
Online Routing Algorithms on Geometric Graphs 
with Convex Substructures 

Timothy Mott 

B.Sc. Hon., Simon Fraser University, 2003. 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  THE REQUIREMENTS FOR THE DEGREE OF 

in the Department 

of 

Mathematics 

@ Timothy Mott 2006 

SIMON FRASER UNIVERSITY 

Summer 2006 

All rights reserved. This work may not be 

reproduced in whole or in  part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: Timothy Mott 

Degree: Master of Science 

Title of Thesis: Online Routing Algorithms on Geometric Graphs 

with Convex Substructures 

Examining Committee: Dr. Imin Chen 

Chair 

Dr. Ladislav Stacho 

Senior Supervisor 

Dr. Petr Lison6k 

Supervisory Committee 

Dr. Luis Goddyn 

Internal Examiner 

Date of Defense: June 9, 2006 



SIMON FRASER UNIVERSA i bra ry 

DECLARATION OF 
PARTIAL COPYRIGHT LICENCE 

The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection, and, without changing the 
content, to translate the thesislproject or extended essays, if technically possible, 
to any medium or format for the purpose of preservation of the digital work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies. 

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author's written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author. This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the Simon 
Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



Abstract 

In this thesis we describe five new algorithms (QUASI-PLANAR, QUASI-POLYHEDRAL, 

. QFQ, SPIRAL, DOUBLE-CROSSING) for online route discovery on several classes of ge- 

ometric graphs. We propose the classes of quasi-planar graphs in R2, which consist of 

underlying convex embeddings with arbitrary chords added to each face, and, analo- 

gously, quasi-polyhedral graphs in R3. 

QUASI-PLANAR and QUASI-POLYHEDRAL guarantee delivery on quasi-planar and 

quasi-polyhedral graphs, respectively. Inspired by the well-known GFG algorithm for 

unit disk graphs, we create a hybrid algorithm, QFQ, that uses QUASI-PLANAR as a 

subroutine, and guarantees delivery on quasi-planar and unit disk graphs. 

SPIRAL is a geocasting algorithm for quasi-planar graphs: it visits every vertex in 

a specified bounded convex region. 

Finally, the DOUBLE-CROSSING algorithm finds three vertex-disjoint s, t-paths. in 

a convex embedding. 
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Chapter 1 

Introduction 

1.1 Motivation 

In this thesis we consider the online routing problem; that is, finding routes on a graph 

using only local information and constant memory, and without leaving mark bits on 

the vertices. 

Online routing is fundamental to ad hoc networks, which consist of self-organised 

mobile nodes capable of communicating with nearby nodes; each node can serve as 

a router for its peers. Ad hoc networks have applications in a wide array of fields, 

including communications networks, robotics, geographic information systems, urban 

planning, disaster recovery, search and rescue operations, law enforcement, and for 

large-scale civilian projects and events. [BMSUOl, LL99, PH991. 

Often, the environment does not have a predetermined topology, is large and com- 

plex, and changes over time, precluding the construction of any useful global map; 

hence the restriction to local information and constant memory. Because of the inher- 

ent challenges in communicating over such environments, the emphasis of many online 

routing algorithms is simply on guaranteeing delivery, rather than, for example, find- 

ing shortest paths. 

The vertices, or nodes, in such applications are often aware of their own and their 

neighbours' geographic coijrdinates, for example by using a Global Positioning Sys- 

tem (GPS) or triangulating from control towers. The abstract model of an ad hoc net- 

work with position-aware nodes is called ageometricgraph; routing algorithms on such 
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graphs take advantage of local geometric information to reach their destinations. 

Communication on an ad hoc network is carried out by transferringpackets between 

nodes; The packets consist of low-level information (e.g., for hardware protocols), mes- 

sage data, and a constant amount of parameters or geometric information necessary for 

a given routing algorithm (e.g., the position of the destination). Upon receiving pack- 

ets at  an intermediate (i.e., non-destination) node, the node makes a local computation 

based on its location, its neighbours' locations, and the stored routing information. It 

then forwards the packet to one of its neighbours accordingly, possibly having updated 

the routing information. At a higher level of abstraction, we simply consider an agent 

running a routing algorithm to be responsible for delivering messages between nodes. 

(We often go so far as to identify an agent with the algorithm it uses, so we might say 

"the algorithm A moves to a vertex an, for example, meaning "the agent using Algo- 

rithm A moves to a".) For a more detailed discussion of lower-level routing issues, see 

the survey by Kumar et al. [KRDOGI. 

For simplicity of the theoretical model, it is usually assumed that the network re- 

mains static and connected during the delivery of the message [BMSUOl]. That is, 

the agents are capable of navigating the network and transferring packets faster than 

the nodes change their position or local connections. We keep this assumption for the 

remainder of the thesis. 

The nodes in an ad hoc network have limited memory and potentially handle large 

numbers of agents passing through them, so we prefer that routing algorithms do not 

make use of any persistent memory a t  the nodes. In other words, the algorithms should 

not be able to leave any marks behind. Furthermore, most routing algorithms do not 

require duplication of packets, so that there is at  most one copy of any message in the 

network [BMSUOII. The algorithms presented in this paper also have these desirable 

properties, except for DOUBLE-CROSSING in Chapter 4, which requires agents to be 

able to create, destroy, identify, and communicate with "scouts". We postpone further 

discussion of this issue until Section 4.2. 

To allow for a theoretic approach to the online routing problem, it is typical to 

impose geometric conditions on (the embedding OD the graphs. For example, a com- 

munications network may be represented as a unit disk graph, where two nodes are 

adjacent if and only if they are not farther than distance 1 from each other. 
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In particular, there has been significant interest in developing online routing al- 

gorithms on planar graphs because of their predictable geometry. Face routing, intro- 

duced in [KSU991, guarantees delivery on planar graphs by successively traversing the 

faces of the graph. 

Obviously, we cannot expect "real-world" communication networks to be planar. 

However, some graphs, such as unit disk graphs, can be planarised to allow face rout- 

ing. In other words, for some classes of graphs it is possible to (locally) compute a 

spanning planar subgraph. For instance, a unit disk graph has a planar subgraph, the 

Gabriel subgraph, whose edges can be determined locally. 

However, in practice, the unit disk graph model is idealistic and does not account 

for such factors as localisation errors, obstacles blocking communication, and varying 

transmission capabilities [KGKS05]. Thus, it is important to develop more flexible 

graph models, along with algorithms designed for those models. 

We propose a new class of graphs, the quasi-planar graphs, that may have crossing 

edges but contain underlying convex embeddings. We also propose an analogous class 

of graphs in R3, the quasi-polyhedral graphs, which similarly contain an underlying 

structure consisting of convex polyhedra. 

1.2 Overview 

The thesis is organised as follows. The remainder of this chapter provides a back- 

ground on graph models and online routing, with emphasis on planar graphs. Chapters 

2,3, and 4 introduce five new routing algorithms - QUASI-PLANAR, QUASI-POLYHEDRAL, 

QFQ, SPIRAL, and DOUBLE-CROSSING - that are the result of original research. 

The QUASI-PLANAR and QUASI-POLYHEDRAL algorithms in Chapter 2 are routing 

algorithms that guarantee delivery on quasi-planar and quasi-polyhedral graphs, re- 

spectively. QUASI-PLANAR can be considered an extension of the standard face routing 

algorithm for planar graphs. We also show how QUASI-PLANAR can be modified to be 

used as a heuristic for geometric graphs in general. 

The core of Chapter 2 was presented in condensed form at PerCom 2006 [KMSOG]; 

an expanded journal article is pending. Here we give the proofs of correctness in full 

detail, along with a new section on the QFQ algorithm. We approach the proofs fairly 
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strictly, giving detailed geometric arguments to illustrate the method of reasoning com- 

mon to all the proofs. We will elide some of the lower-level details in the subsequent 

chapters to avoid the burden of repetitive arguments. 

Chapter 3 presents a geocasting algorithm, SPIRAL, for quasi-planar graphs. The 

algorithm visits every vertex in a specified convex region of the graph. The material in 

this chapter is intended to be expanded into a journal article. 

Finally, in Chapter 4 we consider the disjoint routing problem. It is straightforward 

to find two disjoint s, t-paths in a convex embedding or quasi-planar graph; we provide 

an algorithm, DOUBLE-CROSSING, that finds three disjoint s, t-walks in a convex em- 

bedding. The material from this chapter is also currently being written as a journal 

article. 

Two geometric themes are featured throughout this thesis. First, as we have men- 

tioned, all the algorithms in Chapters 2, 3, and 4 are designed for graphs with an 

underlying convex structure, and we strongly take advantage of this structure in the 

proofs. Conversely we give examples to show the difficulty of similar problems on 

graphs lacking a convex structure. In fact, we will see that even convex embeddings 

present surprising challenges. 

Second, the proof of correctness for each of our algorithms uses a measure of progress 

towards the destination to guarantee termination. This is especially interesting in the 

DOUBLE-CROSSING algorithm, where each of three agents alternately approaches the 

destination t from the left and from the right. 

A summary of the memory requirements for each algorithm appears in Appendix A. 

1.3 Definitions and notation 

In this section we formally describe the terminology and notation to appear throughout 

the thesis. 

Ageometric graph G is an ordered pair G = (V, E) where 

0 V is a (finite) set of vertices, or nodes, that are embedded in Itd for some d E Z+ 

and 

0 E is a set of unordered pairs of vertices, called edges, that we associate with the 
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corresponding line segments between vertices. 

Furthermore, every vertex v is aware of its position, its neighbourhood N(v )  = {u  : uv E 

E) ,  and the position of each of its neighbours. We identify a geometric graph with its 

embedding, so we can specify vertices and edges according to their geometric positions. 

We may occasionally abuse the distinction between objects and their positions; thus if 

we say, for example, that v = p for some v E V andp E W 2 ,  we mean that v is embedded 

at the point p. However, this abusive notation is kept to a minimum, and when used, 

the meaning should be clear from context. 

In this thesis we are interested in those graphs embedded in R2 or R3: lower dimen- 

sions are trivial, while in higher dimensions the geometry is challenging and there is 

a lack of obvious practical applications. 

A geometric graph in R2 is planar if there are no crossing edges; that is, if the 

intersections of the edges occur only at their endpoints. The edges in a planar graph 

partition R2 into a set of faces F, and we may write G = (V, E ,  F ) .  Exactly one of 

the faces must be infinite; we call this face the outer face and denote it by fo. If the 

boundary of every face is a convex polygon, we say that G is a convex embedding. The 

convex hull of a set S (i.e., the smallest convex set containing S )  is denoted conv(S). 

If the interior of an edge e crosses a line or line segment C, we say that e is an 

C-crossing edge. In a planar graph, a face is C-crossing if it contains an C-crossing edge. 

For vertices u, v ,  and w, we denote by Luvw the counterclockwise angle from u to 

w about v. Similarly, cone(u, v, w) denotes the cone with apex v and supporting lines 

through u and w, with interior angle Luvw. For both Luvw and cone(u, v, w)  we require 

that v does not coincide with u or w. 

Define cw(u,  v )  to be the first clockwise neighbour of u starting from the direction 

uv. Note that uv is not required to be an edge. Similarly, ccw(u, v )  is the f i s t  coun- 

terclockwise neighbour of u starting from the direction uv. See Figure 1.1. These two 

functions can be computed locally, as long as uv E E or the location of v is known. 

If G = (V, E )  and H = (V', El) where V' g V and E' g E, we say that H is a 

subgraph of G and write H G G. If V' = V then H is a spanning subgraph of G. 

A walk in G is a sequence of vertices vovl . . . vk such that vivi+l E E for all i < k. A 
path is a walk where all the vertices in the walk are distinct. 
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Figure 1.1: cw(u, v)  and ccw(u, v). 

There are two standard distance metrics on geometric graphs; namely, Euclidean 

distance and link (graph) distance. Unless noted otherwise, we will measure distance 

using the former. The length of a walk is the sum of the length of its edges, with 

repeated edges contributing accordingly. The Euclidean distance between u, v E V (i.e., 

the length of the line segment uv) is denoted dist(u, v), and the length of the shortest 

u, v-path is denoted SP(u, v). We denote by dist(u, S) the shortest distance between a 

vertex u and a set S. That is, dist(u, S) = minpEs dist(u, p). 

Let G be a graph, A a routing algorithm, and s, t E V. Then A(G, s, t )  denotes the 

length of the walk determined by A when routing from s to t; if A fails to reach t in a 

finite number of steps then A(G, s, t )  = oo. 

We say that Aguarantees delivery on a graph G if A(G, s, t) < oo for every choice of 

vertices s, t E V(G). On the other hand, if A does not guarantee delivery on G, then we 

say that G defeats A. 

We can measure the effectiveness of an algorithm to some extent by comparing its 

s, t-walks with the shortest s, t-paths. A is c-competitive for a class of graphs G if 

for every G E G and all distinct pairs of vertices s, t E V(G). If there exists some 

constant c for which A is c-competitive, then we say that A is competitive. 

If there exists a path &om s to t for all vertices s, t E V, we say that G is connected. 

Note that a convex embedding is necessarily connected, since the boundary of the outer 

face in a disconnected planar graph consists of at  least two polygons. We assume for 

the remainder of the thesis that all graphs are connected, unless otherwise noted. 

The Voronoi diagram [dBvKOSOOl of a set of points V E R2 is the partition of R2 into 

cells where each cell consists of all points closer to given point v E V than any other 

point in V. The Delaunay triangulation of V is the (straight-line) dual of the Voronoi 
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diagram, i.e. two points in V are adjacent if and only if the corresponding cells in the 

Voronoi diagram share an edge. In the case where some point p E lW2 is equidistant to 

some k > 3 points of V, the corresponding face in the Vorolioi diagram is a k-gon; we 

can triangulate it arbitrarily. 

1.4.1 Classifying Routing Algorithms 

Bose and Morin classify routing algorithms based on whether they require memory 

beyond that used for the message, and whether they are deterministic or randomised. 

Memoryless Algorithms 

A routing algorithm is memoryless if the choice of the next vertex from v depends only 

on v, N(v), and t. Note that for purposes of this definition, neither storing t nor the 

message is considered to use memory, since for most applications it is obviously neces- 

sary for the agent to know when it has reached its destination and to be able to deliver 

the message. Also note that the neighbourhood of a vertex v may be large, so in general 

the processor at v must handle computations involving IN(v) u {v, t)l vertices. In prac- 

tice, say for communication networks, we may assume that this number is bounded by 

some constant, and that the processor at v is powerfbl enough for such computations. 

The computations do not contribute to network traffic, since the only information sent 

to the next vertex is the message data and t. 

The GREEDY algorithm is perhaps the simplest and most natural deterministic 

memoryless routing algorithm. At a vertex v, GREEDY chooses as its next vertex the 

closest neighbour of v to t. That is, 

A similar deterministic memoryless algorithm is COMPASS, which minimises angle 

to the destination rather than distance: 

where the angle is measured in the range (-n, n]. 
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These algorithms are illustrated in Figures 1.2 and 1.3. 

Figure 1.2: GREEDY chooses the neighbour ofv that minimises distance to t. 

Figure 1.3: COMPASS chooses the neighbour of v that minimises angle to t. 

While GREEDY and COMPASS are useful heuristics, neither guarantees delivery 

on all graphs. It is straightforward to construct graphs that defeat these algorithms; 

naturally we may ask what conditions are necessary to guarantee delivery. 

GREEDY and COMPASS do not even guarantee delivery on convex embeddings, as 

shown in Figure 1.4. Since sl and s2 are closer to t than a1 and an, routing from either 

of the si to t will force these algorithms into an infinite loop alternating between sl and 

Figure 1.4: Both GREEDY and COMPASS fail when starting from one of the s;. 



Worse yet, GREEDY and COMPASS do not succeed on all triangulations. For exam- 

ple, adding the chords als2 and ala2 to the graph in Figure 1.4 produces a triangulation 

that defeats GREEDY. The triangulation in Figure 1.5 defeats COMPASS: starting a t  

any of the eight vertices not adjacent to t results in a clockwise cycle through those 

vertices [BM991. 

Figure 1.5: A triangulation that defeats COMPASS. 

On the other hand, there are important classes of triangulations for which these 

algorithms do guarantee delivery. 

Theorem 1.1 [BM99] GREEDY guarantees delivery on every Delaunay triangulation. 

0 

A regular triangulation is a triangulation obtained by orthogonal projection of the 

faces of the lower hull of a 3-dimensional polytope onto the plane. 

Theorem 1.2 [BM991 CoMPASSguarantees delivery on every regular triangulation. 0 

Bose et al. propose two variants of COMPASS that succeed on larger classes of 

graphs: GREEDY-COMPASS, which chooses the closest to t of cw(v, t )  and ccw(v, t ) ,  

and RANDOM-COMPASS, which randomly chooses between cw(v, t )  and ccw(v, t ) .  

Theorem 1.3 [BMBfOO1 GREEDY-COMPASS guarantees delivery on every triangula- 

tion. 0 
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Theorem 1.4 [BMB+OO] RANDOM-COMPASS guarantees delivery on every convex sub- 

division. 0 

Incidentally, note that a random walk guarantees delivery on every connected graph, 

so the latter result should not be a surprise. Naturally we are more interested in algo- 

rithms that make steady, rather than random, progress towards the destination. We 

obser&d earlier that neither GREEDY nor COMPASS guarantees delivery on all trian- 

gulations, suggesting that deterministic memoryless algorithms are not likely to be 

robust. Bose et al. f i r m  this hypothesis; their argument is as follows. 

