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Abstract

This thesis contains a detailed account of sequence spaces
which follows the works of several authors. We examine the significance
of front, Cesidro, and unconditional sections and arrive at factorization
theorems that characterize some topological properties of the space.

Some applications to Fourier series are made using the results on Cesaro
sections. It is shown that for a sequence x in an FK-space E, the
series Zxkék is subseries convergent if and only if x can be expressed
as the coordinatewise product of a convergent null seguence and a sequence
with unconditionally bounded sections in E. Finally a strong mean

value property for a conservative matrix A is defined, and a necessary
and sufficient condition for a sequence to have unconditionally bounded

sections in the convergence field of A 1is obtained.
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Chapter 1 - Preliminaries
§1. A Brief History

Topological summability theory probably has its roots in
S. Mazur's 1929 article, [14])]. He observed that if A 1is a triangle

=0 when k > n; a # 0) and B is

(a summation matrix with a
nk nn

a’stronger matrix (cB > c,i see Chapter 4, §4) then limB(x) = l%m(Bx)n
is a continuous linear functional on Cyp The next step along these lines
was taken independently by Mazur-Orlicz [15] and by Zeller [29]). They
extended these ideas to non-triangular matrices by attempting to give
CA a topology making each coordinate functional continuous and also
such that applications to functional analysis could be made; for example
to deduce the continuity of limB as above. From this work comes the
result that every convergence field is an FK-space. (see §2).

One of the most exhaustive studies of convergence fields can
be found in [25]) where certain "distinguished subsets" of the convergence
field are studied and investigated for their invariance, i.e. if
CA = cB , are their corresponding subsets under consideration the same?
One way of proving invariance for a subset of = is to show that it is
characterized by a property of its FK-topology, as the most fundamental
and singly most important aspect of any FK-space is its uniqueness of
topology. This observation led to the formulation of many distinguished

subsets in terms of topology in such generalized spaces as K-spaces.

(see §2). For example, a conservative matrix A is said to be conull



-

if 1lim X a - Z lima = 0. In 1965 A.K. Snyder proved A is conull
n k nk k n nk

if and only if Pn-e +> e weakly in Ca [24]. (see 8§2). It then follows
naturally to call any FK-space conull if P ce > e weakly.

One of the methods developed to study sequence spaces is
illustrated in D.J.H. Garling's work [9] of which Chapter 2 is based.
Prior to this most emphasis had been placed on duality theory. Instead
Gérling focussed his attention on front sections and multiplier spaces.
Equally adaptable to the same method of analysis are the Cesaro sections
and unconditional sections, introduced respectively by M. Buntinas [4]
and J.J. Sember [23]}. Chapter 3 follows Buntinas' work and Chapter 4,
Sember's.

Although basically the same, the techniques employed in this
thesis in studying a sequence space will vary slightly depending upon
which kind of section is used as a tool. For example, the Cesadro section
operators do not form a semi~-group of linear operatofs, so they are not
susceptible to the technique of local invariance developed in Chapter 2.
However this does not really make their theory any less rich than the
other two. We will see how each type of section operator determines an
associated BK-space; it is from this space that many topological
properties can be settled upon coordinatewise multiplication of the space

in question by the associated BK-space.

§2. Notation and Terminology

In this section some notation and terminology is introduced



which will be used throughout this thesis. A locally convex topological
vector space V is a topological vector space with a neighborhood base
at 0O consisting of convex subsets of V. For the standard definitions
and results concerning topological vector spaces the reader is referred
to A.P. and W. Robertson's book [19] and to G. Kothe's book [11]. We
let w denote the linear space of all real or complex sequences. A
linear subspace of W is called a sequence space. Let Gk be the
sequence with a 1 in the k-th position and 0's elsewhere, let e
be the sequence with a 1 in each position, and let ¢ be the sequence
space spanned by the set {Gk : k € Z+} where Z+ is the set of positive
integers.

A K-space is a loéally convex topological vector space such
that the vector space is a sequence space for which the projection

functional T defined by ﬂk(x) = x. , 1is continuous for each k

k' k
in Z+. An FK-space is a Fréchet K-space, i.e. a complete metrizable
K-space, and a BK-space is a Banach K-space. A very good introduction
to FK—spaces can be found in chapters 11.3 and 12.4 in A. Wilansky's
book [26].

If S and A are subsets of w we write [{A} for the

convex hull of A; A for the closure of A, when it is clear from

the context which K-space A 1is a subset of; and
S*A = {x°y : x €5, y € A} = s(A)

)

where x°y is the coordinatewise product (x Should A be

Kk’ xez+ °

a sequence space and C°*A = A, where C 1is the closed unit ball of



bounded sequences (see 8§3), then A 1is called solid.

We define the following important sets of "section operators”

on W:
n
P={P :n €2z} where P = T sk ,
n n k=1
n n
_ rh + n_ -1 _ _ k-1 .k
0={0 :n¢€2z} where 0 =n kgl P = kél 1-= )6,
H= {h_ = E &% . F is a finite subset of 2'} .
F kEF
For a given x in w, Pn°x (respectively On'x, Xp = hF'x) is called

the n-th (front) section (respectively n-th Cesaro section, F-th
unconditional section) of x. Thus the set of sections (respectively
Cesdro sections, unconditional sections) of x is Pe*x (respectively
O*x, H*x).

Let E be a K-space. If x 1is in w and Pe*x (respectively
O+*x, H*x) 1is a boﬁnded subset of E, x 1is said to have the property
section boundedness (AB) (respectively Cesdro section boundedness
(0B), unconditional section boundedness (UAB)). We will often use the

following notation:

EAB = {x € w : x has the property AB},
EGB = {x € w : x has the property OB},
= : U .
EUAB {x € w x has the property AB}
Here it should be noted that EAB R EGB , and EuAB need not be contained

in E. Also, the properties have not been listed according to strength

but by chronological development. The reader is referred to Chapter 2,
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§2 for the relative strengths of all the properties defined in this
gection. If for each f in E', where E' is the topological dual
of E, the series kgl X f(ék) converges (equivalently (Pn'x) is
cauchy in O(E,E'), the weakest topology on E which makes every
f € E' continuous), then x is said to have the property functional

section convergence (FAK). We write

EFAK

{x € w : x has the property FAK}
and

E {x € E : x has the property SAK},

SAK

where x is said to have the property weak section convergence (SAK)
if (Pn'x) converges in O(E,E').

Let ¢ denote the-set of all finite subsets of the integers
directed by set-theoretic inclusion. We define the properties unconditional
functional section convergence (UFAK), unconditional weak section
convergence (USAK), and unconditional section convergence (UAK).

EUFAK = {x € w : x has the property UFAK} where the property
UFAK 1is Cauchiness of the net (hF'x)F€¢ in O(E,E'),

EUSAK = {x € E : x has the property USAK} where the property
USAK is convergence of the net (hF'x)FE¢ in OoO(E,E"),
and

E = {x € E : x has the property UAK} where the property

UAK

UAK 1is convergence of the net (hF°x) in E.

Fed

The only other kinds of "section" convergence considered in

this thesis are section convergence (AK) and Cesaro section convergence



(0K). The sequence x in E is said to have the property AK (res-
pectively OK) if the sequence (Pn'x) (respectively (Gn°x)) converges
in E. We adhere to the previous notation and write

E {x € E: x has the property AK}

AK

#

{x € E : x has the property OK}.

EUK
Finally, x in E 1is said to have the property section density (AD)
if x Dbelongs to the closure in E of ¢. If T stands for an above
mentioned property, a K-space E 1is said to be a T-space whenever each
x in E has the property T. For the definition of symbols regarding
specific sequence spaces used in the sequel and some of their properties
the reader is referred to thé next section.

We conclude this section by mentioning some of the functional-
analytic theorems used in subsequent chapters.
I. Banach-Steinhaus Theorem. Let E be a barrelled topological vector
space and F a locally convex Hausdorff topological vector space. If
(Tn) is a sequence of continuous linear mappings of E into F which
is pointwise convergent to T, then T 1is a continuous linear mapping
{19, p.69].
II. Closed Graph Theorem. A linear mapping T from a Fréchet space
E into a Fréchet space F 1is continuous if and only if whenever
xn -> xo in E and T(xn) > yo in F then T(xo) = yo {11, p.le8].

III. Mackey's Theorem. The bounded and weakly bounded subsets of a

locally convex topological vector space are the same [1l, p.254].



IV. Orlicz, Pettis, Grothendieck Theorem. In a locally convex Hausdorff
space, if a series of elements has the property that every subseries is
weakly convergent, then the series is unconditionally convergent (for

the initial topology on the space) [18, p.153].

§3. Sequence Spaces: Subsets and Properties

(1) w=1{x¢€ w: ¥

- < - iation.
k&1 lxk xk+1l w} sequences of bounded variation

A BK, AB-space but not an AD-space with norm ”x“bv = ¥ lxk-xk+1! + limlxk'
k

k=1
[cE£. 9].
- - <
B {x € bv : Hxllbv < 1}
(ii) bv° = {x € bv : 1lim xk'= 0} - null sequences of bounded variation.
k
A BK, AK-space with norm "“bv

F~3 - <
B {x ¢ bv_ : ”bev < 1}.

