
Online Routing Algorithms on Geometric Graphs
with Convex Substructures

Timothy Mott

B.Sc. Hon., Simon Fraser University, 2003.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE OF

in the Department

of

Mathematics

@ Timothy Mott 2006

SIMON FRASER UNIVERSITY

Summer 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Timothy Mott

Degree: Master of Science

Title of Thesis: Online Routing Algorithms on Geometric Graphs

with Convex Substructures

Examining Committee: Dr. Imin Chen

Chair

Dr. Ladislav Stacho

Senior Supervisor

Dr. Petr Lison6k

Supervisory Committee

Dr. Luis Goddyn

Internal Examiner

Date of Defense: June 9, 2006

SIMON FRASER UNIVERSA i bra ry

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

In this thesis we describe five new algorithms (QUASI-PLANAR, QUASI-POLYHEDRAL,

. QFQ, SPIRAL, DOUBLE-CROSSING) for online route discovery on several classes of ge-

ometric graphs. We propose the classes of quasi-planar graphs in R2, which consist of

underlying convex embeddings with arbitrary chords added to each face, and, analo-

gously, quasi-polyhedral graphs in R3.

QUASI-PLANAR and QUASI-POLYHEDRAL guarantee delivery on quasi-planar and

quasi-polyhedral graphs, respectively. Inspired by the well-known GFG algorithm for

unit disk graphs, we create a hybrid algorithm, QFQ, that uses QUASI-PLANAR as a

subroutine, and guarantees delivery on quasi-planar and unit disk graphs.

SPIRAL is a geocasting algorithm for quasi-planar graphs: it visits every vertex in

a specified bounded convex region.

Finally, the DOUBLE-CROSSING algorithm finds three vertex-disjoint s, t-paths. in

a convex embedding.

Dedication

To those inventing their own paths

Acknowledgements

First, I would like to thank my supervisor, Ladislav Stacho, for his clever ideas, en-
couragement, and sense of humour.

I am also very grateful to my family for their support throughout my studies.

Finally, thank you, Sarah, for your love and patience.

Contents

. .
Approval . 11

... Abstract m

. Dedication iv

. Acknowledgements v

Contents . v i
... List of Figures v-111

. 1 Introduction 1

. 1.1 Motivation 1

1.2 Overview . 3
. 1.3 Definitions and notation 4

. 1.4 Background 7
. 1.4.1 Classifying Routing Algorithms 7

. 1.4.2 Triangulations 11
. 1.4.3 Unit Disk Graphs 12

. 1.4.4 Planar Graphs 14
. 1.4.5 Unstable and faulty unit disk graphs 14

. 1.4.6 Quality of Service (QoS) 16
. 1.4.7 Geocasting 16

. 2 Quasi-Planar Routing 17

. 2.1 Quasi-planar routing in R2 17
. 2.1.1 The QUASI-PLANAR algorithm 19

. 2.1.2 Rules for choosing the next vertex 24
. 2.1.3 Analysis 25

. 2.2 QFQ: a hybrid algorithm for unit disk graphs 27

. 2.3 Quasi-polyhedral routing in R3 28
. 2.3.1 Quasi-polyhedral graphs 28

2.3.2 The QUASI-POLYHEDRAL algorithm 30
2.3.3 The FFINIT and FFF subroutines 34

. 3 Quasi-planar geocasting 39

. 3.1 The SPIRAL geocasting algorithm 39
3.1.1 The QP-FINDBOUNDARY subroutine 44
3.1.2 The QP-PERIMETER subroutine 45

. 4 Disjoint Routing in Convex Embeddings 51

. 4.1 Overview 5 1

. 4.2 Agents and scouts 53

. 4.3 The DOUBLE-CROSSING algorithm on a sphere 55

. 4.4 The DOUBLE-CROSSING algorithm in R2 76

. 4.5 Improving the algorithm . . 78

. Appen dk 8 1

. A Memory requirements 8 1

. Bibliography 82

vii

List of Figures

1.1 CW(U. v) and CCW(U.V) . 6

1.2 GREEDY chooses the neighbour of v that minimises distance to t 8

1.3 COMPASS chooses the neighbour of v that minimises angle to t 8

1.4 Both GREEDY and COMPASS fail when starting from one of the si 8

1.5 A triangulation that defeats COMPASS . 9

1.6 The proof of Theorem 1.5 . 11

1.7 Construction of the Gabriel graph . 13

1.8 The Gabriel construction fails when the graph is not strictly a unit disk

graph . 15

2.1 A quasi-planar graph; one of its underlying planar graphs is drawn with

bold edges . 17

2.2 The current vertex is v; candidates for the next vertex are {bl. b,. a) . . 20

2.3 Invalidpositionfort whenR(v. x) = a . 23

2.4 Invalid position for t when R(v. x) = bi . 23

2.5 QUASI.PLANAR. GREEDY. and COMPASS can have arbitrarily bad dilation . 26

2.6 The pairwise adjacent vertices a. b. c compose a 3.cycle. but not a face . . . 29

2.7 Candidates for the next vertex include a and b. which are feasible and

forward . 30

. 2.8 The cone C,, 33

2.9 S is an oriented plane through v. and intersecting ab; u is a point on S . . . 34

...
Vlll

2.10 (a) The edge yz of the 3-cycle ayz intersects the triangle Aabc . (b) The

3-cycle vala2 dominates vbl b2 . 35

2.11 The five faces vala2. vasal are cap faces 35

. The boundary edges are drawn with thick lines 40

Proof of Lemma 3.2. 42

An agent starting from s navigates the perimeter of the disk using the

left-hand rule . 46

The current and reference vertices are v and x. respectively 47

The boundary face f with vertices (211. 217) has eight boundary edges

and will be visited several times by the agent 48

(a) From the initial vertex s with inner boundary neighbour w. set t +

sw n aD . (b) Eventually the agent completes the navigation of D 49

Two internally disjoint s. t-walks are determined by traversing the upper

and lower halves of st-crossing faces . 52

Finding two disjoint s. t-walks is challenging on a planar graph with non-

convexfaces . 53

The circle e through s and t is naturally partitioned into two arcs st and
.
st . Faces are omitted for clarity . 56

The basic approach ofthe DOUBLE-CROSSING algorithm: send two agents

(DOUBLEUP and DOUBLEDOWN) along st-crossing faces. and a third

agent (SOLITARY) along Zcrossing faces . 57

A double-crossing configuration (f. gl. g2) . 59

. If agents do not adjust to DCCs. collisions are inevitable 60

The correct adjustments at a double-crossing configuration C 61

A DCC (f. 91. 92). approached from the "safe" direction - the DCC is not

active for any of the agents . 63

The DCCs C1 = (fi.gl. 92) and C2 = (g2. f2. f l) have two faces in common . 64

4.10 The correct behaviour a t DCCs C = (f. 91. 92) and C' = (f'. gi. gi) entan-

gled aroundt . 65

4.11 If the agents do not maintain an active interval. entangled DCCs will

induce collisions; in this example two agents visit x 65

4.12 A single-crossing configuration (f. g) . 66

4.13 In general (i.e. when not a t an SCC or DCC). the solitary agent can choose

to cross -!? . 66

4.14 The active region Rj . 69

. 4.15 DOUBLEUP cannot find a vT, t.walk without passing through gl 71

4.16 DOUBLEUP cannot arrive at a vertex w on gl n f : (a) the case where it

travels along at least one edge in the kth phase; (b) the case where it

remains in place during the kth phase . 73

4.17 DOUBLEUP cannot have used w before arriving a t Ck. for then g' n e +
gl n e. contradicting the minimality of gl . 75

. .

4.18ADCC(f.gl.g2)inR2. 77

4.19AnotherDCC(f.gl.fo)inR2. 77

4.20 In general. every agent can accelerate its face routing using information

provided by the scouts . 78

4.21 DOUBLEUP has arrived at vl. and its child scout Sl has found the st-

crossing face gl. a upper face; Sl is c r y a t 79

4.22 The improved initial solitary agent S! uses faces below the st-crossing

faces and travels in the same direction as the double agents 80

Chapter 1

Introduction

1.1 Motivation

In this thesis we consider the online routing problem; that is, finding routes on a graph

using only local information and constant memory, and without leaving mark bits on

the vertices.

Online routing is fundamental to ad hoc networks, which consist of self-organised

mobile nodes capable of communicating with nearby nodes; each node can serve as

a router for its peers. Ad hoc networks have applications in a wide array of fields,

including communications networks, robotics, geographic information systems, urban

planning, disaster recovery, search and rescue operations, law enforcement, and for

large-scale civilian projects and events. [BMSUOl, LL99, PH991.

Often, the environment does not have a predetermined topology, is large and com-

plex, and changes over time, precluding the construction of any useful global map;

hence the restriction to local information and constant memory. Because of the inher-

ent challenges in communicating over such environments, the emphasis of many online

routing algorithms is simply on guaranteeing delivery, rather than, for example, find-

ing shortest paths.

The vertices, or nodes, in such applications are often aware of their own and their

neighbours' geographic coijrdinates, for example by using a Global Positioning Sys-

tem (GPS) or triangulating from control towers. The abstract model of an ad hoc net-

work with position-aware nodes is called ageometricgraph; routing algorithms on such

CHAPTER 1. INTRODUCTION

graphs take advantage of local geometric information to reach their destinations.

Communication on an ad hoc network is carried out by transferringpackets between

nodes; The packets consist of low-level information (e.g., for hardware protocols), mes-

sage data, and a constant amount of parameters or geometric information necessary for

a given routing algorithm (e.g., the position of the destination). Upon receiving pack-

ets at an intermediate (i.e., non-destination) node, the node makes a local computation

based on its location, its neighbours' locations, and the stored routing information. It

then forwards the packet to one of its neighbours accordingly, possibly having updated

the routing information. At a higher level of abstraction, we simply consider an agent

running a routing algorithm to be responsible for delivering messages between nodes.

(We often go so far as to identify an agent with the algorithm it uses, so we might say

"the algorithm A moves to a vertex an, for example, meaning "the agent using Algo-

rithm A moves to a".) For a more detailed discussion of lower-level routing issues, see

the survey by Kumar et al. [KRDOGI.

For simplicity of the theoretical model, it is usually assumed that the network re-

mains static and connected during the delivery of the message [BMSUOl]. That is,

the agents are capable of navigating the network and transferring packets faster than

the nodes change their position or local connections. We keep this assumption for the

remainder of the thesis.

The nodes in an ad hoc network have limited memory and potentially handle large

numbers of agents passing through them, so we prefer that routing algorithms do not

make use of any persistent memory a t the nodes. In other words, the algorithms should

not be able to leave any marks behind. Furthermore, most routing algorithms do not

require duplication of packets, so that there is at most one copy of any message in the

network [BMSUOII. The algorithms presented in this paper also have these desirable

properties, except for DOUBLE-CROSSING in Chapter 4, which requires agents to be

able to create, destroy, identify, and communicate with "scouts". We postpone further

discussion of this issue until Section 4.2.

To allow for a theoretic approach to the online routing problem, it is typical to

impose geometric conditions on (the embedding OD the graphs. For example, a com-

munications network may be represented as a unit disk graph, where two nodes are

adjacent if and only if they are not farther than distance 1 from each other.

CHAPTER 1. INTRODUCTION 3

In particular, there has been significant interest in developing online routing al-

gorithms on planar graphs because of their predictable geometry. Face routing, intro-

duced in [KSU991, guarantees delivery on planar graphs by successively traversing the

faces of the graph.

Obviously, we cannot expect "real-world" communication networks to be planar.

However, some graphs, such as unit disk graphs, can be planarised to allow face rout-

ing. In other words, for some classes of graphs it is possible to (locally) compute a

spanning planar subgraph. For instance, a unit disk graph has a planar subgraph, the

Gabriel subgraph, whose edges can be determined locally.

However, in practice, the unit disk graph model is idealistic and does not account

for such factors as localisation errors, obstacles blocking communication, and varying

transmission capabilities [KGKS05]. Thus, it is important to develop more flexible

graph models, along with algorithms designed for those models.

We propose a new class of graphs, the quasi-planar graphs, that may have crossing

edges but contain underlying convex embeddings. We also propose an analogous class

of graphs in R3, the quasi-polyhedral graphs, which similarly contain an underlying

structure consisting of convex polyhedra.

1.2 Overview

The thesis is organised as follows. The remainder of this chapter provides a back-

ground on graph models and online routing, with emphasis on planar graphs. Chapters

2,3, and 4 introduce five new routing algorithms - QUASI-PLANAR, QUASI-POLYHEDRAL,

QFQ, SPIRAL, and DOUBLE-CROSSING - that are the result of original research.

The QUASI-PLANAR and QUASI-POLYHEDRAL algorithms in Chapter 2 are routing

algorithms that guarantee delivery on quasi-planar and quasi-polyhedral graphs, re-

spectively. QUASI-PLANAR can be considered an extension of the standard face routing

algorithm for planar graphs. We also show how QUASI-PLANAR can be modified to be

used as a heuristic for geometric graphs in general.

The core of Chapter 2 was presented in condensed form at PerCom 2006 [KMSOG];

an expanded journal article is pending. Here we give the proofs of correctness in full

detail, along with a new section on the QFQ algorithm. We approach the proofs fairly

CHAPTER 1. IN!lXODUCTION

strictly, giving detailed geometric arguments to illustrate the method of reasoning com-

mon to all the proofs. We will elide some of the lower-level details in the subsequent

chapters to avoid the burden of repetitive arguments.

Chapter 3 presents a geocasting algorithm, SPIRAL, for quasi-planar graphs. The

algorithm visits every vertex in a specified convex region of the graph. The material in

this chapter is intended to be expanded into a journal article.

Finally, in Chapter 4 we consider the disjoint routing problem. It is straightforward

to find two disjoint s, t-paths in a convex embedding or quasi-planar graph; we provide

an algorithm, DOUBLE-CROSSING, that finds three disjoint s, t-walks in a convex em-

bedding. The material from this chapter is also currently being written as a journal

article.

Two geometric themes are featured throughout this thesis. First, as we have men-

tioned, all the algorithms in Chapters 2, 3, and 4 are designed for graphs with an

underlying convex structure, and we strongly take advantage of this structure in the

proofs. Conversely we give examples to show the difficulty of similar problems on

graphs lacking a convex structure. In fact, we will see that even convex embeddings

present surprising challenges.

Second, the proof of correctness for each of our algorithms uses a measure of progress

towards the destination to guarantee termination. This is especially interesting in the

DOUBLE-CROSSING algorithm, where each of three agents alternately approaches the

destination t from the left and from the right.

A summary of the memory requirements for each algorithm appears in Appendix A.

1.3 Definitions and notation

In this section we formally describe the terminology and notation to appear throughout

the thesis.

Ageometric graph G is an ordered pair G = (V, E) where

0 V is a (finite) set of vertices, or nodes, that are embedded in Itd for some d E Z+

and

0 E is a set of unordered pairs of vertices, called edges, that we associate with the

CHAPTER 1. INTRODUCTION 5

corresponding line segments between vertices.

Furthermore, every vertex v is aware of its position, its neighbourhood N(v) = {u : uv E

E) , and the position of each of its neighbours. We identify a geometric graph with its

embedding, so we can specify vertices and edges according to their geometric positions.

We may occasionally abuse the distinction between objects and their positions; thus if

we say, for example, that v = p for some v E V andp E W 2 , we mean that v is embedded

at the point p. However, this abusive notation is kept to a minimum, and when used,

the meaning should be clear from context.

In this thesis we are interested in those graphs embedded in R2 or R3: lower dimen-

sions are trivial, while in higher dimensions the geometry is challenging and there is

a lack of obvious practical applications.

A geometric graph in R2 is planar if there are no crossing edges; that is, if the

intersections of the edges occur only at their endpoints. The edges in a planar graph

partition R2 into a set of faces F, and we may write G = (V, E , F) . Exactly one of

the faces must be infinite; we call this face the outer face and denote it by fo. If the

boundary of every face is a convex polygon, we say that G is a convex embedding. The

convex hull of a set S (i.e., the smallest convex set containing S) is denoted conv(S).

If the interior of an edge e crosses a line or line segment C, we say that e is an

C-crossing edge. In a planar graph, a face is C-crossing if it contains an C-crossing edge.

For vertices u, v , and w, we denote by Luvw the counterclockwise angle from u to

w about v. Similarly, cone(u, v, w) denotes the cone with apex v and supporting lines

through u and w, with interior angle Luvw. For both Luvw and cone(u, v, w) we require

that v does not coincide with u or w.

Define cw(u, v) to be the first clockwise neighbour of u starting from the direction

uv. Note that uv is not required to be an edge. Similarly, ccw(u, v) is the f i s t coun-

terclockwise neighbour of u starting from the direction uv. See Figure 1.1. These two

functions can be computed locally, as long as uv E E or the location of v is known.

If G = (V, E) and H = (V', El) where V' g V and E' g E, we say that H is a

subgraph of G and write H G G. If V' = V then H is a spanning subgraph of G.

A walk in G is a sequence of vertices vovl . . . vk such that vivi+l E E for all i < k. A
path is a walk where all the vertices in the walk are distinct.

CHAPTER 1. INTRODUCTION

Figure 1.1: cw(u, v) and ccw(u, v).

There are two standard distance metrics on geometric graphs; namely, Euclidean

distance and link (graph) distance. Unless noted otherwise, we will measure distance

using the former. The length of a walk is the sum of the length of its edges, with

repeated edges contributing accordingly. The Euclidean distance between u, v E V (i.e.,

the length of the line segment uv) is denoted dist(u, v), and the length of the shortest

u, v-path is denoted SP(u, v). We denote by dist(u, S) the shortest distance between a

vertex u and a set S. That is, dist(u, S) = minpEs dist(u, p).

Let G be a graph, A a routing algorithm, and s, t E V. Then A(G, s, t) denotes the

length of the walk determined by A when routing from s to t; if A fails to reach t in a

finite number of steps then A(G, s, t) = oo.