. Theorem 1.5 [BMB+OOl Every deterministic memoryless online routing algorithm is 
defeated by some convex embedding. 

Proof: Consider the three graphs GI, Gz, G3 shown in Figure 1.6. Common to all three 

are the vertices vo, . . . ,2115 arranged in order on a regular 16-gon centred at the origin, 

the edges of this 16-gon, and a destination vertex t at  the origin. Note that the even- 

numbered vertices vo, 212, . . . ,2114 all have degree 2. 

Towards a contradiction, suppose there exists a deterministic memoryless routing 

algorithm A that succeeds on any convex subdivision. Since vo, 212,. . . ,v14 have the 

same neighbours in all three graphs, A makes the same decision at any particular 

even-numbered vertex. We can therefore consider the behaviour of A at these vertices 

regardless of the graph on which it is routing. 

Colour each v2i black or white according to whether A moves counterclockwise or 

clockwise from 212, around the 16-gon, respectively. We claim that all even-numbered 

vertices must have the same colour. If not, there exist two vertices ~ 2 i  and vzi+z (sub- 

scripts are considered mod 16) such that vzi is black and v2i+2 is white. Then, taking 

s = vzi in GI, the algorithm gets stuck either between Vzi and ~2i+l,  or V ~ i + l  and VZ~+Z, 

a contradiction. 

Therefore we can assume that all even-numbered vertices are black. Now consider 

the graph G2. If s = v1, then A cannot visit x after vl, or it would cycle among the 

vertices {v12, v13,v14,v15, VO, v1, x) without reaching t. Rotating the edges in Gz, we can 

make similar arguments for all odd-numbered vertices. 

However, this implies that in the graph G3, if we take s to be any of the vi, then 
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A never enters the interior of the graph. Therefore no deterministic memoryless al- 

gorithm guarantees delivery on all convex subdivisions. (Note that the figure can be 

slightly modified to make the same argument for strictly convex subdivisions.) rn 

Figure 1.6: The proof of Theorem 1.5 

Constant Memory Algorithms 

A routing algorithm runs with constant memory on a graph of order n if the choice 

of the next vertex from v depends only on v, N(v), t, and O(1ogn) bits of of memory. 

Typically the memory is used to store vertex labels; thus, equivalently, we can say 

that a constant memory algorithm uses O(1) memory, where it is understood that one 

memory slot takes log n bits. 

1 A.2 Triangulations 

Given a set of points V, a minimum-weight triangulation on V is a triangulation min- 

imising the sum of the edge lengths. A greedy triangulation on V is constructed by 

starting with an empty edge set and repeatedly adding the shortest edge that does not 

cross any other previously-added edge. Bose et al. prove the following fundamental 

results [BMSUOU: 

0 under the Euclidean metric, no deterministic routing algorithm is o(6)-competitive 

for all triangulations; 

0 under the link metric, no deterministic routing algorithm is o(6)-competitive 

for all Delaunay, greedy, or minimum-weight triangulations. 
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An ear in a triangulation is a vertex of degree 2. Bose et al. [BMOlI present a 9- 

competitive algorithm for triangulations with two ears, and use this as a basis for the 

following result on an important class of triangulations. 

Let 0 < a 2 7~12. For an edge e of a triangulation T = (V,  E), consider the two 

isosceles triangles tl and t2 with base e and base angle a. Then e satisfies the diamond 
property with parameter a if one of tl or t2 does not contain any vertex v E V in its 

interior. If this property holds for every e E E, we say that T satisfies the diamond 

propew. 

The set of such graphs satisfying the diamond property includes several important 

classes of triangulations, such as Delaunay triangulations, minimum weight triangu- 

lations, and greedy triangulations CDJ891. 

Lemma 1.6 [BMOI] Given a triangulation T = (V, E) satisfying the diamond property 

with parameter a, there exists a constant d, (depending on a) such that for all x, y E 

V, SPT(X, Y)/distT(x,Y) _< da. 0 

Theorem 1.7 [BMOI] mere is a 9d,-competitive OW-memory online routing algo- 

rithm that guarantees delivery on triangulations satisfying the diamond property. 

1.4.3 Unit Disk Graphs 

A unit disk graph is a geometric graph in which the neighbourhood of a vertex v con- 

sists of all those vertices within a circle of radius r centred at v. That is, U is a unit 

disk graph if the edge set is E(U) = {uv : d(u, v)  5 r ) .  

The unit disk graph is a natural model for ad hoc wireless networks under ide- 

alised settings: assume that all nodes are embedded in a plane, and that every node 

is equipped with a communication device capable of sending and receiving messages 

within a constant broadcast radius r .  Then the graph representing the communication 

network is precisely the unit disk graph. 

The Gabriel Graph 

Routing on a unit disk graph U is typically achieved by restricting the agent to the 

Gabriel graph G of U, which is a subgraph of U with several important properties. 
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The Gabriel graph [GS69] of U is defined as follows. Let disk(u, v )  be the disk with 

diameter uv. Then G is the subgraph of U such that uv E E ( G )  if and only if disk(u, v )  

contains no other vertices of U. See Figure 1.7. 

Figure 1.7: Construction of the Gabriel graph. Both u and v detect that w E disk(u, v ) ;  
hence uv is removed. The large circles around u and v are unit disks representing 
communication range. 

It is possible to construct the Gabriel graph with a distributed algorithm using only 

local information: each node u asks each of its neighbours v whether it has any common 

neighbours with u within disk(u, v ) ;  if so, u deletes the edge uv. 

An agent can therefore route on the Gabriel graph by ignoring any edges not in G. 

Algorithm 1 Gabriel 
1: procedure GABRIELW, s, t )  D U is a unit disk graph 
2: for each u E N ( v )  do 
3: if disk(u, v )  n ( N ( v )  \ {u,  v ) )  # 0 then 
4: delete (u ,  v )  
5: end if 
6: end for 
7: end procedure 

The GABRIEL algorithm as given here requires 0 ( d 2 )  time at vertex v ,  where d is 

the degree of v .  This can be reduced to O(d log d)  by constructing the Voronoi diagram 

and Delaunay triangulation of N ( v )  U { v )  and keeping only the edges of the Delaunay 

triangulation that intersect the corresponding edges of the Voronoi diagram. 

Theorem 1.8 If U is a connected unit diskgraph then GABRIEL computes a connected, 

spanning planar subgraph of U. The cost of the computation at vertex v E V(U) is 

O(d log d)  where d is the degree of v. 0 



It follows from this result that for routing on unit disk graphs, it is sufficient to 

develop algorithms that guarantee delivery on planar graphs. 

1.4.4 Planar Graphs 

A planar graph G natural subdivides the plane into faces. Every edge uv belongs to 

two faces, which can be found locally by iterating cw (resp. ccw) until returning to 

uv. This motivates the concept of face routing, introduced in [KSU991: traverse the 

current face, noting which edges cross the line st. Then travel to the edge with the 

closest crossing to t, and repeat on the next face. We refer to this method as FACE-1. 

If all the faces are convex, the edge with the closest crossing to t will be the first 

edge crossing st. Therefore the algorithm can progress to the next face immediately 

upon finding a crossing edge. We call this method FACE-2. 

The GREEDY-FACE-GREEDY (GFG) algorithm combines GREEDY with FACE-1 for 

routing on unit disk graphs. GFG uses greedy routing as long as possible; if it reaches 

a vertex v' whose neighbours are all farther from t than v is, GFG switches into face- 

routing mode on the Gabriel subgraph. It traverses the current face until it reaches a 

vertex v" such that d(vl', t)  < d(vl, t), at which point it reverts to greedy mode. 

1.4.5 Unstable and faulty unit disk graphs 

Unit disks provide a powerful and convenient model for communication networks. Ide- 

ally, a wireless network should be representable as a unit disk graph; in practice, how- 

ever, there will be a number of reasons to expect discrepancies. 

First, it is unrealistic to expect that every node has the same power. Some nodes 

may be stationary bases with a very large communications range, while mobile nodes 

using battery power have a smaller range, especially when limiting themselves to con- 

.serve power. 

Differences in transmission range can introduce one-way edges in the communi- 

cations network: a node may be powerful enough to receive a message from a weak 

neighbour, but the neighbour too weak to receive messages itself. 

The Gabriel graph, which is normally very useful for routing on unit disk graphs, 

is not robust with respect to these issues. Figure 1.8 shows a situation where u and v 
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disagree on whether the edge uv should be kept or discarded [BFNOlI: u claims that it 

should be removed, while v claims that it should be kept. 

Figure 1.8: The Gabriel construction fails when the graph is not strictly a unit disk 
graph. Here only u detects that w E disk(u, v) ;  hence u and v disagree on the status of 
UV . 

On a network with variable transmission range, the local algorithm for constructing 

the Gabriel graph may produce either a non-planar graph or a disconnected graph, both 

of which are undesirable. 

Barrigre et al. address these issues in [BFNOlI as follows. Let r, R E R be minimum 

and maximum communication ranges, respectively. The network is represented by an 

undirected geometric graph G where uv E E(G) if d(u, v )  i r, uv 4 E(G) if d(u, v) > R, 

and uv may or may not be in E(G) if r < d(u, v) 5 R. Then a routing protocol is 

introduced that guarantees delivery if the ratio Rlr between communication ranges is 

at most 4. 
We can also model poor communication conditions with faultiness: suppose that 

each edge in the graph has the potential to malfunction for some reason. For instance, 

in addition to the issues mentioned above, it may be impossible for two nearby nodes 

to communicate with each other if there are obstacles (mountains or tall buildings, for 

example) blocking the way; bad weather or other interference may also intermittently 

prevent communication between certain nodes. 

Formally, let U be a unit disk graph, and 6 E [0,1) some constant. Let F be a 

graph obtained by independently removing each edge from U uniformly at random 

with probability 6 .  Then we say that F is a faulty unit disk graph with faultiness 6 .  Of 

course, faultiness could be defined for any graph, but we are particularly interested in 

faulty unit disk graphs since they are extremely easy to generate, and provide a simple 

testing ground for GFG, for example. We discuss this further in Section 2.2. 
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1.4.6 Quality of Service (QoS) 

We may wish not only to h d  a route between two specified vertices, but to find such a 

route satisfling certain constraints or optimising several parameters; these metrics are 

collectively known as quality of service (QoS) metrics. For instance, in communication 

networks it is desirable to h d  paths with small delay while keeping the bandwidth as 

low as possible at every vertex. For a more comprehensive overview, see, for example, 

the survey by Paul and Raghavan [PR02]. 

In Section 2.1.2 we provide a simple example of QoS routing by using a parameter 

load(v) on each vertex v to choose the next vertex. We consider load(v) to be an abstrac- 

tion of the total bandwidth through v over a period of time, and assume that the load 

information of a vertex v and its neighbours is available to an agent at v.  

1.4.7 Geocasting 

The geocasting problem generalises the routing problem so that the destination is a 

region (i.e., every node within a region) rather than a single node. One solution to the 

geocasting problem is to use a traversal algorithm to enumerate every node. Morin, 

in his PhD thesis [MorOl], describes such an algorithm, FACE-GEOCAST, for planar 

graphs. 

Theorem 1.9 [MorOl] FACE-GEOCAST is an O(1)  memory geocasting algorithm with 

delivery time at most 40m(Hm - I ) ,  where m is the total number of edges of the faces 

intersecting the destination region R, and Hk = c:=, l / i  is the kth harmonic number. 

0 

The SPIRAL geocasting algorithm that we describe in Chapter 3 is designed for 

quasi-planar graphs. It would be interesting to compare running times between SPI- 

RAL and FACE-GEOCAST on the class of graphs for which both algorithms guarantee 

delivery, i.e., on convex embeddings. 
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Quasi-Planar Routing 

2.1 Quasi-planar routing in Et2 

Let G = (V, E, F) be a planar graph with vertex set V, edge set E, and face set F. A 

convex embedding of G is a straight-line embedding into the plane such that the bound- 

ary of every face is a convex polygon; we will associate G with its convex embedding. 

For the remainder of the paper we assume that such a graph G has no three collinear 

vertices. 

Let G = (V, E, F) be a convex embedding, and construct a new graph Q by adding 

chords to the faces of G except for the outer face fo. That is Q = (V, E u El), where 

each edge e E E' joins two vertices of some face f E F \ {fo). We call such a graph Q a 

quasi-planargraph: there may be many crossing edges, but a facial structure remains. 

Figure 2.1 illustrates an example of a quasi-planar graph. 

Figure 2.1: A quasi-planar graph; one of its underlying planar graphs is drawn with 
bold edges. 
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We refer to G as an underlying planar graph of Q, and say that the faces fi E F of 

G are underlying faces of Q. Note that an underlying planar graph is not necessarily 

unique for a given quasi-planar graph. In general, there will be many possibilities: 

consider, for example, a triangulation of a convex n-gon. Each of the n - 3 interior 

edges may or may not be a chord, so there are 2n-3 possible ways to interpret the n-gon 

with respect to the underlying planar graph. 

For the purposes of our routing algorithm, however, it suffices to know that such a 

graph G exists; the particular choice of G is irrelevant and will not affect the behaviour 

of the algorithm. The existence of the graph G is used only in proofs of correctness of 

the algorithm. 

Recall that cw(u,  v )  is the first clockwise neighbour of u starting from the direction 

uv. The edges uvl and uv2 are radially adjacent if v2 = cw(u,  v l )  or v2 = ccw(u, v l ) .  

Observe that if uvl, uv2 E E are radially adjacent edges then some underlying face f 

contains u, v l ,  and 0 2 .  Depending on the choice of the underlying planar graph G, the 

edges uv; may be outer edges or chords off,  but again, this distinction is not important. 

Let u, v ,  wl, ~ 2 , .  . . , W ,  E V. Then wl, w2,. . . , w, form a clockwise sequence around u 

from v if they are the first p consecutive clockwise neighbours of u starting from the 

direction determined by v. Note that v is not necessarily adjacent to u. A counterclock- 

wise sequence is defined analogously. 

We denote by uv the line segment through vertices u and v;  it will be clear from 

context whether uv refers to an edge or a line segment. The line segment st separates 

the vertex set into two subsets VA and VB that we can think of as containing vertices 

"above" and "below" st, respectively. Specifically, VA = {v E V : 0 < Ltsv < T) and 

VB = {v E V : T < Ltsv < 2 ~ ) ,  and V = {s,  t )  U VA U vB.l Since G is represented by a 

convex embedding and using the assumption that st @ E, it follows that both VA and 

VB are non-empty. If a vertex v knows the geometric locations of s and t ,  it is a fast 

local computation to determine whether v E VA or v E VB. 

Lemma 2.1 Let Q be a quasi-planar graph with s, t E V given, and let v E VA. If 
N(v )  n VA = 0 then us, vt E E. Similarly, for a vertex v E VB, if N(v )  n VB = 0 then 

us, vt E E. 

'The definitions of VA and VB depend on the choice of s, t; however, their reference will be omitted as 
it can be easily understood from the context. 
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Proof: We argue by contradiction: suppose there exists a vertex v E VA such that 

N(v) n VA = 0, and us 4 E. Index the neighbours ul , u2, . . . , up of v such that Lulvu2 < 
L U ~ V U ~  < . . . < Lulvup. By convexity of the outer underlying face, it follows that no 

vertex lies outside cone(u1, v, up). Therefore, s is contained within the convex hull of 

{v, u,, ~ i + l )  for some i. But v, u;, and ui+l are all on the same underlying face, which, 

being convex, must have an empty interior. This shows that v must be adjacent to s; 

similarly, vt E E. 

The same argument applies to a vertex in VB. 

2.1.1 The QUASI-PLANAR algorithm 

We now describe an O(1)-memory routing algorithm that guarantees delivery on quasi- 

planar graphs. For the remainder of this section we will omit reference to the choice 

of underlying planar graph for a given quasi-planar graph; the results hold for any 

such choice. The QUASI-PLANAR algorithm traverses vertices within the underlying 

st-crossing faces, using the left- and right-hand rules (i.e., using the functions ccw and 

CW) when v E V, and v E VB, respectively; see Algorithm 2. 

Routing from s to t is trivial when s = t or st E E; we therefore assume that s and 

t are distinct and non-adjacent, and for brevity in the following algorithm we refrain 

from explicitly checking for the trivial cases. 

As is typical of other algorithms using the face routing technique, the QUASI- 
PLANAR algorithm only requires enough memory to remember s, t, and one other 

reference vertex x; this latter vertex is used to store information about the current 

underlying face. Whenever the current vertex v is in VA, x will be in VB, and vice versa. 

Finally, QUASI-PLANAR requires a rule R that will determine the next vertex from 

the neighbours of the current vertex v. First suppose v E VA, and hence x E VB. Let 

bl,  b2 , .  . . , bp, a be a counterclockwise sequence around v from x, where p 1 0, bi E VB, 

and a E VA. Although the set {bl, b2, .  . . , bp) may be empty (that is, p = 0 is possible), 

Lemma 2.1 guarantees the existence of a. We require that the function R(v, x) evaluate 

to an element from the (non-empty) set {bl, b2,. . . , b,, a); see Figure 2.2. 