(iii) 21 = {x € w : kzl kal < @}, A BK, UAK-space with norm
<, = £ Ix ]

[+ -
(iv) 2 ={x €w: suplxk| < »} - bounded sequences. A BK, UAB-space
k
but not an AD-space with norm |[x||_ = suplxkl.
k

o
c={xe€er : |x|_ =1}
(v) c=1{x € w: lim X, exists} - convergent sequences. A BK, UAB-
k
space but not an AD-space with norm H'”m.

¢, = {x €c: [xll_ =1}

lim X, = 0} - convergent null sequences. A BK, UAK-
k

(vi) c_ = {x € ¢



gpace with norm ||« .

c ={x€c x| =1}

o [e) o

+

C = H = = ’ = L AL AL AL
0 {xep :0 x =1, k=1,2 }
cC = : =1, =1,2,...1.
» {x €9 kal 1, k =1,2 }

n
(vii) ob = {x € w : sup Ikgl(on'x)kl < o}, A BK-space [29, Satz 4.10]
n

n
£] = n.
apd a OB-space [4] with norm HxHob szplkgl(o x)
n n
(viii) o0s = {x € Ob : lim k§1(0 'x)k exists}. A BK-space [29] and a

n->co

OK-space [13, Satz 2] with norm ”.”Ob .

(ix) q=1{xe . ¥ klAzx | < ®} where Ax, = x - x and
k=1 k k k k+1
Azxk = Axk - Axk+1 . The space of quasi-convex sequences is a BK, OB-
. @ 2
space with norm “x”q = k§1 klA xkl + s:plxk| [cf. 4]. If x € q

then nAxn +0 [1,v.I,p.5],
2
bx_ = kzn A% [1,v.11,p.202],

and

® 2
kzllekl < kél k|A xk| [cf. 4].

Hence q € bv and [+

< .
py = I Hq on q.

0=1{x €q: lelq < 1}.

m2 = {x € real w : A2xk >0, k=1,2,...} - set of

convex sequences.

mi = {x € m2 : lim xk = 0} - (positive) convex null
k
sequences.
2 2
n“ = {x € real w : A x, S0, k= 1,2,...} - set of concave

sequences.



Every bounded convex sequence is an element of q [1,v.1l, p.5], and every
real valued sequence in g is the difference of two positive convex
bounded sequences {[16]. It follows that g (even in the complex case)

is the linear span of the positive bounded convex sequences,

(x) q, = 4d n c, - quasi-convex null sequences. A BK, OK-space with norm
' . . 2
"“”q [cf. 4]. d, 1is the linear span of m_

Qo = {x € q : llxllq <1}.
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Chapter 2 - Front Sections and Invariance
§1. Introduction

The material in this chapter is essentially contained in
D.J.H. Garling's paper [9] with the exception of Theorem 1 which is a
modification of Theorem 6 in [5]. Also in 82 there is a diagram
illustrating the relationships among the sets ET , for various
properties T, where E is a K-space. In 83 the significance in
a K-space of the sets B and C are examined. The last section con-
tinues with the work of §3 after imposing several restrictions on the
topology of the K-space. The result EAK = bvo-EAB is obtained

for an FK-space E and serves as a model for the corresponding section

operators O© and H.

§2. Generalities

The following diagram illustrates the general set-theoretic
relationships of the subsets ET for an arbitrary K-space E. The
arrow represents inclusion with the set resting at the head of the arrow
the larger one. The dotted lines enclose those subsets ET which are

always contained in E.
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FAK

- -

-—— — e e . —— - -

The diagram follows immediately from the definitions of the

E

UAB E

£
subsets except for UFAK

proved in §2, Chapter 4, and for

shown now. Let x € EAB and p
Si On = n-l g P
ince k&1 B ¢
n
n -1
p(0 *x) = n p(]Fi_Zl

and E n EUAB which are

usak - FEsak

C C i
EAB EO13 and EAK EOK which are

be a continuous semi-norm on E.

P +*x) =

X *x).

max p(P

1<k=n K



. + . .
Taking the supremum over n € 2 shows x 1is in E . If

EAK and p 1is a continuous semi-norm on E, then
n
n- - = -l . - << _l
p(0 *x-x) p(n (kél Pk X -nx)) =<n

oB

n
kgl p(Pk-x—x).

x 1is in

12

+
Given € > 0, choose M € Z so that n > M implies p(Pn'x—x) < g/2

+ -
and then K € 2Z so that Mlsup p(Pj'x-x)](M+K)
]

n>M+ K

< £/2. Then for

p(on'x—x) < M[ sup p(P.°x—x)](M+K).l+-n-l(n-M)°€/2 < E.
1<j=<M

Before getting into the main theme of this chapter it is

advantageous to prove some results on making new K-space from old ones.

Later we will apply Theorem 1 to our three sets of section operators

to deduce the factorization of the corresponding "section convergence

space" in an FK~spa

is EAK = bvo'EAB.

Theorem 1. Let (E,

ce.

T)

For example, the corresponding P-factorization

be

the set P of semi-norms

0 < sup 't | <o,
teF "

for each p in P}.

a

p.

K-space whose topology is generated by

Let F C ¢ such that for each n € Z+,

and define EFB = {x €w : pF(x) = sup p(tex) < = ,

te€F

Then EFB with topology generated by the set

PF = {pF: p € P} of semi-norms is a sequentially complete K-space.

Proof. EFB

we have pF(x) = sup
t€F

a Cauchy sequence in
continuous semi-norm

such that

|t |p(x) with O < sup |t
k

EFB with coordinatewise limit x.

p

is a K-space since, for the semi-norm p(x) = kal,

on

I
teF k

E and each t € F,

(n)

<@ ., Let (x )
For each
) +
there exists m € 2

be
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(m)) <1,

p(t*x - tex
m
as x( ) converges coordinatewise to x and t € ¢. Then

(m) (m) (m)

p(t*x) = p(tex - t*x ') + p(t'x ) =1 + pF(x ).

It follows
Pr(x) =1 + sup p (x( ))< o, and so x € E
F F ' FB °

For each € > 0, there exists N € Z+ such that pF(x(n) - x(m)) < g/2

whenever n,m > N. Also for each t € F, there exists m > N such

(m),

that p(tex - tex" ) < €/2. Hence, for all n > N,

(m) (m) (n)

p(tex -~ t-x(n5 = pl(tex - tex ) ® p(tex - tex ) < e.

(n) (n)

Thus, for all n > N, pF(x-x ) < €. Hence (x ) converges to x

in EFB'
Corollary. If E 1is a metrizable K~space, then EFB is an FK-space.
Proof. A K-space is metrizable if and only if its topology

is generated by a countable number of semi-norms. An FK-space is a
sequentially complete metrizable K-space.

Let X and Y be subsets of w. X 1is called Y-invariant
if Y*X = X. A K-space E is called locally Y-invariant if Y is
an equicontinuous set of linear operators from E into itself.

Notice if e belongs to Y, locally Y-invariant implies
Y-invariant. If Y' €Y and E 1is locally Y-invariant, then E is
locally Y'-invariant. Usually the set Y will be a semi-group of linear
operators on E which is a subset of a BK-space. For each of the

three sets of section operators we will develop the following association
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of BK-spaces:
P + bv, o < q, H > c.

Under the right circumstances each of the above listed spaces will be
very informative with regard to the corresponding section operators
action on a K-space. We should also remark that locally P-invariant
and locally H-invariant spaces are AB- and UAB-spaces respectively.
As previously mentioned we will be chiefly concerned with a semi-group
of linear operators on a K-space E; when considering local invariance
this will always be the case. The terminology is explained by the next
theorem.
Theorem 2. Suppose that E is a topological vector space and that D
is a semi-group of linear opérators from E into itself. D 1is equi-~
continuous if and only if there is a base U of neighborhoods with the
property that d(U) C U for each 4 in D and U in U. 1If further
E 1is locally convex, D 1is equicontinuous if and only if the topology
of E is defined by a collection P of semi-norms with the property
that p(x) = p(d(x)) for each p in P, d in D, and x in E.

Proof. The condition is certainly sufficient. Suppose that
D is equicontinuous. Let UV be a base of neighborhoods of 0. For

each V in UV 1let u= 0 d-l(v) fl V. Since D is equicontinuous,
d€p

U is a neighborhood of 0. If x € U then x € V and d(x) € vV for
each d in D. Since D 1is a semi-group, d(x) € U, so that
d(U) € U. The collection U of all such neighborhoods is clearly a

base of neighborhoods so that the condition is necessary. If E is
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locally convex, U can be taken to be a collection of closed absolutely

convex neighborhoods of O simply by starting with V as such. The

characterization in terms of semi-norms is obtained by setting

P= {pU : Py is the gauge of U in U}.
Corollary 1. If (E,T) 1is a K-space the following are equivalent:

(i) E 1is locally P-invariant;

(ii) E has a base U of (closed) absolutely convex neighbor-
hoods of O with the property that P(U) € U, for each U in U;

(iii) T is defined by a collection P of semi-norms with
the property that p(x) = p(Pn'x) for each p in P, n in Z+, and

x in E.