We say that Aguarantees delivery on a graph G if A(G, s, t) < oo for every choice of

vertices s, t E V(G). On the other hand, if A does not guarantee delivery on G, then we

say that G defeats A.

We can measure the effectiveness of an algorithm to some extent by comparing its

s, t-walks with the shortest s, t-paths. A is c-competitive for a class of graphs G if

for every G E G and all distinct pairs of vertices s, t E V(G). If there exists some

constant c for which A is c-competitive, then we say that A is competitive.

If there exists a path &om s to t for all vertices s, t E V, we say that G is connected.

Note that a convex embedding is necessarily connected, since the boundary of the outer

face in a disconnected planar graph consists of at least two polygons. We assume for

the remainder of the thesis that all graphs are connected, unless otherwise noted.

The Voronoi diagram [dBvKOSOOl of a set of points V E R2 is the partition of R2 into

cells where each cell consists of all points closer to given point v E V than any other

point in V. The Delaunay triangulation of V is the (straight-line) dual of the Voronoi

CHAPTER 1. INTRODUCTION 7

diagram, i.e. two points in V are adjacent if and only if the corresponding cells in the

Voronoi diagram share an edge. In the case where some point p E lW2 is equidistant to

some k > 3 points of V, the corresponding face in the Vorolioi diagram is a k-gon; we

can triangulate it arbitrarily.

1.4.1 Classifying Routing Algorithms

Bose and Morin classify routing algorithms based on whether they require memory

beyond that used for the message, and whether they are deterministic or randomised.

Memoryless Algorithms

A routing algorithm is memoryless if the choice of the next vertex from v depends only

on v, N(v), and t. Note that for purposes of this definition, neither storing t nor the

message is considered to use memory, since for most applications it is obviously neces-

sary for the agent to know when it has reached its destination and to be able to deliver

the message. Also note that the neighbourhood of a vertex v may be large, so in general

the processor at v must handle computations involving IN(v) u {v, t)l vertices. In prac-

tice, say for communication networks, we may assume that this number is bounded by

some constant, and that the processor at v is powerfbl enough for such computations.

The computations do not contribute to network traffic, since the only information sent

to the next vertex is the message data and t.

The GREEDY algorithm is perhaps the simplest and most natural deterministic

memoryless routing algorithm. At a vertex v, GREEDY chooses as its next vertex the

closest neighbour of v to t. That is,

A similar deterministic memoryless algorithm is COMPASS, which minimises angle

to the destination rather than distance:

where the angle is measured in the range (-n, n].

CHAPTER 1. INTRODUCTION

These algorithms are illustrated in Figures 1.2 and 1.3.

Figure 1.2: GREEDY chooses the neighbour ofv that minimises distance to t.

Figure 1.3: COMPASS chooses the neighbour of v that minimises angle to t.

While GREEDY and COMPASS are useful heuristics, neither guarantees delivery

on all graphs. It is straightforward to construct graphs that defeat these algorithms;

naturally we may ask what conditions are necessary to guarantee delivery.

GREEDY and COMPASS do not even guarantee delivery on convex embeddings, as

shown in Figure 1.4. Since sl and s2 are closer to t than a1 and an, routing from either

of the si to t will force these algorithms into an infinite loop alternating between sl and

Figure 1.4: Both GREEDY and COMPASS fail when starting from one of the s;.

Worse yet, GREEDY and COMPASS do not succeed on all triangulations. For exam-

ple, adding the chords als2 and ala2 to the graph in Figure 1.4 produces a triangulation

that defeats GREEDY. The triangulation in Figure 1.5 defeats COMPASS: starting a t

any of the eight vertices not adjacent to t results in a clockwise cycle through those

vertices [BM991.

Figure 1.5: A triangulation that defeats COMPASS.

On the other hand, there are important classes of triangulations for which these

algorithms do guarantee delivery.

Theorem 1.1 [BM99] GREEDY guarantees delivery on every Delaunay triangulation.

0

A regular triangulation is a triangulation obtained by orthogonal projection of the

faces of the lower hull of a 3-dimensional polytope onto the plane.

Theorem 1.2 [BM991 CoMPASSguarantees delivery on every regular triangulation. 0

Bose et al. propose two variants of COMPASS that succeed on larger classes of

graphs: GREEDY-COMPASS, which chooses the closest to t of cw(v, t) and ccw(v, t) ,

and RANDOM-COMPASS, which randomly chooses between cw(v, t) and ccw(v, t) .

Theorem 1.3 [BMBfOO1 GREEDY-COMPASS guarantees delivery on every triangula-

tion. 0

CHAPTER 1. INTRODUCTION 10

Theorem 1.4 [BMB+OO] RANDOM-COMPASS guarantees delivery on every convex sub-

division. 0

Incidentally, note that a random walk guarantees delivery on every connected graph,

so the latter result should not be a surprise. Naturally we are more interested in algo-

rithms that make steady, rather than random, progress towards the destination. We

obser&d earlier that neither GREEDY nor COMPASS guarantees delivery on all trian-

gulations, suggesting that deterministic memoryless algorithms are not likely to be

robust. Bose et al. f i r m this hypothesis; their argument is as follows.

. Theorem 1.5 [BMB+OOl Every deterministic memoryless online routing algorithm is
defeated by some convex embedding.

Proof: Consider the three graphs GI, Gz, G3 shown in Figure 1.6. Common to all three

are the vertices vo, . . . ,2115 arranged in order on a regular 16-gon centred at the origin,

the edges of this 16-gon, and a destination vertex t at the origin. Note that the even-

numbered vertices vo, 212, . . . ,2114 all have degree 2.

Towards a contradiction, suppose there exists a deterministic memoryless routing

algorithm A that succeeds on any convex subdivision. Since vo, 212,. . . ,v14 have the

same neighbours in all three graphs, A makes the same decision at any particular

even-numbered vertex. We can therefore consider the behaviour of A at these vertices

regardless of the graph on which it is routing.

Colour each v2i black or white according to whether A moves counterclockwise or

clockwise from 212, around the 16-gon, respectively. We claim that all even-numbered

vertices must have the same colour. If not, there exist two vertices ~ 2 i and vzi+z (sub-

scripts are considered mod 16) such that vzi is black and v2i+2 is white. Then, taking

s = vzi in GI, the algorithm gets stuck either between Vzi and ~2i+l, or V ~ i + l and VZ~+Z,

a contradiction.

Therefore we can assume that all even-numbered vertices are black. Now consider

the graph G2. If s = v1, then A cannot visit x after vl, or it would cycle among the

vertices {v12, v13,v14,v15, VO, v1, x) without reaching t. Rotating the edges in Gz, we can

make similar arguments for all odd-numbered vertices.

However, this implies that in the graph G3, if we take s to be any of the vi, then

CHAPTER 1. INTRODUCTION 11

A never enters the interior of the graph. Therefore no deterministic memoryless al-

gorithm guarantees delivery on all convex subdivisions. (Note that the figure can be

slightly modified to make the same argument for strictly convex subdivisions.) rn

Figure 1.6: The proof of Theorem 1.5

Constant Memory Algorithms

A routing algorithm runs with constant memory on a graph of order n if the choice

of the next vertex from v depends only on v, N(v), t, and O(1ogn) bits of of memory.

Typically the memory is used to store vertex labels; thus, equivalently, we can say

that a constant memory algorithm uses O(1) memory, where it is understood that one

memory slot takes log n bits.

1 A.2 Triangulations

Given a set of points V, a minimum-weight triangulation on V is a triangulation min-

imising the sum of the edge lengths. A greedy triangulation on V is constructed by

starting with an empty edge set and repeatedly adding the shortest edge that does not

cross any other previously-added edge. Bose et al. prove the following fundamental

results [BMSUOU:

0 under the Euclidean metric, no deterministic routing algorithm is o(6)-competitive

for all triangulations;

0 under the link metric, no deterministic routing algorithm is o(6)-competitive

for all Delaunay, greedy, or minimum-weight triangulations.

CHAPTER 1. INTRODUCTION 12

An ear in a triangulation is a vertex of degree 2. Bose et al. [BMOlI present a 9-

competitive algorithm for triangulations with two ears, and use this as a basis for the

following result on an important class of triangulations.

Let 0 < a 2 7~12. For an edge e of a triangulation T = (V, E), consider the two

isosceles triangles tl and t2 with base e and base angle a. Then e satisfies the diamond
property with parameter a if one of tl or t2 does not contain any vertex v E V in its

interior. If this property holds for every e E E, we say that T satisfies the diamond

propew.

The set of such graphs satisfying the diamond property includes several important

classes of triangulations, such as Delaunay triangulations, minimum weight triangu-

lations, and greedy triangulations CDJ891.

Lemma 1.6 [BMOI] Given a triangulation T = (V, E) satisfying the diamond property

with parameter a, there exists a constant d, (depending on a) such that for all x, y E

V, SPT(X, Y)/distT(x,Y) _< da. 0

Theorem 1.7 [BMOI] mere is a 9d,-competitive OW-memory online routing algo-

rithm that guarantees delivery on triangulations satisfying the diamond property.

1.4.3 Unit Disk Graphs

A unit disk graph is a geometric graph in which the neighbourhood of a vertex v con-

sists of all those vertices within a circle of radius r centred at v. That is, U is a unit

disk graph if the edge set is E(U) = {uv : d(u, v) 5 r) .

The unit disk graph is a natural model for ad hoc wireless networks under ide-

alised settings: assume that all nodes are embedded in a plane, and that every node

is equipped with a communication device capable of sending and receiving messages

within a constant broadcast radius r . Then the graph representing the communication

network is precisely the unit disk graph.

The Gabriel Graph

Routing on a unit disk graph U is typically achieved by restricting the agent to the

Gabriel graph G of U, which is a subgraph of U with several important properties.

CHAPTER 1. INTRODUCTION 13

The Gabriel graph [GS69] of U is defined as follows. Let disk(u, v) be the disk with

diameter uv. Then G is the subgraph of U such that uv E E (G) if and only if disk(u, v)

contains no other vertices of U. See Figure 1.7.

Figure 1.7: Construction of the Gabriel graph. Both u and v detect that w E disk(u, v) ;
hence uv is removed. The large circles around u and v are unit disks representing
communication range.

It is possible to construct the Gabriel graph with a distributed algorithm using only

local information: each node u asks each of its neighbours v whether it has any common

neighbours with u within disk(u, v) ; if so, u deletes the edge uv.

An agent can therefore route on the Gabriel graph by ignoring any edges not in G.

Algorithm 1 Gabriel
1: procedure GABRIELW, s, t) D U is a unit disk graph
2: for each u E N (v) do
3: if disk(u, v) n (N (v) \ {u, v)) # 0 then
4: delete (u , v)
5: end if
6: end for
7: end procedure

The GABRIEL algorithm as given here requires 0 (d 2) time at vertex v , where d is

the degree of v . This can be reduced to O(d log d) by constructing the Voronoi diagram

and Delaunay triangulation of N (v) U { v) and keeping only the edges of the Delaunay

triangulation that intersect the corresponding edges of the Voronoi diagram.

Theorem 1.8 If U is a connected unit diskgraph then GABRIEL computes a connected,

spanning planar subgraph of U. The cost of the computation at vertex v E V(U) is

O(d log d) where d is the degree of v. 0

It follows from this result that for routing on unit disk graphs, it is sufficient to

develop algorithms that guarantee delivery on planar graphs.

1.4.4 Planar Graphs

A planar graph G natural subdivides the plane into faces. Every edge uv belongs to

two faces, which can be found locally by iterating cw (resp. ccw) until returning to

uv. This motivates the concept of face routing, introduced in [KSU991: traverse the

current face, noting which edges cross the line st. Then travel to the edge with the

closest crossing to t, and repeat on the next face. We refer to this method as FACE-1.

If all the faces are convex, the edge with the closest crossing to t will be the first

edge crossing st. Therefore the algorithm can progress to the next face immediately

upon finding a crossing edge. We call this method FACE-2.

The GREEDY-FACE-GREEDY (GFG) algorithm combines GREEDY with FACE-1 for

routing on unit disk graphs. GFG uses greedy routing as long as possible; if it reaches

a vertex v' whose neighbours are all farther from t than v is, GFG switches into face-

routing mode on the Gabriel subgraph. It traverses the current face until it reaches a

vertex v" such that d(vl', t) < d(vl, t), at which point it reverts to greedy mode.

1.4.5 Unstable and faulty unit disk graphs

Unit disks provide a powerful and convenient model for communication networks. Ide-

ally, a wireless network should be representable as a unit disk graph; in practice, how-

ever, there will be a number of reasons to expect discrepancies.

First, it is unrealistic to expect that every node has the same power. Some nodes

may be stationary bases with a very large communications range, while mobile nodes

using battery power have a smaller range, especially when limiting themselves to con-

.serve power.

Differences in transmission range can introduce one-way edges in the communi-

cations network: a node may be powerful enough to receive a message from a weak

neighbour, but the neighbour too weak to receive messages itself.

The Gabriel graph, which is normally very useful for routing on unit disk graphs,

is not robust with respect to these issues. Figure 1.8 shows a situation where u and v

C W T E R 1. IN!iRODUCTION 15

disagree on whether the edge uv should be kept or discarded [BFNOlI: u claims that it

should be removed, while v claims that it should be kept.

Figure 1.8: The Gabriel construction fails when the graph is not strictly a unit disk
graph. Here only u detects that w E disk(u, v) ; hence u and v disagree on the status of
UV .

On a network with variable transmission range, the local algorithm for constructing

the Gabriel graph may produce either a non-planar graph or a disconnected graph, both

of which are undesirable.

Barrigre et al. address these issues in [BFNOlI as follows. Let r, R E R be minimum

and maximum communication ranges, respectively. The network is represented by an

undirected geometric graph G where uv E E(G) if d(u, v) i r, uv 4 E(G) if d(u, v) > R,

and uv may or may not be in E(G) if r < d(u, v) 5 R. Then a routing protocol is

introduced that guarantees delivery if the ratio Rlr between communication ranges is

at most 4.
We can also model poor communication conditions with faultiness: suppose that

each edge in the graph has the potential to malfunction for some reason. For instance,

in addition to the issues mentioned above, it may be impossible for two nearby nodes

to communicate with each other if there are obstacles (mountains or tall buildings, for

example) blocking the way; bad weather or other interference may also intermittently

prevent communication between certain nodes.

Formally, let U be a unit disk graph, and 6 E [0,1) some constant. Let F be a

graph obtained by independently removing each edge from U uniformly at random

with probability 6 . Then we say that F is a faulty unit disk graph with faultiness 6 . Of

course, faultiness could be defined for any graph, but we are particularly interested in

faulty unit disk graphs since they are extremely easy to generate, and provide a simple

testing ground for GFG, for example. We discuss this further in Section 2.2.

C W T E R 1. INTRODUCTION

1.4.6 Quality of Service (QoS)

We may wish not only to h d a route between two specified vertices, but to find such a

route satisfling certain constraints or optimising several parameters; these metrics are

collectively known as quality of service (QoS) metrics. For instance, in communication

networks it is desirable to h d paths with small delay while keeping the bandwidth as

low as possible at every vertex. For a more comprehensive overview, see, for example,

the survey by Paul and Raghavan [PR02].

In Section 2.1.2 we provide a simple example of QoS routing by using a parameter

load(v) on each vertex v to choose the next vertex. We consider load(v) to be an abstrac-

tion of the total bandwidth through v over a period of time, and assume that the load

information of a vertex v and its neighbours is available to an agent at v.

1.4.7 Geocasting

The geocasting problem generalises the routing problem so that the destination is a

region (i.e., every node within a region) rather than a single node. One solution to the

geocasting problem is to use a traversal algorithm to enumerate every node. Morin,

in his PhD thesis [MorOl], describes such an algorithm, FACE-GEOCAST, for planar

graphs.

Theorem 1.9 [MorOl] FACE-GEOCAST is an O(1) memory geocasting algorithm with

delivery time at most 40m(Hm - I) , where m is the total number of edges of the faces

intersecting the destination region R, and Hk = c:=, l / i is the kth harmonic number.

0

The SPIRAL geocasting algorithm that we describe in Chapter 3 is designed for

quasi-planar graphs. It would be interesting to compare running times between SPI-

RAL and FACE-GEOCAST on the class of graphs for which both algorithms guarantee

delivery, i.e., on convex embeddings.

Chapter 2

Quasi-Planar Routing

2.1 Quasi-planar routing in Et2

Let G = (V, E, F) be a planar graph with vertex set V, edge set E, and face set F. A

convex embedding of G is a straight-line embedding into the plane such that the bound-

ary of every face is a convex polygon; we will associate G with its convex embedding.

For the remainder of the paper we assume that such a graph G has no three collinear

vertices.

Let G = (V, E, F) be a convex embedding, and construct a new graph Q by adding

chords to the faces of G except for the outer face fo. That is Q = (V, E u El), where

each edge e E E' joins two vertices of some face f E F \ {fo). We call such a graph Q a

quasi-planargraph: there may be many crossing edges, but a facial structure remains.

Figure 2.1 illustrates an example of a quasi-planar graph.

Figure 2.1: A quasi-planar graph; one of its underlying planar graphs is drawn with
bold edges.

CHAPTER 2. QUASI-PLANAR ROUTING

We refer to G as an underlying planar graph of Q, and say that the faces fi E F of

G are underlying faces of Q. Note that an underlying planar graph is not necessarily

unique for a given quasi-planar graph. In general, there will be many possibilities:

consider, for example, a triangulation of a convex n-gon. Each of the n - 3 interior

edges may or may not be a chord, so there are 2n-3 possible ways to interpret the n-gon

with respect to the underlying planar graph.

For the purposes of our routing algorithm, however, it suffices to know that such a

graph G exists; the particular choice of G is irrelevant and will not affect the behaviour

of the algorithm. The existence of the graph G is used only in proofs of correctness of

the algorithm.

Recall that cw(u, v) is the first clockwise neighbour of u starting from the direction

uv. The edges uvl and uv2 are radially adjacent if v2 = cw(u, v l) or v2 = ccw(u, v l) .