For sake of simplicity, we abuse notation and also refer to R(v,x) when v E VB 

and x E VA, with the understanding that R is symmetric about st. That is, R(v, x) E 

{al, a2,. . . , a,, b) where al, a2,. . . , a,, b is a clockwise sequence around v from x, q 2 0, 
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Figure 2.2: The current vertex is v ;  candidates for the next vertex are {bl, . . . , b,, a). 

ai EVA, and b E VB. 

As we will prove shortly, the particular choice of R does not affect the correctness 

of the algorithm on quasi-planar graphs. 

Theorem 2.2 Given a quasi-planar graph Q and distinct, non-adjacent vertices s, t E 

V(Q), the QUASI-PLANAR algorithm successfully routes from s to t. 

Proofi We will show that v and x are on the same underlying face during the execution 

of QUASI-PLANAR. Furthermore, let lk denote the point of intersection of v x  with st 

after the kth iteration of the while loop. We will also show that if v # t after the k-th 

iteration, then lk exists and s 4 lo 4 . . . 4 lk 4 t where 4 is the natural ordering along 

st. 

The intersection points lk are determined by pairs of distinct vertices in Q, so the 

sequence lo, 11, . . . has at most terms. The while loop iterates as long as vt $! E, 

resulting in a new intersection point with each iteration. Therefore, since this sequence 

of points is finite, it follows that after some iteration, vt E E. The while loop then 

terminates and v reaches t at step 25. 

Thus, it remains to prove the above two claims (Claims 2.1 and 2.4 in what follows). 

We proceed by induction on k, the number of iterations of the while loop in steps 4-24. 

Claim 2.1 Vertices v and x are on the same underlying face. 

Proofi This is certainly true after steps 2 and 3. For k 2 1, first suppose v E VA. If 

R(v, x) = a, then the argument is as follows. The vertex a is the first neighbour of v 
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Algori thm 2 Quasi-Planar Routing 
1: procedure QUASI-PLANAR(Q, s, t ,  R) 

v + C C W ( S ,  t )  
x + c w ( s ,  t )  
whi le  vt $ E d o  

i f  v E VA then 
Find the counterclockwise sequence bl ,  b2, . . . , b,, a around v from x ,  where 

p > O , a ~  VA a n d b i ~  VB, 15 i 5 p .  
if R ( v ,  x )  = a then 

x + bp 
v t a  

e lse  b in this case R ( v ,  x )  = bk for some k ,  1 5 k < p 
x t v  
v + bk 

end  if 
else  ~ V E V B  

Find the clockwise sequence al, a2,. . . , a,, b around v from x ,  where q 2 0,  
b~ VB andai E VA, 15 i < q. 

if R ( v ,  x )  = b then 
x + a, 
v t b  

e lse  D in this case R ( v ,  x )  = ak for some k ,  1 < k 5 q 
x t v  
v + a k  

e n d  if 
e n d  if 

e n d  whi le  
v t t  

26: e n d  procedure 

counterclockwise from vb,, so after the updates x + b, and v t a, the vertices v and x 

will be on the same underlying face. If R ( v ,  x )  = bk, 1 5 k < p, then after the update, v 

and x will be adjacent and hence must be on the same underlying face. 

If v E VB the argument is similar. 0 

Cla im 2.2 I f  v E VA, then for every 0 < i < p, the vertices v ,  bi, bi+l are on the same 

underlying face. Moreover, the vertices v ,  b,, a are on the same underlying face. Similarly 

if v E VB, then for every 0 5 i < q, the vertices v ,  ai, ai+l are on the same underlying face, 

and the vertices v ,  a,, b are on the same underlying face. 

Proof: We only consider the case v E VA in detail; the other case is similar. For i 2 1 the 
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statement follows since bi+l is the first neighbour of v counterclockwise fiom vbi. Thus, 

suppose i = 0, so we must show that v, x, and bl are on the same underlying face. If 

vx E E, the argument is the same as above: vx and vbl are radially adjacent edges. On 

the other hand, if vx $ E, let u = cw(v, bl ) .  Then the vertices v, bl ,  u lie on the same 

underlying face f .  Now, since x is contained in cone(u, v, bl), and fiom Claim 2.1, it 

follows that x also lies on f .  

The same reasoning shows that v, b,, and a are on the same underlying face. 

Claim 2.3 If v E VA, then Lsvx < Lsvt, and similarly if v E VB, then Lxvs < Ltvs. 

That is, the line segments vx and st intersect. 

Proof: First, when k = 0, note that from the assumptions that st $ E and no three 

vertices are collinear, it follows from the convexity of the underlying faces that v E VA 

and x E VB exist and are well-defined after the initialisation (steps 2-3). By choice of 

v and x, it is clear that v = ccw(s, x), so s, v, and x all lie on a common underlying 

face f.  If Lsvx > Lsvt, there are two possibilities: either 7r < Lxsv < 27r, or t is in the 

convex hull of s, v, and x. Because f is convex and the angle Lxsv is an interior angle, 

0 < Lxsv < 7r, eliminating the first case. On the other hand, t cannot be in the interior 

off ,  so t is not in the convex hull of s, v, and x. Therefore Lsvx < Lsvt, establishing 

the basis of the induction. 

Now assume that after k iterations of the w h i l e  loop, the desired property holds. 

By symmetry, we may without loss of generality assume that currently v E VA, and 

consequently x E VB. 

During the k + l-st iteration, first suppose that R(v, x) = a. Then v and x will 

be assigned a and b, respectively, so we must show that Lsab, < Lsat. Towards a 

contradiction, suppose that Lsat < Lsab,. Then t lies within the convex hull of v, bi, 

and b,+l for some 0 5 i < p, or within the convex hull of v, b,, and a; see Figure 2.3. 

But each of these triples lies on an underlying face, by Claim 2.2, which by convexity 

cannot contain t, a contradiction. 

If, on the other hand, R(v, x) = bi for some i > 0, then v and x will be assigned bi 

and v, respectively, and we must show that Ltbiv < Ltbis. To this end, suppose that 

Ltbis < Ltbiv. Then either 7r < Lxvt < 27r or 0 < Lxvt < xvb;. The first case contradicts 

the induction step, so suppose that 0 < Lxvt < xvb;. Then for some 0 5 j < i, t lies 



Figure 2.3: Invalid position for t when R(v, x) = a 

within the convex hull of the vertices v, bj, bj+l, as shown in Figure 2.4. However, by 

Claim 2.2, this is impossible. 0 

Figure 2.4: Invalid position for t when R(v, x) = bi 

Claim 2.4 Suppose v # t. Then s 4 lo . . . 4 L k  3 t where 3 is the natural ordering 

along st. 

Proof: It follows from Claim 2.3 that l j  is well-defined (i.e., the intersection of vx with 

st exists) and that s 4 l j  4 t for all 0 I j < k. We now assume for some 0 I j < k that 

v E VA; the ease v E VB is similar. 

Since all underlying faces are convex, the angle between any radially adjacent edges 

is less than T. Therefore, the point of intersection of st with vbi precedes that of st with 

~ b , + ~  for all 0 _< i < p, and the point of intersection of st with vbp precedes that of st 

with bpa. Regardless of the choice of R(v, x), we must then have lj 4 lj+1. 0 

This concludes the proof of Theorem 2.2. 
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Observe that QUASI-PLANAR runs in polynomial time since the intersections lk are 

determined by the vertices v, x, s, and t, and there are at most choices for v and x. 

Moreover, the algorithm only uses those underlying faces crossing the line segment st. 

2.1.2 Rules for choosing the next vertex 

 elo ow we list several natural choices for the rule R. The first three are greedy variants 

adapted for the QUASI-PLANAR algorithm; specifically, Rules 1,2, and 3 are analogous 

to GREEDY, COMPASS, and GREEDY-COMPASS, respectively. 

Rules 4 and 5 use network load information (assuming it is locally accessible) to 

choose vertices with minimum load, with the objective of keeping the maximum net- 

work load over all vertices as small as possible. Rule 4 chooses the vertex with least 

load from the entire set of candidates {load(bl), . . . , load(bp), load(a)). However, slav- 

ishly taking minimum-load vertices in this way typically produces very long and indi- 

rect s, t-paths; thus, a single message sent with Rule 4 may not significantly increase 

the maximum network load, but many such messages will cumulatively have a catas- 

trophic effect on the network. Much better is the refinement in Rule 5, which restricts 

Rule 4 to the (GREEDY-COMPASS-like) choice of bp or a. 

1. R(v, x) = argmin{dist(bl,t), . . . , dist(bp, t), dist(a, t)) 

2. R(v, x) = argmin{Lbpvt, Ltva) 

3. R(v, x) = argmin{dist(bp, t), dist(a, t)) 

4. R(v, x) = argmin{load(bl), . . . , load(bp), load(a)) 

5. R(v, x) = argmin{load(bp), load(a)) 

6. R(v, x) = a 

The simplest choice, Rule 6, effectively ignores all st-crossing edges; it is easy to 

see that this rule is equivalent to FACE-2 showing that QUASI-PLANAR generalises 

FACE-2. 

Obviously Rule 6 is a poor choice for R under most circumstances. However, it plays 

an integral r81e in the SPIRAL algorithm in Chapter 3, so we end this section with the 

following observation. 
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Since v and z are always on the same underlying face, and the QUASI-PLANAR 

algorithm progresses along st-crossing faces, it follows that at least one endpoint of 

every st-crossing edge in the underlying planar graph will be visited during the course 

of the algorithm. Moreover, if v is at the endpoint of such an edge (say v E VA), then 

the other endpoint is either z or in the set {a, bl, . . . , b,). Now, as written, the choice 

of next vertex never includes z, for the obvious reason that the algorithm should not 

cycle. However, when using Rule 6, note that we can modify the algorithm to include z 

in the set of candidates - this is a trivial change since the rule will never choose z, but 

it allows us to say that the algorithm considers all st-crossing edges in the underlying 

planar graph when using Rule 6. 

2.1.3 Analysis 

Let us consider the behaviour of the QUASI-PLANAR algorithm in an idealised setting. 

Since QUASI-PLANAR only travels across underlying st-crossing faces, and never re- 

turns to a previously visited face, we might examine how QUASI-PLANAR performs on 

a single face to get an idea of the algorithm's performance on a general quasi-planar 

graph. In particular we will show that the behaviour of QUASI-PLANAR on a face is 

comparable to that of GREEDY and COMPASS. In this section we assume that QUASI- 

PLANAR is using Rule 1, i.e., R(v, z) = argmin(dist (bl,  t), . . . , dist(b,, t), dist(a, t)). 

Let the underlying planar graph be a cycle C whose vertices are embedded on a cir- 

cle. Since scaling does not affect the behaviour of QUASI-PLANAR, GREEDY, or COM- 

PASS, we may assume that the circle has diameter 1. Let Q consist of this underlying 

graph along with an arbitrary number of chords. 

We will now show that QUASI-PLANAR performs as effectively as GREEDY and 

COMPASS on Q. More precisely, all three algorithms follow the same s, t-path for all 

choices of s and t. 

: Theorem 2.3 Let Q be a quasi-planar graph as described above, and let s, t E V(Q). 

Then the QUASI-PLANAR, GREEDY, and COMPASS algorithms visit the same sequence 
of vertices when routing from s to t. 

Proof We will first prove that GREEDY and COMPASS visit the same sequence of ver- 

tices. Let v be the current vertex, and let u E N(v). Let 9 = Ltvu, and consider 9 to be 
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an angle in the range (-T, T). Observe that of the two neighbours of v in the underlying 

graph C, the closer one tot is also the one minimising angle to t, and that this angle is 

no greater than ~ / 2 .  Therefore we may assume that 0 E ( - ~ / 2 , ~ / 2 ) .  

Since U, v, t are on a circle of diameter 1, the line segment ut has length sin 0. There- 

fore u will be chosen by GREEDY as the next vertex if it minimises (sin01. But since 

0 E ( - ~ / 2 , ~ / 2 ) ,  minimising I sin01 is equivalent to minimising 101, which is the crite- 

rion used by COMPASS. Finally, at least one of v's neighbours is strictly closer to t than 

v is, so GREEDY and COMPASS must terminate. 

We now prove that GREEDY and QUASI-PLANAR visit the same sequence of ver- 

tices. By choice of the rule, QUASI-PLANAR will select either cw(v,t) or ccw(v,t) as 

the next vertex. Let the closer of these to t be called U. Clearly, GREEDY selects u as 

the next vertex, so we must only show that QUASI-PLANAR does so as well. 

Finally, it is clear from the choice of R that QUASI-PLANAR makes the same choices 

as GREEDY. 

On the other hand, these three algorithms can have arbitrarily bad dilation on such 

graphs. Let the underlying cycle be C = U O U ~ .  . . u ~ ~ - ~ u o ,  and add chords U O U ~  and ulun, 

as shown in Figure 2.5. Let s = uo and t = un. Then GREEDY clearly takes the path 

P = U O U ~ U ~ . .  .un, whereas the shortest s, t-path is U O U ~ U ~ ;  the dilation of P is 9. 

Figure 2.5: QUASI-PLANAR, GREEDY, and COMPASS can have arbitrarily bad dilation. 

The behaviour of QUASI-PLANAR differs from that of GREEDY and COMPASS on 

more complex quasi-planar graphs, since QUASI-PLANAR is restricted to the faces in- 

tersecting st and only moves to the next face when at an endpoint of an st-crossing 
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edge, while the latter algorithms ignore any inherent facial structure. 

It is straightforward to construct quasi-planar graphs where GREEDY and COM- 

PASS have arbitrarily better performance than QUASI-PLANAR, for example by draw- 

ing a path of length two between s and t whose edges are not incident to any st-crossing 

faces. On the other hand, in the introduction we saw that GREEDY and COMPASS do 

not even guarantee success on convex embeddings. Thus, in light of these examples 

and Theorem 2.3, we can expect the three algorithms QUASI-PLANAR, GREEDY, and 

COMPASS to be roughly comparable on "average" quasi-planar graphs, but to differ in 

some pathological cases. 

2.2 QFQ: a hybrid algorithm for unit disk graphs 

In Chapter 1 we described the GFG algorithm for unit disk graphs; recall that GFG 

alternates between GREEDY and face routing on the Gabriel subgraph, using FACE-1 

only when GREEDY fails (i.e., reaches a vertex u whose distance to t is lesser than all 

of its neighbours'), and reverting to GREEDY as soon as possible (i.e., after finding a 

vertex w such that dist(w, t )  < dist(u,t)). We now show how to build a similar hybrid, 

QFQ, by combining QUASI-PLANAR with face routing on the Gabriel subgraph. For 

the remainder of this section we assume that the graph under consideration is a unit 

disk graph. 

Clearly, any routing algorithm that does not cycle (but possibly terminates before 

reaching the destination) can be analogously combined with FACE-1 to produce a hy- 

brid algorithm that guarantees delivery on unit disk graphs. Naturally we are inter- 

ested in using QUASI-PLANAR as the base algorithm; hence we must first modify the 

algorithm to make it more robust. 

Whereas GREEDY uses distance from t as a measure of progress, QUASI-PLANAR 

uses the points of intersection vznst, as we saw in the proof of Theorem 2.2. As written, 

QUASI-PLANAR does not explicitly determine these points, but since the necessary 

calculation uses only v,z,s, and t, we can carry out the calculation locally at every 

iteration to measure progress. Thus we will store a point p on st to this end: initially, 

p = s, and at every iteration, calculate 1, = wz, n st for every candidate w for the next 

vertex, where z, is the position that would be stored as z if w were chosen. If no such 

1, satisfies p 4 1, 4 t, then we consider QUASI-PLANAR to have failed, and switch 
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to face routing on the Gabriel subgraph. Otherwise, choose a vertex w satisfying the 

given condition (the rule R can be extended to account for this choice), replace p with 

l,, move to w, and continue. Conversely, in face routing mode, at every iteration check 

whether some neighbour w of v is the endpoint of an st-crossing edge vw and satisfies 

p 4 1, 4 t, where 1, = vw n st. If so, choose such a vertex w (again with an extension of 

R), let x = w, update p, and revert to QUASI-PLANAR. 

We call the resulting hybrid algorithm QFQ. By design, the algorithm obviously 

guarantees delivery on both quasi-planar graphs and unit disk graphs. Of course, 

we may also use QFQ as a heuristic on graphs that are "almost" unit disk graphs - 

for example, faulty unit disk graphs (see Section 1.4.5). Moreover, it is reasonable 

to expect that QFQ outperforms GFG on such graphs when the faultiness 6 is high: 

GREEDY is less robust than QFQ, switching into face routing mode more ofken, and 

the Gabriel subgraph becomes less predictable (and Yess planar") as 6 increases. 

Indeed, experimental results seem to confirm this hypothesis. A full series of tests 

is planned for the journal version of this chapter. 

2.3 Quasi-polyhedral routing in It3 

In this section we extend the notion of quasi-planar graphs to quasi-polyhedral graphs 

in R3, and describe a routing algorithm on these graphs. 