Corollaries 2, 3, and 4. Locally H-invariant, locally B-invariant,

and locally solid K-spaces can be characterized in an analogous way.

The Cesaro section operators do not form a semi-group of linear
operators, so an analogous statement about locally OJ-invariant does not
follow.

Proposition 1. Suppose that E 1is a locally P-invariant (respectively

locally H-invariant) space. An element x of E has the property AK
(respectively UAK) if and only if it has the property AD.

Proof. We prove only the case where E is locally P-invariant.
The other case is similar. Clearly if x has the property AK it has
the property AD. " Suppose x has the property AD and U is a hasic
absolutely convex neighborhood of 0 for which P(U) € U. There exists
y € ¢ such that x - y € %U. There exists an integer n, such that

. = > 1 >
Pn Y y for n 2= ng. Then if n 2 no
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X - P X=x-y+ Pn(y—x) € XU + %u = U,

so that x has the property AK.

§3. Invariance of K-spaces

We set aside the operators ¢ and H temporarily, after first
noting that in a K-space the members of the sets of operators P, O,
and H are continuous; being the finite sum of products of scalar multiples
of projections and Gk sequences.

Proposition 2. Suppose that E is a K-space, and that x is in E.

Consider the four following statements:

(a) C*x C Exx '

(b) Ce*x 1is a bounded subset of E;

(c) B *x C E i

(d) Bex is a bounded subset of E.

We have the following implications:
(a) = (b) = (c) = (4).

Proof. Suppose that C<x C EAK . Let G = span(Ce*x), with
the subspace topology. G 1is an AK-space, so if f is a continuous
linear functional on G, f can be written in the form f(y) = izl yif(Gi).
In particular if ¢ € ¢, f(c*x) = izl c X, f(Gi); as this is true for
each ¢ € C, izl |xif(6i)| is convergent, and |f(c-x)| = igl lxif(éi)l.
Thus Ce+*x is weakly bounded in G hence weakly bounded in E.

By Mackey's theorem C*x 1is bounded in E. Thus (a) = (b). Since

C OB we have (b) = (d). Suppose that B*x 1is a bounded subset of E.

In particular Bo-x is a bounded subset of E. If b € bv0 , let
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T(b) = b*x. T is a linear map from bv° into E, which is continuous
since T(Bo) is bounded [20, p.23]. Then Pn(b°x) = T(Pn'b) + T(b) = b*x
since Pn'b + b in bvo . Hence (d) = (c). We now show (c) = (d).

et R = span(Bo'x) with the subspace topology. As before, any continuous
linear functional on R can be written in the form

i
(2.1) £y) = & v £6h.

For A € B ,
o

k i k-1 i 3 k i l
[ Ax £ =] Z{A,-x, . )L x.£(8)}+XA I x.£(8)
i i
i=1 i3 i=1 i i+l =1 J k i=1
k-1 n i
< -
sz A=A+ I\ Dsup| T x £(8 )|
i=1 ) n i=1l
Therefore
i 2 i
(2.2) | ¥ Ax. 6N < Ml sup| T x.£(6M)].
, il bv . i
i=1 n i=l
ph i
Now suppose supl L xif(é )l = © , Then there exists an increasing
n i=1
sequence (ni) of positive integers such that
Pi+1 . i i i .
| T x,£8N)]z 4 + 2" I |xjf(63)|.
J=ni+1 j=1
= < = -i < =<
Let zJ xJ for j = n1 and zJ 2 xj for n, j n1+1 ’
i=1,2,... . Then =z ¢ Bo-x, and
Pi+l ) Mi+l . "y .
s 286N 2] £ =z £ - I |z.£(8)]
j=1 J j=n +1 j=1
Ly ivl , M3 . X
=27 T x.£(60)] - I |xjf(63)| > 2%,

j=n_+1 ) j=1
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This contradicts (2.1) so we conclude from (2.2) that Bo-x is weakly
bounded in R, and it follows that Bo-x, and so Be*x 1is bounded in E.
The following examples show there are no further implications:
(b) # (a). Let E = L with the supremum norm topology. Ce*e is a
bounded subset of Zw, but (1,0,1,0,...)*e = (1,0,1,0,...) does not

have the property AK.

(d) # (b). Let E = bv with norm v Then Bre 1is a bounded
subset of bv, but (1,0,1,0,...)*e 1is not even a member of bv.

We immediately obtain the following corollaries which stress
the power of Proposition 2 in the presence of an AK-space.

Corollary 1. If E is a solid (respectively B-invariant) AK-space,
C*x (respectively Be*x) is bounded for each x in E.

Corollary 2. If E 1is a Bo—invariant K~space, E 1is an AK-space

if and only if Be*x 1is bounded for each x in E.

Proposition_3. Suppose E is a B-invariant locally P-invariant K-
space. E 1is locally B-invariant if and only if B-°x is bounded for
each x in E.

Proof. The condition is certainly necessary. Suppose that
it is satisfied, and let P be a defining collection of semi-norms
satisfying the conditions of Corollary 1, Theorem 2. Suppose that
p €P, x €E, and 0 € B, We can write 0 = A*e + {, where Y € B,

and lkl + |yl = 1. Thus we have p(B+x) < |A|p(x) + p(YPex). Now Yrx

has the property AK (Propostion 2) so that

p(Y*x) = sup p(Pn°(W°x))
n
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n-1
= sup p( X (Wi-¢i+l)Pi'x + P oex)
n i=1
X ", |
< sup(( Z [y,-¥, 1 +[v Dhsup p(P, *x))
n j=1 1 i+l n e i

lllsup p(P_x) < |Yllp(x)
n

Hence p(B+x) < p(x) and E is locally B-invariant (Corollary 3,
Theorem 2).
Corollary. If E is a B-invariant AK-space, E is locally P-invariant
if and only if E is locally B-invariant.

Proof. Apply Corollary 1, Proposition 2.

Proposition 3 and its corollary do not extend to solid spaces
however, For example, let T be a topology on Qw defined by the semi-

norms {px}xéll , where

n
Px(Y) = sup I'Z XY |-
n i=1

(lw,T) is a locally P-invariant solid AK-space, and C*x is bounded
for each x in 2 (Corollary 1, Theorem 2). (Rw,T) is not locally
solid (Corollary 4, Theorem 2).

As far as replacing B by CA and P by H in Proposition 3,
it seems likely to go through considering the association P +«* bv and

H <> ¢, although I have been unable to prove it.

§4. Further Topological Conditions

In 53 we saw, in general, that B-invariant and AK are two

properties that are especially strong together in a K-space. Here we
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examine the situation when E satisfies one or more of the following
conditions:

(a) E 1is sequentially complete;

(b) E 1is barrelled;

(c) E 1is a Fréchet space.
spaces of the above type are extremely nice as they will often reduce
otherwise unrelated properties to a single one. For example when E
is a sequentially complete K-space, an AB-space is B-invariant
(Corollary 2, Proposition 6); so a sequentially complete AK-space
is a priori B-invariant. Conditions (a) and (b) will be useful when
E is an AB-space. (c) allows use of the closed graph theorem, producing
correspondingly more powerful fesults.

Proposition 4. (i) If E 1is a barrelled K-space, E 1is locally

P-invariant (respectively locally H-invariant) if and only if E 1is
an AB(respectively UAB)-space.

(ii) TIf E 1is a barrelled B-invariant K-space, E is
locally B~-invariant if and only if Bex is bounded for each x in E.

Proof. The first result follows since any pointwise bounded
set of continuous linear maps from a barrelled space into a locally
convex space is equicontinuous. For (ii) just apply Proposition 3 and
Proposition 4, (i).
Corollary 1. Suppose that E 1is a barrelled K-space with E C EAB
Then the following are equivalent:

(i) x € EAK H

(ii) x € E ;

SAK
(iii) x has the property AD.
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Proof. Proposition 4, (i) together with Proposition 1 show
that (i) is equivalent to (iii). (i) implies (ii) in any K-space,
so we are left to prove (ii) implies (i). x in ESAK implies x
belongs to the weak closure of {Pn'x} and hence to the weak closure
of the convex hull of {Pn'x}, fTPn°x}. As r{Pn°x} C ¢, and since
the closure in the original topology and the weak closure of convex sets
agree in a locally convex space, x has the property AD, hence belongs
to EAK .
Corollary 2. A barrelled B-invariant AK-space is locally B-invariant.

Proof. See Corollary 1, Proposition 2.

Proposition 5. A barrelled solid AK-space E 1is locally solid.

' +
Proof. Let c¢ € C. Define for m € 2 ,

c.x.6i (x € E).
ii

fm(x) =
1l

N ~3

i
Since E is an AK-space fm(x) + c*x. By the Banach~Steinhaus theorem
f(x) = c*x is a continuous linear mapping from E into E. The result
now follows from Corollary 1, Proposition 2 and the definitions.

The next result guarantees we can "complete" the set P to Bo
in a sequentially complete space in the sense that P*x being bounded
insures Bo'x is also bounded.