Observe that if uvl, uv2 E E are radially adjacent edges then some underlying face f

contains u, v l , and 0 2 . Depending on the choice of the underlying planar graph G, the

edges uv; may be outer edges or chords off, but again, this distinction is not important.

Let u, v , wl, ~ 2 , . . . , W , E V. Then wl, w2,. . . , w, form a clockwise sequence around u

from v if they are the first p consecutive clockwise neighbours of u starting from the

direction determined by v. Note that v is not necessarily adjacent to u. A counterclock-

wise sequence is defined analogously.

We denote by uv the line segment through vertices u and v; it will be clear from

context whether uv refers to an edge or a line segment. The line segment st separates

the vertex set into two subsets VA and VB that we can think of as containing vertices

"above" and "below" st, respectively. Specifically, VA = {v E V : 0 < Ltsv < T) and

VB = {v E V : T < Ltsv < 2 ~) , and V = {s, t) U VA U vB.l Since G is represented by a

convex embedding and using the assumption that st @ E, it follows that both VA and

VB are non-empty. If a vertex v knows the geometric locations of s and t , it is a fast

local computation to determine whether v E VA or v E VB.

Lemma 2.1 Let Q be a quasi-planar graph with s, t E V given, and let v E VA. If
N(v) n VA = 0 then us, vt E E. Similarly, for a vertex v E VB, if N(v) n VB = 0 then

us, vt E E.

'The definitions of VA and VB depend on the choice of s, t; however, their reference will be omitted as
it can be easily understood from the context.

CHAPTER 2. QUASI-PLANAR ROUTING

Proof: We argue by contradiction: suppose there exists a vertex v E VA such that

N(v) n VA = 0, and us 4 E. Index the neighbours ul , u2, . . . , up of v such that Lulvu2 <
L U ~ V U ~ < . . . < Lulvup. By convexity of the outer underlying face, it follows that no

vertex lies outside cone(u1, v, up). Therefore, s is contained within the convex hull of

{v, u,, ~ i + l) for some i. But v, u;, and ui+l are all on the same underlying face, which,

being convex, must have an empty interior. This shows that v must be adjacent to s;

similarly, vt E E.

The same argument applies to a vertex in VB.

2.1.1 The QUASI-PLANAR algorithm

We now describe an O(1)-memory routing algorithm that guarantees delivery on quasi-

planar graphs. For the remainder of this section we will omit reference to the choice

of underlying planar graph for a given quasi-planar graph; the results hold for any

such choice. The QUASI-PLANAR algorithm traverses vertices within the underlying

st-crossing faces, using the left- and right-hand rules (i.e., using the functions ccw and

CW) when v E V, and v E VB, respectively; see Algorithm 2.

Routing from s to t is trivial when s = t or st E E; we therefore assume that s and

t are distinct and non-adjacent, and for brevity in the following algorithm we refrain

from explicitly checking for the trivial cases.

As is typical of other algorithms using the face routing technique, the QUASI-
PLANAR algorithm only requires enough memory to remember s, t, and one other

reference vertex x; this latter vertex is used to store information about the current

underlying face. Whenever the current vertex v is in VA, x will be in VB, and vice versa.

Finally, QUASI-PLANAR requires a rule R that will determine the next vertex from

the neighbours of the current vertex v. First suppose v E VA, and hence x E VB. Let

bl, b2 , . . . , bp, a be a counterclockwise sequence around v from x, where p 1 0, bi E VB,

and a E VA. Although the set {bl, b2, . . . , bp) may be empty (that is, p = 0 is possible),

Lemma 2.1 guarantees the existence of a. We require that the function R(v, x) evaluate

to an element from the (non-empty) set {bl, b2,. . . , b,, a); see Figure 2.2.

For sake of simplicity, we abuse notation and also refer to R(v,x) when v E VB

and x E VA, with the understanding that R is symmetric about st. That is, R(v, x) E

{al, a2,. . . , a,, b) where al, a2,. . . , a,, b is a clockwise sequence around v from x, q 2 0,

CHclPTER 2. QUASI-PLANAR ROUTING

Figure 2.2: The current vertex is v ; candidates for the next vertex are {bl, . . . , b,, a).

ai EVA, and b E VB.

As we will prove shortly, the particular choice of R does not affect the correctness

of the algorithm on quasi-planar graphs.

Theorem 2.2 Given a quasi-planar graph Q and distinct, non-adjacent vertices s, t E

V(Q), the QUASI-PLANAR algorithm successfully routes from s to t.

Proofi We will show that v and x are on the same underlying face during the execution

of QUASI-PLANAR. Furthermore, let lk denote the point of intersection of v x with st

after the kth iteration of the while loop. We will also show that if v # t after the k-th

iteration, then lk exists and s 4 lo 4 . . . 4 lk 4 t where 4 is the natural ordering along

st.

The intersection points lk are determined by pairs of distinct vertices in Q, so the

sequence lo, 11, . . . has at most terms. The while loop iterates as long as vt $! E,

resulting in a new intersection point with each iteration. Therefore, since this sequence

of points is finite, it follows that after some iteration, vt E E. The while loop then

terminates and v reaches t at step 25.

Thus, it remains to prove the above two claims (Claims 2.1 and 2.4 in what follows).

We proceed by induction on k, the number of iterations of the while loop in steps 4-24.

Claim 2.1 Vertices v and x are on the same underlying face.

Proofi This is certainly true after steps 2 and 3. For k 2 1, first suppose v E VA. If

R(v, x) = a, then the argument is as follows. The vertex a is the first neighbour of v

CHAPTER 2. QUASI-PLANAR ROUTING 2 1

Algori thm 2 Quasi-Planar Routing
1: procedure QUASI-PLANAR(Q, s, t , R)

v + C C W (S , t)
x + c w (s , t)
whi le vt $ E d o

i f v E VA then
Find the counterclockwise sequence bl , b2, . . . , b,, a around v from x , where

p > O , a ~ VA a n d b i ~ VB, 15 i 5 p .
if R (v , x) = a then

x + bp
v t a

e lse b in this case R (v , x) = bk for some k , 1 5 k < p
x t v
v + bk

end if
else ~ V E V B

Find the clockwise sequence al, a2,. . . , a,, b around v from x , where q 2 0,
b~ VB andai E VA, 15 i < q.

if R (v , x) = b then
x + a,
v t b

e lse D in this case R (v , x) = ak for some k , 1 < k 5 q
x t v
v + a k

e n d if
e n d if

e n d whi le
v t t

26: e n d procedure

counterclockwise from vb,, so after the updates x + b, and v t a, the vertices v and x

will be on the same underlying face. If R (v , x) = bk, 1 5 k < p, then after the update, v

and x will be adjacent and hence must be on the same underlying face.

If v E VB the argument is similar. 0

Cla im 2.2 I f v E VA, then for every 0 < i < p, the vertices v , bi, bi+l are on the same

underlying face. Moreover, the vertices v , b,, a are on the same underlying face. Similarly

if v E VB, then for every 0 5 i < q, the vertices v , ai, ai+l are on the same underlying face,

and the vertices v , a,, b are on the same underlying face.

Proof: We only consider the case v E VA in detail; the other case is similar. For i 2 1 the

CHAPTER 2. QUASI-PLANAR ROUTING

statement follows since bi+l is the first neighbour of v counterclockwise fiom vbi. Thus,

suppose i = 0, so we must show that v, x, and bl are on the same underlying face. If

vx E E, the argument is the same as above: vx and vbl are radially adjacent edges. On

the other hand, if vx $ E, let u = cw(v, bl) . Then the vertices v, bl , u lie on the same

underlying face f . Now, since x is contained in cone(u, v, bl), and fiom Claim 2.1, it

follows that x also lies on f .

The same reasoning shows that v, b,, and a are on the same underlying face.

Claim 2.3 If v E VA, then Lsvx < Lsvt, and similarly if v E VB, then Lxvs < Ltvs.

That is, the line segments vx and st intersect.

Proof: First, when k = 0, note that from the assumptions that st $ E and no three

vertices are collinear, it follows from the convexity of the underlying faces that v E VA

and x E VB exist and are well-defined after the initialisation (steps 2-3). By choice of

v and x, it is clear that v = ccw(s, x), so s, v, and x all lie on a common underlying

face f. If Lsvx > Lsvt, there are two possibilities: either 7r < Lxsv < 27r, or t is in the

convex hull of s, v, and x. Because f is convex and the angle Lxsv is an interior angle,

0 < Lxsv < 7r, eliminating the first case. On the other hand, t cannot be in the interior

off , so t is not in the convex hull of s, v, and x. Therefore Lsvx < Lsvt, establishing

the basis of the induction.

Now assume that after k iterations of the w h i l e loop, the desired property holds.

By symmetry, we may without loss of generality assume that currently v E VA, and

consequently x E VB.

During the k + l-st iteration, first suppose that R(v, x) = a. Then v and x will

be assigned a and b, respectively, so we must show that Lsab, < Lsat. Towards a

contradiction, suppose that Lsat < Lsab,. Then t lies within the convex hull of v, bi,

and b,+l for some 0 5 i < p, or within the convex hull of v, b,, and a; see Figure 2.3.

But each of these triples lies on an underlying face, by Claim 2.2, which by convexity

cannot contain t, a contradiction.

If, on the other hand, R(v, x) = bi for some i > 0, then v and x will be assigned bi

and v, respectively, and we must show that Ltbiv < Ltbis. To this end, suppose that

Ltbis < Ltbiv. Then either 7r < Lxvt < 27r or 0 < Lxvt < xvb;. The first case contradicts

the induction step, so suppose that 0 < Lxvt < xvb;. Then for some 0 5 j < i, t lies

Figure 2.3: Invalid position for t when R(v, x) = a

within the convex hull of the vertices v, bj, bj+l, as shown in Figure 2.4. However, by

Claim 2.2, this is impossible. 0

Figure 2.4: Invalid position for t when R(v, x) = bi

Claim 2.4 Suppose v # t. Then s 4 lo . . . 4 L k 3 t where 3 is the natural ordering

along st.

Proof: It follows from Claim 2.3 that l j is well-defined (i.e., the intersection of vx with

st exists) and that s 4 l j 4 t for all 0 I j < k. We now assume for some 0 I j < k that

v E VA; the ease v E VB is similar.

Since all underlying faces are convex, the angle between any radially adjacent edges

is less than T. Therefore, the point of intersection of st with vbi precedes that of st with

~ b , + ~ for all 0 _< i < p, and the point of intersection of st with vbp precedes that of st

with bpa. Regardless of the choice of R(v, x), we must then have lj 4 lj+1. 0

This concludes the proof of Theorem 2.2.

CHAPTER 2. QUASI-PLANAR ROUTING

Observe that QUASI-PLANAR runs in polynomial time since the intersections lk are

determined by the vertices v, x, s, and t, and there are at most choices for v and x.

Moreover, the algorithm only uses those underlying faces crossing the line segment st.

2.1.2 Rules for choosing the next vertex

 elo ow we list several natural choices for the rule R. The first three are greedy variants

adapted for the QUASI-PLANAR algorithm; specifically, Rules 1,2, and 3 are analogous

to GREEDY, COMPASS, and GREEDY-COMPASS, respectively.

Rules 4 and 5 use network load information (assuming it is locally accessible) to

choose vertices with minimum load, with the objective of keeping the maximum net-

work load over all vertices as small as possible. Rule 4 chooses the vertex with least

load from the entire set of candidates {load(bl), . . . , load(bp), load(a)). However, slav-

ishly taking minimum-load vertices in this way typically produces very long and indi-

rect s, t-paths; thus, a single message sent with Rule 4 may not significantly increase

the maximum network load, but many such messages will cumulatively have a catas-

trophic effect on the network. Much better is the refinement in Rule 5, which restricts

Rule 4 to the (GREEDY-COMPASS-like) choice of bp or a.

1. R(v, x) = argmin{dist(bl,t), . . . , dist(bp, t), dist(a, t))

2. R(v, x) = argmin{Lbpvt, Ltva)

3. R(v, x) = argmin{dist(bp, t), dist(a, t))

4. R(v, x) = argmin{load(bl), . . . , load(bp), load(a))

5. R(v, x) = argmin{load(bp), load(a))

6. R(v, x) = a

The simplest choice, Rule 6, effectively ignores all st-crossing edges; it is easy to

see that this rule is equivalent to FACE-2 showing that QUASI-PLANAR generalises

FACE-2.

Obviously Rule 6 is a poor choice for R under most circumstances. However, it plays

an integral r81e in the SPIRAL algorithm in Chapter 3, so we end this section with the

following observation.

CHAPTER 2. QUASI-PLANAR ROUTING

Since v and z are always on the same underlying face, and the QUASI-PLANAR

algorithm progresses along st-crossing faces, it follows that at least one endpoint of

every st-crossing edge in the underlying planar graph will be visited during the course

of the algorithm. Moreover, if v is at the endpoint of such an edge (say v E VA), then

the other endpoint is either z or in the set {a, bl, . . . , b,). Now, as written, the choice

of next vertex never includes z, for the obvious reason that the algorithm should not

cycle. However, when using Rule 6, note that we can modify the algorithm to include z

in the set of candidates - this is a trivial change since the rule will never choose z, but

it allows us to say that the algorithm considers all st-crossing edges in the underlying

planar graph when using Rule 6.

2.1.3 Analysis

Let us consider the behaviour of the QUASI-PLANAR algorithm in an idealised setting.

Since QUASI-PLANAR only travels across underlying st-crossing faces, and never re-

turns to a previously visited face, we might examine how QUASI-PLANAR performs on

a single face to get an idea of the algorithm's performance on a general quasi-planar

graph. In particular we will show that the behaviour of QUASI-PLANAR on a face is

comparable to that of GREEDY and COMPASS. In this section we assume that QUASI-

PLANAR is using Rule 1, i.e., R(v, z) = argmin(dist (bl, t), . . . , dist(b,, t), dist(a, t)).

Let the underlying planar graph be a cycle C whose vertices are embedded on a cir-

cle. Since scaling does not affect the behaviour of QUASI-PLANAR, GREEDY, or COM-

PASS, we may assume that the circle has diameter 1. Let Q consist of this underlying

graph along with an arbitrary number of chords.

We will now show that QUASI-PLANAR performs as effectively as GREEDY and

COMPASS on Q. More precisely, all three algorithms follow the same s, t-path for all

choices of s and t.

: Theorem 2.3 Let Q be a quasi-planar graph as described above, and let s, t E V(Q).

Then the QUASI-PLANAR, GREEDY, and COMPASS algorithms visit the same sequence
of vertices when routing from s to t.

Proof We will first prove that GREEDY and COMPASS visit the same sequence of ver-

tices. Let v be the current vertex, and let u E N(v). Let 9 = Ltvu, and consider 9 to be

CHAPTER 2. Q U A S I - P ~ N A R ROUTING

an angle in the range (-T, T). Observe that of the two neighbours of v in the underlying

graph C, the closer one tot is also the one minimising angle to t, and that this angle is

no greater than ~ / 2 . Therefore we may assume that 0 E (- ~ / 2 , ~ / 2) .

Since U, v, t are on a circle of diameter 1, the line segment ut has length sin 0. There-

fore u will be chosen by GREEDY as the next vertex if it minimises (sin01. But since

0 E (- ~ / 2 , ~ / 2) , minimising I sin01 is equivalent to minimising 101, which is the crite-

rion used by COMPASS. Finally, at least one of v's neighbours is strictly closer to t than

v is, so GREEDY and COMPASS must terminate.

We now prove that GREEDY and QUASI-PLANAR visit the same sequence of ver-

tices. By choice of the rule, QUASI-PLANAR will select either cw(v,t) or ccw(v,t) as

the next vertex. Let the closer of these to t be called U. Clearly, GREEDY selects u as

the next vertex, so we must only show that QUASI-PLANAR does so as well.

Finally, it is clear from the choice of R that QUASI-PLANAR makes the same choices

as GREEDY.

On the other hand, these three algorithms can have arbitrarily bad dilation on such

graphs. Let the underlying cycle be C = U O U ~ . . . u ~ ~ - ~ u o , and add chords U O U ~ and ulun,

as shown in Figure 2.5. Let s = uo and t = un. Then GREEDY clearly takes the path

P = U O U ~ U ~ . . .un, whereas the shortest s, t-path is U O U ~ U ~ ; the dilation of P is 9.

Figure 2.5: QUASI-PLANAR, GREEDY, and COMPASS can have arbitrarily bad dilation.

The behaviour of QUASI-PLANAR differs from that of GREEDY and COMPASS on

more complex quasi-planar graphs, since QUASI-PLANAR is restricted to the faces in-

tersecting st and only moves to the next face when at an endpoint of an st-crossing

CHAPTER 2. QUASI-PLANAR ROUTING

edge, while the latter algorithms ignore any inherent facial structure.

It is straightforward to construct quasi-planar graphs where GREEDY and COM-

PASS have arbitrarily better performance than QUASI-PLANAR, for example by draw-

ing a path of length two between s and t whose edges are not incident to any st-crossing

faces. On the other hand, in the introduction we saw that GREEDY and COMPASS do

not even guarantee success on convex embeddings. Thus, in light of these examples

and Theorem 2.3, we can expect the three algorithms QUASI-PLANAR, GREEDY, and

COMPASS to be roughly comparable on "average" quasi-planar graphs, but to differ in

some pathological cases.

2.2 QFQ: a hybrid algorithm for unit disk graphs

In Chapter 1 we described the GFG algorithm for unit disk graphs; recall that GFG

alternates between GREEDY and face routing on the Gabriel subgraph, using FACE-1

only when GREEDY fails (i.e., reaches a vertex u whose distance to t is lesser than all

of its neighbours'), and reverting to GREEDY as soon as possible (i.e., after finding a

vertex w such that dist(w, t) < dist(u,t)). We now show how to build a similar hybrid,

QFQ, by combining QUASI-PLANAR with face routing on the Gabriel subgraph. For

the remainder of this section we assume that the graph under consideration is a unit

disk graph.