2.3.1 Quasi-polyhedral graphs 

Let V be a set of vertices in R3, not all coplanar, and let Po be the convex hull of V. 

Consider a geometric graph G = (V, E). If the edges of G determine a set of convex 

polyhedra such that any two polyhedra are either disjoint or intersect in exactly one 

vertex, edge, or face, and if moreover their union is Po, then we say G is a polyhedral 

graph. We use P to denote the set of these polyhedra along with Po, and call Po the 

outer polyhedron of G. Note that P is not necessarily uniquely determined by (V, E), 

but this is not important for our purposes. 

'Incidentally, observe that we can use the same principle to extend QUASI-PLANAR for more general 
quasi-planar graphs where we relax the assumption that fo is convex. An agent can switch into a face 
routing mode on fo when necessary, and revert to the standard QUASI-PLANAR procedure after finding 
an st-crossing edge on fo that indicates progress towards t. 
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The intersection of any two polyhedra in P is either empty, or consists of a vertex, 

edge, or polygonal face in G. Let F be the set of all faces determined by P. We say 

f E F is a face of the polyhedron P E P iff n P = f .  A polyhedral graph G may now be 

described by the 4-tuple (V, E, F, P). 

For three distinct, not necessarily adjacent vertices a, b, c E V, denote by Aabc the 

triangle with vertices a, b, c. A 3-cycle abc is a triple of pairwise adjacent vertices a, b, c E 

v. 
As in the previous section, we will assume that no three vertices are collinear. We 

similarly assume that no four vertices are coplanar, so that every face in F is a triangle. 

Note, however, that not every 3-cycle is a face. For example, consider a polyhedral 

graph G consisting of two tetrahedra with vertices {a, b, c, x) and {a, b, c, z) joined along 

the common face abc. Add a vertex y in the interior of G adjacent to all five existing 

vertices. The 3-cycle abc is no longer a face of any polyhedron, since Aabc intersects 

either xy or yz. This is shown in Figure 2.6. 

Figure 2.6: The pairwise adjacent vertices a, b, c compose a 3-cycle, but not a face. There 
are six polyhedra in the graph: the tetrahedra with vertex sets {a, b, x, y), {b, c, x, y), 
{c, a, x, y), {a, b, y, z), {b, c, y, z), and {c, a, y, z). The polyhedron {c, a, x, y) is shaded in 
the figure. 

As an analogue of quasi-planar graphs, we now add chords to a polyhedral graph, 

so long as the chords join vertices on the same polyhedron (except the outer polyhedron 

Po). That is, for some polyhedral graph G = (V, E ,  F, P) ,  construct Q = (V, E U  E', F, P) ,  

where each edge in E' joins two vertices of a polyhedron P E P \ {Po). We say that Q is 

a quasi-polyhedral graph, and that G is an underlying polyhedral graph of Q (G is not 
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necessarily unique for Q). For brevity, we will usually use the term polyhedron rather 

than the more formal underlying polyhedron. 

2.3.2 The QUASI-POLYHEDRAL algorithm 

Similarly to the planar face-routing algorithms, QUASI-POLYHEDRAL travels only through 

polyhedra intersecting the line segment s t .  Whereas QUASI-PLANAR uses only one ref- 

erence vertex x, QUASI-POLYHEDRAL storestwo reference vertices x and y, maintain- 

ing the properties that v, x, y are on the same polyhedron P ,  and that Avxy intersects 

st .  

Figure 2.7: Candidates for the next vertex include a and by which are feasible and 
forward. The other neighbours of v are not candidates since they are infeasible (c ,  f ), 
backward (dye,  f ), or both (f ). The diagram also depicts the plane through Avxy. 

We will call a neighbour u of v feasible if there exists a polyhedron P E P whose 

vertices include v, x, y, and u; otherwise u is infeasible. A feasible face is a face whose 

vertices are all feasible. A face with at  least one infeasible vertex is an infeasible face. 

Note that a feasible vertex can be a member of many infeasible faces. A vertex u E N(v) 

is said to be a forward vertex if u is separated from s  by the plane through Avxy. 

Otherwise, u is a backward vertex. An example illustrating these definitions is depicted 

in Figure 2.7. To determine the first move from s  (i.e., the first location of vertex v) and 

the initial reference vertices x and y, QUASI-POLYHEDRAL uses a subroutine FIND 

FEASIBLE INITIALISATION (FFINIT). Then QUASI-POLYHEDRAL progresses towards 

t in each iteration, using a subroutine FIND FORWARD FEASIBLE NEIGHBOUR (FFF) 

to choose the next vertex from the feasible forward neighbours of the current vertex v. 
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These subroutines are similar to the corresponding computations in QUASI-PLANAR; 

in particular, FFINIT is analogous to steps 2- 3 and FFF to steps 6 and 15. However, 

there is a subtle geometric complication that requires some explanation, so we delay 

the descriptions of these subroutines until Section 2.3.3. 

Algorithm 3 Quasi-Polyhedral Routing 
1: procedure QUASI-POLYHEDRAL(Q, s, t, R) 
2: {v, x, y} + FFINIT(Q, s, t)  
3: while vt @ E do 
4: W + FFF(Q, s, t, v, x, Y) 
5: if Awxy intersects st then 

7: else if Avwy intersects st then 

9: Y C V  

10: V + W  

11: else 
12: Y C X  

13: x + v  
14: v + w  
15: end if 
16: end while 
17: v + t 
18: end ~rocedure 

D Avxw htersects st 

Assuming the correctness of FFF and FFINIT for now, we prove that QUASI-POLYHEDRAL 

(Algorithm 3) successfully routes on quasi-polyhedral graphs. 

Theorem 2.4 Given a quasi-polyhedral graph Q and distinct, non-adjacent vertices 
s, t E V(Q), the QUASI-POLYHE DRAL algorithm successfully routes from s to t. 

Proof: The proof is structured analogously to the proof of Theorem 2.2. We will show 

that v, x, and y are on the same underlying polyhedron during the execution of QUASI- 

POLYHEDRAL. Furthermore, let 11, denote the point of intersection of Avxy with st 

after the kth iteration of the while loop. We will also show that if v # t after the k-th 

iteration, then 11, exists and s 4 lo 4 . . . 4 lk 4 t where 4 is the natural ordering along 

st. 

The intersection points lk are determined by triples of distinct vertices in Q, so 

the sequence lo, 11, . . . has at most (I:/) terms. The whi 1 e loop iterates as long as 
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vt 4 E, resulting in a new intersection point with each iteration. Therefore, since this 

sequence of points is finite, it follows that after some iteration, vt E E. The while loop 

then terminates and v reaches t at step 17. 

Therefore, it remains to prove the above two statements (Claims 2.5 and 2.7 in what 

follows). We proceed by induction on k, the number of iterations of the while loop in 

steps 3-16. 

Claim 2.5 Vertices v, x, and y are on the same underlying polyhedron. 

Proof For k = 0, this follows from the choice of x and y from FFINIT in step 2. For k 2 1, 

FFF finds a feasible vertex w in step 4. By definition, w is on the same polyhedron as 

v, x, and y. Steps 5-15 only permute the vertices v,  x, and y, and one of them is assigned 

w. This maintains the desired property. 0 

Claim 2.6 The intersection point lk is well-defined, i.e., the triangle Avxy intersects the 

line segment st. 

Proof Let 1 be the line through st. We will first prove that Avxy intersects 1, then use 

this to show that the point of intersection lies on the line segment st. 

When k = 0, Avxy intersects 1 at s since v = s. For k > 0, suppose that Avxy 

intersected 1 after the k-1st iteration of the while loop. Let w be the vertex chosen by 

FFF in step 4 during the k-th iteration of the while loop. We will show that at least 

one of the triangles Awxy, Avwy, Avxw intersects 1. 

Project V onto a plane S perpendicular to 1, denoting the image of a vertex u by G. 

Then the line 1 is projected onto one point i. The images .ir, 2, and jj are distinct since 

Avxy intersects 1, and no four vertices are coplanar. 

Let C,, be the reflection of cone(?, i, 6) through its axis of symmetry across i, as 

shown in Figure 2.8. For any u E V, it is clear that Auxy intersects s if and only if C,, 

contains ii. 

Define C,, and C,, similarly. Then CXy~C,,~C, = S, so at least one of AGfS, AGGjj, A&?& 

contains s^. Finally, a triangle intersects 1 in the original graph if and only if its projec- 

tion onto S contains i. 

It follows from steps 5-15 that Avxy intersects 1 at the end of the k-th iteration; 

call the point of intersection lk. We now show that 11, must lie on the line segment st. 
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Figure 2.8: The cone C,,. 

Since lo = s, we can assume that k > 0 and that lk-l  lies on st. Let w be the 

vertex chosen by FFF in step 4. Then, since w is a forward feasible neighbour of v, 

the vertices v, x, y, and w lie on a polyhedron P;  also, w and t are on the same side of 

the plane through Avxy. Therefore, if lk does not lie on st, t must be contained in P ,  a 

contradiction. It follows that one of Awxy, Avwy, Avxw intersects st, so w will replace 

one of v, x, y in steps 5-15 such that the desired property is maintained. 0 

Claim 2.7 Suppose v # t. Then s + lo + . . . + lk + t where + is the natural ordering 

along st. 

Proof: It  follows •’kom Claim 2.6 that l j  is well-defined (i.e., the intersection of Avxy 

with st exists) and that s + l j  + t for all 0 5 j 5 k. 

Since all underlying polyhedra are convex, the angle between Awxy and Avxy is 

less than T. The same holds with respect to Avxy for triangles Avwy and Avxw. There- 

fore, l j  + l j+ l  for all 0 < j < k. 0 

This concludes the proof of Theorem 2.4. rn 

QUASI-POLYHEDRAL runs in polynomial time: since the intersections lk are deter- 

mined by the vertices v, x, y, s, and t, and there are at  most (1;') choices for v, x, and 

y. Moreover, the algorithm only uses those underlying polyhedra properly intersecting 

the line segment st. 
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2.3.3 The FFINIT and FFF subroutines 

In this section we describe both the FIND FEASIBLE INITIALISATION (FFINIT) and 

FIND FEASIBLE FORWARD NEIGHBOUR (FFF) algorithms and prove their correctness. 

First we need some definitions. 

An oriented plane in R3 is a plane S along with two spanning vectors a and b that 

play the r6les of the standard unit vectors [ lOIT  and [O1lT, respectively, in R2. We say 

that S has orientation (a, b). The orientation makes it possible to measure clockwise 

and counterclockwise angles on S. 

Let C = vab be a 3-cycle, and let S be an oriented plane through v intersecting ab 

at some point m. Let u be a point (not necessarily a vertex) on S. Then LsuvC denotes 

the counterclockwise angle Luvm from u to m around v, as measured on S; similarly 

LsCvu denotes the angle Lmvu. See Figure 2.9. 

This naturally suggests functions ccws(v, u) and cws(v, u) that return the 3-cycle 

C minimising the non-zero angle LsuvC, respectively LsCvu, such that ab intersects S. 

Note that C is not necessarily unique; for our purposes it is enough to choose a 3-cycle 

with minimal angle. 

Figure 2.9: S is an oriented plane through v, and intersecting ab; u is a point on S. The 
angle on S from vu to the 3-cycle vab is 6 = Luvm where m = ab n S. 

We will use these functions in FFINIT and FFF to find initial vertices v, x, y, and 

candidates for the next vertex, respectively. However, there is one issue to consider be- 

fore implementing them. Recall Figure 2.6, which showed a non-facial3-cycle. Observe 

that in this example, yz intersects Aabc, while no edge intersects Aayz, as shown in 

Figure 2.10(a). This indicates a means of identifying some of the "bad" 3-cycles in the 

graph. 
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Figure 2.10: (a) The edge yz of the 3-cycle ayz intersects the triangle Aabc. (b) The 
3-cycle vala2 dominates vblb2. 

Let C, = vala2 and Cb = vblb2 be 3-cycles, with al ,  a2, bl, b2 distinct. Suppose that 

the line segment blb2 intersects Avala2; see Figure 2.10(b). Then we say C, dominates 

Cb. If a 3-cycle C dominates another 3-cycle, then C is a dominating 3-cycle. 

We will call the feasible faces incident to v cap faces; see Figure 2.11. As we show in 

Lemma 2.5, it is impossible for a cap face to dominate another 3-cycle through v .  This 

allows us to safely ignore all dominating 3-cycles. 

Figure 2.11: The five faces vala2, . . . , vasal are cap faces. The portions of the faces 
on the forward side of the plane through Avzy  are lightly shaded, and the forward 
portions of the edges are bold. 

Lemma 2.5 Let f = vala2 be a face. Then f does not dominate any other 3-cycle 

through v.  

Proof: Let f be a face of some polyhedron P E P. Towards a contradiction suppose f 

dominates a 3-cycle v b l b .  Then blb2 intersects f .  Therefore blb2 intersects P ,  and by 

convexity of the polyhedra and definition of quasi-polyhedral graphs, at least one of the 
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b,, say bl, is contained in P. But since blb2 intersects f ,  b2 must be outside P. Since P 

is convex and blb2 intersects f ,  bl b2 4 E U E', a contradiction. 0 

The FFINIT subroutine proceeds as follows. First, it chooses an arbitrary oriented 

plane S through st. Then, by repeated application of ccws, it finds the first non- 

dominating 3-cycle sala2 counterclockwise from t around s. It then finds the first non- 

dominating 3-cycle sbl b2 clockwise fiom t around s. The vertices al, a2, bl,  b2 lie on the 

same polyhedron, and three of them must form a triangle intersecting st. These three 

will be the initial assignments to v,  x, and y. 

Algorithm 4 Find Feasible Initialisation 
I: procedure FFINIT(Q, s, t) 
2: Let S be an oriented plane through st. 
3: l t s  
4: repeat 
5: sala2 + ccws(s, 1) 
6: 1 + ala2 n S  
7: until sala2 is not a dominating cycle 
8: its 
9: repeat 

10: sblb2 + CWS(S, 1) 
11: 1 + blb2nS 
12: until sblb2 is not a dominating cycle 
13: return three of {al, a2, bl ,  b2) that form a triangle intersecting st. 
14: end procedure 

Theorem 2.6 Let P be the polyhedron through s that intersects st \ s. The FFINIT 

algorithm returns three vertices lying on P, and the triangle formed by these vertices 

intersects st. 

Proof Let S be an oriented plane S through st. For simplicity, we may assume that S 

passes through no vertices other than s and t, so that there are exactly two cap faces 

of P that intersect S \ s. Call these cap faces fa and fb, where 0 < Lstsf, < .rr and 

0 < Ls fbst < T .  

By Lemma 2.5, fa and fb do not dominate any 3-cycle through s, so both repeat 

loops terminate. 
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Let C = sala2 be the first non-dominating 3-cycle counterclockwise from t around 

s, i.e., the final 3-cycle determined by the repeat loop in steps 4-7. We will show that 

a1 and a2 lie on P. 

If C is a cap face, we are done; therefore, suppose that C is not a cap face. It follows 

that 0 < LstsC < Lstsfa. Then, since P intersects st \ s and fa \ s, and P is convex, 

P intersects AC \ s. Now, towards a contradiction, suppose that a1 does not lie on P. 

Since P intersects AC \ s, and a1 is not on P and lies on C, AC \ s must intersect some 

cap face f .  By Lemma 2.5, f does not dominate C, so C must dominate f .  But this is 

impossible by choice of C. Therefore a1 must lie on P. The same reasoning shows that 

a2, bl and b2 lie on P. 

We now show that (at least) one of the four triangles Aala2b1, Aala2b2, Aalblb2, 

Aa2blb2 intersects st. Project V onto a plane T perpendicular to st, denoting the image 

of a vertex u by C. Then st is projected onto one point 2, and the plane S is projected 

onto a line 9. Both and b;g2 intersect 9, and the points of intersection lie on 

different sides of 3. Therefore, 3 is in the interior of the quadrilateral with vertices 

a^l,a^2,&,62, so one of the four triangles ~ & a ^ 2 b ; , ~ & c i ~ & , ~ d l b ; 6 ~ , ~ a ^ ~ b ; 6 ~  contains 3. 

Since P is convex and intersects st \ s, the corresponding vertices in V form a triangle 

intersecting the line through st, and in particular, the point of intersection must lie on 

the line segment st. 1 

Suppose v, x, and y are on the same polyhedron P,  and that Avxy intersects st. To find 

a feasible forward neighbour of v, FFF uses the same technique as FFINIT: it finds the 

first non-dominating 3-cycle through v counterclockwise from Avxy and returns one of 

the endpoints. 

Theorem 2.7 m e  FFF algorithm finds a forward feasible neighbour of v. 

Proof: First, the point of intersection 1 = Avxy n st is well-defined by the above as- 

sumption on the vertices v, x, y. Let P be the polyhedron through v, x, and y; if these 

vertices lie on two polyhedra, then consider P to be the one whose intersection with st 

is closer to t. We can therefore imagine ccws to be sweeping through the interior of P 

to find successive 3-cycles. 
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Algorithm 5 Find Forward Feasible Neighbour 
1: procedure FFF(Q, s, t, v, x, y) 
2: Let 1 = AVXY n st. 
3: Let S be the plane through v, 1, and t, with orientation (It, lv). 
4: repeat 
5: val a2 +- ccws(v, 1) 
6: 1 t alaz n S 
7: . until valaz is not a dominating cycle 
8: return a forward vertex from {al, az). 
9: end procedure 

The repeat loop in steps 4-7 terminates, since a cap face of P is valid by Lemma 2.5. 
. Let C = valaz be the 3-cycle determined by the repeat loop. The same methods as in 

the proof of Theorem 2.6 show that a1 and a2 must lie on P. 