Proposition 6. Suppose that E 1is a sequentially complete K-space.

let x in E . Then Bo'x is bounded and Bo°x C E

AB AK °

Proof. Suppose x has bounded sections. Let 2z = A*x with

A€ Bo , and let p be a continuous semi-norm on E. Since Pn'z =

n-1
El(Ai-Ai+l)Pi-x + XnPn'x, we have

1
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p(Pn'z—Pm'z) = p(r_l):l()\i—)\iﬂ)Pi-x + )\npn-x - )\mpm-x)
i=m
n-1
) izmlxi-xi+1|p(Pi.X) +|)‘nIP(Pn.X) * Ikm|p(Pa x)
n-1
= ('Aml + izmlki-ki+l| + Iknl) mz;gn p(Pi°x)

for m < n. It follows that (Pi~z) is a Cauchy sequence in E; as
E is a K-space (Pi'z) must converge to 2z € E, thus Bo'x c EAK .
The result follows from the proof of (c) = (d) of Proposition 2.
Corollary 1. If E 1is a sequentially complete K-space and x is in
E, Pex is bounded if and only if Be*x is bounded.
Corollary 2. If E 1is a sequentially complete AB-space, E is B-
invariant and B*x is bounded for each x in E.
Corollary 3. If E is a sequentially complete locally P-invariant space,
E 1is locally B-invariant.

Proof. Apply Proposition 3.

Notice here, with the additional hypothesis of sequential
completeness, we did not have to assume E was B-invariant and B*x
was bounded for each x in E as in Proposition 3.
Corollary 4. If E 1is a sequentially complete Bo—invariant K-space,
E is an AK-space if and only if E 1is an AB-space.

Proof. E C E implies E = BO°E CE

AB AK ©

Corollary 5. If E 1is a barrelled sequentially complete K-space, E
is an AB-space if and only if E 1is locally B-invariant.
For the remainder of this chapter we treat exclusively FK-spaces.

. i - C B *E.
Lemma 1 If E 1is an FK-space, EAK S E
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Proof. Suppose x € EAK . Let (pi) be an increasing sequence

of defining semi-norms for the topclogy of E. There exists an increasing

sequence (nj) of positive integers such that

-3
- . < >
pj(x P *x) 4 for n=n

i 3
:: Let z, =X, for 1=1i=n
and let z; = 2in for nj <i= nj+l .
If n1<ir< s, where nj < r = nj+1 and nk < g = nk+1 ’
k-1
pl(Ps'z—Pr'z) = pl(Pnj+1'z—Pr'z) +p (m=§+1(1>nm+l-z-pnm-z) +Ps.z_Pn};z)
k-1
= pl(Pnj+;z_P;°Z) + m=§+1 pl(pnm+l.z-an-z) + pl(ps-z-Pnk-z)
= 2jp (P *x-P_°+x) + kgl 2mp (P *x-P  °*x) + 2kp (Pex-P_°*x)
3 M T m=i+l ™ "m+l " ks 0y
<2 ; 2™ < 277
m=3

Hence (Pn°z) is a Cauchy sequence in E which converges to 2z, since
E is an FK-space. Thus 2z € E; since x € Bo°z, x € BO'E.
Theorem 3. Suppose that E is an FK-space. The following are equivalent:
(i) E 1is B-invariant;
(ii) E 1is locally B-invariant;
(iii) E 1is an AB-space;
(iv) BO°E is a closed linear subspace of E;
(v) B *E = E .

o AK

Proof. The equivalency of (ii) and (iii) follows from Corollary 2,
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Proposition 6. Suppose E is B-invariant and x € E. Define
Tx : by E by Tx(y) = xX°y.
Tx is clearly linear, and, since E is a K-space has a closed graph.
By the closed graph theorem Tx is continuous, and so, Tx(B) = Bex
is bounded in E. As E 1is barrelled it is locally B-invariant
(Proposition 4, (ii)). The converse is trivial, hence we can now conclude

the equivalence of (i), (ii), and (iii). By Lemma 1 E C BO-E. If

AK

E is locally B-invariant BO'E CE by Proposition 2, so that (ii)

AK

implies (v). If E is locally B-invariant, B °E = E, = closure (¢)
by (ii) implies (v) and Proposition 1l; so BO'E is a closed linear sub-
space of E. Finally (i) is implied by either (iv) or (v).
Corollary 1. Suppose E is.an FK-space. The following statements
are equivalent:

(i) E is a B-invariant AD-space;

(ii) E is an AK-space;

(iii) E 1is Bo-invariant.
Corollary 2. Suppose E 1is a solid FK-space. E is locally solid,
and EAK = CO-E.

Proof. Let Tx : Rm -+ E be defined by Tx(y) = x°y, Wwhere
Xx € E. As in the proof of Theorem 3, Tx is a continuous linear map
and so Tx(C) = C*x 1is a bounded subset of E. The map Sx : E+E
defined by Sx(y) = x*y 1is linear for each x in C. It is also con-

tinuous by the closed graph theorem. This shows E is locally solid,

and C *E =B *E = E since E 1is solid.
o] o AK
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It follows from Theorem 3 that if E is a B-invariant FK-

space, EAK is a closed linear subspace of E. That the converse is

false is illustrated by the following.

Example: S is an FK-space with the property AK if endowed with the
norm "'”m . Let z = (21) and let E = coe span(z); if x =y + Az € E,
let p(x) = |yll, and aq(x) = |A\]. Then E is an FK-space under the
semi-norms {p,q}. E is not B~invariant ((z_l) € B and (2-1)'2 = e),
while EAK = C, which is closed in E.

lemma 2. Let E be a sequentially complete K-space. Then

P.) P)

(EAB’ p) Ak = (EPB' p) Ak = EAK . (For the notation see Theorem 1).

+
Proof. Let x € E, and let p ¢ P. There exists K € Z
such that if n,k 2 K, p(Pk'x—Pn'x) < €; where € > 0 1is a prescribed

constant given in advance. Then

pp(Pk-x-x) = sup P(Pn’(Pk-x-x)) = sup p(P

°x—Pn-x) < €
n n>k

k
. - c

if k = K. Thus EAK (EAB)AK . Let x € (EAB)AK let p € P, and let
€ >0 be given. If k,j = K where KE Z+ is chosen so that

pp(Pk'x-Pj'x) < € whenever k,j 2 K, then

ey o << eyw=P o = eywP e <
p(Pk x Pj x) = s:p p(Pm (Pk x Pj X)) pP(Px x Pj x) €

Thus (Pk'x) is a Cauchy sequence in E; since E 1is a sequentially
complete K-space (Pk'x) converges to x in E.

We now prove the factorization theorem relating the sequences
with convergent sections to the sequences with bounded sections via the
BK-space associated with P, bv. Although this theorem is attributed to

Garling because of [9], this is, so far as I know, the first time an
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explicit proof appears in print.

Theorem 4. If E is an FK-space, then EAK = bvo'EAB .

Proof. By Theorem 1 (EAB’PP) is an FK-space. Let x € E\p

and let p € P. We have

sup PP(Pn'x) = sup sup p(Pm°(Pn'x)) = sup 52p p(Pm'(Pn°x))
n n m n m<n

= sup p(Pn°x) < oo,
n

X c . .
showing EAB (EAB'PP)AB . Applying Theorem 3 to (EAB'PP) and using

Lemma 2, we obtain BO°EAB = (EAB)AK = EAK .
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Chapter 3 ~ Cesaro Sections
§1. Introduction

Here we treat Cesaro section boundedness of a sequence and
obtain analogous factorizations for FK-spaces to those derived in Chapter
2. In each instance a suitable subset of the quasi-convex sequences q
is used in place of the corresponding subset of bv. It is shown in an
FK-space that those sequences with Cesaro section convergence are
exactly the product of sequences in q, with sequences having Cesadro
section boundedness. In 54 the main results (§3) are applied to obtain
theorems on multiplier spaces; 85 contains more applications of §3,
this time extending some results of Littlewood and Paley, and Salem

concerning certain factorizations under convolution.

§2. Basic Facts

When dealing with Cesaro sections we will have need to consider
the properties of the quasi-convex sequences ¢q (see Chapter 1, §3),
as they are the associated BK-space of the set 0. The first two lemmas

are stated without proof since their verification involves only simple

computations.,

Lemma 1. Let (mk) be any strictly increasing sequence of positive
real numbers and let (Nk) be a strictly increasing sequence of integers
for which Nl =1 and for all k € {2,3,...},

Nepp e 3) 2N (g oomye ) = Ny (Mg ™) -
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Let y be the sequence which, for each k, yN = mk and is linear

k
between Nk and Nk+1 . Then y is concave and the sequence A given
by An = y; is a convex null sequence.

Lemma 2. For all A € w,
n-1
(3.1) P ed= IkAA K + (n-1)MA ™1 4 A
n k n nn
k=1
n-1
(3.2) = I kA2A ok + nA o - (n-1)A on_l
k=1 k n n+l

The first proposition indicates the compatibility of q with
the Cesaro sections 0. Corollary 3 then illustrates the role of g in
a specialized situation as the associated BK-space for the Cesaro sections
a.

