

In this thesis, we first briefly survey a variety of known results in the field, presenting 

fundamentals as well as more recent concepts in domination. In particular, we turn 

our attention to ordinary domination, factor domination (where D dominates every 

given spanning subgraph of G),  and distance domination (where a vertex not in D is 

within a given distance from D). 

Our main contributions are in the area of factor domination. We first prove several 

probabilistic bounds on the size of a factor domatic partition as well as the size of a 

smallest factor dominating set. Then, using well-known Beck's method, we obtain a 

polynomial time randomized algorithm that constructs such a partition. We also give 

similar bounds and algorithms for other related problems. 
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Chapter 1 

Introduction 

1.1 Motivation 

Domination is an area in graph theory with an extensive research activity. In 1998, 

a book [HHS98] on domination has been published which lists 1222 papers in this 

area. In general, a dominating set in a graph is a set of vertices D such that each 

vertex is either in D or is adjacent to a vertex in D. We will give all fundamental 

definitions in the next chapter. The historical roots of domination is said to be the 

following chess problem. Consider an 8 x 8 chessboard on which a queen can move 

any number of squares vertically, horizontally, or diagonally. Figure 1.1 shows the 

squares that a queen can attack or dominate. One is interested to find the minimum 

number of queens needed on the chessboard such that all squares are either occupied 

or can be attacked by a queen. In Figure 1.2: five queens are shown who dominate all 

the squares. 

To model the queens problem on a graph, let G represent the chessboard such that 

each vertex corresponds to a square, and there is an edge connecting two vertices if and 

only if the corresponding squares are separated by any number of squares horizontally, 

vertically, or diagonally. Such a set of queens in fact represents a dominating set. 

For another motivation of this concept, consider a bipartite graph where one part 

represents people, the other part represents jobs, and the edges represent the skills of 
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Figure 1.1: Squares attacked by a Queen. 

Figure 1.2: 5 dominating queens. 

each person. Each person may take more than one job. One is interested to find the 

minimum number of people such that are jobs are occupied. As shown in Figure 1.3, 

{Jane, John) form a minimum size dominating set. 

The concept of dominating set occurs in variety of problems. The puzzles above 

are only interesting examples. A number of these problems are motivated by commu- 

nication network problems, for example. The communication network includes a set 

of nodes, where one node can communicate with another if it  is directly connected to  

that node. In order to send a message directly from a set of nodes to all others, one 

needs to  choose this set such that all other nodes are connected to a t  least one node in 

the set. Now, such a set is a dominating set in a graph which represents the network. 

For other applications of domination, the facility location problem, land surveying, 

and routings can be mentioned. 

An essential part of the motivations in this field is based on the varieties of dom- 

ination. There are more than 75 variations of domination cited in [HHS98]. These 

variations are mainly formed by imposing additional conditions on D, V ( G )  - D,  or 
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Nurse 

Doctor 

Dentist 

Surgeon 

Figure 1.3: Dominated jobs. 

V(G) .  We will review some of these variations in the next chapter, but our main 

focus is two type of domination, namely, factor domination and distance domination. 

Thesis Out line 

In the first part of this thesis we survey fundamentals and known results in the area 

of domination, mainly focused on bounding the minimum size of a dominating set in 

a graph. Beside ordinary domination, we also survey varieties of domination which 

are mainly formed by assuming some conditions on the dominating set or the vertices 

that are not in the dominating set. 

We also survey the domatic partition of a graph which is a partition of vertices of 

a graph such that each class is a dominating set, focusing on bounding the maximum 

number of classes in such a partition. Moreover, we survey two varieties of the domatic 

partition; factor domatic partition and distance domatic partition. 

Our main results in this area is presented in the second part of the thesis. Fedor et 

al. in [FGPS05] presented some probabilistic bounds on the size of a domatic partition 

of a graph, using conditional probabilistic methods and Lovkz Local Lemma. They 

also obtained a deterministic and a randomized algorithm which in fact construct 

such partitions. We use similar methods to the factor domatic partition. 

In Section 3.1, we first use the method of conditional probabilities and obtain a 
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lower bound of L(1 - o(-)) kd;t,l] on the size of a factor domatic partition; 

where n denotes number of the vertices of G, k denotes number of factors, and bmi, 

is the minimum degree over all factors. Then we present a deterministic algorithm 

which in fact constructs a factor domatic partition of this size. 

Also, using the Loviisz Local Lemma we obtain another lower bound of 5 - L( 
o(1)) 1,.$2$)1] on the size of a factor domatic partition and we use the well-known 

Beck's method to obtain a randomized algorithm to construct such partition with 

high probability. 

In Section 3.2, we extend our results to the distance version. 

Using probabilistic methods Alon and Spencer [ASOO] obtained an upper bound of 
1+1n(6(G)+1) 6 (~)+1 on the size of a dominating set. In Section 3.3, we use a similar.method 

I l+ln k 6,i,+l and obtain a probabilistic upper bound of n (kiinnl) )) on the size of a factor 1 
dominating set. We also extend this to the general case of distance domination. 

- A different aspect of domination problems was introduced and studied in [AFL+03]. 

In Section 3.4, we consider this variant under the assumption that some vertices of 

the graph are pre-colored. 

1.3 Basic Definitions 

We cover some basic definitions and notations here. We will define others when 

necessary. For definitions which are not covered here refer to any graph theory book. 

A graph G = (V(G), E(G)) consists of a vertex set V(G) and edge set E(G). Let 

n = IV(G) I denote the order of G. In a graph G, the degree of a vertex v is the number 

of vertices adjacent to v, denoted by dG(v). The minimum and maximum degree of 

a graph are denoted by b(G) and A(G) respectively. A vertex v is an isolated vertex 

if and only if dc(v) = 0. A graph is connected if for every pair of vertices u and v 

there is a u - v path in the graph. If G is connected, then the distance between two 

vertices u and v is the minimum length of a u - v path in G, denoted by dc(u, v). 
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Let NG(v) denote the set of neighbours of a vertex v E V ( G ) ,  and let NG[v] = 
NG(v) U { v )  be the closed neighbourhood of v in G. Let d ~ [ v ]  = ( N G [ V ] ~  = d ~ ( v )  + 1. 



Chapter 2 

Known Results 

2.1 Domination 

A dominating set D is a set of vertices such that each vertex of G is either in D or 

has at least one neighbour in D. The minimum cardinality of such a set is called the 
- 
domination number of G, y(G). In Figure 2.1, filled vertices form a minimum size 

dominating set in the Petersen line graph. Therefore, y(L(P)) = 3. 

The problem of determining the size of a minimum dominating set is NP-complete 

[GJ79]. In fact, the problem remains NP-complete even when restricted to certain 

classes of graphs such as bipartite graphs and chordal graphs. However, there are 

interesting classes of graphs such as trees, interval graphs, and cographs for which 

y(G) can be computed in polynomial time. 

In the following, we will concentrate on bounds on the domination number y(G) in 

terms of order, maximum, and minimum degree of G, all of which have been studied 

widely. It can be seen directly from the definition that 1 5 y(G) 5 n. The following 

examples show that this bound is sharp. Let G be a graph with A(G) = n - 1, 

then the vertex of maximum degree dominates all other vertices in G and therefore 

y(G) = 1. For the lower bound, let G be an edgeless graph, then the dominating set 

must contain all the vertices, and y (G) = n. 

By the following trivial argument, better bounds on y(G) in terms of order and 
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Figure 2.1: A minimum dominating set in L(P).  

degrees of vertices of G can be obtained. Let v be a vertex of maximum degree in G. 

Since v dominates itself and all vertices in its neighbourhood, A(G) + 1 vertices are 

dominated by v and the trivial upper bound follows. For the lower bound, since each 

vertex can dominate at most A(G) other vertices and itself, the lower bound follows. 

Theorem 2.1 [WAS791 [Ber62] For any graph G, 

There is a chain of upper bounds on y(G) in terms of order of G obtained by 

restricting b(G). Ore gave the first result in this direction for graphs without isolated 

vertices. 

Theorem 2.2 [Ore621 For any graph G with 6(G) > 1, 
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McCuaig and Shepherd made an improvement on the upper bound for the con: 

nected graphs with b(G) 2 2, unless G is one of seven exceptional graphs shown in 

Figure 2.2. 

Figure 2.2: The family graph A 

Theorem 2.3 [MS89] If G is a connected graph with b(G) 2 2 and G $! A, then 

2n 
r(G) 5 3. 

Reed made another improvement on the upper bound on y(G) for the connected 

graphs with b(G) 2 3. 

Theorem 2.4 [Ree96] If G is a connected graph with b(G) 2 3, then 

Based on these results, the following conjecture has been proposed in [HHS98]. 

Conjecture 2.5 [HHS98] For any graph G with b(G) 2 k, 
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Caro and Roditty proved the conjecture for b(G) 2 7. In fact, they obtained a 

better bound than in Conjecture 2.5.  

Theorem 2.6 [CR85] [CR90] For any graph with b(G) 2 7 ,  

The Conjecture 2.5 remains open for 4 5 k 5 6. However, the conjecture is proved 

for Cregular graphs. 

Theorem 2.7 [LS04] If G is a 4-regular graph of order n ,  then 

With probabilistic methods, Alon and Spencer gave the following general bound. 

Theorem 2.8 [ASOO] For any graph G with b(G) 2 1, 

2.2 Varieties of Domination 

2.2.1 Factor and Global Domination 

In this section we will discuss domination extended in a natural way, where a set of 

vertices is a dominating set in several edge-disjoint spanning subgraphs rather than 

just in the original graph. In order to be able to explain these concepts, we need some 

definitions. A factor of G is a spanning subgraph of G. A k-factoring of G is a set of 
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k factors f = {GI, G2, . . . , Gk}, whose union is G. Figure 2.3 and Figure 2.4 show a 

2-factoring of C3P5. A factor dominating set with respect to f is a set of vertices D 

which is a dominating set in each factor Gi, for 1 < i 5 k. The minimum cardinality 

of a factor dominating set with respect to f is called the factor domination number 

y(G, f ) .  In Figure 2.5, filled vertices form a minimum size factor dominating set for 

the given Zfactoring. Hence, y(C3P5, f )  = 7 when f is as shown. 

Figure 2.3: Gl. 

Figure 2.4: G2. 

Figure 2.5: A minimum factor dominating set for a given 2-factoring of C3P5. 

Let dmi, = min{dGi(v) : v E V(G), 1 5 i < k} be the smallest minimum degree 

among all factors G1, . . . , Gk and let A,,, = max{dGi (v) : v E V(G), 1 5 i 5 k} be 

the largest maximum degree over all factors GI , .  . . , Gk. 

Factor domination has several interesting applications in many network commu- 

nication problem such as the following : How can one send a message from a subset 

of nodes of a network and have it received after one hop by all other nodes using only 

links of some private subnetwork for security or redundancy reasons. To model this 

problem, let the communication network be represented by a graph G where vertices 

of G correspond to nodes of the network and edges correspond to links joining nodes 

which can communicate directly, and finally k edge-disjoint factors of G represent k 
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private subnetworks. Therefore, the factor domination number represents the min- 

imum number of nodes needed to send a message from, such that all other nodes 

receive the message in each subnetwork independently in one hop. 