Finally, by convexity of P and the choice of orientation of S, 0 < LslvC < T ,  so 

(C \ v) n S lies in the forward region, i.e., every point of (C \ v) n S is separated from s 

by Avxy. Therefore, since alaz c (C \ v), a1 and a2 cannot both be backward vertices. 

H 

Note that both FFINIT and FFF run in polynomial time, and only use v, x, y, s, and 

t for their computations. 



Chapter 3 

Quasi-planar geocasting 

3.1 The SPIRAL geocasting algorithm 

In this section we present an algorithm, SPIRAL, that visits each vertex in a specified 

circular region of a quasi-planar graph Q at least once. The algorithm can easily be 

modified to search any convex region whose boundary can be determined with O(1) 

information. 

Let Q = (V, E u E') be a quasi-planar graph and let G = (V, E, F) be an underlying 

planar graph for Q. As in Chapter 2, G is not provided to or calculated by the agent 

running the algorithm; it is used only in the proofs. 

Let D(c, r) be the open disk centred at c and with radius r; when c and r are un- 

derstood we will simply write D. We denote the boundary of D, i.e,, the circle centred 

at c with radius r ,  by 8D. An edge uv is said to be a boundary edge (with respect to 

D) if it intersects 8D, or if it is an edge of fo and is contained in D. Note that the 

endpoints of a boundary edge may both lie outside D. An underlying boundary edge 

is a boundary edge in E. A face f E F is an underlying boundary face if it contains 

a t  least one boundary edge; we say that fo is also an underlying boundary face in the 

special case when every vertex in the graph is contained in D. For brevity we will write 

only boundary face, omitting the qualifying term "underlying", since faces are defined 

only on the underlying graph G. Finally, a vertex v is a boundary vertex if it is the 

endpoint of a boundary edge; v is an inner boundary vertex if it is inside D, and an 

outer boundary vertex if it is outside D or on fo. (Thus, a vertex is on fo and inside 
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D if and only if it is both an inner and outer boundary vertex.) Figure 3.1 illustrates 

these definitions. 

Figure 3.1: The boundary edges are drawn with thick lines. Note that v3v4 is a bound- 
ary edge since it lies on fo, and that both endpoints of v5v6 are outside D. The (under- 
lying) boundary faces include fo and the face with vertex set {vz, us, vc, us, vg ,217, v8 ), 
but not those with vertex sets {vl, uz, us) or {v?, vg, ~10). Note that there is a unique 
underlying planar graph in this example. Since v3 and v4 lie on fo and are contained 
in D, they are both inner and outer boundary vertices. 

We have the following result directly from the definitions. 

Lemma 3.1 Suppose there exists a vertex v inside D = D(c, r) .  Then there exists at 

least one underlying boundary edge zy such that z and y are inner and outer boundary 

vertices, respectively. 

Proof: If all vertices are contained in D, then every edge on fo is an underlying bound- 

ary edge, and every vertex on fo is both an i ~ e r  and outer boundary vertex. Therefore 

suppose that there exists a vertex w outside D. Consider any v, w-path P in the under- 

lying graph. Since dist(v, c) < r and dist(w, c) >_ r, there obviously must exist an edge 

xy on P for which dist(x, c) < r but dist(y, c) 2 r .  This is the required edge. I) 
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We now proceed with a description of the SPIRAL algorithm (Algorithm 6). Broadly 

speaking, the algorithm travels around D, visiting some of the inner boundary vertices. 

At the end of the main whi le  loop (lines 2-21 in Algorithm 6), D is replaced with a 

strictly smaller disk D' and the algorithm continues on Dl, unless D' is empty (in other 

words, if it has negative radius). The agent stores a variable r' representing the radius 

of Dl, which is updated periodically; initially r' = -1, and the algorithm terminates if 

r' is still -1 at the end of the main loop. (Note that the algorithm continues in the case 

when r = 0 since there may be a vertex at c.) 

At the beginning of each iteration of the main loop, the algorithm calls a subrou- 

tine, QP-FINDBOUNDARY (a modification of the QUASI-PLANAR algorithm described 

in Chapter 2), to find an outer boundary vertex s. Then, starting from s, the agent 

navigates the perimeter of D using QP-PERIMETER, another modification of QUASI- 

PLANAR. As with the standard QUASI-PLANAR algorithm, QP-PERIMETER uses a ref- 

erence vertex x to determine a set of candidates for choosing the next vertex. At every 

iteration during its navigation, QP-PERIMETER specifies a set I ( v ,  x) of neighbours of 

the current vertex v which the agent visits in turn before proceeding around D. In the 

case where v is on fo, I ( v ,  x) = {v), and the visit is trivial. During a visit to a vertex 

u E I(v, x), the algorithm updates r' according to the neighbours of u. Specifically, for 

each w E N (u) inside D, it replaces r' with max{rl, dist(w, c)). 

QP-FINDBOUNDARY and QP-PERIMETER are discussed in more detail in Sections 3.1.1 

and 3.1.2, below. 

The next lemma is the core argument in the proof of correctness of the SPIRAL 

algorithm: it shows that we can use convexity to predict, to some extent, the positions 

of the vertices inside D. 

Lemma 3.2 Let D = D(c, r) be given. Let J be the set of inner boundary vertices inci- 

dent to underlying boundary edges, and let W be the set of neighbours of J inside D, 

i.e, W = N(J) n D. Let u E V \ J be contained in D. Then u E conv(W). 

Proof: Towards a contradiction suppose there exists a vertex in V\ J inside D\ conv( W). 

Take u to be the farthest such vertex from the set wnv(W); that is, take such a vertex 

u maximising dist(u, conv( W)). 

Since u 4 J ,  it follows that u is not on fo. Therefore, by convexity of the underlying 

faces, for any specified open half-plane H whose boundary intersects u, u must have 
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a neighbour w contained in H such that uw is an edge in the underlying graph. In 

particular, let L be the shortest line segment from u to conv(W), and let H be the open 

half-plane not containing mnv(W) whose boundary is perpendicular to L and intersects 

u. See Figure 3.2. Let w be a vertex in H such that uw E E. Suppose that w is inside 

D. Then w cannot be in V \ J, for by convexity and boundedness of conv(W), we have 

dist(w, wnv( W)) > dist(u, c o w (  W ) ) ,  but u was chosen to be the farthest vertex in V \ J 

from conv(W) inside D. But neither can w be in J, for then u would be a neighbour of 

a vertex in J, in which case u E W c conv(W). It  follows that w is outside D, but this 

is also impossible for otherwise uw would be an underlying boundary edge, implying 

u E J. M 

Figure 3.2: Proof of Lemma 3.2. The vertex u E V \ J is the farthest such vertex ii-om 
conv(W). H is the open half-plane above the horizontal line. 

Theorem 3.3 The SPIRAL algorithm finds all vertices inside the specified disk D(c, r ) .  

Proof We first mention that the statements of several of the lemmas used in this proof 

appear in the sections below. Let D = D(c,r). First suppose that there do not exist 

any boundary edges with respect to D. Then by Lemma 3.1, D contains no vertices. 

By Lemma 3.4, below, QP-FINDBOUNDARY will correctly report that there do not exist 

any outer boundary vertices, and SPIRAL terminates. 
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Algorithm 6 Spiral geocasting 
1: procedure SPIRAL(Q, c, r) 

while r 2 0 do 
r' + -1 
Call QP-FINDBOUNDARY on D(c, r) 
if QP-FINDBOUNDARY finds an outer boundary vertex s then 

Navigate the perimeter of D(c, r) starting from s, using QP-PERIMETER 
while QP-PERIMETER has not terminated do 

Let the current vertex be v and reference vertex be x. 
for every vertex u E I (v ,  x) do 

Move to u 
for every vertex w E N(u) inside D(c, r) do 

r' + rnax{r1, dist(w, c)) 
end for 
Return to v 

end for 
end while 

else 
Terminate 

end if 
r + r' 

end while 
22: end ~rocedure 

Now suppose that there exists a boundary edge. By Lemma 3.4, QP-FINDBOUNDARY 

will find an outer boundary vertex s; SPIRAL then searches the perimeter of D accord- 

ing to QP-PERIMETER. Let I = U(v,x) I (v ,  x) and W = U(v,x) U,,,(v,x) N(u) n D, where 

the (outer) unions are taken over all iterations during QP-PERIMETER'S navigation, 

i.e., during the whi 1 e loop in lines 7-16 in Algorithm 6. 

Let J be the set of all inner boundary vertices incident to underlying boundary 

edges. By Lemma 3.8, J c I. SPIRAL visits all vertices in I during the loop in lines 7- 

16; it is enough to know that it visits every vertex in J. Moreover, by ~ e d m a  3.6, 

SPIRAL also visits every vertex on dD. 

It remains to show that SPIRAL visits every other vertex in D during subsequent 

iterations of the main loop, and that the algorithm terminates. Now, by Lemma 3.2, 

we know that every unvisited vertex in D is contained in conv(W). If conv(W) = 0 
then every vertex in D has been visited. The algorithm terminates correctly since r' 

is not updated during the main while loop, so at end of the loop, r updates to -1; 

the algorithm will terminate at the beginning of the next iteration. Evidently, if W is 
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nonempty, then at the end of the main loop, r will be updated to r* = rna&,w dist(w, c). 

Since all vertices in W are contained in D, obviously r* < r. The new disk D(c, r*) 

contains all remaining vertices in D since it clearly contains all vertices in W, and is a 

convex set so D(c7 r*) > conv(W). 

Finally, (at least) one vertex will be on the boundary of the new disk D(c, r*); there- 

fore the number of iterations is bounded by the number of vertices in the original disk. 

Therefore the SPIRAL algorithm terminates; the running time is polynomial by Lem- 

mas 3.5 and 3.7. 

3.1.1 The QP-FINDBOUNDARY subroutine 

In this section we show how to modify the QUASI-PLANAR algorithm to find an outer 

boundary vertex, starting from any vertex s. Obviously we can choose the destination 

t to be a point rather than a vertex without significantly affecting the behaviour of 

the algorithm. If some vertex has position t, then the algorithm will find that vertex. 

Otherwise, either t is an interior point of an underlying face, or lies outside the graph. 

In the first case, if t is an interior point of some edge, the algorithm will find one of 

the endpoints of the edge. Otherwise, the agent will eventually reach an edge crossing 

the line through s and t, but not the line segment st; at this point the agent must be 

on an underlying face containing t. Finally, if t is outside the graph, the agent will 

obviously reach the outer face, at which point it can terminate with failure. 

We use this modified version of QUASI-PLANAR to find an outer boundary vertex 

when the agent is outside D = D(c7 r). Choose c as the destination and run the (modi- 

fied) QUASI-PLANAR algorithm, stopping if at any time the current vertex is a bound- 

ary vertex. If D is strictly contained in some face and no chords intersect D, then the 

agent can naturally identify (part OD the underlying face containing D, and report that 

D contains no vertices. Otherwise, either D intersects some edge, or D is outside the 

polygon determined by fo; these cases are both handled as suggested in the previous 

paragraph. 

On the other hand, if the agent is already inside D, then it can simply move to a 

vertex farther from c than its current position is. If no such vertex exists, it must be on 

fo, in which case we are done. Otherwise, it must clearly emerge from D after a finite 

number of steps; when it first emerges from D it must be on an outer boundary vertex. 
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Compare the reasoning here to the proof of Lemma 3.1. 

We call this algorithm QP-FINDBOUNDARY; in summary, we state the following. 

Lemma 3.4 Let D = D(c, r). Starting from any initial vertex, the QP-FINDBOUNDARY 

algorithm either finds an outer boundary vertex, or reports that none exist. In the latter 

case D contains no vertices. 

Lemma 3.5 The QP-FINDBOUNDARY algorithm runs in polynomial time. 

3.1.2 The QP-PERIMETER subroutine 

Starting from an outer boundary vertex, an agent can navigate the perimeter of D 

along the boundary faces by using a modified version of the QUASI-PLANAR algorithm 

with Rule 6 (see Section 2.1.2). We will describe the modifications in detail but justify 

them without formal proofs of correctness, since the arguments are very similar to 

those in Chapter 2. 

Recall that an agent routing between some pair of vertices (s,t) using QUASI- 

PLANAR with Rule 6 visits only those vertices above st and remains within the st- 

crossing faces. In our current setting, the boundary bD is analogous to st, with VA and 

Vg corresponding to D := R2 \ D and D, respectively. In Chapter 2 we assumed for 

convenience that no vertices except s and t were on the line segment st; here, in con- 

trast, there will be at least one vertex on bD in nearly every iteration of SPIRAL (thus 

in nearly every instance of QP-PERIMETER), but this will not cause any problems. We 

will associate the (direction of the) directed line segment st with the clockwise orien- 

tation of bD; the analogues of s and t in particular (i.e., initialisation and terminating 

conditions) will be discussed soon. 

It should be evident that in general we can analogously send an agent clockwise 

around the perimeter of the disk D through the boundary faces, essentially by repeat- 

edly applying the left-hand rule and skipping any edges intersecting bD (i.e., boundary 

edges). There is one important exception to this behaviour. Suppose that the current 

vertex v is on fo and outside D, and that the next candidate edge e incident to v inter- 

sects bD but is on fo. Then the agent should take e rather than skipping it, and travel 

along fo until emerging from D; note that the agent necessarily visits every vertex of 

fo inside D. (In the special case where every vertex is contained in D, the agent simply 
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traverses fo.) Conversely, the agent is forced inside D only on edges of fo intersecting 

dD. Figure 3.3 shows an example of the agent's walk around the disk. 

Figure 3.3: An agent starting from s navigates the perimeter of the disk using the 
left-hand rule. It skips all boundary edges until it arrives at u, then traverses fo until 
emerging from D at w. Then it resumes using the left-hand rule. 

The reference vertex x is handled the same way as in QUASI-PLANAR, with two 

minor changes: first, in the case where a boundary edge not on fo has both endpoints 

outside D we simply ignore the edge for purposes of updating x; second, when the agent 

enters D along fo we ignore x until the agent emerges from D, at which point x is set 

to the previous vertex (thus x is always in D). See Figure 3.4. 

Observe that a face may have arbitrarily many boundary edges, so an agent may 

return t o  that face many times during the routing, as demonstrated in Figure 3.5. 

For such a face f, consider the subgraph Qf of Q consisting of all edges of f that lie 

entirely outside D (or, if f = fo, all edges inside D). Then, from a local point of view, 

the connected components of Qf effectively belong t o  different faces. We can assign 

multiple labels to f according to the components, so that when we say that an agent 

passes through all the boundary faces in order around D, the statement is understood 

in this local context. 

We now discuss the algorithm's initialisation and terminating conditions. Let s be 

the initial outer boundary vertex. If s is on fo, the agent begins by travelling clockwise 

around fo; clearly it returns to s when and only when it has passed through every 
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Figure 3.4: The current and reference vertices are v and x, respectively. The set of 
candidates for the next vertex is {x, u2, u3); contrast with Figure 2.2. Note that U6 is 
not a candidate. In several iterations, the agent will enter D along fo. When it exits 
the disk at  us it will update x t u4. Note that the agent exits D at us rather than us, 
since us is not strictly contained in D. 

boundary face. Otherwise s is outside D and not on fo. Choose a neighbour w E N(s) 

such that sw is a boundary edge. If w is inside D, then let t be the point sw n dD; 

otherwise, of the two points in sw n dD, let t be the closer to s. Note that t = s if and 

only if s is on OD. Also set the initial reference point x to be w if w is inside D, or 

some point on sw in the interior of D otherwise (say the midpoint of the chord sw n D). 

It is easy to check that these initial settings for x are appropriate, i.e., that they are 

analogously consistent with those in QUASI-PLANAR. 

In the proof of correctness of the QUASI-PLANAR algorithm, we measured progress 

towards (a vertex) t according to the successive points of intersection of vx with st; 

similarly we can measure progress towards (the point) t around D by calculating the 

points of intersection U X ~ ~ D .  Evidently, after passing through every boundary face, the 

agent will eventually arrive at  t (which must be the vertex s) or a vertex v such that t is 

not on the line segment vlx but is contained in cone(ul, x, v) where v' is the next vertex 

that would be visited in the face routing; the algorithm then terminates. In other 

words, taking + to be the natural clockwise ordering on dD in a neighbourhood oft, we 

have vxndD 5 t 4 v'xndD; compare this to Claim 2.4 in the proof of Theorem 2.2. Note 



CHA-PTER 3. QUASI-PLANAR GEOCASTING 

Figure 3.5: The boundary face f with vertices { u ~ ,  . . . , u 7 )  has eight boundary edges 
and will be visited several times by the agent. From a local point of view, however, we 
can consider f to contribute distinct boundary faces with vertex sets { u l ) ,  (2141, { U S ) ,  

and {us, ~ 7 ) .  

that the terminating condition is a computation involving only the local positions v and 

v', the stored values x and t, and the boundary b D  (determined by the stored values 

c and r). Figure 3.6 illustrates the terminating condition. Finally, although it may be 

tempting to simplify the terminating condition by replacing it with the condition v = s 

(i.e., terminate after returning to the starting point), such a simplification is incorrect: 

the vertex s may not be reachable in the face routing; this is also shown in Figure 3.6. 