Propogition 1. For any semi-norm p on a sequence space E containing

o°x,

n
sup p(0 *x) = sup po(on-x) = sup Py(A<x).

p(x)
o n : n A€Q

Proof. po(x) = sup p(On'x) = sup lim p(Om'On-x)
n n m®

= sup sup p(Om'0n°x) = sup pO(On'x).
n m n

For the reverse inegquality, let A = o"+0™. Then by Lemma 2 (3.2)

m-1
sup p0(0n°x) = sup p(On'Om°x) = sup p( L kAzkk(Ok'x) + mAm(om'x))
n m<n m<n k=1
m-1
=< sup( 2 Tk + (1 - ~It-‘-Ii-l--))sup p(ok°x)
m<n k=1 k

2 2 k
= sup(l - - — ) sup p(ok'x) = sup p(0 *x) = po(x).
m<n k k
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Thus po(x) = sup po(on-x).
n

For A € Q,

p(Aec™ex) = lim p(Pm'X°Gn°x)

m—mo
m-lo, 0k m-1

= lim p( I kA“A (0 ca™x) + (m-1)8A_(0 coMex) + Am(on-x))

e k=1

m-1 5

< 1i T Ik -

;12 (k=ll AN+ m-1) AR |+ A ey x)
< I P

where Lemma 2 (3.1) was used and the fact that if x € q then

k

px = ¥ Azx . Taking the supremum over n vyields sup p_(A*x) = p_(x),
" k=n A€Q 9 o

while the converse inequality follows as e € Q.

Corollary 1. For any K-space E, EGB = (EGB)GB -

Although the corresponding result was not stated for P, it
does hold, and its proof is rather simple.

Corollary 2. For any K-space E, EGB is a OB-space.

Corollary 3. For any K-space E, E__ = q°E

OB OB °

The next result is the stepping stone to the corresponding result
achieved in Lemma 2, Chapter 2.

iti 2. r K- E C (E .
Proposition For any space , EOK ( GB)OK

Proof. Using Lemma 2 (3.2) and the following facts:

(a) if n < m then A2(0n-0m—on)k = i%- for 1 =k = n-1

(b) if n > m then

>
a
[ J
Q
Q
b

[

)
L ]

Q

Q
I
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it is not

A2(On'0m—0n)k =0 for m+tl <=k = n-1;

difficult to show that
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n-1
(3.3) 0" (™ex-x) = I kA2(on-dm-0n)k(0k'x-x) + ((O‘m)n-l)(on'x-x).
k=1
Suppose p is a continuous semi-norm on E, and p(0n°x-x) + 0. For
€ >0, let N be chosen such that, for all k = N,
k
p(0 *x~x) < €/4 ,
and let M > N be chosen such that
g-sup p(0k°x—x) < g/2 .
k=N
Suppose m > M. We consider three cases: if n = N then using (3.3)
n-1
p(a™s (™x-x)) == T k p(cFex-x) + L p(o"ex-x)
mn m
k=1
= 2(n-1) sup p(Ok'x—x) <e ;
ksn
if N<n=m then
N n-1
p(o"s (0™ ex-x)) = i%- I x p(Ok'x-x) + é% I k p(ok'x—x)
k=1 k=N+1
- k -
+ E;l-p(0n°x-x) = E-sup p(0 *x~x) + giﬁ—ll- sup p(Ok'x-x) < g;
k<N k>N
if m < n then
N m-1
p(On'(Gm'x-x)) = é%- Ik p(Ok'x-x) + ﬁ% z k p(0k°x-x)
=1 k=N+1

+ (1 - 3;—1 )p(0™ex-x) + p(0”ex-x)

sup p(ok'x-x) + 2 sup p(ok'x—x) < g€,
k=N k>N

<

3|=



Thus, whenever m > M, po(om'x—x) < €.

It is not alw =
ays true that (EOB)OK oK

that ( )

Exp’ak © Eax

any K-space with the property OK (respectively AK) properly containing

3

¢ and let x € E—~ ¢. By Zorn's Lemma there exists a maximal subspace

1

E or, for that matter,

E as the following construction indicates. Let E be

F D¢ such that x £ F. Clearly, if F is given the subspace topology,

F

(F__) = (E_) > E 3 F oK

OB OK OB OK

F ).

(respectively (F__) = ( ) SEJF AK

AB AK EAB AK
Proposition 3. If E 1is a sequentially complete K-space then

Esk = (Egplok -

Proof. Considering Proposition 2, it suffices to show that
(Cn'x) is a Cauchy sequence of EOB then it is a Cauchy sequence of

But this is clear since for every continuous semi-norm p,
p(on~x-0m'x) = lim p(0k°(0n°x—0m'x)) = po(on-x—om'x).
k

Proposition 4. let E be a K-space. A sequence x is in (EOB)OK

and only if x has the property AD with respect to the topology of

if

i

E

£

OB

Proof. Let p be a continuous semi-norm on E. If x has the

property AD with respect to EOB then there exists a y in ¢ such

that

po(x-y) < e/3

+
. c ,
Since ¢ (EOB)UK there exists an N € Z such that

po(y—on°y) < g/3 for every n > N.

We have by Proposition 1,
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po(x-on-x) = po(x-y) + po(y-On'y) + po(on'(y—x)) <€

for every n > N. The converse is immediate.
Corollary. If E is an FK-space then EOK is an FK-space under the

topology of EOB .
Proof. It follows from the corollary to Theorem 1, Chapter 2

that EOB is an FK-space. By Proposition 3 E0 = (E0 ) which is

K B° OK

closed in E g by Proposition 4.

B

§3. Main Results

Theorem 1 expresses the property OB in terms of the associated
space q. Again similar results can be found in Chapter 2 for the propefty
AB and bv.

Theorem 1. Let E be an FK-space. The following statements are equival-
ent:

(i) x € EOB :

(ii) for each continuous linear functional £ on E, the
sequence y defined by Yy = f(x-Gk) is an element of O0b;

(iii) q,°X c EOK :

(iv) q,°x C E;

{(v) Qo'x is a bounded subset of E;

(vi) Q+°x 1is a bounded subset of EOB .
Proof. (iv) = (iii): Let T : q, T E be given by T(A) = Aex.

Since E is a K~space T has a closed graph and hence is continuous by

the closed graph theorem. Since a, is a OK-space,
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oMedex = T(On'k) + T(A) = Aex for every A € q, -

(iii) = (iv) 1is clear.

(iv) = (v): T(Qo) = Qo'x is bounded since T is continuous.

(v) =2 (i) follows as O C 2Qo .

(i) = (vi) follows from Proposition 1.

(i) = (ii): By Mackey's theorem, (i) is equivalent to the condition O-x
is a weakly bounded subset of E. That is, for each continuous linear

functional f on E,

n n k-1 k
sup |f(o °x)| = sup| I (1l -==)f(x6)] = ”Yuob <@,
n n k=1 n

(i) = (iii): If x ¢ E0 then by Proposition 1, Corollary 3 q,° % CE .

B ' OB

Thus, by (iv) = (iii) (E is an FK-space by Corollary to Theorem 1,

0B
)

Chapter 2) and Propostion 3, 9, % c

Eslox = Box

Corollary. If x € E then the following statements may be added to the
list in Theorem 1:

(vii) g°x C E;

(viii) Q°*x is a bounded subset of E.

Proof. (iv) « (vii) and (viii) = (v) are immediate. That
'x ¢ [{2({x} U Qo°x)} yields (v) = (viii).

Next we examine the space E as a whole.
Theorem 2. lLet E be an FK-space. The following statements are
equivalent:

(i) E 1is a OB-space;

(ii) E = g*E;

iii *EC E ;
( ) 9, oK
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(iv) q*E=E_ ;

(v) m2°E = E
(o} OK

Proof. The equivalence of (i), (ii), and (iii) follows from
the corollary to Theorem 1. Suppose condition (iii) holds. To conclude

that condition (v) holds it is sufficient to show that for any FK-space

2
C . C .
E, EOK m0 EOK , as EOK E . By the corollary to Proposition 4

and Propostion 1, 'EOK is an FK-space with a set of defining semi-~

+
norms P = {pm :m € Z } such that

Pm(x) = s:p pm(On'x)
and
pm(X) = pm+1(x)

+
where m € 2 and x € E .
OK
Let x € EOK and set (mk) = (2k). For each positive integer k choose

N such that

k
(a) all Nk are integers
= < < .
(b) 1 N1 N2 hee
> - = N
(c) Nk+1 2 3Nk 2Nk-1 (k = 2,3,4,...) ;

(4d) pj(or'x-os°x) < 4—3 whenever r,s 2 Nj

Under these conditions construct sequences y and A as in Lemma 1.
2 .
Then x = A*(y*x) where X € mo , and it remains to show y*x € EOK .

i i- . 2 > > Z N, >N
Consider the semi-norm P Iif Nk+1 s r Nk N1 n then by

Lemma 2 (3.1),

r S s-1 2 t r S
P (O  ey*x-0 *y°x) = L tIA Y Ip (0 (0" *x-0" *x))
m £=1 t'"'m

+ (s—l)|Ays|pm(os_l'(Or'x—os'x)) + IySIpm(0r°x—05°x)



1A

W

s-1

2 r s
( Z +t(-A Yt) + (s—l)(—Ays) + ys)pm(o X=0" *X)

t=1

+ -—
(=y,+2y )p_(0%+x-0%+x) < (-2+425"2) 47Ky < 2

Thus, for s 2 r >N, >N ,

P

Hence y*x € EoK

linear span cf mz

Corollagz l. If

Proof.