The concept of factor domination was first introduced by. Brigham and Dutton 

[BD90] and Sampathkumar [Sam891 independently. Carrington and Brigham [CB92] 

have shown that the factor domination decision problem is NP-complete even when 

the factors are greatly simplified (for example, when each factor is a path). Brigham 

and Dutton presented several bounds on factor domination number in terms of degrees 

of G and other graphical invariants. Here we will only concentrate on bounds using 

the degrees of G. It can be observed directly from the definitions that, 

max y(Gi) 5 y(G1 f )  5 C y ( ~ i ) .  
l s i s k  i= 1 

As we have seen in the previous section, there are numerous bounds on ordinary 

domination number in terms of order and minimum degree of G. In contrast to this, 

-for a general graph G only the following trivial bound on factor domination number 

in terms of order and minimum degree over all factors was given by Brigham and 

Dutton [BD90]. For any k-factoring of f of G we have; 

This follows easily. Indeed, let D be a set of n - bmin vertices in a graph G and 

let v be an arbitrary vertex which is not in D. Obviously vertex v has a t  least bmi, 

neighbours in each factor but since there are only bmin - 1 vertices different from v 

which are not in D ,  v has a t  least one neighbour in D in any factor of G. Therefore, 

D is a factor dominating set in G with respect to f .  

They also proved a lower bound of & which again follows easily. Indeed, let 

D be a factor dominating set. Since each vertex not in D has at  least k edges to D 

(one edge in each factor to guarantee its domination), there are k(n - y(G, f))  such 

edges and so k(n - y(G, f ) )  5 CvEDdc(v) 5 A(G)y(G, f ) ,  and the bound follows. 

Hence, they obtained the following fundamental bounds for general graphs. 
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Theorem 2.9 [BD90] For any k-factoring f of a graph G of order n, 

It is obvious that in the graphs with A(G) < Ic,  each vertex is isolated in a t  least 

one factor, and hence it has to be in D; so y(G, f )  = n. Brigham and Dutton have 

restricted their attention to the class of graphs with maximum degree at least k and 

they obtained some new bounds on y(G, f ) .  

Theorem 2.10 [BD90] For any k-factoring f of a graph G, if A(G) > k, then 

k 5 y(G, f )  5 y(G) + k + 2; otherwise y(G, f )  = n. 

Next, we will continue with this approach to factor domination problem by restrict- 

ing k, the number of factors. Brigham and Dutton [BD90], and also Sampathkumar 

[Sam891 independently introduced the concept of global domination which is the case 

of factor domination of Kn with a Zfactoring. In other words, a global dominating 

-set is a dominating set in both G and c. The minimum cardinality of a global dom- 

inating set is called global domination number y,(G). There are many bounds on 

global domination number y,(G) in terms of many graphical invariants, beside those 

obtained from y(Kn, f )  by setting k = 2. 

Dankelmann and Laskar presented the following corollary in [DLOS]. 

Corollary 2.11 [DL03j Let f = {G1,G2) be a 2-factoring of the complete graph K,, 

if bmin > 2, then 
ln(bmin + 1) + In 2 + 1 

y(Kn, f )  I n 
bmin + 1 

They also conjectured the following upper bound when dm;, 2 2. 

Conjecture 2.12 [DL031 Let f = {G1,G2) be a 2-factoring of the complete graph 

Kn. If bmin 2 2, then 
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In the following we include some other bounds on yg(G) in terms of order, minimum 

and maximum degree, and ordinary domination number of G. After considering yg(G) 

for some classes of graphs, Brigham and Dutton, noticed that if G is disconnected, 

then any dominating set must contain at least one vertex from each component and 

such a set clearly dominates G. Hence, 

Theorem 2.13 [BDSO] If either G or G is disconnected, then 

We conclude this section by a strengthening the result of Theorem 2.9 which states 

that yg(G) 2 n - min{G(G), 6(c)) .  

Theorem 2.14 [BD90] For any graph G either yg(G) = max{y(G), y (G)) or yg(G) 5 
min{A(G), A(G)) + 1. 

Theorem 2.15 [BD90] For any graph G if 6(G) = 6(G) 5 2, then yg(G) 2 6(G) +2, 

otherwise yg (G) 5 max{G(G), 6(G)) + 1. 

2.2.2 Distance Domination 

The concept of domination can be extended into distance version which is more ap- 

plicable in practical problems. For example consider the communication network 

problem. Here, a transmitting group is a subset of those cities that are able to trans- 

mit messages to every city in the network, via communication links, by at most I 

hops. 

An I-dominating set is a set Dl such that every vertex in V - Dl is within distance 

1 from at least one vertex in Dl. The minimum cardinality of a distance dominating 

set is called I-domination number yl(G). In Figure 2.2.2, filled vertices form a 3- 

dominating set of minimum size in P5P7. Hence, y3(P5P7) = 3. 
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Figure 2.6: A minimum 3-dominating set in P5P7. 

The problem of finding I-dominating sets of relatively small sizes is important in a 

variety of contexts such as problems of placement of the minimum number of objects 

(hospitals, police,etc) within desired distance of a given population. 

The concept of distance domination was first introduced by Meir and Moon [MM75]. 

The problem of finding yl(G) appears to be very difficult and only few results are 

known. In fact, this problem is NP-complete as shown in [CN84]. The restriction of 

the problem to special classes of graphs such as bipartite or chordal graphs of diarn- 

eter 2r + 1, has been studied and the problem remains NP-complete [CN84]. This 

motivated research on achieving good bounds for distance domination. 

It is obvious that for any graph G, n ( G )  5 y(G), and therefore all upper bounds 

on ordinary domination number can be applied to the I-domination number. Thus, if 

G is a connected graph with b(G) 2 2, and is not one of the seven exceptional graphs 

mentioned in previous section, then yl(G) 5 F. The case I = 2 was considered in 

[SSE02], where it has been shown that for the seven exceptional graphs, y2(G) 5 
as well. Hence, 

Theorem 2.16 [SSE02] If G is a connected graph and b(G) 2 2, then 

A stronger upper bound on y2(G) is obtained in [SSE02]. 
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Theorem 2.17 [SSE02/ If each component of a graph G contains at  least 3 vertices, 

then 

. .. 

From the results on ordinary domination it can be concluded that, for any graph 

with no isolated vertex, yl(G) 5 ;. This bound can be improved for Zdomination 

number to a bound which might be even better. than Theorem 2.17. 

Theorem 2.18 [SSE02] If a graph G has n o  isolated vertex? then 

In the rest of this section we discuss an algorithmic approach to this problem. The 

-most obvious algorithm to find a small 1-dominating set of G is a greedy algorithm: 

At each iteration, choose a vertex v of current maximum degree in the current graph 

and put it into set Dl. Then remove v and all vertices which are I-dominated by v. 

Repeat this iteration until the degree of each vertex in the remaining graph is zero. 

Toward the end of the algorithm there are many vertices which are not dominated 

with degree zero and they must be moved into Dl. Therefore, this algorithm might 

have a poor performance. 

Obviously for any connected graph of order n < 1 + 1, any vertex of G I-dominates 

every vertex of G and so yl(G) = 1. Thus, in the following theorem we may assume 

n > l + l .  

Theorem 2.19 [HOSSI] If G i s  a connected graph of order n 2 1 + 1, 1 > 1, then 
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The algorithmic proof of this theorem suggests the following algorithm which is in 

fact presented in [HOS96]. This algorithm finds an I-dominating set of size at most 

161 in a connected graph of order n > 1 + 1. 

Algorithm 2.20 [HOS96] Let 1 > 1 be an integer and G a connected graph of order 

n z l + l .  

1. Find a spanning tree T of G. Set DL c 0. 

2. If radius of T is at most 1 ,  then let v be a central vertex of T ,  output Dl U { v )  

and stop. Otherwise continue. 

3. Let d = diam(T) and find a path uo, u l ,  . . . , ud of length d in T .  Set Dl + 

DL U { u l )  and let T be the component containing q + l  in T - U L U L + ~  and return to step 

2. 

Another argument for 161 as an upper bound is presented in [KP98] which 

follows. Let T be a rooted spanning tree of G and let Dl, .  . . , Dl+1 be a partition of 

V ( G )  such that for 0 < k I 1, each vertex in Dk+1 is xk edges away from the root 

in T and xk mod ( 1  + 1) = k. This partition can be constructed by traversing T 

breath-first from the root and assigning every new layer of vertices circularly to the 

sets Dl , .  . . , Dl+l. It can be shown that each of these sets is an 1-dominating set. 

Since the algorithm partitions V ( G )  and n > 1 + 1, there is at least one partition 

which has no more than L&j vertices. 

Penso and Barbosa [PB04] considered the problem of finding an 1-dominating 

set in G having no more than LeJ vertices by means of synchronous distributed 

computation on G in O(1 log* n )  time. The algorithm in the first stage partitions G 

into trees of a rooted spanning forest, where each tree has at least 1 + 1 vertices and 

O(1) height. The second stage approaches the tree as described in the argument above 

and partitions its vertices. 

2.2.3 Connected Domination 

Connected dominating set is a dominating set which induces a connected subgraph. 

Since each dominating set has at least one vertex in each component of G ,  only 
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connected graphs have a connected dominating set. Therefore, in this section we may 

assume all graphs are connected. The minimum cardinality of a connected dominating 

set is called connected domination number yc(G). In Figure 2.7, filled vertices form a 

connected dominating set of minimum size and therefore, yc(G) = 3. 

Figure 2.7: A minimum connected dominating set 

- A direct application of connected domination is again in the computer networks 

where a connected dominating set serves as a communication backbone in network. 

For example in a cellphone network. 

The concept of connected domination was introduced by Sampathkumar and Wa- 

likar [SW79] and they showed that if H is a connected spanning subgraph of G, 

then yc(G) 5 yc(H), since every connected dominating set of H is also a connected 

dominating set of G. 

It has been shown that the problem of deciding wether a connected dominating 

set of size M exist such that yc(G) > M is NP-complete in [GJ79]. This problem is 

equivalent to the problem of finding a spanning tree that maximizes the number of 

leaves, since a set is a connected dominating set if and only if its complement is a set 

of leaves of a spanning tree. Considering this, Hedetniemi and Laskar [HL84] showed 

that for any graph of order n 2 3, yc(G) 5 n - 2, since any tree T has at  least 2 

leaves. 

Kleiman and West [KW91] studied the number of leaves in spanning trees of a 

connected graph and they showed that if G is a connected graph with b(G) 2 k,  then 
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it has a spanning tree with at least n - 3[&J + 2 leaves. As discussed above, the 

complement of this set of leaves is a connected dominating set. Hence, 

Theorem 2.21 [HHS98] For any connected graph G with 6(G) 2 k ,  

In the previous section we showed that y(G) < n - A(G). Hedetniemi and Laskar 

showed that the same upper bound remains valid for connected domination number. 

Theorem 2.22 [HL84] For any connected graph G, 

rc(G) I n - A(G). 

There is a nice relation between y(G) and yc(G) that was observed by Duchet 

_and Meyniel in [DM82]. As we discussed before the lower bound, y(G) < yc(G), is 

trivial and the upper bound, yc(G) 5 3y(G) - 2, follows since any dominating set in 

a connected graph can be turned into a connected dominating set by joining at most 

y(G) - 1 induced components through at most y(G) paths, each of length at  most 3. 

Each such path adds at most 2 new vertices into a connected dominating set. Hence, 

Theorem 2.23 [DM821 If G is a connected graph, then 

r(G) < rc(G) < 3y(G) - 2. 

Caro et al. sharpened this result in the following theorem. 