This completes the discussion of the QP-PERIMETER algorithmper se; we now show 

how to use it to visit all inner boundary vertices incident to an underlying boundary 

edge. 

In Section 2.1.2 we noted that an agent routing with QUASI-PLANAR using Rule 6 

considers every st-crossing edge in the underlying planar graph as a candidate at  some 

time during the running of the algorithm. It follows from this, and from the observa- 

tion that fo is a face in every underlying graph, that the QP-PERIMETER algorithm 

similarly considers every underlying boundary edge throughout the course of the nav- 

igation around D. Therefore, when the current vertex v is outside D, it can specify a 



CHAPTER 3. QUASI-PLANAR GEOCAS?rNG 

. Figure 3.6: (a) From the initial vertex s with inner boundary neighbour w, set t + 

sw n dD. (b) Eventually the agent completes the navigation of D. The current vertex is 
v; the next vertex in the face routing would be v', but the algorithm terminates since 
t is contained in cone(vl, x, v). Note that if allowed to continue, the agent would never 
again visit s. 

set I ( v ,  x) of vertices inside D (including x if vx E E U El) that includes all inner bound- 

ary vertices adjacent to v through an underlying boundary edge. When v is outside 

D, I ( v ,  x) is naturally the set of candidates considered for the next vertex, including 

x, but excluding any candidate outside D. For example in Figure 3.4, above, we have 

I (v ,  x) = {x, u2). If v is on fo and the next vertex v' is on fo but inside D, we need not 

include v' in I (v ,  x); it will be handled when the agent moves to v'. When v is inside 

D, it is on fo and is already on an inner boundary vertex incident to an underlying 

boundary edge; conversely, every vertex of fo inside D is visited during the running 

of the QP-PERIMETER algorithm. At such a vertex v we define I (v ,  x )  = {v) for no- 

tational convenience. The SPIRAL algorithm calls for the agent to visit each vertex of 

I (v ,  x) in turn; in the case when v is already inside D we consider these visits to be the 

trivial walks of length 0. Thus we can guarantee that the agent visits all inner bound- 

ary vertices incident t o  underlying boundary edges (and possibly other inner boundary 

vertices). 

We summarise this section with the following lemmas, which are justified by the 

discussion thus far. 

Lemma 3.6 Starting from an outer boundary vertex either on fo or incident to a vertex 

in D, the QP-PERIMETER algorithm passes through each boundary face (in a local 
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sense, as described above) no more than once, except possibly for some repeated vertices 

in the initial boundary face. Inparticulal; QP-PERIMETER visits every vertex on bD. 0 

Lemma 3.7 QP-PERIMETER runs in polynomial time. 0 

Lemma 3.8 Let u be a n  inner boundary vertex incident to an  underlying boundary 

edge. Then u E I(v, x) for some pair (TI, x) during the course of the QP-PERIMETER 

algorithm. 0 



Chapter 4 

Disjoint Routing in Convex 
Embeddings 

4.1 Overview 

In this chapter we propose an extension of the standard routing problem discussed in 

Chapter 1. Let G be a convex embedding with no three collinear vertices. As usual, 

a source node s and a destination node t are specified. We now consider the problem 

of finding multiple internally vertex-disjoint s, t-walks in G. For brevity we will often 

simply write "disjoint s, t-walks". 

The ability to find disjoint s, t-walks in a communications network provides a num- 

ber of benefits. For example, sensitive information can be encrypted and partitioned 

into several components in such a way that the original message can only be retrieved 

if all components are known. The components can then be sent to the destination 

along k disjoint routes, so that an adversary attempting to intercept and decrypt the 

data must expend more resources by being required to compromise at least k nodes. Or, 

a network may suffer from unreliable communication (e.g., data corruption) between 

certain nodes; sending identical messages along disjoint routes adds redundancy at the 

expense of network load. As a final example, the source vertex s may incur a cost for 

each edge used by a message originating from s. If the cost is highly nonlinear with 

respect to message size, then the total cost can be reduced by partitioning the message 

and sending the components along disjoint routes. 
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In Chapter 1 we saw that routing on a convex embedding is accomplished by using 

the left- or right-hand-nde along the upper or lower halves of st-crossing faces, respec- 

tively. This immediately suggests a method for finding two disjoint s, t-walks: send 

one message to t using the left-hand-rule, and the other using the right-hand-nde, as  

demonstrated in Figure 4.1. I t  is clear from the convexity of the faces that the walks 

are disjoint, since neither walk uses st-crossing edges. 

Figure 4.1: W o  internally disjoint s, t-walks are determined by traversing the upper 
and lower halves of st-crossing faces. 

As an aside, note that finding even two disjoint routes in a planar graph with non- 

convex faces is a much harder problem. Consider Figure 4.2, for example. Of the two 

chains of 4-cycles extending towards t, suppose that only one reaches t and that the 

other is a dead end. (Note that unlike the other figures in this chapter, where most 

faces are omitted for clarity, here the graph consists only of the visible faces and those 

implied by ellipses). One message must pass through the vertex labelled x, but we 

cannot know which one without first searching the entire graph. In our algorithms we 

wish to bound any necessary searches. 

In this chapter we will push one step further for convex embeddings, presenting an 

algorithm for finding three disjoint s, t-walks in such graphs. The algorithm, DOUBLE- 
CROSSING, can be considered an extension of the method described above for finding 

two disjoint walks, but handles special cases that do not arise in the latter problem. 

For the remainder of this chapter we will naturally assume that G is 3-connected. 

In contrast to Chapter 2, we now take uv to denote the line segment joining u and v, 

and not the line through those points. 
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Figure 4.2: Finding two disjoint s, t-walks is challenging on a planar graph with non- 
convex faces. In this graph, only the outer face is non-convex. It is not clear which 
walk should use x. 

4.2 Agents and scouts 

We can think of s transmitting several agents responsible for carrying their respective 

messages to t. The agents are independent of each other, and we disallow any direct or 

indirect communication between agents. Therefore an agent- cannot, for example, ask 

a neighbouring node whether it is currently hosting another agent. 

On the other hand, finding Ic disjoint routes is non-trivial for Ic > 2, so we must 

provide the agents with some means of computing the local geometry of G outside the 

immediate neighbourhood of their current nodes. Thus we allow each agent to create 

a scout that can: 

manceuvre through G, 

create another scout, 

communicate with its parent (agent or scout), and 

be deactivated (i.e., removed from existence) by its parent. 

As with the agents, we restrict the scouts to O(1) memory and local geographic in- 

formation. Thus, agents and scouts differ primarily in that the former deliver (possibly 

very large) messages, while the latter are merely delivering topological information to 

their parents without any additional information. 

Consequently, although the agents are required to travel along disjoint walks, we 
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do not impose such a condition upon the scouts. That is, a scout may visit any vertex 

regardless of whether it is currently hosting another agent or scout, or has done so 

in the past. We assume that a scout can recognise and communicate with only its 

parents, so the scouts cannot pass along information between agents, for instance. 

These assumption are consistent with the motivations discussed above for the disjoint 

routing problem: the interception of a scout does not compromise the security of the 

main data, and the scouts carry so little information relative to the agents that we 

expect their transmissions to be much less error-prone and to incur little cost. 

To find three disjoint s, t-walks, we create three agents at s, each of which will run 

the DOUBLE-CROSSING algorithm described below. According to the algorithm, an 

agent can be in any one of three modes at any time; initially each agent is given a 

different mode. 

An agent running the DOUBLE-CROSSING algorithm sends out scouts in every it- 

eration. The algorithm guarantees the following properties: 

no agent or scout has more than one child scout in existence at any time, 

a scout is only deactivated after its children have been deactivated, 

a third-generation scout never creates children, and 

a scout is restricted to faces incident to its starting point. 

In other words, the "family tree" of an agent at any given moment consists of a path 

of length at most 3. It follows that in total there are never more than nine scouts in 

existence at any time, which keeps the additional network traffic to a minimum. 

Furthermore, observe that the kth scout is never farther than k faces away fYom 

its ancestral agent. Consequently, if every vertex can precompute and store its local 

geography up to 3 faces away, we can eliminate scouts and perform all calculations 

on the precomputed subgraphs. Nevertheless, we will continue to assume that vertices 

are aware only of their immediate neighbours, and describe the algorithm using scouts. 
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4.3 The DOUBLE-CROSSING algorithm on a sphere 

We will present a disjoint routing algorithm for convex polyhedra in R3 embedded on a 

sphere, and later show that the same algorithm can be slightly modified for 3-connected 

convex embeddings in the plane. A well-known result by Steinitz [SR34] shows that 

convex polyhedra in R3 and 3-connected planar graphs are essentially the same ob- 

jects, and Tutte's Theorem lTut631, also well-known, shows that any 3-connected pla- 

nar graph has a convex embedding. A convex polyhedron on a sphere is not a realistic 

model for most routing applications, but it provides a symmetry that simplifies the ar- 

guments in our proof of correctness; in the latter geometry the analagous arguments 

would involve tedious special cases concerning the outer face fo. 

Consider a convex polyhedron P embedded on a sphere, keeping the assumptions 

that vertices are aware of their coordinates (now in R3) and those of their neighbours. 

Any vertex v can determine the faces incident to it as follows. Choose any three dis- 

tinct neighbours; these neighbours along with v itself uniquely determine the sphere S 

through P. Now project all neighbours onto the plane through v tangent to S. Radially 

adjacent neighbours in the projection are on the same face in P; to traverse a face in P 

it is enough to store the plane through v and the two neighbours determining the face. 

Let s and t be vertices on P. If s and t are adjacent, then it is trivial to find three 

disjoint s, t-paths: send one agent directly &om s to t, and the other two along the faces 

incident to st. We therefore assume that s and t are distinct and non-adjacent. 

Choose a circle Z through st (say, the shortest circle); analogously to Chapter 2, we 

will assume for simplicity that (the projections of) no three vertices on P lie on Z. The 

circle Z is naturally partitioned into two arcs st and 3. See Figure 4.3. For simplicity 

of the figures, we will usually draw P as if it were embedded in the plane, i.e., without 

the circumscribing sphere and curvature of the faces, and depicting Z as a straight line. 

We denote by 4 the natural orderings on st and 3 with respect to distance &om s. 

That is, for points p and q on st, we write p 4 q if p is closer to s than q, and similarly 

for points on 3. We will never use 4 to compare a point on st to a point on 3. 

We now proceed with a detailed description of the DOUBLE-CROSSING algorithm. 

Send two agents, DOUBLEUP and DOUBLEDOWN (collectively known as the double 

agents), along st-crossing faces towards t, and send the third agent, SOLITARY (or the 

solitary agent), along Z-crossing faces in the opposite direction; see Figure 4.4. 
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Figure 4.3: The circle e through s and t is naturally partitioned into two arcs st and 3. 
Faces are omitted for clarity. 

More precisely, each agent maintains a variable mode, which at any time is one 

of DOUBLEUP, DOUBLEDOWN, or SOLITARY, and may change during the course of 

the algorithm. Note that we will often identify an agent with its current mode. The 

three agents use identical routing algorithms, but initially. each agent has a differ- 

ent mode. Another variable, doubleDirection, determines whether a double agent pro- 

gresses along st- or 3-crossing faces; the solitary agent uses the same variable but 

travels in the opposite direction (i.e., when dmbleDirection = st, it travels along3, and 

vice versa). The meaning of wording such as "travelling along st" and "reversing direc- 

tion" should be clear. Furthermore, for convenience, we will consider doubleDirection to 

be equivalent to either st or 3 ,  so that we may, for example, talk about a face intersect- 

ing doubleDirection. We also take doubleDirection to mean [\ {doubleDirection \ {s, t)), 

which has an obvious meaning. In practice, note that doubleDirection can be imple- 

mented using only one bit. 

As with standard face routing, an agent stores the vertex visited immediately prior 

to the current vertex; this vertex along with the agent's direction determines the cur- 

rent face. For clarity we will henceforth use currentFace as a variable, keeping in mind 

that in practice it is stored as a single vertex. 

The initialisation of the three agents is summarised as INIT (Algorithm 7). The 

source vertex creates each agent with several parameters, then activates the agent; that 

is, the agent then becomes independent and follows the routing algorithm DOUBLE- 

CROSSING (Algorithm 8) until reaching t. 
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Figure 4.4: The basic approach of the DOUBLE-CROSSING algorithm: send two 
agents (DOUBLEUP and DOUBLEDOWN) along st-crossing faces; and a third agent 
(SOLITARY) along 3-crossing faces. The agents DOUBLEUP, DOUBLEDOWN, and 
SOLITARY are indicated by DT, DL, and S, respectively, in the diagram. Arrows over 
the symbols indicate direction of travel. 

Algorithm 7 Initialisation 
1: procedure INIT 

Let f and g be the faces incident to s intersecting st and 3, respectively. 
Create an agent at s with the following parameters. 

mode + DOUBLEUP 
doubleDirection + st 
currentFace + f 
activeInterva1 + 3 

Activate the agent 

Create an agent at s with the following parameters. 
mode + DOUBLEDOWN 
doubleDirection + st 
currentFace + f 
activeInterva1 + 3 

Activate the agent 

Create an agent at s with the following parameters. 
mode + SOLITARY 
doubleDirection t st 
current Face + g 
activeInterva1 + 3 

Activate the agent 
21: end procedure 
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Algorithm 8 DOUBLE-CROSSING: main loop 
1: procedure DOUBLE-CROSSING D v is the current vertex 
2: if v = t then 
3: Terminate 
4: else 
5: Send out a scout to determine whether v is on an active DCC. 
6: if v is on an active DCC (f, gl, g2) then 
7: Call DCC-ADJUST 
8: else 

Travel to the next vertex along currentFace according to doubleDirection, 
(SOLITARY according to doubleDirection) updating currentFacewhen 
appropriate. 
In DOUBLEUP mode, avoid crossing to a vertex below e. 
In DOUBLEDOWN mode, avoid crossing to a vertex above e. 
In SOLITARY mode, avoid travelling towards the central face of an 
SCC. 

lo: end if 
11: end if 
12: end procedure 

If an agent does not encounter any obstacles that we will call single-crossing con- 

figurations and double-crossing configurations, or SCCs and DCCs, respectively, then 

it will successllly reach t by simple face traversal. On the other hand, if an agent de- 

tects one of these configurations, it will adjust in several ways, to be described shortly, 

to avoid colliding with the walks taken by the other agents. 

In particular, the adjustments for SCCs are simple, whereas DCCs require some 

careful manc~uvring. Double-crossing configurations are the main objects of interest 

in this problem, hence the name of the algorithm. 

The adjustments a t  DCCs are chosen in such a way that after the agents emerge 

from the configuration, there are again two double agents travelling towards t from one 

direction and one solitary agent travelling towards t from the opposite direction. Note 

that in practice the agents do not necessarily reach a DCC at  the same time. However, 

in the proof, we will manipulate their timing to synchronise them a t  DCCs. 

We now define double-crossing configurations and give a procedure describing the 

adjustments for them; a similar discussion for SCCs will follow. 

Let f ,  gl, and g2 be an X-crossing face and two st-crossing faces, respectively, with 

the following properties. Assume f is incident to gl and 92 such that f n g1 is above 
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e and f n g2 is below e (note that if the intersection of an st-crossing face and an 3- 
crossing face is an edge, both endpoints must be above or below e). Also assume that f 

is not incident to any st-crossing face g' such that g' n st + gl n st or g' n st + g2 n st, 

and similarly that for i E {1,2), gi is not incident to any 3-crossing face f '  such that 

f '  n 3 + f n 3. That is, f ,  gl, and 92 are +-minimal with respect to intersections with 

e. 
We say that the triple (f, gl, g2) constitutes a double-crossing configuration. If 

gl n st + g2 n st, then we say that f ,  g1 and g2 are the central, near and far faces 

in the double-crossing configuration, respectively, and that the configuration is an up- 

per DCC. It  will also be convenient to refer to gl and 92 as  the upper and lower faces in 

the configuration, respectively. Similarly, if g2 n st + gl n st, then f ,  92 and 91 are the 

central, near (lower) and far (upper) faces, respectively, in a lower DCC. Thus, a face is 

near or far according to its distance fYom s with respect to the ordering +, .and a DCC 

is upper or lower according to its near face. We similarly define another set of DCCs 

by transposing all occurrences of st and Ft in the above definition. Figure 4.5 shows a 

DCC on the sphere. 

Figure 4.5: A double-crossing configuration (f, gl, g2). The configuration is an upper 
DCC: f is the central face, 91 is the upper (and near) face, and 92 is the lower (and far) 
face. The faces are drawn as curves on the sphere for clarity; we may take the curves 
to represent the projections of the actual faces. 