Clearly, any routing algorithm that does not cycle (but possibly terminates before

reaching the destination) can be analogously combined with FACE-1 to produce a hy-

brid algorithm that guarantees delivery on unit disk graphs. Naturally we are inter-

ested in using QUASI-PLANAR as the base algorithm; hence we must first modify the

algorithm to make it more robust.

Whereas GREEDY uses distance from t as a measure of progress, QUASI-PLANAR

uses the points of intersection vznst, as we saw in the proof of Theorem 2.2. As written,

QUASI-PLANAR does not explicitly determine these points, but since the necessary

calculation uses only v,z,s, and t, we can carry out the calculation locally at every

iteration to measure progress. Thus we will store a point p on st to this end: initially,

p = s, and at every iteration, calculate 1, = wz, n st for every candidate w for the next

vertex, where z, is the position that would be stored as z if w were chosen. If no such

1, satisfies p 4 1, 4 t, then we consider QUASI-PLANAR to have failed, and switch

CHAPTER 2. QUASI-PLANAR ROUTING

to face routing on the Gabriel subgraph. Otherwise, choose a vertex w satisfying the

given condition (the rule R can be extended to account for this choice), replace p with

l,, move to w, and continue. Conversely, in face routing mode, at every iteration check

whether some neighbour w of v is the endpoint of an st-crossing edge vw and satisfies

p 4 1, 4 t, where 1, = vw n st. If so, choose such a vertex w (again with an extension of

R), let x = w, update p, and revert to QUASI-PLANAR.

We call the resulting hybrid algorithm QFQ. By design, the algorithm obviously

guarantees delivery on both quasi-planar graphs and unit disk graphs. Of course,

we may also use QFQ as a heuristic on graphs that are "almost" unit disk graphs -

for example, faulty unit disk graphs (see Section 1.4.5). Moreover, it is reasonable

to expect that QFQ outperforms GFG on such graphs when the faultiness 6 is high:

GREEDY is less robust than QFQ, switching into face routing mode more ofken, and

the Gabriel subgraph becomes less predictable (and Yess planar") as 6 increases.

Indeed, experimental results seem to confirm this hypothesis. A full series of tests

is planned for the journal version of this chapter.

2.3 Quasi-polyhedral routing in It3

In this section we extend the notion of quasi-planar graphs to quasi-polyhedral graphs

in R3, and describe a routing algorithm on these graphs.

2.3.1 Quasi-polyhedral graphs

Let V be a set of vertices in R3, not all coplanar, and let Po be the convex hull of V.

Consider a geometric graph G = (V, E). If the edges of G determine a set of convex

polyhedra such that any two polyhedra are either disjoint or intersect in exactly one

vertex, edge, or face, and if moreover their union is Po, then we say G is a polyhedral

graph. We use P to denote the set of these polyhedra along with Po, and call Po the

outer polyhedron of G. Note that P is not necessarily uniquely determined by (V, E),

but this is not important for our purposes.

'Incidentally, observe that we can use the same principle to extend QUASI-PLANAR for more general
quasi-planar graphs where we relax the assumption that fo is convex. An agent can switch into a face
routing mode on fo when necessary, and revert to the standard QUASI-PLANAR procedure after finding
an st-crossing edge on fo that indicates progress towards t.

CHAP!l"ER 2. QUASI-PLANAR ROUTING

The intersection of any two polyhedra in P is either empty, or consists of a vertex,

edge, or polygonal face in G. Let F be the set of all faces determined by P. We say

f E F is a face of the polyhedron P E P iff n P = f . A polyhedral graph G may now be

described by the 4-tuple (V, E, F, P).

For three distinct, not necessarily adjacent vertices a, b, c E V, denote by Aabc the

triangle with vertices a, b, c. A 3-cycle abc is a triple of pairwise adjacent vertices a, b, c E

v.
As in the previous section, we will assume that no three vertices are collinear. We

similarly assume that no four vertices are coplanar, so that every face in F is a triangle.

Note, however, that not every 3-cycle is a face. For example, consider a polyhedral

graph G consisting of two tetrahedra with vertices {a, b, c, x) and {a, b, c, z) joined along

the common face abc. Add a vertex y in the interior of G adjacent to all five existing

vertices. The 3-cycle abc is no longer a face of any polyhedron, since Aabc intersects

either xy or yz. This is shown in Figure 2.6.

Figure 2.6: The pairwise adjacent vertices a, b, c compose a 3-cycle, but not a face. There
are six polyhedra in the graph: the tetrahedra with vertex sets {a, b, x, y), {b, c, x, y),
{c, a, x, y), {a, b, y, z), {b, c, y, z), and {c, a, y, z). The polyhedron {c, a, x, y) is shaded in
the figure.

As an analogue of quasi-planar graphs, we now add chords to a polyhedral graph,

so long as the chords join vertices on the same polyhedron (except the outer polyhedron

Po). That is, for some polyhedral graph G = (V, E , F, P) , construct Q = (V, E U E', F, P) ,

where each edge in E' joins two vertices of a polyhedron P E P \ {Po). We say that Q is

a quasi-polyhedral graph, and that G is an underlying polyhedral graph of Q (G is not

CHAPTER 2. QUASI-PLANAR ROUTING

necessarily unique for Q). For brevity, we will usually use the term polyhedron rather

than the more formal underlying polyhedron.

2.3.2 The QUASI-POLYHEDRAL algorithm

Similarly to the planar face-routing algorithms, QUASI-POLYHEDRAL travels only through

polyhedra intersecting the line segment s t . Whereas QUASI-PLANAR uses only one ref-

erence vertex x, QUASI-POLYHEDRAL storestwo reference vertices x and y, maintain-

ing the properties that v, x, y are on the same polyhedron P , and that Avxy intersects

st .

Figure 2.7: Candidates for the next vertex include a and by which are feasible and
forward. The other neighbours of v are not candidates since they are infeasible (c , f),
backward (dye, f), or both (f). The diagram also depicts the plane through Avxy.

We will call a neighbour u of v feasible if there exists a polyhedron P E P whose

vertices include v, x, y, and u; otherwise u is infeasible. A feasible face is a face whose

vertices are all feasible. A face with at least one infeasible vertex is an infeasible face.

Note that a feasible vertex can be a member of many infeasible faces. A vertex u E N(v)

is said to be a forward vertex if u is separated from s by the plane through Avxy.

Otherwise, u is a backward vertex. An example illustrating these definitions is depicted

in Figure 2.7. To determine the first move from s (i.e., the first location of vertex v) and

the initial reference vertices x and y, QUASI-POLYHEDRAL uses a subroutine FIND

FEASIBLE INITIALISATION (FFINIT). Then QUASI-POLYHEDRAL progresses towards

t in each iteration, using a subroutine FIND FORWARD FEASIBLE NEIGHBOUR (FFF)

to choose the next vertex from the feasible forward neighbours of the current vertex v.

CHAPTER 2. QUASI-PLANAR ROUTING

These subroutines are similar to the corresponding computations in QUASI-PLANAR;

in particular, FFINIT is analogous to steps 2- 3 and FFF to steps 6 and 15. However,

there is a subtle geometric complication that requires some explanation, so we delay

the descriptions of these subroutines until Section 2.3.3.

Algorithm 3 Quasi-Polyhedral Routing
1: procedure QUASI-POLYHEDRAL(Q, s, t, R)
2: {v, x, y} + FFINIT(Q, s, t)
3: while vt @ E do
4: W + FFF(Q, s, t, v, x, Y)
5: if Awxy intersects st then

7: else if Avwy intersects st then

9: Y C V

10: V + W

11: else
12: Y C X

13: x + v
14: v + w
15: end if
16: end while
17: v + t
18: end ~rocedure

D Avxw htersects st

Assuming the correctness of FFF and FFINIT for now, we prove that QUASI-POLYHEDRAL

(Algorithm 3) successfully routes on quasi-polyhedral graphs.

Theorem 2.4 Given a quasi-polyhedral graph Q and distinct, non-adjacent vertices
s, t E V(Q), the QUASI-POLYHE DRAL algorithm successfully routes from s to t.

Proof: The proof is structured analogously to the proof of Theorem 2.2. We will show

that v, x, and y are on the same underlying polyhedron during the execution of QUASI-

POLYHEDRAL. Furthermore, let 11, denote the point of intersection of Avxy with st

after the kth iteration of the while loop. We will also show that if v # t after the k-th

iteration, then 11, exists and s 4 lo 4 . . . 4 lk 4 t where 4 is the natural ordering along

st.

The intersection points lk are determined by triples of distinct vertices in Q, so

the sequence lo, 11, . . . has at most (I:/) terms. The whi 1 e loop iterates as long as

CHAP!l'ER 2. QUASI-PLANAR ROUTING

vt 4 E, resulting in a new intersection point with each iteration. Therefore, since this

sequence of points is finite, it follows that after some iteration, vt E E. The while loop

then terminates and v reaches t at step 17.

Therefore, it remains to prove the above two statements (Claims 2.5 and 2.7 in what

follows). We proceed by induction on k, the number of iterations of the while loop in

steps 3-16.

Claim 2.5 Vertices v, x, and y are on the same underlying polyhedron.

Proof For k = 0, this follows from the choice of x and y from FFINIT in step 2. For k 2 1,

FFF finds a feasible vertex w in step 4. By definition, w is on the same polyhedron as

v, x, and y. Steps 5-15 only permute the vertices v, x, and y, and one of them is assigned

w. This maintains the desired property. 0

Claim 2.6 The intersection point lk is well-defined, i.e., the triangle Avxy intersects the

line segment st.

Proof Let 1 be the line through st. We will first prove that Avxy intersects 1, then use

this to show that the point of intersection lies on the line segment st.

When k = 0, Avxy intersects 1 at s since v = s. For k > 0, suppose that Avxy

intersected 1 after the k-1st iteration of the while loop. Let w be the vertex chosen by

FFF in step 4 during the k-th iteration of the while loop. We will show that at least

one of the triangles Awxy, Avwy, Avxw intersects 1.

Project V onto a plane S perpendicular to 1, denoting the image of a vertex u by G.

Then the line 1 is projected onto one point i. The images .ir, 2, and jj are distinct since

Avxy intersects 1, and no four vertices are coplanar.

Let C,, be the reflection of cone(?, i, 6) through its axis of symmetry across i, as

shown in Figure 2.8. For any u E V, it is clear that Auxy intersects s if and only if C,,

contains ii.

Define C,, and C,, similarly. Then CXy~C,,~C, = S, so at least one of AGfS, AGGjj, A&?&

contains s^. Finally, a triangle intersects 1 in the original graph if and only if its projec-

tion onto S contains i.

It follows from steps 5-15 that Avxy intersects 1 at the end of the k-th iteration;

call the point of intersection lk. We now show that 11, must lie on the line segment st.

CHAPTER 2. QUASI-PLANAR ROUTING

Figure 2.8: The cone C,,.

Since lo = s, we can assume that k > 0 and that lk-l lies on st. Let w be the

vertex chosen by FFF in step 4. Then, since w is a forward feasible neighbour of v,

the vertices v, x, y, and w lie on a polyhedron P; also, w and t are on the same side of

the plane through Avxy. Therefore, if lk does not lie on st, t must be contained in P , a

contradiction. It follows that one of Awxy, Avwy, Avxw intersects st, so w will replace

one of v, x, y in steps 5-15 such that the desired property is maintained. 0

Claim 2.7 Suppose v # t. Then s + lo + . . . + lk + t where + is the natural ordering

along st.

Proof: It follows •’kom Claim 2.6 that l j is well-defined (i.e., the intersection of Avxy

with st exists) and that s + l j + t for all 0 5 j 5 k.

Since all underlying polyhedra are convex, the angle between Awxy and Avxy is

less than T. The same holds with respect to Avxy for triangles Avwy and Avxw. There-

fore, l j + l j+ l for all 0 < j < k. 0

This concludes the proof of Theorem 2.4. rn

QUASI-POLYHEDRAL runs in polynomial time: since the intersections lk are deter-

mined by the vertices v, x, y, s, and t, and there are at most (1;') choices for v, x, and

y. Moreover, the algorithm only uses those underlying polyhedra properly intersecting

the line segment st.

CHAPTER 2. QUASI-PLANAR ROUTING

2.3.3 The FFINIT and FFF subroutines

In this section we describe both the FIND FEASIBLE INITIALISATION (FFINIT) and

FIND FEASIBLE FORWARD NEIGHBOUR (FFF) algorithms and prove their correctness.

First we need some definitions.

An oriented plane in R3 is a plane S along with two spanning vectors a and b that

play the r6les of the standard unit vectors [lOIT and [O1lT, respectively, in R2. We say

that S has orientation (a, b). The orientation makes it possible to measure clockwise

and counterclockwise angles on S.

Let C = vab be a 3-cycle, and let S be an oriented plane through v intersecting ab

at some point m. Let u be a point (not necessarily a vertex) on S. Then LsuvC denotes

the counterclockwise angle Luvm from u to m around v, as measured on S; similarly

LsCvu denotes the angle Lmvu. See Figure 2.9.

This naturally suggests functions ccws(v, u) and cws(v, u) that return the 3-cycle

C minimising the non-zero angle LsuvC, respectively LsCvu, such that ab intersects S.

Note that C is not necessarily unique; for our purposes it is enough to choose a 3-cycle

with minimal angle.

Figure 2.9: S is an oriented plane through v, and intersecting ab; u is a point on S. The
angle on S from vu to the 3-cycle vab is 6 = Luvm where m = ab n S.

We will use these functions in FFINIT and FFF to find initial vertices v, x, y, and

candidates for the next vertex, respectively. However, there is one issue to consider be-

fore implementing them. Recall Figure 2.6, which showed a non-facial3-cycle. Observe

that in this example, yz intersects Aabc, while no edge intersects Aayz, as shown in

Figure 2.10(a). This indicates a means of identifying some of the "bad" 3-cycles in the

graph.

CHAPTER 2. QUASI-PLANAR ROUTING

Figure 2.10: (a) The edge yz of the 3-cycle ayz intersects the triangle Aabc. (b) The
3-cycle vala2 dominates vblb2.

Let C, = vala2 and Cb = vblb2 be 3-cycles, with al , a2, bl, b2 distinct. Suppose that

the line segment blb2 intersects Avala2; see Figure 2.10(b). Then we say C, dominates

Cb. If a 3-cycle C dominates another 3-cycle, then C is a dominating 3-cycle.

We will call the feasible faces incident to v cap faces; see Figure 2.11. As we show in

Lemma 2.5, it is impossible for a cap face to dominate another 3-cycle through v . This

allows us to safely ignore all dominating 3-cycles.

Figure 2.11: The five faces vala2, . . . , vasal are cap faces. The portions of the faces
on the forward side of the plane through Avzy are lightly shaded, and the forward
portions of the edges are bold.

Lemma 2.5 Let f = vala2 be a face. Then f does not dominate any other 3-cycle

through v.

Proof: Let f be a face of some polyhedron P E P. Towards a contradiction suppose f

dominates a 3-cycle v b l b . Then blb2 intersects f . Therefore blb2 intersects P , and by

convexity of the polyhedra and definition of quasi-polyhedral graphs, at least one of the

CHAPTER 2. QUASI-PLANAR ROUTING 36

b,, say bl, is contained in P. But since blb2 intersects f , b2 must be outside P. Since P

is convex and blb2 intersects f , bl b2 4 E U E', a contradiction. 0

The FFINIT subroutine proceeds as follows. First, it chooses an arbitrary oriented

plane S through st. Then, by repeated application of ccws, it finds the first non-

dominating 3-cycle sala2 counterclockwise from t around s. It then finds the first non-

dominating 3-cycle sbl b2 clockwise fiom t around s. The vertices al, a2, bl, b2 lie on the

same polyhedron, and three of them must form a triangle intersecting st. These three

will be the initial assignments to v, x, and y.

Algorithm 4 Find Feasible Initialisation
I: procedure FFINIT(Q, s, t)
2: Let S be an oriented plane through st.
3: l t s
4: repeat
5: sala2 + ccws(s, 1)
6: 1 + ala2 n S
7: until sala2 is not a dominating cycle
8: its
9: repeat

10: sblb2 + CWS(S, 1)
11: 1 + blb2nS
12: until sblb2 is not a dominating cycle
13: return three of {al, a2, bl , b2) that form a triangle intersecting st.
14: end procedure

Theorem 2.6 Let P be the polyhedron through s that intersects st \ s. The FFINIT

algorithm returns three vertices lying on P, and the triangle formed by these vertices

intersects st.

Proof Let S be an oriented plane S through st. For simplicity, we may assume that S

passes through no vertices other than s and t, so that there are exactly two cap faces

of P that intersect S \ s. Call these cap faces fa and fb, where 0 < Lstsf, < .rr and

0 < Ls fbst < T .

By Lemma 2.5, fa and fb do not dominate any 3-cycle through s, so both repeat

loops terminate.

CHAPTER 2. Q U A S I - P ~ A R ROUTING 3 7

Let C = sala2 be the first non-dominating 3-cycle counterclockwise from t around

s, i.e., the final 3-cycle determined by the repeat loop in steps 4-7. We will show that

a1 and a2 lie on P.

If C is a cap face, we are done; therefore, suppose that C is not a cap face. It follows

that 0 < LstsC < Lstsfa. Then, since P intersects st \ s and fa \ s, and P is convex,

P intersects AC \ s. Now, towards a contradiction, suppose that a1 does not lie on P.

Since P intersects AC \ s, and a1 is not on P and lies on C, AC \ s must intersect some

cap face f . By Lemma 2.5, f does not dominate C, so C must dominate f . But this is

impossible by choice of C. Therefore a1 must lie on P. The same reasoning shows that

a2, bl and b2 lie on P.