Theorem 2.24 [CWYOO] If G is a connected graph and D is a dominating set of G 

that induces a subgraph with t components, then yc(G) < ID1 + 2t - 2. In particular, 
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As we have seen in Theorem 2.8 Alon [ASOO] showed that  for any graph G with 

no isolated vertex, y(G) < n '+:[::!+'). Car0 e t  al. by more complicated argument 

showed that  the bound holds for connected dominating sets. 

Theorem 2.25 [CWYOO] For any connected graph G of order n, 

An r-connected graph is a graph G, such that by deleting any r - 1 vertices it 

remains connected. An r-connected dominating set is a dominating set that  induces 

an r-connected subgraph, denoted by 7,-,(G). Clearly, only r-connected graphs can 

have r-connected dominating sets. For any r-connected graph 7,-,(G) 2 1, since 

V(G) is an r-connected dominating set. Directly from Theorem 2.25 can be seen that 
In6 G y C ( G )  < 1 + o ( 1 ) ) n .  Consequently, Caro and Yuster [CY03] proposed the 

following conjecture for r-connected graphs. 

Conjecture 2.26 [CY03] Let r be a fixed positive integer. If G is an T-connected 

Theorem 2.25 proves the conjecture for T = 1. Caro and Yuster proved their 

conjecture for r = 2. The problem remains open for r 2 3. 

In [DMP+05] a distributed algorithm for removing all cycles of length a t  most 

1 +2 log n for any graph G such that the remaining graph stays connected is presented. 

Based on this algorithm the following result is obtained. 

Theorem 2.27 [DMPOS] There is a randomized distributed 0(log2 n)-time algo- 

rithm for computing a O(logA(G))-approximation to the minimal connected domi- 

nating set. rn 
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2.2.4 Dominating Cycles 

A dominating cycle is a cycle in which every vertex is in the neighbourhood of a 

vertex on the cycle. The minimum cardinality of a dominating cycle is denoted by 

y,(G). In Figure 2.8, filled vertices form a dominating cycle'of minimum size and 

hence, y,(G) = 3. 

Figure 2.8: A minimum dominating cycle. 

_ Lesniak and Williamson [LFW77] introduced the concept of dominating cycles. 

The problem is shown to be NP-complete even when restricted to planar graphs 

[PS81]. However, there are polynomial time algorithms for few classes of graphs such 

as circular-arc graphs. 

It is obvious that not all graphs have dominating cycles. Therefore, it makes sense 

to study sufficient conditions for the existence of a dominating cycle. Let ak(G) denote 

the minimum value of the degree sum of any k independent vertices of G. Bondy and 

Fan gave a sufficient condition for the existence of a dominating cycle. 

Theorem 2.28 [BF87] Let G be a k-connected graph, k > 2,  If ak(G) 2 n - 2 k ,  then  

G has a dominating cycle. H 

A resulting corollary of this theorem gives a condition on minimum degree of G. 

Corollary 2.29 [BF87] Let G be a k-connected graph, k 2 2 ,  i f  6(G) 2 e, then 

G has a dominating cycle. H 
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Bondy gives the following sufficient condition for each longest cycle of a 2-connected 

graph to be a dominating cycle. 

Theorem 2.30 [Bon81] Let G be a 2-connected graph of order n 2 3 with u 3 ( G )  2 
n + 2 ,  then  each longest cycle of G i s  a dominating cycle. 

Let K(G) denote the connectivity of the graph G. The following condition for a 

3-connected graph is given in [STWOl]. 

Theorem 2.31 [ S T  WOl]  Let G be a 3-connected graph of order n 2 3 with u4(G) _> 
n + ~ K ( G ) ,  then  G contains a longest cycle which i s  a dominating cycle. I 

A stronger conclusion is shown in [LLT05]. 

Theorem 2.32 [LLT05] Let G be a 3-connected graph of order n 1 3 with u 4 ( G )  _> 

n + 2tc(G),  then  each longest cycle of G i s  a dominating cycle. I 

Theorem 2.33 [LLT05] Let G be a 3-connected graph of order n _> 13, if u 4 ( G )  2 
+ :, then  each longest cycle of G is a dominating cycle. I 

2.2.5 Other Varieties of Domination 

Total domination 

Total dominating set  is a set of vertices such that each vertex v E V is in open 

neighbourhood of a vertex in the set. Note that in total domination vertex v does not 

dominate itself and so it is required that there be no isolated vertex. The minimum 

cardinality of a total dominating set is called the total domination number y t (G) .  The 

decision problem to determine the total domination number of a graph is known to be 

NP-complete. The upper bound on the total domination number in terms of order of 

the graph has been studied continuously and we present here a chain of these results. 

Cockayne et al. gave the first bound in this chain. 
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Theorem 2.34 [CDHgO] If G is a connected graph of order n 2 3, then 

2n 
n ( G )  < 3. 

Henning et al. improved the bound by excluding some classes of graphs. 

Theorem 2.35 [HenOO] If G is a connected graph of order n with b(G) 2 2 and 

G @ (C37 C5, C6, CN)t then 
4n 

yt(G) 5 7. 

Favaron et a1 made another improvement for b(G) 2 3. 

Theorem 2.36 [FHMPOO] If G is a connected graph of order n with b(G) 2 3, then 

Finally, the best known upper bound on yt(G) in terms of order is represented in 

the following theorem. 

Theorem 2.37 [ A E M V 0 4 ]  If G is a graph of order n 2 3, then 

Paired domination 

Paired dominating set is a dominating set whose induced subgraph has a perfect 

matching. Fkom the definition it requires that there be no isolated vertices. Every 

paired dominating set is a total dominating set. The paired domination number is the 

minimum cardinality of a paired dominating set and denoted by y,(G). The paired 

dominating set problem is also shown to be NP-complete [HS98]. Haynes and Slater 

presented the following sharp bounds on y,(G). 
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Theorem 2.38 [HS98] If a graph G has no isolated vertices, then 

By conditioning n and 6(G), a better upper bound was obtained. 

Theorem 2.39 [HS98] If G is connected and n 2 6 and b(G) 1 2, then 

k-domination 

A k-dominating set is a set of vertices D such that each vertex in V(G) - D is 

dominated by at least k vertices in D for a fixed positive integer k. The minimum 

cardinality of a k-dominating set is called k-domination number yk(G). Fink and 

Jacobson presented the following upper bound in terms of order, maximum degree 

and k. 

Theorem 2.40 [FJ85] For any graph G, 

Cockayne et al. obtained the following upper bound in terms of order and k. 

Theorem 2.41 [CGS85] For any graph G i f  6 2 k ,  then 
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k-tuple dominat ion 

k-tuple domination is a variation of k-domination which was introduced by Harary 

and Haynes. A k-tuple dominating set is a set of vertices D such that each vertex 

in V is dominated by at  least k vertices in D. Therefore k . 5  6(G) + 1. The k- 

tuple domination number is the minimum cardinality of a k-tuple dominating set and 

denoted by yxk(G). It is obvious that a graph G has a k-tuple dominating set if and 

only if 6 2 k - 1. 

The main application of k-tuple domination in network is for fault tolerance or 

mobility. Where, a node can use a service only if it is replicated on it or its neigh- 

bourhood. So, each node need to have k copies of the service available in its closed 

neighbourhood. 

2.3 Domatic Number and Variations 

-An interesting variant of domination problem is to  ask how many dominating sets 

one can pack into a given graph G. Such type of packing questions are common for 

many problems and we will survey some results in this direction, mostly related to 

domination parameters discussed in previous sections. The main question is how to 

partition the vertex set of a graph into maximum number of disjoint dominating sets. 

The word "domatic" is created from two words "dominating" and "chromatic7' since 

the definition of it is related to both domination and colouring concepts. 

A domatic partition is a partition of V(G) such that each class of the partition 

is a dominating set in G. The maximum number of classes in a domatic partition 

is called the domatic number of G, denoted by D(G). In any graph G, {V(G)) is 

a domatic partition and therefore, D(G) 2 1. This bound is sharp since for any 

graph G, with an isolated vertex, D(G) = 1. It also follows from the definitions of 

domination number and domatic number of a graph that y(G) . D(G) 5 n, therefore, 

W )  5 +j. 

The concept of domatic partition arises in various areas. In particular, in the 

problem of communication networks that we discussed in previous sections, domatic 
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number of a graph represents the maximum number of disjoint transmitting groups 

Another application of domatic number is related to the task of distributing resources 

in a computer network in the most economic way. Suppose, for example, resources 

are to be distributed in a computer network in such a way that expensive services are 

quickly accessible in the neighbourhood of each vertex. If every vertex can serve a 

single resource only, then the maximum number of resources that can be supported 

equals the domatic number in the graph representing the network. 

The concept of domatic number was introduced by Cockayne and Hedetniemi in 

[CH77] and they presented the following trivial bound on D(G). 

Theorem 2.42 [CH77] For any graph G, 

This follows since if D(G) > b(G) + 1, there is a class in such a partition which 

does not dominate a t  least one vertex, in particular a vertex of minimum degree, 

which is a contradiction. Motivated by this bound, Zelinka [Ze183] was interested in 

finding a lower bound on D(G) in terms of 6(G). However he showed that such a 

bound does not exist. 

Theorem 2.43 [Zel83] For each non-zero cardinal number p there exist a graph G in 

which each vertex has degree at least p and whose domatic number is 2. I f p  is finite, 

then there exist both a finite graph and an infinite graph with this property. 

Nevertheless, he achieved a bound on D(G) in terms of order and minimum degree 

of G. For this, consider a graph G and its complement G. If a vertex has degree r in 

G it has degree n - r - 1 in G. Therefore, the maximum degree in G is n - 6(G) - 1. 

Now, let D be a subset of V(G) with n - 6(G) vertices. Since the maximum degree in 

G is n - 6(G) - 1, each vertex v which is not in D is adjacent to a t  most n - 6(G) - 1 

vertices in D and v is not adjacent to at least one vertex in D in G. This implies that 

v is adjacent to at least one vertex in D in G which guarantees its domination. Thus, 
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any set of n - b(G) vertices is a dominating set in G. Now considering any partition 

of V(G) into classes of n - S(G) vertices the following bound on D(G) is obtained. 

Theorem 2.44 [Ze183] For any graph G of order n, 
. . 

Since all previous results are only bounds on D(G), it would be very interesting 

and important to have an algorithm that actually constructs such a partition. 

The problem of determining the domatic number is known to be NP-complete 

[HH98]. One of the best (exponential) algorithms for determining the domatic number 

is provided in [FGPS05]. It is based on an (exponential) bound on the number of all 

minimal dominating sets: in any n-vertex graph there are a t  most 1.7697" minimal 

dominating sets. Using this bound Fedor et a1 developed an O(1.7697") algorithm 

-that finds all such sets. Finally, based on this algorithm, they derived an O(2.8805") 

algorithm which finds the domatic number of any n-vertex graph. Hence we have the 

following theorem. 

Theorem 2.45 FGPSOS] The domatic number of a graph G of order n can be com- 

puted in time 0(2.8805n). rn 

Although this is an exact algorithm it is an exponential time algorithm which is 

not very practical. Therefore, there has been some effort to achieve an approximation 

of D (G) . 