Nalve face-routing will fail on DCCs. Figure 4.6 demonstrates why the configura- 

tions are problematic: if the double agents make no a&ustments at  gl and 92, then the 

solitary agent can traverse neither the upper nor the lower half off without colliding 

with another agent's walk. 
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Figure 4.6: If agents do not adjust to DCCs, collisions are inevitable. Here some vertex 
on f will be used by two agents: the solitary agent must traverse either the top or 
bottom half off, but the double agents will also collectively visit both sides of the face. 

The agents avoid the situation in Figure 4.6 by adjusting as described in DCC- 

ADJUST (Algorithm 9). In short, the adjustments are chosen so that two double agents 

emerge from the DCC from one direction, and a solitary agent emerges from the other 

direction, as we stated earlier. Figure 4.7 illustrates the general case. Note that after 

the adjustments, the (new) DOUBLEUP agent may be below e on the central face f ,  but 

this is fine: in the following iterations it will naturally travel around f until reaching 

a vertex above e, and thenceforth continue as usual. This is consistent with the be- 

haviour specified in Algorithm 8: namely, we require that DOUBLEUP avoid crossing 

to a vertex below e, as opposed to requiring that it avoid choosing any e-crossing edge. 

The same comment applies similarly to the new DOUBLEDOWN agent. 

However, the agents need not adjust to every DCC. Figure 4.8 shows the same 

configuration as in Figure 4.7, but with the agents approaching from the opposite di- 

rection. Note that the double agents treat g~ and g~ as any other e-crossing faces, and 

that the solitary agent makes only minor adjustments (these will be explained when 

we discuss single-crossing configurations, below). It should be clear that the decision 

to adjust to a DCC depends on the agent's direction and mode, and the relative position 

of the faces composing the configuration. 

The decision to adjust involves one more parameter, the active interval: each agent 

stores a subset adiveInterva1 G e within which it searches for DCCs - more precisely, 

the agent considers a DCC only if the faces composing the configuration intersect e 
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Figure 4.7: The correct adjustments at a double-crossing configuration C .  Several 
iterations are shown after the adjustments to illustrate the fundamental behaviour of 
the agents: after adjusting to C ,  there are two double agents approaching t from one 
direction, and a solitary agent approaching from the other. The shaded region x,,t 
along C shows the new active interval (for all three agents) after the adjustments. Note 
that the new DOUBLEDOWN agent is initially at a vertex above C. 

within activeInterva1. Initially, activeInterva1 = C,  and the interval diminishes each 

time the agent adjusts to a DCC. When the agent arrives at t we can assume for con- 

venience that activeInterva1 = { t ) .  The details of the update are discussed shortly. 

A DCC ( f ,  91, g2) is said to be active (with respect to an agent and its current pa- 

rameters) if the following conditions hold: f ,  91, and 92 intersect C within activeInterva1, 

and if they are +-minimal with respect to these intersections in the sense that no 

g2 n doubleDiredion C adiveInterval, and 

f ,  91, and g2 are +-minimal in the sense that there exists no doubleDirection- 

crossing face f' such that f' n C + f n C ,  f 1  n doubleDirection c activeInterva1, and 

( f l ,  gl,g2) constitutes a DCC, and similarly for gl and 92. 
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Algorithm 9 DCC adjustment 
1: procedure DCC-ADJUST D The current vertex v is on an active DCC (f, gl, g2). 

Let x f ,  xgl ,  and xg2 be as described in the text. 
if mode = DOUBLEUP then D v is on gl 

if gl is the near face of the DCC then 
Traverse the upper half of gl until reaching a vertex on f. 
doubleDirection c doubleDirection 
currentFace c f 
activeInterval c xg2xf 

else gl is far 
mode c SOLITARY 
currentFace c gl 
activeInterva1 c xgl x f  

end if 
else if mode = DOUBLEDOWN then D v is on g2 

if g2 is the near face of the DCC then 
Traverse the lower half of g2 until reaching a vertex on f. 
doubleDirection c doubleDirection 
currentFace c f 
activelnterval c xgl x f  

else g2 is far 
mode c SOLITARY 
currentFace c g2 
active Interval c xg2 x f  

end if 
else mode = SOLITARY 

if gl is the near face of the DCC then 
mode c DOUBLEDOWN 
currentFace c f 
activeInterva1 c xg2xf 

else g2 is near 
mode c DOUBLEUP 
currentFace c f 
activeInterva1 c xgl x f  

end if 
end if 

36: end ~rocedure 
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Figure 4.8: A DCC (f, gl, g2), approached from the "safe" direction - the DCC is not 
active for any of the agents. The double agents make no adjustments, while the solitary 
agent adjusts to the SCCs (gl, f )  and (g2, f) .  

We now explain and justify the r6le of the adiveInterva1 parameter in DCC-ADJUST: 

note that every adjustment concludes by redefining the interval. Let h be an L-crossing 

face. Then define xh to be the intersection of h with L, choosing the intersection to be 

the farther one from t with respect to +. The new active interval is xgxf where g and f 

are the far and central faces of the DCC, respectively; that is, it consists of the longest 

segment of L between the far and central faces, as shown in Figure 4.7, above. 

The points of intersection are chosen to be the farther one from t to account for the 

possibility that the far face of one DCC is the central face of the next, as illustrated 

in Figure 4.9. Notice that two of the agents adjust to (g2, f2, f l )  immediately after. 

adjusting to (fl, gl,g2). This is indicated in the figure as Ml/M2, where M1 is the new 

mode (and direction) after the first adjustment, and M2 after the second. 

It is necessary to use the active interval to handle graphs that contain DCCs sym- 

metrically entangled around t as shown in Figure 4.10. The figure illustrates the pur- 

pose of the active interval: the agents first arrive at the configuration C, and after the 

adjustments, C' is no longer active. On the other hand, if the agents are less discerning 

and do not take the active interval into consideration, then (at least) two of the agents 

will visit the same vertex, as shown in Figure 4.11. In this case, notice that all three 

agents adjust to C, similarly to the previous example. However, only one agent (the 

one originally in DOUBLEUP mode) adjusts to C', since although it is effectively active 

for all agents, the other two agents have already bypassed it and hence will not detect 
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Figure 4.9: The DCCs Cl = (fl, gl,g2) and C2 = (g2, f2, f i )  have two faces in common. 
After adjusting to C1, two of the agents immediately adjust to C2, as indicated by the 
slash notation. The shaded regions along e show the active intervals after adjusting to 
C1 (light grey) and C2 (dark grey). For clarity, the st-crossing face gl is only partially 
shown. 

or adjust to it. The same problem occurs iff = gi in Figure 4.11, that is, iff and f' are 

incident and their point of intersection is above e. 

We now turn our attention to SCCs. Let f be an 3-crossing face incident to an 

st-crossing face g such that f n g is above C, and suppose f is not incident to any st- 

crossing face g' such that f n g' is below C. Then we say that the pair (f, g) constitutes a 

single-crossing configuration. We similarly define another set of SCCs by transposing 

all occurrences of st and 3 in the above definition. 

An SCC could be considered an "incomplete" DCC. Only the solitary agent adjusts 

at an SCC; it does so simply by avoiding f ng, as shown in Figure 4.12. DOUBLEDOWN 

is omitted from the diagram to emphasise that the solitary agent is specifically avoid- 

ing collision with DOUBLEUP, and that the double agents do not make adjustments. 

We observe in passing that, in general, a DCC approached from the "wrong" di- 

rection consists of two SCCs with one face in common. This is illustrated above in 

Figure 4.8. 
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b 

Figure 4.10: The correct behaviour at DCCs C = (f, gl , gz) and C' = (f', g', , 9;) entan- 
gled around t. The 3-crossing face gi is only partially shown. The agents first detect 
C, and after aGusting, f' n I is no longer in the active interval. 

Figure 4.11: If the agents do not maintain an active interval, entangled DCCs will 
induce collisions; in this example two agents visit x. Note that the agent originally in 
DOUBLEUP mode is the only one to aGust to C', so after all the adjustments as shown, 
there are two agents in SOLITARY mode, contrary to the design of the algorithm. 
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Figure 4.12: A single-crossing configuration (f, g). The solitary agent adjusts by mov- 
. ing to the lower half of f to avoid g. The double agents make no adjustments at an 

SCC. 

Let us take a brief look at DCCs and SCCs fiom another perspective. As we have 

discussed, the double agents are essentially following the straightforward algorithm 

for finding two disjoint s,t-walks. Now consider the solitary agent. In general, it can 

choose to traverse its current face either fiom below C or above. For efficiency, we may 

assume it makes a greedy choice in this respect; for example, see Figure 4.13. The 

solitary agent's freedom is slightly restricted by an SCC - it no longer has a choice 

between the upper or lower half of the current face, but nevertheless continues its 

face routing. The agent's freedom is eliminated entirely by a DCC: all three agents 

adjust in order to accommodate the solitary agent. In summary, we propose that the 

DOUBLE-CROSSING algorithm is fundamentally concerned with the local geometry of 

the solitary agent. 

Figure 4.13: In general (i.e. when not at an SCC or DCC), the solitary agent can choose 
to cross C. Here the choices are greedy with respect to distance to t. 

The agents detect DCCs and SCCs using scouts - indeed, the possibility of these 
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configurations is the scouts7 raison d2tre. We briefly present how the detection is man- 

aged by the agents and scouts; we will not provide a formal algorithm for each scout, 

but rather implicitly assume that an agent on a DCC or SCC can determine topological 

information about that configuration. 

Consider an agent in DOUBLEUP mode; without loss of generality, assume it is 

travelling along st. At every iteration, the agent creates a scout to traverse every face 

incident to the current vertex. Every such face g that crosses st n activeInterva1 is 

potentially a near or far face in a DCC; the scout therefore traverses g (again) and at 

each vertex u on g above st creates another scout to traverse faces incident to u. The 

first scout waits at u until its child reports to it before proceeding around its current 

face. 

If the second scout finds an 3-crossing face f with f n 3 c activeInterva1, it sim- 

ilarly traverses f and dispatches a third scout at every vertex below st to look for 

another st-crossing face h incident to f ,  such that h n st c activeInterva1. Again, the 

second scout waits for its child to return before proceeding. 

If the third scout does find such a face h, it returns to its parent and reports success, 

along with O(1) topological information. The second scout can then report success to 

its parent, and so on. An agent in DOUBLEDOWN mode uses scouts in an analogous 

manner; and an agent in SOLITARY mode sends a scout to first find a potential central 

face of a DCC, and the second and third scouts check for near and far faces. 

Finally, observe that the scouts naturally first find +-minimal faces as described in 

the definition of active DCC, so an agent is clearly on an active DCC if and only if the 

scouts detect the DCC. 

Theorem 4.1 Let P  be a convex polyhedron embedded on a sphere, and let s,t E V ( P )  

be distinct, non-adjacent vertices. Suppose s creates three agents with destination t 

as described in INIT. Then all three agents successfully route to t using the DOUBLE- 

, CROSSING algorithm, and the walks described by the agents are mutually internally 

(vertex-) disjoint. 

Proof When we refer to a DCC in this proof we will assume it is active unless otherwise 

noted. We will use induction on the number k of DCCs encountered by the agents 

thus far to show that the agents progress towards t and traverse mutually internally 

disjoint walks. We first show that the agents encounter the DCCs in the same order, 



thus determining a sequence Cl, C2,. . . , Ck of DCCs; we may think of the agents as 

moving from one configuration to the next in phases. This does not affect the behaviour 

of the agents, since they rely only on geometric information and do not communicate 

with each other. The coordination of the agents will ensure that a t  any time in our 

proof, there is one agent in DOUBLEUP mode, one in DOUBLEDOWN mode, and one in 

SOLITARY mode. 

It is easy to see that an agent must reach either t or a DCC after a finite number of 

iterations: the agent travels along faces progressively closer tot, and reverses direction 

only at  a DCC. We will say that the agents' respective iterations of the main loop 

(Algorithm 8) occurring between the jth and j + 1st DCCs (or between the jth DCC 

and arrival a t  t) collectively constitute the jth phase of the algorithm. 

Specifically, the 0th phase begins after all agents have been created by INIT (Al- 

gorithm 7); for 0 < j 5 k the j th phase begins a t  the iteration in which the agents 

detect the j th DCC. For 0 2 j < k the j th phase ends immediately prior to the iteration 

in which the agents detect another DCC or are at  t. Note that since agents send out 

scouts for DCC detection a t  the beginning of each iteration, the last vertex visited by 

an agent in the jth phase is the agent's first vertex of the j+lst phase. We will say that 

an agent arrives a t  a DCC C at  the end of the jth phase if it detects C at  the beginning 

of the j + 1st phase. An agent may use vertices on inactive DCCs during a phase, but 

we do not consider the agent to have arrived at  these DCCs. 

Observe that after any adjustments in DCC-ADJUST (Algorithm 9), an agent's 

mode and direction are constant for the remainder of each phase; when we specify 

an agent by its mode and direction during a phase we therefore understand the pa- 

rameters to refer to those after the adjustments. 

Since the agents arrive at  the same DCCS, they agree on a common active interval 

Ij at  the jth phase. The active interval decreases at  each phase, i.e., 1 =: 10 > I1 > 
. . . > Ik, but we will prove a stronger result. At the j th phase, 0 < j < k, we define an 

active region Rj that extends the notion of the active interval. We will show that the 

agents remain within Rj during that phase, and that Rj is contained in Rj-1 for every 

j > 0. Also, Ij is naturally contained in Rj. 

Define Ro to be the polyhedron P. Now let 0 < j < k and suppose the jth DCC 

detected by the agents is C = (f, gl,g2). Then define Rj to be the union of the region 

above 1 bounded by f and 91, and the region below 1 bounded by f and g2. Thus, Rj is 
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the region bounded by l and the faces composing C, except for the part of the near face 

extending beyond l ,  as illustrated in Figure 4.14. Evidently Rj contains Ij. In the final 

phase we can consider the active region to consist of the vertex t .  

Again, since the agents detect DCCs in the same order, the Rj are common to all 

agents. It is important to note that the active regions are used only in the proof; the 

agents do not store or calculate any Rj. 

Figure 4.14: The active region Rj. Note that Rj does not include all of the near face 91. 
The active interval Ij is shown as a hatched strip. 

As with the main theorems in Chapter 2, for the remainder of this proof we will use 

induction on a number of interdependent claims. 

Claim 4.1 Let k 2 0. During the kthphase, there is one agent in DOUBLEUP mode, one 

in DOUBLEDOWN mode, and o n .  in SOLITARY mode. If k is even (resp. odd), the double 

agents travel along st (resp. 3) and the solitary agent travels along Ft (resp. st). Also, 

each agent has the same active interval Ik and active region Rk during the kth phase. 

Moreover, i f  k > 0, then at the beginning of the kth phase either all three agents are 

at t, or they are all on a common DCC Ck = ( f ,  g l ,  92). In the latter case, then if CI, is 

an  upper (resp. lower) DCC, during the adjustments DOUB LEUP (resp. DOUB LEDOWN) 

moves along at least one edge during the adjustments, while the other two agents remain 

in place. After the adjustments, DOUB LEUP is on f n gl (resp. f \ {gl,  g2}), DOUBLE- 

DOWN is on f \ {gl,g2} (resp. f n gz), and SOLITARY is on g2 \ f (resp. gl \ f ) ,  and all 

three agents are on the boundary of Rk. 
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Proof The specifications in the INIT procedure and the definition Ro := P guarantee 

that the claim holds when k = 0. Now let k > 0. By induction on Claim 4.2, below, the 

agents arrived at a common DCC Ck = (f, gl, g2) at the end of the k - 1st phase, with 

DOUBLEUP, DOUBLEDOWN, and SOLITARY on gl \ f ,  g2\ f ,  and f \{gl, g2), respectively, 

all on the boundary of Rk. We immediately have that Ik and Rk are well-defined, and 

they obviously do not change during the kth phase. 

At the beginning of the kth phase, the agents adjust according to DCC-ADJUST. 

Without loss of generality, assume that Ck is an upper DCC. Then the former DOU- 

BLEUP agent (i.e., the agent in DOUBLEUP mode in the k - 1st phase) moves (us- 

ing at least one edge) to f and reverses direction; the former DOUBLEDOWN agent 

switches to SOLITARY mode; and the former SOLITARY agent switches to DOUBLE- 

DOWN mode. Neither the former DOUBLEDOWN nor SOLITARY agent move during 

the adjustments, so obviously the new SOLITARY and DOUBLEDOWN agents will be 

on g2 \ f and f \ {gl, g2), respectively. All three agents remain on the boundary of Rk 

during the adjustments. 

Clearly the three agents are in distinct modes after the adjustments, the double 

agents' (common) direction is the reverse of the former double agents' direction, and 

the solitary agent's direction is similarly the reverse of the former solitary agent's di- 

rection. This proves the claim. 13 

Claim 4.2 At the end of the kth phase, either all three agents arrive at t, or they arrive 

a t  a common DCC Ck+l = (f,gl,g2). In the latter case, DOUBLEUP, DOUBLEDOWN, 

and SOLITARY arrive at vertices on gl \ f, g2 \ f, and f \ {gl, g2), respectively, on the 

boundary of Rk+l. 

Proof We start by considering the double agents during the kth phase. By Claim 4.1, 

the double agents travel in the same direction during the kth phase; assume without 

loss of generality that their direction is st. From the same claim we also have that the 

:active interval Ik is common to all agents. For the remainder of this argument we will 

denote by vT and vl the locations of DOUBLEUP and DOUBLEDOWN, respectively, after 

the adjustments at the beginning of the kth phase. 