We now show that (at least) one of the four triangles Aala2b1, Aala2b2, Aalblb2,

Aa2blb2 intersects st. Project V onto a plane T perpendicular to st, denoting the image

of a vertex u by C. Then st is projected onto one point 2, and the plane S is projected

onto a line 9. Both and b;g2 intersect 9, and the points of intersection lie on

different sides of 3. Therefore, 3 is in the interior of the quadrilateral with vertices

a^l,a^2,&,62, so one of the four triangles ~ & a ^ 2 b ; , ~ & c i ~ & , ~ d l b ; 6 ~ , ~ a ^ ~ b ; 6 ~ contains 3.

Since P is convex and intersects st \ s, the corresponding vertices in V form a triangle

intersecting the line through st, and in particular, the point of intersection must lie on

the line segment st. 1

Suppose v, x, and y are on the same polyhedron P, and that Avxy intersects st. To find

a feasible forward neighbour of v, FFF uses the same technique as FFINIT: it finds the

first non-dominating 3-cycle through v counterclockwise from Avxy and returns one of

the endpoints.

Theorem 2.7 m e FFF algorithm finds a forward feasible neighbour of v.

Proof: First, the point of intersection 1 = Avxy n st is well-defined by the above as-

sumption on the vertices v, x, y. Let P be the polyhedron through v, x, and y; if these

vertices lie on two polyhedra, then consider P to be the one whose intersection with st

is closer to t. We can therefore imagine ccws to be sweeping through the interior of P

to find successive 3-cycles.

C m E R 2. Q U A S I - P W A R ROUTING 38

Algorithm 5 Find Forward Feasible Neighbour
1: procedure FFF(Q, s, t, v, x, y)
2: Let 1 = AVXY n st.
3: Let S be the plane through v, 1, and t, with orientation (It, lv).
4: repeat
5: val a2 +- ccws(v, 1)
6: 1 t alaz n S
7: . until valaz is not a dominating cycle
8: return a forward vertex from {al, az).
9: end procedure

The repeat loop in steps 4-7 terminates, since a cap face of P is valid by Lemma 2.5.
. Let C = valaz be the 3-cycle determined by the repeat loop. The same methods as in

the proof of Theorem 2.6 show that a1 and a2 must lie on P.

Finally, by convexity of P and the choice of orientation of S, 0 < LslvC < T , so

(C \ v) n S lies in the forward region, i.e., every point of (C \ v) n S is separated from s

by Avxy. Therefore, since alaz c (C \ v), a1 and a2 cannot both be backward vertices.

H

Note that both FFINIT and FFF run in polynomial time, and only use v, x, y, s, and

t for their computations.

Chapter 3

Quasi-planar geocasting

3.1 The SPIRAL geocasting algorithm

In this section we present an algorithm, SPIRAL, that visits each vertex in a specified

circular region of a quasi-planar graph Q at least once. The algorithm can easily be

modified to search any convex region whose boundary can be determined with O(1)

information.

Let Q = (V, E u E') be a quasi-planar graph and let G = (V, E, F) be an underlying

planar graph for Q. As in Chapter 2, G is not provided to or calculated by the agent

running the algorithm; it is used only in the proofs.

Let D(c, r) be the open disk centred at c and with radius r; when c and r are un-

derstood we will simply write D. We denote the boundary of D, i.e,, the circle centred

at c with radius r , by 8D. An edge uv is said to be a boundary edge (with respect to

D) if it intersects 8D, or if it is an edge of fo and is contained in D. Note that the

endpoints of a boundary edge may both lie outside D. An underlying boundary edge

is a boundary edge in E. A face f E F is an underlying boundary face if it contains

a t least one boundary edge; we say that fo is also an underlying boundary face in the

special case when every vertex in the graph is contained in D. For brevity we will write

only boundary face, omitting the qualifying term "underlying", since faces are defined

only on the underlying graph G. Finally, a vertex v is a boundary vertex if it is the

endpoint of a boundary edge; v is an inner boundary vertex if it is inside D, and an

outer boundary vertex if it is outside D or on fo. (Thus, a vertex is on fo and inside

CHAPTER 3. QuASI-P~%VAR GEOCASTING 40

D if and only if it is both an inner and outer boundary vertex.) Figure 3.1 illustrates

these definitions.

Figure 3.1: The boundary edges are drawn with thick lines. Note that v3v4 is a bound-
ary edge since it lies on fo, and that both endpoints of v5v6 are outside D. The (under-
lying) boundary faces include fo and the face with vertex set {vz, us, vc, us, vg ,217, v8),
but not those with vertex sets {vl, uz, us) or {v?, vg, ~10). Note that there is a unique
underlying planar graph in this example. Since v3 and v4 lie on fo and are contained
in D, they are both inner and outer boundary vertices.

We have the following result directly from the definitions.

Lemma 3.1 Suppose there exists a vertex v inside D = D(c, r) . Then there exists at

least one underlying boundary edge zy such that z and y are inner and outer boundary

vertices, respectively.

Proof: If all vertices are contained in D, then every edge on fo is an underlying bound-

ary edge, and every vertex on fo is both an i ~ e r and outer boundary vertex. Therefore

suppose that there exists a vertex w outside D. Consider any v, w-path P in the under-

lying graph. Since dist(v, c) < r and dist(w, c) >_ r, there obviously must exist an edge

xy on P for which dist(x, c) < r but dist(y, c) 2 r . This is the required edge. I)

CHAPTER 3. QUASI-PLANAR GEOCASTING

We now proceed with a description of the SPIRAL algorithm (Algorithm 6). Broadly

speaking, the algorithm travels around D, visiting some of the inner boundary vertices.

At the end of the main whi le loop (lines 2-21 in Algorithm 6), D is replaced with a

strictly smaller disk D' and the algorithm continues on Dl, unless D' is empty (in other

words, if it has negative radius). The agent stores a variable r' representing the radius

of Dl, which is updated periodically; initially r' = -1, and the algorithm terminates if

r' is still -1 at the end of the main loop. (Note that the algorithm continues in the case

when r = 0 since there may be a vertex at c.)

At the beginning of each iteration of the main loop, the algorithm calls a subrou-

tine, QP-FINDBOUNDARY (a modification of the QUASI-PLANAR algorithm described

in Chapter 2), to find an outer boundary vertex s. Then, starting from s, the agent

navigates the perimeter of D using QP-PERIMETER, another modification of QUASI-

PLANAR. As with the standard QUASI-PLANAR algorithm, QP-PERIMETER uses a ref-

erence vertex x to determine a set of candidates for choosing the next vertex. At every

iteration during its navigation, QP-PERIMETER specifies a set I (v , x) of neighbours of

the current vertex v which the agent visits in turn before proceeding around D. In the

case where v is on fo, I (v , x) = {v), and the visit is trivial. During a visit to a vertex

u E I(v, x), the algorithm updates r' according to the neighbours of u. Specifically, for

each w E N (u) inside D, it replaces r' with max{rl, dist(w, c)).

QP-FINDBOUNDARY and QP-PERIMETER are discussed in more detail in Sections 3.1.1

and 3.1.2, below.

The next lemma is the core argument in the proof of correctness of the SPIRAL

algorithm: it shows that we can use convexity to predict, to some extent, the positions

of the vertices inside D.

Lemma 3.2 Let D = D(c, r) be given. Let J be the set of inner boundary vertices inci-

dent to underlying boundary edges, and let W be the set of neighbours of J inside D,

i.e, W = N(J) n D. Let u E V \ J be contained in D. Then u E conv(W).

Proof: Towards a contradiction suppose there exists a vertex in V\ J inside D\ conv(W).

Take u to be the farthest such vertex from the set wnv(W); that is, take such a vertex

u maximising dist(u, conv(W)).

Since u 4 J , it follows that u is not on fo. Therefore, by convexity of the underlying

faces, for any specified open half-plane H whose boundary intersects u, u must have

CHAPTER 3. QUASI-PLANAR GEOCASTING 42

a neighbour w contained in H such that uw is an edge in the underlying graph. In

particular, let L be the shortest line segment from u to conv(W), and let H be the open

half-plane not containing mnv(W) whose boundary is perpendicular to L and intersects

u. See Figure 3.2. Let w be a vertex in H such that uw E E. Suppose that w is inside

D. Then w cannot be in V \ J, for by convexity and boundedness of conv(W), we have

dist(w, wnv(W)) > dist(u, c o w (W)) , but u was chosen to be the farthest vertex in V \ J

from conv(W) inside D. But neither can w be in J, for then u would be a neighbour of

a vertex in J, in which case u E W c conv(W). It follows that w is outside D, but this

is also impossible for otherwise uw would be an underlying boundary edge, implying

u E J. M

Figure 3.2: Proof of Lemma 3.2. The vertex u E V \ J is the farthest such vertex ii-om
conv(W). H is the open half-plane above the horizontal line.

Theorem 3.3 The SPIRAL algorithm finds all vertices inside the specified disk D(c, r) .

Proof We first mention that the statements of several of the lemmas used in this proof

appear in the sections below. Let D = D(c,r). First suppose that there do not exist

any boundary edges with respect to D. Then by Lemma 3.1, D contains no vertices.

By Lemma 3.4, below, QP-FINDBOUNDARY will correctly report that there do not exist

any outer boundary vertices, and SPIRAL terminates.

CHAPTER 3. QUASI-PLANAR GEOCASTLNG 43

Algorithm 6 Spiral geocasting
1: procedure SPIRAL(Q, c, r)

while r 2 0 do
r' + -1
Call QP-FINDBOUNDARY on D(c, r)
if QP-FINDBOUNDARY finds an outer boundary vertex s then

Navigate the perimeter of D(c, r) starting from s, using QP-PERIMETER
while QP-PERIMETER has not terminated do

Let the current vertex be v and reference vertex be x.
for every vertex u E I (v , x) do

Move to u
for every vertex w E N(u) inside D(c, r) do

r' + rnax{r1, dist(w, c))
end for
Return to v

end for
end while

else
Terminate

end if
r + r'

end while
22: end ~rocedure

Now suppose that there exists a boundary edge. By Lemma 3.4, QP-FINDBOUNDARY

will find an outer boundary vertex s; SPIRAL then searches the perimeter of D accord-

ing to QP-PERIMETER. Let I = U(v,x) I (v , x) and W = U(v,x) U,,,(v,x) N(u) n D, where

the (outer) unions are taken over all iterations during QP-PERIMETER'S navigation,

i.e., during the whi 1 e loop in lines 7-16 in Algorithm 6.

Let J be the set of all inner boundary vertices incident to underlying boundary

edges. By Lemma 3.8, J c I. SPIRAL visits all vertices in I during the loop in lines 7-

16; it is enough to know that it visits every vertex in J. Moreover, by ~ e d m a 3.6,

SPIRAL also visits every vertex on dD.

It remains to show that SPIRAL visits every other vertex in D during subsequent

iterations of the main loop, and that the algorithm terminates. Now, by Lemma 3.2,

we know that every unvisited vertex in D is contained in conv(W). If conv(W) = 0
then every vertex in D has been visited. The algorithm terminates correctly since r'

is not updated during the main while loop, so at end of the loop, r updates to -1;

the algorithm will terminate at the beginning of the next iteration. Evidently, if W is

CHAPTER 3. QUASIPLANAR GEOCASTLNG

nonempty, then at the end of the main loop, r will be updated to r* = rna&,w dist(w, c).

Since all vertices in W are contained in D, obviously r* < r. The new disk D(c, r*)

contains all remaining vertices in D since it clearly contains all vertices in W, and is a

convex set so D(c7 r*) > conv(W).

Finally, (at least) one vertex will be on the boundary of the new disk D(c, r*); there-

fore the number of iterations is bounded by the number of vertices in the original disk.

Therefore the SPIRAL algorithm terminates; the running time is polynomial by Lem-

mas 3.5 and 3.7.

3.1.1 The QP-FINDBOUNDARY subroutine

In this section we show how to modify the QUASI-PLANAR algorithm to find an outer

boundary vertex, starting from any vertex s. Obviously we can choose the destination

t to be a point rather than a vertex without significantly affecting the behaviour of

the algorithm. If some vertex has position t, then the algorithm will find that vertex.

Otherwise, either t is an interior point of an underlying face, or lies outside the graph.

In the first case, if t is an interior point of some edge, the algorithm will find one of

the endpoints of the edge. Otherwise, the agent will eventually reach an edge crossing

the line through s and t, but not the line segment st; at this point the agent must be

on an underlying face containing t. Finally, if t is outside the graph, the agent will

obviously reach the outer face, at which point it can terminate with failure.

We use this modified version of QUASI-PLANAR to find an outer boundary vertex

when the agent is outside D = D(c7 r). Choose c as the destination and run the (modi-

fied) QUASI-PLANAR algorithm, stopping if at any time the current vertex is a bound-

ary vertex. If D is strictly contained in some face and no chords intersect D, then the

agent can naturally identify (part OD the underlying face containing D, and report that

D contains no vertices. Otherwise, either D intersects some edge, or D is outside the

polygon determined by fo; these cases are both handled as suggested in the previous

paragraph.

On the other hand, if the agent is already inside D, then it can simply move to a

vertex farther from c than its current position is. If no such vertex exists, it must be on

fo, in which case we are done. Otherwise, it must clearly emerge from D after a finite

number of steps; when it first emerges from D it must be on an outer boundary vertex.

CHAPTER 3. QUASI-PLANAR GEOCASTING

Compare the reasoning here to the proof of Lemma 3.1.

We call this algorithm QP-FINDBOUNDARY; in summary, we state the following.

Lemma 3.4 Let D = D(c, r). Starting from any initial vertex, the QP-FINDBOUNDARY

algorithm either finds an outer boundary vertex, or reports that none exist. In the latter

case D contains no vertices.

Lemma 3.5 The QP-FINDBOUNDARY algorithm runs in polynomial time.

3.1.2 The QP-PERIMETER subroutine

Starting from an outer boundary vertex, an agent can navigate the perimeter of D

along the boundary faces by using a modified version of the QUASI-PLANAR algorithm

with Rule 6 (see Section 2.1.2). We will describe the modifications in detail but justify

them without formal proofs of correctness, since the arguments are very similar to

those in Chapter 2.

Recall that an agent routing between some pair of vertices (s,t) using QUASI-

PLANAR with Rule 6 visits only those vertices above st and remains within the st-

crossing faces. In our current setting, the boundary bD is analogous to st, with VA and

Vg corresponding to D := R2 \ D and D, respectively. In Chapter 2 we assumed for

convenience that no vertices except s and t were on the line segment st; here, in con-

trast, there will be at least one vertex on bD in nearly every iteration of SPIRAL (thus

in nearly every instance of QP-PERIMETER), but this will not cause any problems. We

will associate the (direction of the) directed line segment st with the clockwise orien-

tation of bD; the analogues of s and t in particular (i.e., initialisation and terminating

conditions) will be discussed soon.

It should be evident that in general we can analogously send an agent clockwise

around the perimeter of the disk D through the boundary faces, essentially by repeat-

edly applying the left-hand rule and skipping any edges intersecting bD (i.e., boundary

edges). There is one important exception to this behaviour. Suppose that the current

vertex v is on fo and outside D, and that the next candidate edge e incident to v inter-

sects bD but is on fo. Then the agent should take e rather than skipping it, and travel

along fo until emerging from D; note that the agent necessarily visits every vertex of

fo inside D. (In the special case where every vertex is contained in D, the agent simply

CHAPTER 3. QUASI-PLANAR GEOCASTING 46

traverses fo.) Conversely, the agent is forced inside D only on edges of fo intersecting

dD. Figure 3.3 shows an example of the agent's walk around the disk.

Figure 3.3: An agent starting from s navigates the perimeter of the disk using the
left-hand rule. It skips all boundary edges until it arrives at u, then traverses fo until
emerging from D at w. Then it resumes using the left-hand rule.

The reference vertex x is handled the same way as in QUASI-PLANAR, with two

minor changes: first, in the case where a boundary edge not on fo has both endpoints

outside D we simply ignore the edge for purposes of updating x; second, when the agent

enters D along fo we ignore x until the agent emerges from D, at which point x is set

to the previous vertex (thus x is always in D). See Figure 3.4.

Observe that a face may have arbitrarily many boundary edges, so an agent may

return t o that face many times during the routing, as demonstrated in Figure 3.5.

For such a face f, consider the subgraph Qf of Q consisting of all edges of f that lie

entirely outside D (or, if f = fo, all edges inside D). Then, from a local point of view,

the connected components of Qf effectively belong t o different faces. We can assign

multiple labels to f according to the components, so that when we say that an agent

passes through all the boundary faces in order around D, the statement is understood

in this local context.

We now discuss the algorithm's initialisation and terminating conditions. Let s be

the initial outer boundary vertex. If s is on fo, the agent begins by travelling clockwise

around fo; clearly it returns to s when and only when it has passed through every

CHAPTER 3. QUASI-PLANAR GEOCASTING

Figure 3.4: The current and reference vertices are v and x, respectively. The set of
candidates for the next vertex is {x, u2, u3); contrast with Figure 2.2. Note that U6 is
not a candidate. In several iterations, the agent will enter D along fo. When it exits
the disk at us it will update x t u4. Note that the agent exits D at us rather than us,
since us is not strictly contained in D.

boundary face. Otherwise s is outside D and not on fo. Choose a neighbour w E N(s)

such that sw is a boundary edge. If w is inside D, then let t be the point sw n dD;

otherwise, of the two points in sw n dD, let t be the closer to s. Note that t = s if and

only if s is on OD. Also set the initial reference point x to be w if w is inside D, or

some point on sw in the interior of D otherwise (say the midpoint of the chord sw n D).

It is easy to check that these initial settings for x are appropriate, i.e., that they are

analogously consistent with those in QUASI-PLANAR.