Such an approximation is presented in [FHKS03]. A randomized algorithm is 

using randomized provided which finds a domatic partition of size (1 - o(1)) ,,, 
assignment. Afterwards the assignment is derandomized using the method of condi- 

1-o(1) tional probabilities. Hence, using this method and based on Theorem 2.42 a -in7;-- 

approximation is obtained. 
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Theorem 2.46 [FHKSO3] Any graph admits a polynomial time constructible domatis 

partition of size 

Inn ' 

Fedor et a1 obtained another algorithm that finds a domatic partition of size at 

for some constant c, by application of the Lov&sz Local Lemma for the least xzqq, 
randomized assignment algorithm. 

Theorem 2.47 [FHKSO3] Any graph admits a domatic partition of size 

where o(1) -+ 0 as A(G) -+ m. 

Next we will consider two variations of the domatic partition, in particular, I- 
-domatic partition and factor domatic partition. We also add a new variant here 

which is a combination of distance and factor domination, factor I-domatic partition. 

Note that our results in next the section concern these extensions. In particular, we 

extend the previous two results to factor domatic partitions. 

An I-domatic partition is a partition of V(G) where each class is an I-dominating 

set in G, 1 2 1. The maximum number of classes in such a partition is called I-domatic 

number, Dl(G). This concept was first introduced by Borowiecki and Kuzak [BK80]. 

Zelinka obtained several results which compare the values of Dl(G) for different values 

of I. In the following we include some of these results. 

From the definition of an I-dominating set it is clear that an I-dominating set in 

G is also a k-dominating set in G, when I < k. Hence, 

Theorem 2.48 [Zel83] Let I and k be positive integers and 1 < k. For any graph G, 
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A similar behavior is observed for the spanning subgraph of G since the distance of 

any two vertices in G is less than or equal to their distance in any spanning subgraph 

of G. 

. .. 

Theorem 2.49 [Zel83] Let G be a graph and H be a spanning subgmph of G, then 

A more complicated argument gives the following lower bound. 

Theorem 2.50 [Ze183] Let G be a connected graph of order n, then 

DI(G) > min{n, I + 1). 

The next variation that we discuss here is factor domatic partition. A factor 

domatic partition is a partition of V(G) where each class is a factor dominating set 

for a given Ic-factoring f of G. The maximum number of classes in a factor domatic 

partition is called factor domatic number Df (G), where f = {GI, G2,.  . . , Gk) is a 

Ic-factoring of G. 

Determining Df (G) for general graphs seems hard, therefore various restrictions 

have been considered. The restriction into special class of graphs, namely complete 

graphs and complete bipartite graphs have been studied by Haynes and Henning in 

[HHOO]. They presented some upper bounds on the sum and product of the domatic 

numbers of factors of complete graphs and complete bipartite graphs. 

Theorem 2.51 [HHOO] Let f = {GI, G2,. . . , Gk) be a Ic-factoring of K,, n > 3. 

Then  
k 
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For any 2-factoring of a complete graph K,, Cockayne and Hedetniemi gave the 

following bound on the sum of domatic numbers, which is also a direct corollary of 

Theorem 2.51 by setting k = 2. 

Theorem 2.52 [CH77] For any graph G and its complement 'c, 
D(G) + D(G) 5 n + 1. 

Also the following upper bound on the product of the domatic numbers is given 

in [DHH99]. 

Theorem 2.53 [DHH99] For any graph G and its complement G, 

n2 
D(G) .  D(G) < 7. 

rn 

Consequently, Haynes and Henning [HHOO] considered the simple case of 2-factoring 

for the complete bipartite graph K,,, and achieved the following bounds on the sum 

and product of domatic numbers of factors. 

Theorem 2.54 [HHOO] Let f = {GI, G2) be a 2-factoring of K,,,, s 2 2. Then 

D(G1) + D(G2) I s + 2. 

rn 

Theorem 2.55 [HHOO] Let f = {GI, G2) be a 2-factoring of K,,,, s 2 2. Then 

2s for s I 9, 
D(G1) . D(G2) l [;I2 f o r s ?  10. 

and the bounds are sharp. 
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Haynes and Henning also studied the problem for the special case of,3-factoring 

of a complete graph K,. The following bound on the sum of the domatic numbers 

of 3 factors of K, is obtained by setting k = 3 in Theorem 2.51. Here, we include 

an example which shows that the following bound is sharp. Let GI Z 2Kg and 
. .. 

G2 2 ;K2. Thus, G3 is obtained from a complete bipartite graph Kg,; by removing 

the edges of 1-factor. Therefore 

Theorem 2.56 [HHOO] Let f = {GI, G2, G3} be a 3-factoring of K,, n 1 3. Then 

and the bound is sharp. 

They also presented a bound on the product of domatic numbers for a given 3- 

factoring of K, with large n. 

Theorem 2.57 [HHOO] Let f = {GI, G2, G3} be a 3-factoring of K,. Let n 2 27 

be an odd integer with n $! {29,35,37,53} or let n 1 42 be an even integer with 

n $! {44,50,52,56}. Then 

The next variation is a combination of factor domatic partition and I-domatic 

partition, called factor I-domatic partition. A factor I-domatic partition is a partition 

of V(G) where each class is both a factor dominating set and an I-dominating set. 

The maximum number of classes in such a partition is called factor 1-domatic number. 

This variant has been studied in [AFL+03]. However, the authors assumed that the 

all factors are connected and not necessarily edge disjoint. Also, rather than finding 

the maximum number of factor I-dominating sets for a fixed 1, they fixed the number 

of such sets and found the minimum 1 for that number of sets. 
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Formally, let a(t ,  k) denote the minimum distance I for the given integers t and 

k such that every k-factoring of every graph on a t  least t vertices admits a factor 1- 

domatic partition with t classes. In the following, we include some bounds on a(t ,  k). 

By considering spanning tree of each factor and using Hall's Theorem the following 

bound is obtained. 

Theorem 2.58 [AFLf 031 For every k 2 2 and t 3 k, 

Using a probabilistic argument, in particular, Lov&z Local Lemma, they obtained 

a better bound. 

Theorem 2.59 [AFLf 031 For every k _> 1 and t _> 1, 

A lower bound is also presented when t > 2 and k > 4. 

Theorem 2.60 [AFLf 031 If t 2 2 and k > 4, then 

a( t ,  k) _> q t  log k). 

These bounds are not very tight and tightening them remains an open problem. 



Chapter 3 

Our Results on Factor and 

Distance Domination 

In this chapter we include our main results which are extensions of bounds given in 

Theorem 2.46 and Theorem 2.47 and their constructive algorithms. In particular, 

-we bound the factor domatic number in Section 3.1 and factor 1-domatic number in 

Section 3.2. In Section 3.3 we extend Alon's bound on y(G) given in Theorem 2.8 to a 

bound on the size of the factor dominating sets in a factor domatic partition. Finally, 

we consider the problem of minimizing a ( t ,  k) as it will be discussed in Section 3.4 and 

consider the problem when some vertices have been precoloured. We find a condition 

on the precolouring such that the same upper bound as given in Theorem 2.58 holds 

for a ( t ,  k). 

3.1 Factor Domatic Partition 

We defined factor dominating sets in Section 2.1 and factor domatic partition in 

Section 2.3. We mentioned some bounds on the sum and product of the domatic 

number of factors of a graph in a given k-factoring of G. In Theorem 2.46, Feige et 

al. [FHKS03] showed that any graph admits a polynomial time constructible domatic 

partition of size [(I - o(-)) -1. In the following, we show a similar bound 
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holds for factor domatic number, using the same probabilistic method. We use the 

same method to estimate a lower bound on factor domatic number for any given k- 

factoring of a graph G. Then we describe a deterministic algorithm to construct a 

factor domatic partition of this size. 

Let f = {GI , .  . . , Gk)  be a given k-factoring of G. Let [h] = {1,2,. . . , h)  be a 

set of colours. A random colouring of G is an assignment of colours to vertices such 

that the probability of assigning colour c E [h] to vertex v E V ( G )  is i. The factor 

domatic partition of G for a given k-factoring. of G can now be reformulated as a 

colouring such that each colour class forms a dominating set in each factor. For a 

triple (v ,  c,i) where v E V(G) ,  c E [h], and the index of factor Gi, 1 5 i 5 k, let 

be the following random indicator variable 

1 if there is no vertex of colour c in Nci [v], 

0 otherwise. 

- If = 1 then we say v does not see colour c in NGi[v]. This means that the 

vertices with colour c do not form a dominating set in the factor Gi. For an event A, 

let P[A] denote the probability of A, and E[A] denote the expectation of A. 

It can easily be seen that D (G)  5 bmi, + 1, because otherwise a vertex of minimum 

degree will not be dominated by at least one set in a t  least one factor. Therefore, the 
1 -o ( !21p)  

following theorem gives a tn -approximation of D (G). 

Theorem 3.1 For any k-factoring f of a graph G, 

Proof: 

Let f = {GI ,  . . . , G I )  be a k-factoring of G and let h = . Randomly L J  
colour each vertex with one of h colours. Now for any triple (v ,  c,i),  EIIv,c,i] = 

PIIv,c,i = 11 and PIIv,c,i = 11 = ( 1  - ft)dci[v]. This follows since each colour c appears 

with probability f t ,  so the colour c does not appear with probability 1 - k, and there 
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are dGi[v] vertices in the closed neighbourhood of v. So the probability that none of 

these vertices has colour c is (1 - i)dci[vl. Using the fact that kin < dGi[v] we have 

So, the expected total number of bad events is at most 

k 1 
- 

h C C C p[Iv ,c , i  = 11 = nhk -- 
VEV(G) ce[h] i=l knln kn In kn '  

Hence, the expected number of colours that do not form factor dominating sets is 

at most A. Thus the expected number of colours which do form a factor dominating 

set is a t  least 

h h--= 1 - 
In kn + l) (ln(kn ln kn) ln(kn in kn) In kn 

lnkn - 1 
= (dmin + 1) (In kn + In ln kn) (In kn) 

- - bmin + 1 1 + lnlnkn 
ln kn - ln(kn In kn) > . 

Now, simply add vertices with colours that do not form a factor dominating set 

into a colour class that forms a factor dominating set. In this way we obtain a factor 

domatic partition of G for the given k-factoring f of G for which 

In Theorem 3.1 we only found a lower bound on Df(G), and it is important to find 

an algorithm which constructs a factor domatic partition of this size. In the following 

we present such an algorithm. Let be the event that there is no vertex of colour 

c in NGi [u]. Indeed, = 1 if and only if holds. 
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Theorem 3.2 Any graph G with a given k-factoring f of G admits a polynomial time 

constructible domatic partition of size 

lnkn  ' 

In order to prove Theorem 3.2, we provide a constructive algorithm in the follow- 

ing. 

Algorithm 3.3 The Factor Domatic Partition Algorithm 

Input: A graph G of order n with a k-factoring f = { G I , .  . . , G k ) .  

Output: A factor domatic partition of expected size given in  Theorem 3.2 for the 

k-factoring f of G. 

- 1. Order vertices arbitrarily as v l ,  . . . , v,  and process them in this order. 

2. Colour vl randomly with one of the colours in [h],  where h is as given in 

Theorem 3.1. 

3. Suppose v l ,  . . . , vj have been coloured with colours c l ,  . . . , cj. Colour vj+l as fol- 

lows. Denote the conditional probability of the event given that vertices v l ,  . . . , vj 

have already been coloured with colours c l ,  . . . , cj by P[Au,c,i lcl, . . . , cj]  . This probabil- 

ity is zero i f  there is  a vertex v,, z 5 j in  NGi [v] that has been coloured with colour c. 