Eix = (EOB)OK .

1 m

—t+ ~i
(Or'y'x—os'y'x) < ¥ t+2 _ 2 i+3

t=1i

-k+2
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since EOK is an FK-space. (v) implies (iv) since the

E i n FK- = *E .
s a space then EOK q,°Esp

E i - i =
oB s an FK-space with EOB (EOB)OB

Th = (I =q » 3
us Ep = Ep)ox = 9% Ep

and

is ; while (iv) implies (iii) is immediate.
9

Corollary 1 is the expected counterpart to Theorem 4, Chapter 2.

Corollary 2. 1If
(i) E
(ii) E
(iii)
(iv) E
(v) E
Proof .

(i) implies (iv)

and so E 1is an

4 together with the topology of EOB restricted to E being weaker than

the FK-topology

E is an FK-space the following statements are equivalent:

is a OK-space;
=qo E;
E = mz'E;
o]
is an AD-space and a OB-space;

is an AD=~space and qo'E C E.

Evidently (i), (ii), and (iii) are equivalent while

and (iv) implies (v). If (v) holds then q°E

AD-space and a OB-space. Proposition 3 and Proposition

f i = .
o E gives E EOK
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5 §4. Some Applications to Multipliers

Another interpretation of the invariance results above lead to
consideration of spaces naturally called multiplier spaces. For every
E,FC w, where F 1is a sequence space, we denote by (E *» F) the set
{x € w : x*E € F}. That F is a sequence space insures (E *> F) is
a sequence space. The following multiplier results are simple consequences
of the theorems in the previous section.

Propostion 5. Suppose E,F, (E > F) are FK-spaces. If F is a OB-

space then (E - F) is a OB-space. If, further, F = FOB then (E - F)

= - F
(E )OB
Proof. If F is a. oB-space, g°*F = F. Thus q+«(E + F) C
(E~* q*F) = (E~> F). By Theorem 2 (E » F) is a OB-space. If, further,
= . . 3 L] C i
F FoB then, by Theorem 2, q, (E » F)OB E (E ~ F)OK E F. Applying

'R . % -»> L4 C =
Theorem 1 to qo x € F where x € (E - F)OB E vyields (E F)OB E FOB F.

Thus (E * F) C(E +~ F).
oB

Proposition 6. Suppose E°*F = G, where E, F, G are FK-spaces. If

either E or F 1is a OK-space (respectively OB-space) then G is a
OK-space (respectively JB-space).

Proof. If E is a OK-space then qo‘G = qo'(E-F) = (qo°E)'F =
E*F = G. The proofs are similar for the other cases.

Proposition 7. Suppose E and F are FK-spaces. If both E and F

- -> C -> .
are OB-spaces then (E = F) (EOK FOK)

. *E C . = . oF C F = F .
Proof If x°E F then x EOK x°q E q, F oK

Corollary. Suppose E and F are FK-spaces. If E is a OK-space

i - - = -> = ->
and F 1is a OB-space then (E F) (E FOK) (E FOB)'
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Proposition 8.

Proo

by Theorem 1,

Suppose E 1is an FK-space. If F
f. If F O q, then x*F € E implies

x € EOB .
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o) 9, then (F - E) CEOB

x*q ¢ E. Thus,

Although these are all the results we give on multipliers, there

are more avail

able for "free". Simply adjust the statements of those

results obtained above to be compatible with another type of section.

§5. Some Appl

lLet

on R which have derivatives of all orders.

the semi-norm

ications to Fourier Series

[ee]
C denote the space of 2m~periodic

pk(f) = sup sup ]D]f(x)l
0=j<k 0=<x<2m

complex valued functions

+
For each k € 2 , we define

where DJf denotes the j=-th derivative of £f. Under this collection

of semi-norms,

[¢¢]
linear functional on C .

denoted by D.

oo -~ . . K] . .
C is a Frechet space. A distribution is a continuous

If F is a distribution and satisfies an

The linear space of all distributions will be

inequality of the

form |F(u)| = KHun where u € Cm, K is a constant, and “-ll°° is

the uniform no

rm, then F is termed a Radon measure and can be expressed

as an integral with respect to some uniquely determined regular Borel

measure m, vi

z. Flu) = fgnu(x)dm(x) (10, p.177].

measures will be denoted by M. It should be noted

can be identif

ince L fzﬂ
sin 21 70

ied with an element of M by F(u) =

f(x)'u(x)dxl < Hle'Hu”m . By D we

The space of Radon

that every £ € L1(0,2ﬂ)
1l .27

o fo £(x)*u(x)dx

shall denote the set
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~

of sequences of Fourier coefficients F of distributions F. Here, F(n),
i

the n-th Fourier coefficient of F, is given by F(e 7%

). It can be
shown D is the set of tempered sequences {x = (xk)k€Z+ : for some n,

x, = o(kl™1 17, p.6s].

’ ]
Let E be a locally convex Hausdorfﬂ’space of distributions

~ ~

defined by a collection P of semi-norms such that E = {F : F € E} is
a "K-space" defined by the semi-norms p(;) = p(F), p € P. A couple of
remarks are in order before proceeding further. First, K-space refers
to the analogue of our earlier definition with sequences defined on 2
rather than on Z+. With this understanding the concepts of AB, AK, OK,

~

etc. can be modified so as to apply to E. For example, here

p = 1 & and o= I (@1 - l%% )Gk .
Iklfn |k|$n n

Second, that the semi-norms on E are well-defined. It is shown in [7, p.65]

that the distributions F and G are the same whenever F(n) = G(n) (n € 2Z).

Let on ={F €E : F GEOK} and EOB ={F €D : F € EOB}' We say E is

a OK-space if E = on and E is a OB-space if E ¢ EOB .  We denote

by Q (respectively Qo' Mg) the set of Fourier series L Xnelnx where
n€z

A= X_n(n € 2) and where (Xn) is an element of q (respectively q,-

ne€zt

m ).

For the convolution F+*G of two distributions we have F*G =

A A

F*G [7, p.73]. Thus the main results, when restricted to tempered
sequences, can easily be translated to spaces of distributions by replacing
the operation of coordinatewise multiplication with convolution. For

~

example if E is an FK-space then:
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= < = o -—2 -
(3.4) E= on tE = QO*E E-MO*E ;
and
(3.5) EcEeE=QE=E =Q*E.

In 1937 Littlewood and Paley [12] proved the factorization

1P c 1141 (1 <p <. since % © L 130, v.1, p.1831, ana L5 = 1°

(1 < p <® this factorization statement is contained in (3.4).
In 1945 Salem [21] proved that if f € C, the space of
continuous 27-periodic functions, (respectively Ll) then there exists

a sequence Yy such that Yy =Y (n € Z) and is positive,

-n (yn)n€Z+
concave, and increasing to infinity such that fey € C (respectively

A

Ll). Since (C = COK and Ll = L;K these results are contained in (3.4)
2

using the fact that if (An) € m then (A;l) is positive, concave,

and increasing to infinity.
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Chapter 4 - Unconditional Sections
§1. Introduction

This chapter draws its substance from John J. Sember's paper
23] with the exception of those results listed in [17], done jointly
by the previously mentioned author and myself. General facts concerning
unconditionally bounded sections are estaﬁlished in §2. 1In 83 we see
that the space of convergent sequences ¢ is the BK-space corresponding
to bv and g of the preceeding two chapters. As with the other kinds
of section convergence, we obtain the result that for any FK-space E,
EUAK = co'EUAB . The final section contains some miscellaneous examples

and a criterion as to when a sequence has unconditionally bounded sections

in a convergence field.

§2, Unconditional Section Boundedness

We begin by plugging one of the two gaps remaining in the diagram
in Chapter 2, §2.

Theorem 1. If E 1is a K-space, then

E = {x €w: lekf(ék)i < ©» for every f € E'} = E

UAB UFAK

Proof. By Mackey's theorem, H*x is bounded if and only if

it is weakly bounded. Thus x € EUAB if and only if, for each f € E',

k
{z xkf(G ) : F € 8} is a bounded set of complex numbers. This last
k€F

condition is equivalent to the absolute convergence of Zxkf(ék).

Certainly the absolute convergence of Zxkf(ék), for £ € E',

implies Hex is weakly unconditionally Cauchy. Conversely,
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if Hex is weakly unconditionally Cauchy and U is any weak neighborhood
of 0, then there is a set Fo € & such that Xp = hF°x € U whenever
F N Fo =@ and F € ¢. Let A ='{xG : GC Fo} ; then A is finite and,

for any F in ¢,

Xp = Xonp + X p € A+ U,
o o

Thus the set of all Xp is weakly precompact which is equivalent to
bounded in a locally convex Hausdorff space.

The conditional case for a K-space E 1is in general related
by EFAK c EAB , and the inclusion is proper as is illustrated by example
5, 84.