In the proof of correctness of the QUASI-PLANAR algorithm, we measured progress

towards (a vertex) t according to the successive points of intersection of vx with st;

similarly we can measure progress towards (the point) t around D by calculating the

points of intersection U X ~ ~ D . Evidently, after passing through every boundary face, the

agent will eventually arrive at t (which must be the vertex s) or a vertex v such that t is

not on the line segment vlx but is contained in cone(ul, x, v) where v' is the next vertex

that would be visited in the face routing; the algorithm then terminates. In other

words, taking + to be the natural clockwise ordering on dD in a neighbourhood oft, we

have vxndD 5 t 4 v'xndD; compare this to Claim 2.4 in the proof of Theorem 2.2. Note

CHA-PTER 3. QUASI-PLANAR GEOCASTING

Figure 3.5: The boundary face f with vertices { u ~ , . . . , u 7) has eight boundary edges
and will be visited several times by the agent. From a local point of view, however, we
can consider f to contribute distinct boundary faces with vertex sets { u l) , (2141, { U S) ,

and {us, ~ 7) .

that the terminating condition is a computation involving only the local positions v and

v', the stored values x and t, and the boundary b D (determined by the stored values

c and r). Figure 3.6 illustrates the terminating condition. Finally, although it may be

tempting to simplify the terminating condition by replacing it with the condition v = s

(i.e., terminate after returning to the starting point), such a simplification is incorrect:

the vertex s may not be reachable in the face routing; this is also shown in Figure 3.6.

This completes the discussion of the QP-PERIMETER algorithmper se; we now show

how to use it to visit all inner boundary vertices incident to an underlying boundary

edge.

In Section 2.1.2 we noted that an agent routing with QUASI-PLANAR using Rule 6

considers every st-crossing edge in the underlying planar graph as a candidate at some

time during the running of the algorithm. It follows from this, and from the observa-

tion that fo is a face in every underlying graph, that the QP-PERIMETER algorithm

similarly considers every underlying boundary edge throughout the course of the nav-

igation around D. Therefore, when the current vertex v is outside D, it can specify a

CHAPTER 3. QUASI-PLANAR GEOCAS?rNG

. Figure 3.6: (a) From the initial vertex s with inner boundary neighbour w, set t +

sw n dD. (b) Eventually the agent completes the navigation of D. The current vertex is
v; the next vertex in the face routing would be v', but the algorithm terminates since
t is contained in cone(vl, x, v). Note that if allowed to continue, the agent would never
again visit s.

set I (v , x) of vertices inside D (including x if vx E E U El) that includes all inner bound-

ary vertices adjacent to v through an underlying boundary edge. When v is outside

D, I (v , x) is naturally the set of candidates considered for the next vertex, including

x, but excluding any candidate outside D. For example in Figure 3.4, above, we have

I (v , x) = {x, u2). If v is on fo and the next vertex v' is on fo but inside D, we need not

include v' in I (v , x); it will be handled when the agent moves to v'. When v is inside

D, it is on fo and is already on an inner boundary vertex incident to an underlying

boundary edge; conversely, every vertex of fo inside D is visited during the running

of the QP-PERIMETER algorithm. At such a vertex v we define I (v , x) = {v) for no-

tational convenience. The SPIRAL algorithm calls for the agent to visit each vertex of

I (v , x) in turn; in the case when v is already inside D we consider these visits to be the

trivial walks of length 0. Thus we can guarantee that the agent visits all inner bound-

ary vertices incident t o underlying boundary edges (and possibly other inner boundary

vertices).

We summarise this section with the following lemmas, which are justified by the

discussion thus far.

Lemma 3.6 Starting from an outer boundary vertex either on fo or incident to a vertex

in D, the QP-PERIMETER algorithm passes through each boundary face (in a local

CHAPTER 3. QUASI-PLANAR GEOCASTING

sense, as described above) no more than once, except possibly for some repeated vertices

in the initial boundary face. Inparticulal; QP-PERIMETER visits every vertex on bD. 0

Lemma 3.7 QP-PERIMETER runs in polynomial time. 0

Lemma 3.8 Let u be a n inner boundary vertex incident to an underlying boundary

edge. Then u E I(v, x) for some pair (TI, x) during the course of the QP-PERIMETER

algorithm. 0

Chapter 4

Disjoint Routing in Convex
Embeddings

4.1 Overview

In this chapter we propose an extension of the standard routing problem discussed in

Chapter 1. Let G be a convex embedding with no three collinear vertices. As usual,

a source node s and a destination node t are specified. We now consider the problem

of finding multiple internally vertex-disjoint s, t-walks in G. For brevity we will often

simply write "disjoint s, t-walks".

The ability to find disjoint s, t-walks in a communications network provides a num-

ber of benefits. For example, sensitive information can be encrypted and partitioned

into several components in such a way that the original message can only be retrieved

if all components are known. The components can then be sent to the destination

along k disjoint routes, so that an adversary attempting to intercept and decrypt the

data must expend more resources by being required to compromise at least k nodes. Or,

a network may suffer from unreliable communication (e.g., data corruption) between

certain nodes; sending identical messages along disjoint routes adds redundancy at the

expense of network load. As a final example, the source vertex s may incur a cost for

each edge used by a message originating from s. If the cost is highly nonlinear with

respect to message size, then the total cost can be reduced by partitioning the message

and sending the components along disjoint routes.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

In Chapter 1 we saw that routing on a convex embedding is accomplished by using

the left- or right-hand-nde along the upper or lower halves of st-crossing faces, respec-

tively. This immediately suggests a method for finding two disjoint s, t-walks: send

one message to t using the left-hand-rule, and the other using the right-hand-nde, as

demonstrated in Figure 4.1. I t is clear from the convexity of the faces that the walks

are disjoint, since neither walk uses st-crossing edges.

Figure 4.1: W o internally disjoint s, t-walks are determined by traversing the upper
and lower halves of st-crossing faces.

As an aside, note that finding even two disjoint routes in a planar graph with non-

convex faces is a much harder problem. Consider Figure 4.2, for example. Of the two

chains of 4-cycles extending towards t, suppose that only one reaches t and that the

other is a dead end. (Note that unlike the other figures in this chapter, where most

faces are omitted for clarity, here the graph consists only of the visible faces and those

implied by ellipses). One message must pass through the vertex labelled x, but we

cannot know which one without first searching the entire graph. In our algorithms we

wish to bound any necessary searches.

In this chapter we will push one step further for convex embeddings, presenting an

algorithm for finding three disjoint s, t-walks in such graphs. The algorithm, DOUBLE-
CROSSING, can be considered an extension of the method described above for finding

two disjoint walks, but handles special cases that do not arise in the latter problem.

For the remainder of this chapter we will naturally assume that G is 3-connected.

In contrast to Chapter 2, we now take uv to denote the line segment joining u and v,

and not the line through those points.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.2: Finding two disjoint s, t-walks is challenging on a planar graph with non-
convex faces. In this graph, only the outer face is non-convex. It is not clear which
walk should use x.

4.2 Agents and scouts

We can think of s transmitting several agents responsible for carrying their respective

messages to t. The agents are independent of each other, and we disallow any direct or

indirect communication between agents. Therefore an agent- cannot, for example, ask

a neighbouring node whether it is currently hosting another agent.

On the other hand, finding Ic disjoint routes is non-trivial for Ic > 2, so we must

provide the agents with some means of computing the local geometry of G outside the

immediate neighbourhood of their current nodes. Thus we allow each agent to create

a scout that can:

manceuvre through G,

create another scout,

communicate with its parent (agent or scout), and

be deactivated (i.e., removed from existence) by its parent.

As with the agents, we restrict the scouts to O(1) memory and local geographic in-

formation. Thus, agents and scouts differ primarily in that the former deliver (possibly

very large) messages, while the latter are merely delivering topological information to

their parents without any additional information.

Consequently, although the agents are required to travel along disjoint walks, we

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

do not impose such a condition upon the scouts. That is, a scout may visit any vertex

regardless of whether it is currently hosting another agent or scout, or has done so

in the past. We assume that a scout can recognise and communicate with only its

parents, so the scouts cannot pass along information between agents, for instance.

These assumption are consistent with the motivations discussed above for the disjoint

routing problem: the interception of a scout does not compromise the security of the

main data, and the scouts carry so little information relative to the agents that we

expect their transmissions to be much less error-prone and to incur little cost.

To find three disjoint s, t-walks, we create three agents at s, each of which will run

the DOUBLE-CROSSING algorithm described below. According to the algorithm, an

agent can be in any one of three modes at any time; initially each agent is given a

different mode.

An agent running the DOUBLE-CROSSING algorithm sends out scouts in every it-

eration. The algorithm guarantees the following properties:

no agent or scout has more than one child scout in existence at any time,

a scout is only deactivated after its children have been deactivated,

a third-generation scout never creates children, and

a scout is restricted to faces incident to its starting point.

In other words, the "family tree" of an agent at any given moment consists of a path

of length at most 3. It follows that in total there are never more than nine scouts in

existence at any time, which keeps the additional network traffic to a minimum.

Furthermore, observe that the kth scout is never farther than k faces away fYom

its ancestral agent. Consequently, if every vertex can precompute and store its local

geography up to 3 faces away, we can eliminate scouts and perform all calculations

on the precomputed subgraphs. Nevertheless, we will continue to assume that vertices

are aware only of their immediate neighbours, and describe the algorithm using scouts.

CHAPTER 4. DISJOINT ROUTING I N CONVEX EMBEDDINGS

4.3 The DOUBLE-CROSSING algorithm on a sphere

We will present a disjoint routing algorithm for convex polyhedra in R3 embedded on a

sphere, and later show that the same algorithm can be slightly modified for 3-connected

convex embeddings in the plane. A well-known result by Steinitz [SR34] shows that

convex polyhedra in R3 and 3-connected planar graphs are essentially the same ob-

jects, and Tutte's Theorem lTut631, also well-known, shows that any 3-connected pla-

nar graph has a convex embedding. A convex polyhedron on a sphere is not a realistic

model for most routing applications, but it provides a symmetry that simplifies the ar-

guments in our proof of correctness; in the latter geometry the analagous arguments

would involve tedious special cases concerning the outer face fo.

Consider a convex polyhedron P embedded on a sphere, keeping the assumptions

that vertices are aware of their coordinates (now in R3) and those of their neighbours.

Any vertex v can determine the faces incident to it as follows. Choose any three dis-

tinct neighbours; these neighbours along with v itself uniquely determine the sphere S

through P. Now project all neighbours onto the plane through v tangent to S. Radially

adjacent neighbours in the projection are on the same face in P; to traverse a face in P

it is enough to store the plane through v and the two neighbours determining the face.

Let s and t be vertices on P. If s and t are adjacent, then it is trivial to find three

disjoint s, t-paths: send one agent directly &om s to t, and the other two along the faces

incident to st. We therefore assume that s and t are distinct and non-adjacent.

Choose a circle Z through st (say, the shortest circle); analogously to Chapter 2, we

will assume for simplicity that (the projections of) no three vertices on P lie on Z. The

circle Z is naturally partitioned into two arcs st and 3. See Figure 4.3. For simplicity

of the figures, we will usually draw P as if it were embedded in the plane, i.e., without

the circumscribing sphere and curvature of the faces, and depicting Z as a straight line.

We denote by 4 the natural orderings on st and 3 with respect to distance &om s.

That is, for points p and q on st, we write p 4 q if p is closer to s than q, and similarly

for points on 3. We will never use 4 to compare a point on st to a point on 3.

We now proceed with a detailed description of the DOUBLE-CROSSING algorithm.

Send two agents, DOUBLEUP and DOUBLEDOWN (collectively known as the double

agents), along st-crossing faces towards t, and send the third agent, SOLITARY (or the

solitary agent), along Z-crossing faces in the opposite direction; see Figure 4.4.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.3: The circle e through s and t is naturally partitioned into two arcs st and 3.
Faces are omitted for clarity.

More precisely, each agent maintains a variable mode, which at any time is one

of DOUBLEUP, DOUBLEDOWN, or SOLITARY, and may change during the course of

the algorithm. Note that we will often identify an agent with its current mode. The

three agents use identical routing algorithms, but initially. each agent has a differ-

ent mode. Another variable, doubleDirection, determines whether a double agent pro-

gresses along st- or 3-crossing faces; the solitary agent uses the same variable but

travels in the opposite direction (i.e., when dmbleDirection = st, it travels along3, and

vice versa). The meaning of wording such as "travelling along st" and "reversing direc-

tion" should be clear. Furthermore, for convenience, we will consider doubleDirection to

be equivalent to either st or 3 , so that we may, for example, talk about a face intersect-

ing doubleDirection. We also take doubleDirection to mean [\ {doubleDirection \ {s, t)),

which has an obvious meaning. In practice, note that doubleDirection can be imple-

mented using only one bit.

As with standard face routing, an agent stores the vertex visited immediately prior

to the current vertex; this vertex along with the agent's direction determines the cur-

rent face. For clarity we will henceforth use currentFace as a variable, keeping in mind

that in practice it is stored as a single vertex.

The initialisation of the three agents is summarised as INIT (Algorithm 7). The

source vertex creates each agent with several parameters, then activates the agent; that

is, the agent then becomes independent and follows the routing algorithm DOUBLE-

CROSSING (Algorithm 8) until reaching t.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.4: The basic approach of the DOUBLE-CROSSING algorithm: send two
agents (DOUBLEUP and DOUBLEDOWN) along st-crossing faces; and a third agent
(SOLITARY) along 3-crossing faces. The agents DOUBLEUP, DOUBLEDOWN, and
SOLITARY are indicated by DT, DL, and S, respectively, in the diagram. Arrows over
the symbols indicate direction of travel.

Algorithm 7 Initialisation
1: procedure INIT

Let f and g be the faces incident to s intersecting st and 3, respectively.
Create an agent at s with the following parameters.

mode + DOUBLEUP
doubleDirection + st
currentFace + f
activeInterva1 + 3

Activate the agent

Create an agent at s with the following parameters.
mode + DOUBLEDOWN
doubleDirection + st
currentFace + f
activeInterva1 + 3

Activate the agent

Create an agent at s with the following parameters.
mode + SOLITARY
doubleDirection t st
current Face + g
activeInterva1 + 3

Activate the agent
21: end procedure

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS 58

Algorithm 8 DOUBLE-CROSSING: main loop
1: procedure DOUBLE-CROSSING D v is the current vertex
2: if v = t then
3: Terminate
4: else
5: Send out a scout to determine whether v is on an active DCC.
6: if v is on an active DCC (f, gl, g2) then
7: Call DCC-ADJUST
8: else

Travel to the next vertex along currentFace according to doubleDirection,
(SOLITARY according to doubleDirection) updating currentFacewhen
appropriate.
In DOUBLEUP mode, avoid crossing to a vertex below e.
In DOUBLEDOWN mode, avoid crossing to a vertex above e.
In SOLITARY mode, avoid travelling towards the central face of an
SCC.

lo: end if
11: end if
12: end procedure

If an agent does not encounter any obstacles that we will call single-crossing con-

figurations and double-crossing configurations, or SCCs and DCCs, respectively, then

it will successllly reach t by simple face traversal. On the other hand, if an agent de-

tects one of these configurations, it will adjust in several ways, to be described shortly,

to avoid colliding with the walks taken by the other agents.

In particular, the adjustments for SCCs are simple, whereas DCCs require some

careful manc~uvring. Double-crossing configurations are the main objects of interest

in this problem, hence the name of the algorithm.

The adjustments a t DCCs are chosen in such a way that after the agents emerge

from the configuration, there are again two double agents travelling towards t from one

direction and one solitary agent travelling towards t from the opposite direction. Note

that in practice the agents do not necessarily reach a DCC at the same time. However,

in the proof, we will manipulate their timing to synchronise them a t DCCs.

We now define double-crossing configurations and give a procedure describing the

adjustments for them; a similar discussion for SCCs will follow.

Let f , gl, and g2 be an X-crossing face and two st-crossing faces, respectively, with

the following properties. Assume f is incident to gl and 92 such that f n g1 is above

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS 59

e and f n g2 is below e (note that if the intersection of an st-crossing face and an 3-
crossing face is an edge, both endpoints must be above or below e). Also assume that f

is not incident to any st-crossing face g' such that g' n st + gl n st or g' n st + g2 n st,

and similarly that for i E {1,2), gi is not incident to any 3-crossing face f ' such that

f ' n 3 + f n 3. That is, f , gl, and 92 are +-minimal with respect to intersections with

e.
We say that the triple (f, gl, g2) constitutes a double-crossing configuration. If

gl n st + g2 n st, then we say that f , g1 and g2 are the central, near and far faces

in the double-crossing configuration, respectively, and that the configuration is an up-

per DCC. It will also be convenient to refer to gl and 92 as the upper and lower faces in

the configuration, respectively. Similarly, if g2 n st + gl n st, then f , 92 and 91 are the

central, near (lower) and far (upper) faces, respectively, in a lower DCC. Thus, a face is

near or far according to its distance fYom s with respect to the ordering +, .and a DCC

is upper or lower according to its near face. We similarly define another set of DCCs

by transposing all occurrences of st and Ft in the above definition. Figure 4.5 shows a

DCC on the sphere.

Figure 4.5: A double-crossing configuration (f, gl, g2). The configuration is an upper
DCC: f is the central face, 91 is the upper (and near) face, and 92 is the lower (and far)
face. The faces are drawn as curves on the sphere for clarity; we may take the curves
to represent the projections of the actual faces.

Nalve face-routing will fail on DCCs. Figure 4.6 demonstrates why the configura-

tions are problematic: if the double agents make no a&ustments at gl and 92, then the

solitary agent can traverse neither the upper nor the lower half off without colliding

with another agent's walk.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.6: If agents do not adjust to DCCs, collisions are inevitable. Here some vertex
on f will be used by two agents: the solitary agent must traverse either the top or
bottom half off, but the double agents will also collectively visit both sides of the face.

The agents avoid the situation in Figure 4.6 by adjusting as described in DCC-

ADJUST (Algorithm 9). In short, the adjustments are chosen so that two double agents

emerge from the DCC from one direction, and a solitary agent emerges from the other

direction, as we stated earlier. Figure 4.7 illustrates the general case. Note that after

the adjustments, the (new) DOUBLEUP agent may be below e on the central face f , but

this is fine: in the following iterations it will naturally travel around f until reaching

a vertex above e, and thenceforth continue as usual. This is consistent with the be-

haviour specified in Algorithm 8: namely, we require that DOUBLEUP avoid crossing

to a vertex below e, as opposed to requiring that it avoid choosing any e-crossing edge.