Otherwise it is ( 1  - i)", where m is the number of uncoloured neighbours of v in Gi, 

i. e. m = I NGi [v] n { v ~ + ~ ,  . . . , v,) I. Formally, 

i f3z  5 j, v, E NGi[v] and c, = c, 
P[Av,c,i (cl ,  . . . 1  cj] = 

(1 - i)" otherwise. 

Let g(cl ,  . . . , c j )  denote the expected total number of bad events, i. e. for which 

Iu,c,i = 1, after colouring all vertices, given that vl , . . . , vj have been coloured with 

colours c l ,  . . . , cj respectively. So 
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NOW colour vertex vj+l such that g(c1,. . . , cj+1) < g(cl, 1 , .  ., cj). 

We need to show that such a colour for vj+l exists. 

Lemma 3.4 Suppose vl, . . . , vj have been coloured with colours cl, . . . , cj respectively. 

We can always colour vj+l with a colour cj+l E [h] such that g(cl,. . . , cj, ~ j + ~ )  5 

g(c1,- J j ) .  

Proof: 

The statement will obviously follow if we show that g(cl, . . . , cj) is a convex com- 

bination of { ~ ( c I , .  . . , cj, a) : a t. [h]} because then there is a colour cj+l such that 

g(cl, . . . , cj , cj+1) 5 g(cl, . . . , cj) . We have 

Therefore, g(cl, . . . , cj) = $ Cr[hl g(cl, . . . , cj, z )  and the lemma is proved. 

In the following we use a different method of constructing the colouring that we 

used in Theorem 3.1. This method is a standard way to provide an algorithm for the 

Lovkz Local Lemma, originally introduced by Beck [Becgl] and leads to a randomized ' 
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algorithm. The Loviisz Local Lemma only shows that an event holds with positive 

probability. I t  might be important to provide a polynomial time (at least randomized) 

algorithm for the corresponding problem. This method was successfully used by Fiege 

et al. in [FHKSOS] to derandomize the probabilistic lower bound given in Theorem 

2.47 on the domatic number, D(G), of a graph G. We use this method to develop 

a randomized polynomial time algorithm that constructs a factor domatic partition 

of a given graph with a Ic-factoring. Following the general method, we first bound 

the expected size of such a partition using the Lovisz Local Lemma. This is done in 

Lemma 3.6. Then we apply the method of Beck to construct such a partition with 

high probability in Theorem 3.7. 

For the reader's convenience, we introduce the Lovisz Local Lemma. If we have 

n mutually independent events where each occurs with probability 0 < p < 1, then 

the probability that none of these events occurs is (1 - P ) ~ .  In the case when the 

n events have rare dependencies, the Lovisz Local Lemma [EL751 shows that under 

some conditions no event holds with positive probability. The following lemma is the 

symmetric case of the Lovisz Local Lemma. 

Lemma 3.5 [EL751 Let Al, . . . ,An be n events i n  a probability space. A graph G = 

(V, E) on the set of vertices {I , .  . . , n )  comesponding to events Al, . . . , An is called a 

dependency graph for the events Al, . . . , An i f f o r  each i ,  1 5 i 5 n, the event Ai is 

mutually independent of all events {Aj : (i ,  j )  @ E).  Suppose that G = (V, E) is a 

dependency graph for the above events and suppose that the maximum degree i n  G is 

d .  Suppose further that P[Ai] < p for all 1 2 i 5 n. If ep(d + 1) 5 1, then 

where e is the basis of the natural logarithm. 

Now, we are ready to prove our lower bound on Df (G). 

Lemma 3.6 For any Ic-factoring f of a graph G, 
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ProoE Let f = {GI, . . . , Gk) be a k-factoring of G and let h = I l 1 : 
3 ln(33 k 3  A(G)) 

Randomly colour vertices with colours in [h]. For each triple of a vertex, colour, and 

index of a factor (v, c, i), let be the same event as defined in the proof of Theorem 

3.1. The probability of the bad event is 

Each bad event corresponds to the vertex set NGi[v]. Therefore, the de- 

pendency translates into the intersection property for the corresponding vertex sets, 

and two events are dependent if and only if their corresponding vertex sets have a 

non-empty intersection. Thus, for each event there are at most 

-dependent events. This is sum of the maximum number of vertices a t  distance two or 

less from v over all factors and colours. Since dGi(v) 5 Amaz and 

h 5 A(G) - 1 < A(G) - 
kA(G) + 1 

k(A2 (G) + 1) 

we have 

I kA (G) + 1 + dc,(v)(A(G) - 1) I: kA(G) - k(Az(G) + l) (A2(G) + ') 

Hence, d = kA3(G) - 1 and p = &. Since we have 

1 e 
ep(d + 1) = e 

3kA3 (G) 
(kn3(G)) = - < 1, 

3 

by Lovhz Local Lemma, the probability that no bad event holds is greater than 

zero, which guarantees a factor domatic partition of size at  least 1 (a -c(1)) -1 . 
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Theorem 3.7 For any graph G with a given k-factoring f = {GI, .  . . , Gk), there ex- 

ists a polynomial time randomized algorithm that constructs a factor domatic partition 

o f  site 

with probability at least i. 

In the following we present an algorithm to construct a factor domatic partition 

of the size given in Theorem 3.7 with some loss in the constant that works with high 

probability. First we define three classes of vertices for a given partial colouring of 

some vertices. In the following definitions, h = c,nk$G) as given in Lemma 3.6, L 6mi 1 
where c is a large enough constant ( c  2 30 will do). An undominated factor for vertex 

v is a factor in which v does not see all h colours in its closed neighbourhood. A good 

vertex is a vertex that has no undominated factor. A dangerous vertex is a vertex 

-which has a t  least one undominated factor and in each such factor it has at least 5 
of its neighbours coloured. A neutral is a vertex that has a t  least one undominated 

factor and in each such factor it has less than 5 of its neighbours coloured. 

Phase One 

1. Consider an arbitrary ordering of vertices, say vl, . . . , v,, and process them in 

this order. 

2. Randomly colour vl with one of h colours. 

3. If the current vertex or one of its neighbours is dangerous, freeze it (do not 

colour it). Otherwise, randomly colour it with one of h colours. 

After the above randomized assignment we will have two different partitions over 

vertices. The first partition is {Coloured, Frozen) and the second partition is {Good, 

Dangerous, Neutral). A vertex which is both coloured and good has already been 

dominated in all factors; i.e. does not have an undominated factor, and we do not 
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need to reconsider it. Remaining vertices will be considered in the second phase. In 

particular, we continue the algorithm with vertices that are either dangerous, neutral 

or frozen and call them saved vertices. Some of the saved vertices have already 

been coloured and we do not recolour them in future, since this may influence good 

vertices. From the third step of this phase it is obvious that a dangerous vertex cannot 

be coloured. Therefore, the only coloured vertices among saved vertices are neutral 

vertices. Moreover, at least of neighbours of each dangerous or neutral vertex are 

frozen(unco1oured) in each of its undominated factors. This is obvious for neutral 

vertices directly from the definition. For dangerous vertices it follows: assume that i 
of neighbours of v have already been coloured in its undominated factor. Therefore, 

v becomes dangerous and from the third step of phase one the rest of v's uncoloured 

neighbours will be frozen. 

Now we consider the subgraph induced by the saved vertices and run the next phase 

on each of its connected component. We claim that the order of the largest component 

of the subgraph induced by saved vertices is 0(A(G)6 In kn) with probability at least 

a and we will prove this later in Theorem 3.13. Therefore, we may assume that the 

order of each connected component is at most na = 0(A6(G) In kn). 

Phase Two 

1. Consider each connected component of the subgraph induced by saved vertices. 

2. Repeat all three steps of phase one on each component separately. 

After running this phase we will again have two partitions over vertices. {Coloured, 

Frozen) and {Good, Dangerous, Neutral) of phase two. Similar to  phase one, we do 

not reconsider a vertex which is both coloured and good. Remaining vertices will be 

considered in phase three. In particular, we continue the algorithm with the new set 

of saved vertices. As before, some of the saved vertices are coloured and we do not 

recolour them in the next phase. Moreover, at least i of neighbours of each dangerous 

or neutral vertex are frozen(unco1oured) in each of its undominated factors. Indeed, 

from the argument in the previous phase we know that before running phase two at 

least $ of neighbours of each dangerous or neutral vertex are frozen(unco1oured) in 
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each of its undominated factors. In phase two at most additional of neighbours of 

each dangerous or neutral vertex may be coloured in each such factor. 

We continue the algorithm by considering each connected component of the sub- 

graph induced by the new saved vertices in the next phase. Again by Theorem 3.13, 

we may assume that with probability a t  least i, the order of the largest component 

of the subgraph induced by new set of saved vertices is a t  most 

n3 = 0(n6 (G)  In knz) = O(A~(G)  In k(n6(G) 1, kn)) 

= 0(n6(G)(ln A(G) + In In kn)). 

Phase Three 

Case I A(G) > In ln kn. Then, n3 = 0(A7(G)). As we have discussed above after 

running phase two at  least 5 of neighbours of each dangerous or neutral vertex 

are frozen(unco1oured) in its undominated factor. This implies that the mini- 

mum degree of each component in phase three is a t  least *. To complete the 

colouring we can use Algorithm 3.3 on each component and therefore, from The- 

orem 3.2 we get a factor domatic partition of size ,;;g3. Since kn3 = O(kA(G)), 

we will have a factor domatic partition of size l:;x(G). 
Case I1 A(G) 5 lnlnkn. Then, n3 = 0((lnlnkn)7). After running two previous 

phases the components in third phase are fairly small and also A(G) 5 In In kn. 

Therefore, Lemma 3.6 guarantees the existence of a factor domatic partition of 

size We use an exhaustive search on all vertices to find a factor domatic 

partition and it will take polynomial time to find such a domatic partition. Since 

each of n3 vertices can be in at most o(-) sets, hence 

In order to prove the correctness of the above algorithm, we need to show that 

with probability a t  least i, the order of the largest connected component of the 
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subgraph induced by saved vertices is 0(A6(G) In kn). In other words, we show that 

with probability at most 4, a connected component of the subgraph induced by saved 

vertices with order at  least 0(A6(G) In kn) exists. Such a component is called a large 

component. Now to estimate the order of a large component, it is enough to estimate 

the order of a spanning tree of it. For this, we estimate the number of saved vertices 

with "large" pairwise mutual distances. In our arguments, 7 will be large enough 

distance. 

We need few definitions before we start. A set of vertices is 7-separated if the 

mutual distance of its elements is at least 7 in G. Note that if the distance of a pair 

of vertices is at least 1 in G, then it is at least 1 in each factor of G as well. Hence, a 

7-separated set in G is a 7-separated set in each factor of G. A 7-separated set of t 

vertices is called a bad t-set if it becomes connected after joining all pairs of vertices 

of distance exactly 7 by an edge. There is a relation between bad t-sets and large 

components of the subgraph induced by saved vertices after Phase One. In particular, 

if such a component has order tA6(G) or more, then it contains a bad t-set. 

Lemma 3.8 Any connected subgraph of G of order at least tA6(G) contains at least 

one bad t-set. 

Proof: Let H be a connected subgraph of G with at  least tA6(G) vertices. Choose a 

vertex v and remove all vertices in H of distance at most 6 from v. Now choose the 

next vertex which has distance 7 from v and repeat this procedure in the remainder 

of H. Repeat this until all vertices of H are either chosen or removed. 