Corollary. Let x be any sequence with unconditionally bounded sections
in a K-space E. Then x has the property FAK.

Completing the previously mentioned diagram, we next observe
that if a sequence with unconditionally bounded sections has section
convergence in the weak topology, then this convergence is unconditional.
Theorem 2. If E is a K-space, then EUAB N ESAK = EUSAK .

Proof. If H+x is bounded and Zxkﬁk converges weakly to x,

+
then for € >0 and f € E' we can choose N € 2 sufficiently large

N
so that & kaf(ék)l <e/2 and |f(x) - T xkf(ak)l < €/2. Then
k=N+1 k=1

if P is any finite subset of the positive integers containing {1,2,...,nN},

we have

N
£x) - £CZ x 6] = [£x) - Zx e+ ¥ |x£65] <e
*k Kk

k€F k=1 k=N+1 k
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and it follows that H*x -+ x in the weak topology. The reverse inclusion

is immediate using Theorem 1.

+
Lemma 1. The convex hull of H*x, where x is any sequence, is C¢'x.
k .
Proof. If y € rTH-x} then y= I u h(J)'x where uj >0
k =1
for each j =1,2,...,k and Z M. =1. Letting F=F UF_...UF |,
j 1 2 k
where Fj = {n : héj) =1}, and kn = Z {4, : n € F.}, we can write
, j=1 J
+
y= I A X 6", where 0 <X <1 for each n. Thus y € C,*x.
n n ¢
n€rF
Conversely if y = I A x 6" with 0 <A <1 and F is finite, then
n n n
n€F
< < < <
the An can be arranged so t:at 0 = An(l) ‘kkn(2) < ... = An(k) =1
and we can write y = A I x ,, Gn(l) + I (A, ) E n(1)
n(l) .- “n(i) o (3 "n(3-n
i=1 j=2
(1-A )*0 which is in the convex hull of H-x.

n(k)

Proposition 1. If E is a K-space and x is any sequence, the follow-

ing are equivalent:
(i) x has unconditionally bounded sections in E;
. + . .
(ii) C¢'x is bounded in E;

(iii) C¢'x is bounded in E.

Proof. In view of Lemma 1 it suffices to show (ii) = (iii). As
+ + .+ o+ . .
CQ'x c C¢°x - CQ.X + 1C¢'x - 1C¢'x we are done; since in a locally convex

space scalar multiples and finite sums of bounded sets are bounded.
The next result is the analogue in the unconditional setting
of Corollary 1, Proposition 4, Chapter 2.

Proposition 2. Suppose E is a locally H-invariant K-space. Then the

following are equivalent:
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(i) =x € EUAK ;

(ii) =x ¢ ESAK H

(iii) x has the property AD.

Proof. (i) & (iii) follows from Proposition 1, Chapter 2. If
x € EsAK then x belongs to the weak closure of {Pn'x}; hence to the
weak closure of fTH‘x} = C;°x. Since the closure in the original
topology and the weak closure of convex sets agree in a locally convex
space, x has the property AD and so belongs to EUAK . (1) = (ii)
is clear.
Corollary. Let E be an FK-space such that E C EUAB . Then

EAK=EUAK' ‘
That the converse of the above corollary is false is illustrated

by the example following Corollary 2, Theorem 3, Chapter 2.

§3. Sequential Completeness

We have just seen that under ordinary circumstances He*x
bounded implies C;'x is bounded. If E is sequentially complete much
more can be said, as the following result paralleling Proposition 6,
Chapter 2 guarantees.

Theorem 3. Let E be a sequentially complete K-space and let x

belong to E . Then Co'x is bounded in E and Co'x CE .

UAB URK

Proof. Suppose H*x is bounded in E. Let n € C° and
p a continuous semi-norm on E. By Proposition 1 C®'x is bounded,

so there exists M > 0 such that p(t*x) < M for each ¢t ¢ C® .
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We observe that, if m > n,

Pm(n'x) = Pn(n'x) (0;0'...'0'7'] l---lntnxmlolor---)

n+1xn+lﬂk+2xn+2

( max |n |)n'-x,
n+1=k<m nk

where n' € C¢ . Therefore

p(Pm(n'x) - P (N*x)) = ( max Ink|)p(n"x) < ( max |n_|)M

n+1<k<m n+l<k<m *
and, since n € Co , 1t follows that (Pn(n°x)) is a Cauchy sequence

in E. As E 1is a sequentially complete K-space (Pn(n°x)) must
converge to TnN*x. Thus every element of Co'x is contained in the closure

of the bounded set C,°x. Since E 1is locally convex it follows that

L)
Co'x is bounded. Now let € > 0 be given. Since Pn(n'x) > N*x we

+
can find N € 2 such that, for n = N,
p(Pn(n°x) -n*x) < /2

and |nn| < g/2M .
Then if F is any finite subset of positive integers containing

{1,2,...,N}, we have

p( I (Mex) 8 - nex) < p( ) (n*x), 8%) + p(B () -n*x)
keF ker~{1,2,...,N}
< ( max |nk|)p(T°x) + €/2 (where T € C¢)

k€r~{1,2,...,N}
< (e/2M)M + ¢/2 = € ,
and therefore n°*x € EUAK .
Corollary 1. Let E be a sequentially complete K-space. If

Zlf(ﬁk)l <« for each f € E', then c_CE.
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Proof. The condition Elf(Gk)| < ®» jis clearly the same, from
Theorem 1, as He+e is bounded in E.
Corollary 2. An FK-space E contains c_ = if and only if Elf(dk)| <
for each f € E'.

Proof. The sufficiency of the condition is given by Corollary 1.
The necessity follows from the fact that the relative topology of E on
<, is weaker than the usual supremum norm topology on <, [26, Cor.1l,
p.203} and H*e being bounded in c, with the usual topology.

Corollary 3. Suppose E is an FK-space. E 1is a conservative conull

space if and only if e ¢ EUSAK .

Proof. By definition, E 1is conull if e ¢ ESAK . If cCE
then Corollary 2 implies e € EUAB . The necessity now follows from Theorem
2. Conversely, e € EUSAK yields E 1is a conservative conull space,

by appeal to Corollary 1 and the definition of conull.

Theorem 3 asserts that CO-E CE in a sequentially complete

UAK
K-space in which every element has unconditionally bounded sections. If

E 1is an FK-space, we have

Proposition 3. ILet E be an FK-space in which every element has uncon-

s 4 . . R .
ditionally bounded sections Then Co E EUAK

Proof. The inclusion Co'E C EUAK follows from Theorem 3.

C *E. i C
Lemma 1, Chapter 2 says EAK Bo E Since we always have EUAK EAK

and BO°E C C°°E, the result follows.

Proposition 4. Let E be a sequentially complete K-space and let

. *x C .
xGEﬂEUAB Then ch EﬂEUAB

Proof. If T €C we can write T = L°e + n, where IL[ =1

AI
and n € q) . Thus T°*x = Lx + N*x. But n*x ¢ EU

AK by Theorem 3 and
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x € EUAB by hypothesis, and the result follows.

Since it is always true that E < CA.E' we then have
Corollary. If E 1is a sequentially complete K-space in which every
element has unconditionally bounded sections, then E = cE.

The next theorem shows the converse of the above corollary
holds in an FK-space. Thus we will have established that c¢ is the
associated BK-space for the section operators H in the same sense
that bv corresponded to P in Chapter 2 and that g corresponded to
0 in Chapter 3.

Theorem 4. Let E be an FK-space. The following are equivalent:

(i) E 1is locally Cx—invariant;

(ii) E = c*E;

(1ii) I|x £(6¥)| <= for every x €E, £ € E';

(iv) E < EUAB H

(v) He*x 1is bounded for every x € E.

25225: The equivalence of (iii), (iv), and (v) follows from
Theorem 1, and the corollary to Proposition 3 shows that (iv) = (ii).
If E = c*E, then for each x in E the linear mapping Tx : c*E
defined by Tx(T) = T*x in continuous by the closed graph theorem.
Consequently it maps bounded sets onto bounded sets, so that Tx(H) = H*x
is bounded in E for every x in E. Thus (ii) = (iv). As (i) = (ii)
is clear, it remains to show that (ii) = (i). For each T in CA
the linear mapping ST : E > E defined by ST(x) = T*x 1is continuous
by the closed graph theorem. The proof of (ii) = (iv) shows that

Cx'x = Tx(ck) is a bounded subset of E for each x in E. Since any



pointwise bounded collection of continuous linear mappings from a
barrelled space into a locally convex space is equicontinuous, E

locally cx—invariant.

is
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Corollary 1. Every sequence in a solid FK-space has the property UFAK.

Proof. Solid implies c-invariant.

. . . _ - ‘E.
Corollary 2 If E is a solid FK-space, then EUAK Co

Proof. This follows from Proposition 3 and Theorem 4.

k
Corollary 3. In a c-invariant FK-space, the series Zxké converges

weakly if and only if it converges unconditionally.
Proof. Theorem 4 implies E 1is locally H-invariant.

2 now gives the result.