Towards a contradiction, suppose that the double agents do not arrive at the same 

DCC at the end of the phase. There are two possibilities: either one of the agents 

arrives at t and the other at a DCC, or the agents arrive at different DCCs. 
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In the first case, again without loss of generality, assume that DOUBLEUP arrives 

at t at the end of the kth phase, but that DOUBLEDOWN arrives at a double-crossing 

configuration C = (f, gl, g2). It follows that f n 3 c Ik. Let U be the region above f! 

containing t and bounded by f ,  gl, and f!; see Figure 4.15. If vf is outside U, then by the 

polygonal version of the Jordan Curve Theorem, and DOUBLEUP'S choice of faces, any 

vf,t-walk must use a vertex on gl. Now since DOUBLEUP arrives at t, and not C, at 

the end of the kth phase, C must be inactive for the agent during this phase. There are 

two ways this can happen: either DOUBLEUP reverses direction before using a vertex 

on C, or f n 3 (f Ik. But an agent's direction reverses only after arriving at a DCC, 

and we have already seen that f n 3 c Ik. It follows that vf is inside U, and that vf 

is neither on gl nor on a vertex off on the boundary of U. Consequently, k > 0, for s 

cannot be inside U unless it is a vertex off or gl on the boundary of U. Therefore, by 

Claim 4.1, vf and v~ both lie on the central face f' # g1 of some DCC C'. But then Ik 
extends only as far to the left as f' n st, so gl does not intersect st within the active 

interval, contradicting the assumption that DOUBLEDOWN arrives at C. 

Figure 4.15: DOUBLEUP cannot find a v f ,  t-walk without passing through gl. 

Let us now examine the second case: suppose that DOUBLEUP and DOUBLEDOWN 

arrive at distinct DCCs C = (f, gl, gz) and C' = (f', g', , g',) at the end of the kth phase. 

Assume without loss of generality that f n 3 4 f' n 3. Then clearly gl n st 4 g; n st 
and g2 n st 4 g$ n st. Since one of the agents detects C, it follows that f n 3 c Ik. 
But, similarly to the reasoning above, we can appeal to the polygonal Jordan Curve 

Theorem and the agents' choice of faces to show that both agents must arrive at C at 

the end of the kth phase, a contradiction. 
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So far we have shown that the double agents in the kth phase must arrive at the 

same DCC at the end of that phase. It remains to show that the solitary agent also 

arrives at the same DCC. Again towards a contradiction, suppose not. There are three 

cases, which we will not discuss in detail since the arguments are similar to those 

above. Either the double agents arrive at t and the solitary agent arrives at a DCC; the 

double agents arrive at a DCC and the solitary agent arrives at t; or the double agents 

and the solitary agent arrive at distinct DCCs. The first two cases are dismissed with 

the polygonal Jordan Curve Theorem; the argument for the third case is similar to that 

showing that the double agents cannot arrive at distinct DCCs. 

Therefore all three agents arrive at t or at the same DCC Ck+l = (f, gl,g2) at the 

end of the kth phase, as required. Consequently, Rk+l is well-defined; it is easy to 

see that the agents arrive on the boundary of Rk+l. It is clear from the definition 

of active DCCs that DOUBLEUP, DOUBLEDOWN, and SOLITARY arrive at the upper, 

lower, and central faces of Ckfl, respectively. We must now refine this result to show 

that DOUBLEUP, DOUBLEDOWN, and SOLITARY arrive at vertices on gl \ f ,  g2 \ f ,  and 

f \ {91,92), respectively. 

Suppose that DOUBLEUP arrives at a vertex w on gl n f at the end of the kth 

phase. If the agent's walk to w during that phase has length at least 1, let w' be the 

penultimate vertex the walk. Clearly w' cannot also be on g1 for then DOUBLEUP would 

have arrived at w', not w. Therefore, w' is on some other face j for which i j  n C + gl n C. 

Evidently j is the upper face in a DCC 6 (f, 5, g2); it follows that 6 is inactive since 

the agent does not arrive on it at w'. Therefore the active interval Ik does not extend 

as far left as i j  n st; it extends as far as f' n st, where f' is the central face of Ck; see 

Figure 4.16(b). However, by Claim 4.1, DOUBLEUP is on f' at the beginning of the kth 

phase. It therefore cannot reach w through w' since DOUBLEUP travels along faces 

progressively closer to t, contradicting the assumption that w' was the penultimate 

vertex in the walk. 

We must therefore consider the possibility that DOUBLEUP7s walk during the kth 

phase had length 0, i.e., that it was already at w at the beginning of the kth phase. By 

Claim 4.1, Ck cannot be an upper DCC, for otherwise DOUBLEUP would have moved 

along at least one edge during the adjustments. Thus we have that Ck is a lower 

DCC, and that w is not on the upper face g', of Ck. But since Ck+l is active, g', n 3 + 
f n 3, implying that w is not on the boundary of Rk, as shown in Figure 4.16(b). This 
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contradicts Claim 4.1. 
w ' 

Figure 4.16: DOUBLEUP cannot arrive at a vertex w on gl n f :  (a) the case where it 
travels along at least one edge in the kth phase; (b) the case where it remains in place 
during the kth phase. 

The arguments for DOUBLEDOWN and SOLITARY are similar. 

Claim 4.3 If k > 0, then Rk c Rk-l. Thus, P =: Rg 3 R1 3 . . . 3 Rk. 

Proof: That Rk is defined for all k 2 0 follows from Claim 4.1 Trivially we have R1 c 
Ro := P ,  so assume k > 1. If the agents are at  t at the beginning of the kth phase, we 

have Rk := {t), which is also trivial; therefore assume that the agents are at  a DCC at 

the beginning of the kth phase. 

Let f and g be the central and far faces of Ck-l, respectively, and let Ck = (f', gi, g;). 

Then f '  n e c IkPl, SO g n e 5 f '  n .! (note that possibly f'  = g). Similarly, f n e 5 g: n e 
for i E {1,2); again note that possibly gi = f or g; = f ,  but in particular f n .! j g' n e, 

where g' is the far face of Ck. Observe that this implies that Ik 3 Ik-l. 

Now suppose that Rk Rk-l. Then there exists a point w E Rk \ Rk-1; in particular, 

since Rk is a closed set, we may choose w to be a boundary point of Rk. By definition 

of Rk, w lies on one of the faces composing Ck or on the interval of .! between the near 

and far faces of Ck. If w is on f', then since g n .! 5 f'  n e, f '  must cross one of the faces 

composing Ck-l, a contradiction. Similarly w cannot lie on g', or g;. Thus w is on the 

interval of .! between g', n .! and 9; n e. But we have already shown that f n .! 5 g: n e for 

i E {1,2), so w is contained in Ik-l c Rk-1, another contradiction. Hence there can be 

no such point w, so Rk G Rk-1. 
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Note that although Rk may contain f and g, it obviously cannot contain every point 

on the near face of Ck-1. Therefore the containment is proper; i.e., Rk c Rk-1. Conse- 

quently, Ro 3 R1 3 . . . 3 Rk. 0 

Claim 4.3 proves that the algorithm must terminate, for the active region is deter- 

mined by three faces and therefore cannot decrease indefinitely. It remains to prove 

that the agents describe disjoint walks; we will require one more result before the final 

step. 

Claim 4.4 During the kth phase, including the initial adjustments (when k > O), every 

agent remains within Rk. 

Conversely, when k > 0, no agent has used a vertex in Rk until arriving at Ck (or t) 

at the end of the k- 1st phase. 

Proof: The statement is trivial for k = 0, so assume k > 0. The statement is also 

trivial if the agents are at t, so assume they are at Ck = (f,gl,g2) at the beginning 

of the kth phase. It is clear from DCC-ADJUST that the agents remain in Rk during 

the adjustments. For the remainder of the kth phase, DOUBLEUP traverses only those 

faces intersecting e between t and f .  These faces clearly cannot contain any vertices 

outside Rk without crossing one of the faces composing Ck, SO DOUBLEUP remains 

within Rk. Moreover, any vertices on the boundary of Rk visited by the agent must lie 

on f .  Similar arguments show that the other two agents also remain within Rk; also, 

any boundary vertices used by DOUBLEDOWN are on f ,  and any boundary vertices 

used by SOLITARY are on the far face of Ck. 

Now, towards a contradiction, suppose that an agent uses a vertex w in Rk before 

the end of the k-1st phase; assume w is the f i s t  such vertex. Let j be the least number 

for which the agent uses w before the end of the jth phase. We will show that j must 

be k - 1. Indeed, if j < k - 1, then by Claim 4.3 we have Rk c . . . c Rjfl; however, 

by the induction hypothesis, no agent uses any vertex in Rj+1 until the end of the jth 

phase. Therefore j = k - 1. 

Suppose that DOUBLEUP is the agent that uses w in the k-1st phase before arriving 

at Ck = (f, g1,g~) .  Then w cannot be on 91, for the agent would have detected Ck at w, 

marking the end of the k - 1st phase. We can assume that w is on the boundary of Rk, 

since the agent cannot reach the interior of Rk without first passing through gl. Also, 

w is not on e for then it would be collinear with s and t. Therefore w is above e and 
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either on f or g2. If w is on f ,  then it also lies on some face g' incident to f for which 

g/ n I 4 g1 n I ;  see Figure 4.17. But using similar arguments as in the latter half of the 

proof of Claim 4.2 shows that this is impossible. The only remaining possibility is that 

w lies on g2. But either Ck is an upper DCC, in which case the vertices of 92 above I are 

in the interior of Rk, or Ck is a lower DCC, in which case the vertices of g2 above I are 

not included in Rk. We have thus shown that DOUBLEUP cannot have used w. 

Figure 4.17: DOUBLEUP cannot have used w before arriving a t  Ck, for then g'ne 4 gl n e ,  
contradicting the minimality of g l .  Compare to Figure 4.16. 

We omit the similar arguments for the other two agents. 0 

We have finally built enough machinery to finish the proof of the theorem with ease. 

Claim 4.5 The walks described by the three agents are mutually internally vertex- 

disjoint. 

Proof: Each agent's walk W naturally decomposes into a sequence of subwalks Wo , Wl , . . . , Wk 

where Wj is the subwalk of W traversed during the jth phase, 0 5 j _< k. By Claims 4.3 

and 4.4 we immediately see that if two agents' walks have a vertex v in common, then v 

must have been used by both agents in the jth phase, and before the end of the phase, 

for some j. If v is on the boundary of Rj (in which case j > 0) then by Claim 4.4, 

both agents must use v during the initial adjustments. But induction on Claim 4.2 and 

the adjustments specified in DCC-ADJUST clearly show that the agents' adjustments 

constitute disjoint walks. Therefore v is in the interior of Rj and both agents use v 
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after the adjustments. From the discussion of the problem so far, it should be obvious 

that this is impossible: the double agents cannot use the same vertex, and the solitary 

agent adjusts to SCCs. 0 

This completes the proof of Theorem 4.1. rn 
Finally, observe that DOUBLE-CROSSING runs in polynomial time: there are clearly 

finitely many DCCs, and each agent takes polynomial time to move from one DCC to 

the next (or to t). 

4.4 The DOUBLE-CROSSING algorithm in IR2 

As mentioned in the previous section, the DOUBLE-CROSSING algorithm was pre- 

sented for a graph embedded on a sphere mainly for convenience. The.procedures 

in the algorithm only calculate angles and intersections, which can obviously be ac- 

complished in R2. 

The circle C in R3 corresponds to the line segment C (abusing notation here and 

subsequently) in R2 through st extending as far as the outer face fo. However, in R2, 
- 
st := {C \ st) u {s, t)' is a union of two (possibly trivial) line segments. 

We can define lexicographic orderings 4 on st and 3 analogous to those in R3. Take 

xLy to read "x is to the left of y"; then define 4 as follows: 

for x, y E 3, x 4 y if one of the following three conditions holds: 

1. xLs, yLs, and yLx; 

2. xLs and tLy; or 

3. tLx, tLy, and yLx. 

The proof of correctness for the algorithm in R2 is essentially the same as the proof 

in the previous section. However, in that section we took the liberty of viewing DCCs 

as being centred around t; thus, for example, the definition of the active region Rk was 

simple. In the plane, however, we do not have the same luxury. The outer face is fixed, 
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and must be treated with special cases: compare Figures 4.18, and 4.19, for example, 

which both show DCCs. 

Despite the apparent added complexity in the plane, the DOUBLE-CROSSING al- 

gorithm (with data structures and procedures modified in the obvious ways for R2) 
will still work. The facial structure is fundamentally the same as that on the sphere, 

through the correspondence of st, 3, and +. The only extra challenge in R2 is surviv- 

ing the tedium of working through all cases for the positions of DCCs in the proof of 

correctness. 

Figure 4.18: A DCC (f, gl, g2) in R2. Compare with Figure 4.5. 

Figure 4.19: Another DCC (f, gl, fo) in R2. The outer face is the lower face of the DCC. 
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4.5 Improving the algorithm 

There are three simple modifications we can make to the algorithm to improve its 

efficiency. The first takes advantage of the information provided by the scouts to accel- 

erate the face routing of all agents; the second eliminates unnecessary scout activity; 

and third is specifically an improvement for the solitary agent in R2 during the 0th 

phase (here we mean the phase only as far as that agent is concerned). 

Improvement 1. Without loss of generality, as'sume that DOUBLEUP is travellingalong 

st. If the agent is on a vertex v incident to at least two st-crossing faces, and is not 

on a DCC, then the agent can skip forward in its face routing and set currentFace 

to be the farthest st-crossing face incident to v with respect to 4. This is shown for 

DOUBLEUP in Figure 4.20. The same modification accelerates the face routing of all 

agents; note that it does not affect the order in which the agent detects DCCs, by 

familiar arguments. 

To accelerate the face routing in this manner requires only a trivial modification for 

the scouts: since the agent's child scout is already searching the faces incident to the 

current vertex, the scout can simply devote an additional memory slot to keeping track 

of the farthest st-crossing (or 3-crossing, depending on doubleDirection) face. 

Figure 4.20: In general, every agent can accelerate its face routing using information 
provided by the scouts. 

Improvement 2. We can eliminate many unnecessary face traversals for the scouts at 

every iteration by appealing to the convexity of the faces. Suppose a scout is created 

at a vertex v to search the face f containing u, v, and w, where vu and vw are radially 



adjacent edges. Then, since the scouts are searching for faces intersecting C within the 

active interval, we can immediately eliminate f if cone(u, v, w) n Ln adiveInterva1 = 0, 
where L is either st or 3 according to the ancestor agent's parameters and the type of 

face being sought. Figure 4.21 shows an example. 

? 

Figure 4.21: DOUBLEUP has arrived at vl, and its child scout S1 has found the st- 
crossing face gl, a potential upper face; S1 is currently at v2. Only one face, f ,  incident 
to v2 can "see" part of active interval I intersecting 3, so S1 only creates a scout S2 to 
search the potential central face f .  If S2 determines that f does not intersect I n  3 ,  
then S1 continues to us, which is incident to two potential central faces. 

Improvement 3. 

The third modification is a natural response to the solitary agent's initial behaviour 

(i.e., until it arrives at a DCC) in the plane. According to the algorithm, we begin by 

sending the solitary agent away from the destination t. Barring encounters with DCCs, 

it travels away from t (in a strict geometric sense; according to 4 it is approaching t) 

until hitting fo, at which point it traverses half the perimeter of the graph before 

eventually arriving at t. This is terribly inefficient, and the obvious question is: can we 

find a better path for the solitary agent? 

Indeed we can, in most cases. Modify the solitary agent's behaviour so that it ini- 

tially travels towards t in the same direction as the double agents, using the faces 
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immediately below the st-crossing faces; see Figure 4.22. Denote the family of such 

faces by H. The solitary agent can clearly detect faces in H using scouts, and will run 

into a problem only if fo E H or if a face in H contains a vertex above C incident to an 

st-crossing face, since DOUBLEUP uses precisely those vertices. But then we are sim- 

ply describing SCCs and DCCs - the agents adjust, and continue as usual. Note that 

this modification applies only to the initial solitary agent, and not to an agent switch- 

ing into SOLITARY mode during an adjustment at a DCC. Also note that the decision 

to traverse faces below st-crossing faces is arbitrary; the modified agent could instead 

traverse faces above st-crossing faces. 

Figure 4.22: The improved initial solitary agent S! uses faces below the st-crossing 
faces and travels in the same direction as the double agents. 



Appendix A 

Memory requirements 

The following table lists the memory requirements, in number of vertices, for the algorithms 

presented in this thesis. The well-known algorithms FACE and GFG are shown first for com- 

parison. 

Algorithm name 

FACE 

GFG 

Type 
routing 

routing 

routing 

routing 

geocasting 

disjoint routing 

Class of graphs 
. . 

planar 

unit disk, planar 
-- 

quasi-planar 

unit disk, quasi-planar 

quasi-polyhedral 

quasi-planar 

convex embedding 

Memory requirement 

3 

3 per agent 

Also note that the agents in the DOUBLE-CROSSING algorithm also use scouts which each 

store two vertices in memory. 
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