In order to find the maximum number of bad t-sets in G, we first count distinct 

spanning rooted trees and then we find the number of distinct realizations of each of 

these trees in G as a bad t-set. The following bound on the number of distinct rooted 

trees is known, but we include details for convenience. 

Lemma 3.9 There are at most 4t-1 distinct rooted trees on t vertices. 
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Proof: Order t vertices of a tree T in lexicographic breath-first order, assign a two 

digits code to  each vertex except the root as follows. The first digit is 1 if the vertex 

has the same parent as the previous vertex in the order and it is 0 otherwise. The 

second digit is 1 if it has a child and 0 if not. It is obvious that a tree T can be 

presented as a unique list of codes described above in breath fi'rst order. Now we will 

show that any list of codes in this order, represents at most one tree. 

Starting form the root, each code whose first digit is 0 is the first vertex in a new 

level since it does not have the same parent as the previous vertex. So, the first code 

whose first digit is 0 starts the first level (vertices of distance 1 form the root), and 

the codes whose first digit is 1 after that code and before the next level and all have 

the same parent. If the second digit of a code is 1 label it open, and if it is 0 label 

it as a leaf. Now, start the next level with the next code whose first digit is 0, then 

if first digit of next code is 1 it has the same parent of the previous vertex, if it is 0 

place this vertex as a child of an open vertex from the previous level. Repeat these 

steps till the end of the list. Using this algorithm we can construct a unique shape 

of tree and the claim is proved. There are 4 different 2 digits code, and there exists 

(t - 1) non-root vertices, therefore number of distinct trees on t vertices is at most 
4t-1 

Now we are ready to  find the number of bad t-sets in G. 

Lemma 3.10 Any graph G contains at most n(4A7(G))t bad t-sets. 

Proof: For each of the 4t-1 distinct rooted trees on t vertices, we count the number 

of their realizations. There are n possibilities for choosing the root in G. Since the 

maximum number of vertices of distance 7 from a fked vertex in G is A7(G), there are 

at most A7(G) possibilities for choosing each new vertex, following the pattern given 

by the tree. Therefore, the total number of bad t-sets in G is at most n(4A7(G))t. 
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In order to estimate the probability that a connected component of the subgraph 

induced by saved vertices is large, we find the probability that its spanning tree is 

large. We show a stronger result, in particular, we estimate the probability that all 

vertices of a 7-separated set are saved. For this, we first show the following. 

Lemma 3.11 For any set S oft vertices of pairwise distance at least 3, the probability 

that all vertices in S are dangerous is at most 

Proof: Let S = {Y, . . . , vt) be a set of vertices of pairwise distance at least 3 in 

G. I t  is obvious that a vertex which is in the neighbourhood of S is a neighbour of 

exactly one vertex in S .  Otherwise, S would contain a pair of vertices of distance 

2, which is a contradiction. Consider the colouring procedure during the Phase One. 

Let I? = (HI, .  . . , Ht) be a fixed sequence of factors in f = {GI,. . . , Glc). We let I? 
be a prescribed factor pattern for which vl, . . . , vt are dangerous after phase one. Let 

-Si be a random variable that denotes the set of nonfrozen neighbours of vi E S in Hi 

for 1 5 i 5 t. Note that Si is the set of exactly those neighbours of vi in Hi which 

will receive a colour after phase one. As we pointed out above, Si n Sj = 0 for all 

i # j .  It is easy to see that if vi is dangerous, then ISiI 5 *. Let E= (cl,. . . ,ct) be 

a fixed colour sequence. We let Ebe a prescribed colour pattern of missing colours at 

neighbours of vertices in S in I?. In particular, let Xi be the event that Si is missing 

colour c+ E c'after phase one. Since colours are assigned randomly and independently 

for each vertex in phase one, Si avoids the colour ci with probability (1 - i)lsil, and 

The probability that each Si is missing the colour c+ is the probability that the events 

Xi hold simultaneously for all 1 5 i 5 t. Hence, 

We have estimated the probability that each vertex in S will become dangerous after 

phase one with the assumption that for each 1 5 i 5 t ,  the factor Hi is an undominated 
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factor for vi (missing colour Q) and vi has at least coloured neighbours in Hi after 

phase one. Since there are kt possible factor patterns H and ht possible colour patterns 

3, the probability that every vertex in S becomes dangerous after phase one for a t  

least one such choice of factors and colours is at most 

Using this result, we next find the probability that all vertices of a 7-separated set 

are saved. 

Lemma 3.12 For any 7-separated set S oft  vertices the probability that all vertices 

in S are saved is at most 

Proof: Let S = {vl,. . . , vt). If v is a saved vertex after phase one, then at least one 

of the following holds 

1. v is dangerous, 

2. v has a t  least one dangerous neighbour, or 

3. v is neutral. 

Let X(v) be the indicator random variable for the event that the vertex v is 

dangerous and let U, be the set of v's undominated factors. Note that if X(v) = 1, 

then U, # 0. We will represent each of the above three cases as a linear combination 

of X() .  By definition, if a vertex v is dangerous, then X(v) = 1. If v has a t  least one 

dangerous neighbour, say u, then X(u)  = 1 and therefore 

2 d c ,  (v) Finally, if v is neutral, then it has a t  least frozen neighbours in each of its un- 

dominated factors Gi E U,. Moreover, each such frozen neighbour is either dangerous 
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or it has at least one dangerous neighbour. In the former case, v has a dangerous 

neighbour and we again have case 2. In the later case, we have 

Let 

I t  is easy to see that if v is a saved vertex, then Y (v) > 1. Therefore, the probability 

that all t vertices in S are saved can be upper bonded by the probability that Y 

for all 1 5 i 5 t ,  formally P all vertices in S are saved 

by Markov's inequality we have 

'(vi) L 1 

I . Now, 

From the definition of Y(), it can be seen that it is linear in X().  Therefore, 

where wji is either vi or it is in NG(vi) or it is in N G , ~ ( V ~ ) .  Note that since S 

is 7-separated, all wji for fixed j are distinct. Since X(v) is an indicator random 

variable, 

Since S is a 7-separated set, pairwise distances of the vertices in {wj , ,  . . . , wj,) are 

at least 3 for each 1 5 j 5 p. Therefore, using Lemma 3.11, we have 
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Putting all these together we have 

We can upper bound CI + . -  . +c, as follows: Since the sum comes from the product 

of Y(vi)s and for each vi we have at  most 

terms in its definition, the sum of the coefficients can be upper bounded by 

Hence, 

Finally, our main claim about the size of a largest connected component of saved 

vertices is proved in the following theorem. 

Theorem 3.13 Evey connected component of the subgraph induced by saved vertices 

has at least R(A6(G) In kn) vertices, with probability at most i. 

Proof: Let H be a connected component of a subgraph induced by saved vertices 

witch has a t  least tA6(G) vertices. We specify t later. As shown in Lemma 3.8, such 

a connected component contains at  least one bad t-set. By Lemma 3.10, there are a t  

bad t-sets in G. From Lemma 3.12, each such bad t-set contains 

only saved vertices with the probability at most 
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kA (G) -8 
t 

( 4 .  ) -  
Hence, the product of these two upper bounds on the number of saved vertices 

in G and the probability that each such set contains only saved vertices, is an upper 

bound on the probability that a connected component of order a t  least R(tA6(G)) 
In(2kn) contains only saved vertices. Therefore, by letting t = in this bound, we have 

Note that we have proved a slightly stronger result since here t < In kn. 

3.2 Factor 1-domatic Partition 

In the survey, we presented definitions and some properties of 2-domatic partition, 

namely the partition of V(G) such that each class is an 2-dominating set. We also 

defined a variation in the survey which is a combination of factor domination and 

distance domination, called factor 2-domatic partition. In the following we generalize 

the given lower bounds on the factor domatic number given in Theorem 3.1 and 
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Lemma 3.6, to bounds on the factor I-domatic number Df,1(G). Before we start, we 

need some definitions and notation. 

The closed I-neighbourhood of a vertex v in G, NG,i [v], is the set of all vertices at 

distance at  most 1 from v in G. Let dG,i(v) = I NG,1 (v) I denote the number of vertices 

in the I-neighbourhood of v in G. In the following bounds we use the same method 

as in the proof of Theorem 3.1 and Lemma 3.6. In particular, we again use a random 

colouring. Hence, similarly, for a triple (v, c, 2) where v E V(G), c E [h] and 1 5 i 5 k 

is the index of factor Gi, let be the following indicator random variable, 

1 if there is no vertex of colour c in NG~,L[v], 

0 otherwise. 

If = 1, then v does not see colour c in NGi,i [v] . This means that the colour c 

is not forming an I-dominating set in the factor Gi. 

It is obvious that the same lower bounds as in Theorem 3.1 and Lemma 3.6 hold 

-for Df,1(G) as well. One would expect that considering the distance 1 > 1 will lead to 

better lower bounds. However, since we need to lower bound dG,,l[v], if a component 

of the factor Gi is a large clique, then NGi,l[v] = NGi [v], and consequently we cannot 

hope for a better lower bound on Df,l(G) than already given in Theorem 3.1 and 

Lemma 3.6. This example shows that possibly these lower bounds will depend on the 

girth g(G) of the graph G. If 1-1 2 1, then there will be no cycle in NGii[v] and 

consequently no two vertices in NGi,1 [v] will have a common neighbour. Therefore, we 

can lower bound dGi,l[v] by 

If 1- J < 1, then the lower bound on d ~ , , ~  [v] needs to  be in terms of g(G), since 

we can guarantee no cycles only in NGi,l*J [v]. In this case the lower bound will 

be 
g(G)-1 

dGi,1 [v] 2 1 + bmin + bmin(bmin - 1) + . . . + bmin(bmin - 1 ) ' ~ ~ - ' .  

For convenience, we define 
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Lemma 3.14 For a given k-factoring f of a graph G, 

ProoE Let f = {GI,. . . , G k }  be a k-factoring of G and let h = (-1. Colour 

each vertex randomly with one of h available colours. For any triple (v ,  c, i), EIIv,c,i] = 

PIIv,c,i = 11 and P[I,,,i = 11 = ( 1  - i)dciJ[v], since the colour c does not appear with 

probability (1 - i) and there are d ~ ~ , ~ [ v ]  vertices in the closed 1-neighbourhood of v  in 

Gi. Now to  lower bound d ~ ~ , ~ [ v ] ,  we find the minimum number of vertices in a closed 

1-neighbourhood of v. As shown above, 

using this in the probability above, we get 

5 e- In(knln kn) < l 
- knln kn '  

Thus, the expected total number of vertices which are not 1-dominated in some 

factor Gi is at most 

k 1  - h C C C P[Iv,c,i = 11 = nhk -- 
v W ( G )  c€[h] i=l 

knlnkn  lnkn '  
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So the expected number of colours which do not form a factor 1-dominating set is 

Thus, the expected number of colours which form a factor 1-dominating at most G. 

set for the given k-factoring is at least 

h h- -= 1 - 
ln kn - l)"ln(kn ln kn) ln(kn ln kn) In kn 

lnkn - 1 
= (Smin - 

In kn + ln ln kn In kn 

- - (Smin - 1)' 1 + lnln kn 
In kn - ln(kn ln kn) 

Now, to form the partition, simply add vertices with colours that do not form 

a factor I-dominating set, into some class which does so. Hence we obtain a factor 

1-domatic partition of G such that 

Before we get to the algorithmic aspect of the bound found above, we need the 

following definition. Let B,,c,i be the event that the vertex v does not see the colour 

c in NGi,1 [v]. Note that I,,c,i = 1, if and only if B,,,i holds. 