The same comment applies similarly to the new DOUBLEDOWN agent.

However, the agents need not adjust to every DCC. Figure 4.8 shows the same

configuration as in Figure 4.7, but with the agents approaching from the opposite di-

rection. Note that the double agents treat g~ and g~ as any other e-crossing faces, and

that the solitary agent makes only minor adjustments (these will be explained when

we discuss single-crossing configurations, below). It should be clear that the decision

to adjust to a DCC depends on the agent's direction and mode, and the relative position

of the faces composing the configuration.

The decision to adjust involves one more parameter, the active interval: each agent

stores a subset adiveInterva1 G e within which it searches for DCCs - more precisely,

the agent considers a DCC only if the faces composing the configuration intersect e

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDD.

Figure 4.7: The correct adjustments at a double-crossing configuration C . Several
iterations are shown after the adjustments to illustrate the fundamental behaviour of
the agents: after adjusting to C , there are two double agents approaching t from one
direction, and a solitary agent approaching from the other. The shaded region x,,t
along C shows the new active interval (for all three agents) after the adjustments. Note
that the new DOUBLEDOWN agent is initially at a vertex above C.

within activeInterva1. Initially, activeInterva1 = C, and the interval diminishes each

time the agent adjusts to a DCC. When the agent arrives at t we can assume for con-

venience that activeInterva1 = { t) . The details of the update are discussed shortly.

A DCC (f , 91, g2) is said to be active (with respect to an agent and its current pa-

rameters) if the following conditions hold: f , 91, and 92 intersect C within activeInterva1,

and if they are +-minimal with respect to these intersections in the sense that no

g2 n doubleDiredion C adiveInterval, and

f , 91, and g2 are +-minimal in the sense that there exists no doubleDirection-

crossing face f' such that f' n C + f n C , f 1 n doubleDirection c activeInterva1, and

(f l , gl,g2) constitutes a DCC, and similarly for gl and 92.

CHAFIER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Algorithm 9 DCC adjustment
1: procedure DCC-ADJUST D The current vertex v is on an active DCC (f, gl, g2).

Let x f , xgl , and xg2 be as described in the text.
if mode = DOUBLEUP then D v is on gl

if gl is the near face of the DCC then
Traverse the upper half of gl until reaching a vertex on f.
doubleDirection c doubleDirection
currentFace c f
activeInterval c xg2xf

else gl is far
mode c SOLITARY
currentFace c gl
activeInterva1 c xgl x f

end if
else if mode = DOUBLEDOWN then D v is on g2

if g2 is the near face of the DCC then
Traverse the lower half of g2 until reaching a vertex on f.
doubleDirection c doubleDirection
currentFace c f
activelnterval c xgl x f

else g2 is far
mode c SOLITARY
currentFace c g2
active Interval c xg2 x f

end if
else mode = SOLITARY

if gl is the near face of the DCC then
mode c DOUBLEDOWN
currentFace c f
activeInterva1 c xg2xf

else g2 is near
mode c DOUBLEUP
currentFace c f
activeInterva1 c xgl x f

end if
end if

36: end ~rocedure

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.8: A DCC (f, gl, g2), approached from the "safe" direction - the DCC is not
active for any of the agents. The double agents make no adjustments, while the solitary
agent adjusts to the SCCs (gl, f) and (g2, f) .

We now explain and justify the r6le of the adiveInterva1 parameter in DCC-ADJUST:

note that every adjustment concludes by redefining the interval. Let h be an L-crossing

face. Then define xh to be the intersection of h with L, choosing the intersection to be

the farther one from t with respect to +. The new active interval is xgxf where g and f

are the far and central faces of the DCC, respectively; that is, it consists of the longest

segment of L between the far and central faces, as shown in Figure 4.7, above.

The points of intersection are chosen to be the farther one from t to account for the

possibility that the far face of one DCC is the central face of the next, as illustrated

in Figure 4.9. Notice that two of the agents adjust to (g2, f2, f l) immediately after.

adjusting to (fl, gl,g2). This is indicated in the figure as Ml/M2, where M1 is the new

mode (and direction) after the first adjustment, and M2 after the second.

It is necessary to use the active interval to handle graphs that contain DCCs sym-

metrically entangled around t as shown in Figure 4.10. The figure illustrates the pur-

pose of the active interval: the agents first arrive at the configuration C, and after the

adjustments, C' is no longer active. On the other hand, if the agents are less discerning

and do not take the active interval into consideration, then (at least) two of the agents

will visit the same vertex, as shown in Figure 4.11. In this case, notice that all three

agents adjust to C, similarly to the previous example. However, only one agent (the

one originally in DOUBLEUP mode) adjusts to C', since although it is effectively active

for all agents, the other two agents have already bypassed it and hence will not detect

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.9: The DCCs Cl = (fl, gl,g2) and C2 = (g2, f2, f i) have two faces in common.
After adjusting to C1, two of the agents immediately adjust to C2, as indicated by the
slash notation. The shaded regions along e show the active intervals after adjusting to
C1 (light grey) and C2 (dark grey). For clarity, the st-crossing face gl is only partially
shown.

or adjust to it. The same problem occurs iff = gi in Figure 4.11, that is, iff and f' are

incident and their point of intersection is above e.

We now turn our attention to SCCs. Let f be an 3-crossing face incident to an

st-crossing face g such that f n g is above C, and suppose f is not incident to any st-

crossing face g' such that f n g' is below C. Then we say that the pair (f, g) constitutes a

single-crossing configuration. We similarly define another set of SCCs by transposing

all occurrences of st and 3 in the above definition.

An SCC could be considered an "incomplete" DCC. Only the solitary agent adjusts

at an SCC; it does so simply by avoiding f ng, as shown in Figure 4.12. DOUBLEDOWN

is omitted from the diagram to emphasise that the solitary agent is specifically avoid-

ing collision with DOUBLEUP, and that the double agents do not make adjustments.

We observe in passing that, in general, a DCC approached from the "wrong" di-

rection consists of two SCCs with one face in common. This is illustrated above in

Figure 4.8.

CHAPTER 4. D I S J O I ~ ? ~ ROUTING IN CONVEX EMBEDDINGS

b

Figure 4.10: The correct behaviour at DCCs C = (f, gl , gz) and C' = (f', g', , 9;) entan-
gled around t. The 3-crossing face gi is only partially shown. The agents first detect
C, and after aGusting, f' n I is no longer in the active interval.

Figure 4.11: If the agents do not maintain an active interval, entangled DCCs will
induce collisions; in this example two agents visit x. Note that the agent originally in
DOUBLEUP mode is the only one to aGust to C', so after all the adjustments as shown,
there are two agents in SOLITARY mode, contrary to the design of the algorithm.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Figure 4.12: A single-crossing configuration (f, g). The solitary agent adjusts by mov-
. ing to the lower half of f to avoid g. The double agents make no adjustments at an

SCC.

Let us take a brief look at DCCs and SCCs fiom another perspective. As we have

discussed, the double agents are essentially following the straightforward algorithm

for finding two disjoint s,t-walks. Now consider the solitary agent. In general, it can

choose to traverse its current face either fiom below C or above. For efficiency, we may

assume it makes a greedy choice in this respect; for example, see Figure 4.13. The

solitary agent's freedom is slightly restricted by an SCC - it no longer has a choice

between the upper or lower half of the current face, but nevertheless continues its

face routing. The agent's freedom is eliminated entirely by a DCC: all three agents

adjust in order to accommodate the solitary agent. In summary, we propose that the

DOUBLE-CROSSING algorithm is fundamentally concerned with the local geometry of

the solitary agent.

Figure 4.13: In general (i.e. when not at an SCC or DCC), the solitary agent can choose
to cross C. Here the choices are greedy with respect to distance to t.

The agents detect DCCs and SCCs using scouts - indeed, the possibility of these

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

configurations is the scouts7 raison d2tre. We briefly present how the detection is man-

aged by the agents and scouts; we will not provide a formal algorithm for each scout,

but rather implicitly assume that an agent on a DCC or SCC can determine topological

information about that configuration.

Consider an agent in DOUBLEUP mode; without loss of generality, assume it is

travelling along st. At every iteration, the agent creates a scout to traverse every face

incident to the current vertex. Every such face g that crosses st n activeInterva1 is

potentially a near or far face in a DCC; the scout therefore traverses g (again) and at

each vertex u on g above st creates another scout to traverse faces incident to u. The

first scout waits at u until its child reports to it before proceeding around its current

face.

If the second scout finds an 3-crossing face f with f n 3 c activeInterva1, it sim-

ilarly traverses f and dispatches a third scout at every vertex below st to look for

another st-crossing face h incident to f , such that h n st c activeInterva1. Again, the

second scout waits for its child to return before proceeding.

If the third scout does find such a face h, it returns to its parent and reports success,

along with O(1) topological information. The second scout can then report success to

its parent, and so on. An agent in DOUBLEDOWN mode uses scouts in an analogous

manner; and an agent in SOLITARY mode sends a scout to first find a potential central

face of a DCC, and the second and third scouts check for near and far faces.

Finally, observe that the scouts naturally first find +-minimal faces as described in

the definition of active DCC, so an agent is clearly on an active DCC if and only if the

scouts detect the DCC.

Theorem 4.1 Let P be a convex polyhedron embedded on a sphere, and let s,t E V (P)

be distinct, non-adjacent vertices. Suppose s creates three agents with destination t

as described in INIT. Then all three agents successfully route to t using the DOUBLE-

, CROSSING algorithm, and the walks described by the agents are mutually internally

(vertex-) disjoint.

Proof When we refer to a DCC in this proof we will assume it is active unless otherwise

noted. We will use induction on the number k of DCCs encountered by the agents

thus far to show that the agents progress towards t and traverse mutually internally

disjoint walks. We first show that the agents encounter the DCCs in the same order,

thus determining a sequence Cl, C2,. . . , Ck of DCCs; we may think of the agents as

moving from one configuration to the next in phases. This does not affect the behaviour

of the agents, since they rely only on geometric information and do not communicate

with each other. The coordination of the agents will ensure that a t any time in our

proof, there is one agent in DOUBLEUP mode, one in DOUBLEDOWN mode, and one in

SOLITARY mode.

It is easy to see that an agent must reach either t or a DCC after a finite number of

iterations: the agent travels along faces progressively closer tot, and reverses direction

only at a DCC. We will say that the agents' respective iterations of the main loop

(Algorithm 8) occurring between the jth and j + 1st DCCs (or between the jth DCC

and arrival a t t) collectively constitute the jth phase of the algorithm.

Specifically, the 0th phase begins after all agents have been created by INIT (Al-

gorithm 7); for 0 < j 5 k the j th phase begins a t the iteration in which the agents

detect the j th DCC. For 0 2 j < k the j th phase ends immediately prior to the iteration

in which the agents detect another DCC or are at t. Note that since agents send out

scouts for DCC detection a t the beginning of each iteration, the last vertex visited by

an agent in the jth phase is the agent's first vertex of the j+lst phase. We will say that

an agent arrives a t a DCC C at the end of the jth phase if it detects C at the beginning

of the j + 1st phase. An agent may use vertices on inactive DCCs during a phase, but

we do not consider the agent to have arrived at these DCCs.

Observe that after any adjustments in DCC-ADJUST (Algorithm 9), an agent's

mode and direction are constant for the remainder of each phase; when we specify

an agent by its mode and direction during a phase we therefore understand the pa-

rameters to refer to those after the adjustments.

Since the agents arrive at the same DCCS, they agree on a common active interval

Ij at the jth phase. The active interval decreases at each phase, i.e., 1 =: 10 > I1 >
. . . > Ik, but we will prove a stronger result. At the j th phase, 0 < j < k, we define an

active region Rj that extends the notion of the active interval. We will show that the

agents remain within Rj during that phase, and that Rj is contained in Rj-1 for every

j > 0. Also, Ij is naturally contained in Rj.

Define Ro to be the polyhedron P. Now let 0 < j < k and suppose the jth DCC

detected by the agents is C = (f, gl,g2). Then define Rj to be the union of the region

above 1 bounded by f and 91, and the region below 1 bounded by f and g2. Thus, Rj is

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

the region bounded by l and the faces composing C, except for the part of the near face

extending beyond l , as illustrated in Figure 4.14. Evidently Rj contains Ij. In the final

phase we can consider the active region to consist of the vertex t .

Again, since the agents detect DCCs in the same order, the Rj are common to all

agents. It is important to note that the active regions are used only in the proof; the

agents do not store or calculate any Rj.

Figure 4.14: The active region Rj. Note that Rj does not include all of the near face 91.
The active interval Ij is shown as a hatched strip.

As with the main theorems in Chapter 2, for the remainder of this proof we will use

induction on a number of interdependent claims.

Claim 4.1 Let k 2 0. During the kthphase, there is one agent in DOUBLEUP mode, one

in DOUBLEDOWN mode, and o n . in SOLITARY mode. If k is even (resp. odd), the double

agents travel along st (resp. 3) and the solitary agent travels along Ft (resp. st). Also,

each agent has the same active interval Ik and active region Rk during the kth phase.

Moreover, i f k > 0, then at the beginning of the kth phase either all three agents are

at t, or they are all on a common DCC Ck = (f , g l , 92). In the latter case, then if CI, is

an upper (resp. lower) DCC, during the adjustments DOUB LEUP (resp. DOUB LEDOWN)

moves along at least one edge during the adjustments, while the other two agents remain

in place. After the adjustments, DOUB LEUP is on f n gl (resp. f \ {gl, g2}), DOUBLE-

DOWN is on f \ {gl,g2} (resp. f n gz), and SOLITARY is on g2 \ f (resp. gl \ f) , and all

three agents are on the boundary of Rk.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Proof The specifications in the INIT procedure and the definition Ro := P guarantee

that the claim holds when k = 0. Now let k > 0. By induction on Claim 4.2, below, the

agents arrived at a common DCC Ck = (f, gl, g2) at the end of the k - 1st phase, with

DOUBLEUP, DOUBLEDOWN, and SOLITARY on gl \ f , g2\ f , and f \{gl, g2), respectively,

all on the boundary of Rk. We immediately have that Ik and Rk are well-defined, and

they obviously do not change during the kth phase.

At the beginning of the kth phase, the agents adjust according to DCC-ADJUST.

Without loss of generality, assume that Ck is an upper DCC. Then the former DOU-

BLEUP agent (i.e., the agent in DOUBLEUP mode in the k - 1st phase) moves (us-

ing at least one edge) to f and reverses direction; the former DOUBLEDOWN agent

switches to SOLITARY mode; and the former SOLITARY agent switches to DOUBLE-

DOWN mode. Neither the former DOUBLEDOWN nor SOLITARY agent move during

the adjustments, so obviously the new SOLITARY and DOUBLEDOWN agents will be

on g2 \ f and f \ {gl, g2), respectively. All three agents remain on the boundary of Rk

during the adjustments.

Clearly the three agents are in distinct modes after the adjustments, the double

agents' (common) direction is the reverse of the former double agents' direction, and

the solitary agent's direction is similarly the reverse of the former solitary agent's di-

rection. This proves the claim. 13

Claim 4.2 At the end of the kth phase, either all three agents arrive at t, or they arrive

a t a common DCC Ck+l = (f,gl,g2). In the latter case, DOUBLEUP, DOUBLEDOWN,

and SOLITARY arrive at vertices on gl \ f, g2 \ f, and f \ {gl, g2), respectively, on the

boundary of Rk+l.

Proof We start by considering the double agents during the kth phase. By Claim 4.1,

the double agents travel in the same direction during the kth phase; assume without

loss of generality that their direction is st. From the same claim we also have that the

:active interval Ik is common to all agents. For the remainder of this argument we will

denote by vT and vl the locations of DOUBLEUP and DOUBLEDOWN, respectively, after

the adjustments at the beginning of the kth phase.

Towards a contradiction, suppose that the double agents do not arrive at the same

DCC at the end of the phase. There are two possibilities: either one of the agents

arrives at t and the other at a DCC, or the agents arrive at different DCCs.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

In the first case, again without loss of generality, assume that DOUBLEUP arrives

at t at the end of the kth phase, but that DOUBLEDOWN arrives at a double-crossing

configuration C = (f, gl, g2). It follows that f n 3 c Ik. Let U be the region above f!

containing t and bounded by f , gl, and f!; see Figure 4.15. If vf is outside U, then by the

polygonal version of the Jordan Curve Theorem, and DOUBLEUP'S choice of faces, any

vf,t-walk must use a vertex on gl. Now since DOUBLEUP arrives at t, and not C, at

the end of the kth phase, C must be inactive for the agent during this phase. There are

two ways this can happen: either DOUBLEUP reverses direction before using a vertex

on C, or f n 3 (f Ik. But an agent's direction reverses only after arriving at a DCC,

and we have already seen that f n 3 c Ik. It follows that vf is inside U, and that vf

is neither on gl nor on a vertex off on the boundary of U. Consequently, k > 0, for s

cannot be inside U unless it is a vertex off or gl on the boundary of U. Therefore, by

Claim 4.1, vf and v~ both lie on the central face f' # g1 of some DCC C'. But then Ik
extends only as far to the left as f' n st, so gl does not intersect st within the active

interval, contradicting the assumption that DOUBLEDOWN arrives at C.

Figure 4.15: DOUBLEUP cannot find a v f , t-walk without passing through gl.

Let us now examine the second case: suppose that DOUBLEUP and DOUBLEDOWN

arrive at distinct DCCs C = (f, gl, gz) and C' = (f', g', , g',) at the end of the kth phase.

Assume without loss of generality that f n 3 4 f' n 3. Then clearly gl n st 4 g; n st
and g2 n st 4 g$ n st. Since one of the agents detects C, it follows that f n 3 c Ik.
But, similarly to the reasoning above, we can appeal to the polygonal Jordan Curve

Theorem and the agents' choice of faces to show that both agents must arrive at C at

the end of the kth phase, a contradiction.