Lemma 2. Let (E,T) be a K-space. If x has unconditional section

Proposition

convergence in (E,T), then x has unconditional section convergence in

(EHB'PH) 3 (EUAB'PH)' (Notation is made clear by Theorem 1, Chapter 2).
Proof. Let x € EUAK , P €P, and € > 0. There exists

Fo € & such that if F ¢ ¢ and F O Fo , then p(hF°x-x) < €/4.

If €% and GNF =g, then

o
p(hG'x) = p((xG+xF )y - Xp )
o o
= p(xF,--xF ) where F' D Fo
o
< p(xF,-x) + p(x—xFo) <g/2
For h € H,

pH(h-x-k) = sup p(h'+*(hex-x)) = sup p(heh'*x-h'*x)
h'€H h'€H

=sup p( I (heh'sx). 65+ I (heh'*x). 8% = I (h''x). 85~

h'¢H  k€F K£F KE P k
(o] o] (o]

z

kﬁFo

(h'*x) kék) i



So whenever F D Fo R

k k
p, (b *x-x) = sup p( I (h.*h'*x).§ - I (h'+x) &)
n'E h'€H  kgF ki k' xer k
(o] (o]
k k
=sup (p(L (hF'h"x)kG ) +pl( I (h'°x)k5 ))
h*€H kEF k£F
(o] (o]
= 2 sup p(h'*x) < 2+¢/2 = € .
h'€H
hy =0, KE€F_
Thus E o ¢ (Epap)iuak -

We are now ready to prove the unconditional result analagous to
Theorem 4, Chapter 2 and Corollary 1, Theorem 2, Chapter 3.

Theorem 5. Let E be an FK-space. Then

K . .
{x €E : Zxkﬁ is subseries convergent} = ¢ Fyap -
Proof. If x ¢ EUAB , then

sup py(h'*x) = sup sup p(h*h'*x) = sup p(h'*x) < @,

h'€H h'€H h€H h'€H
and so EUAB is an FK-space (corollary of Theorem 1, Chapter 2) with
the property UAB. Applying Proposition 3 to EUAB , Lemma 2 to
(EUAB)UAK , and Theorem 3 to EUAB . WwWe obtain
. = 0 2 . -
Cb EUAB (EUAB)UAK EUAK Co EUAB

In a sequentially complete K-space Zkak is unconditionally convergent
if and only if it is subseries convergent [cf.7, p.78]; whence the result
follows.
Corollary. If E is an FK-space then EUAK is solid.

Finally we observe that in a weakly sequentially complete K-space

the property of having unconditionally bounded sections is especially

strong.
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Theorem 6. Let E be a weakly sequentially complete K-space and let
x be any sequence. Then x has unconditionally bounded sections in
E if and only if Zkak converges to x unconditionally in E (i.e.,
Euas - Fuak’

Proof. If H*x is bounded then H*x is weakly Cauchy, from
Theorem 1. It follows Pex is weakly Cauchy, hence weakly convergent
to x. By Theorem 2 Zxkék = x weakly unconditionally and, since E
is weakly sequentially complete, Zkak is weakly subseries convergent
[cf£.7, p.78]. By the Orlicz, Pettis, Grothendieck theorem Zxk6k is

subseries convergent, hence unconditionally convergent, to x in the

original topology.

84. Examples and Applications in Convergence Fields

Given an infinite matrix A = (a_,) with complex entries it

nk
is possible to make

C, = {x €ew : AXx = (kgl ankxk)nez+ € c}

into an FK-space by letting the following semi-norms generate its

topology:
(i) IHnl(x) = |xnl n=1,2,...;
r
ii = = e 3
(i1) q_ (x) i2§+|k§1ankxk n=1,2,.
(iii) p(x) | § |
111 PiX) = sup a X .
nez' k=1 PKK

cA is called the convergence field of A and has been widely studied.



Of special interest are those matrices with the "mean value
property”. A conservative matrix A is said to have the mean value
property (MVP) in case

{ : }
= . < o
B x € cp n?2€z+ lkﬁl ankxkl
fills up Cp - Bennett [2] and Sember [22] showed independently that

B= {x € Cp f x has bounded sections in CA}' Thus A has the MVP

i C
if and only if cA (cA)AB .

The above considerations lead to a "strong mean value property".

The conservative matrix A is said to have the strong mean value property

(sMvP) if
U={x€c, :sup | L a.x | <}
% reo, xer nk "k
nez
c
£ills up ©, .
Proposition 5. (c ) ={x€w:sup | I a x| <}
A" UAB FE¢+ k€EF nk k
né€z
Proof. Let x € w. Then
[e o]
(4.1) sup | I a | = sup sup |Z a_, (hex), |
k
FED KkEF nk*k h€H n€z' k=1 " k
n€z

and the right hand side of (4.1) is finite if and only if A{H-'x} is
bounded in c¢. Thus it is sufficient to show that A{H*x} being bounded
in ¢ 1is equivalent to H*x being bounded in cA - As any matrix map
between FK-spaces is continuous as well as linear [26, Cor.5, p.264],

it follows that the boundedness of He'x insures A{Hex} is bounded.

Suppose A{H*x} 1is a bounded subset of c. We must show the semi-norms
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of types (i), (ii), and (iii) are bounded with H*x in their arquments
to conclude the proof. That A{H+*x} is bounded in ¢ is precisely the
same as sup p(h*x) < «, and lxnl serves as a bound for the |ﬂnl of

h€H
type (i). Since

r
(4.2) sup qn(h'x) = sup sup+| T a (h-x)kl = sup | ¥ a

(h°X)k|,
h€H h€H r€z k=1 h€H k=1

nk

and (4.1) is assumed to be finite; (4.2) is certainly finite.
Corollary. The conservative matrix A has the SMVP if and only if every
element of CA has the property UAB.

Exanges:

l. Let A be the matrix with all zero entries. Then cA =w and A
has the SMVP.
2. Let A = I, the identity matrix. Then cy =€ and A has the SMVP.

3. It is well known the {(C,l)-matrix

Wi N O

R

has the MVP [cf. 25, p.346]. However the following construction due to
Allen R. Freedman shows a "large" portion of cp = Cesaro summable
sequences has the property UAB, while A does not have the SMVP.
[+ [+

let t €c and a € 2 N cp - Clearly te*a € & . 1If tn > L

then (t ~L) € c and (t -L)*a € ¢ . Thus t+a = (t -L)*a + La
n o n o n

R . + c , 2(!) 2(!) n . 2(!)
is in ¢ +c, Cc, . This shows c*{ N CA) = Cp -+ Since N CA

[0 o
is an FK-space, Theorem 4 shows £ CA is a UAB-space. As the
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Q0
topology of ¢ restricted to £ N ca is weaker than £ Nc_ 's

A A

. - .
FK-topology, % N CA C (cA)UAB . To construct a Cesaro summable sequence

b without unconditionally bounded sections, let a be a nondecreasing

a
positive sequence converging to infinity with :?- converging to O.
+
Let b = (bn)l wTere bn = (-1)n lan for n=1,2,... . Noting that
n b a
In-l ZIb | =< LU N 0 it is apparent that b €¢_ , i.e. is Cesaro
k=1 X n A

+]1 -
summable. Define d = (dn) by dn = (-n" lan% for n=1,2,... .

Then dn + 0 but d°b = (Van) cannot be in CA since any monotone

Cesaro summable sequence is convergent.

4. Let
Tlooo...‘
0 l-O 0. .
2
A = 1
00 3 0. .
. 1 .2 —
CA has Schauder basis {u,6",6°,...} where u = (n). CA = c @ u and
= C
(cA)SAK c, (25, ex.3, p.344). Clearly A has the SMVP, therefore A

has the property UAB; hence CA is locally H-invariant. We deduce,

by Proposition 2, that (CA)UAK = (CA)SAK .
5. Let
- -
l]l1o0000000O0. .
11
11 5 2 o0oo0oo0oo0O0. .
- 1111
A= 11 2373 00O0. .
111111
1132%3%88°% - -




Since A 1is conser i = =
c vative F = B 1 I where F Ca ] (CA)FAK '

B =c, N (c,) , and I = {x ¢ c, * by

A’ AB exists; a, = lim ank}

n
[26, Lemma 4.3, p.331). It is easily checked that for x = (1, -1, 2,

X3

-2, 4, -4, 8, -8, ...), x € B~I. Thus (c.) (c.) [28, p.27].

C
°A’rak + ‘“a’aB
6. A sequence in (CA)AK but not in (cA)UAB . Note that x € (CA)AK

if and only if A(Pn'x) + Ax in ¢ [3, Thm.l1l, p.107]. Thus for

10000. ..
1
17000.
_ 11
A= 13500, ..
111
17550 - -

and x = (1, -2, 3, -4, ...) we have x € (cA)AK . Since A{H'x} is
unbounded in ¢, Xx £ (CA)UAB .
7. There are many BK-spaces having the property of unconditional

section boundedness, i.e. c-invariant, that are not solid [9]. For

n
example, loll = {x € w : there exists L such that n—1 z ka—LI + 0}
. n k=1
is such a space with HxHI =supn L |x|. |o/| is clearly a
ol a k=1 X 1

UAB-space and (1,0,1,0,...) = (1,0,1,0,...)°e is not in |0 so

N

IO is not solid.

N
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