Theorem 3.15 Any graph G with a given k-factoring f admits a polynomial time 

constructible factor 1 -domatic partition of sire 

Algorithm 3.16 The Factor 1-domatic Partition Algorithm 

Input: A graph G of order n with a k-factoring f = {GI,.  . . , Gk). 
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Output: A factor 1-domatic partition of expected size given in  Theorem 3.15 for the 

k-factoring f of G. 

1. Order the vertices arbitrarily v l ,  . . . , v, and process them in  this order 

2. Colour vl randomly with one of the colours in  [h] ,  where h is as given in Lemma 

3.14. 

3. Suppose v l ,  . . . , v j  have been coloured with colours cl ,  . . . , cj. Colour vj+l as fol- 

lows. Denote the conditional probability of the event Bv,c,i, given that vertices v l ,  . . . , vj 

have already been coloured with colours cl, . . . , cj by PIBv,c, iJ~l,  . . . , cj].  This proba- 

bility is zero i f  there exists a vertex v,, z 5 j in  NGi,~[v]  that has been coloured with 

colour c. Otherwise it is ( 1  - i)m, where m is the number of uncoloured vertices in 

NG, ,~[v] ,  i.e. m = INGi , l [~]  n {vj+l,.  . . , v n ) l  Formally, 

if  3z  5 j, V ,  E NG,,~[v] an&, = C ,  
P[Bv,c,iJcl, . . . 1 cj] = 

(1  - f f ) m ,  otherwise. 

Let g(cl ,  . . . , c j )  denote the expected total number of these bad events for which 

= 1 after colouring all vertices, given that v l ,  . . . , v j  have already been coloured 

with colours cl ,  . . . , cj, respectively, i.e. 

Now colour the vertex vj+l with colour cj+l such that 

The proof of correctness goes in lines similar to the proof of Lemma 3.4. Again, 

as shown before, g(cl ,  . . . , c j )  is a convex combination of g(cl ,  . . . , for cj+l E [h].  

Therefore, we can always colour vj+l with a colour cj+l such that g(c1, . . . , cj, cj+l) 5 
g(cl ,  . . . , c j ) .  The rest of the proof is the same. 
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Our last result in this section will be another lower bound on DfYl(G); this time 

we use Lov&z Local Lemma. Our technique is a generalization of the one used in 

Lemma 3.6, for the factor domatic number. 

Lemma 3.17 For a given k-factoring f of a graph G, 

Proof: Let f = {GI, G2, . . . , Gk) be a k-factoring of G and let 

Randomly colour vertices with colours in [h]. For each triple of a vertex, colour, and 

index of a factor (v, c, i), let B,,c,i be the event as defined in Theorem 3.15. Using the 

bound on dGi [v] from Lemma 3.14, the probability of the bad event B,,c,i is a t  most 

Each event B,,,i corresponds to the vertex set NGi,1 [v]. Therefore, the dependency 

translates into the intersection property for the corresponding vertex sets, and two 

events are dependent if and only if their corresponding vertex sets have a non-empty 

intersection. Thus, for each event B,,c,i there are a t  most 

dependent events, since there are a t  most dG,21[~] vertices which are "close enough 

to v and for each such vertex there can be a dependent event for any of k factors and 

any of h colours. Therefore, we have 
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1 Hence, d = k ~ ( G ) ~ ' + l  - 1 and p = ,(21+l),(G).,+, in LovLz Local Lemma. Since 

we have 

by Lovkz Local Lemma, the probability that no bad event holds is greater than 

zero, which guarantees a factor I-domatic partition of size a t  least 

3.3 Fact or Domination and Factor I-domination Num- 

ber 

We have previously seen the upper bound of n - A(G) on y(G) provided in Theorem 

2.1, and similarly, in Theorem 2.9, the upper bound of n - dmin on y(G, f ) .  

We have also seen a probabilistic upper bound of n ' + ~ ~ ~ ~ ~ ~ ' )  on y (G) in Theorem 

2.8. In the following we will also use probabilistic method to upper bound y(G, f )  and 

n (G ,  f) .  We will prove a slightly stronger result, in which we will assume that the 



CHAPTER 3. OUR RESULTS ON FACTOR AND DISTANCE DOMINATION 55 

k-factoring f contains not necessarily edge-disjoint factors of G. (Recall that factors 

are required to be edge-disjoint in the original definition of k-factoring.) 

Theorem 3.18 For a given k-factoring f of G with Jmin 2 1, 

Proof: Let f = {GI,.  . . , Gk) be a k-factoring of G. Let X be a set of vertices picked 

randomly from G with probability p, 0 5 p < 1. It is easy to see that the expected 

size of X is np. Let be the set of vertices that are not in X nor in NG(X), for 

all 1 5 i < k. To estimate the expected size of Yi, we note that the probability for a 

vertex to be in Y ,  is 
6 . +1 (1 - p)dci["I < (1 - p) man . 

Therefore, the expected size of Y ,  is a t  most n ( l  - p)6-in+1. Since in each factor Gi 

a vertex is either in X, or has a neighbour in X ,  or it is in Y,, obviously X U Yi is 
a dominating set in the factor Gi for 1 5 i 5 k. Therefore, by the linearity of the 

expectation, Z = X U u:=, Y ,  forms a factor dominating set of expected size 

Since 1 - p < e - p ,  

ln(k(Jmin + 1)) + n 
E(lZl) 5 n 

Jmin + 1 Jmin + 1 
1 + ln(k(Jmin + 1)) < n 

Jmin + 1 

Therefore, there exists a choice for X which gives the desired bound on y(G, f ) .  
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Note that the lower bound of on 7(G, f )  provided in Theorem 2.9 assumes 

that the factors are edge-disjoint. Now, we have A(G) 2 kbmin, and hence the lower 

bound is indeed smaller than our upper bound. Without this assumption the lower 

bound becomes &, since in this case a vertex not in D does not necessarily need 

k edges to D and hence, 

We first give the following simple upper bound on yl(G, f ) .  

Observation 3.19 For any k-factoring f of G, 

-Proof: Let f = {GI,.  . . , Gk) be a k-factoring of G. Let D be a set of n - (bmin - 1)' 

vertices. Each vertex v not in D has at least (bmi, - 1)' vertices in its I-neighbourhood 

in each factor. However, there are only (bmin - 1)' - 1 vertices different from v which 

are not in D. Therefore, v has at  least one I-neighbour in D in each factor, and hence, 

D is a factor I-dominating set of G. 

Now we improve this bound using a probabilistic argument. 

Theorem 3.20 For a given k-factoring f of G with bmin 1 1, 

Proof: Let f = {GI,. . . , Gk) be a k-factoring of G. Let X be a set of vertices picked 

randomly with probability p, 0 < p < 1. It is easy to  see that the expected size of X 

is np. Let Y, be the set of vertices that are not in X nor in NGi,1(X), for all 1 < i < k. 
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To estimate the expected size of Y,, we note that the probability for a vertex to be in 

Y, is 
(1 - p)d~i. tCI < - (1 - p)(6min-l)' 

Where j is as defined in Section 3.2. 

Therefore, the expected size of Y, is at most n(1- p)(6min-1)G. Since in each factor 

a vertex is either in X ,  or NGi,1(X), or it is in K ,  obviously X U Y, is an 1-dominating 

set in Gi for 1 < i < k. Therefore, by the linearity of expectation, Z = X U u;, Y ,  

forms a factor 1-dominating set of expected size 

Since 1 - p < e - p  and this is a close bound when 0 < p < 1, 

Therefore, there exists a choice for X which gives the desired bound on yl(G, f ) .  

3.4 Factor Domination with Precolored Vertices 

In this section, we will turn our attention to a variant of the factor 1-domination 

introduced in Section 2.3. In particular, recall the definition of a( t ,  k) : given integers 

k and t ,  let a(t ,  k) denote the minimum distance 1 such that every k-factoring of every 
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graph on at least t vertices admits a factor I-domatic partition with t classes. Recall 

also that in this problem factors are connected but not necessarily edge-disjoint. We 

will keep this assumption in this section. 

In the following, we will study bounds on a ( t ,  k) under the.assumption that some 

vertices of G are already pre-coloured (assigned to specific classes). Our goal is to 

find conditions on the pre-colouring which will allow a( t ,  k) be a function of only t 

and k (but not n). 

Recall the bound a( t ,  k) 5 1-1, for every k 2 2 and t 2 k, given in Theorem 

2.58. The following simple example shows that if the distance of any two pre-coloured 

vertices with the same colour is at least I, and I < t ,  then a( t ,  k) depends on n. 

Example 3.21 Consider a k-factoring of a Hamiltonian graph G such that one of 

the factors is its Hamilton path. Starting from one end of the path, say u, colour 

vertices repeatedly 1,2, . . . ,1,1,2, . . . ,1,  leaving t - 1 vertices uncoloured. Note that 

the last segment may not use all 1 colours; see Figure 3.1. 

1 2 1  1 2 1  1 2  

Figure 3.1: A factor of a Hamiltonian graph. 

The remaining t - 1 colours need to dominate the pre-coloured vertices and there 

are exactly t - 1 uncoloured vertices where these colours can appear. In  particular, the 

colour assigned to the last vertex will only (n - 1)-dominate u. Thus, we have 

Note that the condition 1 < t in this example is essential since otherwise there may 

be some uncoloured vertices in between the pre-coloured vertices. Interestingly, we 

will show that if the distance of any two pre-coloured vertices with the same colour 
3(kt-1) is at least 1 and 1 5 t,  then a(t ,  k) 5 This is exactly the same bound as in 

Theorem 2.58. 
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We need the following lemma from [AFL+03] for the main result. 

Lemma 3.22 [AFL+03] For any tree T on vertex set V, (V(  2 k 2 1, there exists a 

partition of V into Vl, . . . , Vp such that for every 1 5 i < p, V,  contains a subset Bi 

such that 1 Bil = k, and for every u E V,  and v E Bi7 

Directly from the lemma one can observe that the subgraph of T induced by Bi, 

i.e. T[Bi] has diameter of at  most k - 1. 

Theorem 3.23 Let G be a graph with pre-coloured vertices such that the distance of 
3(kt-1) any two pre-coloured vertices of the same colour is  at least t. Then a(t ,  k) < 1 1, 

for every k 2 2 and t 2 k. 

-Proof: Let f = {GI, . . . , Gk) be a k-factoring of G. If IV(G) I < kt, then any 
3(kt-1) colouring will be a factor [--Z--l-domatic colouring, since the distance of any two 

vertices in any factor is at most IV(G) 1 - 1 < kt - 1 < 1-1. If IV(G) I > kt, then 

we apply Lemma 3.22 on a spanning subtree of each factor Gi. Therefore, for each 

factor Gi there is a partition of V(G) into V1,. . . , V,,p, such that each V,,, 1 I j I pi, 

contains a subset Bij, where lBijl = kt, the diameter of Bij is a t  most kt and for 

every u E V,. and v E Bij, 

Partition each Bij into t blocks of size k such that each block Bijl, 1 5 1 5 t ,  

contains either uncoloured vertices or vertices coloured 1. This is possible since the 

distance of any two pre-coloured vertices with the same colour is at  least t and so 

there are a t  most k vertices of colour 1 in each Bij. 