C W E R 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

So far we have shown that the double agents in the kth phase must arrive at the

same DCC at the end of that phase. It remains to show that the solitary agent also

arrives at the same DCC. Again towards a contradiction, suppose not. There are three

cases, which we will not discuss in detail since the arguments are similar to those

above. Either the double agents arrive at t and the solitary agent arrives at a DCC; the

double agents arrive at a DCC and the solitary agent arrives at t; or the double agents

and the solitary agent arrive at distinct DCCs. The first two cases are dismissed with

the polygonal Jordan Curve Theorem; the argument for the third case is similar to that

showing that the double agents cannot arrive at distinct DCCs.

Therefore all three agents arrive at t or at the same DCC Ck+l = (f, gl,g2) at the

end of the kth phase, as required. Consequently, Rk+l is well-defined; it is easy to

see that the agents arrive on the boundary of Rk+l. It is clear from the definition

of active DCCs that DOUBLEUP, DOUBLEDOWN, and SOLITARY arrive at the upper,

lower, and central faces of Ckfl, respectively. We must now refine this result to show

that DOUBLEUP, DOUBLEDOWN, and SOLITARY arrive at vertices on gl \ f , g2 \ f , and

f \ {91,92), respectively.

Suppose that DOUBLEUP arrives at a vertex w on gl n f at the end of the kth

phase. If the agent's walk to w during that phase has length at least 1, let w' be the

penultimate vertex the walk. Clearly w' cannot also be on g1 for then DOUBLEUP would

have arrived at w', not w. Therefore, w' is on some other face j for which i j n C + gl n C.

Evidently j is the upper face in a DCC 6 (f, 5, g2); it follows that 6 is inactive since

the agent does not arrive on it at w'. Therefore the active interval Ik does not extend

as far left as i j n st; it extends as far as f' n st, where f' is the central face of Ck; see

Figure 4.16(b). However, by Claim 4.1, DOUBLEUP is on f' at the beginning of the kth

phase. It therefore cannot reach w through w' since DOUBLEUP travels along faces

progressively closer to t, contradicting the assumption that w' was the penultimate

vertex in the walk.

We must therefore consider the possibility that DOUBLEUP7s walk during the kth

phase had length 0, i.e., that it was already at w at the beginning of the kth phase. By

Claim 4.1, Ck cannot be an upper DCC, for otherwise DOUBLEUP would have moved

along at least one edge during the adjustments. Thus we have that Ck is a lower

DCC, and that w is not on the upper face g', of Ck. But since Ck+l is active, g', n 3 +
f n 3, implying that w is not on the boundary of Rk, as shown in Figure 4.16(b). This

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

contradicts Claim 4.1.
w '

Figure 4.16: DOUBLEUP cannot arrive at a vertex w on gl n f : (a) the case where it
travels along at least one edge in the kth phase; (b) the case where it remains in place
during the kth phase.

The arguments for DOUBLEDOWN and SOLITARY are similar.

Claim 4.3 If k > 0, then Rk c Rk-l. Thus, P =: Rg 3 R1 3 . . . 3 Rk.

Proof: That Rk is defined for all k 2 0 follows from Claim 4.1 Trivially we have R1 c
Ro := P , so assume k > 1. If the agents are at t at the beginning of the kth phase, we

have Rk := {t), which is also trivial; therefore assume that the agents are at a DCC at

the beginning of the kth phase.

Let f and g be the central and far faces of Ck-l, respectively, and let Ck = (f', gi, g;).

Then f ' n e c IkPl, SO g n e 5 f ' n .! (note that possibly f' = g). Similarly, f n e 5 g: n e
for i E {1,2); again note that possibly gi = f or g; = f , but in particular f n .! j g' n e,

where g' is the far face of Ck. Observe that this implies that Ik 3 Ik-l.

Now suppose that Rk Rk-l. Then there exists a point w E Rk \ Rk-1; in particular,

since Rk is a closed set, we may choose w to be a boundary point of Rk. By definition

of Rk, w lies on one of the faces composing Ck or on the interval of .! between the near

and far faces of Ck. If w is on f', then since g n .! 5 f' n e, f ' must cross one of the faces

composing Ck-l, a contradiction. Similarly w cannot lie on g', or g;. Thus w is on the

interval of .! between g', n .! and 9; n e. But we have already shown that f n .! 5 g: n e for

i E {1,2), so w is contained in Ik-l c Rk-1, another contradiction. Hence there can be

no such point w, so Rk G Rk-1.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

Note that although Rk may contain f and g, it obviously cannot contain every point

on the near face of Ck-1. Therefore the containment is proper; i.e., Rk c Rk-1. Conse-

quently, Ro 3 R1 3 . . . 3 Rk. 0

Claim 4.3 proves that the algorithm must terminate, for the active region is deter-

mined by three faces and therefore cannot decrease indefinitely. It remains to prove

that the agents describe disjoint walks; we will require one more result before the final

step.

Claim 4.4 During the kth phase, including the initial adjustments (when k > O), every

agent remains within Rk.

Conversely, when k > 0, no agent has used a vertex in Rk until arriving at Ck (or t)

at the end of the k- 1st phase.

Proof: The statement is trivial for k = 0, so assume k > 0. The statement is also

trivial if the agents are at t, so assume they are at Ck = (f,gl,g2) at the beginning

of the kth phase. It is clear from DCC-ADJUST that the agents remain in Rk during

the adjustments. For the remainder of the kth phase, DOUBLEUP traverses only those

faces intersecting e between t and f . These faces clearly cannot contain any vertices

outside Rk without crossing one of the faces composing Ck, SO DOUBLEUP remains

within Rk. Moreover, any vertices on the boundary of Rk visited by the agent must lie

on f . Similar arguments show that the other two agents also remain within Rk; also,

any boundary vertices used by DOUBLEDOWN are on f , and any boundary vertices

used by SOLITARY are on the far face of Ck.

Now, towards a contradiction, suppose that an agent uses a vertex w in Rk before

the end of the k-1st phase; assume w is the f i s t such vertex. Let j be the least number

for which the agent uses w before the end of the jth phase. We will show that j must

be k - 1. Indeed, if j < k - 1, then by Claim 4.3 we have Rk c . . . c Rjfl; however,

by the induction hypothesis, no agent uses any vertex in Rj+1 until the end of the jth

phase. Therefore j = k - 1.

Suppose that DOUBLEUP is the agent that uses w in the k-1st phase before arriving

at Ck = (f, g1,g~) . Then w cannot be on 91, for the agent would have detected Ck at w,

marking the end of the k - 1st phase. We can assume that w is on the boundary of Rk,

since the agent cannot reach the interior of Rk without first passing through gl. Also,

w is not on e for then it would be collinear with s and t. Therefore w is above e and

CHAPTER 4. DISJOINT ROUTJNG IN CONVEX EMBEDDINGS

either on f or g2. If w is on f , then it also lies on some face g' incident to f for which

g/ n I 4 g1 n I ; see Figure 4.17. But using similar arguments as in the latter half of the

proof of Claim 4.2 shows that this is impossible. The only remaining possibility is that

w lies on g2. But either Ck is an upper DCC, in which case the vertices of 92 above I are

in the interior of Rk, or Ck is a lower DCC, in which case the vertices of g2 above I are

not included in Rk. We have thus shown that DOUBLEUP cannot have used w.

Figure 4.17: DOUBLEUP cannot have used w before arriving a t Ck, for then g'ne 4 gl n e ,
contradicting the minimality of g l . Compare to Figure 4.16.

We omit the similar arguments for the other two agents. 0

We have finally built enough machinery to finish the proof of the theorem with ease.

Claim 4.5 The walks described by the three agents are mutually internally vertex-

disjoint.

Proof: Each agent's walk W naturally decomposes into a sequence of subwalks Wo , Wl , . . . , Wk

where Wj is the subwalk of W traversed during the jth phase, 0 5 j _< k. By Claims 4.3

and 4.4 we immediately see that if two agents' walks have a vertex v in common, then v

must have been used by both agents in the jth phase, and before the end of the phase,

for some j. If v is on the boundary of Rj (in which case j > 0) then by Claim 4.4,

both agents must use v during the initial adjustments. But induction on Claim 4.2 and

the adjustments specified in DCC-ADJUST clearly show that the agents' adjustments

constitute disjoint walks. Therefore v is in the interior of Rj and both agents use v

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

after the adjustments. From the discussion of the problem so far, it should be obvious

that this is impossible: the double agents cannot use the same vertex, and the solitary

agent adjusts to SCCs. 0

This completes the proof of Theorem 4.1. rn
Finally, observe that DOUBLE-CROSSING runs in polynomial time: there are clearly

finitely many DCCs, and each agent takes polynomial time to move from one DCC to

the next (or to t).

4.4 The DOUBLE-CROSSING algorithm in IR2

As mentioned in the previous section, the DOUBLE-CROSSING algorithm was pre-

sented for a graph embedded on a sphere mainly for convenience. The.procedures

in the algorithm only calculate angles and intersections, which can obviously be ac-

complished in R2.

The circle C in R3 corresponds to the line segment C (abusing notation here and

subsequently) in R2 through st extending as far as the outer face fo. However, in R2,
-
st := {C \ st) u {s, t)' is a union of two (possibly trivial) line segments.

We can define lexicographic orderings 4 on st and 3 analogous to those in R3. Take

xLy to read "x is to the left of y"; then define 4 as follows:

for x, y E 3, x 4 y if one of the following three conditions holds:

1. xLs, yLs, and yLx;

2. xLs and tLy; or

3. tLx, tLy, and yLx.

The proof of correctness for the algorithm in R2 is essentially the same as the proof

in the previous section. However, in that section we took the liberty of viewing DCCs

as being centred around t; thus, for example, the definition of the active region Rk was

simple. In the plane, however, we do not have the same luxury. The outer face is fixed,

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS 77

and must be treated with special cases: compare Figures 4.18, and 4.19, for example,

which both show DCCs.

Despite the apparent added complexity in the plane, the DOUBLE-CROSSING al-

gorithm (with data structures and procedures modified in the obvious ways for R2)
will still work. The facial structure is fundamentally the same as that on the sphere,

through the correspondence of st, 3, and +. The only extra challenge in R2 is surviv-

ing the tedium of working through all cases for the positions of DCCs in the proof of

correctness.

Figure 4.18: A DCC (f, gl, g2) in R2. Compare with Figure 4.5.

Figure 4.19: Another DCC (f, gl, fo) in R2. The outer face is the lower face of the DCC.

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS

4.5 Improving the algorithm

There are three simple modifications we can make to the algorithm to improve its

efficiency. The first takes advantage of the information provided by the scouts to accel-

erate the face routing of all agents; the second eliminates unnecessary scout activity;

and third is specifically an improvement for the solitary agent in R2 during the 0th

phase (here we mean the phase only as far as that agent is concerned).

Improvement 1. Without loss of generality, as'sume that DOUBLEUP is travellingalong

st. If the agent is on a vertex v incident to at least two st-crossing faces, and is not

on a DCC, then the agent can skip forward in its face routing and set currentFace

to be the farthest st-crossing face incident to v with respect to 4. This is shown for

DOUBLEUP in Figure 4.20. The same modification accelerates the face routing of all

agents; note that it does not affect the order in which the agent detects DCCs, by

familiar arguments.

To accelerate the face routing in this manner requires only a trivial modification for

the scouts: since the agent's child scout is already searching the faces incident to the

current vertex, the scout can simply devote an additional memory slot to keeping track

of the farthest st-crossing (or 3-crossing, depending on doubleDirection) face.

Figure 4.20: In general, every agent can accelerate its face routing using information
provided by the scouts.

Improvement 2. We can eliminate many unnecessary face traversals for the scouts at

every iteration by appealing to the convexity of the faces. Suppose a scout is created

at a vertex v to search the face f containing u, v, and w, where vu and vw are radially

adjacent edges. Then, since the scouts are searching for faces intersecting C within the

active interval, we can immediately eliminate f if cone(u, v, w) n Ln adiveInterva1 = 0,
where L is either st or 3 according to the ancestor agent's parameters and the type of

face being sought. Figure 4.21 shows an example.

?

Figure 4.21: DOUBLEUP has arrived at vl, and its child scout S1 has found the st-
crossing face gl, a potential upper face; S1 is currently at v2. Only one face, f , incident
to v2 can "see" part of active interval I intersecting 3, so S1 only creates a scout S2 to
search the potential central face f . If S2 determines that f does not intersect I n 3 ,
then S1 continues to us, which is incident to two potential central faces.

Improvement 3.

The third modification is a natural response to the solitary agent's initial behaviour

(i.e., until it arrives at a DCC) in the plane. According to the algorithm, we begin by

sending the solitary agent away from the destination t. Barring encounters with DCCs,

it travels away from t (in a strict geometric sense; according to 4 it is approaching t)

until hitting fo, at which point it traverses half the perimeter of the graph before

eventually arriving at t. This is terribly inefficient, and the obvious question is: can we

find a better path for the solitary agent?

Indeed we can, in most cases. Modify the solitary agent's behaviour so that it ini-

tially travels towards t in the same direction as the double agents, using the faces

CHAPTER 4. DISJOINT ROUTING IN CONVEX EMBEDDINGS 80

immediately below the st-crossing faces; see Figure 4.22. Denote the family of such

faces by H. The solitary agent can clearly detect faces in H using scouts, and will run

into a problem only if fo E H or if a face in H contains a vertex above C incident to an

st-crossing face, since DOUBLEUP uses precisely those vertices. But then we are sim-

ply describing SCCs and DCCs - the agents adjust, and continue as usual. Note that

this modification applies only to the initial solitary agent, and not to an agent switch-

ing into SOLITARY mode during an adjustment at a DCC. Also note that the decision

to traverse faces below st-crossing faces is arbitrary; the modified agent could instead

traverse faces above st-crossing faces.

Figure 4.22: The improved initial solitary agent S! uses faces below the st-crossing
faces and travels in the same direction as the double agents.

Appendix A

Memory requirements

The following table lists the memory requirements, in number of vertices, for the algorithms

presented in this thesis. The well-known algorithms FACE and GFG are shown first for com-

parison.

Algorithm name

FACE

GFG

Type
routing

routing

routing

routing

geocasting

disjoint routing

Class of graphs
. .

planar

unit disk, planar
--

quasi-planar

unit disk, quasi-planar

quasi-polyhedral

quasi-planar

convex embedding

Memory requirement

3

3 per agent

Also note that the agents in the DOUBLE-CROSSING algorithm also use scouts which each

store two vertices in memory.

Bibliography

L. Barrihre, P. F'raigniaud, and L. Narayanan. Robust position-based routing in

wireless ad hoc networks with unstable transmission ranges. In DIALM '01: Pro-
ceedings of the 5th international workshop on Discrete algorithms and methods
for mobile computing and communications, pages 19-27, New York, NY, USA,

2001. ACM Press.

F! Bose and P. Morin. Online routing in triangulations. In ISAAC: 10th Znter-
national Symposium on Algorithms and Computation (formerly SZGAL. Znterna-

tional Symposium on Algorithms), Organized by Special Interest Group on Algo-
rithms (SZGAL.) of the Znformution Processing Society of Japan (ZPSJ) and the

Technical Group on Theoretical Foundation of Computing of the Institute of Elec-

tronics, Znformution and Communication Engineers (ZEZCE)), 1999.

P. Bose and F! Morin. Competitive online routing in geometric graphs. In Proc. 8

Znformatwn and Communicatwn Complexity, pages 35-44. Carleton University

Press, 2001.

P. Bose, P. Morin, A. Brodnik, S. Carlsson, E. Demaine, R. Fleischer, J. Munro,

and k Lopez-Ortiz. Online routing in convex subdivisions. In Znternational Sym-
posium on Algorithms and Computation, pages 47-59,2000.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed deliv-

ery in ad hoc wireless networks. Wireless Networks, 7(6):609-616,2001.

[dBvKOSOO] M. de Berg, M. van Kreveld, M. Overmars, and 0. Schwartzkopf. Computational
Geometry: Algorithms and Applications. Springer, 2000.

[DJ89] G. Das and D. Joseph. Which triangulations approximate the complete graph? In
Proceedings of the international symposium on Optimal algorithms, pages 168-

192, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[GS69] K. Gabriel and R. Sokal. A new statistical approach to geographic variation anal-

ysis. Systematic Zoology, 18:259-278, 1969.

82

BIBLIOGRAPHY

[KGKS 051 Y. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geographic
face routing. In DWM-POMC '05: Proceedings of the 2005 joint workshop on

Foundations of mobile computing, pages 34-43, New York, NY, USA, 2005. ACM
Press.

E. Kranakis, T. Mott, and L. Stacho. Online routing in quasi-planar and quasi-
polyhedral graphs. In Fourth IEEE International Conference on Pervasive Com-

puting and Communications: WORKSHOPS, pages 426430,2006.

S. Kumar, V. Raghavan, and J. Deng. Medium access control protocols for ad-hoc
wireless networks: A survey. Ad Hoc Networks, 4:326-358, May 2006.

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.

In Proc 11 t h Canadian Conference on Computational Geometry, pages 51-54,

Vancouver, August 1999.

C. Lin and J. Liu. QoS routing in ad hoc wireless networks. IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, 17(8), August 1999.

P. Morin. Online Routing in Geometric Graphs. PhD thesis, Carleton University,
School of Computer Science, 2001.

M. Pearlman and 2. Haas. Determining the optimal configuration for the zone

routing protocol. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICA-

TIONS, 17(8), August 1999.

P. Paul and S. Raghavan. Survey of QoS routing. In ICCC '02: Proceedings of the

15th international conference on Computer communication, pages 50-75, Wash-

ington, DC, USA, 2002. International Council for Computer Communication.

E. Steinitz and H. Rademacher. Vorlesungen iiber die Theorie der Polyeder unter

Einschlup der Elemente &r Topologie. Springer-Verlag, Berlin, 1934.

W. f i t t e . How to draw a graph. In Proc. London Math. Society, volume 13, pages

743-768,1963.