Construct a bipartite graph H with parts B and V such that 



CHAPTER 3. OUR RESULTS ON FACTOR AND DISTANCE DOMINATION 60 

and V = V(G) .  Join a vertex v E V to Bijl E B if v E Bijl. Since each block Bijl 

contains k vertices so for each Bijl E B, dH(Bijl) = k. Moreover, each vertex is in at 

most k different blocks, so for each v E V, dx(v) < k. Hence, using Hall's Theorem 

for this bipartite graph, there is a matching that saturates B. 

We construct the required colouring as follows : if a vertex that is matched to a 

block Bijl is uncoloured, colour it with I; if it is pre-coloured, then from the construc- 

tion of the bipartite graph, it is pre-coloured with I. Using this method, each Bijl will 

contain vertices coloured only I and therefore, each Bij will receive all t colours. So, 
3(k t -1 )  each Bij forms a factor [--2--]-dominating set. 



Bibliography 

[AEMF+04] D. Archdeacon, J. Ellis-Monaghan, D. Fisher, D. Froncek, P. C. B. Lam, 

S. Seager, B. Wei, and R. Yuster. Some remarks on domination. J. 

Graph Theory, 46(3):207-210, 2004. 

[AFL+03] 

[ASOO] 

[BD90] 

[Becgl] 

[Ber62] 

[BF87] 

[BK80] 

Noga Alon, Guillaume Fertin, Arthur L. Liestman, Thomas C. Shermer, 

and Ladislav S tacho. Factor d-domatic colorings of graphs. Discrete 

Math., 262(1-3):17-25, 2003. 

Noga Alon and Joel H. Spencer. The probabilistic method. Wiley- 

Interscience Series in Discrete Mathematics and Optimization. Wiley- 

Interscience [John Wiley & Sons], New York, second edition, 2000. With 

an appendix on the life and work of Paul Erdos. 

Robert C. Brigham and Ronald D. Dutton. Factor domination in graphs. 

Discrete Math., 86(1-3):127-136, 1990. 

J6zsef Beck. An algorithmic approach to the Lov&z local lemma. I. 

Random Structures Algorithms, 2(4):343-365, 1991. 

Claude Berge. The theory of graphs and its applications. Tkanslated by 

Alison Doig. Methuen & Co. Ltd., London, 1962. 

J .  A. Bondy and Genghua Fan. A sufficient condition for dominating 

cycles. Discrete Math., 67(2):205-208, 1987. 

M. Borowiecki and M. Kuzak. On the k-stable and k-dominating sets of 

graphs. Discuss. Math., 3:7-9, 1980. 



[Bon81] 

[CB92] 

[CDH80] 

[CGS85] 

[CH77] 

-[CN84] 

[CR85] 

[CRgO] 

[CWYOO] 

[CY 031 

J .  A. Bondy. Integrity in graph theory. In The theory and applications 

of graphs (Kalamazoo, Mich., 1980), pages 117-125. Wiley, New York, 

1981. 

Julie R. Carrington and Robert C. Brigham. Global domination of sim- 

ple factors. In Proceedings of the Twenty-third Southeastern International 

Conference on Combinatorics, Graph Theory, and Computing (Boca Ra- 

ton, FL, 1992), volume 88, pages 161-167, 1992. 

E. J. Cockayne, R. M. Dawes, and S. T .  Hedetniemi. Total domination 

in graphs. Networks, 10(3):211-219, 1980. 

E. J.  Cockayne, B. Gamble, and B. Shepherd. An upper bound for the 

k-domination number of a graph. J. Graph Theory, 9(4):533-534, 1985. 

E. J.  Cockayne and S. T .  Hedetniemi. Towards a theory of domination 

in graphs. Networks, 7(3):247-261, 1977. 

Gerard J.  Chang and George L. Nemhauser. The k-domination and 

k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Dis- 

crete Methods, 5 (3):332-345, 1984. 

Y. Caro and Y. Roditty. On the vertex-independence number and star 

decomposition of graphs. Ars Combin., 20:167-180, 1985. 

Y. Caro and Y. Roditty. A note on the k-domination number of a graph. 

Internat. J. Math. Math. Sci., 13(1):205-206, 1990. 

Yair Caro, Douglas B. West, and Raphael Yuster. Connected domina- 

tion and spanning trees with many leaves. SIAM J. Discrete Math., 

13(2):202-211 (electronic), 2000. 

Yair Caro and Raphael Yuster. 2-connected graphs with small 2- 

BIBLIOGRAPHY 62 

I 

connected dominating sets. Discrete Math., 269(1-3):265-271, 2003. 



BIBLIOGRAPHY 

[FGPS05] 

[FHKSOS] 

[FHMPOO] 

[FJ85] 

Jean E. Dunbar, Teresa W. Haynes, and Michael A. Henning. Nordhaus- 

Gaddum type results for the domatic number of a graph. In Combina- 

torics, graph theoy, and algorithms, 1/01. I, 11 (Kalamazoo, MI, 1996), 

pages 303-312. New Issues Press, Kalamazoo, MI, 1999. 

P. Dankelmann and R. C. Laskar. Factor domination and minimum 

degree. Discrete Math., 262(1-3):113-119, 2003. 

P. Duchet and H. Meyniel. On Hadwiger's number and the stability 

number. In Graph theory (cambridge, 1981), volume 62 of North-Holland 

Math. Stud., pages 71-73. North-Holland, Amsterdam, 1982. 

Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar 

Radhakrishnan, and Aravind Srinivasan. Fast distributed algorithms for 

(weakly) connected dominating sets and linear-size skeletons. J. Comput. 

System Sci., 71(4):467-479, 2005. 

P. Erdos and L. Lovhz. Problems and results on 3-chromatic hyper- 

graphs and some related questions. In Infinite and finite sets (Colloq., 

Keszthely, 1973; dedicated to P. Erdos on his 60th birthday), Vol. 11, 

pages 609-627. Colloq. Math. Soc. Janos Bolyai, Vol. 10. North-Holland, 

Amsterdam, 1975. 

Fedor V. Fomin, Fabrizio Grandoni, Artem V. Pyatkin, and Alexey A. 

Stepanov. Bounding the number of minimal dominating sets: A measure 

and conquer approach. In ISAAC [FGPS05], pages 573-582. 

Uriel Feige, Magnus M. Halldbrsson, Guy Kortsarz, and Aravind Srini- 

vasan. Approximating the domatic number. SIAM J. Comput., 

32(l): 172-195 (electronic), 2002/03. 

Odile Favaron, Michael A. Henning, Christina M. Mynhart, and Joel 

Puech. Total domination in graphs with minimum degree three. J. 

Graph Theory, 34(1):9-19, 2000. 

John Frederick Fink and Michael S. Jacobson. n-domination in graphs. 

In Graph theoy with applications to algorithms and computer science 



BIBLIOGRAPHY 64 

[G J79] 

[HenOO] 

[HH98] 

[HHOO] 

_[HHS98] 

[HL84] 

[HOS91] 

[HOS96] 

[HS98] 

(Kalamazoo, Mich., 1984), Wiley-Intersci. Publ., pages 283-300. Wiley, 

New York, 1985. 

Michael R. Garey and David S. Johnson. Computers and intractabil- 

ity. W. H. Reeman and Co., San Francisco, Calif., 1979. A guide to 

the theory of NP-completeness, A Series of Books in the Mathematical 

Sciences. 

Michael A. Henning. Graphs with large total domination number. J. 

Graph Theory, 35(1):21-45, 2000. 

Teresa W. Haynes and Stephen T. Hedetniemi, editors. Domination zn 

graphs, volume 209 of Monographs and Textbooks in Pure and Applied 

Mathematics. Marcel Dekker Inc., New York, 1998. Advanced topics. 

Teresa W. Haynes and Michael A. Henning. The domatic numbers of 

factors of graphs. Am Combin., 56:161-173, 2000. 

Teresa W. Haynes, Stephen T .  Hedetniemi, and Peter J. Slater. f inda-  

mentals of domination in graphs, volume 208 of Monographs and Text- 

books in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 

1998. 

S. T .  Hedetniemi and Renu Laskar. Connected domination in graphs. 

In Graph the0 ry and combinatorics (Cambridge, 1983), pages 209-217. 

Academic Press, London, 1984. 

M. A. Henning, Ortrud R. Oellermann, and Henda C. Swart. Bounds 

on distance domination parameters. J. Combin. Inform. System Sci., 

16(1):11-18, 1991. 

Michael A. Henning, Ortrud R. Oellermann, and Henda C. Swart. The 

diversity of domination. Discrete Math., 161(1-3):161-173, 1996. 

Teresa W. Haynes and Peter J. Slater. Paired-domination in graphs. 

Networks, 32(3):199-206, 1998. 



BIBLIOGRAPHY 

Shay Kutten and David Peleg. Fast distributed construction of small 

k-dominating sets and applications. J. Algorithms, 28(1):40-66, 1998. 

Daniel J. Kleitman and Douglas B. West. Spanning trees with many 

leaves. SIA M J. Discrete Math., 4(1):99-106, 199.1. 

Linda M. Lesniak-Foster and James E. Williamson. On spanning and 

dominating circuits in graphs. Canad. Math. Bull., 20(2):215-220, 1977. 

Mei Lu, Huiqing Liu, and Feng Tian. Two sufficient conditions for dom- 

inating cycles. J. Graph Theory, 49(2):135-150, 2005. 

Hailong Liu and Liang Sun. On domination number of 4-regular graphs. 

Czechoslovak Math. J., 54(129)(4):889-898, 2004. 

A. Meir and J. W. Moon. Relations between packing and covering num- 

bers of a tree. Pacific J. Math., 61(1):225-233, 1975. 

William McCuaig and Bruce Shepherd. Domination in graphs with min- 

imum degree two. J. Graph Theory, 13(6):749-762, 1989. 

Oystein Ore. Theory of graphs. American Mathematical Society Col- 

loquium Publications, Vol. XXXVIII. American Mathematical Society, 

Providence, R.I., 1962. 

Lucia D. Penso and Valrnir C. Barbosa. A distributed algorithm to find 

k-dominating sets. Discrete Appl. Math., 141(1-3):243-253, 2004. 

Andrzej Proskurowski and Maciej M. Syslo. Minimum dominating cycles 

in outerplanar graphs. Internat. J. Comput. Infom. Sci., 10(2):127-139, 

1981. 

Bruce Reed. Paths, stars and the number three. Combin. Probab. Com- 

put., 5(3):277-295, 1996. 

E. Sampathkumar. The global domination number of a graph. J. Math. 

Phys. Sci., 23(5):377-385, 1989. 



BIBLIOGRAPHY 6 6 

N. Sridharan, V. S. A. Subramanian, and M. D. Elias. Bounds on the 

distance two-domination number of a graph. Graphs Combin., 18(3) :667- 

675, 2002. 

Zhiren Sun, Feng Tian, and Bing Wei. Degree sums, connectivity and 

dominating cycles in graphs. Graphs Combin., 17(3) :555-564, 2001. 

E. Sampathkumar and H. B. Walikar. The connected domination number 

of a graph. J. Math. Phys. Sci., 13(6):607-613, 1979. 

H. B. Walikar, B. D. Acharya, and E. Sampathkumar. Recent develop- 

ments in the theory of domination in graphs. Allahabad, 1, 1979. 

Bohdan Zelinka. Domatic number and degrees of vertices of a graph. 

Math. Slouaca, 33(2): 145-147, 1983. 


